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Glossary

Grid Virtual metacomputer, which uses a network of geo-
graphically distributed local networks, computers and
computational resources and services. Grid Comput-
ing focuses on distributed computing technologies,

which are not in the traditional dedicated clusters.
Data Grids – represent controlled sharing and man-
agement of large amounts of distributed data.

Problem solving environment (PSE) A specialized com-
puter software for solving one class of problems. They
use the language of the respective field and often em-
ploy modern graphical user interfaces. The goal is to
make the software easy to use for specialists in fields
other than computer science. PSEs are available for
generic problems like data visualization or large sys-
tems of equations and for narrow fields of science or
engineering.

Global seismographic network (GSN) The goal of the
GSN is to deploy permanent seismic recording sta-
tions uniformly over the earth’s surface. The GSN
stations continuously record seismic data from very
broad band seismometers at 20 samples per second,
and to provide for high-frequency (40 sps) and strong-
motion (1 and 100 sps) sensors where scientifically
warranted. It is also the goal of the GSN to provide for
real-time access to its data via Internet or satellite. Over
75% of the over 128 GSN stations meet this goal as of
2003.

WEB-IS A software tool that allows remote, interactive
visualization and analysis of large-scale 3-D earth-
quake clusters over the Internet through the interac-
tion between client and server.

Scientific visualization is branch of computer graphics
and user interface design that are dealing with present-
ing data to users, by means of patterns and images.
The goal of scientific visualization is to improve un-
derstanding of the data being presented.

Interactive visualization is a branch of graphic visual-
ization that studies how humans interact with com-
puters to create graphic illustrations of informa-
tion and how this process can be made more effi-
cient. Remote-visualization – the tools for interac-
tive visualization of high-resolution images on remote
client machine, rendered and preprocessed on the
server.
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OpenGL A standard specification defining a cross-lan-
guage cross-platform API for writing applications that
produce 2D and 3D computer graphics.

Sumatra-Andaman earthquake An undersea earthquake
that occurred at 00:58:53 UTC (07:58:53 local time)
December 26, 2004, with an epicenter off the west coast
of Sumatra, Indonesia. The earthquake triggered a se-
ries of devastating tsunamis along the coasts of most
landmasses bordering the Indian Ocean, killing large
numbers of people and inundating coastal communi-
ties across South and Southeast Asia, including parts
of Indonesia, Sri Lanka, India, and Thailand.

Earthquake catalog Data set consisting of earthquake
hypocenters, origin times, andmagnitudes. Additional
information may include phase and amplitude read-
ings, as well as first-motion mechanisms and moment
tensors.

Pattern recognition The methods, algorithms and tools
to analyze data based on either statistical informa-
tion or on a priori knowledge extracted from the pat-
terns. The patterns for classification are groups of
observations, measurements, objects, defining feature
vectors in an appropriate multidimensional feature
space.

Data mining Algorithms, tools, methods and systems
used in extraction of knowledge hidden in a large
amount of data.

Features denoted f i or Fj (i; j – feature indices) – a set of
variables which carry discriminating and characteriz-
ing information about the objects under consideration.
The features can represent rawmeasurements (data) f i
or can be generated in a non-linear way from the data
Fj (features).

Feature space The multidimensional space in which the
Fk vectors are defined. Data and feature vectors repre-
sent vectors in respective spaces.

Feature vector A collection of features ordered in some
meaningful way into multi-dimensional feature vec-
tors Fl (Fl where l – feature vector index) that repre-
sents the signature of the object to be identified repre-
sented by the generated features Fl.

Feature extraction The procedure of mapping source
feature space into output feature space of lower di-
mensionality, retaining the minimal value of error cost
function.

Multidimensional scaling The nonlinear procedure of
feature extraction, which minimizes the value of the
“stress” being the function of differences of all the dis-
tances between feature vectors in the source space and
corresponding distances in the resulting space of lower
dimensionality.

Data space The multi-dimensional space in which the
data vectors f k exist.

Data vector A collection of features ordered in some
meaningful way into multi-dimensional vectors f k
( f k ; k – data vector index) and f k D [mk ; zk ; xk ; tk]
where mk is the magnitude and xk, zk, tk – its epicen-
tral coordinates, depth and the time of occurrence, re-
spectively.

Cluster Isolated set of feature (or data) vectors in data and
feature spaces.

Clustering The computational procedure extracting clus-
ters in multidimensional feature spaces.

Agglomerative (hierarchical) clustering algorithm The
clustering algorithm in which at the start the feature
vectors represent separate clusters and the larger clus-
ters are built-up in a hierarchical way. The procedure
repeats the process of gluing-up the closest clusters
up to the stage when a desired number of clusters is
achieved.

k-Means clustering Non-hierarchical clustering algo-
rithm in which the randomly generated centers of
clusters are improved iteratively.

Multi-resolutional clustering analysis Due to clustering
a hierarchy of clusters can be obtained. The analysis
of the results of clustering in various resolution levels
allows for extraction of knowledge hidden in both local
(small clusters) and global (large clusters) similarity of
multidimensional feature vectors.

N-body solver The algorithm exploiting the concept of
time evolution of an ensemble of mutually interacting
particles.

Non-hierarchical clustering algorithm The clustering
algorithm in which the clusters are searched for by
using global optimization algorithms. The most repre-
sentative algorithms of this type is k-means procedure.

Definition of the Subject

Earthquakes have a direct societal relevance because of
their tremendous impact on human community [59]. The
genesis of earthquakes is an unsolved problem in the earth
sciences, because of the still unknown underlying phys-
ical mechanisms. Unlike the weather, which can be pre-
dicted for several days in advance by numerically integrat-
ing non-linear partial differential equations on massively
parallel systems, earthquake forecasting remains an elusive
goal, because of the lack of direct observations and the fact
that the governing equations are still unknown. Instead
one must employ statistical approaches (e. g., [61,72,82])
and data-assimilation techniques (e. g., [6,53,81]). The na-
ture of the spatio-temporal evolution of earthquakes has

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/A_priori_and_a_posteriori_(philosophy)
http://en.wikipedia.org/wiki/Space_(mathematics)
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to be assessed from the observed seismicity and geodetic
measurements. Problems of this nature can be analyzed by
recognizing non-linear patterns hidden in the vast amount
of seemingly unrelated information. With the prolifera-
tion of large-scale computations, data mining [77], which
is a time-honored and well-understood process, has come
into its own for extracting useful patterns from large inco-
herent data sets found in diverse fields, such as astronomy,
medical imaging, combinatorial chemistry, bio-informat-
ics, seismology, remote sensing and stock markets [75].
Recent advances in information technology, high perfor-
mance computing, and satellite imagery have led to the
availability of extremely large data sets, exceeding Ter-
abytes at each turn, that are coming regularly to phys-
ical scientists who need to analyze them quickly. These
data sets are non-trivial to analyze without the use of
new computer science algorithms that find solutions with
a minimal computing complexity. With the imminent ar-
rival of petascale computing by 2011 in USA, we can
expect some breakthrough results from clustering analy-
sis. Indeed, clustering has become a widely successful ap-
proach for revealing features and patterns in the data-
mining process. We describe the method of using clus-
tering as a tool for analyzing complex seismic data sets
and the visualization techniques necessary for interpret-
ing the results. Petascale computing will also spur visual-
ization techniques, which are sorely needed to understand
the vast amounts of data compressed in many different
kinds of spaces, with spatial, temporal and other types of
dimensions [78]. Examples of clusters abound in nature
include stars in galaxies, hubs in airline routes and centers
of various human relationships [5]. Clustering comes from
multi-scale, nonlinear interactions due to the rock rheol-
ogy and earthquakes.

Introduction

Earthquake clustering is automatically implicated by
the classical Gutenberg–Richter relationship [40], which
specifies the frequency of earthquakes between some
small magnitude cutoff and a certain large magnitude
around 8 [39]. This empirical finding with a broad magni-
tude range implies that the largest seismic events are sur-
rounded by a large number of smaller events. This clus-
tering may have both spatial and temporal dependences.
One of the goals of earthquake clustering studies is to find
these special points in a high-dimensional space related to
the nature of the dimensional space associated with earth-
quake dynamics [24,25]. One major goal of this chapter
is to introduce the reader to the notion of searching for
clustering points in dimensional spaces higher than the

3D physical space we are used to. This concept is cru-
cial to our understanding of the clustering points of earth-
quakes in these higher-dimensional spaces, which may en-
able progress in forecasting earthquakes. Information in
seismicity data sets can be both relevant and irrelevant
from the point of view of deterministic earthquake dynam-
ics. It can be also “entangled” and impossible to be inter-
preted with normal human perception. The role of data
mining is to have a mathematically rigorous algorithm for
extracting relevant information from this deluge of data,
and make it understandable. Clustering techniques, which
are commonly used today in many fields, ranging from bi-
ology (e. g., [26]) to astrophysics, allows us to produce spe-
cially crafted data models that can be employed for pre-
dicting the nature of future events. In more complex cases,
these special data models can work in concert with formal
mathematical and physical paradigms to give us deeper
physical insight.

The concept of clustering has been used for many years
in pattern recognition [2,50,78]. The clustering can use
more (e. g. [54]) or less mathematically rigorous principles
(e. g. [33]). Nowadays clustering and other feature extrac-
tion algorithms are recognized as important tools for re-
vealing coherent features in the earth sciences [32,65,66,
67], bioinformatics [51] and in data mining [37,43,44,57].
Depending on the data structures and goals of classifica-
tion, different clustering schemes must be applied [36,55].

In this chapter we emphasize the role of clustering in
the understanding of earthquake dynamics and the way
to visualize and interpret the computed results from clus-
tering. All the seismic events occurring over a certain re-
gion during a given time period can be viewed as a sin-
gle cluster of correlated events. The strength of mutual
correlations between events, such as correlations in spa-
tial and time positions along with magnitude, cause this
single cluster to have very complex internal structure. The
correlations – the measures of similarity between events –
divide the global cluster into variety of small clusters of
multi-scale nature, i. e., small clusters may consist of a cas-
cade of smaller ones. Coming down the scale we record
clusters of more and more tightly correlated events. Ex-
ploring the nature of events belonging to a single cluster,
we can extract common features they posses. Havingmore
information about events belonging to the same cluster we
can derive hidden dependences between them. Moreover,
we can anticipate the type of an unknown event belonging
to a certain cluster from the character of the other events
of this cluster.

In the following sections we describe the idea of clus-
tering and the new idea of higher dimensions associated
with data sets. We also demonstrate the results of cluster-
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ing analysis of both synthetic and real data. Long synthetic
data were derived by using a model for a segmented strike-
slip fault zone in a 3D elastic half-space [7]. The real data
represent short time (5 years interval) seismic activities of
the Changbaishan volcano (the north-east frontier of the
North China craton) and the Japanese Archipelago. Lastly,
we also highlight the role of visualization of clusters as an
important tool for understanding this type of new data ar-
rangement, and we describe the role played by remote vi-
sualization environment specially devised for visualization
of earthquake clusters.

Earthquakes Clustering

Statistical Laws as Elementary Building Bricks
of Earthquake Models

The earthquake prediction problem is of fundamental im-
portance to society and also geosciences. Progress in this
field is hampered, mainly because many important dy-
namic variables – such as stress – are not accessible for
direct observations. Moreover, instrumental observations
of seismicity are possible only for a fraction of a single
large earthquake cycle. Overcoming these difficulties will
require combining analyzes of model and observed data by
using knowledge extraction instruments. The fundamen-
tal process of knowledge extraction is finding dependences
between data and/or betweenmodel parameters. They can
be revealed as patterns (clusters) in time, spatial and fea-
ture (parameter) space domains. The most elementary de-
pendences can be expressed in the form of semi-empirical
functional laws.

There are a few basic statistical laws which represent
the basis for earthquake models development. The fre-
quency-size statistics of regular tectonic earthquakes (ex-
cluding swarms and deep focus earthquakes) follow the
Gutenberg–Richter relation [39,80,84]:

logN(M) D a � bM (1)

where N is the number of events with magnitude larger
than M and a, b are constants giving, respectively, the
overall seismicity rate and relative rates of events in differ-
ent magnitude ranges. Observed b-values of regional seis-
micity typically fall in the range 0.7–1.3.

Aftershock decay rates are usually be described by the
Omori–Utsu law [71,79]:


N/
t D K(t C c)�p (2)

where N is the cumulative number of events, t is the time
after the mainshock, and K , c, and p are empirical con-
stants. The epidemic-type aftershock-sequences (ETAS)

model combines the Omori–Utsu law with the Guten-
berg–Richter frequency-magnitude relation for a history-
dependent occurrence rate of a point process in the form
(e. g., [61])

(tjHt) D �C
X

t i<t

K0 exp[˛(Mi � Mc)]
(t � ti C c)p

(3)

where ˛ is a constant background rate, Mi is the magni-
tude of earthquake at time ti ;Mc is a lower magnitude
cut-off, Ht denotes the history, and the productivity factor
K0 exp[˛(Mi � Mc)] gives the number of events triggered
by a parent earthquake with magnitude Mi. The ETAS
model is used widely in analysis of seismic data, owing to
its built-in clustering associated with the incorporation of
the Gutenberg–Richter and Omori–Utsu laws. Examples
of recent applications can be found in [45,62,68].

These results can be used to derive additional prop-
erties such as average recurrence times (e. g., [4,18,19,20,
68,89]). It is usually defined as the number of years be-
tween occurrences of an earthquake of a given magni-
tude in a particular area. For example, the probability of
a devastating earthquake striking the greater San Fran-
cisco Bay Region over the following 25 years (2007–2031)
is 0.62 [68]. Corral [18,19,20] proposed the existence of
a universal scaling law for the probability density function
H(�) of recurrence times (or interevent times) � between
earthquakes in a given region:

H (�) Š  � f (�) : (4)

The function f (x) appears to be similar for many different
seismic regions, which suggests some universal properties.
The average rate  represent the region specific constant,
whose reciprocal is the only relevant characteristic time
for the recurrence times. Molchan [58] showed that un-
der general conditions, the only universal distribution of
inter-event times in a stationary point process is exponen-
tial. Hainzl et al. [42] and Saichev and Sornette [68] dis-
cussed relations between statistics of interevent times, the
ETASmodel of triggered seismicity, and the Corral [18,19]
distribution of Eq. (4).

In the context of earthquake prediction it is impor-
tant to analyze earthquake cycles with repeating sequences
of events such as foreshocks, mainshocks and aftershocks
(e. g., [9,74,80]). Apart from qualitative tendencies re-
flected by statistical laws, the earthquakes exhibit vari-
ous types of more subtle spatio-temporal clustering, i. e.,
grouping of events of the same type both in time and in
spatial coordinates. The recognition of these patterns fol-
lowed by the analysis of the reasons of their appearance
may lead to the development of improved prediction algo-
rithms.
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In the following section we present a closer look of
clustering as a knowledge extraction technique and a pos-
sible way of its application to earthquake data analysis.

Basic Concepts of Clustering

Clustering analysis is a mathematical concept whose main
useful role is to extract themost similar (or dissimilar) sep-
arated sets of objects according to a given similarity (or
dissimilarity) measure [2]. Clustering is one of the most
fundamental processes generated by nature. For example,
people gathering in groups, tribes, demonstrations, par-
ties, cities, produce clusters. Similarly, towns and cities are
clusters of buildings while galaxies are clusters of stars.
The local computer networks and bacterial colonies are
also clusters. The objects forming clusters can be the clus-
ters of smaller objects, which in turn, are clusters of even
smaller and smaller building bricks. The complexity of
cluster structure reflects the complexity of the real world.
The clusters of various shapes, densities and sizes, with
additional attributes as colors, transparency etc. built up
patterns, which are the fingerprints of all multi-scale pro-
cesses and phenomena. The clusters are the primitives of
the patterns.

The same notion of clustering concerns geograph-
ical locations and other properties of earthquakes. In
Fig. 1a we present a spatial distribution of earthquake

Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 1
Multiscale character of the earthquake clusters. The epicenters of earthquakes of various depth and magnitude are displayed.
The data come from the CNSS Earthquake Catalog (http://quake.geo.berkeley.edu/cnss/maps/cnss-map.html). a the western hemi-
sphere, b the US western coast c California and Nevada

epicenters in the western hemisphere of the Earth (data
from http://quake.geo.berkeley.edu/cnss/maps/cnss-map.
html). One can see with the naked eye that their distribu-
tion is far from being uniform.We observe both elongated
and oblate structures – the earthquake clusters – separated
at this resolution by large holes of seismically quiescent
area.

Properties of the clusters result from properties of the
generating processes. The shape and structure of clus-
ters are visual representation of information on these pro-
cesses. Therefore, detection of clusters and their analysis
is the first step for knowledge extraction from this infor-
mation. For example, as shown in Fig. 1a, the earthquake
clusters on Earth are located in geologically active regions,
mainly, on the edges of colliding tectonic plates. The dis-
tribution and shape of the earthquake clusters follow the
borders between the plates. In Fig. 1b we show the large
earthquake cluster from Fig. 1a located at the US western
coast. One can distinguish here many smaller clusters of
different density separated by geologically inactive area.
A similar pattern (see Fig. 1c) is observed by zooming-
in one of denser clusters from Fig. 1b. This multi-reso-
lutional and self-similar system is characteristic for many
critical phenomena� JerkyMotion in Slowly DrivenMag-
netic and Earthquake Fault Systems, Physics of [3,9,16,74].
The worldwide fault network has a fractal structure (or
multifractal) [22,27,79]. Wavelet-basedmulti-fractal anal-

http://quake.geo.berkeley.edu/cnss/maps/cnss-map.html
http://quake.geo.berkeley.edu/cnss/maps/cnss-map.html
http://quake.geo.berkeley.edu/cnss/maps/cnss-map.html
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Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 2
Seismic activity of the Changbaishan volcano during 5 years time span from 07.1999 to 05.2004 (the north-east frontier of the North
China craton) [47]. Theplates represent the seismic events in 3-D feature space attributedby eruption time (blueaxis), magnitude (red
axis) and distance to the epicenter (green axis) coordinates. The clusters are rendered using the wrap point technique (the Amira vi-
sualization package www.amiravis.com). Two different positions of coordinates are shown. The large cluster representing the earth-
quake swarm is preceded by the small precursory cluster of seismic activity and quiescent time period

ysis [27] shows clearly several distinct scaling domains
in earthquake catalogs revealing rich self-similar multi-
scale structure. However, the spatial structure of earth-
quake clusters alone is inadequate to formulate plausible
hypotheses about earthquake dynamics. More informa-
tion is required.

As shown in Fig. 1, besides the geographical location,
earthquakes have additional features such as the time and
depth of occurrence and the amount of energy released
(proportional to 10˛m with ˛ � 1:5 and m the magni-
tude). These attributes can be used as additional coordi-
nates of, so called, feature space (e. g., [78]). In Fig. 2 we
display the earthquake clusters representing the seismic
activity nearby the Changbaishan volcano in an abstract
3-D feature space. Apart from geographical location – rep-
resented by the distance from the epicenter – other coordi-
nates (features) are employed: the time of occurrence and
the magnitude of the earthquake. As shown in Fig. 2, the
large cluster of seismic activity is preceded by the small
precursory cluster and low activity region. The larger clus-
ter is characterized by the seismic events from broader in-
terval of magnitudes and with satellite earthquakes more
distant from the epicenter than in the preceding smaller
cluster.

The dynamics of the volcanic earthquakes covers only
a period of 5 years. The time is too short to conclude about
the long-time earthquake dynamics. To obtain data cover-
ing much longer time period we used synthetic data gen-
erated by numerical simulations of seismicity on a hetero-
geneous fault governed by 3-D elastic dislocation theory,
power-law creep and boundary conditions corresponding
to the central San Andreas Fault [7,28,29]. In Fig. 3 we

represent seismic activity during 150 years. This period
contains Mf � 1 � 3 � 104 events (represented in Fig. 3
by colored dots) in the magnitude interval [3.3–6.8]. Un-
like in the Changbaishan case, the seismic events have one
more feature – the earthquake depth. Thus the feature
space has now four dimensions. In Fig. 3 we display the
data distribution in time-depth-position 3-D space. The
fourth dimension – the magnitude – is displayed in Fig. 3
by the size of dot. To make the situation clearer only the
large earthquakes with magnitudesm > 6 (large dots) and
the smallest ones m < 4 (small dots) are distinguished in
Fig. 3. As shown in Fig. 3 and in [24], the synthetic seismic
events with magnitudesm < 4 produce stripe-like clusters
in the data space. They precede large earthquakes (m > 6)
and are separated in time by the regions of mixed type of
events (i. e., with 4 < m < 5).

Another system of earthquake clusters are shown
in Fig. 4 The synthetic data (Mf � 105 events) corre-
sponding to the seismic activity during 1500 years were
generated by the same model [7] for similar geological
and boundary conditions. Only medium size events with
4:5 < m < 6 were taken for clustering. In addition to the
local strip like clusters of smaller events (m < 4) detected
for 150-years data, one can observe in Fig. 4a distinct spa-
tio-temporal patchwork structure of clusters of medium
sized events (4:5 < m < 6). These clusters follow spatio-
temporal changes in strength-stress properties of the fault
in the region simulated.

In summary, we can highlight very fundamental prop-
erties of earthquakes, multi-resolutional clusters are built
up by the earthquake epicenters. The clustering is a dy-
namical process involving many spatio-temporal scales.
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Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 3
The plot reconstructing seismic activity during 150 years from synthetic data [7] (horizontal distance – X, depth – z; visualized by
using the Amira visualization package [1]). Large events (with magnitude m > 6) are shown as distinctly larger dots on the back-
ground of the lowest magnitude events (m < 4). There are visualized patches of lowmagnitude events preceding larger events [24].
The separate clusters are marked in colors

Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 4
The plot reconstructing seismic activity during 1500 years from synthetic data [7]. The largest clusters obtained for events with
magnitudes 4:5 < m < 6. Large events (m > 6) are shown as distinctly larger plates. The separate clusters aremarked in colors

The dynamic nature of earthquake clusters in a very long
time horizon is obvious because everyone can expect that
tectonic plates will change dynamically the geo-mechan-
ical properties of the Earth crust. In a long time pe-
riod covering thousands years, the patterns from Fig. 1
will evolve following the changes in the fault network.
More mysterious is the character of earthquake dynam-
ics in spatio-temporal scales allowing for making realis-
tic predictions. We show that in the medium-time period
lasting more than a hundred of years the seismic events

may produce periodic system of clusters in approximately
equal time intervals with increasing and decreasing seis-
mic activity. The large earthquakes, preceded by the qui-
escent time periods, appear. The short-time dynamics re-
veal additionally, that the earthquake swarms are signaled
by the smaller precursory cluster of seismic activity. The
earthquake attributes such as the magnitude, and the epi-
center depth, allow for better interpretation of emerging
clusters and exploration of hypotheses space. Therefore,
for studying various aspects of earthquake dynamics, in-
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cluding their prediction, we have to analyze the cluster
structures in multi-dimensional feature space, to be sure
that none of important information will be lost or ne-
glected.

Multidimensional Feature Space

In Fig. 1 every point i representing one out of Mf earth-
quakes has two dimensions – the geographical coordinates
x i D [x1; x2] of the epicenter. The point can be treated as
2-D vector f i in the feature space where f i D x i . Assum-
ing additional coordinates, at the highest level of resolu-
tion, a single seismic event i can be represented as a five-
dimensional data vector f i D [mi ; zi ; x i ; ti ] where mi is
the magnitude and x i ; zi ; ti – its epicentral coordinates,
depth and the time of occurrence, respectively. The spa-
tio-temporal clusters can be extracted by 3-D visualization
similar as those of Figs. 3, 4 distinguishing extra dimension
by the size of dots and colors. Only clusters in the three
spatially visualized dimensions can be extracted, while the
other attributes associated with the earthquake character-
istics are used for discriminating among the different types
of clusters.

As shown in Figs. 3, 4 and in [24], at the lowest reso-
lution level we can analyze the data locally by looking for
clusters with similar events. However, considering a sin-
gle event on a given area as a feature vector [78] can-
not be a good approach from a generalization point of
view. The number of events is usually large. There are
many noisy background events, which destroy the relevant
clusters or produce artificial ones. Moreover, the cluster-
ing of raw data neglects the important statistical informa-
tion, which concerns the entire inspected area. An alter-
native approach exists in which the entire seismic area can
be described as a multidimensional feature vector evolv-
ing in time. In the following these features will repre-
sent descriptors ak (seismicity parameters) correspond-
ing to different statistical properties of all the events mea-
sured in a given time interval. The number of descrip-
tors N defines the dimensionality of the feature vector
F i D [a1; a2; : : : ; aN ]; i D 1; 2; : : : ;M. The vector repre-
sents not a single seismic event but it corresponds to seis-
mic situation on the whole controlled area in the subse-
quent time interval indexed by i. The number of feature
vectorsM is equal to the number of time intervals in which
the descriptors are computed. The index i is a discrete
equivalent of time. We expect that the features vectors
representing different moments of time also have the ten-
dency to produce clusters in the abstract N-dimensional
feature space. Monitoring changes of these time-series in
abstract N-dimensional space may be used as a proxy for

the evolution of stress and a large earthquake cycle on
a heterogeneous fault [9].

To explain this approach better, let us assume that we
have to analyze the client behaviors in a hypermarket. We
can watch every client separately assuming that it can be
defined as a feature vector consisting of only two coordi-
nates: the time he entered the shop, money spent. Then we
can try to find clusters emerging with time during a shop-
ping day. This cannot be easy due to both a large num-
ber of feature vectors (clients) producing statistical noise
and lack of correlations between them. Another approach
consists in treating as a feature vector not a single client
but every subsequent time interval ti D i � 
T(i D
0; 1; 2; : : : ;MF ; ti < te ; MF D (te � tb)/
T and tb – be-
ginning of the working day and te – closing time). Let the
coordinates of the subsequent feature vector define the fol-
lowing descriptors averaged in 
t: the number of people
inside the shop (crowding), the flow, items bought, money
spent per person. We note that now the number of feature
vectors will be substantially smaller than in the previous
approach but the dimensionality of feature space is larger.
Let us assume that as a result of clustering we extract
two distinct clusters. The first one consists of feature vec-
tors (time intervals) from between 10.00–11.00 and 13.00–
14.00. The cluster is characterized by very small values
of the first three descriptors (crowding, flow, numbers of
items sold) and relatively large expenses. The second clus-
ter consists of time intervals from between 8.00–9.00 and
16.00–18.00 with all descriptors large. We could conclude
that the first cluster consists of time intervals from shop-
ping hours that are the favorite for wealthy retired peo-
ple from the rich village in the neighborhood, while the
second cluster is associated with the rush in shopping just
before before the beginning and after the end of working
hours.

In the same way, the clusters of feature vectors (time
intervals) consisting of seismicity parameters should re-
flect the similarity between seismic activities in various
time intervals. As we show before the large seismic events
are preceded by precursory events, reflected by an abnor-
mal seismic activity in the whole area. We suppose that
these moments of time are similar in the context of the
set of seismicity parameters selected. Thus the feature vec-
tors corresponding to precursory events should belong to
the same cluster. The idea of predictive system based on
clustering consists in detecting the clusters of former fore-
shocks and signal if the current feature vector – which rep-
resents current seismic situation over the area – is or is not
the member of this clusters.

The seismicity parameters are computed as time and
space averages in a given time and space intervals within
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EarthquakeClusters overMulti-dimensional Space, Visualization
of, Table 1
Definition of seismicity parameters

NS Degree of spatial non-randomness at short distances. The
differences between distributions of event distances and
distances between randomly distributed points.

NL Degree of spatial non-randomness at short distances.
CD Spatial correlation dimension calculated on the basis of

correlation integrals and on interevent distances.
SR Degree of spatial repetitiveness represents the tendency

of events with similar magnitudes to have nearly the
same locations of hypocenters.

AZ Average depth of the earthquake occurrence.
TI Inverse of seismicity rate – time interval in which a given

(constant) number of events occurs.
MR Ratio of the numbers of events falling into two different

magnitude rangesD Mf (m � M0)/Mf (m < M0).

EarthquakeClusters overMulti-dimensional Space, Visualization
of, Figure 5
The exemplary set of seismicity parameters {M,NS,NL, CD, SR, AZ,
TI, MR} in time (i – subsequent number of the feature vector) for
a file from the 1500-years synthetic data catalog (from [25]). The
green and red strips show the time moments belonging to the
two different clusters. The green cluster corresponds to the time
intervals of lower while the red cluster of higher seismic activi-
ties. The time series represent aboutMF D 103 feature vectors Fi

a sliding time window with a length 
T and time step dt.
The values of ak represents one of the following seismic-
ity parameters: NS, NL, CD, SR, AZ, TI, MR. The value
of dt was assumed to be equal to the average time differ-
ence between two recorded consecutive events while 
T
is equal to about 1/10 of the average time distance between

two successive large events (m > 6 or m > 5). By increas-
ing the values of dt and
T one can obtain smoother time
series due to better statistics. On the other hand, poorer
prediction characteristics can be expected then. We define
the seismicity parameters as shown in Table 1 [28,29].

The seismicity parameters produces seven time series
and create the abstract 7-dimensional feature space of time
events Fi = (NSi, NLi, CDi, SRi, AZi, TIi,MRi ) where i are
discretized values of time t D tb C i
T . In Fig. 5 we dis-
play an example set of seismicity parameters (with average
magnitudeM) for synthetic data [25]. The precise location
of the clusters and the visualization of the clustering results
are significant challenges in clustering over multi-dimen-
sional space. In the following section we present briefly the
basics of clustering and algorithms needed in this venture.

The Detection and Visualization of Clusters
in Multi-Dimensional Feature Space

Our main challenge is to devise a clustering scheme which
can divide the M feature vectors x i i D 1; 2; : : :M into k
separate groups (clusters). More formally, assuming that
X = fx igiD1;:::;M and x 2 RN ; x i D fxi1; xi2; : : : ; xiNg we
define as an k-clustering of X, i. e., the partition of X into k
clusters C1; : : : ;Ck provided three conditions are met:

� Ci ¤ 0; i D 1; : : : ; k – the clusters are non empty sets,
� [iD1;:::;mCi D X – the sum of elements inside clusters

is equal to the total number of feature vectors,
� Ci \ Cj D 0; i ¤ j; j D 1; : : : ; k – each feature vector

belongs to only one cluster.

The computational problem with clustering is that the
number of possible clustering ofM vectors into k groups is
given by the Stirling numbers (very large numbers) of the
second kind:

S (M; k) D
1
k!

kX

iD1

(�1)k�1
 
k
i

!

� iM : (5)

Some values of S(N; k) are: S(15; 3) � 2� 106; S(20; 4) �
45 � 109; S(25; 8) � 7 � 1017; S(100; 5) � 2 � 1068.
Knowing that the value of N in typical clustering prob-
lems can be 102 to 109 and more we see that the clustering
problem is intrinsically hard and exhaustive search – look-
ing through all possible clusterings – cannot be consid-
ered. The special clustering schemes based on the prox-
imity measures between feature vectors have to be ex-
ploited. The basic steps must be followed in order to
develop a clustering task are the following:

1. Feature selection – Features must be properly selected
to encode as much information as possible. Parsimony
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and minimum redundancy among the features is a ma-
jor goal.

2. Proximity measure – This is the measure how “similar”
(or “dissimilar”) two features vectors are.

3. Clustering criterion, which depends on the interpreta-
tion of the term “sensible”, depending on the type of
clusters expected in the data set e. g., oblate, elongated,
“bridged”, circular etc.

4. Clustering algorithms. Choose a specific algorithmic
scheme that unravels the clustering structure of the data
set.

5. Validation and interpretation of results are the final pro-
cesses of clustering.

There are two principal types of clustering algorithms:
non-hierarchical and agglomerative schemes [2,50,78].

Clustering Techniques

The non-hierarchical clustering algorithms are used
mainly for extracting compact clusters by using global
knowledge about the data structure. The well known k-
means based schemes [78], consist in finding the global
minimum of the following goal function:

J(w; z) D
X

j

X

i2C j

ˇ̌
xi � z j

ˇ̌2
; (6)

where: zj is the position of the center of mass of the clus-
ter j, while xi are the feature vectors closest to zj. To
find a global minimum of function J(), one repeats many
times the clustering procedures for different initial con-
ditions [48]. Each new initial configuration is constructed
in a special way from the previous results by using the
methods from [48,87]. The cluster structure with the low-
est J(w; z) minimum is selected.

Agglomerative clustering schemes consist in the subse-
quent merging of smaller clusters into the larger clusters,
basing on proximity and clustering criteria. Depending on
the definition of these criteria, there exist many agglom-
erative schemes such as: average link, complete link, cen-
troid, median, minimum variance and nearest neighbor
algorithm. The hierarchical schemes are very fast for ex-
tracting localized clusters with non-spherical shapes. The
proper choice of proximity and clustering criteria depend
on many aspects such as dimensionality of data. For ex-
ample, a smart clustering criterion based on linked-list
scheme for finding neighbors used for molecules cluster-
ing is completely worthless for clustering N-dimensional
data for which it has extremely high computational com-
plexity. All of agglomerative algorithms suffer from the
problem of not having properly defined control param-
eters, which can be matched for the data of interest and

hence can be regarded as invariants for other similar data
structures.

Majority of the classical clustering algorithms require
knowledge on the number of clusters. However this num-
ber is usually unknown a priori. Furthermore, these meth-
ods do not perform well in the presence of heavy noise or
outliers. Recently, new methods have been proposed that
can: deal with noisy data, discover non-spherical clusters
and allow for automatic assessment of number of clus-
ters. Some important examples are the Chameleon [55],
DBSCAN [70] and CURE [38] algorithms. Unfortunately,
these methods are suited only for low dimensional data
and are rather inefficient limiting their use for data mining
of large-scale sets. For clustering of large data sets of mul-
tidimensional data other approaches are in great demand.
In the innovative work by Frey and Dueck [33] the authors
use the concept of “affinity propagation,” which takes as
input measures of similarity between pairs of data points.
Real-valued messages are exchanged between data points
until a high-quality set of exemplars and corresponding
clusters gradually emerges. Affinity propagation promises
to find clusters withmuch lower error than other methods,
and it can do this in less than one-hundredth the amount
of time.

Clustering schemes do not produce univocal results.
For low dimensional 2-3-D spaces human eye can decide
whether the clustering result is optimal or not. However,
it becomes hopeless for higher dimensions. There exist
many techniques for visualization multidimensional clus-
ters. One of them is the multi-dimensional scaling (MDS)
(see overview of mapping techniques in [73]) – the most
powerful non-linear mapping technique. This method al-
lows for visualization of the multidimensional data in 2-D
or 3-D and for interactive extraction of clusters.

Multidimensional Scaling

Multi-dimensional scaling or MDS is mathematically
a non-linear transformation of N-dimensional data
onto n-dimensional space, where n � N [23,73,78]. The
MDS algorithm bases on the “stress function” criterion.
The goal is to maintain all the distances between points
Ri 2 ! � <

N in the Euclidean 3-D (or 2-D) space with
a minimum error. The “stress function” can be written as
follows:

E
�
!;! 0


D
X

j<i

sw �mi
i; j � (si; j � s0i; j)

mi
D min

where : s0i; j D


y i � y j

�
�


y i � y j

�
; i; j D 1; : : : ;M ;

(7)
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and Di; j – is a squared distance between points Ri,
R j 2 ! � <

N and ri, r j 2 ! 0 � E3 – coordinates of the
respective points in 3-D Euclidean space. The values of w
andmi are the parameters of transformation.

The result of mapping depends on the quality of the
minimum obtained for the “stress function”. Usually the
dimensionality of the “stress function” domain is very high
and is equal to N � M, i. e., thousands, in the smallest and
billions in large problems. For more thanM D 103 feature
vectors, the high dimensionality of source space and data
complexity may cause the resulting low dimensional pat-
terns to be completely illegible. The application of stan-
dard numerical algorithms for finding global minimum
of this multimodal, non-linear and complex criterion be-
comes hopeless. Therefore, for visualization of M > 103

multidimensional data samples, more reliable minimiza-
tion techniques extracting global minimum of the “stress
function” are required. In [23] we proposed N-body solver
by ODE’s as a heuristic means. The algorithm is as
follows:

1. The initial configuration of M interacting “particles” is
generated in E3,

2. Every “particle” corresponds to the respective N-di-
mensional point from <N ,

3. The “particles” interact with each other with ˚i; j parti-
cle-particle potential:

Vi; j D
1
4
� k


r2i; j � a2i; j

�2
(8)

Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 6
a The conceptual diagram of MDS transformation, b The clusters from Fig. 6 mapped by using multidimensional scaling into 3D
space for synthetic seismic data catalog A covering 1500 years

(k – is the stiffness factor) and the energy produced is
dissipated by the friction force proportional to the ve-
locity of the particles.

4. The system of particles evolves according to the New-
tonian equations of motion.

In this way the interactions between each pair of particles
are described by various spring like potentials, dependent
on the separation distance between particles rij and the dis-
tance Dij between respective multidimensional points in
<N . If the distance between particles i and j in the output
2(3)-D space is smaller than the distance between respec-
tive i and j feature vectors in the source N-D space these
points repel one another. Otherwise, i. e. the distance is
larger, the particles attract one another. By using the leap-
frog numerical scheme for time-integration [41] the fol-
lowing formula for velocities and positions of “particles”
can be derived from the Newtonian equations:

vnC1/2
i D

(1 � ')
(1C ')

� vn�1/2i

C
˛
t

(1C ')

8
<

:

KX

jD1

(rni; j2 � a2i; j)r
n
i; j C

g
˛
iz

9
=

;

rnC1
i D rni C vnC1/2

i �
t

˛ D
k
m
; ' D



2m
�
t ;

(9)

where vni , — the particle i, n – the time-step number,
m D 1 – particle mass.
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As it is common in molecular dynamics [41], the sys-
tem of “particles” evolves in time until the global (or close
to the global) minimum of Eq. (8) (the total potential en-
ergy of the particle system) is gained. Two free parame-
ters,  and k, have to be fit to obtain the stable state, where
the final positions of frozen “particles” reflect the result of
N�D to 3-D mapping. The conceptual scheme of MDS
exploiting N-body solver is shown in Fig. 6A. In Fig. 6B
we present the feature vectors shown in Fig. 5, using the
7-dimensional feature space which has been transformed
by using the MDS procedure and mapping onto the 3-D
space. Take a look on the movies (Movie 1 and 2 in Sup-
plementary Materials), which shows how rotation in the
3-D space can help in cluster recognition.

Description of the Data

Natural Datasets

We analyze the observed and synthetic earthquake cata-
logs for three time intervals of 5, 150 and 1500 years re-

EarthquakeClusters overMulti-dimensional Space, Visualization
of, Figure 7
Seismic activities around the Japanese Archipelago with a time
period of 5 years. We use the hypocentral data provided by
the Japan Meteorological Agency (JMA). The magnitude of the
earthquakes (JMAmagnitude) and their depths are represented
by differences of the radius of the circle and colors, respec-
tively. The red stars symbolize large events such as: Chi-Chi Tai-
wan earthquake (21/9/1999M7.6 latitude 23.8 longitude 121.1),
Swarm at Miyakejima (7/2000-8/2000 latitude 34.0 longitude
139.0), Western Tottori earthquake (6/10/2000 M7.3 latitude
35.3 longitude 133.4) (from [25])

spectively. The observed data (Fig. 7) represents seismic
activities of the Japanese islands collected by the JapanMe-
teorological Agency (JMA).

The JMA Catalog consists of 915,829 events detected
in Japan Islands between 1923 and January 31, 2003. The
original catalog includes also events with magnitudes less
then 1.0. The lowestmagnitudes were determined by using
a detection level, estimated from the Gutenberg–Richter
frequency-size distribution. We have assumed that the
cutoff magnitude of earthquake is equal to 3 (m > 3). We
do not use any cutoff depth of hypocenter events. The
seismic events shown in Fig. 7, were recorded during the
5 years time interval from October 1, 1997 to January 31,
2003. The data set processed consists of M D 42 370 seis-
mic events with magnitudes m, position in space (lati-
tude X, longitude Y , depth z) and occurrence time t.

To analyze the seismic activity in longer time periods,
we use data from synthetic catalogs generated by numeri-
cal earthquake models [7].

Physical Model of Earthquake Dynamics

The synthetic catalogs are generated by the model of Ben-
Zion [7] for a segmented strike-slip fault zone in a 3D elas-
tic half-space, based on earlier developments of Ben-Zion
and Rice [10,11]. Themodel attempts to account for statis-
tical properties of earthquake ruptures on long and narrow
fault zones with bends, offsets, etc (Fig. 8a), represented by
a cellular structure in a 2D plane with discrete cells and
spatial variations of frictional parameters (Fig. 8b). The
model contains a computational grid (region II of Fig. 8b)
where evolving stress and seismicity are generated in re-
sponse to ongoing loading imposed as slip boundary con-
ditions on the other fault regions. Regions III and V creep
at constant plate velocity of 35mm/yr, while regions I and
IV follow staircase slip histories with recurrence times of
150 yr. The stress transfer due to the imposed boundary
conditions and failing grid cells is calculated by using a dis-
cretized form of a boundary integral equation and employ-
ing the static solution for dislocations in a 3D elastic half-
space [10,63].

Deformation at each computational cell is the sum of
slip contributions from brittle and creep processes. The
brittle process (Fig. 8c) is governed by distributions of
static friction � s, dynamic friction �d, and arrest stress
� a. The static friction characterizes the brittle strength
of a cell until its initial failure in a given model earth-
quake. When stress � at a cell reaches the static friction,
the strength drops to the dynamic friction for the remain-
ing duration of the event. The stress at a failing cell drops
to the arrest level � a, which may be lower than �d to ac-
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Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 8
The schematics of the model of Ben-Zion [7] for a segmented strike-slip fault zone in a 3D elastic half-space

commodate dynamic overshoot, producing local slip gov-
erned by dislocation theory [17,63]. The static friction, dy-
namic friction, and arrest stress are connected via a dy-
namic overshoot coefficient D D (�s � �a)/(�s � �d). If the
stress transfer from failing regions increases the stress at
other cells to their static or dynamic strength thresholds,
as appropriate, these cells fail and the event grows. When
the stress at all cells is below the brittle failure thresholds,
the model earthquake ends and the strength at all failing
cells recovers back to � s. The creep process is governed
by a power-law dependence of creep-velocity on the local
stress and space-dependent coefficients that increase ex-
ponentially with depth and with distance from the south-
ern edge of the computational grid. The chosen param-
eters produce an overall “pine-tree” stress-depth profile
with a “brittle-ductile” transition at a depth of about 12.5
km, and variable stress-along-strike profiles with a grad-
ual “brittle-creep” transition near the boundary between
regions II and III (see Ben-Zion [7] for additional details).
The model generates many realistic features of seismic-
ity compatible with observations, including frequency-size
and temporal event statistics, hypocenter distribution with
depth and along strike, intermittent criticality, accelerated
seismic release, scaling of source time functions and more
(e. g., [9,29,56,88]).

Synthetic Catalogs

Synthetic data generated by computational models can
comprise many events covering large spatial areas and ex-
tremely long time spans. Moreover, the synthetic data re-
tain the statistical reliability of the results. The data are free
of measurement errors, which occur in estimating earth-
quake magnitudes and hypocentral locations, and do not
suffer from incomplete recording of small events, which
exist in natural catalogs. These are significant advantages
for our study, which attempts to illustrate clearly the per-
formance of clustering analysis and visualization tech-
niques.

In Sect. “Description of the Data” we analyze synthetic
catalogs generated by two model realizations (A and M)
of Ben-Zion [7]. The catalogs contain the time, location
and magnitude of earthquakes calculated by the model
for 150 and 1500 years. Extensive numerical simulations
with several different classes of models, summarized by
Ben-Zion [8] and Zöller et al. [9], suggest that the de-
gree of disorder in fault heterogeneities is a tuning pa-
rameter of the earthquake dynamics. Catalog A is gener-
ated by a model realization tailored to the Parkfield sec-
tion of the San Andreas fault. Catalog M is generated by
a realization of a more-disordered system like the San Jac-
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into fault or the Eastern California Shear Zone in South-
ern California. In both data sets the time interval cov-
ers all events (M � 1 � 3 � 104) that have occurred in the
last 150 years of simulated fault activity. These simulations
were repeated for ten times larger time scale i. e. 1500 year
interval (the number of events M � 105) covering hun-
dreds of large earthquakes (m > 6) and correspondingly
wider time window.

The seismicity parameters were obtained by averaging
the data using a sliding time window of constant width

T and shift dt. We employ 
T D 10 days and dt D 2
days for the Japanese data, 
T D 10 months and dt D 2
months for the 150-years synthetic data and 
T D 30
months and dt D 6 months for the data covering 1500
years time period. Each parameter in the clustering was
normalized with respect to the standard deviation.

Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 9
Real seismic data [49] analyzed by using clustering in both the data a,b and the feature (c,d) spaces. In panels a andb one can see the
results of clustering in the data space (from two different perspectives, X-Time and Depth-Time) for small (3 < m < 4) and medium
magnitude (4 < m < 6) events, respectively, represented by small dots. The different colors of the dots denote different clusters.
Large events are visualized by the larger spheres. Their colors show the difference in magnitudes m (red – the largest, green – the
smallest). The clusters in panels a,b encircled in red display the places with the largest seismic activity, while those inwhite represent
the clusters of small precursory events. The red,white and green stripes in panel c and d representing 4 (out of 7) seismic parameters
and maximum magnitude M show the clusters of similar time events for situations corresponding to panels a and b, respectively.
The Amira visualization package was used (http://www.amiravis.com)

Earthquake Visualization by Using Clustering
in Feature Space

Short-Time Period

Results of clustering of the observed Japanese seismic cat-
alogs (see Fig. 7) both in raw data and in feature spaces
are shown in Fig. 9. At the data resolution level a single
seismic event i can be represented as a multi-dimensional
data vector f i D [mi ; zi ; Xi ;Yi ; ti ] where: mi is the mag-
nitude, Xi – the latitude, Yi – the longitude, zi and ti –
the depth and the time of occurrence, respectively. The
seismic events are visualized with the Amira package in
Fig. 9a,b as irregular clouds of colored dots with (z; x; t)
coordinates.

In accordance with the Gutenberg–Richter relation-
ship, we find that the number of events from various

http://www.amiravis.com
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ranges of magnitudes differs considerably, and divide the
entire set of data onto three subsets. The first one com-
prises the small, the second medium and the last one rep-
resents the largest earthquakes displayed in Fig. 9a,b as
big dots. The deepest earthquakes z >150 km are not dis-
played in the Fig. 9. The various shades represent the
magnitudes of earthquakes from m D 6 (green) to m D 7
(red). In Fig. 9 we present the clustering results in both
the data f i and the feature Fi spaces. We look for clus-
ters of similar seismic events (data space) and time events
(feature space). The dots (data vectors), belonging to
the same clusters, have the same color. The Fig. 9a,b is
very rich in cluster-like forms, some of them hard to in-
terpret. Correspondence of the cluster structure of data
f j( j D 1; : : : ;Mf ) with the clusters of averaged events
F i (i D 1; : : : ;MF ) in the feature space can reveal interest-
ing information. As one can see from the panel C, only
three clusters are obtained in the feature space consist-
ing of small data events (3 < m < 4). The green clus-
ter corresponds to two relatively large time intervals of
small events preceding Miyakejima earthquake and many
smaller post shock periods. The time events Fi from this
cluster represent averaged data events f j, mainly shallow
(AZ) of high degree of spatial repetitiveness SR and small
diversity of magnitudes (MR). The red cluster consists of
deeper events of smaller repetitiveness, and more diversi-
fied in magnitudes. The larger time interval of this type of
behavior is recognized just after Miyakejima shock. The
white cluster is not interesting in this scale of small events
and includes all other events (including the earthquake
swarm).

Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 10
The clusters from feature space mapped into 3D space for a realistic short-time interval seismic data. The small blue cluster at the
bottom represents the events at the end of the time interval, which are averaged within a shrinking time window. b The synthetic
seismic data catalog A covering 150 years

In panel D we display the seismicity parameters, which
form three clusters of time events obtained for seismic
events of larger magnitude 4 < m < 6. Clusters of these
events have different structure than in the previous case.
They are parallel to X-depth plane. The borders between
clusters roughly correspond to the borders of successive
showers of the earthquakes. The red cluster comprises only
the earthquakes corresponding to the Miyakejima swarm
encircled in red in Fig. 9b. As we can see by the MDS vi-
sualization displayed in Fig. 10a, this cluster is made up
from a needle of time events sprouting away from the two
remaining and oval clusters. The green cluster in Fig. 9d
represents the deep events, diversified in magnitude of
high repetitiveness and rather high degree of spatial non-
randomness at short distances (NS). As shown in Fig. 9,
these time events represent mainly the post-swarm series
of shocks. The white cluster, as before, includes all the
other events.

Time Period of 150 Years

In Fig. 11 we display the time series of seismicity param-
eters computed for the complete synthetic data catalog A.
These time series follow the situation from Fig. 3 where
dots represent separate data events. The green, red and
white strips in Fig. 11 separate 3 clusters of similar time
events represented by 7-dimensional feature vectors. In
Fig. 10b these clusters are visualized due to theMDS trans-
formation of 7-dimensional feature space into 3-D space.
In Fig. 10b each dot represents a 7-dimensional feature
vector mapped into 3-D space by MDS transformation.
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Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 11
The seismicity parameters {M,NS,NL,CD,SR,AZ,TI,MR} in time for synthetic data catalog A (from [25])

From the top panel of Fig. 11 displaying the largest events
M in the sliding time window, we may conclude that the
white (blue in Fig. 10b) and red clusters from Figs. 10, 11b
comprise time events, which correspond to the aftershock
effects. The white cluster represents the net aftershock
events, while the red one includes the earthquake effects
averaged in sliding time window. Conversely, the green
cluster (yellow in Fig. 10b) contains the time events pre-
ceding the earthquakes.

The selectivity in time of the seismicity parameters de-
pends on the width 
T and shift dt of the sliding time
window. Due to space and time averaging, it is impossi-
ble to correlate precisely the appearance of an earthquake
with the rest of the seismicity parameters when two earth-
quakes are too close to each other. Therefore, the sequence
of green-red-white cluster events can be broken (Fig. 11)
into time domains withmany large earthquakes. As shown
in Fig. 11 the occurrence of the largest events correlates
well with the minima of NS, CD, SR, TI, and maxima of
AZ, MR parameters. This means that the occurrence of
large earthquakes is preceded by increasing spatial diffu-
sion of events and increasing seismicity rate. Moreover,
the results confirm the some findings from the real data
in a shorter time-scale:

1. The events preceding large earthquakes are shallow
and have small magnitudes. They have also higher de-
gree of spatial repetitiveness than events from different
clusters.

2. The earthquakes accompanying and following the
mainshock are rather large in magnitude, deep, have
high seismicity rates and low spatial correlation dimen-
sion (this drops off rapidly at the onset of large events),

The analysis of synthetic data shows clearly that the clus-
ters in the feature space reflect well the periodicity of in-
creasing and decreasing seismic activity in a given area.
For this scale, however, the fine scale characteristics of pre-
cursory and after-shock effects become fuzzy.

Time Period of 1500 Years

In Figs. 4, 5, 6b and Figs. 12, 13 we visualize the feature
vectors for data covering 1500 year period for two mod-
els: the A model with a Parkfield-type asperity and the M
model withmulti-size-heterogeneities. In Fig. 4 and Fig. 12
one can recognize two types of clusters with different sizes.
The larger cluster comprises feature vectors forming ap-
proximately 150-year long periodic time intervals, which
are represented by red strips in Fig. 4 and by green strips
in Fig. 12. The second cluster consists of feature vectors
from periodic gaps colored in green in Fig. 4 and in white
in Fig. 12. This anomalous cluster corresponds to the pe-
riodic changes in the character of seismic activities. The
third cluster (see Fig. 13), marked in red for M type of data
in Fig. 12, consists of periodic and short time intervals rep-
resenting rapid bursts of seismic activity within every 150-
year interval.
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EarthquakeClusters overMulti-dimensional Space, Visualization
of, Figure 12
The seismicity parameters with time for synthetic (catalogM) for
seismic data representing time interval of 1500 years. The red
and green strips depict the events belonging to red and green
clusters from Fig. 7b, respectively

In both A and M models the gaps between 150-year
long intervals are correlated with decrease of: the correla-
tion dimension (CD), degree of spatial repetitiveness (SR)
and seismicity rate. These gaps are preceded by large earth-
quakes. The simulations used for generating the datasets
incorporate imposed large earthquakes on regions (I) and
(IV) of Fig. 8b that bound the computational grid (re-
gion II), as staircase boundary conditions with a step at
every 150 years. The analysis detected the effects of these
boundary conditions on the seismicity that is calculated in
region II.

There are also evident differences between the A and
M data in the time intervals belonging to the second clus-
ter. For A environment the gaps between 150-year in-
tervals are greater and the secondary periodicity within
them is less clear. Moreover, within time intervals from
the second cluster, the degree of spatial non-randomness
decreases at long distances (NL) for M model while for
A data it decreases at short distances (NS). In addition, the
average depth of earthquakes (AZ) is then clearly larger for
A model, while for M data it remains on the average level.

In sum, by means of analyzing earthquake clusters in
feature space over long time-scale, we can investigate im-
portant characteristics of seismic activity such as:

EarthquakeClusters overMulti-dimensional Space, Visualization
of, Figure 13
The clusters from Fig. 12 mapped by using multidimensional
scaling froma 7-dimensional feature space into 3D space for syn-
thetic seismic data catalog M covering 1500 years

1. The occurrence of hierarchical time-periodicity in seis-
mic activity caused by increase of short-time correla-
tions and their destruction, respectively. Correlations
can be broken both due to short-wave and long-wave
resonances of the Poincare type (e. g. during largest
earthquakes) [Sornette, 2004].

2. The dependence of seismic activities on the ambient
rheological and geological properties of the environ-
ment, which strongly modify the cluster structure of the
feature vectors.

Remote Problem Solving Environment (PSE)
for Analyzing Earthquake Clusters

Need for Remote Visualization and Analysis

We need fast access to large databases in order to fore-
cast earthquakes by observation of similarities between
thousands and millions of seismic events by visualiza-
tion of earthquake clusters. The largest earthquake cata-
logs comprise TBytes of data. Taking into account also the
data from tsunami earthquakes and micro-earthquakes
in mines, the total amount of data collected by seis-
mic centers spread all over the world is humongous.
Moreover, knowledge extraction of earthquake precur-
sors may demand exploration of cross-correlation rela-
tionships among many different catalogs. Therefore, both
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Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 14
Worldwide distribution of earthquake seismographic stations (© USGS)

fast communication between data centers and large disk
spaces are sorely needed.

As shown in Fig. 14, earthquake seismograph stations,
which collect earthquake data from regions with high seis-
mic activity, are distributed worldwide. Therefore, the un-
processed data needs to be stored and then transferred
to a dedicated remote server for data processing. After
processing, the results must be returned to data acquisi-
tion centers and/or other clients. Broadband access to re-
mote facilities dedicated specifically to pattern recognition
and visualization allows for scrutinizing local data cata-
logs by using peer-to-peer connections of data acquisition
centers to data preprocessing servers. Clients in the net-
work can automatically compare various types of earth-
quake catalogs, data measured in distant geological re-
gions, and the results from various theoretical and compu-
tational models. By comparing data accessible in the net-
work we have a chance to eliminate the environmental fac-
tors and to extract the resultant earthquake precursory ef-
fects.

Integration of a variety of hardware, operating sys-
tems, and their proper configuration results in many com-
munication problems between data centers. Efficient, reli-
able, and secure integration of distributed data and soft-
ware resources, such as pattern recognition and visualiza-
tion packages, is possible only within the GRID paradigm

of computing [13,31]. The GRID mode of computing has
flourished rapidly in recent years and has facilitated collab-
oration and accessibility to many types of resources, such
as large data sets, visualization servers and computing en-
gines. Scientific teams have developed easy-to-use, flexible,
generic and modular middleware, enabling today’s appli-
cations to make innovative use of global computing re-
sources. Remote access tools were also produced to vi-
sualize huge datasets and monitor performance and data
analysis properties, effectively steering the data process-
ing procedures interactively [21]. The TeraGrid project
(http://www.teragrid.org) is a successful high-perfor-
mance implementation of such a GRID infrastructure and
is being used as an integrated, persistent computational
resource at universities and laboratories across the USA.
The Teragrid development impacts also the earthquake
science. The National Science Foundation has awarded the
Southern California Earthquake Center 15 million service
units of computer processing time on supercomputers na-
tionwide [Grid Today, August 2007]. These computational
resources will be used for simulating thousands of possi-
ble earthquakes scenarios in Southern California, includ-
ing the largest breaks on the San Andreas fault (www.scec.
org/cybershake). SCEC will be able to simulate the most
disastrous earthquakes (M > 7), such as events that could
produce Katrina-scale disasters.

http://www.teragrid.org
http://www.scec.org/cybershake
http://www.scec.org/cybershake
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Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 15
Data acquisition, storage, processing, and remote problem solving environments

We discuss the idea of an integrated problem-solving
environment (PSE) intended for the analysis of earthquake
clusters for the prediction of earthquakes. A simplified
scheme for data acquisition and visualization of earth-
quake clusters is displayed in Fig. 15. This system pro-
motes portability, dynamic results on-demand, and collab-
oration among researchers separated by long distances by
using a client server paradigm. This is provided through
a lightweight front-end interface for users to run locally
while the a remote server takes care of intensive process-
ing tasks on large databases, off-screen rendering, and data
visualization.

Grid Environment

In general, large datasets and high-performance comput-
ing resources are distributed across the world. When col-
laboration and sharing of resources are required, a compu-
tational GRID infrastructure needs to be in place to con-

nect these servers (see, e. g., [15]). There must exist pro-
tocols available to allow clients to tap into these resources
and harness their power. The computational grid can be
seen as a distributed system of “clients”, which consists of
either “users” or “resources” and proxies. A GRID can be
implemented using an event brokering system designed to
run on a large network of brokering nodes. Individually,
these brokering nodes are competent servers, but when
connected to the brokering system, they are able to share
the weight of client requests in a powerful and efficient
manner. Examples of this include GRID Resource Broker-
ing [30] and NaradaBrokering.

These GRID architectures are well suited to the func-
tionality of a PSE for earthquake cluster analysis and as an
integrated computational environment for data exchange
and common ventures. The seismic data centers from the
networking point of view represent a complex hierarchi-
cal cluster structure. They are located geographically in
the regions of high seismic activity within heavily popu-
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lated areas of economic importance. Therefore, the seis-
mic data centers create distant superclusters of various
“density” of computational resources corresponding to the
size and importance of the regions. These superclusters
are sparse in the sense of computational resources devoted
for earthquake detection and data acquisition. However,
these same structures contain important computational,
scientific and visualization facilities with strong interest in
the analysis of earthquake data and earthquake modeling.
The efficient interconnection of these sites is of principal
interest. Due to the “small world network” structure of
GRID architectures it is possible to select the most effi-
cient routing schemes, considerably shortening the aver-
age communication path length between brokers. GRID
architectures are appropriate to link the clients, both users
and resources, together. Construction of efficient and user
friendly Problem Solving Environments requires integra-
tion of data analysis and visualization software within the
GRID environment, in such a way that it can be easily
accessed via the Internet. We created an integrated data
interrogation toolkit to act as a PSE for visualization and
clustering of seismic data, which we call WEB-IS.

Example of Remote PSE

WEB-IS is a software tool that allows remote, interactive
visualization and analysis of large-scale 3-D earthquake
clusters over the Internet [85] through the interaction be-
tween client and server. WEB-IS acts as a PSE through
a web portal used to solve problems by visualizing and ana-

Earthquake Clusters over Multi-dimensional Space, Visualization of, Figure 16
WEB-IS is an example of a remote earthquake clustering PSE

lyzing geophysical datasets, without requiring a full under-
standing of the underlying details in software, hardware
and communication [34,52]. As shown in Fig. 16, the pri-
mary goal of WEB-IS in the geosciences is to provide mid-
dleware that sits between the modeling, data analysis tools
and the display systems that local or remote users access.
In the case of large and physically distributed datasets, it is
necessary to perform some preprocessing and then trans-
mit a subset of the data to one or more processes or visu-
alization servers to display. The details of where and how
the data migrates should be transparent to the user. WEB-
IS makes available to the end users the capability of in-
teractively exploring their data, even though they may not
have the necessary resources such as sufficient software,
hardware or datasets at their local sites. This method of
visualization allows users to navigate through their ren-
dered 3-D data and analyze for statistics or apply earth-
quake cluster analysis. To the client, the process of access-
ing and manipulating the data appears simple and robust,
while the middleware takes care of the network communi-
cation, security and data preparation.

Complete realization of an earthquake clustering PSE
consists of:

1. Data analysis tools to implement earthquake clustering
techniques;

2. High performance visualization techniques using
OpenGL or Amira;

3. The Grid environment;
4. Integration toolkit, such as WEB-IS.
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These exist and can work both independently and coupled
in a single special purpose system. This system can be de-
veloped creating the backbone of the sophisticated com-
putational data acquisition environment, which can be de-
vised specifically for earthquake clustering or for general
needs of the geophysical community. Equipped with only
PDAs or laptops, and working on location in unreachable
desert terrains with remote data acquisition centers or per-
haps just analyzing data in one of the many computation
facilities located around the globe, geophysicists will be en-
abled unlimited access to data resources spread all over the
world.

We see the principal goal of our work in contribut-
ing to the construction of a global warning system, which
can be used for prediction of catastrophes such as var-
ious types of earthquakes along the circum Pacific belt,
where there is a great concentration of people. For exam-
ple, similar methodology can be used for tsunami earth-
quake alerting. Theoretical models of faulting and seismic
wave propagation used for the computation of radiated
seismic energy from broad-band records at teleseismic dis-
tances [14] can be adapted to the real-time situation when
neither the depth nor the focal geometry of the source
is known accurately. The distance-dependent approxima-
tion was used in [60]. By analyzing some singular geo-
physical parameters such as the energy-to moment ratio
H [60] for regular earthquakes, the results obtained from
the theoretical models agree well with values computed
from available source parameters (e. g., as published by
the National Earthquake Information Center). It appears
however that the so called “tsunami earthquakes” – char-
acterized by the significant deficiency of moment release at
high frequencies – yield the values of H considerably dif-
ferent the regular earthquakes. Thus H value can be used
as a suitable criterion for discriminating various types of
earthquakes in a short duration of time, like an hour. How-
ever, this hypothesis holds only for a few cases. For, so
called, “tsunamigenic earthquakes” this difference is not
so clear. Moreover, the value of the moment computed on
the base of long-period seismic waves can be underesti-
mated. For example, analysis of the longest period normal
modes of the Earth, 0S2 and 0S3, excited by the December
26, 2004 Sumatra earthquake [76], yields an earthquake
moment of 1:3 � 1030 dyn-cm, approximately three times
larger than the 4 � 1029 dyn-cm measured from long-pe-
riod surface waves. Therefore, instead of a single-value dis-
crimination we recommend using more parameters (di-
mensions) for detecting tsunami earthquakes. As shown
in [64] and [83], one could employ other T-phase charac-
teristics such as its duration, seismic moment, and spec-
tral strength or even similar features associated with the

S-phase. We believe that the lack of success in predicting
earthquakes still comes from the lack of communications
between researchers and difficulties in free and fast access
to the various types of data. Therefore, we hope that glob-
alization of computation, data acquisition and visualiza-
tion resources, together with fast access through a scale-
free network, will provide a triumphant solution to this
problem.

Future Directions

In this chapter we endeavor to bring across the basic con-
cept of clustering and its role in earthquake forecasting.
Indeed we find that the clustering of seismic activities re-
flects both the similarity among them and their correla-
tion properties. As discussed in, e. g., Ben-Zion et al. [9],
Saichev and Sornette [68] and Zöller et al. � Seismicity,
Critical States of: From Models to Practical Seismic Haz-
ard Estimates Space, there exists an evolutionary process
or memory between successive earthquakes, which im-
pact the distribution of the inter-event times. We believe
that by means of earthquake clustering we can capture
the essence of this predictive information [27]. Therefore,
in order to carry out real-time earthquake forecasting for
short-time scales, it is necessary to derive a thorough un-
derstanding of all families of earthquake clusters produced
over an earthquake-prone region.

We stress here that in obtaining this type of infor-
mation one must first be able to detect the precise loca-
tion of the significant clusters, by filtering out simultane-
ously the noise and the outliers. While the existence of
spatial-temporal clusters is important, they do not reveal
the subtle information hidden behind the relations among
the data events, such as: spatial-temporal correlation di-
mensions, correspondence between the numbers of small
and large magnitude events, degree of spatial randomness,
repetitiveness at different distances and other factors. The
features – “descriptors” or seismicity parameters – con-
structed from the empirical knowledge of the researcher
should be largely independent and should represent aptly
distinctive features, which are useful for the purpose of
pattern recognition. Unlike single events described only by
spatio-temporal features (and magnitude), the N-dimen-
sional feature vectors can represent better the dynamics of
the seismically active area in differentmoments of time. By
following the basic rules of learning theory, wemay be able
to arrive at the number N and quality of features, which
can assure the generalization power of the data and allow
us to construct reliable data-models or classifiers.

We have shown that clustering, as a well-honed tool in
data mining and pattern recognition, represents the clas-
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sifier without the teacher, which means that the nature of
the clustering is unknown and its exact background must
be guessed at from expert knowledge and analysis of the
cluster properties. Clustering is a process based on a pri-
ori knowledge extraction for constructing the hypothesis
space needed for reliable classifiers that can be taught and
used for forecasting [25]. However, the quality of these
data models depends strongly on the quality of hypoth-
esis space constructed. Consequently, it depends on the
quality of clusters extraction. The major problem comes
from the lack of a universal clustering scheme, thus mak-
ing the clustering process somewhat subjective. In this case
we must visualize the multidimensional feature space. Vi-
sual confirmation gives one a confidence concerning the
validity of the clusters and we can then adjust for the opti-
mal clustering procedures by removing the noise and out-
liers. Among the major goals of earthquake clustering, we
can include the following salient points:

� classification of the chaotic properties of seismicity pat-
terns [35], for example to recognize the three main
groups of shocks: foreshocks, mainshocks and after-
shocks or to remove the temporary clustering to esti-
mate the background seismicity;

� understanding the correlations between observed
properties of earthquakes in different domains (e. g.,
space, time, number, size);

� understanding the relations between various physical
parameters of the models and properties of the gener-
ated earthquakes;

� investigating the multi-scale nature of the cluster struc-
ture and reconstructing the important and hidden in-
formation associated with the stress characteristics.

Classification of type of shocks seems to be an unresolved
problem because there are no observable differences be-
tween foreshocks, main shocks and aftershocks [68]. Each
earthquake is able of triggering other earthquakes accord-
ing to the basic laws from [46,69]. Despite this difficulty,
as shown in [9], it is possible to construct some sort
of stochastic classifiers based on theoretical footing. The
method proposed here closely related to the epidemic-type
aftershock sequence (ETAS) model [61]. It is important
that the principal characteristics of ETAS-based models
correspond to experimental verifications, i. e., they treat
all earthquakes on the same footing and there is not dis-
tinction between foreshocks, main shocks and aftershocks.
The key points of the method are the probabilities of
one event being triggered by a previous event (e. g., [82]).
Making use of these probabilities, we can reconstruct the
functions associated with the characteristics of earthquake

clusters to test a number of plausible hypotheses about the
earthquake clustering phenomena.

As shown above by our results on seismicity cluster-
ing for the three different time epochs, clustering can be
truly regarded as a coarse-graining procedure. We can see
details from the smaller scales are erased, thereby expos-
ing the general trends associated with the long correlation
length. For large data bases covering long time intervals
we can unveil the shorter timescale characteristics by re-
moving the background events, using successive cluster-
ing. Eventually, we can build up the strong classifiers. In
the case where the long-time data catalogs are missing, we
can employ the stochastic classifiers advocated Ben-Zion
et al. [9] for prior thresholding of the background data
or what is sometimes called “fuzzification” [86]. By this
procedure we can construct the hypothesis space for data
models by clustering (or fuzzy clustering) procedures.

The results discussed in this paper contribute to the
development of improved software infrastructure for anal-
ysis of seismicity. A combined clustering analysis of ob-
served and synthetic data, aided by state-of-the-art visual-
ization of multidimensional clusters, undoubtedly lead to
improved earthquake forecasting algorithms with shorter
time windows of increased probability of large seismic
events.
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Glossary

Structural health monitoring Is the process of determin-
ing and tracking the structural integrity and assessing
the nature of damage in a structure. It is often used in-
terchangeably with structural damage detection.

Inter-story drift Is the ratio between the relative horizon-
tal displacements at two levels of the structure and the
distance between them. It is important to distinguish
between drift resulting from deformation of the struc-
ture, which is directly related to damage, and drift re-
sulting from the deformation of the soil and rocking of
the structure as a rigid body. It is also important to esti-
mate reliably the drift due to permanent displacement
(its “DC” component), which cannot be done reliably
using data from vibrational sensors unless six degrees
of freedom of motion (three translations and three ro-
tations) are recorded.

Soil-structure interaction (SSI) Is a process occurring
during vibration of structures founded on flexible soil,
in which the structure and soil interact, and their mo-
tions are modified. Kinematic interaction refers to the
effects of scattering and diffraction of the incident seis-
mic waves from the soil excavation for the foundation.
Dynamic interaction refers to the effects caused by the
inertia forces of the structure and foundation, which
lead to deformation of the soil, and results in modifi-
cation of the resonant frequencies and damping of the
response of the structure, foundation and soil acting as
a system.

Resonant frequencies of vibration Of a structure on
flexible soil are those of the soil-structure system, and
the energy of the vibrational response is concentrated
around these frequencies. They depend on the stiff-
ness of the building and that of the soil. Fixed-base
frequencies of vibration are the resonant frequencies
of the structure on rigid soil, and depend only on the
stiffness of the structure. Loss of stiffness of the struc-
ture due to damage results in reduction of the fixed-
base frequencies, and indirectly of the system frequen-
cies. Monitoring changes in the fixed-base frequencies
is most reliable because it eliminates the effects of the
soil, which can exhibit (recoverable) nonlinear behav-
ior during strong shaking.

Definition of the Subject

Structural health monitoring and structural damage de-
tection refers to the process of determining and tracking
the structural integrity and assessing the nature of dam-
age in a structure. Being able to detect the principal com-
ponents of damage in structures as they occur during an
earthquake or soon after the earthquake, or the absence
of it, before physical inspection is possible, is an impor-
tant and challenging problem. Considering the challenges
faced and the potential benefits for safety and for minimiz-
ing disruption of productivity, structural health monitor-
ing has the elements of a grand challenge problem in civil
engineering [12].

Structural damage can be described by the following
five attributes: existence, location, type, extent, and prog-
nosis for the remaining useful life. Structural damage is
a complex state, which can occur on different time scales,
suddenly during some catastrophic event such as earth-
quake or explosion, or gradually over the life of the struc-
ture, due to deterioration of the structural materials by
aging, service, and exposure to environmental influences.
This article is concerned primarily with identification of
the most significant components in the space of complex

http://dx.doi.org/10.1111/j.1365-246X.2007.03480.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03480.x
http://www.springerlink.com/content/n60423820556/
http://www.springerlink.com/content/n60423820556/
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patterns of damage caused by earthquakes. Damage in
structures also can be described on different spatial scales,
e. g. from small defects and localized damage in a compo-
nent, to global state of damage of the structural system.
Hence the damage detection methods are classified as lo-
cal and global. The local methods are those for nondestruc-
tive testing (NDT) of materials, which can determine the
location of the damage in a structural component. They
involve use of actuators (radiating ultrasonic waves into
the structural element), and require access to the element.
The global methods assess the overall state of damage of
the structural system (as it reflects on its overall perfor-
mance during an extreme event). The focus of this review
is on the global methods, and intermediate scale methods,
which can point to the part of the structure that has been
damaged.

Structural damage detection and early warning in-
volve: (1) recording some sensory data, (2) identification
of some structural parameter(s) sensitive to damage (e. g.
natural frequencies of vibration, or wave travel times),
some characteristic of response (e. g. levels of inter-story
drift) that can be correlated with damage, or some other
patterns (e. g. abrupt changes in the response detected as
novelties), (3) comparison of the result of the identifica-
tion with some knowledge base of correlation of such pat-
terns with levels of damage, and (4) decision making (e. g.
whether to evacuate or continue occupancy). Because of
various uncertainties, the answer can be only expressed
probabilistically, and the decision will also depend on the
nature of the use of the structure and level of tolerance of
the user.

The earliest and most wide-spread methods of struc-
tural damage detection are those based on data from vi-
brational sensors. In fact, the hope to eventually be able
to detect hidden damage has been one of the motiva-
tions for the development and deployment of seismic
sensors in structures. The first strong motion record-
ings in a building are those during the M D 5:4 South-
ern California earthquake of October 2, 1933, obtained in
the Hollywood Storage Building, the instrumented struc-
ture in US with the longest history of recording earth-
quakes [63]. The earliest identification methods consisted
of estimation of the building resonant frequencies and
damping, from energy distributions of small amplitude
ambient noise and forced vibration tests [3], as well as
from earthquake records [63]. These studies identified the
resonant frequencies and damping of the soil-structure
system, which depend on the properties of the soil, and
can change significantly even when there is no damage.
Detailed system identification studies from full-scale test
vibration data that separate the effects of the soil-struc-

ture interaction appeared in the 1970s, following theo-
retical developments that helped understanding the phe-
nomenon of soil-structure interaction [13,32,33,34,71].
Thirty years later, such studies are still rare, due to
a combination of factors, one of which is the inade-
quate coverage of this topic in the graduate curricula, and
the other is the emphasis of earthquake engineering re-
search on laboratory experimentation and numerical sim-
ulations, rather than on the full-scale testing of struc-
tures [63].

Despite the progress made to date in instrumentation
of structures as well as in development of theoretical meth-
ods, structural health monitoring systems are deployed in
structures only on an experimental basis. The main ob-
stacles to the routine practical deployment of such sys-
tems are: (1) the high cost of sensors and monitoring sys-
tems, which limits the number of structures that are in-
strumented and the detail of the measurements (spatial
resolution, e. g.), (2) the low sensitivity and robustness of
the methods, and ability to discriminate between changes
in the damage sensitive feature caused by damage from
changes caused by other factors (e. g. age, level of excita-
tion, and weather), and (3) the paucity of data recorded in
damaged structures necessary to calibrate the healthmoni-
toring methods. Consequently, the main challenges for fu-
ture research are: (1) to design low cost but high perfor-
mance sensors and monitoring systems, making it possi-
ble to densely instrument many structures, (2) to develop
methods that are robust and sensitive enough to detect
also light damage (in particular one that is not visible), and
(3) to build a knowledge base that can help reliably relate
observed patterns in the data with actual observations of
damage.

Recently, structural identification and health monitor-
ing of buildings by detecting changes in wave travel time
through the structure has received revived attention and
has proven to be very promising [20,24,25,37,39,41,42,
53,54,65]. Exploratory applications to data from damaged
buildings [53,54] showed that the method (1) is robust
when applied to damaging levels of earthquake response
data, (2) is not sensitive to the effects of soil-structure in-
teraction, and (3) is local in nature (i. e. gives results con-
sistent with the spatial distribution and degree of the ob-
served damage).

Introduction

This volume would not be complete without addressing
the catastrophic consequences of earthquakes, and dam-
age in soil-structure systems, which is a complex, multidi-
mensional, and highly interrelated set of phenomena.



Earthquake Damage: Detection and Early Warning in Man-Made Structures E 2373

Since the early days, the mathematical formulation of
practical earthquake engineering problems has been dom-
inated by linear differential equations [58], which can-
not lead to chaos. Nevertheless, cost and the increasing
needs of society have pushed the design into the nonlinear
regimes of large deformations increasing the possibility of
encountering chaotic dynamic phenomena in structural
response, and have increased the complexity of the pos-
sible damage outcomes. However, working with parame-
ters that produce chaotic output reduces the ability to pre-
dict the outcome. The chaotic behavior of nonlinear sys-
tems does not completely exclude the possibility to predict
the response, but introduces an upper bound (prediction
horizons) [30]. Then the remaining question is over what
time-scales can the predictions still be reliable. Also, the
prediction of response requires a realistic physical model,
while the practical outcome of most work in engineering
remains empirical. Consequently, there is a conflict in the
classical engineering description of the world. This conflict
is in part due to the assumption that nature is moving for-
ward, according to a deterministic law, and in part due to
the fact that engineers model the world based on incom-
plete data, and thus working with unverifiable representa-
tion. This leads to the question what models are good for.
The problem is further aggravatedby the fact that the art of
dynamical modeling tends to be neglected in discussions
of nonlinear and chaotic systems, in spite of its crucial im-
portance [2]. In the following review of structural health
monitoring in earthquake engineering, it is accepted that
there is a modeling problem, and the success of a method
is gauged by the degree to which its predictions match the
observed outcomes.

During the last several decades, stochastic processes
have been used to help analyze the irregular behavior of
deterministic systems with too many variables to be de-
scribed in detail. Stochastic processes have been used also
to model the deterministic response of structures to earth-
quake and wind forces, and as an approximate descrip-
tion of deterministic systems sensitive to their initial con-
ditions. In some analyses, random noise is added to the
model to account for the differences between the behaviors
of model and prototype. This noise represents no more
than lack of knowledge of the system structure or inade-
quacy of the identification procedure [23].

Following a damaging earthquake, buildings, bridges,
dams and other structures are physically inspected for
damage, and their safety is assessed. To assess the safety
of buildings, the city departments of public safety (or
their equivalents) dispatch inspectors to the field to “walk
through” each building and write a report on the observed
damage and safety concerns to its occupants. On the ba-

sis of such assessments, a color tag can be assigned to the
building: (1) green if the structure is safe, (2) yellow if it
has been damaged and needs to be evacuated, but is safe
for the occupants to return to retrieve their belongings,
and (3) red if it has been damaged to a degree that it is un-
safe for the occupants to return to the structure [1]. When
the affected area is relatively large, such inspection takes
time (several weeks or longer), and the tagging is often
first preliminary, to be revised at a later time after a pre-
liminary inspection of all buildings has been completed.
Such walk-in inspections can detect only damage that is
visible, and there is always considerable subjectivity in the
assessments. The major problem with such inspections is
however the timeliness, as aftershocks following the earth-
quakes can further damage a structure that has survived
the main event but is weakened, and endanger the occu-
pants. Another problem is the loss of function of a struc-
ture that may be safe, until a more detailed inspection and
assessment is possible. This is particularly important for
critical facilities, such as hospitals, as well as for major
businesses, such as banks, for which interruption of work
can causemajor financial losses.Without a doubt, the abil-
ity to detect damage in structures early, as it occurs or soon
after the earthquake, using some structural health moni-
toring system, and assess the state of safety of the structure
before physical inspection is possible, can benefit society
immensely. Ideally, based on instrumental data, such sys-
temswould be able to detect also hidden damage that is not
visible to the naked eye. There would be benefit evenwhen
the damage is obvious, if that information is available
immediately after the earthquake. To be effective, how-
ever, such systems must be sensitive enough to detect at
least the significant damage, and also be accurate enough,
to avoid false alarms and unnecessary and costly service
interruption.

The objective of this article is to review the basic prin-
ciples on which such systems operate, and to present some
illustrative examples of several robust methods applied to
full-scale buildings. This is followed by a discussion of re-
maining critical issues and directions for future research,
in the view of the author.

Literature Review

Earthquake Damage Detection
in Structural Health Monitoring Research

Earthquake damage detection in civil structures, such as
buildings and bridges, is closely related to structural health
monitoring of structures such as light aerospace struc-
tures, rotating machinery and offshore platforms, for ex-
ample, that are of concern to other disciplines. A review
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of recent developments in this broader field, as applied
to civil and mechanical systems, can be found in Chang
et al. [7] and Liu et al. [31]. The earliest, and still the most
popular methods for civil structures are those that use data
from vibrational sensors, and detect changes in the vibra-
tional characteristics of the structure – frequencies of vi-
bration and mode shapes. Detailed reviews of vibrational
methods in the general area of structural health monitor-
ing can be found in a report by Doebling et al. [11], its
shorter version as a journal paper [10], and a follow up re-
port by Sohn et al. [40]. Another recent review of the vibra-
tional methods can be found in Carden and Fanning [4].

These detailed reviews conclude that the currently
available vibrational methods can determine if the struc-
ture has been damaged, but cannot indicate precisely the
location of the damage, and are therefore referred to as
global. Most vibrational methods monitor changes in the
modal properties of the structures (modal frequencies and
mode shapes). The stated difficulties associated with these
methods include: (1) the presence of other factors than
damage that produce similar effects on the monitored pa-
rameters not easy to isolate (e. g. the effects of soil-struc-
ture interaction on the measured frequencies of vibration,
as well as environmental influences such as temperature
and rain; [8,46,47]); (2) the redundancy of the civil engi-
neering structures, which results in low sensitivity of the
method (i. e. small change of the overall stiffness and con-
sequently of the measured frequencies) when the damage
is localized; and (3) dependence on detailed prior analyt-
ical models and/or prior test data for the detection and
location of damage (supervised learning), which may not
be readily available for a structure, may be outdated, and
even when available represent only an idealization of the
real structure [7,11]. Further critical issues identified are
(4) the scarcity of objective comparisons of different pro-
cedures applied to a common data set, and (5) the number
and location of sensors (techniques to be seriously consid-
ered for implementation in the field should demonstrate
that they can perform well for small numbers of measure-
ments). Finally, Doebling et al. [11] conclude that “while
sufficient evidence exists to promote the use of measured
vibration data for the detection of damage in structures,
using both forced-response testing and long-term moni-
toring of ambient signals, the research needs to be more
focused on the specific applications and industries that
would benefit from this technology. . . Additionally, re-
search should be focused more on testing of real struc-
tures in their operating environment, rather than labora-
tory tests of representative structures.”

In the follow up review, Sohn et al. [40] mention as
outstanding problems: The reliance on analytical models

to obtain the structural parameters from the data, not only
in methods involving direct inversion, but also in those
that use neural networks; and that the damage sensitive
features are also sensitive to changes of the environmental
and operational conditions of the structures. They men-
tion as one of the most significant improvements since
the previous review [11] the signal processing methods
that do not rely on detailed analytic models, such as nov-
elty/outlier analysis, statistical process control charts, and
simple hypothesis testing (unsupervised learning), shown
to be very effective to identify the onset of damage growth,
and the presence of damage but not the damage type. In
this article, one such method – based on detection of nov-
elties using wavelets – is reviewed and illustrated. An-
other significant advancement is the availability of more
affordable MEMS sensors, as well as fiber optics, and
piezoceramic sensors, and of wireless data communication
technology.

In structural health monitoring literature, the vibra-
tional methods are referred to as global, due to the rela-
tively small number of sensors typically installed in struc-
tures, and can detect only significant damage [11,40]. The
cost of seismic monitoring systems is still high, and trade-
offs have to be made between the detail of the instrumen-
tation of a particular structure and the number of struc-
tures that are instrumented. The truly local methods are
those for nondestructive testing (NDT) of materials, which
can detect the location of cracks or some other defects
in a structural member. These methods typically use: (1)
ultrasonic waves, which are attenuated quickly along the
wave path, (2) need an actuator to create such waves, and
(3) require direct access to the structural member, usually
not readily available. Consequently, they are used to detect
the location of the damage in a particular structural mem-
ber, known or suspected to have been damaged, but are too
costly and impractical for structural health monitoring of
an entire structure [7]. To make a difference for society,
structural health monitoring and early warning systems
have to be reasonably priced so that they can be installed
in many structures.

Earthquake Damage Detection
in Earthquake Engineering Research

In the earthquake engineering research, earthquake dam-
age detection emerges from system identification studies
of full-scale structures (typically involving identification of
their frequencies of vibration and damping) from ambi-
ent and forced vibration test data, or earthquake records.
Consequently, it is data driven, in contrast to the structural
health monitoring research, which focuses on methodolo-
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gies, validated mostly on “clean” numerically simulated
data, and sometimes on laboratory data or small ampli-
tude full-scale data. In the US, the earliest system identifi-
cation studies from full-scale data follow the first deploy-
ment of strong motion instruments in structures [3], and
continue through the 1960s [9,19,70]. More sophisticated
studies from the system identification point-of-view using
earthquake response data appear in the 1970s, following
the San Fernando, California earthquake of 1971, which
produced strong motion records in many buildings in the
Los Angeles metropolitan area [66,67,68,69]. A significant
finding of these studies is that the building frequencies of
actual structures vary significantly as a function of the level
of the response. The variation is such that the fundamen-
tal frequency decreases during the largest shaking, but re-
covers afterwards during the remaining smaller amplitude
shaking, or during subsequent shaking from aftershocks
or small amplitude tests. The recovery may be partial or
complete, and a large reduction of frequency of vibration
during the earthquake is not always associated with visible
damage. This is an important fact, as the decrease of the
fundamental frequency of vibration is used as one of the
global indicators of damage in structural health monitor-
ing research, and also because many sophisticated struc-
tural identification methods are based on the assumption
of stationarity and time invariance of the response.

Further, system identification studies of structures us-
ing earthquake records, considering the effects of the in-
teraction of the structural vibrations with the vibration of
the surrounding soil, appear in the 1960 and 1970s. The
most detailed such full-scale studies are probably those of
the Millikan library in Pasadena [33,34,71]. Understand-
ing and consideration of the effects of soil-structure inter-
action in system identification and health monitoring of
structures is of fundamental importance for the develop-
ment of reliable methodologies, as this phenomenon is an
integral part of the seismic response, and affects the esti-
mation of both the frequencies of vibration and the inter-
story drift, both used to infer about the state of damage.
Nevertheless, these effects are typically ignored in struc-
tural health monitoring research. A detailed literature re-
view on full-scale studies of soil-structure interaction can
be found in Trifunac et al. [63], and a discussion of crit-
ical issues in recording and interpreting earthquake re-
sponse of full-scale structures can be found in Trifunac
and Todorovska [60,61].

Damage andDamage-Sensitive Features

The damage of a structure can be described by the fol-
lowing five states: (1) no damage, (2) repairable (light and

moderate) damage, (3) irreparable damage, (4) extreme
damage, and (5) collapse [14].

Damage is associated with large deformations of the
structural elements (usually expressed via the inter-story
drift), which cause yielding of the structural steel or steel
reinforcement and cracking of the structural concrete.
Also, damage causes changes of the structural vibrational
characteristics (frequencies of vibration), and wave prop-
agation characteristics (wave velocities/travel times). This
section presents the rationale for damage detection algo-
rithms based on monitoring such changes. The concepts
are illustrated on a simple soil-structure interactionmodel.

StructuralModels and Identification

Structure as an Oscillator

From an elementary vibrational viewpoint, a structure re-
sponds to earthquake shaking as an oscillator character-
ized by its frequencies of vibration. The fixed-base fre-
quencies are those of free vibration of the structure on
rigid ground. They are the eigenvalues of a boundary value
problem, and the associated eigenfunctions are referred to
as mode shapes in structural engineering. The fixed-base
frequencies depend only on the properties of the struc-
ture, i. e. on the structural stiffness and mass, while their
dependence on the structural damping is small for most
structures, which are lightly damped. In the linear range,
the response of an n-degree-of-freedom system to earth-
quake shaking is a superposition of the modal responses.
The contribution of the fundamental mode is usually the
largest, and in engineering design structures are often rep-
resented by an equivalent single degree-of-freedom oscil-
lator. For a single degree-of-freedomoscillator, the natural
frequency of vibration is

!1 D
p
k/m ; (1)

where k is its stiffness and m its mass. The frequency of
such an oscillator is affected little by typical fluctuations of
the mass due to variations in the life load of the structure,
and is mostly affected by changes in the stiffness. Damage
would cause loss of stiffness, and consequently reduction
of the fixed-base frequency of vibration. If !1;ref is a ref-
erence frequency corresponding to reference stiffness kref,
then for the damaged structure

(!1/!1;ref)2 D k/kref : (2)

As the fixed-base frequency depends on the overall stiff-
ness of the structure, it is by definition a global prop-
erty, and would not change much due to localized dam-
age of civil structures, which are designed to be highly re-
dundant. One advantage of detecting damage by monitor-
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ing changes in fixed-base frequency of vibration is that,
in the ideal case when the ground is practically rigid (as
compared to the structure), and the excitation is relatively
broadband, the fixed-base frequency can be determined
using only one sensor, on the roof, as the frequency of the
peak of the Fourier transform of the roof response. The
availability of recorded response at ground level would
produce a more accurate estimate, as a transfer-function
can be computed between the roof and ground level re-
sponse motion. Changes in the frequency versus time can
be estimated from the Fourier transform in moving win-
dows in time.

Buildings are founded on soil, which is flexible and de-
forms under the action of forces from the incident waves
and from the vibrating structure. Even if rigid, a struc-
ture founded on soft soil will vibrate, with the soil act-
ing as a spring. The soil adds both flexibility and dissipa-
tion mechanism to the vibrations of the structure and soil,
which act as a coupled system. Two sources of dissipation
are (1) scattering of the incident waves from the founda-
tion and (2) radiation of energy into the soil (through vi-
bration of the foundation, which acts as a source of waves
radiated in semi-infinite medium). The third source of dis-
sipation is in the structure, and includes a distribution of
frictional sources, and hysteretic damping during nonlin-
ear response. The soil-structure system has its own reso-
nant frequencies and “damping”, which is a combination
of the contributions from the structure and from the soil.
The fundamental frequency of the system is always lower
than the fundamental fixed-base frequency of the struc-
ture, but the associated system damping can be larger or
smaller than the damping of the structure alone, depend-
ing on the radiation damping and relative stiffness of the
structure with respect to the soil.

In conclusion, the difficulties with Fourier-type anal-
yses for identification of the building frequencies are that
these give the resonant frequencies and equivalent damp-
ing of the system, which depend on the soil, and that they
are global properties. Also, there is no knowledge base of
changes in such frequencies (for different types of struc-
tures and different types of soils) related to different de-
grees of damage.

Structure as a Wave Guide

Alternatively, the seismic response can be represented as
a superposition of waves that propagate through the struc-
ture, reflect from its exterior and interior boundaries and
interfere [22,39,41,48,49,50,56,57]. Loss of stiffness due to
local damage would cause delays in the wave propagation
through the damaged part, which could be detected using

seismic response data recorded on each side of the dam-
aged area, along the wave path. A change in wave travel
time would depend only on the changes of the physical
properties between the sensors. Hence, the wave methods
are more sensitive to local damage than the modal meth-
ods, and should be able to point out the location of damage
with a relatively small number of sensors. Additionally, the
local changes in travel time are not sensitive to the effects
of soil-structure interaction (as demonstrated in [44,45]),
which is a major obstacle for the modal methods based on
detecting changes in the structural frequencies.

The basic principles of the method are as follows. It
is based on D’Alambert’s solution of the wave equation,
and representation of the structural response as a su-
perposition of waves traveling through the structure. In
contrast, the modal methods are based on representa-
tion in the Fourier domain, as superposition of modes of
vibration.

The wave travel time between two pints

� D d/Vs ; (3)

where d is the distance traveled and Vs is the equivalent
shear wave velocity in the part of the building between the
two sensors. The latter is related to the rigidity via

Vs D
p
�/� ; (4)

where � is the shear modulus and � is the density. Hence,
reduction of rigidity due to damage will produce a re-
duction of the equivalent shear wave velocity, which will
produce an increase in the pulse travel time, relative to
the travel time for the undamaged state. Let �ref be refer-
ence rigidity, and Vs;ref and �ref be the corresponding shear
wave velocity and wave travel time. Then their changes are
related as follows

�

�ref
D

1
Vs/Vs;ref

D
1

p
�/�ref

: (5)

Global changes can also be detected by monitoring the to-
tal wave travel time from the base to the roof of a build-
ing. Let �tot be the travel time of seismic waves from the
point of fixity (ground level) to the roof. Then the build-
ing fundamental fixed-base frequency f1 D 1/(4�tot) as-
suming that the building as a whole deforms like a shear
beam. Based on this relation, f1 can be estimated using
data from only two horizontal sensors.While the goodness
of this approximation of f1 may vary from one building
to another, the changes in f1 D 1/(4�tot) will still depend
only on changes in the building itself, and not on changes
in the soil, and monitoring of changes in such an esti-
mate of f1 can be used as a global indicator of damage in
a building [44,45].
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Earthquake Damage: Detection and Early Warning in Man-Made
Structures, Figure 1
Layered buildingmodel

Figure 1 shows a conceptual model for the analysis, in
which the building is a horizontally layered medium, with
the interfaces between layers at the floor slabs. For verti-
cally incident waves, or/and a narrow building, the layered
medium will be traversed by waves propagating upward
and downward. Let the excitation be a pulse. At each in-
terface, an incident pulse will be split into a reflected pulse,
and a transmitted pulse, and at the roof total reflection will
occur. The transmission and reflection coefficients will de-
pend on the impedance contrast between the layers, in par-
ticular on the shear wave velocities, which will change due
to loss of stiffness caused by damage. Because of reflec-
tions and material damping, an incident wave pulse will
attenuate as it propagates through the structure, and will
be also modified in a dispersive medium. This is schemat-
ically illustrated in Fig. 1. The total wave motion propa-
gating upward in a layer will be a superposition of all the
pulses, those from direct incidence and those from dif-
ferent generations of reflections. The same applies for the
pulses propagating downward. The downward propagat-
ing pulses that are reflected back into the building, from
the interface with the soil, will interfere with the newly in-
cident pulses just transmitted into the building. Eventu-

ally, constructive interference will occur, and the standing
waves will be formed, which are the fixed-base modes of
vibration of the building.

The wave travel times can be detected by tracing the
propagation of a pulse. Such a pulse can be created by sig-
nal processing of recorded earthquake response data, i. e.
by deconvolution of the recorded response, which results
in the system impulse response functions. These can be ob-
tained by computing the transfer-functions between the
motion at a particular level and the reference motion, and
then computing inverse Fourier transform. The location of
the virtual source would coincide with the location of the
sensor that recorded the reference motion. Let uref(t) be
the reference motion, ui (t) be the motion at level i. Then
the impulse response at that level, hi(t), can be computed
as

hi (t) D FT�1
(

ûi (!)¯̂uref(!)
jûref(!)j2 C "

)

; (6)

where the hat symbol indicates Fourier transform, the bar
indicates complex conjugate, and " is a regularization pa-
rameter, used to avoid dividing by a very small num-
ber [39]. At the reference level, the transfer-function is
unity, and its inverse is a Dirac delta function.

Proof-of-concept applications to two buildings dam-
aged by earthquakes, and to an analytical model of a build-
ing-foundation-soil system showed that the method (1) is
robust when applied to damaging levels of earthquake re-
sponse data, (2) is not sensitive to the effects of soil-struc-
ture interaction, and (3) is local in nature (i. e. gave re-
sults consistent with the spatial distribution and degree of
the observed damage) [44,45,53,54]. The damaged build-
ings are the former Imperial County Services Building –
a 6-story RC structure in El Centro, California, damaged
by the 1979 Imperial County earthquake and later de-
molished [52,54], and the 7-story RC building in Van
Nuys, damaged by both the 1971 San Fernando and the
1994 Northridge earthquakes [53,62]. Another application
is to a building in Banja Luka in former Yugoslavia, us-
ing records of 20 earthquakes, one of which led to lev-
els of response that might have caused structural dam-
age, but no damage was reported following a detailed in-
spection [65]. This study was aimed at learning about the
threshold change in the building fixed-base frequency, es-
timated from wave travel time, associated with damage.

While this method is local, its spatial resolution is lim-
ited by the number of sensors. A minimum of two sensors
(at the base and at the roof) are required to determine if
the structure has been damaged, and additional sensors at
the intermediate floors would help point out the part of
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the structure that has been damaged. For example, one ad-
ditional sensor between these two would help identify if
the damage has been in the part of the structure above or
beyond that sensor.

There have been only a few publications in the liter-
ature on wave propagation methods for structural health
monitoring and damage detection in civil structures other
than the NDT methods [20,35,37,41,53,54,64]. Similar
wave travel time analyses (using deconvolution or the
NIOM method) of buildings that have not been damaged
include Kawakami and Oyunchimeg [24,25], Snieder and
Şafak [39], Kohler et al. [26], and Todorovska [44,45].
These studies show that the wave travel times reflect well
the characteristics of the buildings studied. A recent review
can be found in [53,54].

In conclusion, the advantages of this wave method are
its local nature achieved with a relatively small number of
sensors, its insensitivity to the effects of soil-structure in-
teraction, and the ability to estimate the structural fixed-
base frequency using data from only two sensors (one at
the base and one at the roof), which will extend the usabil-
ity of old data. An outstanding issue to its implementation
is the lack of a knowledge base relating changes in wave
travel times (and fixed-base frequency) with different lev-
els of damage for different types of structures.

Inter-Story Drift

Structural damage of a building under seismic loads oc-
curs primarily due to large lateral deformations of its
columns and shear walls, as they are by design much
stiffer in the vertical direction to carry the static gravity
loads. A measure of the lateral deformations is the inter-
story drift. The inter-story drift is also a good indicator
of the damage to the architectural (nonstructural) compo-
nents (partition walls, facade, windows, etc.), which can
be costly. As the value of the structure is only about 10–
25% of the total construction cost of a building, the dam-
age to the nonstructural components represents a signif-
icant portion of the total repair cost following an earth-
quake. For these reasons, the inter-story drift is one of the
performance parameters considered in design. It is impor-
tant to note that the structural and nonstructural dam-
age are related only to the drift caused by deformation of
the structure, and not by the drift caused by rigid body
motion.

The level of structural damage (to a particular element
and to the structure as a whole) associated with a particu-
lar level of inter-story drift varies depending on the type of
structure, height and ductility, among other factors, and
is still not a completely resolved issue in structural engi-

Earthquake Damage: Detection and Early Warning in Man-Made
Structures, Table 1
Drift ratios (in %) associated with various damage levels (based
on [14])

State of damage Ductile MRF Nonductile MRF
No damage < 0:2 < 0:1
Repairable damage

Light 0:4 0:2
Moderate < 1:0 < 0:5

Irreparable damage > 1:0 > 0:5
Severe damage, life safe, partial
collapse

1:8 0:8

Collapse > 3:0 > 1:0

neering [14]. To illustrate this correlation, Table 1 shows
some values of drift associatedwith different levels of dam-
age (simplified from [14]) for ductile and nonductile mo-
ment resisting frames (MRF), and based on experimental
data, field observations and measurements and theoreti-
cal analyses. (Ductile are those structures that can undergo
large nonlinear deformations before failure as opposed to
the nonductile ones, which experience quick brittle failure
soon after exceeding the linear range of response). It can
be seen from Table 1 that, roughly, inter-story drift > 1%
for ductile and > 0:5% for nonductile moment resisting
frames causes damage beyond repair, and drift > 3% and
> 1% for the same type of frames is significant for life
safety.

Drift-based assessment of the state of damage of
a building following an earthquake would require: (1)
measurement of the drift during the earthquake shaking,
and (2) knowledge base of values of drift associated with
different states of damage for the particular structure. The
accuracy of the assessment would depend on the accuracy
of both the measurements and knowledge base, as dis-
cussed in the following.

The drift is commonly estimated from the difference of
displacements obtained by double integration of recorded
velocities in the structure [28]. While in the past these cal-
culations were performed by specialists, after the data had
been manually collected, at present, such calculations can
be done in near real time either using telemetry or at the
site by “client” software supplied by the instrument man-
ufacturer. Such estimates of drift however are limited by:
(1) the inability to estimate reliably the static component
of the drift associated with permanent deformations (i. e.
the drift at ! ! 0), which is not negligible for structures
experiencing large deformations in the nonlinear range
of response, when damage occurs, and (2) the inability
to separate the drift due to deformation of the structure
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(which is directly related to damage) from the drift due to
rigid body rocking because of inadequate instrumentation.

The inability to estimate reliably the static part of the
displacement (and drift) is due to the fact that the tra-
ditional (translational) sensors are sensitive also to rota-
tional motions of their support [16,59], which produce er-
rors in the recorded translations and the integrated dis-
placementsmimicking permanent displacement [16]. This
problem can be solved, by deploying sensors recording all
six components of motion (three translations and three
rotations) and performing appropriate instrument correc-
tion. Such future deployments and their assessment are of
interest to and have been advocated by the International
Working Group on Rotational Seismology [29].

The dynamic (at ! > 0) drift due to deformation of
the structure only is not simple to estimate, especially for
structures on soft soil, with significant rocking response
of their foundation. The rocking motions of the founda-
tion are due to the wave nature of the incident seismic
waves, and also due to feedback forces from the struc-
ture acting on the soil. The foundation rocking results in
relative horizontal displacement between two floors and
is not related to damage. Such excessive relative displace-
ments, can affect the stability of the structure, which may
collapse before yielding occurs in its members, but that is
out of the scope of this article. The average dynamic floor
rocking can be calculated from the difference of vertical
motions recorded by two sensors on that floor, assuming
the floor slab is rigid, but such sensor configurations are
not routinely installed even in recent denser deployments
in buildings. If the building foundation is fairly rigid, the
rigid body rocking of the structure can be estimated from
two vertical sensors at foundation level. Unfortunately,
even such data is lacking for most of the significant earth-
quake records in buildings, and even in recent dense de-
ployments (e. g. in [6]). It is noted that vertical sensors are
also less sensitive to rotation of their support and to cross-
axis motion [15,43].

It should be noted here that permanent displacements
can be measured directly using GPS (Global Positioning
System), and there have been such deployments in long
period structures [5]. While GPS measurements are not
contaminated by rotation, they are limited by the fact that
what is measured are only the roof absolute displacements,
which makes it impossible to separate the displacement
due to deformation of the structure from the rigid body
horizontal translation and rocking. The other two limita-
tions in the presently available systems are the small sam-
pling rate (10–20Hz) and the limited resolution of GPS
for civilian applications (˙1 cm horizontally and ˙2 cm
vertically; [5]).

Damage estimation algorithms based on published
damage versus drift relationships (e. g. in [1]) started to be
implemented by manufacturers of strong motion instru-
ments in structural seismic monitoring systems but there
is no data yet of their performance. Despite errors in the
assessment resulting from the mentioned difficulties, such
algorithms are robust when applied to earthquake data
and can be useful within a suite of methods.

Matrices like the one in Table 1 [14] can serve as
a knowledge base in assessing the class of damage state for
a given maximum drift reached. Such matrices are asso-
ciated with scatter, due to the variability from one struc-
ture to another within the same class. Another source of
scatter is the source of the data. Because of the limited
amount of full-scale earthquake response data, informa-
tion for such relationships is complemented by laboratory
data (e. g. pushover tests). While the drift in the former is
the total drift, which includes the drift due to rigid body
motion, the drift in the latter is only due to deformation of
the structural elements.

In conclusion, outstanding issues in measuring the
drifts are: (1) separation of the drift due to deformation
of the structure only, and (2) estimation of the static com-
ponent of the drift. It may be possible to resolve these is-
sues by deploying six degrees-of-freedom sensors. An out-
standing issue in the knowledge base is more accurate drift
versus damage state relations for specific buildings.

System Identification Considering the Effects
of Soil-Structure Interaction – Example

As mentioned earlier, both for frequency-based identifica-
tion and for damage assessment based on drift, the effects
of soil-structure interaction have a significant effect on the
reliability of the estimation. This section presents a sim-
ple soil-structure interaction model, in which the build-
ing is represented as a shear beam. It illustrates the dif-
ferent contributions to the inter-story drift, the difference
between fixed-base and apparent building frequencies and
their relationship, and the relationship between the model
fixed-base frequencies and wave travel times. More de-
tailed analysis can be found in [44,45].

The model is shown in Fig. 2. It consists of a shear
beam of height H and fundamental fixed-base frequency
of vibration f 1, representing the building, and a rigid foun-
dation of width 2a embedded in elastic half-space. The
excitation, in general, is an incident wave (plane P and
SV or a Rayleigh wave). The motion on the surface of
the half-space in the absence of any structures and ex-
cavations, acting as scatterers, is commonly referred to
as “free-field.” The effective motion at the base of the
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Earthquake Damage: Detection and EarlyWarning in Man-Made Structures, Figure 2
Soil-structure interaction model

building differs from the free field motion at the half-
space surface, because of two phenomena: (1) scattering
and diffraction of the incident waves from the excava-
tion for the foundation, (2) differential displacements due
to feedback forces from the building and foundation act-
ing on the half-space through the contact with the foun-
dation. The former phenomenon is referred to as kine-
matic and the latter as dynamic or inertial interaction. For
the linear problem and a rigid foundation, the two prob-
lems can be solved separately and their effects superim-
posed. The apparent frequency, which is the one estimated
from peaks of energy distributions of the response, is af-
fected mostly by the dynamic interaction, while the ap-
parent drift is also affected by the type of incident waves,
and the point rotation they produce on the ground sur-
face, and the size of the foundation relative to the wave-
length of the incident waves. To consider only the ef-
fects of the dynamic interaction, it suffices to take excita-
tion consisting of only horizontal foundation driving mo-
tion.

The building foundation has three degrees of free-
dom: horizontal translation �, vertical translation V , and
rocking angle '. In the linear approximation of the solu-
tion, only the horizontal and rocking motions are coupled,
while the vertical motions are independent of the other de-
grees of freedom. Let the excitation be horizontal driving

motion �inp. Then, the foundation response will be

� D �inp C�fb (7)

' D 'fb; 'inp D 0 ; (8)

where �fb and 'fb are the feedback horizontal displace-
ment and rocking angle, which depend on the stiffness of
the foundation and on the forces with which the structure
and foundation interact with the soil, and are the solution
of the dynamic equilibrium equations of the foundation.
The building horizontal displacement u(�), as a function
of the height � measured from ground level, is a sum of
three terms

u(�) D �C '� C urel(�) ; (9)

where the first two terms are from the translation and rota-
tion as a rigid body, and the third term is relative displace-
ment from deformation during the vibration. The damage
in the building will depend only on urel(�). It is noted here
that including the coupling between horizontal and verti-
cal motions turns a linear elastic system into a nonlinear
elastic system [21].

For the shear beam, u(�) can be computed as a solution
of the wave equation for moving boundary conditions. It
can be represented as a sum of motions u#(�), which is
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due to translation of the base only, and u'(�), which is due
to rotation of the base only, where

u#(�) D �
cos kS(H � �)

cos kSH
(10)

u'(�) D
'

kS
sin kS�
cos kSH

; (11)

where kS D !/VS and VS D
p
�b/�b is the shear wave ve-

locity in the building. Equations (10) and (11), reflecting
the interference conditions in the building, imply funda-
mental fixed-base frequency of the structure f1 D VS/(4H)
and overtones at fn D (2n � 1)VS/(4H), n > 1. If � is the
time it takes for a wave to propagate from the base (at
� D 0) to the top (at � D H), the interference conditions
in the shear beam imply

f1 D 1/(4�) : (12)

Let us now consider the frequencies of vibration. If the
building did not deform, the foundation and the building
would oscillate freely as a rigid body with frequency fRB
such that

1
f 2RB
D

1
f 2H
C

1
f 2R
; (13)

where fH and fR, referred to as the horizontal and rock-
ing foundation frequency, depend on the stiffness of the
foundation and on the system mass [33]. If the building is
flexible and would freely vibrate on a fixed base with fun-
damental frequency f1, on flexible soil it would freely vi-
brate with fundamental frequency fsys, which is the soil-
structure system frequency, and is a result of the coupling
between the vibration of the building and the vibrations of
the foundation. The following relationship holds approxi-
mately

1
f 2sys
D

1
f 2RB
C

1
f 21
: (14)

This relationship implies that fsys < min
�
f1; fRB


, i. e. fsys

is always lower than both f1 and fRB, and that if f1 and fRB
differ significantly, then fsys would be closer to the smaller
one of them. How much f1 would differ from fsys would
depend on the relative stiffness of the soil compared to the
building. The energy of the response of vibrating systems
is concentrated around their resonant frequencies, which
are measured from the frequency of the peaks of the cor-
responding transfer-functions. The energy of the building
roof response (absolute and relative) will be concentrated
around f D fsys.

Of interest is how to estimate the relevant quanti-
ties from recorded response during an earthquake. If the
building foundation is fairly rigid, and there are at least
two appropriately located vertical sensors to compute the
foundation rocking ' (average value), then urel(�) can be
computed. Tomeasure fsys, the driving motion�inp is also
needed, so that the transfer function between the build-
ing response and �inp can be computed. Motion from
a nearby free-field site can be used for that purpose, but
such sites are often not available, and truly free-field sites
practically do not exist in urban areas. Also, for most in-
strumented buildings, the foundation rocking cannot be
estimated because of the lack of two vertical sensors even
under the ideal conditions that the foundation behaves as
rigid.

Consequently, in reality, for most instrumented build-
ings, the true relative roof displacement cannot be esti-
mated from the recorded data, but only the apparent rela-
tive displacement

urelapp(H) D u(H) ��
D urel(H)C 'H (15)

which includes the contribution of the roof displacement
due to rigid body rotation, and only the transfer-func-
tion jurelapp(H)/�j can be computed, the peak of which
gives the apparent building frequency fapp, which is dif-
ferent from both the fixed base frequency and the system
frequency.

What is of interest for structural health monitoring is
that the energy of the roof response will be concentrated
around f D fsys, not around f D f1. It is also significant
that the damage will depend on urel(�), while what is usu-
ally measured is urel(�)C 'H.

Figure 3 (redrawn from [45]) shows a comparison
of model and measured transfer-functions for a model
of the NS response of Millikan library. The model has
f1 D 2:5Hz, height H D 44m, shear wave velocity in the
soil 300m/s, and Poison ratio 0.333, while the data are
from the Yorba Linda earthquake of 2002. Figure 4 shows
the corresponding impulse response function for a virtual
source at the ground floor. It can be seen that there is a very
good qualitative agreement despite the model simplicity
and roughly chosen parameters.

Novelty Detection in the Recorded Response

Novelty detection is used in data mining to detect unusual
events in data. The unusual events are outliers deviating
from the trend. Within the framework of multi-resolu-
tion analysis, the trends and novelties are determined by
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Earthquake Damage: Detection and EarlyWarning in Man-Made Structures, Figure 3
Model (thick line) versus Yorba Linda, 2002, earthquake (thin line) NS response: transfer-functions of roof response (top), and base
rocking response (middle) with respect to horizontal response of ground level. The plot in the bottom shows the model horizontal
response at ground level for unit driving motion (thick line), and the Fourier spectrum of the earthquake response at ground level
(thin line) on a relative scale

splitting the signal in two subbands, one smooth (low fre-
quency) and the other one containing the detail (high fre-
quency). By consecutively splitting the smooth subband,
trends and detail are obtained at different resolution lev-
els. If J is the last level, then there will be J detail sub-
bands Di, i D 1; : : : ; J and one smooth subband SJ . The
last smooth subband can be expanded in a basis of scal-
ing functions 'J;k(t), and each of the detail subbands – in
a basis of wavelet functions  j;k (t), leading to the repre-
sentation of a discrete time signal s[n], n D 1; : : : ;N

s[n] D
JX

jD1

Dj[n]C SJ[n]

D

JX

jD1

N/2 jX

kD1

dj;k j;k[n]C
N/2JX

kD1

sJ;k'J;k[n] : (16)

The coefficients of the expansion, dj;k and sJ;k , can be
computed using the fast wavelet transform. The pyramid
algorithm on which it is based [36] is shown in Fig. 5.



Earthquake Damage: Detection and Early Warning in Man-Made Structures E 2383

Earthquake Damage: Detection and Early Warning in Man-Made Structures, Figure 4
Model (thick line) versus Yorba Linda, 2002, earthquake (thin line) NS response: impulse responses of roof (top), and base rocking
(middle) to input impulse at ground level (bottom), i. e. roof horizontal motion, foundation rocking and ground level horizontal mo-
tions deconvolved with the resultant horizontal motion at ground level

The wavelet functions  j;k[n], where j is a level and k
is the time shift, are localized both in frequency and in
time, and each wavelet is a projection of the signal onto the
corresponding tile of the phase plane. For a wavelet basis
that is orthonormal, the square of a wavelet coefficient rep-
resents the energy of the signal in the corresponding tile of
the phase plane.

The damage detectionmethod is based on the assump-
tion that, when damage occurs and there is a sudden loss
of stiffness, there will be some abrupt change in the re-
sponse that would produce novelties. These would be seen
as spikes in the time series of the square of the detail co-

efficients (e. g. d21;k , k D 1; : : : ;N/2 for the highest detail
coefficients) plotted versus the central time of the corre-
sponding wavelet. These spikes indicate high frequency
energy in the response. For data with Nyquist frequency
25Hz, the novelties can be best seen in the highest detail
subband (12.5 to 25Hz), which is away from the frequency
of the first few modes of typical buildings, where the re-
sponse is amplified by the structure.

Applications to numerically simulated response of
simplemodels with postulated damage [17,18] have shown
that this method can point out very precisely the time of
damage, but the changes are detectable only if the spikes
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Earthquake Damage: Detection and EarlyWarning in Man-Made Structures, Figure 5
The pyramid algorithm for the fast wavelet transform

Earthquake Damage: Detection and EarlyWarning in Man-Made Structures, Figure 6
Imperial County Services (ICS) building: a view (towards north); b photographs of damage: columns F1 and F2 at the ground floor;
and c column F1
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in the wavelet coefficients are above the noise. Further, the
magnitude of the novelties is larger if the sensor is closer
to the location of the damaged member, and may be dif-
ficult to detect if the sensor is far from the location of
damage. There have been only few applications to earth-
quake response records in buildings. Rezai et al. [38] and
Hou et al. [18] have shown that there are novelties (spikes)
in earthquake records of damaged buildings, but have not
discussed and extracted other possible causes. Todorovska
and Trifunac [51,55] presented a detailed analysis of the
correspondence between the spatial distribution and am-
plitudes of the detected novelties and the observed damage
for the Imperial County Services building (see illustrations
in Sect.“Examples”), and also analyzed the “noise.” Their
study shows that: (1) the spatial distribution and magni-
tudes of the novelties were generally consistent with the
spatial distribution and degree of the observed damage, (2)
the timing of those suggesting major damage agreed with
the time of significant drops in frequency and of large in-
ter-story drifts, and (3) were much larger in the transverse
response, in which the building was stiffer.

In summary, the method of novelties is very effective
in determining the time of occurrence of damage, and
can reveal the spatial distribution and degree of damage
if there is sufficiently dense instrumentation. Unresolved
issues are how to distinguish novelties that are not caused

Earthquake Damage: Detection and Early Warning in Man-Made Structures, Figure 7
ICS building: schematic representation of the damage following the 1979 Imperial Valley earthquake (reproduced from [27])

by damage, and small novelties due to larger damage far
from the sensor from those due to small damage close to
the sensor.

Examples

In this section, the methods previously described are il-
lustrated for the former Imperial County Services (ICS)
building – a rare example of an instrumented building
damaged by an earthquake, for which description of dam-
age and the strong motion data are available. The build-
ing is first described and the strong motion data of the
Imperial Valley earthquake, which severely damaged the
building.

The ICS building was a 6-story reinforced concrete
structure located in El Centro, California (Fig. 6a). It was
designed in compliance with the 1967 Uniform Building
Code, and its construction was completed in 1969. It had
plan dimensions 41:70 � 26:02m, height 25.48m, and pile
foundation. Up to depth of 9m, the underlying soil con-
sisted of soft tomedium-stiff damp sandy clay with organic
materials, with inter-layers of medium dense moist sand,
and beneath 9m it consisted of stiff, moist sandy clay and
silty clay [27].

The building was severely damaged by the Imperial
Valley earthquake of October 15, 1979 (M D 6:6), and was
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Earthquake Damage: Detection and EarlyWarning in Man-Made Structures, Figure 8
ICS building: layout of the seismic monitoring array

later demolished (Fig. 6b,c). Figure 7 shows a schematic
representation of the observed damage. The major failure
occurred in the columns of frame F (at the east end of the
building) at the ground floor. The vertical reinforcement
was exposed and buckled, and the core concrete could not
be contained, resulting in sudden failure and shortening
of the columns subjected to excessive axial loads. This in
turn caused an incipient vertical fall of the eastern end
of the building, causing cracking of the floor beams and
slabs near column line F on the second, third and higher
floors. Columns in lines A, B, D, and E also suffered dam-
age. Columns in frames A and E did not suffer as extensive
damage as shortening and buckling of the reinforcement

in line F at the east side, but large concrete cracks and ex-
posed reinforcement could be seen near the base. In the
columns in interior frames B through E, visible cracks and
spalling of the concrete cover were also observed [27].

The building was instrumented by a 16-channel seis-
mic monitoring array (installed by the California Geo-
logical Survey, formerly the California Division of Mines
and Geology) consisting of a 13-channel structural ar-
ray of force balance accelerometers (FBA-1), with a cen-
tral analog recording system, and a tri-axial SMA-1 ac-
celerometer in the “free field,” approximately 104m east
from the northeast corner of the building (Fig. 8). Fig-
ure 9 shows the accelerations (corrected) during the Impe-
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Earthquake Damage: Detection and Early Warning in Man-Made
Structures, Figure 9
ICS building: accelerations (NS and EW components) recorded
during the 1979 Imperial Valley earthquake

rial Valley earthquake. The peak accelerations at the roof
and ground floor were 571 cm/s2 and 339 cm/s2 in the NS
direction and 461 cm/s2 and 331 cm/s2 in the EW direc-
tion.

Figure 10 shows the NS (top) and EW (bottom) in-
ter-story drifts computed from band-pass filtered displace-
ments (between 0.1–0.125Hz and 25–27Hz) (redrawn
from [52]). Hence, they represent only a limited view of
the actual drifts – through a tapered window in the fre-
quency domain, and a combination of the drift due to rigid
body rocking (one of the effects of soil-structure interac-
tion) and drift due to relative deformation of the building.
The horizontal lines show 0.5%, 1%, and 1.5% drift levels.
The plotted drifts suggest: (1) “soft” first story in both NS
and EW directions, (2) larger flexibility in the EW direc-
tion, and (3) significant torsional response, probably am-
plified by the wave passage, and by the asymmetric dis-
tribution of stiffness in the NS direction at the soft first
story (see Fig. 8). It can be seen that during the most se-
vere shaking, the inter-story drifts exceeded 0.5% for NS

and 1.5% for EW motions, consistent with irreparable to
severe damage (Table 1).

Figure 11 shows results of time frequency analysis
(using Gabor transform) for the EW response (redrawn
from [52]). Parts a and b show the ground floor acceler-
ations, and the roof relative displacements (at the center
of the building), both included as background informa-
tion. Part c shows the skeleton (the thicker line), which is
a smoothed estimate of the amplitude envelope of the es-
timated signal, which is the relative roof response near the
first system frequency. The thin line is the actual amplitude
envelope (that for the broad-band signal), determined by
Hilbert transform. This plot is included to help monitor
rapid changes in the amplitude of the signal and artifacts
in the estimate of instantaneous frequency caused by vi-
olations of the asymptoticity condition. Part d shows the
Fourier spectra of the relative roof displacement (the solid
line), and of the ground floor acceleration (the dashed
line, on a relative scale), both included as background
information. Part e shows the variations of the system
frequency as a function of amplitude of response (esti-
mated from the ridge and skeleton of the Gabor trans-
form), with the arrows indicating the direction of increas-
ing time. Part f shows the variations of the system fre-
quency versus time, estimated from the ridge of the Ga-
bor transform. The missing segments and the dashed lines
in parts e and f correspond to time intervals where the es-
timates cannot be obtained or are not believed to be re-
liable, due to rapid variations of the envelope of the am-
plitude, and/or very weak “signal.” The rectangle in part f
with sides 2�t D 1:42 s and 2�� D 0:22Hz illustrates the
theoretical uncertainty of the estimates due to the finite
resolution of the Gabor transform. In practice, the uncer-
tainty is larger due to violations of the asymptoticity as-
sumption. Finally, the numbered open dots (occurring at
different times in parts b, c, e, and f correspond to some
characteristic points in time associated with changes in
amplitude or frequency, as well as a few other points in-
between. It can be seen that the EW frequency dropped
rapidly from � � 0:88Hz at t � 3:5 s to � � 0:67Hz at
t � 7 s (�� � 0:21Hz > �� ; ��/� � 24%), and then
continued to drop gradually to � � 0:53Hz at t � 17 s
(�� � 0:14Hz � �� ;��/� � 20:9%).

Figure 12 shows results of impulse response analysis
for the EW response (redrawn from [53]). The different
types of lines correspond to different time intervals of the
recordedmotion, before, during, and after the major dam-
age occurred: t < 7 s, 7 < t < 13 s, and t > 13 s (based on
novelty analysis, discussed below). The plots on the left
correspond to an input impulse at the ground floor, and
those on the right – to an input impulse at the top. The
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Earthquake Damage: Detection and EarlyWarning in Man-Made Structures, Figure 10
ICS building: inter-story drifts during the Imperial Valley earthquake

latter plots show two waves propagating downwards, one
acausal (in negative time, representing the wave going up)
and one causal (in positive time). The delays in the pulse
arrival during the second and third time interval are ob-
vious, and are consistent with the occurrence of damage,
as determined using other methods. The wave travel times
suggest, for EW motions initial wave velocities of 201m/s
through the first floor, 183m/s between the 2nd and 4th
floors, and 111m/s between the 4th floor and roof. The
velocity of an equivalent uniform shear beam is 142m/s.
Figure 13 shows the corresponding reduction of stiffness.
It can be seen that, for EWmotions, the reduction was the
largest in the first story (80% during the second time win-
dow), but was also large in the upper stories (72% between
the 2nd and 4th floors, and 60% between the 4th floor and
roof). This is consistent with the spatial distribution of the
observed damage (Fig. 6), which was the largest in the first
story.

Figure 14 shows the results of novelty analysis, for the
EW accelerations (part a) and for the NS accelerations at
the east side of the building, where the most severe dam-
age occurred (part b) (redrawn from [55]). The inter-story
drifts (in %) between the corresponding stories are also
shown, by a solid line for NS and by a dashed line for EW
motions. Selected novelties are identifies by letters. Novel-
ties T1–T3 are believed to be caused by damage, and are
seen in all channels. Novelties G1–G3 and g1–g4 originate
in the ground motion, and L1–L6 are possibly caused by
local damage close to the sensor, or by other causes. By
far the largest novelty is T3, which has amplitude more
than an order of magnitude larger than all other novelties
in the NS acceleration at the 2nd floor at the east side of
the building, where the most severe damage (failure of the
first story columns of frame F) occurred. The timing of T3
suggests that the collapse of the columns of the first story
occurred at about 11.2 s after trigger. The other two large
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Earthquake Damage: Detection and Early Warning in Man-Made Structures, Figure 11
ICS building: time frequency analysis for EW response

novelties consistent with the observed damage, T1 and T2,
occurring at about 8.2 s and 9.2 s after trigger, indicating
damage that weakened the structure, before the collapse of
the first story columns.

Figure 15 (redrawn from [54]) shows a comparison
of different values of frequency for EW motions: f 1 from
wave travel times (the gray line), system frequency fsys es-
timated from time-frequency analysis (the red line; [52],
and f 1 using ETABS models [27]. T1, T2, and T3 mark the
times of occurrence of major damage, as indicated by nov-
elties in the response [51,51]. It can be seen that f1 from
wave travel times is consistent with the results of other in-
dependent studies.

Finally, Fig. 16 shows results for another building,
the Van Nuys 7-story hotel, which has been damaged by

earthquakes [53]. It shows a comparison of fixed-base fre-
quency f 1 during 11 earthquakes estimated from wave
travel times, and system frequency fsys during the same
earthquakes estimated by time frequency analysis (Gabor
transform), as well as estimates of fsys during ambient vi-
bration tests. The analysis shows that, during the San Fer-
nando earthquake, f 1 decreased by about 40% (relative to
its value within the first 5 s from trigger), which corre-
sponds to a decrease in the global rigidity of about 63%.
During the Northridge earthquake, f 1 decreased by about
22% (relative to its value within the first 3 s from trigger),
which corresponds to a decrease in the global rigidity of
about 40%. The analysis also showed that, although fsys
was always smaller than f 1, their difference varied, con-
trary to what one could expect from a linear soil-structure
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Earthquake Damage: Detection and EarlyWarning in Man-Made Structures, Figure 12
ICS building: Impulse response analysis and wave travel times for EW response, and for a virtual source at the ground floor (left) and
at the roof (right)

Earthquake Damage: Detection and Early Warning in Man-Made
Structures, Figure 13
ICS building: reduction of floor stiffness versus time [54]

interaction model. It also showed that while fsys was sig-
nificantly lower during the Landers and Big Bear earth-
quakes, compared to the previous earthquakes, f 1 did not
change much, with is consistent with the fact that these
earthquakes (which occurred about 200 km away from the
building) did not cause any damage. The study concluded
that monitoring changes in fsys can lead to false alarms
about the occurrence of damage, and that f 1, as estimated

from wave travel times by the proposed method, is a much
more reliable estimator of damage.

Future Directions

A successful system for earthquake damage detection and
early warning would involve applications of technologies
in fields other than structural mechanics and engineer-
ing, such as sensing, data communication, signal process-
ing, artificial intelligence, and decision analysis. The end
of the 20th and the beginning of the 21st centuries have
been marked by a revolution in the development and af-
fordability of the technologies in these other fields. Much
research in structural health monitoring for civil struc-
tures has been directed towards adaptation of these tech-
nologies to civil structures. The remaining challenge is to
develop a system that is robust, redundant and well cal-
ibrated, which will neither miss significant damage nor
produce many false alarms. Achieving this would require
focusing the efforts and resources to further develop those
methodologies that are robust when applied to real struc-
tures and data, and to calibrate them using documented
full-scale data. Further enhancement of the spatial resolu-
tion of such methods would benefit from inexpensive and
reliable new sensors.
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Earthquake Damage: Detection and Early Warning in Man-Made Structures, Figure 14
a ICS building: novelties analysis of the EW accelerations at the center of the building. b Same as Fig. 13a but for the NS accelerations
at the east end of the building
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Earthquake Damage: Detection and EarlyWarning in Man-Made Structures, Figure 15
ICS building: comparison of results for EWmotions fromdifferentmethods. System frequency fsys from time frequency analysis, fixed
base frequency f1 fromwave travel time analysis, and times of occurrence of novelties, T1, T2, and T3

All this will have to be accomplished by continuously
expanding our experience in dealing with the complex-
ities of metastable damage states of engineering struc-
tures, which will gradually become more feasible with
the formulation of realistic physical models. Neverthe-
less, the practical outcome of most approaches in en-
gineering will probably remain empirical. Also, the art
of dynamical modeling will have to be further devel-
oped, especially for the assessment of the damaged states
of engineering structures that are highly nonlinear and
chaotic. In the end, in structural health monitoring, and
in design of earthquake resistant structures, the fact that
some modeling problems will remain will have to be ac-
cepted. However, considerable progress will be achieved
if the success is gauged by the degree to which the pre-
dictions match observations in the full-scale structures,
contributing towards safety and minimization of disrup-
tion and productivity of society in seismically active re-
gions.
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Glossary

Data transmission system A multi-component device
aimed at the transmission of seismic signals over a dis-
tance, also denoted as a telecommunication system.
Each data transmission system consists of two basic el-
ements: a transmitter that takes information and con-
verts it to an electromagnetic signal and a receiver that
receives the signal and converts it back into usable in-
formation.
Modern telecommunication systems are two-way and
a single device, a transceiver, acts as both a transmitter
and receiver. Transmitted signals can either be ana-
logue or digital. In an analogue signal, the signal is
varied continuously with respect to the information.
In a digital signal, the information is encoded as a set
of discrete, binary values. During transmission, the in-
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formation contained in analogue signals will be de-
graded by noise, while, unless the noise exceeds a cer-
tain threshold, the information contained in digital
signals will remain intact. This represents a key ad-
vantage of digital signals over analogue signals. A col-
lection of transmitters, receivers or transceivers that
communicate with each other is a telecommunication
network. Digital networks may consist of one or more
routers that route data to the correct user.

Earthquake early warning system (EEWS)
A real-time, modern information system that is able
to provide rapid notification of the potential damag-
ing effects of an impending earthquake, through rapid
telemetry and processing of data from dense instru-
ment arrays deployed in the source region of the event
of concern (regional EEWS) or surrounding the tar-
get infrastructure (site-specific EEWS). A “regional”
EEWS is based on a dense sensor network covering
a portion or the entirety of an area that is threatened
by earthquakes. The relevant source parameters (event
location and magnitude) are estimated from the early
portion of recorded signals and are used to predict,
with a quantified confidence, a ground motion inten-
sity measure at a distant site where a target structure of
interest is located. On the other hand, a “site-specific”
EEWS consists of a single sensor or an array of sen-
sors deployed in the proximity of the target structure
that is to be alerted, and whose measurements of am-
plitude and predominant period on the initial P-wave
motion are used to predict the ensuing peak ground
motion (mainly related to the arrival of S and surface
waves) at the same site.

Earthquake location An earthquake location specifies
the spatial position and time of occurrence for an
earthquake. The location may refer to the earthquake
hypocenter and corresponding origin time, a mean or
centroid of some spatial or temporal characteristic of
the earthquake, or another property of the earthquake
that can be spatially and temporally localized.

Earthquake magnitude The magnitude is a parameter
used by seismologists to quantify the earthquake size.
The Richter magnitude scale, or more correctly, lo-
cal magnitude ML scale, assigns a single number to
quantify the amount of seismic energy released by an
earthquake. It is a base-10 logarithmic scale obtained
by calculating the logarithm of the combined horizon-
tal amplitude of the largest displacement from zero on
a seismometer output. Measurements have no limits
and can be either positive or negative.
Introduced by the Japanese seismologist Aki in 1962,
the seismic moment is the present-day physical pa-

rameter used to characterize the earthquake strength.
It represents the scalar moment of one the couples of
forces producing the dislocation at an earthquake fault
and it is measured from the asymptotic DC level on
displacement Fourier spectra of recorded seismic sig-
nals.

Probability density function – PDF A function in one or
more dimensional space X that (i) when integrated
over some interval �x in X gives a probability of oc-
currence of any event within �x, and (ii) has unit in-
tegral over space X, where X represents a space of pos-
sible events.

Seismic data-logger A core element of a digital seismic
station, whose aim is to record the analogue signals
from seismic sensors and convert them in digital form
with an assigned sampling frequency. Ground motion
signals acquired by seismic sensors are pre-amplified
and anti-aliasing filtered in a data-logger before they
are digitalized through an AD (analog-to-digital) con-
verter. The main technical features of a modern data-
logger are the number of available channels, the al-
lowed sampling frequencies, the dynamic range, the
digitizer clock type, the storage capacity (PCMCIA, in-
ternal flash and/or hard disk, USB, . . . ), network inter-
faces (ethernet, wireless lan, or ppp) and power con-
sumption.

Seismic hazard The probability that at a given site,
a strong motion parameter (generally the peak ground
acceleration) exceeds an assigned value in a fixed time
period. When the seismic hazard is computed for an
extended region it is generally represented as a map.
The hazard map is commonly computed for a constant
probability level (10%, 5% or 2%) and a given time
window (50 years). It represents the spatial variation of
the peak ground acceleration (expressed in percentage
of gravity g) to be exceeded in the given period with
the chosen probability level.
Earthquake early warning systems can provide a mean
for the evaluation of real-time hazard maps which
evolve with time, as new information about source lo-
cation, magnitude and predicted peak ground motion
parameters are available soon after the earthquake oc-
currence.

Seismic sensors Instruments used to record the ground
vibration produced by natural and artificial sources,
generally denoted as seismometers. A seismometer
measures the relative motion between its frame and
a suspended mass. Early seismometers used optics, or
motion-amplifying mechanical linkages. The motion
was recorded as scratches on smoked glass, or expo-
sures of light beams on photographic paper. Inmodern
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instruments the proof mass is held motionless by an
electronic negative feedback loop that drives a coil. The
distance moved, speed and acceleration of the mass
are directly measured. Most modern seismometers are
broadband, working on a wide range of frequencies
(0.01–100Hz). Another type of seismometer is a digital
strong-motion seismometer, or accelerometer, which
measures soil acceleration. Due to its relatively high
dynamic range, the accelerometer can record unsatu-
rated strong amplitude signals at close distances from
a large earthquake. This data is essential to understand
how an earthquake affects human structures.

Definition of the Subject

The origin of the term “early warning” probably goes
back to the first decades of the last century. However, the
first practical use of an “early warning” strategy was mil-
itary and it was developed during the “cold war” years
as a countermeasure to the potential threat from inter-
continental ballistic missiles. The objective of these sys-
tems was to give an alert to target areas as soon as a mis-
sile was detected by a radar system or a launch was de-
tected by a satellite system. In this context the term “lead
time” was defined as the time elapsing between the de-
tection of the missile and the estimated impact on the
target.

In the last decades the use of the term “early warn-
ing” greatly expanded. It is used with small, but significant,
variations in various types of risks, from epidemiological,
to economic, social, and of course all the types of natural
and environmental risks.

In fact, in these contexts, including some natural risks
such as hydro-geological and volcanic, the warning is not
given at the onset of the catastrophic phenomenon, but af-
ter the occurrence of some precursory phenomena which
can trigger a catastrophic event (for instance intensive
rainfall for hydrological risk, earthquakes and/or ground
deformation for volcanic risk). The main consequence of
this difference is an increase in the probability of issuing
false alarms.

The case of earthquake early warning is similar to mis-
sile early warning. The alert is given after an earthquake
is detected by a network of seismometers. An earthquake
early warning is based on the fact that most of the radiated
energy is contained in the slower traveling phases ( S- and
surface waves traveling at about 3.5 km/s or less) which ar-
rive at any location with a delay with respect to small am-
plitude higher velocity phases (P-waves, travelling at about
6–7 km/s) or to an electromagnetically transmitted (EM)
signal giving the warning.

Introduction

Many regions in the world are affected by natural hazards
such as earthquakes, tsunamis, volcanoes, floods, storms,
landslides, etc., each of which can have devastating so-
cio-economic impacts. Among these natural events, earth-
quakes, have been among the most recurrent and dam-
aging hazards during last few decades, resulting in large
numbers of casualties, and massive economic losses [30].

The problem of earthquake risk mitigation is faced us-
ing different approaches, depending upon the time scale
being considered. Whilst over time scales of decades it is
of utmost importance that land use regulations and build-
ing/infrastructure codes are continuously updated and im-
proved, for time scales of a few years, the main risk mit-
igation actions are at the level of information and edu-
cation in order to increase individual and social commu-
nity awareness about potentially damaging hazards. Over
shorter time scales (months to hours), it would naturally
be of great benefit to society as a whole if the capability to
accurately predict the time, location and size of a poten-
tially catastrophic natural event were available. However,
due to the great complexity of the natural processes of con-
cern, such predictions are currently not possible.

On the other hand, on very short time scales (seconds
to minutes), new strategies for earthquake risk mitigation
are being conceived and are under development world-
wide, based on real-time information about natural events
that is provided by advanced monitoring infrastructures,
denoted as “early warning systems”.

Regional and On-site EarlyWarning Systems

Earthquake Early Warning Systems (EEWS) are modern,
real-time information systems that are able to provide
rapid notification of the potential damaging effects of an
impending earthquake through the rapid telemetry and
processing of data from dense instrument arrays deployed
in the source region of the event of concern. Such systems
allow mitigating actions to be taken before strong shaking
and can significantly shorten the time necessary for emer-
gency response and the recovery of critical facilities such
as roads and communication lines.

Advances have been made towards the implementa-
tion of operational systems in Japan, Taiwan, and Mex-
ico using two different approaches, i. e., “regional warn-
ing” and “onsite warning” [25]. A regional warning system
is based on a dense sensor network covering a portion or
the entire area that is threatened by earthquakes. The rel-
evant source parameters (earthquake location and magni-
tude) are estimated from the early portion of recorded sig-
nals and are used to predict, with a quantified confidence,
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a ground motion intensity measure at a distant site where
a target structure of interest is located. Alternatively, “on-
site warning” systems consist of a single sensor or an array
of sensors deployed in the proximity of the target struc-
ture that is to be alerted, and whose measurements on the
initial P-wave motion are used to predict the ensuing peak
ground motion (mainly related to the arrival of S and sur-
face waves) at the same site.

Implementation of EarlyWarning Systems Worldwide

In Japan, since the 1965, the JNR (Japanese National Rail-
way) has developed and operated the Urgent Earthquake
Detection and Alarm System (UrEDAS), which is an on-
site warning system along the Shinkansen (bullet train)
railway. UrEDAS is based on seismic stations deployed
along the Japanese Railway with an average distance of
20 km. An alert is issued if the horizontal ground ac-
celeration exceeds 40 cm/s2. In the 1996, the UrEDAS
was combined with a new seismometer called “compact
UrEDAS” [31,32,33].

On the other hand, for about one decade the Japanese
Meteorological Agency (JMA) has been developing and
experimenting with a mixed single station and network
based early warning system to generate immediate alerts
after earthquakes with JMA Intensity greater than “lower
5” (approximately M > 6) [24]. During a testing period
from February 2004 to July 2006, the JMA sent out 855
earthquake early warnings, only 26 of which were recog-
nized as false alarms [40]. On October 1, 2007 the broad-
cast early warning system developed by the JapaneseMete-
orological Agency (JMA) became operative. In this system,
the first warning is issued 2 s after the first P phase detec-
tion, if the maximum acceleration amplitude exceeds the
threshold of 100 cm/s2.

In the United States the first prototype of an early
warning system was proposed by Bakun et al. [4] and
developed for mitigating earthquake effects in Califor-
nia. It was designed to rapidly detect the Loma Prieta
aftershocks and send an alert when the estimated mag-
nitude was greater than 3.7, in order to reduce the risk
of the crews working in the damaged area. The system
is composed of four components: ground motion sen-
sors deployed in the epicentral area, a central receiver, ra-
dio repeaters and radio receivers. The prototypical system
worked for 6months, during which time 19 events with
M > 3:5 occurred, 12 alerts were issuedwith only 2missed
triggers and 1 false alarm.

Based on pioneering work by Allen and Kanamori [2]
seismologists across California are currently planning
real-time testing of earthquake early warning across the

state using the ElarmS (Earthquake Alarms Systems)
methodology [1]. The approach uses a network of seismic
instruments to detect the first-arriving energy at the sur-
face, the P-waves, and translate the information contained
in these low amplitude waves into a prediction of the peak
ground shaking that follows.Wurman et al. [47] illustrated
the first implementation of ElarmS in an automated, non-
interactive setting, and the results of 8months of non-in-
teractive operation in northern California.

Since 1989, in Mexico, the civil association CIRES
(Centro de Instrumentacion y REgistro Sismico) with the
support of Mexico City Government Authorities, devel-
oped and implemented the Mexican Seismic Alert System
(SAS) [15]. The SAS is composed of (a) a seismic detec-
tion network, 12 digital strong motion stations deployed
along 300 km of the Guerrero coast, (b) a dual commu-
nication system: a VHF central radio relay station and
three UHF radio relay stations, (c) a central control system
which continuously controls the operational status of the
seismic detection and communication system and, when
an event is detected, automatically determines the magni-
tude and issues the alarm, and (d) a radio warning system
for broadcast dissemination of the alarm to end users. Af-
ter 11 years, the SAS system recorded 1373 events in the
Guerrero coast, it issued 12 alerts in Mexico city, with only
one false alarm.

In Taiwan, the Taiwan Central Weather Bureau
(CWB) developed an early warning system based on
a seismic network consisting of 79 strong motion sta-
tions installed across Taiwan and covering an area of
100 � 300 km2 [44]. Since 1995 the network has been able
to report event information (location, size, strong motion
map) within 1min after an earthquake occurrence [39].
To reduce the report time, Wu and Teng [44] introduced
the concept of a virtual sub-network: as soon as an event
is triggered by at least seven stations, the signals coming
from the stations less distant than 60 km from the esti-
mated epicenter are used to characterize the event. This
system successfully characterized all the 54 events occurrd
during a test period of 7 months (December 2000 – June
2001), with an average reporting time of 22 s.

In Europe, the development and testing of EEWS is be-
ing carried out in several active seismic regions. Europe is
covered by numerous high-quality seismic networks, man-
aged by national and European agencies, including some
local networks specifically designed for seismic early warn-
ing around, for example, Bucharest, Cairo, Istanbul and
Naples.

In Turkey, an EEWS is operative, called PreSEIS (pre-
seismic shaking), to provide rapid alert for Istanbul and
surrounding areas. It consists of 10 strong motion sta-
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tions located along the border of the Marmara sea along
an arc of about 100 km, close to the seismogenetic zone of
the Great Marmara Fault Zone with real time data trans-
mission to Kandilli-Oservatory [7,14]. An alarm is issued
when a threshold amplitude level is exceeded.

In Romania, the EEWS is based on three tri-axial
strong motion sensors deployed in the Vrancea area with
a satellite communication link to the Romanian Data Cen-
ter at NIEP in Bucharest [7,42]. The system is based on
first P wave detection and prediction of the peak hor-
izontal acceleration recorded in Bucharest, allowing for
a warning time of about 25 s.

On 2006 the European Union launched the 3-year
project SAFER (Seismic EarlyWarning for Europe), which
is a cooperative scientific program aimed at developing
technological and methodological tools that exploit the
possibilities offered by real-time analysis of signals com-
ing from these networks for a wide range of actions, per-
formed over time intervals of a few seconds to some tens
of minutes. The project includes the participation of 23 re-
search groups from several countries of Europe. The pri-
mary aim of SAFER is to develop tools that can be used by
disaster management authorities for effective earthquake
early warning in Europe and, in particular, its densely pop-
ulated cities.

The Development of an EarlyWarning System
in Campania Region, Southern Italy

The present article is focused on the description of tech-
nologies and methodologies developed for the EEWS un-
der construction in southern Italy.

With about 6 million inhabitants, and a large num-
ber of industrial plants, the Campania region (southern
Italy), is a zone of high seismic risk, due to a moderate to
large magnitude earthquake on active fault systems in the
Apenninic belt. The 1980,M D 6:9 Irpinia earthquake, the
most recent destructive earthquake to occur in the region,
caused more than 3000 causalities and major, widespread
damage to buildings and infrastructure throughout the re-
gion.

In the framework of an ongoing project financed by
the Regional Department of Civil Protection, a prototype
system for seismic early and post-event warning is being
developed and tested, based on a dense, wide dynamic seis-
mic network under installation in the Apenninic belt re-
gion (ISNet, Irpinia Seismic Network).

Considering an earthquake warning window ranging
from tens of seconds before to hundred of seconds after
an earthquake, many public infrastructures and buildings
of strategic relevance (hospitals, gas pipelines, railways,

railroads, . . . ) in the Campania region can be considered
as potential EEWS target-sites for experimenting with in-
novative technologies for data acquisition, processing and
transmission based on ISNet. The expected time delay to
these targets for the first energetic S wave train is around
30 s at about 100 km from a crustal earthquake occurring
in the source region. The latter is the typical time window
available for mitigating earthquake effects through early
warning in the city of Naples (about 2 million inhabitants,
including suburbs).

This article illustrates the system architecture and op-
erating principles of the EEWS in the Campania region,
focusing on its innovative technological and methodolog-
ical aspects. These are relevant for a reliable real-time es-
timation of earthquake location and magnitude which are
used to predict, with quantified confidence, ground mo-
tion intensity at a distant target site.

The system that we describe in this article uses an in-
tegrated approach from real time determination of source
parameters to estimation of expected losses.

This problem must be dealt in an evolutionary
(i. e., time-dependent) and probabilistic framework where
probability density functions (PDFs) for earthquake loca-
tion, magnitude and attenuation parameters are combined
to perform a real-time probabilistic seismic hazard analy-
sis.

Earthquake Potential and Seismic Risk
in the Campania Region

The southern Apennines are an active tectonic region of
Italy that accommodates the differential motions between
the Adria and Tyrrhenian microplates [23]. The major-
ity of the seismicity in this region can be ascribed to this
motion. These earthquakes mainly occur in a narrow belt
along the Apennine chain and are associated with young
faults, with lengths ranging from 30 to 50 km, and mainly
confined to the upper 20 km of the crust [28,41].

Recent stress and seismic data analyzed by [29] using
earthquake locations and fault mechanisms show that the
southern Apennines are characterized by an extensional
stress regime and normal-fault earthquakes. However, the
occurrence of recent (e. g., 5 May, 1990, Potenza, M 5.4;
31 October – 1 November, 2002, Molise, M 5.4) and his-
toric (e. g., 5 December, 1456, M 6.5) earthquakes do not
exclude other mechanisms such as strike-slip faulting.

There have been numerous large and disastrous events
in the southern Apennines, including those which oc-
curred in 1694, 1851, 1857 and 1930. The location of his-
torical earthquakes retrieved from the CFTI (Catalogo dei
Forti Terremoti in Italia, Catalogue of Strong Earthquakes
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Earthquake Early Warning System in Southern Italy, Figure 1
Location of the main historic earthquakes retrieved from the CFTI database using as region of interest that defined by the external
rectangle. The box dimensions are proportional to magnitude. The best constrained historic earthquakes are reported along with
their date of occurrence

in Italy) database [6] is shown in Fig. 1. The most recent
and well documented event is the complex normal-fault-
ingM 6.9 Irpinia earthquake of 23 November, 1980 [5,43].

As recently indicated in the study by Cinti et al. [9],
the southern Apennines has a high earthquake potential
with an increasing probability of occurrence for M � 5:5
earthquakes in the next decade. The new national haz-
ard map (Gruppo di lavoro MPS, 2004), indicates that the
main towns of the region fall in a high seismic hazard area,
where it is expected that a peak ground acceleration value
ranging between 0.15 and 0.25 g will be exceeded in 475
years.

These aspects make the Campania region a suitable ex-
perimental site for the implementation and testing of an
early warning system. A potential application of an early
warning system in the Campania region should consider
an expected time delay to the first energetic S wave train
varying between 14–20 s at 40–60 km distance to 26–30 s
at about 80–100 km, from a crustal earthquake occurring
along the Apenninic fault system. Based on those delay
times, a large number of civil and strategic infrastructures

located in the Campania region are eligible for early wan-
ing applications, as shown in Fig. 2.

Seismic Network Architecture and Components

The Irpinia Seismic Network (ISNet) is a local network of
strong motion, short period and broadband seismic sta-
tions deployed along the southern Apenninic chain cov-
ering the seismogenic areas of the main earthquakes that
occurred in the region in the last centuries, including the
Ms D 6:9, 23 November 1980 event.

The seismic network is composed of 29 stations orga-
nized in six sub-nets, each of them composed of a max-
imum of 6–7 stations (Fig. 3). The stations of a given
sub-net are connected with real-time communications to
a central data-collector site called the Local Control Center
(LCC).

The different LCCs are linked to each other and to
a Network Control Center (NCC) with different types of
transmission systems. The whole data transmission system
is fully digital over TCP/IP, from the data-loggers, through
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Earthquake EarlyWarning System in Southern Italy, Figure 2
Distribution of the sensitive structures, potential candidates for an early warning system in the Campania-Lucania region

Earthquake EarlyWarning System in Southern Italy, Figure 3
Topology of the communication system of ISNet showing the extended-star configuration of the seismic network. Symbols expla-
nation: green squares – seismic stations; blue squares – Local Control Centres (LCC); yellow lines – WLAN radio linkconnecting seismic
stations and LCC; white segments – SDH carrier-class radio; red triangles – radio link repeaters; red circle – Network Control Centre
RISSC in Naples; yellow squares – main cities

the LCC, to the NCC, located in the city of Naples, 100 km
away from the network center.

To ensure a high dynamic recording range, each seis-
mic station is equipped with a strong-motion accelerom-

eter and a three-component velocity meter (natural pe-
riod = 1 s). In five station locations the seismometers are
replaced by broadband (0.025–50Hz) sensors to guaran-
tee good-quality recording of teleseismic events. Data ac-
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quisition at the seismic stations is performed by the inno-
vative data-logger Osiris-6, produced by Agecodagis sarl.
The hardware/software characteristics of the system allow
it to install self-developed routines to perform real time
specific analysis.

The data-loggers are remotely controlled through
a configuration tool accessible via TCP/IP, managing sam-
pling rate, gain, application of calibration signal to the re-
sets of disks, GPS, etc. Furthermore, a complete station
health status is available, which helps in the diagnosis of
component failure or data-logger malfunction. The data-
loggers store the data locally or send it to each LCC where
the real-time data management system Earthworm (devel-
oped at USGS-United State Geological Survey) is operat-
ing.

A calibration unit is installed at each seismic station to
automatically provide a periodic calibration signal to seis-
mic sensors in order to verify the correct response curve of
the overall acquisition chain.

The power supply of the seismic station is provided
by two solar panels (120W peak, with 480Wh/day), two
130Ah gel cell batteries, and a custom switching cir-
cuit board between the batteries. With this configura-
tion, 72-h autonomy is ensured for the seismic and ra-
dio communication equipment. Each site is also equipped
with a GSM/GPRS programmable control/alarm system
connected to several environmental sensors and through
which the site status is known in real time. With SMS
(Short Message Service) and through the programmable

Earthquake Early Warning System in Southern Italy, Table 1
Specification of the ISNet data communication links

Type Frequency (GHz) Bandwidth (Mbps)
# Number of

Comments
Stations LCCs

Spread spectrum
Radio

2.45 54 273 – Throughput around 20–24Mbps for links between
10–15 km (based on ethernet packets with an average
size of 512 bytes).

Ethernet – 100 23 Stations connected with ethernet cable to LCC
infrastructure.

Wireline SHDSL
over Frame Relay

– 2.048 – 2 At the central site (RISSC) the CIR1 is maximum 1.6Mbps
depending upon number of PVCs2. At the remote (LCC)
site the bandwidth is 640/256 kbps with CIR of 64 kbps in
up and download, over ADSL with ATM ABR service class.

Microwave Radio
SDH

7 155 – 6 Carrier-class microwave link. Connect six LCC with
155Mbps (STM-1) truly full bandwidth available. First link
constructed for early warning applications.

Microwave Radio
HyperLAN/2

5.7 54 – 2 The true usable maximum throughput of HyperLAN/2 is
42Mbps.

1 CIR Commited Information Rate.
2 PVC permanent virtual circuit.
3 Not included stations hosted by LCCs.

GSM controller, the seismic equipment can be com-
pletely reset remotely with a power shutdown/restart. The
GSM also controls the device start/stop release procedure
when the battery goes over/under a predefined voltage
level.

Unlike the seismic stations, LCCs, which host the
data server and transmission system instruments, are AC
power supplied with back-up gel batteries guaranteeing
72-h stand-by power.

Real-Time Data Transmission System

ISNet has a distributed star topology that uses different
types of data transmission systems.

The seismic stations are connected via spread-spec-
trum radio bridges to the LCCs. Data transmission be-
tween LCCs from the local control center to the network
control center in Naples is performed through different
technologies and media types as shown in Table 1.

To transmit waveforms in real time from the seismic
stations to the LCCs, a pair of outdoor Wireless LAN
bridges operating in the 2.4GHz ISM band are used. Our
tests have shown that these instruments operate continu-
ously without any radio link failure due to adverse weather
conditions (snow, heavy rain).

The two primary backbone data communication sys-
tems of the central site use Symmetrical High-speed Dig-
ital Subscriber Line (SHDSL) technology over a frame-
relay protocol. Frame relay offers a number of significant
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benefits over analogue and digital point-to-point leased
lines. With the latter, each LCC requires a dedicated cir-
cuit between the LCCs and NCC. Instead, the SHDSL
frame relay is a packet-switched network, which allows
a site to use a single frame-relay phone circuit to com-
municate with multiple remote sites through the use of
permanent virtual circuits. With virtual circuits, each re-
mote site is seen as part of a single private LAN, simplify-
ing IP address scheme maintenance and station monitor-
ing.

Each seismic site has a real-time data flow of 18.0 kbps
(at 125Hz sampling rate for each physical channel), and
the overall data communication bandwidth that is needed
is around 540 kbps for 30 stations. ISNet supports this
throughput under the worst conditions seen and it has
been designed to guarantee further developments, such as
the addition of further seismic or environmental sensors,
without the need for larger economic and technological in-
vestment.

Earthquake EarlyWarning System in Southern Italy, Figure 4
The front page of SeismNet Devices Manager. This page is meant to convey the state of the whole network at a glance. Each node
(station or LCCs) is shown along with its operating state, data links of different types to nearby nodes, whether it’s currently on-line
or not, along with eventual alarms still pending

NetworkManagement and Data Archiving

The Network Manager Application
and Implementation Overview

As seen in the previous paragraphs, ISNet is a complex in-
frastructure, and thus needs a suitable software application
in order to be effectively managed: a front-end to users
and administrators with an interface that is simple to use.
To this aim we developed a server-client database-driven
application, dubbed SeismNet Manager, to keep track of
the several components that comprise or are produced by
the network, such as stations, devices and recorded data.
This application, whose front page is shown in Fig. 4, lets
the administrators manage (insert, edit, view and search)
the details of (a) seismic stations and Local Control Cen-
ters (sites), (b) data communication links between sites
(wired or wireless), instruments and devices (sensors, log-
gers, network hardware), and (c) recorded and computed
data (waveforms, events). SeismNetManager also keeps an
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historical record of the installations and configurations of
the above elements.

All of the mentioned components are handled by
leveraging an instrumental database, a flexible reposi-
tory of information that was implemented by using Post-
greSQL, a robust and feature-rich Database Management
System available as open source.

The Instrumental Database

The instrumental database is a web-oriented application
tool where, at the top level, the network is modeled as
a set of sites, with installed loggers, sensors, data acqui-
sition servers, network hardware and generic hardware,

Earthquake Early Warning System in Southern Italy, Figure 5
The page relative to a seismic station. This page is a collection of all the pieces of information linked to a particular site: location
details and map; some pictures and notes; recently received warning messages; currently installed devices and their configurations
and mutual connections; data links to other stations; most recent waveforms recorded. Every device at a site also has an associated
installation object, that records the configuration parameters and the physical connections to other nearby devices, valid over a pe-
riod of time. Some elements, such as the data storage servers and the loggers, also need some further configuration parameters,
that are independent of their actual physical installation, for things like firmware release and versions of the software packages run

in a given configuration. Each of the mentioned entities
is mirrored by a different class of objects in the database,
where the relevant details are stored and then presented to
the users as interactive web pages. As an example, see the
page for a typical seismic station in Fig. 5.

The instrumental database was implemented with
a layer of abstraction that lets one easily to perform com-
plex queries and hides the actual implementation details
of the underlying structure to a possible client. There
are both stored procedures, i. e., functions that perform
complex tasks given simple inputs, and views, i. e., virtual
database tables that collect the most important pieces of
information about an abject, physically scattered in many
tables, in a single place andmake it possible to easily query,
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for example, for all the details of the correctly operating
sensors installed one year ago at stations with a working
wireless link to a given LCC server.

This abstract interface makes the devices database
a central repository for effectively cross-correlating the
seismic data recorded at any given place and time with the
details of the instrument(s) that recorded them, and the
configuration details of the systems that ultimately made
them available. The interface approach also makes it eas-
ier to change the implementation details without the need
to update the web application, or any external client proce-
dures that need to interact with the instrumental database.

Automatic Monitoring of the Devices
and Automatic Data Retrieval

All of the details about the network described so far are
provided by the administrators of the system and areman-
ually updated every time the configuration of something
in the network changes, e. g., after installing a new sensor
or replacing some faulty hardware at a station. This man-

Earthquake EarlyWarning System in Southern Italy, Figure 6
Health graphs of thedevices. A device canbemarked formonitoring and its internal state, or “health”, gets polled at regular intervals.
Several of its internal variables are then retrieved and stored into the database, and their temporal evolution can be plotted as
a graph. In this case both the internal temperature and CPU load of an OSISRIS data logger are shown, over periods ranging from
one hour to one year

ual input is needed for “dumb” devices, such as sensors.
“Smart” devices, i. e., computers with an IP address (log-
gers, bridges and Earthworm servers), on the other hand,
can be queried about their actual configuration from time
to time. The web application can plot the temporal evolu-
tion of some selected parameters as graphs, spanning a pe-
riod ranging from hours to years (Fig. 6). This is useful to
correlate issues spotted on the recorded seismic data (typi-
cally, “holes” in the stream of data) to hardware problems.
It is possible to inspect the whole chain of data transfers
to pinpoint the source of the problem (e. g., low batteries
on a logger due to a faulty inverter, low signal of a wireless
connection due to harsh weather conditions).

There are both automatic and manual procedures to
insert new events and data files in the system. The auto-
matic procedures make use of several sources of events
to process, such as: INGV (Istituto Nazionale di Ge-
ofisica e Vulcanologia, Italy) bi-weekly bulletins; INGV
real time alerts; our early warning system. Likewise, they
exploit several sources of recorded seismic data in order
to provide a SAC file (SAC – seismic analysis code from
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Earthquake Early Warning System in Southern Italy, Figure 7
Visualization of the seismic data. This is the graphical presentation of data recorded by ISNet. The waveforms matching the user’s
search criteria can be viewed on-line via Seisgram2K (where they can also be processed), while the events are rendered via VRML as
a fully interactive 3D scene in the browser itself

Lawrence Livermore National Laboratory) spanning the
period from just before the arrival time, up to the end of
the event.

Sensor data are retrieved from: (1) a repository of files
from the internal mass storage of the loggers; (2) a local
Earthworm Wave Server that caches older data collected
from all the LCCs; (3) the most recent real time recording
from the remoteWave Servers. The instrumental database
is used to determine which sites/sensors/configurations
recorded each event and to fill the headers of the files us-
ing the standard SAC format. The waveforms and events
database, on the other end, is used by the automatic pro-
cedures to know which pieces of data are still missing for
already recorded events (due to e. g., the temporary un-
availability of one or more seismic data sources) and need
to be collected.

TheWaveforms and Events Database:
Searching and Visualizing the Seismic Data

We also built a waveform and event database, the natural
complement to the instrumental database. It keeps track of
the events detected by the network and the relative wave-
forms recorded by the sensors. This database stores ob-

jects for events, origin estimations (time and location),
magnitude estimations and waveforms. Several origins can
be attached to a single event, as different algorithms and
different institutions provide different estimations. Like-
wise, severalmagnitude types and estimations are attached
to each origin. A waveform object for each sensor that
recorded the earthquake is also linked to the event object,
and stores a pointer to a SAC file, and its source (site and
channel). The latter records are then used to gather, from
the instrumental database, the actual details of the instru-
ments that recorded the data.

An interface for searching both events and waveforms
is provided, as pictured in Fig. 7. Events can be filtered
on origin time and location, magnitude, and distance to
the stations. Waveforms can be filtered on station, com-
ponent, instrument and quality.

Real-Time Earthquake Location
andMagnitude Estimation

Real-Time Earthquake Location

Previous Related Studies There are many methodolo-
gies for standard earthquake location, performed when



Earthquake Early Warning System in Southern Italy E 2407

most or all the phase arrival times for an event are avail-
able. Standard analysis techniques are generally not suited
for early warning applications, since they typically need
the seismic event to be fully recorded at several stations,
leaving little or no lead time for the warning [25]. For this
reason, a different strategy is required, where the compu-
tation starts when a few seconds of data and a small num-
ber of recording stations are available, and the results are
updated with time.

Previous work on earthquake location for early warn-
ing includes several approaches to gain constraints on the
location at an earlier time and with fewer observations
than for standard earthquake location.

In the ElarmS methodology [47], when the first sta-
tion triggers, the event is temporarily located beneath that
station; after a second station trigger the location moves
to a point between the two stations, based on the timing
of the arrivals; with three or more triggered arrivals, the
event location and origin time is estimated using trilatera-
tion and a grid search algorithm.

Horiuchi et al. [18] combine standard L2–norm event
location, equal differential-time (EDT) location on quasi-
hyperbolic surfaces, and the information from not-yet ar-
rived data to constrain the event location beginning when
there are triggered arrivals from two stations. The two ar-
rivals times define a hyperbolic surface, which contains
the event location. This solution is further constrained by
EDT surfaces constructed using the current time (tnow) as
a substitute for future, unknown arrival times at the sta-
tions, which have not yet recorded arrivals. The constraint
increases as tnow progresses, even if no further stations
record an arrival.

Rydelek and Pujol [36], applying the approach of Ho-
riuchi et al. [18], show that useful constraints on an event
location can be obtained with only two triggered stations.
Cua andHeaton [12], generalized the approach by Rydelek
and Pujol in order to start the location with one single trig-
gering station.

The real-time location technique described in this pa-
per is based on the equal differential-time (EDT) for-
mulation [16,27] for standard earthquake location. The
EDT location is given by the point traversed by the max-
imum number of quasi-hyperbolic surfaces, on each of
which the difference in calculated travel-time to a pair
of stations is equal to the difference in observed arrival
times for the two stations. The EDT location determina-
tion is independent of origin time and reduces to a 3D
search over latitude, longitude and depth. Furthermore,
EDT is highly robust in the presence of outliers in the
data [27]. This robustness is critical for the problem of
earthquake location for seismic early warning, since we

will often work with small numbers of data and may
have outlier data such as false triggers, picks from other
events, and misidentified picks from energetic, secondary
phases.

Assuming that a dense seismic network is deployed
around the fault zone, we define as the “evolutionary ap-
proach” a type of analysis where the estimates of earth-
quake location and size, and their associated uncertainty,
evolve with time as a function of the number of recording
stations and of the length of the portion of signal recorded
at each station.

A direct implication of the evolutionary strategy is that
each algorithm must be capable of real-time operation,
i. e., its computational time must be smaller than the rate
at which data enters the system.

Furthermore, since each algorithm starts processing
a limited amount of information, the estimated earthquake
parameter must be provided, at each time step, as a prob-
ability density function (PDF) which incorporates in its
definition the uncertainties related both to the model em-
ployed and to the available data.

The Real-Time Earthquake Location Method The
methodology is related to that of Horiuchi et al. [18],
which has been extended and generalized by (a) starting
the location procedure after only one station has triggered,
(b) using the equal differential-time approach proposed by
Font [16] to incorporate the triggered arrivals and the not-
yet-triggered stations, (c) estimating the hypocenter prob-
abilistically as a PDF instead of as a point, and (d) applying
a full, non-linearized, global-search for each update of the
location estimate.

We assume that a seismic network has known sets of
operational and non-operational stations (Fig. 8a), that
when an earthquake occurs, triggers (first P-wave arrival
picks) will become available from some of the operational
stations, and that there may be outlier triggers which
are not due to P arrivals from the earthquake of inter-
est.

Let’s denote the operational stations as (S0; : : :; SN ),
and consider a gridded search volume V containing the
network and target earthquake source regions, and the
travel times from each station to each grid point (i; j; k)
in V computed for a given velocity model.

The standard EDT approach states that, if the
hypocenter (i; j; k) is exactly determined, then the differ-
ence between the observed arrival times tn and tm at two
stations Sn and Sm is equal to the difference between calcu-
lated travel times ttn and ttm at the hypocentral position,
since the observed arrival times share the common earth-
quake origin time. In other words, the hypocenter must
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Earthquake Early Warning System in Southern Italy, Figure 8
Schematic illustration of the evolutionary earthquake location algorithm. For clarity, only a map view with the epicentral location
is represented. a Given a seismic network with known sets of operational and non-operational stations, we can define a priori the
Voronoi cell associated to each station. bWhen the first station triggers, we can define a volume that is likely to contain the location,
this volume is limited by conditional EDT surfaces on which the P travel time to the first triggering station is equal to the travel-time
to each of the operational but not-yet-triggered stations. c As time progresses, we gain additional information from the stations
that have not yet triggered, the EDT surfaces move towards and bend around the first triggering station, and the likely-location
volume decreases in size. dWhen the second station triggers, we can define a true EDT surface; the hypocenter is on the intersection
between this surface and the volume defined by the conditional EDT surfaces, which continues decreasing in size. e When a third
station triggers, we can define two more true EDT surfaces, further increasing the constraint on hypocenter position. f As more
stations trigger, the location converges to the standard EDT location composed entirely of true EDT surfaces

satisfy the equality:

(ttm � ttn)i; j;k D tm � tn ; m ¤ n (1)

for each pair of triggering stations Sn and Sm . For a con-
stant velocity model, this equation defines a 3D hyper-
bolic surface whose symmetry axis goes through the two

stations. Given N triggering stations, N(N � 1)/2 surfaces
can be drawn; the hypocenter is defined as the point
crossed by the maximum number of EDT surfaces.

Following an evolutionary approach, the method eval-
uates, at each time step, the EDT equations considering
not only each pair of triggered stations, but also those pairs
where only one station has triggered.



Earthquake Early Warning System in Southern Italy E 2409

Therefore, when the first station, Sn , triggers with an
arrival at tn D tnow (tnow is the current clock time), we
can already place some limit on the hypocenter position
(Fig. 8b). These limits are given by EDT surfaces de-
fined by the condition that each operational but not-yet-
triggered station Sl will trigger in the next time instant,
tl � tn . That is:

(ttl � ttn)i; j;k D tl � tn � 0 ; l ¤ n : (2)

On these conditional EDT surfaces, the P travel time to
the first triggering station ttn is equal to the travel-time
to each of the not-yet-triggered stations, ttl , l ¤ n. These
surfaces bound a volume (defined by the system of in-
equalities) which must contain the hypocenter. In the case
of a homogeneous medium with constant P-wave speed,
this hypocentral volume is the Voronoi cell around the
first recording station, defined by the perpendicular bisec-
tor surfaces with each of the immediate neighboring sta-
tions.

As the current time tnow progresses, we gain the addi-
tional information that the not-yet-triggered stations can
only trigger with tl > tnow. Thus the hypocentral volume
is bounded by conditional EDT surfaces that satisfy the in-
equality:

(ttl � ttn)i; j;k � ıtn;l ; l ¤ n : (3)

ıt is the time interval between the arrival time at station
Sn and the latest time for which we have information from
station Sl ,

ıtn;l D tnow � tn ; (4)

where tn is the observed arrival time at station Sn .
The system (3) defines the volume, bounded by the

conditional EDT surfaces, in which the hypocenter may
be located given that, at current time tnow, only the station
Sn has triggered. When ıt D 0 the system (3) reduces to
the system (2); for ıt > 0, the hypocentral volume will be
smaller than the previous one, since the updated, condi-
tional EDT surfaces tend to fold towards and around the
first triggered station (Fig. 8c).

We interpret the hypocentral volume in a probabilis-
tic way by defining, for each inequality in (3), a value
pn;l (i; j; k) which is 1 if the inequality is satisfied and 0
if not. Then we sum the pn;l (i; j; k) over stations l at each
grid point, obtaining a non-normalized probability density
P(i; j; k), where P(i; j; k) D N � 1 for grid points where
all the inequalities are satisfied and a value less than N � 1
elsewhere.

When the second and later stations trigger, we first
re-evaluate the system (3) for all pairs of triggered sta-
tions Sn and all not-yet-triggered stations Sl . Secondly, we

construct standard, true EDT surfaces (see Eq. 2) between
each pair Sn , Sm of the triggered stations, by evaluating for
each grid point the quantity:

qn;m(i; j; k) D exp

(

�
[(ttn � ttm)i; j;k � (tn � tm)]2

2�2

)

;

n ¤ m :

(5)

The expression between square brackets at the exponent is
the standard EDT Eq. 2 whose solutions are quasi-hyper-
bolic surfaces; in practice all true EDT surfaces are given
a finite width by including the uncertainty � in the arrival
time picking and the travel-time calculation.

The quantity qn;m(i; j; k) has values between 0 and
1. We sum the qn;m(i; j; k) with the pn;l (i; j; k) obtained
from the re-evaluation of (4) to obtain a new P(i; j; k).

Starting from P, we define a value:

Q(i; j; k) D
�
P(i; j; k)
Pmax

�N
; (6)

which forms a relative probability density function (PDF,
with values between 0 and 1) for the hypocenter location
within the grid cell (i; j; k). The function Q(i; j; k) may be
arbitrarily irregular and may have multiple maxima.

At predetermined time intervals, we evaluate (3) and
(5) to obtain Q(i; j; k) in the search volume, using the Oct-
tree importance sampling algorithm ([13,27], http://www.
alomax.net/nlloc/octtree). This algorithm uses recursive
subdivision and sampling of rectangular cells in 3D space
to generate a cascade structure of sampled cells, such that
the spatial density of sampled cells follows the target func-
tion values. The Oct-tree search is much faster than a sim-
ple or nested grid search (factor 10–100 faster) and more
global and complete than stochastic search methods al-
gorithms such as simulated annealing and genetic algo-
rithms [13]. For each grid point, an origin time estimate
can be obtained from the observed arrival times and the
calculated travel times.

As more stations trigger, the number of not-yet-trig-
gered stations becomes small, and the location converges
towards the hypocentral volume that is obtainedwith stan-
dard EDT location using the full set of data from all oper-
ational stations (Fig. 8d–f).

If there are uncorrelated outlier data (i. e., triggers
that are not compatible with P arrivals from a hypocen-
ter within or near the network), then the final hypocen-
tral volume will usually give an unbiased estimate of
the hypocentral location, as with standard EDT location.

http://www.alomax.net/nlloc/octtree
http://www.alomax.net/nlloc/octtree
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Earthquake Early Warning System in Southern Italy, Figure 9
Location test for a synthetic event occurring at the center of the Irpinia Seismic Network (ISNet). The three orthogonal views show
marginal values of the probability function Q(i; j; k). The true hypocenter is identified by a star. ıt is the time from the first trigger,
	t is the time from event origin. For each snapshot, stations that have triggered aremarked with a circle

However, if one or more of the first arrival times is an out-
lier, then the earliest estimates of the hypocentral volume
may be biased. Synthetic tests have shown that, if Nout is
the number of outlier data, the bias reduces significantly
after about 4C Nout arrivals have been obtained, and then

decreases further with further arrivals, as the solution con-
verges towards a standard EDT location [37].

We performed several synthetic tests using the geom-
etry of the ISNet network. For each simulated event, we
computed theoretical arrival picks using travel times ob-
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Earthquake EarlyWarning System in Southern Italy, Figure 10
Location test for a synthetic event occurring outside the ISNet network (see Fig. 9 for explanation)

tained by the finite difference solution of the eikonal equa-
tion [35] for a 1D, P-wave velocity model. To reproduce
uncertainties introduced by the picking algorithm, we add
to each arrival time a random error following a Gaussian
distribution with a variance of 0.02 s.

Here we use only P picks since currently most net-
works have poor capability to perform real-time S pick-

ing. Our tests consider an earthquake occurring at the cen-
ter of the network at a depth of 10 km (Fig. 9) and an
earthquake occurring outside the network at a depth of
10 km (Fig. 10). Each panel in Figs. 9 and 10 is a snapshot
at a given time showing the marginal map (i. e., summed
over i, j or k) for Q(i; j; k) along the horizontal (x, y) and
the two vertical (x, z and y, z) planes. The star shows the
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Earthquake Early Warning System in Southern Italy, Figure 11
Correlation between low-pass filtered peak ground motion value and moment-magnitude for earthquakes occurred in the Euro-
Mediterranean region (after [49]). The panels show the logarithm of peak ground displacement normalized at a reference distance
of 10 km as a function of Mw in time windows of (left) 2 s length from the first P-arrival and (middle) 1- and (right) 2-s from the
first S-arrivals. P- and S-data are measured on vertical and root-squared sum of horizontal components, respectively. Each panel
shows the best fit regression line (solid line) along with 1-WSE limits (dashed lines)

known, synthetic hypocentral location. In the first case,
two seconds after the first trigger (5.03 s from the event
origin), 9 stations have triggered and the location is al-
ready well constrained for early warning purposes.

In the second case, at 
t D 11:76 s, 2 s after the first
event detection, the constraint on the location PDF im-
proves further, but the PDF retains an elongated shape be-
cause of the poor azimuthal coverage of the network for
this event. The event depth is only constrained by an up-
per bound, but the depth range includes the true value.

Real-Time Magnitude Estimation Using a Bayesian,
Evolutionary Approach

Previous Related Studies The problem ofmagnitude es-
timation from early seismic signal has been previously ap-
proached and analyzed by different authors.

Nakamura [31] first proposed the correlation be-
tween the event magnitude and the characteristic period
of P-phase defined as the ratio between the energy of the
signal and its first derivative.

Allen and Kanamori [2] modified the original Naka-
mura method and described the correlation between the
predominant period and the event magnitude for South-
ern California events. Lockman and Allen (2007) studied
the predominant period – magnitude relations for the Pa-
cific Northwest and Japan. They also investigated the sen-
sitivity of such relations using different frequency bands.

Using a complementary approach, Wu and Kanamo-
ri [45] investigated the feasibility of an on-site EEWS for
Taiwan region based on prediction of earthquake damage,
based on measurements of the predominant period and
peak displacement on early P-wave signals detected at the
network.

Odaka et al. (2003) proposed a single station approach
for the real-timemagnitude estimation. The authors fit the
initial part of waveform envelope and showed a relation
between the final event magnitude, the envelope shape co-
efficient and the maximum P amplitude measured in a 3 s
time window.

Wu and Zhao [46] and Zollo et al. [49] (Fig. 11)
demonstrated the existence of a correlation between the
event magnitude and the peak displacement measured
a few seconds after the P arrival based on massive analysis
of Southern Californian and Euro–Mediterranean earth-
quake records. In particular, Zollo et al. showed that
both P and S wave early phases have the potential for real
time estimation of magnitude up to about M 7. Zollo et
al. [50] and Lancieri and Zollo [26] extended this observa-
tion to Japanese earthquake records, showing that a pos-
sible saturation effect may exist at aboutM 6.5 for P mea-
surements in 2 s windows while it vanishes when a larger,
4 s window is considered. The scaling of displacement
peak with magnitude, instead, appears at even shorter (1 s)
time lapses after the first S-arrival.

Using an alternative method, Simmons [38] proposed
a new algorithm based on discrete wavelet transforms able
to detect first P arrival and to estimate final magnitude an-
alyzing first seconds of P-wave.

The Real-Time Magnitude Estimation Method The
real time and evolutionary algorithm for magnitude es-
timation presented in this paper is based on a magni-
tude predictive model and a Bayesian formulation. It is
aimed at evaluating the conditional probability density
function of magnitude as a function of ground motion
quantities measured on the early part of the acquired sig-
nals [19].
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The predictive models are empirical relationships
which correlate the final event magnitude with the loga-
rithm of quantities measured on first 2–4 s of record.

The first prediction model, based on the predominant
period of P-phase (�P), has been introduced by Allen and
Kanamori [2]. Recently, Wu and Zhao [46] showed the
existence of a correlation between magnitude, distance
and peak displacement measured in a 2–4 s window af-
ter P-phase.

Zollo et al. [49,50] refined this correlation and ex-
tended the observation on the peaks measured in 2 s af-
ter the S-phase arrival through the analysis of the Euro-
pean and Japanese strong motion data-bases (Ambraseys
et al. [3], K-NET www service of NIED – National Re-
search Institute for Earth Science and Disaster Prevention,
Japan).

The method therefore assumes that the linear relation-
ship between the logarithm of the observed quantity and
magnitude is known, along with standard errors of the
predictive models.

At each time step t from the first station trigger, the
conditional PDF of magnitudeM given the observed data
vector d D fd1; d2; : : : ; dng is expressed via the Bayes the-
orem as:

f (mjd) D
f (djm) f (m)

R MMAX
MMIN

f (djm) f (m)dM
; (7)

where f (m) is the a priori distribution which incorpo-
rates the information available before the experimental
data are collected through a truncated exponential func-
tional form, derived by the Gutenberg–Richter recurrence
relationship,

f (m) :

(
ˇe�ˇm

e�ˇMmin�e�ˇMmax Mmin � m � Mmax

0 m … [Mmin;Mmax]
; (8)

where fˇ;Mmin;Mmaxg depend on the seismic features
and on the detection threshold of the seismic network of
the considered region.

The conditional probability f (djm) contains all the in-
formation concerning the magnitude as retrievable from
the data acquired at time t.

Assuming that components of the observed data vec-
tor d have a lognormal distribution, and that they are
stochastically independent and identically distributed ran-
dom variables of parameters �log(d) and �log(d), then the
likelihood is written as:

f (djm) D
�Y

iD1

1
p
2��log(d)di

e
� 1

2

�
log(di )��log(d)

�log(d)

�2

; (9)

where � is the number of stations acquiring at the instant t;
�log(d) and �log(d) are the mean and the standard deviation
of the logs of di , respectively..

Substituting Eq. 8 and Eq. 9 into Eq. 7, f (mjd) re-
sults as in Eq. 10 where it depends on data only troughP�

iD1 log(di ) and �, which therefore are jointly sufficient
statistics for the estimation of magnitude [21]:
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(10)

As just outlined, f (mjd) depends on
P�

iD1 log(di ) and on
the number of stations triggered, �, at the time of the esti-
mation and, consequently, on the amount of information
available. Asmore stations are triggered, and providemore
measures of d, the estimation improves.

The described technique is evolutionary in the sense
that f (mjd) depends on time, i. e., as time passes, ad-
ditional stations provide new observations (predominant
period and/or P-, S-peaks), which are used to refine the
probabilistic estimation of magnitude.

Magnitude Estimation
from Peak Displacement Measurements

The empirical relationships between low-pass filtered, ini-
tial P- and S-peak displacement amplitudes and moment
magnitude (e. g. [49]) can be used as predictive models for
the real-time estimation of magnitude using the Bayesian
approach described above.

While the P-wave onset is identified by an automatic
picking procedure, the S-onset can be estimated from an
automatic S-picking or from a theoretical prediction based
on the hypocentral distance given by the actual earthquake
location. At a given time step after the first P-wave de-
tection at the network, progressively refined estimates of
magnitude are obtained from P- and S-peak displacement
data. These are preliminarily corrected for distance ampli-
tude effects through an empirical attenuation relationship
obtained from available strong motion records [46,49]:

f (M; R) D Aphase C BphaseM C Cphase log(R) ; (11)

where the constants Aphase, Bphase and Cphase are deter-
mined through a best-fit regression with a retrieved stan-
dard error of SEPMR

phase and R is the hypocentral distance.
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Earthquake Early Warning System in Southern Italy, Figure 12
Synthetic seismograms for aM 7.0 earthquake at the center of the network (see Fig. 9). The seismograms are computed using a line
source, rupture model (constant rupture velocity) while complete wavefield green’s functions in a flat-layered model are computed
by using the discrete wavenumber summation method of Bouchon [8]. Each vertical line indicates the 1 s signal packets examined
at each time step. This plot allows us to understand seconds after seconds which stations are acquiring and what sort of input (P
or S peak) they are giving to the real time system. For example after three seconds to the first P phase picking thirteen stations are
acquiring, the 2 s S-phase peak is available at the nearest stations. This observation motivates the use of the S phase information in
a real time information. If a dense network is deployed in the epicentral area the nearest station will record the S-phase before the P
phase arrives to the far ones, as seen in previous example, and this is perfectly compatible with the real time analysis

Following the procedure described in [49], the rela-
tionship (11) is used to correct observed peaks for the
distance effect, by normalizing them to a reference dis-
tance (e. g., R D 10 km) and to determine a new best
fit regression between the distance corrected peak value
(PDphase)10 km and the final magnitude:

log


PD10 km

phase

�
D log



PDR

phase

�
�Cphase log

�
R
10

�
(12)

log


PD10 km

phase

�
D A0phase C B0phaseM : (13)

Assuming a standard error of SEPM
phase on peak displace-

ments retrieved from (13) and combining the Eqs. (11)
and (13), the mean values and standard deviation of quan-

tity log(PDphase), can be written as:

�log(PDphase) D B0phaseM C A0phase C Cphase log
�
R
10

�

�log(PDphase) D SEPM
phase C log

�
R
10

�

Cphase

C Cphase
1
R

R ;

(14)

where R is estimated with an error of 
R and 
Cphase is
the error on the Cphase coefficient in Eq. (12).

The values of coefficients in (14) used for real time
magnitude estimates at ISNet are obtained from the re-
gression analysis based on records from the European
Strong Motion Database [49] and given in Table 2.

Figure 12 illustrates an example of real timemagnitude
estimation on a simulated event with M D 7:0, whose epi-
center is located along the 1980 Irpinia earthquake faulting
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Earthquake EarlyWarning System in Southern Italy, Table 2
Coefficients of the empirical regression relationships between
low-pass filtered P and S displacement peaks andmagnitude

Phase A0phase B0phase Cphase SEPMphase �Cphase
2P –6.31 0.70 –1.05 0.22 0.30
2S –5.77 0.71 –0.71 0.13 0.16

system. Synthetic seismogramshave been computed by us-
ing the discrete wave-number method of Bouchon [8] and
Coutant (1989) for a extended source model in a flat-lay-
ered velocity model.

Figure 13a shows the probability density function de-
fined in Eq. (8) evaluated at each time step. Time zero is
assigned to the first P detection at the network. As time
evolves the PDF tightens around the predicted magnitude
value, indicating a more refined, probabilistic estimate of
magnitude.

By defining Ft(m) as the cumulative PDF at time t,
it is possible to estimate a magnitude range of variation
[Mmin;Mmax] whose limits are defined based on the shape
of the Ft(m) function:

Mmin :
Z Mmin

�1

ft(mjd)dm D ˛ ;

Mmax :
Z Mmax

�1

ft(mjd)dm D 1 � ˛ :
(15)

Earthquake EarlyWarning System in Southern Italy, Figure 13
Application of themethod for real timemagnitude estimate to aM 7 simulated event occurringwithin the area covered by the ISNet
network. Left panel. PDF distribution at several time steps measured from the first P-phase picking. Right top, magnitude estima-
tion with uncertainties as a function of time. The dashed line refers to the actual magnitude value, the errors represent the 95% of
confidence bound evaluated as cumulative PDF integral in the 5–95% range. Right bottom, probability to exceedmagnitude 6.5 and
magnitude 7.5 thresholds in function of time. The dashed line is the 75% probability level

For example, if we assume ˛ D 1%, then Mmin and Mmax
will be, respectively, the Ft(m) evaluated at 0.01 and 0.99.

In Fig. 13b the estimates of magnitude uncertainty
bounds are reported as a function of time. After three iter-
ations (corresponding to a time of 9 s from the event origin
time and 4 s after the first P-phase arrival at the network)
the magnitude estimation converges to the truemagnitude
value. In fact, due to the high density of seismic station
in the epicentral area, at that time most of seismic station
contributes to the magnitude estimation with peaks read
on P-phase windows (Fig. 14), while a further refinement
of magnitude estimate is due to the near source S-wave ar-
rivals.

Real-Time Hazard Analysis
for Earthquake EarlyWarning

The Real-Time Hazard Determination

Using the methods previously described for estimating in
real-time the event magnitude and location, it is possible
to perform a real-time hazard analysis [19]. This analysis
is based on the extension of classical Probabilistic Seis-
mic Hazard Analysis (PSHA) proposed by Cornell [11]
that is generally used for long-term probabilistic hazard
assessment. Classical PSHA integrates data from existing
seismic catalogs both in terms of magnitude, location and
recorded strong ground motion values in addition to the
information concerning seismogenic areas of interest (ex-
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Earthquake Early Warning System in Southern Italy, Figure 14
Real-time estimation of spectral ordinates’ distributions as function of the number of stations triggered for a M 7.0 event with an
epicentral distance of 50 km from the early warning target site. The parameter ntrig in the figure is equivalent to the number of
stations  in the text. The acceleration spectrum (black curve) was obtained by choosing at each period the spectral value with
20% exceedance probability according to the corresponding distribution, so it is analogous to a uniform hazard spectrum with the
exception that it is computed in real-time. The grey dashed line is the Italian code spectrum assigned for building design in the target
location at the town of Avellino, 40 km distant from the earthquake epicenter, and is reported for comparison purposes (after [10])
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pected maximum magnitude, b-value of the Gutenberg
Richter relationship, etc.) to provide the hazard curve as
the final outcome. Each point on that curve corresponds
to the value of a ground motion intensity measure (IM)
(e. g., peak ground acceleration, PGA, peak ground veloc-
ity, PGV or the spectral acceleration, Sa), having a given
probability or frequency of exceedance in a fixed period of
time for a site of interest.

The probabilistic framework of the PSHA, specifically
the hazard integral, can be used for real-time hazard if
the PDFs of magnitude and source-to-site distance are re-
placed with those depending on the data gathered by the
EEWS during the occurrence of a specific earthquake.

This is the case, for example, of the PDF on the source-
to-site distance whose statistical moments evolve with
real-time earthquake location. As a consequence, this PDF
does not depend on the seismic potential of the area of in-
terest (as in the case of the classical PSHA, which accounts
for the occurrence of all the earthquake in a fixed range
of magnitude), but rather depends on the time evolving
event location provided by the EEWS. The same consider-
ations apply to the PDF on the magnitude as described in
the following sections whose statistical moment, at a given
time, depends on the number of triggered stations at that
time.

In this theoretical framework the real-time hazard in-
tegral can be written as:

f (IMjd; s) D
Z

M

Z

R

f (IMjm; r) f (mjd) f (rjs)dMdR ; (16)

where f (rjs) is the PDF of distance r, which eventually de-
pends only on the triggering sequence of the stations in the
network, where s D fs1; : : : ; s�g is such a sequence. This
renders also the PDF of r time dependent.

Given that for each point in a volume containing the
earthquake hypocenter, the probability of that point be-
ing coincident with the true hypocenter is calculated via
a rapid location technique, a simple geometrical transfor-
mation allows one to obtain the probabilistic distribution
of the source-to-site distance.

The PDF f (IMjm; r), is given, for example, by an or-
dinary attenuation relationship. It is worth to recall that
the computed hazard refers to a particular set of triggered
stations and, consequently, it depends on the information
available at time t from the first detection of the event.

Figure 14 illustrates, as an example, the estimation of
spectral acceleration ordinates for different periods, for
a M 7.0 event located at an epicentral distance of 50 km
from the early warning target site [10].

We note the evolution of Sa predictions via the cor-
responding PDFs. The different panels correspond to in-
creasing times from the earthquake origin and, therefore,
to different numbers of stations triggered.

The False Alarm Issue

Once the EEWS provides a probability distribution of the
ground motion intensity measure (IM) at the target site
(e. g., peak ground acceleration or velocity), a decisional
condition has to be checked in order to decide whether to
alert or not.

Several options are available to formulate a decisional
rule, for example the alarmmay be issued if the probability
of the predicted IM exceeding a critical threshold (IMC) is
greater than a reference value (Pc):

Alarm if :
IMCZ

0

f (IMjd; s)d(IM) D P[IM > IMC] > Pc :

(17)

The efficiency of the decisional rule may be evaluated in
terms of false and missed alarms probabilities (known as
the “cry wolf” issue, e. g., [20]). The false alarm occurs
when, on the basis of the information processed by the
EEWS, the alarm is issued while the intensity measure at
the site IMT (T subscript means “true”, indicating the re-
alization of the IM to be distinguished from the prediction
IMC) is smaller than the threshold IMC. A missed alarm
corresponds to not launching the alarm if needed,

Missed Alarm : fNo Alarm \ IMT > IMCg

False Alarm : fAlarm \ IMT � IMCg :
(18)

It has been discussed above how the information and the
uncertainties on earthquake location and magnitude are
dependent on the number of stations triggered at a certain
time.

Therefore, in principle, the decisional rule may be
checked at any time after the first station has triggered and,
consequently, the false and missed alarm probabilities are
also time dependent.

Using the decisional rule of (18) and considering PGA
as IM, the time evolution of false/missed alarm probabili-
ties has been simulated for the Campania EEWS, given the
occurrence of aM 7 earthquake, and a target site at an epi-
central distance of 110 km.

Figure 15 reports the missed and false alarm probabil-
ities as a function of time from the first trigger at the ISNet
network.
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Earthquake Early Warning System in Southern Italy, Figure 15
Example of estimation of false andmissed alarm probabilities as
function of the time from the first trigger for a M 7.0 event with
an epicentral distance of 110 km from the early warning target
site. For the decisional rule adopted in this case the threshold is
PGAc D 0:3m/s2 and the limit probability is Pc D 0:2 (after [19])

A Loss Estimation Approach to EarlyWarning

Magnitude and distance distributions conditioned to the
measurements of the seismic network can also be used for
a real-time estimation of risk, which includes losses pro-
duced by the earthquake [21]. Based on the real-time risk
assessment, a security action aimed at risk mitigation is
undertaken if the alarm is issued.

For example, some critical system could shut down or
people in buildings may shelter themselves if the warn-
ing time is not sufficient to evacuate the dangerous build-
ings. More complex security measures may be related to
the semi-active control of buildings [22].

Therefore, if an EEWS exists, it may trigger a security
procedure in case of warning. The estimation of the ex-
pected losses for a specific building may be computed, for
the case of warning issued and not issued respectively:

EW [Ljd; s] D
Z

L

Z

DM

Z

EDP

Z

IM

l f W(l jdm) f (dmjedp)

� f (edpjim) f (imjd; s)dLdDMdEDPdIM ; (19)

where f W (l jdm) is the PDF of the loss (L) given the struc-
tural and non-structural damage vector (DM) reflecting
the risk reduction in the case of warning; and f W (l jdm)
is the loss function if no alarm is issued (no security action
is undertaken); f (dmjedp) is the joint PDF of damages
given the Engineering Demand Parameters (EDP), proxy
for the structural response; f (edpjim) is the joint PDF of

the EDPs conditioned to a vector of ground motion in-
tensity measures (IM); f (imjd; s) is the real-time hazard
expressed by (16) in the case of a scalar IM.

Being able to compute, before the ground motion hits
the site, the expected losses in case of warning (W) or not
(W̄), is relevant for taking the optimal decision, i. e., to
alarm if this reduces the expected losses and to not issue
any warning otherwise:

to alarm if EW [Ljd; s] � EW̄ [Ljd; s]
Optimal decision:

to not alarm if EW [Ljd; s] > EW̄ [Ljd; s]

(20)

which is a better decisional rule in respect to that of (18).
Computing and comparing expected losses, condi-

tioned to the real-time information coming from the
EEWS, in the case of alarming or not, allows the determi-
nation of the alarm threshold above which it is convenient
to issue the warning according to the optimally maximum
criterion.

Assessment of average loss reduction determined by
issuing an Early Warning provides a quantitative tool to
evaluate the efficiency and feasibility of an EEWS.

Other potential advantages given by this approach are
that: (a) the threshold may be set on a statistic (i. e., the
summation of the logs) inferred from seismic network
measurements, dramatically reducing the required com-
putational effort for real-time decision making; (b) it min-
imizes the cry wolf issue reducing the probability of false
and missed alarms thanks to threshold optimization. In
fact, although the number of MA and FA depend on the
decisional rule adopted to issued the alarm, the approach
developed in Iervolino et al. [20,21,22] avoids explicitly
considering the missed and false alarm rates associated
with the decision, as the choice to alarm or not is taken
based on the expected economic loss (not on the estima-
tion of peak groundmotion). In other words, if in comput-
ing the expected loss one accounts for the costs of false and
missed alarms, there is no need to optimize the cry wolf is-
sue, and MA and FA rates are at their values determined
by the respective costs, and in this sense are optimal.

Future Directions

We have analyzed and illustrated the main scientific and
technological issues related to the implementation and
management of an earthquake early warning system under
development in the Campania region of southern Italy.

The system is designed for early warning alert notifi-
cation at distant coastal targets based on a dense, wide-
dynamic seismic network (accelerometers, seismometers
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and broadband sensors) deployed in the Apenninic belt
region (ISNet – Irpinia Seismic Network). It can therefore
be classified as a regional EarlyWarning System consisting
of a wide seismic sensor network covering a portion or the
entire area which is threatened by a quake’s strike.

According to [25], real-time estimates of earthquake
location and magnitude are needed for regional warning
systems (EEWS), i. e., dense seismic networks covering all
or a portion of an area of interest. However the alarm deci-
sion in an early warning system is based, rather, on the pre-
diction, with quantified confidence, of a ground motion
intensity at a distant target site (where a sensitive structure
is located). This problem needs an evolutionary (i. e., time-
dependent) and probabilistic frame where pdfs for earth-
quake location, magnitude and attenuation parameters are
combined to perform a real-time probabilistic seismic haz-
ard analysis (e. g., [19]).

Considering the peak displacement amplitude and/or
predominant frequency measured in the early portion
of P-waves, we have shown that suitable probability den-
sity functions for the earthquake location and magnitude
parameters can be constructed and used for real-time
probabilistic assessment of false alarms and loss estima-
tion, which are the key elements based on which automatic
actions can be undertaken to mitigate earthquake effects.

Based on the analysis of acceleration records of
Euro-Mediterranean and Japanese earthquakes, Zollo et
al. [49,50] have shown the advantages of using near source
strong motion records for real time estimation of earth-
quakemagnitude. In fact they provide unsaturated record-
ings of moderate to large earthquakes and, in case of dense
station coverage of the source area, the combination of
both P- and S-wave amplitude information can be used to
get fast and robust earthquake location and magnitude es-
timates.

We support the use of S-waves recorded in the near-
source of an impending earthquake for earthquake early
warning, especially in view of the excellent correlation
that S-peaks show with magnitude up to about M D 7 for
Euro-Mediterranean and Japanese earthquakes [49,50].
Dense accelerometric networks now operating in Europe,
USA, Taiwan, Japan and other seismic regions in the
world can provide a sufficient number of records at dis-
tances smaller than 20–30 km from potentially damaging
crustal earthquakes so that S–P times are expected to be
smaller than 2–3 s. A magnitude estimation using S-waves
could be therefore available 4–5 s after the first P-wave is
recorded, which is still useful for sending an alert to distant
target sites.

Although relatively few magnitude 7 and larger earth-
quakes have hit the Apenninic belt, and generally the

Mediterranean region, during the last century, there have
beenmany instances of damaging quakes in themagnitude
6 range.

Earthquake early warning systems have the poten-
tial to mitigate the effects of moderate size earthquakes
(M D 6–7), which can produce severe damage in densely
urbanized areas and places where old structures were
not built to current standards. This has been the case
for a significant number of earthquakes occurred in
the Mediterranean basin during last decades: the 1976
Friuli (M D 6–6.5) and 1997 Colfiorito (M D 6) in Italy,
1999 Athens (M D 5:9) in Greece, 2002 Nahrin, in
Afghanistan (M D 6:1), 2003 in Algeria (M D 6:7), 2003
Bam (M D 6:3) in Iran, 2004 in Morocco (M D 6:4).

An earthquake early warning system can be effective
for mitigating the effects of moderate earthquakes. For
moderate size events, early warning systems could also
mitigate earthquake effects in terms of infrastructure op-
erability (e. g., hospitals, firehouses, telecommunication
hubs, . . . ) during the post-event emergency phase and res-
cue operations. For instance, in tall buildings, the higher
floors generally sway much more than those near ground
level, so that even a moderate earthquake could cause se-
vere damage to a high rise. Therefore, even at 70–80 km
distance from its epicenter, a magnitude 6 quake could af-
fect hospital operating rooms and other critical installa-
tions.

Installations as close as 50 km from the epicenter could
receive an earthquake warning 10 s prior to the arrival
of the more energetic waves (S and surface waves) of an
earthquake. To take advantage of this brief warning pe-
riod, automated systems would have to be created that
respond instantly to notification alert signals, and they
would have to be carefully calibrated to avoid false or
missed alarms. Closer to the epicenter, a magnitude 6
or higher earthquake can damage critical infrastructures,
such as telephone lines, gas pipelines, highways, and rail-
roads, as well as airport runways and navigation systems.
These disruptions would have a domino effect in more dis-
tant areas, which could be mitigated by an early warning
alert system, based on the earliest primary wave data to ar-
rive at recording stations close to the epicenter.

Finally, we note that earthquake early warning sys-
tems can also help mitigate the effects of such earth-
quake-induced disasters as fires, explosions, landslides,
and tsunamis, which can in many cases be more dev-
astating than the earthquake itself. Systems could be in-
stalled at relatively low cost in developing countries, where
moderate sized earthquakes can cause damage comparable
to that caused by much larger earthquakes in developed
countries.
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Glossary

Meta-stability of man-made structures is the conse-
quence of their upright construction above ground.
For excessive dynamic (earthquake) loads, when the
lateral deflection exceeds some critical value (this is
normally accompanied by softening nonlinear be-
havior of the structural members), the overturning
moment of the gravity forces becomes larger than the
restoring moment, and the structure becomes unstable
and moves exponentially toward collapse.

Complex and evolving structural systems are structures
with a large number of degrees of freedom and many
structural members, which for given loads experi-
ence softening nonlinear deformations. During strong
excitation, continuous changes (typically decreases)
in effective stiffness and time-dependent changes in
boundary conditions result in a system whose prop-
erties are changing with time.

Soil–structure interaction is a process in which the soil
and the structure contribute to mutual deformations
while undergoing dynamic response. In time, with
continuously changing contact area between the foun-
dation and the soil (opening and closing of gaps), when
the deformations are large, soil–structure interaction
is characterized by nonlinear geometry and nonlin-
ear material properties in both the soil and in the
structure.

Definition of the Subject

Nonlinear problems in structural earthquake engineer-
ing deal with the dynamic response of meta-stable, man-
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made buildings subjected to strong earthquake shaking.
During earthquakes, structures constructed on soft sedi-
ments and soils deform together with the underlying soil
in the dynamic process called soil–structure interaction.
Strong shaking forces the soil–structure systems to evolve
through different levels of nonlinear response, with con-
tinuously changing properties that depend upon the time
history of excitation and on the progression and degree of
damage. Thus far, the analyses of this response have used
the vibrational approach and lumped mass discrete mod-
els to represent real structures. Loss of life and property,
however, continue to be high during strong shaking in
the vicinity of the faults responsible for earthquakes. This
calls for new, more physically refined methods of analysis,
which can be based on nonlinear wave propagation, and
for balancing of the structural capacities with the power
carried by the earthquake waves.

After a brief discussion of the literature on the com-
plex and chaotic dynamics of simple mechanical oscilla-
tors, the dynamic characteristics and governing equations
in the meta-stable structural dynamics of earthquake en-
gineering are introduced. The nature of the solutions of
the governing equations in terms of both the vibrational
and the wave representations is discussed, and the dy-
namic instability, material and geometric nonlinearities,
and complexities of the governing equations associated
with nonlinear soil–structure interaction are described.
Collectively, the examples presented reflect the complex
physical nature of meta-stable structural systems that ex-
perience nonlinear dynamic response, the characteristics
of which change and evolve during earthquake excitation.

Introduction

Earthquake engineering, through a cooperation of struc-
tural and geotechnical engineers with seismologists and
geologists, aims to develop methods for safer design of
man-made structures to withstand shaking near interme-
diate and large earthquakes. This requires addressing the
problems of predictability of the response of complicated
nonlinear systems, which is one of the important sub-
jects of modern nonlinear science. Through the studies of
the dynamic response, earthquake engineers address com-
plex physical problems and issues with important social
implications.

The completeness and beauty of the linear differential
equations appear to have led to their dominance in the
mathematical training of engineers and scientists during
most of the 20th century. The recognition that chaotic dy-
namics is inherent in all nonlinear physical phenomena,
which has created a sense of revolution in applied me-

chanics and physics today, so far has had little if any effect
on the research and design of earthquake-resistant struc-
tures. In the past, the designs in structural engineering and
control systems were kept within the realm of linear sys-
tem dynamics. However, the needs of modern technology
have pushed the design into the nonlinear regimes of large
deformations, which has increased the possibility of en-
countering chaotic dynamic phenomena in structural re-
sponse. Even a cursory review of papers on chaotic vibra-
tions in mechanical systems leads to the conclusion that
chaotic dynamics is not a small, insignificant class of mo-
tions and that chaotic oscillations occur in many nonlin-
ear systems and for a wide range of values of the parame-
ters.

If an engineer chooses parameters that produce
chaotic output, then he or she loses predictability. How-
ever, the chaotic behavior of nonlinear systems does not
exclude predictability of the response but rather intro-
duces upper bounds (prediction horizons) [31] and ren-
ders the predictions probabilistic. The important ques-
tion is then over what time-scale are the forecasts reliable,
given the current state and knowledge of the system. An-
other key ingredient for prediction is an adequate physical
model. At present, because of the multitude of interacting
phenomena and the absence of physically complete equa-
tions of motion, there exists no adequate general model
of the complete earthquake response process. While the
practical outcome of most work in earthquake engineer-
ing remains empirically based, the nonlinear methods are
gaining popularity, aiming to decipher the governing phe-
nomena and to assess the reliability of the models. It ap-
pears now that the broad-based revolution in the world-
view of science that begun in the twentieth century will
be associated with chaotic dynamics [43]. This revolution
should eventually also contribute to better understanding
and more complete representation of the response analy-
ses in earthquake engineering.

It has been argued that major changes in science occur
not somuchwhen new theories are advanced but when the
simple models with which scientists conceptualize a the-
ory are changed [24]. In vibrations, such a conceptual
model that embodies the major features of a whole class
of problems is the spring-mass system. Lessons emerging
from studies of the spring-mass model and several other
relevant models can serve as conceptual starting points
for generalizations and also as a guide to further studies
of more complex models in earthquake engineering and
structural dynamics.

Studies of forced vibrations of a pendulum have re-
vealed complex dynamics and chaotic vibrations [14,15].
A simply supported beam with sub-buckling axial com-
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pression modeled by a single mode approximation yields
a Mathieu type equation and for certain values of the pa-
rameters leads to unstable solutions. When nonlinearities
are added, these vibrations result in a limit cycle. A related
problem is a classical pendulum with a vibrating pivot
support, which also leads to chaotic vibrations [29,34].
Chaotic motions in a double pendulum have been stud-
ied by Richter and Scholz [45], and the complex dynamics
and chaotic solutions for a spherical pendulum with two
degrees of freedom have been described by Miles [35].

Impact-type problems result in explicit difference
equations or maps, which can yield chaotic vibrations for
certain values of the governing parameters [30]. A mass
vibrating in a gap between two stiff springs on either
side [17,46,47] is a simple related model, which suggests
a starting points for research in nonlinear vibration of
piles, and for impact-type interaction of adjacent build-
ings, excited by strong earthquake ground motion. The
reader can find examples of such problems in the descrip-
tion of damage inMexico City, for example, during several
earthquakes [32].

Chaotic motions of an elasto-plastic arch have been
studied by Poddar et al. [42]. Forced vibrations of a buck-
led beam, modeled by the Duffing equation, showed that
chaotic vibrations are possible [16]. Forced vibrations de-
scribed by a Duffing equation with viscous damping and
nonlinear (cubic) elastic (stiffening) spring were studied
by Ueda [67]. Figure 1 summarizes his results and de-
scribes the regions of chaotic, periodic (I, II, etc.), and
subharmonic (m/n) motions as functions of the damping
and forcing amplitudes. This simple equation, represent-
ing a hardening spring system, has direct analogues in the
dynamics of piles and in the rocking of buildings, both
following the strong-motion phase of earthquake shaking
after horizontal gaps have been created between the pile
(foundation walls) and the soil [63].

A mechanical system with a nonlinear restoring force
and with a control force added to move the system accord-
ing to some prescribed signal has been studied by Holmes
and Moon [19] and Holmes [18]. It was shown that such
a system exhibits both periodic limit-cycle oscillation and
chaotic motions. Chaotic vibrations in continuous beams
have been studied for nonlinear body forces and nonlinear
boundary conditions (that depend on the motion), and for
motions large enough for the nonlinear terms in the equa-
tions of motion to be significant [37,38,39,40,41]. Forced
planar vibrations of nonlinear elastica [35,36], were shown
to become unstable and exhibit chaotic motions under cer-
tain conditions.

The above-mentioned studies imply that there is a con-
flict in the classical engineering description of the world.

Earthquake Engineering, Non-linear Problems in, Figure 1
Chaos diagramshowing regions of chaotic, chaotic and periodic,
periodic (I, II, III, etc.), and sub-harmonic (4/3;3/2;5/3, etc.) mo-
tions for a nonlinear equation as functions of non-dimensional-
ized damping and forcing amplitude (from [67])

One aspect of this conflict is the assumption that nature
is a deductive system, moving forward in time according
to deterministic laws. Another aspect is that a scientist at-
tempting to model portions of the world from finite data
projects unverifiable structure onto the local environment.
The conflict is that these two views do not match, leaving
us with a question: what are models good for? There are
many systems in nature that are observed to be chaotic,
and for which no adequate physical model exists. Whether
amodel is adequate or not depends, of course, on the ques-
tions asked [7]. Unfortunately, the art of dynamical mod-
eling is often neglected in discussions of nonlinear and
chaotic systems, in spite of its crucial importance [1]. In
the following, the modeling problem in earthquake engi-
neering will be illustrated using two common approaches
to the solution, one based on an equivalent oscillator and
the other one using wave representation.

Stochastic processes have been developed to describe
irregular phenomena in deterministic systems that are too
complicated or have too many variables to be fully de-
scribed in detail. For example, stochastic processes have
been used to model the response of structures to earth-
quake and wind forces, which are deterministic, and in
principle could be completely described. In practice, the
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stochastic modeling has been used also as an approximate
description of a deterministic system that has unknown
initial conditions and may be highly sensitive to the ini-
tial conditions. In trying to model real systems, as a result
of themodeling process, we sometimes obtain amodel that
shows very regular behavior, while the real system has very
irregular behavior. In that case, random noise is added to
the model, but this represents no more than our lack of
knowledge of the system structure or the inadequacy of the
identification procedure [22].

In earthquake engineering, the complexity of the
multi-dimensional real world is reduced to a sub-space,
which is defined by (1) the dimensions and properties of
the adopted mathematical models, (2) the nature of the
adopted boundary conditions, and (3) the method of solu-
tion. A linearmechanical system cannot exhibit chaotic vi-
brations, and for periodic inputs it produces periodic out-
puts. The chaotic system must have nonlinear elements or
properties, which can include, for example, (1) nonlinear
elastic or spring elements; (2) nonlinear damping (such as
stick-slip friction); (3) backlash, play, or bilinear springs;
and (4) nonlinear boundary conditions. The nonlinear ef-
fects can be associated with the material properties, with
the geometric effects, or both. In the following, the conse-
quences of unorthodox boundary conditions and nonlin-
ear waves in a building will be used to illustrate the exten-
sions and complexities associated with evolving systems.
The utility of this complexity can be viewed as the arbiter
of the order and randomness.

Vibrational Representation of Response

The first modern uses of mechanics in problems of earth-
quake engineering appeared during the early 1900s, fol-
lowing the earthquake disasters in San Francisco (1906),
Messina-Reggio (1908), and Tokyo (1923) and the real-
ization that something needed to be done to prevent such
losses of life and property during future events. The first
practical steps consisted of introducing the seismic coef-
ficient (shindo in Japan, and rapporto sismico in Italy).
This was followed by earthquake-resistant design codes,
first adopted in Japan in 1923, and then in California in
1934 [44]. During the same period, there also appeared the
first studies of the effects of earthquake shaking on struc-
tures in terms of simple mechanical oscillators [48], and in
the early 1930s the modern theory based on the response
spectrum method was introduced [2,3,4]. These early de-
velopments follow the deterministic formulations of New-
tonianmechanics and employ linearmodels and equations
of motion.

Elementary Vibrational Representation of Response

The basic model employed to describe the response of
a simple structure to only horizontal earthquake ground
acceleration, �̈x , is a single-degree-of-freedom system
(SDOF) that experiences rocking  r relative to the nor-
mal to the ground surface. The model also assumes that
the ground does not deform in the vicinity of the foun-
dation—that is, it neglects the soil–structure interaction
(Fig. 2). The rotation r is restrained by a spring with stiff-
ness Kr and by a dashpot with rocking damping constant
Cr, providing the fraction of critical damping &r. The natu-
ral frequency of this system is !r D

�
Kr/h2mb

1/2, and for
small rocking angles it is governed by the linear ordinary
differential equation

 ̈r C 2!r&r ̇r C !
2
r r D ��̈x /h : (1)

For any initial conditions, and for arbitrary excitation, this
system always leads to a deterministic and predictable re-
sponse. Equation (1) was used originally to develop the
concept of relative response spectrum and continues to
this day as the main vehicle in formulation of most earth-
quake engineering analyses of response [56]. If the gravity
force is considered,!r in Eq. (1) has to be reduced [5]. The
system described by Eq. (1) is meta-stable for  r smaller
than its critical value. At the critical value of  r, the over-

Earthquake Engineering, Non-linear Problems in, Figure 2
Single-degree-of-freedom system (SDOF) representation of
a building (inverted pendulum) with equivalent mass mb and
mass-less column of height h, experiencing rocking  r due to
horizontal motion of its base�x
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turning moment of the gravity force is just balanced by
the elastic moment in the restraining spring, and for val-
ues greater than the critical value the system becomes
unstable.

Advanced Vibrational Representation of Response

In more advanced vibrational representations of the re-
sponse, additional components of the earthquake excita-
tion, structural dynamic instability, soil–structure inter-
action, spatial and temporal variations of the excitation,
differential motions at different support points, and non-
linear behavior of the stiffness Kr can be considered, but
the structure usually continues to be modeled by mass-less
columns, springs, and dashpots, and with a rigid massmb.
In the following, we illustrate some of the above-men-
tioned cases.

Dynamic Instability An example of a simple model that
includes instability is shown in Fig. 3. It experiences hori-
zontal, vertical, and rocking excitations, which can result,
for example, from incident P and SV waves. The structure

Earthquake Engineering, Non-linear Problems in, Figure 3
Single-degree-of-freedom system (SDOF) representation of
a building (inverted pendulum), with equivalent mass mb, mo-
ment of inertia (about O) Ib, and a mass-less column of height h,
experiencing relative rocking r due to horizontal, vertical, and
rockingmotions of its foundation (�x;�z , and�y ), which result
from soil–structure interaction when excited by incident wave
motion

is represented by an equivalent single-degree-of-freedom
system, with a concentrated massmb at height h above the
foundation. It has a radius of gyration rb and a moment of
inertia Ib D mbr2b about point O. The degree-of-freedom
in the model is chosen to correspond to the relative rock-
ing angle  r. This rotation is restrained by a spring with
rocking stiffness Kr and by a dashpot with rocking damp-
ing Cr (both not shown in Fig. 3), and the gravitational
force mbg is considered. Taking moments about B results
in the equation of motion

�̈yC ̈rC2!r&r ̇rC!
2
r r D

˚
�
�
�̈x /a


cos

�
�y C  r



C
�
!2
r "g C �̈z /a


sin
�
�y C  r

�
/" ; (2)

where " D h
�
1C (rb/h)2


/a,!2

r D Kr/
�
m
�
h2 C r2b

�
; !r

is the natural frequency of rocking, �r is a fraction
of critical damping in 2!r&r D Cr/

�
m
�
h2 C r2b

�
, and

"g D 2/!2
r a. Equation (2) is a differential equation cou-

pling the rocking of the foundation, �y, and of the struc-
ture,  r, with the horizontal and vertical motions of the
foundation. It is a nonlinear equation the solution to
which requires numerical analysis. In this example, we
will discuss only the case in which �y C  r is small. Then,

 ̈r C 2!r&r ̇r C
˚
!2
r
�
1 � "g/"


� �̈z /"a

�
 r

D ��̈y C
˚
��̈x /aC

�
!2
r "g C �̈z/a


�y
�
/" : (3)

For steady-state excitation by incident P and SV waves
with frequency !;�x ; �y , and�z , and therefore the forc-
ing function of Eq. (3), will be periodic. Equation (3) is
then a special form of the Hill’s equation. Analysis of the
stability of this equation can be found in the work of
Lee [25]. For general earthquake excitation, �x ; �y , and
�z will be determined by the recorded components of
motion, and in predictive analyses by simulated ground
motions [27,28,70].

In Eq. (3), �y describes rocking of the foundation to
which the structure is attached. In analyses that do not
consider soil–structure interaction, �y will be determined
directly by the rocking component of strong ground mo-
tion [21,28], and in studies that consider soil–structure in-
teraction �y will be one of the variables to be determined
by the analysis [25].

Soil–Structure Interaction The problem of linear soil–
structure interaction embodies the phenomena that result
from (1) the presence of an inclusion (foundation, Fig. 4)
in the soil [26], and (2) the vibration of the structure sup-
ported by the foundation, which exerts dynamic forces on
the foundation [25]. Examples and a discussion of the non-
linear aspects of soil–structure interaction can be found



2426 E Earthquake Engineering, Non-linear Problems in

Earthquake Engineering, Non-linear Problems in, Figure 4
Six components of motion (three translations and three
rotations)

˚
�x;�y;�z;�x;�y;�z

�
of point B, and six

components of force (three forces and three moments)
fFextg D

˚
Fbx; Fby; Fbz;Mbx;Mby;Mbz

�
, that the structure exerts

on the foundation at B

in Gicev [9] and in a review of observations of response
to earthquake shaking in full-scale structures in Trifunac
et al. [63,64,65].

The dynamic response of a rigid, embedded founda-
tion to seismic waves can be separated into two parts. The
first part corresponds to the determination of the restrain-
ing forces due to the motion of the inclusion, usually as-
sumed to be a rigid body. The second part deals with the
evaluation of the driving forces due to scattering of the in-
cident waves by the inclusion, which is presumed to be im-
mobile. This can be illustrated by considering a foundation
embedded in an elastic medium and supporting an elastic
superstructure. The steady-state harmonic motion of the
foundation having frequency ! can be described by a vec-
tor

˚
�x ; �y ; �z ; �x ; �y; �z

�T (Fig. 4), where �x and �y
are horizontal translations, �z is vertical translation, �x
and �y are rotations about horizontal axes, and �z is tor-
sion about the vertical axis. Using superposition, displace-
ment of the foundation is the sum of two displacements:

fUg D
˚
U�
�
C fU0g ; (4)

where fU�g is the foundation input motion correspond-
ing to the displacement of the foundation under the action
of the incident waves in the absence of external forces, and
fU0g is the relative displacement corresponding to the dis-

placement of the foundation under the action of the exter-
nal forces in the absence of incident wave excitation.

The interaction force fFsg generates the relative dis-
placement fU0g, which corresponds to the force that the
foundation exerts on the soil and that is related to fU0g by
fFsg D [Ks (!)] fU0g, where [Ks (!)] is the 6 � 6 complex
stiffness matrix of the embedded foundation. It depends
upon the material properties of the soil medium, the char-
acteristics and shape of the foundation, and the frequency
of the harmonic motion, and it describes the force-dis-
placement relationship between the rigid foundation and
the soil medium.

The driving force of the incident waves is equal to˚
F�s
�
D [Ks] fU�g, where the input motion fU�g is mea-

sured relative to an inertial frame. The “driving force” is
the force that the ground exerts on the foundation when
the rigid foundation is kept fixed under the action of the
incident waves. It depends upon the properties of the
foundation and the soil and on the nature of excitation.

The displacement fUg is related to the interaction
and driving forces via [Ks] fUg D fFsg C

˚
F�s
�
. For a rigid

foundation having a mass matrix [M0] and subjected to
a periodic external force, fFextg, the dynamic equilibrium
equation is

[M0] fÜg D � fFsg C fFextg ; (5)

where fFextg D
˚
Fbx ; Fby; Fbz ;Mbx ;Mby;Mbz

�
is the

force the structure exerts on the foundation (Fig. 4). Then,
Eq. (5) becomes

[M0] fÜg C [Ks] fUg D
˚
F�s
�
C fFextg : (6)

The solution of fUg requires the determination of themass
matrix, the impedance matrix, the driving forces, and the
external forces [25].

After the mass matrix [M0], the stiffness matrix [Ks],
and the force

˚
F�s
�
have all been evaluated, they can be

used to determine the foundation displacement fUg. For
in-plane response excited by P and SV waves, for example,
the relative response  r is then given by Eq. (3).

Differential Motions Common use of the response
spectrum method [56] and many dynamic analyses in
earthquake engineering implicitly assume that all points
of building foundations move synchronously and with the
same amplitudes. This, in effect, implies that the wave
propagation in the soil is neglected. Unless the structure
is long (e. g., a bridge with long spans, a dam, a tunnel)
or “stiff” relative to the underlying soil, these simplifica-
tions are justified and can lead to a selection of approxi-
mate design forces if the effects of soil-foundation interac-
tion in the presence of differential ground motions can be
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Schematic representation of the deformation of columns accom-
panying differential wave excitation of long structures for out-
of-plane response (top) and in-plane response (bottom) when SH
or Lave waves (top) or Rayleigh waves (bottom) propagate along
the longitudinal axis of a structure

neglected [6]. Simple analyses of two-dimensional models
of long buildings suggest that when a/ < 10�4, where a
is wave amplitude and  is the corresponding wavelength,
the wave propagation effects on the response of simple
structures can be neglected [50].

Figure 5 illustrates the “short” waves propagating
along the longitudinal axis of a long building or a multi-
ple-span bridge. For simplicity, the incident wave motion
has been separated into out-of-plane motion (Fig. 5, top),
consisting of SH and Love waves, and in-plane motion
(Fig. 5, bottom) consisting of P, SV, and Rayleigh waves.
The in-plane motion can further be separated into hor-
izontal (longitudinal), vertical, and rocking components,
while out-of-plane motion consists of horizontal motion
in the transverse direction and torsion along the vertical
axis. Trifunac and Todorovska [61] analyzed the effects of
the horizontal in-plane components of differential motion

for buildings with models that are analogous to the sketch
in Fig. 5 (bottom), and they showed how the response
spectrum method can be modified to include the first-or-
der effects of differential motions. Trifunac and Gicev [59]
showed how to modify the spectra of translational mo-
tions, into a spectrum that approximates the total (transla-
tional and torsional) responses, and how this approxima-
tion is valid for strong motion waves an order of magni-
tude longer than the structure (	 L).

As can be seen from the above examples the differen-
tial motions lead to complex excitation and deformation
of the structural members (columns, shear walls, beams,
braces), increase the dimensions of the governing differen-
tial equations, lead to thee-dimensional dynamic instabil-
ity problems, and can lead to nonlinear boundary condi-
tions. These are all conditions that create an environment
in which, even with the most detailed numerical simula-
tions, it is difficult to predict all of the complexities of the
possible responses.

Nonlinear Vibrational Analyses of Response

For engineering estimation of the maximum nonlinear re-
sponse of a SDOF system, um, in terms of the maximum
linear response, u0, it is customary to specify a relation be-
tween um and u0 (Fig. 6). By defining the yield-strength
reduction factor as Ry D u0/uy, where uy is the yielding
displacement of the SDOF system equivalent spring, and
ductility as � D um/uy, for the same ground motion the
ratio um/u0 is then equal to �/Ry. Veletsos and New-

Earthquake Engineering, Non-linear Problems in, Figure 6
Bi-linear representation of stiffness (yielding at (uy; fy)), over-
turning moment of gravity force (mbg sin ), critical rocking an-
gle  r;cr, and meta-stable region (0 <  r <  r;cr) for an SDOF
system
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mark [68,69] showed that (1) for a long-period SDOF sys-
tem when its natural period Tn D 2�/!n becomes very
long, um / u0 tends toward 1 and Ry approaches � (equal
deformation rule); (2) for the response amplitudes gov-
erned mainly by the peak excitation velocities, um / u0
can be approximated by �/

p
2� � 1 and Ry by

p
2�� 1

(equal strain energy rule); and (3) for a high-frequency
(stiff) system when Tn � 0; Ry � 1.

Complexities of Simultaneous Action of Dynamic In-
stability, Nonlinearity, and Kinematic Boundary Con-
ditions – Example The model we illustrate next is
an SDOF when it is excited by synchronous horizontal
ground motion at its two supports (1 and 2 in Fig. 7),
but it behaves like a three-degree-of-freedom (3DOF) sys-
tem when excited by propagating horizontal, vertical, and
rocking ground motions. For such a system, the above
classical equal energy and equal displacement rules for
SDOF system will not apply.

The goals here are to describe the effects of differen-
tial motion on strength-reduction factors Ry of the sim-
ple structure shown in Fig. 7 when it is subjected to all of
the components of near-source ground motions, and to il-
lustrate the resulting complexities of nonlinear response.
Analyses of the consequences of the differences in ground
motion at structural supports, caused by non-uniform soil
properties, soil–structure interaction, and lateral spread-
ing, for example, will further contribute to the complexi-
ties of the response, but these factors will not be discussed
here.

The original response spectrum method was formu-
lated using a vibrational solution of the differential equa-
tion of an SDOF system excited by synchronous, and
only horizontal (one component), ground motion. The
consequences of simultaneous action of all six compo-
nents of ground motion (three translations and three rota-
tions) on the relative response of an SDOF system are still
rarely considered in modern engineering design [58], even
though it has been 75 years since the original response
spectrummethod was formulated and about 40 years since
it became the principal tool in engineering design [56]. Be-
cause the response spectrummethod has become an essen-
tial part of the design process and of the description of how
strong motion should be specified for a broad range of de-
sign applications [52], we hope that the present examples
will help to further understanding of the complexities of
response in more realistic models of structures.

The nature of the relative motion of individual col-
umn foundations or of the entire foundation system will
depend upon the type of foundation, the characteristics of
the soil surrounding the foundation, the type of incident

Earthquake Engineering, Non-linear Problems in, Figure 7
The structure deformed by the wave, propagating from left to
right, with phase velocity Cx , for the case of Cvgi (“up” mo-
tion). Different column rotations 1 and 2 result fromdifferent
translations and rotations at supports 1 and 2 (from [21])

waves, and the direction of wave arrival, with themotion at
the base of each column having six degrees of freedom. In
the following example, we assume that the effects of soil–
structure interaction are negligible; consider only the in-
plane horizontal, vertical, and rocking components of the
motion of column foundations; and show selected results
of the analysis for a structure on only two separate foun-
dations. We assume that the structure is near the fault and
that the longitudinal axis of the structure (X axis) coin-
cides with the radial direction (r axis) of the propagation
of waves from the earthquake source, so that the displace-
ments at the base of columns are different as a result of
the wave passage alone. We suppose that the excitations at
the piers have the same amplitude but different phases and
that the phase difference (or time delay) will depend upon
the distance between the piers and the horizontal phase
velocity of the incident waves.

The simple model we consider, which is described in
Fig. 7, represents a one-story structure consisting of a rigid
mass, m, with length L, supported by two rigid, mass-less
columns with height h, which are connected at the top to
the mass and at the bottom to the ground by rotational
springs (not shown in Fig. 7). The stiffness of the springs,
k� , is assumed to be elastic-plastic, as in Fig. 6, without
hardening (˛ D 0). The mass-less columns are connected
to the ground and to the rigid mass by rotational dashpots,
c� , providing a fraction of critical damping equal to 5 per-
cent. Rotation of the columns, �i D �gi C  i for i D 1; 2,
which is assumed to be not small, leads us to consider the
geometric nonlinearity. The mass is acted upon by the ac-
celeration of gravity, g, and is excited by differential hori-
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zontal, vertical, and rocking ground motions, ugi ; vgi , and
�gi ; i D 1; 2 (Fig. 7) at the two bases, so that

ug2 (t) D ug1 (t � �) ; vg2 (t) D vg1 (t � �) ;
�g2 (t) D �g1 (t � �) ; � D L/Cx ;

with � being the time delay between themotions at the two
piers and Cx the horizontal phase velocity of the incident
waves. The functional forms of ugi ; vgi , and �gi are defined
by the near-source ground motions [21], and the rocking
component of the ground motion is approximated by [28]
�gi (t) D �v̇gi (t)/Cx , where v̇gi (t) is the vertical velocity of
the ground motion at the ith column. Of course, in a more
accurate modeling, the ratio of the vgi to ugi amplitudes
will depend upon the incident angle and the character of
incident waves, while the associated rocking �gi will be de-
scribed by a superposition of the rocking angles associated
with incident body and dispersed surface waves [28].

The yield-strength reduction factor for the system sub-
jected to synchronous ground motion is Ry D f0/ fy D
u0/uy, where all of the quantities are defined in Fig. 6. In
this example, for the assumed model and because of the
differential ground motions and rotation of the beams, the
relative rotation for the two columns at their top and bot-
tom will be different. Therefore, it is necessary to define
the R-factor and ductility for each corner of the system, in-
stead of one factor for the entire system. In all calculations
here, we consider the actions of the horizontal, vertical,
and rocking components of the ground motion, the effects
of gravity force, dynamic instability, and geometric non-
linearity. For the structure in Fig. 7, we calculatemaximum
linear and nonlinear relative rotations at four corners of
the system under downward (�vgi ), radial, and rocking,
and upward (Cvgi ), radial and rocking near-source dif-
ferential ground motions corresponding to a given earth-
quake magnitude, ductility �, and for different time de-
lays, � . Then we plot Ry versus Tn for the four corners of
the system.

Figure 8 illustrates typical results for Ry versus the os-
cillator period for near-source, fault-parallel displacement
dN (t) D AN (1 � e�t/�N )/2 [21], with downward vertical
ground displacement, magnitude M D 8, for a ductility
ratio of 8 and a time delay of � D 0:05 s. It shows the re-
sults for the top-left, top-right, bottom-left, and bottom-
right corners of the system, assuming wave propagation
from left to right (see Fig. 7). For reference and easier com-
parison with the previously published results, we also plot
one of the oldest estimates ofRy versus period, using piece-
wise straight lines [21]. The curve (Ry)min shows the min-
imum values of Ry for dN (t) motion with �vgi , and for
M D 8, � D 8, and � D 0:05 s.

Earthquake Engineering, Non-linear Problems in, Figure 8
Example of the effects of the differential ground motion on the
strength-reduction factors Ry at the four corners of the struc-
ture in Fig. 7, subjected to horizontal, vertical, and rocking com-
ponents of the fault-parallel displacement, for downward ver-
tical motion (�vgi ) for earthquake magnitude M D 8, ductility
� D 8, and delay at the right support � D 0:05 s. The ampli-
tudes of the piecewise straight representation of the classical Ry
are shown for comparison [21]. (Ry)min shows the smallest val-
ues of the R-factors, which for the set of conditions in this ex-
ample are determined by the response at the top left corner (for
periods shorter than 0.1 s), at the bottom right corner (for periods
between 0.1 and 0.35 s), and at the top right corner (for periods
longer than 0.35 s)

For periods longer than 5 to 10 s, Ry curves approach
“collapse boundaries” [21]. This is implied in Fig. 8 by the
rapid decrease of Ry versus period for periods longer than
about 7 s. At or beyond these boundaries, the nonlinear
system collapses due to the action of gravity loads and dy-
namic instability.

The complex results illustrated in Fig. 8 can be sim-
plified by keeping only (Ry)min, since it is only the mini-
mum value of Ry that is needed for engineering design. By
mapping (Ry)min versus period of the oscillator for differ-
ent earthquake magnitudes,M, different ductilities,�, and
different delay times, � , design criteria can be formulated
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for design of simple structures to withstand near-fault
differential ground motions [21]. Nevertheless, the above
shows how complicated the response becomes even for as
simple a structure as the one shown by the model in Fig. 7,
when differential ground motion with all of the compo-
nents of motion is considered. In this example, this com-
plexity results from simultaneous consideration of mate-
rial and geometric nonlinearities, dynamic instability, and
kinematic boundary conditions.

Response in Terms ofWave Propagation –
An Example

The vibrational representation of the solution of response
of a multi-degree-of-freedom system subjected to earth-
quake shaking is frequently simplified by considering only
the fundamental and, occasionally, a few of the lowest
frequencies of the system. Doing so is analogous to low-
pass filtering of the complete solution [56,57], but it can
work well when the excitation amplitudes are small and
themotions are associated with long waves. However, dur-
ing strong earthquakes, the ground motion contains large
displacement pulses, the duration of which can be shorter
than the fundamental period of the structure. For this type

Earthquake Engineering, Non-linear Problems in, Figure 9
Shear beam (building) (left) and incoming strong-motion dis-
placement pulse (right) in the soil

of excitation, the vibrational representation of response
and the response spectrum superposition method cease to
be suitable and should be replaced by a solution in terms of
propagating waves. For short impulsive ground motions,
the damage can occur before the wave entering the struc-
ture completes its travel up and down the structure, and
well before the wave interference can occur—that is, well
before the physical conditions can lead to the interference
of waves and creation of the mode shapes.

To illustrate the phenomena that can occur during
nonlinear wave propagation in a building, we describe
horizontal motions, u, in a one-dimensional shear beam,
supported by one-dimensional half space and excited by
a vertically propagating shear wave described by a half-
sine-pulse (Fig. 9). A finite-difference scheme for solution
of this problem with accuracy, O(�t2; �x2), where �x
and�t are the space and time increments, leads to the ex-
act solution for ˇ�t/�x D 1, where ˇ is the velocity of
shear waves. For simplicity, the incident displacement in
the soil is chosen to be a sinusoidal pulse with the charac-
teristics shown on Fig. 9.

A mesh with different spatial intervals in the soil and
in the building will be used. The equation of motion is

vt D (�)x/� ; (7a)

and the relation between the derivative of the strain and
the velocity is

"t D vx ; (7b)

where v; �; � , and " are particle velocity, density, shear
stress, and shear strain, respectively, and the subscripts t
and x represent derivatives with regard to time and space.

The domain consists of two materials (Fig. 9):
(1) �2�xs 6 x < 0 with physical properties �s and �s,
representing foundation soil, and (2) 0 < x 6 Hb with
physical properties �b and �b for linear response, where
�i is the density and �i is the shear modulus in the
soil (i D s) or in the building (i D b). v D @u/@t and
" D @u/@x are the velocity and the strain of a particle, and
u is out-of-plane displacement of a particle perpendicular
to the propagation ray.

It is assumed that the incoming wave is known and
that its displacement as a function of time is prescribed
at the point 1 in the soil (x D �2�xs). Also, it is assumed
that the soil is always in the linear elastic state. The finite
difference method for a set of simultaneous equations is
used to solve the problem, and spatial intervals are de-
fined by �xi D ˇi ��t, where ˇi is the velocity of shear
waves in the soil (i D s) or in the building (i D b) and
�t is the time step. The transparent boundary adopted for
this study, which is described in Fujino and Hakuno [8],
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is a perfect, transparent boundary for one-dimensional
waves when ˇ�x/�t D 1. Point 1 is where the prescribed
displacement is applied, and we assume that this displace-
ment travels upward in each time step. Point 2 is the
boundary point of the model, where the quantities of mo-
tion are updated in each time step, and point 3 is the first
spatial point, where the motion is computed using finite
differences.

For the linear case at the contact (see point 3 in Fig. 9),
one part of the incoming wave is transmitted into the other
medium and one is reflected back into the same medium.
The corresponding coefficients are obtained from the
boundary conditions of continuity of the displacements
and stresses at the contact. For a transmitted wave from
medium B to medium A, the transmission coefficient is
equal to ktr B!A D 2/ [1C �aˇa/ (�bˇb)]. For a reflected
wave frommediumA back into medium B, this coefficient
is kref B!B D [1 � �aˇa/ (�bˇb)] / [1C �aˇa/ (�bˇb)]. For
the opposite direction of propagation, the numerators and
the denominators in these fractions exchange places.

Numerical Examples

We consider a shear beam supported by elastic soil, as
shown in Fig. 9. The densities of the soil and of the beam
are assumed to be the same: �b D �s D � D 2000 kg/m3.
The velocity of the shear waves in the soil is taken as
ˇs D 250m/s, and in the building as ˇb D 100m/s.

To describe nonlinear response and the development
of permanent deformations in the beam, we introduce two
dimensionless parameters: (1) dimensionless amplitude
˛ D A/

�
Hb"yb


, where A is the amplitude of the pulse

(Fig. 9), Hb is the height of the building, and "yb is the
yielding strain in the building, and (2) dimensionless fre-
quency � D Hb/ (ˇbtd), whereˇbtd is one half of the wave-
length of the wave in the building, ˇb is the shear-wave ve-
locity in the building, and td is the duration of the half-sine
pulse.

To understand the development of the permanent
strain in the nonlinear beam, we describe first the solution
for the linear beam. The displacement and the strain for
the linear beam are:
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and
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where j is the order number of the passage of the
wave on the path bottom-top-bottom in the building,
t j D 2 jHb/ˇb( j D 0; 1; 2; 3; : : :), is the time required for
the wave to pass j times over the path bottom-top-bottom
(two heights), k j D ktk

j�1
r is the amplitude factor of the

pulse in the soil in its jth passage along the path bottom-
top-bottom through the building, and kt and kr are coeffi-
cients defined by ktr B!A and kref B!B above.

The odd terms in Eq. (8) and Eq. (9) describe the re-
sponse to the pulse coming from below, while the even
terms describe the response to the pulse arriving from
above. For the shear-wave velocities in our example, kt D
10/7 and kr D �3/7. In Eq. (8) the displacement is positive
for odd passages and negative for even passages. The dis-
placement and velocity change sign after reflection from
the soil-building interface and do not change sign after re-
flection from the top of the building. The strain changes
sign after reflection from the top of the building and does
not change sign after reflection from the building-soil in-
terface. The constant that multiplies the series in Eq. (8) in
terms of dimensionless amplitude and dimensionless fre-
quency is A�/(ˇb td) D A" D �˛�"yb.

To describe the occurrence of permanent strain, we
consider two characteristic points in the building: (1)
Point B (x D 0) at the soil-building interface (point 3 in
the grid, see Fig. 9), and (2) point T (x D Hb � ˇb tb/2),
where the amplitudes of the strain with the same signmeet
after reflection from the top of the building. The location
of this point is dependent upon the duration (wavelength)
of the pulse. The first term in Eq. (8) is one if the argument
of the cosine function is equal to td(t � t0 � x/ˇb D td),
and the second term is one if the argument of the sec-
ond cosine function is equal to 0 (t � t1 C x/ˇb D 0).
The position of point T, where the strain amplitude is
two times larger than the strain entering the beam, is
at x D Hb � ˇbtd/2, and the time when this occurs is
t D Hb/ˇb C td/2. From Eq. (9) in the first passage of the
pulse, t < 2Hb/ˇb, and only the first term in the series ex-
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ists. The strain at point B reaches its absolute maximum at
the very beginning, during the entrance of the pulse into
the building, and its value is j"1Bmaxj D �˛�"ybkt. If this
strain is greater than the yielding strain in the building,
"yb, a permanent strain at the interface will develop, and
the condition for occurrence of permanent strain at this
point is j"1Bmaxj > "yb, or, in terms of the dimensionless
parameters,

˛� > (�kt)�1 D (ˇb C ˇs)/(2�ˇs) D CB : (10B)

At point T (this point does not exist if td > 2Hb/ˇb, and
it coincides with point B if td D 2Hbˇb), from Eq. (9),
the maximum strain during the first passage occurs at
t D Hb/ˇb C td/2, and its amplitude is 2A" � kt. The con-
dition for occurrence of the permanent strain is

˛� > (2�kt)�1 D (ˇbCˇs)/(4�ˇs) D CB/2 D CT: (10T)

For the shear-wave velocities in our example CB D 0:2228
and CT D 0:1114.

For the above simple model, the occurrence, develop-
ment, and amplitudes of permanent strains and displace-
ments have been studied by Gicev and Trifunac [10,11].
They found that for large ground-displacement pulses
(large ˛) the maximum permanent strains occur mainly at
the interface of the building with the soil, while for smaller
amplitudes of pulses permanent strains occur closer to the
top of the building. They distinguished three zones of the
permanently deformed beam: (1) a permanently deformed
zone at the bottom; (2) an intermediate zone, which is
not deformed at its bottom part and is deformed in the
top part; and (3) a non-deformed zone at the top of the
beam. The occurrence and development of these zones de-
pends upon the dimensionless excitation amplitudes and

Earthquake Engineering, Non-linear Problems in, Figure 10
Permanent displacements (umax D 0:126m) (left), and permanent strains ("1 D 0:31; "2 D 0:32; "3 D 0:20) (right), along the
building versus dimensionless frequency � and for dimensionless amplitude˛ D 0:3

the dimensionless frequencies, and in particular on the
conditions that lead to the occurrence of the first per-
manent strain (see Eqs. (10B) and (10T)). For large and
long strong-motion pulses (� 6 0:5; first, the condition in
Eq. (10B) is relevant), only zones 1 and 3 are present in
the beam. For large amplitudes and short strong-motion
pulses, all three zones develop and are present. For smaller
excitation amplitudes (when the condition in Eq. (10B)
cannot be satisfied for long pulses, and when the condi-
tion in Eq. (10T) is satisfied), only zones 2 and 3 exist in
the beam. For larger values of � (when the condition in
Eq. (10B) is satisfied) all three zones exist.

Gicev and Trifunac [10,11] found a similar situation
for the occurrence of the maximum strains. For large and
long pulses, maximum strain is located at the bottom
of the building, and, as the pulses become shorter, peak
strains occur at higher positions in the building. For some
high frequencies of excitation, the maximum strain again
appears at the bottom of the building because the loss of
energy due to the development of the permanent strain at
the bottom overcomes the effects of the wave reflections
from the top of the building (Fig. 10).

Creation of large permanent deformation zones in the
building by the incident waves absorbs some or most of
the incident wave energy and can reduce or eliminate fur-
ther wave propagation and the associated energy trans-
port (Figs. 11 and 12). To the extent that the locations of
the plastic deformation zones can be controlled by the de-
sign process, absorption of the incident-wave energy by
structural members may become a new and powerful tool
for performance-based design. To take advantage of such
possibilities, the governing differential equations must be
solved by the wave-propagation method.
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Earthquake Engineering, Non-linear Problems in, Figure 11
Linear displacements along the normalized length of the beam,
� D x/Hb, versus normalized time � D ˇbt/2Hb, for dimension-
less pulse amplitude ˛ D 0:03 and dimensionless frequency
� D 3

Examples illustrated here show that for excitation of
structures by large, near-field displacement pulses failure
can occur anywhere in the building before the incident
wave has completed its first travel from the foundation
to the top of the building and back to the foundation
(2Hb/ˇb). Because this travel time is shorter (by 1/2) than
the natural period of the structure on the fixed base, it is
seen that the common response spectrum method of anal-
ysis (based on the vibrational formulation of the solution)
cannot provide the required details for the design of struc-
tures for such excitation. The complexity of the outcome
increases with amplitudes of excitation and depends upon
the pulse duration. Because actual strong ground motion
in the near field has at least several strong pulses, it can be
seen that the complexity in real structures responding to
strong earthquake motions will be even greater. In engi-
neering approximation based on the vibrational solution

Earthquake Engineering, Non-linear Problems in, Figure 12
Nonlinear displacements along the normalized length of the beam,� D x/Hb, versus normalized time � D ˇbt/2Hb for dimension-
less pulse amplitude˛ D 0:3 and dimensionless frequencies � D 3 (left) and � D 0:41 (right)

of the problem and on the SDOF models, where the lo-
cation of ductile response is predetermined by the sim-
ple modeling assumptions, this complexity cannot be in-
cluded because of the modeling constraints. The outcome
is that it is virtually impossible for simplified models to
identify or to predict the location of damage. In contrast,
for properly chosen wave propagation models, prediction
and identification of damage is a natural and logical out-
come of interaction between excitation and model prop-
erties. A good example of this can be found in Gicev and
Trifunac [12], who showed how a simple wave-propaga-
tion model can predict the actually observed location of
damage.

Observations of Nonlinear Response

Invaluable for understanding and proper treatment of the
actual nonlinear response, and for validation of vibration
monitoring and analysis methods for real-life problems,
are earthquake response data from well-instrumented,
full-scale structures that have been damaged by an earth-
quake. Such data are rare and are not always freely avail-
able. An example of an instrumented building that has
been damaged by an earthquake, and for which informa-
tion about the damage and strong-motion data on the
causative earthquake are available, is the former Imperial
County Services Building in El Centro, California, which
was severely damaged by the magnitude 6.6 Imperial Val-
ley earthquake of October 15, 1979, and later demol-
ished [23,51]. Its transverse (NS) response was recorded
by three vertical arrays (recording channels 1, 3, 7, 9, 10,
and 11; see Fig. 13), and its longitudinal (EW) response
was recorded by one vertical array (recording channels 4,
5, 6, and 13, also shown in Fig. 13).
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Earthquake Engineering, Non-linear Problems in, Figure 13
Layout of the seismic monitoring array in the ICS building (dots, without arrows, show the NS recording channels)

For a simplified soil–structure interaction model of
a building supported by a rigid foundation, the difference
between the roof and base horizontal displacements dur-
ing earthquake shaking is the sum of the horizontal dis-
placements due to (1) horizontal deformation of the soil,
(2) rigid-body rocking of the foundation, and (3) defor-
mation of the structure. The estimated frequency from
such data is referred to as system or “apparent” frequency,
which differs from the fixed-base frequency of the build-
ing. While the fixed-base frequency depends only upon
the properties of the structure, the apparent frequency de-
pends also upon the stiffness of the foundation soil. The
following relationship holds:

1
!2
sys
D

1
!2
1
C

1
!2
H
C

1
!2
R
; (13)

where !sys D 2��sys is the soil–structure system fre-
quency, !1 is the fundamental fixed-base frequency of the
structure, and !H and !R are the horizontal and rocking
frequencies, respectively, of a rigid structure on flexible
soil [33].

Figure 14c shows that during earthquake shaking
(Fig. 14a) the NS frequency of relative system response
(Fig. 14b) dropped from � � 2:12Hz in the early stage
of response (at t � 2 s) to � � 1:52Hz at t � 6:8 s
(�� � 0:6Hz, ��/� � 28%), that it was constant during
the interval t � 6:8 � 8:5 s, and that it dropped further to
� � 0:85Hz at t � 12 s (�� � 0:67Hz, ��/� � 44%).
Then, toward the end of the recorded shaking, the
frequency increased to � � 1:15Hz (�� � 0:3Hz;
��/� � 35%). Early in the response (t < 7 s), the ampli-
tudes of the first story drifts in the building were relatively
small (< 0.5%), and the observed decrease of system fre-

Earthquake Engineering, Non-linear Problems in, Figure 14
Time-frequency analysis for the NS response of the ICS building:
a ground acceleration, b relative roof response, and c system fre-
quency versus time

quency is believed to be due to changes in the soil and
bonding between the soil and foundation. This was fol-
lowed by a further decrease in the system frequency of
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about 44% (between 8 and 12 s). The first-story drifts in
the building were large when this occurred (> 0.5% for
NS), and the principal cause for this change is believed
to be the damage, with the most severe damage occur-
ring between 8 and 12 s after trigger. Near the end of the
shaking, a 35% increase in system frequency was observed,
suggesting system hardening, which is believed to be due
to changes in the soil [51].

Changes similar to what is shown in Fig. 14c were first
observed following the San Fernando earthquake in Cal-
ifornia in 1971 [66] and then during many subsequent
earthquakes. It is known at present thatmany different fac-
tors can contribute to fluctuations of the system frequency,
including rainfall, temperature fluctuations, changes in
occupancy, remodeling and strengthening of buildings,
wind, and earthquakes [49]. The simultaneous action of
some of these factors and the associated time-dependent
changes in the physical model contribute to complex and
evolving system changes that make predictions of the dy-
namic response difficult.

Future Directions

Well-designed structures are expected to have ductile be-
havior during the largest credible shaking, and a large en-
ergy reserve to at least delay failure if it cannot be avoided.
As the structure finally enters large nonlinear levels of re-
sponse, it absorbs the excess of the input energy through
ductile deformation of its components. Thus, it is logi-
cal to formulate future earthquake-resistant design proce-
dures in terms of the energy driving this process. From the
mechanics point of view, this introduces nothing new, be-
cause the energy equations can be derived directly from
the dynamic equilibrium equations. The advantage of us-
ing energy is that the duration of strong motion, the num-
ber of cycles to failure, and dynamic instability all can
be addressed directly and explicitly. This, of course, re-
quires scaling of the earthquake source and of the atten-
uation of strong motion described in terms of its wave
energy. Trifunac et al. [65] reviewed the seismological as-
pects of empirical scaling of seismic wave energy, Es, and
showed how the radiated energy can be represented by the
functionals of strong ground motion [53,54,55]. They de-
scribed the energy propagation and attenuation with dis-
tance and illustrated it for the three-dimensional geolog-
ical structure of the Los Angeles basin during the 1994
Northridge, CA earthquake, then they described the seis-
mic energy flow through the response of soil-foundation-
structure systems, analyzed the energy available to excite
the structure, and finally examined the relative response of
the structure.

Earthquake Engineering, Non-linear Problems in, Figure 15
Schematic comparison of strong-motion power demands E1 and
E2 with an envelope of structural power capacity

Power Design

Figure 15 illustrates the cumulative wave energies
recorded at a building site during two hypothetical earth-
quakes, E1 an E2, and presents a conceptual framework
that can be used for development of the power design
method. E1 results in a larger total shaking energy at the
site and has a long duration of shaking, leading to rela-
tively small average power, P1. E2 leads to smaller total
shaking energy at the site but has short duration and thus
greater power, P2. The power capacity of a structure can-
not be described by one unique cumulative curve, as this
depends upon the time history of shaking. For the pur-
poses of this illustration, the line labeled “capacity enve-
lope of the structure” can be thought of as an envelope of
all possible cumulative energy paths for the response of
this structure. Figure 15 implies that E1 will not damage
this structure, but E2 will. Hence, for a given structure, it is
not the total energy of an earthquake event (and the equiv-
alent energy-compatible relative velocity spectrum) but the
rate with which this energy arrives and shakes the structure
that is essential for the design of the required power capacity
of the structure to withstand this shaking and to control the
level of damage.

Trifunac [57] outlined the elementary aspects of such
design based on the power of the incident wave pulses. He
showed how this power can be compared with the capac-
ity of the structure to absorb the incident wave energy and
described the advantages of using the computed power
of incident strong motion for design. Power (amplitude
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and duration) of the strong near-field pulses will deter-
mine whether the wave entering the structure will con-
tinue to propagate through the structure as a linear wave
or will begin to create nonlinear zones (at first near the
top and/or near the base of the structure; Gicev and Tri-
funac [10,11,12]). For high-frequency pulses, the nonlin-
ear zone, with permanent strains, can be created before
the wave motion reaches the top of the structure—that is,
before the interference of waves has even started to oc-
cur and lead to formation of mode shapes. Overall du-
ration of strong motion [60] will determine the number
of times the structure may be able to complete full cy-
cles of response and the associated number of “minor”
excursions into the nonlinear response range when the
response is weakly non-linear [13], while the presence
of powerful pulses of strong motion will determine the
extent to which the one-directional quarter period re-
sponses [57] may lead to excessive ductility demand, lead-
ing to dynamic instability and failure, precipitated by the
gravity loads [20]. All of these possibilities can be ex-
amined and quantified deterministically by computation
of the associated power capacities and power demands
for different scenarios, for given recorded or synthesized
strong-motion accelerograms, or probabilistically by us-
ing the methods developed for Uniform Hazard Analy-
sis [52].
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Glossary

Binary forecast A type of forecast where earthquakes are
forecast to occur in certain regions and forecast not to
occur in other regions.

Continuum forecast A type of forecast where the likeli-
hood of an earthquake throughout an entire region is
specified.

Failure to predict Earthquake event that occurs where no
earthquake are forecasted to occur.

False alarm Earthquake event that is forecasted to occur
at a specific location at a specific time but does not oc-
cur.

PDF Probability Density Function –A probability density
function is any function f (x) that describes the proba-
bility density in terms of the input variable x such that
f (x) is greater than or equal to zero for all values of x
and the total area of the function is 1.

Definition of the Subject

Forecasts of likely future events are used in almost ev-
ery field: from forecasting tomorrow’s weather to model-
ing the rise and fall of financial indices to predicting the
growth of cancerous cells in human tissue. Generally, these
forecasts are created under the belief that having a fore-
cast – regardless of the level of complexity of the under-
lying models – is more desirable than not having a fore-
cast. That is, human nature prefers the foreseeable over
the unexpected. It is therefore important to verify the fore-
cast and measure its skill, or “goodness”, and its value, or
“usefulness”. The process of testing a given forecast with
past trend data is the study of forecast verification. Fore-
cast verification allows for a precise and repeatable (as op-

posed to relative or subjective) judgment of a forecasting
model.

Introduction

Earthquakes are the most feared of natural hazards be-
cause they generally occur without warning. Hurricanes
can be tracked, floods develop gradually, tornados are
caused by measurable atmospheric conditions, and vol-
canic eruptions are preceded by a variety of precursory
phenomena. Earthquakes, however, occur suddenly and
often without precursory indicators. There have been
a wide variety of approaches applied to the forecasting
of earthquakes [30,31,37,40,56,65]. These approaches can
be divided into two general classes. The first approach is
based on empirical observations of precursory changes.
Examples include precursory seismic activity, precursory
ground motions, and many others. The second approach
is based on statistical patterns of seismicity. Neither ap-
proach has been able to provide reliable short-term fore-
casts (days to months) on a consistent basis.

Although short-term predictions are not available (see
Table 1), long-term seismic-hazard assessments can be
made. It is also possible to assess the long-term probability
of having an earthquake of a given magnitude in a given
region. These assessments are primarily based on the hy-
pothesis that future earthquakes will occur in regions
where past earthquakes have occurred [14,35]. Specifically,
the rate of occurrence of small earthquakes in a region can
be analyzed to assess the probability of occurrence ofmuch
larger earthquakes.While some earthquakes occur in plate
interiors – a specific example is the three large (magni-
tude �7.7) earthquakes that occurred near New Madrid,
Missouri in 1810 and 1811 – the largemajority of all earth-
quakes occur in the vicinity of plate boundaries. A num-
ber of large cities are located very close to plate bound-
aries. Examples include Tokyo, Los Angeles, San Fran-
cisco, Seattle, Lima, Jakarta, and Santiago. Much of China
is a diffuse plate boundary, and major earthquakes have
caused devastating losses of life throughout this region.
A recent example was in the 1976 Tangshan earthquake
with some 500,000 deaths.

A major goal for earthquake forecasting is to quantify
the risk of occurrence of an earthquake of a specified mag-
nitude, in a specified area, and in a specified time window.
This is routinely done and results in the creation of haz-
ard maps. Another goal is to specifically forecast or predict
earthquakes. The fundamental question is whether fore-
casts of the time and location of future earthquakes can be
accurately made. It is accepted that long term hazard maps
of the expected rate of occurrence of earthquakes are rea-
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Earthquake Forecasting and Verification, Table 1
Warning times, scientific bases, and scientific feasibility for various types of earthquake predictions and estimates of long-term po-
tential [62]

Term Warning Time Scientific Basis Feasibility
Immediate alert 0 to 20 seconds Speed of electro -magnetic waves� speed of seismic waves Good
Short-term prediction Hours to weeks Accelerating aseismic slip, foreshocks for some events Unknown
Mid-term prediction 1 month to 10 years Changes in seismicity, strain, chemistry, and fluid pressure Fair
Long-term prediction 10 to 30 years Time remaining in cycle of large shocks, increase in regional shocks Good
Long-term potential > 30 years Long-term rate of activity, plate tectonic setting Very good

sonably accurate. But is it possible to do better? Are there
precursory phenomena that will allow earthquakes to be
forecast?

Earthquake Forecasting

Chaos and Forecasting

One of the reasons earthquakes are difficult to accurately
forecast is the underlying complexity of the fault system.
Earthquakes are caused by displacements on preexisting
faults. Most earthquakes occur at or near the boundaries
between the near-rigid plates of plate tectonics. Earth-
quakes in California are associated with the relative mo-
tion between the Pacific plate and the North American
plate.Much of this motion is taken up by displacements on
the San Andreas fault, but deformation and earthquakes
extend from the Rocky Mountains on the east into the Pa-
cific Ocean on the west. Clearly this deformation and the
associated earthquakes are extremely complex.

It is now generally accepted that earthquakes are ex-
amples of deterministic chaos [66]. Some authors [16,17]
have argued that this chaotic behavior precludes the pre-
diction of earthquakes. Weather systems, however, are
also chaotic, yet short-term forecasts are routinely made.
Weather forecasts are probabilistic in the sense that
weather cannot be predicted exactly. One such example is
the track of a hurricane. Probabilistic forecasts of hurri-
cane tracks are made every year; sometimes they are ex-
tremely accurate while at other times they are not. An-
other example of weather forecasting is the forecast of
El Niño events. Forecasting techniques based on pattern
recognition and principle components of the sea surface
temperature fluctuation time series have been developed
that are quite successful in forecasting future El Niños,
but again they are probabilistic in nature [11]. It has also
been argued [62] that chaotic behavior does not preclude
the probabilistic forecasting of future earthquakes. The be-
lief is that the chaos and nonlinearity in earthquakes arise
mainly during unstable sliding in large events. Thus, pre-
dictions are possible before large earthquakes, but take a fi-

nite amount of time for the system to recover after large
earthquakes.

Unobservable Dynamics

Another reason earthquakes are difficult to accurately
forecast is that the true dynamics driving the system
are simply unobservable and unmeasurable. As discussed
above, earthquake faults occur in topologically complex,
multi-scale networks that are driven to failure by external
forces arising from plate tectonic motions [66]. The basic
problem is that the details of the true space-time, force-
displacement dynamics are in general unobservable, ex-
cept in a few selected locations such as deep drill holes [52]
or in a very crude, time-averaged sense such as the World
Stress Map [81]. In order to completely describe the sys-
tem, the true dynamics would have to be observable for all
space and at all times. In fault systems these unobservable
dynamics are usually encoded [59] in the time evolution of
the Coulomb failure function, CFF(x; t):

CFF(x; t) D �(x; t) � �s�N(x; t) ; (1)

where �(x; t) is the shear stress at point x and at time t,
�s is the coefficient of static friction, and �N(x; t) is nor-
mal stress at point x and at time t. The space-time patterns
associated with the time, location, and magnitude of the
earthquakes, however, are observable. This leads to a fo-
cus on understanding the observable, multi-scale, appar-
ent dynamics [52] of earthquakes in an attempt to infer
the underlying dynamics.

Empirical Approaches

Empirical approaches to earthquake prediction rely on lo-
cal observations of precursory phenomena in the vicinity
of the earthquake to be predicted. It has been suggested
that one or more of the following phenomena may indi-
cate a future earthquake [30,31,37,40,56,65]:

1. precursory increase or decrease in seismicity in the
vicinity of the origin of a future earthquake rupture,
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2. precursory fault slip that leads to surface tilt and/or dis-
placements,

3. electromagnetic signals,
4. chemical emissions, and
5. changes in animal behavior.

Examples of successful near-term predictions of future
earthquakes based solely on empirical observations have
been rare. A notable exception was the prediction of the
M D 7:3 Haicheng earthquake in northeast China that oc-
curred on 4 February 1975. This prediction led to the evac-
uation of the city which undoubtedly saved many lives.
The Chinese reported that the successful prediction was
based on foreshocks, groundwater anomalies, and ani-
mal behavior. Unfortunately, a similar prediction was not
made prior to the magnitude M D 7:8 Tangshan earth-
quake that occurred on 28 July 1976 [68]. Official reports
placed the death toll in this earthquake at 242,000, al-
though unofficial reports placed it as high as 655,000.

In order to thoroughly test for the occurrence of direct
precursors the United States Geological Survey (USGS)
initiated the Parkfield (California) Earthquake Prediction
Experiment in 1985 [1,30]. Earthquakes on this section of
the San Andreas had occurred in 1857, 1881, 1901, 1922,
1934, and 1966. It was expected that the next earthquake
in this sequence would occur by the early 1990s, and an
extensive range of instrumentation was installed. The next
earthquake in the sequence finally occurred on 28 Septem-
ber 2004. No precursory phenomena were observed that
were significantly above the background noise level. Al-
though the use of empirical precursors cannot be ruled
out, the future of those approaches does not appear to be
promising at this time.

Statistical Approaches

A variety of studies have utilized variations in seismic-
ity over relatively large distances to forecast future earth-
quakes. The distances are large relative to the rupture di-
mension of the subsequent earthquake. These approaches
are based on the concept that the earth’s crust is an acti-
vated, or driven, thermodynamic system [52]. Among the
evidence for this behavior is the continuous level of back-
ground seismicity in all seismographic areas. About a mil-
lion magnitude two earthquakes occur each year on our
planet. In southern California about a thousand magni-
tude two earthquakes occur each year. Except for the af-
tershocks of large earthquakes, such as the 1992 M D 7:3
Landers earthquake, this seismic activity is essentially con-
stant over time. If the level of background seismicity
varied systematically with the occurrence of large earth-

quakes, earthquake forecasting would be relatively easy.
This, however, is not the case.

While there is yet no indication of a universal earth-
quake indicator, there is increasing evidence that there
are systematic precursory variations in some aspects of
regional seismicity at least some of the time. For exam-
ple, it has been observed that there is a systematic varia-
tion in the number of magnitude M D 3 and larger earth-
quakes prior to at least some magnitudeM D 5 and larger
earthquakes, and a systematic variation in the number of
magnitude M D 5 and larger earthquakes prior to some
magnitude M D 7 and larger earthquakes. The spatial re-
gions associated with this phenomena tend to be rela-
tively large, suggesting that an earthquake may resemble
a phase change with an increase in the “correlation length”
prior to an earthquake [5,26]. A specific example is the se-
quence of earthquakes that preceded the 1906 San Fran-
cisco earthquake [61]. This seismic activation has been
quantified as a power law increase in seismicity prior to
earthquakes [4,5,6,7,8,9,10,26,34,38,46,55,79]. There have
also been reports of anomalous quiescence in the source
region prior to a large earthquake, a pattern that is often
called a “Mogi Donut” [30,40,76,77]. Unfortunately, these
studies have all been performed retrospectively and their
successes have depended on knowing the location of the
subsequent earthquake.

There are two fundamentally different approaches to
assessing the probabilistic risk of earthquake occurrence
using statistical methods. The first of these is fault based,
where the statistical occurrence of earthquakes is de-
termined for mapped faults. The applicable models are
known as renewalmodels and a tectonic loading of faults is
included. The second approach is seismicity based, where
the risk of future earthquakes is based on the past seismic-
ity in the region. These are also known as cluster mod-
els and include the epidemic type aftershock sequence
(ETAS) model and the branching aftershock sequence
(BASS) model.

Fault Based Models Fault based models consider the
earthquakes that occur on recognized (i. e., previously
known) active faults. These models are also known as
renewal models. Renewal models assume that the stress
on an individual fault is “renewed” by the tectonic drive
of plate tectonics. The simplest renewal model would be
that of a single planar strike-slip fault subjected to a uni-
form rate of strain accumulation (plate motion). In this
case, “characteristic” earthquakes would occur periodi-
cally. Clearly the earth’s crust is much more complex with
faults present at all scales and orientations. This complex-
ity leads to chaotic behavior and statistical variability.
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An important question is whether the concept of
quasi-periodic “characteristic” earthquakes is applicable
to tectonically active areas. There is extensive evidence
that characteristic earthquakes do occur quasi-periodically
on major faults. Many studies have been carried out to
quantify the recurrence time statistics of these charac-
teristic earthquakes [43,45,67]. Recurrence time statistics
can be characterized by a mean value, �, and a coeffi-
cient of variation, Cv. The coefficient of variation is the
ratio of the standard deviation to the mean. Mathemati-
cally, Cv D 0 for periodic characteristic earthquakes and
Cv D 1 for a random distribution of recurrence times.
Ellsworth et al. [13] reviewed many examples of recur-
rence time statistics and concluded that Cv � 0:5 for char-
acteristic earthquakes.Many probability distribution func-
tions have been proposed for recurrence times, includ-
ing the Weibull, lognormal, Brownian passage time, and
gamma distributions.

Two major renewal simulation models have been de-
veloped. The first is “Virtual California” [49,50,53]. This
is a geometrically realistic numerical simulation of earth-
quakes occurring on the San Andreas fault system and in-
cludes all major strike-slip faults in California. The second
model is the “Standard Physical Earth Model” (SPEM) de-
veloped by Ward [69] and applied to characteristic earth-
quakes associated with subduction at the Middle Amer-
ican trench. This model was further developed and ap-
plied to the entire San Andreas fault system by Goes and
Ward [18], to the San Andreas system in southern Cal-
ifornia by Ward [70], and to the San Andreas system in
northern California by Ward [71].

Both simulationmodels utilize backslip, with the accu-
mulation of a slip deficit on each fault segment prescribed
using available data. The backslip represents the tectonic
drive. Both models “tune” the prescribed static friction
to give recurrence times that are consistent with available
data. In both models fault segments are treated as disloca-
tions when characteristic earthquakes occur, and all fault
segments interact with each other elastically utilizing dis-
location theory. These chaotic interactions result in statis-
tical distributions of recurrence times on each fault. The
resulting coefficients of variation are measures of this in-
teraction.

Yakovlev et al. [78] utilized the Virtual California
model to test alternative distributions of recurrence times.
They concluded that the Weibull distribution is prefer-
able and based its use on its scale invariance. The hazard
rate is the probability that a characteristic earthquake will
occur at a given time after the last characteristic earth-
quake. The Weibull distribution is the only distribution
that has a power-law (scale-invariant) hazard function. In

the same study, Yakovlev et al. [78] found that the coef-
ficient of variation of the recurrence times of 4606 simu-
lated great earthquakes on the northern San Andreas fault
is Cv D 0:528. Goes and Ward [18] using the SPEM sim-
ulator found that Cv D 0:50 � 0:55 on this fault. The two
simulations are quite different, so the statistical variabil-
ity appears to be a robust feature of characteristic earth-
quakes. A similar simulation model for New Zealand has
been given by Robinson and Benites [47,48].

Renewal models have also formed the basis for three
formal assessments of future earthquake probabilities in
California. These assessments were carried out by the
United States Geological Survey [72,73,74,75]. A major
problem with renewal models is that large earthquakes in
nature often occur on faults that were not previously rec-
ognized. Recent examples in California include the 1952
Kern County earthquake, the 1971 San Fernando Val-
ley earthquake, the 1992 Landers earthquake, the 1994
Northridge earthquake, and the 1999 Hector Mine earth-
quake. At the times when these earthquakes occurred, the
associated faults were either not mapped or were consid-
ered too small to have such large earthquakes. To com-
pensate for this problem, renewal models often include
a random level of background seismicity unrelated to rec-
ognized faults.

Seismicity Based Models An alternative approach to
probabilistic seismic hazard assessment and earthquake
forecasting is to use observed seismicity. The universal
applicability of Gutenberg–Richter frequency-magnitude
scaling allows the rate of occurrence of small earthquakes
to be extrapolated to estimate the rate of occurrence and
location of large earthquakes. This type of extrapolation
played an important role in creating the national seismic
hazard map for the United States [15].

A more formalistic application of this extrapolation
methodology is known as a relative intensity (RI) forecast.
This type of forecast was made on a world wide basis by
Kossobokov et al. [35] and to California by Holliday et
al. [23]. A related forecasting methodology is the pattern
informatics (PI) method [22,24,25,51,63,64]. This method
was used by Rundle et al. [51] to forecastm D 5 and larger
earthquakes in California for the time period 2000–2010.
This forecast successfully predicted the locations of 16 of
the 18 large earthquakes that have subsequently occurred.

Keilis-Borok [31,33] and colleagues utilized patterns of
seismicity to make formal intermediate term earthquake
predictions. The most widely used algorithm, M8, has
been moderately successful in predicting the times and lo-
cations of large earthquakes. More recently, this group has
used chains of premonitory earthquakes to make interme-
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diate term predictions [32,58]. Again, moderate success
was achieved.

It has also been proposed that there is an increase
in the number of intermediate sized earthquakes prior to
a large earthquake [26]. This phenomenon is known as ac-
celerating moment release (AMR) and is due primarily to
an increase in the number of intermediate-size events that
occur within a characteristic distance of the main shock
and that scale with magnitude. AMR is characterized by
a decrease in the rate of regional seismicity followed by
a rapid rebound back to historic levels. Sammis and Bow-
man [54] have proposed a number of physical models to
explain AMR. These include:

1. an analogy with critical phase transitions where the cor-
relation length of the stress field rapidly increases as the
system nears the critical point,

2. an erosion of a stress shadow from some previous, large
event, and

3. a slow, silent earthquake propagating upward on a duc-
tile extension loading the seismogenic crust above.

The existence of such a seismicity pattern does, however,
appear to require a certain regional fault system structure

Earthquake Forecasting and Verification, Figure 1
Plots of sample binary earthquake forecasts.a Prediction for amagnitude 6.4 or greater earthquake to occur between 5 January 2004
and 4 September 2004, within a 12,440 sq. miles area of southern California using the M8 algorithm (image courtesy Dr. Vladimir
Keilis-Borok). This is a binary forecast since it forecasts an earthquake to occur within the shaded area during the time period and not
to occur in the non-shaded region. Ultimately nomagnitude 6.4 or greater earthquake occurred in the test region during the forecast
interval. b Retrospective prediction for a magnitude 8.0 or greater earthquake to occur in the Sumatra region between 1 June 2003
and 1 June 2005 (image courtesy Dr. James Holliday). This is a time-dependent binary forecast since large earthquakes are forecasted
to occur in the test region within a two year window once the time series becomes positive. Note that the magnitude 9.0 Sumatra-
Andaman earthquake occurred 18months after the time series became positive

and density. Simulation models using a hierarchical dis-
tribution of fault sizes match this pattern well, but other
types of fault distributions may also support AMR [26].
Conversely, some real-world fault distributions may not
support AMR as a predictive tool. The AMR approach has
shown considerable success retrospectively [5,10,55] but
has not evolved into a successful prediction algorithm as
of yet.

Seismicity based models are often referred to as clus-
tering models. That is, clusters of small earthquakes indi-
cate the future occurrence of larger earthquakes. The RI,
PI, and AMR models clearly belong to this class. Other
approaches in this class are the epidemic type aftershock
sequence (ETAS) model [21,29,42,44] and the branch-
ing aftershock sequence (BASS) model. These are statisti-
cal models based on applicable scaling laws: Gutenberg–
Richter scaling relation and the modified Båth’s law for
the scaling relation of magnitudes, Omori’s law for the
distribution of earthquake times, and a modified form of
Omori’s law for the distribution of earthquake locations.
Clustering by definition is not a random process. A ratio-
nal for the application of clustering models is that the clus-
tering is related to families of foreshocks, main shocks, and
aftershocks.
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Types of Forecasts

Binary Forecasts The simplest type of earthquake fore-
cast is a binary forecast. An earthquake is forecast to occur
in a certain regions and forecast not to occur in other re-
gions. This is analogous to the issuance of tornado warn-
ings. Examples of two binary forecast maps are presented
in Fig. 1. The plot on the left is for a prediction for a mag-
nitude 6.4 or greater earthquake to occur between 5 Jan-
uary 2004 and 4 September 2004, within a 12,440 sq. miles
area of southern California using the M8 algorithm. This
map is a binary forecast since it forecasts an earthquake
to occur within the shaded area during the time period
and not to occur in the non-shaded region. The plot on
the right is a retrospective prediction for a magnitude 8.0
or greater earthquake to occur in the Sumatra region be-
tween 1 June 2003 and 1 June 2005. This is a time-depen-
dent binary forecast since large earthquakes are forecasted
to occur in the test region within a two year window once
the time series becomes positive and not to occur when the
time series is negative.

Earthquake Forecasting and Verification, Figure 2
Plots of sample continuum earthquake forecasts. a Time-dependent map giving the probability of strong shaking at any location in
California within a given 24-hour period (image courtesy USGS EarthquakeHazards Program). b Forecast map giving the probability
for large (m > 5) earthquakes in southern California using the Pattern Informaticsmethod (image courtesy Dr. Kristy Tiampo). Circles
mark the locations of large earthquakeswhich occurred after the forecast creation. Both of these are continuum forecasts since they
present a continuous likelihood for earthquakes to occur throughout the entire test region

Continuum Forecasts The alternative to binary fore-
casts is a continuum forecast. The likelihood of an earth-
quake throughout the entire region is specified. This
would be analogous to temperature forecasts in the at-
mospheric sciences. Examples of two continuum fore-
cast maps are presented in Fig. 2. The plot on the left is
a time-dependent map produced in real time by the USGS
Earthquake Hazards Program giving the probability of
strong shaking at any location in California within a given
24-hour period. The plot on the right is a forecast map giv-
ing the probability for large (magnitude greater than 5.0)
earthquakes in southern California using the Pattern In-
formatics method.

Any continuum forecast can be converted into a bi-
nary forecast through the use of a hard threshold. Spa-
tial regions where the likelihood value is greater than the
threshold are taken to be regions where earthquakes are
forecasted to occur. Spatial regions where the likelihood
value is less than the threshold value are taken to be re-
gions where earthquakes are forecasted not to occur.
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Forecast Verification

Continuum Forecasts

Likelihood Tests The standard approach for testing
the hypothesis that a probability measure can fore-
cast future earthquakes is the maximum likelihood
test [2,19,24,28,51,57,63]. The likelihood L is a probability
measure that can be used to assess the quality of one fore-
cast measure over another. Typically, one computes the
log-likelihood L � log(L) for the proposed forecast mea-
sure L. Models with higher (less negative) log-likelihood
values are said to perform better than models with lower
(more negative) log-likelihood values. In these types of
likelihood tests, a probability density function (PDF) is re-
quired. Two different PDFs are commonly used: a global,
Gaussian model and a local, Poissonian model.

Tiampo et al. [63] calculated likelihood values by
defining P[x] to be the union of a set of N Gaussian den-
sity functions pG (jx � xi j) [2] centered at each location
xi . Each individual Gaussian density has a standard devi-
ation � equal to the width of their coarse-grained lattice
cell and a peak value equal to the calculated probability di-
vided by �2. P[x(e j)] was then interpreted as a probability
measure that a future large event ej would occur at location
x(e j):

P[x(e j)] D
X

i

Pi
�2

e�
jx(e j )�xi j2

�2 : (2)

If there are J future events, the normalized likelihood L
that all J events are forecast is

L D
Y

j

P[x(e j)]P
i P[xi ]

: (3)

Furthermore, the log-likelihood value L for a given calcu-
lation can be calculated and used in ratio comparison tests:

L D
X

j

log
P[x(e j)]P

i P[xi ]
: (4)

The second model commonly used is based on work
performed by the Regional Earthquake Likelihood Models
(RELM) group [57]. For each coarse-grained lattice cell i
an expectation value i is calculated by scaling the local
probability value Pi by the number of earthquakes that oc-
curred over all space during the forecasted time period:

i D n � Pi ; (5)

where n is the number of future events. Note that for any
future time interval (t2; t3), n could in principle be esti-
mated by using the Gutenberg–Richter relation. For each

bin an observation value !i is also calculated such that
!i contains the number of future earthquakes that actu-
ally occurred in cell i. Note that

P
i !i D n. For the RELM

model, it is assumed that earthquakes are independent of
each other. Thus, the probability of observing !i events in
cell i with expectation i is the Poissonian probability

pi (!i ji ) D

!i
i
!i !

e��i : (6)

The log-likelihood L for observing ! earthquakes at
a given expectation  is defined as the logarithm of the
probability p(!j), thus

L(!j) D log p(!j) D �C ! log  � log(!!) : (7)

Since the joint probability is the product of the individual
cell probabilities, the log-likelihood value for a given cal-
culation is the sum of L(!i ji ) over all cells i:

L D
X

i

L(!i ji ) D
X

i

(�iC!i logi�log(!i !)): (8)

Most tests of earthquake forecasts have emphasized the
likelihood test [24,28,51,64]. These tests have the signifi-
cant disadvantage that they are overly sensitive to the least
probable events. For example, consider two forecasts. The
first perfectly forecasts 99 out of 100 events but assigns
zero probability to the last event. The second assigns zero
probability to all 100 events. Under a log-likelihood test,
both forecasts will have the same skill score of �1. Fur-
thermore, a naive forecast that assigns uniform probability
to all possible sites will always score higher than a forecast
that misses only a single event but is otherwise superior.
For this reason, likelihood tests are more subject to un-
conscious bias. Other methods of evaluating earthquake
forecasts are suggested by Vere-Jones [20] and Holliday et
al. [25].

Information Metrics One such alternative is the use
of information metrics. Using methods from information
theory [12], it is possible to calculate the entropy, H, of
a forecast map. Entropy can be considered a measure of
disorder (e. g. randomness) or “surprise”, hencemaps with
lower entropy contain more useful information than maps
with higher entropy. We define entropy as

H(z) D �
NX

iD1

p(xi ; z) log p(xi ; z) ; (9)

where

p(xi ; z) D
�
P(xi ) P(xi ) � z

0 P(xi ) < z ; (10)
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and the probabilities are scaled such that
PN

iD1 p(xi ) D 1.
This definitions allows a measurement of entropy as
a function of some lower threshold z. A small, non-zero
value for z allows for the measurement of the entropy
above and relative to background noise.

Binary Forecasts

ROC Analysis The standard approach to the evaluation
of a binary forecast is the use of a relative operating char-
acteristic (ROC) diagram [39,60]. This method evaluates
the performance of the forecast method relative to random
guessing by constructing a plot of the fraction of failures
to predict (events that occur where no event is forecast)
against the fraction of false alarms (events that are fore-
casted to occur at a location but do not occur) for an en-
semble of forecasts. Molchan [41] has used a modification
of this method to evaluate the success of intermediate term
earthquake forecasts.

The binary approach has a long history, over 100 years,
in the verification of tornado forecasts [39]. These fore-
casts take the form of a tornado forecast for a specific loca-
tion and time interval, each forecast having a binary set of
possible outcomes. For example, during a given time win-
dow of several hours duration, a forecast is issued in which
a list of counties is given with a statement that one or more
tornadoes will or will not occur. A 2 � 2 contingency ta-
ble is then constructed, the top row contains the counties
in which tornadoes are forecast to occur and the bottom
row contains counties in which tornadoes are forecast to
not occur. Similarly, the left column represents counties
in which tornadoes were actually observed, and the right
column represents counties in which no tornadoes were
observed.

With respect to earthquakes, binary forecasts take ex-
actly this form. A time window is proposed during which
the forecast of large earthquakes having a magnitude
above some minimum threshold is considered valid. An
example might be a forecast of earthquakes larger than
M D 5 during a period of five or ten years duration. Amap
of the seismically active region is then completely covered
(“tiled”) with boxes of two types: boxes in which the epi-
centers of at least one large earthquake are forecast to oc-
cur and boxes in which large earthquakes are forecast to
not occur. In other types of forecasts, large earthquakes
are given some continuous probability of occurrence from
0% to 100% in each box [28]. These forecasts can be con-
verted to the binary type by the application of a thresh-
old value. Boxes having a probability below the threshold
are assigned a forecast rating of non-occurrence during
the time window, while boxes having a probability above

Earthquake Forecasting and Verification, Table 2
Schematic contingency table for categorical forecasts of a binary
event

Forecast Observed
Yes No Total

Yes a b aC b
No c d cC d
Total aC c bC d aC bC cC d D N

the threshold are assigned a forecast rating of occurrence.
A high threshold value may lead to many failures to pre-
dict, but few false alarms. The level at which the threshold
is set is then a matter of public policy specified by emer-
gency planners, representing a balance between the preva-
lence of failures to predict and false alarms.

Contingency Tables An extensive review on forecast
verification in the atmospheric sciences has been given
by Jolliffe and Stephenson [27]. The wide variety of
approaches that they consider are directly applicable
to earthquake forecasts as well. Verification of earth-
quake forecasts proceeds in exactly the same was as for,
say, tornado forecasts when using these approaches. For
a given forecast, the contingency table (see Table 2)
is constructed. Values for the table elements a (Fore-
cast=yes, Observed=yes), b (Forecast=yes, Observed=no),
c (Forecast=no, Observed=yes), and d (Forecast=no, Ob-
served=no) are obtained from the forecast map. The frac-
tion of alarm space, also called the probability of fore-
cast of occurrence, is r D (aC b)/N , where the total
number of boxes is N D aC bC c C d. The hit rate is
H D a/(aC c) and the false alarm rate is F D b/(b C d).
From these quantities a number of descriptive, perfor-
mance, and skill measures can be constructed [27]. Table 3
lists a few possible measures.

ROC Curves The standard ROC diagram [23,27] is
a plot of the points fH; Fg calculated for a binary fore-
cast (see Fig. 3). If the forecast was converted from con-
tinuum map, H and F are plotted as the lower (con-
version) threshold is varied. A perfect forecast of oc-
currence (perfect order, no fluctuations) would consist
of two line segments, the first connecting the points
(H; F) D (0; 0) to (H; F) D (1; 0), and the second con-
necting (H; F) D (1; 0) to (H; F) D (1; 1). A curve of this
type can be described as maximum possible hits (H D 1)
with minimum possible false alarms (F D 0). Another
type of perfect forecast consists of two lines connecting the
points (0,0) to (0,1) and (0,1) to (1,1), a perfect forecast of
non-occurrence.
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Earthquake Forecasting and Verification, Table 3
Table of various descriptive and performance measures that can be calculated from the binary contingency table for an earthquake
forecast

Name Definition Definition (H, F, and � ) Range
Fraction of alarm space � � D (aC c)/N � [0; 1]
Hit rate H H D a/(aC c) H [0; 1]
False alarm rate F F D b/(bC d) F [0; 1]
False alarm ratio FAR FAR D b/(aC b) FAR D (1C �

1��
H
F )
�1 [0; 1]

Miss rate � � D c/(aC c) � D 1� H [0; 1]
Peirce’s skill score PSS PSSD ad�bc

(bCd)(aCc) PSSD H� F [�1; 1]

Yule’s Q Q D ad�bc
adCbc Q D H�F

H(1�f )CF(1�H) [�1; 1]

Peirce Area A A D
R
PSS A D

R
HdF � 1

2 [� 1
2 ;

1
2 ]

Earthquake Forecasting and Verification, Figure 3
Sample relative operating characteristic (ROC) diagram. Shown is a plot of hit rates,H, as a function of false alarm rates, F, for a sample
earthquake forecast (blue) and random guessing (black). Confidence intervals for the one-, two- and three-� levels are shown as
well [23,80]

The line H D F occupies a special status, and cor-
responds to a completely random forecast [23,27] (max-
imum disorder, maximum fluctuations) where the false
alarm rate is the same as the hit rate and no informa-
tion is produced by the forecast. Points above this line are
said to have performed better than simple random guess-
ing. If competing forecasts are plotted on the same graph,
the forecast whose H–F curves lies the highest is said to
outperform the others. Often, however, competing fore-
casts will have intersecting curves. In this case, forecasts

are said outperform each other only in specific ranges and
only for specific choices of the lower (conversion) thresh-
old value.

�–
 Curves An alternative diagram [41] is a plot of the
points f�; �g for a binary forecast map. In this case a per-
fect forecast of occurrence would consist of two line seg-
ments, the first connecting the points (�; �) D (0; 0) to
(�; �) D (0; 1), and the second connecting (�; �) D (0; 1)
to (�; �) D (1; 1). A curve of this type can be described as
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minimum possible missed events (� D 0) with minimum
possible alarm space (� D 0).

As with the H–F curve, the line � D � corresponds to
a completely random forecast. Points below this line are
said to have performed better than simple random guess-
ing. If competing forecasts are plotted on the same graph,
the forecast whose �–� curves lies the lowest is said to out-
perform the others. As can be verified from Table 3, �–�
curves offer the same information as H–F curves and are
identical in the range a
 d.

Future Directions

It is actually quite surprising that immediate local precur-
sory phenomena are not seen. Prior to a volcanic eruption,
increases in regional seismicity and surfacemovements are
generally observed. For a fault system, the stress gradu-
ally increases until it reaches the frictional strength of the
fault and a rupture is initiated. It is certainly reasonable to
hypothesize that the stress increase would cause increases
in background seismicity and aseismic slip. In order to
test this hypothesis the Parkfield Earthquake Prediction
Experiment was initiated in 1985. The expected Parkfield
earthquake occurred beneath the heavily instrumented re-
gion on 28 September 2004. No local precursory changes
were observed [3,36]. In the absence of local precursory
signals, the next question is whether broader anomalies
develop, and in particular whether there is anomalous seis-
mic activity.

Assuming precursors do exist and can be exploited
to create earthquake forecasts, testing and verification of
the usefulness of the forecasts is the necessary next step.
A forecast method that predicts all earthquakes but car-
ries a high false alarm rate is likely to be useless as a pub-
lic warning tool. Similarly, a forecast method that issues
warnings for only a small fraction of actual earthquakes
but never issues false alarms is likely to be a poor tool for
catastrophe preparation. Forecast verification techniques
can be used to find the middle ground that is most use-
ful.

As a final warning, researchers must be careful not to
create artificial skill in their forecasts. Since nature pro-
vides us only with one earthquake record (the actual his-
tory of a given test region), the quality of a new forecast
system is often assessed on the same data set used to cre-
ate it. This can potentially lead to an optimistic bias in any
skill scores. This is a particular problem if the score itself is
used to calibrate the method, either directly or indirectly.
Development of realistic earthquake simulators and cross-
testing against test regions with similar fault structures can
help protect against this.
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Glossary

Arrival time The time of the first measurable energy of
a seismic phase on a seismogram.

Centroid The coordinates of the spatial or temporal av-
erage of some characteristic of an earthquake, such as
surface shaking intensity or moment release.

Data space If the data are described by a vector d, then
the data space D is the set of all possible values of d.

Direct search A search or inversion technique that does
not explicitly use derivatives.

Earthquake early-warning The goal of earthquake early-
warning is to estimate the shaking hazard of a large
earthquake at a nearby population center or other crit-
ical site before destructive S and surface waves have
reached the site. This requires that useful, probabilis-
tic constraint on the location and size of an earthquake
is obtained very rapidly.

Earthquake location An earthquake location specifies
a spatial position and time of occurrence for an
earthquake. The location may refer to the earthquake
hypocenter and corresponding origin time, a mean or
centroid of some spatial or temporal characteristic of
the earthquake, or another property of the earthquake
that can be spatially and temporally localized. This
term also refers to the process of locating an earth-
quake.
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Epicenter The point on the Earth’s surface directly above
a hypocenter.

Error A specified variation in the value assumed by a vari-
able. See also uncertainty.

Global search A search or inversion that samples
throughout the prior pdf of the unknown parameters.

Hypocenter The point in three-dimensional space of ini-
tial energy release of an earthquake rupture or other
seismic event.

Importance sampling A sampling procedure that draws
samples following the posterior pdf of an inverse, op-
timization or other search problem. Since these prob-
lems involve initially unknown, posterior pdf func-
tions, importance sampling can only be performed ap-
proximately, usually through some adaptive or learn-
ing procedure as sampling progresses.

Inverse problem, inversion The problem of determining
the parameters of a physical system given some data.
The solution of an inverse problem requires measure-
ments of observable quantities of the physical system,
and the mathematical expression (the forward prob-
lem) that relates the parameters defining the physi-
cal system (model space) to the data (data space). In
inverse problems, estimates of the unknown parame-
ters in the model space and of their uncertainties are
sought from the combination of the available informa-
tion on the model parameters (prior pdf ), the data and
the forward problem.

Likelihood function A non-normalized pdf .
Misfit function A function that quantifies the disagree-

ment between observed and calculated values of one
or more quantities. See objective function.

Model space If the model parameters are described by
a vector m, then model space M is the set of all pos-
sible values ofm.

Objective function A function expressing the quality of
any point in the model space. Inversion and optimiza-
tion procedures use an objective function to rank and
select models. Usually objective functions are defined
in terms of misfit functions, and for probabilistic in-
version the objective function must be a pdf or likeli-
hood function.

Origin time The time of occurrence of initial energy re-
lease of an earthquake rupture or other seismic event.

Prior pdf A pdf that expresses the information on the un-
known parameters available before an inverse problem
is solved. For an earthquake location, the prior pdf is
often a simple function (e. g., boxcar) of three spatial
dimensions and time. See also Inverse problem.

Probability density function – pdf A function in one or
more dimensional space X that (i) when integrated

over some interval 
x in X gives a probability of oc-
currence of any event within
x, and (ii) has unit inte-
gral over space X, where X represents a space of possi-
ble events. An earthquake location pdf is often a 3-di-
mensional probability density function over all pos-
sible spatial locations or a 4-dimensional probability
density function over all possible spatial locations and
times of occurrence.

Posterior pdf A pdf that expresses the information about
the unknown parameters available after inversion.
The posterior pdf for an earthquake location is often
a function of the three spatial dimensions and the ori-
gin time of the hypocenter parameters; this function
may be complicated. See also Inverse problem.

Ray path A local minimum-time path between a source
and receiver of idealized, infinite frequency wave en-
ergy of a specified wave type (e. g., P or S).

Receiver or station Synonyms for an observation point
where ground motion is detected and a seismogram
recorded.

Seismic phase A distinct packet of energy from a seismic
source. Usually refers to a specified wave type (e. g.
P or S) satisfying a particular physics of wave propa-
gation.

Seismicity The distribution in space and time of seismic
event locations.

Seismogram An analogue or digital recording of the
ground motion at a point (receiver or station) in the
Earth. Also called a waveform.

Source A general term referring to an earthquake, explo-
sion or other release of seismic energy as a physical
phenomenon localized in space and time.

Station See receiver.
Travel time The time that a signal, e. g. elastic wave en-

ergy of a seismic phase, takes to propagate along a ray
path between two points in a medium.

Uncertainty Random variation in the values assumed by
a variable. See also error.

Definition of the Subject

An earthquake location specifies the place and time of oc-
currence of energy release from a seismic event. A loca-
tion together with a measure of size forms a concise de-
scription of themost important characteristics of an earth-
quake. The location may refer to the earthquake’s epicen-
ter, hypocenter, or centroid, or to another observed or cal-
culated property of the earthquake that can be spatially
and temporally localized. A location is called absolute if
it is determined or specified within a fixed, geographic co-
ordinate system and a fixed time base (e. g., Coordinated
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Universal Time, UTC); a location is called relative if it is
determined or specified with respect to another spatio-
temporal object (e. g., an earthquake or explosion) which
may have unknown or uncertain absolute location.

For rapid hazard assessment and emergency response,
an earthquake location provides information such as the
locality of potential damage or the source region of a pos-
sible tsunami, and a location is required to calculate most
measures of the size of an earthquake, such as magnitude
or moment. Locations are required for further analysis and
characterization of the event, for studies of general pat-
terns of seismicity, to calculate distributions of stress and
strain changes around the earthquake, for assessing future
earthquake hazard, and for basic and applied seismologi-
cal research.

Since earthquakes occur deep in the Earth, their source
locations must be inferred indirectly from distant obser-
vations, and earthquake location is thus a remote-sens-
ing problem. Most commonly an earthquake location is
determined by the match or misfit between observed ar-
rival times of seismic wave-energy at seismic stations, and
predictions of these arrival times for different source lo-
cations using a given elastic-wave speed model; this is
an inverse problem. Essentially, many potential locations
(place and time) are examined and those for which some
measure of misfit between predicted and measured arrival
times is smallest are retained as best estimates of the true
location.

Many numerical location methods involve lineariza-
tion of the equations relating the predicted arrival times
to the location through Taylor expansion involving partial
derivatives; these are called linearized methods. Methods
that do not involve linearization are called nonlinearized
or direct-search methods. The term nonlinear is used am-
biguously in geophysics to refer to linearized-iterated and
to nonlinearized methods. In this chapter we focus on
nonlinearized, direct-search methods, and to avoid ambi-
guity we identify them with the term direct-search.

Direct-search location can be performed through
graphical analysis, regular or stochastic searches over
a space of possible locations, and other algorithms. Di-
rect-search earthquake location is important because, rel-
ative to linearized methods, it is easy to apply with realistic
earth models which may have abrupt and complicated ve-
locity variations in three-dimensions, it places little restric-
tion on the form of the measure of misfit, it is stable (i. e.,
does not suffer numerical convergence problems) when
the observations are insufficient to fully constrain the spa-
tial location or origin time, and it can produce comprehen-
sive, probabilistic solutions which indicate the full location
uncertainty, often a complex function of space and time.

Conversely, the primary advantage of linearized location
methods is that they are much less demanding computa-
tionally than direct-search methods.

Introduction

Most commonly, an earthquake location is determined us-
ing observed seismic-phase arrival-times and associated
uncertainties, and predicted travel times in a given wave-
speed model. Ideally, the location procedure will deter-
mine a 4-dimensional, posterior probability density func-
tion, or location pdf , over all possible solutions (spatial lo-
cations and origin times). This location pdf quantifies the
agreement between predicted and observed arrival times
in relation to all uncertainties, and forms a complete, prob-
abilistic solution. In practice, however, an earthquake lo-
cation is often specified as some optimal solution (a point
in space and time) with associated uncertainties.

The earliest, formal earthquake locations using seis-
mic-phase arrival-time observations employed direct-
search procedures such as graphical methods (e. g., [37])
or simple grid searches (e. g., [52]). The advent of digi-
tal computers in the 1960’s lead to the use of iterated lin-
earized approaches based mainly on Geiger’s method [17].
Since the 1980’s, the increasing power of digital computers
has made large-scale, grid and stochastic direct searches
practical for routine earthquake location. Direct-search
methods are now used routinely in research and earth-
quake monitoring (e. g., [22,23,31,32,46,48,61]).

In principle, direct-search methods can be applied to
locate the relative positions of ensembles of events, and for
joint epicentral determination (e. g., [47]) to simultane-
ously determine multiple earthquake locations and station
corrections related to errors in the velocity model. How-
ever, the high-dimensionality of such problems makes
direct-search solution difficult and computationally de-
manding; at the present time these problems are usually
performed through large scale, linearized procedures. For
these reasons, we mainly consider here absolute location
of individual events.

In this article we describe the earthquake location
problem and direct-search methods used to perform this
location, and we present a number of examples of di-
rect-search location. We do not compare different direct-
search location methods or compare direct-search to lin-
earized algorithms, but instead focus on illustrating im-
portant features and complexity in earthquake location re-
sults. For this reason we emphasize direct, global-search,
probabilistic location, which produces general and com-
plete solutions that best illuminate these features and
complexity.
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The Earthquake Location Problem

An Inherently Nonlinear Problem

In a homogeneous medium with wave speed v and slow-
ness defined to be u D 1/v, the arrival time, tobs, at an ob-
servation point xobs, yobs, zobs of a signal emitted at origin
time t0 from a source location at x0; y0; z0 is,

tobs D t0Cu
h
(xobs�x0)2 C

�
yobs�y0

2
C (zobs�z0)2

i1/2
;

(1)

This expression shows that a change in the spatial position
of the source introduces a nonlinear change in tobs, even
in the simplest possible medium. When the speed v and
hence slowness u are inhomogeneous in space, the arrival
time at the observation point becomes,

tobs D t0 C
Z

r0(s)

u (r0) ds ; (2)

where r0(s) denotes a point at distance s along ray path
r0 between source and receiver locations. Equation (1) is
a special case of (2) that has straight source-receiver ray
paths. Equation (2) is nonlinear since a change in the
source location changes the ray path over which the inte-
gral is calculated. Thus, earthquake location, which maps
arrival times into spatial location and origin time, is inher-
ently a nonlinear problem.

The Observed Data

Data used to constrain earthquake locations are usually
derived from seismograms recorded at seismic stations
distributed around the earthquake source area, usually at
or near the surface of the Earth. The derived data for
earthquake location include arrival times, polarization an-
gles, or array slownesses and azimuths. For earthquake
location there are three important aspects of this data
determination:

1) choosing locations for the stations (before data have
been collected),

2) deriving data and associated uncertainties from the
seismograms, and

3) association of the derived data into subsets of data cor-
responding to unique events.

The first important aspect of data determination is choos-
ing station locations with the goal of constraining as tightly
as possible event locations for a given source area; this is
classified as a problem of “experimental design” in the field
of statistics. The design problem must be resolved prior to

data collection and so is posed in terms of expected data,
and expected location results. We describe experimental
design techniques in more detail later, after introducing
and discussing the location solution on which such designs
depend.

Once stations are installed and have recorded seismo-
grams from earthquakes of interest, a data set must be ex-
tracted that is sensitive to the event source location, and
which we can associate with some physics (e. g., of P or S
waves) and paths of wave propagation. Most commonly
for earthquake location the data set will be phase arrival
times and associated uncertainties picked manually or au-
tomatically from seismograms (Fig. 1). It is often easy to
detect and pick arrivals manually since the human eye can
identify a change in amplitude or frequency in the sig-
nal even in the presence of significant noise. The picking
of the S phase is sometimes more difficult because it ar-
rives in the P coda and can be preceded by S to P or other
converted phases; this is a common problem with record-
ings at local (e. g., up to about 100 km) and near-regional
(e. g., up to about 300 km) distances, especially if horizon-
tal component seismograms are not available. The auto-
matic detection, identification and picking of P and S ar-
rivals is much more difficult, especially in the presence of
high noise levels. However, automatic detection and pick-
ing is faster and, for the case of initial P phases or other
phases with characteristic forms, can produce a more con-
sistent data set than manual processing. Automatic arrival
detection relies on identifying temporal variations in en-
ergy, frequency content, polarization or other character-
istics of the signal which are anomalous relative to their
background or noise level. Often the detection and picking
algorithms are applied to filtered and processed time-se-
ries in order either to reduce noise, or to augment the sig-
nal in pre-set or dynamically-determined frequency bands
or polarization directions. See [18] for an approach that
exploits neural networks for phase identification and pick-
ing, and [82] for a review and systematic comparison of
several approaches to automatic detection and picking.

The data used for earthquake location (e. g., arrival
times) must have associated uncertainty estimates other-
wise the location uncertainty and a probabilistic solution
(i. e., location pdf ) can not be calculated. Most generally,
a vector d that describes the data takes values from a data
space D, and p(d) denotes the pdf representing uncer-
tainty in d. The uncertainty in arrival time data should in-
clude not only an estimate of the uncertainty in the picked
phase arrival time, but also uncertainty in which phase
(e. g., P or S) is associated with the pick. If there are multi-
ple expected phase arrivals close to the picked arrival time
of a phase, then ideally these should all be taken as can-
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Earthquake Location, Direct, Global-Search Methods, Figure 1
A short waveform segment (� 5 sec) showing the firstPwavearrivals from a small earthquake in Northern Italy recorded on a vertical
component seismogram at a nearby station. Automatic arrival pick times (vertical blue lines) and uncertainty estimates (blue error-
bars) are shown for two phases, a first arriving P phase (P0) and secondary P arrival (P1). The red curves show the data pdf functions
representing these arrival pick times and uncertainties for an event location procedure where the data P(d) is approximated by
a normal distribution. The green curves show irregular, asymmetric pdf functions thatmaymore accurately represent the uncertainty
in the phase arrival times; if such pdf functions were routinely estimated during arrival picking, they could be used for direct-search
location without major difficulty

didate phase types for the arrival. Also, the pick uncer-
tainty of each phase may be best described by a pdf that
is asymmetric in time, since usually a latest-possible time
for a pick is much easier to define than the earliest time
(Fig. 1). True data uncertainty pdf ’s are therefore gener-
ally multi-modal, and can be quite complex to calculate
and parametrize. In practice, an enumerated quality indi-
cation or, at best, a simple normal distribution (Gaussian
uncertainty) is used to describe the picking error, and the
phase association is usually fixed (e. g. to P or S) so cor-
responding uncertainties are ignored. In many cases these
simplified data uncertainty estimates will lead to bias or
increased error in the resulting event locations.

The third important aspect of data determination is the
association of the derived data into sets of data for unique
events. For example, this association may entail the assign-
ment of each observed arrival time within a specified time
window to a unique event, forming the minimum possi-
ble number of events and corresponding arrival time sets
required to explain observed data. This association proce-
dure can be very difficult, especially with automatic sys-
tems and when there are signals from multiple seismic
events that are close or overlapping in time (e. g., [24]),
and we do not address this issue further here. In the fol-
lowing, except for an examination of outlier data, we im-
plicitly assume that location is performed with a data set
that is already associated to a unique event.

The Velocity or Slowness Model

The velocity or slowness model specifies seismic wave-
speeds in the region of the Earth containing the sources,
the receivers and the ray paths between the sources and
receivers. Equation (2) is nonlinear with respect to source
location, but also with respect to slowness since a change
in the slowness distribution of the medium changes the
ray path. The velocity structure is sometimes estimated
through coupled, simultaneous inversions for velocity
structure and event locations (commonly called seismic
tomography), but these are very large inverse problems
solved mainly with linearized methods. Usually for earth-
quake location the velocity model is taken as known and
fixed.

Often, for computational convenience or due to lack of
information, the velocity model is parametrized with ve-
locity varying only with depth. This is commonly called
a laterally homogeneous or 1-dimensional (1D) model.
Such a model may consist of one or more layers of con-
stant or vertical-gradient wave-speeds. For work at a lo-
cal or near-regional scale the layers may be horizontal and
flat; for larger, regional or global scale problems the lay-
ers should be spherically symmetric shells to represent the
curvature of the Earth. When more information on the
velocity structure is available, a 3D model may be used
in order to increase the accuracy of the ray paths and
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travel times, and hence of the locations, relative to a 1D
model. All models, whether 1D or 3D, are described by
a limited number of parameters and include some form
of spatial averaging or interpolation with respect to the
true Earth. Although 3D models can potentially represent
velocity variations in the Earth more accurately than 1D
models, in practice the velocities in 3D models can locally
be poorly constrained and have large errors. It is there-
fore often important to consider several different possible
1D and 3D velocity structures in a location study, either
to test the sensitivity of the locations to errors in velocity,
or to better estimate the travel-time uncertainties and pro-
duce a more meaningful location pdf . In principle the use
of diverse velocity models poses no difficulties with direct-
search location methods.

The Travel-Time Calculation

The theoretical seismic wave travel-times through a given
velocity model between any particular source and receiver
locations are required by most location algorithms. The
calculation of travel times is commonly referred to as for-
ward modeling, because inverse theory need not be in-
voked. There are three basic classes of methods to calcu-
late the travel times: full-waveformmethods, ray methods,
and Huygens wavefront or eikonal methods.

Full-waveform methods (e. g., [1]) produce complete
synthetic seismograms from which predicted travel times
can be extracted. These methods include frequency–
wavenumber or modal-summation techniques which are
valid for a broad range of frequencies and can produce ex-
act waveforms, but which are only applicable for relatively
simple velocity structures. Numerical techniques such as
finite elements and finite differences can accurately model
full wave phenomena in complicated structures, but these
methods typically require large computing resources and
computing time. Currently, full-waveform methods are
rarely used to determine predicted travel times for earth-
quake location because these times can be obtained di-
rectly and more efficiently with ray and eikonal methods.

Ray methods (e. g., [1,7,75]) provide travel times and
the path, or ray, traveled by high-frequency waves, and
can be applied to complicated and 3D velocity structures.
With simple model parametrizations such as flat layers
with constant or gradient velocity, ray paths and travel
times can be determined very rapidly with analytical or
semi-numerical algorithms. For these and more compli-
cated models, shooting, or ray tracing techniques generate
rays by iterativly solving of a set of ray-tracing equations
starting in a specified direction at the source or receiver lo-
cation. The ray that passes through a specified end point is

found by a search over the direction at the starting point;
this search can be time consuming or unstable. In addi-
tion, shooting methods do not produce diffracted arrivals
(e. g., “head waves” from the Mohorovičić discontinuity)
which are often the first arriving signal at near-regional
distances and are thus critical for earthquake location.
Two-point, ray bending and perturbation techniques rely
on Fermat’s principle of least time: an initial guess at the
ray between two points is perturbed repeatedly to attain
a minimum travel time and corresponding ray between
the points. These techniques perform best with smooth
models, but do produce diffracted arrivals. In general, ex-
cept for analytical or semi-numerical algorithms in simple
models, ray methods are too computationally expensive
for direct-search location, which usually requires evalua-
tion of travel times between a very large number of source
and receiver positions. However, some ray bending meth-
ods (e. g., [39,77]) are efficient enough to be used in direct-
search location when a relatively small number of source
and receiver positions position need to be examined.

Wavefront, eikonal and graph-based methods [75]
provide travel-times of the first arriving, high frequency
waves including diffracted arrivals, and are efficient and
applicable with complicated, 3D velocity structures. In ef-
fect, these methods propagate wavefronts through a veloc-
ity model with repeated application of Huygen’s principle,
by considering a large number of virtual sources (Huy-
gens sources) along each wavefront. At time t these sources
emit circular wavelets which expand for a small time 
t
through the (constant) local, medium velocity. The locus
of the first arriving circular wavelets defines the new wave-
front location at time t C
t. The synthetic travel time
of the first-arriving energy at the receiver is the time at
which a wavefront first touches the receiver. In practice,
this problem is solved on a computer either by replicat-
ing this “wavefront marching” process (e. g., [50,66]), or
by finding a numerical solution to the eikonal equation
(e. g., [44,79]), or by graphical analysis (e. g., [38]). Though
wavefront, eikonal and graph-based methods produce di-
rectly only the travel time of the first-arriving signal, in-
formation about the path traveled by the signal can be de-
rived numerically from the travel-time field or from ray-
tracing, and travel-times of secondary arrivals can be ob-
tained through multi-stage calculations (e. g., [44,51]).

Wavefront, eikonal and graph-based methods can effi-
ciently generate the travel-times from one point in a grid-
ded velocity model to all other points in the model. This
makes these methods particularly useful for direct-search
location, which may test a large number of possible source
positions widely distributed in space. For this purpose, the
travel times from each seismic station to all points in the
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model can be pre-calculated and stored in computer disk
files or in memory; obtaining the travel time from a sta-
tion to any other point then reduces to a simple lookup
(e. g., [35,38]).

A Complete Solution – Probabilistic Location

Consider a vector dobs of observed data (e. g., arrival times)
that takes values in a data space D, and let p(d) be the pdf
over D describing the data uncertainty in dobs due to mea-
surement and processing uncertainties. Similarly, letm de-
note the vector of source location parameters (spatial co-
ordinates and origin time) which take values from param-
eter space M. Let p(m) be the prior pdf representing all
information available about the location before (prior to)
using the data dobs; p(m) might include knowledge of the
known, active fault zones in the area, or might specify the
bounds of a region within which we know the event oc-
curred from damage reports, or of a region containing the
network of stations that recorded the event. Also consider
the forward problem (e. g., travel time calculation) relat-
ing m to a vector of predicted data (e. g., arrival times),
dcalc. In general the forward problem may also be uncer-
tain, for example due to uncertainties in velocity structure,
so we use F(d;m) to denote the pdf of the relationship be-
tween dcalc andm as constrained by the forward problem.

As an example of F, it is commonly assumed that for
each particular m, the corresponding predicted data dcalc
are given by a function f(m) with negligible errors. Then
the conditional pdf F(djm) (the probability distribution
of d when m is fixed at a particular value) is described by
F(djm) D ı[d � f(m)] where ı is the Dirac delta-function.
Also, the forward problem is often assumed to place min-
imum possible constraint on parameters m; the pdf de-
scribing this state of information aboutm is called the ho-
mogeneous distribution, represented by �(m). No pdf ex-
ists that describes zero information, but some information
aboutm always exists in practice (the positivity of param-
eter values, for example); �(m) describes that minimum
state of information. In that case the forward problem is
given by [73,74],

F(d;m) D ı[d � f(m)]� (m) : (3)

A solution to the earthquake location problem is found by
combining the information in the observed data, p(d), the
prior pdf , p(m), and the ability of the forward problem to
predict the observed data, F(d;m) [73,74]. This is achieved
in a probabilistic framework by constructing a pdf Q de-
scribing the state of posterior (post-experimental) infor-

mation by:

Q(d;m) D k
p(d)F(d;m)p(m)

�(d;m)
; (4)

where the constant k normalizes Q to unit integral over
D � M and �(d;m) is the homogeneous distribution over
data d and parametersm. Equation (4) contains all infor-
mation (from the prior knowledge, data and physics) that
could have a bearing on location m, and defines a joint
pdf between parametersm and data d. The final, posterior
state of information about location parametersm is given
by integrating over the data d to obtain the marginal pos-
terior pdf ,

Q(m) D k p(m)
Z

D

p(d)F(d;m)
�(d;m)

dd : (5)

Equation (5) is the general, probabilistic solution to the
inverse problem of event location from the available data
since it describes the uncertainty in event locationm given
all available information. It is usual to call the integral in
(5) the likelihood function L(m), which gives a (non-nor-
malized) measure of how good any modelm is in explain-
ing the observed data p(d).

As mentioned earlier it is often the case that p(d)
for the observed data is approximated by a Gaussian
distribution, described by mean d0 and covariance ma-
trix Cd . Assuming that the uncertainties in the forward
problem F relating d and m are negligible results in the
form of F in Eq. (3). It is also usually assumed that d
and m are independent and hence that �(d;m) can be
written �(d)�(m); �(d) is usually taken to be constant.
With these simplifications, used by many current direct-
search location procedures, the (non-normalized) likeli-
hood function is given by,

L(m) D exp
�
�
1
2
[d0 � f(m)]T C�1d [d0 � f(m)]

�
: (6)

With the above simplifications a maximum likelihood ori-
gin time, t0, can be determined analytically from weighted
means of the observed arrival times and the predicted
travel times (e. g., [74]), and if the observed and predicted
times are uncorrelated we arrive at a likelihood function,

L (x) D exp

(

�
1
2

X

i

�
To
i � Tc

i (x)
�2

�2i

)

; (7)

where x is the spatial part of m, To
i are observed travel

times, Tc
i are the calculated travel times for observation i

(i. e., Tc
i represents the travel time, rather than arrival time,
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part of f(m)), and � i summarizes the associated standard
deviation of uncertainty in To

i and Tc
i .

Though not normalized, L(x) is sufficient to provide
the relative probability of any locationm being the best es-
timate of the event location given the available data mea-
surements. Since in practice integrating over all of D � M
to find normalizing constant k in Eq. (5) is often compu-
tationally intractable, the product of the prior, spatial lo-
cation information p(x) (i. e., the spatial part of p(m)) and
the non-normalized likelihood L(x) is usually taken as the
objective function for inversion and searching in direct-
search location algorithms. If L(x) is determined through-
out the prior pdf p(x) through a global-search, then Eq. (5)
can be normalized approximately after location. In the fol-
lowing text and examples, we refer to such an approxi-
mately normalized function, p(x) L(x), as a location pdf .

The likelihood function in Eq. (5) is entirely defined by
the probabilistic error processes involved. However, often
it is desirable to change the approximations employed in
deriving Eqs. (6) and (7) from Eq. (5), in order to remove
biases or instability in the solution. The approximation in
Eq. (6) uses the exponential of an L2-norm misfit function
(the term in braces { } in Eq. (6) or (7)) to represent the
pdf of the data error variation, but because data used for
location often contain outliers it is often considered that
an L1 norm or other Lp norm (p < 2:0) is more appropri-
ate (e. g., [69]), where Lp�norm jxj D 1/p

pP
jxi jp . Earth-

quake location problems formulated with an Lp norm (or
indeed other kinds of likelihood functions – see Eq. (8)
below), can be solved relatively easily with direct-search
methods, which, unlike linearizedmethods, do not require
determination of partial derivatives of the likelihood or
objective function with respect to event location.

An alternative to Lp-likelihood functions that is very
robust in the presence of outliers is given by the equal dif-
ferential-time (EDT) formulation [16,31,84]. For the EDT
case, the location likelihood is given by,

L (x) D

2

6
4
X

a;b

1
q
�2a C �

2
b

� exp

 

�

˚
[To

a � To
b ] � [TTc

a (x)� TTc
b (x)]

�2

�2a C �
2
b

!#N

;

(8)

where x is the spatial part ofm, To
a and T

o
b are the observed

arrival times and TTc
a and TTc

b are the calculated travel
times for two observations a and b; the sum is taken over
all pairs of observations, and N is the total number of ob-
servations. Standard deviations �a and �b summarize the

assigned uncertainties on the observed arrival times and
calculated travel times, where it is assumed that the ob-
served and the calculated times are uncorrelated.

In Eq. (8), the first and second terms in brackets in the
exponent are, respectively, the differences between the ob-
served arrival times and the differences between the calcu-
lated travel times. The exponent is the difference between
these two terms, and thus the exponential has a maximum
value of 1 which occurs at points x where the two differ-
ences are equal (hence, the name “equal differential time”).
Such points x best satisfy the two observations a and b to-
gether, and, in general, the set of xwhere the exponential is
nonzero forms a “fat,” curved surface in 3D space. Because
the summation over observations is outside the exponen-
tial, the EDT location pdf has its largest values for those
points x where the most pairs of observations are satisfied
and thus is far less sensitive to outlier data than Lp norms
which seek to best satisfy all of the observations simultane-
ously. Note that the EDT likelihood function L(x) does not
require calculation of an origin time t0; this reduces the
hypocenter search to a purely 3-parameter problem and
contributes to the robustness of the EDT method. Never-
theless, a compatible estimate of t0 can be calculated for
any hypocenter point x.

Ultimately, the full solution to the probabilistic loca-
tion problem is a posterior pdf which includes as compre-
hensive as possible uncertainty information over param-
eters m. This may include multiple “locally-optimal” so-
lutions, e. g., Q(m) or p(x) L(x) may have multiple max-
ima, and may have a highly irregular form. Some stud-
ies of seismicity and seismotectonics make explicit use of
a probabilistic representation of seismic event locations
(e. g., [22,31,46]).

Experimental Design Methods –
Choosing Receiver Locations

As noted earlier, it is important to position stations so as
to constrain as tightly as possible the event locations for
a given source area. The location inverse problem solu-
tion in Eqs. (5), (7) or (8) is constrained by prior informa-
tion on location p(m), by observed data p(d), and by for-
ward-problem physics relating d and m. One way to sig-
nificantly influence the form of this inverse problem, and
hence uncertainty in its solution, is to change the data we
record. Thus, we alter both p(d) and the forward-problem
physics, F(d;m).

For seismic location problems we may change the data
by employing experimental design methods to choose or
change the locations of seismic receivers. The goal of the
design procedure is to place receivers such that the loca-
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tion information described by solution Q(m) is expected
to be maximized. This is a “macro-optimization” problem
where, prior to the occurrence of an earthquake, we opti-
mize the design of the inverse problem that we expect to
solve after an earthquake has occurred.

The design is varied such that it maximizes an objec-
tive function. This is usually taken to be the expected value
of some approximation to the unique measure of informa-
tion that was discovered by Shannon [67],

J(R) D Emt

˚
I
�
Q(m); R;mt

��
(9)

where R is a vector describing the design (e. g., receiver lo-
cations), I[Q(m); R;mt] is the information contained in
the resulting posterior pdf Q(m) for design R when the
true parameters (e. g., event location) ismt , and the statis-
tical expectation Emt is taken over all possible mt which
(according to our prior knowledge) are expected to be
distributed according to the prior distribution p(m). J(R)
should be maximized.

Within the expectation in Eq. (9), the design criterion
J(R) takes account of all possible potential true event loca-
tions mt , their prior probability of occurrence p(m), and
the corresponding data (including their uncertainties) that
are expected to be recorded for each location (the latter
are included within Q(m)). To calculate the expectation
usually requires integration over a far greater proportion
of the model and data spaces, M and D respectively, than
need be considered when solving the inverse problem after
a particular event has occurred (since then p(d) and hence
Q(m) are fixed, and p(m) is more tightly constrained).
Consequently, experimental design is generally far more
computationally costly than solving any particular inverse
problem post-event.

For this reason, design methods invoking linearized
approximations to the model-data relationship F(m;d)
(e. g., Eq. (10) below) have been employed by necessity in
the past [11,13,49,70], or indeed non-probabilistic meth-
ods have been employed (e. g., [9,10,36,71]). Truly non-
linearized design methods have been developed for loca-
tion problems only relatively recently [12,78,80]. Histori-
cally, however, station network geometry has been defined
more by heuristics (rules of thumb) and geographical, lo-
gistical and financial constraints, with design theory only
recently being deployed.

LocationMethods

Once data have been recorded and prior pdf ’s defined,
a solution such as that of Eqs. (5), (7) or (8) must be eval-
uated throughout the prior pdf , p(x), to identify one or
more “locally-optimal” solutions, or, preferably, to obtain

a full probabilistic location pdf . This evaluation gener-
ally requires direct-search optimization and search tech-
niques, which we discuss below. We first digress and sum-
marize linearized location procedures, which typically de-
termine a single optimal hypocenter along with a simpli-
fied and approximate representation of the location pdf
(e. g., a confidence ellipsoidal centered on the estimated
hypocenter and origin time).

Linearized Location Methods

With linearized methods the arrival time expression (2),
which is nonlinear with respect to the spatial location
m D (x; y; z), is approximated by a Taylor series expan-
sion around some prior estimate m0 D (x0; y0; z0) of the
spatial location:

f (m) D f (m0)C (m �m0) f 0 (m0)

C
(m �m0)2

2
f 00 (m0)C O

�
(m �m0)3

�
(10)

where f (m) is the forward problem that calculates an ar-
rival time dcalc given a location m (e. g., f (m) might rep-
resent the right hand side of Eq. (2) directly). A linear vec-
tor-matrix inverse problem is obtained if we approximate
the forward problem for all dcalc by using only the first
two terms of the Taylor series. The resulting vector-ma-
trix equation may be solved using linear algebraic meth-
ods. This process is called linearized inversion.

Usually, this linearized inversion is iterated: the prior
estimate m0 is set equal to the newly-found, best-fit loca-
tion, the problem is re-linearized around this new estimate
using Eq. (10), and the new linear problem solved again.
This method may be repeated (iterated) many times, as
needed to attain some convergence criteria.

Linearized methods produce a single, best-fit (e. g.,
maximum likelihood) hypocenter and origin time loca-
tion, and associated, linearly-estimated uncertainties, such
as a multi-dimensional, normal-distribution centered on
the best-fit hypocenter and origin time. However, this lin-
earized solution is often a poor representation of the com-
plete solution pdf (Fig. 2 and see examples), and it may
be unstable when the pdf is irregular or has multiple peaks
due to insufficient or outlier data, velocity model complex-
ities, and other causes (e. g., [5,34]).

Direct-Search Location Methods

The earliest, formal earthquake locations from phase ar-
rival time observations used nonlinearized procedures.
Milne [37] describes and applies several graphical and al-
gebraic methods to determine earthquake locations. These
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Earthquake Location, Direct, Global-Search Methods, Figure 2
Schematic diagram comparing linearized and direct-search lo-
cations for the case where the complete location pdf is moder-
ately complicated, with two maxima. This example arises from
the case of a location at the limits of the recording network and
near a sharp, horizontal interface in the velocity model between
lower velocities above and higher velocities below. The colored,
contoured form shows the true location pdf , as should be deter-
mined by a complete, probabilistic, direct-search location proce-
dure. A linearized location that iterates from an initial trial loca-
tion below the sharp interface will find an optimal hypocenter
near the secondary, local maximum of the location pdf , below
the interface. The linearized error ellipsoid, based on the curva-
ture of themisfit function at this optimal hypocenter, reflects the
form of this secondary maximum only. The linearized location
procedure never identifies or explores the primary maximum of
the pdf above the sharp interface, and produces incorrect error
information above this interface (i. e. the uppermost part of the
error ellipsoid). A probabilistic, direct, global-search procedure
can determine the complete location pdf and identify correctly
the maximum likelihood hypocenter located above the sharp
interface

include a perpendicular bisector method for the case of 3
or more simultaneous arrival time observations (related to
the modern arrival order or bisector method), a method
of hyperbolae based on the differences in arrival times at
pairs of stations (related to the modern EDT method) and
a method using the differences in arrival times of different
wave types at individual stations. The latter is a generaliza-
tion of the method of circles using S-P times, in which the
distance from a station to the source is, for given P and S
velocity models, a function of the difference of the S and P
arrival times; an epicenter can be constrained with such
S-P based distances from 3 stations. Reid [52] determined
a hypocenter location for the great 1906 California earth-
quake through a coarse, systematic grid search over veloc-
ity, position along the causative fault and depth, solving
for the origin time and wave velocity by least-squares at
each grid point.

The arrival order or bisector method [2,42] is a non-
linear, geometrical approach that uses the constraint that
if a phase arrival is earlier at station A than at station B,
then the event is closer to A than to B (assuming the ve-
locity model is such that arrival order implies distance or-
der). Applying this constraint to all pairs of stations de-
fines a convex region containing the event location. This
method is useful for obtaining some constraint on the lo-
cation of events far outside of an observing station net-
work, and for rapidly and robustly obtaining starting loca-
tions for linearized methods.

Most other modern, direct-search earthquake loca-
tion methods (excluding graphical methods that are now
mainly used for illustrative and educational purposes) are
based on deterministic or stochastic searches which may
be exhaustive or directed and evolutionary. These searches
are used to explore or map likelihood functions such as
those given in Eqs. (5), (7) or (8). When these searches
gather and retain information globally, throughout the
prior pdf p(x), they can produce a complete, probabilistic
location pdf . Otherwise, searches may determine a global
or local maximum of the location pdf , or may explore the
neighborhood around these optimal points to locally esti-
mate the pdf and obtain uncertainty information.

Regular, Deterministic Search Regular and deter-
ministic searches, such as grid-searches, nested grid-
searches and stochastic, “crude” Monte–Carlo searches
(e. g., [20,62]) use global and well-distributed sampling of
the model space and thus can estimate the complete lo-
cation pdf . All of these approaches are computationally
demanding for problems with many unknown parame-
ters, large parameter spaces, or time consuming forward
calculations, because the number of models that must be
tested can be very large. Thesemethods have been success-
fully applied to the determination of optimal hypocenters
(i. e., [14,26,61,69]), and to probabilistic location (i. e., [6,
34,38,83]), but their inefficiency may impose unacceptable
limitations on the number of events that can be consid-
ered, or on the size of the search volume.

Directed Search Directed, stochastic search techniques
include evolutionary, adaptive global search methods such
as the genetic algorithm [19,59] and simulated anneal-
ing [28,53,72]. The simplex method is a directed, deter-
ministic search technique that is nonlinearized and can
be used for earthquake location (e. g., [48]). Most of these
methods were developed for optimization or the identi-
fication of some very good solutions, which is equivalent
to identifying a global or local maximum of the location
pdf . In general, these methods do not explore the prior



Earthquake Location, Direct, Global-Search Methods E 2459

pdf p(x) in a manner that can produce complete, proba-
bilistic solutions to inverse problems. For example, the ge-
netic algorithm performs global searching and may be one
of the most efficient stochastic methods for optimization,
but it does not use well distributed sampling (the sam-
pling tends to converge rapidly to the region of a locally
optimum solution). Similarly, in the simulated annealing,
random-walk method the interaction of its variable “tem-
perature” parameter and step size with the local structure
of the misfit function can lead to convergence and stalling
near a locally optimum solution, and a sample distribu-
tion that is neither well nor globally distributed. Both the
genetic algorithm and simulated annealing can be tuned
to sample more broadly and in the limit become crude
Monte Carlo searches, but this removes the main advan-
tage of these methods – that of rapid stochastic optimiza-
tion.

Though not directly applicable to complete, proba-
bilistic location, directed search algorithms are useful for
direct-search, earthquake hypocenter estimation because
of their efficiency (e. g., [4,48,60,61]).

Importance sampling The efficiency of a Monte Carlo
algorithm used to estimate properties of a target (misfit or
likelihood) function can be increased by choosing a sam-
pling density which follows the target function as closely as
possible [20,30,45]. Techniques that follow this rule are re-
ferred to as importance sampling methods, and were orig-
inally developed in physics for fast and accurate numer-
ical integration of multi-dimensional functions. The tar-
get function is unknown, however, and consequently the
optimum importance sampling distribution cannot be de-
termined a priori. Instead, improved efficiency is attained
by adjusting (or adapting or evolving) the sampling by us-
ing information gained from previous samples so that the
sampling density tends towards the target function as the
search progresses [30,40,45,65]. For example, importance
sampling to determine an earthquake location pdf or like-
lihood function (e. g., Eqs. (5), (7) or (8)), can be obtained
by beginning with a sampling that follows the prior pdf ,
p(m), and then adjusting the sampling as the search pro-
gresses so that the sampling density approaches the poste-
rior, location pdf .

Importance sampling techniques that can be used to
find complete, probabilistic solutions to inverse problem
include the VEGAS algorithm [30], the Metropolis al-
gorithm [40], the neighborhood algorithm [55] and, for
three-dimensional problems, oct-tree [33]. Other impor-
tance sampling methods are discussed in Hammersley and
Handscomb [20] and in Press et al. [45] in the context of
numerical integration.

The VEGAS algorithm [30,45] performs importance
sampling by accumulating appropriate sampling distribu-
tions independently for each parameter as the sampling
proceeds. This method can give very good estimates of
an individual or a joint marginal pdf , but it looses effi-
ciency if the target function includes strong correlation
between parameters or if it is independent of some pa-
rameters [45]. In addition, the VEGAS algorithm may
be difficult or impossible to implement with prior infor-
mation, such as smoothness constraints, that introduces
correlation between parameters. Consequently, this algo-
rithm may not be appropriate for some geophysical prob-
lems, including earthquake location, when the location pa-
rameters are often correlated or poorly resolved.

The Metropolis or Metropolis-Hastings algorithm
(e. g., [40]) is similar to simulated annealing but with
a constant temperature parameter. The Metropolis algo-
rithm performs a random walk in the model space, test-
ing at each step nearby trial samples which are accepted or
rejected after evaluation of the forward problem accord-
ing to a likelihood L(m). In [40] it is shown that this al-
gorithm samples from the posterior pdf of the problem
and is therefore an importance sampling method. They
show that, in the limit of a very large number of trials, it
will not become permanently “trapped” near local max-
ima and consequently will produce global sampling. Also,
because it is a random walk technique, the Metropolis al-
gorithm can perform well even if the volume of the sig-
nificant regions of the posterior pdf is small relative to
the volume of the prior pdf . However in practical appli-
cation, with a finite number of samples, this algorithm can
become trapped in strong local maxima of the posterior
pdf if this function is complicated. The Metropolis algo-
rithm has been applied to earthquake location in 3D struc-
tures [34,35].

Another recently developed importance sampling
technique used in geophysics is the neighborhood algo-
rithm [55,56,57], applicable to high dimensional model
spaces. Given an existing set of samples of the objec-
tive function, the neighborhood algorithm forms a con-
ditional pdf using an approximate Voronoi cell partition
of the space around each sample. The algorithm generates
new samples through a uniform random walk within the
Voronoi cells of the best fitting models determined so far.
This algorithm is applied to the 4D hypocenter location
problem in [27,58].

The oct-tree importance-sampling method [33] uses
recursive subdivision and sampling of rectangular cells in
three-dimensional space to generate a cascade structure
of sampled cells, such that the spatial density of sampled
cells follows the target pdf values. The relative probability
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that an earthquake location lies within any given cell i is
approximately,

Pi D Vi L (xi ) ; (11)

where Vi is the cell volume and xi is the vector of coor-
dinates of the cell center. Oct-tree importance-sampling
is used to determine a location pdf by first taking a set
of samples on a coarse, regular grid of cells throughout
the search volume. This is followed by a recursive pro-
cess which takes the cell k that has the highest probabil-
ity Pk of containing the event location, and subdividing
this cell into 8 child cells (hence the name oct-tree), from
which 8 new samples of the pdf are obtained. These sam-
ples are added to a list of all previous samples, from which
the highest probability cell is again identified according to
Eq. (11). This recursive process is continued until a prede-
termined number of samples are obtained, or until another
termination criterion is reached.

For most location problems, including those with
a complicated location pdf , the oct-tree recursive subdivi-
sion procedure converges rapidly and robustly, producing
an oct-tree structure of cells specifying location pdf values
in 3D space. This oct-tree structure will have a larger num-
ber of smaller cells in areas of higher probability (lower
misfit) relative to areas of lower pdf value and thus the oct-
tree method produces approximate importance-sampling
without the need for complex geometrical constructs such
as Voronoi cells. Oct-tree sampling can be used with the
L2-norm likelihood function in Eq. (7) or the EDT likeli-
hood function in Eq. (8), since both require searching over
three-dimensional spatial locations only. Oct-tree sam-
pling has been applied to earthquake location in 3D struc-
tures [22,23,31,32]; we use this sampling method to deter-
mine locations in the examples presented below. Though
limited to determination of the 3D, spatial location, this
recursive sampling procedure can be extended to 4D to al-
low determination of the origin time.

Illustrative Examples

We illustrate the concepts described in the previous sec-
tions using an M3.3 earthquake that occurred in the
Garfagnana area of Northern Tuscany, Italy, on March
5, 2007 at 20:16 GMT. The earthquake was recorded by
stations of the Italian National Seismic Network (INSN)
at distances from less than 10 km to more than 300 km.
We use manually picked P and S phase arrival times from
the INSN bulletin with Gaussian uncertainties (standard
deviations from 0.01 to 0.1 s), and a 1-D velocity model
similar to the standard model used by INSN for routine

earthquake location in Italy. We perform all event lo-
cations with the probabilistic location program NonLin-
Loc [31,34,35] (http://www.alomax.net/nlloc; NLL here-
after), using the oct-tree sampling algorithm (Sect. “Lo-
cation Methods”) to perform a global-search within a pa-
rameter space M formed by a rectangular volume 360 km
on each side and from the Earth’s surface to 35 km depth
(except as noted in figure captions). We use the L2-norm
(Eq. (7)) or EDT (Eq. (8)) likelihood functions to obtain
location pdf ’s in 3D space and corresponding maximum
likelihood origin times.

In order to describe the location problem and the so-
lution quality for each of the examples presented below we
focus on geometrical properties of the location pdf , which
represents most completely the results of probabilistic, di-
rect, global-search methodologies. We also consider the
maximum likelihood hypocenter, defined as the point in
space of the maximum value of the location pdf , and the
corresponding origin time. We examine statistics of the
quality of the solutions using the half-lengths of three prin-
cipal axes of a 68% confidence error ellipsoid approxi-
mation to the location pdf , lell, the weighted, root-mean-
square of the arrival residual (observed – calculated) times,
rms, and a relative measure of the volume of the high like-
lihood region of the location pdf , Vpdf, given by,

Vpdf D
Z

M

pdf (x)
pdfmax dV ; (12)

where pdfmax is the maximum value of the location pdf in
M. We also make use of standard measures of the experi-
mental design quality (i.e, stations coverage) including the
gap – the largest angle between the epicenter and two az-
imuthally adjacent stations used for location, and the dis-
tance
0 from the hypocenter to the closest station. These
indicators are summarized in Table 1 for the examples pre-
sented here.

These examples are meant to show important features
and complexity in earthquake location results, not to com-
pare different direct-search location methods or to com-
pare direct-search to linearized algorithms. However, be-
cause linearized earthquake location has been and remains
an important andwidely used tool, we indicate for each ex-
ample the location results obtained with a linearized algo-
rithm, Hypoellipse [29]. Hypoellipse uses a least-squares,
L2-norm and produces a 68% confidence ellipsoid for the
hypocenter location. For well constrained locations this el-
lipsoid should closely match the pdf of our probabilistic,
L2-norm locations; we plot the Hypoellipse ellipsoid for
cases where it differs notably from the probabilistic loca-
tion, L2-norm pdf .

http://www.alomax.net/nlloc
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Earthquake Location, Direct, Global-Search Methods, Table 1
Summary of results and quality indicators for the example locations. Rpdf is the radius of a sphere with volume Vpdf; l1ell, l

2
ell, l

3
ell are

the half-lengths of the error ellipsoid axes; NP is the number of phases used for the location;	0 is the distance to the closest station

Example Lat Lon Depth rms gap �0 NP Vpdf Rpdf l1ell l2ell l3ell
(ı) (ı) (km) (s) (ı) (km) (km3) (km) (km) (km) (km)

Ideal
1a 44.208 10.295 10.98 0.399 89 9.1 20 26 1.8 1.6 2.2 3.2
1b 44.208 10.295 10.98 0.000 63 9.1 50 7 1.2 1.1 1.3 2.1

Station
distribution

Few stations

2a 44.163 12.267 47.44 0.000 335 232 2 742001 82.3 30.9 53.9 223
2b 44.172 9.565 77.60 0.001 192 25.8 4 21600 25.3 5.9 43.2 81.9
2c 44.208 10.295 14.40 0.000 173 64.5 3 2011 7.8 4.8 7.3 20.2
2d 44.208 10.295 10.98 0.000 99 9.1 8 66 2.5 2.1 2.7 4.9

Side 3 44.207 10.296 11.03 0.004 251 29.0 19 444 4.7 3.4 4.7 11.0

Far
4a 44.207 10.296 11.03 0.006 103 106 46 234 3.8 2.0 2.4 17.8
4b 44.208 10.295 10.98 0.000 103 106 50 66 2.5 1.7 2.2 8.1

Experimental
design

5a 44.215 10.290 15.13 0.014 229 9.9 6 1806 13.4 8.3 13.7 59.1
5b 44.208 10.295 7.83 0.007 89 36.3 6 381 6.6 3.1 3.7 11.5

Outlier
L2-norm 6a 44.207 10.296 11.03 0.007 135 9.00 10 172 3.5 2.9 3.7 6.7

6b 44.120 10.267 9.02 0.813 156 10.5 10 172 3.5 3.0 4.2 9.0

EDT 6c 44.221 10.305 9.94 0.006 132 9.4 10 167 3.4 4.5 7.7 15.2
6d 44.215 10.304 10.02 0.540 133 9.0 10 275 4.0 10.7 30.8 42.9

Early warning

7a 44.139 10.194 24.79 0.012 307 15.6 3 628090 53.1 18.7 81.6 104
7b 44.210 10.302 10.57 0.015 250 8.8 4 33908 20.1 18.4 30.0 105
7c 44.208 10.295 11.12 0.008 227 9.1 5 1704 7.4 5.3 13.9 30.2
7d 44.207 10.296 11.03 0.007 135 9.0 10 172 3.5 2.9 3.7 6.7

Incorrect
velocity model

L2-norm 8a 44.208 10.295 10.98 0.000 63 9.1 50 15 1.5 1.3 1.7 2.9
8b 44.160 10.244 2.69 0.808 66 11.4 50 17 1.6 1.3 1.7 3.0

EDT 8c 44.220 10.305 9.98 0.000 63 9.4 50 11 1.4 1.2 1.5 2.6
8d 44.192 10.280 7.20 0.795 64 9.3 50 167 3.4 2.8 3.9 6.7

Example 1: An Ideal Location

To construct an ideal, reference location and synthetic
data set for the 2007 Italian earthquake we first locate the
event using the earliest 20 observed P or S arrival times
(Fig. 3; Table 1; Example 1a). Next, we subtract the arrival
residuals for this location from the corresponding times
for all observations and relocate the event with the earliest
50 of these “corrected” times (Fig. 3; Table 1; Example 1b).
This procedure results in an ideal, synthetic data set and
a location problem that are equivalent to the case of no
“a posteriori” picking error and no travel-time error (i. e.,
no velocity model error). For this problem the quality of
the solution and the shape of the resulting location pdf re-
flect primarily the station geometry and corresponding ray
take-off angles about the source.

The reference location (Fig. 3; Table 1; Example 1b)
has rms D 0 s, gap D 63ı, 
0 � 9 km, Vpdf � 7:0 km3

and lell D 1:05, 1.32 and 2.05 km. The rms is necessarily
zero because we used residuals as time corrections, while
the other indicators and the near-ellipsoidal form of the lo-
cation pdf show a well constrained location. The location

is well constrained by the data because stations are avail-
able at a wide range of distances and azimuths. In partic-
ular, the presence of a station nearly above the event, and
of both P and S-wave arrival times for the closer stations,
give good depth constraint.

Examples 2–5: Station Distribution

In the next examples we show locations for three cases
with poor station distribution about the source:

1) few available stations;
2) stations all to one side of the event; and
3) no data for stations near or above the source. In ad-

dition we illustrate the application of experimental de-
sign techniques to improve the station distribution.

Example 2: FewAvailable Stations Wefirst examine re-
locations of the 2007 Italian earthquake obtained with dif-
ferent numbers of P and S arrival times selected from the
ideal, synthetic data set (Fig. 4; Table 1; Example 2a–d).
With only two stations and 2 arrivals (2 P phases) the loca-
tion pdf is a fat, near-vertical, planar surface with an elon-
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Earthquake Location, Direct, Global-Search Methods, Figure 3
Example 1: An ideal location. a Location obtained using the first 20, observed P or S arrival times; b location obtained using the
first 50, P or S corrected arrival times from the ideal, synthetic data set. The elements shown in these and the following figures are:
stations used for location (blue dots, in some cases stations fall outside the plotted region); location pdf (red cloud of points showing
an importance sample drawn from the pdf); maximum likelihood hypocenter (green dot); ideal, synthetic location (black cross); P
arrival residuals at each station: positive (green, up-going bars) and negative (red, down-going bars), numbers indicate residual value
in sec. The Hypoellipse linearized locations and ellipsoids do not differ significantly from the direct-search locations shown in this
figure
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Earthquake Location, Direct, Global-Search Methods, Figure 4
Example 2: Fewavailable stations. Locations obtained usingprogressively (a–d) a larger number of arrival observations.a 2Pphases
(2 stations); b 2P and 2 S phases (2 stations); c 3P phases (3 stations); d 5P and 3S phases (5 stations). For the locations in a and b the
oct-tree search is performed to 100 km depth. In this and the following figures the 68% Hypoellipse ellipsoid is shown with green
lines. Hypoellipse linearized location: does not converge for the location in panel a; ellipsoid differs markedly from the direct-search
location pdf in panels b and c; and does not differ markedly from the direct-search location in panel d

gated, boomerang shape trending perpendicular to the line
connecting the two receivers (Fig. 4a). With the addition
of S arrivals from the same stations (4 arrivals – 2 P and
2 S phases) the location pdf is greatly reduced in volume,
and has the form of an annulus oriented roughly perpen-
dicular to the line connecting the two receivers (Fig. 4b).
The annular form of this pdf results from the intersection
of the boomerang shape pdf produced by the 2 P phases
(Fig. 4a) and two hemispherical pdf ’s centered on each sta-
tion. Each of these hemispherical pdf ’s would be produced
by location using only the P and the S reading from either
station; this is the probabilistic analogue to the method of
circles using S-P times.

With three stations (3 arrivals – 3P phases) the loca-
tion pdf forms one mass and its volume is further reduced.
This location pdf retains an irregular, curved shape result-

ing from poor constraint of one spatial dimension that
trades off with origin time (Fig. 4c). For all of these lo-
cations the problem is effectively underdetermined – the
data cannot constrain all three hypocentral coordinates
and origin time. In these cases a linearized location algo-
rithm may not converge and would be unable to represent
properly the effective location uncertainties. As more data
are added, the location pdf progressively reduces in size
and complexity, and with the addition of a station close
to and above the source (8 arrivals – 5 P and 3 S phases),
the location pdf has a compact, near ellipsoidal form indi-
cating some constraint on all hypocentral coordinates and
origin time (Fig. 4d). This location is similar to that ob-
tained with the complete, ideal data set (Fig. 3b), though
the location pdf remains much larger than that of the ideal
case which has arrival times from many more stations.
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Example 3: Stations toOne Side of the Event – LargeGap
Next, we examine the case of earthquakes occurring out-
side of the recording network with an example using P ar-
rival times from stations only to the southeast of the earth-
quake (Fig. 5; Table 1; Example 3). The location pdf is large
and elongated in a northwest-southeast direction oriented
towards the centroid of the available stations because the
lack of stations to the northwest (and use of P times only)
allows a strong trade-off between potential hypocenter lo-
cations along this direction and origin time. In contrast,
there is some constraint of the pdf to the northeast and
southwest due to the aperture of the available stations. The
poor station distribution and potential lack of constraint
is clearly indicated by the large gap value for this location,
gap D 251ı. One or more good quality S readings can re-
duce the elongation of the pdf .

Example 4: Stations Far From the Event – Vertically
Elongated PDF We next show an example where the
nearest recording stations are far from the earthquake, rel-
ative to its depth, and either P arrival times only or both P
and S arrival times are available (Fig. 6; Table 1; Exam-
ples 4a–b). With this station geometry the seismic rays
leave the source region with approximately the same dip-

Earthquake Location, Direct, Global-Search Methods, Figure 5
Example 3: Stations to one side of the event. A location example with P-wave arrival times at 7 stations only to the southeast of the
event. The Hypoellipse ellipsoid differs markedly from the direct-search location pdf in this figure

direction to all stations. Consequently a change in source
depth gives about the same change in predicted travel
times to all stations. This change in travel time is indis-
tinguishable from a change in origin time (c.f., Eqs. (1) or
(2), leading to a strong trade-off between origin time and
depth. Consequently the location pdf has a vertically elon-
gated shape which, for the case of P arrivals only (Fig. 6a),
extends throughout the entire search range in depth in-
dicating no depth constraint. For a linearized location al-
gorithm this location problem can be effectively underde-
termined, though most linearized algorithms can fix the
hypocenter depth artificially in order to obtain a stable epi-
central location. The addition of S arrival times (Fig. 6b)
improves the depth constraint to some extent, although
the location pdf remains highly elongated in the vertical
direction. The lack of close stations and potential lack of
constraint is clearly indicated by the large
0 value for this
location,
0 � 106 km.

This case is common with sparse networks and with
shallow sources. Reducing the vertical extent of the pdf re-
quires stations at distances of the order of the source depth
or less. The addition of one or more good quality S read-
ings, especially at the closest stations, would further im-
prove the depth constraint.
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Earthquake Location, Direct, Global-Search Methods, Figure 6
Example 4: Stations far from the event. A location example using stations far from the epicenter, with a P arrival times only, b both P
and S arrival times. Hypoellipse linearized location: ellipsoid differsmarkedly from the direct-search location pdf in panel a; and does
not differ markedly from the direct-search location in panel b

Example 5: Stations Selection with Experimental Design
Next, we illustrate the application of experimental design
techniques to station selection (Fig. 7; Table 1; Example 5).
Considering a case similar to Example 3, which has 6 sta-

tions to one side of the event giving poor constraint on
the location, we determine an optimal set of 6 stations
to best constrain the location. To do this we apply a lin-
earized design method [13] to select an optimal subset of 6
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Earthquake Location, Direct, Global-Search Methods, Figure 7
Example 5: Stations selection with experimental design. A location example showing a Location using the stations with the
first 6 available arrival times, b location using an optimal set of 6 stations as determined with a linearized experimental-design
method. Available stations not used or selected are shown with open triangle symbols. Hypoellipse linearized location: ellipsoids
differ markedly from the direct-search location pdf ‘s in panels a and b

of the available INSN stations to best constrain an event at
the (known) location produced by the ideal, synthetic data
(Example 1b).

The design procedure does not simply select the 6 clos-
est receivers to the source (i. e. first 6 available arrival
times, Fig. 7a), but instead selects receivers distributed
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around, and to a large distance away from the source
(Fig. 7b). This choice can be understood as balancing the
distribution of directions (azimuth and inclination) that
the rays leave the source to the selected receivers, a di-
rect result of the use of the linearized approximations to
the model-data relationship Eq. (10) in the linearized de-
sign method [13]. This method is based on selecting sta-
tions based on the similarity between the rows of the loca-
tion kernel matrix of the linearized problem; the approach
does not differ significantly from that of Uhrhammer [76]
based on the condition number of the same matrix. The
improvement in station distribution in azimuth is indi-
cated by the small gap value for this location, gap D 89ı.
The resulting location pdf (Fig. 7b) is compact and sym-
metric relative to the location pdf obtained from the first
6 stations recording the P phases (Fig. 7a), and the max-
imum likelihood hypocenter is close to the ideal location
hypocenter.

Example 6: Incorrect Picks
and Phase Identification – Outlier Data

For a given hypocenter location, an outlier arrival time has
a residual that is much greater than its nominal error. Data
outliers are common with automatic phase arrival picking
algorithms, with S arrival picks, for small events, distant
stations, or other cases where the signal to noise ratio is
low, and for early instrumental data where large timing er-
rors are common. In many cases, such as automatic earth-
quake monitoring and early warning systems, it is impor-
tant to have robust location procedures that are influenced
as little as possible by the presence of outliers. One way to
achieve this is to use robust likelihood functions such as
EDT Eq. (8). In the example below, we compare the per-
formance of EDT and the more commonly used L2-norm
likelihood functions.

This example uses only stations near the source, and
arrival times from ideal, synthetic data sets for both the
L2-norm and the EDT likelihood functions. We add 3 s
to the P arrival time at two stations to generate outlier
data, and examine L2-norm and EDT locations without
and with the outlier data (Fig. 8; Table 1; Examples 6a–
d). The L2-norm location with the outlier data (Fig. 8b)
does not identify and isolate the two outlier P-arrivals but
instead mixes information from these arrivals with the
other data resulting in relatively large, non-zero residu-
als for all arrivals. This results in a bias of about 10 km
in the maximum likelihood hypocenter location relative
to the ideal location hypocenter, while the location pdf
for the L2-norm locations with and without outlier data
have about the same size and form, but have little over-

lap (Figs. 8a and 8b). Thus the L2-norm solution gives no
clear indication of the presence of outlier data, or that the
solution may be biased. In contrast, the EDT location for
the data set containing the outliers (Fig. 8d) correctly iden-
tifies the two outlier arrivals (the EDT residuals for these
two outlier data are both about 2.9 s) and strongly down-
weights them (from 1.2 to 0.17 posterior weight), while
producing small residuals (< 0:08 s) for the remaining ar-
rival, as would be the case without outlier data. The max-
imum likelihood hypocenters for the EDT locations with
and without outlier data are almost identical, but the loca-
tion pdf ’s are very different (Fig. 8c and 8d). With outlier
data, the pdf has an irregular shape and several distinct
parts, reflecting the inconsistency of the data set to con-
strain a unique event location. For the outlier locations,
a potential problem with the data set is indicated by the
large rms values with both L2-norm and EDT, and with
EDT alone, by the asymmetry in residuals, the irregular
pdf shape, and the large Vpdf and lell values.

This result shows that location in the presence of out-
lier data can be remarkably stable with the EDT likelihood
function, which is easy to implementwith direct-search lo-
cation techniques. In contrast, the same location with the
commonly used, L2-norm likelihood function is biased,
while presenting few indicators of this bias.

Example 7: Earthquake Early-Warning Scenario

Location for earthquake early-warningmust be performed
rapidly and in an evolutionary manner starting with the
first available phase arrivals. In this example we examine
the ability of direct-search location to obtain robust and
useful location information using P arrivals from the first
stations that record the Northern Italian event (Fig. 9; Ta-
ble 1; Examples 7a–d).

Within about 6 seconds after the origin time, t0,
three P reading are available. Location with these readings
produces an extensive location pdf that fills the southwest
quadrant of the search region (Fig. 9a); this pdf does not
provide useful constraint on the location, but is robust in
that it includes the true location. Progressive addition of
more arrival time data (Fig. 9b and 9c) reduces the size
of the location pdf . With 5 arrivals, at about 7 s after t0
(Fig. 9c), the maximum likelihood location is close to that
of the ideal, synthetic location and the location pdf is well
delimited, although elongated towards the west because no
arrivals are yet available from stations in that direction. By
13 s after t0 (Fig. 9d), 10 P arrivals are available and the lo-
cation pdf is now compact and symmetrical, primarily be-
cause a station to the northwest is included. This pdf has
small enough Vpdf and lell values to provide useful, prob-
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Earthquake Location, Direct, Global-Search Methods, Figure 8
Example 6: Incorrect picks and phase identification – outlier data. Locations using ten P-wave arrival times with L2-norm and a no
outliers, b two arrival-time outliers, and with EDT and c no outliers, d two arrival-time outliers. The stations with outlier arrivals
are shown with violet dots. Note the small pdf of L2-norm regardless of the outliers and, in contrast, the ability of EDT to detect
the outliers (see text). The Hypoellipse ellipsoid differs markedly from the direct-search location pdf in panel b. Hypoellipse not
compared to EDT locations in panels c and d

abilistic constraint on the location for early-warning pur-
poses at a regional scale, while the maximum likelihood
hypocenter is effectively the same as that of the ideal loca-
tion. In practical application, direct-search location results
similar to those illustrated here can be obtained within
a delay of less than 1 sec after the readings are available
(e. g. [64]).

Example 8: Incorrect Velocity Model

Any velocity model used for earthquake location is an ap-
proximation to the true Earth and thus will in general pro-
duce erroneous predicted travel times. The magnitude of
error in the travel times depends on many factors, but will
in general be larger for more distant stations and with in-
creased complexity in the true Earth structure. We exam-
ine the effect of an incorrect velocity models by repeating

the ideal location (Example 1a and b) with and without the
“corrected” times, and using 50 P arrivals (the ideal loca-
tion was determined using the first 20 P or S arrivals). We
examine locations using the L2-norm and EDT likelihood
functions (Fig. 10; Table 1; Examples 8a–d).

The locations with time corrections (Fig. 10a and 10c)
simulate the unrealizable case of perfect knowledge of
the velocity structure. With both the L2-norm and EDT
the location results show zero residuals, compact location
pdf ’s and a maximum likelihood hypocenter that neces-
sarily matches exactly the corresponding ideal location.
We note, however, that the L2-norm and EDT “ideal” lo-
cations differ slightly because they are derived from noisy,
real data, and they use different likelihood functions.

The locations without time corrections (Fig. 10b
and 10d) use the true observed data (i. e., travel times
through the true Earth) and thus show the effect of an in-
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Earthquake Location, Direct, Global-Search Methods, Figure 9
Example 7: Earthquake early-warning scenario. Progressive location using a 3, b 4, c 5 and d 10 stations. Hypoellipse linearized
location: ellipsoid differs markedly from the direct-search location pdf ‘s in panel a, b and c; and does not differ markedly from the
direct-search location in panel d

correct velocity model (i. e., the 1-D velocity model used
for location). This is shown by the pattern of positive and
negative residuals obtained with both the L2-norm and
EDT. The L2-norm location without time corrections has
a balanced distribution of positive and negative residu-
als and, relative to the L2-norm location with corrections,
a similar size location pdf and a biased maximum likeli-
hood hypocenter. In contrast, the EDT location without
corrections has more positive than negative residuals and,
relative to the EDT location with corrections, a larger lo-
cation pdf and nearly identical, unbiased maximum like-
lihood hypocenter. For these locations, a potential prob-
lem with the velocity model is indicated by the large resid-
uals and rms values with both L2-norm and EDT, and,
with EDT, by the asymmetry in residuals, the irregular pdf

shape, and the large Vpdf and lell values, as with the outlier
data example (Example 6).

In effect, locations with an incorrect velocity model
and with outlier data are mathematically similar, though
in the former case all or most residuals may be large while
in the latter case only a few will be large. It is difficult to
distinguish between the two cases with the L2-norm be-
cause this algorithm seeks to best satisfy all of the observa-
tions simultaneously (cf., Eq. (7)) by balancing the distri-
bution of positive and negative residual (cf., Fig. 8b and
Fig. 10b). Thus, relative to the residuals corresponding
to the correct location, the L2-norm solution damps and
hides larger residuals at the expense of increasing small
residuals. In contrast, EDT seeks to best satisfy the most
pairs of observations (cf., Eq. (8)) and imposes no inher-
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Earthquake Location, Direct, Global-Search Methods, Figure 10
Example 8: Incorrect velocity model. Locations using 50 P arrivals with the L2-norm and a time corrections, b no time corrections,
and with EDT and c time corrections, d no time corrections. The locations without the ideal time corrections show the effect of an
incorrect velocity model. The Hypoellipse linearized locations and ellipsoids do not differ markedly from the direct-search locations
shown in this figure

ent constraint on the distribution of residuals. Thus with
EDT the difference in number, magnitude and distribu-
tion of large residuals – few and large for the outlier case,
many of similar magnitude and spatially correlated for
the incorrect velocity model case – allows one, in princi-
ple, to distinguish between the two cases (cf., Fig. 8d and
Fig. 10d). In addition, the size and complexity of the loca-
tion pdf ’s generally increases more rapidly with EDT than
with the L2-norm as the solution quality decreases. Thus,
with both the outlier and incorrect velocity model cases,
the location results with the EDT likelihood function are
more informative than with the L2-norm. However, lo-
cation with the EDT likelihood function can become un-
stable (e. g. define only a local maximum of the pdf ) for
cases where the outlier data or velocity model errors lead
to extreme complexity in the topology of the EDT location
pdf .

Future Directions

There are various ways that direct, global-search location
methodologies may evolve in the future. For example, the
stability and completeness of the location and location pdf
could be improved with the use of more complete data
uncertainties, expressed as a pdf . These pdf ’s may typi-
cally be irregular and asymmetric, and difficult to deter-
mine and parametrize. Currently, enumerated quality in-
dications or, at best, simple normal distributions (describ-
ing Gaussian uncertainty) are used to describe the picking
error.

Similarly, we have shown that earthquake location de-
pends inherently on the velocity model adopted, but that
no realistic uncertainties are associated with this model.
Differences between the velocity model and the true Earth
can result in complicated differences in ray-paths and
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travel-times, which will depend strongly on the source and
receiver positions. These complications, combined with
the lack of knowledge about the true Earth, makes es-
timating true travel time uncertainties effectively impos-
sible. However, it can be assumed that changes become
progressively larger with increasing ray-path length. This
effect could be accounted for approximately by travel-
time uncertainties that increase with the ray-length or
travel time. Instead of using a velocity model to generate
travel times, another approach is to derive the required
times from tables of empirically determined or corrected
travel times (e. g. [41,43]). With this approach the travel-
time uncertainties are estimated from timing information,
with little or no direct use of velocity structures or ray
paths.

We have described and illustrated the importance of
the source-receiver geometry for locating earthquakes, no-
tably with regards to constraining a compact and symmet-
ric location pdf . Thus, improved constraint on event loca-
tions can be achieved through prior use of survey design
techniques to select station sites. In a related manner, af-
ter an event occurs, these techniques could be employed
dynamically to weight the available arrival times used for
location with respect to the geometry of the available sta-
tions around the likely source region.

The demand for rapid, real-time location and earth-
quake early warning requires improvements in the inte-
gration, speed, quality and robustness of the phase ar-
rival picking, phase association and event location pro-
cedures. Currently, development is progressing on inte-
grated procedures which are evolutionary and probabilis-
tic, using, for example, robust likelihood functions such
as EDT and information from not-yet-triggered stations
(e. g., [8,21,54,63,64]).

A current problem in direct-search location is how to
describe in a standardized and compact way the some-
times topologically-complex location pdf . For example,
such a description is needed if the pdf is to be included in
standard earthquake catalogs and for rapid dissemination
of probabilistic location information for earthquake early-
warning. More generally, making full use of the exten-
sive information in direct-search location solutions will re-
quire newmethods and procedures to store, distribute and
analyze the location pdf , maximum likelihood hypocenter,
arrival residuals and weights, and other statistics and qual-
ity indicators of the solutions.

The continuing increase in computer speed will allow
application of direct-search inversion methods to relative
location of ensembles of events and for joint epicentral de-
termination in the near future. The use of these methods
will be important to explore more completely the vast so-

lution space and better determine the error and resolution
for such high-dimensional inverse problems.

The continuing increase in computer speed will also
make practical earthquake location techniques using
waveform recordings directly, without the intermediate
stage of extracting phase arrival times. In these tech-
niques, continuous waveform data streams are matched
to synthetic Green’s functions within a global-search over
possible source locations and source parameters. This
type of approach is used to locate previously unidenti-
fied earthquakes using low amplitude surface waves on
off-line, continuous, broadband waveforms [15,68], and
for automatic, real-time estimation of moment tensors
and location from continuous broadband data streams
(e. g., [25]). Waveform methods will likely be applied to
earthquake location on local and regional scales as faster
computers and more accurate 3D velocity models become
available [81]; related applications using simple ray or
acoustic theories to generate the Green’s functions show
promising results (e. g., [3]).
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Glossary

Technical terms that are written in the text in italics are
explained in the Glossary.
Corner frequency The frequency fc at which the curve

that represents the Fourier amplitude spectrum of
a recorded seismic signal abruptly changes its slope
(see Fig. 5). For earthquakes, this frequency is related
to the fault size, rupture velocity, rupture duration and
stress drop at the source. Also the frequency at which
the magnification curve of a recording system (e. g.,
Fig. 3) changes its slope.

Dispersion Frequency-dependence of the wave propaga-
tion velocity. Whereas seismic body-waves show virtu-
ally no dispersion, it is pronounced for seismic surface
waves. It causes a significant stretching of the length of
the surface-wave record and the rather late arrival of its
largest amplitudes (Airy phases) from which the sur-
face-wave magnitude MS and the mantle magnitude
Mm, respectively, are determined.

Earthquake size A frequently used, but not uniquely de-
fined term. It may be related –more or less directly – to
either the geometric-kinematic size of an earthquake
in terms of area and slip of the fault or to the seismic
energy radiated from a seismic source and its poten-
tial to cause damage and casualty (moment or energy
magnitude).

Earthquake source In general terms, the whole area or
volume of an earthquake rupture where seismic body
waves are generated and radiated outwards. More
specifically, one speaks either of the source mecha-
nism or the source location. The latter is commonly
given as earthquake hypocenter (i. e. the location at
the source depth h from where the seismic rup-
ture, collapse or explosion begins) or as the point
on the Earth’s surface vertically above the hypocen-
ter, called the epicenter. Earthquakes at h < 70 km
are shallow, those at larger depth either intermediate
(up to h D 300 km) or deep earthquakes (h D 300–
700 km). The determination of the geographical coor-
dinates latitude ', longitude , and focal depth h, is
the prime task of seismic source location. However,
for extended seismic sources, fault ruptures of great
earthquakes in particular, the hypocenter is generally
not the location of largest fault slip and/or seismic
moment/energy release and the epicenter is then also
not the location where the strongest ground shaking
is felt. The locations of largest effects may be dozens
of kilometers in space and many seconds to min-
utes in time away from the hypocenter or epicenter,
respectively.

Fundamental modes The longest period oscillations of
the whole Earth with periods of about 20min
(spheroidal mode), 44min. (toroidal mode) and some
54min (“rugby” mode), excited by great earthquakes.

Magnitude A number that characterizes the relative
earthquake size. It is usually based on measurement
of the maximum motion recorded by a seismograph
(sometimes for waves of a particular type and fre-
quency) and corrected for the decay of amplitudes with
epicenter distance and source depth due to geometric
spreading and attenuation during wave propagation.
Several magnitude scales have been defined. Some of
them show saturation. In contrast, themomentmagni-
tude (Mw), based on the concept of seismic moment, is
uniformly applicable to all earthquake sizes but is more
difficult to compute than the other types, similarly the
energy magnitude,Me, which is based on direct calcu-
lation of the seismic energy Es from broadband seismic
records.

Saturation (of magnitudes) Underestimation of magni-
tude when the duration of the earthquake rupture sig-
nificantly exceeds the seismic wave period at which the
magnitude is measured. The shorter this period, the
earlier respective magnitudes will saturate (see relation
(13) and Figs. 4 and 5).

Seismic energy Elastic energy Es (in joule) generated by,
and radiated from, a seismic source in the form of seis-
mic waves. The amount of Es is generallymuch smaller
than the energy associated with the non-elastic defor-
mation in the seismic source (see seismicmoment Mo).
The ratio Es/Mo D (
� /2�) D �a/�, i. e., the seismic
energy released per unit of Mo, varies for earthquakes
in a very wide range between some 10�6 and 10�3, de-
pending on the geologic-tectonic environment, type of
source mechanism and related stress drop 
� or ap-
parent stress �a.

Seismic momentMo A special measure of earthquake
size. The moment tensor of a shear rupture (see earth-
quake source) has two non-zero eigenvalues of the
amount Mo D �D̄Fa with �-shear modulus of the
ruptured medium, D̄-average source dislocation and
Fa-area of the ruptured fault plane. Mo is called the
scalar seismic moment. It has the dimension of New-
ton meter (Nm) and describes the total non-elastic
(i. e., ruptural and plastic) deformation in the seismic
source volume. Knowing Mo, the moment magnitude
Mw can be determined via Eq. (11).

Source mechanism Depending on the orientation of the
earthquake fault plane and slip direction in space,
one discerns different source mechanisms. Strike-slip
faults are vertical (or nearly vertical) fractures along
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which rock masses have mostly shifted horizontally.
Dip-slip faults are inclined fractures. If the rock mass
above an inclined fault moves down (due to lateral
extension) the fault is termed normal, whereas, if the
rock above the fault moves up (due to lateral compres-
sion), the fault is termed reverse (or thrust). Oblique-
slip faults have significant components of both slip
styles (i. e., strike-slip and dip-slip). The greatest earth-
quakes with the largest release of seismic moment
and the greatest potential for generating tsunamis are
thrust faults in subduction zones where two of Earth’s
lithosphere plates (e. g., ocean–continent or conti-
nent–continent) collide and one of the two plates is
subducted underneath the overriding plate down into
the Earth’s mantle. Different source mechanisms are
characterized by different radiation patterns of seismic
wave energy.

Transfer function The transfer function of a seismic sen-
sor-recorder system (or of the Earth medium through
which seismic waves propagate) describes the fre-
quency-dependent amplification, damping and phase
distortion of seismic signals by a specific sensor-
recorder (or medium). The modulus (absolute value)
of the transfer function is termed the amplitude-fre-
quency response or, in the case of seismographs, also
magnification curve (see Fig. 3).

Definition of the Subject

Besides earthquake location (i. e., the determination of the
geographical coordinates of the epicenter, the hypocenter
depth and the origin time; for definition of these terms see
earthquake source in the Glossary), the magnitude is the
most frequently determined and commonly used parame-
ter to characterize an earthquake. Despite its various im-
perfections, it provides important information concern-
ing the earthquake source spectrum at the period where
the magnitude is measured and current source theories
(cf. [3]) allow one to understand differences in the source
spectra of different earthquakes in terms of source dimen-
sion and stress drop, i. e., the difference between the stress
level before and after the earthquake. Via various empir-
ical relations, magnitudes enable estimates of the seismic
moment and the seismic energy released by the earthquake.
These parameters are important in the discussion of vari-
ous global problems such as the seismic slip rates between
lithosphere plates and the excitation of Chandler Wob-
ble [25]. Besides these more academic issues, magnitude
values have an immense practical value in providing:

a) Rapid simple parameter estimates of the strength of an
earthquake that can help to realistically assess the re-

lated ground shaking or tsunami potential and thus as-
sist efficient disaster management response;

b) Mass data in earthquake catalogs and data banks, cov-
ering long time periods overmany decades – and hope-
fully centuries in future, which allows one to assess the
seismic activity and related hazards of Earth’s regions
and their possible variability in space and time. This
is not only of high scientific interest, but also the very
basis for realistic long-term disaster preparedness and
risk mitigation efforts.

The term magnitude and the basic method of its determi-
nation were introduced by Charles F. Richter in 1935 [71].
He intended to compare the relative earthquake size in
southern California in terms of differences in the max-
imum amplitudes A recorded at a network of seismic
stations that were equipped with standard short-period
Wood–Anderson (WA) torsion seismometers.

The WA seismometer response is depicted in Fig. 3
and Fig. 1 shows a WA record and magnitude measure-
ment example. In order to make amplitudes recorded by
stations at different epicentral distances D from the earth-
quake comparable, Richter had to compensate for the am-
plitude decay with D using an appropriate correction term
�Ao(D). Since the strength and thus the radiated ampli-
tudes of earthquakes vary in a wide range Richter defined
his local magnitude scale ML, determined from records at
source distances up to 600 km, as follows:

“The magnitude of any shock is taken as the loga-
rithm of the maximum trace amplitude, expressed in
microns, with which the standard short-period tor-
sion seismometer . . . would register that shock at an
epicentral distance of 100 km.”

Thus:

ML D log Amax � logAo(D) : (1)

According to the above definition, an amplitude of
1 μm in a WA record at a distance D D 100 km from the
epicenter would correspond toML D 0. Amplitude means
in (1) and the following text either the center-to-peak or
half of the peak-to-trough amplitude.

Wood–Anderson (WA) seismographs record horizon-
tal short-period ground motions with an amplification of
only about 2080 times [82]. Modern electronic seismo-
graphs may achieve magnifications larger than 106 and
thus are able to record local earthquakes with even neg-
ative magnitudes, down to about � 2. The largest values
determined with the ML scale are around seven. Later it
was found that all magnitudes derived from short-period
waves (typically with periods T < 3 s) show saturation
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EarthquakeMagnitude, Figure 1
Record of a short-periodWood–Anderson seismograph (frequency-magnification curve see Fig. 3) of a local earthquake. Pmarks the
onset of the first arriving longitudinal P wave, and S the onset of the much stronger secondary, transverse polarized shear wave.
Note the long tail of coda-waves following S. From the time difference S� P D 24 s follows a hypocentral distance R D 190km. The
maximum record amplitude is Amax D 23mm. Applying the amplitude-distance correction � logAo(190 km) D 3:45 according to
Richter [72] results in a magnitudeML D 4:8

(see Glossary, Fig. 4 and Sect. “Magnitude Saturation and
Biases Due to Earthquake Complexity”). Therefore, it was
necessary to develop complementary magnitude scales
that use medium to long-period (T � 5 s � 30 s) as well
as very long-period waves (T � 50 s� 3000 s) in order
to enable less or non-saturating magnitude estimates (see
Sect. “Introduction to Common Magnitude Scales: Poten-
tial and Limitations”). For the so far strongest instrumen-
tally recorded earthquake (Chile 1960) a value of M D 9:5
was determined that way. Accordingly, instrumental seis-
mic monitoring currently covers the magnitude range of
about �2 6 M < 10. This roughly corresponds to rup-
tures of some millimeters to more than 1000 km long.
They radiate approximately the same amount of seismic
wave energy Es as well-contained underground explo-
sions with yields ranging from a few milligrams (10�9 t)
to several 10 to 100Gt (1Gt D 109 t) Trinitrotoluol (TNT)
equivalent, thus covering about 20 orders in energy. Earth-
quakes with magnitudes around four may cause only mi-
nor local damage, those with magnitudes > 6 heavy dam-
age, and those with magnitudes > 7 already widespread
devastating damage. Shallow submarine earthquakes with
magnitudes > 7 may generate significant local tsunamis
with damage potential to nearby shores whereas those with
magnitudes > 8:5 may stimulate ocean-wide tsunamis
causing destruction and casualties even at shores thou-
sands of kilometers away from such earthquakes.

In order to measure and classify earthquake size in the
wide range of magnitudes from about � 2 to < 10 and
satisfy specific requirements in research and application
which are based on magnitude data, it was indispensable

to develop differentmagnitude scales that are complemen-
tary, but properly scaled to the original Richter ML. Thus,
there exists today a host of magnitude scales applicable in
a wide range of source distances from less than 1 km up
to more than 10,000 km. These scales, their specifics, po-
tential and limitations are discussed in detail (with many
reference given) in Chapter 3 of the IASPEI New Manual
of Seismological Observatory Practice [6]. The early pio-
neers of magnitude scales, Beno Gutenberg and Charles
Richter, had hoped that different magnitude scales could
be cross-calibrated to yield a unique value for any given
earthquake (cf. [25,30]. In their joint book [29] “Seismic-
ity of the Earth” (1954; first edition 1949) and later in
Richter’s [72] famous text book “Elementary Seismology”
as well as in Duda [22] only one magnitude value M was
given per earthquake. However, this approach proved only
partially realistic under certain conditions and within lim-
ited magnitude ranges because of the often significant dif-
ferences in measurement procedures as well as period and
bandwidth ranges used in latermagnitudes scales. Decades
later it took significant efforts (cf. [1,2,25]) to reconvert
these M values, which turned out to be not even com-
patible (cf. [25]) into their original body or surface wave
magnitudes in order to get values that agree with the orig-
inal definition of these specific magnitude scales and can
be compared with current data of the same type.

In general, such magnitude conversion relations
strongly depend on initial data errors and the type of
least-square regression procedure applied [11,14]. More-
over, the latter have often not been interpreted and used
in a correct way. This may result in the case of noisy mag-
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nitude data for events at the upper and lower end of the in-
vestigated magnitude range, in conversion errors of more
than 0.5magnitude units (m.u.) with serious consequences
on seismic hazard estimates based on such convertedmag-
nitudes (cf. [7,11,14,15]). Moreover, magnitude values de-
termined within the saturation range of a given scale can-
not reliably be converted via empirical regression relations
into the equivalent magnitude values of another less or
non-saturating magnitude scale (see Fig. 4 and [44]). Fur-
thermore, somemagnitudes relate best to the released seis-
mic energy while others are scaled to the static seismic mo-
ment, i. e., they measure equally important but fundamen-
tally different physical aspects of the source and the radi-
ated seismicwaves andmay differ by sometimesmore than
1m.u. Thus there is no way to characterize earthquake size
in all its different aspects by just a single magnitude value.
Proper interpretation and use of different types of magni-
tude data, however, requires one to understand the physics
behind such values and how these may be affected by the
complexity and duration of the earthquake rupture pro-
cess. Further, this necessitates one to discriminate unam-
biguously the different types of magnitude values by us-
ing a unique nomenclature and to assure that magnitude
values published with a given nomenclature have been de-
termined with an internationally agreed standard proce-
dure. With this in mind, the most important magnitude
scales and related problems are summarized in Sects. “In-
troduction to Common Magnitude Scales: Potential and
Limitations” and “Common Magnitude Estimates for the
Sumatra 2004Mw 9.3 Earthquake”.

Introduction to CommonMagnitude Scales:
Potential and Limitations

Magnitude Scales Used in the Local
and Regional Distance Range (D < 2000 km)

The original Richter local magnitude scale for Southern
California [71] has been further developed since its inven-
tion [38]. In its expanded form (with the nomenclatureML
common in the United States), the following relation now
holds:

ML D log10 (Amax)C1:11 log10 RC0:00189 R�2:09 (2)

with R D distance from the station to the hypocenter
in kilometers and Amax D maximum trace amplitude in
nanometers (instead of μm in a WA record). This ampli-
tude is measured on the output from a horizontal-compo-
nent seismograph that is filtered so that the response of the
seismograph/filter system replicates that of aWA standard
seismograph but with a static magnification of one. The

underlying procedure of ML determination according to
relation (2) was adopted by the International Association
of Seismology and Physics of the Earth’s Interior (IASPEI)
in 2004 as the standard procedure for determining local
magnitudes in the distance range up to typically less than
1000 km [42]. For earthquakes in the Earth’s crust of re-
gions with attenuation properties that differ from those
of coastal California, and for measuring ML with vertical
component seismographs, the standard equation takes the
form:

ML D log10(Amax)C F(R)C G (3)

where F(R) is an R-dependent calibration function and G
a constant which have to compensate for different regional
attenuation and/or for any systematic biases of amplitudes
measured on vertical instead on horizontal seismographs.
Examples of regional ML calibration functions developed
for different parts of the world have been compiled by Bor-
mann (Chap. 3, p. 26, and DS 3.1 in [6]).

A few decades ago, analog seismic records prevailed.
They had a rather limited dynamic range of only some
40 dB. This caused record traces often to go off-scale when
stronger seismic events were recorded at local or regional
distances. Then Amax could not be measured. Yet, it was
found that the duration d of the coda that follows Amax
with exponentially decaying amplitudes (see Fig. 1) in-
creases with magnitude and distance D. On this basis, lo-
cal duration magnitude formulas of the following general
form

Md D aC b log dC cD (4)

have been developed with a, b and c being coefficients
to be determined locally. When using only recordings at
distances D < 100 km the distance term cD is not even
needed. However, crustal structure, scattering and attenu-
ation conditions vary from region to region. Moreover, the
resulting specific equations will also depend on the cho-
sen definition for d, the local signal-to-noise (SNR) con-
ditions and the sensor sensitivity at the considered seismic
station(s) of a network. Therefore,Md scales have to be de-
termined locally for a given source-network configuration
and scaled to the best available amplitude-basedML scale.

Nowadays digital recorders with large usable dynamic
range of about 140 dB are common. Thus even sensitive
modern broadband seismographs remain on scale when
recording local or regional earthquakes up toM � 7. This
reduces the need for Md scales. Moreover, the increasing
availability of modern strong-motion (SM) recorders with
comparably large dynamic range, which will not clip even
in the case of very strong nearby earthquakes, have led to
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the development of (partially) frequency-dependent MSM
L

scales. They are usually based on the calculation of syn-
thetic WA seismograph outputs from strong-motion ac-
celerograms [35,54].

Also, amplitudes of short-period Lg waves with pe-
riods around 1 s are sometimes used to determine mag-
nitudes, termed mb(Lg). Lg waves travel with group ve-
locities of 3.6 to 3.2 km/s and arrive after the (secondary,
shear) S wave onset (Fig. 1). They propagate well in conti-
nental platform areas. Recently, the IASPEI [42] adopted
a measurement procedure for mb(Lg) as international
standard, which had been developed for eastern North
America [62] with the aim to improve yield estimates of
Nevada Test Site explosions. However, as for all other lo-
cal or regional magnitude scales, the calibration term is
strongly influenced by the local/regional geologic-tectonic
conditions in the Earth’s crust and requires a proper scal-
ing to this standard, when applied to other areas than east-
ern North America.

Tsuboi developed for the JapanMeteorological Agency
(JMA) in 1954 [79] amagnitude formula for shallow earth-
quakes (depth h < 60 km) that have been recorded at epi-
central distances D up to 2000 km:

MJMA D log10 Amax C 1:73 log10 D � 0:83 : (5)

Amax is the largest ground motion amplitude (in μm) in
the total event record of a seismograph with an eigen-
period of 5 s. If horizontal seismographs are used then
Amax D (A2

NS C A2
EW)1/2 with ANS and AEW being half

the maximum peak-to-trough amplitudesmeasured in the
two horizontal components. This formula was devised to
be equivalent to the medium to long-period Gutenberg–
Richter [29] magnitudeM. Therefore, MJMA agrees rather
well with the seismic moment magnitudeMw. The average
difference is less than 0.1 in the magnitude range between
4.5 and 7.5 but becomes > 0:5 for Mw > 8:5 (see Fig. 4).
Katsumata [49,50] has later modified the MJMA formula
for earthquakes deeper than 60 km.

Another, more long-period regional moment magni-
tude scale, termed Mwp, has been developed in Japan as
well [80]. It provides quick and less saturating magnitude
estimates for tsunami early warning. Velocity-propor-
tional records are twice integrated and approximately cor-
rected for geometrical spreading and an average P-wave
radiation pattern (see source mechanism) to obtain esti-
mates of the scalar seismic moment Mo at each station.
Usually the first maximum in the integrated displace-
ment trace, called “moment history” Mo(t), is assumed
to represent Mo. From these Mo values moment magni-
tudes Mw are then calculated for each station according to

Eq. (11) and averaged. Mwp results from adding an em-
pirically derived correction of 0.2m.u. to the averaged sta-
tion Mw [80]. Finally, a magnitude-dependent correction
is applied to Mwp [86] in order to get an even better es-
timate of the recognized “authoritative” Global Centroid
Moment Tensor magnitude Mw (GCMT) which is calcu-
lated according to the Harvard procedure [23] and now
published under [41].

The Mwp concept was originally developed for earth-
quakes at 5ı 6 Dı 6 15ı, but can be applied forMw < 7:5
(down to aboutMw � 5) even to shorter local distances as
long as this distance is significantly larger than the rup-
ture length. Later the Mwp procedure has been adopted
for application to records of deep and teleseismic earth-
quakes as well [81]. Mwp estimates are standard routine
in Japan, at the Alaska and the Pacific Tsunami Warn-
ing Centers (ATWC and PTWC), and the National Earth-
quake Information Center (NEIC) of the United States Ge-
ological Survey (USGS). However, each of these centers
use slightly different procedures. Values for most strong
earthquakes are usually available some 10 to 15min after
the origin time (OT). On averageMwp data scale well with
Mw. Exceptions, however, are extremely slow or very large
complex earthquakes. Then Mwp is usually too small, up
to about 1m.u.

In recent years great attention is paid to the develop-
ment of even more rapid earthquake early warning sys-
tems (EWS). They aim at event location and magnitude
estimates from the very first few seconds of broadband
acceleration, velocity or displacement records and within
about 10 to 30 s after origin time (OT) of strong damaging
earthquakes on land. These data are to be used for instan-
taneous public alarms and/or automatically triggered risk
mitigation actions after strong earthquakes with damage
potential. The goal is to minimize the area of “blind zones”
which are left without advanced warning before the arrival
of the S waves which have usually the largest strong-mo-
tion amplitudes (see Fig. 1). This necessitates very dense
and robust local seismic sensor networks within a few tens
of kilometers from potentially strong earthquake sources.
Such networks are at present available only in very few
countries, e. g. in Japan, Taiwan, Turkey, and Italy.

Their principles of rapid magnitude estimates differ
from those mentioned above and below and the data anal-
ysis from such systems is largely based on still much de-
bated concepts such as the hypothesis of the determinis-
tic nature of earthquake rupture [66,73]. Data presented
in [66] seem to suggest that in the range 3:0 < M (not
specified) < 8:4 the magnitude can be estimated with an
average absolute deviation of 0.54m.u. from the max-
imum period within the initial 4 s of the first arriving
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(primary, longitudinal) P wave when many low-pass fil-
tered velocity records within 100 km from the epicenter
are available. However, for M > 6 the systematic increase
of these greatly scattering periods becomes rather ques-
tionable. When analyzing waveforms of the Japanese Hi-
net seismic network [73], it could not be confirmed that
such a dominant frequency scaling with magnitude ex-
ists. Also Kanamori [46], together with Nakamura [60,61],
one of the fathers of this idea, expressed much more
caution about the prospects of this method after he had
run, together with Wu [89], an experiment with the Tai-
wan EWS. For each event they analyzed the first 3 s of at
least eight P-wave records at epicentral distances< 30 km.
They knew that: “. . . the slip motion is in general com-
plex and even a large event often begins with a small
short-period motion, followed by a long-period motion.
Consequently, it is important to define the average period
during the first motion.” (termed �c in [46,89]). However,
after applying the �c concept to the Taiwan EWS they con-
cluded: “For EWS applications, if �c < 1 s, the event has
already ended or is not likely to grow beyond M > 6. If
�c > 1 s, it is likely to grow, but how large it will eventually
become, cannot be determined. In this sense, the method
provides a threshold warning”. Thus it seems that these
new concepts work reasonably well only for earthquakes
with M < 6:5 and thus total rupture durations that are ac-
cording to Eq. (13) on average not more than about 2–3
times the measurement time windows of 3 s or 4 s used
in [46,66,89]. Nakamura and Saita [61] reported data from
a much smaller set of events (N D 26) recorded at local
distances in the range 4:6 < M < 6:9. We calculated the
average absolute deviation of their rapid UrEDAS system
magnitudes (0.47m.u.) from the official magnitudesMJMA
published later by the Japan Meteorological Agency. This
error decreases to 0.32m.u. when only earthquakes with
magnitudes up to MJMA D 6:0 are considered. This seems
to support our assessment that the reliability of real-time
EMS magnitudes decreases rapidly if the analyzed time
window is much shorter than the rupture duration.

Magnitude Scales Used
in the Teleseismic Distance Range (D> 2000 km)

Ten years after the introduction of the local magnitude
ML, Beno Gutenberg [26,27,28] extended the concept of
magnitude determination to teleseismic distances larger
than about 1000–2000 km.He used both records of seismic
waves that propagate along the Earth’s surface (or near to
it with a period-dependent penetration depth) and waves
which travel through the Earth. Accordingly, the former
are termed surface waves and the latter body waves. For

the surface-wave magnitude Gutenberg [28] gave the fol-
lowing relation:

MS D log10 AHmax C 1:656 log Dı C 1:818 (6)

with AHmax D maximum “total” horizontal displacement
amplitude of surface-waves in μm for periods around
20˙ 2 s measured in the distance range 15ı < Dı < 130ı

(1ı D 111;195 km).
While the original Richter ML and Gutenberg MS

magnitudes were calculated from the maximum ground
displacement amplitudes, Gutenberg [26,27,30] proposed
to determine the body-wave magnitudes mB from the re-
lation:

mB D log10 (A/T)max C Q(Dı; h) ; (7)

i. e., by measuring the maximum ratio of ground displace-
ment amplitude A (in μm) divided by the related period
T (in s). A/T is equivalent to measuring the maximum
ground motion velocity Avmax/2� which is proportional
to the square root of seismic energy, i. e.

p
Es. Thus the

magnitude becomes a measure of the elastic kinetic wave
energy radiated by an earthquake. Only in this way com-
parable magnitude data could be obtained for different
types of body waves and measurements at different sites.
Another great advantage of mB is that it permits mag-
nitude estimates also from intermediate and deep earth-
quake sources, which produce only weak or no surface
waves at all. Empirical relationships permit estimating Es
(in units of Joule) from body-wave magnitudemB [30]

log10 Es D 2:4mB � 1:2 (8)

or surface-wave magnitude MS [72]

log10 Es D 1:5MS C 4:8 : (9)

Accordingly, an increase by 1m.u. in mB and MS corre-
sponds to an increase of radiated seismic energy by about
250 and 30 times, respectively.

Revised empirical distance-depth corrections for the
calibration of body-wave magnitudes, so-called Q-func-
tions, were published in 1956 by Gutenberg and
Richter [30]. They are given as separate tables and charts
for the body-wave phases P, PP (a P wave reflected at the
surface of the Earth about the half way between source and
station) and S. They are still in use, especially QPV for cal-
ibrating amplitude measurements made on vertical com-
ponent P-wave records (Fig. 2). However, for epicenter
distances between 5° and 20° these calibration values are
not reliable enough for global application. In this range
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EarthquakeMagnitude, Figure 2
Calibration values Q(Dı;h) for vertical (Z) component P-wave amplitudes depending on epicentral distance Dı D� and source
depth h as used in the calculation of body-wavemagnitudesmb andmB according to Gutenberg and Richter, 1956 [30]

the wave propagation is strongly affected by regional vari-
ations of the structure and properties of the Earth’s crust
and upper mantle. And for D > 100ı the P-wave ampli-
tudes decay rapidly because of the propagation of P waves
is influenced by the Earth’s core (so-called core shadow).
Therefore, in agreement with current IASPEI recommen-
dations [42], mB and its short-period complementmb (see
below), should be determined by using QPV only between
21ı 6 D 6 100ı.

These body-wave magnitude calibration functions had
been derived from amplitude measurements made mostly
on medium-period broadband displacement records
which dominated during the first half of the 20th Century
at seismological stations. Their period-dependent magni-
fication curve resembled more or less that of the classical
standard seismograph type C shown in Fig. 3, although for
some of these instruments the roll-off of the amplification
occurred already at periods T > 10 s.

Another, so-called Prague–Moscow formula for sur-
face-wave magnitudes was proposed in 1962 by Vanĕk et
al. [84]. It is based on the measurement of (A/T)max in
records of shallow earthquakes (h < 60 km) in wide pe-

riod and distance ranges (3 s < T < 30 s; 2ı 6 Dı 6
160ı):

MS D log10(A/T)max C 1:66 log10 D
ı C 3:3 : (10)

This relationship, which is – as Eq. (7) – more directly re-
lated to Es, was adopted by the IASPEI in 1967 as interna-
tional standard.

The NEIC adopted Eq. (10), but continues to limit the
range of application to distances between 20ı 6 Dı 6
160ı and displacement amplitudes in the very limited pe-
riod range as in formula (6) although Soloviev [74] had
shown already in 1955 that (A/T)max is a stable quantita-
tive feature of surface waves whatever the period of their
maximum at all epicentral distances. Also theory has con-
firmed [63] that using the ratio (A/T) is a partial and ad
hoc compensation for a large number of frequency-depen-
dent terms ignored in (10). In fact, the periods at the sur-
face-wave maximum used for MS determination vary in
a wide range between some 3 s and 25 s and show – despite
large scatter – a clear distance dependence [84,87]. There-
fore, several authors [36,70] showed that using Eq. (10)
only for amplitude readings around 20 s results in system-
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EarthquakeMagnitude, Figure 3
Magnification of ground displacement amplitudes by common
standard types of seismographs. WA =Wood–Anderson seismo-
graph; WWSSN-SP and WWSSN-LP = short-period and long-pe-
riod seismographs used in the former United States World-Wide
Seismograph Standard Network; HGLP = US type of High Gain
Long Period seismographs; A2, A3, B1, B3 andC= standard types
of seismographs according to Willmore [87]. Reprint from [6]
with © granted by IASPEI

atic distance-dependent biases. However, their proposed
revised calibration functions for 20 s waves are not yet
used in routine practice at international seismological data
centers.

The formulas (6) and (10) had originally been devel-
oped for horizontal component amplitude readings. Be-
ginning in the 1960s, however, more and more long-pe-
riod and broadband vertical component instruments be-
came available and are now commonly used for magnitude
determination from surface waves. This procedure is eas-
ier and better defined than measuring and combining the
amplitude measurements made in two horizontal compo-
nents, yields on average values that are largely comparable
with the GutenbergMS [25] and has recently been adopted
as IASPEI [42] standard. Herak et al. [37] published theo-
retical and observed depth corrections for MS(20) when
determined according to (10). These corrections allow de-
termination of more reliable surface-wave magnitudes for
earthquakes in all depth ranges and improve significantly

EarthquakeMagnitude, Figure 4
Average relationships between different common types of mag-
nitudes and the moment magnitude Mw. Modified from Fig. 1
in [83]

the relationship between MS and the seismic moment Mo.
In the 1960s, the United States deployed aWorld-Wide

Standard Seismograph Network (WWSSN) equipped with
short-period (SP) and long-period (LP) seismographs of
limited bandwidth (cf. Fig. 3). This network had two
priority tasks. Firstly, to significantly increase the sig-
nal-to-noise ratio of the seismic records by narrow-band
short-period filtering, thus improving the global detec-
tion threshold for teleseismic events down to magnitudes
around 4–4.5 and the location accuracy for seismic events.
Secondly, to realize an effective discriminator between un-
derground nuclear explosions (UNE) and natural earth-
quakes based on the ratio of a short-period body-wave
and a long-period surface-wave magnitude. Natural earth-
quakes have a much longer source duration (seconds to
minutes) than explosions of comparable size (typically
milliseconds). Also, at comparable seismicmomentmagni-
tude, UNEs radiate significantly more high-frequency en-
ergy (see dotted curve in Fig. 5) than earthquakes. There-
fore, a better discrimination of the two types of events was
achieved by measuring the P-wave amplitude only at peri-
ods< 3 s (typically around 1 s) and calculating a short-pe-
riod P-wavemagnitude termedmb. In contrast, the Guten-
berg mB is based on measuring Amax at periods T usually
between 2 s and 30 s. Further, during the first two decades
of the WWSSN, the P-wave amplitude was not – as re-
quired by Gutenberg’s procedure for mB determination –
always measured at the maximum of the whole P-wave
train (whose length depends on the source duration and
thus on the magnitude itself) but initially within the first
five half-cycles only and later by USGS requirement in the
first 5 s of the record.

Because of the short source duration of explosions,
their P-waves will always reach maximum amplitudes
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within such a short time-interval. However, P waves ra-
diated by large earthquakes of much longer source dura-
tion will reach their maximum amplitude usually much
later in the rupture process. For magnitude 6 the average
rupture duration is on average already 6 s, and may in-
crease to about 600 s for the strongest earthquakes (cf. rela-
tion (13)). Both effects together, plus the fact, that mb was
still computed using the QPV function derived for mainly
medium-period P waves, which are much less affected by
frequency-dependent attenuation than 1Hz P waves, re-
sulted in a systematic underestimation of the earthquake
size for magnitudes larger than 5 and a saturation of mb at
around 6.5.

In the late 1970s, the NEIC switched back to a longer
time window of about 15 s and more recently, with an
automatic procedure, to a window covering the first 10
cycles of short-period teleseismic P waves. In the case of
strong earthquakes this window may later be extended
interactively up to 60 s. This mitigates to some extend
the saturation of mb. However, no mb-values larger than
7.2 have ever been measured with this procedure. On the
other hand mb yields rather reliable values for magnitudes
< 5 when the corner frequency of the average source spec-
tra falls within the passband of the short-period seismo-
graph or is even more high frequency (cf. Figs. 3, 4, 5). For
magnitudes < 5 mB can usually no longer be determined
because of too small signal-to-noise ratio (SNR) in broad-
band records. Then mb is often the only available teleseis-
mic estimator of earthquake size for small earthquakes.

Most seismic stations and networks worldwide
adopted the US procedure for mb measurement and –
with the exception of Russia, China and their former al-
lies – completely abandoned measuring mB as originally
defined. This change in attitude was stimulated by the fact
that the NEIC, which serves in fact as one of the leading
international data centers for seismology, did not accept
reported P-wave amplitudes other than those obtained
from short-period measurements. Some stations, national
and global data centers continue (at least up to 2008) to
measure for mb the maximum amplitude of P exclusively
within the first 5 s after the P-wave first arrival, such as the
China Earthquake Network Center and the International
Data Center (IDC) of the Comprehensive Test-Ban Treaty
Organization (CTBTO) in Vienna.

Because of these inconsistencies in mb and MS deter-
mination and the proven merits of both broadband mB
and MS (see also [11]) the IASPEI Working Group on
Magnitude Measurements recommended that in future:

a) mb is always determined from Amax at periods T < 3 s
within the whole P-wave train;

b) The band-limited magnitudesmb and MS(20) be com-
plemented by true broadband magnitudes mB and
MS(BB). The latter two will be obtained by measur-
ing Avmax on unfiltered velocity broadband records and
thus always include the maximum velocity amplitudes
of the source spectrum in the magnitude range of in-
terest (cf. Fig. 5). This will link these two broadband
magnitudes to the seismic energy released by an earth-
quake, more closely than the common band-limited
magnitudes.

These recommendations have been adopted by the IASPEI
Commission on Seismic Observation and Interpretation
(CoSOI) in 2005 as new magnitude measurement stan-
dards. More details about the new measurement proce-
dures for mb, mB, MS(20) and MS(BB) are given on the
CoSOI web site [42]. Beginning in 2007 they are gradually
implemented at the main seismological data centers and
networks.

Since all magnitudes discussed so far show more or
less pronounced saturation for large earthquakes (cf. Fig. 4
and [44]) a non-saturating magnitude, termed Mw, has
been proposed [31,43,69]. The moment magnitude Mw is
derived from the scalar seismicmoment Mo via the relation

Mw D (2/3)(log10 Mo � 9:1) : (11)

Mo has the dimension of Newton meter (Nm) and ex-
presses the total inelastic “work” required for rupturing
and displacing the considered earthquake fault. It can be
determined either by waveform analysis and inversion in
the time domain or by measuring the spectral amplitude
u0p;s of the low-frequency level (plateau) of the displace-
ment spectrum of P or S waves (cf. Fig. 5) via the relation-
ship

Mo D 4�r� v3p;su0p;s
ı
Rp;s
�;�

(12)

with r D hypocenter distance, � D average density of
rocks in the source and receiver area, vp;s D average ve-
locity of the P or S waves from the source to the receiver
area and Rp;s

�;�
D a factor correcting the observed seismic

amplitudes for the influence of the radiation pattern of
the given source mechanism, which is different for P and S
waves.

Mo is expected to show no saturation, provided that
the amplitude level is measured only at periods signifi-
cantly larger than the magnitude-dependent corner period
of the seismic source spectrum (cf. Fig. 5). In Sects. “Com-
mon Magnitude Estimates for the Sumatra 2004 Mw 9.3
Earthquake” and “Magnitude Saturation and Biases Due
to Earthquake Complexity” we will show, however, that in-
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correct determination ofMo may still result in an underes-
timation of the earthquake size. Since Mw is derived from
Mo it is related to the tectonic effect of earthquakes, i. e.,
to the product of rupture area and average fault slip and
thus also relevant to assess the tsunami potential of strong
shallow marine earthquakes. An example is the off-shore
Nicaragua earthquake of 2 September 1992. Its mb D 5:3
was too weak to alert the people ashore, some 70–120 km
away from the source area. However, its Mw D 7:6 was
much larger and caused a damaging local tsunami with al-
most 200 casualties.

Yet, Mo and thus Mw do not carry any direct in-
formation about the dominant frequency content and
thus of the seismic energy released by the earthquake (cf.
Sect. “Magnitude Saturation and Biases Due to Earth-
quake Complexity”). In fact, relation (11) was derived by
assuming constant stress drop and an average ratio of
Es/Mo D 5 � 10�5 on the basis of elastostatic considera-
tions and empirical data [43] and then replacing in Eq. (9)
MS by Mw.

As source theory has advanced and broadband digital
data have became readily available, the radiated seismic en-
ergy Es could be computed explicitly rather than from an
empirical formula. Boatwright and Choy (cf. [5,16]) de-
veloped such an algorithm for computing Es as well as
a related energy magnitude Me which agrees with Mw for
Es/Mo D 2 � 10�5. Es is computed by integrating squared
velocity-proportional broadband records over the dura-
tion of the P-wave train, corrected for effects of geomet-
rical spreading, frequency-dependent attenuation during
wave propagation and source radiation pattern. According
to [16], the radiated seismic energy may vary for a given
seismicmoment by two to three orders of magnitude. Fur-
ther, it was found that a list of the largest events is domi-
nated by earthquakes with thrust mechanisms when size
is ranked by moment, but dominated by strike-slip earth-
quakes when ranked by radiated seismic energy. Choy and
Kirby [18] gave a striking example for differences between
Me and Mw for two Chile earthquakes in 1997 which oc-
curred in the same area but with different source mecha-
nisms. One was interplate-thrust with Mw D 6:9 and rela-
tively low Me D 6:1, whereas the other was intraslab-nor-
mal with Mw D 7:1 and rather large Me D 7:6. The first
earthquake had a low potential to cause shaking damage
and was felt only weakly in a few towns. In contrast, the
second one caused widespread damage, land- and rock-
slides, killed 300 people and injured 5000. Thus, Mw, al-
though it theoretically does not saturate, may strongly un-
derestimate or overestimate the size of an earthquake in
terms of its potential to cause damage and casualties. Shak-
ing damage is mainly controlled by the relative amount of

released high-frequency energy at f > 0:1Hz which is bet-
ter measured by Me.

The quantity �a D �Es/Mo is termed apparent
stress [90]. It represents the dynamic component of stress
acting on the fault during slip, which is responsible for the
generation of radiated kinetic seismic wave energy Es. On
average it holds that �a � 2
� (with
� D stress drop D
difference between the stress in the source area before and
after the earthquake rupture). Both �a and 
� depend
strongly on the seismotectonic environment, i. e., the geo-
logic-tectonic conditions, fault maturity and type of earth-
quake source mechanisms prevailing in seismically active
regions [16,17,18,19]. However, Me � Mw holds only for
�a � 0:6MPa.

Another important teleseismic magnitude is called
mantle magnitude Mm. It uses surface waves with peri-
ods between about 60 s and 410 s that penetrate into the
Earth’s mantle. The concept has been introduced by Brune
and Engen [13] and further developed by Okal and Ta-
landier [64,65]. Mm is firmly related to the seismic mo-
mentMo. Best results are achieved forMw > 6 at distances
> 15–20ı although the Mm procedure has been tested
down to distances of 1.5° [77]. However, at D < 3ı the
seismic sensors may be saturated in the case of big events.
Also, at short distances one may not record the very long
periods required for unsaturated magnitude estimates of
very strong earthquakes, and for Mw < 6, the records may
become too noisy at very long-periods. A signal-to-noise
ratio larger than 3 is recommended for reliable magnitude
estimates.Mm determinations have been automated at the
PTWC and the CPPT [39,85] so that estimates are avail-
able in near real-time within about 10min after OT from
near stations, however typically within about half an hour,
plus another few minutes for great earthquakes measured
at the longest periods. Since Mm is determined at vari-
able very long periods this magnitude does not – or only
marginally – saturate even for very great, slow or complex
earthquakes.

CommonMagnitude Estimates
for the Sumatra 2004Mw 9.3 Earthquake

On 26 December 2004, the great Sumatra–Andaman Is-
land earthquake with a rupture length of more than
1000 km occurred. It caused extensive damage in North-
ern Sumatra due to strong earthquake shaking. Moreover,
it generated an Indian Ocean-wide tsunami with maxi-
mum run-up heights of more than 10m. In total, this
event claimedmore than 200,000 victims and causedwide-
spread damage on the shores of Sumatra, Thailand, In-
dia and Sri Lanka that were reached by the tsunami wave
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within some 15min to about two hour’s time. This earth-
quake put the current procedures for magnitude deter-
mination to a hard test both in terms of the reliability
and compatibility of calculated values and the timeliness
of their availability to guide early warning and disaster
management activities. Here we address only seismolog-
ical aspects, not the additional major problems of inade-
quate global monitoring and insufficient regional commu-
nication and disaster response infrastructure. The earliest
magnitudes reported by or made available to the Pacific
TsunamiWarning Center (PTWC) were:

� mb > 7, about 8min after origin time (OT);
� Mwp D 8:0, available after some 12 minutes at the

PTWC (including a magnitude-dependent correc-
tion [86]);

� somewhat later in Japan Mwp D 8:2 after magnitude-
dependent correction [48];

� Mm > 8:5 at the PTWC about 45min after OT, hours
later upgraded to Mm D 8:9 by using mantle surface
waves with longer periods (T � 410 s);

� a first surface-wave magnitude estimate MS D 8:5,
some 65min after OT;

� Mw D 8:9 (later revised to 9.0) released by Harvard
Seismology more than 6 h after OT.

Other available measurements were: mb D 5:7 and
MS D 8:3 by the IDC of the CTBTO,mb D 7:0;MS D 8:8,
Me D 8:5 and another long-period P-wave based
Mw D 8:2 by the NEIC. All these values were too small
and mostly available only after several hours or days (e. g.,
IDC data). Weeks later, after the analysis of Earth’s fun-
damental modes with periods up to 54min and wave-
length of several 1000 km, the now generally accepted
value Mw D 9:3 was published [76]. Why were the other
magnitude values all too low and/or too late?:

� mb NEIC suffers from the combined effect of both spec-
tral and time-window dependent saturation that we
will discuss in more detail in Sect. “Magnitude Satura-
tion and Biases Due to Earthquake Complexity”;

� mb IDC is even more affected by these saturation ef-
fects, because of the very short measurement time win-
dow of only 5 s after the first P-wave onset. In the case
of the Sumatra 2004 earthquake, the first P-wave maxi-
mum occurred after some 80 s and another, with com-
parable amplitude, after about 330 s (cf. Fig. 8). Fur-
ther, prior to mb measurement, the IDC broadband
data are filtered with a more narrow-band response
peaked at even higher frequencies (3–4Hz) than at
NEIC (� 2:5Hz) [11];

� The reported surface-wavemagnitudes ranged between
MS D 8:3 (IDC), 8.8 (NEIC and Japan Meteorologi-
cal Agency) and 8.9 (Beijing), i. e., some of them are
close to the moment magnitudes. However, because of
the late arrival of long-period teleseismic surface waves,
good estimates are usually not availablewithin 1–2 h af-
ter OT. This leaves a sufficient tsunami warning lead
time only for shores more than 1000–2000 km away
from the source.

� The NEIC P-wave moment magnitude Mw D 8:2 was
to small because its procedure is, similar as for Mwp
determinations, based on relatively short-period (typ-
ically T < 25 s) P-wave recordings and a single-source
model (cf. Sect. “Magnitude Saturation and Biases Due
to Earthquake Complexity”).

� The preliminary Me D 8:5, computed a few hours af-
ter the December 2004 earthquake agreed with the final
Me computed later using a more robust method [20].
Another algorithm simulating a near-real-time com-
putation would have yielded Me D 8:3. Yet Me, by its
very nature as an energy magnitude and because of
the relation Es D 
� /2�Me, will generally be smaller
than Mw for slow, long duration earthquakes with
low stress drop. This is often the case for shallow
thrust earthquakes in subduction zones. Extreme ex-
amples are four well-known slow tsunami earthquakes
of 1992 (Nicaragua; Mw D 7:6; 
Me D �0:9), 1994
(Java; Mw D 7:8; 
Me D �1:3), 2000 (New Britain
Region; 
Mw D 7:8; 
Me D �1:0) and 2006 (Java;
Mw D 7:7; 
Me D �0:9) [40].

Magnitude Saturation and Biases
Due to Earthquake Complexity

Currently, the most common magnitude scales, especially
those based on band-limited short-period data, still suf-
fer saturation, e. g., the magnitudes mb;ML;mB and MS,
which are typically measured at periods around 1 s, 2 s,
5–15 s and 20 s, respectively begin to saturate for mo-
ment magnitudes Mw larger than about 5.5, 6.5, 7.5 and
8.0. Earthquakes with mb > 6:5;ML > 7:0;mB > 8:0 and
MS > 8:5 are rare been found due to saturation (cf. Fig. 4
and [44]). Magnitude saturation has two causes: spectral
saturation and saturation due to insufficient time-window
length for the amplitude measurements. Source complex-
ity may cause additional biases between different magni-
tude scales.

Spectral Saturation of Magnitudes

Spectral saturation occurs when themagnitude-dependent
corner frequency fc (for energy-related magnitudes) or
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the low-frequency plateau of displacement amplitudes (for
moment magnitude) fall outside of the passband range of
the seismographs transfer function or magnification curve
(Fig. 3) of the recording seismograph or of the filter ap-
plied to broadband data before magnitude measurements
are made. The reason for spectral saturation can best be
explained by way of idealized average “source spectra” of
ground displacement u(f ) and ground velocity v(f ) that
have been corrected for the instrument response, for the
decay of the wave amplitudes due to attenuation that is
caused by internal friction and scattering of the seismic
waves at heterogeneities of the Earth and for amplification
effects at the surface of the receiver site. For better under-
standing such source spectra have beenmultiplied in Fig. 5
by the factor 4�r� v3p;s/R

p;s
�;�

given in Eq. (12) in order
to get for the displacement amplitudes u0 D constant at
f < fc the related scalar seismic moment Mo (Fig. 5, left)
and its time-derivative, the so-called moment rate (Fig. 5,
right).

The shape of the source spectrum can be interpreted as
follows: The critical wavelength, which corresponds to fc,
is c D vp;s/ fc D cm1�R D cm2 (L ×W)1/2 with vp;s – ve-
locity of the P or S waves in the source region, depending
on whether fc relates to a P-wave or an S-wave spectrum,
R-radius of a circular fault rupture model, L– length and
W– width of a rectangular fault rupture model; cm1 and
cm2 are model dependent constants. For very long fault
ruptures, i. e., L	 W , one can even write c D cm3L.
Thus, c is proportional to the linear dimension of the
fault. For f < fc, c becomes larger than the fault. Rup-
ture details along the fault can then no longer be resolved
and the fault is “seen” by these long wavelengths just as
a point source. Therefore, all frequencies f < fc have the
same displacement amplitudes. Accordingly, Mo, which is
proportional to the fault area and the average slip over the
fault, has to be determined either in the spectral domain
from the low-frequency asymptote uo to the displacement
spectrum or in the time domain by fitting synthetic long-
period waves with f < fc to observed ones that have been
low-pass filtered in the same frequency range.

For radiated frequencies f > fc with  < c, the shape
of the spectrum changes drastically. Related displace-
ment amplitudes are then excited by successively smaller
patches of the rupture plane. The area of the rupture ele-
ments decreases with the second order of their linear di-
mension. Accordingly, the generated displacement ampli-
tudes are Ad � f�2, while the related velocity amplitudes
Av D Ad2� f decay only � f�1. In the seismological lit-
erature this is usually called the !�2 rupture model [3],
based on the concept of similarity, which implies a con-
stant stress drop independent of source size. More com-

plicated rupture models yield a high-frequency amplitude
decay � !�3 [33,34] and even more rapid decays have
sometimes been found in empirical data (up to 5th order).
Steeper than !�2 amplitude decay would further amplify
the spectral saturation of magnitude data discussed below.

The Harvard standard procedure for Mo determina-
tion assumes a single point source model with a pre-
scribed, triangular moment-rate function in the time do-
main (as an approximation to moment-rate curves such
the ones shown in Fig. 7) as well a minimum period of
200 s for strong earthquakes withmagnitudes> 8. Assum-
ing an average rupture velocity of 2.5 km/s, this period
would correspond to a wavelength of 500 km. This is much
shorter than the total rupture length of more than 1100 km
for the great Sumatra 2004 earthquake and explains why
Mw(HRV) D 9:0 was smaller than the moment magni-
tude Mw D 9:3 determined by using fundamental Earth’s
modes with periods of 1000 s and more [76].

The relationship between the two currently most com-
mon magnitudes,mb andMS(20), can be understood with
reference to Fig. 5. mb is measured in the period range
0:5 < T < 3 s, typically around 1 s. This corresponds ap-
proximately to the corner frequencies of earthquakes with
MS � 3 to 4.5. According to Utsu [83] this is equivalent to
anmb between about 3.5 and 5.0. ForMS < 4:5 ormb < 5,
mb is thus likely to be determined from amplitude mea-
surements near or below the corner frequency of the source
spectrum. In that casemb is a goodmeasure of seismicmo-
ment. However, for larger magnitudes mb samples spec-
tral amplitudes well above fc, resulting in systematically
too smallmb values as compared to MS and Mw. For great
earthquakes this difference may reach 2m.u. (Fig. 4). In
contrast, MS(20) is measured at periods around 20 s and
thus saturates much later at values between about 8.5 to 9.

However, these arguments only hold on average. The
stress drop 
� of individual events may vary by about
2 to 3 orders, as apparent stress �a, especially for earth-
quakes with Mw < 7:5 [16,17]. According to the relation
Mo D (16/7)
�R3 given by Keilis–Borok [52] this may
change source radii R and associated fc by about one
order. As an example, the dotted curve in Fig. 5 shows
the approximate seismic source spectrum for a well con-
tained underground nuclear explosion (UNE) of an equiv-
alent yield of 1 kt TNT which corresponds to a magni-
tude mb � 4. Its source volume is much smaller than
that of an earthquake with same seismic moment. Hence
the corner frequency of its source spectrum is not around
1Hz but around 10Hz. This is the reason why mb de-
termined from UNE records does not saturate, even for
the strongest UNE ever tested with mb � 7. Moreover,
Fig. 5 also illustrates that an earthquake and an UNE
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EarthquakeMagnitude, Figure 5
“Source spectra” of ground displacement (left) and velocity (right) for an average single rupture seismic shear source, scaled on the
left ordinates to seismicmoment Mo (left diagram) andmoment rate (right diagram), respectively. The black spectral lines have been
scaled according to Aki [3] to integer surface-wave magnitudes MS between 1 and 8. For reference the respective integer moment
magnitude values Mw between 1 and 10, calculated according to Eq. (11), have been marked with equidistant dots on the right-
side ordinate of the left diagram. The broken line shows the increase of the corner frequency fc with decreasing seismic moment of
the event, the dotted curve gives the approximate “source spectrum” for a well contained underground nuclear explosion (UNE)
of an equivalent yield of 1 kt TNT. Note the plateau in the displacement spectrum towards low frequencies (corresponding to uo =
constant for f < fc), from whichMo is determined according to Eq. (11) when using the frequency-domain approach. For f > fc the
amplitudes decay� f�2. The open arrows point to the center frequencies on the abscissa at which the 1Hz body-wave magnitude
mb and the 20 s surface-wavemagnitudeMs(20), respectively, are determined and the blue horizontal interval barsmark the rangeof
frequencies within which the maximum P-wave and Rayleigh-wave amplitudes formb andMs(BB) should bemeasured according to
the new IASPEI standards [37]. In contrast, the red bar marks the frequency range of maximum velocity-proportional magnification
of the bandpass filter between 1Hz and 4Hz which is used formb determination at the IDC.

with seismic moment around 4 � 1015 Nm and Mw � 4
have different maximum seismic moment-rate release at
about 4 � 1015 and 4 � 1016 Nm/s, respectively. The lat-
ter corresponds to 100 times higher seismic energy re-
lease or to an energy magnitude Me that is 1.3m.u. larger.
Large differences have also been observed amongst earth-
quakes, e. g., the Balleny Island earthquake of 25.03.1998
had Mw(HRV) D 8:1 and Me(NEIC) D 8:8. The opposite
will happen in the case of low stress drop earthquakes
propagating with very low rupture velocity [38]. The Java
tsunami earthquake of 17 July 2006 was a striking example
with Me D 6:8;mB D 7:0 and Mw D 7:7.

Similar observations had already been made in the
1970s when comparing mb and MS values of identical
events. This prompted the Russian scientist Prozorov to
propose a “creepex” parameter c D MS � a �mb (with
a D constant to be determined empirically for different
source types and stress drop conditions). It aims at dis-
criminating between normal, very slow (creeping) and ex-
plosion-like (fast rupture, high stress drop) earthquakes.
World-wide determination of this parameter for earth-
quakes in different regions revealed interesting relations
of c to source-geometry and tectonic origin [51]. Simi-

lar systematic regional differences were also reported for
MS � Mw [24,67] and Me � Mw [16,19], suggesting sys-
tematic regional differences in stress drop.

Magnitude Saturation Due to Insufficient
Time-Window Length for Amplitude Measurement

The second reason for magnitude saturation is insufficient
time-window length for measuring (A/T)max in seismic
records. It is most relevant when determining body-wave
magnitudes, but it has been a subject of controversy, mis-
conceptions and disregard of earlier recommendations for
decades. The reason is that in teleseismic seismograms the
P-wave group does not always appear sufficiently well sep-
arated in time from later phase arrivals such as the depth
phases pP and sP. These do not directly travel from the
seismic source at depth h to the recording station but travel
first to the Earth’s surface above the source and from there,
after reflection or conversion from S to P, propagate back
into the Earth. Depending on h, which may vary from
a few kilometers up to 700 km, and the type of depth phase
recorded, they may arrive from a few seconds up to about
4.5 min after the onset of direct P. Depending on the radi-
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ation pattern of the source mechanism, some stations may
even record the depth phases with larger amplitudes than
the direct P wave. This is one of the concerns that ledmany
researchers to propose measuring the P-wave amplitudes
for magnitude measurements within a short time window
after the P onset. On average, however, the depth phases
have smaller amplitudes than P and will not bias mb esti-
mates at all. If, however, a seismic station is situated near to
the nodal line of the so-called focal sphere, corresponding
to strongly reduced P-wave radiation in these directions,
the amplitude of the depth phase is a better estimator for
the body-wave energy radiated by this seismic source and
thus of its corresponding magnitude.

Two or three more phases of longitudinal waves may
arrive close to the direct P at teleseismic distances be-
tween 20° and 100°. These include PcP, which results
from P-wave energy reflected back from the surface of
the Earth’s core at 2900 km depth, and the phases PP and
PPP, which are P waves that have been reflected back from
the Earth’s surface once at half-way or twice at 1/3- and
2/3-way between the seismic source and the recording sta-
tion, respectively. However, in short-period records the
amplitudes of PP and PPP are generally smaller and those
of PcP even much smaller than the amplitudes of direct P
waves. These later arrivals will therefore, never bias mb
estimates. Yet on broadband records PP may sometimes
have equal or even slightly larger amplitudes than pri-
mary P. However, P and PP phases are usually well sepa-
rated by more than 1min (up to 4min) and not likely mis-
interpreted. Only for rare large earthquakes with M > 7:5
the rupture duration and related P-wave radiationmay ex-
tend into the time window where PP should arrive. But
even then, wrongly taking PPmax for Pmax, the bias in mB
estimate will not exceed 0.2m.u. and usually be much
smaller.

This experience from extensive seismogram analysis
practice led Bormann and Khalturin [7] to state in 1974:

. . . “that the extension of the time interval for the
measurement of (A/T)max up to 15 or 25 sec., as pro-
posed . . . in the Report of the first meeting of the
IASPEI Commission on Practice (1972) . . . is not
sufficient in all practical cases, especially not for the
strongest earthquakes with M > 7:5 . . . ”.

This was taken into account in the Manual of Seismolog-
ical Observatory Practice edited by Willmore [87]. It in-
cludes the recommendation to extend the measurement
time window for P-wave magnitudes up to 60 s for very
large earthquakes. But still, this has not yet become com-
mon practice (see Sect. “Introduction to Common Mag-
nitude Scales: Potential and Limitations”) although even

a limit of 60 s may not be sufficient for extreme events such
as the Sumatra Mw 9.3 earthquake when the first P1max
appeared around 80 s and a second P2max of comparable
amplitude at about 330 s after the first P-wave onset (cf.
Fig. 8).

To allow a quick rough estimate of earthquake rupture
duration �d as a function of magnitude we derived from
extrapolation of data published in [66] the average relation

log �d � 0:6M � 2:8 : (13)

It yields for M D 6; 7; 8 and 9 �d � 6 s; 25 s; 100 s and
400 s, respectively. Measurement time windows of 5 s, 25 s
or 60 s may therefore underestimate the magnitude of
earthquakes with Mw > 6; > 7 or > 8, respectively. We
call this effect the time-window component of magnitude
saturation. It aggravates the pure spectral saturation com-
ponent. To avoid this in future, the new IASPEI standards
of amplitude measurements for mb and mB (cf. [42]) rec-
ommend to measure (A/T)max D Avmax/2� in the entire
P-phase train (time span including P, pP, sP, and possibly
PcP and their codas but ending preferably before PP).

In fact the pioneers of the magnitude scales, Richter
and Gutenberg, knew this, because they were still very
familiar with the daily analysis of real seismic records
and their complexity. Regrettably, they never wrote this
down, with respect to magnitude measurements, in de-
tail for easy reference. In the current era of automation
and scientific depreciation of alleged “routine processes”
the younger generation of seismologists usually had no
chance to gather this experience themselves and occasion-
ally introduced technologically comfortable but seismo-
logically questionable practices. In an interview given in
1980 [75] Prof. Richter remembered that Gutenberg fa-
vored the body-wave scale in preference to the surface-
wave scale because it is theoretically better founded. How-
ever, he said:

“. . . it gives results comparable with Gutenberg’s
only if his procedure is closely followed. Experience
has shown that misunderstanding and oversimpli-
fied misapplications can occur. For instance, mag-
nitude is sometimes assigned on the first few waves
of the P group rather than the largest P waves as
Gutenberg did.”

In order to avoid too-short measurement time win-
dows when searching for the largest P amplitude one can
estimate the rupture duration independently from the du-
ration of large P-wave amplitudes in high-frequency fil-
tered BB records because the generation of high-frequency
waves is directly related to the propagation of the rupture
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front. Thus one may find Pmax for great earthquakes even
beyond the theoretically expected PP arrival (cf. Fig. 8).

Magnitude Biases Due to Neglecting
Multiple Source Complexity

Realizing that strong earthquakes usually consist of multi-
ple ruptures Bormann and Khalturin [7] also wrote:

“In such cases we should determine the onset times
and magnitudes of all clear successive P-wave on-
sets separately, as they give a first rough impres-
sion of the temporal and energetic development of
the complex rupture process. . . . The magnitude
MP D log˙n(Ai/Ti)C Q(D; h) (n is the number
of successive P-wave onsets) could be considered as
a more realistic measure of the P-wave energy re-
leased by such a multiple seismic event than the
mb-values from . . . (single amplitude) (A/T)max
within the first five half cycles or within the whole
P-wave group.”

This magnitude, which is based on summed amplitudes in
broadband records, is now called mBc [10], which stands
for cumulative body-wave magnitude.

The 1985 Mw D 8:1 Mexico earthquake was a strik-
ing example for the development of such a multiple rup-
ture process in space and time ([58], Fig. 6). A dense net-
work of high-frequency strong-motion recordings near to
the source revealed that the earthquake had a total rup-
ture duration of about 60 s and consisted of two main sub-
ruptures with significantly increased slip-velocities (12–
32 cm/s). These two fault segments were separated in space
by roughly 100 km in strike direction and ruptured be-
tween 10–22 s and 34–50 s after rupture start. Such a com-
plicated rupture is not well represented by calculating
the average slip and rupture velocity for a single point-
source model. Also the corner frequencies related to these
smaller sub-ruptures will be higher and not correspond to
(L �W)�1/2 of the total rupture area.

Such multiple ruptures are not an exception but rather
the rule for earthquakes with magnitudes above 7.5 (and
often also for smaller ones, even down to events with mag-
nitudes around 5.0). The detailed patterns of the respective
moment-rate curves differ from event to event (Fig. 7). Of-
ten they can not be approximated by a single-source trian-
gular moment-rate function, as commonly assumed in the
standard procedure for moment tensor solutions practiced
at Harvard [78] and other centers.

Therefore, the Harvard group [78] re-analyzed the
data of the great Sumatra 2004 earthquake for which
Mw D 9:0 had been calculated with the standard proce-

dure. Interactively fitting synthetic records for five suc-
cessive point sources to the observed mantle surface-
wave data in the 200–500 s period range yielded the same
value of Mw D 9:3 as derived by [76] for a single-source
model but using much longer periods between 20min
and 54min. In fact, the multiple Centroid Moment Ten-
sor (CMT) source analysis applied in [78] resembles the
concept proposed in [7] for P-wave magnitudes of strong
earthquakes, but applied to long-period surface waves.
Presently, a multiple CMT source analysis still requires
human interaction and takes too much time for early
warning applications. Possible alternative procedures such
a the automatic line source inversion [21] have been de-
veloped but demonstrated so far only for earthquakes with
magnitudes < 7 for which classical mB;MS or Mw do not
saturate due to source complexity.

Proposals for FasterMagnitude Estimates
of Strong Earthquakes

Soon after the great Sumatra earthquake of 2004 sev-
eral authors suggested improvements to obtain more reli-
able and faster magnitude estimates of strong earthquakes.
Menke and Levin [59] proposed to use a representative
selection of 25 globally distributed high quality stations
of the IRIS (Incorporated Research Institutions for Seis-
mology) Global Seismic Network as a reference data base
of available strong long-period master-event records with
known Mw. In case of a new strong earthquake, a search
for the nearest (within a few hundred kilometers) refer-
ence event in the data base is performed and waveforms
are compared for a time window of about 30min. By
adding the log10 of the average amplitude ratio of the two
events to theMw of themaster event, amomentmagnitude
estimate of the actual event is obtained. This procedure
is based on the assumption of similarity of source mech-
anisms and radiation patterns, slip rates and stress drops,
at least within the reference regions. The authors expect
reasonably good magnitude estimates, with only small un-
derestimation for events with Mw > 8:6. Thus warnings
could be issued within about 40min after OT (measure-
ment time window plus travel-time to stations of a global
network). This would still be relevant for distant coasts
thatmight be affected by a tsunami.However, no data have
been published until now that demonstrate the near-real-
time operational capability of this procedure for a repre-
sentative set of strong events.

Another approach by Lomax et al. [55,56,57] uses
high-frequency seismograms ( f > 1Hz) that contain pre-
dominantly P signals radiated directly from the propagat-
ing rupture front and show little interference with later
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EarthquakeMagnitude, Figure 6
Snapshots of the development in space and time of the inferred rupture process of the 1985 Michoácan, Mexico earthquake. The
cross denotes the NEIC hypocenter position, the shading of the patches (from the outer part inwards dotted, hatched and black)
relate to areas with velocities of dip slip (see source mechanism) in the ranges between 12 and 22 cm/s, 22 and 32 cm/s and greater
than 32 cm/s. Redrawn and modified from Fig. 6 in [58]; taken from Fig. 3.8 in Vol. 1 of [6], © Seismological Society of America and
IASPEI; with permission of the authors

secondary waves such as PP or S, thus providing a di-
rect estimate of the rupture duration. Such recordings are
available at teleseismic distances (30°–90°) within about
20min after OT, even after strong events with long dura-
tions and provide an early picture of the total rupture pro-

cess. When assuming constant rupture velocity and mean
slip for stronger and weaker earthquakes, the seismic mo-
ment Mo and thus moment magnitude Mw could be esti-
mated by comparing the actual rupture duration (averaged
from observations at several seismic stations) with that of
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EarthquakeMagnitude, Figure 7
Moment-rate functions for the largest earthquakes in the 1960 and 1970s (modified from Fig. 9, p. 1868 in [53]), taken from Fig. 3.7
in Vol. 1 of [6], © Seismological Society of America and IASPEI; with permission of the authors

a reference event with known Mo and rupture duration.
This is conceptually similar to the approach in [59] but
with high-frequency observations and the ratio of rupture
duration instead of amplitudes.

However, Hara [32] demonstrated with a large data set
of strong earthquakes that it is difficult to estimate earth-
quake size reliably only from durations t of high-frequency
radiation. Therefore, he measured duration t in combi-
nation with the maximum displacement amplitude Admax

within this time interval and derived the following empir-
ical relation:

M D 0:79 log AdmaxC0:83 logDC0:69 log tC6:47 (14)

with Admax, D and t in units of m, km and s, respectively.
He applied Eq. (14) to 69 shallow earthquakes in the mag-
nitude range 7:2 6 Mw(HRV) 6 9:0 at distances between
30° and 85° and on average got a 1:1 relation between
Mw(HRV) and his magnitude with a standard deviation
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of 0.18m.u. All event estimates were within ˙0:5m:u: of
Mw(HRV), with the exception of the heavily underesti-
mated Denali/Alaska earthquake of 3 November 2002 (7.1
instead of 7.8). This is a promising and simple procedure.

Bormann and Wylegalla [9] applied the earlier pro-
posal in [7] to recordings with a velocity passband be-
tween 40Hz and 125 s. They interactively summed up
the maximum amplitudes of all visually discernible sub-
ruptures in the recordings of several recent great earth-
quakes with Mw > 8.3, amongst them the tsunamigenic
Mw D 9:3 Sumatra earthquake of 2004. For the latter they
obtained a cumulative broadband body-wave magnitude
mBc D 9:3 in records of just a single German station (RUE;
D D 82:5ı) at the time of the second major amplitude
maximum, some 330 s after the first P onset and 18min
after OT. For three more events with magnitudes Mw 8.3,
8.4 and 8.6 they calculated mBc values of 8.4, 8.4 and 8.6,
respectively, i. e., excellent agreement. Subsequently, 50
more earthquakes in the magnitude range 6 to 9 were an-
alyzed interactively [10] with the following results:

� Average difference mB �Mw(HRV) D 0:00˙ 0:27
in the range 6:0 6 Mw(HRV) < 8. For magnitudes
> 7:8–8, however, mB tends to underestimate Mw,
e. g., mB D 8:3 for the Sumatra earthquake of 26 De-
cember 2004 based on the BB record of station RUE.
Remarkably thismB value is still very close toMw,Mwp
and Me of the NEIC, which ranged between 8.2 and
8.5.

� The average difference mBc � Mw(HRV) D C0:18 ˙
0:26 in the range 6:0 6 Mw(HRV) 6 9:0, i. e., mBc has
a tendency to slightly overestimateMw(HRV) on aver-
age, but not for Mw > 8 (see the four values above).

In [10] also first results of a fully automatic determination
of mB and mBc have been presented. The algorithm has
been improved by incorporating automatic estimates of
the rupture duration calculated from the envelope of the
high-frequency P-wave radiation from filtered broadband
records of globally distributed stations in a wide range of
azimuths and source distances. In the case of strong earth-
quakes with long rupture duration this justifies the search
for broadband Pmax even beyond the onset of PP and to
sum-up the amplitudes of major sub-ruptures over the
whole rupture duration as defined above. Figure 8 gives an
example for a BB record of the Sumatra earthquake of 26
December 2004. The largest P-wave amplitudes at about
80 s, 280 s and 330 s after the P onset each yield a single
amplitude mB D 8:2, whereas the cumulative magnitude
mBc D 9:3 is in perfect agreement with the best moment
magnitude estimates for this event.

The automatic algorithm for mB and mBc determina-
tion has been in use since spring 2007 in the operational
Indonesian prototype tsunami early warning system and
yields online estimates of mB. Before the implementation
it had been tested whether the automatic procedure pro-
duces results that are comparable with those determined
earlier interactively by two experienced seismogram an-
alysts. Identical broadband records of 54 earthquakes in
the magnitude range 6 6 Mw(HRV) 6 9 were used for
this comparison based on 138 mB and 134 mBc values.
The average difference between the interactively and auto-
matically determined magnitudes was 0.03 and 0.02m.u.
with standard deviations of ˙0:13 and ˙0:19m:u:, re-
spectively. This is in the range of other high-quality mag-
nitude measurements. Even single station mB and mBc
estimates differed on average < 0:08m:u: from average
global network estimates based on up to hundreds of sta-
tions. Their standard deviations were < ˙0:25m:u: and
decreased to ˙0:10m:u: for mB and ˙0:14m:u: for mBc
when just a few stations (between two and seven) were
used to estimate the mB and mBc event magnitudes. This
documents both the reliability of the automatic procedure
as well as the reliability of mB and mBc estimates, even if
derived from a few records of globally distributed high-fi-
delity stations. Thus, the automatic procedure is suitable
for reproducibly determining the IASPEI recommended
standard magnitude mB and its proposed non-saturating
extension mBc in near real-time. When using only obser-
vations in the distance range 21ı 6 Dı 6 100ı saturation-
free teleseismic magnitude estimates of earthquakes with
potential for strong shaking damage and tsunami gener-
ation could be made available in near real-time within
about 4 to 18min after OT, depending on epicentral dis-
tance and rupture duration.

Compared to other more theoretically based methods
such as Mwp and Mw, the empirical mB � mBc method
is free of any hypothesis or model assumptions about
the rupture process (single or multiple source), type of
rupture mechanism, rupture velocity, average slip and/or
stress drop, complexity or simplicity of the moment-re-
lease function, etc. It just measures velocity amplitudes
on the unfiltered broadband record, complex or not, sums
them up over the duration of the rupture process and cal-
ibrates them with the classical empirical broadband QPV
function (Fig. 2 and [30]). However, one has to consider
that – in contrast to all types of moment magnitudes –
mB andmBc are not determined from the maximum long-
period displacement amplitudes, but from the maximum
velocity amplitudes. Therefore, mB (for earthquakes with
Mw < 8:0) and mBc (for earthquakes with Mw > 7:8) are
better estimators than Mw for the seismic energy released
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EarthquakeMagnitude, Figure 8
Velocity broadband record at the Berlin station RUE in Dı D 82:6ı epicentral distance of the great Mw9:3 tsunamigenic Sumatra
earthquakeofDec. 26, 2004. The record is projected into a time-magnitudediagramas plotted by the automaticmB�mBc algorithm.
The red inverted trianglesmark the times and give the values of mB for the three largest sub-ruptures. The red step curve shows the
development of the cumulative magnitude mBc as a function of time. The inverted red triangles on this curve give the mBc before
the onset of PP and at the end of the rupture process, about 530 s after the first P-wave onset, as estimated from the decay of the
amplitude envelope of short-period filtered P-waves (see text)

by the earthquake and thus of its shaking-damage poten-
tial. Figure 9 compares mB and mBc with Mw(HRV) for
76 earthquakes in the range 6 6 Mw 6 9:3. The respective
standard regression relations are:

Mw(HRV) D 1:22mB � 1:54˙ 0:29 (15)

and

Mw(HRV) D 1:16mBc � 1:59˙ 0:25 (16)

These scaling relations allow much faster estimates of
Mw than current routine standard Mw procedures. The
rough moment estimates derived from mB and mBc data,
Mw(mB) or Mw(mBc), are sufficiently reliable for initial
earthquake and tsunami alarms with standard deviations
of the Mw estimates of about ˙0:29 and ˙0:25m:u:, re-
spectively. However, looking into details of the somewhat
irregular data scatter one realizes how seismic source com-
plexity may “spoil” such regression relations. The five data
points marked red in Fig. 9(left and right) are distinct
outliers in the left diagram, i. e., the respective mB val-
ues are 0.5 to 0.75m.u. smaller than Mw(HRV) although
usually mB scales rather well with Mw(HRV) between
6:5 < mB < 8:0. These points correspond to slow earth-
quakes, one in Peru (1996) and four are tsunami earth-
quakes as mentioned at the end of Sect. “CommonMagni-
tude Estimates for the Sumatra 2004Mw 9.3 Earthquake”.

Their rupture durations ranged from about 100 s to 200 s,
i.e, according to relationship (13) about 2–3 times longer
than expected on average for theirMw value. Both mB and
Me are usually much smaller than Mw for such events.
In contrast, when calculating mBc, then these five data
points all move close to the (not marked) 1:1 line in the
mBc–Mw(HRV) diagram Fig. 9(right). Thus mBc becomes
a good direct estimator ofMw for typical slow earthquakes,
much better than via relation (16), which compensates for
the usually too largemBc values of shallow depth and “nor-
mal” rupture earthquakes with Mw < 8. Thus, by deter-
mining rupture duration independently and treating very
slow events separately, the standard deviation in relations
(15) and (16) can be reduced. Moreover, the blue dots in
Fig. 9 belong to very deep earthquakes with h D 525 km,
583 km and 631 km, respectively. Such deep earthquakes
are “explosion-like” with comparably short rupture dura-
tions. Both mB (for Mw < 8) and mBc yield values very
close to Mw. In the mBc�Mw diagram, which is domi-
nated by shallow and normal rupture earthquakes, such
deep events appear as outliers. However, rapid event loca-
tions with good depth estimates allow one to identify such
events and mBc (or mB) should then be taken directly as
estimator of Mw and not via relation (16).

Mwp has so far been the fastest operationally deter-
mined estimator of Mw. Comparably fast automatic mB
determination is now implemented, complementary to
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EarthquakeMagnitude, Figure 9
Standard regression relationships ofMw(HRV) overmB (left) andmBc (right). Reddots correspond to very slow earthquakes (Nicaragua
1992, Java 1994,NewBritain Region 2000, Peru 2001and Java 2006)and the blue dots belong to very deep earthquakes (Bolivia 1994,
Philippines 2005 and Fiji Island 2006) with source depths h D 631km, 525 km and 583km, respectively. The gray band and the two
white bands around the average straight line correspond to the width of one and two standard deviations in y-direction

EarthquakeMagnitude, Figure 10
Standard regression of Mwp(PTWC) over mB. The standard devi-
ations in y-direction are marked as in Fig. 9. The Mwp data have
been kindly provided by the PTWC (courtesy of B. Hirshorn)

Mwp, in the German Indonesian Tsunami Early Warning
System (GITEWS). Figure 10 compares the relation be-

tween mB and Mwp for our test data set. These two mag-
nitudes scale almost 1:1, following the standard regression
relation:

Mwp D 1:08mB � 0:638˙ 0:24 : (17)

Future Requirements and Developments

Few national seismological data centers and stations re-
port amplitude, period and/or magnitude data to the in-
ternational data centers. The main reason is usually the
lack of manpower to make competent measurements of
these parameters interactively for the large amount of data
recorded nowadays. Instrument responses of the seismo-
graphs used are sometimes not known accurately enough.
There is, however, a growing practical and research need
for such parameter data that have been determined ac-
cording to international standards. Therefore, themost ur-
gent requirements in the field of magnitudes are:

� Training of station and network operators to under-
stand and practice proper magnitude measurements,
instrument calibration and control;

� Implementation of the IASPEI magnitude stan-
dards [42];

� Making the tested and calibrated automatic algorithms
available worldwide to data producers so that lack of



2494 E Earthquake Magnitude

manpower is no longer a hindrance to mass-produce
such data;

� Use of such standardized mass data with significantly
reduced procedure-dependent errors for improved re-
search into the attenuation properties of the Earth and
deriving better magnitude calibration functions for all
distance ranges;

� Comparison of magnitude data derived from identical
record sets by applying both traditional and new stan-
dard measurement procedures and to derive standard-
ized conversion relationships. This is a precondition
for assuring long-term compatibility of magnitude data
in national and international data catalogs and their
usefulness for seismic hazard assessment and research;

� Improvement of current procedures for direct determi-
nation of seismic moment and energy in a wider mag-
nitude range than currently possible, down to small
magnitudes that are at present well covered only byML
and mb;

� Development of regional calibration functions for mb
and mB, which will permit more reliable and much
faster body-wave magnitude estimates from records at
distances down to about 5°

� Development and consequent use of standard proce-
dures for Mo and Es measurements that assure non-
saturating and globally compatible estimates of seis-
micmoment and energy and of their relatedmagnitude
scales Mw and Me;

� Use of these data for in-depth studies in the regional
variability of apparent stress conditions and their rel-
evance for improving (time-variable) regional earth-
quake and tsunami hazard and risk assessment;

� Comprehensive testing of speed and reliability of the
various methods recently proposed for more rapid
(near) real-time magnitude estimates (e. g. [9,10,32,46,
55,56,57,59,61,66]) under operational EWS conditions;

� Development of faster automated procedures for direct
non-saturating Mw and Me determination for improv-
ing quick and realistic disaster response;

� Development of alternative automatic (near) real-time
procedures of magnitude determination such as the
rapid finite-source analysis [21], their scaling to both
seismic energy and moment and operational testing
also for very large earthquakes.
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Glossary

Active fault A fault (q.v.) that has moved in historic (e. g.,
past 10,000 years) or recent geological time (e. g., past
500,000 years).

Body waves Waves which propagate through the interior
of a body. For the Earth, there are two types of seis-
mic body waves: (1) compressional or longitudinal (P
wave), and (2) shear or transverse (S wave).

Coda waves Waves which are recorded on a seismogram
(q.v.) after the passage of body waves (q.v.) and sur-
face waves (q.v.). They are thought to be back-scattered
waves due to the Earth’s inhomogeneities.

Earthquake early warning system (EEWS) An earth-
quake monitoring system that is capable of issuing
warning message after an earthquake occurred and
before strong ground shaking begins.

Earthquake precursor Anomalous phenomenon preced-
ing an earthquake.

Earthquake prediction A statement, in advance of the
event, of the time, location, and magnitude (q.v.) of
a future earthquake.

Epicenter The point on the Earth’s surface vertically
above the hypocenter (q.v.).

Far-field Observations made at large distances from the
hypocenter (q.v.), compared to the wave-length and/or
the source dimension.

Fault A fracture or fracture zone in the Earth along which
the two sides have been displaced relative to one an-
other parallel to the fracture.

Fault slip The relative displacement of points on opposite
sides of a fault (q.v.), measured on the fault surface.

Focal mechanism A description of the orientation and
sense of slip on the causative fault plane derived from
analysis of seismic waves (q.v.).

Hypocenter Point in the Earth where the rupture of the
rocks originates during an earthquake and seismic
waves (q.v.) begin to radiate. Its position is usually
determined from arrival times of seismic waves (q.v.)
recorded by seismographs (q.v.).

Intensity, earthquake Rating of the effects of earthquake
vibrations at a specific place. Intensity can be estimated

from instrumental measurements, however, it is for-
mally a rating assigned by an observer of these effects
using a descriptive scale. Intensity grades are com-
monly given in Roman numerals (in the case of the
Modified Mercalli Intensity Scale, from I for “not per-
ceptible” to XII for “total destruction”).

Magnitude, earthquake Quantity intended to measure
the size of earthquake at its source, independent of the
place of observation.Richter magnitude (ML) was orig-
inally defined in 1935 as the logarithm of the max-
imum amplitude of seismic waves in a seismogram
written by a Wood–Anderson seismograph (corrected
to) a distance of 100 km from the epicenter. Many
types of magnitudes exist, such as body-wave magni-
tude (mb), surface-wave magnitude (MS), andmoment
magnitude (MW).

Moment tensor A symmetric second-order tensor that
characterizes an internal seismic point source com-
pletely. For a finite source, it represents a point source
approximation and can be determined from the analy-
sis of seismic waves (q.v.) whose wavelengths are much
greater than the source dimensions.

Near-field A term for the area near the causative rupture
of an earthquake, often taken as extending a distance
from the rupture equal to its length. It is also used to
specify a distance to a seismic source comparable or
shorter than the wavelength concerned. In engineer-
ing applications, near-field is often defined as the area
within 25 km of the fault rupture.

Plate tectonics A theory of global tectonics (q.v.) in which
the Earth’s lithosphere is divided into a number of es-
sentially rigid plates. These plates are in relative mo-
tion, causing earthquakes and deformation along the
plate boundaries and adjacent regions.

Probabilistic seismic hazard analysis Available infor-
mation on earthquake sources in a given region is
combined with theoretical and empirical relations
among earthquake magnitude (q.v.), distance from
the source, and local site conditions to evaluate the
exceedance probability of a certain ground motion
parameter, such as the peak ground acceleration, at
a given site during a prescribed time period.

Seismic hazard Any physical phenomena associated with
an earthquake (e. g., ground motion, ground failure,
liquefaction, and tsunami) and their effects on land
use, man-made structure, and socio-economic systems
that have the potential to produce a loss.

Seismic hazard analysis The calculation of the seismic
hazard (q.v.), expressed in probabilistic terms (See
probabilistic seismic hazard analysis, q.v.). The result
is usually displayed in a seismic hazard map (q.v.).
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Seismic hazard map A map showing contours of a spec-
ified ground-motion parameter or response spectrum
ordinate for a given probabilistic seismic hazard analy-
sis (q.v.) or return period.

Seismic moment The magnitude of the component cou-
ple of the double couple that is the point force system
equivalent to a fault slip (q.v.) in an isotropic elastic
body. It is equal to rigidity times the fault slip inte-
grated over the fault plane. It can be estimated from
the far-field seismic spectrum at wave lengths much
longer than the source size. It can also be estimated
from the near-field seismic, geologic and geodetic data.
Also called “scalar seismic moment” to distinguish it
from moment tensor (q.v.).

Seismic risk The risk to life and property from earth-
quakes.

Seismic wave A general term for waves generated by
earthquakes or explosions. There are many types of
seismic waves. The principle ones are body waves
(q.v.), surface waves (q.v.), and coda waves (q.v.).

Seismograph Instrument which detects and records
ground motion (and especially vibrations due to earth-
quakes) along with timing information. It consists
of a seismometer (q.v.) a precise timing device, and
a recording unit (often including telemetry).

Seismogram Record of ground motions made by a seis-
mograph (q.v.).

Seismometer Inertial sensor which responds to ground
motions and produces a signal that can be recorded.

Source parameters of an earthquake The parameters
specified for an earthquake source depends on the
assumed earthquake model. They are origin time,
hypocenter (q.v.), magnitude (q.v.), focal mechanism
(q.v.), and moment tensor (q.v.) for a point source
model. They include fault geometry, rupture veloc-
ity, stress drop, slip distribution, etc. for a finite fault
model.

Surface waves Waves which propagate along the surface
of a body or along a subsurface interface. For the Earth,
there are two common types of seismic surface waves:
Rayleigh waves and Love waves (both named after
their discoverers).

Tectonics Branch of Earth science which deals with the
structure, evolution, and relative motion of the outer
part of the Earth, the lithosphere. The lithosphere in-
cludes the Earth’s crust and part of the Earth’s upper
mantle and averages about 100 km thick. See plate tec-
tonics (q.v.).

Teleseism An earthquake at an epicentral distance greater
than about 20° or 2000 km from the place of observa-
tion.

Definition of the Subject

When a sudden rupture occurs in the Earth, elastic (seis-
mic) waves are generated. When these waves reach the
Earth’s surface, we may feel them as a series of vibra-
tions, which we call an earthquake. Seismology is derived
from the Greek word �"���ó& (seismos or earthquake)
and ó�o& (logos or discourse); thus, it is the science of
earthquakes and related phenomena. Seismic waves can be
generated naturally by earthquakes or artificially by explo-
sions or other means. We define earthquake monitoring
as a branch of seismology, which systematically observes
earthquakes with instruments over a long period of time.

Instrumental recordings of earthquakes have been
made since the later part of the 19th century by seismo-
graphic stations and networks of various sizes from local to
global scales. The observed data have been used, for exam-
ple, (1) to compute the source parameters of earthquakes,
(2) to determine the physical properties of the Earth’s in-
terior, (3) to test the theory of plate tectonics, (4) to map
active faults, (5) to infer the nature of damaging ground
shaking, and (6) to carry out seismic hazard analyzes. Con-
structing a satisfactory theory of the complex earthquake
process has not yet been achieved within the context of
physical laws, e. g., realistic equations for modeling earth-
quakes do not exist at present. Good progress, however,
has been made in building a physical foundation for the
earthquake source process [62], partly as a result of re-
search directed toward earthquake prediction.

Earthquakes release large amounts of energy that po-
tentially can cause significant damage and human deaths.
During an earthquake, potential energy (mainly elastic
strain energy and some gravitational energy) that has ac-
cumulated in the hypocentral region over decades to cen-
turies or longer is released suddenly [63]. This energy is
partitioned into (1) radiated energy in the form of prop-
agating seismic waves, (2) energy consumed in overcom-
ing fault friction, (3) the energy which expands the rup-
ture surface area or changes its properties (e. g., by pul-
verizing rock), and (4) heat. The radiated seismic energy
is a small fraction (about 7%) of the total energy bud-
get, and it can be estimated using the recorded seismo-
grams. Take, for example, the 1971 San Fernando earth-
quake (MW D 6:6) in southern California. Its radiated
energy was about 5 � 1021 ergs, or about 120 kilotons
of TNT explosives, or the energy released by six atomic
bombs of the size used inWorldWar II. The largest earth-
quake recorded instrumentally (so far) is the 1960 Chilean
earthquake (MW D 9:5). Its radiated energy was about
1:1 � 1026 ergs, an equivalent of about 2,600 megatons
of TNT explosives, the energy released by about 130,000
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atomic bombs. It is, therefore, no surprise that an earth-
quake can cause up to hundreds of thousands of human
deaths, and produce economic losses of up to hundreds of
billions of dollars.

Monitoring earthquakes is essential for providing sci-
entific data to investigate complex earthquake phenom-
ena, and to mitigate seismic hazards. The present article is
a brief overview of earthquakemonitoring and early warn-
ing systems; it is intended for a general scientific audience,
and technical details can be found in the cited references.
Earthquakes are complex natural phenomena and their
monitoring requires an interdisciplinary approach, in-
cluding using tools from computer science, electrical and
electronic engineering, mathematics, physics, and others.
Earthquake early warning systems (which are based on
earthquake monitoring) offer practical information for re-
ducing seismic hazards in earthquake-prone regions.

After the “Introduction”, we will present a summary of
earthquake monitoring, a description of the products de-
rived from the analysis of seismograms, and a discussion of
the limitations of these products. Earthquake early warn-
ing systems are then presented briefly, and we conclude
with a section on future directions, including a progress

EarthquakeMonitoring and Early Warning Systems, Figure 1
Location of deadly earthquakes around the world, 1500–2000. Population density is shown by the background colors. See [115] for
details

report on rotational seismology (Appendix). We present
overviews of most topics in earthquake monitoring, and
an extensive bibliography is provided for additional read-
ing and technical details.

Introduction

Earthquakes, both directly and indirectly, have caused
much suffering tomankind. During the 20th century alone
about two million people were killed as a result of earth-
quakes. A list of deadly earthquakes (death tolls � 25) of
the world during the past five centuries was compiled by
Utsu [115]. It shows that earthquakes of magnitude � 6
(� 150 per year worldwide) can be damaging and deadly
if they occur in populated areas, and if their focal depths
are shallow (< 50 km). Seismic risk can be illustrated by
plotting the most deadly earthquakes of the past five cen-
turies (1500–2000) over a map of current population den-
sity. This approach was used by Utsu [115], and his re-
sult is shown in Fig. 1. Most of these deadly earthquakes
are concentrated (1) along the coasts of Central Amer-
ica, the Caribbean, western South America, and Indonesia,
and (2) along a belt that extends from southern Europe,
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EarthquakeMonitoring and EarlyWarning Systems, Table 1
Deadly Earthquakes/Tsunamis from 1896–2005 ([115] and recent sources)

Origin Time
Year MM/DD Hr:Min
(UTC, except L=local)

Hypocenter Magnitude Location Deaths
(Approximate)Lat.

(deg)
Lon.
(deg)

Depth
(km)

2005 10/08 3:50 34.432 73.573 10 7.6 Pakistan, Kashmir 80,361+
2004 12/26 0:58 3.298 95.778 7 9.2 Indonesia, Sumatra 283,106+
2003 12/26 1:56 29.004 58.337 15 6.6 Iran, Bam 26,000
2001 01/26 3:16 23.420 70.230 16 7.7 India, Gujarat, Bhuj 20,000+
1990 06/20 21:00 37.008 49.213 18 7.4 Iran, western �40,000
1988 12/07 7:41 40.919 44.119 7 6.8 Armenia, Spitak �40,000
1976 07/27 19:42 39.605 117.889 17 7.6 China, Tangshan �242,000
1976 02/04 9:01 15.298 �89.145 13 7.5 Guatemala 23,000
1970 05/31 20:23 �9.248 �78.842 73 7.5 Peru 67,000
1948 10/05 20:12 37.500 58.000 0 7.2 USSR, Ashgabat �65,000
1939 12/26 23:57 39.770 39.533 35 7.7 Turkey, Erzincan 33,000
1939 01/25 3:32 �36.200 �72.200 0 7.7 Chile, Chillian 28,000
1935 05/30 21:32 28.894 66.176 35 8.1 Pakistan, Quetta 60,000
1932 12/25 2:04 39.771 96.690 25 7.6 China, Gansu �70,000
1927 05/22 22:32 37.386 102.311 25 7.7 China, Tsinghai �100,000
1923 09/01 2:58 35.405 139.084 35 7.9 Japan, Kanto 143,000
1920 12/16 12:05 36.601 105.317 25 8.6 China, Gansu �240,000
1915 01/13 6:52 42.000 13.500 0 6.9 Italy, Avezzano 33,000
1908 12/28 4:20 38.000 15.500 0 7.0 Italy, Messina � 82,000
1906 08/17 0:40 �33.000 �72.000 0 8.2 Chile, Valparaiso 20,000
1905 04/04 0:50 33.000 76.000 0 8.1 India, Kangra 20,000
1896 06/15 19:32L 39.500 144.000 0 8.2 Japan, Sanriku-oki 22,000

“�” denotes large uncertainties because a range of deaths had been reported.
“+” denotes a minimum value.

the Middle East, Iran, Pakistan and India, to China and
Japan.

Table 1 lists the most deadly earthquakes (death toll
> 20; 000) of the past 110 years based on official estimates
(often under-estimated for political reasons, or lack of ac-
curate census data in many areas of the world). In the first
5 years of the 21st century, four disastrous earthquakes
occurred in India, Indonesia, Iran, and Pakistan. In the
20th century, the average death toll caused by earthquakes
(and tsunamis they triggered) was about 16,000 per year.
For the past seven years the yearly death toll was about
60,000 – four times higher than the average in the pre-
vious century. In Fig. 2 we extracted a portion of Fig. 1
to illustrate the relationship between past earthquakes and
population in India, Pakistan, northern Indonesia, and ad-
joining regions. We numbered the four most recent disas-
trous earthquakes in Fig. 2. It is obvious that the large pop-
ulations in India, Indonesia, Iran, Pakistan, and their ad-
joining regions (over 1.5 billion people) has been and will
continue to be adversely affected by earthquakes. Fatalities
depend largely on resistance of building construction to

shaking, in addition to population density and earthquake
occurrence.

In recent decades, population increases, accelerated
urbanization, and population concentration along coastal
areas prone to earthquakes suggest that many more earth-
quake-related fatalities will occur unless effective steps are
taken to minimize earthquake and tsunami hazards.

EarthquakeMonitoring: Instrumentation

Besides geodetic data [28], the primary instrumental data
for the quantitative study of earthquakes are seismograms,
records of ground motion caused by the passage of seismic
waves. Seismograms are written by seismographs, instru-
ments which detect and record ground motion along with
timing information. A seismograph consists of three basic
components: (1) a seismometer, which responds to ground
motion and produces a signal proportional to acceleration,
velocity, or displacement over a range of amplitudes and
frequencies; (2) a timing device; (3) either a local record-
ing unit which writes seismograms on paper, film, or elec-
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EarthquakeMonitoring and Early Warning Systems, Figure 2
Location of the 4 most deadly earthquakes of the 21st century (up to the end of 2007) on a map showing the location of the deadly
earthquakes from 16th to 20th centuries (after [115] and Table 1)

tronic storage media, or more recently, a telemetry system
for delivering the seismograms to a central laboratory for
recording. Technical discussions of seismometry may be
found, for example, in Wielandt [122], and of seismic in-
struments in Havskov and Alguacil [48]. An overview of
challenges in observational earthquake seismology is given
by Lee [71], and a useful manual of seismological observa-
tory practice is provided by Bormann [12].

An accelerograph is a seismograph designed to record,
on scale, the acceleration time history of strong ground

motions. Measuring acceleration is important for study-
ing response of buildings to strong ground motions close
to earthquakes. Many modern sensitive seismographs are
velocigraphs recording the time history of ground veloc-
ity. They are designed to measure seismic waves of small
amplitudes (because seismic waves attenuate quickly from
their sources) either from small earthquakes nearby, or
from large earthquakes that are far away.

A seismic network (or an “array”) is a group of seismo-
graphs “linked” to a central headquarters. Nowadays the
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link is by various methods of telemetry, but in early days
the links were by mail or telegrams, or simply by manual
collection of the records. When we speak of a seismic sta-
tion, we may mean an observatory with multiple instru-
ments in special vaults or a small instrument package at
a remote site.

Seismographs were first developed in the late 19th cen-
tury, and individual seismographic observatories (often

EarthquakeMonitoring and EarlyWarning Systems, Figure 3
Some classical seismographs: aMilne, b Bosch–Omori, cWiechert, and d Galitzin (after [101])

a part of astronomical or meteorological observatories) be-
gan earthquake monitoring by issuing earthquake infor-
mation in their station bulletins and other publications.
However, in order to accurately locate an earthquake, data
from several seismographic stations are necessary. It was
then natural for many governments to assume responsi-
bility for monitoring earthquakes within their territories.
However, because seismic waves from earthquakes do not
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recognize national boundaries, the need for international
cooperation became clear. In the following subsections, we
present an overview of the history and results of earth-
quake monitoring.

Historical Developments

In 1897, JohnMilne designed the first inexpensive seismo-
graph, which was capable of recording very large earth-
quakes anywhere in the world. With a small grant from
the British Association for the Advancement of Science
(BAAS), a few other donations, and his ownmoney, Milne
managed to deploy about 30 of his instruments around
the world, forming the first worldwide seismographic net-
work. At the same time, seismogram readings were re-
ported voluntarily to Milne’s observatory at Shide on the
Isle ofWight, England. A global earthquake summarywith
these seismogram readings was issued by Milne beginning
in 1899. These summaries are now known as the “Shide
Circulars”. Milne also published progress and results in
the “Reports of the BAAS Seismological Committee” from
1895 to 1913. A review of Milne’s work and a reproduction
of his publications as computer readable files were given
by Schweitzer and Lee [101] and its attached CD-ROM.
After Milne’s death in 1913, Herbert H. Turner continued
Milne’s efforts, and in 1918 established publication of the
International Seismological Summary (ISS).

The shortcomings of theMilne seismograph (lowmag-
nification, no damping, and poor time resolution) were
soon recognized. Several improved seismographs (notably
the Omori, Bosch–Omori, Wiechert, Galitzin, and Milne–
Shaw) were developed and deployed in the first three
decades of the 20th century. Figure 3 shows several of these
classical seismographs (see Schweitzer and Lee [101] for
further explanation). Although the ISS provided an au-
thoritative compilation arrival-time data of seismic waves
and determinations of earthquake hypocenters beginning
in 1918, its shortcomings were also evident. These in-
clude difficulties in collecting the available arrival-time
data around the world (which were submitted on a volun-
tary basis), and in the processing and analysis of data from
many different types of seismographs. Revolutions and
wars during the first half of the 20th century frequently
disrupted progress, particularly impacting collection and
distribution earthquake information.

In the late 1950s, attempts to negotiate a comprehen-
sive nuclear test ban treaty failed, in part because of per-
ceptions that seismic methods were inadequate for mon-
itoring underground nuclear tests [95]. The influential
Berkner report of 1959 therefore advocated major support
for seismology [66]. As a result, the Worldwide Standard-

ized Seismograph Network (WWSSN) was created in the
early 1960s with about 120 continuously recording sta-
tions located across much of the world, except China and
the USSR [91]. Each WWSSN station was equipped with
identical sets of short-period and long-period three-com-
ponent seismographs and accurate chronometers. Figure 4
shows some of the equipment at a WWSSN station, in-
cluding three-components of long-period seismometers,
long-period recording and test instruments, and the time
and power console. A similar set of three-component
short-period seismometers and recording and test instru-
ments, nearly identical in appearance, was also deployed at
each station. Seismograms from the WWSSN were sent to
the United States to be photographed on 70mm film chips
for distribution (about US$ 1 per chip as then sold to any
interested person).

The WWSSN network is credited with making pos-
sible rapid progress in global seismology, and with help-
ing to spark the plate tectonics revolution of the late
1960s [117]. At about the same time, the Unified System of
Seismic Observations (ESSN) of the former USSR and its
allied countries was established, consisting of almost 100
stations equipped with Kirnos short-period, 1–20 s dis-
placement sensors, and long-period seismographs.

Samples of seismograms recorded on smoked paper
and photographic paper or film by analog seismographs
are shown in Figs. 5 and 6. Two efforts to preserve and
make such records available online are now underway: the
SeismoArchives (www.iris.edu/seismo/ [72]), and Sismos
(sismos.rm.ingv.it [82]).

With the establishment of the WWSSN, the United
States also assumed the task of monitoring earthquakes
on a global scale beginning in the early 1960s. The mis-
sion of the US National Earthquake Information Center
(NEIC, now part of the US, Geological Survey) is “to deter-
mine rapidly the location and size of all destructive earth-
quakes worldwide and to immediately disseminate this in-
formation to concerned national and international agen-
cies, scientists, and the general public” (http://earthquake.
usgs.gov/regional/neic/).

In 1964, the ISS was reorganized as the International
Seismological Centre (ISC). Since then, the ISC (http://
www.isc.ac.uk/) has issued annual global earthquake cat-
alogs with a time lag of about two years [123].

Technical Considerations

To record seismic waves, we must consider both the avail-
able technology for designing seismographs, and the na-
ture of the Earth’s background noise [121]. The Earth is
constantly in motion. This “background” noise is usu-

http://www.iris.edu/seismo/
http://sismos.rm.ingv.it
http://earthquake.usgs.gov/regional/neic/
http://earthquake.usgs.gov/regional/neic/
http://www.isc.ac.uk/
http://www.isc.ac.uk/
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EarthquakeMonitoring and EarlyWarning Systems, Figure 4
Some WWSSN station equipment: a Three-component, long-period seismometers installed on a seismic pier, b Long-period record-
ing and test instruments, and c Time and power console. A similar set of three-component, short-period seismometers and record-
ing/test instruments is not shown

ally classified as either (1) microseisms, which typically
have frequencies below about 1Hz, are often the largest
background signals, and are usually caused by natural
disturbances (largely caused by ocean waves near shore-
lines); or (2)microtremors, which have frequencies higher
than about 1Hz, and are due to human activities (such
as traffic and machinery) and local natural sources (such
as wind and moving vegetation). Ground motions from
earthquakes vary more than ten orders of magnitude in
amplitude and six orders of magnitude in frequency, de-
pending on the size of the earthquake and the distance at

which it is recorded. Figure 7 illustrates the relative dy-
namic range of some common seismometers for global
earthquakemonitoring. A “low Earth noise”model [10,92]
is the lower limit of Earth’s natural noise in its quietest lo-
cations – it is desirable to have instruments that are sen-
sitive enough to detect this minimal background Earth
signal. In the analog instrument era (i. e., prior to about
1980), short-period and long-period seismometers were
designed separately to avoid microseisms, which have pre-
dominant periods of about 6 s. Short-period seismome-
ters were designed to detect tiny ground motions from
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EarthquakeMonitoring and Early Warning Systems, Figure 5
Some sample analog seismograms recorded on smoked paper

smaller, nearby earthquakes, while long-period instru-
ments were designed to recover the motions of distant,
larger earthquakes (“teleseisms”). Additionally, strong-
motion accelerometers, generally recording directly onto
70mm-wide film strips, were used to measure large mo-
tions from nearby earthquakes. In today’s much more ca-
pable digital instrumentation, two major types of instru-
ments are deployed: (1) “broadband” seismometers, which
replace and improve upon both short-period and long-
period seismometers, and (2) strong-motion accelerom-
eters for high-amplitude, high-frequency, seismic waves
from local earthquakes, which often drive broadband seis-

mometers off scale. While rare examples of the old ana-
log instruments are still in use, the vast majority of instru-
ments presently operating are digital.

In addition to having large variations in amplitudes
and frequencies, seismic waves from earthquakes also at-
tenuate rapidly with distance, that is, they lose energy as
they travel, particularly at higher frequencies. We must
consider these effects in order to monitor seismic waves
effectively.

In 1935, C.F. Richter introduced the concept of mag-
nitude to classify local earthquakes by their “size”, effec-
tively the amount of energy radiated at the actual rup-
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EarthquakeMonitoring and EarlyWarning Systems, Figure 6
Some sample analog seismograms recorded on photographic paper or film

ture surface within the Earth. See the entry by Bormann
and Saul � Earthquake Magnitude for a discussion of
the various magnitude scales in use. While every effort is
made to make these different scales overlap cleanly, each
has strengths and weaknesses that make one or another
preferable in a given situation. Probably the most general

and robust of these methods is called a “moment magni-
tude”, symbolized as MW. Existing instruments and envi-
ronments are such that the smallest natural earthquakes
we routinely observe close by are about magnitude D 1.
The largest earthquake so far recorded by instrumentals
is the MW D 9:5 Chilean earthquake in 1960. In 1941, B.
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EarthquakeMonitoring and Early Warning Systems, Figure 7
Relative dynamic range of some common seismometers for global earthquake monitoring (modified from Fig. 1 in [54]). The Y-axis
is marked in decibel (dB) where dBD 20 log(A/A0); A is the signal amplitude, and A0 is the reference signal amplitude

Gutenberg and C.F. Richter discovered that over large ge-
ographic regions the rate of earthquake occurrence is em-
pirically related to their magnitudes by:

logN D a � bM (1)

where N is the number of earthquakes of magnitudeM or
greater, and a and b are numerical constants. It turns out
that b is usually about 1, which implies that M D 6 earth-
quakes are about ten times more frequent than M D 7
earthquakes. Engdahl and Villasenor [24] show that there
has been an average of about 15 major (M > 7) earth-
quakes per year over the past 100 years, and about 150
large (M � 6) earthquakes per year during this same time
interval. Strong ground motions (above 0.1 g in acceler-
ation) over sizeable areas are generated by M � 6 earth-
quakes; these are potentially damaging levels of ground
shaking.

Earthquakes are classified by magnitude (M) as major
if M � 7, as moderate to large if M ranges from 5 to 7,

as small if M ranges from 3 to 5, as micro if M < 3, and
as nano if M < 0. An earthquake with M � 7 3/4 is often
called great, and if M � 9,mega.

Earthquake Monitoring in the Digital Era

Figure 8 shows the expected amplitudes of seismic waves
by earthquake magnitude. The top frame is a plot of the
equivalent peak ground acceleration versus frequency. The
two heavy curves denote the “minimum Earth noise”, and
the “maximum Earth noise” (i. e., for seismographic sta-
tion located in the continental interior versus near the
coast).

The two domains of the WWSSN equipment, short-
period long-period seismometers are shown as gray shad-
ing. The domains for two other instruments, SRO (Seismic
Research Observatories Seismograph) and IDA (Interna-
tional Deployment of Accelerometers), are also shown;
these were the early models of the current instruments
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EarthquakeMonitoring and EarlyWarning Systems, Figure 8
Expected amplitudes of seismic waves by earthquakemagnitude. See text for explanations

now in operation in the Global Seismographic Network
(GSN). The bottom two frames indicate expected ampli-
tudes of seismic waves from earthquakes of a range of
magnitudes (we use the moment magnitude, MW). For

simplicity, we consider two cases: (bottom left) global
earthquakes recorded at a large distance with a seismo-
graphic network spaced at intervals of about 1000 km, and
(bottom right) local earthquakes recorded at short dis-
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EarthquakeMonitoring and Early Warning Systems, Figure 9
Components of the IRIS-2 GSN System: broadband seismometers, accelerometers and recording equipment

tances with a seismic array spaced at intervals of about
50 km. In the bottom left plot, the global-scale network,
the expected amplitudes of P-wave and surface wave at
3000 km from the earthquake source are shown; for the
bottom right plot, a local seismic array, the expected am-
plitudes of S-wave at 10 km and 100 km from the earth-
quake source are shown. Seismologists use this and similar
figures in planning seismographic networks. Local noise
surveys are usually conducted as well when designing spe-
cific seismographic networks.

With advances in digital technology, earthquake mon-
itoring entered the digital era in the 1980s. Older analog
equipment was gradually phased out as modern digital
equipment replaced it [54]. The WWSSN was replaced by
the Global Seismographic Network (GSN), a collaboration
of several institutions under the IRIS consortium (http://
www.iris.edu/). The goal of the GSN (http://www.iris.edu/
about/GSN/index.htm) is “to deploy over 128 permanent
seismic recording stations uniformly over the Earth’s sur-

face”. The GSN project provides funding for two network
operators: (1) the IRIS/ASL Network Operations Center,
in Albuquerque, New Mexico (operated by the US Geo-
logical Survey), and (2) the IRIS/IDA Network Operations
Center in La Jolla, California (operated by personnel from
the Scripps Institution of Oceanography). Components of
a modern IRIS GSN seismograph system, which include
broadband seismometers, accelerometers, and recording
equipment, are shown in Fig. 9.

Figure 10 shows the station map of the Global Seis-
mographic Network as of 2007. IRIS GSN stations con-
tinuously record seismic data from very broad band seis-
mometers at 20 samples per second (sps), and also include
high-frequency (40 sps) and strong-motion (1 and 100 sps)
sensors where scientifically warranted. It is the goal of the
GSN project to provide real-time access to its data via In-
ternet or satellite. Since 1991, the IRIS Data Management
Center has been providing easy access to comprehensive
seismic data from the GSN and elsewhere [1].

http://www.iris.edu/
http://www.iris.edu/
http://www.iris.edu/about/GSN/index.htm
http://www.iris.edu/about/GSN/index.htm
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EarthquakeMonitoring and EarlyWarning Systems, Figure 10
Station map of the Global Seismographic Network (GSN) as of 2007

EarthquakeMonitoring:
Regional and Local Networks

A major development in earthquake monitoring was the
establishment of seismographic networks optimized to
record the many frequent but smaller regional and lo-
cal earthquakes occurring in many locations. To observe
as many of these nearby earthquakes as possible, inex-
pensive seismographs with high magnifications and low
dynamic-range telemetry are used to record the small-
est earthquakes feasible with current technology and local
background noise. As a result, the recorded amplitudes of-
ten overdrive the instruments for earthquakes with M & 3
within about 50 km of such seismographs. This is not a se-
rious defect, since the emphasis for these networks is to
obtain as many first arrival times as possible, and to de-
tect and to locate the maximum number of earthquakes.

Because seismic waves from small earthquakes are quickly
attenuated with increasing distance, it is also necessary to
deploy many instruments at small station spacing (gener-
ally from a few to a few tens of kilometers), and to cover
as large a territory as possible in order to record at least
a few earthquakes every week. Since funding often is lim-
ited, these local and regional seismic networks are com-
monly optimized for the largest number of stations rather
than for the highest quality data.

A Brief History

In the 1910s, the Carnegie Institution of Washington D.C.
(CIW) was spending a great deal of money building the
world’s then largest telescope (100 inch) at Mount Wilson
Observatory, southern California [38]. Since astronomers
were concerned about earthquakes thatmight disturb their
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telescopes, Harry O. Wood was able to persuade CIW to
support earthquake investigations, and as a result, a re-
gional network of about a dozen Wood–Anderson seis-
mographs was established in southern California in the
1920s. See Goodstein [38] for the early history leading to
the establishment of the California Institute of Technology
(Caltech) and its Seismological Laboratory. Astronomers
played important roles in getting seismic monitoring es-
tablished in various other regions of the world as well.

Regional networks using different types of seismo-
graphs were established inmany countries about this time,
such as in Japan, New Zealand, and the USSR and its al-
lies. In the 1960s, high-gain, short-period, telemeterednet-
works were developed to study microearthquakes. To sup-
port detailed studies of local earthquakes and especially
for the purpose of earthquake prediction, over 100 mi-
croearthquake networks were established in various parts
of the world by the end of the 1970s [74]. These mi-
croearthquake networks comprised from tens to hundreds
of short-period seismometers, generally with their signals
telemetered into central recording sites for processing and
analysis. High magnification was achieved through elec-
tronic amplification, permitting recording of very small
earthquakes (down to M D 0), though this came at the
expense of saturated records for earthquakes of M & 3
within about 50 km. Unfortunately, the hope of discover-
ing some sort of earthquake precursor from the data ob-
tained by these microearthquake networks did not work
out. For a review of the earthquake prediction efforts,
please read Kanamori [60].

Some Recent Advances

Because of recent advances in electronics, communica-
tions, andmicrocomputers, it is now possible to deploy so-
phisticated digital seismograph stations at global, national,
regional, and local scales for real-time seismology [64].
Many such networks, including temporary portable net-
works, have been implemented in many countries. In
particular, various real-time and near real-time seismic
systems began operation in the 1990s: for example, in
Mexico [25], California [32,47], and Taiwan [110]. The
Real-Time Data (RTD) system operated by the Central
Weather Bureau (CWB) of Taiwan is based on a net-
work of telemetered digital accelerographs [102]; since
1995, this system has used pagers, e-mail, and other tech-
niques to automatically and rapidly disseminate informa-
tion about the hypocenter, magnitude, and shaking am-
plitude of felt earthquakes (M & 4) in the Taiwan region.
The disastrous Chi-Chi earthquake (MW D 7:6) of 20
September 1999 caused 2,471 deaths and total economic

losses of US$ 11.5 billion. For this earthquake sequence,
the RTD system delivered accurate information to govern-
ment officials 102 seconds after the origin time of the main
shock (about 50 seconds for most aftershocks), and proved
to be useful in the emergency response of the Taiwan
government [37,131].

Recording Damaging Ground Shaking

Observing teleseisms on a global scale with station spac-
ing of several hundreds of kilometers does not yield criti-
cal information about near-source strong ground shaking
required for earthquake structural engineering purposes
and seismic hazard reduction. Broadband seismometers,
which are optimized to record earthquakes at great dis-
tances, do not perform well in the near-field of a major
earthquake. For example, during the 1999 Chi–Chi earth-
quake the nearest broadband station in Taiwan (epicentral
distance of about 20 km) was badly overdriven, recorded
no useful data beyond the arrival time of the initial P-wave,
and finally failed about one minute into the shock.

A regional seismic network with station spacing of
a few tens of kilometers cannot do the job either: the sta-
tion spacing is still too large and the records are typically
overdriven for earthquakes of M & 3 (any large earth-
quake would certainly overdrive these sensitive instru-
ments in the entire network). In his account of early earth-
quake engineering, Housner [51] credited John R. Free-
man, an eminent engineer, with persuading the then US
Secretary of Commerce to authorize a strong-motion pro-
gram, and, in 1930, the design of an accelerograph for en-
gineering purposes. In a letter to R.R. Martel, Housner’s
professor at Caltech, Freeman wrote:

I stated that the data which had been given to struc-
tural engineers on acceleration and limits of motion
in earthquakes as a basis for their designs were all
based on guesswork, that there had never yet been
a precise measurement of acceleration made. That
of the five seismographs around San Francisco Bay
which tried to record the earthquake of 1906 not one
was able to tell the truth.

Strong-motion recordings useful to engineers must
be on-scale for damaging earthquakes and, in particular,
from instruments located on or near built structures in
densely urbanized environments, within about 25 km of
the earthquake-rupture zone for sites on rock, or within
about 100 km for sites on soft soils. Recordings of mo-
tions sufficient to cause damage at sites at greater dis-
tances are also of interest for earthquake engineering in
areas likely to be affected by major subduction-zone earth-
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quakes and in areas with exceptionally low attenuation
rates [11]. In addition, densely-spaced networks of strong-
motion recorders are needed to study the large variations
in these motions over short distances [26,29].

Although several interesting accelerograms were
recorded in southern California in the 1930s and
1940s, most seismologists did not pursue strong-mo-
tion monitoring until much later. The 1971 San Fer-
nando earthquake emphatically demonstrated the need for
more strong-motion data [9]. Two important programs
emerged in the United States – the National Strong-Mo-
tion Program (http://nsmp.wr.usgs.gov/), and the Cali-
fornia Strong Motion Instrumentation Program (http://
docinet3.consrv.ca.gov/csmip/). However, the budgets for
these programs were and continue to be small in compar-
ison to other earthquake programs. High levels of fund-
ing for strong-motion monitoring, comparable to that of
the GSN and the regional seismic networks, became avail-
able in Taiwan in the early 1990s, and in Japan in the mid-
1990s. The Consortium of Organizations for Strong-Mo-
tion Observation Systems (http://www.cosmos-eq.org/)
was established recently to promote the acquisition and
application of strong-motion data.

Seismograms and Derived Products

Even before instruments were developed to record seismic
waves from earthquakes, many scholars compiled catalogs
of earthquake events noted in historical and other docu-
ments. Robert Mallet in 1852–1854 published the first ex-
tensive earthquake catalog of the world (1606 B.C.–A.D.
1842) totaling 6831 events [79]. Based on this compila-
tion, Mallet prepared the first significant seismicity map
of the Earth in 1858. Mallet’s map is remarkable in that
it correctly identifies the major earthquake zones of the
Earth excepting for parts of the oceans. Although Mal-
let’s earthquake catalog and similar compilations con-
tain a wealth of information about earthquakes, they were
made without the aid of instruments, and thus were sub-
ject to the biases of the observers as well as to popu-
lation distributions. These non-instrumental earthquake
catalogs also contain errors because the source materi-
als were commonly incomplete and inconsistent regard-
ing date, time, place names, and reported damage. Am-
braseys et al. [8] discusses these difficulties for a re-
gional case and Guidoboni [42] addresses the matter in
general.

Today, seismograms are the fundamental data pro-
duced by earthquake monitoring. An analyst’s first task
is to find out when and where the earthquakes occurred,
its size, and other characteristics. The accuracy of deter-

mining earthquake parameters, as well as the number of
parameters used to characterize and earthquake, has pro-
gressed along with the availability of seismograms and
computers, as well as advances in seismology. In the ana-
log era, earthquake parameters were primarily the origin
time, geographical location (epicenter), focal depth, and
magnitude. A list of these parameters for earthquakes oc-
curring over some time interval is called an earthquake
catalog. A useful and common illustration of such results
is a map showing the locations of earthquakes by mag-
nitude (a seismicity map). Figure 11 is such a seismicity
map for 1900–1999 as prepared by Engdahl and Villasen-
sor [24]. The map shows that moderate and large earth-
quakes are concentrated in tectonic active areas whilemost
areas of the Earth are aseismic.

Earthquake Location

Several methods have been developed to locate earth-
quakes (i. e., determine origin time, latitude and lon-
gitude of the epicenter, and focal depth). Common to
most of these methods is the use of arrivals times of ini-
tial P- and S-waves. In particular, Geiger [33] applied the
Gauss–Newton method to solve for earthquake location,
which is a nonlinear problem, by formulating it as an in-
verse problem. However, since Geiger’s method is com-
putational intensive, it was not practical to apply it for
the routine determinations of earthquake hypocenters un-
til the advance of modern computers in the early 1960s.

Before computers became widely available starting in
the 1960s, earthquakes were usually located by a man-
ual, graphical method. In any location method, we as-
sume that an earthquake is a point source and its sole
parameters are origin time (time of occurrence, to) and
hypocenter position (xo; yo; zo). If both P- and S-arrival
times are available, one may use the time intervals be-
tween P- and S-waves at each station (S-P times) and es-
timates of seismic wave velocities in the Earth to obtain
a rough estimate of the epicentral distance, D, from that
station:

D D [VPVS/(VP � VS)](TS � TP) (2)

where VP is the P-wave velocity, VS the S-wave veloc-
ity, TS the S-wave arrival time, and TP the P-wave ar-
rival time. For a typical crustal P-wave velocity of 6 km/s,
and VP/VS � 1:8, the distance D in kilometers is about
7.5 times the S-P interval measured in seconds. If three or
more epicentral distances are available, the epicenter may
be placed at the intersection of circles with the stations as
centers and the appropriate D as radii. The intersection

http://nsmp.wr.usgs.gov/
http://docinet3.consrv.ca.gov/csmip/
http://docinet3.consrv.ca.gov/csmip/
http://www.cosmos-eq.org/
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EarthquakeMonitoring and Early Warning Systems, Figure 11
Seismicity of the Earth: 1900–1999 (see [24] for details)

will seldombe a point, and its areal extent gives a rough es-
timate of the uncertainty of the epicenter and hypocentral
(focal) depth. In the early days, the focal depth was usually
assumed or occasionally determined using a “depth phase”
(generally, a ray that travels upward from the hypocen-
ter and reflects back from the Earth’s surface, then arcs
through the Earth to reach a distant seismograph).

Although Geiger [33] presented a method for deter-
mining the origin time and epicenter, the method can be
extended easily to include focal depth. To locate an earth-
quake using a set of arrival times, �k, from stations at
positions (xk ; yk ; zk ), k D 1; 2; : : : ;m, we must assume
a model of seismic velocities from which theoretical travel
times, Tk for a trial hypocenter at (x�; y�; z�) to the sta-
tions can be computed. Let us consider a given trial origin
time and hypocenter as the trial vector �� in a four-di-
mensional Euclidean space:

�� D (t�; x�; y�; z�)T (3)

where the superscript T (T) denotes the vector transpose.
Theoretical arrival time, tk, from �� to the k-th station is
the theoretical travel time,Tk, plus the trial origin time, t�.
We now define the arrival time residual at the k-th station,
rk, as the difference between the observed and the theo-

retical arrival times. We may consider this set of station
residuals as a vector in anm-dimensional Euclidean space
and write:

r D (r1(��); r2(��); : : : ; rm(��))T : (4)

We now apply the least squares method to obtain a set of
linear equations solving for an adjustment vector, ı�:

ATAı� D �ATr ; (5)

whereA is the Jacobianmatrix consisting of partial deriva-
tives of travel time with respect to t, x, y, and z. A de-
tailed derivation of the Geiger method is given by Lee and
Stewart (see, pp 132–134 in [74]). There are many prac-
tical difficulties in implementing Geiger’s method for lo-
cating earthquakes, as discussed by Lee and Stewart (see,
pp 134–139 in [74]). Although standard errors for these
earthquake locations can be computed, they are often not
meaningful because errors in the measurement of arrival
times usually do not obey a Gaussian probability distribu-
tion. In recent years,many authors applied various nonlin-
ear methods to locate earthquakes; a review of these meth-
ods is given by Lomax et al. � Earthquake Location, Di-
rect, Global-Search Methods.
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Earthquake Magnitude

After an earthquake is located, the next question is: how
big was it? The Richter magnitude scale was originally de-
vised to measure the “size” of an earthquake in south-
ern California. Richter [96] defined the local (earthquake)
magnitude,ML, of an earthquake observed at any particu-
lar station to be:

ML D log A� logA0(�) (6)

where A is the maximum amplitude in millimeters as
recorded by a Wood–Anderson seismograph for an earth-
quake at epicentral distance of � km. The correction fac-
tor, log A0(�), is the maximum amplitude at � km for
a “standard” earthquake. Thus, three arbitrary choices en-
ter into the definition of local magnitude: (1) the use of the
Wood–Anderson seismographs, (2) the use of the com-
mon logarithm (i. e., the logarithm to the base 10), and
(3) the selection of the standard earthquake, whose ampli-
tudes as a function of distance� are represented by A0(�).

In the 1940s, B. Gutenberg and C.F. Richter extended
the local magnitude scale to include more distant earth-
quakes. Gutenberg [43] defined the surface-wave magni-
tude, MS, as

MS D log(A/T) � logA0(�ı) (7)

where A is the maximum combined horizontal ground
displacement in micrometers (�m) for surface waves with
a period of 20 s, and � logA0 is tabulated as a function of
epicentral distance � in degrees, in a similar manner to
that for the local magnitude’sA0 (�). Specifically, surface-
wave magnitude is calculated from

MS D logAC 1:656 log�C 1:818 (8)

using the prominent 20 s period surface waves commonly
observed on the two horizontal-component seismograms
from earthquakes of shallow focal depth.

Both magnitude scales were derived empirically and
have scale-saturation problems, e. g., for very large earth-
quakes above a certain size the computed magnitudes of
a particular type are all about the same After the pio-
neering work of Charles F. Richter and Beno Gutenberg,
numerous authors have developed alternative magnitude
scales, as reviewed recently by Utsu [116] and by Bormann
and Saul � Earthquake Magnitude. A current magnitude
scale widely accepted as “best” (as having the least satura-
tion problem and being a close match to an earthquake’s
total release of stress and strain) is the “moment mag-
nitude”, MW, computed from an earthquake’s “moment
tensor”.

Quantification of the Earthquake Source

As pointed out by Kanamori [59], it is not a simple mat-
ter to find a single measure of the “size” of an earth-
quake, simply because earthquakes result from complex
physical processes. The elastic rebound theory of Harry
F. Reid suggests that earthquakes originate from sponta-
neous slippage on active faults after a long period of elastic
strain accumulation [94]. Faultsmay be considered the slip
surfaces across which discontinuous displacement occurs
in the Earth, while the faulting process may be modeled
mathematically as a shear dislocation in an elastic medium
(see [100], for a review). A shear dislocation (or slip) is
equivalent to a double-couple body force [15,81]. The scal-
ing parameter of each component couple of a double-cou-
ple body force is its moment. Using the equivalence be-
tween slip and body forces, Aki [2] introduced the seismic
moment,M0, as:

M0 D �

Z
D(A)dAD �sA (9)

where � is the shear modulus of the medium,A is the area
of the slipped surface or source area, and s is the slip D(A)
averaged over the area A. If an earthquake produces sur-
face faulting, we may estimate its rupture length, L, and
its average slip, s, from measurement of that faulting. The
area A may be approximated by Lh, where h is the focal
depth (it is often, but not always, found that the hypocen-
ter is near the bottom of the rupture surface). A reasonable
estimate for � is 3 � 1011 dynes/cm2. With these quanti-
ties, we can estimate the seismic moment from Eq. (9).

Seismic moment also can be estimated independently
from seismograms. From dislocation theory, the seismic
moment can be related to the far-field seismic displace-
ment recorded by seismographs. For example, Hanks and
Wyss [46] showed that

M0 D (˝0/ ��)4��Rv3 (10)

where ˝0 is the long-period limit of the displacement
spectrum of either P or Swaves, �� is a function account-
ing for the body-wave radiation pattern, � is the density of
the medium, R is a function accounting for the geometric
spreading of body waves, and v is the body-wave velocity.
Similarly, seismic moment can be determined from sur-
face waves or coda waves [2,3].

In 1977, Hiroo Kanamori recognized that a new mag-
nitude scale can be developed using seismic moment (M0)
by comparing the earthquake energy and seismic moment
relation

ES D (
� /2�)M0 ; (11)
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where 
� is the stress drop and � is the shear modulus,
with the surface-wave magnitude and energy relation [45]

log ES D 1:5MS C 11:8 ; (12)

where ES and M0 are expressed in ergs and dyne-cm, re-
spectively. The average value of (
� /2�) is approximately
equal to 1:0 � 10�4. If we use this value in Eq. (11), we
obtain

logM0 D 1:5MS C 16:1 : (13)

It is known that MS values saturate for great earthquakes
(M0 about 1029 dyne � cm or more) and, therefore, that
Eqs. (12) and (13) do not hold for such great earthquakes.
If a new moment-magnitude scale using the notation MW
is defined by

logM0 D 1:5MW C 16:1 (14)

then MW is equivalent to MS below saturation and pro-
vides a reasonable estimate for great earthquakes with-
out the saturation problem [58]. The subscript letter W
stands for the work at an earthquake fault, but soon MW
became known as the moment magnitude. Determining
earthquake magnitude using seismic moment is clearly
a better approach because it has a physical basis.

The concept of seismic moment led to the devel-
opment of moment tensor solutions for quantifying the
earthquake source, including its focal mechanism [35,36];
the seismic moment is just the scalar value of the mo-
ment tensor. Since the 1980s, Centroid-Moment-Tensor
(CMT) solutions have been produced routinely for events
with moment magnitudes (MW) greater than about 5.5.
The CMT methodology is described by Dziewonski et
al. [22] and Dziewonski and Woodhouse [20]; a com-
prehensive review is given in Dziewonski and Wood-
house [21]. These CMT solutions are published yearly
in the journal Physics of the Earth and Planetary Interi-
ors, and the entire database is accessible online. This use-
ful service is now performed by the Global CMT Project
(http://www.globalcmt.org/), and more than 25,000 mo-
ment tensors have been determined for large earthquakes
from 1976 to 2007. In the most recent decade, Quick CMT
solutions [23] determined in near-real time have been
added and are distributed widely via e-mail (http://www.
seismology.harvard.edu/projects/CMT/QuickCMTs/).

Limitations of Earthquake Catalogs

In addition to international efforts to catalog earthquakes
on a global scale, observatories and government agencies
issue more-detailed earthquake catalogs at local, regional,

and national scales. However, earthquake catalogs from
local to global scales vary greatly in spatial and temporal
coverage and in quality, with respect to completeness and
accuracy, because of the ongoing evolution of instrumen-
tation, data processing procedures, and agency staff. An
earthquake catalog, to be used for research, should have at
least the following source parameters: origin time, epicen-
ter (latitude and longitude), focal depth, and magnitude.

The International Seismological Summary and its pre-
decessors provided compilations of arrival times and lo-
cations of earthquakes determined manually from about
1900 to 1963. Despite their limitations (notably the lack
of magnitude estimates), these materials remain valuable.
The first global earthquake catalog that contains both lo-
cations and magnitudes was published by Gutenberg and
Richter in 1949, and was followed by a second edition in
1954 [44]. This catalog contains over 4,000 earthquakes
from 1904 to 1951. Unfortunately, its temporal and spa-
tial coverage is uneven as a result of rapid changes in
seismic instrumentation, and of the interference of both
World Wars. Nevertheless, the procedures used for earth-
quake location and magnitude estimation were the same
throughout, using the arrival-time and amplitude data
available to Gutenberg and Richter during the 1940s and
early 1950s.

Since 1964, the International Seismological Centre has
performed systematic cataloging of earthquakes world-
wide by using computers and more modern seismograph
networks. The spatial coverage of this catalog is not com-
plete for some areas of the Earth (especially the oceans)
because of the paucity of seismographic stations in such
areas. By plotting the cumulative numbers of earthquakes
above a certain magnitude versus magnitude, and using
Eq. (1), the lower limit of completeness of an earthquake
catalog may be estimated – it is the magnitude below
which the data deviate below a linear fit to Eq. (1).

A Centennial Earthquake Catalog covering ISS- and
ISC-reported global earthquakes from 1900–1999 was
generated using an improved Earth model that takes
into account regional variations in seismic wave veloci-
ties in the Earth’s crust and upper mantle [24,118]. En-
gdahl and Villasenor [24] also compiled existing magni-
tude data from various authors and suggested preferred
values. However, these “preferred magnitudes” were not
determined by the same procedures. At present, the Global
CMT Project (http://www.globalcmt.org/) provides the
most complete online source parameters for global earth-
quakes (with MW > 5:5), including Centroid-Moment-
Tensor solutions. Although the CMT catalog starts in
1976, the improved global coverage of modern broadband
digital seismographs began only in about 1990.

http://www.globalcmt.org/
http://www.seismology.harvard.edu/projects/CMT/QuickCMTs/
http://www.seismology.harvard.edu/projects/CMT/QuickCMTs/
http://www.globalcmt.org/
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In summary, earthquake catalogs have been used ex-
tensively for earthquake prediction research and seismic
hazard assessment since the first such catalog was pro-
duced. Reservations have been expressed about the relia-
bility of the results and interpretations from these studies
because the catalogs cover too little time and have limi-
tations in completeness and accuracy (both random and
systematic). Nevertheless, advances have been made in us-
ing earthquake catalogs to (1) study the nature of seis-
micity (e. g., � Seismicity, Critical States of: From Mod-
els to Practical Seismic Hazard Estimates Space), (2) in-
vestigate earthquake statistics (e. g., � Earthquake Occur-
rence and Mechanisms, Stochastic Models for), (3) fore-
cast earthquakes (e. g.,� Earthquake Forecasting and Ver-
ification), (4) predict earthquakes (e. g.,�Geo-complexity
and Earthquake Prediction), (5) assess seismic hazards and
risk, and so forth.

Earthquake EarlyWarning (EEW) Systems

With increasing urbanization worldwide, earthquake haz-
ards pose ever greater threats to lives, property, and liveli-
hoods in populated areas near major active faults on
land or near offshore subduction zones. Earthquake early-
warning systems can be useful tools for reducing the im-
pact of earthquakes, provided that cities are favorably lo-
cated with respect to earthquake sources and their citi-
zens are properly trained to respond to the warning mes-
sages. Recent reviews of earthquake early warning sys-
tems may be found in Lee and Espinosa-Aranda [73],
Kanamori [61], and Allen [6], as well as a monograph on
the subject by Gasparini et al. [31].

Under favorable conditions, an EEW system can fore-
warn an urban area of impending strong shaking with
lead times that range from a few seconds to a few tens of
seconds. A lead time is the time interval between issuing
a warning and the arrival of the S-waves, which are the
most destructive seismic waves. Even a few seconds of ad-
vanced warning is useful for pre-programmed emergency
measures at various critical facilities, such as the deceler-
ation of rapid-transit vehicles and high-speed trains, the
orderly shutoff of gas pipelines, the controlled shutdown
of some high-technological manufacturing operations, the
safe-guarding of computer facilities (e. g., disk-head park-
ing), and bringing elevators to a stop at the nearest floor.

Physical Basis and Limitations of EEW Systems

The physical basis for earthquake early warning is sim-
ple: damaging strong ground shaking is caused primar-
ily by shear (S) and subsequent surface waves, both of
which travel more slowly that the primary (P) waves, and

EarthquakeMonitoring and Early Warning Systems, Figure 12
Travel time of P-waves and of S-waves versus distance for a typi-
cal earthquake

seismic waves travel much more slowly than electromag-
netic signals transmitted by telephone or radio. However,
certain physical limitations must be considered, as shown
by Fig. 12.

Figure 12 is a plot of the travel time for the P-wave
and S-wave as a function of distance from an earth-
quake. We make the following assumptions about a typ-
ical destructive earthquake: (1) focal depth at � 20 km,
(2) P-wave velocity � 8 km/s, and (3) S-wave velocity
� 4:5 km/s. If an earthquake is located 100 km from
a city, the P-wave arrives at the city after about 13 s, and
the S-waves in about 22 s (Fig. 12). If we deploy a dense
seismic network near the earthquake source area (capable
of locating and determining the size of the event in about
10 s), we will have about 3 s to issue the warning before
the P-wave arrives, and about 12 s before the more de-
structive S-waves and surface waves arrive at the city. We
have assumed that it takes negligible time to send a sig-
nal from the seismic network to the city via electromag-
netic waves, which travel at about one-third the velocity
of light or faster (between about 100,000 and 300,000 km/s
depending on the method of transmission).

From Fig. 12 it is clear that this strategy may work
for earthquakes located at least about 60 km from the ur-
ban area. For earthquakes at shorter distances (� 20 to
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� 60 km), we must reduce the time needed to detect the
event and issue a warning to well under 10 s. This require-
ment implies that wemust deploy a very dense seismic net-
work very close to the fault and estimate the necessary pa-
rameters very fast. However, such dense networks are not
economical to deploy using existing seismic instruments.

For earthquakes within 20 km of a city, there is lit-
tle one can do other than installing motion-sensitive au-
tomatic shut-off devices at critical facilities (natural gas,
for example) and hope that they are either very quick
when responding to S-waves or are triggered by the on-
set of the P-wave. Normally an earthquake rupture more
than � 100 km from an urban area does not commonly
pose a large threat (seismic waves would be attenuated and
spread out farther). There are exceptions caused either by
unusual local site conditions, such as Mexico City, or by
earthquakes with large rupture zones which therefore ra-
diate efficiently to greater distances.

Design Considerations for EEW Systems

In the above discussion, we have assumed that one im-
plements an earthquake early warning system with a tra-
ditional seismic network. Such EEW systems have limi-
tation as illustrated by Fig. 13, which shows the expected
early warning times for a repeat of the 1999 Chi–Chi earth-
quake. However, Nakamura and his colleagues have been
successful in applying a single-station approach [84,99],
where seismic signals are recorded and processed locally
by the seismograph and an earthquake warning is is-
sued whenever ground motions there exceed some trig-
ger threshold. We will next discuss these two basic ap-
proaches, regional versus on-site in designing an earth-
quake early warning system.

Earthquake early warning capability can be imple-
mented through a rapid reporting system (RRS) from
a traditional network, assuming real-time telemetry into
the network’s central laboratory. This type of system
provides, to populated areas and other sensitive loca-
tions, primary event information (hypocenter, magnitude,
ground shaking intensities, and potential damage) about
one minute after the earthquake begins. The RRS trans-
mits this critical information electronically to emergency
response agencies and other interested organizations and
to individuals. Each recipient can then take action (some
of which may be pre-programmed) shortly after the earth-
quake begins. Response measures can include the timely
dispatch of rescue equipment and emergency supplies to
the likely areas of damage.

California’s ShakeMap [119,120], Taiwan’s CWB, and
Japan’s JMA systems are typical examples of RSS. In

EarthquakeMonitoring and EarlyWarning Systems, Figure 13
Expected EWS early warning times (indicated by circles) in Tai-
wan with respect to the occurrence of an event similar to the
Chi–Chi earthquake of 20 September 1999. Triangles are loca-
tions of elementary schools, which can be regarded as a good
indicator for the population density of Taiwan

the case of the Taiwan RRS, the CWB has, since 1995,
provided intensity maps, hypocenters, and magnitudes
within one minute of the occurrence of M > 4 earth-
quakes [110,128]. This system’s reliability, documented by
electronic messages to government agencies and scientists,
has been close to perfect, particularly for large, damaging
earthquakes. Figure 14 shows a block diagram of the Tai-
wan RRS, and details may be found in [128].

Using a set of empirical relationships derived from the
large data set collected during the 1999 Chi–Chi earth-
quake, CWB now releases, within a few minutes of an
event, the estimated distributions of PGA and PGV, re-
fined magnitudes, and damage estimates [129]. This near-
real-time damage assessment is useful for rapid post-dis-
aster emergency response and rescue missions.

Regional Warning Versus Onsite Warning

Two approaches have been adopted for earthquake early
warning systems: (1) regional warning, and (2) on-site
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EarthquakeMonitoring and EarlyWarning Systems, Figure 14
A block diagram showing the hardware of the Taiwan Earthquake Rapid Reporting System

warning. The first approach relies on traditional seismo-
logical methods in which data from a seismic network are
used to locate an earthquake, determine the magnitude,
and estimate the ground motion in the region involved. In
the second approach, the initial ground motions (mainly P
wave) observed at a site are used to predict the ensuing
ground motions (mainly S and surface waves) at the same
site.

The regional approach is more comprehensive, but
takes a longer time to issue an earthquake warning. An
advantage of this approach is that estimates of the timing
of expected strong motions throughout the affected region
can be predicted more reliably. The early warning system
in Taiwan is a typical example and it uses a regional warn-
ing system called virtual sub-network approach (VSN)
that requires an average of 22 s to determine earthquake
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parameters with magnitude uncertainties of˙0:25. It pro-
vides a warning for areas beyond about 70 km from the
epicenter (Fig. 13). This systemhas been in operation since
2002 with almost no false alarms [129]. With the advance-
ment of new methodology and more dense seismic net-
works, regional systems are beginning to be able to provide
early warnings to areas closer to the earthquake epicenter.

The regional approach has also been used in other ar-
eas. The method used in Mexico [25] is slightly different
from the traditional seismological method. It is a special
case of EEW system due to the relatively large distance
(about 300 km in this case) between the earthquake source
region (west coast of Central America) and the warning
site (Mexico City). However, the warning is conceptually
“regional”.

In Japan, various EEW techniques have been devel-
oped and deployed by the National Research Institute
for Earth Science and Disaster Prevention (NIED) and
JapanMeteorological Agency (JMA) since 2000 [49,57,89],
� Tsunami Forecasting and Warning. In particular, JMA
has started sending early warning messages to potential
users responsible for emergency responses [50]. The po-
tential users include railway systems, construction compa-
nies, and others; and they are familiar with the implica-
tions of early warning messages, as well as the technical
limitations of EEW [57].

Some Recent EEWAdvances

Allen and Kanamori [7] proposed the Earthquake Alarm
System (ElarmS) to issue an earthquake warning based
on information determined from the P-wave arrival only.
Kanamori [61] extended the method of Nakamura [84]
and Allen and Kanamori [7] to determine a period param-
eter, �c, from the initial 3 s of the P wave. �c is defined as

�c D 2�/
p
r (15)

where

r D
R �0
0 u̇2(t) dt
R �0
0 u2(t) dt

(16)

u(t) is the ground-motion displacement; �0 is the duration
of record used (usually 3 s), and �c, which represents the
size of an earthquake, can be computed from the incoming
data sequentially.

The �c method was used for earthquake early warn-
ing in southern California, Taiwan, and Japan by Wu and
Kanamori [124,125,126] and Wu et al. [130]. At a given
site, the magnitude of an event is estimated from �c and
the peak ground-motion velocity (PGV) from Pd (the peak
amplitude of displacement in the first 3 s after the arrival

of the P wave). The incoming 3-component signals are re-
cursively converted to ground acceleration, velocity and
displacement. The displacements are recursively filtered
using an accusal Butterworth high-pass filter with a cut-
off frequency of 0.075Hz, and a P-wave threshold trig-
ger is constantly monitored. When a trigger occurs, �c and
Pd are computed. The relationships between �c and mag-
nitude (M), and Pd and peak ground velocity (PGV) for
southern California, Taiwan, and Japan were investigated.
Figure 15 shows a good correlation between �c and MW
from the K-NET records in Japan, and Fig. 16 shows the
Pd versus PGV plot for southern California, Taiwan, and
Japan. These relationships may be used to detect the oc-
currence of a large earthquake and provide onsite warning
in the area immediately around the station where the onset
of strong ground motion is expected within a few seconds
after the arrival of the P-wave. When the station density is
high, the onsite warning methods may be applied to data
from multiple stations to increase the robustness of an on-
site early warning, and to complement the regional warn-
ing approach. In an ideal situation, such warnings would
be available within 10 s of the origin time of a large earth-
quake whose subsequent ground motion may last for tens
of seconds.

EarthquakeMonitoring and EarlyWarning Systems, Figure 15
�c estimates from 20 events using the nearest 6 stations of the
K-NET. Small open circles show single-record results, and large
circles show event-average values with one standard deviation
bars. Solid line shows the least squares fit to the event-average
values, and the two dashed lines show the range of one standard
deviation
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EarthquakeMonitoring and EarlyWarning Systems, Figure 16
Relationship between peak initial displacement amplitude (Pd)
measurements and peak ground velocity (PGV) for the records
with epicentral distances less than 30 km from the epicenter in
SouthernCalifornia (red solid circles), Taiwan (bluediamonds) and
Japan (black solid triangles). Solid line shows the least squares
fit and the two dashed lines show the range of one standard
deviation

Wu and Zhao [127] investigated the attenuation of Pd
with the hypocentral distance R in southern California as
a function of magnitude M, and obtained the following
relationships:

MPd D 4:748C 1:371� log(Pd)C 1:883� log(R) (17)

and

log(Pd) D �3:463C 0:729�M� 1:374� log(R) : (18)

For the regional warning approach, when an earthquake
location is determined by the P-wave arrival times at sta-
tions close to the epicenter, this relationship can be used
to estimate the earthquake magnitude. Their result shows
that for earthquakes in southern California the Pd magni-
tudes agree with the catalog magnitudes with a standard
deviation of 0.18 for events less than magnitude 6.5. They
concluded that Pd is a robust measurement for estimating
the magnitudes of earthquakes for regional early warning
purposes in southern California. This method has also ap-
plied to Italian region by Zollo et al. [132] with a very good
performance.

Because the on-site approach is faster than the regional
approach, it can provide useful early warning to sites at

short distances from the earthquake epicenter where early
warning is most needed. Onsite early warning can be gen-
erated by either a single station or by a dense array. For
a single station operation, signals from P-waves are used
for magnitude and hypocenter determination to predict
strong ground shaking. Nakamura [83] first proposed this
concept, developed the Urgent Earthquake Detection and
Alarm System or UrEDAS [86], and introduced a simple
strong-motion index for onsite EEW [85]. However, the
reliability of on-site earthquake information is generally
less than that obtained with the regional warning system.
There currently is a trade-off between warning time and
the reliability of the earthquake information. Generally, an
information updating procedure is necessary for any EEW
system. On-site warning methods can be especially useful
in regions where a dense seismic network is deployed.

The Japan Meteorological Agency (JMA) began dis-
tribution of earthquake early warning information to
the public in October 1, 2007 through several means,
such as TV and radio [50] (http://www.jma.go.jp/jma/
en/Activities/eew.html). The JMA system was success-
fully activated during the recent Noto Hanto and Niigata
Chuetsu–Oki earthquakes in 2007, and provided accu-
rate information of hypocenter, magnitude, and intensity
about 3.8 s after the arrival of P-waves at nearby stations.
The warning message reached sites further than about
30 km from the epicenter as an early warning alert (i. e., in-
formation arrived before shaking started at the site). This
is a remarkable performance of the system for damaging
earthquakes and gives promise of an early warning sys-
tem as a practical means for earthquake damage mitiga-
tion. Although warning alert is most needed within 30 km
of the epicenter, it is not feasible with the current density
and configuration of the JMA network.

Lawrence and Cochran [68] proposed a collaborative
project for rapid earthquake response and early warning
by using the accelerometers that are already installed in-
side many laptop computers. Their Quake-Catcher Net-
work (QCN) will employ existing laptops, which have
accelerometers already installed, and desktops outfitted
with inexpensive (under $ 50) USB accelerometers to form
the world’s largest high-density, distributed computing
seismic network for monitoring strong ground motions
(http://qcn.stanford.edu/). By freely distributing the nec-
essary software, anyone having a computer with an In-
ternet connection can join the project as a collaborative
member. The Quake-Catcher Network also has the po-
tential to provide better understanding of earthquakes,
and the client-based software is also intended to be edu-
cational, with instructive material displaying the current
seismic signal and/or recent earthquakes in the region. It

http://www.jma.go.jp/jma/en/Activities/eew.html
http://www.jma.go.jp/jma/en/Activities/eew.html
http://qcn.stanford.edu/
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is an effective way to bring earthquake awareness to stu-
dents and the general public.

Future Directions

To be successful, monitoring earthquakes requires large,
stable funding over a long period of time. The most direct
argument for governments to support long-term earth-
quake monitoring is to collect scientific data for hazard
mitigation. In the past two decades about half a million of
human lives have been lost due to earthquakes, and eco-
nomic losses from earthquake damage total about $ 200
billion. Future losses will be even greater as rapid urban-
ization is taking place worldwide. For example, the re-
cent Japanese Fundamental Seismic Survey and Observa-
tion Plan (costing several hundred million US dollars) is
a direct response to the economic losses of about $ 100 bil-
lion due to the 1995 Kobe earthquake. In addition to sci-
entific and technological challenges in monitoring earth-
quakes, seismologistsmust pay attention to achieve (1) sta-
ble long-term funding, (2) effective management and exe-
cution, and (3) delivery of useful products to the users.

Seismologists benefit greatly from scientific and tech-
nological advances in other fields. For example, Global Po-
sitioning Systems (GPS) open a new window for mon-

EarthquakeMonitoring and Early Warning Systems, Figure 17
Instruments deployed at the HGSD station in eastern Taiwan. Clockwise from the top: (1) A broadband seismometer (Model CMG-
3TB) installed at a depth of 100m), (2) A continuous GPS instrument, (3) A strain-meter installed at a depth of 210m), (4) A Model
Q330 6-channel recorder with an accelerometer (Model EpiSensor) and a short-period seismometer (Model L2), and (5) A Model K2
6-channel accelerograph with an internal accelerometer and a rotational sensor (Model R-1)

itoring crustal deformation which is important to un-
derstand the driving forces that generate earthquakes
(� GPS: Applications in Crustal Deformation Monitor-
ing, � Crustal Deformation During the Seismic Cycle,
Interpreting Geodetic Observations of). Under the US
Earth Scope Program (http://www.earthscope.org/) the
Plate Boundary Observatory (PBO) is covering the west-
ern Northern America and Alaska with a network of high
precision GPS and strain-meter stations in order to mea-
sure deformation across the active boundary between the
Pacific and North America plates (http://www.earthscope.
org/observatories/pbo). As the sampling rate of GPS data
increases, they can provide time histories of displacement
during an earthquake. Monitoring earthquakes with mul-
tiple types of instruments and sensors is now increasingly
popular, and “integrated” or “super” stations are increas-
ingly common. Figure 17 shows an example of an inte-
grated station (HGSD) in eastern Taiwan. Instruments de-
ployed at the HGSD station in eastern Taiwan include:
a broadband seismometer, a continuous GPS instrument,
a strain-meter, and a 6-channel accelerograph (Model K2
by Kinemetrics) with an internal accelerometer and a ro-
tational sensor (Model R-1 by eentec). A digital seismo-
gram recorded at the HGSD station from an earthquake
(MW D 5:1) of July 23, 2007 at a distance of 34 km is

http://www.earthscope.org/
http://www.earthscope.org/observatories/pbo
http://www.earthscope.org/observatories/pbo
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EarthquakeMonitoring and EarlyWarning Systems, Figure 18
A digital seismogram recorded at the HGSD station from an earthquake (MW D 5:1) of July 23, 2007 at a distance of 34 km. Top frame:
3-component translational accelerations. Bottom frame: 3-component rotation velocity motions. N =North-South; V =Vertical, and
E= East-West

shown in Fig. 18. The importance of rotational seismology
and its current status are given in the Appendix.

A radically different design of seismographic networks
(and earthquake early warning system in particular) is now
possible using the “Sensor Network” developed by Intel
Research. Intel is working with the academic community
and industry collaborators to actively explore the poten-
tial of wireless sensor networks. This research is already
demonstrating the potential for this new technology to

enhance public safety, reduce the cost of doing business,
and bring a host of other benefits to business and soci-
ety (http://www.intel.com/research/exploratory/wireless_
sensors.htm).

It has been very difficult historically to obtain adequate
and stable funding for long-term earthquake monitoring,
largely because disastrous earthquakes occur infrequently.
Since there aremany pressing problems facingmodern so-
cieties, almost all governments react to earthquake (and

http://www.intel.com/research/exploratory/wireless_sensors.htm
http://www.intel.com/research/exploratory/wireless_sensors.htm


Earthquake Monitoring and Early Warning Systems E 2523

tsunami) disasters only after the fact, and even then for
relatively short periods of time. To advance earthquake
prediction research and to develop effective earthquake
warning systems will require continuous earthquake mon-
itoring with extensive instrumentations in the near-field
for decades and even centuries. Therefore, innovative ap-
proaches must be developed and perseverance is needed.
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Appendix:
A Progress Report on Rotational Seismology

Seismology is based primarily on the observation and
modeling of three orthogonal components of translational
ground motions. Although effects of rotational motions
due to earthquakes have long been observed (e. g., [80]),
Richter (see, p. 213 in [97]) stated that:

Perfectly general motion would also involve rotations
about three perpendicular axes, and three more in-
struments for these. Theory indicates, and observa-
tion confirms, that such rotations are negligible.

However, Richter provided no references for this claim,
and the available instruments at that time did not have the
sensitivity to measure the very small rotation motions that
the classical elasticity theory predicts.

Some theoretical seismologists (e. g., [4,5]) and earth-
quake engineers have argued for decades that the rota-
tional part of ground motions should also be recorded. It
is well known that standard seismometers and accelerom-
eters are profoundly sensitive to rotations, particularly
tilt, and therefore subject to rotation-induced errors (see
e. g., [39,40,41,93]). The paucity of instrumental observa-
tions of rotational ground motions is mainly the result of
the fact that, until recently, the rotational sensors did not
have sufficient resolution to measure small rotational mo-
tions due to earthquakes.

Measurement of rotational motions has implications
for: (1) recovering the complete ground-displacement his-
tory from seismometer recordings; (2) further constrain-
ing earthquake rupture properties; (3) extracting informa-
tion about subsurface properties; and (4) providing addi-

tional groundmotion information to engineers for seismic
design.

In this Appendix, we will first briefly review elastic
wave propagation that is based on the linear elasticity the-
ory of simple homogeneous materials under infinitesimal
strain. This theory was developedmostly in the early nine-
teenth century: the differential equations of the linear elas-
tic theory were first derived by Louis Navier in 1821, and
Augustin Cauchy gave his formulation in 1822 that re-
mains virtually unchanged to the present day [103]. From
this theory, Simeon Poisson demonstrated in 1828 the ex-
istence of longitudinal and transverse elastic waves, and
in 1885, Lord Rayleigh confirmed the existence of elastic
surface waves. George Green put this theory on a physi-
cal basis by introducing the concept of strain energy, and,
in 1837, derived the basic equations of elasticity from the
principle of energy conservation. In 1897, Richard Old-
ham first identified these three types of waves in seismo-
grams, and linear elasticity theory has been embedded in
seismology ever since.

In the following we summarize recent progress in ro-
tational seismology and the need to include measurements
of rotational ground motions in earthquake monitoring.
The monograph by Teisseyre et al. [109] provides a useful
summary of rotational seismology.

Elastic Wave Propagation

The equations of motion for a homogeneous, isotropic,
and initially unstressed elastic body may be obtained us-
ing the conservation principles of continuum mechanics
(e. g., [30]) as

�
@2ui
@t2
D (C �)

@�

@xi
C �r2ui ; i D 1; 2; 3 (A1)

and

� D
X

j
@uj/@x j (A2)

where � is the dilatation, � is the density, ui is the ith com-
ponent of the displacement vector Eu, t is the time, and 
and � are the elastic constants of the media. Eq. (A1) may
be rewritten in vector form as

�(@2 Eu/@t2) D (C �)r(r � Eu)C �r2 Eu : (A3)

If we differentiate both sides of Eq. (A1) with respect to xi,
sum over the three components, and bring � to the right-
hand side, we obtain

@2� /@t2 D [(C 2�)/�]r2� : (A4)
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If we apply the curl operator (r�) to both sides of
Eq. (A3), and note that

r � (r � Eu) D 0 (A5)

we obtain

@2(r � Eu)/@t2 D (�/�)r2(r � Eu) : (A6)

Now Eqs. (A4) and (A6) are in the form of the classical
wave equation

@2� /@t2 D v2r2� ; (A7)

where � is the wave potential, and v is the wave-propa-
gation velocity (a pseudovector; wave slowness is a proper
vector). Thus a dilatational disturbance � (or a compres-
sional wave) may be transmitted through a homogenous
elastic body with a velocity VP where

VP D
p
[(C 2�)/�] (A8)

according to Eq. (A4), and a rotational disturbance r � Eu
(or a shear wave) may be transmitted with a wave velocity
VS where

VS D
p
�/� (A9)

according to Eq. (A6). In seismology, and for historical
reasons, these two types of waves are called the primary
(P) and the secondary (S) waves, respectively.

For a heterogeneous, isotropic, and elastic medium,
the equation of motion is more complex than Eq. (A3),
and is given by Karal and Keller [65] as

�(@2 Eu/@t2) D (C �)r(r � Eu)C �r2 Eu
Cr(r � Eu)Cr� � (r � Eu)C 2(r� � r)Eu :

(A10)

Furthermore, the compressional wave motion is no longer
purely longitudinal, and the shear wave motion is no
longer purely transverse. A review of seismic wave propa-
gation and imaging in complex media may be found in the
entry by Igel et al. � Seismic Wave Propagation in Media
with Complex Geometries, Simulation of.

A significant portion of seismological research is based
on the solution of the elastic wave equations with the ap-
propriate initial and boundary conditions. However, ex-
plicit and unique solutions are rare, except for a few simple
problems. One approach is to transform the wave equa-
tion to the eikonal equation and seek solutions in terms
of wave fronts and rays that are valid at high frequencies.
Another approach is to develop through specific bound-
ary conditions a solution in terms of normal modes [77].

Although ray theory is only an approximation [17], the
classic work of Jeffreys and Bullen, and Gutenberg used it
to determine Earth structure and locate earthquakes that
occurred in the first half of the 20th century. It remains
a principal tool used by seismologists even today. Impres-
sive developments in normal mode and surface wave stud-
ies (in both theory and observation) started in the second
half of the 20th century, leading to realistic quantification
of earthquakes using moment tensor methodology [21].

Rotational GroundMotions

Rotations in ground motion and in structural responses
have been deduced indirectly from accelerometer arrays,
but such estimates are valid only for long wavelengths
compared to the distances between sensors (e. g., [16,34,
52,88,90,104]). The rotational components of ground mo-
tion have also been estimated theoretically using kinematic
source models and linear elastodynamic theory of wave
propagation in elastic solids [14,69,70,111].

In the past decade, rotational motions from teleseis-
mic and small local earthquakes were also successfully
recorded by sensitive rotational sensors, in Japan, Poland,
Germany, New Zealand, and Taiwan (e. g., [53,55,56,105,
106,107,108]). The observations in Japan and Taiwan
show that the amplitudes of rotations can be one to two
orders of magnitude greater than expected from the classi-
cal linear theory. Theoretical work has also suggested that,
in granular materials or cracked continua, asymmetries of
the stress and strain fields can create rotations in addition
to those predicted by the classical elastodynamic theory for
a perfect continuum (� Earthquake Source: Asymmetry
and Rotation Effects).

Because of lack of instrumentation, rotational mo-
tions have not yet been recorded in the near-field (within
� 25 km of fault ruptures) of strong earthquakes (magni-
tude > 6:5), where the discrepancy between observations
and theoretical predictions may be the largest. Recording
such ground motions will require extensive seismic in-
strumentation along some well-chosen active faults and
luck. To this end, several seismologists have been advo-
cating such measurements, and a current deployment in
southwestern Taiwan by its Central Weather Bureau is de-
signed to “capture” a repeat of the 1906 Meishan earth-
quake (magnitude 7.1) with both translational and rota-
tional instruments.

Rotations in structural response, and the contribu-
tions to the response from the rotational components of
the ground motion, have also been of interest for many
decades (e. g., [78,87,98]. Recent reviews on rotational
motions in seismology and on the effects of the rota-
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tional components of ground motion on structures can be
found, for examples, in Cochard et al. [18] and Pillet and
Virieux [93], and Trifunac [112], respectively.

Growing Interest – The IWGoRS

Various factors have led to spontaneous organization
within the scientific and engineering communities in-
terested in rotational motions. Such factors include: the
growing number of successful direct measurements of ro-
tational ground motions (e. g., by ring laser gyros, fiber
optic gyros, and sensors based on electro-chemical tech-
nology); increasing awareness about the usefulness of the
information they provide (e. g., in constraining the earth-
quake rupture properties, extracting information about
subsurface properties, and about deformation of struc-
tures during seismic and other excitation); and a greater
appreciation for the limitations on information that can be
extracted from the translational sensors due to their sensi-
tivity to rotational motions e. g., computation of perma-
nent displacements from accelerograms (e. g., [13,39,40,
41,93,113]).

A small workshop on Rotational Seismology was or-
ganized by W.H.K. Lee, K. Hudnut, and J.R. Evans of
the USGS on 16 February 2006 in response to grassroots
interest. It was held at the USGS offices in Menlo Park
and in Pasadena, California, with about 30 participants
from about a dozen institutions participating via telecon-
ferencing and telephone [27]. This event led to the for-
mation of the International Working Group on Rotational
Seismology in 2006, inaugurated at a luncheon during the
AGU 2006 Fall Meeting in San Francisco.

The International Working Group on Rotational Seis-
mology (IWGoRS) aims to promote investigations of ro-
tational motions and their implications, and the sharing
of experience, data, software and results in an open web-
based environment (http://www.rotational-seismology.
org). It consists of volunteers and has no official status.
H. Igel and W.H.K. Lee currently serve as “co-organiz-
ers”. Its charter is accessible on the IWGoRS web site. The
Working Group has a number of active members leading
task groups that focus on the organization of workshops
and scientific projects, including: testing and verifying ro-
tational sensors, broadband observations with ring laser
systems, and developing a field laboratory for rotational
motions. The IWGoRS web site also contains the presen-
tations and posters from related meetings, and eventually
will provide access to rotational data from many sources.

The IWGoRS organized a special session on Rota-
tional Motions in Seismology, convened by H. Igel, W.H.K.
Lee, and M. Todorovska during the 2006 AGU Fall Meet-

ing [76]. The goal of that session was to discuss rotational
sensors, observations, modeling, theoretical aspects, and
potential applications of rotational ground motions. A to-
tal of 21 papers were submitted for this session, and over
100 individuals attended the oral session.

The large attendance at this session reflected com-
mon interests in rotational motions from a wide range
of geophysical disciplines, including strong-motion seis-
mology, exploration geophysics, broadband seismology,
earthquake engineering, earthquake physics, seismic in-
strumentation, seismic hazards, geodesy, and astrophysics,
thus confirming the timeliness of IWGoRS. It became ap-
parent that to establish an effective international collabo-
ration within the IWGoRS, a larger workshop was needed
to allow sufficient time to discuss the many issues of inter-
est, and to draft research plans for rotational seismology
and engineering applications.

First InternationalWorkshop

The First International Workshop on Rotational Seismol-
ogy and Engineering Applications was held in Menlo Park,
California, on 18–19 September 2007. This workshop was
hosted by the US Geological Survey (USGS), which rec-
ognized this topic as a new research frontier for enabling
a better understanding of the earthquake process and for
the reduction of seismic hazards. The technical program
consisted of three presentation sessions: plenary (4 pa-
pers) and oral (6 papers) held during the first day, and
poster (30 papers) held during the morning of the sec-
ond day. A post-workshop session was held on the morn-
ing of September 20, in which scientists of the Laser In-
terferometer Gravitational-wave Observatory (LIGO) pre-
sented their work on seismic isolation of their ultra-high
precision facility, which requires very accurate recording
of translational and rotational components of ground mo-
tions (3 papers). Proceedings of this Workshop were re-
leased in Lee et al. [75] with a DVD disc that contains all
the presentation files and supplementary information.

One afternoon of the workshop was devoted to in-
depth discussions on the key outstanding issues and fu-
ture directions. The participants could join one of five
panels on the following topics: (1) theoretical studies
of rotational motions (chaired by L. Knopoff), (2) mea-
suring far-field rotational motions (chaired by H. Igel),
(3) measuring near-field rotational motions (chaired by
T.L. Teng), (4) engineering applications of rotational mo-
tions (chaired by M.D. Trifunac), and (5) instrument de-
sign and testing (chaired by J.R. Evans). The panel re-
ports on key issues and unsolved problems, and on re-
search strategies and plans, can be found in Appendices

http://www.rotational-seismology.org
http://www.rotational-seismology.org
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2.1 through 2.5 in Lee et al. [75]. Following the in-depth
group discussions, the panel chairs reported on the group
discussions in a common session, with further discussions
among all the participants.

Discussions

Since rotational ground motions may play a significant
role in the near-field of earthquakes, rotational seismol-
ogy has emerged as a new frontier of research. During
the Workshop discussions, L. Knopoff asked: Is there
a quadratic rotation-energy relation, in the spirit of
Green’s strain-energy relation, coupled to it or indepen-
dent of it? Can we write a rotation-torque formula analo-
gous to Hooke’s law for linear elasticity in the form

Li j D di jk l!k l (A11)

where !kl is the rotation,

!k l D
1
2 (uk;l � ul ;k) : (A12)

Lij is the torque density; and dijkl are the coefficients of ro-
tational elasticity? How are the d’s related to the usual c’s
of elasticity? If we define the rotation vector as

E̋ D 1
2 (r � Eu) (A13)

we obtain

� V2
s r � (r � E̋ ) D @2 E̋ /@t2 � 1

2�
�1(r � Ef ) (A14)

where the torque density isr � Ef , Ef is the body force den-
sity, and � is density of the medium. This shows that ro-
tational waves propagate with S-wave velocity and that it
may be possible to store torques. Eq. (15) is essentially an
extension using the classical elasticity theory.

Lakes [67] pointed out that the behavior of solids can
be represented by a variety of continuum theories. In par-
ticular, the elasticity theory of the Cosserat brothers [19]
incorporates (1) a local rotation of points as well as the
translation motion assumed in the classical theory, and (2)
a couple stress (a torque per unit area) as well as the force
stress (force per unit area). In the constitutive equation for
the classical elasticity theory, there are two independent
elastic constants, whereas for the Cosserat elastic theory
there are six. Lakes (personal communication, 2007) ad-
vocates that there is substantial potential for using general-
ized continuum theories in geo-mechanics, and any theory
must have a strong link with experiment (to determine the
constants in the constitutive equation) and with physical
reality.

Indeed some steps towards better understandings of
rotational motions have taken place. For example, Twiss
et al. [114] argued that brittle deformation of the Earth’s
crust (� Brittle Tectonics: A Non-linear Dynamical Sys-
tem) involving block rotations is comparable to the de-
formation of a granular material, with fault blocks act-
ing like the grains. They realized the inadequacy of classi-
cal continuum mechanics and applied the Cosserat or mi-
cropolar continuum theory to take into account two sep-
arate scales of motions: macro-motion (large-scale aver-
agemotion composed of macrostrain rate andmacrospin),
and micro-motion (local motion composed of microspin).
A theoretical link is then established between the kinemat-
ics of crustal deformation involving block rotations and
the effects on the seismic moment tensor and focal mech-
anism solutions.

Recognizing that rotational seismology is an emerging
field, the Bulletin of Seismological Society of America will
be publishing in 2009 a special issue under the guest ed-
itorship of W.H.K. Lee, M. Çelebi, M.I. Todorovska, and
H. Igel.
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Glossary

Network or graph A network (or a graph) [28] consists
of vertices (or nodes) and edges (or links) connect-
ing them. In general, a network contains loops (i. e.,
edgeswith both ends attached to the same vertices) and
multiple edges (i. e., edges more than one that connect
two different vertices). If edges have their directions,
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such a network is called directed. A simple graph is
a network, in which loops are removed and each mul-
tiple edge is replaced by a single edge. In a stochastic
network, each connection is inherently probabilistic.
A classical random graph is a simple example, in which
each two vertices are connected by an edge with prob-
ability p and unconnected with probability 1� p (0 <
p < 1).

Connectivity distribution or degree distribution The
connectivity distribution (or the degree distribution),
P(k), is the probability of finding vertices with k
edges in a stochastic network. In a directed net-
work, the number of incoming/outgoing edges is
called the in-degree/out-degree. Connectivity of a clas-
sical random graph obeys the Poissonian distribu-
tion in the limit of the large number of vertice
[11,14,20], P(k) D e��k/k! (: a positive parameter,
k D 0; 1; 2; : : :), whereas a scale-free network [11,12,
14,20] has a power-law shape, P(k) � k�� (� : a posi-
tive exponent), for large k.

Preferential attachment rule This is a concept relevant
to a growing network, in which the number of vertices
increases. Preferential attachment [11,12,14,20] im-
plies that a newly created vertex tends to link to pre-ex-
isting vertices with the probability˘ (ki) D ki /

P
j k j ,

where ki stands for the connectivity of the ith vertex.
That is, the larger the connectivity of a vertex is, the
higher the probability of getting linked to a new vertex
is.

Clustering coefficient The clustering coefficient [27] is
a quantity characterizing an undirected simple graph.
It quantifies the adjacency of two neighboring vertices
of a given vertex, i. e., the tendency of two neighboring
vertices of a given vertex to be connected to each other.
Mathematically, it is defined as follows. Assume the ith
vertex to have ki neighboring vertices. There can exist
at most ki(ki � 1)/2 edges between the neighbors. De-
fine ci as the ratio

ci D

actual number of edges between the
neighbors of the ith vertex

ki (ki � 1)/2
: (1)

Then, the clustering coefficient is given by the average
of this quantity over the network:

C D
1
N

NX

iD1

ci ; (2)

where N is the total number of vertices contained in
the network. The value of the clustering coefficient of

a random graph, Crandom, is much smaller than unity,
whereas a small-world network has a large value of C
which is much larger than Crandom.

Hierarchical organization Many complex networks are
structurally modular, that is, they are composed of
groups of vertices that are highly interconnected to
each other but weakly connected to outside groups.
This hierarchical structure [22] can conveniently be
characterized by the clustering coefficient at each value
of connectivity, c(k), which is defined by

c(k) D
1

NPSG(k)

NX

iD1

ciıki ;k ; (3)

where ci is given by (1),N the total number of vertices,
and PSG(k) the connectivity distribution of an undi-
rected simple graph. Its average is the clustering coeffi-
cient in (2): C D

P
k c(k)PSG(k). A network is said to

be hierarchically organized if c (k) varies with respect
to k, typically due to a power law, c(k) � k�ˇ , with
a positive exponent ˇ.

Assortative mixing and disassortative mixing Consider
the conditional probability, P(k0jk), of finding a ver-
tex with connectivity k0 linked to a given vertex with
connectivity k. Then, the nearest-neighbor average
connectivity of vertices with connectivity k is defined
by [20,21,26]

k̄nn(k) D
X

k0
k0P(k0jk) : (4)

If k̄nn(k) increases/decreases with respect to k, mixing
is termed assortative/disassortative. A simple model of
growth with preferential attachment is known to pos-
sess no mixing. That is, k̄nn(k) does not depend on k.
The above-mentioned linking tendency can be quan-
tified by the correlation coefficient [17] defined as fol-
lows. Let ek l (D el k) be the joint probability distribu-
tion for an edge to link with a vertex with connectiv-
ity k at one end and a vertex with connectivity l at the
other. Calculate its marginal, qk D

P
l ek l . Then, the

correlation coefficient is given by

r D
1
�2q

X

k;l

kl
�
ek l � qk ql


; (5)

where �2q D
P

k k
2qk � (

P
k kqk )

2 stands for the
variance of qk . r 2 [�1; 1], and if r is positive/negative,
mixing is assortative/disassortative [17,20].

Definition of the Subject

Complexity is an emergent collective property, which is
hardly understood by the traditional approach in natural
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science based on reductionism. Correlation between ele-
ments in a complex system is strong, nomatter how largely
they are separated both spatially and temporally, therefore
it is essential to treat such a system in a holistic manner, in
general.

Although it is generally assumed that seismicity is an
example of complex phenomena, it is actually nontrivial
to see how and in what sense it is complex. This point may
also be related to the question of primary importance of
why it is so difficult to predict earthquakes.

Development of the theory of complex networks turns
out to offer a peculiar perspective on this point. Con-
struction of a complex earthquake network proposed here
consists of mapping seismic data to a growing stochastic
graph. This graph, or network, turns out to exhibit a num-
ber of remarkable behaviors both physically and mathe-
matically, which are in common with many other complex
systems. The scale-free and small-world natures are typi-
cal examples. In this way, one will be able to obtain a novel
viewpoint of seismicity.

Introduction

Seismicity is a field-theoretical phenomenon. Released en-
ergy of each earthquake may be regarded as a field am-
plitude defined at a discrete spacetime point. However, in
contrast to a familiar field theory such as the electromag-
netic theory, both amplitudes and locations are intrinsi-
cally probabilistic. The fault distribution may geometri-
cally be fractal [18], and the stress distribution superposed
upon it often has a complex landscape. Accordingly, seis-
micity is characterized by extremely rich phenomenology,
which attracts physicists’ attention from the viewpoint of
science of complex systems.

There are at least two celebrated empirical laws known
in seismology. One is the Gutenberg–Richter law [16],
which states that the frequency of earthquakes obeys
a power law with respect to released energy. This power-
law nature makes it difficult or even meaningless to sta-
tistically distinguish earthquakes by their values of magni-
tude because of the absence of typical energy scales. The
other is the Omori law [19], which states that the rate of
the frequency of aftershocks following a main shock alge-
braically decays with respect to time elapsed from themain
shock. This slow relaxation reminds one of complex glassy
dynamics [13]. Such a viewpoint is supported by the dis-
covery of the aging phenomenon and the scaling law for
aftershocks [2].

Another point, which seems less noticed, is that cor-
relation of two successive events is strong, no matter how
large their spatial separation is. There is, in fact, an obser-

vation [23] that an earthquake can be triggered by a fore-
going one more than 1000 km away. The reason why two
successive events are indivisibly related can also be found
in another observation [3,6] that both spatial distance and
time interval between two successive events obey the q-ex-
ponential distributions in nonextensive statistics [1,15,24],
which offers a statistical-mechanical framework for de-
scribing complex systems. Thus, the correlation length can
be enormously large and long-wave-length modes of seis-
mic waves play an important role. This has a strong sim-
ilarity to phase transitions and critical phenomena. Ac-
cordingly, it may not be appropriate to use spatial win-
dows in analysis of seismicity. Furthermore, all of the data
in a relevant area (ideally the whole globe, though still
not satisfactorily available) should be treated based on the
nonreductionistic standpoint.

The network approach is a powerful tool for analyz-
ing kinematical and dynamical structures of complex sys-
tems in a holistic manner. Such a concept was introduced
to seismology by the present authors in 2004 [4] in or-
der to represent complexity of seismicity. The procedure
described in Sect. “Construction of an Earthquake Net-
work” allows one to map a seismic time series to a grow-
ing stochastic network in an unambiguous way. Vertices
and edges of such a network correspond to coarse-grained
events and event-event correlations, respectively. Yet un-
known microscopic dynamics governing event-event cor-
relations and fault-fault interactions are replaced by these
edges. Global physical properties of seismicity can then
be explored by examining its geometric (e. g., topological
etc.) and dynamical features. It turns out that earthquake
networks have a number of intriguing properties, some of
which are shared by many other natural as well as artificial
systems including metabolic networks, food webs, the In-
ternet, the world-wide web, and so on [11,14,20]. This, in
turn, enables seismologists to study seismicity in analogy
with such relatively better understood complex systems.
Thus, the network approach offers a novel way of analyz-
ing seismic time series and casts fresh light on the physics
of earthquakes.

In this article, only the data taken from California is
utilized. However, it has been ascertained that the laws and
trends discussed here are universal and hold also in other
geographical regions including Japan.

Construction of an Earthquake Network

An earthquake network is constructed as follows [4].
A geographical region under consideration is divided into
small cubic cells. A cell is regarded as a vertex if earth-
quakes with any values of magnitude above a certain de-
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Earthquake Networks, Complex, Figure 1
a A schematic description of earthquake network. The dashed
lines correspond to the initial and final events. The vertices, A
and B, containmain shocks and play roles of hubsof the network.
b The undirected simple graph reduced from the network in a.

tection threshold occurred therein. Two successive events
define an edge between two vertices. If they occur in the
same cell, a loop is attached to that vertex. This procedure
enables one to map a given interval of the seismic data to
a growing probabilistic graph, which is referred to as an
earthquake network (see Fig. 1a).

Several comments are in order. Firstly, this construc-
tion contains a single parameter: cell size, which is a scale
of coarse graining. Once cell size is fixed, an earthquake

network is unambiguously defined. However, since there
exist no a priori operational rule to determine cell size, it
is important to notice how the properties of an earthquake
network depend on this parameter. Secondly, as men-
tioned in Sect. “Introduction”, edges and loops efficiently
represent event-event correlation. Thirdly, an earthquake
network is a directed graph in its nature. Directedness does
not bring any difficulties to statistical analysis of connec-
tivity (degree, i. e., the number of edges attached to the
vertex under consideration) since, by construction, the in-
degree and out-degree are identical for each vertex ex-
cept the initial and final vertices in analysis. Therefore,
the in-degree and out-degree are not distinguished from
each other in the analysis of the connectivity distribution
(see Sections “Scale-free Nature of Earthquake Network”
and “Mixing Property”). However, directedness becomes
essential when the path length (i. e., the number of edges)
between a pair of connected vertices, i. e., the degree of
separation between the pair, is considered. This point is
explicitly discussed in the analysis of the period distri-
bution in Sect. “Period Distribution”. Finally, a full di-
rected earthquake network has to be reduced to a simple
undirected graph, when its small-worldness and hierar-
chical structure are examined (see Sections “Small-World
Nature of Earthquake Network” and “Hierarchical Struc-
ture”). There, loops are removed and each multiple edge is
replaced by a single edge (see Fig. 1b). The path length in
this case is the smallest value among the possible numbers
of edges connecting a pair of vertices.

Scale-free Nature of EarthquakeNetwork

An earthquake network contains some special vertices
which have large values of connectivity. Such “hubs” turn
out to correspond to cells with main shocks. This is due
to a striking fact discovered from real data analysis that
aftershocks associated with a main shock tend to return
to the locus of the main shock, geographically. This is the
primary reason why a vertex containing a main shock be-
comes a hub. The situation is analogous to the preferential
attachment rule for a growing network [11,14,20]. Accord-
ing to this rule, a newly created vertex tends to be con-
nected to the (already existing) ith vertex with connectiv-
ity ki with probability,˘ (ki) D ki /

P
j k j . It can generate

a scale-free network characterized by the power-law con-
nectivity distribution [11,12]:

P(k) � k�� ; (6)

where � is a positive exponent.
In Fig. 2, the connectivity distribution of the full earth-

quake network with loops and multiple edges is pre-
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Earthquake Networks, Complex, Figure 2
The log-log plots of the connectivity distributions of the earth-
quake network constructed from the seismic data taken in Cali-
fornia [the Southern California Earthquake Data Center (http://
www.data.scec.org/)]. The time interval analyzed is between
00:25:8.58 on January 1, 1984 and 22:21:52.09 on December 31,
2003. The region covered is 29ı06:000N–38ı59:760N latitude
and 113ı06:000W–122ı55:590W longitude with the maximal
depth175.99km. The total number of events is 367 613. Thedata
contains no threshold for magnitude (but “quarry blasts” are ex-
cluded from the analysis). Two different values of cell size are ex-
amined: a 10km� 10km� 10kmandb 5km� 5km� 5 km. All
quantities are dimensionless.

sented [4]. From it, one appreciates that the earthquake
network in fact possesses connectivity of the form in (6)
and is therefore scale-free. The smaller the cell size is, the
larger the exponent, � , is, since the number of vertices
with large values of connectivity decreases as cell size be-
comes smaller. The scale-free nature may be interpreted as
follows. As mentioned above, aftershocks associated with
a main shock tend to be connected to the vertex of the
main shock, satisfying the preferential attachment rule. On
the other hand, the Gutenberg–Richter law states that fre-
quency of earthquakes decays slowly as a power law with
respect to released energy. This implies that there appear
to be quite a few giant components, and accordingly the
network becomes highly inhomogeneous.

Earthquake Networks, Complex, Table 1
The small-world properties of the undirected simple earthquake
network. The values of the number of vertices, N, the cluster-
ing coefficient, C, (compared with those of the classical random
graphs, Crandom) and the average path length, L are presented.
The data employed is the same as that in Fig. 2.

Cell size 10 km� 10 km
� 10 km

5 km� 5 km
� 5 km

Number of vertices N D 3869 N D 12913
Clustering coefficient C D 0:630

(Crandom D 0:014)
C D 0:317
(Crandom D 0:003)

Average path length LD 2:526 L D 2:905

Small-World Nature of Earthquake Network

The small-world nature is an important aspect of com-
plex networks. It shows how a complex network is differ-
ent from both regular and classical random graphs [27].
A small-world network resides in-between regularity and
randomness, analogous to the edge of chaos in nonlinear
dynamics.

To study the small-world nature of an earthquake net-
work, a full network has to be reduced to a simple undi-
rected graph: that is, loops are removed and each multi-
ple edge is replaced by a single edge (see Fig. 1b). This is
because in the small-world picture one is concerned only
with simple linking pattern of vertices.

A small-world network is characterized by a large
value of the clustering coefficient in (2) and a small value
of the average path length [27]. The clustering coefficient
quantifies the tendency of two neighboring vertices of
a given vertex to be connected to each other. A small-
world network has a large value of the clustering coeffi-
cient, whereas the value for the classical random graph is
very small [11,14,20,27]: Crandom D hki /N 
 1, where N
and hki are the total number of vertices and the average
value of connectivity, respectively.

In Table 1, the results are presented for the clustering
coefficient and the average path length [5,9]. One finds that
the values of the clustering coefficient are in fact much
larger than those of the classical random graphs and the
average path length is short. Thus, the earthquake net-
worksportant features of small-world network.

Hierarchical Structure

As seen above, seismicity generates a scale-freeexity of an
earthquake network further, one may examine if it is hier-
archically organized [8]. The hierarchical structure can be
revealed by analyzing the clustering coefficient as a func-
tion of connectivity. The connectivity-dependent cluster-

http://www.data.scec.org/
http://www.data.scec.org/
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ing coefficient, c(k), is defined in (3). This quantifies the
adjacency of two vertices connected to a vertex with con-
nectivity, k, and gives information on hierarchical organi-
zation of a network.

Earthquake Networks, Complex, Figure 3
The log-log plots of the connectivity-dependent clustering coef-
ficient for two different values of cell size: a 10 km � 10km �
10km and b 5 km � 5km � 5km. The analyzed period is be-
tween 00:25:8.58on January 1, 1984 and 22:50:49.29on Decem-
ber 31, 2004, which is taken from the same catalog as in Fig.
2. The region covered is 28ı36:000N–38ı59:760N latitude and
112ı42:000W–123ı37:410W longitude with the maximal depth
175.99km. The total number of the events is 379728. All quanti-
ties are dimensionless.

In Fig. 3, the plots of c(k) are presented [8]. As can
be clearly seen, the clustering coefficient of the undi-
rected simple earthquake network asymptotically follows
the scaling law

c(k) � k�ˇ (7)

with a positive exponentˇ. This highlights hierarchical or-
ganization of the earthquake network.

Existence of the hierarchical structure is of physical
importance. The earthquake networkment [11,12,14,20].
However, the standard preferential-attachment-model is
known to fail at generating hierarchical organization [22].
To mediate between growth with preferential attachment
and the presence of hierarchical organization, the concept
of vertex deactivation has been introduced in the litera-
ture [25]. According to this concept, in the process of net-
work growth, some vertices deactivate and cannot acquire
new edges any more. This has a natural physical implica-
tion for an earthquake network: active faults may be deac-
tivated through the process of stress release. In addition,
the fitness model [26] is also known to generate hierar-
chical organization. This model generalizes the preferen-
tial attachment rule in such a way that not only connec-
tivity but also “charm” of vertices (i. e., attracting a lot of
edges) are taken into account. Seismologically, fitness is
considered to describe intrinsic properties of faults such
as geometric configuration and stiffness. Both of these two
mechanisms can explain a possible origin of the com-
plex hierarchical structure, by which relatively new ver-
tices have chances to become hubs of the network. In the
case of an earthquake network, it seems plausible to sup-
pose that the hierarchical structure may be due to both de-
activation and fitness.

A point of particular interest is that the hierarchical
structure disappears if weak earthquakes are removed. For
example, setting a lower threshold for earthquake magni-
tude, say Mth D 3, makes it difficult to observe the power-
law decay of the clustering coefficient hierarchical struc-
ture of an earthquake network is largely supported by weak
shocks.

Mixing Property

The scale-free nature, small-worldness, growth with pref-
erential attachment, and hierarchical organization all in-
dicate that earthquake networks are very similar to other
known networks, for example, the Internet. However,
there is at least one point which shows an essential dif-
ference between the two. It is concerned with the mixing
property, which is relevant to the concept of the nearest-
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Earthquake Networks, Complex, Figure 4
The log-log plots of the nearest-neighbor average connectivity
for twodifferent values of cell size: a 10km� 10km� 10kmand
b 5km� 5 km� 5 km. The data employed is the same as that in
Fig. 3. The solid lines show the trends depicted by the exponen-
tially increasing functions. All quantities are dimensionless.

Earthquake Networks, Complex, Table 2
The values of the dimensionless correlation coefficient. The data
employed is the same as that in Fig. 3. Positivity of the values
implies that mixing is assortative.

10 km� 10 km� 10 km 5 km� 5 km � 5 km
r D 0:285 r D 0:268

neighbor average connectivity k̄nn(k) [in (4)], of a full net-
work with loops and multiple edges.

The plots of this quantity are presented in Fig. 4. There,
the feature of assortative mixing [8] is observed, since
k̄nn(k) increases with respect to connectivity k. Therefore,
vertices with large values of connectivity tend to be linked
to each other. That is, vertices containing stronger shocks
tend to be connected among themselves with higher prob-
abilities.

To quantify this property, the correlation coefficient
in (5) is evaluated [8]. The result is summarized in Ta-
ble 2. The value of the correlation coefficient is in fact pos-
itive, confirming that the earthquake network has assorta-

Earthquake Networks, Complex, Figure 5
A full directed network: � � � ! v1 ! v2 ! v3 ! v2 ! v2 !
v4 ! v3 ! v2 ! � � � . The period associated with v3 is 4,
whereas v2 has 1, 2 and 3.

tive mixing. On the other hand, the Internet is of disassor-
tative mixing [17,20,21,26]. That is, the mixing properties
of the earthquake network and the Internet are opposite to
each other. It is noticed however that the loops and multi-
ple edges play essential roles for the assortative mixing: an
undirected simple graph obtained by reducing a full earth-
quake network turns out to exhibit disassortative mixing.
These are purely the phenomenological results, and their
physical origins still have yet to be clarified.

Period Distribution

So far, directedness of an earthquake network has been ig-
nored. The full directed network picture is radically differ-
ent from the small-world picture for a simple undirected
graph. It enables one to consider interesting dynamical
features of an earthquake network. As an example, here
the concept of period [7] is discussed. This is relevant to
the question “after how many earthquakes does an event
return to the initial cell, statistically?” It is therefore of ob-
vious interest for earthquake prediction.
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Earthquake Networks, Complex, Figure 6
The log-log plots of the period distribution for two dif-
ferent values of cell size: a 10km� 10km� 10km and b
5 km� 5 km� 5km. The data employed is the same as that in
Fig. 2. All quantities are dimensionless.

Period in a directed network is defined as follow. Given
a vertex of a network, there are various closed routes start-
ing from and ending at this vertex. The period, Lp , of
a chosen closed route is simply the number of edges form-
ing the route (see Fig. 5).

The period distribution, P(Lp), is defined as the num-
ber of closed routes. The result is presented in Fig. 6 [7].
As can be seen there, P(Lp) obeys a power law

P(Lp) � (Lp)�˛ ; (8)

where˛ is a positive exponent. This implies that there exist
a number of closed routes with significantly long periods
in the network. This fact makes it highly nontrivial to sta-
tistically estimate the value of period.

Future Directions

In the above, the long-time statistical properties of an
earthquake network have mainly been considered. On the
other hand, given the cell size, an earthquake network rep-
resents all the dynamical information contained in a seis-
mic time series, and therefore the study of its time evolu-

tion may give a new insight into seismicity. This, in turn,
implies that it may offer a novel way of monitoring seis-
micity.

For example, it is of interest to investigate how the
clustering coefficient changes in time as earthquake net-
work dynamically evolves. According to the work in [10],
the clustering coefficient remains stationary before a main
shock, suddenly jumps up at the main shock, and then
slowly decays to become stationary again following the
power-law relaxation. In this way, the clustering coeffi-
cient successfully characterizes aftershocks in association
with main shocks.

A question of extreme importance is if precursors of
a main shock can be detected through monitoring dynam-
ical evolution of earthquake network. Clearly, further de-
velopments are needed in science of complex networks to
address to this question.

Addendum

Some authors (e. g., Sornette and Werner) raised ques-
tions about the applicability of complex earthquake net-
work using online accessible earthquake catalog data and
on the validity of our results. A preprint of an article by
the authors discussing these questions can be found in the
e-print available at http://arxiv.org/abs/0708.2203.
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Glossary

Nucleation process The process in which rupture veloc-
ity accelerates from quasi-static to dynamic. The dy-
namic rupture velocity almost equals the shear wave
velocity.

Nucleation zone The portion of the fault where rupture
velocity accelerates from quasi-static to dynamic.

Initial rupture process The rupture process that pre-
cedes the largest slip. This term is used when the accel-
eration of rupture velocity is not clear. This is a wider
concept that includes the earthquake nucleation pro-
cess. The area where the initial rupture process occurs
is called the initial rupture fault.

Slip velocity The dislocation velocity at a point on the
fault. The rupture velocity is the velocity at which the
rupture front is expanding.

Preslip model An earthquake source model having a de-
tectable size nucleation zone.

Cascade model An earthquake source model in which
smaller sub-events successively trigger larger sub-
events. A sub-event is the same as a small earthquake
if it does not trigger a successive sub-event.

Stress drop (static stress drop) The amount of shear
stress change at a point on the fault before and after
an earthquake. It is proportional to the strain released
on the fault.

Dynamic stress drop The difference between the initial
shear stress and the minimum frictional stress at
a point on the fault during fault slip.

Fault strength The shear stress level necessary to initiate
slip at a point on the fault.

M Magnitude. Earthquake size computed basically from
waveform amplitudes and focal distances.

Seismic moment The most reliable measure of earth-
quake size which is determined from the products of
the rigidity near the fault, the amount of slip, and the
area of the fault surface.

Mw Moment magnitude. Earthquake magnitude derived
from the seismic moment.

Definition of the Subject

Earthquake prediction in the long, intermediate, and short
terms is essential for the reduction of earthquake disas-
ters. However, it is not practical at present, in particular,
for the intermediate and short time scales of a few days
to years. This is mainly because we do not know exactly
how and why earthquakes begin and grow larger or stop.
Theoretical and laboratory studies have confirmed that
earthquakes do not begin abruptly with dynamic rup-
ture propagation. They show that a quasi-static rupture
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growth precedes dynamic rupture. Thus, if we can de-
tect the quasi-static rupture growth, we could forecast the
following dynamic rupture. A key issue is how natural
earthquakes initiate. To solve this issue, a first approach
would be to investigate the very beginning parts of ob-
served waveforms of earthquakes, since they can reflect
the earthquake nucleation process from a quasi-static to
a dynamic rupture. This paper reviews the studies analyz-
ing the beginning parts of observed waveforms, and shows
what we presently understand about the earthquake nucle-
ation process.

Introduction

Earthquakes initiate at a small portion on a fault. Then,
their rupture fronts expand outward until they stop. Some
large earthquakes have a rupture extent greater than
1000 km (e. g., the 2004 Sumatra Earthquake), while fault
lengths of very small microearthquakes (M D 0) are esti-
mated to be a fewmeters [13]. Fault lengths of earthquakes
range at least over 6 orders of magnitude. Surprisingly,
the concept that earthquakes are self-similar is widely ac-
cepted in spite of the difference in fault length (e. g., [40]).
One example of the similarity is that the average fault slip
is proportional to the fault length. In other words, the
static stress drop is constant independent of earthquake
size.

The similarity law raises fundamental questions: Why
do large earthquakes grow larger? What is the difference
between large and small earthquakes? An end member
model represents earthquakes as ruptures that grow ran-
domly, and terminate in an earlier stage for smaller earth-
quakes while continuing longer for larger earthquakes.
This type of model has been proposed mainly to explain
the frequency–size distribution of earthquakes (e. g., [8])
and implies that it is impossible to forecast the final
size of earthquakes at the time of the rupture initiations.
However, another end member model predicts that larger
earthquakes have a larger “seed” than smaller earthquakes
and that large and small earthquakes are different even at
their beginnings (e. g., [66]).

The key issue is how earthquakes initiate and grow
larger.

All the theoretical models of earthquake sources pre-
dict that earthquake shear failures begin with a quasi-
static rupture growth on a small portion on the fault
(e. g., [5]). The shear failures become unstable and the
rupture growth begins to accelerate after the energy re-
leased by the rupture growth equals to or becomes larger
than the work necessary for producing new fracture sur-
faces. Finally, the rupture velocity, the velocity at which

the rupture front is expanding, reaches a constant value
comparable to the shear wave velocity. We call the pro-
cess from the rupture initiation to rupture growth accel-
eration the earthquake nucleation process, and the por-
tion of the fault where the rupture growth accelerates the
nucleation zone. The important point is that the rup-
ture velocity (and slip velocity) accelerates during the
nucleation process, since it is a transient process from
quasi-static to dynamic. One of the major differences be-
tween various models is whether the size of the nucle-
ation zone is much smaller than the final fault length and
is not detected by observations, and whether the size of
the nucleation zone is different between large and small
earthquakes.

If the size of the nucleation zone is extremely small and
can be approximated as a point, the waveforms radiated
from the earthquake are shown in Fig. 1a. Figure 1a dis-
plays the initial rise of the P-wave velocity pulse at a far-
field (distant relative to the fault length) station, when
the waveform propagates in a purely elastic homogenous
medium with no attenuation and scattering under the fol-
lowing assumption: the rupture initiates at a point, the
circular rupture front expands at a constant velocity, the
stress on the fault abruptly drops from an initial level to
a final level, and the stress drop is constant over the fault,
as modeled by Sato andHirasawa [60]. In this case, the ini-
tial portion of the P-wave velocity pulse is characterized by
a linear rise (and the initial rise of the displacement pulse
is quadratic with time, due to increasing circular fault area
with time). The tangent of the linear rise is proportional to
the stress drop and rupture velocity.

On the other hand, if the size of the nucleation zone is
relatively large, the velocity pulse can be approximated as
shown in Fig. 1b. It is seen that the linear rise is delayed
and the slope of the initial portion gradually increases.
Theoretical models explain such a slow rise as follows.
Shibazaki and Matsu’ura [64] demonstrated that the slow
rise could be explained by gradually accelerating rupture
and slip velocities in a relatively large nucleation zone. The
size of the nucleation zone is controlled by the critical slip
distance, Dc, that is the amount of slip necessary to drop
the peak shear strength down to the dynamic frictional
level (e. g., [19]). This frictional behavior is called slip-
weakening, which is theoretically predicted (e. g., [15]) and
is observed in laboratory experiments (e. g., [52,56]). Ac-
cording to their theory, since large slips are necessary to
decrease the friction on faults with a large Dc, the rup-
ture and slip velocities are not accelerated in the begin-
ning on the faults. Sato and Kanamori [61] modeled the
slow rise by Griffith’s fracture criterion based on the en-
ergy balance indicated above, as the rupture velocity grad-
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Earthquake Nucleation Process, Figure 1
Examples of P-wave velocity pulses. Arrows indicate onsets of P-waves. a Source pulse from the circular faultmodel [60]. Stress drop:
1MPa, fault radius: 17m, rupture velocity: 0.8 Vs, take-off angle: 61 degrees.b Source pulse from a circular faultmodel with a rupture
velocity acceleratingwith time for first 20%of the total duration time. The other parameters are the same as a. cQ convolved velocity
pulse at a distance of 3.58km from the source. Q is set as 300. The other parameters are the same as a. d Velocity waveform of
a complicated shape observed in the Western Nagano Prefecture region

ually increases under the assumptions of a large pre-ex-
isting fault and small trigger factor (instantaneous small
stress increment) on the fault. The pre-existing fault is
often called the initial crack. In this model, large initial

cracks result from large fracture energies on the fault and
the rupture and slip velocities are not accelerated right af-
ter the rupture onset owing to the large fracture energies.
In this paper, the model having a detectable size of the nu-
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cleation zone is called the preslip model, following Beroza
and Ellsworth [9].

It is important to examine whether initial rises of ob-
served velocity pulses are linear or gradually increasing,
since the above two models predict different initial rises.
Although the examination seems to be very easy at first
glance, it is actually very difficult. The path effect is an in-
evitable obstacle to the examination, in particular for small
earthquakes. The effects of anelastic attenuation and/or
scattering contaminate observed waveforms and can re-
produce a slow rise of observed waveforms even though
the waveforms show a linear rise at the source. Figure 1c
shows the initial rise of velocity pulses calculated by con-
sidering anelastic attenuation by a convolution of a Q op-
erator [7]. It is found that the linear rise is delayed as
shown in Fig. 1b.

Another serious obstacle is the complexity of observed
waveforms. They are not often as simple and smooth as
those shown in Figs. 1b and c, but complicated as shown
in Fig. 1d. If several small patches in a relatively large nu-
cleation zone break during the nucleation process [9,65]
as shown in Fig. 2a, it is difficult to detect an acceleration
of the rupture velocity from the complicated waveforms
that include several small phases radiated from the breaks
of the small patches. In other words, it is difficult to infer
the nucleation process from the complicated waveforms.
On the other hand, the model with small nucleation zones
claims that the complicated waveforms are radiated only
from successive breaks of small sub-events and a delayed
break of the largest sub-event, as shown in Fig. 2b. This
concept is known as the cascade model (e. g., [1,9,23,78]).
In this model, a former sub-event triggers successive larger
sub-events and the final event is the largest among de-
tectable sub-events. Although it is not always clear how
larger sub-events are delayed from former smaller sub-

Earthquake Nucleation Process, Figure 2
Schematic source models in which small amplitude phases
are generated by breaking of small fault patches within the
nucleation zone (shaded portion) a, and as successive small
subevents b. Large and small circles are the mainshock fault and
small subevent fault patches, respectively

events, the growth of the rupture can raise the possibility
that larger sub-events are generated. For small earthquakes
also, it is possible that very small sub-events trigger succes-
sive sub-events. In this case, their waveforms produced by
the source are complicated, but the observed waveforms
are likely to show a smooth initial rise as shown in Figs. 2b
and c, due to the path effects. Thus, in this paper, both
smooth initial rises of small earthquakes and complicated
initial portions of large earthquakes are discussed in the
same manner.

By the way, if the size of the nucleation zone is rela-
tively large, it could be possible to detect a quasi-static rup-
ture growth at the very beginning of the earthquake nucle-
ation process by near-field broadband instruments, such
as strainmeters. However, it has not, to present, succeeded
except for a few very large earthquakes, such as the 1964
Chile earthquake (e. g., [41]). This fact suggests the possi-
bility that the size of the nucleation zone is too small to
be recorded by strain meters or the duration of the quasi-
static rupture process is much longer than a practical fre-
quency range of strain meters. Furthermore, the observa-
tions for very large earthquakes were not explained by the
nucleation process that occurs near the hypocenter but by
slow slips on the downward extension of the seismogenic
faults (e. g., [33,41]). Thus, we will examine data obtained
by seismometers.

It is very important to carefully analyze observedwave-
forms recorded at a short focal distance by a wide-dynamic
range and frequency range. This paper reviews various
studies related to the earthquake nucleation process, in-
dicates the problems about these studies, and summarizes
the current observations. First, in Sect. “Introduction”,
contributions from earthquake early-warning systems are
reviewed, since they are directly influenced by the prob-
lems cited above. In Sect. “Contribution from the Devel-
opment of Earthquake Early-Warning Systems”, impor-
tant studies about the initial rupture process are reviewed
basically in the order in which they were published. In
Sect. “Observations of Initial Rupture Processes”, a prob-
able model for the process will be proposed based on the
reviews in the former sections.

Contribution from the Development
of Earthquake Early-Warning Systems

To solve the problem of how earthquakes initiate and grow
larger, the most straightforward approach is a comparison
between initial rises of observed waveforms of large and
small earthquakes. Important studies were done for the
development of earthquake early-warning systems which
hope to forecast, as early as possible, the final size of earth-
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quakes from observed waveforms, from the very begin-
ning parts of seismograms. Olson and Allen [57] applied
the method by Allen and Kanamori [3] to a new dataset
including many large earthquakes (Mw > 6) and claimed
that the final size of earthquakes (3 < Mw < 8) can be es-
timated from waveforms of the first several seconds. The
method is based on the scaling relationship between the
predominant period of waveforms and the final size of
earthquakes, which was first derived by Aki [2]. To im-
plement the scaling relationship in earthquake early-warn-
ing systems, Allen and Kanamori [3] adopted an algorithm
to estimate the period from a short waveform, computing
regressively the ratio of velocity and displacement ampli-
tudes (modified after Nakamura [49]).

For smaller earthquakes, it is quite natural to be able
to estimate the final size from the first several seconds
of the waveforms, since the waveforms cover the entire
source duration. The problem is estimating large earth-
quakes (Mw > 5:5). Rydelek and Horiuchi [58] evaluated
the statistical significance of the results by Olson and
Allen [57] and reported that the results are not clear. Ry-
delek and Horiuchi [58] analyzed waveforms observed by
Hi-net, a nation-wide high gain seismometer network op-
erated by NIED in Japan, and found no trend between
the period and earthquake size for larger earthquakes. On
the other hand, Wu et al. [77] analyzed many waveforms
recorded at the southern California Seismic Network sta-
tions and showed that the period increases with magni-
tude (4 < M < 7:5). For earthquake early-warning system
applications, where a quick response is essential, a precise
waveform analysis is not required. A more careful analy-
sis is needed to answer the question raised by Rydelek and
Horiuchi [58].

Observations of Initial Rupture Processes

Measurements of Initial Parts
of Observed Seismograms

How are Initial Portions of the Waveforms Measured?
Observed waveforms of large to small earthquakes are
measured in various manners in the studies reviewed in
the following sections. Sometimes special names are given
to a characteristic phase of the waveforms. First, the prob-
lems concerning the measurement of observed waveforms
will be discussed.

Many studies try to find which phase is radiated from
the source process with a constant rupture velocity and
slip velocity, since the nucleation process is basically an
accelerating rupture process. Since the nucleation process
is a beginning rupture process, it is likely that the rupture
front just after the nucleation process expands nearly cir-

Earthquake Nucleation Process, Figure 3
Schematic illustration of large and small earthquakes to show
the first linear rise and the main phase

cularly. Consequently, the phase following the nucleation
phase is thought to show a linear rise in velocity wave-
forms. For this reason, the first linear rise in velocity wave-
forms is extensively investigated in various studies.

Various studies also measure a pulse of the largest am-
plitude or a group of pulses including the largest ampli-
tude, which is called the main phase in this paper. Am-
plitudes of waveforms are thought to show the maximum
value after they reach terminal velocity, which is the max-
imum rupture velocity determined by the shear wave ve-
locity. However, the largest amplitude does not necessarily
occur just after rupture velocities reach the terminal veloc-
ity; all the waveforms preceding the maximum phase do
not necessarily reflect the nucleation phase.

The problem is determining which phase is radiated
just after rupture velocities reach terminal velocity. Fur-
thermore, since slip velocities can cover a wide range of
magnitude, it is important to investigate whether slip ve-
locities are similar to the average values of earthquakes. In
the following, when it is necessary to explicitly indicate the
phase generated by faulting with a nearly constant rupture
velocity and dynamic stress drop that are representative of
average values for earthquakes, the phase is called the or-
dinary phase.

As schematically shown in Fig. 3, for large earthquakes,
the first linear rise is not always a part of the main phase,
which has the largest amplitude. For small earthquakes,
the main phase often shows a linear rise. However, it is
possible that the main phase is not the ordinary phase, as
we discuss in a later section.

Large Earthquakes One of the first studies that indi-
cated the importance of small amplitude waveforms pre-
ceding the main pulse is Furumoto and Nakanishi [24],
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Earthquake Nucleation Process, Figure 4
Initial parts of observed waveforms of large earthquakes [73]. P1 and P2 indicate the onsets of P-waves and the large amplitude
phases, respectively. Velocity waveforms are shown in a and the lower panel of b. Figure 7 in [73], copyright 1992 by Elsevier Science
Publishers B.V.

which analyzed long-period waveforms from a world-
wide network; this was followed by many similar stud-
ies (e. g., [4,14,68]). Umeda [72,73] analyzed broadband
seismograms at local, regional and teleseismic distances
and found that small amplitude waveforms preceded large
amplitude waveforms, as shown in Fig. 3. Umeda [72]
called the onsets of the P-waves and large amplitude
waveforms P1 and P2, respectively. He originally thought
that the large amplitude waveforms were generated by
somewhat special processes that characterized large earth-
quakes, e. g., breaks of many small faults triggered by both
static and dynamic stress concentrations due to the pre-
ceding fault motion and/or a dynamic connection of sep-
arated faults [74], while the smaller waveforms were ra-
diated from ordinary smooth rupture propagation. His
important result is the relationship between the duration
of P2-P1 and magnitude (3 < M < 7), suggesting earth-
quake sizes are scaled with P2-P1, the duration of small
amplitude waveforms.

The determinations of P2 seem to be reasonable from
his figures. However, the criterion of P2 determination
is not necessarily clear and quantitative compared to the
studies cited in the following sections. In many cases it
seems that P2 is the onset of the main phase that in-
cludes the largest amplitude, in particular for smaller
earthquakes, but this point is not clearly shown in his pa-
pers. Furthermore, it is seen that absolute velocity ampli-
tudes after P1 do not show an accelerating increase with
time, although both the preslip model and the cascade

model basically indicate that velocity amplitudes should
have a growth that is faster than linear with time.

One of the important problems raised by Umeda [72,
73] is identification of the ordinary phase, the main phase
or preceding smaller amplitude waveforms. The ordinary
phase is the phase generated by faulting with a nearly con-
stant rupture velocity and a dynamic stress drop, which
are representative of average values for earthquakes. Fu-
rumoto and Nakanishi [24] regarded the main phase as
the ordinary phase with a special rupture process occur-
ring before the main phase, while in Umeda [72,73] the
opposite is the case.

Small Earthquakes Iio [30,31] analyzed waveforms of
microearthquakes recorded at very short focal distances
(down to a few hundreds of meters) using instruments
with a wide-frequency response and found that the ini-
tial rises of velocity pulses did not show a linear increase
but, rather, a convex downward (or upward) shape as ap-
proximated by tn (t is the time measured from the onset
and 2 < n < 4). He termed the initial rise “the slow initial
phase”, andmeasured the duration of the slow initial phase
relative to the main phase that shows a linear increase, as
shown in Fig. 5. He found that the duration of the slow
initial phase is proportional to the earthquake size. Al-
though the slow initial phase ofmicroearthquakes could be
the effect of anelastic attenuation as shown in Sect. “Intro-
duction”, Iio et al. [32] analyzed velocity pulses recorded
at a 10 kHz sampling frequency at numerous stations at
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Earthquake Nucleation Process, Figure 5
Slow initial phase of the velocity pulse observed in the Western Nagano Prefecture region and the measurement of the duration of
the slow initial phase relative to the main phase that shows a linear increase of velocity amplitudes. The vertical arrow indicates the
onset of P-waves, determined by their amplitudes. The portion indicated by the horizontal arrow is defined as the slow initial phase.
The inclined line is the tangent at the maximum slope. The same pulse is shown in Fig. 7 by the black line

short focal distances using an instrument with a wide dy-
namic range and frequency range, and concluded that the
slow initial phase mainly reflects the source process for M2
events.

These observations are unique and important, but
their interpretations and implications contain several fun-
damental problems andmight cause somemisunderstand-
ings. First, it was intuitively regarded that the main phase
showing the linear rise was the ordinary phase radiated
from a circular fault with constant rupture and slip veloc-
ities of ordinary magnitudes. This was derived from the
interpretation that the slow initial phase reflected the nu-
cleation process in which the rupture and/or slip velocities
gradually accelerated. However, the interpretation has not
been thoroughly examined. As emphasized by Ellsworth
and Beroza [21] and Beroza and Ellsworth [9], waveforms
recorded by seismometers basically reflect slips on the
fault that have accelerated above a certain level.

The second problem is the meaning of the scaling re-
lationship indicating that larger earthquakes have a longer
slow initial phase. Although the possibility was suggested
from this relationship that larger earthquakes had a larger
nucleation zone, this is true only if the main phase is the
ordinary phase and the slow initial phase reflects the nu-
cleation process. The relationship could be also misunder-
stood as larger earthquakes begin more slowly. The ob-
servational results mean only that the portion of velocity
pulse approximated by tn (2 < n < 4) is longer for larger
earthquakes. Furthermore, Iio [30,31] mentioned nothing
about the difference between the slopes right after the on-

sets of larger and smaller earthquakes. Thus, another pos-
sible explanation is that for larger earthquakes, the slope
of the velocity pulse increases with time for a longer pe-
riod and the maximum slope becomes larger, even though
the initial slope is the same as that for smaller earth-
quakes. This possibility implies that the final size of earth-
quakes is not estimated only from the initial part of ve-
locity pulses, as pointed by Mori and Kanamori [48], al-
though larger earthquakes have a greater dynamic stress
drop. Several studies have indicated that the initial rises
of large earthquakes (M > 6) are similar to small events
occurring in the vicinity of their hypocenters (e. g., [12]),
while other studies have indicated that larger earthquakes
display a larger initial rise (e. g., [35,50]). However, it is
possible that the initial parts of these waveforms mainly
reflect the initial rise radiated from a small patch within
the initial rupture fault, as shown in Sect. “Introduction”.
In that case, the results did not negate the existence of an
observable earthquake nucleation process for large events.
Further, these results were obtained only for a few earth-
quake sequences and need to be systematically examined
for a greater data set.

The third problem is the propagation effects from the
source to the observation stations. Iio [30,31] thought that
observed waveforms basically reflect the characteristics of
the source process in which the rupture and slip veloc-
ities gradually increase during the slow initial phase, as-
suming that source pulses of small earthquakes are simple
and consist of a single event. However, it is possible that
anelastic attenuation modifies two connected linear trends
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of small and large slopes from two subevents, creating
a smoothed waveform of convex downward shape. This
point is qualitatively examined in a later section. Further-
more, it might be possible that waveforms near the source
are complex; several very short duration small pulses may
precede the main phase, since short duration pulses can
be smoothed by the path effect to produce a slow initial
phase.

Estimate of Source Time Functions

Ellsworth and Beroza [21] and Beroza and Ellsworth [9]
focused on initial parts of seismograms of a very wide
range of earthquake sizes (1 < Mw < 8) and estimated
source time functions. They paid attention to the first large
linear rise of velocity pulses and deduced that the signal
before the linear rise reflected the earthquake nucleation
process, since a linear rise of velocity pulses is character-
istic of the waveforms radiated from an ordinary circu-
lar fault model. They termed the linear rise “the break-
away phase” and the portion before “the seismic nucle-
ation phase”. The term “seismic” is added, since wave-
forms detected by seismometers are radiated from dy-
namic slip on the fault. The criterion for the detection of
the breakaway phase is not necessarily quantitative, but it
seems from their figures that their classifications are rea-
sonable. As shown above, they regarded the breakaway
phase as the ordinary phase, since they roughly estimated
that dynamic stress drops of the breakaway phases were
several or several tens of MPa, that is comparable to aver-
age values of earthquakes. However, it is possible that the
seismic nucleation phase is the ordinary phase, since the
rupture velocity and slip velocity during the seismic nu-
cleation phase is not quantitatively estimated.

Kilb and Gomberg [43] analyzed initial portions of the
waveforms of the Northridge earthquake, which were also
used in Ellsworth and Beroza [21] as a typical example, and
claimed that the initial portions are very similar to those
from nearby small earthquakes. They inferred from these
results that the cascade model is plausible. However, their
results did not exclude the preslip model in which the rup-
ture and slip velocities are accelerating in the nucleation
zone, since they analyzed only the very beginning portions
and not the following portions that might result from slow
slips in the nucleation zone. Shibazaki et al. [67] discussed
the possibility that large earthquakes begin by a breaking
of a small patch in the nucleation zone. As discussed in the
Introduction, the breaking of small patches can mask the
nucleation process.

Ellsworth and Beroza [21] demonstrated the relation-
ship between the duration of the seismic nucleation phase

and the seismicmoment, together with the data of the slow
initial phases by Iio [30,31] and P2-P1 by Umeda [72,73],
as shown in Fig. 6, and concluded that the duration of the
seismic nucleation phase scaled with the seismic moment.
However, it is seen in Fig. 6 that the data of Iio [30,31]
and Umeda [72,73] are shifted upward from the regres-
sion line. It seems that their data for small earthquakes
also shifted upward from the regression line. The offsets
of these shifts are about 1 order of magnitude. For larger
earthquakes, this may be because Umeda [72,73] deter-
mined P2 as the onset of the main phase, while Ellsworth
and Beroza [21] determined onsets of the first large linear
rises. For smaller earthquakes, Iio [30,31] also detected the
onsets of the main phases. They regarded the phases as the
first large linear rises, but it is possible that the onsets of
the first large linear rises are earlier than the main phases,
as discussed in the following section.

Estimate of Source Processes

Small Earthquakes In order to solve the problems cited
in the previous sections, several studies tried to estimate
the source process that produces the initial phases. Hira-
matsu et al. [26] analyzed rising parts of seismograms us-
ing the model of Sato and Kanamori [61], in which larger
initial cracks generate a slower initial phase under a small
triggering factor.

It was inferred from deep borehole (1800m) seismo-
grams by Hiramatsu et al. [26] that initial rises of velocity
pulses of 5 events were explained by the ordinary circular
fault model [60], namely the initial crack is too small to
be detected, while the other 7 events needed a large initial
crack. They first estimated source processes of the begin-
ning of such small earthquakes; however, some basic prob-
lems remained. The first is that they modeled the first half
cycle of velocity pulses. Since even portions of the first half
cycle of the waveform can be affected by rupture arrest, it is
not reasonable to fit the first half cycle of the waveform by
using a model that does not include a reasonable rupture
stopping process. Furthermore, a closer inspection of their
results (Fig. 5 of [26]) reveals that some of the waveforms
modeled with an initial crack do not display a smooth in-
crease of the rising slope but appear to consist of two lin-
ear phases with different slopes. It is possible that these
earthquakes result from a cascade rupture of a first and
second sub-events with smaller and larger dynamic stress
drops, respectively. For the data analyzed by Iio [30,31],
waveforms with a predominantly longer slow initial phase
appear to show a similar feature. Furthermore, it is not
clear which is the ordinary phase, the first or second lin-
ear phase.
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Earthquake Nucleation Process, Figure 6
Relationship between the duration of the seismic nucleation phase and the seismicmoment, together with the dataof the slow initial
phases by Iio [30,31] and P2-P1 by Umeda [72,73](Beroza and Ellsworth [9])

The problem of identifying the “ordinary phase”, the
initial or main phase, is again pointed out. Recently, Iio
et al. [34] analyzed the 10 kHz sampling data [32,36] and
obtained results that suggest the initial rise is the ordinary
phase.

Figure 7 shows velocity pulses of microearthquakes
(0:5 < M < 2:0) for which relative locations are estimated
within 100m and fault plane solutions are similar [34].
These pulses were recorded at a borehole station at a depth
of 800m in theWestern Nagano prefecture region [37,76].
The focal distances are about 3.6 km. It is seen that the
smallest event (shown in red) shows a linear rise except
for the first 1ms, while slopes of the other events increase
with time. Thus, if the linear rise is explained by a circular
fault model of the Sato andHirasawa type with an ordinary
rupture velocity and stress drop, the increasing slopes re-

flect increasing slip velocities accelerated beyond ordinary
values.

The linear rise of the waveforms was modeled by vari-
ous kinematic fault models. Figure 8 displays the compar-
ison of synthesized and observed velocity pulses for three
borehole stations at depths of 800, 150, and 100m [37].
The fault plane was determined from focal mechanisms
and hypocentral distributions around these events. Since
all three waveforms were not explained simultaneously by
a Sato and Hirasawa type of circular fault model, they used
a fan fault of various angles. Further, they did not assume
that the slip terminated simultaneously over the fault, but
that it begins to stop at a point on the fault edge and the
stopping phase propagates circularly at a constant velocity.
The stress drop, rupture and stopping phase expanding ve-
locities, fault radius, fan angle and fan fault geometry were
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Earthquake Nucleation Process, Figure 7
Comparison of velocity pulses of microearthquakes (0:5 < M < 2:0) of which relative locations are estimated within 100m and fault
plane solutions are similar, recorded at a borehole station at a depth of 800m in the Western Nagano prefecture region [34]. Focal
distances are about 3.6 km

determined by a grid search technique. Q values are set as
300 by trial and error, to fit the very beginning initial rises
with duration of about 1ms.

It is seen that the observed waveforms in the first half
cycle are well explained by the fan fault model, except
for the middle trace, which might be contaminated by

a surface reflection. The rupture velocity was estimated as
0.8Vs (the shear wave velocity), which is similar to that
for large earthquakes. The stress drop was estimated as
about 5MPa by the formula for the circular fault of the
equivalent fault area. Although they modeled only two
events, they found that a few percent of events that oc-
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Earthquake Nucleation Process, Figure 8
Comparison of observed and synthesized waveforms for an event that displays a linear rise, shown in Fig. 7 by the red line [34].
Waveforms observed at three borehole stations of depths of 800, 150, and 100m are shown in the top, middle and bottom panels,
respectively. The synthesized waveforms are calculated by a fan fault model in the homogenous half space using the following
parameters: The stress drop is estimated as about 5MPa. The rupture and stopping phase expanding velocities are 0.8Vs and 0.8Vp
(the P-wave velocity), respectively. Fault radius: 25m, fan angle: 40. A Q value is 300

curred within about 5 km from the 800m borehole sta-
tion also showed such a linear rise. Furthermore, the other
events generally show a steeper initial rise than the lin-
ear rise events. Consequently, it is likely that small earth-

quakes occurring in the Western Nagano prefecture re-
gion have a rupture velocity equivalent to those of large
earthquakes even in the initial rupture process. This sug-
gests that the slow initial phase of small earthquakes does
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not reflect the nucleation process that is characterized by
accelerating rupture velocity, since the rupture velocity has
already accelerated to a shear wave velocity in an early
stage of rupture growth.

What do steeper main phases of larger earthquakes in
the Western Nagano region reflect? In order to clarify this
problem, Miura et al. [46] analyzed waveforms of earth-
quakes (0:0 < M < 4:0) occurring from 1996 to 2003 in
the Western Nagano prefecture region. They selected M3
events (3:0 < M < 4:0) and identified 21 earthquake clus-
ters that consist of M3 events and earthquakes occurring
within 500m of the hypocenters of M3 events. They in-
vestigated P-wave velocity pulses observed at three bore-
hole stations for each cluster, in particular the difference
in pulse shapes of large and small earthquakes. They found
that waveforms of half of the clusters displayed compli-
cated shapes, as shown in Fig. 1d, which are character-
ized bymore inflection points than simple pulses [63]. The
other half showed simple waveforms that enabled them to
clarify the difference between large and small earthquakes.
One example of waveforms is shown in Fig. 9. The ob-
served P-wave velocity pulses of 0:5 < M < 3:1 are dis-
played in different magnifications. It is seen that initial
rises are similar for the first 1ms but that slopes of larger
events increase with time. The theoretical pulses from the
circular fault model [60] are synthesized at the same focal

Earthquake Nucleation Process, Figure 9
Comparison of observed (left) and synthesized (right) waveforms for events of an earthquake cluster that shows smooth waveform
shapes [46]. The cluster consists of the M3 class events and earthquakes occurring within 500m from their hypocenters. The synthe-
sized waveforms are calculated by an ordinary circular fault model [60] at the same focal distance. A Q value of 230 was obtained by
modeling the waveform of the smallest event. Responses of the instruments are also convolved

distances for a similar magnitude range in Fig. 9b, assum-
ing a constant stress drop independent of earthquake size,
and a Q value of 230, which was obtained by modeling the
waveform of the smallest event. Responses of seismome-
ters are also included. The synthesized pulse shapes of
larger events do not display a linear rise but a slight convex
upward shape. It is found that a distinct difference between
theoretical and observed waveforms is seen in the max-
imum slope of larger events. This figure clearly demon-
strates that larger earthquakes have larger dynamic stress
drops than smaller events. Similar features are also seen in
the other clusters that show simple waveforms. These re-
sults imply that the similarity law does not hold for a small
range of magnitudes in theWestern Nagano prefecture re-
gion, as indicated by Venkataraman et al. [58]. The simi-
larity law predicts pulses as shown in the right hand side
of the figure.

Large Earthquakes Sato and Mori [62] used the same
method as Hiramatsu et al. [26] and analyzed the very
beginnings of waveforms for a very wide range of mag-
nitudes (3 < M < 8) recorded by high gain short-period
seismometers at local distances. They showed that large
initial cracks (a few tens of meters) are necessary to explain
the initial rises and that initial crack lengths are almost
constant, independent of the eventual earthquake size. Al-
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though theymight have analyzed only the beginning of the
first sub-event in the nucleation zone, it is important that
they found that very beginning portions of large earth-
quakes show an accelerating rise over the first 0.1 s.

For large earthquakes, initial rupture processes can
be estimated by near-source broadband seismograms.
Shibazaki et al. [67] determined a P2 phase 0.5 s after the
P-wave onset (P1) for the Kobe earthquake and performed
a waveform inversion using the initial portion of seismo-
grams. They estimated that the slip velocity slowly acceler-
ated for 0.5 s. The average rupture velocity within 0.5 s af-
ter the onset of dynamic rupture was about 2 km/s, which
is not very low. However, their results possibly detect the
earthquake nucleation process, since it is difficult to es-
timate accelerating rupture velocity in the small nucle-
ation zone of about 500m, which was inferred from the
waveform inversion. It is noted that their estimate of P2-
P1 of 0.5 s is consistent with the scaling relationship of
Ellsworth and Beroza [21], but is not consistent with that
of Umeda [72,73]. The initial phase of the Kobe earth-
quake shows an accelerated increase of velocity amplitude
with time [67], while a significant part of the data analyzed
by the other studies do not show the accelerated increase.
These results suggest the possibility that a major part of
the initial rises analyzed in the other studies do not reflect
the earthquake nucleation process.

Recently, longer durations of P2-P1 were observed
for two intraplate earthquakes in Japan, the 2000 West-
ern Tottori Prefecture earthquake (M7.3) and the 2004
West-off Fukuoka earthquake (M7.0). The initial phases
of long durations are suitable for analyzing the rupture
processes. For the Western Tottori Prefecture earthquake,
Hirata [27] measured a duration of 2.5 s for P2-P1, de-
termined the location of the P2 source and estimated the
initial rupture process by a waveform inversion. They es-
timated that during the first 2.5 s, a small slip occurred
within the limited area around the hypocenter and later,
a large slip began near the location of P2 about 5 km south-
east of the hypocenter. The average rupture velocity dur-
ing the first 2.5 s was estimated to be 1.8 km/s from the
waveform inversion of the initial phase. The stress drop in
the limited portion was estimated to be small compared
with the large slip area.

Since the duration of P2-P1 is long, the above fea-
tures are also obtained in ordinary waveform inversions.
Iwata and Sekiguchi [39] estimated the slip distribution
using strong ground motion seismograms and geodetic
data, and found a large slip area located about 5 km south-
east of the hypocenter. They regarded the large slip area
as an “asperity” on the fault. It has been well known that
slip distributions of large earthquakes are heterogeneous

Earthquake Nucleation Process, Figure 10
Source time functions for the initial part of the 2004 West-Off
Fukuoka earthquake (M7.0) The waveforms after the onsets are
shown. The mainshock (top), a M4.5 aftershock (middle), and
a M5.4 aftershock (bottom) estimated by an empirical green
functionmethod [75]. Zisin, 59:250, Figure 11, copyright 2007by
the Seismological Society of Japan
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and large slips occur within a limited portion on the fault
(e. g., [44]). Although the origin of large slip areas has not
yet been clarified, one interpretation is that fault strength
is higher in the areas of large slip than in the surrounding
areas. This concept is called the asperity model. The obser-
vations about P1 and P2 shown above can be explained by
the asperity model: The earthquake rupture begins at the
weakest portion on the fault, then propagates to stronger
portions where large slips occur.

For the 2004 West-off Fukuoka earthquake (M7.0),
similar results were obtained. A P2 phase was detected by
Yamaguchi et al. [75] and the duration of P2-P1 was long,
estimated as 3.38 s. They determined the location of the P2
source as 3.44 km southeast of the hypocenter. The average
rupture velocity during the 3.38 s period was computed to
be about 1.02 km/s from the distance between the loca-
tions of P1 and P2. These results are consistent with those
from ordinary waveform inversion studies (e. g., [6]). They
also estimated the source time functions of the mainshock
and a few large aftershocks by an empirical Green function
method, as shown in Fig. 10. It was found that the source
time function of the mainshock is not impulsive but has
a gradual onset and long duration, while those of the after-
shocks are impulsive. Only one aftershock shows a small
initial phase, as shown in Fig. 10c. The seismic moment
released before the P2 phase is comparable for those of M4
aftershocks. These results clearly show that the initial rise
of theWest-off Fukuoka Prefecture earthquake is different
from those of the small aftershocks and is characterized by
a small stress drop. It is suggested that large earthquakes
do not accidentally grow larger.

For these two earthquakes with long initial phases, the
average rupture velocities and stress drops on the initial
rupture faults are small; however, the initial phases do not
show a accelerating increase of velocity amplitude with
time. These facts suggest the possibility that long initial
phases do not reflect the nucleation process.

Discussion

Summary of the Observations

The reviews in the previous sections have revealed sev-
eral important characteristics concerning the initial phases
that are commonly seen in many studies. In this section,
first, these characteristics are summarized, and then, an in-
ferred initial rupture process will be discussed.

The almost linear initial rises were observed in the
Western Nagano region and were well explained by a fan
fault model with a constant rupture velocity comparable to
the shear wave velocity. On the other hand, nearby larger
earthquakes showed an initial rise in which the slope is of

the same order of magnitude as that of the linear rise, plus
increasing slopes with times of a few to several ms after
the onset [34]. Thus, it is thought that the rupture veloc-
ity of these larger earthquakes is also comparable to the
shear wave velocity during the initial phase. Furthermore,
observed waveforms do not necessarily display a grad-
ual increase of rising slope but sometimes show a dis-
crete change in the slope, suggesting that the initial rise
of the velocity pulse at the source is not smooth. Conse-
quently, successive sub-events with larger dynamic stress
drops possibly produce larger earthquakes for these events
occurring in the Western Nagano Prefecture. These in-
ferences are consistent with the results obtained by Hi-
ramatsu et al. [26] that about half of their data are ex-
plained by an ordinary circular fault model and longer ini-
tial phases are not always smooth. For small earthquakes
(M < 4), the slow initial phase probably does not reflect
the earthquake nucleation process. The nucleation size of
small earthquakes is probably small and thus, the very be-
ginning of observed waveforms should be analyzed very
carefully considering path effects. This matter is beyond
the scope of this paper and is left to future studies.

Larger earthquakes showed a variety of initial phases,
as pointed out by Ellsworth and Beroza [21]. It is likely
that the observed initial phase of the Kobe earthquakes
reflects the earthquake nucleation process [67]. Also, that
of the Northridge earthquake probably reflects the earth-
quake nucleation process, since the very weak initial phase
shows an accelerated increase of velocity amplitudes with
time [21], although the very beginning part of the ini-
tial phase is similar to the waveform of nearby small
aftershocks [43]. Further, several data of Ellsworth and
Beroza [21], in particular, those shifted downward from
the regression line shown in Fig. 6 possibly reflect the
earthquake nucleation process. However, it is likely that
those of the other large earthquakes do not reflect the
earthquake nucleation process, since they do not show an
accelerated increase with time but rather are roughly flat.
These facts are clear for the two intraplate earthquakes
that have a relatively long initial phase (e. g., [27,75]). For
these two earthquakes, the average rupture velocity dur-
ing the initial phases are estimated as 1.02 to 1.8 km/s,
slightly smaller than ordinary values, and the stress drops
on these large initial rupture faults are estimated to be
small (e. g., [27,75]). Ordinary waveform inversions for
these earthquakes showed that the main phases were gen-
erated by the breaking of asperities (e. g., [6,28,39]).

As summarized above, a major part of the initial
phases of large earthquakes do not show an accelerating
increase of velocity amplitudes with time and it is thought
that the rupture and slip velocities of these earthquakes are
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not accelerating during this time period. Consequently, it
is thought that the initial portions of the observed wave-
forms of these large earthquakes do not reflect the nucle-
ation process that is characterized by the transition from
a quasi-static to a dynamic state; instead they represent
a part of the dynamic rupture process characterized by
a smaller stress drop, before the breaking of large asperi-
ties. Small earthquakes possibly show similar characteris-
tics with an initial rupture process that is characterized by
an ordinary rupture velocity and much smaller dynamic
stress drop than the main phase. Although the nucleation
process is probably seen in the very beginning stage of
the large earthquakes analyzed by Sato and Mori [62] and
Shibazaki et al. [67], it is likely that the scaling relation-
ships between the duration of the initial phases and the
rupture size shown by Umeda [72,73], Iio [30,31], and
a major part of the data Ellsworth and Beroza [21] do
not reflect the nucleation process but a part of the dy-
namic rupture process before the breaks of relatively large
asperities.

A Possible Model

As summarized in the previous section, since a major part
of the observed data do not reflect the earthquake nu-
cleation process, in particular the data from small earth-
quakes, we cannot examine the preslip model here.

The observed data do not match the cascade model,
since the cascade model basically predicts self-similar fault
breaks for successive events, not increasing dynamic stress
drop events. A variation on the cascade model, the hier-
archy fault model explains increasing slopes of initial rises
by the abrupt increase of the moment rate function due to
a longer fault edge at a higher hierarchy level [23]. How-
ever, as shown in Fig. 6, the difference between the slopes
of larger and smaller earthquakes can be greater than one
order of magnitude, so it is difficult to explain the observed
data only by the change in rupture front geometry. It
may be necessary to consider differences in dynamic fault
parameters.

So the questions to be answered are, why do larger
earthquakes have a longer slow initial rupture process? In
the first place, why do earthquakes need an initial rupture
process to break a stronger portion on the fault?Why don’t
earthquakes initiate as a breaking of an asperity without
the initial phase?

The key to solving these problems may lie in the stud-
ies of the two intraplate earthquakes with longer initial
phases. The important observations about these earth-
quakes are the geometries of the initial rupture fault and
mainshock fault. For the 2000 Tottori earthquake, it is

found that azimuths of the initial rupture fault and main-
shock fault are estimated as N135ıE and N150ıE, respec-
tively [51]. Since the direction of the maximum compres-
sional stress is estimated as N90ı–100ıE [42], it is found
that the initial rupture fault is favorably oriented, while
the mainshock fault is unfavorably oriented. For the 2004
West-off Fukuoka prefecture earthquake, the azimuth of
the initial rupture fault is different from that of the main-
shock fault by 20 degrees (e. g., [38,69,71]). A more obvi-
ous example is obtained for the Landers earthquake, where
the Emerson fault with the largest slip is unfavorably ori-
ented, compared with the faults that had broken before
(e. g., [25]). These observations indicate that a larger slip
occurred on an unfavorably oriented fault. It is possible
that the mainshock fault, which generates the main phase,
generally has a higher strength than the initial rupture
fault. This may be the reason why larger dynamic stress
drops occurred on faults of successive larger events.

If this proposed strength profile on the initial and
mainshock faults holds for all the earthquakes, the above
questions can be re-written: Why is a larger weak initial
rupture fault necessary to break a larger strong mainshock
fault?

A similar problem has been discussed by Ohnaka [55].
He derived the relationship between the critical slip dis-
tanceDc and the asperity size from laboratory experiments
and the physics of contacts on faults. Since Dc is related to
the size of the nucleation zone (e. g., [52]) and it is inferred
from the results of waveform inversions that the asperity
size is proportional to the total fault length (e. g., [47]), his
relationship might be regarded as the relationship between
the lengths of initial rupture fault and the mainshock fault.
However, the Dc used in his relationship is that of the as-
perity, not of the initial rupture fault. Further, it is inferred
from the above discussion that a major part of observed
initial phases probably do not reflect the nucleation pro-
cess (namely, Dc).

It is important to clarify strength profiles along faults;
however, we do not presently have enough information.
In the following, we will assume the fault strength is con-
trolled by the geometry of the fault surface, as estimated
for the Tottori earthquake. More concretely, it is assumed
that the angle between the tangent of the local fault sur-
face and the direction of the uniform principal stresses
controls the fault strength at each point. In this case, it is
deduced that the fault strength shows a fractal-like distri-
bution along the fault as shown in Fig. 11, since the ge-
ometry of fault surface is thought to be fractal [45]). The
fault strength profile should include various wavelengths,
but here we will consider the longest wavelength to in-
vestigate the interaction between the asperity and initial
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Earthquake Nucleation Process, Figure 11
Schematic illustration of the strength profile along the fault de-
duced from a fractal geometry of fault surface. The rupture initi-
ates at the weakest portion on the initial rupture fault and then
propagates to a portion of higher strengths

rupture fault, since amplitudes of a longer wavelength are
thought to be larger on fractal fault surfaces (e. g., [11]).

Under the above assumptions, the asperity and ini-
tial rupture fault are attributed to the portions of higher
and lower strengths on the strength profile, respectively.
Strength profiles of faults of larger earthquakes are thought
to have a longer wavelength. Actually, it is empirically de-
rived that the asperity size is proportional to the total fault
length [47]. Consequently, it is inferred from these results
that larger earthquakes have larger initial rupture faults.
On initial rupture faults, the fault strength increases with
distance from the hypocenter, since the hypocenter is the
weakest point on the fault. In other words, the strength at
a rupture front increases with rupture growth. Thus, it is
thought that the initial rupture does not expand smoothly
and the slip velocity does not significantly accelerate, but
a large asperity can break after a breaking of the initial rup-
ture fault. This is only a possible qualitative model for the
initial rupture process and it suggests a possibility for ex-
plaining the observed data. It should be examined by ex-
tensive studies.

We do not presently have any clear answers to the sub-
title question, ‘Does the initiation of earthquake rupture
knows about its termination?’. Even if the above model is
correct, we also have to know the geometry of the fault sur-
face and the time, slip and slip velocity dependent stress on
the fault for large and small earthquakes, in order to simu-
late the rupture propagation and must understand the fac-
tors that control the earthquake size.

Future Directions

This paper reviewed studies analyzing the very begin-
ning portions of observed waveforms of earthquakes and

showed what we have presently clarified about the earth-
quake nucleation process. To make further progress, the
most straightforward path is to investigate the initial rup-
ture process by precise waveform inversions for large
earthquakes. In this case, new inversion methods, as pro-
posed byUchide and Ide [70], are useful. Furthermore, it is
necessary to use broadband near field data, since it is pos-
sible that very slow slips occur on the initial rupture fault
in association with the initial rupture process or for a very
long time before the initial rupture process. For smaller
earthquakes, high resolution data, as those in the Western
Nagano Prefecture region, are necessary for investigating
their rupture processes. These extensive studies about the
initial rupture process can clarify the true feature of the
earthquake nucleation process.
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Glossary

Stochastic occurring by chance;
Stochastic process physical or other process evolving in

time governed in part by chance.
Earthquake mechanism physical processes causing the

occurrence of an earthquake.
Independent events events not affecting each other’s

probability of occurrence.
Branching process process of ancestors and offspring, as

in the model of nuclear fission.
Point process stochastic process of point-events in time

or space.
Probability forecast prediction of the probability distri-

bution of the time and other features of some future
event, as distinct from a forecast for the time (etc.) of
the event itself.

Model test a statistical test for the extent to which
a stochastic model is supported by the relevant data.

Precursory signal observed quantity which affects the oc-
currence probability of a future event (earthquake).

Definition of the Subject

Stochastic models for earthquake mechanism and occur-
rence combine a model for the physical processes gen-
erating the observable data (catalog data) with a model
for the errors, or uncertainties, in our ability to predict
those observables. Such models are essential to properly
quantify the uncertainties in the model, and to develop
probability forecasts. They also help to isolate those fea-
tures of earthquake mechanism and occurrence which can
be attributed to mass action effects of a statistical me-
chanical character. We do not consider in this paper ap-
plications of the models to earthquake engineering and
insurance.

Introduction

The complexity of earthquake phenomena, the difficulty
of understanding and monitoring the processes involved
in their occurrence, and the consequent difficulty of accu-
rately predicting them, are now widely accepted points of
view. What are stochastic models, and what role do they
play in aiding our understanding of such phenomena?

The present article is an attempt to address these ques-
tions. We start from the beginnings, the distinction be-
tween stochastic and deterministic models, and the first
attempts to model earthquake phenomena in stochastic or
statistical terms. We then follow through with a system-
atic account of some of the main classes of stochastic mod-
els that are currently in use, discussing in turn earthquake
mechanisms, historical earthquakes, regional catalogs, de-
scriptive patterns, and earthquake precursors.

The focus throughout is on the stochastic modeling as-
pects, rather than on statistical procedures or associated
algorithms. As a result we have given only brief mention
to pattern-recognition techniques, or to descriptive pro-
cedures such as the estimation of fractal dimensions or of
second order properties, which do not lead to fully defined
models. Again, although a primary use of stochastic mod-
els is in developing probability forecasts, we have limited
ourselves to the briefest account of how such forecasts can
be produced and assessed. Nor do we directly consider ap-
plications to engineering and insurance problems.

The fundamental difference between a physical model
and a stochastic model, in broad terms, is that while the
physical model attempts to fully describe and predict the
process under study, the stochastic model treats some as-
pects of the physical process as out of range of exact mod-
eling, at least for the time being, and replaces it by some
unpredictable and hence random process. The resulting
stochastic model should reproduce those aspects of the
physical phenomenon which are important and accessible
to measurement, but may relegate the rest to dice-tossing
or one of its more contemporary avatars such as Brownian
motion or the Poisson process.

Across their many different fields of application, two
broad roles for stochastic models may be distinguished.
The first is epitomized by statistical mechanics. Here the
stochastic model plays an integral role in understanding
the physical processes themselves. The macroscopic phe-
nomena that we are able to observe directly – temperature,
pressure and the like – are shown to be a consequence, not
of the details of the collision processes at the microscopic
level, but of their mass interactions, which are governed
largely by laws of an essentially statistical character such as
the law of large numbers or the central limit theorem. For
predicting the macroscopic behavior, it is not necessary to
know the details of the complex interactions between indi-
vidual molecules; it is sufficient to replace them by a sim-
ple random process that nonetheless preserves the crucial
physical aspects such as mean velocities and angular dis-
tributions.

Within seismology such a role is implicit when the
fracture processes within the earth’s crust are compared to
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‘frozen turbulence’, or in applications of branching pro-
cess or percolation theory to explain energy distributions,
or in discussions of the fracture strength of materials as
functions of the density and size distribution of microc-
racks, or in the use of cellular automata and similar models
to explain the appearance of long-range correlations and
power-law distributions in the approach to criticality of
certain types of complex systems.

In the other, by far more common, type of application,
the stochastic model is used as a basis for planning and
prediction. In such situations it is vital to know, not just
a forecast value, but also something about the reliability
of that value. It is also vitally important that the models
can be fully fitted to the observable data. Most branches of
applied statistics have evolved in response to such require-
ments. Within seismology, applied models of this type are
needed in discussions of earthquake risk for insurance or
building codes, in many parts of engineering seismology,
and in the development of decision rules for earthquake
response and emergency planning. Probability forecasts of
any kind, including all forecasts with some associated esti-
mate of precision, necessarily rely on stochastic models of
this kind.

Many decades ago, the famous geophysicist and seis-
mologist Sir Harold Jeffreys, who is also regarded as a pi-
oneer in inferential statistics, argued that, to be worthy of
its name, every physical theory should contain within it-
self the means not only of predicting the relevant quan-
tities, but also of predicting their uncertainties [45]. In
our terminology, he was arguing that every physical the-
ory should be based on a stochastic model. In the classi-
cal studies of physics and astronomy, the uncertainties in
the model are assumed to be due to nothing deeper than
observational errors. In a subject such as seismology, how-
ever, the uncertainties are much more fundamental.

While general patterns of earthquake behavior may
be predicted from physical theories, the predictions do
not extend to the times and locations of individual earth-
quakes. Moreover, the available observational data are
rarely more than indirectly relevant to the physical pro-
cesses controlling the details of earthquake occurrence, as
these usually take place many kilometers beneath the sur-
face of the earth, and out of range of direct observation.

Stochastic models of earthquake occurrence that can
be used for earthquake prediction must somehow marry
the limited physical theory to the limited available data.
Attempts to grapple with this central problem have inten-
sified in recent years. They form one factor in the emer-
gence of ‘Statistical Seismology’ as a new sub-discipline.
Another, perhaps dominating, factor, is the enormous im-
provement in both the quantity and quality of the data that

are available, whether from earthquake catalogs, from GPS
measurements of ground deformation, or, less commonly,
from data on auxiliary quantities such as well levels, elec-
trical signals, ionospheric depression and others thought
to have a potential bearing on earthquake occurrence. The
high quality data demand a comparable quality in the sta-
tistical modeling and analysis.

Historical Overview

The forerunner of any serious statistical modeling is the
availability of reliable and relevant data. For models of
earthquake occurrence this means the availability of good
quality earthquake catalogs. Broadly speaking, such cat-
alogs had to wait, not only until around the turn of
the 20th century, when the first instrumental records be-
came available, but until the development of modern in-
strumentation and the extensive station networks which
came into being after the second World War. Before
then, the lack of any consistent measure of the size of
an earthquake, and the general unevenness of network
coverage, made the records of limited value for statistical
purposes.

A turning point was the appearance of the first edition
of the classic text [28] by Gutenberg and Richter (1949).
For the first time it gave a comprehensive overview of
the major features of the seismicity of the earth, and of
the key empirical relations governing earthquake occur-
rence. From that time onwards, the way was open for se-
rious statistical analysis, although recent data is far more
comprehensive and detailed. Modern instrumental cata-
logs, prepared from digital records telemetered to a lo-
cal center from a dense network of stations, may con-
tain hundreds of thousands of events down to very small
magnitudes. Typically such catalogs list for each event
the origin time (initiation of rupture), epicenter (latitude
and longitude of place of first motion), depth, magnitude
or seismic moment (alternative measures of earthquake
size), and often other parameters relating to the fault
mechanism (orientation of the fault and direction of first
motion).

The availability of these high-quality catalogs, along-
side the increasing availability of data from GPS measure-
ments and other earthquake-related phenomena, is a key
reason for the recent upsurge of interest and research in
statistical seismology. The broad aims of this emerging
field may be described as finding statistical models to de-
scribe and make use of such data, and to marry it with the
existing physical theory.

Even preinstrumental catalogs inspired the investiga-
tion of two statistical issues at least: does the occurrence



2558 E Earthquake Occurrence and Mechanisms, Stochastic Models for

of major earthquakes exhibit some form of periodicity in
time? do the numbers of events in time intervals of fixed
length follow a Poisson distribution? We comment briefly
on these two questions before looking at statistical models
more generally.

Periodicity of Earthquakes

Periodicity of earthquakes, in some more or less regular
sense, was the earliest issue to be investigated, and in-
spired many early studies, including one of Schuster’s clas-
sic papers on the periodogram [112]. Until the 1930s, how-
ever, neither the data nor the statistical techniques were
sufficiently developed to allow the question to be prop-
erly resolved. On the statistical side, for instance, the pe-
riodogram was a new concept, and statistical tests based
on it were still in development. Schuster’s paper, applied
to a special case, contains within itself all the basic ele-
ments of point process spectral theory, starting from the fi-
nite Fourier transform, calculating the equivalent of rough
significance levels using Rayleigh’s random flights, and
briefly treating the problems caused by binning the data
and by clustering. Jeffreys [44] was one of the first to use
a modern statistical approach to tackle the question, while
Davison [21] reviewed many of the earlier studies and
came to the conclusion that most of those studies were in-
conclusive.

The topic remains controversial, although it is now
clear that no obvious periodicities exist. The most impor-
tant current contenders for small-scale periodicities are in
relation to earth tides. It is suggested that the small fluc-
tuations in crustal stress due to the relative movements of
the moon and sun around the earth may be large enough
to trigger earthquake activity under favorable conditions,
for example in regions already under high stress. A careful
recent study of lunar tides on microearthquakes, with fur-
ther references, is given in [40]. The possibility of using the
response of small-scale seismicity to lunar tides as a pos-
sible indicator of regions in some near-critical state, and
hence as a precursor for larger events, has been suggested
in [139]; a statistical analysis is given in [142].

The possibility of long-term periodicities, of the order
of decades or centuries, is unclear because of the short-
age of data; substantial fluctuations certainly exist. The
problem is still full of potential traps. In testing for peri-
odic effects, for example, it is essential to take into account
earthquake clustering, and whether or not the period be-
ing tested for is preassigned (as for the lunar cycle) or sug-
gested by the data. Both of these issues are illustrated in the
discussion in [134] of Kawasumi’s historical data for large
earthquakes in the Kanto region of Japan.

The Poisson Distribution and Process

The distribution

pn D (�n /n!)e�� ; � > 0 ; n � 0 ;

was introduced by Poisson as an approximation to the bi-
nomial distribution when the number of trials N becomes
very large but the probability p of success becomes very
small, the two balancing in such a way in such a way that
the expected number � D Np of successes remains mod-
erate in size.

Earthquakes were included among the examples stud-
ied by von Bortkiewicz [136] in his 1898 compilation of
phenomena to which he could apply ‘the law of small
numbers’, the name he gave to the Poisson approximation
to the binomial. The question was studied in greater depth
by later writers, including Gutenberg and Richter [28], and
several important qualifications were noted. In the first
instance, the disturbing effect of aftershocks was pointed
out, and so the Poisson distribution was supposed to ap-
ply just to main shocks. Then other disturbing effects, such
as trends and longer-term fluctuations in activity, were
noted. In fact almost no catalog fits the Poisson description
exactly, and for research purposes its role as a base-line
model for ‘standard seismicity’ has been replaced by the
ETAS model (see Sect. “The ETAS Model”), which pro-
vides a much better approximation to the clustering prop-
erties of smaller earthquakes.

Nevertheless the simple Poisson form is still the prin-
cipal basis for determining earthquake risk and for earth-
quake insurance practices. Underlying its continued rel-
evance is the same idea underlying Poisson’s original
approximation to the binomial: when the data under ex-
amination consists of rare ‘successes’ from many different
and essentially unrelated sources, the Poisson distribution
generally emerges as a good approximation.

It is necessary to distinguish between the Poisson distri-
bution and the Poisson process. The Poisson process refers
to an evolutionary model for the occurrence of events in
time or space or both. Its principal characteristics, at least
in the stationary case, are

1. The number of events within any bounded region (in-
terval in time; area or volume in space) follows a Pois-
son distribution with parameter � proportional to the
size (length, area etc) of the region selected for study;

2. The numbers of events in disjoint regions are indepen-
dent random variables.

The second condition embodies the famous ‘lack of mem-
ory’ property of the Poisson process: the temporal version
asserts that the occurrence of one or more events before



Earthquake Occurrence and Mechanisms, Stochastic Models for E 2559

a certain time has no effect on the occurrence probabili-
ties of subsequent events. It dictates the exponential form
of the distribution of the time interval between events, and
under simple conditions even dictates the form of the Pois-
son distribution itself; see, for example, the discussion in
Chap. 2 of [20].

The Empirical Laws of Seismology

The advent of more complete and reliable catalogs saw the
recognition of a number of statistical regularities in the oc-
currence of earthquakes. Two of these are central features
of seismicity studies today.

Omori’s Law Already by the end of the 19th century, the
Japanese pioneer seismologist Omori had made detailed
studies of some large Japanese aftershock sequences [92],
and suggested that the frequency of aftershock occurrence,
say (�), decayed approximately hyperbolically with the
time � after the main event:

(�) � A/�

whereA is a constant characteristic of the particular main-
shock and associatedwith its size. His own and subsequent
studies suggested the need for refinements, and the most
widely accepted form today is the the Omori–Utsu for-
mula

(�) D A/(c C �)p (1)

where the parameters A; c; p are again peculiar to the in-
dividual aftershock sequence, c is generally small (of the
order of seconds to days) and p is close to 1. A detailed
study of the history and other issues associated with the
Omori law over the 100 years 1894–1994 is given in [124].

The simplest stochastic model for aftershocks is that
suggested by Jeffreys in [44], namely an inhomogeneous
Poisson process in which (�) is interpreted as the current
value of the time-varying Poisson intensity; the indepen-
dence property (2) of the Poisson process of Sect. “The
Poisson Distribution and Process” is retained, but the
mean parameter for the number of events in (s; t) is now
� D

R t
s (�)d� .

The Gutenberg–Richter (GR) Law The law was formu-
lated after the definition of earthquake magnitude gave an
objective method of quantifying the size of an earthquake.
It is a basic component of [28], although a similar relation-
ship, based on the more qualitative maximum intensity
concept, had been formulated somewhat earlier by Ishi-
moto and Iida for Japanese earthquakes [39].

The GR law provides a summary of the magnitude
data in a catalog of earthquakes with magnitudes complete
above a certain threshold, sayM0. It is commonly written
in the form

fNumber of events above magnitude Mg

� 10a�b(M�M0) (2)

or equivalently

fProportion of events above Magnitude Mg

D 10�b(M�M0) : (3)

It is a pity in our view that the former rather than the
latter of these two forms has become traditional. The dan-
ger then is that a becomes treated as a separate parameter
instead of as a normalizing constant, a D log10 N , where
N is the total number of events under consideration. One
reason for this tradition may have been the common (and
incorrect) use of ordinary least squares methods to com-
pute the line of best fit from a graph of the binned num-
bers. Such an approach will certainly produce a slope as
one of the parameters, but the estimate is unstable and dis-
torts the interpretation unless it is especiallymodified to fit
the distribution function context.

The second form makes it clear that what we are look-
ing at is an empirical probability distribution, and that the
right hand side could equally and more appropriately be
written in the form

10�b(M�M0) D e�ˇ (M�M0)

where ˇ D b loge 10 � 2:3b. Then it is clear that the G-R
law asserts that, under suitable conditions, the empirical
distribution of magnitudes is approximately exponential.

In principle, a could be regarded as a parameter in
an extended model for the space-time-magnitude distri-
bution of events in a given space-time window, but such
an interpretation is rarely given.

How valid the exponential distribution remains when
examined in greater detail, and whether, and if so by what,
it should be replaced for general modeling purposes, is still
a subject of debate. Themain reservation relates to the pos-
sibility of extremely large events, which is physically un-
reasonable and can lead to misleading conclusions if used
in simulation studies of long-term behavior.

Of the many alternatives offered, which include trun-
cated and multi-parameter versions (see [123] for a listing
and software), perhaps the most plausible is the ‘tapered
Pareto distribution’, or ‘Kagan distribution’ (e. g. [48,
135]), with distribution function written out in terms of
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seismic moments or energies as (4) below. This distri-
bution arises in branching and similar models for crack
propagation (see [123]), and is derived from maximum-
entropy considerations in [73]; a further derivation from
a critical phase transition in a finite elastic solid is given
in [26].

The use of magnitude itself as a basic variable is also
open to question. It is not a uniquely or tightly defined
quantity. In terms of quantities such as energies or seismic
moments with a more direct physical interpretation, the
exponential distribution for magnitudes becomes a Pareto
(inverse power-law) distribution,

PrfE > xg D (x/x0)�˛ ; (x > x0)

through a transformation of the form

log10(E) � 1:5M C const n ;

where E is the energy. This illustrates the fact that the mag-
nitude scale is essentially a decibel scale, ultimately a con-
sequence of its initial definition in terms of the logarithm
of the maximum amplitude of the trace on a seismograph.
The tapered Pareto form mentioned earlier is

PrfX > xg � Cx�˛e��x ; (x � x0) ; (4)

where C is a normalizing constant, or the variant with
a similar form for the density.

Båth’s Law The so-called Båth’s Law asserts, loosely,
that in an aftershock sequence, the difference between the
magnitude of the mainshock and that of the largest after-
shock is around 1.2 magnitude units.

Although noted by Båth in 1965, and even earlier by
Utsu, this regularity has never enjoyed quite the same sta-
tus as the other two laws. The question, still an active topic
of debate, is whether it represents a physical phenomenon
in its own right, or is merely a consequence of the more
general properties of earthquake clustering. It was sug-
gested in [125] (see also the reviews and more extensive
studies in [17,63]) that it might be simply a consequence
of the statistical properties of the largest and second largest
in a sequence of events following the G-R law. More re-
cently, it has been linked to the ‘productivity function’ of
earthquake clustering: the expected number of aftershocks
increases typically as an exponential function Ke˛M of the
magnitude of the main shock, with Båth’s Law resulting
when the exponent ˛ equals the exponent ˇ in the GR
law (see [25]). This suggestion is supported by the appear-
ance of a Båth’s law phenomenon in the ETAS model,
where there is certainly no explicit model feature relat-
ing to Båth’s law, but there is an exponential productivity
function [38].

StochasticModels for EarthquakeMechanisms

General Considerations

The earliest model for earthquake mechanism is Reid’s
elastic rebound model [98]. It was inspired by studies of
large-scale earthquakes, in particular the famous San Fran-
cisco earthquake of 1906. The upper part of the crust
is deformed elastically by large scale tectonic motions,
then ruptures and rebounds when its breaking strength is
reached, resulting in an earthquake.

The many attempts to to marry this physical picture
with simple stochastic ideas lead typically to models based
broadly on the renewal process, and will be picked up in
the discussion in Sect. “Background and Data”.

In this section we look rather at models which describe
the behavior at the microscopic level, the evolution of the
fracture itself, and can be used to explain the basic empir-
ical laws, among other features.

There are strong links with theories on the strength
of materials, starting from the classic studies of Griffiths
(e. g. [27]) on crack extension in brittle materials, and the
role of microfractures in controlling the fracture strength
of glass. Griffiths’ crack theory is basic to models of frac-
ture in brittle materials, whether at the scale of rock frac-
ture in laboratory specimens or fault propagation in the
earth’s crust (see e. g. [42,82,109,110]).

Griffiths’ ideas were later developed by Weibull [136]
into a model explaining the variations in strength of oth-
erwise similar specimens of rock and many other sub-
stances. Weibull supposed that the underlying cause was
the random distribution of microfracture lengths in the
specimen, and used an argument based on the distribu-
tion of the length of the largest such microfracture to de-
duce a form for the distribution of strengths. Indeed it is
from these studies that the ‘Weibull distribution’ takes its
name.

The branching process, percolation, and cellular au-
tomata interpretations of the earthquake process start
from similar general premises. The underlying idea is that,
instead of progressing smoothly, as might a fault or frac-
ture in a homogeneous elastic medium, the progress of
the fault in a medium containing many weaknesses is con-
trolled by the essentially random locations of these weak-
nesses. The various models which have been proposed dif-
fer mainly in the assumptions governing these random lo-
cations.

In Otsuka’s original ‘go-game’ model [93], points were
laid down on a lattice in much the same way as in the
game of ‘Go’, but at random, using a simulation tech-
nique, with the interpretation that the enclosed pieces de-
termined a rupture area. In [108] this was idealized into
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a model linking weaknesses located on a Bethe lattice,
where every node has one input link and the same fixed
number of outward links, and each node may or may not
be a point of weakness.

Otsuka’s model has both branching process and perco-
lationmodel interpretations, with a considerable literature
surrounding extensions of both. There also links to other,
apparently more deterministic, approaches to the genera-
tion of the empirical laws, for example through block slider
models or in the general class of complex systems. Al-
though the models differ in approach and detail, the size
distributions and the like often turn out to be very similar
to those derived from the branching models. As in statisti-
cal mechanics, the properties have their origin in the mass
interactions of many small components, and are relatively
insensitive to the details at the microscopic level. The sim-
pler statistical models, such as the branching models, al-
low these distributions to be explored directly by analyti-
cal means. In complex system theory the aim is rather to
show how similar results arise from approximating the de-
terministic equations governing large families of interact-
ing bodies.

Branching Models

The conceptual framework here is that the crack initiates
from an initial weakness (dislocation or microfracture)
and spreads to one or more others, or terminates, the ‘oth-
ers’ being interpreted as ‘offspring’ and the initial weak-
ness as the ‘ancestor’. Each ‘other’ then acts as an ances-
tor in its own right, and the process continues until either
all branches have died out (subcritical and critical cases)
or the process explodes (supercricital state). The behavior
is controlled by a ‘criticality parameter’ �, effectively the
mean number of offspring per ancestor. The subcritical,
critical, and supercritical cases correspond respectively to
� < 1; � D 1 and � > 1.

This model was developed in general form in [123],
following [109] and the earlier work on the ‘go-game’
model in Japan. Related ideas occur in many places pa-
pers by Kagan and Kagan and Knopoff, see especially the
extended branching model described in [54].

The distribution of the size or energy release of the
rupture is then obtained by counting the total number of
offspring before the process dies out (critical or subcritical
cases). The remarkable feature here is that even when the
individual offspring distributions are very regular, the to-
tal size distribution approaches a power-law (Pareto) form
whose basic parameters are independent of the details of
the offspring distribution. In the limiting critical case, the
power-law distribution for sizes has PrfN > ng � Cn�1/2,

corresponding roughly, assuming equal energies/event on
average, to a G-R law with b � 0:75.

When the process is just subcritical the Pareto distri-
bution becomes a tapered Pareto distribution, with power-
law behavior for moderate to large events, and an expo-
nential tail-off at high magnitudes which cuts in at a point
determined by the distance from criticality, ı D 1 � �.
Again the behavior is otherwise largely independent of the
details of the offspring distribution.

Many further developments and ramifications of this
underlying model have been proposed. One of the deepest
is the simulation model for earthquakes developed in [54],
starting from the scale of dislocations or other defects in
the rock fabric, and incorporating temporal, directional,
and distance factors into the model evolution to develop
an impressive array of properties akin to those of real
earthquakes. The model still awaits a full analytical treat-
ment.

It is also remarkable that a branching model underlies
one of the most successful models for earthquake occur-
rence at the regional level, namely the ETAS model de-
scribed in Sect. “The ETAS Model”. The fact that the same
mechanism seems implicated at both levels lends plausi-
bility to Kagan’s conjecture that the physical process is
one and the same at all scales, and that our attempts to
decompose it into elements at the fracture formation and
inter-fracture stages are more a result of our perceptions
and measuring instruments than they are of the underly-
ing physical processes.

Percolation Models

The classical percolation model starts from a two- or
three-dimensional lattice, the sites (or alternatively the
bonds between lattice points) being randomly and inde-
pendently labeled ‘open’ or ‘closed’ with a fixed probabil-
ity p and its complement 1� p. A crack initiated at an
open site links up all contiguous open sites until it can
spread no further. In both cases, a critical regime, char-
acterized by a critical value of the probability p, marks
the transition between subcritical (small finite events only)
and supercritical (infinite or explosive events) regimes. As
with the branching models, it is assumed that the crust is
generally in or just below the critical state.

An underlying difficulty is that the available obser-
vational data are insufficient to provide any easy con-
trol over the best interpretation. As with the branch-
ing process model again, the percolation models lead to
forms of the G-R law, and with additional features can
often be extended to cover aftershock phenomena. [15],
and [65,66,67] are among the many papers which discuss
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and develop these ideas. [5] highlights some of the difficul-
ties of interpretation.

Percolation processes are extensively used in statistical
physics to model phase transitions, and their appearance
here invites an interpretation of fracture as a phenomenon
analogous in some ways to a phase transition. Ideas from
the phase transition context that have been transferred to
both earthquakes and fracture mechanics include espe-
cially features characteristic of the approach to the critical
conditions required for the occurrence of a phase transi-
tion: the development of long-range correlations, the ap-
pearance of power-law or fractal distributions, and ap-
proximate self-similarity.Many authors have sought to de-
velop these analogies, often using analogue or simulation
models, and attempted to use the appearance of different
interaction ranges to identify the approach to near-critical
stress conditions in the crust. See [9,10,26,121], as well as
the papers cited above, for further references and discus-
sion of such ideas.

Cellular Automata and Self-Organizing Criticality

A third type of model with a similar general role is the
cellular automaton, with the distinction that the applica-
tion here is not to a single faulting or fracture episode, but
to a whole network of interacting faults. The simple basic
form, first applied to the earthquake context by Bak and
Tang [3], again relates to a two-dimensional lattice model.
With each point of the lattice is associated a certain inte-
ger stress or force, say Zi j for points on a 2-dimensional
lattice fi; jg. The external force (the ‘immigrants’ in this
context) is manifested through the addition of unit force
to a site chosen at random through the lattice or on its
boundary. When the force exceeds a certain critical value
Zc on a given site, a ‘microfracture’ occurs, and single units
of force are transferred to each of the four directly adja-
cent sites, while four units are subtracted from the force
at the original site. Such transfers may overload one or
more of the adjacent sites, which then in turn transfer units
of stress to their neighbors (including possibly the initial
site), and so on until the system is at rest. Then another
unit is added in and a further redistribution of stress takes
place. The whole episode is interpreted as an earthquake,
and the total number of steps in the episode is taken as
proportional to the energy of the earthquake.

The process as a whole is said to exhibit ‘self-organiz-
ing (or ‘self-organized’) criticality’. Even if the process is
started from a situation where the forces are set to zero
at all sites, they will gradually build up, first to the stage
where small individual episodes take place, then, as more
and more sites approach the the critical value of stress,

the episodes become larger, until a stochastically station-
ary state is reached where the input of stress units is just
balanced by the loss of stress units from points on the
boundary of the region. So long as the region under con-
sideration is sufficiently large, a process reaching the crit-
ical regime exhibits many of the features already indi-
cated as characteristic of the approach to a phase-change:
a G-R relation, long-range correlation effects, and (with
some elaborations) an Omori-type phenomenon for after-
shock sequences.

Models for Paleoseismological
and Historical Earthquakes

Background and Data

We move now to models designed for use with data on
earthquake occurrences. These generally belong to the sec-
ond class of stochastic models referred to in the introduc-
tion. They should be able to be fitted to real catalog data;
simulations from them should mimic real catalogs; and
they should be useful in real applications, capable in par-
ticular of generating probability forecasts.

We have grouped the models into two main types,
those developed to model large earthquakes on historical
or even geological time scales, and those developed for use
with modern instrumental catalogs, where smaller events
are included. The main difference between the two types
of model is their treatment of clustering; this is largely ig-
nored inmodels of the first type, but plays a central role for
models of the second type. Models of the first type are con-
sidered in the present section, models of the second type in
Sect. “Point Process Models for Regional Catalogs”.

The distinction between the groups is associated with
one of the longest and still unresolved debates over earth-
quake mechanism, namely the validity of the characteristic
earthquake hypothesis. Crudely stated, this asserts that, for
any given fault or fault segment, there exists an earthquake
of approximately fixed magnitude, which is determined by
the physical attributes of the fault, and repeats itself after
time intervals of approximately fixed length. Since faults
occur over a very wide range of sizes (themselves having
a power law or Pareto distribution), this does not con-
tradict, but rather suggests a different origin for, the GR
distribution.

The empirical evidence for such a hypothesis is equiv-
ocal. Its main support comes from the paleoseismological
studies on repeated events along a single fault (e. g. [113]),
but the data from such studies is usually so limited that it is
hard to accept the evidence as conclusive. Other support-
ing evidence, again observed sometimes but not always,
is the occurrence of a hump, corresponding to repeating
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earthquakes with similar magnitudes, in the frequency-
magnitude distribution for selected regions. For large re-
gions (scale of major faults), this may occur around mag-
nitudes 6–7, suggesting that the larger events from that re-
gion occur more regularly (with higher relative frequency)
than would be expected from the GR model. One diffi-
culty with the hypothesis is that several of the best-known
sequences, such as the Parkfield earthquake sequence, ul-
timately deviate from the prescribed regularity. Studies
of microearthquakes suggest that in some circumstances
similar-sized small events may repeat themselves several
times in almost identical locations.

Such results suggest that no simple, universal mode of
behavior is likely to be found in earthquakes from particu-
lar fault structures. Indeed, recent studies by Ben-Zion and
colleagues (see [7,8,9,10] and further references therein)
have emphasized the possible role played by evolving het-
erogeneities and damage rheology in the occurrence pat-
terns on a fault system, and have suggested that, according
to their ages and past histories, some faults may exhibit
characteristic earthquake behaviorwhile others exhibit GR
behavior and others again may alternate between the two.

For paleoseismic studies, each data point is extracted
with effort from trenching along fault traces or similar ex-
ercises.Moreover, only the largest events leave traces iden-
tifiable over thousands of years or longer, while estimating
magnitudes and other characteristics is at best informed
guess-work. Even the dates, usually determined from some
form of radio-carbon or other isotope-based method, can
be subject to substantial errors.

Similarly in historical studies, such as Ambraseys’ his-
tory of Persian earthquakes [1], only the largest events af-
fecting a given region or territory are likely to appear suf-
ficiently prominently in the historical records to allow the
size and epicenter of the earthquake to be estimated even
roughly. Periods of civil war, famine, foreign invasion and
bureaucratic neglect leave gaps and further uncertainties
which are difficult if not impossible to resolve.

Despite such difficulties, these data provide the only
records we have of seismic activity over periods stretching
backwards in time beyond the last hundred years or so,
and are worthy of the most serious attempts to collect and
interpret.

We consider a sequence of three models, starting from
the simple renewal model, then considering variants more
closely linked to the elastic rebound model.

Renewal Models

With paleological data in particular, attention is generally
focused on major events along a single fault, where magni-

tudes are poorly constrained, and the stochastic elements
are introduced primarily to describe, and if possible pre-
dict, the time intervals between events.

For a renewal process, magnitudes are neglected, and
it is assumed that the successive intervals are independent,
both of each other and of other processes, with a common
distribution. The independence assumptions are question-
able, but with no further information available, this is at
least a reasonable starting model.

Let f (x) denote the density and F(x) the distribution
function of the common interval distribution. If the ob-
servation record, over (0; T), say, comprises an interval of
length `0 to the first recorded event, then n complete inter-
vals `1; `2 : : : ; `n , and finally an unfinished interval `nC1,
the likelihood is given by

L(`0; `1; : : : ; `n ; `nC1) D a(`0)
� nY

1

f (`i)
�
b(`nC1) ; (5)

where `0 and `nC1 are the incomplete intervals from the
commencement of study to the first event, and from the
last event to the end of the study, respectively, a(x) D [1�
F(x)]/�, b(x) D 1 � F(x), � D

R1
0 u f (u)du.

The term a(x) at the beginning of the sequence is
the appropriate form to use if the process can be sup-
posed stationary, but nothing is known about events be-
fore the commencement of the observation period. The
term b(x) D 1 � F(x) at the end of the sequence merely
acknowledges the fact that the final interval has begun but
not yet concluded.

The main uses of the model are in estimating long-
term average or static hazards, in which case the mean of
the interevent times plays the crucial role and the form
of the distribution is largely irrelevant (so that a Poisson
approximation would generally be adequate). The other
application is to estimating the residual time to the next
event, which is governed by the extended hazard function

h(yjx) D f (x C y)/[1 � F(x)] (y � 0; x > 0) ; (6)

giving the density of the distribution of the time y from
the present to the next event, given that time x has elapsed
since the last event.

Distributions commonly used in these situations in-
clude the Weibull, gamma, log-normal and Brownian first
passage time (inverse normal). Recent work has tended to
favor the last of these: see [79]. Two further recent stud-
ies which look carefully at the statistical issues, includ-
ing those relating to errors in the occurrence times, are
in [64] and [121]. In long period studies, care needs to be
taken that consistent procedures have been used over the
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whole period, particularly in the determination of magni-
tude thresholds, and rules for the exclusion of aftershocks
(which must be removed here since otherwise they would
contradict the assumption of i.i.d. intervals).

Time- and Slip-Predictable Models

The time-predictable model, introduced by Shimazaki and
Nakata in [116], is a widely used alternative for major
events along a given fault, when magnitudes as well as in-
teroccurrence times are available.

As in the elastic rebound model, it is supposed that
stress along a particular fault builds up linearly until
a critical value is reached, representing in some sense the
strength of the fault. The size (magnitude) of the result-
ing event is not known beforehand, but is supposed to
be selected randomly either from the standard G-R form
or a variant suggested by the characteristic earthquake
model.

Once it has occurred, the stress along the fault is in-
stantaneously reduced by an amount determined by the
magnitude of the event. Then stress build-up continues
until the critical stress level is reached again. The time
needed for this to occur is determined by the stress re-
leased by the previous event, and so is known, whence the
‘time-predictable’ title.

The major unknown in the model is the rate of stress
build-up between events. If only observation times and
magnitudes are available, this can be estimated, albeit
crudely, by regressing the observed time intervals onto the
magnitudes of the preceding events. If the magnitudes are
determined up to a normal error term, with variance inde-
pendent of the magnitude, this will result in a log-normal
distribution for the length of the time interval following
an event of givenmagnitude, and indeed this is commonly
used. Another approach would be to use geological data to
provide an initial (‘prior’) distribution for the slip rate, and
put the further analysis into a Bayesian framework.

A simple model used for predictive purposes in some
of the papers by theWorking Group on Californian Earth-
quakes (see [137] for example), can be represented as

log Ti D AC Mi C �i (7)

where the �i are independent, normally distributed errors
with zero mean and constant variance, the Mi are the ob-
served magnitudes of the events, and AD � logV is the
logarithm of the slip rate, estimated from geological and
GPS studies. Given the time x since the last major event
on the fault, the distribution of the remaining time y until
the next event is governed by the extended hazard function

of the log-normal distribution, as in the discussion (6) of
the renewalmodel, but with the mean adjusted to take into
account the extra information provided by the magnitude
of the previous event.

An underlying but subtle logical difficulty with the
model is that if applied on a long time basis, the assump-
tion of i.i.d. lognormal errors leads to unbounded fluctua-
tions in the accumulated sums

V
nX

1

Ti �
NX

1

Si D V
NX

1

Si (�i � 1) ;

where Si is an estimate of the slip from an event with mag-
nitude Mi . The cumulative sum on the right hand side
can oscillate without bound, implying the unphysical pos-
sibility of indefinitely large fluctuations in the accumulated
stress.

Shimazaki and Nakata also suggested a dual version,
the slip-predictable model, characterized by a return af-
ter each event to a constant resting stress. The time at
which the next event will occur is unknown, but given
the time since the last event, the minimum expected size
is determined by the stress accumulated since the previ-
ous event. [57] develops a more detailed version for use in
earthquake engineering applications.

The Stress-Release Model

The stress-release model is an attempt to address similar
issues from within a stochastic point process framework
(see for example Chap. 7 of [20]), incorporating both oc-
currence times and magnitudes. As in the previous case,
it is assumed that the rate of stress build-up is constant
(say �), and that sizes of successive events are i.i.d. and
independent of the stress level at the time of occurrence.
Most commonly they are assumed to follow the exponen-
tial form associated with the GR law, but this is not inher-
ent in the model.

The crucial difference with the time-predictable model
is that, instead of assuming that the strength of the
crust is fixed, it is assumed to be variable with distribu-
tion function say ˚(s) with density �(s). The probabil-
ity that the next earthquake occurs when the stress passes
through s; sC ds, but not before, is then given by the haz-
ard function � (s) D �(s)/[1 �˚(s)]. This hazard func-
tion � (s) determines the pattern of occurrence probabil-
ities. Most commonly, it is taken to have an exponential
form � (s) D Ae�s , corresponding to the double exponen-
tial distribution function ˚(S) D 1 � e�A[e�S�1] for the
breaking strength itself. This has a well-marked mode at
(� log A)/ if A is rather small.
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In stochastic point process terms, the quantity
�(t) D � [X(t)] can be interpreted as the conditional in-
tensity of the model, meaning approximately the instanta-
neous occurrence rate, given the history of the process up
to time t:

�(t)dt � E[dN(t) jH (t)] � PrfdN(t) > 0jH (t)g: (8)

Roughly speaking, the process behaves locally like a Pois-
son process with instantaneous rate �(t), which in the
stress-release model can be written more explicitly as

�(t) D � [X(t)] D �

2

4X(0)C �t �
N(t)X

1

Sn

3

5 : (9)

This model has several useful features. First, the fact
that a simple explicit form exists for the conditional inten-
sitymeans that it can be readily incorporated into standard
procedures for maximum likelihood estimation, simula-
tion, and prediction (see again Chap. 7 of [20]). In particu-
lar, the likelihood ratio for a set of observed events (ti ;Mi)
over the interval [0; T] can be written in the form

log L/L0 D

"
X

log[�(ti )/] �
Z T

0
[�(u) � ]du

#

C

N(T)X

1

log[g(Mi )/g0(Mi )] (10)

where  is the rate of the background (null) model, as-
sumed constant rate Poisson, g(x) and g0(x) are the densi-
ties of the proposed and background magnitude distribu-
tions, and the magnitudes are assumed independent.

Second, as in earlier, related work by Knopoff [58], the
current stress level, say X(t), is Markovian, for the current
value of X(t) determines the probability of the next jump
occurring, while the remaining components (size of jump,
rate of build-up between jumps) are independent of the
past history of the process. Hence the extensive knowledge
of Markov processes can be brought to bear on the prop-
erties of X(t) (e. g. [11]).

A third point is that as the stress level increases, the
rate of occurrence of new events will remain relatively high
until a large enough event occurs to reduce the stress level
to substantially lower values. The model therefore embod-
ies a modest form of accelerated moment release [43].

The model assumes only a simple scalar concept for
regional stress, much as in the early chapters of [83], and
does not allow for stress interactions between regions. To
address the latter point, the coupled stress release model
was introduced by Shi Yaolin and students [68], to al-
low stress transfers between regions as well as simple

stress drops. Further discussions and examples are in [4]
and [71].

Point ProcessModels for Regional Catalogues

Data Consistency and Declustering

Regional catalogs, based on instrumental data from the last
century or so, present a very different picture, but one with
its own problems also. Of these, the two most important
are the maintenance of consistency and the problem of
clustering (or declustering).

It is characteristic of such catalogs that the networks
supplying the data undergo many changes with the pass-
ing of the years. Although it is just these changes that
have made possible the more serious statistical studies of
recent years, they create their own problems in terms of
lack of data consistency. Using such data for any form of
long-term study requires continual vigilance over ques-
tions such as improvements and other changes in the in-
dividual network stations and their instruments, shifts in
magnitude definitions or thresholds, changes in the rou-
tines used in determining epicenter locations, policy deci-
sions over the events to be listed in the catalog, etc. Un-
less such factors are carefully listed and properly allowed
for, they can easily lead to misinterpretation of statistical
features observed in the data. As just one illustration, [18]
gives some vivid examples of features of apparent physical
interest which in fact have their origins in catalog artefacts
induced by changes in magnitude registration.

An even more vexed question is whether, and if so
how, to remove major clusters from (i. e. ‘decluster’) the
catalog. Large aftershock sequences look simple to identify
and remove, but the process is considerably more difficult
than it might appear.

The possible justifications for doing so are two-fold. If
it is believed that the large events are different in kind from
the smaller events, then declustering is simply a procedure
to isolate the events of primary importance. This assump-
tion was once standard, and in any case the large events ap-
pear to be responsible for the major part of the large-scale
tectonic motion. But with data on small events becoming
ever more plentiful and increasingly reliable, their role is
undergoing reassessment.

The second justification for removing aftershocks and
other clusters is that they are a nuisance. They negate the
assumptions of independencewhich lie at the basis of most
standard statistical tests (e. g. for trends or periodic ef-
fects), they greatly complicate analysis and interpretation,
and they require elaborate and difficult techniques to deal
with explicitly.
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Nevertheless, most statisticians, myself included,
would tend to look askance at throwing away a substan-
tial portion of the data on the basis of what are inevitably
somewhat ad-hoc rules.Many procedures for removing af-
tershocks have been proposed, and the fact that none has
gained general acceptance is evidence of this underlying
problem. Moreover, while declustering removes the most
obvious earthquake clusters, it rarely removes the clus-
tering completely. The interpretation of results based on
the remaining data remains equivocal, partly physical and
partly man-induced.

For such reasons we do not discuss declustering in de-
tail in the present article, but concentrate rather on pro-
cedures for modeling the data without removing the after-
shocks.

A general caution in handling clustered data is not
to presume that standard statistical procedures, especially
tests, can be applied without modification. In general, the
presence of clustering severely affects significance levels.
For example, attention is drawn in [81] to the dangers
of assessing the significance of precursory effects without
properly allowing for clusters. A similar point occurs in as-
sessing the significance of periodic effects, as was pointed
out by Schuster in [112], as well as more recently in [129]
and no doubt in other places.

To allow for the effects of clustering, and to exam-
ine the structuring features themselves, some form of ex-
plicit modeling is generally desirable. For example, one
possible approach to highly clustered data is to remove as
much of the gross clustering as possible with a basic clus-
ter model, and then examine the residuals from fitting the
model. Ogata, Zhuang and colleagues have recently devel-
oped various techniques, described in [86] and [143] for
example, for examining the residuals from catalog data ini-
tially fitted by the ETAS model. Alternatively the cluster
model can be fitted locally (i. e. with parameters allowed
to vary in time or in space and time), and the parame-
ter variations examined to shed more light on the features
of interest: [89] contains a compelling example of such an
analysis.

We proceed to describe three types of cluster model,
starting from the ETAS model itself. All three models are
defined through the form of the conditional intensity func-
tion, as outlined in the discussion of the stress-release
model. In all three models again, magnitudes are allocated
independently and randomly, either according to the GR
law, or some variant such as the tapered Pareto distribu-
tion for seismic moments. The final feature in common is
that in all three models the main component in the con-
ditional intensity is a linear combination of contributions
from past events.

The ETASModel

The ETAS model (the initials standing for Epidemic Type
Aftershock Sequence) first appeared in Ogata’s paper [86],
but was preceded by a series of studies by Ogata and col-
leagues in Tokyo on processes which, like the ETASmodel
itself, have conditional intensities of the linear, Hawkes
type, following [34,35]. Earlier cluster models included the
Neyman–Scott process, reincarnated as a ‘trigger model’
in [133] and [126].

In its basic time-magnitude form, the ETAS model has
conditional intensity

�(t;M) D ˇe�ˇ (M�M0)

�

8
<

:
�C A

X

i :t i<t

e˛(Mi�M0) f (t � ti )

9
=

;
; (11)

where the first term on the RHS is the GR density for
magnitudes, � is an arrival rate for background (ances-
tor) events, the constant A is related to the criticality
of the process, the ‘productivity function’ e˛(M�M0) de-
scribes how the number of first-generating offspring in-
creases with magnitude of the parent event, and f (u) D
p cp/(cC u)1Cp , c > 0; p > 0 is the density (here a Pareto
form) for the distribution of the temporal lag between the
arrival or birth of the parent and that of its offspring.

In the full space-time-magnitude version

�(t; x;M) D ˇe�ˇ (M�M0)

�

8
<

:
�h(x)C A

X

i :t i<t

e˛(Mi�M0) f (t � ti )g(x � xi)

9
=

;
:

(12)

The new terms are the density h of new arrivals over the
spatial region, and the density g in space for the location
of an ‘offspring’ event about its parent. We suppose that
f ; g and h are all normalized to form probability densities.

One of the main attractions of the Hawkes’ processes,
including the ETAS model, is that they have a branching
process interpretation, first pointed out in [36] and im-
plicit already in the description of the conditional inten-
sity. For example, the criticality parameter (mean num-
ber of offspring per ancestor, averaged over the magni-
tude distribution for the ancestor) is given by A/(1 � ˛/ˇ)
for both the above forms. Thus a stable version of the
process can exist only if ˛ < ˇ, and then only if A is
small enough. Of course, branching process ideas appear
in many earthquake occurrence models, notably in Ka-
gan’s work (e. g. [36]).
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While the branching process interpretation gives
much insight into the structure of the ETAS model, sta-
tistical analysis depends crucially on the representations
in (11) and (12), since they lead to the relatively tractable
form (10) for the likelihood.

For computational purposes, the likelihood of a gen-
eral marked point process, of which the ETAS models are
examples, is often written most conveniently in terms of
the conditional intensity �g (t) for the ground process, the
overall occurrence of points, irrespective of location or
mark, and the conditional mark (in our case space and
magnitude coordinates) distribution f �(x;Mjt), so that
�(t; x;M) D �g (t) f �(x;Mjt). The star indicates that
the quantities so labeled are in general conditional on (and
hence functions of) the histories up to time t. Provided f �

is normalized to a probability density for any given past
history, we can write the likelihood ratio in the form

log L1/L0 D

2

4
N(T)X

iD1

log[�g (ti )/] �
Z T

0
[g (t) � ]dt

3

5

C

Ng(T)X

1

log[ f �(xi ;Mi j ti )/ f (xi ;Mi)] ; (13)

where the terms  and f (x;M) relate to the rate and mark
distribution for the background process (null model), here
taken to be a constant rate Poisson process with indepen-
dent (and usually GR) magnitudes.

This form represents the likelihood ratio as the sum of
two terms, the first involving the time points only, and the
second involving the marks (spatial locations) given the
time points. In many models, the parameters appearing in
the two terms have no common variables, in which case
optimization can be carried out for the two terms sepa-
rately.

Because the ETAS model fits well to catalogue data
over a wide range of scales and contexts, in recent years
its properties have been examined in detail, with the aim
of verifying its ability, or otherwise, to reproduce specific
features of the real process, such as Båth’s law or the oc-
currence of foreshocks; see, for example, [37,38].

Moreover, the procedures developed by Ogata and col-
leagues for fitting versions of the model in which the pa-
rameters can vary in both location and time, and for de-
tecting local departures from a good fit of the model, have
made the ETAS model a powerful diagnostic tool. In this
way it has been used to estimate local variations in the
stress field (e. g. [89,91]), or changes in seismicity due to
the intrusion of ground water [30,58].

For long it was believed that an immigration compo-
nent, coupled to a subcritical branching structure for the

offspring, was the only way to produce a stable process
with branching structure. However, it was shown recently
in [12] that when the temporal lag distribution f (:) of (11)
is very long-tailed, a critical Hawkes process can sustain
itself indefinitely as a ‘process without ancestors’. Another
somewhat unexpected extension, described in [132], is to
a self-similar version over an infinite range of magnitudes.

Perhaps the one serious limitation of the ETAS model
is its rather poor performance as an intermediate-term
predictor. The reason for this is that its predictie power
is basically dependent on its ability to fit aftershock se-
quences. Hence it does not show significant gains, even
against the Poison model, until the time intervals between
forecasts are of similar order of magnitude to the time
intervals between the larger events in an aftershock se-
quence.

The Kagan–Jackson Models

Kagan and Jackson have proposed a number of forms of
which we refer to two, the long-term and short-term ver-
sions of [41]. The long-term version has its origins in [51],
while the short-term version has its origins in [55].

In the long-term model, the current value of the con-
ditional intensity, within a spatial region A and based on
observations within (0; t), has the form

�(t; x;M) D ft(x)g(M)h(t) (14)

where h(t) is the overall current risk (ground process in-
tensity), g(M) is a (fixed) magnitude distribution, com-
monly that corresponding to the tapered Pareto form for
seismic moments, and

ft(x) D
X

0<t i<t

k(x � xi)
� X

0<t i<t

Z

A
k(x0 � xi)dx0

k being a spatial kernel function. Thus ft is a normalized
sum of contributions from previous events within the ob-
servation period and spatial region. It is time-independent
except insofar as the advent of additional events requires
additional renormalization.

Although the model is well-defined by its conditional
intensity and an initial condition at t D 0, and can be fitted
by likelihood methods much as for the ETAS model, the
renormalization introduces a non-linear component into
the model which makes its properties more difficult to an-
alyze than those of the ETAS model. Moreover, like other
forms of moving average model, it is non-ergodic: there is
no unique stationary form to which it will converge from
different initial conditions. Nevertheless, it serves the prin-
cipal purpose of providing a baseline comparison for other
putative prediction models for the same region.
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The short-term form is very close to the spatial ETAS
model. As in the ETAS model, each past event is associ-
ated with both a spatial and a temporal decay function, the
temporal decay following the Omori law. Again, however,
it involves a renormalization rather than the introduction
of an explicit immigration term into the model, although
some versions of the model allow a small quota of ‘sur-
prises’ in parts of the region with no previous earthquakes.

An important role for both models has been to focus
attention on the need for systematic, long-term evalua-
tion and comparison of forecasting models, and to provide
a more relevant null model than the constant-rate Poisson
process.

The EEPASModel

Thismodel grew out of several decades of experimentation
with precursory swarm models by Evison and Rhoades;
see [24] and [104] for more of the history and underlying
concepts. The precursory swarm models identify groups
of moderate-sized earthquakes as precursory swarms and
use these as possible precursors of large earthquakes. Since
both precursory phenomena and forecast phenomena be-
long ultimately to the same process of earthquake forma-
tion, a more satisfactory approach is to try and develop
a joint model for both phenomena. This, in effect, is what
the EEPAS model achieves. It has its own rationale, based
on a theory of growth and development of crustal fractures
outlined in the papers cited above, and has been success-
fully applied in several major seismic regions (e. g. [100]
and [105]).

Much as in the ETAS model, the conditional intensity
has the general form

�(t;m; x) D �0(t;m; x)

C
X

t i<t
wi �(mi ) r(M j Mi) f (t�ti jMi) g(x�xi jMi);

(15)

but the details are significantly different.
First, the conditional intensity in (15) is not taken to

apply to the whole catalogue from which the events on the
right side are derived, but only for events above a higher
threshold. Thus, the model might be used for modeling
(and predicting) events over magnitude 5.8, but would
take explanatory data from the catalogue of events with
M � 4.

Second, the functions f and g are not based on Omori-
type decay formula, but on logarithmic regressions for
the time and space delays between an initiating event and
the event it may precede, and the magnitudes of the two

events. Thus for example

f (ujMi) D
1

u�T
p
2�

exp
�
�

(log u � aT � bTMi)2

2�2T

�
;

with an analogous expression for g(w), while r(m) takes
the form

r(mjMi ) D
1

�M
p
2�

exp
�
�

(m � aM � bMMi)2

2�2M

�
:

They differ considerably from the functional forms used
in the ETAS model, but are similar to relations used in the
precursory swarm models.

The weight factors wi are commonly set to unity, but
in more refined analyzes may be down-weighted when the
triggering event has been identified as an aftershock. One
way of finding suitable weights is to carry out an initial
ETAS stochastic declustering, as in [143], and base the
weights on the probability that a given event is indepen-
dent.

The further normalizing factor �(mi ) in (15) is intro-
duced, much as in the Kagan–Jacksonmodels, to offset the
absence of any immigration term, and to compensate for
the input from earthquakes below the magnitude thresh-
old. It is adjusted for each magnitude class mi so that the
overall rates follow the G-R law.

In practice the contribution from the baseline rate den-
sity is often so small as to be negligible.

Our impression is that the EEPAS model is currently
the best-performing of the general seismicitymodels in the
sense of producing the highest average probability gains
or entropy scores (see Sect. “Assessing Probability Fore-
casts”) for predicting moderate to large events on inter-
mediate time scales.

StochasticModels with Precursors

General Considerations

The search for reliable earthquake precursors has a long
and troubled history. High hopes in the 1970s met many
disappointments, some at least arising from an inadequate
appreciation of the many statistical pitfalls. These difficul-
ties are now much better appreciated, but even so there
are relatively few studies based on a satisfactory statisti-
cal model, incorporating a proper assessment of the un-
certainties, and showing a significant precursory effect.

From a modeling point of view it is important to dis-
tinguish between complete and partial models. In a com-
plete model, both the earthquakes and the precursors are
included as components of an overarching joint process,
the earthquakes forming one marginal process and the
precursors another. In principle such a complete model
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should be the aim, but in most situations either the back-
ground physics is insufficiently understood, or observa-
tions on the precursors are inadequate, or the statistical
analysis is too difficult, to allow such a joint analysis to
proceed. In many situations also, the modeling and analy-
sis lie outside the realms of conventional statistical models
(in dealing with self-similarity, for example), raising fur-
ther procedural problems.

In a partial model, no attempt is made to model the
precursors as a stochastic process. They are treated as
given, and their data used in regression-like procedures to
modify the probabilities of earthquake occurrence. They
can be used retrospectively to examine the performance of
a suggested predictive relation, but their use in developing
probability forecasts is limited to the short term because
there is nomodel to forecast the future behavior of the pre-
cursors.

In the later parts of this section we illustrate some of
the modeling approaches that can be used with precursors,
using examples drawn mainly from our own experience.

One issue that commonly arises is that the precur-
sory signal data are derived from observations taken at
fixed sampling intervals. To match such data to the point
process data for the earthquakes, it is generally easiest to
switch the whole analysis to a discrete-time study. In this
case the continuous time point process models of the pre-
vious sections need to be replaced by approximating dis-
crete time models. The two most common of these are the
logistic, or binary data, models, and the discrete Poisson
process models, illustrated in the first two examples below.
In these two classes of models, the probabilities pn that an
event occurs in the nth interval (respectively, the means
�n of the Poisson distribution for that interval) play the
role of the conditional intensity function (t) of the con-
tinuous time models of the previous section.

Example 1: Logistic Regression Analysis of M8 Series

Logistic regressions are used to directly assess the ef-
fect of precursor observations on the event probabili-
ties pn . Suppose that at the nth interval, observations
(Un

1 ;U
n
2 ; : : : ;U

n
k ) are available on k precursors. Dropping

the n for brevity, the logistic regression takes the general
form

log
�

p
1 � p

�
D ˛0 C

KX

kD1

˛kUk (16)

where the left side is the logit (log-odds) transform of the
event probability, and the right side is the regression term.
This representation corresponds to the canonical form for
a binomial distribution as a member of the exponential

family. Standard routines exist for estimating the parame-
ters ˛k bymaximum likelihood or closely relatedmethods,
and form part of the generalized linear model procedures.

As an example we consider the model used in [32,33]
on the output from the M8 algorithm on New Zealand
data.

The M8 algorithm itself is not a stochastic process
model, but a decision procedure for calling an earth-
quake alert based on the analysis of 7 contributing se-
ries from earthquake data within a specified ‘region (cir-
cle) of investigation’. It is the best known of a number
of pattern-recognition algorithms developed by the Rus-
sian group headed by Keilis-Borok during the 1970s and
subsequently. The basic form of the algorithm is described
in [56] and [59], with recent reviews in [60,61].

The heart of the algorithm consists of a set of decision
rules, based on the joint behavior of the 7 time series, for
calling an alert, or more specifically the announcement of
a ‘TIP’ (time of increased probability of an event above
a given magnitude threshold) over the region of investi-
gation. The time series are updated every six months, and
a TIP extends for three years in the first instance.

A key feature of the analysis in [32,33] is that, in each
six-month interval, the values of the seven series are com-
bined by a non-linear formula (linear methods seem less
effective) into the value Un

1 of a ‘critical series’ which is
then used as the single precursor in a logistic regression
model. The non-linear formulamimics the structure of the
decision rules used in declaring a TIP.

The logistic regression analysis then provides the prob-
ability for the occurrence of an event over the specified
magnitude threshold within the region of investigation for
the current 6-monthly period. Much of the further discus-
sion in [32,33] is concerned with combining the outputs
from overlapping regions of investigation.

Note that the analysis is typical of that for a partial
model; a complete model for M8 would model the joint
distribution of the M8 series and the target events.

Example 2: Discrete-Time Poisson-Type Model
for ULF Electric Signals

In a discrete-time Poisson-type model, the number of
events Zn in the nth time interval is modeled as a Pois-
son variable with mean ��n that is treated as a function of
the past history in much the same way as the conditional
intensity in the continuous-time model. The likelihood ra-
tio against a constant mean Poisson process takes the form

log L/L0 D
NX

1

Zn log(��n /�) �
NX

1

(��n � �) : (17)
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The analogy with the point process form (10) is very obvi-
ous, particularly as the time intervals become small so that
with high probability the Zn are either 0 or 1.

The way in which ��n depends on the past can be very
general, subject only to the constraint ��n � 0. In particu-
lar, ��n can depend on prior observations both of the pro-
cess itself and of auxiliary (precursory) variables. If a linear
conditioning of the type (16) is required, the multiplicative
form

log
��n
�
D

KX

kD1

˛
(n)
k U (n)

k (18)

can be used, ensuring that �n is positive, and slotting into
the canonical form for the Poisson distribution as a further
member of the exponential family, so that the generalized
linear model procedures become available. However, the
form of the likelihood (17) is usually simple enough to be
maximized directly even in more general cases.

An example is the analysis of ULF (ultra low fre-
quency) electric field data in [144].

The ULF signal referred to here is made up of small
fluctuations in electric potential measured some meters
below the ground surface by sensitive and well shielded
electrodes. Its role as a precursor, and the physical expla-
nation of the phenomenon, if it exists, are still unclear. The
data analyzed in the paper cited come from some thirty
years of recordings from stations around Beijing in China.

Here the base-line (reference) model is a self-excit-
ing (Hawkes type) process in discrete time for the daily
earthquake numbers in a wider region around Beijing.
Such a model is needed as a reference model because it
takes into the inherent clustering effects of the earthquakes
themselves. Otherwise there is a temptation to interpret
(wrongly) all improvements over the constant rate Poisson
process as due to the signals and not to the inherent clus-
tering of the earthquakes. The regressands were the daily
readings of ULF anomalies at a set of some half-dozen
recording stations around Beijing, simplified to form 0-1
series of observations above a threshold. In fact the daily
numbers of earthquakes were small enough for the corre-
sponding continuous and discrete time models to be es-
sentially identical.

Two analyzes were carried out, first with a linear
Hawkes-type representation incorporating the effects of
past earthquakes alone (self-exciting model), none of the
ULF data being used, and second with a double (mutu-
ally exciting) linear Hawkes-type representation for the ef-
fects of both past earthquakes and ULF signals on the cur-
rent rate. Likelihood ratios were taken first with respect to
a constant rate Poisson process, optimizing parameters in

both cases, then (as a ratio of ratios) for the first and sec-
ond models against each other, to allow the improvement
due to adding in the information from the ULF signals to
be assessed.

In this study themodel was also tested in reversemode,
to see whether the earthquakes improved the likelihood
performance of a Hawkes-type model for the ULF signals
alone. The results were positive in the direct mode and
negative in the reverse mode. Either way, the models were
partial, not complete, as no attempt was made to provide
a joint model for the earthquakes and the ULF anomalies
together.

Discrete-time Poisson-type models are also used as the
basis for model testing within the RELM testing center in
Southern California [111]. The modeler supplies the Pois-
son rates �(n; r;m) not only for each time interval (n)
but also for each spatial bin (r) and magnitude bin (m).
The (approximative) assumption is then made that all the
Poisson variables relating to a given time interval are con-
ditionally independent given the current Poisson rates, so
that a likelihood ratio of the form (17) can still be used, and
made the basis of comparing different proposed models.

Example 3: Point Process Regression Models

As already hinted at, continuous time (point process) pro-
cedures can be developed along similar lines to those in the
previous example, if the past history includes information
on auxiliary (precursory) variables as well as the history of
the point process itself.

The form of such dependences can be very general, but
if a linear form is wanted it can be incorporated through
expressions of the form

log
�
�(t)/�0 (t)

�
D

KX

kD1

˛kUk(t) (19)

for the ratio of intensities, in a similar way to the multi-
plicative form for the discrete Poisson model. In the spe-
cial case that 0(t) corresponds to a renewal process, this is
the well-known Cox regression model [18]. A comprehen-
sive treatment of models of this kind, with mainly medical
and social science applications, is in [2].

Few examples of this type are known to us in the seis-
mological literature, and this may be one area with scope
for further development. For example, it is possible that
the time-predictablemodel could be reformulated as a Cox
regression model, by building in the dependence on the
size of the previous event as a regressand. The closest to
a model of this kind that already considered in this arti-
cle is perhaps the EEPAS model, where the events used in
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developing the conditional intensities are mainly smaller
than the events being modeled, and so could be described
as precursors. Thus the conditional intensity for the larger
events being modeled is regressed onto the magnitudes,
times and locations of the smaller events in the catalogue.
If the renormalization and immigration terms were omit-
ted, the conditional intensity (15) of the EEPAS model
would have a similar basic form to (19) above.

Example 4: Foreshocks

Foreshocks, with their potential for earthquake predic-
tion, have been of interest to seismologists since the days
of Omori and other earthquake pioneers. The hope that
increased quantity and quality of catalogue data would
lead to a more definitive picture of how, when and why
foreshocks occur has not yet been realized, however. Fea-
tures which would discriminate foreshocks from other
earthquakes or earthquake clusters have proved hard to
identify, although careful studies by Ogata and colleagues
(e. g. [90]) do suggest that limited opportunities for dis-
crimination may exist.

As precursors, foreshocks retain a specific but limited
role. Some degree of forecasting power is available sim-
ply from the fact that any newly-observed event, outside
those in clearly defined aftershock sequences, has the po-
tentiality of being a foreshock. Recent studies of foreshock
occurrence from this point of view are given (among oth-
ers) in [46] for Southern California, [96] for large global
events, [80] for New Zealand earthquakes.

The studies suggest that, leaving aside events in an ob-
vious aftershock sequence, between 5 and 10% of earth-
quakes with magnitudes 4 and over are likely to be fol-
lowed by a larger event within time and space windows
of the order of 4–5 days and 20–30 km radius respectively.
No very sophisticated stochastic model is required to de-
scribe such a feature: within the definedwindow, the prob-
ability that a larger event will occur is simply increased
from its background value to about 5%, and multiplied by
a standard GR factor to take into account magnitude vari-
ation; a further separate factor can be used to take into ac-
count sub-regional variations of foreshock probabilities.

In the last few decades foreshocks have been studied
from a more general point of view, as evidence or oth-
erwise of the self-similarity of earthquake occurrence. In
a branching model such as the ETAS model, no foreshock
feature is explicitly built into the model, but from among
a given parent’s offspring, one will occasionally appear
with a magnitude larger than that of its parent – with fre-
quencies again in the vicinity of 5%, approximately irre-
spective of the magnitude of the parent.

That just such an interpretation may apply also to real
earthquakes is suggested in [25]. Foreshocks then are not
a specific physical phenomenon, but just parent events
which happen to have offspring larger than themselves. An
interesting connection between the probability that an ini-
tial event is a foreshock (followed by a larger event as off-
spring), and the distribution of the Bath’s law magnitude
gap, is put forward in [25] and [38].

Further Topics

There are many further topics where stochastic modeling
ideas are relevant, even if they do not necessarily involve
the development and fitting of a full model. For exam-
ple, the last few decades have seen considerable work on
the development of procedures for producing and assess-
ing probability forecasts, and for quantitatively describing
spatial or space-time point patterns. In this section we list
what seem to us to be some of the more important top-
ics of this kind, space precluding more than very cursory
accounts.

Generating Probability Forecasts

There is no longer any very hard and fast line between pre-
dictions and probability forecasts. It has long been recog-
nized that any prediction of the time and place of a forth-
coming event must be accompanied by some statement of
the uncertainties in the prediction. But this, as discussed in
the introduction, is precisely the motivation for introduc-
ing stochastic models. Using such a model, the uncertain-
ties can be rephrased in terms of the probabilities of occur-
rence within specified time intervals and spatial regions,
i. e. by probability forecasts. In our view such probability
forecasts represent themost useful way of summarizing in-
formation about the uncertainties regarding future events.
In statistical jargon, they represent the ‘predictive distri-
butions’ for future events, and form the basis not only for
the probability forecasts themselves, but also for any asso-
ciated cost-benefit analyzes.

Even within a probabilistic framework, the idea that
precise, medium-termor even short-term forecasts may be
possible has looked increasingly like a pipe dream over the
last few decades. Nevertheless, it is not yet entirely ruled
out. While the emphasis in the last few decades has been
on increased surveillance, improved knowledge and un-
derstanding of long-term hazards, and the reduction of
risks from earthquake hazards, medium term (months to
years) probability forecasts are winning a new role as re-
finements of more traditional long-term, static hazards for
both building and insurance purposes. In addition very
short term forecasts play a useful role in connection with
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the progression of aftershock sequences, and in develop-
ing real-time warnings for trains, gas supplies, and other
facilities at high risk from a serious earthquake.

All of the models outlined in the previous sections can
be used to develop probability forecasts. Typically, such
forecasts are derived from simulations rather than from
analytical studies. For example, simulation schemes for
use with conditional intensity models are described, with
further references, in Chap. 7 of [20].

For complete models, forecasting schemes making use
of such procedures involve first fitting a model on all the
data up to the current time, then simulating the model as
far as is desired into the future, and using these simulations
to estimate any required probabilities or expected values as
in a Monte Carlo study.

Forecasts for partial models can proceed along similar
general lines, although in the first instance the dependence
on auxiliary variables restricts the probability forecasts to
just the next forecasting period. To obtain forecasts be-
yond this first step, and in the absence of any updated pre-
cursor data, it is necessary to develop a further set of 2-step
forecasts, using only the current precursor data, and so on
successively, the forecasts gradually reducing in power.

Assessing Probability Forecasts

Two main approaches to assessing probability forecasts
are through likelihoods and probability gains, and through
their performance in decision schemes based on the fore-
cast probability exceeding some threshold. Since most
procedures are reduced in practice to forecasts for finite
forecasting periods, we outline assessment procedures for
this case only.

The probability gain for each forecast (i. e. for each
time, time-space or other interval for which a probability
is forecast) is the ratio of the forecast probability for the
observed occurrence in that interval to the correspond-
ing probability from a standard reference model, such as
a simple or compound Poisson process, for that interval.

The sample averages of the log-probability-gains, or
entropy scores in the terminology of [34], over all or certain
classes of intervals or of observed outcomes, provide useful
insights into the performance of the forecasts. From them
one can quickly perceive the outcomes which the scheme
is forecasting well, and those which it is forecasting badly.

The overall average, or more properly the expected
value, of these entropy scores is called in [34] the infor-
mation gain relative to the reference model. In a complete
model, the information gain is a numerical characteristic
of the model, giving an upper bound for the improvement
in performance that can be expected for the proposed

model, relative to the reference model, when the proposed
model is the true model. In many cases it reduces to the
expected value of the mean likelihood ratio. For example,
if successive forecasts, derived from the use of a particular
model, give probabilities p�1 ; p

�
2 ; : : : ; p

�
N for the successive

observed outcomes, and p̄ is a constant probability used as
reference, then the sum

(1/N)
NX

1

log[p�n /p̄]

is the empirical entropy score for that model as well as
the mean log-likelihood ratio. It approximates the cor-
responding expected value (the information gain) if the
model used is the true model. If the true model is un-
known, as will usually be the case in practice, the above av-
erage approximates the difference in the Kullback–Leibler
distances between the given model and the true model,
and the reference model and the true model. For a set of
models, that giving the largest entropy score should be that
closest to the true model in the sense of Kullback–Leibler
distance. In a partial model, expectations cannot be taken
over values of the auxiliary variable, since its distribution
is not included in the model specification, but at least em-
pirical averages based on past observations can be devel-
oped. [34] gives further background and examples; the ba-
sic idea of using log-probabilities (i. e. loglikelihoods) as
an indicator of forecasting performance goes back at least
to [52].

We noted in Subsect. “Example 2: Discrete-Time Pois-
son-Type Model for ULF Electric Signals” that such com-
parisons of likelihood ratios form the basis of the assess-
ment procedures used in the RELM testing center for
probability forecasting schemes; see further [111].

The more traditional procedures for assessing proba-
bility forecasts suppose that the schemes are first turned
into prediction schemes by predicting that an event will
occur whenever the forecast probability of that event ex-
ceeds a certain threshold value. The results can then be put
into a 2 x 2 table (occurrences or non-occurrences, versus
predictions or non-predictions). If the entries in the table
are labeled as
(a) number of successful forecasts of occurrence,
(b) number of failures to predict,
(c) number of successful forecasts of non-occurrence,
(d) number of false alarms,
the commonly used R-score, orHanssen–Kuiper skill score,
can be defined as

R D
ac � bd

(a C b)(c C d)
D

a
aC b

�
d

c C d
D

c
c C d

�
b

aC b
:

(20)
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The R-score varies between �1 and +1, with 0 denoting
forecasts independent of outcomes, and the two extreme
values perfect non-prediction and perfect prediction, re-
spectively. [91] illustrates the use of the R-score to evalu-
ate Chinese yearly forecasts, even though these are based
on expert opinion rather than any probability model.

The usefulness of this approach was greatly extended
in [84,85], by allowing the threshold probability pc to vary
and calculating for each such value the ratios

�(pc) D
c

(a C c)

and

�(pc) D
(a C b)

(aC bC c C d)

The resulting � � � diagram, obtained by plotting
these quantities against each other, provides a comprehen-
sive summary of the behavior of the probability forecasting
scheme. The diagram typically consists of a convex (down-
wards) curve reducing to the diagonal joining the points
(0; 1) and (1; 0) in the case of purely random forecasts, and
to the two (0; 1) segments of the axes in the case of per-
fect prediction. It is essentially a Q-Q (quantile-quantile)
plot of the distribution of the proportion of time on trial,
and the the proportion of failures to predict. See the papers
quoted or [34] for further details.

It should be emphasized that the procedures described
are concerned with the scientific issues of assessing the
quality of proposed models rather than the practical is-
sues of issuing and using probability forecasts. The latter
raise just as many difficulties, if not more, than the for-
mer. Among these are the need to take into account errors
in the model as well as the uncertainties described by the
model itself, the need to develop decision-making frame-
works that can take advantage of the information within
probability forecasts, and the need to address the social,
political and economic consequences of issuing forecasts.

Change-Point Models

Change-point models are used retrospectively to identify
time-points at which a change occurs in quantities such as
a mean value or rate. They are not themselves precursors,
but are used rather to indicate the onset of a period which
is anomalous in some sense, and may therefore have some
precursory significance. In practice, one of the biggest dif-
ficulties in using such methods with seismicity data lies
not in identifying the change point, but determining the
region from which the data for the change-point analysis
should taken.

The procedure consists essentially of dividing an ob-
servation time period, say (0; t), into two segment (0; t1)
and (t1; t), and finding the value of t1 which maximizes
the discrepancy in the values of the quantity being stud-
ied. The value of this maximized discrepancy can then be
tested for significance using the null hypothesis that the
values in both periods are equal.

Such a change-point technique is developed in [86] to
detect the onset of precursory quiescence within a selected
observation region. The data is first fitted to the ETAS
model. The time axis is then transformed by the random
time transformation

� D

Z t

0
�(u)du

which has the effect of transforming the original point pro-
cess, with conditional intensity �(t), into a unit rate Pois-
son process (see, for example, Sect. 7.4 in [20]). If, how-
ever, there is a change in the parameters of the original
ETAS model, this will show up as a change in the rate
or other perturbation in the unit rate Poisson process, for
which many tests are available.

This technique can be applied both to background
events in a specified region (e. g. [140]), or to events within
the course of an aftershock sequence, anticipating the oc-
currence of a large aftershock (e. g. [77]).

Ogata, Toda and colleagues make use of similar but
more sophisticated procedures for identifying the regions
and onset times of stress-shadowing through careful mon-
itoring of activity of small events; see in particular [89,91].

A different type of change-point analysis has been de-
veloped by W. Smith for detecting changes in b-value. Al-
though one of the earliest possibilities suggested, the pre-
cursory role of b-value changes as a precursor has never
been unambiguously identified. Early papers such as [82]
or [109] suggested a link to physical features such as het-
erogeneity of the crustal material, or changing levels of
stress. The latter interpretation is at least partially sup-
ported by the branching and similar models for earth-
quake mechanism outlined in Sect. “Branching Models ”.

Smith’s approach is based on modifications of the
CUSUM procedure widely used in quality control contexts
for detecting departures from normal behavior in a pro-
duction process. They are essentially methods for detect-
ing a change in slope of cumulative occurrences or other
similar sums. For further details and reviews of earlier
work on b-value changes, see [117,118].

Finally, there is the possibility of a Bayesian approach
to change-point problems in seismology; some discussion
and an example are given in [94].



2574 E Earthquake Occurrence and Mechanisms, Stochastic Models for

Change point models are closely related to hidden
Markov models in which the rates and other characteristics
of the observed process change with the state of a Markov
process which is hidden or at best only partly observable.
Such models have been widely used in speech recognition
andmodeling of IT traffic (see, e. g. [72]). Their use in seis-
mology is relatively new (see [23] for a recent example) but
their potential seems worthy of further exploration.

Moment Measures and Correlation Functions

Moment structure plays an important role in most
stochastic processes, and the same is true for point pro-
cesses. The main attention is on second order or correla-
tion properties. Indeed, where distributions are more or
less Gaussian, the distinction between models and sec-
ond order properties is largely nominal, since a Gaussian
model is fully described by its means and covariances. The
same is not true for count data, for which the second order
properties form an important but not in general a defini-
tive aspect of the overall model structure, since a range of
different models can be developed to fit particular second
order characteristics.

Early papers in the seismological context include [16,
53,128]. There is also a considerable literature in astro-
physics, relating especially to the distribution of galaxies
and the role of 2-point, 3-point and higher order correla-
tion functions (e. g. [76]).

Second-order properties for point processes mean
properties of point-pairs. Their behavior is described
through the second moment measure, whose density
(when it exists) is given for x1 ¤ x2 by

m2(x1; x2)dx1dx2 D E[N(dx1)N(dx2)] :

Apart from a renormalization, this is also the 2-point cor-
relation function of [53]. It is also the basis of the covari-
ance measure, with density

c(x1; x2) D m2(x1; x2) � m1(x1)m1(x2) (x ¤ y) :

This also exists in various renormalized forms, for example
the radial correlation function defined, when the process is
isotropic, by

�(r) D dK(r)/dA(r)

where A(r) D �r2 is the area of a circle centered on an ar-
bitrary point of the process, and K(r) (often referred to as
‘Ripley’s K-function’) is the expected number of additional
points (i. e. apart from the point at the center) in the same
circle (see e. g. [22,104]).

In a general treatment, the coordinates x1; x2 may
combine both space and time components. The second
moment densities then give information about the ex-
pected density of occurrence of additional points at given
time or space intervals about a given point taken as ori-
gin. In this way they can display distance variations in the
strength of the clustering tendency.

The second order techniques are particularly valuable
when the process is stationary in time, so that spectral
methods can be used. In this situation the covariance mea-
sure becomes a function of time through the difference
t1 � t2 in the time coordinates of the two points being con-
sidered:

c2(x1; x2) D c2(t1 � t2; y1; y2) ;

where y1; y2 may represent locations or magnitudes. Tak-
ing Fourier transforms with respect to time leads to a spec-
tral density, multivariate if the dependence on space or
magnitude is retained, which can be used for the analy-
sis of periodic effects in point processes. [133] is an early
example of the spectral analysis of earthquake occurrence
data. More general discussions can be found in [13] or
Chap. 8 of [20].

Principal Component Analysis

Principal components are the names given to the eigenvec-
tors in the orthogonal decomposition of a model-derived
or empirical covariance matrix. Being symmetric and pos-
itive definite, the diagonal representation of such a ma-
trix has non-negative eigenvalues, which measure the pro-
portion of variation associated with the given eigenvector.
Thus the principal components associated with the largest
eigenvalues define those linear combinations of the ob-
servation vector components which explain the greatest
amount of variability.

In geophysical applications, notably in meteorology,
the observations typically arise as time sequences of obser-
vations from a set of recording stations. Each time point
gives a vector observation. The principal components as-
sociated with the largest eigenvalues then often describe
recognizable weather occurrence patterns, and are used as
a means for identifying and classifying such patterns.

This idea admits many specializations and extensions.
For stationary processes in time, for example, the covari-
ance matrix has a special structure (ci: j D ci� j) which for
infinite series, or a finite series with periodic structure,
causes the eigenvectors to reduce to complex exponen-
tials ei!r n . These periodic terms form the principal com-
ponents of the sequence, while the corresponding eigen-
values are amplitudes associated with the given frequen-
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cies. Thus standard spectral analysis can be interpreted as
a special form of principal component analysis. The so-
called Karhunen–Loeve theory (see e. g. [69]) is an exten-
sion to very general covariance operators admitting a di-
agonal decomposition.

Adaptations of these ideas for earthquake data have re-
cently been considered by Rundle, Tiampo and colleagues
(see e. g. [107,120]). Here the data is typically of point pro-
cess form (0-1 functions) on a sequence of observation re-
gions, centered either on a lattice of space or space-time
points, or on the centers of a family of small fault segments
over an interacting fault system. Their papers combine the
Karhunen–Loeve theory with ideas originating in dynam-
ical systems theory, and seek to extend the analysis to pro-
vide short or medium term probability forecasts.

Fractals and Fractal Dimensions

Many of the models so far considered show long-range de-
pendence, power-law distributions, and some form of self-
similarity (similar appearances on different scales). The
term ‘fractal’ is commonly used in this context, with a vari-
ety of interrelated interpretations. A wide-ranging review
of such properties for earthquakes is given in [121].

In the basic text [74] of Mandelbrot, fractals are intro-
duced as a class of geometric objects (sets) with features
which repeat on a family of reducing scales. The Cantor
set in one dimension and the snowflake curve in 2 dimen-
sions are well-known examples. Their characteristic fea-
ture is that the Hausdorff dimension of the fractal set may
differ from the dimension of the space in which it is em-
bedded. Thus the Cantor set has dimension log3(2) < 1
despite being embedded in a 1-dimensional space. As in
this example, these aberrant dimensions often have a non-
integer value, whence the name.

Various empirical procedures have been devised for
determining these fractional dimensions. For example, for
a set in 2 dimensions, we may count the proportion of cells
from a 2-dimensional lattice which have a non-empty in-
tersection with the set, and consider the behavior as the
cell size in the lattice approaches zero. Typically this results
in a log-log relation between number of affected cells and
the cell dimension, corresponding in fact to power-law be-
havior. Such methods can be applied also to physical sets
such as the traces of faults on the earth’s surface (see [121]
and [45] for examples). If a suitably linear portion of the
log-log plot can be found, the slope is used as an estimate
of their fractal dimension.

Because power-laws arise inevitably in the study of
fractal sets, the term fractal behavior has come to be used
loosely to describe the behavior of any probability distri-

bution for which

1 � F(x) D Pr(X > x) � cx�˛ ;

or even when power-law forms arise in features such as
time or space correlation functions.

A different fractal concept derives from the work of
Renyi [99]. Renyi’s dimension estimates (also called mul-
tifractal dimensions) reflect the irregularities of a measure
(distribution) rather than a set. Thus, if a probability dis-
tribution on a square is used as an example, and the square
is divided into a lattice of small squares�i each of side�,
we may consider the limit as�! 0 of the ratios

dq(�) D

"

log
X

i

p(�i )q
#
ı
log� (q ¤ 1) (21)

with

d1(�) D

"
X

i

p(�i ) log p(�i )

#
ı
log� : (22)

For each q, dq defines a multifractal dimension associated
with the distribution, and for varying q the family of such
dimensions defines a type of transform of the underlying
probability distribution.

The term multifractal is used because the distribu-
tion may exhibit different forms of singularity, associated
with different power-law behavior, at different points of
the space. In applications, for example in turbulence and
meteorology as well as seismology, the process is visual-
ized as a descending sequence of random eddies (‘random
cascades’) with dimensions shrinking to zero. It is in this
sense that Kagan [49] coined the phrase ‘frozen turbu-
lence’ to describe earthquake processes in the crust.

The computations in the equations above can be ap-
plied empirically to quantities such as the counts or the
energy release from earthquakes and used to estimate the
multifractal dimensions of some underlying spatial distri-
bution. For general discussions of multifractals, see [95]
and [31]; the latter gives an extended discussion of appli-
cations of the theory to earthquake data.

With count data, there is a link between the multifrac-
tal dimension dq for integer q and the q-point correlation
function. In particular d2 describes the growth rate of the
two-point correlation function for vanishingly small sepa-
rations; see [53,131].

Self-Similarity

Self-similarity is used in a broad sense to describe pro-
cesses in space or time where, much as in a fractal set, key
structural features are preserved on a descending sequence
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of scales. Plots of fault traces or epicenters do indeed sug-
gest such scale invariance properties.

In stochastic process theory, self-similarity (auto-
modeling) is used to denote a precisely defined property
of random processes or random measures. In particular,
a random measure �(A) defined on sets in the plane (or
other Euclidean space) is said to be self-similar, with sim-
ilarity index H, if a change of scale in the space can be
compensated for by a change of scale in the quantity be-
ing measured:

�(rA) DD r�H�(rA) ; r > 0 (23)

whereDD means the two sides have equal probability dis-
tributions.

Self-similar randommeasures of this form arise in tur-
bulence theory, seismology, finance, and elsewhere. In one
dimension, the concept can be reinterpreted as implying
that a stochastic process has self-similar increments. Brow-
nian and fractional Brownian motions both have incre-
ments of this type. However, the Brownian motions take
both positive and negative values, whereas any random
measures associated with earthquakes (for example, by
way of energy release) should be non-negative.

Thus the self-similar processes arising in seismology
have a rather special character, since they must be non-
negative as well as self-similar. The only known examples
are purely atomic random measures: �(A) is obtained by
summing the contributions (energies, for example) from
point-events in A.

One such example is well-known: the stable random
measures, which are characterized by a strong indepen-
dence property, and a power law distribution for event
sizes equivalent to a G-R relation for magnitudes. Super-
ficially, this example matches the earthquake data rather
well, but it fails to incorporate one key feature of earth-
quake occurrence: the lack of independence inherent in
earthquake clustering. Recently, however, it was shown
in [132] that it is possible to define a variant on the ETAS
model which combines self-similarity with a non-trivial
dependence (cluster) structure. It is not known at present
how wide this class of models may be.

Block-Slider and Related Mechanical Models

The mechanical models attempt to illuminate the pro-
cesses of earthquake occurrence by devising complex me-
chanical systems that will reproduce many observed fea-
tures of earthquake catalogs. The reason for including
a brief section on such models in the present article is that
one of their underlying purposes is to demonstrate that de-
terministic models of sufficient complexity can exhibit just

that random-appearing behavior that characterizes the ap-
pearance of earthquake data. Two important issues then
arise. The first is whether the mechanical models can be
matched closely enough to any real seismic system to pro-
duce forecasts similar to or better than those produced
by the stochastic models. The second is whether those
stochastic models currently fitted to earthquake catalogs
also provide good descriptions of the catalogs produced
by the mechanical models. Such studies may then suggest
ways in which the stochastic models themselves can be
improved.

In the pioneering article [14], the mechanical system
comprises a series of blocks, linearly connected by springs,
which are pulled over a rough plane. The resultant move-
ment is not smooth, but jerky, as the tension in one of
the springs builds up to the point where it overcomes the
frictional forces opposing motion and a slip occurs. Often
movement of one block will initiate movement in a whole
set of blocks.

The population of such movement sequences is then
compared to a population of earthquakes. Although
the motion of the system is entirely deterministic, an-
alytic solutions are too complex to obtain in explicit
form, and the behavior is irregular, with features of
(pseudo)randomness. In particular a crude form of GR law
generally results.

Many further mechanical models have been invented
and studied, both in the laboratory and via numerical so-
lution of the appropriate dynamical equations. Often the
masses of the blocks or the spring parameters are selected
at random from some plausible overall population. It is not
this randomness which is the cause of the random-looking
behavior, however, but rather the complexity of the move-
ments (trajectory) of any particular system of blocks and
springs or other similar elements.

One of the difficulties in matching such models to
particular fault systems is to match the initial conditions,
which are not easy to determine for real processes, even if
they can be reproduced in the artificial system. It is pre-
cisely the relative simplicity of the stochastic model, which
comes at the expense of describing many important physi-
cal details, which allows it to be fitted to catalogue data and
then used to produce rough probabilistic forecasts.

In [70], one of the relatively few studies to fit point
process models to the output from such mechanical sys-
tems, outputs were taken from the four different models
described in [6] (see also [10]) and fitted by the simple
stress release model. The four models illustrated different
patterns of behavior, varying from highly random behav-
ior with typical GR distributions, to regular, characteristic
earthquake behavior. After suitable adjustment of the fre-
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quency-magnitude law in the stress-release model, it was
found that the stress release model could be fitted to all
four versions, and used to describe the overall energy state
of the mechanical system; as such it operated as a crude
predictor of the next major event in the system.

Future Directions

There are many possible directions in which the applica-
tions of stochastic models in seismology could be extended
and deepened. The fundamental limitations in the past
have most commonly been limitations in data, and con-
sequent limitations in the physical understanding of the
processes. It has been the great improvement in data which
has allowed the development of better and more insightful
seismicity models in the last two decades; this tendency is
continuing strongly and may well lead to unexpected new
developments.

Two directions in particular appear to me to hold out
scope for further development of stochastic models for
earthquake occurrence. The first is related to the collec-
tion and integration of data on earth deformation. The
extensive data now becoming available from GPS mea-
surements have already led to new discoveries, for exam-
ple ‘slow earthquakes’ which relieve strain without being
registered on conventional seismometers. The underlying
problem is how to link the data on strain to data on seis-
micity. This is not easy, and is likely to require new ideas
on both the physical and statistical sides.

The second relates to the systematic collection and
evaluation of data on potential precursor events. Many of
the ideas initiated in the 1970’s have been abandoned, with
the result that for most potential phenomena there exists
no substantial body of data by which their effectiveness can
be adequately tested, or the underlying physical processes
modeled. Many controversial and so far inadequately ex-
plained phenomena fall into this category. They have the
potential to generate projects of interest and importance
from the physical as well as the hazard estimation view-
points. Unfortunately collecting and archiving such data
is a long-term process with uncertain future outcomes,
and therefore difficult to fund under current funding crite-
ria. The balance of scientific, public and even government
opinion may change, however, and further work in these
fields may be anticipated.

Fundamental work on earthquake mechanism – still
a largely unsolved problem – is also likely to attract atten-
tion during the next decades, and to require a combination
of physical and statistical modeling.

If these are rather long-term developments, there are
many smaller scale, more immediate problems that re-

quire further investigation. On the theoretical side, one
important issue is the development of improved models
and procedures for analyzing data with self-similar char-
acteristics. Another area where further research is needed,
particularly in subduction regions, is in the development
of better physical and statistical models for deep earth-
quakes, including their possible links to different forms of
activity (seismic, volcanic etc) closer to the surface.

The current interest in developing testing centers for
probability forecasting is likely to promote more strenuous
efforts to develop improved forecasting models, whether
based just on catalogue data, or allied with deformation
data, or with data on other precursory phenomena. Even
the existing models are capable of producing time-varying
forecasts which in principle could lead to significant re-
ductions in earthquake risk. The problem here is how to
realize these reductions in practice, for example through
improved insurance or disastermitigation activities. Many
questions arise, of an operations research as much as a sta-
tistical character, which warrant further study and effort.
The probability forecasts themselves, if they are to be use-
ful in such contexts, need to incorporate the uncertain-
ties in the underlying models and hence to take on a more
explicitly Bayesian character, and to be presented in such
a way that they can be related to the many additional fac-
tors that have to be borne in mind when making real-life
decisions.
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Glossary

Seismic moment The most fundamental measure of the
size of an earthquake. In the simplest situation it rep-
resents the moment of on of the couples of forces that
make up a dipolar source. In more general cases it is
a 3 by 3 symmetric tensor of elementary force couples.

Seismic radiation The seismic waves emitted by a seismic
source. For point sources these are spherical P and S
waves emitted by the point tensor source.

Seismic spectrum The absolute value of the Fourier
transform of the displacement field radiated by an
earthquake in the far field. For almost all earthquakes
it has a common shape: flat at low frequencies and de-
cays like the inverse squared power at high very high
values of frequency.

Corner frequency The low and high frequency asymp-
totes of the earthquake spectrum intersect at a char-
acteristic frequency, called the corner frequency. The
corner frequency scales with the size of the earthquake
measured by the seismic moment.

Radiated or seismic energy Total energy of the seismic
waves radiated by a seismic source. It can be computed
from the energy flow relatively far from the source of
the earthquake.

Apparent stress Originally defined as the product of seis-
mic efficiency times the average stress during earth-
quake slip. In practice, it is computed from the ratio of
radiated energy to moment release of the earthquake
multiplied by the shear modulus.

Energy release rate Amount of energy per unit surface
used to make a rupture advance by a unit distance.

Static stress drop The static change in shear traction be-
tween the sides of the fault occurs during an earth-
quake. In principle, it could be determined by mea-
suring stress before and after the earthquake. In prac-
tice stress drop is computed using very specific source
models, like a circular crack.

Dynamic stress drop The stress change in shear traction
as a function of time while the rupture is still grow-
ing. It can only be estimated from seismic records ob-
tained in the near field by elaborate inversion schemes.
The relation between static and dynamic stress drop
can only be estimated once the friction law between
the sides of the fault has been defined.

Definition of the Subject

Earthquake scaling laws provide some of the most basic
knowledge about seismic sources. Since the end of the
70s, a very successful model for earthquakes was devel-
oped by seismologists. In this model earthquakes are due
to rapid slip on pre-existing faults driven by steady load
due to plate motion and resisted by friction between the
fault walls. This model may be used to predict many of
the general properties of seismic radiation that can be de-
rived from a simple spectral shape of type omega-squared.
In this article I derive general expressions for energy, mo-
ment and stress in terms of measured spectral parameters.
The available data shows that earthquakes can be reduced
to a single family in terms of three parameters: moment,
corner frequency and radiated energy. Using specificmod-
els of rupture these three parameters can be reinterpreted
in terms of moment, size and stress drop. Although de-
tails differ between the models proposed by seismologists,
both seismic spectra and the wave-number spectra of slip
distributions can be explained with a simple circular crack
model. This does not mean that a circular crack is the best
earthquake model; it means that the ensemble average of
seismic sources has properties that are similar to those of
simple circular shear cracks. A direct result of scaling laws
is that total fracture energy must scale like radiated and
strain release energy, so that fracture energy should scale
with fault size as observed for many earthquakes and in
certain laboratory experiments.

Introduction

It has been 40 years since Aki [4] published his seminal pa-
per on the scaling law of earthquakes that established that
to first order seismic moment scales like the third power
of the fault size. This paper came just a year after Aki [3]
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made the very first measurement of seismic moment, the
torque of one of the couples that make up a basic source
mechanism. Not much later, in 1970, Brune introduced
a very simple source model and established a generaliza-
tion of Aki’s [4] spectral model of earthquakes that is now
known as the omega-squared model of earthquakes. Al-
most simultaneously, Kostrov [43], Savage [66], Sato and
Hirasawa [65] and Madariaga [46] developed models of
a circular faults. Radiation from a circular crack explained
well the omega-squared model. Digital data was not avail-
able at the time when these models were introduced. It
is nowadays an almost standard observatory practice to
study the scaling law, but as many recent studies have
shown, proper estimation of spectral parameters like mo-
ment and corner frequency and high frequency decay for
a large range of earthquake sizes is not trivial and it is often
difficult to obtain from a single instrument. In the 1990s
good quality digital data, both broad band seismograms
and accelerograms, became available not just from surface
instruments, but also from boreholes opening the way to
a new appraisal of the scaling law.

We will briefly review some of these observations and
we will try to establish general properties of earthquake ra-
diation based on the recent work by McGarr [53], Aber-
crombie and Rice [2], Ide et al. [35], Prieto et al. [59],
etc. Our purpose is not to review the very extensive lit-
erature on the determination of seismic source parame-
ters; most of those papers assume specific scaling laws like
circular cracks, Brune’s relation between corner frequency
and earthquake size, etc. Our purpose here is to derive
the scaling law from same basic physical concepts and to
test the validity of some common assumptions in seismol-
ogy. Because different authors are interested in certain spe-
cific aspects of earthquake sources, often the data from
different authors is hard to combine. Some authors use
the Brune’s [17] empirical model as a basis for the scaling
law; others use the radiation from quasidynamic circular
cracks as a model leading to substantial variations. Even
more serious differences come from data processing, some
authors using specific attenuation corrections in order to
correct for Earth’s Q, others use small events as empiri-
cal Green functions, etc. These corrections are very impor-
tant, but they are beyond our goal which is to try to extract
information about scaling and its inferences for earth-
quake physics. Two aspects will be particularly discussed:
how to make model independent estimates of source pa-
rameters and how to establish model independent scal-
ing laws. Some recent evidence indicates, for instance, that
stress change during earthquakes as measured by apparent
stress varies independently of Moment and size, so that
earthquakes are probably quantified by three indendent

parameters that need to be carefully chosen. The other
will be an aspect that is often overlooked in the literature:
Brune’s [17] model, as well as Madariaga’s [46] circular
crack modelmake very specific statements about the parti-
tion of seismic energy at the source. In particular, the scal-
ing law implies that fracture energy is not a constant but
that it scales with earthquake size in a manner that was
predicted on the basis of fracture dynamics [46]; friction
experiments by Ohnaka and Shen [56] and Ohnaka [55];
arguments about scaling byMcGarr and Fletcher [54], and
dynamic seismic source inversions [34,57].

Earthquakes and Seismic Radiation

It is now well established that earthquakes are due to fault-
ing and that the simplest way to measure them is to use the
seismic momentM0, introduced by Aki [3], and given by

M0 D � D S (1)

where � is the shear or rigidity modulus of the material
surrounding the fault, D is the mean value of the final slip
on the fault and S is the area of the fault rupture. M0 is
the moment of one of the couples that constitute a double
couple, the simplest possible model of a point-like earth-
quake. Radiation from a point double couple source has
been completely solved by seismologists and is thus the
natural starting point for the development of earthquake
scaling laws.

The far-field displacement uc radiated by a point dou-
ble couple source can be written in the following form:

uc (r; t) D
1

4��c3
1
R

eTc � Ṁ0 � eR(t � R/c) ; (2)

(see, e. g. [5]) where the subscript c stands for P or S waves,
i. e. c is either ˛, the P wave speed, or ˇ, the S wave speed;
� is the density; R is the distance of the observation point
from the source. eR is the radial unit vector in the direc-
tion of radiation. The unit vector ec is the polarization of
the wave, that is ec D eR for P waves, or eT the appropri-
ate transverse unit vector for SH or SV waves.M0(t) is the
moment tensor of the source, a symmetric tensor of or-
der three that describes the geometry and amplitude of the
seismic source (see [5] for details).

Very often in seismology it is assumed that the geom-
etry of the source can be separated from its time variation,
so that the moment tensor can be written in the simpler
form:

M0(t) D I0M0s(t) (3)

where I0 is a time-invariant tensor that describes the ori-
entation of the source, M0 is the scalar moment tensor of
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the source, and s(t) is the time variation of the moment,
the source time function determined by seismologists. In
the following we assume that s(t) is causal, i. e. it is zero up
to t D 0, and normalized so that
Z 1

0
s(t)dt D 1 :

Using (3) we can now write a simpler form of (2):

uc(r; t) D
1

4��c3
Rc

R
˝(t � R/c) : (4)

For P waves, uc is the radial component; for S waves, it
is the appropriate transverse component for SH or SV
waves. In (4) we have introduced the standard notation
˝(t) D M0ds(t)/dt for the source time function, the sig-
nal emitted by the source as seen in the far field. The term
Rc(�; �) is the radiation pattern, a function of the takeoff
direction of the ray from the source. In a spherical coor-
dinate system (R; �; �) centered at the source, the radia-
tion patterns are given by Aki and Richards [5]. We sim-
ply quote here the case of a so-called strike-slip earthquake
where the fault is vertical, normal to the y axis, and slip is
parallel to the x axis, so that only the Mxy D Myx compo-
nents of the moment tensor are different from zero. In this
case

RP D sin2 � sin 2� ;

RSV D
1
2
sin 2� sin 2� ;

RSH D sin � cos 2� :

On the z D 0 plane (� D �/2), there are no SV waves. On
the other hand, on this plane, the radiation patterns of P
and SH waves have typical quadrupole distributions pro-
portional to sin 2� and cos 2� respectively.

Spectral Domain Approach

At high frequencies, the signals radiated by earthquakes
may become quite complex because of multipathing, scat-
tering, etc., so that the actually observed seismogram u(t)
resembles the source time function ˝(t) only at long pe-
riods. It is usually verified that complexities in the wave
propagation affect much more the phase of seismic waves
than the spectral amplitudes in the Fourier transformed
domain. The spectral domain approach was introduced
by Aki [4], Wyss and Brune [73] and Brune [17]. Radia-
tion from a simple point moment-tensor source can be ob-
tained from (4) by Fourier transformation. Displacement
pulses radiated from a point moment tensor in the Fourier
transformed domain is then

uc(r; !) D
1

4��c3
Rc

R
˜̋ (!)e�i!R/c : (5)

Where ˜̋ (!) is the Fourier transform of the source time
function ˝(t). A well-known property of the Fourier
transform is that

lim
!!0

˜̋ (!) D M0 

Z 1

0
ṡ(t)dt DM0 (6)

so that the in the low-frequency limit of the source time
function spectrum approaches the scalar moment.

From the observation of many earthquake spectra,
and from the computation of magnitudes in different fre-
quency bands, Aki [4] and Brune [17] concluded that
the seismic spectra had a universal shape with a flat low
frequency asymptote given by (6), a certain characteris-
tic frequency called corner frequency by seismologists,
and a decay at high frequencies that tends asymptotically
to !�2. I will not repeat here the arguments that led to this
model: Aki [4] proposed this spectral shape in order to ex-
plain the differences in magnitude determined from seis-
mic waves of different frequencies. Brune’s [17] argument
was based on simple concepts about the high frequency
radiation and the amount of energy radiated by a seismic
event. The omega-squaredmodel has now been confirmed
by numerous observations and detailed studies of seismic
radiation. As an example, Fig. 1 shows the displacement
record of a M5 earthquake that occurred inside the Nazca
plate, 99 km under Santiago de Chile on 7 January 2003.
The spectrum shown at the bottom presents the typical
low frequency asymptote proportional to the seismic mo-
ment, and high frequency decay proportional to !�2. The
corner frequency is approximately 1.2Hz for this event.

In its simpler form the !�2 spectrum is [17]:

˜̋ (!) D
M0

1C !2/!2
0

(7)

where!0 is the corner frequency. Based on considerations
about the spectrum of random signals, Boatwright [12]
proposed the alternative model:

˜̋ (!) D
M0

�
1C !4/!4

0
�1/2 : (8)

In these simple omega-squared models, seismic sources
are characterized by only two independent scalar parame-
ters: the seismic momentM0 and the corner frequency !0.

Brune’s model (7) explains well the spectrum of S
waves, it describes also that of P waves, but the corner fre-
quencies are different for P and S. For a long time obser-
vations were not able to distinguish between the P and S
waves spectra. The fist clear observations of the corner fre-
quency ratio were made by Hanks [26]. Recent work by
Abercrombie and Rice [2], Prieto et al. [59], Ide et al. [35]
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Earthquake Scaling Laws, Figure 1
Example of a seismic signal and its spectrum. Recording at the PEL broad-band station of the GEOSCOPE network of aM D 5 interme-
diate depth earthquake. The event occurred inside the subducted Nazca plate under Santiago, Chile at 99 km depth. The top panel
shows the displacement, integrated from the broad band velocity record. The shear wave section used for computing the spectrum
is shown with arrows. The bottom panel shows the amplitude Fourier spectrum. The low frequency and high frequency trends are
indicated by the thick straight lines. The corner frequency is located at the intersection of the two asymptotes

has confirmed that P spectra have a higher corner fre-
quency than S waves and that very roughly

!P
0 Š 1:6!S

0 : (9)

This is very close to
p
3, the ratio of P to S wave speed. This

ratio is similar to that predicted for the quasi-dynamic cir-
cular crack model [46].

As mentioned earlier, not all earthquakes have dis-
placement spectra as simple as (7), but the omega-squared
model is a simple starting point for understanding seismic
radiation.

From (7), it is possible to compute the spectra pre-
dicted for ground velocity:

˜̋̇ (!) D
i!M0

1C !2/!2
0
: (10)

Ground velocity spectra are characterized by a peak sit-
uated roughly at the corner frequency !0. In actual
earthquake ground velocity spectra, this peak is usually

broadened and contains oscillations and secondary peaks,
but (10) is a good approximation to the spectra of ground
velocity for frequencies lower than a certain cut-off fre-
quency called fmax by Hanks [27], and is close to 6–7Hz in
many areas. At frequencies higher than fmax, attenuation,
propagation and scattering modify the velocity spectrum.

Seismic Energy Radiated
by Point Moment-Tensor Sources

In order to establish the most basic scaling relationship for
seismic sources we have to compute the energy radiated
by an omega-squared source like (8). This was actually the
way Brune originally calibrated his source time function
and Aki established the variation of corner frequency with
moment. Assuming that the source is embedded in a ho-
mogeneous medium, and that the observation point is suf-
ficiently far from the source, the energy flow per unit solid
angle, er is proportional to the square of the particle veloc-
ity vc (see [11,12,17,18,31]), so that the total flow per unit
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solid angle is:

ecr D �cR
2
Z 1

0
v2c (t)dt (11)

where �c is the P or S wave impedance, vc(t) is the ground
velocity and R is again the distance of the observation
point from the source. We can compute the radiated en-
ergy density replacing vc(t) by the time derivative of the
far field displacement (4), and get:

ecr D
1

16�2�c5
R2

c

Z 1

0
˙̋ 2(t)dt : (12)

As expected the energy flow per unit solid angle does not
depend on the distance from the source R. We can now
apply Parseval’s theorem to express the energy in terms of
the source spectral amplitude
Z 1

0
˙̋ 2(t)dt D

1
�

Z 1

0
!2 ˇ̌ ˜̋ (!)

ˇ̌2 d!

and compute the total radiated energy, Er, for each type of
wave. Integrating (12) over the angles � and � we get

Ec
r D

1
4�2�c5

hR2
ci

Z 1

0
!2 ˇ̌ ˜̋ (!)

ˇ̌2 d! (13)

where

hR2
ci D

1
4�

“

˝

R2
c(�; �) sin �d� d�

is the mean-squared radiation pattern. This expression for
the total radiated energy is very interesting because it does
not depend on any assumption about earthquake dynam-
ics, just on the shape of the spectra.

For the !-squared model (7) the integral over circular
frequency in (13) can be evaluated exactly to (�/4M2

0!
3
0),

so that the radiated energy is simply

Ec
r D

1
16�
hR2

ci
M2

0!
3
0

�c5
(14)

where we grouped in the last term all the dimensional
variables. Let us remark that the numerical factor 1/16�
depends on the particular model assumed for the spec-
trum near the corner frequency. Thus, for the Boatwright
model (8), the coefficient is slightly larger (

p
2/16�).

Since radiated energy and moment have the same di-
mensional units it is customary to rewrite this expression
in the non-dimensional form:

Ec
r

M0
D
hRci2

16�
M0

�

!3
0

c5
: (15)

Very often this expression is written in terms of fre-
quency f 0 instead of the circular frequency (!0 D 2� f0),
so that

ES
r

M0
D
�2hRci

2

2
M0

�

f 30
c5
: (16)

The average radiation patterns are well known, hRpi
2 D

4/15 and hRsi
2 D 6/15, see, e. g. Haskell [31], so that for S

waves most authors use the following expression to quan-
tify the ratio between the S wave radiated energy and the
seismic moment

ES
r

M0
D 1:9739

M0

�

f 30
ˇ3 : (17)

Where we used the definition of S wave speed (� D �ˇ2).
This non-dimensional relation makes no assumptions
about the rupture process at the source except that the
spectrum decays like !�2 at high frequencies. Note that
the numerical coefficient is smaller by a factor of four from
that computed by Singh and Ordaz [69]. The factor of four
seems to be a misprint.

Apparent Stress

A very important parameter of seismic sources that can
be computed independently of any particular source ge-
ometry is the apparent stress. Originally, apparent stress
was defined as the product of the seismic efficiency � by
the average stress � that acts across the fault during the
earthquake

�a D �� ;

efficiency �was in turn defined as the ratio between the ra-
diated energy Er and the total released energy W. Unfor-
tunately, neither W nor the average stress can be directly
inverted from seismic observations because seismic waves
have no information about the average stress that acts on
the fault. Wyss and Brune [73] proved that for uniform
average stress,W could be written as

W D
�

�
M0

so that apparent stress can be defined as

�a D
�ES

r
M0

:

This expression, originally derived for uniform average
stress has become one of the most useful measures of stress
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on seismic sources (see, e. g. [53]). Using the expression for
radiated energy (17) we get:

�a D
�ES

r
M0
D 1:9739M0

f 30
ˇ3 (18)

an expression that depends only on three measurable
quantities: total S wave radiated energy, seismic moment
and corner frequency. Because the energy flow can usually
be computed only for those directions where stations are
available, (18) can never be evaluated very accurately. This
problem still persists at present; in spite of the deployment
of increasingly denser instrumental networks, there will al-
ways be large areas of the focal sphere that remain outside
the domain of seismic observations because the waves in
those directions are refracted away from the station net-
works, energy is dissipated due to attenuation, etc.

Equation (18) shows that energy moment ratio is
a non-dimensional number that depends only on observ-
able quantities (Er;M0 and f0) and wave speed. No as-
sumption is made in Eq. (18) about particular models to
convert corner frequencies into source dimensions. Let us
finally remark that if � a is computed from the estimated
radiated energy Er, then the apparent stress may be con-
sidered as an independent parameter that may be used to
test the relation (18).

Time Domain Approach

In the previous section we approached seismic radiation
from the spectral point of view. An alternative way to un-
derstand radiation is to approach it from the time domain.
The obvious question is what is the time domain signal
associated with !�2 spectrum (17)? Brune [17] proposed
one of them:

˝(t) D M0!
2
0 te
�!0 t for t > 0 (19)

which is a causal function (i. e., it is zero for t < 0). It is
also normalized so that
Z 1

0
˝(t)dt D M0 :

The high frequency content for this function is controlled
by the slope discontinuity at the origin. This is however
only one of many functions sharing the same spectral am-
plitude described by (7) and (8), leaving sufficient freedom
for variations in the source time function shape.

Kanamori and Rivera [40] defined a function of finite
duration T, finite moment and minimum radiated energy.
They found such signal by solving a variational problem

for fixed signal duration T. The time signal is the parabola
defined by

˝(t) D
6M0

T3 t(T � t) (20)

for 0 < t < T and 0 elsewhere. The radiated energy for
this signal can be computed using the time domain expres-
sion (12). Using the integral

Iv D
Z 1

0
˙̋ 2(t)dt D

12
T3M

2
0

we can compute the total radiated energy as a function
of T. In order to write the energy in the same form as
the frequency domain expressions we determine the cor-
ner frequency from the Fourier transform of (20):

˜̋ (!) D
6M0

!3T3

h
(!T � 2i)C (!T C 2i)ei!T

i
: (21)

At low frequencies this expression tends to M0, as ex-
pected, while at high frequencies it behaves like

lim
!!1

˜̋ (!) D
12M0

!2T2

�
1C ei!T

�

2
:

So that its envelope decreases asymptotically as
12M0(!T)�2 that is, it has the same inverse omega-
squared behavior as Brune’s model (7). The corner fre-
quency for this signal computed from the intersection of
the asymptotes is !0 D

p
12/T . Inserting into (17) we get

the following energy moment ratio:

Ec
r

M0
D
hRci

2

4
p
12�

M0

�

!3
0
c5
: (22)

which has a numerical coefficient that is slightly larger
than that of (17). This is apparent contradiction to the
method used by Kanamori and Rivera, who derived (20)
from the condition that Er be a minimum for a given mo-
ment. The reason these two results are not contradictory is
that Brune’s signal has infinite duration and therefore the
variational principle posed by Kanamori and Rivera does
not apply to it. Thus the two expressions give very similar
answers, but clearly the signal (20) is not the only one that
minimizes radiated energy. It is interesting to observe that
all these signals decay like !�2 at high frequencies. The
reason is that high frequency radiation in these models is
controlled by the slope discontinuities in displacement. In
Brune’s signal (19) the slope discontinuity is at the origin,
while in (20) there are two slope discontinuities at the ori-
gin and at t D T .
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In conclusion, the radiation models proposed by seis-
mologists share the following properties: (1) the amplitude
is controlled by the seismic moment, (2) the displacement
spectrum decreases like !�2 at high frequencies, (3) the
spectral shape has a corner frequency f 0 and (4) the radi-
ated energy to moment ratio satisfies the relation

Ec
r

M0
D Cr

M0

�

f 30
c5
; (23)

where Cr is a numerical constant on the order of two. Its
consequences for energy balance are quite interesting as
we shall promptly discuss.

Earthquake Scaling Laws, Figure 2
Scaling of the displacement spectrum in the far field as illustrated by several spectra for different size earthquakes reported by Prieto
et al. [59]. Body wave spectra have the typical Brune [17] spectrum and can be collapsed into a single scaling figure by gliding the
corner frequencies along an!�3 line

Aki’s Scaling Law

From observation of seismic data most authors (for recent
data see, e. g., Abercrombie [1], Ide and Beroza [33] Ide et
al. [35], McGarr [53]). Abercrombie and Rice [2], Prieto
et al. [68] have concluded that apparent stress �a is almost
independent of moment for most earthquakes. If that is
correct, its immediate consequence is that moment scales
like the inverse third power of the corner frequency:

M0 / f�30 : (24)

If apparent stress is constant, seismic moment is inversely
proportional to the cube of the corner frequency. This result
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is independent of the particular sourcemodel used and can
be tested directly from seismic observations. Figure 2 from
Prieto et al. [59] illustrates this scaling law. On the left-
hand side a series of spectra for different size earthquakes
are shown. The corner frequencies align along a line with
slope !�3. Letting all the spectra glide along this line they
computed the spectra stack shown at the right-hand side.
The same properties are shared by P and S wave spectra.
The P wave corner frequencies are higher by a factor of 1.6
than, those of shear waves (9).

Originally, the scaling law (24) was proposed by
Aki [4] following a study of spectral data from several col-
located earthquakes of different magnitude. Comparing
their spectra, he concluded that corner frequencies scaled
with seismic moment like (24). This is the so-called scal-
ing law of seismic spectrum. This law has been tested by
numerous authors with increasingly reliable digital data.
Figure 3 shows an example derived from data published
by Ide et al. [35] and Abercrombie and Rice [2]. In this
Figure I plotted the corner frequency of S waves as mea-
sured by the authors as a function of seismic moment. The
moment vs. corner frequency plot clearly follows the trend
of Eq. (24). The fact that in Fig. 3 moment and corner fre-
quency scale like (24) is often taken as a proof that earth-
quakes scale with a single parameter: the seismic moment.
This is however not sufficient to prove scaling because seis-
mic sources require at least three independent parame-
ters for their quantification. It has been traditional to add
an additional model dependent relation in order to derive
length, time and stresses from (23). The most common as-
sumption is that the corner frequency is related to the ra-
dius of an equivalent circular crack using the frequency
radius relation proposed by Brune [17]. Some authors use
other similar relations derived from quasidynamic models
(e. g. [46,66]. With that assumption, corner frequency can
be converted into fault size and stress drop can be derived
from moment and source radius.

In order to test whether earthquakes scale with a single
parameter, it is necessary to obtain an additional objective
measure of seismic sources. The best current candidate
is the radiated energy of S waves defined by (13). Origi-
nally proposed by Boatwright [11,12,13], estimates of seis-
mic energy have become quite common but they are still
difficult to obtain as discussed by many authors includ-
ing Boatwright and Fletcher [15], Abercrombie [1], Mc-
Garr [53], Ide et al. [32] Singh and Ordaz [69], etc. In the
following I will test the scaling law of earthquakes by com-
puting the non dimensional ratio Cr D �Erˇ3/(M0 f 30 )
from published data.

In Fig. 4 I test expression (18) for the data studied
by Ide et al. [35] and Abercrombie and Rice [2]. The fig-

Earthquake Scaling Laws, Figure 3
Self-similarity of earthquake spectra. The figure includes data
from two different studies by Ide et al. [32] and by Abercrombie
and Rice [2]. These authors measured all the quantities needed
for testing the energy/moment scaling relation (23). The line la-
beledM0 Š f�3

0 indicates the trend of variation of moment with
corner frequency predicted by Aki’s scaling law

Earthquake Scaling Laws, Figure 4
The nondimensional coefficient Cr defined by expression (23)
plotted as a function of seismic moment. Data from Abercrom-
bie [2] and Ide et al. [32]. The non dimensional coefficient pre-
dicted by Brune’s spectral model should be equal to 1.9739 as
indicated by the horizontal line. Actually it varies over almost
two orders of magnitude in this data set. This may be due to er-
rors in themeasurement of radiated energy, moment and corner
frequencies or it may reflect an important departure from single
parameter scaling of seismic sources

ure plots the non dimensional ratio Cr D �Erˇ3/M0 f 30
as a function of seismic moment. According to (23), for
strict scaling of seismic sources with a single parameter,
this non-dimensional ratio should be a constant, indepen-
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Earthquake Scaling Laws, Figure 5
Energy moment ratio as a function of moment for 14 orders of magnitude of moment. This figure is inspired on similar plots by
McGarr [53] and Ide and Beroza [33]. We used data from Jost et al. [36], Mayeda and Walker [52], Kanamori et al. [41], Ide et al. [35]
and Abercrombie and Rice [2]. The data of Jost et al. [36] was not corrected for attenuation as suggested by Ide and Beroza [33]. At
this scale it is obvious that moment is the most broadly variable parameter, but there is also a large spread of apparent stress, over
at least three orders of magnitude

dent of the seismic moment. Figure 4 shows that there is
substantial scattering of the values of the non-dimensional
ratio. There are many reasons for this variation; the most
obvious one is experimental error due to uncorrected path
or site effects, like attenuation, scattering and site amplifi-
cation. I believe that even if those errors were corrected
there would remain some variation due to source com-
plexity that is not fully explained by the assumption that
all earthquakes scale with a single parameter. In the litera-
ture authors generally assume that the scaling law applies
and proceed to compute model-dependent quantities like
static or dynamic stress drop using very specific models of
rupture (see also p. 36 in [10]).

Clearly moment, energy/moment ratio and apparent
stress are broadly distributed. This is illustrated in Fig. 5,
inspired by previous figures of the same kind by Mc-
Garr [53] and Ide and Beroza [33]. Themain difference be-
tween the results reported by these two authors is that Ide
and Beroza [33] introduced a correction for attenuation at
high frequencies. The figure shows the energy/moment ra-
tio as a function of moment over 15 orders of magnitude
of seismicmoment. The sources of data [2,35,36,41,52] are
not the same as those used by McGarr [53] and Ide and
Beroza [33], because not all the data they used is published.
I did not include small mine earthquakes from South
Africa because it is not clear whether those events are due
to frictional slip of pre-existing surfaces (see, e. g. [63]).
For such a broad range of moments, the variation in en-
ergy-moment ratio is bounded, but it ranges over close to
three orders of magnitude. It is clear that for the group
of earthquakes reported in Fig. 5, apparent stress changes

were important and deserve further work. This is not com-
pletely unexpected: a multitude of observations point out
that stresses in the seismic zones are highly variable as well
as the geometry of faulting.

Earthquake Fault Models:
The Scaling of Geometry and Stress

The previous discussion focused on the properties of seis-
mic radiation from moment tensor sources and the time
and frequency dependence of the moment rate function.
Actually, the Brune spectrum and Aki’s scaling law can
be retrieved from seismic waves without any reference to
a particular fault model. In order to understand how the
moment is related to source dimensions and the origin
of omega-squared radiation, we have to introduce a spe-
cific fault model. We will proceed in two steps: first we will
study a simple source model that explains most of the ob-
servations and, in a second step, we will discuss how this
model can be generalized.

A fault is defined as a rupture in the earth crust with
a relative displacement of its two sides. The relative dis-
placement between the two sides of the fault (or fault slip)
will be denoted by D(x; t), a vector function of position on
the fault (x) and time (t). Thus, in general, D may vary in
amplitude and direction over the fault plane and at each
point is a function of time. The scalar seismic moment of
an earthquake defined in (1) depends on source area and
slip on the fault. It is essentially a static measurement of
earthquake size. Corner frequency, on the other hand, is
a measure of the duration of the earthquake signal which
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is controlled by the time it takes for the rupture front to
propagate across the fault. Thus, corner frequencies de-
pend clearly on fault size, but one can expect this relation
to be complex and very dependent on the details of the
rupture process. This is often ignored in practical work,
and simple source models are adopted in order to express
the scaling law (23) in terms of source dimension. The ar-
gument in favor of this approach is that in order to build
scaling laws that extend over several orders of magnitude
of moment wemay ignore the details of slip and geometry.
Let us start by studying a simple circular crack, probably
the simplest realistic fault model one can consider.

In a simplified model of fracture, the relative slip D
of the two sides of a fault is produced by the relax-
ation of the shear stress transmitted across the fault. Shear
stress changes with time due to the slow motion of plates,
orogeny and a number of other processes that transfer
stresses in the Earth’s crust. When shear stress exceeds the
strength of the material or the friction that maintains the
fault locked, slip on the fault starts and, simultaneously,
shear stress relaxes to a lower value until all motion on the
fault ceases. This process is obviously very complex; de-
tailed studies of even the simplest models of faulting show
that stress relaxation at any point on the fault is complex
function of not just local stress release on the fault but of
other slipping points and of wave propagation on the fault.
Solving such a complex problem is only worth the effort
for very special, very well recorded events. For most other
earthquakes we want to make global estimates of stress re-
laxation, and related them to the simple spectral model we
studied in the previous section.

Let the shear stress acting on the fault plane before and
after the occurrence of an earthquake be T0 and Tf, respec-
tively. We define stress drop
� , as the difference


� D T0 � Tf : (25)

The stress drop represents the part of the acting stress
which is used to produce the slip of the fault so that 
�
is related to slip D. The relation between stress drop and
slip will be in general very complex: it will depend on the
geometry of the fault, but also on certain fundamental as-
sumptions about the stress field in the earth. In general,
stress will be much more heterogeneous than slip because,
at least in the static case, stress is a generalized deriva-
tive of stress. We will discuss these properties briefly in
Sect. “Earthquake Dynamics and the Scaling of Energy”.
We will assume here that the stress distribution has to
be such that a finite amount of energy is released dur-
ing faulting. This assumption is the basis of fracture me-
chanics, leading to the condition that stress may have at
most inverse square root singularities on the fault surface

(see, e. g. [22,45,60]). In the early work on faults, many au-
thors assumed that earthquakes were due to dislocations,
slip distributions that present slip discontinuities at their
borders. The best known example of such model is the
Haskell [30] rectangular dislocation model. This model
produces non-integrable stress concentrations around the
edges of the fault that store an infinite amount of strain en-
ergy [48]. Thus, even if this model radiates a finite amount
of energy it can not be used to estimate energy balance
during seismic rupture. This paradox was well known in
mechanics, where dislocations and cracks are treated as
very different phenomena.

The Static Circular Crack

A simple model that may be used to explain many of the
scaling laws observed in earthquake seismology is that of
a static circular (“penny shaped”) crack of radius a lying on
the x; y plane. We assume that the fault is loaded by a uni-
form initial shear stress T0, and that Tf, the final stress,
is also uniform inside the fault. The slip on the fault pro-
duced by a constant static stress drop 
� inside a circular
crack was computed by Eshelby [20] and Keilis-Borok [42]

D(r) D
24
7�


�

�

p
a2 � r2 ; (26)

where r is the radial distance from the center of the crack
on the (x; y) plane, a is the radius of the crack, and � is
the elastic rigidity of the medium surrounding the crack.
Slip has the typical elliptical shape associated with cracks.
The distribution of slip and the stress change for a circular
crack are schematically shown in Fig. 6. Using the defini-
tion of the seismicmoment (1) we can determine the scalar
seismic moment for this circular fault:

M0 D
16
7

�a3 (27)

so that the moment is the product of the stress drop times
the cube of the fault size. This simple relation will be used
to explain the seismic scaling law in terms of fault radius
and stress drop. Other fault geometries produce somewhat
different scaling laws, including products of fault length
and fault width. Unfortunately, as far as I know, no other
geometry can be solved in such a simple closed form as the
circular crack.

We can also compute the static strain energy change in
the elastic medium surrounding the circular fault. This is
defined as


W D
1
2

Z

S

�DdS : (28)



Earthquake Scaling Laws E 2591

Earthquake Scaling Laws, Figure 6
The simple static circular crack. The upper panel shows the slip
distribution as a function of radius. The bottom panel shows the
stress change produced by the slip at the top

From simple thermodynamic considerations, 
W should
be negative so that stress drop and slip should have op-
posite signs. For the circular crack this can be easily com-
puted replacing the slip distribution (26) in this integral.
Integrating, we find


W D
8
7

�2

�
a3 (29)

where we have omitted the negative sign, so that 
W
should be interpreted as the reduction of strain energy
from the elastic body caused by the earthquake. Divid-
ing (27) into (29) we find that the strain energy to moment
ratio for the circular crack is just.


W
M0
D

1
2

�

�
: (30)

In the very early studies of seismic rupture it was some-
times assumed that radiated energy was equal to strain en-
ergy change, i. e 
W D Er. In that case apparent stress
�˛1/2
� his assumption is sometimes referred to as the
Orowan [58] model. This model is very unlikely to hold
for real earthquakes: if all the available energy were radi-
ated, there would be no energy left for producing rupture
propagation and consequently rupture should propagate
exactly at the P wave or the S wave speeds or should stop
immediately in front of any obstacle (see [21,44]).

The circular crackmodel has been used to quantify nu-
merous earthquakes for which the moment was estimated
from the amplitude of seismicwaves, and the source radius
was estimated from corner frequencies, surface deforma-
tion, etc. The result is that for shallow earthquakes in the
seismogenic zones like the SanAndreas Fault, or the North
Anatolian Fault in Turkey, average stress drops are of the
order of 1–10MPa. For deeper events in subduction zones,
stress drops can reach several tens of MPa. Thus, average
stresses do not vary much, compared to the variation of
moment over more than 15 orders of magnitude.

Brune’s [17] Model of Seismic Radiation

Brune developed amodel of seismic radiation based on the
observation that seismic spectra had the omega-squared
spectral shape (7). Brune [17] proposed a model only for
shear waves; although, as we already mentioned, P waves
have a similar spectral shape with a corner frequency that
is different from that of S waves. In his 1970 paper pro-
posed also a relation between the corner frequency f 0 and
the source radius a of a circular fault:

f0 D 0:3724
ˇ

a
: (31)

That is, the corner frequency is inversely proportional to
the size of the fault. The origin of the coefficient 0.3724 that
appears in (31) is very important because it has major con-
sequences for the partitioning of elastic energy. Although
the steps followed by Brune were different, we can obtain
his results in the following way.

Replacing the expression for moment of a circular
crack (27) into the expression for energy moment ra-
tio (17) we get

ES
r

M0
D 4:5118


�

�

a3 f 30
ˇ3 (32)

inserting Brune’s expression for the corner frequency (31)
into (32) we get the apparent stress

�a D
�ES

r
M0
D 0:2331
� : (33)

So that apparent stress drop in Brune’s model is propor-
tional to the static stress drop 
� . This result, derived
by Singh and Ordaz [69], has a very interesting conse-
quence for the energy balance in earthquakes. Indeed, in-
serting the relation (30) between moment and strain en-
ergy change during an earthquake into (34), we get

ES
r D 0:466
W : (34)
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Earthquake Scaling Laws, Figure 7
Apparent stress versus stress drop for the data reported by Ide
et al. [32] and Abercrombie and Rice [2]. This figure suggests
that apparent stresses computed directly from radiated energy
and moment are not independent of stress drop computed for
a static circular crackmodel

That is Brune’s model makes the implicit assumption that
the energy radiated in the form of S waves is 46.6% of the
available strain energy. This was computed by Brune [17];
he found that S waves carried 44% of the available energy
in his Equation (40). The number cited here, 46.6% is due
to Brune’s [18] correction of (31). I think that this is a very
important consequence of the corner frequency source
radius relationship (31), that is not often cited in the
literature.

We can now test whether stress drops computed using
the static circular crack model produces are or not inde-
pendent of the apparent stresses computed from the en-
ergy moment ratio Er/M0.

In Fig. 7 we plot the ratio of apparent stress to stress
drop for the data of Ide et al. [35] and Abercrombie and
Rice [2]. The relation is roughly linear but the ratio is not
well defined, although it is clearly less than 1 for most of
the events.

Earthquake Dynamics and the Scaling of Energy

Earthquakes are dynamic processes in which rupture
propagates under the control of friction that acts between
the two sides of the fault as they slip. The study of the
friction law that actually operates on seismic faults is
a major problem in seismology and fracture mechanics.
Laboratory experiments, seismic observations and field
studies are needed to solve this complex problem. In
this section we will attempt to establish some general

properties of seismic sources without getting involved
with fine details about friction and rupture propagation
(see the contribution by Ampuero in the present volume
for a fuller discussion). The main question in this con-
text is: can we establish some general properties of seis-
mic ruptures that are independent of the details of fric-
tion? Do the observations of seismic spectra and scal-
ing laws constrain in any way the overall properties of
seismic sources? This approach has been taken in recent
years by many authors, some have tried to convert slip
models inverted from near field seismic observations to
determine energy balance [16,34]; others have tried to
do the same by remarking that dynamic ruptures only
propagate at reasonable rupture speeds for a very lim-
ited range of seismic parameters [57]; or, very recently,
have tried to derive general properties of the friction
law from the scaling of seismic spectra [2]. We will fol-
low the latter approach because I believe that it is very
promising.

The Dynamic Circular Crack Model

Perhaps, the simplest fault model that can be imagined
is a circular crack that grows from a point at a constant
or variable rupture speed and then stops at the rim of
the fault, arrested by the presence of unbreakable barriers.
This model is the natural dynamic equivalent to the static
circular crack discussed in the previous section. The cir-
cular crack problem is posed in terms of stresses not of
slip, but the rupture process is fixed in advance so that
rupture does not develop spontaneously. This is the only
unrealistic feature of this model, hence it is considered as
quasidynamic, that is, rupture is kinematically defined, but
slip is computed solving the elastodynamic equations. This
model was carefully studied by a number of authors in the
1970s [43,46,47,62,65].

Let us consider a rupture that starts form a point and
then spreads self-similarly at constant rupture speed vr
without ever stopping. Slip on this model is driven by
stress drop inside the fault. The solution of this prob-
lem is somewhat difficult to obtain because it requires
very advanced use of self-similar solutions to the wave
equation and its complete solution for displacements and
stresses must be computed using the Cagniard de Hoop
method [62]. Fortunately, the solution for slip across the
fault found by Kostrov [43] is surprisingly simple. Slip in
the circular fault is parallel to the direction of stress drop
on the fault and it has the typical elliptical shape:

D(r; t) D C(vr)

�

�

q
v2r t2 � r2 (35)
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where r is the radius in a cylindrical coordinate system
centered on the point of rupture initiation. vr t is the in-
stantaneous radius of the rupture at time t. 
� is the dy-
namic stress drop assumed to be constant inside the rup-
ture zone, � is the elastic rigidity, and C(vr) is a slowly
varying function of the rupture velocity vr. For most prac-
tical purposes C � 1. This simple solution constitutes
a key result containing one of the most important prop-
erties of circular cracks. Slip inside the fault scales with the
ratio of stress drop over rigidity times the instantaneous
radius of the fault. As rupture develops, slip increases with
the size of the rupture zone.

Energy Release Rate for a Dynamic Circular Crack

We can determine the energy release rate for Kostrov’s
model (35) from the behavior of stresses near the edge of
the crack. At time t, the fault radius is r D vr t, the slip ve-
locity field derived from (35) has the form

V(r; t) D C(vr)

�

�

v2r tp
v2r t2 � r2

(36)

so that, near the rupture front, the velocity field presents
the well known inverse-squared root singularity predicted
by dynamic crack theory [22,45]. We can then approxi-
mate the singularity in slip rate in the general form

V(r; t) D
Vd
p
2�

1
p
vr t � r

(37)

where Vd is the velocity intensity factor, a measure of the
amplitude of the square root singularity in slip velocity
that moves with the rupture front. This velocity singularity
is associated with a dynamic stress concentration ahead of
the rupture front


�(r; t) D
Kd
p
2�

1
p
r � vr t

(38)

which is also of the inverse square root type. Kd is the dy-
namic stress intensity factor. The amplitudes Vd and Kd
are linearly related to each other with a coefficient that
is different for fracture modes II and III. Avoiding details
that are discussed by Freund [22], we can write

Vd D a(vr)
Kd

�
vr (39)

where a(vr) is a coefficient that depends on the instanta-
neous rupture velocity vr.

We can compute the energy release rate near the bor-
der of the fault directly from these expressions, using sev-
eral results from Kostrov [43] and Madariaga [47]:

Gc(vr) D
KdVd
vr
D a(vr)

K2
d

2�
; (40)

Earthquake Scaling Laws, Figure 8
The g(vr) function of rupture velocity. This function controls the
fraction of strain energy that is used as fracture energy in a quasi-
dynamic circular shear crack that ruptures at a constant rupture
speed

that is, the energy release rate Gc near the crack front is
proportional to the square of the dynamic stress intensity
factor. Since the dynamic stress intensity factorKd tends to
zero at high rupture speeds, the energy release rate Gc also
decreases at high speed rates. Thus, the faster the rupture,
the less energy is spent in making the rupture advance.

For the circular crack, the energy release rate is not
uniform around the perimeter of the circular fault because
it is different in mode II (in-plane) and mode III (anti-
plane). From results by Madariaga [46] we get for a cir-
cular crack

Gc(vr; r) D
g(vr)
3


�2

�
r : (41)

Where g(vr) is a monotonically decreasing function of
rupture speed shown in Fig. 8. An exact expression for
g(vr) was proposed by Madariaga [46], but his Eq. (30)
contains a misprint that was corrected by Ide [32].

The Scaling of Energy Release Rate
with Earthquake Size

We can now estimate the energy used for the propaga-
tion of the seismic rupture using the previous estimate for
Brune’s [17] model (34). We can establish the following
global energy balance for an earthquake that is well mod-
eled by Brune calibration of the shear wave spectra.

As rupture propagates, strain energy released by fault-
ing 
W is used in part to produce seismic waves, and in
part to make fracture advance (measured by the energy re-
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lease rate Gc). Assuming that Gc is constant over the fault
surface we find the following earthquake energy balance


W D Er C GcS (42)

where S is the area of the fault. In order to estimate Gc ,
we need to estimate the total radiated energy Er. Brune’s
model is only suitable to compute S wave radiated en-
ergy which as shown by Eq. (34) is 46.6% of the available
strain energy. Energy transported by P waves can be com-
puted using either theoretical arguments or observations
of P to S energy rations. This question was examined by
Boatwright and Fletcher [15] who concluded that, theo-
retically at least, a crack-like source should produce about
15 times more energy carried by S waves than P wave en-
ergy. This number is confirmed by observations reported
by Abercrombie and Rice [2], Prieto et al. [59]. We can
thus estimate that radiated energy in the Brune model is
roughly 50% of the strain energy released by the earth-
quake; the other 50% goes into rupture work, i. e.

GcS �
1
2

W : (43)

Using the expression (29) for
W we get

Gc �
1
2

W
�a2

D
4
7�


�2

�
a : (44)

That is, if we adopt Brune’s model, energy release rate
scales with fault size.

In the previous calculation we assumed that Gc was
uniform inside the fault. A better assumption would be
that, as the rupture propagates, Gc grows with the radius
as in the simple quasi-dynamic model of Madariaga [46],

Gc(r) D

�2

3�
r g(vr) (45)

where g(vr) will be determined for Brune’s model. The to-
tal energy release during rupture is then
Z

S
Gc (r)dS D

2�
9

�2

�
g(vr)a3 :

Using (43) again we get

g(vr) D
18
7�
D 0:818 : (46)

Thus, Brune’s model is equivalent to a circular quasidy-
namic shear crack propagating such that the energy release
rate grows with fault radius like

Gc D
6
7�


�2

�
r :

Thus, whether we use a constant energy release rate on the
fault (44), or a more realistic model where energy release
grows with the radius of the fault, we find that energy re-
lease rate grows with fault radius in Brune’s model. This
result confirms that energy release rate scales with the fault
radius and that it adjusts as the fault grows [55,56].

The relation between energy release rate and fault size
was studied by Abercrombie and Rice [2] using their own
data and data from a number of previous studies. They
reached the conclusion that Gc grows with radius roughly
like r0:4, not like the radius as in (41) and (47). Abercrom-
bie and Rice estimated Gc from the expression

Gc D
1
2
(
� � �a)D

whereD is slip. This expression is entirely compatible with
ours, so that the reason Gc scales with the power 0.4 of the
radius is that stress drops scale with earthquake size, spe-
cially if
� is not linearly related to � a as shown in Fig. 7.
After checking Fig. 8 of Abercrombie and Rice [2], I con-
clude that they obtained scaling with a power of 0.4 using
the full data set, including much larger earthquakes. For
the Cajon pass earthquakes studied by Abercrombie and
Rice the power of radius in scaling is much closer to one.
Seismic data have now reached the quality necessary to test
different hypothesis about the scaling of rupture energy in
order to see whether larger earthquakes are really different
from smaller ones.

Scaling of Energy, Magnitude andMoment

Kanamori [38] introduced the so-called moment magni-
tude, Mw, assuming that all available strain energy was
converted into seismic waves, i. e. that Er � 
W . This as-
sumption means that no energy is used to propagate frac-
ture so that Gc D 0. Using the definition of strain energy
change, (28), we get Kanks and Kanamori [28]:

Er D
1
2

�DS ; (47)

where D is the average slip of the earthquake and S its
source area.

This expression shows that from the radiated energy
we only have information about the stress drop, not about
the absolute stress level acting on the fault during faulting.
Rewriting expression (27)

M0 D
16

7�3/2
�S
3/2 (48)
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and taking logarithms

logM0 D
3
2
log S C log

�
16
�
7�3/2

�
: (49)

From this equation it follows that, for constant stress drop
scaling, log S should be proportional to 2/3 logM0. This
hypothesis had been shown empirically to be valid for
a large range of values of M0 [39]. We noticed however
that more recent data (Fig. 6) shows that stress drop varies
over 3 orders of magnitudes, at least in the data reported
by Ide and Beroza [33].

Assuming constant stress drop, Kanamori [38] defined
the moment magnitude Mw based on the empirical re-
lation of Gutenberg and Richter [23,24] between surface
wave magnitude and seismic energy (in Joules): log Er D
1:5MSC 4:8. Hanks and Kanamori [28] proposed the mo-
ment magnitude scale

MW D
2
3
logM0 � 6:07 (50)

where M0 is measured in Nm. The moment magnitude
has become the standard way to measure the size of earth-
quakes. Both Mw and seismic moment M0 (Nm) can be
related to other magnitude measurements by a number of
empirical relations. (see, e. g. [39]).

Radiated seismic energy can not be computed directly
from (47) because it needs to be corrected for the part
of the strain energy that is used to propagate the fracture
(see, (42)).

More General Scaling Relations
Derived from the Scaling Law of Earthquake Spectra

In the two previous sections several scaling relations have
been established which relate the parameters involved in
the fracture process of earthquakes. It has been shown
that slips and slip velocities scale linearly with stress
drop, which is the most fundamental scaling parameter
(pp. 202–211 in [67]). If the average stress drop measured
over the whole fault plane is roughly constant for all earth-
quakes, the slip on the fault should scale with the dimen-
sions of the fault (L) which for small earthquakes repre-
sents the length (L) or radius of the fault and for large
earthquakes the width (W). An unsolved issue, due mostly
to lack of data for very long strike slip earthquakes, is
that of a possible difference in the scaling of the seismic
moment with fault length, between large and small earth-
quakes. Strike slip earthquakes with seismic moment less
than 1021 Nm (Mw < 8) should scale with L3, while larger
ones with L2.

Many other relations can be established starting from
the basic scaling laws discussed earlier in this chapter.
For instance, maximum and average slip for earthquakes
scale like the cubic root of moment for most earth-
quakes [53,54], but these scaling relations can be derived
from the basic relations discussed earlier.

More Realistic Radiation Model

In reality earthquakes occur in a complex medium that
is usually heterogeneous and dissipative. Seismic waves
become diffracted, reflected, and in general suffer from
multipathing in those structures. Accurate seismic mod-
eling would require perfect knowledge of Earth’s struc-
ture. It is well known and understood that structural
complexities dominate signals at certain frequency bands.
For this reason the simple model presented here can
be used to understand the main features of earthquakes
at long wavelengths, while the more sophisticated ap-
proaches that attempt to model every detail of the wave
form are reserved only for more advanced studies. Here,
like in many other areas of geophysics, a balance be-
tween simplicity and concepts must be kept against nu-
merical complexity that may not always be warranted by
lack of knowledge of the details of Earth’s structure. If
the simple approach were not possible, then many stan-
dardmethods to study earthquakes would be impossible to
use. A good balance between simple, but robust concepts
and the sophisticated reproduction of the complex de-
tails of real wave propagation is a permanent challenge for
seismologists.

Why Does the Spectrum Decay Like ! Squared?

We have seen that seismic data is in very broad agreement
with the general features of Brune’s spectral model (7).
We have explained the scaling of low frequencies in terms
of simple static source models, the corner frequency and
the high frequency decay are explained by the energy bal-
ance Eq. (32). Seismic energy must be finite and a well
defined fraction of the available strain energy. These con-
ditions require that the spectrum of seismic energy is in-
tegrable in expression (13). General properties of Fourier
transform can be invoked to demonstrate that in the time
domain displacement signals are continuous functions of
time with discontinuous derivatives. That is, the veloc-
ity field emitted by a seismic source in the far field con-
tains jumps in particle velocity as is the case with the
seismic signals proposed by Brune (19) or by Kanamori
and Rivera (20). For the dynamic circular crack studied
in this section, the velocity jumps are emitted when rup-
ture stops abruptly at the rim of the circle of radius a. The
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nature of these stopping phases has been carefully stud-
ied by a number of authors, including Madariaga [46,47],
Boatwright [12], Spudich and Frazer [71] and Bernard and
Madariaga [8]. Their study is very complex and beyond
the purpose of the present article, we will use a simpler ap-
proach based on a scaling argument.

Let us now consider how the stopping phases scale
with earthquake size and stress drop. In the omega squared
model, the high frequency decay of the far-field displace-
ment produced by shear waves can be written in the very
general form

us (r; !) D C(�; ')
M0!

2
0

�ˇ

1
R
!�2 ;

where we lumped the numerical coefficients and the ra-
diation pattern in the single non-dimensional coefficient
C(�; �). R; � and � are spherical coordinates at a refer-
ence point on the fault. Using the expressions for M0 and
corner frequency in terms of fault radius and stress drop
we obtain

u(r; !) D C(�; ')

� a
�

ˇ

R
!�2 (51)

with a slightly different dimension-less coefficient. The far
field waves scale at high frequencies like the product of
stress drop times the radius of the fault. That is exactly
what was predicted by Madariaga [47] for a circular crack.
It is interesting to remark that the factor 
�a actually
comes from the product of the stress intensity factor K
and the square root of the radius a. Although the scaling
of high frequencies was derived here for a very special cir-
cular crack model, it can be easily generalized to ruptures
of any shape, splitting the factor
�a into a stress intensity
factor and the square root of the local radius of curvature
of the wave front of the stopping phase.

The previousmodel for the radiation of omega squared
high frequency waves can be extended to more complex
source models, in particular to source models that contain
a number of subfaults (see, e. g., [14]). The high frequency
seismic waves emitted by such a model are due to stopping
phases emitted all along their propagation process. Each
such stopping phase contributes to enriching the high fre-
quency contents of the seismic waves. The incoherent sum
of those phases produces a total spectrum that scales with
fault radius as in (51). In this sense, omega squared decay
is the signature of the presence of cracks on the fault. Re-
cent work has shown that omega squared waves are emit-
ted every time the rupture front changes rupture velocity,
or that the rupture is deviated from a plane by the presence
of fault kinks or discontinuities.

Kinematics and StatisticalModels for Fault Slip

So far we have discussed a dynamic crack approach to un-
derstanding earthquake scaling. Another method to de-
scribe seismic sources radiation was introduced by Has-
kell [30]. He assumed that earthquakes could be described
by simple propagating dislocations leaving a constant slip
in their trail. Themost common suchmodel is that of a flat
rectangular fault with constant slip in it. Suchmodel is me-
chanically impossible, because it needs infinite amount of
energy to be created. Curiously, though, the Haskell model
produces a finite amount of radiated energy and the radi-
ated field can be computed exactly both in the far [31] and
near field [48]. Because the strain energy change produced
by Haskell’s model is infinite, an energy balance equation
like (42) can not be established. In Haskell model all of the
energy released from the medium is absorbed by the dis-
location motion and seismic radiation is just a secondary
feature of the source processes.

Dislocation models have appeared in a different form,
derived from statistical considerations about the distribu-
tion of slip on faults. In his seminal paper, Andrews [6]
established some basic statistical properties of slip distri-
butions that are actually based on Haskell’s [31] original
study of the power spectra of slip and the correlation func-
tions of slip. His analysis is based on some general features
of fractal surfaces and distributions; here we will look at
these scaling relationships from the point of view of the
circular crack model that we discussed in previous sec-
tions.

The slip function of a circular crack was defined
in (26). This is a function of radius only so that its Fourier
transform is very easy to compute using the Hankel trans-
form:

D̃(k) D 2�
Z 1

0
D(r)J0(kr)rdr (52)

where k is the radial wave-number, J0 is the Bessel function
of degree zero. Inserting the expression (26) in (52) and
integrating we get

D̃(k) D
48
7

�

�
a3

sin(ak)� ak cos(ak))
k3a3

: (53)

At low wave-number, when k tends to 0, the spectrum (53)
tends to the value

D̃(0) D
16
7

�

�
a3 D

M0

�

that is, the low wave number limit of the slip spectrum
is the seismic moment, just as the low frequency limit of
Brune’s spectrum is the seismic moment. This is of course
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not a coincidence but a consequence of the fact that the
seismic moment is the source of low frequency waves. At
high wave numbers, when ka	 1, the spectrum D(k) be-
haves like

lim
k!1

D̃(k) D �
48
7

�

�
a3

cos(ak)
a2k2

: (54)

The slip spectrum decays like k�2 at high wave numbers,
a property that seems to be as universal as the high fre-
quency decay of seismic spectra with omega-squared.

The important issue is why is it k�2? The origin of the
high frequency behavior of the slip spectrum can be deter-
mined with some simple properties of the Hankel trans-
form (52). Take a circular fault of finite radius a. Then for
different types of slip discontinuity we get the following
asymptotic behavior:

limr!a D(r) limk!1 D(k)
Constant 1 k�3/2

Crack-like (a� r)1/2 k�2

Conical (a� r) k�5/2

Smooth (a� r)3/2 k�3

Thus the high wave number behavior is a reflection
of the discontinuity of slip at the border of the fault.
Andrews [6] studied a slip distribution that behaves like
(a � r)3/2 near the edge of the fault. In his case the high
wave number decay is k�3. Thus the high wave num-
ber behavior of slip distributions is controlled by the dis-
continuities of slip, a crack like discontinuity producing
a k-squared distribution. Note that the spectral behavior
for two-dimensional distributions is quite different than
for two dimensional slip distributions. Haskell [30] used
the properties of 2D Fourier transforms to derive several
conclusions about earthquake spectra that do not apply to
circular cracks. For a two-dimensional plane or anti-plane
crack the spectrum decays like k�3/2, such a spectrum is
inadmissible in 3D because it would imply non-integrable
stress distributions as we will show now.

The stress field associated with the circular shear crack
slip can be computed in a straightforward way using the
expressions provided by Eshelby [20] or Sneddon [70]. Let
the fault be located on the plane (x,y) and slip be parallel
to the axis x, (i. e. D(x) D 
ux (x). In the spectral domain
the associated stress drop can be computed from slip by


�xz(k) D �
�

2k

�
2(C �)
C 2�

k2x C k2z

�
D(k) (55)

(see [64]). This is a relatively simple expression, but it
is not easy to compute analytically because stress drop
for the circular crack does not have cylindrical symme-
try. Andrews [6] provided a simplification that we will use

here: assuming that the elastic constant  D 0 i. e. that is
the elastic medium is incompressible), we get in Fourier
domain:


�xz(k) D ��kD(k) : (56)

Multiplying (53) by –k and doing the inverseHankel trans-
form (see [70]) we get, approximately


�xz (r) D �
� for r < a ;

�xz (r) Š K/

p
r � a for r > a :

(57)

That is, inside the crack, stress drop is constant while out-
side stress drop exhibits an inverse square root singular-
ity typical of cracks as discussed in (38). This explains
why the spectrum of a circular crack decays as k�2 in the
wavenumber domain. The k�2 spectrum is the signature
of the presence of a crack.

Mai and Beroza [51] computed the correlation lengths,
fractal dimensions, Hurst exponents and wave number
spectra of 42 earthquakes for which the slip distribution on
the fault planes were available from inversion of seismic
and geodetic data. They reached the conclusion that the
high frequency decay had an average fractal dimension of
2:29C / � 0:23 that implies a high wave number asymp-
totic decay of k1:71, that is slip distributions determined
from slip inversions tend to be rougher than the spectra
of circular cracks. The origin of this exponent needs to be
carefully scrutinized in terms of fault segmentation.

Bernard and Herrero [7] and Bernard et al. [9] pro-
posed a model linking seismic radiation to the spectral
properties of the distribution of slip on the fault. In their
model rupture propagates in a single space direction at
constant speed. In order to obtain an omega squared far
field spectrum they assumed that rise time is essentially
a delta function or that it scales with wave number, which
is equivalent. This result needs to be confronted with dy-
namic simulations propagating at finite speeds and finite
energy release rate. In the circular crack model, the high
frequency spectrum was controlled by stopping phases,
which do not exist in the Bernard et al. model. This
problem needs careful attention, specially in the presence
of geometrical heterogeneity that may produce stopping
phases.

Future Directions

Most properties of ensemble averaged seismic spectra and
slip distributions can be explained by a simple circular
crack model. Seismic waves as well as slip distributions
determined from seismic and geodetic inversions carry
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the signature of the crack models that are at the base of
earthquake ruptures.Whether the earthquake can bemod-
eled as a simple circular crack or as the complex sum of
a distribution of such cracks the result is the same: slip
is of k-squared type and seismic radiation is of omega-
squared type. Departure from these models can be ex-
pected if stress drop scales with fault size. There is no clear-
cut evidence for such behavior because of the difficulties in
estimating radiated energymentioned several times in this
review. The variations of stress drop required to explain
observations may be an intrinsic variation of stresses de-
pending on fault maturity, the position of the fault in the
seismic cycle, etc.

In recent years the quality and quantity of seismic data
has improved very significantly with the deployment of
digital instruments in many active areas of the earth. This
is a unique opportunity to test the self-similarity of earth-
quakes. If tests like those of Fig. 4 are applied to new data,
the problem of the variability of radiated energy/moment
ratio (or equivalent of apparent stress and stress drop)
will be addressed more carefully. I would not be sur-
prised if we finally concluded that apparent stress varies
significantly among different earthquakes as suggested by
Fig. 4.
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Glossary

Dynamic stress change a transient, often oscillatory
change in the Earth’s stress field.

Static stress change a permanent, step-like change in the
Earth’s stress field.

Definition of the Subject

Geoscientists have long sought understanding of how
earthquakes interact. Can earthquakes trigger other earth-
quakes? The answer is clearly yes over short time and dis-
tance scales, as in the case of mainshock – aftershock se-
quences. Over increasing time and distance scales how-
ever, this question becomes more difficult to answer. The
study of dynamically triggered earthquakes explores the
most distant boundaries over which earthquakes trigger
other earthquakes.

Dynamic triggeringe to temporary and oscillatory fluc-
tuations in the stress/strain regime in a volume of the
Earth’s crust. Dynamic stress fluctuations are associated
with ground shaking resulting from either anthropogenic
activities or natural sources. Dynamic triggering occurs
as seismic waves from an initial earthquake propagate
through the Earth’s crust, triggering secondary earth-
quakes. Once the seismic wave train has passed and
ground shaking ends in a given locale, the crust returns
to its previous stress state modified by the combined stress
drops associated with any locally triggered earthquakes.

Dynamic triggering includes wide ranging phe-
nomenon, both geographically and in its characteristics. It
has been observed across the globe in a variety of geologic

and tectonic environments. It has been shown to occur at
distances from the initial earthquake rupture varying from
meters [21,27,52] to over 11,000 km [103]. In the most
distant cases, earthquake triggering results from dynamic
stress perturbations as low as 0.01 MPa. Earthquakes have
also been shown to trigger other earthquakes at a vari-
ety of time scales. In many cases triggering of earthquakes
occurs during or within minutes to hours following the
responsible seismic waves (e. g. [26,39,74,103]). In other
cases, earthquakes occurring weeks to months after the
initial earthquake have been interpreted as a delayed re-
sponse to dynamic triggering (e. g. [41,89,102]). Delayed
triggered responses may reflect a more complex series of
physical processes. For example, dynamic waves may trig-
ger an aseismic process such as fault creep or changes
in a volcanic system, which subsequently triggers earth-
quakes secondarily [2,4,37,50].

This field has been an area of extensive research in
the past twenty five years. It offers a potentially impor-
tant key to improving our understanding of earthquake
nucleation in that, in principle, we can determine in-situ
perturbations in the local stress field that lead to earth-
quake nucleation and rupture. In particular, the availabil-
ity of broadband seismic data near sites of triggered seis-
micity allows us to calculate the time history of stress field
fluctuations responsible for earthquake nucleation given
adequate knowledge of the local seismic velocity struc-
ture [28,38,103].

The study of dynamically triggered earthquakes can
also help better characterize the physical condition of
the Earth’s crust at seismogenic depths. Many researchers
were surprised that earthquakes could be triggered by
stress perturbations as small as 0.01 MPa. This observa-
tion indicates the Earth’s crust is on the verge of failure
in areas with triggered responses to distant earthquakes.
This field of research may also provide clues to the hy-
drologic regime at depth. It has long been recognized that
water tables change in response to earthquakes thousands
of km distant [17]. The link between dynamically trig-
gered earthquakes and dynamically triggered hydrological
changes is an active area of research [8,19,78].

Within the context of complexity and system sci-
ence, [82] suggest that remotely triggered seismicity may
reflect large activation correlation lengths (ACL) in fault
systems and stress fields that have reached a state of self-
organized criticality. This statistical physics approach to
earthquake occurrence focuses on the exploration of both
analog and computational models that can mimic ob-
served dynamical space-time patterns spanning a wide
range of spatial-temporal scales. It is not concerned with
inferred (or “non-observable”) physical models for the lo-
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cal processes linking dynamic stresses and brittle failure
(triggered earthquakes) on faults (see [82]). In this review,
however, we focus on these physical models together with
a description of documented patterns of remote dynamic
triggering.

Introduction

Introduction to Stress Triggering of Earthquakes

Earthquake triggering refers to a process by which any
change in fault properties or the processes acting on a fault
leads to rupture initiation. More specifically, stress trig-
gering occurs when a change in the stress field acting on
a fault leads to rupture. Stress triggering of earthquakes
can result from stresses applied over a variety of time scales
and with a variety of frequencies, which generally fall into
three partially overlapping categories, 1) static stress trig-
gering, 2) quasi-static stress triggering, and 3) dynamic
stress triggering. In the case of static stress changes, the
state of stress acting across a fault is permanently per-
turbed. This form of stress triggering is important in the
near field of an earthquake where fault displacement sig-
nificantly alters the stress field in the surrounding crust.
Static stress triggering is commonly regarded as the dom-
inant factor controlling aftershock generation (e. g. [54]).
Because static stress changes decay rapidly with distance
from the earthquake rupture (as d�3, where d is distance
from the earthquake epicenter), they are generally thought
to be significant only within two to three fault lengths of
the earthquake rupture. The role of static stress changes
in triggering aftershocks and other earthquakes has been
a vigorous and productive area of research in the past two
decades (for reviews see [34,53,92,93]). The relative im-
portance of static vs. dynamic triggering of aftershocks in
the near field, however, has recently become an actively
debated topic (e. g. [21,71]).

Because static stress changes in the near field develop
essentially simultaneously with earthquake rupture, sim-
ple static stress triggering must appeal to other mecha-
nisms to explain the time delay associated with many af-
tershocks and subsequently triggered earthquakes. In con-
trast, quasi-static stress triggering results from viscoelastic
relaxation of the crust after an earthquake. Because quasi-
static stress changes decay as d�2 and because viscoelastic
relation is a time dependent process, these stress changes
may explain triggered earthquakes more distant from an
initial earthquake and triggered earthquakes with delay
times from years to decades [72].

Dynamic stress changes decay more slowly with dis-
tance than either static stress changes or quasi – static
stress changes (as d�1:5 for surface waves). Thus dynamic

stress changes become increasingly dominant with in-
creasing distance from the fault rupture. In this review we
discuss dynamic triggering of earthquakes resulting from
ground shaking due to the passing seismic wavetrain of
other earthquakes. We focus on dynamic triggering due
to remote earthquakes (greater than two fault lengths dis-
tance from the earthquake rupture), though we will briefly
discuss the active research topic of dynamic triggering in
an earthquake’s aftershock zone as well. We also limit dis-
cussion to frequencies of ground shaking above� 0:01Hz
(periods less than � 100 s), though some work has been
done on earthquakes triggered by longer wavelength fluc-
tuations. For example, [16,95] recently found evidence
that solid Earth tides can modulate background seismic-
ity rates. Other reviews of dynamic stress triggering can be
found in [23,37,92] and [38].

Brief History of Dynamic Stress Triggering Research

The ability of earthquakes to trigger other earthquakes at
great distances has been discussed in scientific literature
throughout the latter half of the 20th century (see [38] for
review). However, making a credible case for a causal link
between two earthquakes remains amajor challenge in this
field. Beyond the realm of aftershock zones, it was diffi-
cult to justify statistically that one earthquake triggered
another until the 1980s and 1990s. By then continuously
recording telemetered seismic networks and automated
processing of data became commonplace, providing re-
liable spatial and temporal records of earthquake occur-
rence at M � 1 � 2 and the statistical leverage associated
with large numbers of small earthquakes.

Dynamic triggering of earthquakes was widely ac-
cepted in the scientific community following the 1992
M 7.3 Landers earthquake in southern California. In
the minutes to days following the Landers earthquake,
earthquake rates increased dramatically across the west-
ern United States at distances well beyond the aftershock
zone [39]. Earthquakes were triggered throughout Califor-
nia, Nevada, Utah, Wyoming, and Idaho at distances of
up to 1250 km (Fig. 1). Although time delays of triggered
events ranged from seconds to 33 hours after the arrival
of the Landers earthquake wavetrain, the sudden increase
in seismicity across the Western United States could not
be ignored. This earthquake spawned a plethora of studies
into the nature of earthquake triggering and remains one
of the best studied triggering episodes to date.

The geophysical community had a unique research op-
portunity when the 1999 M 7.1 Hector Mine earthquake
occurred. Because it was an earthquake with similar mag-
nitude to the Landers earthquake occurring in a similar
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Map showing sites of triggered seismicity in western North America from the Landers (green triangles), HectorMine (blue circles), and
Denali Fault (red crosses) earthquakes. Modified from [38], Treatise on Geophysics

location, it provided leverage to tune ideas about dynami-
cally triggered seismicity and the underlying physical pro-
cesses. Although the Hector Mine earthquake triggered
seismicity at some of the same locations as the Landers
earthquake, the HectorMine earthquake had amuchmore
limited triggered response (Fig. 1) [30]. The difference is
likely due in part to differences in seismic radiation pat-
terns between the two earthquakes [30,43]. The Landers
earthquake ruptured unilaterally to the north, whereas the
Hector Mine earthquake ruptured bilaterally, primarily to
the south.

Following the Landers and Hector Mine earthquakes,
the search for dynamic triggering began in earnest. Re-
searchers across the globe began scanning earthquake cat-
alogs and waveform data searching for dynamic trigger-
ing in a wide variety of environments (see “Sect. Review of
Dynamic Triggering Observations”). At the Geysers, CA
alone [91] identified 7 episodes of dynamic triggering be-
tween 1988 and 1994, making this among the most fre-
quently triggered locations known.

Like the Landers earthquake, the 2002 M 7.9 Denali
Fault earthquake triggered a widespread response across
western Canada and the United States (Fig. 1) [27,33,45,
64,68,74]. The increase in the number of broadband and
high-dynamic range seismometers by 2002 allowed scien-
tists to visually scan on-scale seismic data during the earth-

quake’s wavetrain. Thus, many triggered events were de-
tected which were absent from earthquake catalogs. As an
example of how instrumentation improvements increase
our ability to detect dynamic triggering, [45] point out that
the triggered response of the Yellowstone caldera to the
Denali Fault earthquake could not have been detected at
the time of the Hector Mine earthquake only three years
earlier.

Review of Dynamic Triggering Observations

Detection of Dynamic Triggering

Dynamic triggering has been observed in a variety of lo-
cations around the globe. Some suggest that dynamic trig-
gering of earthquakes is a ubiquitous process in the Earth’s
crust (e. g. [26,41]). Others suggest that some areas are
more likely to experience dynamic triggering of earth-
quakes than others (e. g. [39,64]). Observations of dynamic
triggering are limited geographically due to uneven seis-
mic network coverage and the effort applied to examining
seismic data.

Following the 1992 M 7.3 Landers earthquake, dy-
namic triggering was recognized by the sudden increase
in the number of earthquakes located through standard
network processing across the western US in the days to
weeks after the large earthquake. Searching earthquake
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Earthquakes, Dynamic Triggering of, Figure 2
Plot of earthquake magnitude versus time in the area of the Wasatch Front, Utah, 30 days before and after the Denali Fault earth-
quake. Circles represent independent events. Crosses indicate secondary events determined by declustering the earthquake catalog.
Figure reprinted from [68], BSSA

Earthquakes, Dynamic Triggering of, Figure 3
Seismicity in Utah 14 days before and after the Denali Fault earthquake. Diamonds in b show earthquakes occurring in the first 24
hours after the arrival of the wave train from the Denali Fault earthquake. Cross are locations of quaternary volcanic vents [3]. Figure
reprinted from [68], BSSA

catalogs for sudden increases in seismicity after a large
earthquake is one common method of identifying dy-
namic triggering (Figs. 2 and 3) (e. g. [6,30,39,41,68]).
Identifying triggered seismicity using earthquake catalogs
simplifies interpretation of triggered response with respect
to background seismicity rates, as earthquake catalogs of-
ten provide stable long-term records of earthquake occur-
rence at a consistent threshold.

A second commonly used method of detecting dy-
namic triggering involves visually scanning continuous
seismic data shortly before and after a large earthquake to
identify a sudden increase in earthquakes too small to be
detected and located through standard network process-
ing (Fig. 4). This latter method is effective at identifying
triggered seismicity in sparsely instrumented areas, iden-
tifying very small triggered earthquakes, and identifying



2604 E Earthquakes, Dynamic Triggering of

Earthquakes, Dynamic Triggering of, Figure 4
Seismicity triggered at Mammoth Mt. b-c and within the Long Valley caldera, California, a following the Denali Fault earthquake.
a Catalog fromNCEDC showing two swarms following the Denali fault earthquake in the caldera’s southmoat. The two lower panels
show data from this very small earthquake swarm recorded on the broadbandUNR/USGS station OMM from rotated to transverse di-
rection, showing Denali earthquakewavetrain at Long Valley. Major arrivals are labeled. c Record from b high pass-filtered, showing
small local earthquakes occurring during Denali wavetrain. Modified from [74], BSSA

earthquakes that occurred during the wavetrain from the
initial earthquake (e. g. [26,47,64,74,103]). This method
of detecting triggering has become more common with
increasing availability of continuously recorded high-dy-
namic-range seismic data.

Possible instances of dynamic triggering have also
been proposed based on historical accounts [40,42,44,59].
Because these studies rely on felt reports, they are generally
limited to moderate to large sized triggered earthquakes
that are separated in time by days to months.

With any method of detecting dynamic triggering, it
must be shown that one earthquake is likely causally linked
to the dynamic waves radiating from a previous earth-
quake, rather than by coincidence. Earthquakes near each
other in time are more likely to be related than earth-
quakes separated in time. Additionally, earthquakes un-
likely to occur randomly (e. g. large events in seismically
quiet areas) are more likely to be related than earthquakes
occurring commonly as background seismicity (e. g. small
earthquakes in a seismically active area). To calculate the

probability that two earthquakes are related, one must
first calculate the probability of each occurring randomly.
This is usually done using patterns of earthquake occur-
rence based on local earthquake catalogs. The most com-
monly used statistical test to identify whether an increase
in number of earthquakes is statistically significant is the
Beta statistic [58]. Pankow et al. [68] also employ a bi-
nomial distribution analysis to this end. These techniques
have potential pitfalls however, as they rely on assump-
tions about earthquake distributions and compare snap-
shots of seismicity in time in regions where seismicity rates
fluctuate regularly [58]. Objectively determining whether
one earthquake is genetically related to another remains
a challenge.

Because spatial-temporal clusters of earthquakes are
less common than isolated events, clusters of earthquakes
temporally coincident with dynamic stresses are more eas-
ily identified as being triggered than isolated earthquakes.
In the case of earthquake clusters, however, it may be dif-
ficult to discriminate between earthquakes directly trig-
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gered by dynamic stresses from a remote earthquake and
secondary aftershocks to directly triggered events [9]. To
address this, earthquake catalogs are frequently ‘declus-
tered’ (e. g. [45,68]). This process involves decomposing
a catalog into primary and secondary earthquakes based
on statistical patterns of aftershock sequences (e. g. [76]).
[68] and [9] show that in some cases triggered seismicity
is modeled well as an aftershock sequence. In other cases,
however, triggered seismicity swarms cannot be dismissed
as secondary aftershock sequences (e. g. [74,103]). In such
cases it is likely that most events in a swarm were trig-
gered directly by the dynamic waves radiated from a dis-
tant earthquake or perhaps as a secondary response to
some aseismic process (e. g. fluid flow, or local deforma-
tion associated with fault creep) triggered by the dynamic
waves.

Dynamic Triggering in Volcanic
and Geothermal Regimes

Although dynamic triggering has been observed in a vari-
ety of environments, many of these observations are from
areas with active volcanic and hydrothermal systems (Ta-
ble 1) [6,73,74]. These areas typically have high back-
ground seismicity rates indicating that the crust habitu-
ally hovers near failure and thus is particularly susceptible
to dynamic triggering. Furthermore, because these areas
tend to be well instrumented, dynamically triggered earth-
quakes may be unusually easy to detect. Here we summa-
rize observations of triggered seismicity in volcanic and
hydrothermal areas.

The Geysers geothermal field in northern California
is among the most frequently triggered sites known with
9 cases of dynamic triggering documented in the past 20
years [28,74,91]. Earthquakes that have caused triggering
at the Geysers range in magnitude from 6.9 to 7.9 and
in distance from 212 km to 3120 km. The Coso geother-
mal field in southern California has also experienced re-
peated episodes of dynamic triggering following the M 7.3
Landers, the M 7.1 Hector Mine, and the M 7.9 Denali
Fault earthquakes (Fig. 1) [39,74]. Following the Hector
Mine earthquake, dynamically triggered earthquakes and
ground deformation were observed near a third geother-
mal field – Cerro Prieto, Baja California [24,30].

Yellowstone, Wyoming is a larger and more compli-
cated system than the geothermal fields mentioned above,
as it is a caldera system characterized by ongoing mag-
matic and tectonic activity, in addition to hydrothermal
activity. Yellowstone had a triggered response to the M 7.3
Landers earthquake [39] and the M 7.9 Denali Fault earth-
quake [45,47]. The triggered response to the Denali Fault

earthquake was particularly dramatic (Figs. 5 and 6). Seis-
micity increased immediately following the arrival of sur-
face waves from the Denali Fault earthquake and remained
unusually high for 30 days with magnitudes ranging from
< 0:0 to M 3.2 [45]. The time scale of the triggered re-
sponse was spatially variable (Figs. 5 and 6). Because the
Denali Fault earthquake led to immediate triggering in
the area of geysers and affected periodicity of geysers at
Yellowstone, it is likely that changes in the hydrother-
mal regime induced a triggered response in some areas
([45,46]. In other areas however, the development of trig-
gered earthquake sequences was delayed and similar to
commonly observed tectonic activity [45].

Like the Yellowstone caldera, the Long Valley caldera
experiences dynamic triggering with complex characteris-
tics. The area responded to the Landers earthquake [39],
the Hector Mine earthquake [50], and the Denali Fault
earthquake [50,74] both seismically and geodetically, al-
though each response varied in location and intensity
(Fig. 7). The Landers earthquake produced the largest trig-
gered response with 340 earthquakes in seven days up to
M 3.4 throughout the south moat of the caldera [39]. The
seismic response to the Hector Mine earthquake was com-
paratively short lived and limited to the region of Mam-
moth Mountain. After the Denali fault earthquake, the
caldera area experienced two phases of triggered seismic-
ity. A burst of� 60M � 0:8 earthquakes occurred beneath
Mammoth Mountain during and shortly after the arrival
of the surface waves from the Denali Fault earthquake [74].
Twenty-four hours later a larger swarm of earthquakes
of M � 3:4 occurred in the Long Valley caldera’s south
moat [74]. All three episodes of dynamic triggering in the
Long Valley caldera were accompanied by deformation
transients with geodetic moments an order of magnitude
larger than the cumulative seismic moment of the trig-
gered seismicity [36,50], though the time history andmag-
nitude of each deformation response varied.

Iwo Jima, Japan, a volcanic island hosting a Holocene
eruption, geothermal activity, and historic phreatic
(steam) eruptions is a third complex caldera system
which has experienced dynamic triggering of local earth-
quakes. [98] examined continuous waveform data of
21M > 7 earthquakes< 3000 km distance from Iwo Jima,
and identified 4 cases of resulting increased local seismic-
ity. In all cases earthquakes were triggered locally during
surface wave arrivals and persisted for 6–15 minutes.

Dynamic triggering of earthquakes has been observed
at shallow depths in volcanic edifices at a variety of lo-
cales (Table 1). In the Pacific Northwest, Mt. Rainier ex-
perienced 6–8 M < 0 earthquakes during the wavetrain of
the Denali Fault earthquake and 8M � 0:9 earthquakes in
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Earthquakes, Dynamic Triggering of, Figure 5
Seismicity within one month of the Denali Fault earthquake at Yellowstone caldera, color coded with time: a earthquake locations,
b cross sections along AA’, c cross section along BB’. Specific areas labeled: HL, Hebgen Lake area; NB, Norris geyser basin; UB, Upper
geyser basin; WT, West Thumb geyser basin; YL, northern end of Yellowstone Lake. Large normal faults are represented with thick
black lines: RM, Red Mountain fault zone; GF, Gallatin fault; HF, Hebgen and Red Canyon faults. Inset shows location of Denali Fault
earthquake and Yellowstone. Solid and dashed lines in inset show the great circle path +/�10 degrees along the strike of the Denali
Fault earthquake. Figure reprinted from [45], BSSA
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Earthquakes, Dynamic Triggering of, Table 1
Published occurrences of discrete remotely triggered earthquakes

Locations Citation Distance (km) Triggering Earthquake M Onset Mmax Reg Env
Aso, Japan [61] 1400 Chi-Chi, 1999 7.7 During P waves – E V
British Columbia [26] 1800–2200 Denali Fault, 2002 7.9 During surface and

coda waves
– – N

Burney, CA [39] 900 Landers, 1992 7.3 23 hour 2.8 E N
Central and Southern, CA [41] variable 15 Central and Southern CA

earthquakes, 1988–2004
5.3–7.1 Within 1 month – – –

Cerro Prieto, Mexico [24] 260 Hector Mine, 1999 7.1 – 4.1 E V,G
Coso, CA [39] 165–205 Landers, 1992 7.3 � 3 hour 4.4 E G
Coso, CA [74] Hector Mine, 1999 7.1 – – E G
Coso, CA [74] 3,660 Denali Fault, 2002 7.9 15 min 2.3 E G
Geysers, CA [28] 2,500 Gulf of Alaska, 1988 7.6 – 0.2–2.5 E G
Geysers, CA [28] 212 Loma Prieta, 1989 7.1 – 0.2–2.5 E G
Geysers, CA [28] 443 Off Oregon Coast, 1991 6.9 – 0.2–2.5 E G
Geysers, CA [28] 390 Gorda Plate, CA, 1991 7.1 – 0.2–2.5 E G
Geysers, CA [28] 202 Petrolia, CA, 1992 7.0 – 0.2–2.5 E G
Geysers, CA [39] 740 Landers, 1992 7.3 3 min 1.6 E G
Geysers, CA [91] 635 Northridge, 1994 6.6 – – E G
Geysers, CA [28] 308 Cape Mendoceno, CA, 1994 6.9 – 0.2–2.5 E G
Geysers, CA [74] 3,120 Denali Fault, 2002 7.9 12 min 2.5 E G
Greece [6] 400–1000 Izmit, 1999 7.4 After surface waves 3.5 E G
Iceland [2] 64–78 South Iceland Seismic

Zone, 2000
6.5 < 5min 5 E V, G

Idaho, Cascade [39] 1100 Landers, 1992 7.3 33 hour 1.7 E G
Idaho, Cascade [26,47] 2300 Denali Fault, 2002 7.9 During Rayleigh

waves
4.6 E G

Iwo Jima, Japan [98] � 2009 km 4 earthquakes, 1983–1993 7.1–8.0 During surface
waves

< 2 – V,G

Katmai volcanoes [73] 115 1999 7.0 < 3min 2.3 – V, G
Katmai volcanoes [64] 122 2000 6.8 – 0.9 – V, G
Katmai volcanoes [64] 161 2001 7.0 < 2min 1.5 – V, G
Katmai volcanoes [64] 161 2001 6.8 – – – V, G
Katmai volcanoes [64] 740 Denali Fault, 2002 7.9 3.9 min 2.0 – V, G
Katmai volcanoes This

paper
3620 Kurile, 2007 8.2 During surface

waves
– – V, G

Lassen, CA [39] 840 Landers, 1992 7.3 12 min 2.8 E V, G
Little Skull Mt., NV [39] 240 Landers, 1992 7.3 1.5 hour 5.6 E N
Long Valley, CA [39] 415 Landers, 1992 7.3 9 min. 3.4 E V, G
Long Valley, CA [74] 3,454 Denali Fault, 2002 7.9 23.5 hour 3.0 E V, G
Mammoth, CA [50] 450 Hector Mine, 1999 7.1 20 min. – E V, G
Mammoth, CA [74] 3,454 Denali Fault, 2002 7.9 17 min. 0.8 E V, G
Mono Basin, CA [39] 450 Landers, 1992 7.3 19 hour 3.1 E N
Mt. Rainier, WA [74] 3,108 Denali Fault, 2002 7.9 12 min. 0.0 E V
Mt. Rainier, WA [74] 3,108 Denali Fault, 2002 7.9 2.5 hour 0.9 E V
Nanki Trough, Japan [60] 900–1400 Tokachi-oki, 2003 8.1 After surface waves – S –

the following days. In response to the Landers earthquake,
Mt. Lassen in northern California hosted 14 earthquakes
of M � 2:8. Volcanoes in the Katmai Volcanic Cluster,

Alaska, have experienced triggered seismicity on at least
seven occasions since 1999 ([64,65,73], this chapter). The
largest of these triggered responses included 17 earth-
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(continued)

Locations Citation Distance (km) Triggering Earthquake M Onset Mmax Reg Env
The Netherlands Roer Valley [12] 40 Roermond, 1992 5.4 – 3.7 E N
NewMadrid, MO [41] 1000 1811–1812 NewMadrid � 7:8 – – C N
Offshore Southern CA [74] 4,003 Denali Fault, 2002 7.9 Mainshock coda 2.5 E N
Salton Sea, CA [43] 120–150 Hector Mine, 1999 7.1 – 4.7 E V,G
Syria – Lebanon border [62] 500 Gulf of Aqaba, 1995 7.3 2 hr 47 min 3.7 C N
Taiwan [102] variable 9 earthquakes, 1978–1994 6.5–7.1 � 15 days � 4:0 – V,G
Tonga Trench [96] 290–313 Tonga Region, 2002 7.6 2 min. 7.7 S –
Utah, Cedar City [39] 490 Landers, 1993 7.3 39 min. 4.1 E G
Utah, Wasatch Front [68] 3000–3500 Denali Fault, 2002 7.9 During surface

waves
3.2 E G

Valley of Mexico [89] 303–588 7 earthquakes 7.6–8.0 – � 4:0 E V,G
Western Nevada [1,39] 450–650 Landers, 1993 7.3 9 min. 4.0 E G
White Mts., CA [39] 380–420 Landers, 1993 7.3 11.6 hour 3.7 E N
Mt. Wrangell, AK [45] 11,000 Denali Fault, 2002 7.9 During Rayleigh

waves
1.0 – V, G

Yellowstone [39] 1250 Landers, 1993 7.3 1.8 hour 2.1 E V, G
Yellowstone [45] 120 Hector Mine, 1999 7.1 During surface

waves
– E V,G

Yellowstone [45] 3150 Denali Fault, 2002 7.9 During Love waves 3.2 E V, G

Location is location of triggered seismicity. Distance is distance from location of triggering to triggering earthquake (mainshock) epi-
center. M is magnitude of mainshock. Onset is onset time of triggered activity with respect to arrival of waves from mainshock. Mmax is
magnitude of the largest triggered earthquake. Reg describes stress regime: E-extensional or transtensional, C-compressional or trans-
pressional, S-subduction zone. Env describes if the area is volcanic (V), geothermally active (G), or neither (N). – indicates data not available
or inconclusive.

quakes of M � 2:3. During the wavetrain of the 2006 M
8.7 Sumatra–Andaman Islands earthquake, Mt. Wrangell,
Alaska had triggered 14 earthquakes [103]. With the ex-
ception of the Mt. Lassen response following the Landers
earthquake and the delayed events atMt. Rainier following
the Denali Fault earthquake, these earthquakes triggered
in volcanic edifaces were too small to be detected and lo-
cated by automatic processing systems.

The Valley of Mexico is a large volcanically and
geothermally active area located in the Trans Mexican
Volcanic Belt. [89] searched for dynamically triggered
earthquakes in the Valley of Mexico following 18 M � 7:0
Mexican earthquakes between 1920 and 1998. In seven
cases, they found evidence for dynamic triggering of earth-
quakes within 2 days of a large earthquake. In four addi-
tional cases, seismicity increased after a large earthquake,
but was delayed by up to one month. Because this study
used only one station however, the potentially triggered
events can only be located to within some ill-defined re-
gion surrounding the station.

The South Iceland Seismic Zone is a transform zone
in a volcanically and geothermally active area. In 2000,
a Mw = 6.5 earthquake in the South Iceland Seismic Zone

triggered widespread seismicity, including threeMw� 5:0
earthquakes within 5 minutes of its occurrence. Coulomb
failure stress calculations indicate that the two M > 5
earthquakes located � 100 km to the west on the Reyk-
janes Peninsula are beyond the range where static stress
changes are significant [2], and thus appear to have been
dynamically triggered. Furthermore, one of these M > 5
earthquakes had a geodetic moment significantly larger
than it seismic moment suggesting that deformation asso-
ciated with aseismic fault creep may have indirectly trig-
gered many of the smaller earthquakes in the area [2].

Dynamic Triggering in Regimes with Limited Volcanic
and Geothermal Activity

Extensional and Transtensional Environments The
majority of occurrences of triggered seismicity docu-
mented to date have been in extensional or transten-
sional tectonic regimes (Table 1). In the western United
States dynamic triggering following the M 7.3 Landers
earthquake occurred exclusively in transtensional tectonic
regimes, many of which were also volcanically or geother-
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Earthquakes, Dynamic Triggering of, Figure 6
Plot of earthquake magnitude versus time of seismicity for se-
lected areas in Yellowstone caldera. See Fig. 5 for locations of
these areas. Dashed line DFE as the origin time of the Denali
Fault Earthquake. Figure reprinted from [45], BSSA

mally active, to distances of up to 1250 km [1,39]. These
locations included Little Skull Mountain, Nevada; western
Nevada, White Mountains, California, Mono Basin Cal-
ifornia, Cedar City Utah, the Wastach Front in central
Utah, Burney, California, andCascade, Idaho. The onset of
triggering ranged from during the passage of the Landers
wavetrain to 33 hours after the Landers earthquake. The
largest of these earthquakes was a M D 5:6 earthquake
triggered beneath Little Skull Mountain, Nevada. Oth-
erwise, triggered earthquakes had M D< 3:0. The most
vigorous responses containing tens to hundreds of trig-
gered earthquakes occurred near Cedar City Utah, West-
ern Nevada, and Cascade Idaho.

The Mw = 7.1 Hector Mine earthquake also led to
an impressive display of triggered earthquakes in exclu-
sively extensional, transtensional, and geothermal envi-

ronments in the western United States. Triggered earth-
quakes began during the passage of the wavetrain near the
Salton Trough in Indio and at the southern end of the
Salton Sea [30,43]. In general, the triggered response to
Hector Mine was less extensive and energetic than that of
the Landers earthquake [30].

Following the Denali Fault earthquake seismicity was
triggered in several extensional and transtensional areas
in the western United States. [47] detected a M 4.6 earth-
quake triggered during the Denali Fault earthquake wave-
train in Cascade, Idaho. Seismicity remained elevated for
25 days along a 500 km stretch of the Intermountain seis-
mic belt in Utah, on the border of the Basin and Range
province (Figs. 2 and 3) [68].

Through examining historical documents [59] iden-
tify several earthquakes in extensional/transtensional en-
vironments that may have been dynamically triggered by
the Mw = 7.8 1906 San Francisco earthquake, including
a M 3.5 and M 4.5 earthquake in western Nevada and
a M 6.1 earthquake in the Brawley Seismic Zone near the
Salton Sea in Southern California. These events are within
400–700 km from the fault rupture, thus beyond the after-
shock zone of the San Francisco earthquake.

In the day following the arrival of surface waves from
the Mw = 7.4 Izmit, Turkey earthquake, catalog seismicity
rates throughout continental Greece, 400–1000 km from
the epicenter, increased significantly [6]. Greece is an area
of active extension and hosts significant hydrothermal ac-
tivity. Although [6] did not address a possible correlation
to hydrothermal activity systematically, at least some clus-
ters of dynamically triggered seismicity occurred in areas
with active hot springs.

A second report of dynamically triggered seismic-
ity in Europe comes the Roer Valley, the Netherlands.
This area is an actively extending northern branch of the
Rhine Graben System. Following a Mw= 5.4 earthquake
in 1992, [12] determine that a large cluster of aftershocks
occurred at distance of 40 km from the mainshock. They
conclude that these events are dynamically triggered be-
cause they are located beyond the zone where static stress
changes are significant.

Transpressional and Compressional Environments
Although dynamic triggering is not commonly observed
in compressional environments, several studies suggest it
does occur. Less than three hours after a Ms = 7.3 earth-
quake in the Gulf of Aqaba 1995, an earthquake swarm
began 500 km distant from the mainshock epicenter in
a restraining bend of the Dead Sea transform fault on the
Syria–Lebanon border [62]. The swarm consisted of 21
earthquakes of Md � 3.7.
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Earthquakes, Dynamic Triggering of, Figure 7
Map of triggered seismicity beneath Long Valley caldera and Mammoth Mountain, California, for the Landers (green), Hector Mine
(blue), and Denali Fault (red) earthquakes.Gray dots show background seismicity from 1997–1998. The red circle centered on station
OMM indicates area within which the earthquakes triggered by the Denali Fault earthquake must be located based on S-P phase
arrival times. The single red dotwas large enough to be located [74]. Modified from [38], Treatise on Geophysics

The central United States is a transpressional environ-
ment with low strain rates. Dynamic triggering in the cen-
tral US has not yet been observed instrumentally. How-
ever, [40,44,66] suggest that dynamic triggering occurred
during the 1886 Charleston, South Carolina earthquake
and 1811–1812 New Madrid earthquakes based on exam-
ination of historical felt reports. Similarly, [42] describe
historical evidence for dynamic triggering of a M � 7
earthquake following the 1905 Kangra earthquake in
India.

The stress state in Taiwan is variable, but generally
transpressional [104]. [102] searched for dynamically trig-
gered seismicity in the Taiwan region following 12 re-
gional M 6.5+ earthquakes occurring between 1973 and
1994. They identify 9–10 cases of increased seismicity fol-
lowing a large event, although the increase is small in all
cases, with 1–7 M 4–4.5 earthquakes more in the 15 days
following the large earthquake than in the 15 days before.

Dynamic Triggering in Subcrustal Environments

The occurrence of dynamically triggered earthquakes in
subcrustal environments has been investigated in subduc-
tion zones in South America and Japan. [96] found that
a M 7.6 earthquake at 598 km depth in the Tonga trench
in 2002 was followed by M 5.9 and M 7.7 earthquakes at
647 and 664 km depth within 2 and 7 minutes of the ini-
tial earthquake, respectively. By investigating the rupture
history and Coulomb stress change resulting from the ini-
tial event, they conclude that the secondary events were
triggered dynamically. They highlight 4 additional earth-

quakes of > 450 km depth which have similar large af-
tershocks that may be dynamically triggered. During the
surface waves of the M 8.1 Tokachi-oki earthquake, [60]
identified deep low frequency earthquakes triggered in the
Nankai subduction zone through analyzing Hi-Net bore-
hole seismic data and use of the Beta statistic. The trig-
gering occurred during a slow slip event in a region of the
subduction zonewhich was active with deep low frequency
tremor.

Triggered Tremor

With the exception of triggered subduction zone seis-
micity described above, the majority of dynamically trig-
gered earthquakes described in this review are typical
brittle failure earthquakes. For example, [43] show that
the earthquakes triggered by the Hector Mine earthquake
near the Salton Sea had typical spectra and stress drops,
consistent with standard brittle failure source mecha-
nism. In the last few years however researchers have
demonstrated that volcanic tremor and deep non-vol-
canic tremor respond to dynamic waves from regional and
teleseismic earthquakes as well as typical crustal earth-
quakes (Table 2) ([32,60,61,81]). These findings empha-
size that dynamic triggering can occur in a wide va-
riety of environments and affect multiple seismic pro-
cesses in addition to brittle failure of crustal rock. They
provide an intriguing new perspective on the triggering
processes.

At Aso volcano, Japan, [61] identify dynamically trig-
gered earthquakes and volcanic tremor following the 1999
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Earthquakes, Dynamic Triggering of, Table 2
Published occurrences of dynamically triggered tremor

Site Citation Triggering Earthquake M** Type of tremor Responsible phase
Aso volcano, Japan [61] Chi-Chi, 1999 7.7 Shallow volcanic P waves
Cascadia subduction zone, Canada [81] Denali Fault, 2002 7.9 Non-volcanic subduction zone Love waves
7 sites throughout California [32] Denali Fault, 2002 7.9 Non-volcanic Surface waves

** M is the magnitude of the triggering earthquake.
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Earthquakes, Dynamic Triggering of, Figure 8
Time series showing tremor triggered by Love waves from the Denali Fault Earthquake in the Cascadia subduction zone: a Tremor
at station BPBC, time adjust to correct for travel time from source to seismometer, b–d Displacement seismograms for transverse,
radial, and vertical components at station PCH, the closest 3 component broadband station to the tremor, time adjust to correct for
travel time from source to seismometer. Tremor occurs when the Love wave displacement is to the SW. Figure reprinted from [81],
Nature

M 7.7 Chi-Chi earthquake. To test the uniqueness of these
observations, they searched for triggered tremor at Aso
following 20 other Mw � 7 earthquakes occurring within
3000 km distance between 1995 and 2002. Five of these
earthquakes triggered tremor following P wave arrivals at
Aso. All occurred between 1998 and 1999, a time with usu-
ally high heat supply to the volcano’s crater. As yet, this
is the only documented episode of dynamically triggered
volcanic tremor.

On the other side of the Pacific Ocean and a differ-
ent tectonic environment, [81] identified episodes of deep
non-volcanic tremor in the Cascadia subduction zone,

Canada, which were triggered by the Love waves of the
M 7.9 Denali Fault earthquake. In this case tremor ampli-
tude modulates perfectly with strain amplitude from the
incident Love waves (Fig. 8).

More recently, [32] identified triggered non-volcanic
tremor in seven locations in California following the De-
nali Fault earthquake. In all cases tremor amplitude mod-
ulates with strain amplitude from incident surface waves.
Five of these are strike-slip faulting regimes. These obser-
vations are the first reported cases of non-volcanic tremor
beyond subduction zones (e. g. [80]) and the San Andreas
fault [67].
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Lack of Triggering Observations

Interestingly, some areas of high ambient seismicity show
a notable lack of dynamically triggered seismicity. For
example, the San Andreas fault near Parkfield, Califor-
nia showed no triggered response to the Landers earth-
quake [90]. Japan boasts high rates of shallow background
seismicity, frequent large earthquakes from the subduc-
tion zone, high seismic network density, and a variety of
crustal stress environments and volcanic and geothermal
regions. However, through examining both earthquake
catalogs and waveform data from individual seismic sta-
tions before and after nine large remote events, [33], show
that dynamic triggering in Japan is not common, as it is in
extensional regimes of the Western United States.

Similarly, Alaska abounds with crustal and subduc-
tion zone seismicity and active volcanic and geothermal
systems, although network density is far lower than in
Japan. Though the Katmai Volcanic cluster appears to be
particularly susceptible to triggering [64,73] and dynamic
triggering has been observed at Mt. Wrangell [103], dy-
namic triggering is rare compared to the western United
States. [64] suggest that this results from unknown differ-
ences in the magmatic and hydrothermal systems of the
volcanoes. [83] document a decrease in seismicity at Mt.
Wrangell and Veniaminof volcanoes following the M 7.9
Denali Fault earthquake. To date these are the only docu-
mented examples of seismicity repression from a large dis-
tant earthquake.

Characteristics of Dynamic Triggering

Environmental Controls on Dynamic Triggering

Extensional and transtensional tectonic regimes with high
levels of background seismicity are highly susceptible to
dynamic triggering [38]. This may reflect the ease with
which fluids can migrate upwards in these stress envi-
ronments [32,38]. Because such fluids are often hot with
high concentrations of dissolved solids, rapid precipita-
tion may form high pressure compartments over rapid
time scales, further enhancing a tendency toward failure.
Faults in extensional stress regimes are also inherently
weak compared to those in compressional environments
[43,88]. [26,41] suggest that dynamic triggering is a ubiq-
uitous process in the crust which is detected more com-
monly in certain areas due to high instrumentation and
scrutiny levels. Only one study to date has carefully ad-
dressed this question. By comparing seismicity rates on the
San Andreas fault in California and the Western United
States Basin and Range Province, [90] show that the San
Andreas fault is less likely to experience dynamic trigger-

ing than similarly instrumented areas with similar levels of
background seismicity in the Western United States Basin
and Range province. More studies like [90] are necessary
to resolve whether triggering is truly ubiquitous or favored
in specific tectonic environments.

Triggering Thresholds and Recharge Times

In most reports of remote dynamic triggering, seismicity
is triggered by earthquakes of M 6.5 or greater (Table 1).
Dynamic triggering responses are strongest in areas that
experience strong directivity [26,30,39]. These first order
observations suggest that strength of triggered response is
a function of ground shaking amplitude. Although ampli-
tude-based triggering thresholds have been suggested for
some areas [28,29,31,64], a consistent triggering thresh-
old that applies throughout the crust has not been es-
tablished [38]. Large earthquakes regularly occur without
dynamically triggering seismicity beyond their aftershock
zones.

Lack of triggering reports belowM 6.5 may reflect sub-
tle triggered responses. [41] uses the Beta statistic to give
evidence of small seismicity increases at distances of 70–
110 km in the month following 14 moderate (M 5.5–7)
earthquakes in California. Because this distance corre-
sponds with where a large SMS phase should arrive, [41]
suggests that the SMS phase is responsible for the triggered
response in these cases.

If a simple amplitude-of-shaking threshold is required
to dynamically trigger earthquakes, we would expect that
even moderate earthquakes trigger seismicity near their
epicenters. [21,27,52,71] give strong evidence that dy-
namic triggering occurs in the near field. Because it is dif-
ficult to distinguish the influence of static and dynamic
stress changes in the near field, many studies of dynamic
triggering have limited their investigation to the realm be-
yond the aftershock zone.

Because many aftershocks in the near field are likely
dynamically triggered, [31] include aftershocks in a search
for an amplitude-based triggering threshold. They find
that peak dynamic stress distributions correlate well with
aftershock and remotely triggered seismicity distributions,
except in the Long Valley caldera, CA. The result of [31]
is consistent with failure thresholds found in labora-
tory studies [49] and independent of frequency of shak-
ing. [64] also find evidence for a ground shaking ampli-
tude-based triggering threshold at the Katmai Volcanic
Cluster, Alaska by comparing magnitude and distance of
mainshock with triggered response (Fig. 9). Their mag-
nitude-distance relationship is similar to that proposed
by [28] for the Geysers, CA. However, the triggering
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Earthquakes, Dynamic Triggering of, Figure 9
Plot of magnitude vs. distance from Mageik volcano in the Kat-
mai Volcanic Cluster for all Mw > 6 earthquakes between 1996
and 2003 located within 2000 km of Katmai. Hollow squares trig-
gered seismicity in the KVC. Solid circlesdid not. Dashed line rep-
resents possible triggering threshold. Figure reprinted from [64],
BSSA

threshold at Katmai appears to be higher than that sug-
gested for the Geysers.

In other cases, a simple amplitude-of-shaking thresh-
old is not consistent with data, and large amplitude ground
shaking is neither a necessary nor sufficient condition to
cause dynamically triggered earthquakes. [31] show that
the Long Valley caldera appears to be more suscepti-
ble to triggering than other areas they studied. Because
their study was based on catalog seismicity, it did not in-
clude triggered earthquakes that were too small to ap-
pear in earthquake catalogs, such as those at the Coso
geothermal field in response to the Denali Fault earth-
quake. These events were triggered by dynamic stresses of
< 0.01 MPa [74] and, like Long Valley, would not fit the
thresholds proposed by [29] and [31].

By comparing spectra of all earthquakes with high am-
plitude ground shaking in the Long Valley caldera [7] find
that in this area, high-amplitude low-frequency shaking
is more likely to trigger seismicity than high-amplitude
high-frequency shaking. [1] come to the same conclusion
after examining strong ground shaking spectra of earth-
quakes which did and did not trigger seismicity in the
Western Great Basin. Longer wave lengths associated with
low frequency ground shaking favor triggering by larger
earthquakes in at least some locales. Whether remote dy-

namic triggering in both the near and far field results from
the same physical process or processes remains an open
question.

One parameter that may complicate the search for
a triggering threshold in amplitude and/or frequency is
recharge time. Because the occurrence of earthquakes re-
leases stored strain energy, it may take time for an area to
re-accumulate strain energy sufficiently to be primed for
failure again following local earthquake activity or previ-
ous episodes of remotely triggered seismicity [38]. How-
ever some areas, such as the Geysers geothermal field re-
quire little to no time to recharge, as triggered seismicity
episodes have been separated by time intervals of months
or less [28]. Recharge times are dependent on many pa-
rameters including earthquake history, regional tectonic
strain rates, and mass and heat advection rates in areas of
hydrothermal and volcanic activity.

Time Scales of Dynamic Triggering
and Responsible Phases

Remote dynamic triggering of earthquakes occurs over
a variety of time scales following the onset of dynamic
stressing. At Aso Volcano, Japan [61] triggered tremor
begins with the P-wave arrival from distant large earth-
quake. In the case of discrete earthquakes however, it
is most common for triggering to begin during surface
wave arrivals (Table 1), leading many to suggest that
the specific low-frequency large-amplitude ground mo-
tions associated with surface waves initiate the failure pro-
cess [1,7,38,103]. Although the onset of dynamic trigger-
ing at remote locations is most commonly observed during
Rayleigh wave arrivals [38], clear cases of remote trigger-
ing of tremor on the Love wave exist as well [81].

In some cases, dynamic triggering begins hours to
days after an initial stress perturbation (e. g. [39,89,102]),
hinting that the physical process responsible for initiat-
ing earthquake failure evolve with time. For example the
largest triggered event following the M 7.3 Landers earth-
quake, a M 5.6 at the Little Skull Mountain, Nevada, oc-
curred 33 hours after the mainshock[39]. In the case of
Long Valley caldera’s south moat andMt. Rainier after the
Denali Fault earthquake, delayed earthquake swarms be-
gan 24 hours and 2 hours respectively after the passage of
the dynamic waves from the mainshock (Fig. 4) [74]. Both
of these areas also had much smaller triggered swarms
during the mainshock’s wavetrain.

Determining the duration and decay time of triggered
swarms ismore difficult than detecting their onsets, partic-
ularly in areas of high ambient seismicity. Many triggered
earthquakes may be triggered secondarily as aftershocks
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Earthquakes, Dynamic Triggering of, Figure 10
Phase modulated dynamically triggered earthquakes in the Katmai Volcanic Cluster following the 2007 M 8.2 Kurile earthquake:
a short period record fromstationACH showingbothwavetrains for theKurile earthquake and the larger amplitude, locally triggered
earthquakes, b broadband record from station KABU showing wave motion of the Kurile earthquake, c time series from ACH and
KABU zoomed in to show how local earthquakes seen clearly in red are occurring on a specific phase of the wavetrain from the Kurile
earthquake

to earlier triggered earthquakes [9]. The Yellowstone re-
sponse to the Denali Fault earthquake and the Long Valley
caldera response to Landers are fit well with an Omori-
type law decay [45]. In some cases however, triggered
swarms end abruptly after the dynamic stress perturba-
tion stops (e. g. [103]). Although our understanding of de-
cay rates of triggered swarms is incomplete emphasizing
that the subject deserves further investigation, decay rates
give strong constraints on physical processes responsible
for triggering.

Phase Modulated Triggering

Recent findings show that earthquakes can be triggered
during specific phases of the wavetrain. At Mt. Wrangell,
Alaska, triggered earthquakes occurred preferentially dur-
ing phases of the largest positive vertical ground displace-
ment from the 2004M 9.0 Sumatra earthquake [103]. Sim-

ilarly at Katmai Volcanic Cluster, Alaska, triggered earth-
quakes occurred only during specific phases of Rayleigh
waves from the 2007 M 8.2 Kurile earthquake (Fig. 10).
Such observations will allow us to resolve the precise dy-
namic stress field perturbations at the moment of earth-
quake nucleation on specific failure planes (e. g. [38]).

Physical Models of Dynamic Triggering

The wide variations in the characteristics of dynamic
triggering and the limited data for individual response
instances admit a spectrum of competing models for
the physical processes linking dynamic stresses from
a large, distant earthquake to the locally triggered re-
sponse. Broadly considered, published models fall into
three partially overlapping categories: 1) those involving
some form of stress-driven brittle failure across local frac-
tures, 2) those involving the activation of hydrous or mag-



Earthquakes, Dynamic Triggering of E 2615

matic fluids, and 3) those involving some form of local-
ized aseismic relaxation (deformation). The brittle fail-
ure models are generally consistent with the onset of lo-
cally triggered seismicity during dynamic stressing (rapid-
onset triggering), including the possibility that seismic-
ity may persist as aftershocks for some time after the dy-
namic stressing has stopped [21]. Under the latter two cat-
egories, the onset of local seismicity represents a second-
order phenomenon driven by a first order response to dy-
namic stressing in the form of fluid activation or transient
deformation. In principle, models under these two cate-
gories admit a significant delay in the onset of the triggered
seismicity with respect to the dynamic stresses generated
by a distant earthquake. Because the dynamic stress ampli-
tudes that trigger a response at remote distances are typi-
cally an order of magnitude or more below background
tectonic stress levels, all models carry the implicit assump-
tion that a crustal volume susceptible to dynamic stress
triggering must be in a near-critical stress state prior to
a triggered response.

Brittle Failure

Brittle failure models are based on the premise that the dy-
namic stresses propagating with the seismic waves from
a distant earthquake are sufficient to nudge the local stress
acting on a pre-existing dislocation beyond the threshold
for the particular failure mode. This threshold may be the
Griffith criteria for the tensile strength of a partially healed
crack or the Coulomb criteria for frictional strength of
a fault [86,87]. Crustal fluids play an important passive role
in all brittle failure models by counteracting the rock ma-
trix stress acting on a fracture through pore pressure, p,
according to

	 0 D 	 � Ip

where 	 0 and 	 are the effective and rock matrix stress
tensors, respectively, and I is the identity tensor. Thus,
pore pressure reduces the effective normal stress, � 0n, act-
ing on a fracture by opposing the rock matrix normal
stress as � 0n D �n � p. Alternatively, for pressure-sensi-
tive friction models the role of pore pressure can be ex-
pressed in terms of an effective coefficient of friction
as �0 D �(1 � p), where p D p/�n. Elevated pore pres-
sures lower the effectively strength by moving the back-
ground stress state closer to extensional or shear failure
thresholds thereby increasing vulnerability for failure by
imposition of small dynamic stress perturbations.

In the simplest frictional failure model, a triggered
earthquake occurs when the stress acting on a fault exceeds
the Coulomb threshold for static friction, or CFF(t) = 0,

and friction abruptly drops from static to dynamic values
with �s > �d, respectively. Here, CFF(t) is the Coulomb
Failure Function defined as

CFF(t) D j�(t)j � �s�
0
n(t) � C ; or its equivalent

D j�(t)j � �0s�n(t) � C

where �n ; � 0n ; �s ; �
0
s are defined in the preceding para-

graph, � is the shear, and C is the cohesive strength ([34],
and references therein). This simple case implies rapid-
onset triggering with the triggered seismicity beginning
promptly when CFF(t) first becomes positive for a fault
optimally oriented for failure in the background stress
field. The combination of dynamic stress components ��
and��n for which CFF > 0 will depend on the wave type
(e. g. Love or Rayleigh wave) and its incidence angle on
the optimally oriented fault [35]. Although details vary,
Love waves will generally have a greater triggering poten-
tial than Rayleigh waves when incident on vertical, strike-
slip faults while the opposite is the case for incidence on
inclined, dip-slip faults.

The Coulomb failure criterion applies to more elab-
orate non-linear friction models as well (see [18,25,31,
70,100]). Because the behavior of non-linear models de-
pend on factors such as slip history and slip rate, how-
ever, the failure threshold for static friction may vary with
time, and the triggered earthquake may be delayed with
respect to the time the failure criterion was first exceeded
(e. g. [69]). Susceptibility to dynamic triggering may result
when a dynamic stress is imposed on quasi-static loading
under a conditionally stable regime (e. g. [84]). Based on
their analysis of the dynamic triggering observed at Long
Valley caldera, [7] conclude that this mechanism requires
near-lithostatic pore pressures to be effective.

Models based on the non-linear response of granular
media to dynamic stresses may apply to dynamic trigger-
ing of mature faults with a well-developed core of fault
gouge. [49] document an abrupt decrease in the modu-
lus of fault gouge under low effective normal stress (� 0n
0.1MPa) when excited by dynamic strains >10�6 in the
laboratory. Thus, this model also requires near-lithostatic
pore pressures to be effective.

Sub-critical crack growth, or stress corrosion, is an-
other non-linear form of brittle failure that has a poten-
tial role in dynamic triggering. Under this model, a sud-
den increase in differential stress or an oscillatory stress
applied to a pre-existing crack can lead to crack growth
due to weakening of the crack tip by chemical corrosion.
This can shorten the time to earthquake rupture. This pro-
cess will be enhanced in an environment with fluids at el-
evated temperatures. It turns out that the equations gov-
erning sub-critical crack growth have the samemathemat-
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ical form as rate-state friction equations above [51]. Thus
near-lithostatic pore pressure appears to be a requirement
for each of these non-linear brittle-failure models, at least
as they apply to dynamic triggering at remote distances.

Fluid Activation Models

In addition to their passive role in reducing the effective
strength of a rock volume through ambient pore pressure,
fluids may play an active role in the dynamic triggering
process. Fluid activation models generally appeal to either
1) pore-pressure re-distribution associated with changes
in permeability and fluid transport, or 2) state changes in-
duced in multi-phase fluids.

Dynamic stressing may be capable of physically dis-
rupting permeability barriers separating volumes of differ-
ing pore pressure. For example, dynamic stress may shake
accumulated detritus from clogged fractures or opening
partially healed fractures by extensional failure. In either
case, fluid diffusion down the pressure gradient will re-
sult in a re-distribution of pore pressure with the poten-
tial for triggering seismicity in previously under-pressured
volumes in a near-critically stressed state. The evolution of
triggered seismicity in this case will be governed by the dif-
fusion length for a given permeability and the proximity
of the pre-existing stress state to brittle failure. [8] pro-
posed the clogged fracture model as an explanation for
the hydrologic response of water wells in southern Ore-
gon to surface waves fromM > 7 earthquakes at distances
of 300 km and 3850 km.

Geothermal areas may be particularly susceptible to
dynamic triggering through pore pressure re-distribution.
In these areas fractures are rapidly sealed by precipitation
from circulating, solute-rich geothermal fluids and plas-
tic deformation of quartz-rich rocks under elevated tem-
peratures tend to isolate pockets of elevated pore pres-
sure. Most active geothermal systems are located in areas
of extensional tectonism. In these areas normal stresses
induced by Rayleigh waves on vertical planes may open
vertical fractures, allowing high-pore-pressure fluids ac-
cess to shallower crustal volumes with lower pore pres-
sure [35]. The hydraulic surge model described by [22]
for volcanic and geothermal systems is a version of this
process in which the brittle-plastic transition at the base
of the seismogenic crust serves as a low-permeability bar-
rier separating near-lithostatic pore pressures in the plastic
regime from a hydrostatic regime in the overlying seismo-
genic crust. Rupturing the permeability seal by dynamic
stresses would release near-lithostatic pore pressures into
the brittle, seismogenic crust thereby inducing a surge in
triggered seismicity.

Models for bubble excitation by dynamic stresses in
a two-phase fluid (multi-phase in a partially crystallized
magma) offers interesting possibilities for remotely trig-
gered responses in geothermal and volcanic systems. This
is a particularly intriguing concept for remote triggering
in volcanic systems because of the importance of bub-
bles in eruption dynamics [57] and the source mecha-
nisms of long-period volcanic earthquakes [13], � Vol-
canoes, Non-linear Processes in. Advective overpressure
and rectified diffusion were the first bubble models pro-
posed as explanations for remotely triggered seismic-
ity [10,55,94]; although subsequent work has shown that
both hold less promise as viable explanations than initially
thought [56].

Under the advective overpressure model, the pressure
in a gas-saturated, incompressible fluid confined in a rigid
container increases as �g
h as a pre-existing bubble ad-
hering to the wall of the container is shaken loose by pass-
ing seismic waves. The bubble ascends buoyantly a dis-
tance 
h through a fluid of density � where g is the ac-
celeration of gravity [55]. The resulting pressure increase
in the container (magma body) deforms the surrounding
rock inducing small earthquakes. This model is criticized
on the basis that assumptions of a ridged container and an
incompressible fluid seriously violate realistic conditions
in the earth [75].

Under rectified diffusion, pressure oscillations im-
posed on a gas-saturated fluid with pre-existing bubbles
pump gas into the bubbles over multiple cycles. Gas ex-
olves from the fluid into the bubble during the dilatational
phase, when bubble surface area is maximal, and out of
the bubble back into solution during compressional phase,
when the bubble surface area is minimal [94]. The im-
plied pressure gain integrated over multiple cycles is then
transmitted to the surrounding rock inducing small earth-
quakes. [48] point out, however, that the effectiveness of
this model is limited by reasonable gas diffusion rates in
hydrous fluids or magma with respect to the frequencies
of seismic waves driving the pressure oscillations.

More promising bubble models appeal to the strong
sensitivity of bubble nucleation rate to the supersatura-
tion pressure [56] and the results of numerical models by
� Volcanoes, Non-linear Processes in and [14,85], indi-
cating that a small pressure drop imposed on a densely
packed matrix of tiny bubbles can lead to rapid, diffusion-
driven bubble growth. The implications of these models,
however, have yet to be more fully explored in the context
of dynamic triggering.

Two more speculative models involve magma insta-
bilities triggered by dynamic stresses. In one, a loosely
held crystal mush accumulated on the walls of a crystal-
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lizing magma body may be dislodged by dynamic shak-
ing. The sinking crystal mush would induce a convective
plume as it displaced hotter, less dense magma. In the
case of volatile-rich magma, buoyant convection would be
enhanced by bubble nucleation and growth as confining
pressure drops with decreasing depth [37]. Under suit-
able conditions, the resulting pressure increase within the
magma body could evolve over days [56]. If the magma
chamber was already in a near critical state, the culmina-
tion could be magma intrusion into the overlying crust or
the onset of an eruption. Whether this process culminates
in a simple pressure increase, an intrusion, or an eruption,
the sensible onset of locally triggered seismicity and defor-
mationmight be delayed by hours to perhaps days with re-
spect to the passing seismic waves from the distant earth-
quake. A second, even more speculative model appeals to
dynamic stresses disrupting the solid matrix of a partially
crystallized magma body thereby releasing any differen-
tial tectonic stress sustained by the solid matrix [36,37]. As
the magma body relaxes with a time constant governed by
the effective viscosity of the disrupted crystal mush, stress
would be transferred to the surround crust inducing de-
formation and local seismicity. In essence, this model cor-
responds to the relaxation of an Eshelby inclusion in an
elastic medium [20].

Aseismic Deformation

The relaxing magma body of the previous paragraph is
one example of aseismic deformation with the potential
of triggering local deformation and the onset of secondary
seismicity. A less speculative example involves aseismic
creep on faults triggered by dynamic stressing. Deforma-
tion associated with fault creep transfers stress to the adja-
cent crust, which in turn triggers local seismicity, as in the
example involving seismicity triggered on the Reykjanes
Peninsula following the M= 6.5 earthquake in the South
Iceland Seismic Zone in 2000 [2]. [4] document aseismic
fault slip (creep) on faults in the Salton Trough of south-
ern California triggered by the three M > 6 earthquakes
in the Landers, California sequence of 1992 (the M= 6.1
Joshua Tree, M= 7.3 Landers, and the M= 6.2 Big Bear
earthquakes). In this case, all instances of triggered slip
were on faults with within 150 km of the M > 6 earth-
quakes. In these examples and observations from trig-
gering in Long Valley caldera and Cierra Prieto geother-
mal field in Baja California [38,50] the geodetic moment
for triggered aseismic deformation exceeds the cumula-
tive seismic moment for the triggered earthquakes by
a factor of two or more. This emphasizes the impor-
tance of high-resolution deformation monitoring in ar-

eas susceptible to dynamic triggering for resolving the
role of aseismic deformation in the dynamic triggering
process.

Future Directions

In the last 25 years, in the wake of the Landers earth-
quake, the study of dynamically triggered seismicity has
given us new insight into earthquake initiation and the
failure regime in the Earth’s crust. Some argue that the
state of stress in the crust is highly spatially variable [77].
Given this, the likelihood of triggering seismicity would
also be spatially variable. [97] and [105], however, ar-
gue that the Earth’s crust is critically stressed and on the
verge of failure nearly everywhere. If this were the case,
one might expect triggering due to small dynamic stress
perturbations to be a ubiquitous phenomenon. In either
case, the study of remotely triggered seismicity provides
clues to spatial distribution of critically stressed crustal
volumes.

Unfortunately, although we can measure stress field
perturbations from dynamic waves from earthquakes, we
rarely have a detailed understanding of the background
stress field these perturbations are modulating. In addi-
tion, dynamically triggered earthquakes are often too small
or occur in too sparsely instrumented areas to resolve
reliable focal mechanisms. Because of these limitations,
our understanding of how dynamic stresses from remote
earthquakewavetrains induce a given crustal volume to re-
spond with triggered seismicity remains incomplete. Ad-
vances will require more cases of dynamically triggered
seismicity captured by both spatially dense seismic net-
works and continuous, high-resolution deformation mon-
itoring networks.

Recent observations of phase modulated dynamic trig-
gering offer powerful datasets of the precise time history
of dynamic stress triggering. Because similarities exist be-
tween phase modulated dynamic triggering of seismicity
in the shallow crust of a volcano’s edifice [103] and deep
in a subduction zone [81], the emerging study of non-vol-
canic tremor may provide new leverage on understanding
how dynamic stresses influence seismic slip.

As new observations of dynamically triggered seismic-
ity are reported, one conclusion is becoming increasingly
evident: multiple causative processes exist. The wide va-
riety in time scales over which triggering occurs and the
spatial and temporal characteristics of triggered seismicity
sequences and associated deformation responses cannot
be fit with any one model yet proposed. Rather, different
models are consistent with different episodes of triggering.
For example, fluid activation and stress corrosion models
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aremost applicable in volcanically and geothermally active
environments. In some cases, such as the complex trig-
gered response of Yellowstone, Mt. Rainier, and the Long
Valley caldera areas to the Denali Fault earthquake, multi-
ple processes may be occurring simultaneously in the same
locale, yet on different time scales. Of the physical models
described above, seismicity triggered instantaneously or
within seconds of the dynamic stress perturbation is con-
sistent with models based on simple brittle failure, brittle
failure with nonlinear friction effects, stress corrosion, un-
clogging of fractures, or rectified diffusion, whereas trig-
gered seismicity delayed by hours to days is more con-
sistent with models involving aseismic deformation, ad-
vective overpressure, sinking crystal plumes, or a relaxing
magma body.

In the few cases where hydrologic and high-sam-
ple rate strain data are available, dynamically triggered
seismicity is accompanied by changes in water levels in
wells [79] and significant deformation signals [2,25,36,50].
A complete understanding of dynamic triggering will re-
quire research approaches that integrate seismic, deforma-
tion, and hydrologic datastreams. To this end, we chal-
lenge Earth scientists to broaden their thinking and tap
these observations to better understand the initiation of
earthquake failure.
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Glossary

Earthquake prediction Place of epicenter, time of occur-
rence, and magnitude are the three main items of
earthquake prediction. Occurrence time is the most
difficult to predict. Depending on the concerned time
scales, prediction is usually classified as long term
(� tens of years), intermediate term (� a few years),
and short term (months to days) predictions. Electro-
magnetic signals of earthquakes are mainly concerned
with the short term prediction.

Piezo-electric effect Piezo-electricity is the electric po-
larization produced in certain crystals and ceramics
by the application of mechanical stress. Among rock-
forming minerals, quartz is most strongly piezo-elec-
tric, but its effect is much reduced because quartz crys-
tals are usually randomly oriented. Moreover, stress-
induced piezo-electric polarization in rocks is kept
canceled by compensating charges. At rapid stress
drop, bulk polarization appears as the compensating
charge cannot disappear instantly and decays with
a time constant � D "/� , where " is dielectric constant
and � electric conductivity.

Electro-kinetic effect Electro-kinetic effect, also called
streaming potential, is caused by the presence of the
solid-liquid interface. The double layer consists of ions
(anions in most cases of rock-water system) that are
firmly anchored to the solid phase and ions of the op-
posite sign (cations) in the liquid phase attracted to
them near the boundary. The liquid phase is in surplus
of cations so that when the liquid flows due to a pres-
sure gradient, an electric potential gradient is formed.
It is expressed as grad V D �("�/��) grad P, where ",
� and � are the dielectric constant, electric conductiv-
ity, and viscosity of the fluid, whereas � is a constant
called zeta potential. Thus, the streaming potential is
small for high conductive and viscous liquid.

Telluric current Electric current flowing in the surface
layer of the earth’s crust is called telluric current.
Mainly it consists of the current induced by extra-
terrestrial geomagnetic field variations (called mag-
neto-telluric or MT current) and the current as a part
of the global circuit between ionosphere and ground.
MT current carries information on the electrical struc-
ture of the earth’s interior: higher (lower) frequency
for shallower (deeper) structure. Telluric current can
also be of man-made origin leaking from such electric
sources as factories and trains. Telluric current is mea-
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sured by dipoles of electrodes inserted into the ground
at separate points. It has been postulated that transient
anomalous telluric currents are observed before earth-
quakes.

Frequency bands of electromagnetic waves
Electromagnetic waves are classified by frequency
bands as follows:
ULF (< a few Hz), ELF (a few Hz � 3 kHz), VLF (3–
30 kHz), LF (30–300 kHz), MF (300–3000 kHz), HF(3–
30MHz), VHF (30–300MHz), UHF (300–3000MHz),
SHF (3–30GHz). Not only ULF to VHF bands, but
also infrared (� 1013 Hz) and visible (� 1014 Hz)
bands are considered to be involved in earthquake-
related electromagnetic waves.

Skin effect The intensity of electromagnetic wave de-
creases exponentially with distance in a conductive
medium. In a simple case, the distance where the in-
tensity becomes 1/e, called the skin depth ı, is ex-
pressed as ı D

p
2/��!, where � and � are magnetic

permeability, and electric conductivity of the medium
and ! is the angular frequency of the wave.

Ionosphere The upper atmosphere, where electrons are
stripped off from oxygen and nitrogen atoms by so-
lar radiation, is called the ionosphere. It consists of
a D-layer (60–90 km), E-layer (90–130 km), F1-layer
(130–210 km), and F2-layer (210–1000 km). Electron
density is highest in the F2-layer. The electron den-
sity of the ionospheric lower layer can be measured by
ground-based ionosonde, whereas total electron con-
tent (TEC) of the whole ionosphere is estimated by
global position system (GPS). Electric currents in the
ionosphere produce transient variations of geomag-
netic field. The suggestion has been made that the
ionosphere is affected before earthquakes.

Definition of the Subject

Throughout most of human history, electromagnetic phe-
nomena associated with earthquakes have been repeatedly
told. A typical one is earthquake light. Until rather re-
cently, however, most records were in the realm of folk-
lore [31,71]. Since earthquakes are understood as a catas-
trophic event to occur when slowly increasing tectonic
stress in the earth’s crust reaches a critical level, it may well
be expected that the same stress may give rise to some elec-
tric, magnetic, or electromagnetic phenomena (EM phe-
nomena hereafter) and some persistent research on them
was initiated more or less simultaneously in varied parts of
the world in the 1980s in twomain streams. One was mon-
itoring of possible emissions from focal regions in a wide
range of frequency from DC to VHF, whereas the other

was to monitor the anomalous transmission of man-made
EM waves of varied frequencies over focal regions. The-
oretical and experimental studies on the mechanism of
EM phenomena have also been made. This relatively new
branch of science is now called Seismo-Electromagnetics.

These EM phenomena attract high attention for their
possible usefulness in earthquake prediction, which is of
immense societal importance and considered as one of
the last frontiers in earth sciences. Because many of the
EM phenomena are observed prior to earthquakes, they
may serve as their precursors, which have been difficult to
find by usual seismological and geodetic methods. The ex-
tremely interdisciplinary nature of the subject matter is the
distinct feature of Seismo-Electromagnetics and the back-
grounds of many research fore-runners are neither seis-
mology nor geodesy, but other fields, e. g., general geo-
physics, solid state, statistical, and ionospheric physics,
radio, space, and even biological sciences. This situation
in turn tends to make their accomplishments difficult to
be understood and accepted by the conventional earth-
quake community. Of course, EM phenomena do not
cause earthquakes. Both EM phenomena and earthquakes
are considered to be caused by regional or local tectonic
stresses, but some EM phenomena seem to appear shortly
before the occurrence of earthquakes. That EM phenom-
ena do not cause earthquakes may be another reason why
few seismologists are interested in them.

Introduction

Earthquake (EQ) related EM signals may be classified into
two major groups, each covering wide frequency ranges.
One is EM signals supposedly emitted from the focal zone
and the other is anomalous transmission of EMwaves over
the epicentral region.

The emission type signals are reported for geo-electri-
cal potential (telluric current) and geomagnetic field and
for EM waves. The best known example of the former
is the Seismic Electric Signals (SES) in the VAN-method
which has been developed in Greece since the early 1980s
and applied also in Japan since the 1990s [76,78,82]. SES
are transient DC geo-electrical potential variations ob-
served before EQs by dipoles of buried electrodes. Exper-
imentally and theoretically, the VAN method is by far the
best equipped method in this category and has survived
debates [22,41]. Along with the current views that earth-
quakes are catastrophic events at a critical state of com-
plex systems, a new time domain called Natural Time has
been introduced to integrate SES with seismicity for short-
term EQ prediction (e. g., [82]). Late in the 1980s, pre-
seismic magnetic signals began to be reported. They were
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ultra low frequency (ULF) anomalous changes observed
before M7:1 Loma–Prieta EQ, 1988 [16] and M7:1 Spi-
tak EQ, 1989 [39] followed by M8:0 Guam EQ, 1993 [29].
Among them the case of Loma–Prieta is considered as
most convincing. For the higher frequency range, there
have been reports of VLF signals received by aerial anten-
nas [3,23,95]. There have been reports from Greece that
evenVHF signals have also been received [9]. For high fre-
quency signals, considering the electric conductivity of the
crust, their emergence to the surface from the source re-
gions at depth presents problems to be solved.

Pre-seismic appearance of EM signals makes themuse-
ful for EQ prediction. It has often been questioned, how-
ever, why they appear only pre-seismically and not co-seis-
mically. This point makes the scientific community du-
bious about EQ-related EM signals in general. Actually,
co-seismic signals are routinely observed but not reported
each time for the obvious reason that they are not useful
for EQ prediction. However, all the co-seismic signals ob-
served so far were found to occur at the time of the arrival
of seismic waves. They are, therefore, co-seismic wave sig-
nals and not “true” co-seismic. The fact that no true co-
seismic signals are observed may be an important clue in
exploring the physical mechanism of signal generation.

The generationmechanism of EM signal emissionmay
be different for different frequencies. They may involve
the electro-kinetic effects and pressure-stimulated polar-
ization effects [79] for DC to low frequency signals, and
piezo-electric effects and exo-electron emission [10] for
higher frequency ones. For the optical range like EQ light,
a very different mechanism such as de-excitation of air
molecules may be involved. Apart from these, a mecha-
nism involving so-called positive holes (p-holes) in rock
forming minerals under stress has also been proposed re-
cently [18].

The second class of signals, i. e., the anomalous trans-
mission of EM waves, began to be actively discussed in the
late 1980s [24]. One of the best documented early cases
may be at the 1995 Kobe earthquake in which received
VLF radio waves for navigation purposes showed anoma-
lies in both phase and amplitude a few days before the
main shock [52]. Moreover, at the same Kobe EQ, it was
first found that FM radio waves from stations beyond the
line of sight can be received before main shocks [40].

The anomalous transmission of EM waves means that
there are some anomalies in the path, i. e., ionosphere or
atmosphere, over the epicentral region, which may be ver-
ified independently. Investigation to detect such changes
has been vigorously conducted both by ionosonde [45]
and by topside observation from satellites [63]. On the ba-
sis of these observations, the concept of Lithosphere-At-

mosphere-Ionosphere (LAI) coupling through which pre-
seismic changes in the earth’s crust may be transferred to
the upper atmosphere became one of the central issues of
Seismo-EM studies.

This article does not deal with the aspects of EM stud-
ies of the earth devoted for elucidating the subterranean
electrical structures. Although their EQ related structural
time changes, if observed, would be of great interest, there
has practically been no significant reported progress.

Telluric Current Anomalies and Natural Time

The VANMethod

The best example of modern research on DC electric sig-
nals is that of the VAN method [18,80,82], named af-
ter the initials of the founding Greek scientists, P. Varot-
sos, K. Alexopoulos, and K. Nomikos. The VAN group
has been making actual short-term predictions of M � 5
Greek EQs during well over a couple of decades. The cri-
teria for successful prediction imposed by themselves are:
< a few weeks in time, < 0.7 units in magnitude (M, here-
after), and < 100 km in epicentral distance. The length of
time window depends on the type of signals.

The changes in the geo-electrical potential differences
between buried electrodes, called Seismic Electric Sig-
nals (SES), are continuously monitored at many stations
(Fig. 1a). At each station, several short (50–200m) dipoles
in both EW and NS directions and a few long dipoles (2–
20 km) in appropriate directions are installed. Compared
with all earlier works using only one or two dipoles, adop-
tion of the multiple dipole system was a distinct progress
in noise rejection.

Amplitude of SES is of the order of 1mV/100m. There
are four types of signals, i. e., single SES, SES Activity,
Gradual Variation of Electric Field (GVEF), and short du-
ration pulse. Single SES, having duration 1/2min� several
hours, precedes single EQ, whereas SES Activity, which
consists of a number of SES in a short-time, is followed by
a series of EQs before the main shock (Fig. 1b). As will be
explained later, SES Activity has been playing a major role
in the recent VAN work related to Natural Time analysis.
GVEF has amplitude an order of magnitude larger than
usual SES, but is only rarely observed for large EQ. The last
type, i. e., short duration pulses appear shortly (some min-
utes) before EQs. These pulses, with amplitude sometimes
amounting orders stronger than SES, have received rather
little attention mainly because their lead time of minutes
has been considered too short for useful EQ prediction.

In the VAN type of observation, noise discrimination
is critically important. To eliminate noise, they have devel-
oped a set of rules as follows:
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Earthquakes, Electromagnetic Signals of, Figure 1
a Distribution of VAN stations and “Selectivity map” of several stations as of 1996 (after [74]). For Zante, see text. b An example of
SES Activity recorded on three short dipoles (labeled 1, 3, and 4) and long dipole (2) at Ioannina (IOA in a) station on August 31,
1988. Note that intensity scales in mV are different for different dipoles. The Killini–Varthelomio EQs were predicted based on these
data [82]

1. Changes with magneto-telluric origin can be elimi-
nated because they appear at all the stations simulta-
neously.

2. SES must appear simultaneously on all of short and
long dipoles, but only at the concerned station.

3. SES must satisfy the 
V /L D constant relation for
short parallel dipoles, where 
V is the amplitude of
SES and L the dipole length.

4. The polarity and amplitude of SES of short and long
dipoles must be compatible with the assumption that
the source is distant compared with the dipole lengths.

The VAN group made two major discoveries. One is the
so-called “Selectivity” and the other is the so-called “VAN-
relation”. The Selectivity has two aspects. (1) There are
only selected sites which are sensitive to SES (sensitive
sites). They were found only through testing at many sites:
Almost 90% of sites were insensitive. This fact gives an-
other strong reason why earlier efforts to catch precursory
electric signals failed. (2) A sensitive site is sensitive only to
SES from some specific focal area(s), which are not always
in close proximity. A map identifying those focal area(s),
SES from which are sensed by a site, is called the “Selec-
tivity map” of that site (Fig. 1a), which provides informa-
tion on the epicentral location of the impending EQ when
a SES is observed at the site. The Selectivity is considered
to originate from the inhomogeneity of the subterranean
electrical structures, i. e., SES goes only through conduc-
tive channels. The VAN group has presented many model

studies of channels [82]. So far, however, the real existence
of such subterranean channels has not been verified by
usual MT or other electric exploration techniques, possi-
bly because the scales of the proposed channel structures
are too small for the presently available resolving power.

The other discovery from the VAN research, i. e., the
“VAN relation”, is the following relationship among the
focal distance, r, EQ magnitude, M and the observed in-
tensity of SES,
V /L.

log(
V /L � r) D aM C b ; (1)

where a is a constant 0.34–0.37 and b is a site-dependent
constant. Once the epicentral location is estimated from
the Selectivity map mentioned above,M of the impending
EQ can be assessed since both
V/L and r are known.

The VAN method has been a contentious subject
(e. g., [22,41]). It is difficult, in principle, to prove the
causal relationship between SES and EQ occurring at sep-
arate times and the only reasonable way to make the re-
lationship credible would be to accumulate as many case
studies as possible on one hand and to build plausible
physical models on the other. Both endeavors have been
published in papers too many to quote here and they are
summarized in [82]. According to an independent eval-
uation (Uyeda et al. [75] and later additional check), out
of 16mb � 5:5 EQs which occurred in the Greek region
during Jan. 1, 1984–Jan. 1, 2004, 13 were successfully pre-
dicted. After the predictions of three large EQs in 1995,
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there were no large EQs until another three mb � 5:5 oc-
curred in late 1997. It is remarkable that during the 2.5-
year of quiescence no prediction was issued for the area
and two out of the three 1997 events were predicted re-
markably well. The score of the VANmethod has been as-
sessed by many authors. Most of the evaluations were in
favor, but some were not. The low scores often resulted
either when the assessors did not follow what the VAN
group designated on the items such as allowable lead times
for different type of SES, or the magnitude scales to use.
Mulargia and Gasperini [53] claimed that “the apparent
success of VAN predictions can be confidently ascribed
to chance” and ignited heated debates (e. g., [22,41]). In
the present authors’ view, however, VAN has well sur-
vived them. In Greece, VAN-type SES has been observed
by other groups also.

In Japan, VAN-type monitoring was initiated on a trial
basis in the late 1980s and was expanded in 1996 [76].
Despite the serious problems caused by the high level
of artificial noise, in particular from DC-driven electric
trains, the existence of the VAN-type SES has been con-
firmed for M > 5 EQs occurring within � 20 km or so
of a station. Moreover, phenomena attesting to “Selec-
tivity” were discovered. In the year 2000, a two-month
long seismic swarm, with � 7,000 M � 3 shocks and five
M � 6 shocks, occurred in Izu Island region: See Fig. 2a.
For this swarm activity, significant pre-seismic electric dis-
turbances were observed [77]. From about 2 months be-
fore the swarm onset on June 26, innumerable clear, un-
usual geo-electrical potential changes started on Niijima
Island (Fig. 2). These anomalous changes appeared only in
the northern part of the island, possibly reflecting the ex-

Earthquakes, Electromagnetic Signals of, Figure 2
a Seismic swarm activity in 2000 in Izu island region. Inset in the left shows the dipole configuration in Niijima Island. Each end of the
long dipole had short dipoles. OnlyWak-Air dipole showed the pre-swarm signals shown inb. The bottompanel in b shows seismicity
(modified from [77])

tremely heterogeneous underground structure of the vol-
canic region.

Co-seismic signals have been observed for many EQs.
However, they always started with the arrival of seismic
waves and not at the origin time of EQs. The changes are
probably local effects of passing seismic waves. There may
be many reasons why no true co-seismic signals are ob-
served. One is that, as laboratory experiments show, sig-
nals generated at ruptures are in much higher frequency
range, so that they cannot be registered by usual high-cut
measurement (0.1–1Hz sampling) and the second is that,
even when a higher sampling rate is employed, the high
frequency signals attenuate before reaching the receiver.
In fact, the pre-seismic stress accumulating process giving
rise to SES and the instantaneous stress releasing event are
physically very different processes and there seems to be
no compelling reason why they generate similar signals.

Natural Time

Seismicity as a critical phenomenon has been actively dis-
cussed by many authors (e. g., [4,38,65,68,73]. It has been
shown that SES and EQs reveal dynamic evolution charac-
teristics to the critical stage when their time series is ana-
lyzed in the framework of natural time �, which was intro-
duced by the Varotsos’ group (e. g. [82,83]). The symbol �
stands for the ancient Greek word ��o(o� , which means
“time”. The possible usefulness of natural time analysis
in predicting catastrophic events has been demonstrated
not only for the subjects of our immediate concern, but
also for other critical phenomena, including sudden car-
diac death [84,85].
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Time series of events, a in conventional time t, and b in the natural time�

In a time series comprised ofN events, the natural time
�k D k/N serves as the index for the occurrence of the k th
event. In natural time analysis, the evolution of the pair of
two quantities (�k ;Qk) is investigated where Qk denotes
the quantity proportional to the energy of the kth event.
The time series of events as shown in Fig. 3a is expressed
in natural time as in Fig. 3b. For the purpose of analysis,
the following function ˚(!) was introduced.

˚(!) D
NX

kD1

pkei!
k
N ; (2)

where pk D Qk/
PN

nD1 Qn and ! D 2��, � standing for
the frequency in natural time (natural frequency). This
˚(!) should not be confused with the discrete Fourier
Transform because! is a continuous variable. If we regard
pk as the probability density function of �, in analogy with
probability theory, its Fourier transform ˚(!) may be re-
garded as the characteristic function of!. The power spec-
trum of ˚(!), ˘ (!) D j˚(!)j2, for the dynamical sys-
tem approaching critical state with infinitely long-range
temporal correlation was calculated to be as follows (see
p.259–260 in [82]):

˘ (!) D j˚(!)j2D
18
5!2 �

6 cos!
2!2 �

12 sin!
5!3 : (3)

Taylor expansion of Eq. (3) gives, for small values of
!(! ! 0),

˘ (!) D 1 � �1!2 C �2!
4 C �3!

6 C �4!
8 C � � �

D 1 � 0:07!2 C � � � : (4)

Thus, a time series should show �1 � 0:07 when ap-
proaching the critical stage. The reason why the natural
time domain is useful when information on intervals be-
tween events is lost while retaining only information on
the order and relative importance of events is an intrigu-
ing question. As to this point, Abe et al. [1] have shown

that this time domain in fact is optimal for enhancing the
signals in time-frequency space.

In Greece, �1 � 0:07 was experimentally ascertained
first for SES activities preceding four large EQs; 1995M6:6
Kozani–Grevena EQ, 1995 M6:5 Eratini–Egio EQ, 1997
M6:4 Strofades EQ, 2001 M6:6 Aegean Sea EQ and later
also for other major EQs, supporting this view [82,86].
Infinitely long-range temporal correlations of Greek SES
were independently confirmed by Weron et al. [89].

In the case of seismicity, to investigate its time evolu-
tion, the power spectrum˘ (!) of the seismicity in natural
time subsequent to associated SES activity was calculated
as each consecutive EQ occurred. It was, then, shown that,
for major Greek EQs,˘ (!) approached that of the critical
state (�1 D 0:07) a few days before the main shocks [82].
This indicated that the seismicity approached the critical
state at that time. This unexpected discoverymay shed new
light on the EQ generation mechanism itself. At the same
time, this suggests the possibility of narrowing the time
window of predicting EQs to a few days, when SES data are
available. It may be added, albeit different from the Natu-
ral Time defined here, that an attempt was made to iden-
tify seismic quiescence with the viewpoint that the seismic
process proceeds with its internal clock called “events time
scale” [66].

Ultra Low Frequency (ULF) Anomalies

ULF generally means lower than several Hz. Research in
this frequency range was started late in the 1980s. ULF
signals are advantageous over those in higher frequencies
because of their large skin depth. The best-known exam-
ple is the case of the M7:1 Loma-Prieta (California) EQ
in 1989 [16]. Observation was made at a site which hap-
pened to be at 7 km from the epicenter. The amplitude
of the horizontal component started anomalous enhance-
ment at about 2 weeks prior to and a sharp increase a few
hours before the EQ. Figure 4 shows the records at 0.01Hz
band. The disturbance lasted for about 3 months after the
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The amplitude of the geomagnetic horizontal component at
0.01Hz band [16]

EQ. These anomalous changes were not of solar terres-
trial origins because they were not observed at other dis-
tant stations. Moreover, these have never been observed
at any other time during the whole period of observation
of more than 15 years. It was, thus, concluded that the
anomalies were related to the EQ. Reports of observing
pre-seismic ULF geomagnetic anomalies have been made
also for M6:9 Spitak (Armenia) EQ in 1988 [39] andM8:0
Guam (Marianas) EQ in 1993 [29]. Further efforts in Japan
and elsewhere have been summarized by Hattori [28]. It
seems, however, that a more rigorous approach is needed
to make the ULF studies sufficiently credible to the scien-
tific community.

Higher Frequency Electromagnetic Emission
and Earthquake Light

Pre-seismic electromagnetic wave emission in the VLF–
LF-range has been reported since the 1980s. Gokhberg
et al. [23] reported pioneering observations as shown in
Fig. 5. Emissions at 81 kHz increased one or two hours be-
foreM6:1 andM5:3 earthquakes took place and decreased
after the second shock.

Asada and his group started investigation of EQ-
related VLF emissions in the early 1990s [3]. They mon-
itored the wave forms of two horizontal magnetic com-
ponents of VLF waves, through which the apparent in-
coming direction of VLF pulses was determined. They
found that, before M5 class land EQs within 100 km of

their stations, some pulses with a fixed incoming direc-
tion appeared and the EQs actually occurred in that di-
rection, whereas the sources of overwhelmingly numer-
ous and stronger noises were moving along with lightning
sources (Fig. 6). Moreover, there is a well-documented re-
port of undeniable noise in commercial MF radio bands,
experienced by an automobile driver approaching Kobe,
some minutes before the Kobe EQ of 1995 (see [55]).

Enomoto et al. [12] recorded anomalous pulses of geo-
electrical current (HF-band) at Erimo station, Hokkaido,
Japan, from February 2000 to March 2001 and from Au-
gust to September 2003. The former anomalies occurred
before and during the volcanic activity of Mt. Usu (200 km
away), while the latter started one month before the 2003
September 26 M8:0 Tokachi-Oki EQ (80 km away). These
were the only anomalies during their 10-year observation
period.

For the Kobe EQ, while measuring sporadic Jovian
decametric emissions with a radio interferometer at an
observatory at about 80 km from the epicenter, unusual
pulsed emissions at 22.2MHz were detected tens of min-
utes both before and after the main shock [47]. Such un-
usual pulses have never been observed at other times and
the possible source direction was estimated to be that of
the main surface exposure of the EQ fault. There was no
clear co-seismic radiation. Warwick et al. [88] reported
a similar observation related to the 1960 Great M9:5
Chilean EQ.

Also in the high frequency range, Eftaxias et al. [9]
have reported results obtained in Greece. Since 1994, they
have been running a station on Zante Island in the Io-
nian Sea (see Fig. 1a), where installation was performed of
(i) six loop antennas in EW, NS and vertical magnetic field
at both 3 kHz and 10 kHz; (ii) /2 electric dipoles for 41,
54, and 135MHz and (iii) two Short Thin Wire Antennas
for ULF (< 1Hz) anomalies. Sampling rate is 1Hz. They
report that MHz–kHz EM anomalies have been detected
during a few days to a few hours prior to near-surface land
EQ with M > 6, i. e., the 1995 Kozani-Grevena EQ and
1999 Athens EQ. TheMHz radiation appeared earlier than
the kHz. They interpret the phenomena as due to small-
scale cracking and assume that the more grown-up cracks
generate the lower frequency anomalies. They also look to
the EQ as a critical phenomenon and suggest that the shift
from MHz to kHz activity corresponds to an anti-persis-
tency to persistency shift. In their observations, there was
no co-seismic anomaly.

As mentioned earlier, however, transmission of EM
waves in the conducting earth beyond the skin depth dis-
tance is an important unresolved problem common to all
the topics reported in this section.
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Change of 81 kHz electromagnetic wave observed in Tokyo [23]

Earthquakes, Electromagnetic Signals of, Figure 6
Rose diagramof incoming VLF signals observed onMay 18, 1999
at two sites.M4:1 EQ occurred atblack square point onMay22 [3]

EQ Light

Earthquake light (mostly co-seismic) has been reported
all over the world from ancient Greek, Roman, and Chi-
nese times. There is no doubt that the phenomena exist.
Light emanates from the whole sky, or locally from the
ground. The shape reported is like aurora, pole, flash, ball
lightning, and so on, while the color widely ranged from
blue and blue-white to red-yellow and orange. We, how-
ever, note that all reports may not be on natural phenom-
ena but on some artificial effects such as sparks at power
lines.

Galli [21] collected 148 eyewitness reports in late 19th
Century Europe (see [71]). In Japan, Musha [54] collected
about 2,000 eyewitness reports for 65 EQs, while Ter-
ada [69] discussed the theoretical aspects and suggested
that the electro-kinetic effect may be a possible cause.
From 1965 to 1967, there was a large EQ swarm at Mat-
sushiro area in central Japan and numerous luminous phe-

Earthquakes, Electromagnetic Signals of, Figure 7
Photograph of EQ light at Matsushiro seismic swarm taken by
Kuribayashi (after [91])

nomena were seen and photographs were taken as shown
in Fig. 7 [91].

For the 1995, M7:3 Kobe EQ, Enomoto and
Zheng [11] examined the trace of gas emission in the
Awaji fault where the rupture started. They suggested that
the gas plasma emission might have emitted the light.
Kamogawa et al. [37] reported some independent wit-
nesses that a luminous object moved a long distance a few
seconds before the main shock in the direction of the
rupture. Ikeya and Takaki [32] numerically showed that
the screening charges neutralizing the polarized piezo-
electrical rock may generate a strong co-seismic electric
field, and the de-excitation of nitrogen molecules excited
by collision of electrons accelerated by the electric field
produce the blue EQ-light.

Lithosphere-Atmosphere-Ionosphere (LAI) Coupling

Pre-seismic atmospheric-ionospheric anomalies before
EQs have been reported since the 1970s [2,20,24,27] and
the concept of pre-seismic lithosphere-atmosphere-iono-
sphere coupling arose. Historical reviews and important
works that are not introduced in this article may be
tracked from references of Pulinets and Boyarchuk [61]
and Kamogawa [33].
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Liu et al. [43] found in Taiwan that the ionosonde
measured critical plasma frequency, foF2, corresponding
to the electron density of the ionospheric F2 layer, signif-
icantly decreased during afternoons within a few days be-
foreM � 6 EQs. For example, such ionospheric anomalies
appeared 3 and 4 days before the 1999 M7:7 Chi-Chi EQ.
Similar EQ-related electron density depression occurring
above Taiwan Island was observed in the GPS total elec-
tron density (TEC) [44]. From such observations, Liu et
al. [45] demonstrated that the appearance of the anoma-
lies within 5 days was statistically significant at 5% level
for the M � 5:4 EQs occurring within 150 km.

Sub-ionospheric anomalies before large EQs were re-
ported by Gokhberg et al. [24] and Gufeld et al. [27].
They used VLF ship-navigation waves (10–20 kHz) and
observed pre-seismic anomalies between the transmitter
and the receiver during mid-night. Marenko [49] sta-
tistically supported the results of Gokhberg et al. [24],
while Michael [50] obtained a less optimistic conclu-
sion. Meanwhile, the studies have been further developed
mainly in Russia, Japan, and Italy. For example, pre-seis-
mic variations of terminator-times, i. e. the sunrise and
sunset for VLF waves, were demonstrated [52]. Clilverd
et al. [6], on the other hand, did not obtain similar posi-
tive results when they applied the terminator-timemethod
to their 5-year data of reception at Faraday, Antarctica
(receiver) of VLF waves transmitted from the northern
United States. Maekawa et al. [48], measuring LF waves,
statistically investigated the correlation between sub-iono-
spheric anomalies andM � 6 EQs in Japan and found that
the amplitude and dispersion of received signals signifi-
cantly decreased 2–6 days before the EQs. Thus, this issue
is still controversial [34,64].

In the VHF range, Kushida and Kushida [40], while
monitoring meteorites plunging into the high atmosphere
by reflection of FM radio waves, detected anomalous re-
ception, just a few days before the Kobe EQ, of the FM ra-
dio waves from distant (beyond the line-of-sight) stations.
This was a new discovery and these authors consequently
began extensive measurements on other EQs. With regard
to the anomalous reception of VHF waves from trans-
mitters beyond the line-of-sight, Fujiwara et al. [20] sta-
tistically showed significant enhancement of atmospheric
anomalies lasting for a few minutes–several hours within
5 days before M � 4:8 EQs.

Mechanism of Pre-Seismic EM Phenomena

Generation Mechanism of EM Signals

Electro-Kinetic Effect The electro-kinetic effect can be
a plausible source for SES (DC) and ULF emission. Mizu-

tani et al. [51] first proposed a model in which, during
the dilatancy stage, pore pressure in the dilatant region
decreases and water flows into this region from the sur-
rounding area, generating electric and magnetic precur-
sors of EQs. Since then, many models have been proposed
(e. g., [15,93]). Fedorov et al. [13], however, suggested that
the expected magnitude of seismo-EM signals in the ULF-
VAN range from an electro-kinetic source may reach the
detection level only for a favorable set of crustal parame-
ters.

Models Related to Defects in Solids A SES-generation
model by pressure-stimulated currents (PSC) was pro-
posed by Varotsos and Alexopoulos [79]. Their model is
based on the physics of the point defects in solids. The
impurities and vacancies have excessive and opposite-sign
effective charges and form local electric dipoles. The di-
rections of the local electric dipoles usually distribute ran-
domly. Under an electric field, dipoles will align in its di-
rection. The alignment is an activation process in which
the time constant is an Arrhenius-type function of stress
as well as temperature. Therefore, an avalanche of align-
ment takes place when stress approaches a critical level
(Fig. 8). It has been later suggested that, instead of electric
field, inhomogeneous deformation mentioned in the next
paragraphmaywork to align the dipoles in the direction of
the stress gradient (see [14]). This model is unique among
other models in that SES is generated spontaneously dur-
ing gradual increase of stress without requiring any sud-
den change of stress such as micro-fracturing. For the SES
to work as a precursor, it is assumed that the critical level

Earthquakes, Electromagnetic Signals of, Figure 8
Pressure-stimulated current j occurs at a critical pressure Pcr un-
der the external electric field E. Pfr is the fracture pressure (af-
ter [79])
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of stress for SES generation is lower than that of mechani-
cal failure causing EQ. A thorough verification of the PSC
model by laboratory pressure experiments is fatally lacking
up to this stage.

In relation to SES generation, deformation-induced
charged flow is an interesting possibility [56]. This flow
was observed to take place as a result of inhomogeneous
plastic deformation of ionic crystals, such as NaCl, in the
direction of the stress gradient without applying electric
field. It was interpreted that charge carriers are charged
dislocations. Some experiments were conducted on rocks
with similar results (see [82]). Independent of these, Fre-
und and his colleagues have recently been proposing
a unique mechanism for ULF electric signals ([18] and
Ref. therein). They have discovered in the laboratory that
when a block of igneous rock is put under stress locally,
the rock turns into a battery without any external electric
field (Fig. 9).

This striking phenomenon is interpreted as follows:
A fraction of the oxygen anions in the rock-forming sil-
icate minerals is not in their usual 2-valence state (O2�)
but in the 1-valence state (O1�), which represent defect
electrons, i. e., positive holes (p-holes). They are unstable
and form more stable positive hole pairs (PHP), chemi-
cally equivalent to peroxy links, O3X/ıınXO3, which are
electrically inactive. These dormant PHPs, however, are
awoken by deviatory stress, and make the insulating host
material a p-type semi-conductor. The p-holes flow out of
the stressed volume because of mutual electrostatic repul-
sion. If scaling to earthquake size is allowed, the current
thus produced may attain 103–105 A/km3.

Other Models For generation of high frequency signals,
models related to micro-cracking have been proposed
from laboratory experiments. They are (1) Discharge of
screening charge of piezo-electric polarization [31,94], (2)
electrification of fresh crack surfaces [90], (3) exo-elec-
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Conceptual diagramof the battery current carriedby electrons which flow out of the stressedportion S (left) through the outer circuit
and by p-holes which close the circuit by flowing through the unstressed portion and meeting the electrons at the far end (right),
flowing out from the stressed portion S, (after [18])

tron [10]. As to the occurrence of pre-main shock micro-
cracking, there have been only a few reliable field reports.
Furthermore, it might be pointed out that in these mod-
els much stronger co-seismic signals would be expected.
Some ad hoc mechanism, therefore, would be needed to
explain that no co-seismic signals have been observed so
far in the field.

Transmission Mechanism of EM Signals

Even if EM signals are generated around a seismic focal
region, signals except in the ULF range cannot be trans-
mitted long distance in the conductive crust due to the
decay caused by the skin effect, as long as the displace-
ment current component is negligible. Even for DC sig-
nals, geometric decay would prohibit their long distance
reception in a homogeneous or simple layered earth [5].
To overcome this difficulty, Varotsos et al. [81] proposed
a conductive channel model, in which electric signals are
transmitted through the conductive channel to a surface
point close to the upper end of the channel. Freund [17]
reported that, in the laboratory experiment, mobile posi-
tively charged holes (p-holes) appeared on the rock surface
when a stress gradient was given to the rock sample. His
results implied the possibility of appearance of a positively
charged area at long distance on the surface before EQs.
Kamogawa and Ohtsuki [35] proposed a model to explain
how the higher frequency EM waves can be observed be-
fore EQs, i. e., longitudinal plasma waves excited by exo-
electrons [10] may be transformed into EM waves by the
surface roughness.

LAI Coupling Mechanism

If the pre-seismic atmospheric-ionospheric anomalies are
real, some causative factors may be detected on the ground
surface. Possible mechanisms of pre-seismic lithosphere-
atmosphere-ionosphere coupling have been proposed by
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Concept of LAI coupling (modified from [33])

many researchers. They may be categorized in two groups
as shown in Fig. 10.

First, some atmospheric electric field EE is generated
on/near the ground surface during the pre-seismic period
and it will cause the ionospheric anomalies [25,26,62]. Pu-
linets et al. [62] proposed that such an atmospheric electric
field is caused by radon emission (see [30,87,92]). Alterna-
tively, it is proposed that positively charged holes diffused
from the seismic focal area to the ground surface gener-
ate the electric field [17]. However, such an electric field
on the ground has not yet been observed even when pre-
seismic ionospheric anomalies were detected [36].

Second, some researchers proposed that atmospheric
gravity waves (AGW) propagate into the ionosphere, and
disturb it before EQs [46,52,59]. The proposed source
of AGW is the long-period ground oscillation or ap-
pearance of thermal anomalies on the ground. The for-
mer was inferred from some observations that co-seis-
mic ground vibration actually excited AGW which prop-
agated into the ionosphere (e. g. [8]). However, there is
no report that long-period ground oscillations were de-
tected at the pre-seismic stage even by high-sensitive su-
perconducting gravimeter observations so far. The lat-
ter proposed source of AGW is the pre-seismic tem-
perature rise, “thermal anomalies”, reaching 2–4°C or
higher in a wide area around impending EQs, based on

satellite observation of enhanced infrared (IR) emission
from the ground surface [7,70,72]. Many models have
been put forward to explain the origin of the “ther-
mal anomalies”, including latent heat release at con-
densing water vapor due to enhanced radon emission.
Pulinets [60] develops a scenario where the “thermal
anomalies” give rise to ionospheric anomalies. Freund et
al. [19] cast another interpretation on the enhanced IR
emission based on their p-hole model mentioned above.
When p-holes appear on the surface of the unstressed area,
they form a positive charge layer and recombine to form
themore stable O�–O� bond, emitting IR as de-excitation
energy.

Future Directions

It seems that, despitemuch circumstantial evidence, earth-
quake related electromagnetic signals, in particular those
at the pre-seismic stage, have not yet been completely ac-
cepted as real physical quantities. Putting the common
indifference and prejudice of the conventional scientific
community against new science aside, it seems appropriate
at this stage to recognize that there are legitimate reasons
for the critical views. In fact, most of the problems of fun-
damental importance in seismo-electromagnetics are still
unresolved.
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To name a few, propagation of high-frequency EM
signals in conductive earth has been proven unequivo-
cally enough neither empirically nor theoretically. Tech-
niques of direction finding of EM signals at various fre-
quency ranges and atmospheric-ionospheric anomalies
have not shown sufficiently credible results yet. Solving
these problems will be important issues in near future
investigation.

The mechanisms of signal generation are still far from
established. The majority of proposed mechanisms at-
tribute pre-seismic signals to effects such as piezo-electric,
electro-kinetic, charged dislocations, p-holes, and exo-
electrons, all induced by stress release at micro-fracturing
in the last stage of EQ preparation. In such cases, critics
demand that by far the largest signals should be observed
at the instance of the main shocks when the largest stress
drop takes place. However, as described above, all the “co-
seismically” observed electric or ULF signals are associated
with the arrivals of seismic waves (to be called co-seismic
wave) and are not co-seismic in the true sense. For higher
frequency signals, even co-seismic wave signals have not
been confirmed. This fact is a popular basis for negating
the EQ-related signals in general. However, this very fact,
i. e., the non-observation of true co-seismic signals in any
frequency range may present some important clues with
regard to the mechanism of both the signal generation and
earthquakes as follows.

Numerous lab-experiments show strong co-fracturing
signals in the form of high frequency EM waves. They
are very different from the low frequency signals observed
during pre-seismic stages. Thus, one explanation for non-
observation of co-seismic signals in the ULF range is
(1) field observation uses a low-pass recording system to
avoid high frequency noise, and (2) high frequency signals
are attenuated in short distance in the earth. However, this
explanation seems to suffer from a weak point as follows:
Since it takes some seconds for the fault motion of a large
EQ to terminate, the overall signals should contain a low
frequency component powerful enough to be caught by
the low-pass recording system. Moreover, even higher fre-
quency wave monitoring systems have not captured any
co-seismic signals. All these seem to speak for non-gen-
eration of co-seismic signals of any frequency in the field
and researchers had to devise some ad hoc scenarios as
to how to reconcile with lab results, often invoking over-
growth of micro-faults by the time of main shocks to pro-
duce signals. For pre-seismic signal generation, these sug-
gested mechanisms assume pre-seismic micro-fractures,
which in fact, are micro-EQs that may be observed by
high sensitivity seismic networks. Although depending on
the required size, there has been no such observation,

which constitutes another objection to pre-seismic EM
signals.

The pressure-stimulated currents cited above regards
the SES generation as a critical phenomenon. SES is sup-
posed to be spontaneously generated when the gradually
increasing tectonic stress level reaches a critical value. This
seems to be the only proposed mechanism which needs no
stress release by micro-fracturing or any special events, al-
though it makes the causal relationship between SES and
EQ less apparent. For the same reason, this mechanism
does not need to generate any strong signals at EQ itself.
Some of the other mechanisms, such as electro-kinetic,
deformation-induced charged flow or p-holes flow men-
tioned earlier might be modified to fit the observation by
incorporating the concept of critical state since they only
need a development of stress gradient for signal genera-
tion.

Experimental verification of these mechanisms is ur-
gently needed as it has been decisively inadequate. In any
case, it should be kept inmind that the EQ preparation and
EQ itself are different physical processes, the former being
a gradual stress increasing process, whereas the latter is an
instantaneous stress drop.

No true co-seismic signal in contrast to lab fracture ex-
periments presents a question if the EQ is a fracture or not.
It is nowwell-known that the EQ is a sudden sliding of pre-
existing faults. However, according to Yoshida et al. [94],
even stick-slip experiments on dry granite revealed strong
signals at the time of slip which were understood as due
to the piezo-electric effect. Non-generation of co-seismic
EM signals still remains an important problem requiring
further investigation.

Important unsolved questions are by no means con-
fined to pre-seismic signal emissions. On the contrary,
evenmore fundamental unsolved problems lie in LAI cou-
pling. Here, the very origin on the ground to cause any of
the suggested elementary agents, such as anomalous atmo-
spheric electric field, atmospheric gravity wave, and ther-
mal anomaly, is unknown. So far, observations on these
features have been carried out by various researchers in-
dependently, so that the integration of fragmentary results
for constructing a unified physical scenario of the whole
process has been difficult. Since very active multi-national
as well as multi-disciplinary cooperative research has been
underway recently, involving GPS-TEC estimation and
even topside measurement of the ionosphere by satellites
of several nations, substantial progress in the upper end
of LAI coupling is expected in the near future. Lately, ac-
tive pursuit of EQ-related ionospheric anomalies has been
made through topside and in-situ observation by satellites
such as the French micro-satellite DEMTER [58]. How-
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ever, the lower initiating side of the LAI coupling appears
much more difficult to elucidate. It would require long
sustained pre-seismic ground-based network observations
on such phenomena as long-period ground motion and
radon emission in as many earthquake prone areas as pos-
sible. But these tedious efforts should be enhanced on
a global scale at all cost. Finally, it may be added that
Kamogawa [33] pointed out that reported atmospheric-
ionospheric anomalies might be caused by some EM phe-
nomena which also trigger seismicity. For instance, sug-
gestions have beenmade that geomagnetic storms [67] and
cloud-to-ground lightning [42,57] may trigger EQs. It may
be worthwhile to keep such a possibility of difference in
cause and effect in mind in the future studies.
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Glossary

We use the tensor notation and the summation conven-
tion for the repeating indices:

Tss D
X

s
Tss ; AkBk D

X

k

AkBk :

In some places we underline the symmetric and antisym-
metric properties of the tensors using the (..), [..] brackets
for indices:

S(i k) D S(ki) ; S[i k] D �S[ki] :

The deviatoric part of a symmetric tensor, TD
(i k), having

zero value of trace, is defined as

TD
(i k) D T(i k) �

1
3
ıi kT(ss) ; TA

(i k) D
1
3
ıi kT(ss) ;

TD
(ss) D

X

s
TD
(ss) D 0 ;

where T(i k) is any symmetric tensor, while TA
(i k) is the axial

tensor.
In some places we use for the partial differentiations

the following notations equivalently:

@un
@xk
$ un;k ;

@U
@x˛
$ U;˛ ;

where the indices with Roman characters run from 1 to 3,
while those with Greek characters run from 1 to 4.

We use the fully antisymmetric tensor

"l ps D

8
<

:

1
0
�1

9
=

;
for

8
<

:

even permutation of
repeating

odd permutation of

9
=

;
indices ;
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this fits to the tensor notation and helps to express some
operations, e. g. curl:

curl , "l ps
@

@xp
 s :

Definition of the Subject

The problem of rotation waves becomes actual again due
to the recent observations based on very precise instru-
ments able to measure very small rotation time rates, and
due to development and new approaches to the continuum
theories.

Our aim is to present a consistent theory describ-
ing a continuum subjected to complex internal processes.
First, we consider all possible kinds of point-related mo-
tions and deformations (strictly speaking, a single couple
is not a point-source, as a displacement derivative only
tends to a point, but a double couple enters into a fam-
ily of point-deformations as it can be given by the string–
string deformation, that is as a shear point-nucleus).

We define the complex rotation field which includes
the spin and twist; the latter describes the angular oscil-
lations of the shear axes and related amplitude variations.
Twist point deformation can be represented by the string–
string and string-membrane motions. A twist vector is de-
fined as a vector perpendicular to a string–string plane; it
becomes an important counterpart to spin and a key to
presented theory, in which we shall also include the axial
point deformation (e. g., the thermal one).

We believe that all point motions, displacement and
rotation, and point deformations, axial and twist, shall be
governed by some fundamental laws, and we intend to find
the invariant forms of such relations in a frame of a modi-
fied continuum theory. Such a continuum theory may give
us a new insight into the complexity of processes which
can be included in a continual material description; we will
demonstrate that interaction of these motions and defor-
mations can lead us to a rich variety of internal processes.

We may mention also that the theory of continuum
containing all these deformations with rotational motions
(spin and twist), with the inner central motion and with
defects may be projected on the intrinsic properties of
non-Euclidean space. We confine ourselves only to a re-
mark that application of differential geometry is extremely
enlightening for the fundamental understanding of the
nonlinear processes.

The independent rotation field can be related to the ad-
ditional constitutive law joining the antisymmetric stresses
and rotations, as proposed by Shimbo [1,2] in his consid-
erations on the friction and fracturing processes; the intro-

duced motion equations are equivalent to the stress mo-
ment – angular velocity relation.

For a reference to our consideration, we recall also the
Kröner theory and its modifications as introduced by Teis-
seyre and Boratyński [3,4].

The possible dual description of anymotions bymeans
of displacement and rotation fields are being discussed and
their formal equivalence concerning the propagation pro-
cesses is demonstrated, but not valid for the source phe-
nomena. Thus, we point out the importance of physically
independent rotation motions in the inner granulation
and fracture processes, and different types of rotational de-
formations are analyzed.

Our considerations bring several results for the follow-
ing subjects.

For seismology:

� New description of the source processes including the
role of rotational processes, and explanation of co-ac-
tion of the slip and rotation motions

� Theory of the seismic rotation waves
� Thermodynamical conditions for a seismic energy re-

lease

For continuum and fracture mechanics:

� Theory of asymmetric continuum with the bal-
ance equations for the symmetric and antisymmetric
stresses

� The relations between the asymmetric stresses and dis-
location field

� A new approach to fracture processes with the hypoth-
esis of the twist-shear release following the extreme an-
gular deformation related to the internal particles, or
grains constituting a continuum

� A synchronization role of the specific wave fields in the
fracture processes

� Formation of a mylonite zone adjacent to fracturing
and its constitutive description

For fluid mechanics:

� Theory of the asymmetric fluid continuum with the
non-vanishing rates of the asymmetric stresses

� Explanation of the extreme wave phenomena (solitons)

Asymmetric Continuum and Rotation Effects

Introduction

Earthquake rotation effects were observed and discussed
at the time when the 19th century seismological science
was formed. Some eminent scientists, e. g., Charles Lyell
(1797–1875), Charles Darwin (1809–1882), Robert Mallet
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(1810–1881), and Alexander von Humboldt (1769–1859),
raised the problem of the vortical movements, or vortex
motion, induced by earthquakes. After the Lisbon earth-
quakes (1755) and those of Calabria (1783), many scien-
tists focused their attention on the effects induced by such
“vortical” waves. Robert Mallet was the first who precisely
explained the observed rotation effects of some surface ob-
jects, pointing out the roles of the center of adherence of
these objects and their inertia moment in relation to forces
twisting the objects (see: Kozak [5], and Ferrari [6]). Many
scholars tried to design the instruments to record the “vor-
tical motions”, but the first instrument prepared especially
to record such motions was that constructed by Filippo
Cecchi, the director of the Ximeniano Observatory of Flo-
rence, in 1875. Cecchi’s electrical seismograph used slid-
ing smoked paper. However, at that time it was too early
to construct an instrument sensitive enough to obtain any
traces of such wave motions.

The problem of seismic rotation waves was apparently
closed after the Gutenberg [7] statement (1926) that such
waves cannot propagate as they will be immediately atten-
uated, even when generated at the source. Of course the
rotation effects remained, with the related explanation by
Mallet, as objects of studies especially in the domain of the
macroseismic observations.

From the contemporary point of view, two groups of
achievements shall be mentioned; first, related to contin-
uum theories, and second, related to development of the
modern very precise instruments, able to record extremely
small rotation time rates.

The continuum elastic theory bears from its very ori-
gin the serious limitation that the angular motions and re-
lated moments are not included. In such a situation, there
was no place for a constitutive law describing the reaction
between the stress moments and rotation processes. The
lack of such a law automatically denies the existence of the
rotation waves. We will return to these problems further
on.

Experimental Evidence

The modern instrumentation techniques and the obtained
results presenting the rotation wave seismograms need
more attention. First, we can mention that maybe the first
rotation seismogram (see Teisseyre [8]) was achieved in
an indirect way: the azimuth array of horizontal seismo-
graphs, installed in one of the coal mines in Upper Sile-
sia, Poland, to record the nearby tremors permitted one
to deduce the rotational component of motions. How-
ever, the first, fully documented, rotation seismograms
were obtained at the two geodetic fundamental stations in

Germany (Wetzell) and in Australia (Cochard et al. [9];
Schreiber et al. [10]), equipped with ring-laser interferom-
eters based on the Sagnac principle. These stations were
established, primarily, to record very small deviations and
disturbances of the Earth’s rotational motion. However,
the instruments having sensitivity up to 10�9 rad/s were
able to record the rotation motions related to many dis-
tant earthquakes.

Latter, sensors of another type – the fiber-optic inter-
ferometers – were used by Takeo [11] especially for seis-
mic observations; one version of his sensors included the
tri-axial system. Jaroszewicz et al. [12] followed this system
of rotation seismographs for the study of Silesian seismic
events.

In a more traditional way, Moriya (see Moriya and
Teisseyre [13]) has constructed the first rotation seismo-
graph system consisting of a pair of anti-parallel seismo-
graphs; such a system, with the common suspension of the
anti-parallel pendulums was repeated in latter construc-
tions (Wiszniowski [14]).

Data collected by the recording systems mentioned
above brought at least two important results:

� Records of different events in the very near field indi-
cate that some events, e. g., shallow volcanic and those
of explosion type, differ from the common characteris-
tics by the extremely small rotation components (Teis-
seyre et al. [15]).

� Correlations between the rotation seismograms ob-
tained from the ring-laser system and the rotation mo-
tions, curl u, derived from the array of seismome-
ters (located at the same site) show almost perfect fit
(Cochard et al. [9]).

Following the Cosserat theory and the micropolar and mi-
cromorphic theories (see Subsect. “Asymmetric Contin-
uum Theory”), the independent rotation field, e. g., rota-
tion related to grains or points of a continuum, were con-
sidered by Shimbo [1,2] in relation to the friction and frac-
ture processes; the related constitutive law, we will call it
the Shimbo law, joins the antisymmetric stresses with ro-
tations and leads us towards the asymmetric continuum
theory. The Shimbo law was latter generalized for the spin
and twist rotation motions (Teisseyre et al. [16]; twist mo-
tion is introduced as the equivalent to oscillations of the
shear axes).

We shall remind the reader that Gutenberg [7], in the
frame of the classical elasticity theory, has proved that the
independent rotation waves must be immediately attenu-
ated. Now we know that this statement is due only to the
fact that in the classical theory the rotations are not related
to the stress or stress moment response; we cannot intro-
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duce the constitutive law joining the symmetric stresses
with the antisymmetric rotations.

However, in the asymmetric continuum theory such
a constitutive law is required and appears as a natural ele-
ment of the theory.

Displacements and Rotations

We cannot deny that independent rotation waves do not
exist in a continuum built by the point-particles; however,
this question is reduced to the magnitude of the indepen-
dent rotations (that is, independent of rot u) generated in
the seismic sources; the rotation wave motion is assured
by the Shimbo constitutive law; this constitutive law join-
ing the antisymmetric stresses and rotation relates directly
to the friction as kind of material resistance:

S[i k] D 2��![i k] ; SD(i k) D 2�ED
(i k) ; (1)

where we have added the constitutive law for pure shear
(further on we define the pure shear oscillations as twist),
the tensors SD(i k) and ED

(i k) are the deviatoric stress and
strain tensors, and where � is the rigidity modulus and
the constant�� is defined as rotation rigidity, the constant
entering in the antisymmetric stress – angular velocity re-
lation (this constant is not equal to the rotation modulus
in the stress moment – angular velocity relation); further
on, we assume that both constants are equal,�� D �, as it
follows from the seismic wave observations.

We shall notice that both motions, displacements and
rotations, are interrelated, which follows also from the fact
that pure rotation, ![s], can be presented by means of the
potentials represented by some displacement field, umicro;
conversely, the displacements U (excluding those related
to the scalar potential, e. g., those of thermal origin or that
related to explosion process, that is, we put @

@xi
Ui D 0) can

be described by the vector potentials represented by some
rotation field˝[:]:

![:] D curlU ; U D l2curl˝[:] (2)

and we arrive at the possible dual approach to the contin-
uummechanics.

When applying such equivalent approaches twice, e. g.,
from rotation field to displacement and again to rotations
we obtain

�
![s] D "smn

@Un

@xm
; ui D l2"i ks

@!s

@xk

�

! ui D �l2
Ui at
@

@xi
Ui D 0 : (3a)

Or otherwise:
�
![i] D "i ks

@Us

@xk
; Us D l2"smn

@˝n

@xm

�

! ![i] D �l2
˝i at
@

@xi
˝i D 0 ; (3b)

where l represents the basic intrinsic length measure.
The intrinsic length (Cosserat characteristic length)

plays an important role in material properties; there is ex-
tensive literature related to this subject, however we limit
ourselves to the remark that the displacement and rota-
tionmotions could be completely independent only for the
case with l D 0, but such a case is excluded by quantum
mechanics with the minimal Planck’s length of the order
of 10�34 m.

Excluding the axial motions, our consideration leads
us to an apparent equivalence of the two descriptions,
those by means of displacements and rotations. However,
there remains the problem of the scales of these motions
generated at the different fracture modes in the seismic
source and also the scales of these motions observed at the
Earth’s surface.

The observed rotation fields and effects are usually
much smaller than those related to the displacement field.
There are, however, some exceptions leading to situations
in which rotations play an important role, e. g.: the tilt mo-
tions, the rocking and tilting components related to build-
ing structures hit by strong ground motions and, as it will
be discussed further on, the rotations generated by fracture
which occurred under the prevailing compression load.

These equivalent descriptions of the motions in a con-
tinuum can be combined in the asymmetric theory, but we
shall note that it could be constructed as well, the contin-
uum theory neglecting completely the displacement fields
and using only the rotation motions – such a case can be
called a degenerated continuum.

Therefore, keeping in mind the above remarks that the
rotations contribute to displacement derivatives and that
displacements may contribute to rotations, we can state
that these motions are interrelated; this statement is em-
pirically supported by the above mentioned almost per-
fect fit between the derived rotations, curl u, and the rota-
tions obtained from the ring-laser system data. Therefore,
we think that the problem related to existence of rotation
waves appears as an irrelevant question. However, we shall
stress that the displacements and rotationmotions differ in
general, especially when considering their physical origins
and effects. Instead of that problem, we propose to con-
sider the classification of rotation motions from the point
of view of their origins, scales and effects produced.

We propose the following classification:
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� The micro-rotations or rotations, !, as related to the
wave motions based on the internal friction processes
(rotation rigidity), as well as to slip motions with fric-
tion/fracture processes

� Themeso-rotations related to material granulation and
formation of the mylonite zones under the shear load
fracturing processes

� The total rotations, !T, (the nomenclature introduced
by Kröner [17]) related to the displacement field, u;

� Themacro-rotations as related to fragmentation of ma-
terial at the fracturing under compression load

� The mega-rotation effects related to the ground tilts
and tilting of high objects on the ground

The important counterpart of rotational processes in the
mechanics of fracturing and the related energy release
shall be underlined (Teisseyre et al. [18]). Both under con-
fining pressure and under external shears, the role of mi-
cro-fracturing in the bond breaking process is similar;
however, we observe here the essential differences for ro-
tations in larger scales.

The confining load condition leads to formation of the
induced opposite arrays of dislocations, resulting in frag-
mentation processes and related macro-rotations. On the
other hand, shear load leads to more concentrated fractur-
ing along some planes. In the thermodynamical fracture
band theory, see Subsect. “Earthquake Thermodynamics”,
we consider the additional super-lattice formed by dislo-
cations and the properly defined vacant dislocations; with
this advanced approach we express an effective role of dis-
location band structure in the shear fracture thermody-
namics. Similarly, the fragmentation and macro-rotation
processes become more effective for the fracturing under
confining pressure. Thus, we try to find a continuum de-
scription for a number of processes leading us from an
elastic solid to that undergoing successive deterioration by
crushing, granulation and fragmentation.

Earthquake Source: Asymmetry and Rotation Effects, Figure 1
Axial basic deformations (3D, 2D and 1D)

These considerations give us ground for the classifica-
tion of the basic motions.

Basic Deformations and Simple Motions
in Asymmetric Continuum

Basic and simple motions could be defined as those which
may be reduced to the 3D point motion in the Cartesian or
Riemann spaces, or those deformations conceived as the
respective curvatures.

Considering basic motions, we can distinguish the
simple motions. First the translation described by vector u
and the independent rotation, called spin; in a non-homo-
geneous continuum, the grains having different material
parameters, can rotate due to an interaction of a displace-
ment field with the relatedmoment of inertia of the grains.
Then, we shall pass to the tensorial motions/deformations:

Any antisymmetric tensor can be related to the vecto-
rial field, e. g., to spin motion; thus, we come again to the
equivalent vector field. However, this simple spin motion,
![:], shall be treated basically as independent of the dis-
placement rotation, however, both contribute to the total
spin field, ![:] C curl u, observed, e. g. in seismology. We
have already mentioned that any symmetric tensor can be
split into the axial and deviatoric tensors. The axial defor-
mation tensor relates to the point deformations represent-
ing compression/dilatation nuclei, e. g., related to thermal
anomaly.

These total axial oscillation motions include the equal
translation motions along all three axes and relate to that
part of the displacement field which can be derived from
a scalar potential (see Fig. 1).

For the point-like continuum with the axial deforma-
tions, we would obtain either the Riemannian curvature
or, for more complicated cases, the Riemannian torsion
tensor.

There remains the deviatoric field to consider. This
field relates to pure shear deformations; it is possible to
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Earthquake Source: Asymmetry and Rotation Effects, Figure 2
Rotational motions: spin and twist

Earthquake Source: Asymmetry and Rotation Effects, Figure 3
String-string nucleus

show that the deviatoric field may be used to define the
new antisymmetric tensor related to the simple deforma-
tions representing another kind of rotation motion – the
twist deformation. These deviatoric deformations, for con-
tinua formed by particles/grains relate to pure shear oscil-
lations (see Fig. 2; the left side shows a spinmotion and the
right side a twist one).

However, considering the point motions, it is better to
relate these shear deformations to the equivalent twist ten-
sor, !(ks); such motions contribute to the observed, e. g.
in seismology, total shear/twist field. This field is directly
related to the S-waves (uS D l!, where l is the effective ra-
dius of grains/particles forming the continuum and ! is
the related rotation).

In the limit related to the point-like deformations, we
would arrive at the string–string type motions (see Fig. 3)
leading to the another representation of twist as vector,
!(k), perpendicular to the string–string plane and having
an appropriate magnitude of a string–string deformation
(invariant representation of the string–string vector is dis-
cussed in Subsect. “Spin and Twist Motions”, while deter-
mination of its amplitude Subsect. “Recording Spin and
Twist Angle Variation”).

A combination of the axial oscillation motions and
those related to twist deformations leads to different forms

Earthquake Source: Asymmetry and Rotation Effects, Figure 4
String-membrane

of the point deformations: Fig. 4 relates to the string-mem-
brane oscillations.

We shall repeat that all motions, except axial deforma-
tion, may be described by the displacement field, but this
is not true for the point related spin and string–string de-
formation originated as the independent source motions.

Of course, there remains a number of the first, and
higher order moments of these basic motions and defor-
mations; such source models tend in a limit to a point
source, but cannot be treated as exact point nuclei.

Asymmetric Continuum Theory

We shall add to the above considerations some arguments
forming the fundamentals of the asymmetric continuum
theory which is based on the asymmetric stresses:

� When studying the elastic field of an edge dislocation,
we find some asymmetry in relation to its components
in the plane perpendicular to its line (wedge direction);
in confrontation with the symmetry of shears, this fact
results in the asymmetry of stresses for a continuous
distribution of dislocations (for screw dislocations such
a contradiction does not exist). Therefore, a direct dif-
ferential relation between any density of dislocations
and the related stresses cannot be adequately found in
a symmetric continuum.

� Fracture usually reveals its asymmetric pattern with
a main slip plane; we shall believe that the premonitory
processes, as described by deformations in a contin-
uum with defects, develop also in an asymmetric way.

� In the classical continuum, the balance of angular mo-
mentum holds only if the stresses are symmetric; here
the angular motions can be introduced only artificially
with the help of a length element and a reference ro-
tation point. This classical theory has also many other
limitations and therefore many trials have been un-
dertaken to generalize it. The asymmetric theory of
elasticity with asymmetric stresses and couple-stresses
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was founded by Nowacki [19]. However, a first gen-
eralization to include the moments in a continuum is
due to Voigt in 1887 and a complete theory, includ-
ing the asymmetry of stress and strain, is that known
as the Cosserat theory of elasticity with the displace-
ment vector and rotation vector [20]. Micropolar and
micromorphic elastic theories were developed by Erin-
gen and his co-workers and Mindlin (see: Eringen and
Suhubi [21] andMindlin [23]). Teisseyre [22] proposed
a simpler version of the asymmetric theory which in-
cludes asymmetric stresses, strains and rotations, but in
which the equations for the antisymmetric stresses dif-
fer from those of the couple moments in the Nowacki
theory; their roles are interchanged, but both systems
remain almost equivalent.

� Usually, when searching the fault slip solutions, we rely
on classical elasticity with the friction constitutive laws
introduced additionally in accordance with the experi-
mental data. The obtained results well explain the ob-
servational data. Instead, we consider the consistent
elastic continuum with asymmetric stresses and de-
fects; such an approach enables one to study the de-
fect interactions and elastodynamic solutions describ-
ing a slip propagation along a fault, including friction
effects and related seismic radiation.

� The asymmetry of fields follows also from the notion of
antisymmetric stresses considered by Shimbo [1,2] in
relation to the friction processes and rotation of grains.
Fracture processes develop usually along the main fault
plane; hence there appears the initial asymmetry of the
fracture pattern [24]; because of friction, the rotation of
grains adjacent to the main slip plane causes an appear-
ance of the antisymmetric part of the stresses and twist
deformations. Following Shimbo [1,2], we introduced
the constitutive law joining the antisymmetric stresses
with the rotation nuclei (self-rotation field); without
such a constitutive law any theory reduces both the ro-
tation motions (except the rotation of displacements)
and the related rotation waves to zero.

� In the asymmetric continuum, defined as that in-
cluding both the symmetric stresses and the antisym-
metric stresses, there appear also the rotational mo-
tions/deformations which split into pure spin and twist
motions, the latter relate to the shear deformations of
the grains; when considering the point-like nuclei, the
twist deformation passes into 3D space torsion (Rie-
mannian space).

� Experimental evidence for an appearance of spin and
twist motions in a seismic field is based on the records
of seismic rotation fields. For spin motion we shall
be aware that the recorded rotation contains two el-

ements: a rotation of displacements and an indepen-
dent spinmotion. Both these elements co-act inmotion
propagation and represent its dual description, but dif-
fer in their origin, depending on the source processes
and material properties. At fracturing under a confin-
ing load, we deal rather with a high rotation release
process and therefore the spin motion for the very
near seismic events usually distinctly overpasses the
displacement rotation. For some events of an explosive
nature, or for some near-surface volcanic events, both
the pure spin motion and rotation of displacement al-
most disappear; some observed effects might be related
to a nearby P, S conversion. For the strong motions
which include a tilting component, the rotation of dis-
placements exceeds a spin motion. In engineering seis-
mology we observe that the rotation of displacements
may exceed the pure spin motion; such an effect is due
to magnification of a horizontal rotation of displace-
ments and to the appearance of a rocking/tilting com-
ponent of displacement rotation caused by the geome-
try of construction, especially for high buildings.

Self-Field Nuclei: Deviations from Classical Elasticity

Any continuum could be described using the Kröner ap-
proach [17] based on a concept of internal fields excited by
a density of defects and internal nuclei; stresses and strains
are related by the unique constitutive law for the ideal elas-
ticity. This approach is equivalent to another approach in
which we change the constitutive law in a way appropriate
to describe the plastic, viscous and relaxation effects. In the
Kröner continuumwith a density of the internal point-like
nuclei, the elastic strains, rotations and stresses can be ex-
pressed as differences between total and self-fields.

Following the Kröner approach, we can keep the ideal
elastic relation for the stresses and strains, supplemented
by the constitutive law joining the antisymmetric stresses
with rotations, and we introduce the self/inner stresses,
strains and rotations as related to the internal nuclei or de-
fects: SS, ES, !S. We distinguish between the total stresses,
strains and rotations related to the displacement field: ST,
ET, !T, and the asymmetric elastic stresses, strains and ro-
tations S, E, !:

E D ET � ES ; ! D !T � !S ; ˇ D ˇT � ˇS ;

S D ST � SS ; (4a)

ETki D u(i;k) ; !T
i;k D u[i k] : (4b)

The elastic and self-deformations, strains and rotations,
and stresses can be, in general, asymmetric ones (see: Teis-
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seyre and Boratyński [4]); under the conditions that the
antisymmetric parts of the stresses and strains, as well as
the symmetric parts for elastic and self-rotations, be mu-
tually compensated for:

E[i k]CES[i k] D 0; S[i k]CSS[i k] D 0; !(i k)C!
S
(i k) D 0:

(5)

However, referring to our earlier papers (see: Teisseyre
and Boratyński [4]) we shall then assume that the respec-
tive self-parts of the asymmetric strain and rotation are
equal to each other:

ES
[i k] D !

S
[i k] ; !S

(i k) D ES
(i k) ; (6)

where symmetric rotation is related to the shear axes os-
cillations (comp.: twist definition and Figs. 2 and 3). The
elastic fields S;E; ! represent the physical fields, while the
total fields ST;ET; !T relate, according to the compatibil-
ity condition, to the displacement motions ui, and the self-
fields relate to the internal nuclei, defect densities and con-
tinuum structure.

Any deviations from the symmetry properties of fields,
and any deviations from the ideal elasticity, can be de-
scribed by suitable forms of the self-field, represented by
the internal nuclei for both the defects and interaction
fields.

The defects, dislocation and disclination densities can
be defined, following Kossecka and De Witt [25], by con-
sidering the total disclosure and twist along a closed circuit
(the Burgers vector and the Frank vector) and the appro-
priate form of the twist-bend tensor:

Bl D �

I h
E(k l ) � "l qr�Skqxr

i
dlk ;

˝q D �

I
�Skqdlk D �pqdsp

(7)

and the definitions of the dislocation and disclination den-
sities, ˛ and � , become based on the self-fields ES

(k l ) and
�Skq :

˛pl D �"pmk

 
@ES

(k l )

@xm
C "k l q�

S
mq

!

;

�pq D �"pmk
@�Skq

@xm
:

(8)

After Teisseyre [26], the total twist-bend tensor can be de-
fined as follows:

�Tmq D "ksq
@!T

mk
@xs

; �Tmq D �mq C �
S
mq (9)

where, for the continuum with the asymmetric part of the
stresses, we are not restricted to the compatibility condi-
tion for the twist-bend tensor (Kleman [27]).

The compatibility conditions for the asymmetric
stresses and strains lead us to the physical equations for
the dislocation and disclination densities in relation to the
elastic fields of strain E(k l ) and twist-bend �kq:

˛pl D "pmk

�
@E(k l )
@xm

C "k l q�mq

�
; �pq D "pmk

@�kq

@xm
:

(10)

Further on we will not rely on the Kröner approach, in-
stead we will confine ourselves to a simpler approach given
by the standard asymmetric continuum theory.

Asymmetric Continuum: Standard Theory

In opposition to the Kröner approach presented above, we
may construct the asymmetric standard theory entirely re-
lated to the displacement field. Such a theory shall be based
both on the symmetric and asymmetric stresses and on the
related constitutive laws andmotion equations. The asym-
metric deformations contain the symmetric strain and an-
tisymmetric rotation. Thus, our theory is based on two
groups of relations; for the symmetric and antisymmetric
fields:

Skl D S(k l ) C S[k l ] ; Ekl D E(k l ) ; !k l D ![k l ] ;

Dks D Eks C !ks ;

(11a)

where Dks means the asymmetric deformation tensor.
However, when introducing the new material parame-

ters (material structure indices): e0, �0, we may join these
deformation fields in an independent way, with some ref-
erence displacement motion:

Ekl D e0
1
2

�
@ul
@xk
C
@uk
@xl

�
; !k l D �

0 1
2

�
@ul
@xk
�
@uk
@xl

�
:

(11b)

For an internal energy stored in such a mediumwe obtain:

E D S(ks)Eks C S[ks]!ks :

The indices e0, �0 are not new constitutive constants, but
they define families of solutions describing the complex-
ity of deformation processes in continua; their ratio deter-
mines the phase shift between strain and rotation tensors.
In this sense, the strain and rotation can be shifted in phase
as follows from the particular deformations considered.

For the particular cases of these index values, e0, �0, we
have:
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� The classic elasticity, obtained for �0 D 0;
� For e0 D 0 we obtain a granular/crushedmediumfilled

with rigid spheres interacting by friction; when ap-
plying a torque load on its surface boundary, e. g.,
a cylindrical one, we would obtain only some angu-
lar deformation, and torque energy stored given as
E D S[ks]!ks ;

� The cases with e0 D �0 relate to the elastic continua
with friction and different kinds of internal defects –
different kinds of dislocation densities and the granu-
lated materials;

� A continuum densely filled with the edge dislocations
is described by the case e0 D �1, �0 D �1; while that
of a partial content of that density ˛E D f0; 1g by
e0 D 1 � 2˛E , �0 D ˛E ;

� A continuum filled densely with the screw dislocations
would be given by e0 D 2, �0 D 2; while that of a par-
tial content of that density ˛S D f0; 1g by e0 D 1C ˛S,
�0 D 2˛S.

Further on, we will consider a more general continuum
with the constitutive laws, including also the time rates
processes; for such cases we might discuss in a similar way
the different particular cases of the material structure in-
dices including dynamic objects.

For the symmetric part of stresses we can assume the
classical constitutive relation:

S(k l ) D ık l Ess C 2�Ekl : (12)

But there is no problem to include in it the appropriate
linear deviations related to visco-plastic effects.

To construct the asymmetric theory, we assume, after
Shimbo [1,2], the appropriate constitutive law for the an-
tisymmetric part of stresses. It joins the friction/fracture
rotations with the antisymmetric stresses:

S[k l ] D 2�!k l ; (13)

where rigidity constant � plays the role of rotation rigidity
entering in the antisymmetric stress-angular velocity rela-
tion (while the rotation modulus enters in the stress mo-
ment-angular velocity relation and may be considered as
product of the rigidity � and the Cosserat characteristic
length l).

The motion equation for antisymmetric stresses S[ni]
shall replace the balance law for the stress moments. To
this end, we take the divergence of the rotation force mo-
ment acting on a body element due to the antisymmet-
ric stresses (rotational moment of forces per infinitesimal
arm length corresponding to stress moments), and, on the
other hand, the balancing term – the acceleration related

to angular momentum [3]:

"l k i
@2

@xk@xn
S[ni] D �

1
2
"l k i

@2

@t2

�
@ui
@xk
�
@uk
@xi

�

C "l k i�K[ki] ; (14)

where we have put e0 D 1 and we have introduced
the body couple K[ki] equivalent to body moment
K[l ] D "l k i�K[ki].

With the compatibility condition introduced in a sim-
ilar way as for the symmetric strains:

I[i j] D "imk" jns
@2

@xm@xn
!ks D 0

we obtain from Eqs. (11b), (13) and (14):

@2S[ki]
@xs@xs

D 2�
@2!ki

@t2
C 2�K[ki] ; or

�
@2!ki

@xs@xs
� �

@2!ki

@t2
D �K[ki] ;

(15a)

where we have introduced also the body couple K[ki] or
body moment K[l ] D "l k i�K[ki].

Otherwise, we can write:

�
@2

@xk@xk
![l ] � �

@2

@t2
![l ] D �K[l ] ; (15b)

where the left-hand side of this form presents the basic ex-
pression for the resulting stress moment divergence.

These relations are equivalent to the following ones:

1
l2
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@xk
Ml k D "l k i
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@xk@xn
S[ni] D "l k i

@

@xn
@

@xn
S[ki] ;

1
l2
Mlk D "l k i

@

@xn
S[ni]

or defining the angular moment� i, we obtain:

@

@xk
Mik D 2��i ; �i D l2"i ks

@

@xn
@

@xs
![kn] :

From the motion equation for the symmetric part of
stresses

@

@xk
S(k l ) D �

@2

@t2
ul C Fl

and using the scalar and vector potentials

ul D l2
@

@xl
' C l2"l ps

@

@xp
 s ;

Fl D l2
@

@xl
˚ C l2"l ps

@

@xp
�s
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we obtain:

(C 2�)
@2

@xk@xk
' D �'̈ C˚ ;

�
@2

@xk@xk
 s D � ̈s C �s ;

(16)

where according to Eq. (11b) we have introduced the in-
dex e0 and we assume @

@xs
 s D 0, @

@xs
�s D 0 and where

we have introduced the intrinsic length unit l.
Here the potential  s may be interpreted as rotation

vector motions in another scale than that defined by rela-
tion curl ( D !:

"mql
@

@xq
ul D �l2

@2

@xk@xk
 m ;

where ! means the micro-rotations, and  – the meso-
rotations related to the granulatedmaterial (mylonite) and
shear processes.

The strain tensor and its trace can be presented with
the help of the introduced potentials as follows:

Elq D l2
@2

@xl@xq
' C

1
2
l2"l ps

@2

@xp@xq
 s

C
1
2
l2"qps

@2

@xp@xl
 s :

We can divide this expression into the axial and deviatoric
parts:

Ekk D l2
@2'

@xs@xs
;

ED
l q D l2
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ıl q
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(17)

Returning to our wave Eqs. (16) we arrive at the wave
equations for the axial and deviatoric strain parts:

(C 2�)
Ekk � �
@2Ekk

@t2
D l2
˚ ; (18a)
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In terms of the potentials we obtain
�
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Spin and Twist Motions

The spin motion is governed by Eq. (15a), or equivalently
by its vector form Eq. (15b). We may consider the sys-
tem related to the main shear axes or that related only to
the off-diagonal components; in the latter case the mo-
tion equation for the deviatoric strains Eq. (18b) can be
presented in the form of the rotation vector motion – the
twist, !(s):

f!(s)g D fED
23; E

D
31; E

D
12g : (19a)

The defined twist motion, !(s), means the rotational oscil-
lation of the off-diagonal shear axes of the deviatoric ten-
sor (corresponding to oscillation of the main shear axes),
ED
l q , accompanied by the changes of the shear magnitude;

such perturbation of the shear load may be caused by the
internal fracturing processes (see Fig. 5).

Once having defined the twist vector field we can
maintain its form due to the invariant properties of the

Earthquake Source: Asymmetry and Rotation Effects, Figure 5
Twist motion: rotational oscillations of the off-diagonal shear
axes and internal fractures as the sources of perturbations; in the
center we present an external shear deformation, while arrows
along the circle give possible oscillations of the shear axes as in-
fluenced by some intrinsic processes, e. g. the fractures marked
inside
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Dirac tensors applied to the symmetric off-diagonal ten-
sor !(i k) in its 4D form:

!(��) D !(1)�
1 C !(2)�

2 C !(3)�
4� 2� 3

D

2

66
4

0 �!(3) �!(2) �!(1)
�!(3) 0 !(1) �!(2)
�!(2) !(1) 0 �!(3)
�!(1) �!(2) �!(3) 0

3

77
5 ;

(19b)

where
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0 1 0 0
0 0 �1 0
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(19c)

and

� 4� 2� 3 D

2

66
4

0 �1 0 0
�1 0 0 0
0 0 0 �1
0 0 �1 0

3

77
5 :

In a similar way, we may define the external off-diagonal
part of the right-side expression of Eq. (18b):

Y(l q) D

l2
�

@2

@xl@xq
˚ C

@

2@xp

�
"l ps

@

@xq
C "qps

@

@xl

�
�s

�
:

For its 4D form we can write:

Y(��) D Y(12)�
1 C Y(13)�

2 C Y(23)�
4� 2� 3

D

2

66
4

0 �Y(12) �Y(13) �Y(23)
�Y(12) 0 Y(23) �Y(13)
�Y(13) Y(23) 0 �Y(12)
�Y(23) �Y(13) �Y(12) 0

3

77
5 :

Using these definitions for the off-diagonal form Eq. (19b)
we obtain

�
@2!(��)

@xk@xk
� �

@2!(��)

@t2
D Y(��) : (20)

The defined 4D twist motion, !(��), means the rotational
oscillation of the off-diagonal shear axes of the deviatoric
tensor, ED

l q , accompanied by the changes of the shear mag-
nitude; such perturbation of the shear load may be caused
by internal fracturing processes (Fig. 5).

The spin and twist motions form the complex rotation
field defined as:

!s D ![s] C i!(s) (21)

From the balance relation (see: Subsect. “Recording Spin
and Twist Angle Variation”) we obtain the relations join-
ing the spin and twist motions.

Defects: Dislocation and Disclination Densities

The classical approach to the dislocation and disclination
densities is based on the Kröner description of continuum
with the self-fields (compare Subsect. “Self-field Nuclei:
Deviations from Classical Elasticity”). In the asymmetric
homogeneous continuum, the defect density can be intro-
duced using the modified definition of disclosure, Bl, and
the following definition of the twist-bend vector (compare
Eqs. (7–9)) we define:

Bl D

I
[Ekl�!k l ]dlk ; ˝q D

I
�Tkqdlk D

“
�kqdsk ;

(22a)

where for

�Tmq D "ksq
@!mk

@xs
(22b)

the disclination density vanishes due to the compatibility
conditions:

�pq D "pmk
@�Tkq

@xm
D �0"pmk"qns

@2!ks

@xm@xn
D 0 :

For the dislocation field we obtain (compare Eq. (8)):

˛pl D "pmk

�
@Ekl

@xm
�
@!k l

@xm

�

D "pmk
@

@xm

�
e0

2

�
@ul
@xk
C
@uk
@xl

�

�
�0

2

�
@ul
@xk
�
@uk
@xl

��
: (23)

With the help of the constitutive relations (12) and (13) we
arrive at the relation between the dislocation density and
asymmetric stresses:

˛pl D
"pmk

2�
@

@xm

�
(S(k l ) �

�

1C �
ık l Si i) � S[k l ]

�
: (24)
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We shall note that the material constants, e0 and�0, define
the types of defects and types of rotation nuclei; the com-
plex constants will mean the constant phase shift between
the fields.

Note that in the classic theory with defects, we distin-
guish also the different definitions for a dislocation field,
e. g., the Burgers and Nye dislocations (comp: [28]).

For some particular case, e0 D 1, �0 D �1: we obtain
a vanishing of defects, like:

Bl D

I
[Ekl � !k l ] dlk D

I
@ul
@xk

dlk D 0 ; ˛pl D 0 :

(25)

This case may represent an extreme shear deformation.
We give also relations for another simple case,

e0 D �0, which leads to dislocation density:

Bl D

I
[Ekl � !k l ]dlk D �0

I
@uk
@xl

dlk ;

˛pl D �
0"pmk

@2uk
@xm@xl

:

(26)

We can consider two particular cases, the first giving a re-
lation between the asymmetric stresses and the edge type
dislocations (e0 D �1, �0 D �1):

˛pl D �"pmk
@2uk
@xm@xl

(27)

and the other which may describe the relation between the
screw-type dislocations and asymmetric stresses (e0 D 2,
�0 D 2):

˛pl D 2"pmk
@2uk
@xm@xl

; (28)

where p D l D s; no summation over indices p and l.
Both of the considered cases could relate to the forma-

tion of the respective slip-discontinuities – Fig. 6.

Earthquake Source: Asymmetry and Rotation Effects, Figure 6
The edge and screw dislocation types

We find that for a suitable choice of the disclosure def-
inition, we may arrive at different definitions of the dis-
location and disclination densities; in particular, we note
that for the edge and screw dislocations we shall consider
different rotation nuclei.

The case (Eq. (25)) presents the extreme deformation
while the further cases present the standard source models
and related rotations.

Balance Laws for the Rotation Field
and the EM Analogy

The complex rotation field (21), !s D ![s] C i!(s), may be
presented in the tensor form:

"kis!s D !ki

D

 
0 ![3] C i!(3) �![2] � i!(2)

�![3] � i!(3) 0 ![1] C i!(1)
![2] C i!(2) �![1] � i!(1) 0

!

:

(29)

We can write the balance condition as
“

"kps
@

@xp
!sdsk D

“ �
@

iV@t
!k C

4�
(

Jk
�
dsk ; (30)

where we introduce the current field Jk and velocity V .
Hence, we obtain the field equations for the complex

rotation motions:

"kps
@

@xp
!s �

@

iV@t
!k D

4�
(

Jk (31a)

or for spin and twist motions explicitly:

"kps
@![s]

@xp
�

1
V
!̇(k) D

4�
V

Jk ; "kps
@!(s)

@xp
C

1
V
!̇[k] D 0 :

(31b)

These equations lead us to the related wave forms:


![n] �
1
V2 !̈[n] D

4�
V
"npk

@

@xp
Jk ;


!(n) �
1
V2 !̈(n) D 4�

@

@xn
" �

4�
V 2 J̇n ;

(32)

where ![s];s D 0 and !(s);s D 4�", and under the condi-
tion that the velocity,V , is simultaneously transformed ac-
cording to relativistic rules for a sum of velocities.

The obtained wave equations coincide with those de-
rived previously (compare Eqs. (15, and 18b) with the def-
inition for twist – Eq. (19)).
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We shall note that in the asymmetric elastic contin-
uum, the bonds related to rotational deformations are con-
sidered as comparable to those related to elastic rigid-
ity moduli. More complicated situations with the mate-
rial constant appears in the micropolar and micromor-
phic theories with the infinitesimally small nuclei (Erin-
gen [21]). In the asymmetric continuum theory, presented
in our treatise, the displacements and rotations appear
as equally and similarly treated independent fields. Here
enter also in a natural way, the axial deformation fields,
with a structure similar to that of a thermal field (comp.
Eq. (18a)).

Finally, we shall note that these wave fields correspond
with ( ! c to the EM fields, ![n] ! Bn , !(n) ! En . The
form of the rotation complex tensor (Eq. (29)) is fully anal-
ogous to the definition of the complex electromagnetic
field Fs D Bs C iEs .

Recording Spin and Twist Angle Variation

We shall find the suitable links between the defined fields
and experimental data.

The spin motion can be precisely recorded by means
of the Sagnac type interferometers (up to 10�9 rad/s); there
are different types of such systems, e. g., ring laser and fiber
optic, to record spin motion.

The angular twist oscillations and shear-twist motions
we can record using a system of rotation seismometers.
Such a system is based on the rotation seismographs that
can record simultaneously the spin and twist angular mo-
tions [14,15,29].

In order to obtain the rotation motions, e. g., spin
and twist, around the vertical axis we need the data from
two parallel horizontal pendulums of opposite orientation.
The observations collected clearly indicate that both the
mean values of the spin and those of twist angular mo-
tions show the seismic oscillations with the same order of
magnitudes [13,15,29].

We stress that the twist field, measured in this way
gives only the angular variations of the off-diagonal axes
of shears (19a); however, we may note that both the spin
motion and the twist variation are mutually joint (see
Eq. (31)) and therefore, we might theoretically derive
knowledge of the shear state from the spin observations.

We shall add that when measuring the shear defor-
mations with the help of a system of strainmeters, we
can achieve more reliable and independent data on the
shear-twist variations. Moreover, the strainmeter system
can measure also the axial deformations.

Finally, we shall reply to the question of how we could
compare the invariant twist field (19a and 19b) with the

observed shear variations. An exact procedure requires
the following: the 6 components of the shear strain deter-
mined in an observation site system shall be transformed,
at each time moment, into the off-diagonal system:

fE11; E22; E33 ; E23; E31; E12g ! fED
23; E

D
31; E

D
12g

D f!(s)g :

Conclusions

In the standard asymmetric continuum theory the defects
defined are not the material defects, but only those re-
lated to the structural deformations. This standard asym-
metric theory permits one to find the differential relation
between the dislocation density and the asymmetric stress
field. Moreover, in this theory we may consider also other
deviations related to other defects or interaction fields; to
this end we could apply the Kröner approach with the elas-
tic, self- and total fields [4].

The other important conclusion is that the influence
of rotational processes in earthquake sources spreads out-
ward, because these waves are not attenuated strongly, as
it was believed according to classical ideal elasticity.

Earthquake Source: Fracture Processes

Introduction

We start our considerations with the thermodynamical
conditions related to seismic energy release, and then we
consider the rotation counterpart in the fracturing.

We shall be aware that the rotation processes of dif-
ferent nature and scale take part in such extremely com-
plicated fracture phenomena, in which the dynamic pro-
cesses proceed together with the simultaneous changes of
material properties (see Teisseyre [30]). We shall recall the
special role of rotations in the energy release effectiveness
under different load conditions, and further on we shall
include the rotation impact on the granulation processes
accompanying the material crushing.

The constitutive laws must undergo simultaneously
considerable changes, from the rigid elastic to plastic,
and further, to mylonite-type material (in tectonics the
mylonite means the crushed, granulated and even partly
melted material in zone adjacent to fracture plane). In
the narrow zones adjacent to fracturing, the shear stresses
break the molecular bonds and in the crashed rock mate-
rial the stresses immediately drop to a much lower level,
while together with the advancing material granulation,
we shall include a rapid increase of the stress and strain
rates. Finally, in that narrow zone adjacent to fractur-
ing, the stresses and strains may be gradually neglected
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and progressively replaced by their time-rates. To de-
scribe these processes we shall simultaneously introduce
the changes into the related constitutive relations. In re-
sult, the rock properties in this zone may even approach
those characteristic for fluid. Such conditions may permit
one to include in the fracture description the transport
Navier–Stokes relations. The fracturing transport process,
the bond breaking and granulation processes force us to
include in the fracturing description, the hypothesis that
the twist-shear deformations leading to the bond break-
ing precede the rebound rotation motion by �/2 in phase;
this means that the difference between the shear motion
and spin motion shall reach minimum when the latter is
shifted by �/2 in phase.

We shall underline that the considered conditions in
the mylonite zone can serve as the basis to formulate the
asymmetric fluid theory with the extreme motion phe-
nomena and dynamic defect objects.

A counterpart to the rotations and rotation energy re-
lease at fracture processes (e. g., in an earthquake source)
explains fragmentation and spall processes and makes it
possible to estimate the efficiency of different fracturing
modes. Again we shall underline that in any theoretical ap-
proach, the elastic rotation energy can be considered only
when assuming the constitutive law joining rotations with
the antisymmetric stresses or stress moments.

Teisseyre et al. [18] have reexamined Dietrich’s com-
pression experiments [31], coming to the conclusion that
under the compression load, there arise at some centers
in the source region the induced precursory shear stresses;
at a fracturing event we would arrive at the coseismic re-
bound compensation leading to a release of the induced
stresses by the rebound process. Similarly, the precursory
rotations associated with the newly formed dislocations or
cracks shall have an opposite orientation to that related
to the coseismic process. At the precursory stage these
repeated processes lead to micro-fracturings, while dur-
ing the seismic event there will occur under compression
load, the fracturing with the rock fragmentation and the
rebound macro-rotations at the inner centers where the
precursory induced stresses accumulate.

Earthquake Thermodynamics

Basic thermodynamic relations for line defects (disloca-
tions and vacant dislocations) are derived under the as-
sumption of a dense network of defects forming a kind of
super-lattice [32,33,34,35]. The thermodynamic functions
of line defects can be associated with defects in the super-
lattice. Let us confine our considerations to the irreversible
(plastic) deformations of solids.

To distinguish the thermodynamic functions used
here from those used under pressure conditions, we will
use the symbols with hat and we will consider only a pure
shear work under shear load S(::) and under induced fric-
tion stress moment S[::] (see: Eqs. (13) and (14)) – we con-
sider deformations at a constant volume; the work dŴ
done on a body (per unit volume), the internal energy
change dÛ and the heat received in an exchange with the
surrounding dQ are related:

dŴ D SdE D S(::)dE(::) C S[::] d![::] � 0 ;

dÛ D dQ C SdE ;
(33)

where dE(::) and d![::] are increments of strain and spin.
For the Helmholtz free energy F̂ and Gibbs free energy

Ĝ we have:

F̂ D Û � TS̃ ; Ĝ D U � SE � T ;
TdS̃ � dQ ; dS̃ � 0 ;

(34)

where T is the absolute temperature and S̃ is the entropy;
dS̃ would be the entropy production due to the irreversible
processes occurring inside the system.

The local formulation of the second law of thermo-
dynamics requires that the entropy production be pos-
itive wherever an irreversible process occurs [34]. It is
postulated that even outside equilibrium, the entropy de-
pends only on the same variables as at equilibrium. In or-
der to derive the expression for the entropy production,
Prigogine [36] introduced some additional assumptions.
Namely, he assumed that the entropy production can be
determined for conditions near equilibrium.

Formation of a dislocation gives negative contribution
to the Gibbs energy [37] and therefore it is not possible to
find a minimum of the Gibbs function with respect to the
number of dislocations. Thus, the dislocation distribution
cannot exist as a thermodynamically stable system, since
the Gibbs free energy has no minimum of any equilibrium
concentration of dislocations.

However, for a dense dislocation distribution there
enter the repulsive interactions between dislocations,
and a kind of dislocation super-lattice can be consid-
ered [32,34,35]. The “ideal super-lattice” can be treated as
a reference state and the real super-lattice, in the case of
dense distribution of dislocations, can be in the equilib-
rium state. We define the vacant dislocations in the fol-
lowing way: to the randomly formed network of disloca-
tions we shall add a number of line vacancies – the vacant
dislocations – in such a way that as a result we obtain the
super-lattice filled by dislocations and vacant dislocations.
In this situation, a real distribution of dislocations can be
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described as a departure from the state of ideal super-lat-
tice, given by the amount of vacant dislocations.

These processes are accompanied by an internal fric-
tion related to displacement formed by dislocations and
hence a spin motion appears as inherently present there.

The Gibbs energyminimum can now exist as the equi-
librium number of the vacant dislocations. We can con-
sider the structure of a cross-zone consisting of bands of
layerlets; such a structure favors the appearance of some
macroscopic dislocations under conditions of shearing de-
formation. The particular values of the Burgers vector be-
come related to particular layer thicknesses. In this sense
we suppose that a fine band structure could play the role
of a quantization kind factor; this problem is related to the
earthquake shear band model.

Consider a continuum that contains a regular (cubic)
super-lattice of dislocation lines with a certain super-lat-
tice parameter � (�	 ;  relates to a basic rock lat-
tice). The notion of the super-lattice is directly related to
the shear band model of fracturing [34], see Fig. 7.

We associate the thermodynamic functions of line de-
fects with the defects in a super-lattice; the Gibbs free
energy may have a minimum corresponding to the equi-
librium concentration of the vacant dislocations in the
super-lattice. Many results can be now transferred from
the thermodynamics of point defects (Varotsos and Alex-
opoulos [38]). The regular super-lattice, which includes
the dislocations and vacant dislocations, may be described
in a very rough approximation by a characteristic dis-
tance� (super-lattice constant). For the ideal super-lattice
(no vacant dislocations), the mean value of distances fol-
lowing from distribution of dislocations defines the refer-
ence dislocation density ˛0 D /�2, while for a real body
with n dislocations we may add to it other n̂ vacant dislo-

Earthquake Source: Asymmetry and Rotation Effects, Figure 7
Shear bandmodel

cations in such a way that the whole set nC n̂ D N (dis-
locations and vacant dislocations) fits to a regular super-
lattice with the smallest error. For the density of disloca-
tions ˛, and vacant dislocations ˆ̨ , we can write [34]:

˛ D

�
1 �

n̂
N

�


�2 ; ˆ̨ D
n̂
N�2



�2 exp

 

�
ĝ f

kT

!

; (35)

where the number n̂ can be identified with an equilibrium
value in relation to the formation energy of vacant dislo-
cation ĝ f per length of the crystal lattice .

The stress field and the resistance stress (e. g., the drag
resistance in a dislocation motion and the friction stress in
a crack motion) are defined as [37]:

S D
@Ŵ
@E

; SF �
@F̂
@E

;

while the Gibbs function for a crystal containing the va-
cant dislocations can be written as

Ĝ D Ĝ0 C n̂ĝ f � TS̃c ;

where S̃c is the configuration entropy.
Near the equilibrium state under a constant local

shear S and temperature T the Gibbs energy is close to its
minimum and the equilibrium values could be found as
follows:

@Ĝ
@n̂

ˇ̌
ˇ̌
S;T
D 0 ; n̂eq D N exp

 

�
ĝ f

kT

!

;

ˆ̨ D


�2 exp

 

�
ĝ f

kT

!

; S̃c D n̂

 

k C
ĝ f

T

!

; (36a)

while the Gibbs energy function becomes

Ĝ D Ĝ0 � n̂kT : (36b)

The equilibrium free energy is less than that for an ideal
super-lattice Ĝ0; the difference is kT per line vacancy, per
length of crystal lattice.

For the point defect thermodynamics, Varotsos and
Alexopoulos [38] have introduced the so-called CB˝ the-
ory approximating the contribution to the Gibbs energy
from the formation of point defects.

For the line vacancies, a change of the Gibbs energy
depends on the stress level and resistance stress. Therefore,
we postulate for the approximative value of such change
per unit element (formation energy of vacant dislocation)
the following expression defining the C�b2 model:

ĝ f D C�b2 ; n̂eq D N exp
�
�
C�b2

kT

�
; (37)
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where C is constant; ĝ f becomes here independent on
stress load and resistance,� is the rigidity, b is the Burgers
vector of dislocation.

Concluding, a body containing some number of dis-
locations cannot be in a state of equilibrium; there is no
minimum of the Gibbs function, because when reducing
the number of dislocations we always get a smaller value
of the free energy. For a dense distribution of dislocations
we can assume, due to their interaction, that there exists
a certain super-lattice composed of dislocations.

The equilibrium density of the vacant dislocations may
be written now with help of Eq. (37)

ˆ̨ D


�2 exp
�
�
C�b2

kT

�
(38)

and becomes useful, when looking for the most probable
density value of defects after the energy release in a frac-
turing process. The density ˛0 D /�2 may be identified
here with the reference density.

We can assume that before an earthquake a super-lat-
tice is almost completely filled in by dislocations (n � N
and n̂ � 0). The maximum number of dislocations in ar-
rays could reach the value (�/)2 per area �2. The total
moment for an area 
s D N�2 affected by the arrays of
dislocation along the slip planes becomes:

M̄ D �
s D �N�2
�
�



�
D �N�3 :

After an earthquake, the number of vacant dislocations n̂
shall increase, probably to the equilibrium value (37) and
hence we can express the seismic moment by the num-
ber of coalescence processes related to surface element�2

as equal to 
n̂ D �
�
n̂eq; the factor �/ expresses a maxi-

mum concentration of dislocations in the arrays.
We obtain for the seismic moment

M̄0 D M̄
n̂ D �N�3
�
�



�

n̂

D �N�3
�
�



�
exp

�
�
C��2

kT

�
;

where C is constant for given structure.
Using the expression for a change of the free energy

values we may include the formation of dislocation arrays
along the glide planes and we put

G D G0 C
n̂
�
�



�
kT

According to these results, the total energy release
E and
seismic moment are:


E D G � G0 D 
n̂
�
�



�
kT

D

�
�



�
NkT exp

�
�
C��2

kT

�
and

M̄0 D ��
3
E
kT

:

(39)

This formula is an important relation between the energy
release density and seismic moment density; for instance,
for a given 
E the elementary seismic moment M̄0 de-
creases with temperature. Free energy related to defect for-
mation, ĝ f , is proportional to ��2 being constant for
a given structure; with growing value of� the seismic mo-
ment becomes greater.

Neglecting the term related to the formation entropy,
we can write for entropy density change:


S̃ D kN
�
�



��
1C

C�b2

kT

�
exp

�
�
C��2

kT

�
:

All of these relations concern the quantities referred to
the multiple of the cubic volume N�3 thus, we can correct
these quantities to that related to a given source volume by
introducing the factor �R2D/N�3:

M0 D ��R2D
�
�



�
exp

�
�
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kT

�
;
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kT

�
exp

�
�
C��2

kT

�
;

(40)

where �
E D Erad; � is the seismic efficiency; Erad is ra-
diated energy.

In the above consideration we took into account both
energies related to slip and friction processes, and thus, the
total released energy includes that related to stress drop
and that related to heat caused by friction processes.

Further on, we will consider the fracturing processes
in an earthquake source.

Synchronization and Fracturing

The inner stress accumulation relates to the formation of
defect densities; due to the interaction between disloca-
tions, we arrive at stress concentration at the first blocking
dislocations of the formed dislocation arrays.
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In the compression case with no initial shear field and
due to the lower value of shear resistance, we have to as-
sume that inside a body there appear regions with induced
shear stresses of opposite signs, and induced antisymmet-
ric stresses. The earthquake process and its energy release
relate to a coalescence of dislocation arrays of opposite
signs and related rotation release motion. Of course, we
shall consider a fracture process as a chain of events; let
us consider the micro-fracture centers formed on two per-
pendicular plane fragments; the induced shear stresses will
be opposite on those plane fragments, but will have the
common orientation of a spin motion – see Fig. 8; hence,
the shears will be almost compensated for, while the spin
field will remain unchanged.

The spin field, ![s], propagates and influences the pro-
cesses in the adjacent regions; we believe that this propaga-
tion synchronizes the spin motions in the adjacent centers,
in such a way that the sense of spin motion becomes the
same over the whole fracture region. That means, the spin
propagation assures a synchronization of fracture pro-
cesses, especially under compression load where the en-
ergy release relates to the fragmentation revealed by rota-
tion and granulation processes.

Reversely, under the shear load, while common shear
deformation, ED

kn (or expressed as twist !(s)), progresses,
the spins on the main fracture differ from those on the
adjacent perpendicular fragments and attenuate fracture
progress on those fragments.

Accordingly, we can believe that at the compression
load, the total shear stress drop will be relatively small,
while the rebound rotations will release an important
amount of rotation energy. At the shear load the release
of shear stresses will prevail.

Earthquake Source: Asymmetry and Rotation Effects, Figure 8
Compression load: induced shear centers and formation of frag-
ments with related rotations

Concluding, the rotation processes in fragmentation
and fracturing under compression load play an essential
role. Under prevailing shear load the rebound process re-
leases shear load with the regional stress drop, while the
rotation processes play a minor role.

Further on, we will discuss the importance of the gran-
ulation processes related to rotations in meso-scale, which
we can place between the bond breaking processes in
the micro-scale and material fragmentation in the macro-
scale.

Granulation and Formation of Mylonite Zones

The fracturing process, especially under the action of
shearing load, is accompanied by material granulation ad-
jacent to shear fracture planes; thus it becomes spectac-
ular at the formation of narrow, long mylonite zones.
In this process we shall take into account a special
role of rotations – the meso-rotations of different scales;
these rotations are related to bond breaking and friction
processes.

Co-action of the spin and twist-shear motions in bond
breaking, granulation and formation of mylonite material
can effectively help us to explain the fracture process; the
simultaneous formation of the adjacent mylonite zone ap-
pears due to such a co-action of spin and shears and of the
fracture transport phenomena.

Based on the standard asymmetric continuum theory,
as presented in the first part, we would like to consider the
material undergoing a progressive crashing process. We
may arrive even at the conditions more similar to fluidma-
terial, and thus finally shall enter into our considerations
the Navier–Stokes transport equations.

Starting with the description of the rock continuum
following from the standard asymmetric theory of con-
tinuum (Sik D S(i k) C S[i k], Eik D E(i k), !i k D ![i k]),
we approach the final stage of the crushing/granulation
process in zones adjacent to fracture planes. In these
zones, simultaneously with dynamic processes, there oc-
cur changes of material properties from hard rocks to my-
lonite granulated material.

Approaching the final stage, the stresses, strains and
rotations presented in the description of the standard
asymmetric continuum become gradually neglected and
progressively replaced by the constitutive relations for
time-rates of stresses and strains.

The constitutive laws for rock asymmetric contin-
uum – the relations (1) written for the deviatoric fields and
for the antisymmetric fields

SD(k l ) D 2�ED
kl ; S[k l ] D 2�!k l (41)
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– will gradually change during fracturing to those includ-
ing the time dependent processes:

�SD(i k) C � Ṡ
D
(i k) D 2�ED

ik C 2�ĖD
ik ;

�S[i k] C � Ṡ[i k] D 2�Eik C 2�!̇i k :
(42)

The introduced material constants are related to magni-
tudes of the slip, u, and slip rate, ( .

When in a narrow zone the huge shear stresses break
the molecular bonds, the stresses crushing rock mate-
rial immediately drop down to the low values and in the
crushed mylonite material we observe the immediate in-
crease of the stress and strain rates to such degree that
the stresses and strains may be neglected in the respective
constitutive relations for that narrow zone. Finally, these
changes will lead to the constitutive laws for the melt and
granulated parts of mylonite material in which, practically,
will remain only the field time rates:

Ṡ(i k) D 2�Ėi k ; Ṡ[i k] D 2�!̇i k : (43)

The direct observation of the gauge zone of the Kobe
(Japan, 1995) earthquake at the Avaji island suggests that
the size of an inner completely melted part of the mylonite
zone ranges around couple of centimeters (private com-
munication W. Debski).

Further on, we will assume for the sake of simplicity,
that during the fracturing the mylonite material remains
incompressible.

In such a way, the nucleation progresses and fracture
propagates simultaneously with the granulation process
in the intact material (or in the compact zone previously
crushed) – see Fig. 9.

In this new description, the shear rates create the
dynamic angular deformations then lead to the bond

Earthquake Source: Asymmetry and Rotation Effects, Figure 9
Mylonite zone and neighboring deformations

breaking processes, and finally to the fracturing transport
process.

We pass to the final stage; for the crushed incompress-
ible mylonite or sand, similarly to incompressible fluids,
where tensor !̇T

i k is related to spin motion (not to rotation
of displacement), the mylonite viscosity is �, and the my-
lonite relaxation time is denoted by � .

The relations (42) define the ideal quasi-viscous my-
lonite for an incompressible crushed material.

Further, we assume the coincidence/identity of rota-
tion of velocity field u̇ with the point rotation field !. So,
we assume that rotations of particles (micro-rotation !)
coincide with macro-rotations (rot u). For mylonite, such
a coincidence between the micro-rotation and macro-ro-
tation seems reasonable, and thus, our assumption that
viscosity � coincides with rotation viscosity �� may be
correct.

For our narrow mylonite zone, existing already near
the pre-slip planes or just simultaneously formed, we may,
further on, apply the Navier–Stokes transport equation.
Referring to our former considerations on the asymmet-
ric continuum theory (see Subsect. “Spin and Twist Mo-
tions”) we may add to the spin rotational motions the os-
cillations of the strain shear rates (called twist motion).
Such motions, especially in an earthquake source zone, are
due to the friction processes.

We may note that when including these complex rota-
tional motions in the theory we may replace the friction
constitutive laws, as based on the experimental data, by
the constitutive law joining the asymmetric stresses with
spin and shears field oscillations or otherwise with spin
and twist.

Slip Propagation and Spin Release Hypothesis

While searching the fault slip solutions, we use the classi-
cal elasticity tools with an additional friction constitutive
law based on experimental data. When instead of it we
consider the asymmetric elastic continuum, we are able to
include the defect interaction and we can derive the elas-
todynamic fault solution describing slip propagation with
fracturing process and related seismic radiation.

The angular deformations preceding the bond break-
ing process lead to the efficient rise of the angular mo-
ments around material grains. In the narrow mylonite
zone, we arrive at the equivalence between this expression
and the laws introduced in the considerations on the fric-
tion resistance and slip.

The co-action of the rotation (rot u, or spin ![:]) and
shear (ED(u), or twist – !(:)) motions can lead further
to the slip fracturing motion. We assume that the bond
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breaking process and granulation of material precede the
slip movement: just after the bond breakingmicro-process
there, we would have the released rebound spinmotion re-
tarded in phase.

This hypothesis is supported by the following solution
of the homogeneous wave equations for the twist and spin
in a mylonite zone (see Eq. (31)):

!(s) D i![s] ; ![s] D !
0
[s] exp[i(ki xi � ! t) ;

!(s) D !
0
(s) exp[i(ki xi � ! t)] ;

(44)

where the six constants in !0
[s] D abs(!0

[s]) exp(i s),
!0
(s) D abs(!0

(s)) exp(i's ) shall fulfill the six conditions.
Wemay consider the following 2D solution of Eq. (44)

in the systems fr; '; zg:

!(')(r) D i!['](r) ; �!['](r) D 0 :

The related solution corresponds to a turbulence struc-
ture. Thus, from a dislocation-slip structure formed in
the earthquake premonitory domain (see: Subsect “Earth-
quake Thermodynamics”), gradually destroyed during
a fracture process by a spin releasemotion, we can arrive at
a turbulence structure appearing in a melted or fully gran-
ulated material.

With the introduced waves, !(s) D i![s] we arrive at
the possibility to study the dynamic defect objects and to
explain the synchronization of the micro-fracturing pro-
cesses due to an influence of the propagating waves. For
the fracture processes under compression such a synchro-
nization will assure the common sense of the induced twist
and spin motions, while under shear load – the forma-
tion of a long shearing fracturing. In the last case, the spin
waves related to a given slip on the main fracture plane at-
tenuate those with the opposite spins generated at the per-
pendicular fragments, and due to the conjugate solution
(see Eq. (44) reduce the slip motions on those fragments.

The presented conjugate solution Eq. (44) suggests
that the spin rebound motion is delayed in phase by �/2
(as we have exp[i(ki xi �! t)] D exp[iki xi � i(! t��/2)]);
when slip starts due to breaking of bonds, the micro-spin
motions are released.

Following this assumption we expect that such a cor-
relation between the recorded twist motions and spin mo-
tions shifted by �/2 in phase can exist in some wavelets.

Now we can propose the following description of the
fracture process.

� First, according to external load conditions the stresses
rise while the disclosure and dislocation field can be ne-
glected – the case given by relations (25).

� Next, approaching the fracture process we may ob-
serve the “accumulation” phase with the co-action of
the twist and spin – the case given by relations (26).

� Finally, fracturing processes start and when entering
into the time rate domain we can describe the “release”
phase of the process as follows (compare: Eqs. (21–26
and 43):

Ḃl D

I
[E(k l ) C i![k l ]]dlk ;

˙̨ pl D "pmk

�
@Ėk l

@xm
C i

@!k l

@xm

� (45)

˙̨pl D
"pmk

2�
@

@xm

�
(Ṡ(k l ) �

�

1C �
ık l Ṡi i)C iṠ[k l ]

�
;

(46)

where we have the dynamic disclosure and v-disloca-
tion density under the conditions formed by solution
(see Eq. (44)), supplemented with the relations between
the asymmetric stress rates and the dynamic disloca-
tion objects (v-dislocations).

� This case presents a formation of dynamic discontinu-
ities and the related dynamic processes in which the slip
and bond breaking leads to the rebound spin motions
delayed in phase by �/2.

The co-action of the spin and twist motions leads to the
“accumulation” phase, while the conjugate solution (see
Eq. (44)) presents a fracture process – “release” phase.

We might suppose that the fracture process could pro-
ceedwith the consecutive accumulation and releasemicro-
processes; in such a situation the related twist and spin
motions will appear consecutively as pairs of wavelets in
phase (or anti-phase) and those differing in phase by �/2.
Figure 10 presents an example of the coincidence of the
spin and twist motions after the Hilbert transformation
shifting the angular twist record ahead in phase by �/2.

The presented theory, due to its simplicity, could be
very useful for some problems, among others those in
whichmacro-rotation takes an important role in the asym-
metric fluid dynamics.

We can call the solution (44) as the fracture synchro-
nization waves.

Finally, we shall notice that similar solutions may exist
for the electric and magnetic induction vectors:

Ds D iBs $ D0
s D iB0

[s] ; (47)

where this relation shall be assured by the appropriate ma-
terial constants.
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Earthquake Source: Asymmetry and Rotation Effects, Figure 10
Example of coincidence of the spin and twist angular motions (rad/s versus s) after the Hilbert transformation shifting the twist
record ahead in phase by �/2; upper part – the original records, lower part – the twist record transformed (from the original seismic
record obtained by the systemof the rotation seismometers; L’AquilaObservatory, 17.02.2006; the continuous line– twist, the broken
line – spin)

Towards Asymmetric Fluid Theory
and Extreme Phenomena

Approaching the conclusions, we shall specify how we
could formulate the asymmetric theory of the fluid contin-
uum in which the stress, strain and rotation fields vanish,
but their rates exist as related to the velocity field ( :

Ėi k D e0
1
2

�
@(k

@xi
C
@(i

@xk

�
;

!̇i k D �
0 1
2

�
@(k

@xi
�
@(i

@xk

�
:

(48)

The velocity field ( shall obey the Navier–Stokes trans-
port equation.

For the sake of simplicity, let us consider the incom-
pressible fluid (Ėss D 0, Ėi k D ĖD

ik), the basic constitutive
laws are assumed similarly to those for the asymmetric
continuum:

Ṡ(i k) D �Ėi k ; Ṡ[i k] D �!̇i k ; (49)

where � is viscosity.

In a similar manner, the structural dynamic objects
can then be defined as defects in the standard asymmet-
ric continuum.

The extreme motion phenomena, related to the shear
rate and spin, Ė(k l ) C !̇(k l ), could be expected for the fol-
lowing case (compare: Eqs. (22–26 and 43):

Ḃl D

I
[Ėk l C !̇k l ]dlk D

I
@(l

@xk
dlk D 0 ;

˙̨pl D 0 ; ˙̋ q D 0 ;
(50)

while formation of the dynamic defect objects can be de-
scribed as:

Ḃl D

I
[Ėk l � !̇k l ]dlk D;

˙̨pl D
1
2�
"pmk

@

@xm
[Ṡ(k l ) � Ṡ[k l ]] :

(51)

The former case (see Eq. (50)) presents an extreme shear
rate deformation, like soliton waves, while this case (see
Eq. (51)) would relate to a formation of the v-slip-discon-
tinuity.
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Earthquake Source: Asymmetry and Rotation Effects, Figure 11
Extreme motions: soliton wave will be related to a given defor-
mation of the circle as follows for the parameter C D e0; Am-
plitude plot (Mathematica 5.0): with AspectRatio! Automatic:
A D Plot[y D �Cx/2˙ 0:5

p
[(Cx)^ 2� 4x ^ 2C 4]],

fx;�p[4/(4� C ^ 2)];
p
[4/(4� C ^ 2)]g

In 2D we can show an effect of the co-action of the
macro spin and twist motions in the following way; let us
put C D e0 and �0 D 1

Ė12 C !̇12 D C((2;1) C ((2;1)

D C
1
2

�
@(k

@xi
C
@(i

@xk

�
C

1
2

�
@(k

@xi
�
@(i

@xk

�
:

For C D 0 we would have only the spin motion, while
a full coincidence will occur at C D 1.

The effect of such a superposition of the spin and twist
motions is presented on Fig. 11.

We believe that this approach might explain some ex-
treme fluid phenomena related to atmosphere and oceans.

The balance equations for field rates (48) at e0 D �0

may lead us to the wave equations for the related spin and
twist rate fields, !̇[s] and !̇(k), as defined similarly to the re-
lations derived in Subsect. “Balance Laws for the Rotation
Field and the EM Analogy” (see: Eqs. (29 and 31):

"kps
@

@xp
!̇[s] �

1
V
@

@t
!̇(k) D

4�
V

J̇k ;

"kps
@

@xp
!̇(s) C

1
V
@

@t
!̇[k] D 0 :

(52)

The appearance of such coupled waves transversal to the
transport motion brings physical background for diffrac-
tion in fluids as explained usually by the Huygens princi-
ple.

Conclusions

Under both the confining pressure and external shear, the
role of micro-fracturing in the bond breaking process is

similar; however, we observe the essential differences for
rotations in larger scales.

The confining condition leads to formation of induced
opposite arrays of dislocations, resulting in fragmentation
processes and chaotically oriented macro-rotations, lead-
ing therefore to a rotation release process.

The shear condition leads to more concentrated frac-
turing along some planes, high shear strain release and
correlated rotations.

Both cases include formation of narrow mylonite
zones adjacent to the fracturing planes or their fragments,
but these processes prevail rather under shear condi-
tions.

We draw attention to the importance of the rotations
in meso-scales – between the micro-scale bond breaking
process and that related tomacro-rotation atmaterial frag-
mentation. The meso-scale rotations are related to mate-
rial granulation and become observed in any fracturing
process; such motions may be revealed in the spectacu-
lar formation of the narrow, long mylonite zones under
shear load conditions. Coincidence and co-action of the
spin and twist-shearmotions in bond breaking and forma-
tion of mylonite material help one to understand the frac-
ture motion; the simultaneous formation of the mylonite
zones appears due to common action of thesemotions and
to fracture transport phenomena.

Rotations at source zones help to understand geome-
try of fracturing and releases of stress and rotation coun-
terparts as a result of precursory and rebound processes.

We have presented also a new idea how to construct
the asymmetric fluid theory with the asymmetric stress
rate field.

Final Remarks

With the additional constitutive law joining the rotations
with antisymmetric part of stresses, we have proved that
the rotation waves exist, even in a homogeneous elastic
continuum. We have defined the twist motion as the ro-
tational oscillation of the main shear axes including the
shear magnitude variations. The derived wave equations
for the twist and spin motions have been considered in re-
lation to the processes in seismic source.

Only in the presented approach with the standard
asymmetric theory may we study the co-action of the in-
dependent motions and deformations; this is due to the
new relations joining the spin and slip motions. A possible
phase shift between these motions leads to different fami-
lies of deformation and related solutions.

We have shown how the rotations at source zones
help us to understand physics and geometry of fracturing
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and release of stresses in the precursory and rebound pro-
cesses.

The derived wave equations for spin and twist motions
are similar to the EM wave equations.

Our considerations show the importance of the si-
multaneous recording of the translational and rotational
earthquake motions, and also the strains (at least the devi-
atoric strains).

Finally, we have shown how to construct the asym-
metric fluid theory in which, with a help of the asymmet-
ric stress rates, the various extreme phenomena, including
soliton waves, can be theoretically explained.
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Glossary

CMT centroid moment tensor The CMT represents the
displacement of the Earth’s crust that best reproduces
the observed wave-field generated by an earthquake
and gives the average location in time and space of the
earthquake energy release. The seismicmoment can be
determined from the CMT.

Convolution Convolution is a type of integral transform
combining two signals to form a third signal or out-
put. It is the single most important technique in Dig-
ital Signal Processing. In the case of Seismology, the
two signals can be e. g., the ground motion as a func-
tion of time and the response of the seismometer, and
the output is the seismogram.

Deconvolution Does the reverse of convolution. In the
case of Seismology, one uses deconvolution to remove
the instrument response from the seismogram to re-
cover the actual ground motion.
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Deep earthquake An earthquake characterized by
a hypocenter located more than 100 km below the
Earth’s surface.

Hypocenter The point within the Earth where the earth-
quake rupture starts. The epicenter is the projection of
the hypocenter onto the Earth’s surface.

Local tsunami A tsunami that has little effect beyond
100 km from its source.

Magnitude mB: The “broad-band” body-wave magni-
tude, generally based on measurements of the ampli-
tude of P-waves with periods in the 2 to 20 s range.
MS: The surface-wave magnitude. MS is generally
based onmeasurements of the amplitude of the surface
(Love or Rayleigh) waves with periods of about 20 s.
The US tsunami warning centers have applied a cor-
rection to the IASPEI formula that allows the estima-
tion of MS closer to the epicenter at a period of 20 s.
ME: The “energy magnitude” scale, derived from ve-
locity power spectra.
Mm: The mantle wave magnitude, based on the mea-
surement of the amplitude of surface waves with peri-
ods of 50–400 s.
MW: The moment magnitude or the “work magni-
tude” is based on the estimation of the scalar seismic
moment, M0.
Mwp: The moment magnitude based on the initial long
period P-waves.
ML: The Local magnitude scale, based on the measure-
ment of the maximum peak-to-peak amplitude ob-
served on a Wood-Anderson seismogram, corrected
for the decrease in amplitude with increasing epicen-
tral distance. Generally based on the analysis of Sg, Lg
or Rg surface waves oscillating with periods observed
out to about 600 km. from the earthquake’s epicenter.
pMag: A magnitude scale based on the average of the
absolute values of the first three half cycles of the
P-waves recorded at local distances.

Marogram A recording of sea-level variations obtained
by tide gauges.

Regional tsunami A tsunami that has observable effects
up to 1000 km from its source.

Seismic body waves Waves that propagate through the
interior of an unbounded continuum. Primary waves
(P-waves) are longitudinal body waves that shake
the ground in a direction parallel with the direction
of travel. Secondary body waves (S-waves) are shear
waves that shake the ground in a direction perpendic-
ular to the direction of travel. There are other types
of arrivals (also known as phases) visible on seismo-
graphs corresponding to reflections of P- and S-waves
from the earth’s surface: The pP phase is a P-wave that

travels upwards from the hypocenter and reflects once
off the surface and the PP phase is a P-wave that travels
downwards from the epicenter and reflects once off of
the surface. The definitions of the S-wave phases follow
in the same manner.

Seismic moment The seismic momentM0, (expressed in
units of force times distance; e. g. Newton-meters, or
dyne-cm) is the moment of either couple of an equiv-
alent double couple point source representation of the
slip across the fault area during the earthquake. Math-
ematically, the Seismic Moment, M0 D �Ad, where �
denotes the shear rigidity, or resistance of the faulting
material to shearing forces, A represents the area of the
fault plane over which the slip occurs, and d represents
the average co-seismic slip across A.

Seismic waves Elastic waves generated by movements of
the earth’s crust that propagate as radiated seismic en-
ergy, ER.

Seismic surface waves Waves that propagate along the
surface boundary of a medium, e. g. along the surface
of the earth.

Shallow earthquake An earthquake characterized by
a hypocenter located within 100 km of the Earth’s
surface.

Teletsunami A tsunami that has observable effects on
coastlines more than 1000 km away from its source.

Tsunami A series of water waves generated by any rapid,
large-scale disturbance of the sea. Most are generated
by sea floor displacements from large undersea earth-
quakes, but they can also be caused by large submarine
landslides, volcanic eruptions, calving of glaciers and
even by meteorite impacts into the ocean.

Tsunami earthquake An earthquake that generates
a much larger tsunami than expected given its seis-
mic moment.

Tsunami warning system A tsunami warning system
consists of a tsunami warning center such as the Pacific
TsunamiWarning Center (PTWC), a formal response
structure that includes Civil Defense authorities and
Government Officials, and an education program that
brings a minimum level of awareness and education to
the coastal populations at risk.

Definition of the Subject

Tsunamis are among nature’s most destructive natural
hazards. Typically generated by large, underwater earth-
quakes near the Earth’s surface, tsunamis can cross an
ocean basin in a matter of hours. Although difficult to de-
tect, and not dangerous while propagating in deep water,
tsunamis can unleash awesome destructive power when
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they reach coastal areas. With advance warning, popu-
lations dwelling in coastal areas can be alerted to move
to higher ground and away from the coast saving many
lives. Unfortunately, due to the lack of a tsunami warn-
ing system in the Indian Ocean, the Sumatra earthquake
of Dec. 26, 2004 killed over 250 000 people with thousands
of lives lost as far as away as East Africa many hours after
the earthquake occurred. Had a tsunami warning system
been in place many lives could have been saved [77].

As fast as tsunami waves are, seismic waves can travel
at speeds more than 40 times greater. Because of this large
disparity in speed, scientists rely on seismic methods to
detect the possibility of tsunami generation and to warn
coastal populations of an approaching tsunami well in
advance of its arrival. The seismic P-wave for example,
travels from Alaska to Hawaii in about 7min, whereas
a tsunami will take about 5½h to travel the same distance.
Although over 200 sea-level stations reporting in near-real
time are operating in the Pacific it may take an hour or
more, depending on the location of the epicenter, before
the existence (or not) of an actual tsunami is confirmed.
In other ocean basins where the density of sea-level in-
struments reporting data in near real-time is less, the de-
lay in tsunami detection is correspondingly longer. In ad-
dition, global, regional, and local seismic networks, and
the infrastructure needed to process the large amounts of
seismic data that they record, are widespread. For these
reasons, tsunami warning centers provide initial tsunami
warnings to coastal populations based entirely on seismic
data.

Introduction

A tsunami can be produced by any mechanism that causes
a sudden displacement of the ocean’s surface affecting
a significant volume of water. Tsunamis can be gener-
ated by undersea earthquakes, landslides and volcanic ex-
plosions, calving of icebergs, and even meteorite impacts.
However, the majority of tsunamis are generated by earth-
quakes. Not uncommon are earthquakes that trigger land-
slides so that both the displacement of the crust due to
the earthquake, and the landslide, each contribute to the
generation and size of the tsunami. Tsunamis are a devas-
tating, natural, high fatality hazard [18]. In the absence of
a proper tsunami warning system, a destructive tsunami
will cause death and destruction as it encounters coastal
areas while propagating across an ocean basin as it did in
the case of the Sumatra tsunami of December 2004.

Although tsunamis propagate in deep water with
speeds exceeding 900 km/h they are hard to detect in the
open ocean. For instance, the first wave of the great Suma-

tra tsunami had a wave height of only one meter in deep
water (> 500m) [28], and a wavelength on the order of
several hundred kilometers. Consequently, people aboard
ocean vessels did not feel the accelerations caused by the
Sumatra tsunami as it passed under them. However, as
the speed, v, of a tsunami is governed by the simple re-
lation v D

p
gh where g is the acceleration of gravity (in

m/s), and h is the thickness of the water column (in m),
the tsunami will slow down as it propagates into shallow
waters. At this point, the wave speed and wavelength de-
crease, causing the wave height to increase. Depending on
the nature of the tsunami, and the shape and bathymetry
of the coastal area, the tsunami wave height can be greatly
amplified, thus magnifying its destructive power.

Because most tsunamis are generated by earthquakes,
and seismic waves travel more than 40 times faster than
tsunamis, the first indication that a tsunamimay have been
generated is the earthquake itself. Depending on the earth-
quake’s location (undersea or inland), depth (shallow or
deep) in the Earth’s crust, and magnitude, a warning cen-
ter may be required to issue an official message product.
If the earthquake is a shallow, under sea earthquake, the
severity of the message will depend upon the magnitude
of the earthquake. The more rapidly and accurately the
tsunami warning center can characterize the earthquake
source, the quicker the initial evaluation of the tsunami-
genic potential of the earthquake can be disseminated.

While some tsunamis are destructive, most are rather
small, producing few if any casualties and little or no dam-
age, although they are easily observable on marograms
(Fig. 1). On the basis of how widespread their effects are,
tsunamis can be classified as local (within 100 km of the
epicenter), regional (up to 1000 km from the epicenter) or
teletsunamis (greater than 1000 km from the epicenter). In
the Pacific Basin there are warning centers designed to re-
spond to tsunami threats on each of these scales.

The Richard H. Hagemeyer Pacific Tsunami Warn-
ing Center (PTWC) provides basin-wide warnings to the
coastal areas of the Pacific basin. PTWC also functions
as a local tsunami warning center for the Hawaii region.
Other local warning centers include CPPT (French Poly-
nesia Tsunami Warning Center) which is based in Tahiti,
GFZ-Indonesia which is based in Jakarta provides local
warnings for Indonesia, and Japan’s JMA (JapanMeteoro-
logical Agency) which operates Japan’s tsunami warning
centers provides local tsunami warnings to Japan. Exam-
ples of regional warning centers include JMA which pro-
vides regional tsunami warnings to the Northwest Pacific
and the West Coast and Alaska Tsunami Warning Center
(WC/ATWC) which provides regional and local warnings
to the US mainland coasts and the west coast of Canada.
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Earthquake Source Parameters, Rapid Estimates for TsunamiWarning, Figure 1
Epicenters of tsunamigenic earthquakes occurring in the Pacific since 1 A.D. Of those earthquakes that do produce a tsunami a, most
tsunamis cause no damage. Most events that cause casualties and/or damage do so within 1000km of the epicenter b, leaving only
a few great earthquake sources that generated tsunamis which caused casualties and/or damage more than a 1000km from the
epicenter, c. Data provided by the NOAA National Geophysical Data Center (NGDC), (www.ngdc.noaa.gov/hazard/tsu.html)

The tsunami warning centers themselves are not
a complete tsunami warning system, they are simply the
first of line of defense within the warning system. The
warning system consists of three main components a) the
tsunami warning centers, b) emergency management/civil
defense authorities who receive tsunami warning center
message products and c) a public in coastal areas that is ed-
ucated in how to respond to tsunami emergencies. If any of
these three components are lacking, the tsunami warning
system can fail. Unfortunately, none of these components
existed in the Indian Ocean at the time of the December
2004 Sumatra earthquake.

The greatest challenge for a tsunami warning system,
particularly in the near field, is the slow (in terms of
rupture speed) or “tsunami” earthquake. Tsunami earth-
quakes are so-called because they generate much larger
than expected tsunamis given the size of the seismic mo-
ment of the earthquake [47]. In a well functioning tsunami
warning system, residents in coastal areas are educated
to immediately move inland and onto higher ground if
they feel strong ground shaking and not wait for an offi-
cial tsunami alert [24]. However, because a tsunami earth-
quake produces much less radiated high frequency body-
wave energy than normal, even a large (in terms of mo-
ment magnitude) tsunami earthquake may not be strongly
felt in the near field so that this strategy of having people
self-evacuate upon feeling strong ground shaking will not
work. This was, unfortunately, made dramatically clear by
the Java earthquake of July 17, 2006. The tsunami gener-
ated by the Java earthquake killed � 500 people as many

residents in coastal areas near the earthquake did not feel
strong shaking [83]. Tsunami warning centers need to be
able to properly detect the occurrence of these tsunami
earthquakes.

Tsunami Warning Center Operations

Tsunami warning center functions are much like those
of a seismic observatory, i. e.: detecting, locating and
characterizing the source of major earthquakes occurring
around the world as fast as possible. Depending on the
earthquake’s location (underwater vs. inland), depth be-
low the surface, and magnitude, tsunami warning cen-
ters may issue an official message product to advise Civil
Defense/Emergency Management authorities within the
warning centers AOR (area of responsibility), of the occur-
rence of a large earthquake and its potential for generating
a tsunami. The PTWC, located in Ewa Beach, Hawaii, pro-
vides advance warning of the generation of a destructive
tsunami for the Pacific Ocean Basin, and on an interim
basis, for the Indian, and Caribbean ocean basins.

After consultation with the member states of the Pa-
cific Tsunami Warning System (PTWS), the PTWC has
agreed to issue tsunami bulletins for the Pacific Ocean
Basin according to the criteria shown in Fig. 2.

An Observatory (Earthquake) Message: The PTWC
sends observatory messages to certain seismological ob-
servatories and organizations for any earthquake in or
near the vicinity of the Pacific, Indian, or Caribbean ocean
basins for seismic events when the magnitude is larger

http://www.ngdc.noaa.gov/hazard/tsu.html
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Earthquake Source Parameters, Rapid Estimates for Tsunami
Warning, Figure 2
PTWC Bulletin Criteria for the Pacific Basin

than about 5.5. This unofficial message contains only the
earthquake’s epicentral location, origin time, depth, mag-
nitude, and a list of stations used in computing these pa-
rameters. These messages contain no evaluations regard-
ing seismic or tsunami hazard, as the magnitude of the
earthquake is far too small to have a significant tsunami
generation potential.

A Tsunami Information Bulletin (TIB): The PTWC
issues this message product for any earthquake in or near
the vicinity of the Pacific Basin with a magnitude in the
range 6:5 � MW � 7:5. A TIB states that a destructive
tsunami is not expected outside the area of the epicenter.
However, it does warn of the possibility of a destructive
tsunami along coastlines within 100 km of the epicenter.

A Fixed Regional Warning Bulletin: The PTWC is-
sues this message product for shallow underwater earth-
quakes (depth < 100 km) with a magnitude in the range
7:6 � MW � 7:8. This bulletin warns of the possibility of
a regionally destructive tsunami within 1000 km of the epi-
center. All regions within 1000 kmof the epicenter are thus
initially placed in a warning.

An ExpandingWatch/Warning Bulletin: The PTWC
issues this message for shallow underwater earthquakes
with magnitude MW � 7:9. This criteria is similar to the
fixed watch/warning with the exception that this bulletin
also warns of the possibility of a destructive tsunami trav-
eling greater than 1000 km away from its source area. The
use of the term “expanding” stems from the fact that the
watch and warning regions expand across the Pacific as
time progresses until the watch/warning is canceled. The
extensions of the watch/warning area are referenced to the
leading edge of the tsunami waves at the time the bul-

letin is issued. Areas within 3 to 6 h tsunami travel-time
from the predicted current leading edge of the tsunami
are placed in a watch. Areas within 3 h tsunami travel-
time are placed in a warning. All other areas are placed
in an advisory. Because of the expanding nature of the
watch/warning, areas that were initially only placed in an
advisory may eventually come to fall into the watch or
warning region. If no potentially destructive tsunami is
detected by sea-level stations, the watch/warning is can-
celed. On the other hand, if the data provided by sea-
level stations provide evidence that a destructive tsunami
is moving across the Pacific, the PTWC may upgrade to
its most severe message, the Pacific-Wide Warning. A Pa-
cific-Wide Warning is a tsunami warning for all coasts in
the Pacific Basin. Before issuing a Pacific-Wide Warning
the scientist on duty must confirm the presence of a po-
tentially dangerous tsunami on sea-level instruments.

Figure 3 summarizes our response in retrospect, had
these criteria been in place over the 20th century, after
applying them to the earthquakes and tsunami that oc-
curred during this period. The application of these crite-
ria would have resulted in the issuance of a TIB, but no
warning for 23 destructive locally generated tsunamis oc-
curring over the last century in the Pacific Basin. At larger
distances from the earthquake, the PTWC would have is-
sued a Fixed Regional Warning Bulletin ahead of 20 de-
structive tsunamis generated in the last century, an Ex-
panding Watch/Warning Bulletin for thirty-eight destruc-
tive tsunamis, as well as eight major Pacific Basin wide
tsunami warnings within the same time period.

Coastlines close to the earthquake epicenter can expe-
rience tsunami waves within two to fifteen minutes after
the earthquake; hence a local tsunami warning needs to be
issued within a few minutes to be effective. This requires
access to real-time data provided by a dense local network
of seismic stations near the epicenter that allows both, the
rapid location, and source characterization of the earth-
quake. In the case of the Hawaii region, the PTWC uses
data from its own seismic network, and from the dense
seismic network maintained by the USGS Hawaii Volcano
Observatory (HVO) to rapidly detect Hawaii earthquakes.
These data enabled PTWC to issue an information bulletin
to the state of Hawaii, and to the Pacific Basin for the Ki-
holo Bay earthquake (MW 6:7) within 3min of the origin
time of the earthquake [42]. However, without access to
dense local seismic networks around the Pacific rim, the
PTWC is unable to issue timely warnings for populations
in the immediate vicinity of large earthquakes outside of
Hawaii. As a result, the PTWCdoes not have the capability
of functioning as a local warning center for areas outside
of Hawaii.
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Earthquake Source Parameters, Rapid Estimates for TsunamiWarning, Figure 3
Retroactive performance based on current bulletin criteria

The WC/ATWC of the US National Weather Service
has access to dense local seismic networks on the USmain-
land, Puerto Rico, and Canada, and can therefore pro-
vide rapid warnings to the US and Canadian West Coast
as well as to Puerto Rico and the Virgin Islands. Japan
has a similar capability for its coastlines, and spurred on
by the December 2004 Sumatra earthquake, several other
nations such as Indonesia and New Zealand, for exam-
ple, are rapidly developing and improving their seismic
networks in an effort to improve their tsunami warning
capabilities.

SeismicMethods

To rapidly detect, locate, and characterize the source of
earthquakes occurring around the world, tsunami warn-
ing centers rely on the Global Seismic Network (GSN
USGS/IRIS) which has many contributors in the US and
worldwide. It is this unfettered access to real time seis-
mic data supplied by a number of different networks that
makes a basin-wide tsunami warning center possible. To
rapidly deal with the threat posed by locally generated
tsunamis to the state of Hawaii, PTWC processes seismic
data from about 70 stations located in the Hawaiian Is-
lands. The USGS HVO’s dense network supplies most of
this data. The US tsunami warning centers use the Earth-
worm software developed by the USGS to import and ex-
port seismic data [46].

PTWC duty scientists can receive automatic pages
at any time, for any earthquake with magnitude MW
above � 5:5. The system generating these pages com-
bines Evan’s and Allen’s [23] teleseismic event detection
algorithm, adapted for broadband data by Wither’s [84],
and Whitmore’s [81] teleseismic picker and associator.
In the Hawaiian Islands, the application of Hirshorn and
Lindh’s [40] algorithm notifies duty scientists for earth-
quakes with magnitudes larger than about 3.5 within 10
to 20 s of the earthquakes origin time. Other software au-
tomatically locates the event, and provides a first esti-
mate of the earthquake’s magnitude, and other source pa-
rameters in real time [3,39,40,45]. PTWC duty scientists
then refine and supplement the software’s automated real-
time hypocenter location and magnitude estimates. De-
termining the earthquake’s depth is particularly impor-
tant as earthquakes occurring at depths greater than about
100 km generally don’t cause tsunamis.

Earthquakes are located using P-wave arrival times
recorded at a number of seismic instruments. As both the
locations of seismic instruments and P-wave travel-times
as a function of distance are well known, a process analo-
gous to triangulation is used to locate the earthquake. The
pickers and associators perform these functions automati-
cally on a continuous basis.

While the depth of the earthquake can be estimated on
the basis of P-times alone, a more robust result often re-
quires the addition of depth phases such as pP which is
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a P-wave that travels directly up to the earth’s surface from
the earthquake source and reflects once off of the Earth’s
surface before arriving at the seismometer. The duty sci-
entists use pP arrival times to refine hypocentral depths
of distant earthquakes (teleseisms). For earthquakes in
Hawaii, observed at local distances, the S-wave arrival time
would be useful for constraining earthquake depth. How-
ever, automatic picking of S-wave arrival times is not yet
robust, and manual picking and incorporation of S-wave
arrival times into the analyzes by a duty scientist would
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Earthquake Source Parameters, Rapid Estimates for TsunamiWarning, Figure 4
Elapsed time from earthquake origin time to issuance of first official message product for a earthquakes outside the Hawaii Region
and b for earthquakes within the Hawaii Region

take too long in the local earthquake case. In addition, as
the deepest earthquakes in Hawaii have a hypocenter lo-
cated about 50 km deep, (Fig. 6) which is comparable to
the rupture length of an earthquake over about magnitude
seven, the PTWC’s local tsunami warning criteria are cur-
rently based on magnitude only.

Seismologists use a panoply of different magnitudes
to characterize the seismic source. These different meth-
ods examine different parts of the seismic wave train, such
as short and long period body waves (seismic waves that
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travel through the earth’s interior like the P- and S-waves)
and long period surface waves (slower seismic waves that
are constrained to travel along the earth’s surface). Most
of these magnitude scales were developed to estimate the
same quantity; the energy released by the earthquake as
radiated seismic wave energy, ER. Traditional magnitude
measures such as ML [66], and mb (a shorter period
variant of mB Gutenberg [30,31] that examines high fre-
quency body waves). The Gutenberg surface wave magni-
tude MS [9], modified by Vanek [75] as well as the newer
Mm Okal and Talandier [63], or mantle magnitude are de-
rived from the surface waves. A relatively new and quick
method, Mwp analyzes long period P-waves [73,74,82].
TheMwp magnitude is now the magnitude used in the de-
cision process for deciding which if any official message
product to issue, supplanting the MS method which had
been used for over 50 years. For large earthquakes, duty
scientists also routinely estimate Mm, a very long period
surface wave magnitude based on mantle waves with peri-
ods in the range 50–410 s [63]. The relationship between
these magnitudes, each looking at different parts of the
seismic wave spectrum of an earthquake, can be used to
characterize the earthquake source [2,16,17].

When evaluating the tsunamigenic potential of an
event, PTWC duty scientists also compute the quantity
log10(ER/M0), known as “Theta”,	, whereM0 is the seis-
mic moment [1]. Newman and Okal [62] showed that	 is
anomalously small for tsunami earthquakes.

Since about themid 1990’s the twoUS TsunamiWarn-
ing Centers response times to potentially tsunamigenic
teleseisms has decreased dramatically due to the much
larger amounts of seismic data that they now receive, and
to the switch from the slower MS magnitude method to
the fasterMwp moment magnitudemethod for their initial
messages (Fig. 4a). For local events, using the real-time as-
sociator binder_agl [45], and the very fast pMag scale [40],
has brought the PTWC’s response time down to less than
3min (Fig. 4b).

Earthquake Source Parameters

A fundamental problem with traditional magnitude
estimates such as ML, mb, and MS, is that they are based
on the amplitudes of relatively short period seismic waves
with periods usually less than 3 s formb andML, and about
20 s for MS. When the largest rupture dimension of the
earthquake exceeds the wavelength of these seismic waves,
which is about 50 km for the 20 s period surface waves
used for MS [48,49], these magnitude values will start to
“saturate”. Saturation in this case means that these mag-
nitude measures will underestimate the true size of the

Earthquake Source Parameters, Rapid Estimates for Tsunami
Warning, Figure 5
Saturation of different classicalmagnitude scaleswith respect to
non-saturating moment magnitude according to Kanamori [50].
Note that mB refers to the original Gutenberg–Richter [32,33]
body-wavemagnitude scale based on amplitudemeasurements
made onmedium-period broadband instruments. It saturates at
largermagnitudeswhen compared to the short-period basedmb

earthquake when the periods of the amplitudes on which
they are based are shorter than the corner period of the
earthquake’s seismic wave spectrum [2,16,17] (see Fig. 5).
Another, equivalent explanation is that these magnitude
methods, which look at waves with periods of a fraction of
a second to a few tens of seconds, cannot sample enough
of the energy released by an earthquake whose source du-
ration (the length of time over which the rupture occurs)
is many times larger than the periods used by these meth-
ods. As the earthquake becomes very large, one needs to
examine longer period waves to avoid saturation.

K. Aki used a spectral representation to establish
that earthquakes of varying size had spectra of similar
shape, differing primarily in the low frequency ampli-
tude, proportional to seismic moment, and the location
of the “characteristic frequency” (corner frequency of the
source spectrum) which he related to the characteristic
length scale of an earthquake [2]. Subsequent studies by
Brune [16,17], and Savage [68] also related the corner fre-
quency to the dimensions of the fault plane.

To circumvent the saturation problem, Kanamori de-
fined a new magnitude scale, the moment magnitude
MW, [48], in terms of a minimum estimate of the to-
tal co-seismic strain energy drop, W0, via Gutenberg and
Richter’s energy-magnitude relationship [33]. The MW
scale, more properly a magnitude that describes the total
“work” required to rupture the fault, is computed from the
seismic moment, M0, assuming 1) that the stress changes
associated with large earthquakes are approximately con-
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stant, and 2) that the stress release during an earthquake is
about the same as the kinetic frictional stress during fault-
ing. MW and its agreement with the ML and MS magni-
tude scales in their unsaturated ranges was discussed by
T.C. Hanks and H. Kanamori [34] while Kanamori [50]
discusses additionally the average relationship ofMW with
mb and mB, also in the range where these magnitudes sat-
urate (see Fig. 5).

Traditional Amplitude Based Magnitudes at the PTWC

Local Earthquake Magnitude Methods Hirshorn and
Lindh [40] developed a short period P-wave magnitude
scale, called pMag, which is based on the average of the ab-
solute values of the amplitudes of the first three half-cycles
of the initial p-waves recorded, at local distances, on short
period seismometers [40,45]. The pMag scale is based on
the assumption that that the decrease of locally recorded
initial P-wave amplitudes with increasing hypocentral dis-
tance shares a common decay curve in a given geographic
area, independent of the magnitude of the earthquake.
Lindh and Hirshorn incorporated pMag into Carl John-

Earthquake Source Parameters, Rapid Estimates for TsunamiWarning, Figure 6
This figure shows the bimodal depth distribution of Hawaii earthquakes of M � 4, taken from the USGS Hawaiian Volcano Obser-
vatory (HVO) ANSS Catalog. The top figure is a histogram of all events binned by hypocentral depth. The bottom figure shows the
magnitude vs. hypocentral depth for each event

son’s [46] local p-wave associator, binder_agl, enabling au-
tomatic pages, containing the hypocentral parameters and
a the lower bound magnitude estimate provided by pMag,
within about 10 to 20 s of an events origin time. At the
PTWC, the System for Processing Local Earthquakes in
Real Time (SPLERT) is based on this software.

PTWC also uses a very band-limited ML scale, based
on the maximum amplitudes measured on the horizontal
components of short period seismograms recorded at lo-
cal hypocentral distances from earthquakes that occur in
Hawaii. These short period waves attenuate about 6 times
less along the path between the hypocenter and recording
stations for the “deeper” population of Hawaiian earth-
quakes (with hypocenters (Fig. 6) located between 20 and
50 km depth), then they do along the path from source
to receiver for the “shallower” event population in the
lower oceanic crust (about 10–20 km below the sea sur-
face). For this reason, PTWC adds 0.8 magnitude units to
the MLvalues obtained for events with hypocentral depths
� 25 km.

Because of the bimodal depth distribution of Hawaii
earthquakes (Fig. 6.) our ML calculation requires only
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a good enough depth estimate to discriminate between
these two populations.

Teleseismic Magnitude Methods PTWC’s body wave
magnitude method is called bMag and has similarities to
the intermediate period broadband body wave mB mag-
nitude as defined by IASPEI. The IASPEI mB [11,16] is
based on Gutenberg’s [30,31] andGutenberg and Richter’s
mB [32,33]. bMag uses a 90 s window of broadband verti-
cal component seismogram starting 30 s prior to the ar-
rival of the P-wave. This window is band-passed filtered
between .3 s and 5 s. The largest amplitude and its period
found in the 60 s after the first P-wave arrival are cho-
sen for use in the magnitude formula. In PTWC’s imple-
mentation, the formula used is the same as Gutenberg and
Richter’s [32,33] relation, adopted by IASPEI for mB:

bMag D log(Amax/Tmax)C Q(�; z) ;

where � is the epicentral distance (15ı � � � 90ı), z is
the hypocentral depth, Amax is the maximum wave ampli-
tude obtained from the band-pass filtered record, and Tmax
is the period of the wave with the maximum amplitude.
Gutenberg and Richter’s [33] table of Q(�; z) is used to
provide the distance and depth correction. The largest am-
plitude found in the 30 s prior to the P-wave arrival time is
used as the basis for the signal to noise ratio. bMag differs
from the IASPEI mB in three respects,

1. mB uses the largest amplitude wave in the P-wave coda
up to the arrival of the PP phase,

2. mB uses a slightly different distance range (15ı � � �
90ı), and

3. for mB, the seismogram is band-pass filtered using the
band .3 s to 5 s.

bMag will saturate at lower magnitudes than MS does, so
it is of limited use for large earthquakes. However, bMag,
is still useful for three main reasons

1. unlike MS, bMag has a correction for the depth of the
event’s hypocenter,

2. it is useful for determining the magnitude of mod-
erate earthquakes that occur as aftershocks of much
larger earthquakes, e. g. when longer period energy is
still present in the signal from an earlier, larger event,
that can adversely affect magnitude methods based on
longer periods, and

3. by comparison with magnitudes based on longer peri-
ods, such asMw, it can also provide a way to detect slow
or tsunami earthquakes.

In computing MS (first proposed by Gutenberg [9] and
later revised by Vanek et al. [75]) at the PTWC, we band-
pass filter 14min of the broadband velocity seismogram
with a 7 s band, from 16 to 23 s, starting 3min before the
expected arrival time of the surface waves. We then apply
the following equation, similar to the IASPEI [11,75] for-
mula:

MS D log10(Amax/Tmax)C1:66 log10(�)C3:3Ccorrection:

The correction term is 0 for epicentral distances,�, greater
than 16ı, and 0.53–0:033� for � less than 16ı. Note
that the IASPEI implementation considers a much greater
range in periods from 3 to 60 s for Tmax and has no need
for the correction term. The correction term allows the US
TWC’s to compute the MS magnitudes from stations as
close as 600 km to the epicenter at a period of 20 s. This
method is susceptible to saturation effects as the magni-
tude reaches the high 7’s.

Although MS is no longer used as the basis for issu-
ing bulletins, it is still helpful in diagnosing deep earth-
quakes, and for comparing the amount of 20 s radiated en-
ergy to the amounts of radiated energy at other periods.
Deep earthquakes do not excite large surface waves. Hence
if bMag > MS the hypocenter is likely to be deep.

TheMwp Method

The broadband P-wave moment magnitude,Mwp, has re-
placed Ms as the magnitude upon which the US TWCs
initial tsunami messages are based [73,74,82]. This is be-
cause Mwp uses P-waves, recorded at any epicentral dis-
tance, up to about 90ı, when the observed initial P-waves
are affected by refraction due to the earth’s outer core.Mwp
is obtained much quicker than Ms, which is based on the
slower traveling surface waves, and because Mwp exam-
ines much longer period waves than the 20 s surface used
by Ms making it less susceptible to the saturation effects
discussed above.Mwp, as implemented at the PTWC, uses
the first 120 s of the vertical component, broadband veloc-
ity seismogram, beginning at the P-wave arrival time (gray
trace in Fig. 7).

The derivation ofMwp assumes that we can obtain the
seismicmoment,M0, from the far-field P- and/or pP-wave
portion of the vertical broadband displacement waveform,
uZ (xr ; t), using

M0 D (4��˛3r/FP)Max
ˇ̌
ˇ̌
Z

uZ(xr ; t)dt
ˇ̌
ˇ̌ ;

where � and ˛ are the density and P-wave velocity av-
eraged along the propagation path, r is the epicentral
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Earthquake Source Parameters, Rapid Estimates for Tsunami
Warning, Figure 7
The first 2min of the broadband vertical velocity seismogram
(gray) recorded by the GSN USGS/IRIS broadband station COCO,
on Cocos Island, about 15 degrees south of the epicenter of the
MW 9:2 Sumatra Earthquake of Dec. 26, 2004. Note that this por-
tion of the broadband velocity seismogram is not clipped. This
instrument, a KS54000, has a flat frequency response to veloc-
ity to a period of about 350 s. The blue trace is the integrated
displacement record (doubly integrated velocity), and the green
trace isMwp as a function of time

distance, and FP is the earthquake source radiation pat-
tern [73,74,82]. At the PTWC, we follow Tsuboi [73], ap-
proximating Max

ˇ
ˇR uZ(xr ; t)dt

ˇ
ˇ by the first significant or

“big” peak in the absolute value of the integrated displace-
ment record. We prefer to use velocity seismograms, v(t),
from STS-1 or KS54000 broadband seismometers as there
is then no need to deconvolve the instrument response
from the data. We simply scale the data by a gain fac-
tor, because we can assume that the instrument response
function is flat in the frequency band of interest. For the
STS-1, or the KS54000, which both have a flat velocity up
to about 350 s, this works for all but the very largest or
slowest earthquakes.

We first remove any pre-event offset from v(t), end-
ing before the P-waves from the earthquake arrive, inte-
grate v(t) twice, and then multiply the absolute value of
each data point by 4�r˛3 to obtainM0(t) in N-m (the blue
trace in Fig. 7). We then apply the standard IASPEI mo-
ment magnitude formula [34]:

MW D (log10 M0 � 9:1)/1:5

to M0(t), to calculateMW(t) (the green trace in Fig. 7). To
correct for the radiation pattern, FP, we then add 0.2 to
the average of the individual Mwp values, each obtained

at different azimuths and distances from the epicenter.
This is because

R
(Fp)2 d˝ D 4/15, where ˝ is the az-

imuthal angle of the observation around the epicenter, andp
4/15 D 0:52. Therefore, we multiply the averaged M0

by 2, which is equivalent to adding 0.2 toMwp. Finally, we
apply the Whitmore et al. [82] magnitude dependent cor-
rection, Mwp D (Mwp � 1:3)/0:843, to get a final value for
Mwp.

Figure 8 compares these final Mwp values resulting
from this procedure with the Harvard moment magnitude
MW estimated from their CMT [19] solutions.

For some complex earthquakes, such as the MW 8:4
[19] Peru earthquake of June 21, 2001, or the great
MW 9:2 [5,65,71] Sumatra earthquake of December 2004,
Mwp (7.4 and 8.1, respectively) will underestimate MW,
when the first moment release is not the largest. In
contrast, the PTWC’s final estimate of Mwp 8:4 for the
MW 8:6 [19] Nias event of March 28, 2005 was acceptable,
as it was for 9 other earthquakes in the range 8:0 � MW �

8:4 (Fig. 8).
The PTWC also uses Mwp for large local earthquakes,

occurring in the Hawaiian Islands [41,42].Mwp is based on
the far field formulation for P-wave displacements [73].
For earthquakes whose largest source dimension is small
compared to the distances at which the P-waves are ob-
served, this assumption is satisfied. Up to approximately
MW 7:5, Mwp calculated from these locally recorded, far
field P-waves agrees well with the Harvard MW values for
the same events [41,42]. For example the PTWC calcu-
lated a value of Mwp 6.5 for the MW 6.7 [19] Kiholo Bay
event within twominutes of the initiation of rupture at the
hypocenter [41,42].

The Mantle Magnitude (Mm) Method

Emile Okal and J. Talandier developed the Mm method in
1989 [63]. The mantle magnitude is related to the moment
magnitude via the simple expressionMW D Mm/1:5C2:6.
This work was inspired by the need to develop a mag-
nitude method for tsunami warning centers that would
not suffer the saturation problem of MS [64]. Not only
may MS saturate as the magnitude becomes large (> 8)
but slow earthquakes can cause MS to be seriously defi-
cient and bMag even more so. Severely underestimating
the magnitude of an earthquake can lead to a failure to
warn. PTWC’s implementation of theMm method is based
on analyzing Rayleigh waves obtained on vertical compo-
nent seismograms.

Mm being based on slow traveling long period surface
waves, is available too late to be used in the decision pro-
cess for issuing an initial bulletin. Notwithstanding, it does
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Earthquake Source Parameters, Rapid Estimates for TsunamiWarning, Figure 8
A Scatter plot of average Mwp versus the MW [19] for a set of 260 earthquakes with magnitudes in the interval 4:8 � MW � 9:2
occurring from 1994 through October of 2007. Whitmore et al. [82] found that with the application of an empirical correction made
to the results, satisfactory results could be obtained. Our linear, least squares fit to the 155 earthquakes (red stars) yielded a slope of
0.83, close to the Whitmore et al. [82] slope of 0.84. Since April of 2002, we have used this corrected relationship (green circles filled
in yellow) to calculateMwp

provide a useful check on the magnitude obtained from
the Mwp method and if there is a discrepancy between
Mwp and MW(Mm) on the order of 2–3 tenths or more
in the 7Cmagnitude range, the duty scientist may instead
use the results of the Mm method in subsequent bulletins.
The Mm method overcomes the limitation of saturation
because it is a variable period magnitude. Multiple values
of Mm are routinely computed for a number of fixed peri-
ods ranging from 50 to 270 s for each station. Because Mm
may saturate at the smaller periods for great earthquakes,
while at longer periods Mm will be unsaturated, Okal and
Talandier’s [63] procedure was to choose the largest Mm
mitigating the effects of saturation.

Mm is more complicated than the other methods de-
scribed here as it uses frequency domain deconvolution.
This can cause problems due to deconvolution noise at
low magnitudes, where the amplification of noise by the
deconvolution process at long periods may result in spu-

rious magnitudes. Thus Mm works best with very long
period broadband seismometers such as the KS54000’s,
KS36000’s and STS-1’s. While STS-2 seismometers tend
to do well, however, the shorter period broadband seis-
mometers tend to behave poorly at the longest peri-
ods [79]. Using the maximum Mm obtained for each sta-
tion proved to be suboptimal due the heterogeneous distri-
bution of instruments coupled with the total automation
of the procedure at the PTWC. Weinstein and Okal [79]
devised a sampling method that alleviates most of these
difficulties in PTWC’s implementation of Mm.

The December 2004 Sumatra earthquake showed that
for earthquakes with an unusually long source duration (in
this case � 600 s), even Mm at 270 s will saturate. Hence
PTWC’s Mm implementation will now automatically ex-
tend the period range to 410 s when themagnitude exceeds
8.0. At 410 s MW(Mm) is 8.9 [79] for the December 2004,
Sumatra earthquake, still deficient, but a marked improve-
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Earthquake Source Parameters, Rapid Estimates for TsunamiWarning, Figure 9
Scatter plot ofMW(Mm) vs. Harvard/GCMT [19]MW for over 200 Earthquakes

ment over the moment magnitude 8.5 obtained by PTWC
and 8.2 obtained by the USGS (NEIC Fast Moment Ten-
sor) on Dec. 26, 2004. Mm normally uses a 660 s window
of the surface wave train, but when Mm exceeds 8.0, the
window expands to 910 s. Given the mix of instruments
and their distribution used at PTWC, and the effects of
broadband deconvolution noise, Weinstein and Okal [79],
found that the Mm method was not useful for MW < 6:0.

Figure 9 comparesMW(Mm) values obtained for more
than 200 recent earthquakes with the respective MW val-
ues of HRV/GCMT [19] for the same events. PTWC’s im-
plementation of Mm of still tends to over estimate MW by
about .15 magnitude units for MW < 7:0.

Rupture Slowness Estimation (Theta Program)

One way in which the occurrence of a tsunami earth-
quake may be indicated is if bMag and/or MS are sig-
nificantly smaller than MW obtained from the longer pe-
riod P-waves, or longer period mantle waves. This is made
clear in Fig. 10. Note the population of 4 tsunami earth-
quakes that fall well off the trend. The short period mag-
nitudes may also simply be deficient simply due to the size
of the earthquake.Measuring the “rupture slowness” of the
earthquake can further aid the warning centers in deciding
between the two possibilities. As can be determined from

Fig. 10, the body wavemagnitude for July 2006, Java earth-
quake was deficient by nearly 1.5 magnitude units.

As mentioned earlier, a fundamental characteristic of
a tsunami earthquake is the slowness of the rupture speed.
Newman and Okal [62] showed that the log ratio of the
radiated energy ER [9,10], to the seismic moment M0,
Log10(ER/M0) (also denoted by Theta, or “	”) is anoma-
lously small for tsunami earthquakes. A number of fac-
tors can affect this ratio such as rupture velocity, stress-
drop/apparent stress, fault plane geometry, maximum
strain at rupturing, and directivity (bi-lateral vs. unilat-
eral rupture). However, for shallow thrust, low stress-drop
subduction zone earthquakes, unusually slow rupture ve-
locity may have the largest influence on the value of	.

Newman and Okal [62] showed that for tsunami
quakes, the value of 	 is usually about � 6.0 or less.
For an earthquake with a unilateral rupture with nom-
inal speed (� 3 km/s), theory suggests that 	 is about
� 4.9 [26,69,76]. Weinstein and Okal [79] extended the
original dataset of Newman and Okal [62] by including an
additional 118 earthquakes. The mean value of all 	 val-
ues is approximately � 5.1. However, when averaged by
event, the distribution of 	’s peaks precisely at � 4.9, in
accordance with theoretical expectations. Given the stan-
dard deviation of 0.39 for all	’s (for the 118 earthquakes),
Weinstein and Okal [79] found that values of 	 around
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Earthquake Source Parameters, Rapid Estimates for Tsunami
Warning, Figure 10
Comparison between short-period m̂b [43] and MW for earth-
quakes with MW > 6. Note the cluster of red dots representing
tsunami earthquakes. This illustrates the diagnostic potential of
short-period/long-periodmagnitude ratios to identify unusually
slow earthquakes with high tsunami potential (Kanamori 2007,
Talk at the PTWC in April of 2007)

� 6.0 or below are more than 2� off the mean and hence
clearly anomalous.

The PTWC uses broadband vertical component seis-
mograms, obtained in the distance interval 25ı � � �

90ı, to compute 	. A window of 75 s is used starting ap-
proximately 5 s before the P-wave arrival. This is done to
insure that the first arrivals are not missed by the integra-
tion. This window is deconvolved with the instrument re-
sponse and the radiated energy contained between .1Hz
and 2Hz is computed.

In general it is thought that anomalously slow rupture
speed is due to either low rigidity sediments in the fault or
faulting through an accretionary prism [6,8,25,47,52,67].
In either case, the small shear rigidity associated with
weak materials retards the rupture speed. As to why
“slow” earthquakes produce more destructive than ex-
pected tsunamis, one can look at the well-known relation
for moment magnitude:

M0 D �Ad ;

where� is the shear rigidity, A is the fault plane area and d
is the average slip over the fault plane. Thus for two quakes
with the same M0 and all other properties equal except
for � and hence rupture speed, the slow quake requires

a correspondingly larger slip, d, in order to achieve the
samemoment as the earthquake with a nominal value of�
and hence normal rupture speed.

One problem with 	, is that it can be misleading and
occasionally yield false indications of rupture slowness.
This was made apparent by the Peru earthquake of June
23, 2001. This earthquake began with a initial event that
had a moment magnitude of approximately 7.4, followed
almost 60 s later by a much larger event, which had a mo-
ment magnitude of almost 8.4. [7,27,55]. Due to the 60 s
delay, the 	 computation used mainly P-wave coda from
the first shock, and little if any energy from the main
shock. As a result the PTWC initially obtained a 	 of
� 6.1, using a moment based on Mm, making this earth-
quake appear very slow indeed.However, this result is spu-
rious and was due to the complexity of the earthquake it-
self and not to actual slowness of the rupture.

Weinstein and Okal [79] found that by sliding the
window over which 	 is computed forward in time, 	
would increase as the 	 window overlapped with the oc-
currence of the main event of the Peru 2001 earthquake.
Indeed for a window offset of 70 s, 	 increases to � 5.6,
which is a strong trend to slowness, but not a slow or
tsunami quake. This was further borne out by the size
of the tsunami, which while detected on sea-level instru-
ments around the Pacific (more than 2m peak-to-peak in
Chile), was not destructive outside of Peru.

Weinstein and Okal [79] explored the windowing
technique and found that in actuality, it was a more com-
prehensive method than the single determination of 	
(zero offset). Computing theta in a succession of windows
separated in time by 10 s (each window spanning 70 s)
up to 100 s post P-wave arrival yields a better method
of detecting slowness (see Fig. 11). What Weinstein and
Okal [79] found is that for true tsunami earthquakes, the
variation of 	 with offset time was small, generally no
more than 0.1 log units over the entire 100 s. It is this flat
trend that is probably the best discriminant for tsunami
earthquakes.

In effect, the curve resulting from the window-offset
technique tells us something about the source duration
of the earthquake. Gigantic earthquakes have long source
durations, and slow earthquakes have anomalously long
source durations for their seismic moment. Therefore 	
can be viewed as a measurement of how anomalous the
source duration is in terms of whether the earthquake is
anomalously slow, or simply anomalously large. It turns
out that in the case of the Sumatra earthquake of Decem-
ber 2004, 	 has little variation, even when the integration
window is increased to 200 s and the offset carried out to
300 s. The magnitude of	 based on PTWC’s MW(Mm) of
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Earthquake Source Parameters, Rapid Estimates for TsunamiWarning, Figure 11
The variation of� with offset for a a “normal” earthquake, b a “slow earthquake” (Java, 2006), and c a complex earthquake (Peru,
2008) respectively. In these plots� is de-meaned (the mean is found on the bottom right of the plot in black) and the number next
to the dots indicates howmany stations were used in computing that value. These plots are taken from PTWC’s operational software

8.5 was � �5:6, a trend to slowness, but not slow. Using
the MWbased on normal mode studies,	 is� �6:1 (with
a 200 s integration window!) and discussion continues to
the current day as to whether or not the Sumatra earth-
quake of 2004 was slow, simply had aspects of a tsunami
earthquake, or none at all [5,20,53,57,70].

Future Directions

Given the availability of high quality broadband seis-
mic data, the tsunami warning centers can determine ba-
sic earthquake source parameters rapidly. However, the
source characterization at the warning centers has rested
largely on scalar measures of earthquake magnitude and
slowness. The reasons for this are historical and prac-
tical. The warning centers have not always received the

quantity of seismic data they do now, and in the inter-
est of speed, the calculation of scalar measures can be
accomplished with the data at hand in a small amount
of time. One issue the PTWC faced during the 2004
Sumatra earthquake was that no near real-timemagnitude
method existed at the time that would correctly estimate
the size of the Sumatra earthquake. Since then, new tech-
niques have been developed to determine themagnitude of
great earthquakes. Among these are techniques based on
P-wave broadband signals [12,13,15,22,35,36,59,60] and
the W-phase [21,52,55,58].

Hara [35,36] and Lomax et al. [59], both use tech-
niques that involve estimating the source duration from
the P-wave coda. This estimate is obtained by applying
a high pass filter to the velocity seismogram, squaring the
result and smoothing it. This procedure results in a rela-
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tively smooth curve or envelope function that tracks the
variation in the velocity-squared time-series. The source
duration estimate is then obtained by measuring the time
from the beginning of the P-wave to the point when the
envelope function falls below a certain percentage of its
maximumvalue. However, these studies also show that the
use of source duration alone is not a completely satisfac-
tory basis for a moment magnitude estimate.

Lomax et al. [59] also measures the radiated energy
of the P-wave in the interval between the P- and S-ar-
rivals, and uses both the radiated energy and source du-
ration estimate to formulate a magnitude scale based on
the relation M0 � E1/2 � T3/2 [76] where E is the high fre-
quency radiated energy and T is the source duration esti-
mate. Hara [35] uses the estimated source duration and
the maximum displacement measured in the interval of
the estimated source duration from a number of earth-
quakes to construct an empirical formula for the magni-

Earthquake Source Parameters, Rapid Estimates for TsunamiWarning, Figure 12
Top: (Fig. 2a and b from [58]). Displacement seismogram of the 2004 Sumatra-Andaman earthquake recorded at OBN. Bottom: Scalo-
gram of top seismogram. A diagram which displays the wavelet scale as a function of time is called a “scalogram”. Bottom figure
shows the scalogram for the 2004 event. Color intensity at any point in the picture corresponds to the coefficient magnitude of
a wavelet with a particular period at a particular point of the time series. The y-axis has been translated from wavelet scale into
corresponding wavelet time period. The long-period component arrived at about 1500s. The wavelet transform can simultaneously
achieve: (1) Accurate frequency representation for low frequencies, and (2) Good time resolution for high frequencies [58]

tude. Hara [36] showed that this technique also works well
for tsunami earthquakes.

Lomax et al. [60] has derived a duration-amplitude
procedure for determination of a moment magnitude,
Mwpd , for large earthquakes within 20min of the event ori-
gin time using teleseismic P-wave recordings. Their pro-
cedure determines apparent source durations, T0, from
high frequency, P-wave records, and estimates seismic
moments via integration of broadband seismograms over
the interval tp to tp C T0, where tp is the P-wave arrival
time. The characteristics of this method make it an exten-
sion ofMwp.

De Kool et al. [22] present a variation of the Mwp
method which estimates the asymptotic behavior of the in-
tegrated displacement seismogram caused by the P-wave
arrivals. Their results forMwp show less scatter than do the
PTWC’s Mwp values, described above. In addition, they
have automated their method.
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The method of Bormann and Wylegalla [13] and Bor-
mann and Saul [14] calculate what they refer to as a cumu-
lative body wave magnitude. They do this by summing up
all of the peak velocity amplitudes for all pulses, which rep-
resent the rupturing of sub-faults, over the P-wave coda.
For the December 2004 Sumatra earthquake they obtained
an MW of 9.3 in agreement with the estimate of Stein and
Okal [71].

Since these methods are based on analyzing the
P-waves in the P-S interval, they provide accurate mo-
ment magnitude estimates for great earthquakes within
20–25min of the earthquake origin time. Therefore these
estimates will come before estimates obtained by other
methods like Mm.

The W-phase is a long period, up to 1000 s, wave that
arrives before the S-wave (Fig. 12). It can be interpreted
as a superposition of the fundamental, 1st, 2nd, and 3rd
overtones of spheroidal modes or Rayleigh waves and has
a group velocity of 8 km/s at 1000 s period, and 8.6 km/s
at 100 s period [51,54]. Kanamori [54] has devised a mag-
nitude scale based on the amplitude of the W-phase ob-
served on deconvolved displacement records.

In addition to size and source duration, the warning
centers are interested in more detailed properties of the
source than can be obtained from the scalar measures we
have just discussed, such as direction of rupture and the
distribution of slip along the fault. This information is im-
portant as it can be used by tsunami wave-height forecast
models to better their predictions.

In the near future, the tsunami warning centers will
incorporate the results of centroid moment tensors and
finite fault modeling. Finite Fault modeling involves the
inversion of seismic waveforms to recover more de-
tailed information about the source process including the
slip distribution, rupture propagation speed and moment
release history [7,27,37,38,62,77]. Weinstein and Lund-
gren [80] explored the potential of a simple teleseismic
P-wave inversemethod for the rupture history of an earth-
quake for use in a tsunami warning center context. The
calculations proceed quickly enough that a slip distribu-
tion may be available just a few minutes after a suitable
set of P-waveforms are obtained. Hence finite fault mod-
eling results can be used in tsunami wave height forecast
models to provide a timely initial estimate of tsunami wave
heights.

The warning centers are also actively investigating the
use of seismic arrays. Seismic arrays can be used to deter-
mine the direction along which the P-waves have prop-
agated to the array. As the rupture propagates, this di-
rection will change. By analyzing the seismic array data,
this change in direction can be measured (by computing

back azimuths) and the history of energy/moment release
as well as the extent and direction of the rupture propaga-
tions can be determined [44,56].
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Glossary

Partially molten rock The partially molten state is a ther-
modynamic state between solidus and liquidus tem-
peratures, where both solid and liquid phases co-exist.
In the Earth’s interior, partial melting of rocks occurs
in the upper mantle and/or crust beneath volcanic ar-
eas.

Melt Liquid phase in partially molten rocks or completely
molten rock above the liquidus temperature is called
melt. Density of melt is about 10% lower than solid.
Hence, melt phase in the partially molten rocks tend
to ascend toward the Earth’s surface.

Aqueous fluid H2O-rich fluid. In a subducting oceanic
plate, at the depths of several tens of km, aqueous flu-
ids are released by the dehydration of hydrated min-
erals. Aqueous fluids, having much lower density and
viscosity than melts, tend to ascend due to the buoy-
ancy force.

Seismic tomographic image A number of seismometer
networks have been placed on the surface of the Earth
to record the seismic wave propagation from seismic
sources at depths to the surface. Using the traveltime
data obtained from these observations, three-dimen-
sional seismic velocity structures in the Earth can be
obtained, with a process called seismic tomographic
imaging. By using P and S wave traveltimes, VP and
VS structures, respectively, can be obtained.

Definition of the Subject

The dynamics of solid-liquid composite systems are of
great relevance to many problems in the earth sciences, in-
cluding how melts or aqueous fluids generated by partial
melting or dehydration migrate through the mantle and
crust toward the surface, how deformation and fracture
in these regions are influenced by the existence of fluids,
and also how these fluids can be observed in the seismic
tomographic images. The mechanical and transport prop-
erties of the solid-liquid composite systems strongly de-
pend on liquid volume fraction and pore geometry, such
as pore shape, pore size, and a detailed porosity distribu-
tion. Therefore, the microstructural processes that con-
trol pore geometry influence macroscopic dynamics, and
vice versa. This article introduces a general continuum
mechanical theory to treat the macroscopic dynamics of
solid-liquid composite systems with a special emphasis
on how such interactions with pore geometry can be de-
scribed. Although intensive experimental and modeling
approaches have been performed to investigate the inter-
active evolution of pore geometry and matrix deformation
or fluid flow, many problems still remain unsolved and the
actual liquid content and pore geometries in the crust and
mantle are poorly understood. Therefore, in the latter part
of this article, by applying the general theoretical frame-
work introduced in the former part to the seismic wave
propagation, the determinability of porosity and pore ge-
ometry from seismic tomographic images is discussed in
detail. Due to the recent advances in seismic tomography,
we can obtain three-dimensional and highly resolved im-
ages of both VP and VS structures. From the VP or VS
structure alone, neither porosity nor pore geometry can
be determined independently. However, if both VP and VS
structures are available, porosity and pore geometry can
be determined independently, thus providing valuable in-
formation complementary to experimental and modeling
approaches. A practical method to determine porosity and
pore geometry from the VP and VS images is presented.

Introduction

Melt segregation from partially molten mantle or crust
to the surface is the fundamental process of volcanism.
In arc volcanism, aqueous fluids derived from the dehy-
drating subducting slabmigrate through the mantle wedge
and play an important role in the melting process. Mod-
eling approaches to these fluid migration processes have
been developed to explain various chemical and petrolog-
ical observations, e. g. [13,20,35,37]. To make in situ ob-
servations of these fluids, seismic and/or electromagnetic
tomographic images of the partially molten regions are
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produced. These images are then interpreted using meth-
ods built on experimental and theoretical studies of the
effects of fluids on seismic and electromagnetic proper-
ties, e. g. [2,23,24,44]. The effects of fluids on the tectonic
and/or volcanic earthquake source process have also been
of great interests; recently, observations of deep low-fre-
quency earthquakes and tremors have been considered to
be indicators of the presence or active migration of fluids
in the crust and mantle, e. g. [9,26,29].

Fluids in the crust and mantle exist as solid-liquid
composite systems in which fluid-filled pores are included
in the solid matrix. Solid-liquid composite systems are
characterized by high structural sensitivity. When the liq-
uid volume fraction increases from zero to a few tens
of %, the mechanical and transport properties of the sys-
tem change greatly from those of a solid to those of
a liquid. These properties are not simply determined by
the liquid volume fraction but also strongly depend on
the geometry of the liquid-filled pores. Here, the term
pore geometry represents not only pore shape, but also
pore size, orientation, and homogeneous or heteroge-
neous porosity distribution. Therefore, liquid content and
pore geometry strongly influence the melt segregation
and/or matrix deformation dynamics. Pore geometry is
not constant but can change interactively with the macro-
scopic dynamics. Experimental and modeling approaches
have been performed to investigate the interactive evo-
lution of pore geometry and matrix deformation or fluid
flow, e. g. [11,35,39]. However, many problems, including
a poor understanding of the underlying physics, discrep-
ancies between the experimental and modeling results,
and the issue of scaling laboratory results to km scale, re-
main unsolved and detailed forward approaches to the in-
teractions are the subjects of future studies.

Remarkable progress has been made in the seismic
observations of the solid-liquid composite systems in the
crust and mantle. Due to the recent advances in seismic
tomography, we can now obtain three-dimensional and
highly-resolved images of both VP and VS structures. Be-
cause the seismic velocity depends on both liquid volume
fraction and pore geometry, neither can be estimated in-
dependently from VP or VS alone. However, when both
VP and VS are available, the liquid volume fraction and
pore geometry can be estimated independently. By using
VP and VS images, an inverse approach to estimate the ac-
tual pore geometry and fluid content in the crust andman-
tle can be performed, yielding complementary informa-
tion to the experimental and modeling approaches men-
tioned above. Therefore, in the present introduction of the
dynamics of solid-liquid composite systems, elastic wave
propagation is discussed in detail with a special focus on

the determinability of fluid content and pore geometry
from seismic tomographic data.

First, in Sect. “General Theoretical Framework to De-
scribe the Dynamics of Solid–Liquid Composite Systems”,
I introduce a general continuum mechanical formulation
of the macroscopic dynamics of solid-liquid composite
systems, with a special emphasis on how structural sensi-
tivity is described. The elastic version of this theory, called
“linear poroelasticity”, was developed by Biot and cowork-
ers, e. g. [5,6,31,48]. This theory, which assumes infinitesi-
mal strain in the solid phase, is applicable to the propaga-
tion of elastic waves. A more general version applicable to
large deformations was developed based on the fluid dy-
namic theory, and applied to the melt segregation dynam-
ics in partiallymoltenmantle, e. g. [7,20]. On the one hand,
in most reviews of the theory of linear poroelasticity, the
governing equations are introduced empirically and are
difficult to compare to the mass and momentum conser-
vation equations used in the usual continuum mechanical
formulation, e. g. [48]. However, in those reviews, detailed
explanations are given for the meaning of the macroscopic
constitutive relation that describes the structural sensitive
character of the solid-liquid composite systems. On the
other hand, in most reviews of the general fluid-dynam-
ical formulation the mass and momentum conservations
can be easily confirmed, but the physical meanings of the
macroscopic constitutive relation and the structural-sen-
sitive character are difficult to understand. Therefore, by
taking advantage of both fields of study, I introduce here
a general fluid-dynamical formulation with a detailed ex-
planation of the macroscopic constitutive relation. The
general formulation includes as a special case the theory of
linear poroelasticity. The governing equations introduced
in Sect. “General Theoretical Framework to Describe the
Dynamics of Solid–Liquid Composite Systems” include
several structural-sensitive parameters that are given as
functions of liquid volume fraction and pore geometry.
Provided an evolution equation of pore geometry is ob-
tained in future studies, it will be possible to investigate the
interaction between pore geometry and macroscopic dy-
namics by solving the governing equations including the
constitutive relation together with the evolution equation.

In Sect. “Overview of Applications”, a brief summary
of the various applications of the general theory intro-
duced in Sect. “General Theoretical Framework to De-
scribe the Dynamics of Solid–Liquid Composite Systems”
is presented. In Sects. “Derivation of Wave Equations” to
“Dispersion and Attenuation of Waves in Solid–Liquid
Composite Systems”, the theory is applied to the elas-
tic wave propagation in a solid-liquid composite system;
we linearize the general formulation and derive the wave
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equations (Sect. “Derivation of Wave Equations”). Based
on the detailed descriptions of VP and VS obtained from
the wave equations, the effects of liquid volume frac-
tion, pore geometry, and liquid compressibility on the
velocities are summarized systematically (Sects. “Poros-
ity and Pore Shape” to “Determinability of Porosity and
Pore Shape from Elastic Wave Velocities”). To assess
the determinability of pore geometry, the usual forward
modeling based on a priori assumed pore geometries,
e. g. [15,17,18,27,41] are not enough, and a systematic
treatment of general pore geometries is required, which is
enabled by the introduction of the concept of equivalent
aspect ratio (Sect. “Porosity and Pore Shape”). The deter-
minability of porosity and pore geometry from seismic to-
mographic data is discussed in Sect. “Application to Seis-
mic Tomographic Images”. In Sect. “Dispersion and At-
tenuation of Waves in Solid–Liquid Composite Systems”,
so as to clarify the limitation in the application of the the-
oretical results, I briefly discuss the attenuation and dis-
persion of elastic waves. In this article, the term ‘liquid’ is
used with the same meaning as ‘fluid’. Hence, ‘liquid’ in
this paper includes ‘gas’.

General Theoretical Framework to Describe
the Dynamics of Solid–Liquid Composite Systems

A schematic illustration of a solid-liquid composite sys-
tem considered in this article is shown in Fig. 1a. Length
scales less than the grain size are referred to as “micro-
scopic”; length scales greater than the grain size are re-
ferred to as “macroscopic”. Solid-liquid composite sys-
tems are characterized by large differences in mechanical
properties between solid and liquid phases, and hence the
stress and velocity fields that develop under external forces
are usually highly heterogeneous at the microscopic scale.
However, when studying macroscopic dynamics such as
mantle-scale melt segregation and propagation of seismic
waves with wavelengths much larger than the grain size, it
is not practical to solve both the microscopic and macro-
scopic processes simultaneously. In this section, I review
the theoretical framework to treat the macroscopic dy-
namics separately from the microscopic processes. In this
theory, macroscopic dynamics of solid-liquid composite
systems are described within the framework of continuum
mechanics, using the macroscopic variables obtained by
averaging the microscopic fields. The averages within the
solid and liquid phases are taken separately, so that the
theory can be applied to the phenomena involving a rel-
ative motion between the two phases. Although micro-
scopic variables do not explicitly appear in the govern-
ing equations, several parameters included in these equa-

Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Sys-
tems in, Figure 1
a A solid-liquid composite systemwith a representative elemen-
tary volume (REV) at position x. b REV consisting of solid (thick
blue) and liquid (light blue) phases. c Liquid phase in REV and
the averaged quantities representing the macroscopic mechan-
ical state of the liquid. d Solid phase in REV and the averaged
quantities representing themacroscopicmechanical state of the
solid

tions are sensitive to the microstructures and thus the mi-
croscopic processes do affect the macroscopic dynamics
through these parameters. In this review, a special empha-
sis is given to these structurally sensitive parameters.

Macroscopic Variables

We consider a region called REV (representative elemen-
tary volume), which is small enough to consider as a point
in the macroscopic scale but large enough to contain
a number of solid grains. Macroscopic quantities are de-
fined by the average of the corresponding quantities in
REV, where the averages within the liquid phase and those
within the solid phase are taken separately. The averaging
procedure can be defined by using a window function W
and phase function A. By considering the REV as a cuboid
with edge length Li , the window function W(x) takes the
value 1 at�Li /2 � xi � Li /2 (i D x; y; z) and value 0 oth-
erwise. The phase function A(x) takes the value 1 if the
position x is in the liquid phase, and value 0 in the solid
phase; A and 1 � A quantify the properties of the liquid
and solid phases, respectively. Let a(x; t) be a microscopic
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field of the physical quantity a, which is a function of the
position x and time t. The phasic average of a in the liquid
phase (aL) or solid phase (aS) is defined by

aL(x; t) D
1
V�

Z
W(� � x)A(�; t) a(�; t)dV�

aS(x; t) D
1

V(1 � �)

Z
W(� � x) (1 � A(�; t))

�a(�; t)dV� ;

(1)

where V (D Lx LyLz) represents the volume of REV and �
represents the liquid volume fraction, defined as

�(x; t) D
1
V

Z
W(� � x)A(�; t)dV� : (2)

The volume integrals in Eqs. (1)–(2) are taken over whole
of the solid-liquid system.

The dynamic state of the solid-liquid composite sys-
tem at a spatially-fixed position x is described by the fol-
lowing 7macroscopic variables defined by Eqs. (1) and (2):

�(x; t). . . .liquid volume fraction (nondimensional)

�L(x; t). . . .density of liquid (kg/m3)

�S(x; t). . . .density of solid (kg/m3)

uL(x; t). . . .displacement of liquid (m)

uS(x; t). . . .displacement of solid (m)

pL(x; t). . . .liquid pressure (Pa), with compression positive

�Si j(x; t). . . .solid stress (Pa), with tension positive:

It is rigorous to define uL and uS by using mass-weighted
average [7]. However, for simplicity, the density hetero-
geneity within each phase is assumed to be small and the
mass-weighted average is approximated by the phasic av-
erage.

Governing Equations

The seven variables introduced in Sect. “Macroscopic
Variables” are governed by the following seven equations:

mass conservation of liquid

@(��L)
@t

Cr � (��Lu̇L) D � (A)

mass conservation of solid

@
˚
(1 � �)�S

�

@t
Cr �

˚
(1 � �)�Su̇S

�
D �� (B)

intrinsic constitutive relation of liquid

ı�L

�L
D

1
kL
ıpL (C)

intrinsic constitutive relation of solid

ı�S

�S
D

1
kS
ıpS (D)

macroscopic constitutive relation of solid framework

�i j D Si jk l
�
�Sk l C pL ık l


�

1
3kS

pL ıi j (E)

linear momentum conservation of liquid

��LüL D �r(�pL)C ��LgC I (F)

linear momentum conservation of solid

(1 � �)�SüS D r � f(1� �)�Sg C (1 � �)�Sg� I ; (G)

where I (N/m3) in Eqs. (F) and (G) represents the interac-
tion between the solid and liquid phases (the force applied
to the liquid from the solid is taken positive), and is explic-
itly written as

I D �
�L�

2

k�

�
u̇L � u̇S


C pLr� : (3)

The � (kg/s/m3) in Eqs. (A) and (B) represents the net
mass flux from the solid to the liquid, kL and kS (Pa) in
Eqs. (C), (D), and (E) represent the intrinsic bulk moduli
of the liquid and solid, respectively, pS D �(�Sxx C �Sy y C
�Szz)/3 (Pa) in Eq. (D) represents the solid pressure (com-
pression positive), �i j in the left hand side of Eq. (E) rep-
resents the framework strain (extension positive), whose
definition is given in Sect. “Equation (E)”, Si jk l (Pa�1)
in Eq. (E) represents the elastic compliance tensor of the
solid framework, g (N/kg) in Eqs. (F) and (G) repre-
sents the gravitational acceleration vector, and �L (Pa s)
and k� (m2) in Eq. (3) represent the liquid viscosity and
permeability, respectively. For ˛ D S; L, u̇˛ D D u˛/ D t
and ü˛ D D u̇˛/ D t represent velocity and acceleration
vectors, respectively, where D /D t D @/@t C u̇˛ � r. Also,
r � � D @�i j/@x j D �i j; j . The summation convention for
repeated subscripts is employed.

These equations, except for Eq. (E), are rigorously de-
rived by averaging the mass and linear momentum con-
servation equations and constitutive relations required
in the microscopic scale [7]. The physical meanings of
Eqs. (A)–(D) are made clear by analogy with the stan-
dard fluid dynamic equations. The term � included in
Eqs. (A)–(B) is zero unless melting/solidification or disso-
lution/precipitation occurs. The parameters that are sen-
sitive to the microstructures are Sijkl and k� included
in Eqs. (E)–(G). Therefore, in the following part of this
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section, detailed discussions of these three equations are
given. In Sect. “Semi-Intuitive Derivations of Equations
(E), (F), and (G)”, derivations of Eqs. (E)–(G) are given
in a semi-intuitive manner to clarify the physical meaning
of these equations and the structural-sensitive parameters.
Several important aspects of these equations are also dis-
cussed in Sects. “Relation to the Effective Medium The-
ory”–“Fundamental Assumption for Stress Heterogene-
ity”.

Semi-Intuitive Derivations
of Equations (E), (F), and (G)

Equations (F) and (G) Equations (F) and (G) describe
the linear momentum conservations for the liquid and
solid phases, respectively, in the REV. The left hand sides
(LHS) of these equations represent the acceleration terms.
The right hand sides (RHS) represent the total forces ap-
plied on each system, including the body force and the
surface force. The surface force is applied through the
boundary surface of each system; this boundary is made
of the boundary on the surface of REV (black boundary
in Figs. 2a and 2b) and the boundary with the other phase
(red boundary in Figs. 2a and 2b). The former boundary
(black) exists within each phase and the latter boundary
(red) exists on the phase boundary. In the RHS of Eq. (F)
or (G), the second term represents the body force due to
gravity, and the first and the third terms represent the sur-
face forces applied through the black and red boundaries,
respectively. The surface force through the red boundary
is the interaction between solid and liquid, and hence the
third term in the RHS of Eq. (F), I, and that of Eq. (G), �I,
are of the same magnitude and of opposite sign.

Equation (3) shows that interaction I consists of two
terms, corresponding to the contributions from the trac-
tion components tangential and normal to the phase
boundary. The first term, corresponding to the tangential
component, represents the viscous drag force proportional
to the relative velocity of the two phases. The permeability
k� included in the proportionality constant depends on
the detailed geometry of the liquid-filled pores. The sec-
ond term in the RHS of Eq. (3) represents the contribution
from the normal component of traction, which is deter-
mined by the liquid pressure. An intuitive explanation for
the proportional dependence of this force on the porosity
gradient is given in Fig. 3, in which a simple pore geom-
etry is assumed. A more rigorous derivation of this term
for general pore geometries is presented in Sect. “Funda-
mental Assumption for Stress Heterogeneity”, where the
assumption needed to derive this term is clarified and its
validity is discussed. In the dynamics of solid-liquid com-

Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Sys-
tems in, Figure 2
a Forces applied on the liquid phase in REV. b Forces applied on
the solid phase in REV. Forces applied on each system consist of
body force (orange arrow) and surface force (black and red ar-
rows). The body force is due to gravity. The surface force is ap-
plied through the boundary surface of each system, which is di-
vided into the boundary on the surface of REV (black boundary)
and the boundary with the other phase (red boundary). The sur-
face force applied through the redboundary is shownbydividing
into normal and tangential components to the interface (red ar-
rows). Solid stress is taken to be tension positive and liquid pres-
sure is taken to be compression positive

Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Sys-
tems in, Figure 3
Interaction between the solid and liquid phases through the
phase boundary (red boundary) is schematically shown for a sim-
ple pore geometry with a porosity gradient. The forces applied
from solid to liquid are shown. The total force of the force com-
ponent normal to the phase boundary does not vanish if poros-
ity gradient is not zero, and that tangential to the phase bound-
ary does not vanish if average velocity of liquid relative to solid
is not zero

posite systems, the motion of each phase is significantly
affected by the interaction with the other phase through
the phase boundary.

Note that Eqs. (F) and (G) are derived by implicitly as-
suming a connectivity of each phase (black boundary in
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Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Systems in, Figure 4
a A stress state of the solid phase in REV, generally represented by the solid stress � S

ij (tension positive) and liquid pressure pL

(compression positive), is expressed by the superposition of b effective stress state, defined by solid stress � S
ij C pLıij and liquid

pressure 0, and c uniform stress state, defined by solid stress �pLıij and liquid pressure pL . Equation (E) in the text states that the
framework strain under a given stress state is obtained by the superposition of the framework strain under the effective stress state
and that under the uniform stress state

Figs. 2a and 2b). Therefore, we need to be careful in apply-
ing the present theory to end-member systems of suspen-
sions of solid or isolated inclusions of liquid, in which one
phase is dispersed in the other phase without connectivity.

Equation (E) The framework strain �ij in the LHS of
Eq. (E) is defined by using the macroscopic displacement
of the solid uS as

�i j D
1
2

 
@uSi
@x j
C
@uSj
@xi

!

; (4)

and hence �ij represents the macroscopic deformation
of the solid framework. Equation (E) provides a macro-
scopic constitutive relationship between the framework
strain and the macroscopic (averaged) stress state of the
framework. The coefficient Sijkl included in this equation is
not only determined by the solid intrinsic properties, but
shows a large structural sensitivity, which plays a signif-
icant role in the dynamics of solid-liquid composite sys-
tems. Equation (E) is one of the key equations character-
izing the two-phase dynamics. I present here a semi-intu-
itive derivation of Eq. (E).

As shown in Fig. 4a, a macroscopic stress state of the
solid framework is generally described by the solid stress
�Si j applied through the boundary on the surface of REV
(black boundary) and liquid pressure pL applied through
the boundary with the liquid phase (red boundary). The
framework strain under this stress state is calculated by
the superposition of the framework strain under stress

�Si j C pLıi j applied through the black boundary while
leaving the red boundary as a free surface (Fig. 4b) plus
the framework strain under uniform pressure pL applied
to all boundaries (Fig. 4c). The assumption of the superpo-
sition is valid when the response of the solid framework to
the applied stresses is linear. The term �Si j C pLıi j is called
the effective stress. Figure 4b shows that the elastic compli-
ance tensor Sijkl specifying the effect of effective stress on
the framework strain describes the mechanical properties
of the ‘skeleton’ (solid framework obtained by replacing
the regions occupied by the liquid phase with a vacuum),
which is not only determined by the intrinsic properties of
solid but also strongly depends on the porosity and pore
geometry. For a given solid-liquid composite system, Sijkl
is estimated by using experimental and/or modeling ap-
proaches, some of which are presented in a later section.
The framework strain under a given pressure pL applied
to all boundaries (Fig. 4c) is identical to the strain of REV
completely filled with solid (� D 0) under uniform pres-
sure pL, and hence is determined only by the intrinsic bulk
modulus of the solid phase (the last term in the RHS of
Eq. (E)).

In the derivation mentioned above, the solid phase is
assumed to deform elastically. For an isotropic system,
Eq. (E) is written as

�i j D
1

3ksk

 
�Skk
3
C pL

!

ıi j C
1

2�sk

 

�Si j �
�Skk
3
ıi j

!

�
1
3kS

pL ıi j ; (Ee)
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where ksk and �sk represent the bulk and shear moduli, re-
spectively, of the skeleton. Similarly, when the solid phase
deforms viscously, the macroscopic constitutive relation
for an isotropic system is written as

�̇i j D
1

3�sk

 
�Skk
3
C pL

!

ıi j C
1

2�sk

 

�Si j �
�Skk
3
ıi j

!

;

(Ev)

where � sk and �sk represent the bulk and shear viscosi-
ties, respectively, of the skeleton. Because viscous defor-
mation is usually large in amplitude, the volumetric de-
formation due to the intrinsic compressibility of the solid
phase, which corresponds to the 3rd term in the RHS of
Eq. (Ee), is neglected in Eq. (Ev). Similar to ksk and �sk, � sk
and �sk are not only determined by the intrinsic property
of the solid phase but also strongly depend on the porosity
and pore geometry. Although the intrinsic compressibility
of the solid phase is neglected in Eq. (Ev), the volumetric
component of the framework strain rate controlled by � sk
cannot be neglected. This is because even when the solid
phase is made of incompressible material, the solid frame-
work can change its volume by changing the porosity. This
demonstrates the essential difference between the skeleton
property and the intrinsic property of the solid. A more
general description of the viscous constitutive relation is
given by neglecting the last term in the RHS of Eq. (E) and
replacing �ij and elastic compliance tensor Sijkl by �̇i j and
viscous compliance tensor Svi jk l , respectively.

Relation to the Effective Medium Theory

The structural sensitivity of the skeleton properties Sijkl
plays an important role in the two-phase dynamics. To
predict quantitatively the microstructural effects on the
skeleton properties, an effective medium theory has been
developed. However, the applicability of these theoreti-
cal results to Eq. (E) is not self-evident, because the def-
inition of the macroscopic strain given by Eq. (4) is dif-
ferent from that of the average strain used in the ef-
fective medium theory. In the effective medium theory,
it is well-known that the stress and strain fields of the
solid phase are highly heterogeneous at the microscopic
scale, so that the local stress can be largely different from
the macroscopic stress. However, in the fluid dynami-
cal formulation of the two-phase dynamics, this point
is not emphasized and a confusion between microscopic
and macroscopic stresses sometimes occurs (Sect. “Fun-
damental Assumption for Stress Heterogeneity”). There-
fore, it is important to establish a connection between

the fluid dynamical formulation and the effective medium
theory.

When the skeleton properties are calculated in the
effective medium theory, the effective properties of
the solid-liquid composites are calculated under either
drained conditions, in which the liquid pressure is kept
constant, or under dry conditions, in which the liquid
phase with zero bulk and shear moduli is kept under
undrained conditions. In both cases, the space which re-
mains after subtracting the solid phase from REV is con-
sidered to be filled with the pore phase. The microscopic
displacement field in the pore phase can be obtained from
the undrained solution by setting the bulk and shear mod-
uli of the liquid to zero. The displacement field in the
solid phase is continuously connected with that in the pore
phase and there is no relative motion between the solid
and pore phases. The effective properties under the dry (or
drained) condition is given by

"Bi j D Sdryi jk l �
B
k l ; (5)

where "Bi j and �
B
i j represent the average strain and stress,

respectively, over both solid and pore phases,

(
�Bi j D (1 � �)�Si j
"Bi j D (1 � �)"Si j C �"

P
i j ;

(6)

the superscript “B” means bulk, and

"˛i j D
1
2

�
@ui
@� j
C
@uj

@�i

	

˛

(˛ D S; P) (7)

represents the phasic average of strain in the solid or pore
phase, e. g. [21,50]. To clarify the relationship between Sijkl
and Sdryi jk l , the relationship between �ij and "Bi j needs to be
specified.

Let hai˛ (˛ D S; L) be the phasic average of the quan-
tity a defined in Eqs. (1). Let ˙˛black (˛ D S; L) be the
boundary of the phase ˛ on the surface of REV (black
boundary in Figs. 2 and 4) and let ˙red be the phase
boundary in REV (red boundary in Figs. 2 and 4). Let ni
be the outward unit normal to these boundaries, where the
positive direction at ˙red is outward to the liquid phase.
From the definition of phasic average h iS, we obtain

@hui iS
@x j

D
@

@x j

�
1
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Z
W(� � x)(1 � A(�))ui (�)dV�
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where the volume integral of factor @f(W(� � x)(1 �
A(�))ui (�)g/@�i in the RHS of the 4th equation is con-
verted to the surface integral of W(� � x)(1 � A(�))ui (�)
on the outermost boundary of the solid-liquid system,
which is zero becauseW(� � x) is zero outside the REV.

Because the displacement field ui of the solid phase can
be continuously connected to ui of the pore phase, by us-
ing Gauss’s theorem, the integral over ˙red in the third
term on the RHS of the last equation of (8) can be rewritten
in terms of the volume integral in the pore phase. Because
the boundary of the pore phase is given by˙red and˙L

black,
we thus obtain
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where ui at the surface of REV (˙L
black and ˙

S
black) is con-

sidered to be the same between the solid and pore phases,
because there is no relative motion between these two
phases. From Eqs. (4) and (9), we obtain

�i j D (1 � �)"Si j C �"
P
i j

D "Bi j : (10)

Therefore, a simple conversion formula can be obtained
linking Sdryi jk l and Sijkl

Sdryi jk l D (1 � �)Si jk l : (11)

We further discuss the peculiarity of Eq. (E) that it cannot
be derived by the phasic average of the microscopic con-
stitutive relationship. Because the microscopic stress and
strain fields in the solid phase are related to each other
by the intrinsic constitutive relationship of the solid phase,
we may take the average of this relationship over the solid
phase in REV, to obtain

"Si j D Sintrinsici jk l �Sk l ; (12)

where Sintrinsici jk l represents the solid intrinsic properties. By
comparing Eq. (E) to Eq. (12), it is apparent that the signif-
icant difference between Sijkl and Sintrinsici jk l comes from the
significant difference between �ij and "Si j in that �ij repre-
sents not only "Si j but also "

P
i j . From the definition of � ,
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Then, from Eqs. (4), (8), and (13), �ij can be rewritten as

�i j D "
S
i jC

R
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C
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2V(1 � �)
: (14)

Thus, a significant difference between �ij and "Si j implies
a significant contribution from the second term in the RHS
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of (14). This means that the microscopic displacement
field of the solid phase at the boundary with the liquid can
be systematically different from the average displacement
of the solid phase. An example of such systematic devia-
tion can be seen in the compaction of the solid framework,
where a contraction of the solid phase observed macro-
scopically is compensated by a displacement of the solid-
liquid phase boundary into the pore space.

Fundamental Assumption for Stress Heterogeneity

A fundamental assumption implicitly used in formulat-
ing the dynamics of solid-liquid composite systems is that
the microscopic stress field is homogeneous in the liquid
phase but can be heterogeneous in the solid phase. This
point is rarely stated explicitly. Here, I discuss this assump-
tion first with respect to the liquid phase and then with re-
spect to the solid phase.

The second term in the RHS of Eq. (3) represents
the total force due to the normal traction component ap-
plied to the liquid phase through the phase boundary (red
boundary). This term is derived as
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where the relationship
�
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is assumed to obtain the 4th equation. The validity of this
assumption is checked as follows. In the same manner as
Eq. (8), we obtain
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From Eqs. (13) and (17),
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is obtained. Equation (18) shows that the phasic average
h iL is not exchangeable with the differential operator,
and that Eq. (16) is not valid if the 2nd term in the RHS
of Eq. (18) is non-negligible, that is, if the liquid pres-
sure at the boundary with the solid phase is systematically
different from the average. In solid-liquid composite sys-
tems, the stress heterogeneity within the liquid phase re-
laxes quickly and the liquid pressure is usually considered
to be uniform in REV. Therefore, the 2nd term in the RHS
of (18) is considered to be negligible. This also confirms
the validity of an assumption implicitly used in Figs. 3 and
4: because the liquid pressure is homogeneous at the mi-
croscopic scale, then from the continuity of stress, the nor-
mal compressive stress of the solid phase at the solid-liquid
interface is equal to the macroscopic liquid pressure pL.

The inexchangeability between the differential oper-
ator and phasic average is described by Eq. (14) for the
solid phase and by Eq. (18) for the liquid phase. Although
the second term in the RHS of Eq. (14) was considered to
be non-negligible, the corresponding term in Eq. (18) was
considered to be negligible. The different treatments ap-
plied to the two phases are based on the fact that the stress
heterogeneity within the liquid phase relaxes quickly but
that the stress heterogeneity within the solid phase does
not relax (elastic solid phase) or relaxes much more slowly
(viscous solid phase). As can be seen from Fig. 4b, under
nonzero effective stress, the traction applied to the surface
of each solid grain is significantly different between the ar-
eas in contact with the liquid phase and the areas in con-
tact with the neighboring grains, indicating that themicro-
scopic stress field in each grain is highly heterogeneous.
Such a heterogeneous stress field causes a systematic de-
viation of the microscopic displacement at the boundary
with the liquid, making the second term in the RHS of
Eq. (14) non-negligible.

For the solid phase, it is therefore important to recog-
nize a possible difference between local and macroscopic
stresses. However, there seems to be a confusion in some
studies considering the effect of the solid-liquid interfacial
tension � sl. When �sl is taken into account, the stress con-
tinuity condition required at the solid-liquid interface is
replaced by the Laplace condition, e. g. [38]. Hence, the
solid stress used in the Laplace condition is the local stress,
which is locally determined by pL, � sl, and interfacial mean
curvature, regardless of the macroscopic solid stress �Si j .
I emphasize this point because in the previous studies,
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several questionable results were obtained due to the im-
proper use of �Si j in the Laplace condition, e. g. [38,46].

Overview of Applications

The theoretical framework introduced in Sect. “Gen-
eral Theoretical Framework to Describe the Dynamics of
Solid–Liquid Composite Systems” is applicable to various
geophysical and geological phenomena occurring in solid-
liquid two-phase systems. Typical applications are sum-
marized in Fig. 5 by classifying processes into three cate-
gories based on their time scales. The propagation of elas-
tic waves is investigated using the wave equations derived
from Eqs. (A)–(G). The application to elastic wave propa-
gation is discussed in detail in the following sections. The
time-dependent evolution of a perturbation in liquid pres-
sure in the porous media, and the interaction between liq-
uid pressure andmatrix deformation or fracture, have long
been of interest in investigations of the possible occurrence
of earthquakes due to dehydration, e. g. [51] and earth-
quake triggering, e. g. [16]. These processes have much
longer time scales than the periods of elastic waves, and
the acceleration terms in Eqs. (F) and (G), which play an
essential role in the wave equations, are negligible com-
pared to the viscous drag force included in the interaction
term I. Then, as is well known, the evolution equation for
liquid pressure is derived in the form of a diffusion equa-
tion, where the diffusivity is given by D D k�kL/(�L�)
(hydraulic diffusivity).

Melt segregation from a partially molten mantle has
been of great interest in volcanology, petrology, and

Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Systems in, Figure 5
Dynamic processes in solid-liquid composite systems. Typical assumptions adopted in applying the governing equations (A)–(G) in
the text to these processes are shown, with the material properties relevant to the processes

geochemistry. This process occurs over much longer
time scales than the processes mentioned above, and in-
volves large viscous deformations. Accordingly, the in-
trinsic compressibilities of the constituent materials are
neglected. By applying the governing equations (A)–(D),
(Ev), and (F)–(G) to a one-dimensional column of par-
tially molten mantle with a homogeneous porosity dis-
tribution at t D 0 (� D �0 at z � �H and � D 0 at
z < �H), the initial stage of melt segregation was solved
analytically [20]. In most of the column, the buoyancy
force (1 � �)(�S � �L)g is in equilibrium with the vis-
cous drag force �L�(u̇Lz � u̇Sz)/k� , while within the com-
paction length ıc from the bottom (�H � z < �H C ıc),
the buoyancy force balances with the compaction re-
sistance of the solid framework. Therefore, when the
compaction length ıc D

p
k�(1 � �)(�sk C 4�sk/3)/�L is

smaller than H, which is the case for the mantle, the seg-
regation velocity is determined by the permeability k� .
The permeability control is more clear in the steady-state
model, in which the steady-state porosity structure devel-
ops to satisfy the balance between melt production rate
and melt segregation rate, which is often assumed for the
decompressional melting of the upwelling mantle below
a ridge [30]. However, several instabilities inherent to the
solid-liquid systems that result in a time-dependent evolu-
tion of the porosity distribution have also been reported.
These include the propagation of melt as solitary waves or
porosity waves, e. g. [3,34], and the unstable evolution of
the perturbation in melt fraction under pure shear defor-
mation of the solid matrix [39], in which both melt mi-
gration and matrix deformation are involved. These phe-



2686 E Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Systems in

nomena are described by Eqs. (A)–(D), (Ev), and (F)–(G),
where, in the solitary or porosity waves, the nonlinearity
caused by the dependence of permeability on melt frac-
tion (k� / �n>1) plays an essential role and, in the lat-
ter instability, the dependence of �sk on � plays an essen-
tial role. The possible occurrence of these instabilities has
been of great interest, because the melt ascending velocity
is significantly affected by the spatial distribution of poros-
ity. Themelt velocity and its spatial distribution determine
the degree of chemical interaction between the melt and
host rocks, and thus influence the major and trace ele-
ment compositions. The microstructural dependences of
permeability and viscous properties of the partially molten
rocks affecting these instabilities are poorly understood
and are the subject of future studies. The basic frame-
work introduced in Sect. “General Theoretical Framework
to Describe the Dynamics of Solid–Liquid Composite Sys-
tems” can be further extended to take into account addi-
tional factors, such as the chemical interaction between
the fluid and host rocks, e. g. [1,36] or interfacial tension
e. g. [32].

Elastic Wave Propagation
in a Solid–Liquid Composite System

Derivation of Wave Equations

In this section, the general theoretical framework intro-
duced in Sect. “General Theoretical Framework to De-
scribe the Dynamics of Solid–Liquid Composite Systems”
is applied to the elastic wave propagation in a solid-liquid
composite system. The governing equations are linearized
by considering the infinitesimal strain and displacement
of a macroscopically homogeneous medium, and the wave
equations are derived. The linearized equations are shown
to be equivalent to the basic equations used in the theory
of linear poroelasticity.

When we consider a macroscopically homogeneous
solid-liquid composite system, the spatial and temporal
variations in � , �L, and �S are caused by the displacements
uL and uS. Therefore, if uL and uS are infinitesimally small,
such terms as u̇L � r(��L) and u̇S � r((1 � �)�S) are negli-
gible as higher-order terms. Under these approximations,
by substituting Eqs. (C) and (D) into (A)/�L+(B)/�S, and
taking the time integration, we obtain

� � r � (uL � uS) D
�

kL
pL C

1 � �
kS

pS Cr � uS: (19)

By using Eq. (Ee), r � uS D �kk in Eq. (19) can be ex-
pressed in terms of stresses. Then, Eq. (19) and Eq. (Ee)

are written as

� r � (uL � uS)

D �

�
1
kS
�

1
kL

�
pLC(1��)

�
1
Kb
�

1
kS

�
(pS�pL)

(20)

�i j D
(1 � �)
2N

 

�Si j �
�Skk
3
ıi j

!

�
(1 � �)
3Kb

(pS � pL)ıi j �
1
3kS

pLıi j; (21)

where Kb and N represent the bulk and shear mod-
uli, respectively, of the skeleton and are related to ksk
and �sk introduced in Eq. (Ee) as Kb D (1 � �)ksk and
N D (1 � �)�sk . In the theory of linear poroelasticity, Kb
and N, rather than ksk and �sk, are commonly used. Sim-
ilarly, by substituting Eq. (3) into Eqs. (F) and (G), and
neglecting the effect of gravity, we obtain

��LüL D ��r � pL �
�L�

2

k�
(u̇L � u̇S) (22)

(1 � �)�SüSD (1 � �)r � �SC
�L�

2

k�
(u̇L � u̇S) : (23)

Equations (20)–(23) are equivalent to the basic equations
used in the theory of linear poroelasticity. Compared to
the framework introduced in Sect. “General Theoretical
Framework to Describe the Dynamics of Solid–Liquid
Composite Systems”, the number of governing equations
is reduced from 7 to 4, because the variables �L and �S

are eliminated and � in Eqs. (20)–(23) can be treated as
constant. In the theory of linear poroelasticity, Eq. (20) is
called the constitutive relation for the relative motion be-
tween the two phases, and this relation is usually intro-
duced empirically, e. g. [48]. The present derivation from
the more general framework shows that Eq. (20) is based
on the requirement of mass conservation and intrinsic
constitutive relations. When the acceleration terms are
negligible, Eqs. (22) and (23) are further rewritten as

�(u̇L � u̇S) D �
k�
�L
rpL (24)

r � �B D 0; (25)

where Eq. (24) represents Darcy’s law, and the bulk stress
�Bi j represents �

B
i j D (1 � �)�Si j � �p

Lıi j .
By eliminating pressures and stresses from Eqs. (20)–

(23), we obtain

(1 � �)�SüS DPr(r � uS) � N r � r � uS

C Q r(r � uL)C
�L�

2

k�
(u̇L � u̇S) (26)
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��LüL D Q r(r�uS)CRr(r�uL)�
�L�

2

k�
(u̇L�u̇S); (27)

where P, Q, and R are given by
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

P D Kb C
4
3
N C

(1 � � � Kb
kS )

2kS

1 � � � Kb
kS C �

kS
kL

Q D
�(1 � � � Kb

kS )kS

1 � � � Kb
kS C �

kS
kL

R D
�2kS

1 � � � Kb
kS C �

kS
kL

:

(28)

By taking the curl of Eqs. (26) and (27), and using the
expressions ˝S D r � uS and ˝L D r � uL, we obtain
wave equations for the shear component;

8
ˆ̂<

ˆ̂:

(1 � �)�S ¨̋S D Nr2˝S C
�L�

2

k�
( ˙̋L � ˙̋ S)

��L ¨̋L D �
�L�

2

k�
( ˙̋L � ˙̋S) :

(29)

By taking the divergence of Eqs. (26) and (27), and us-
ing the expressions eS D r � uS and eL D r � uL, we ob-
tain wave equations for the longitudinal component;

8
ˆ̂<

ˆ̂:

(1 � �)�S ëS D Pr2eS C Qr2eL C
�L�

2

k�
(ėL � ėS)

��L ëL D Qr2eS C Rr2eL �
�L�

2

k�
(ėL � ėS):

(30)

The elastic wave propagation in a solid-liquid com-
posite system was first formulated by Biot [5,6]. The wave
equations (29)–(30) are almost the same as those obtained
by Biot [5,6], except for the acceleration terms, which are
slightly different. This is because the interaction I given in
Eq. (3) does not take into account the effect of the rela-
tive acceleration between the solid and liquid phases. If an
additional term proportional to the relative acceleration is
added to the RHS of Eq. (3), then the same equations as
Biot [5,6] can be derived. The proportionality constant at-
tached to the relative acceleration is called tortuosity; tor-
tuositym represents the deviation from the straight pore
channel.

The elastic waves obtained by solving Eqs. (29)–(30)
are dispersive and dissipative due to the relative motion
between the solid and liquid phases. However, as shown
below in Sect. “Dispersion and Attenuation of Waves in
Solid–Liquid Composite Systems”, the characteristic fre-
quency for the dispersion and attenuation is much higher
than the seismic frequency range. Therefore, in predicting

the seismic wave velocities, the solutions obtained at the
low-frequency limit are of importance. The wave solutions
at the low-frequency limit do not involve relative motions,
because the velocity terms, ˙̋L � ˙̋S and ėL � ėS, if any,
dominate the acceleration terms, and hence are not dis-
persive nor dissipative. The longitudinal and shear wave
velocities at the low-frequency limit are obtained as

VPD

vu
utKb C

4
3N C

kS(1�Kb/kS)2
1���Kb/kSC�kS/kL
�̄

(31)

VSD

s
N
�̄
; (32)

where �̄ D (1 � �)�S C ��L represents the average den-
sity of the medium. Without relative motion, neither
permeability nor tortuosity affect the velocities. There-
fore, Eqs. (31)–(32) are exactly the same as the results of
Biot [5,6].

Porosity and Pore Shape

Because the bulk and shear moduli of the skeleton, Kb
and N, included in Eqs. (31)–(32) depend not only on
porosity but also on pore geometry, various models as-
suming various pore geometries have been developed to
predict Kb andN quantitatively, e. g. [15,17,18,27,41]. The
oblate spheroid model (Fig. 6a), tube model (Fig. 6b),

Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Sys-
tems in, Figure 6
Inclusion models of a solid-liquid composite system. a Oblate
spheroid model. b Tubemodel
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Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Systems in, Figure 7
Granular model of a solid-liquid composite system, showing the procedures to derive macroscopic constitutive relation, Eq. (E),
based on the microscopic deformation of each grain [41]

granular model (Fig. 7), and crack model are four rep-
resentative models in which analytical results can be ob-
tained for Kb and N (Table 1). All but the granular model
are inclusion models in which the liquid phase is modeled
by inclusions contained in a continuum solid phase, and
Kb andN are derived based on the effective medium theo-
ries. In the granular model, the constitutive equation (E) is
derived directly. The results from the different theories can
be compared based on Eq. (11). Although the connectivity
of the liquid phase is not guaranteed in the inclusion mod-
els, when considering waves in the low-frequency regime
where relative motion between solid and liquid does not
occur, connectivity of the liquid phase is not important.

Here, by assuming a random orientation and homo-
geneous distribution of the pores, the macroscopic prop-
erties are assumed to be isotropic. Then, Kb and N are
derived as functions of the porosity � and aspect ra-
tio ˛ (˛=short radius/long radius) for the oblate spheroid
model, as functions of the porosity � and parameter " for
the tubemodel, where " represents the cross-sectional tube
shape (Fig. 6b), as functions of the contiguity ' for the
granular model, and as functions of the crack density pa-
rameter � for the crackmodel. The contiguity ' used in the
granular model is defined by the ratio of the grain-to-grain
contact area relative to the total surface area of each grain;

thus, ' D 0 when there is no grain-to-grain contact, and
' D 1 when there is no liquid or pore phase. The crack
density parameter � used in the crack model is defined
by � D n�a3� , where a� represents the radius of the cir-
cular crack and n� represents number density. Walsh [47]
showed that in the limit of small aspect ratio,Kb andN ob-
tained from the oblate spheroid model depend only on the
crack density parameter � D 3�/(4�˛), and the results of
the oblate spheroid model and crack model become equiv-
alent. Therefore, the crack model can be included in the
oblate spheroid model as a special case of small aspect
ratio.

In the granular model, the dependence of contiguity '
on porosity � first needs to be assessed in order to spec-
ify the dependences of Kb and N on the porosity � . For
a random packing of elastic spheres, which is often used
as a model of soil, the total area of the elastic contacts
of the spheres increases with raising confining pressure,
and ' and � are derived as functions of confining pres-
sure [8]. However, when the temperature is higher than
a few hundreds ıC, such an elastic model is not realistic.
In the deep crust and mantle, solid grains are single crys-
tals and the contiguity is related to the area of (liquid-free)
grain boundaries. Because the grain boundary and crys-
tal-liquid interface both have interfacial energies, there ex-
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Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Systems in, Table 1
Microstructual Models for Solid-Liquid Composites

Model Structural parameters References
Oblate spheroid Porosity � , Aspect ratio ˛ e. g., [4]1

Tube Porosity � , Tube geometry " [17]
Granular Contiguity ' [41]
Equilibriumgeometry2 Porosity � , Dihedral angle � [41]
Crack Crack density parameter � [27]

1: Typographical errors in the former studies were corrected.
2: Equilibriumgeometry model is a special case of granular model.

ists an equilibrium shape of the liquid phase which mini-
mizes the total interfacial energy of the system. The equi-
librium shapes were actually observed in the high T and
high P experiments for various rock + melt and rock +
aqueous fluid systems e. g. [10]. Therefore, the relation-
ship between contiguity ' and porosity � is derived by
assuming the equilibrium shape of the liquid phase. The
granular model under this assumption is called the equi-
librium geometry model (Table 1). Under a given liquid
volume fraction � , the equilibrium shape is controlled by
the dihedral angle � , which is determined by the grain
boundary energy � ss and crystal-liquid interfacial energy
� sl as �ss/�sl D 2 cos(� /2) (Fig. 8a). The theoretical results
of von Bargen andWaff [45] show that under a given� , the
equilibrium contiguity is smaller for smaller � (Fig. 8b).
By substituting ' obtained as functions of � and � into
the results of the granular model, Kb and N in the equi-
librium geometry model can be derived as functions of �
and � . Most rock + melt systems have � between 20–40ı

andmost rock + aqueous fluid systems have � between 40–
100ı [10]. When � � 60ı, a connected liquid network de-
velops along the grain edges at � > 0. Although the tube
model considers such grain edge tubules, the parameter "
in the tube model cannot be quantitatively related to the
dihedral angle � .

Now, solid-liquid composite systems are character-
ized in terms of the two parameters: porosity � and pore
shape x (D ˛; ", or �). Because a random orientation and
homogeneous distribution of the pores are assumed for
simplicity, and since Kb and N do not depend on pore
size, pore geometry is parameterized only by the shape.
Porosity � and pore shape x are generally not dependent
but can vary independently governed by different physics.
For example, in a texturally equilibrated system, the di-
hedral angle � is determined by thermodynamic condi-
tions such as temperature, pressure, and chemical compo-
sitions, whereas � can vary mechanically through flow-in
or flow-out of the liquid. In a rock + water system stressed

Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Sys-
tems in, Figure 8
a Equilibrium geometry of the liquid phase characterized by di-
hedral angle � . b Contiguity ' versus liquid volume fraction �
calculated theoretically for the equilibrium geometry with dihe-
dral angle �

under undrained condition, the pore shape can vary by
fracture, while � is kept constant. In most solid-liquid sys-
tems in the Earth, neither the porosity nor the pore shape
are known.
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a Bulk modulus Kb and b shear modulus N of skeleton versus porosity�, for the oblate spheroid model with various aspect ratios ˛
and for the equilibrium geometry model with various dihedral angles �

Because the parameter describing the pore shape is dif-
ferent in different models, it seems difficult to investigate
the effects of pore shapes systematically. However, intro-
duction of the concept of “equivalent aspect ratio” enables
us to treat various pore shapes systematically. When the
porosity � is small, Kb and N are closely approximated by
linear functions of � ,

8
ˆ̂
<

ˆ̂:

Kb

kS
(�; x) D 1 � � �Kb (x)

N
�S

(�; x) D 1 � � �N (x)
(x D ˛; "; �) ; (33)

where kS and �S represent the intrinsic bulk and shear
moduli, respectively, of the solid, and the proportional-
ity coefficients �Kb and �N are functions of pore shape x
(Fig. 9). In other words, the effects of porosity and pore
shape on Kb and N can be separated in such simple forms
as given in Eq. (33), in which the pore shape given by x is
characterized in terms of two parameters �Kb and �N . If
a tube model with " (or an equilibrium geometry model
with �) has almost the same values of �Kb and �N as the
oblate spheroid model with ˛,

�
�Kb (x) ' �Kb (˛)
�N (x) ' �N (˛)

(x D "; �) ; (34)

these twomodels yield almost the same values of Kb andN
for a given � . This also means that VP and VS calculated
with Eqs. (31)–(32) are almost the same in these twomod-

els. Therefore, the value of ˛ satisfying Eqs. (34) is called
the equivalent aspect ratio of x; this aspect ratio guaran-
tees the equivalence between the different pore shapes in
predicting VP and VS.

Figure 10a shows the relationships between the differ-
ent models in terms of equivalent aspect ratio. The solid
and open symbols represent the equivalent aspect ratios
determined from �Kb and �N , respectively. The differ-
ence between these symbols is small, indicating that, in
a practical sense, one value of equivalent aspect ratio satis-
fying both equations in (34) can be determined. Figure 10a
shows that the tube model with " D 0, equilibrium ge-
ometry model with � D 30ı, and oblate spheroid model
with ˛ D 0:1 are all equivalent. Rigorously speaking, �Kb

and �N depend on the intrinsic Poisson’s ratio � of the
solid phase. The results shown in Fig. 10a are calculated
for � D 0:25. Fortunately, however, the effects of � are al-
most the same in all models, and the equivalent aspect
ratio can be determined almost independently of �. The
present method to determine the equivalent aspect ratio
from Eqs. (33)–(34) is applicable to general isotropic solid-
liquid systems. By using the equivalent aspect ratio, gen-
eral pore geometries can be treated systematically.

Determinability of Porosity
and Pore Shape from Elastic Wave Velocities

It can be shown that when the porosity � is small, the
effects of � on the skeleton properties Kb and N can be
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Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Sys-
tems in, Figure 10
a Equivalence of the equilibrium geometry model, tube model,
and crack model to the oblate spheroid model is shown by the
equivalent aspect ratio˛. Solid and open symbols are the equiv-
alent aspect ratios determined from�Kb and�N, respectively.
b RSP, representing the ratio between VS and VP perturbations,
(	VS/V0

S )/(	VP/V0
P ), versus pore aspect ratio ˛, for various fluid

compressibilitiesˇ D kS/kL. c Proportionality constant between
VS perturbation	VS/V0

S and porosity � versus pore aspect ra-
tio˛, for various liquid types (gas, water, andmelt)

closely approximated by linear functions of � . In the same
manner, when � is small, the effects of � on the velocities
VP andVS can be closely approximated by linear functions
of � . Let 
VP D V0

P � VP and 
VS D V 0
S � VS be reduc-

tions in VP and VS, respectively, caused by liquid-filled
pores, where V0

P D
p
(kS C 4�S/3)/�S and V0

S D
p
�S/�S

represent the intrinsic elastic wave velocities of the solid
phase. Let 
VP/V0

P and 
VS/V 0
S be perturbations in

VP and VS, respectively. By substituting Eqs. (33) into
Eqs. (31)–(32) and neglecting higher-order terms in � (�n

with n � 2), we obtain

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:
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1 �
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��
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2
;

(35)

where ˇ D kS/kL and � D �S/kS. Without loss of gen-
erality, �Kb and �N can be treated as functions of the
equivalent aspect ratio ˛. Equations (35) demonstrate that
the velocity perturbations are affected by the five non-
dimensional parameters � , ˛, ˇ, � , and �L/�S. Because
a possible variation in � in response to a variation in the
intrinsic Poisson’s ratio � of the solid phase is small, � can
be fixed to 0.6 (� D 0:25). Also, as shown below, the ef-
fect of �L/�S on the perturbations is small. Therefore, in
a practical sense, the velocity perturbations are controlled
by the three non-dimensional factors: liquid volume frac-
tion � , pore aspect ratio ˛, and liquid compressibility ˇ. If
only one of 
VP/V0

P and 
VS/V0
S is known, � cannot be

determined without knowing ˛ (and ˇ). However, if both

VP/V0

P and 
VS/V0
S are known, significant constraints

can be placed on � , ˛, and/or ˇ. A practical method to
obtain these constraints is presented below.

First, we introduce RSP, representing the ratio of the
perturbations in VS and VP. From Eq. (35), RSP is written
as

RSP D

VS/V0

S


VP/V0
P

D
�N �



1 � �L

�S

�

(ˇ�1)�Kb
(ˇ�1)C�Kb

C 4
3��N

1C 4
3�

�

�
1 �

�L

�S

�
: (36)

RSP can be closely related to the VP/VS ratio frequently
used in seismology: when RSP < 1, the perturbation (re-
duction positive) in VP is larger than that in VS and hence
the VP/VS ratio decreases; when RSP > 1, the perturbation
in VS is larger than that in VP and thus the VP/VS ratio
increases. Because RSP is independent of the liquid vol-
ume fraction � , this factor provides a useful insight into
the effects of pore shape ˛ and liquid compressibility ˇ
on the velocity perturbations. RSP is sometimes written as
d lnVS /d lnVP . Figure 10b shows RSP versus pore aspect
ratio ˛ for various compressibility ˇ of pore fluids. Values
of ˇ are estimated as 5–10 for rock + melt systems, 10–
40 for rock + water systems, and 50–105 for rock + ideal
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Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Sys-
tems in, Table 2
Liquid bulk modulus kL

depth, P, T , kL, GPa
km GPa °C gas1 water2 melt3

0 10�4 20 1.3�10�4

(ˇ=105–106)4
2.2
(18–50)

7–25
(4–10)

5 0.15 75 0.2
(200–600)

3.1
(13–40)

10 0.3 150 0.4
(100–300)

1.8
(22–66)

35 1 500 1.3
(30–100)

4.5
(9–25)

70 2 20–40
(3–6)

1: Adiabatic bulk modulus estimated by 1:3 P.
2: Isothermal bulkmodulus estimated at each (P, T) condition. Data
from Schäfer [33].
3: Data from Stolper et al. [40]. Data at P D 2GPa are estimated
from @kL/@P D 6�7.
4: Numerals in the parentheses show ˇ D kS/kL evaluated for
kS ' 40�120 GPa

gas systems in the 0–50km depth range (Table 2). Val-
ues of �L/�S are estimated as 0.92, 0.33, and 0 for rock +
melt, rock + water, and rock + ideal gas systems, respec-
tively. The effect of �L/�S on RSP is small, and practically
the same figure as Fig. 10b can be obtained by simply as-
suming �L/�S D 1 ([42] Fig. 4). Figure 10b shows that for
a given pore shape ˛, RSP increases with decreasing liquid
compressibility ˇ. Figure 10b also shows that for a fixed
liquid compressibility ˇ, RSP varies significantly with the
variation of pore shape ˛. When ˇ is fixed to 25, for ex-
ample, RSP is smaller than 1 for moderate values of pore
aspect ratio (˛ > 0:03), larger than 1 for small aspect ra-
tio (< 0:03), and larger than 2 for very small aspect ratio
(< 0:0016). Therefore, RSP provides a good seismological
indicator of pore shape.

When 
VP/V0
P and 
VS/V0

S are obtained from seis-
mological observations or laboratory experiments, RSP is
calculated by taking the ratio of these two. If we know
whether the liquid phase is melt, water, or gas, Fig. 10b
can be used for estimating the equivalent aspect ratio ˛
from RSP under known ˇ. Without any additional infor-
mation about the liquid phase, ˛ is estimated from RSP
under an assumed ˇ. Figure 10c shows the proportional-
ity coefficient between 
VS/V0

S and � (the 2nd equation
of 35) versus ˛ for various liquid types. By applying ˛ es-
timated from RSP to Fig. 10c, the liquid volume fraction �
can be determined from
VS/V0

S .
Figures 10a–10c are a complete summary of the ef-

fects of liquid volume fraction � , pore shape ˛, and liq-

uid compressibility ˇ on VP and VS. Using these figures,
we can combine and confirm our understandings from the
previous forward approaches, such as the different effects
of gas, water, and melt, on the VP/VS ratio [27,49]. Also,
Figs. 10b–10c represent a practical method in the inverse
approach to constrain � , ˛, and/or ˇ from the observa-
tion of VP and VS. Figures 10a–10c are based on Eqs. (33),
(35), and (36) in which the higher-order terms in � (�n�2)
are neglected. A possible variation of RSP with � caused by
the higher-order terms in � can be obtained by calculat-
ing (
VS /V0

S )/(
VP /V 0
P ) directly from Eqs. (31) and (32)

without using Eq. (33). Using results from the latter cal-
culations, it is confirmed that the present method based
on the linearized equations is valid for 
VS/V 0

S � 0:35
for the equilibrium geometry model, which corresponds
to � � 0:15, and valid for 
VS/V 0

S � 0:2 for the oblate
spheroid, tube, and crack models. The applicable range
is large for the equilibrium geometry model because the
higher-order effects neglected in obtaining Eq. (33) can-
cel those neglected in obtaining Eq. (35). Compared to
the equilibrium geometry model, the applicable range is
smaller for the oblate spheroid, tube, and crack models.
To use the present method outside the applicable range,
a small modification is required ([42], Appendix B).

Application to Seismic Tomographic Images

The information on pore geometry obtainable from seis-
mic tomographic data is the equivalent aspect ratio.
Whether the actual geometry is an oblate spheroid or tube,
for example, cannot be determined from seismological
data. A reasonable interpretation of the derived equiva-
lent aspect ratio requires a knowledge of probable pore ge-
ometries in the Earth. Two end-member images of pore
geometry have been inferred based on experimental and
field observations: one is the equilibrium geometry char-
acterized by a dihedral angle, and the other is thin dikes
and veins. In the equilibrium geometry, the pore size is
much smaller than the grain size and the permeability is
small. For rock + water systems, because the dihedral an-
gle is usually larger than 60ı, the equilibrium geometry
may have nearly zero permeability. Dikes and veins can
develop on much larger scales than the grain size and
hence may have much larger permeability than the equi-
librium geometry. Therefore, the particular geometry real-
ized between these two end-members significantly affects
the liquid migration velocity of the buoyancy ascent. As
discussed in Sect. “Overview of Applications”, whether the
liquid phase is in the equilibrium shape or not can provide
us with valuable information about the degree of inter-
action between pore geometry and macroscopic dynam-
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ics. It is therefore desirable to distinguish between these
two end-members using seismic tomographic data. Be-
cause the equivalent aspect ratio for the equilibrium ge-
ometry is about a factor of 100 larger than that for the thin
cracks and dikes (Fig. 10a), the expected values of RSP are
significantly different between these two end-member ge-
ometries (hatched regions in Fig. 10b); for rock + water
systems, RSP is <1 for the equilibrium geometry and >2
for thin cracks and dikes; for rock + melt systems, RSP is
1–1.5 for the equilibrium geometry and>2 for thin cracks
and dikes . Therefore, RSP can be used as a seismological
indicator of the textural equilibrium, and the information
on pore geometry obtained from this indicator can provide
us a valuable constraint on actual fluidmigration processes
in the Earth. Low-velocity regions observed in the mantle
wedge beneath Northeastern Japan subduction zone show
a systematic change in RSP with depth. Nakajima et al. [24]
applied the method introduced in Sect. “Determinability
of Porosity and Pore Shape from Elastic Wave Veloci-
ties” to seismic tomographic data and inferred a system-
atic change in pore geometry from an equilibrium geome-
try at a depth of�90 km to thin cracks and dikes at a depth
of�65 km.

Beneath volcanic areas, low-velocity regions with
lower VP/VS ratio than the surrounding regions are some-
times observed at depths of several km [22]. Rock + melt
systems usually have ˇ smaller than 10. This means that
RSP is larger than 1 regardless of ˛ (Fig. 10b) so that the

Earth’s Crust and Upper Mantle, Dynamics of Solid–Liquid Sys-
tems in, Figure 11
The amount of H2O bubble (weight %) inmelt at which the com-
pressibility of the mixture is equal to ˇ D 10, 20, or 50, is shown
as a function of depth

observed low VP/VS ratio cannot be explained by the melt-
filled pores. At these shallow depths, however, the melt
phase can be a mixture of melt and H2O vapor, because
H2O initially dissolved in the melt in the deeper reaches of
the subduction zone starts to exsolve. Here, we briefly dis-
cuss such situation, which is not considered in Fig. 10b and
Table 2. Because of the high temperature (900–1000ıC) of
melt, the water phase in the melt is much more compress-
ible than the estimates in Table 2. Figure 11 shows the frac-
tion of water (wt%) above which ˇ of the mixture exceeds
10, 20, or 50. It is shown that at a depth of 3–4 km, ˇ � 20
occurs for the melt containing 0.2–0.5 wt% water as vapor
phase, which is realistic in the subduction zone. Therefore,
from Fig. 10b, RSP < 1 can occur at large˛ and can explain
the observed reduction in the VP/VS ratio. If the H2O va-
por in the melt phase can be detected by the low VP/VS
ratio, we can obtain valuable constraints on the water con-
tent of melts and on the evolution of a magma chamber in
the crust. However, because melt viscosity is considered to
be high in shallow magma chambers, it is important to be
careful about wave dispersion, as discussed below.

Dispersion and Attenuation
of Waves in Solid–Liquid Composite Systems

In deriving the elastic wave velocities in Sect. “Derivation
ofWave Equations”, it was implicitly assumed that the fre-
quencies of the seismic waves are lower than the charac-
teristic frequencies of several relaxation processes inher-
ent to solid-liquid composite systems. If this assumption is
not valid, the relaxation processes affect the wave velocities
due to dispersion. To assess the applicability of the theo-
retical results presented in Sect. “Determinability of Poros-
ity and Pore Shape from ElasticWaveVelocities”, I present
here a brief discussion of such relaxation processes. To
show the mutual relationship between dispersion and at-
tenuation, I consider the relaxation mechanism predicted
from Eqs. (29)–(30). This mechanism was first studied by
Biot [5,6] and is hereafter referred to as the Biot mecha-
nism. The behavior obtained for the Biot mechanism de-
scribes the fundamental characteristic of relaxation. Sev-
eral other relaxationmechanisms inherent to the solid-liq-
uid composites also affect wave propagation and these are
further summarized below.

Let ! and k be the angular frequency and wave num-
ber, respectively. By substituting the traveling wave solu-
tions ˝S D ˝

0
S e
�i(! t�kx) and ˝L D ˝

0
L e
�i(! t�kx) into

Eq. (29), the dispersion relation, under which non-trivial
solutions exist, is obtained as

�
k
!

�2
D
�U

N
� f (!) ; (37)
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where the complex function f (!) D f1(!)C i f2(!) is ex-
plicitly written as

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

f1(!) D 1C



1C


!
!c

�2

f2(!) D

 �



!
!c

�

1C


!
!c

�2 ;

(38)

and �U D (1 � �)�S, �R D (1 � �)�S C ��L, 
 D (�R �
�U )/�U , and !c D �L�/(k��L). The phase velocity V and
attenuation Q�1 are defined by k/! D V�1(1C i/(2Q)).
By assuming Q�1 to be small ( f2 
 f1), we obtain

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

V D

s
N

�U � f1(!)

Q�1 D
f2(!)
f1(!)

:

(39)

The phase velocity V and attenuation Q�1 given by
Eqs. (39) are shown in Fig. 12 as functions of the normal-
ized frequency !/!c . Both dispersion and attenuation oc-
cur near !/!c D 1 and the total amplitude of dispersion
and peak value of Q�1 are equal;

Q�1MAX D



2
D

VU � VR

VU
; (40)

where VU (unrelaxed velocity) represents V at !/!c 	 1
and VR (relaxed velocity) represents V at !/!c 
 1.

Although obtained for the Biot mechanism, Eqs. (38)
and (39) describe the fundamental characteristics of dis-
persion and attenuation regardless of the individual mech-
anism. These equations simply mean that the dispersion
and attenuation are caused by a relaxation process. When
a response J(t) (e. g., strain) of a medium to a constant unit
force (in the form of a Heaviside function H(t)) applied
at t � 0 is not instantaneous but shows a time delay ex-
pressed in the form of

J(t) D JU
�
1C
 � (1 � e�!c t)

�
� H(t); (41)

this phenomenon is called relaxation. In other words,
Eq. (41) gives a phenomenological model of relaxation.
The relaxation process is characterized by relaxation
strength
 and relaxation time scale!�1c . The time deriva-
tive of Eq. (41), J̇ D JU [ı(t)C !c
 e�!c tH(t)], yields the
impulse response, where the Fourier transform of J̇/JU
is equal to f (!) D f1(!)C i f2(!) with f1(!) and f2(!)
given by Eq. (38). Therefore, Eq. (38), which is called De-
bye equation [25], is a phenomenological model of relax-
ation in the frequency domain.
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tems in, Figure 12
a Frequency-dependent phase velocity (dispersion) and b Q�1

(attenuation) described by Debye equations (38)

Solid-liquid composite systems show several relax-
ation mechanisms caused by the liquid phase. One exam-
ple is the Biot mechanism exemplified above, in which the
density of the system relaxes from �U to �R. At !/!c 	 1,
due to a dominant effect of liquid inertia, a wave field
cannot cause motion in the liquid phase. Hence, �U is
associated only with the solid mass. At !/!c 
 1, due
to a dominant effect of viscous drag force, relative mo-
tion does not occur between the solid and liquid phases.
Hence, �R is associated with the total mass. The char-
acteristic frequency !c is estimated as 200 kHz for wa-
ter-saturated sandstone (k� D 10�12 m2, �L D 10�3 Pa s,
�L D 103 kg/m3, and � D 0:2). Because k� in the man-
tle is usually smaller than the value for sandstone, !c is
usually much higher than the seismic frequency. The Biot
mechanism for the longitudinal waves also has the value of
!c much higher than the seismic frequency. Therefore, the
assumption of the relaxed state is valid for the Biot mech-
anism.

Another relaxation mechanism is squirt flow [19].
When the pore shape is not spherical, changes in pore
pressure induced by the elastic waves depend on the aspect
ratio and orientation of each pore. Therefore, liquid pres-
sure becomes heterogeneous at the microscopic scale, and
this pressure heterogeneity is relaxed by viscous flow of
the liquid between pores (squirt flow). This causes a relax-
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ation of the skeleton moduli from NU and KbU to NR and
KbR. The relaxation strength of N, (NU � NR)/NR , is gen-
erally larger than that of Kb, (KbU � KbR)/KbR , and there-
fore the effect of squirt flow is larger on VS than on VP.
In Sect. “General Theoretical Framework to Describe the
Dynamics of Solid–Liquid Composite Systems”, the liquid
pressure was assumed to be homogeneous within REV and
hence the velocities obtained in Sect. “Derivation of Wave
Equations” represent relaxed velocities. When ˛ is large,
the relaxation strength is small and the difference between
the relaxed and unrelaxed velocities is not significant. As ˛
becomes smaller, the relaxation strength becomes larger,
and hence the relaxed velocities can be used only when
liquid pores are not isolated and the frequency of the
waves are much lower than !c D kS˛3/�L [28]. For water
(�L D 10�3Pa s) and basaltic melt (�L D 1 � 103Pa s), !c
approaches the seismic frequency when ˛ is smaller than
10�2 � 10�3. If the pore orientation is not random, even
under the relaxed state of squirt flow, the pore pressure
is different from that estimated for the random orienta-
tion. Therefore, when VP and VS derived in Sect. “Deter-
minability of Porosity and Pore Shape from Elastic Wave
Velocities” are applied to ˛ < 10�2–10�3, the connectiv-
ity of the pores, characteristic frequency of squirt flow, and
the randomness of pore orientation should all be checked.

As exemplified in the previous section, the presence of
H2O vapor in the melt phase can relax the liquid com-
pressibility from that of a pure melt (ˇU) to that of a wa-
ter–melt mixture (ˇR). Figure 11 is obtained by assum-
ing that the characteristic frequency !c is much higher
than the seismic frequency. However, !c decreases with
increasing viscosity of the melt. For andesitic and rhyolitic
melts, the characteristic frequency is close to or lower than
the seismic frequency range [12].

Future Directions

One practical problem limiting the determinability of
porosity and pore geometry from seismological data lies in
the difficulty of accurately estimating 
VP and 
VS . For
example, a low-velocity anomaly in the upper mantle is
generally caused by the superposition of high-temperature
anomaly and partial melting. In order to determine poros-
ity and pore geometry from these data,
VP and 
VS as-
sociated only to the existence of liquid-filled pores (here-
after referred to as poroelastic effect) should be estimated
by accurately correcting the data for the temperature ef-
fect. Recent experimental studies on the elastic properties
of melt–free olivine polycrystals performed in the seismic-
frequency range have demonstrated that at T > 1000°C and
at such low frequency, the temperature effect consists of

both anharmonic and anelastic effects [14]. Unlike the an-
harmonicity, anelasticity cannot be measured by the usual
experimental methods using ultrasonic waves. Because ex-
perimental data on anelasticity are still limited and the de-
tailed mechanism of anelasticity with or without melt is
poorly understood, correction of the data for the tempera-
ture effect is difficult. Also, in the crust, accurate estima-
tion of 
VP and 
VS for the poroelastic effect is diffi-
cult because the effect of anelasticity has not been assessed
under crustal conditions and also because the lithological
heterogeneity is considered to be larger than in the man-
tle. Therefore, the separation of poroelastic, temperature,
and lithological effects affecting the velocity perturbations
is an important subject of future study. Recently, not only
the VP and VS structures but also the three-dimensional
QP and/or QS (seismic attenuation) structures and two-
dimensional or three-dimensional electrical conductivity
structures have become available. These structures provide
additional information on liquid-filled pores, temperature
anomaly, and/or lithological heterogeneity. TheQP and/or
QS structures, for example, are important in constrain-
ing the magnitude of the anelastic effect [24]. Although
the separation of individual factors is difficult to deter-
mine from velocity structures alone, additional informa-
tion from Q and/or electrical conductivity structures will
be very valuable.
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Glossary

Ascendancy The tendency, in the absence of distur-
bances, for an ecosystem to increase in size or total
throughput and to have more constrained pathways
for within system flows.

Bioinformatics The storage, processing, and analysis of
very large arrays of biological data.

Dispersal limitation Limitation of the number of species
within an ecological community due to decreased
probabilities of some species entering a local ecologi-
cal. community by dispersal.

Ecological community The collection of individual or-
ganisms of different species that are found within the
boundaries of an ecosystem.

Ecological drift Random changes in the relative abun-
dances of species within a community due to stochastic
population processes.

Ecosystem an arbitrary ensemble of macroscopic matter
that captures, stores, and uses energy to circulate and
rearrange matter within the system.

Emobodied energy (emergy) Potential energy stored in
chemicals bonds within an ecological entity (organism,
population, community, etc.).

Food web A network describing the flows of energy and
matter within an ecosystem.

General metabolic equation Phenomenological descrip-
tion of how mass, temperature, and resource concen-
tration affect the metabolic rate of an organism or an
ensemble of organisms.

Metabolic scaling The exponential relationship of aver-
age body mass with the rates of many metabolic pro-
cesses.

Metacommunity A collection of many local communities
aggregated are larger spatial scales.

Tranformity The total amount of solar energy required
to form a unit of biological material.

Definition of the Subject

Living systems are collections of entities at multiple scales
(e. g., cells, organisms, populations) that undergo a wide
variety of interactive processes. Simply by the sheer mag-
nitude of the different possible behaviors of such systems,
the problem of describing and understanding ecological
processes is daunting. In addition to the size problem, eco-
logical systems have large numbers of unique parts, the be-
havior of which can vary considerably in space and time.
Because of the complexity inherent in ecological ensem-
bles, devising adequate methods to describe, analyze, and
predict their behavior is a major challenge to science. Eco-
logical systems combine both idiosyncratic, unpredictable
outcomes with strong constraints on system structure that
makes them paradoxically both deterministic and unpre-
dictable at the same time. Because of this, has been no
universal theory to guide research on ecological phenom-
ena.What is needed is the development of complementary
approaches that emphasize some important aspect of the
greater whole of an ecosystem, but are amendable to syn-
thesis with other approaches that emphasize other aspects.
Thus, ecological complexity presents a unique challenge to
science that will require a wide variety of approaches and
conceptual infrastructures.

Introduction: The Nature of Ecological Complexity

Ecological systems are large ensembles of macroscopic
matter that capture energy, store it, and use it to circu-
late and rearrangematter within the system. The term “use
energy” aptly describes the material flows within an eco-
logical system because information-based processes deter-
mine both the material structure of the system and its
function. Because of the vast number of possible config-
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urations ecological systems can take on, determining fun-
damental properties and cause-effect relationships within
such systems is fraught with many conceptual and empir-
ical challenges.

Energy flow through ecological systems occurs via a hi-
erarchical arrangement of matter starting at microscopic
scales and continuing up to encompass all life on earth. At
the microscopic scale, complex molecules located within
the bodies of plants and microbes intercept high-energy
photons. The captured energy drives a variety of molec-
ular pathways that ultimately produce potential energy
stored in chemical bonds of complex polymers of glucose.
The energy capture system is located in small organelles
called choroplasts, which are part of large, highly orga-
nized molecular ensembles called cells. Chemical work
done by the transformation of potential energy in chem-
ical bonds maintains cellular cohesion and reproduction.
The information regarding the configuration of cellular
structure and execution of chemical work is stored on
large highly organized polymers of nucleotides and ribose
(DNA and RNA).

Chemical work generated by cells is expended in a va-
riety of ways beyond maintenance of intracellular cohe-
sion and information processing. In prokaryotes, individ-
ual cells form networks of interactions among themselves
and their environments. These interactions involve secre-
tions of chemicals produced within cells, energy-driven
movement of cells within complexmedia, and complex in-
teractions with other cells of the same or different species.
In mutlicellular organisms, cellular interactions proceed
along canonized sequences of cell division and prolifer-
ation determined by intracellular information contained
on DNA. Cell ensembles follow developmental pathways
driven by energy derived from stored cellular potential en-
ergy. Cell proliferation and diversification ultimately re-
sults in organisms, which obtain energy either through
photosynthesis or by ingestion of potential energy stored
in the cells of other organisms.

Organisms form various types of ensembles that give
rise to a variety of potential ways of describing them. Be-
cause the same organism can be part of several differ-
ent types of ensembles, a great deal of confusion in ter-
minology and conceptualization ensues. Furthermore, the
spatial and temporal structure of these ensembles makes
most attempts at identifying system boundaries for them
at best arbitrary. Terms like population, species, commu-
nity, ecosystem, and biome lack rigorous, consistent defi-
nitions, and often mean different things in different situa-
tions. The necessity for arbitrary system definitions makes
the study of ecological complexity above the organismal
level particularly challenging.

Describing Ecological Complexity

Three general types of phenomena constitute the com-
plex spatial and temporal structure of ecological systems:
(1) energetic phenomena resulting from energy transfer
and storage; (2) kinetic phenomena describing changes in
amounts of substances or entities; and (3) informational
phenomena describing information transfer and storage
within and among ecological entities. These phenomena
are at the same time complementary and interacting. Ex-
plicit description of one aspect often requires implicit as-
sumptions regarding other aspects. Presumably, the same
sequence of events in an arbitrarily defined ecological sys-
tem could be described from the perspective of any one
of these three aspects, although it may be more straight-
forward to develop one type of description for a specific
phenomenon.

Ecological Energetics

Because of the energy gradient necessitated by the sec-
ond law of thermodynamics, maintenance of any ecologi-
cal system requires a constant influx of energy. Thus, any
change in the structure or function of a system requires an
exchange of energy, requiring the eventual replacement of
expended potential energy. Failure to replenish stored en-
ergy results in dissolution of the system.

Although simple in concept, it is difficult in practice
to describe an arbitrary ecological system as a purely ener-
getic phenomenon. Because most of the energy contained
in such systems is stored potential energy, the mass of
the compounds storing that energy must be measured. It
is very difficult to separate out compounds that do not
store energy from those that do, so typically, either the
total mass of the system or the mass of some important
element (most often carbon) is measured. Since energy
exchanges occur on the microscopic scale, this necessary
simplification is justifiable, but also creates further difficul-
ties. Describing the energetic aspects of the system as mass
storages and flows makes concurrent definition of energy
losses difficult. Energy is lost as heat, so in order to resolve
the measurement scales, either mass must be expressed in
energetic units, or heat loss must become an implicit as-
sumption of the description. This creates a mismatch be-
tween the units of measure used to describe the system (g)
and the units that measure fluxes (kcal).

Despite the conceptual difficulty between relating the
microscopic description of system energetics (units of en-
ergy) with the macroscopic description (units of mass), for
many practical problems the macroscopic description is
sufficient. For example, net primary productivity (usually
expressed as grams of carbon per unit time per unit area)
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shows striking geographical patterns that match the geo-
physical properties of the earth closely. With recent devel-
opments in remote sensing, however, the thermal proper-
ties of ecosystems can be measured directly. Furthermore,
many important organismal activities are also measurable
directly using thermal units. It is often difficult to recon-
cile mass-based descriptions of the energetic properties of
ecological systems with thermal-based descriptions.

Ecological Kinetics

As implied by the preceding discussion, ecological systems
exhibit a kind of duality in that they are both energetic sys-
tems as well asmaterial systems.When the focus of study is
on the material properties of ecological systems, it is often
convenient to express state changes of the system in ma-
terial units. Often the units of interest are concentrations.
In a kinetic system description, the energetic mechanisms
underlying material flows are not explicitly included.

One of the most useful types of kinetic descriptions
models the spatial and temporal properties of ensembles
of organisms. Because organisms are fundamental entities
in the organization of living matter, many practical appli-
cations focus on the kinetics of organisms belonging ar-
bitrary ensembles such as populations and communities.
These descriptions, however, require the energetic basis of
organismal kinetics to be simplified or only implicitly ex-
pressed. Most often, this difficulty arises when incorporat-
ingmass transfer from organisms of one species (say a prey
organism) to an individual of a different species (e. g.,
a predator). The actual mechanism of the mass transfer
involves significant and complex mechanical and chemi-
cal processing, which in turn, requires expenditure of large
amounts of stored energy. This complexity cannot be cap-
tured by a kinetic description in which the units of mea-
sure are organisms.

Further complications for kinetic descriptions arise
because, most of the time, the fundamental process of
change is discrete, involving addition and subtraction
of individual units (organisms). Times between addi-
tions and subtractions vary in length. In addition, a large
amount of uncertainty may exist regarding the sequence of
events leading to these discrete changes. All of these com-
plications create challenges for particular formalisms.

Ecological Information Content and Exchange

There are two very different ways of describing the in-
formation content of an ecological system. First, the in-
formation contained in cellular DNA profoundly shapes
both kinetics and energetics in ecosystems. Fundamen-
tal biochemical pathways may differ profoundly among

different kinds of organisms. For example, there are at
least three different photosynthetic pathways exhibited by
plants, each of which has profound consequences for en-
ergy capture efficiency under different ecological condi-
tions. Secondly, ecological systems often exhibit config-
urations far from thermodynamic equilibrium. The dif-
ference between the system state and its thermodynamic
equilibrium indicates ecological systems exist in very low
probability states resulting from continual energetic ex-
penditures. These low probability states imply a high de-
gree of “organization”, that is, system configurations that
are perpetuated by the self-maintenance and self-replicat-
ing nature of the constituent energetic and kinetic pro-
cesses.

With the emergence of molecular biology, description
of genetic information content in ecological systems be-
came possible. Although it is sometimes possible to estab-
lish direct links between genetic information and specific
protein products, it is difficult to connect the spatial and
temporal productions of multiple proteins across taxa and
relate them to basic ecosystem functions such as matter
cycling and energy flow. Furthermore, it is not apparent
how to relate genetic information to kinetic descriptions
of ecosystems. Since most kinetic descriptions focus on or-
ganisms, the link between genetic information content of
an organism and its performance in specific environments
is difficult to establish and incorporate into modeling ef-
forts.

Genetic information exchange occurs within sexually
reproducing species or by other mechanisms such as con-
jugation in bacteria. However, not all information con-
tained in an ecosystem is genetic. There is a wide variety
of chemical and physical signals used by organisms to ex-
change information about their proximate environment.
Pheromones, sounds, visual stimuli, and toxins are exam-
ples of such extra-genetic information exchange. This spe-
cialized information profoundly influences ecosystem ki-
netics and energetics.

Another quite different aspect of ecological informa-
tion is the degree to which an ecological system departs
from some low-information content state. The most ex-
treme of such states is thermodynamic equilibrium, where
system components have dispensed all of their kinetic and
potential energy. Such a state is problematic and of limited
utility, since the entire earth is far from thermodynamic
equilibrium. Alternatively, a low information state of an
ecosystem would exist if its components were apportioned
equally amongN possible states or configurations. In such
a situation, the information about any single state provides
information on all other states. Borrowing from informa-
tion theory, the system would be in a state of maximum
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“entropy”, where entropy is a measure of the homogene-
ity of the system. The more homogeneous a system is, the
less information is needed to describe it. Therefore, in this
information theoretic sense, entropy is the opposite of in-
formation.N equiprobable states correspond tomaximum
entropy (S), or low information content. Using a maxi-
mum entropy approach [1], the lowest information state
has an entropy of

S1 D K log(N) ;

where K is an arbitrary constant. If the probabilities (pi) of
each state differ, thenmaximum entropy is less than logN,
and is given as

S2 D �K˙i pi log pi :

In ecological applications, K is usually given an arbitrary
value of 1. The difference between S1 and S2 represents
the difference between the actual information content of
the system and the lowest possible information content
(equiprobability). Difficulties arise when attempting to de-
fine a useful set of states that can be related to ecological
kinetics or energetics. States that are amendable to kinetic
analysis, such as population abundance, are not readily de-
finable in terms of entropy or information. For example, it
is not clear how to establish the lowest information config-
uration of a population.

Survey of Different Solutions
to the Problem of Describing Ecological Complexity

It was widely accepted by the end of the nineteenth century
that assemblages of plants and animals presented a unique
challenge to science. A simple Newtonian mechanics solu-
tion to the problem of describing the huge variety of life
forms on earth was not possible. At a time when physics
was being revolutionized, biologists were often left to enu-
merating ecological phenomena without reference to any
attempts to develop a comprehensive theory. Applying
methods of the preceding generations of nineteenth cen-
tury naturalists, ecology became a field that simply cat-
aloged ecological phenomena without reference to test-
ing or developing new theory. The only guiding theory
was Darwin’s poorly understood ideas regarding evolu-
tion. Ecologists did not test hypotheses about evolution;
rather, they provided verbal descriptions of natural sys-
tems that were at best confirmatory.

The practice of ecology as descriptive natural history
began to change early in the twentieth century. Mathemat-
ical probability and statistical physics were maturing, and
new tools became available for application to the problem

of ecological complexity. By the end of the twentieth cen-
tury, a myriad of approaches had developed, each of which
mademajor strides towards finding a comprehensive solu-
tion to ecological complexity. The advantages and draw-
backs of these different solutions are examined in what
follows.

Physical Biology

One of the first attempts to develop a comprehensive theo-
retical structure for ecology was Lotka’s concept of “phys-
ical biology” [2]. Lotka’s ideas had far-reaching implica-
tions that several scientific generations of ecologists used
in developing specific types of solutions to the problem
of complexity. Many of his ideas were co-opted for spe-
cific problems, and after passing through several genera-
tions of ecologists, the original context of his ideas were
lost. Lotka’s vision, however, persists as a fundamental at-
tempt to integrate ecological complexity with the broader
framework of theoretical physics. Although both physics
and ecology have undergone radical changes since his
time, Lotka’s insights permeate many of the theoretical
approaches to ecological complexity developed over the
decades since he formulated them.

Using fundamental insights from thermodynamics
and physical chemistry, Lotka recognized that kinetic and
energetic descriptions of biological systems were comple-
mentary. He viewed the kinetic problem as the formula-
tion and solution of a set of differential equations rep-
resenting the different material states that comprised an
evolving biological system. The parameters for these equa-
tions described both the interactions among the material
states as well as any influences from outside the material
system. Most of his examples dealt with populations of
organisms, but he also envisioned kinetic descriptions of
element cycling and storage. To make the kinetic equa-
tions amendable to analysis, Lotka studied the behavior
of the material system in the neighborhood of its multi-
dimensional equilibrium. This simplification allowed the
linearization of the system of differential equations around
the equilibrium. Descriptions of transient dynamics in the
region of equilibrium were limited to smooth approaches
towards or away from equilibrium, periodic oscillations
dampening towards equilibrium or increasing in ampli-
tude away from equilibrium, or “stable limit cycles”, where
oscillations persist in the system indefinitely.

The energetic description of biological systems Lotka
found more difficult to specify. He envisioned the need for
a “statistical mechanics” to describe the macroscopic con-
sequences of the myriad of interactions that material enti-
ties in biological systems undergo. Here again he consid-
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ered the problem from the perspective of a population of
individual organisms encountering one another and un-
dergoing interactions that caused the organisms to un-
dergo changes. In these interactions, organisms could be
viewed as having “kinetic energy” that was exchanged via
the type of interaction the organisms engaged in (e. g.,
a prey organism transfers its kinetic energy to a predator).
Ultimately, each ensemble of organisms (e. g., populations
of predators and prey) increased or decreased in size. The
rate of this increase, Lotka thought, could be related to
general boundary constraints imposed by the environment
to create macroscopic laws isomorphic with physical laws
like the ideal gas law.

Neither information theory nor genetics were avail-
able at the time Lotka was conducting his early work on
physical biology. Although he was aware, for example, of
Fisher’s early work in genetics, he was unable to elaborate
much on the nature of ecological information. The clos-
est he came to addressing that problem was in his com-
ments regarding what he called “intra-species” evolution.
Lotka appreciated that within any given species, individu-
als were not identical and could not be treated as simple
particles with only a few properties relevant to the kinet-
ics and energetics of the systems that contained them. He
understood the significance of this variability to defining
system level properties, but was unable to move much be-
yond outlining the general nature of this problem.

These early insights provided the conceptual basis for
a number of different approaches to ecological complex-
ity that emerged in the later decades of the twentieth cen-
tury. Ultimately, bringing these differing approaches back
together into a unifying framework, such as Lotka envi-
sioned, would fuse a strong theoretical foundation for un-
derstanding ecological complexity.

Kinetics of Steady State Systems

Because many ecological systems are persistent as recog-
nizable entities over the time periods typically studied by
ecologists, the relatively stable configuration lends itself to
description as a steady state ensemble. Borrowing from the
ecological idea of an environmentally determined “carry-
ing capacity” for each component of the ensemble, a ki-
netic description of the system’s deviations away from sta-
ble states (i. e., equilibria) is derivable by linearization of
the unknown underlying kinetics. That is, for each state
variable Xi representing a component of the ecological en-
semble, a steady state value for that variable (X�i ) is as-
sumed. Given a description of the (unknown) kinetics for
component i as dxi /dt D fi(X), where X is a vector con-
taining variables for each component in the ensemble, ki-

netics around the collective equilibria for all variables (X�)
is obtained by a Taylor series expansion as

fi(X) D fi(X�)C
X

j

@ fi
ı
@Xj(Xj�X�j )COi (X � X�) ;

where j indexes over all system components, and Oi con-
tains higher order terms of deviations away from equilib-
ria. Since fi(X�) = 0, and the higher order terms are as-
sumed to be close to zero, evaluating the partial deriva-
tives at X� leads to a linearization of the near equilibrium
kinetics [3,4,5,6]. Eigenanalysis of the resulting linear sys-
tem indicates a limited range of potential behaviors for the
system. If all eigenvalues are real, the system converges
towards equilibrium or expands away from it. Imaginary
eigenvalues indicate either convergent or divergent oscil-
lations, or, if the real parts of all imaginary eigenvalues are
zero, sustained periodic oscillations.

The linearized solution to ecological dynamics is most
appropriate over relatively short time spans. Because or-
ganisms are somewhat resistant to change, kinetics of eco-
logical systems are expected to maintain inertia in the face
of changing environments. However, the interpretation of
this inertia is somewhat different from standard physi-
cal models. In physical models, a force applied to a mass
must overcome the inertia of that mass for the system state
to change. In a sense, the system is pushed into a new
state by expenditure of energy. Ecological systems gener-
ally change from within. The environment acts as a rate
control on internal processes within such systems, so that
changes in the state of the system are accomplished by
shifting the balance among competing internal processes.
The inertia of the system corresponds to the finite time lag
over which internal processes reconfigure. Over appropri-
ately scaled time spans, the system can be thought of as
fluctuating around a relatively static state. However, over
longer time spans, the static state disappears, limiting the
usefulness of the linearized description.

Systems Analysis

The linearization of ecological kinetics has an implicit as-
sumption of closure. The state variables, X, are assumed
to completely specify the system. Unmeasured quantities
that may impinge on that description do so primarily
through the constants obtained through the Taylor expan-
sion. However, ecological systems are almost never per-
fectly closed, and it is therefore necessary to recognize how
inputs to and outputs from them influence the internal
workings of the system. Following a general trend in sci-
ence to consider phenomena as coherent systems [7], ap-
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plication of systems analysis to ecological complexity ex-
tends the range of describable behaviors.

Systems theory recognizes that complex behavior
arises both from the internal workings of the system and
its connections to other systems with which it is associ-
ated. Given a set of state variables, the effects of variables
on one another can generate “feedback” loops. That is, any
given state variable can affect its own kinetics by increas-
ing effects of other variables on itself (positive feedback)
or decreasing them (negative feedback). Each state vari-
able is connected either directly or indirectly with many
other variables, so the balance between positive and neg-
ative feedbacks determines the overall impact of the vari-
able on itself. Steady state is achieved when positive and
negative feedbacks are nearly equivalent across all state
variables. Because the balance between positive and neg-
ative feedbacks can never be precise, the expectation is
that a system that maintains integrity over time will show
bounded oscillations.

Ecologists typically choose state variables as the
amount of a particular element (say nitrogen) or as the
amount of potential energy (usually expressed as the
amount of organic carbon). Each state variable is repre-

Ecological Complexity, Figure 1
Schematic representation of nitrogen fluxes in sea lochs in Scotland. Circles represent influxes into the system. Rectangles represent
the various state variables describing nitrogen accumulation in different populations.Arrows represent nitrogenmovements among
components. System kinetics are modeled using a variety of functional relationships among inputs and state variables. From [8]

sented as the amount of matter or potential energy located
in different intermediate locations in the transfer of mass
from one group of organisms to another. Different types
of organisms obtain matter/energy in different ways. Pro-
ducers generate potential energy from sunlight and absorb
matter (hereafter called nutrients) from their surround-
ings. Consumers obtain energy and nutrients from other
organisms. Nutrients are recycled through the physical en-
vironment by decomposition of dying and dead organ-
isms or their parts. By tracing the route by which nutri-
ents and energy are exchanged in an ecosystem, it is possi-
ble to describe a complex network, where nodes represent
organisms obtaining nutrients and energy from the same
sources. There are several approaches to describing these
networks, or food webs.

Kinetic descriptions use differential or difference equa-
tions to describe changes in nutrients or energy within
nodes (i. e. the state variablesX). Including terms for other
state variables in the functional form of the differential
equation for a given state variable is typically used to
represent feedbacks. Information or hypotheses regard-
ing specific interactions among organisms determine the
functional form of equations. For example, the amount
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of nitrogen obtained by a consumer may saturate beyond
a certain nitrogen concentration. Solutions to these sets of
equations are most often obtained by numerical methods.
Sensitivity analyzes that vary key parameters or functional
forms gauge the dependence of numerical solutions on dif-
ferent assumptions made about the system. The final step
in systemmodeling is statistical comparison of model out-
put to data collected from the system.

The following example highlights the details of the sys-
tems modeling approach. Scottish sea-loch ecosystems are
formed along the coast by variation in tidal cycles, which
isolate bodies of seawater behind topographic features [8].
Freshwater enters the sea-lochs through runoff from the
land and is mixed with saline water at high tide. The net-
work of nutrient flows in these ecosystems is described by
a schematic representation of the major nutrient storages
and fluxes (Fig. 1). The kinetics of the system are repre-
sented by a system of differential equations such as

dXi /dt D fi(X) i D 1; 2; : : :7 ;

where X is a vector containing the Xi ’s. Rather than lin-
earize the system, each function is determined by the na-

Ecological Complexity, Figure 2
Driving functions used tomodel exogenous inputs of nitrogen into sea lochs in Scotland. These inputs are incorporated into a variety
of functions that relate inputs with nitrogen uptake rates in different organisms. From [8]

ture of the processes responsible for nutrient fluxes. The
system of equations includes terms that connect the state
variables X to influxes from outside the ecosystem. These
influxes are “driving functions”, that is, they are inputs
into the system that are responsible for system change. The
system of equations are then numerically solved by divid-
ing time into discrete intervals, and computing the result-
ing difference equations. The discrete intervals are made
to be small relative to the span of time over which the sys-
tem is being modeled, so the result is somewhat like a nu-
merical integration. At each time step, input from driving
functions is determined by data or functions thought to
describe temporal variation in those inputs (Fig. 2). Val-
idation of model output is done by comparison to data
from specific systems (Fig. 3). Sensitivity analysis is often
conducted by varying different parameters or functional
forms in the model and determining how such changes
influence model output. Once the model has been vali-
dated, it is used to forecast system behavior in response
to changes in the driving functions.

Another systems-based approach to ecological com-
plexity focuses on the topology of the network describing
material flows in ecosystems (see � Ecological Topology
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Ecological Complexity, Figure 3
Model output for monthly concentrations of nitrogen in two state variables (phytoplankton and dissolved inorganic nitrogen) for
three different sea lochs in Scotland compared with field measurements. Note the general agreement between model output and
field measurements. From [8]

Ecological Complexity, Figure 4
Network diagram for a relatively simple food web with four
nodes. R represents exogenous input into the web, wi’s rep-
resent outfluxes. Under conservation of matter and energy,
R D˙wi . Solid arrows denote flows within the network, while
dashed lines represent possible flows. As is typical with most
food webs, the network is not over-connected, with flows to
higher trophic levels (X3 and X4) dominating the network.
Adding flows f5 and f6 to the webwould retain these properties
while making the webmore complex

and Networks. A food web comprises the network of con-
nections among different components of an ecosystem.
These links can be represented as a directed graph, with
edges identifying one-way flows of energy and biomass
from one node (usually a species population) to others
(Fig. 4). Rather than representing the amount of materials
flowing through the network, analysis of food webs focuses
on the nature of connectedness among food web compo-
nents. Food webs are not maximally connected, that is, not
all nodes in a food web are connected to all others. There
is a definite hierarchical arrangement of nodes, with pro-
ducers (photosynthetic/chemosynthetic organisms) at the
basal level and predators at the apices. Edges rarely de-
scribe flows moving opposite the direction from base to
apex. Many insights from general networking theory can
be applied to the analysis of food webs. Simple food webs
often have unexpected properties [9]. Furthermore, rel-
atively simple models can describe many of the proper-
ties observed in data accumulated on trophic connections
among species in nature [10,11,12]. These simplifications,
however, are not fundamentally derived from the ther-
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modynamics of ecosystems, but rather represent heuris-
tic tools for describing ecosystem organization and the re-
sponse of that organization to changing conditions.

The most wide-ranging attempt to deal with ecosys-
tems as thermodynamic systems has been H.T. Odum’s
concept of systems ecology [13]. Beginning from fun-
damental principles of energy exchange co-opted from
Lotka [2], Odum constructed an elaborate framework ca-
pable of expressing nearly every ecological phenomenon,
from energy exchanges among molecules to the flow of
goods and services through economies. The key concept
uniting such diverse systems was the idea that all enti-
ties in a complex system must ultimately be composed of
“embodied” energy, that is, stored energy available to do
work. With few exceptions, energy in ecological systems
originates from solar radiation captured by photosynthe-
sis, hence, at least in concept, any quantity in an ecologi-
cal system could be expressed in terms of the amount of
solar energy expended to get the quantity to its current
state [14,15]. This amount, referred to as the “transfor-
mity” of an entity, requires knowledge of the amount of
solar energy that flows from its source through a com-
plex ecosystem to its current storage location. For ex-
ample, Odum [15] calculated that a unit of biological
matter containing one joule (J) of energy, had a trans-
formity of approximately 4000 solar emjoules/J. The di-
mension “emjoule” refers to the embodied energy con-
tained in an entity. Odum’s sweeping vision of ecologi-
cal organization and its consequences for human energy
transforming systems (e. g., economies) has yet to be fully
realized.

Nonlinear Dynamics

In the late 1970’s, the search for general solutions to the
dynamics of ecological systems took an unexpected turn.
Beginning with May’s [16,17] demonstration that simple
population models produced unexpectedly complicated
behavior under certain conditions, it became apparent
that departures from the “linearized” version of ecologi-
cal kinetics could produce behavior that mimicked persis-
tent fluctuations observed in ecological communities [18].
Further exploration in both ecology and other applica-
tions indicated that solutions to arbitrary sets of non-lin-
ear kinetic equations under certain conditions could gen-
erate a complex topology in the multidimensional state
space representing the set of state variables describing
a system. The solution set to such equations, often called
a “strange attractor”, has the paradoxical properties of
being a deterministic attractor that produces a unique
set of solutions for any arbitrary starting point in the

state space. The attractor represents a complicated “fold-
ing” and “compression” of the state space onto a frac-
tal-like solution manifold. An original high dimensional
system is mapped onto a surface with a smaller fractal
dimension.

Dynamics resulting from systems whose solution is
a strange attractor are often referred to using the mis-
leading label of “chaos”. Chaos as defined in this way re-
sults in microscopic (i. e., the original state variables) un-
certainty due to dependence on initial conditions coupled
with macroscopic (i. e., the attractor surface) certainty.
The nature of the macroscopic attractor can be derived
from general properties of the ensemble of local state
change vectors. Chaotic attractors have the property that
correlations in the time evolution of points that begin in
the same region of state space decline as the trajectories
resulting from those points follow their unique paths on
the attractor surface. This type of behavior departs from
the expectation of a linearized system, where points close
to one another converge along similar trajectories to the
final steady state (which is often a point attractor).

A significant challenge in identifying the existence of
deterministic uncertainty is the fact that any ecological
system also contains other types of uncertainty, or “ran-
domness”. Uncertainty can arise from the inability to spec-
ify completely all factors responsible for system change
in the kinetic description of the system. Uncertainty can
also arise from the indeterminate nature of the behavior
of the state variables. In an open ecological system, both
types of uncertainty are likely to occur because the spec-
ified components of the system are embedded in a more
inclusive system that impinges on events occurring within
the specified system boundaries. For example, a commu-
nity of organisms at the same trophic level may be repre-
sented by a set of differential equations, yet there may be
other species not included explicitly in the kinetics repre-
sented by those equations that nonetheless cause changes
in the species being modeled. There are a number of ap-
proaches that attempt to differentiate between kinetics due
to “randommotion” in state space from those governed by
the “pull” of a strange attractor [19,20].

The importance of uncertainty in the face of arbitrary
kinetic specifications of an ecological system has lead to
many attempts to develop stochastic process models that
might account for this uncertainty. In addition, the data
themselves may have some degree of measurement er-
ror associated with them. Estimating parameters for such
models using existing types of data is complicated by the
existence of “measurement error”, that is, uncertainty due
to the relationship between measured quantities and the
underlying state variables [21].
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Statistical Mechanics

As the size and complexity of a system being modeled
increases, the more uncertainty enters into the resulting
kinetic descriptions. This is reminiscent of Lotka’s [2]
vision of a statistical mechanics for ecological systems.
During the middle of the twentieth century, a number
of attempts to define statistical descriptions of ecologi-
cal systems that might arise from their complicated dy-
namics arose [22,23,24,25,26,27]. In the late 1970’s and
early 1980’s, these attempts were abandoned in favor
of a “mechanistic” approach to ecology, shored up by
increasingly sophisticated experimental approaches [28,
29,30]. This necessary phase in the development of ecol-
ogy produced a wealth of evidence for the importance of
local interactions among species. However, most studies
were limited to a few years in length, and few lasted long
enough to observe the long-term outcomes of manipula-
tions. Those that lasted longer showed complicated behav-
iors, suggesting that events occurring outside the exper-
imental system modified the results of experimental ma-
nipulations in unexpected ways [5].

Renewed interest in the statistical mechanical ap-
proach arose when it was determined that relatively sim-
ple assumptions applied to stochastic population change
could reproduce a number of statistical patterns observed
in large ensembles of species in space and time [31,32,33].
The basic approach begins with the description of the ran-
dom variable Xij, defined as

Xi j D 1 if species j has exactly i individuals;
if species probability Pi j

Xi j D 0 otherwise, with probability (1 � Pi j) :

If the occurrence of species in a community of S species is
independent of other species, the number of species that
have i individuals at a given steady state is the sum over
j D 1; 2; : : :S of the individual Xij. The expected value of
this sum, S�i is

S�i D
X

j

Pi j

and the variance is

�2i D
X

j

Pi j(1 � Pi j)

The set of expected values S�i , under the assumption that
species are approximately equivalent in their demography
andmigration rates, produces a species relative abundance
distribution (SAD).

There are a wide variety of methods to obtain es-
timates of the probabilities Pij [34,35,36,37,38,39,40,41].
The simplest formulation assumes that species are ecolog-
ically equivalent (ecological symmetry) and that the en-
vironment in which they interact is homogeneous. Un-
der these assumptions, a stochastic birth-death process en-
sues which leads to fixation of a single species in a com-
pletely isolated local community [42]. That is, Pik ! 1 for
species k and Pi j ! 0 for all j ¤ k. The random fluctua-
tions that result from this stochastic birth-death process is
referred to as ecological drift [31].

For species richness to be greater than unity, the com-
munity must be open to influx of individuals of other
species [42]. The source of individuals available for im-
migration into the community is called ametacommunity.
There are a variety of ways to define a metacommunity,
and different definitions result in different expressions for
the expected relative frequencies of species (Pij). The fun-
damental result under ecological symmetry is that the SAD
becomes a function of the relative frequencies of species
in the metacommunity and the rate of migration into lo-
cal communities [31]. The form of this function depends
on the underlying structure of the metacommunity (e. g.,
[41]). If migration into a local community is relatively low,
the community is dispersal limited. A balance between eco-
logical drift and dispersal limitation then determines local
species diversity. The challenge then becomes to obtain ap-
propriate descriptions of metacommunities for an ecosys-
tem of interest [43] and deduce the sampling distribution
for local communities under the appropriate metacommu-
nity description [41].

Solutions for SAD’s become more complicated under
ecological asymmetry. For example, consider the situation
where species are ecologically symmetric accept for their
immigration probabilities. For a sample in a local com-
munity containing J individuals, rescaling the Pi j ’s so that
they sum to one, the average probability of a species being
found in a community of size J is 1/S. The rescaled prob-
ability for species j (dropping the redundant index i) is pj,
and the variance of its limiting distribution under migra-
tion ratemj is

var(pi ) D [(pi /J)(Jf1� pig � mif1 � pig)]/
[mi (J � 1)C 1 � mi ]

The average variance in relative frequency across species is

�2S D ˙ j p j(1 � p j)/S

Although the migration rate of individual species may not
be known, it is possible to find the average migration rate
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Ecological Complexity, Figure 5
Temporal patterns of variation in spatial variation in abundance and average immigration rate in a community of desert rodents
living in a Chihuahuandesert ecosystem. Vertical dashed lines represent periods of transition among relatively distinct sets of species
in response to changes in the local environment. Data provided by S.K. M. Ernest, Utah State University

across species (m�) as a function of the p j ’s, which is

m� D 2J�2S /(J
2�2S � 2J�2S C 1 � 1/S)

For an open community constantly undergoing fluctu-
ations, the average migration rate provides an index of
the degree to which the community fluctuations are influ-
enced by dispersal limitation (Fig. 5).

Information Theory

Recall that there are two different types of information
that can be used to describe an arbitrary complex ecolog-
ical system: genetic information and what we might refer
to as “configurational” information. This second type of
information describes the departure of an aspect of the
ecosystem, such as nutrient flows, from some hypotheti-
cal “most probable” state. Thermodynamic equilibrium is
ultimately most probable, but in the face of import of en-
ergy and matter into an ecosystem, transient kinetics can
maintain the system far from thermodynamic equilibrium
for indefinite lengths of time, causing it to occupy a large
range of low probability states. To distinguish among these
alternative, low probability states, some baseline is needed
for comparison. As mentioned above, if equiprobability of

individual states holds, then there is very little informa-
tion needed to describe the entire system. This condition
implies symmetry exists among components. More accu-
rately, if there are N possible states that the system can
occupy, each of which has a relative frequency of pi, the
“entropy” of the system (see� Entropy Maximization and
Species Abundance) is

S D �k˙i pi log pi

which is maximized when S D k logN, in other words,
all relative frequencies are equal. MacArthur [44] intro-
duced S as a measure of ecological system “stability”. Us-
ing heuristic arguments, he reasoned that stability in this
sense increased either by increasing the number of system
states (N) or more evenly distributing relative frequencies
among system states. For many reasons, MacArthur’s in-
terpretation has been questioned, but the basic application
of information theory in this context is sound. The ques-
tion has become, what exactly does S represent in ecologi-
cal systems? The answer hinges on how one defines the N
states being considered. In a kinetic system description,
the amounts of the state variablesXi are summed and used
to calculate S. N represents the number of state variables
(e. g., the number of species in the ecosystem or some ar-
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bitrary part of it). For a kinetic description, when k is set
to unity, S is the ecological diversity of the ecosystem. If the
state variables are counts of organisms (or other ecological
units), setting k D ˙i Xi gives the likelihood function for
a multinomial distribution describing the probability den-
sity of the counts. This fact can be used to test hypotheses
about the distribution of counts among state variables (as-
suming stationarity). In an energetic ecosystem descrip-
tion, the states of interest are the flow rates between state
variables [45,46]. The pi ’s are the fraction of total system
throughput flowing through a specified edge connecting
two state variables.

Based on phenomenological considerations, Ulanow-
ickz [45,46] argued that because S represented the de-
gree to which flows in an ecosystem are organized, that is,
the degree to which they depart from symmetry of flows
among all ecosystem components, it expressed a funda-
mental quality that changes directionally in an ecosystem
over time. Letting k = total system throughput (a mea-
sure of system size), S was called the ascendancy of an
ecosystem [45,46]. Barring any outside disturbances, ac-
cording to Ulanowickz’s phenomenology, ascendancy in-
creases because over time, an ecosystem evolves to maxi-
mize the rate of energy processing [2,13], which involves
adding additional energy pathways to the ecosystem (ef-
fectively increasing N, the number of system units, i. e.,
energy pathways and/or species). However, there is also
a tendency for the pathways that maximize energy flow to
increase their share of energy at the expense of other path-
ways, preventing the system from reaching the maximum
possible ascendancy, namely (logN)˙i Xi . Ulanowickz ar-
gued that all of E.P. Odum’s [47] principles of ecosystem
succession where specific realizations of the overall ten-
dency of ecosystems to maximize ascendancy.

It is interesting to note that in these sense Ulanow-
ickz used ascendancy, it plays a descriptive role not un-
like fitness in Fisher’s fundamental theorem of natural se-
lection [48]. In both cases, biological processes operating
among a large number of entities lead to increasing levels
of organization through competitive dominance among
entities balanced by inevitable tradeoffs within the entities.
In most cases, this leads to a breaking of symmetry among
entities, increasing the amount of information needed to
describe the system.

Bioinformatics

Because the amount of information that ecosystems store
is vast, unique challenges face scientists attempting to de-
scribe that information. This stored information exists
as sequences of cellular DNA and RNA, distributions of

gene products in space and time, and higher-level chemi-
cal and biophysical transmissions among organisms. Be-
cause of the sheer magnitude of this information, pro-
cessing, storing, and describing data presents unique tech-
nological challenges. Solutions to these problems require
very large computational capacity, algorithmic efficiency,
and a mathematical infrastructure capable of extracting
desired information from large databases.Genomics is the
application of these technologies to large databases on
gene sequences, while ecoinformatics does the same with
large databases on geographic variation of ecologically
relevant information. Much of this information involves
remote sensors deployed on satellite platforms in orbit
around the earth.

The ability to access such vast amounts of biological
information opens the door to ask questions that have
been unanswerable or even unthinkable in the past. For
example, human capacity to modify the earth’s ecological
systems (see � Human–Environment Interactions, Com-
plex Systems Approaches for Dynamic Sustainable De-
velopment) has increased rapidly as both human popula-
tions and resource use have increased nearly exponentially
in the past century. These global changes have induced
widespread changes in the chemistry of the earth’s at-
mosphere and oceans. Understanding how and why such
changes occur is impossible without the ability to process
the vast amounts of data required to describe and moni-
tor global ecosystems. Obtaining such an understanding is
critical to the long-term ability of humans to persist while
maintaining an acceptable quality of life for every person.

Bioinformatics in many ways is a science in its for-
mative stages. Although technologies are evolving rapidly,
there are yet to emerge accompanying theoretical con-
structs that will allow the formulation and testing of hy-
potheses about how large-scale ecosystems interact and
function. These interactions and functions operate on
a vast range of scales from molecular to planetary. It is
not entirely clear that present mathematical and techno-
logical developments are adequate to describe such mul-
tiscaled complexity. Because of this, bioinformatics rep-
resents a fundamental conceptual frontier into which sci-
ence is just beginning to explore.

Metabolic Scaling

There has been a long tradition in biology to examine con-
straints on biological form and function that result from
physical limitations [49,50]. Towards the end of the twen-
tieth century, it was discovered that size, in particular,
played a fundamental constraining role in the transport of
energy through individual organisms [51,52,53]. The scal-
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ing is allometric, that is, if M is a measure of size (usually
mass) and E is the flow of energy through an individual
organism, then

E D aMb:

The empirically derived exponent, b, is usually close to
0.75. The coefficient of this scaling can be considered
a function of other effects, such as temperature [54]
and resource concentration [55,56,57], rendering a gen-
eral metabolic equation. Although phenomenological in
its derivation, the equation can be thought of as a macro-
scopic, statistical-mechanical description of energetic pro-
cesses involving organisms. The mass effect represents
a fundamental design constraint on fractal-like networks
that distribute mass, energy, and information within cells
and organisms [58]. In organisms, those networks have
a minimum size corresponding to scales below which only
passive diffusion can move molecular products carrying
energy and information. Below this minimum threshold,
movement of energy and information is random (Brow-
nian) in nature. Here, temperature exerts its effect on
metabolism.Molecular collision is required for almost any
cellular action, and under Brownian motion, collisions
will occur more rapidly as temperature increases. Many
enzymatic-regulated cellular processes operate optimally
under a relatively narrow range of temperatures. Within
that range of temperatures, the range of energy states that
characterize a particular enzymatic reaction can be mod-
eled using a Boltzmann-like function, where the energy
state needed to produce the enzyme product is the “acti-
vation energy” of the reaction. Metabolism, however, in-
volves many such molecular processes, but at the macro-
scopic scale of the organism, one can envision an “activa-
tion energy of metabolism” that results from the various
cellular processes. Hence, the macroscopic description of
a metabolic process, E, can be written as

E D a0Mb exp(�Ea/kT)

where Ea is the activation energy of the metabolic pro-
cess, T is temperature (in Kelvin) and k is Boltzmann’s
constant. The exponential term, in statistical mechanics,
represents the fraction of molecules that reach energy
level Ea. However, at the macroscopic scale, this formu-
lation can only be approximate, since so many individ-
ual reactions are involved in metabolism. Finally, the rate
of supply of resources to an organism saturates at high
resource density, hence, a Michaelis–Menten type func-
tion has been used to represent this final component of
metabolism [55,56,59].

The application of these considerations to ecological
processes has yielded a number of important insights into

how energy processing in living systems constrains the
form and function of organisms and the ensembles they
form [60,61]. The metabolic theory in some ways brings
both energetic and kinetic descriptions of ecological com-
plexity together in a synthesis that sheds light on both
types of processes. Although in its infancy, the metabolic
approach to ecology is a promising approach to ecological
complexity that is solidly grounded in basic physical prin-
ciples and links a wide range of ecological phenomena into
a coherent theoretical construct.

Future Directions: Complexity and Complementarity

Summing together was is know about ecological complex-
ity and how it is described underscores some fundamen-
tal insights into how living systems produce order along
energy gradients on the earth. The most basic principle
is that the order observed in nature is a direct conse-
quence of thermodynamic principles in open systems. The
abundance of high-energy solar radiation on the earth’s
surface is captured as potential energy that is degraded
in relatively small steps to assemble highly complicated
physical networks of material and information. These net-
works perform recursive physical operations that open
a vast number of possible routes by which solar energy
can travel as it is transformed into biological work and
heat.

Because of the huge number of possibilities that life
presents, it is difficult, or even impossible to provide
a complete description of ecological systems. To this end,
scientific approaches to ecological complexity must be
necessarily incomplete. The fact that there are at least
three ways of describing complexity, as discussed above,
is a result of this incompleteness. However, since the same
set of ecological phenomena can, at least in principle, be
described in several different ways, it may be possible
to envision progress by looking for theoretical and em-
pirical complementarities among different descriptions of
the same system. The metabolic approach to ecology de-
scribed in the last section is one such approach. For ex-
ample, by linking body mass with individual production,
it is possible to link kinetic descriptions of population dy-
namics with energy processing by the constituent organ-
isms [60,62]. This in turn can be used to examine geo-
graphic patterns in biological diversity [63].

Ecology is a science on the verge of discovering the
fundamental conceptual framework that will unite it with
other sciences to portray a more complete picture of how
life develops in the one system currently available to sci-
entific study. The principles that will be formulated in the
future will provide the necessary paradigms and empirical
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approaches that will be needed when, if ever, living sys-
tems other than the earth are discovered.

Cross References

This article serves as the introduction to the Ecological
Complexity Section. The three additional articles in the
section elaborate on portions of this article. They are:
� Ecological Topology and Networks
� Entropy Maximization and Species Abundance
� Human–Environment Interactions, Complex Systems

Approaches for Dynamic Sustainable Development.
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Glossary

Food webs Networks depicting who eats whom in an eco-
logical community.

Compartments Groups of highly interacting nodes with
few connections to nodes from other groups.

Scale-free networks Very heterogeneous networks in
which the bulk of nodes have a few links, but a few
nodes have a very large number of links.

Mutualistic networks Two-mode networks depicting the
mutually beneficial interactions between plants and
their pollinators or seed dispersers.
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Connectivity correlation A measure of network struc-
ture that represents the correlation between the num-
ber of interactions of a node and the average number
of interactions of the nodes it interacts with. A nega-
tive connectivity correlation would represent a modu-
lar network.

Species strength A measure of the importance of a spe-
cies in terms of the total weight of its connections.

Network motifs Patterns of interconnections signifi-
cantly over-represented in complex networks. These
may be regarded as the simple building blocks of com-
plex networks.

Trophic cascades Changes in population abundance that
propagate through more than one trophic link in the
food chain.

Ecosystem shifts Sudden qualitative changes in the state
of an ecosystem (i. e., from clear to turbid waters in
a lake) following a continuous tuning of a variable such
as nutrient load.

Deterministic chaos A periodic, random-like time series
generated by low dimensional, non-linear, determinis-
tic models.

Lyapunov exponent A measure of the degree of diver-
gence of initially close trajectories in the phase space
that is characteristic of deterministic chaos.

Coupled map lattice Dynamical system with discrete
time, discrete space, and continuous state. It was first
used by the physicist Kunihiko Kaneko in relation to
spatiotemporal chaos and later on used in ecology as
a model of spatiotemporal systems.

Interacting particle system Stochastic spatial models
with discrete time, discrete space, and finite states.
They have been used as spatially extended models of
populations and epidemics, and have been widely ana-
lyzed by Richard Durrett and Simon Levin.

Metapopulation A population of populations main-
tained in a dynamical balance between local extinc-
tions and recolonizations from nearby local popula-
tions.

Extinction thresholds Critical values in the amount of
habitat destroyed at which a metapopulation goes ex-
tinct.

Definition of the Subject

Ecological systems are paradigmatic examples of complex
systems. Just think about the thousands of species inter-
acting in complex ways within rich communities such as
tropical rainforests or coral reefs. The most pressing ques-
tions ecologists face deal with concepts such as stability,
resilience, thresholds and non-linearities which are at the

core of the sciences of complexity. How robust are these
cathedrals of biodiversity? At which rate will they disas-
semble as a consequence of global change? For example,
one of the long-standing questions in ecology is the rela-
tionship between complexity and stability. This contribu-
tion will present a brief review of some of the applications
of the complexity sciences into the realm of ecological sys-
tems and discuss the implications for our understanding of
ecosystems. Predicting the consequences of global change
on biodiversity and the services it provides will need an
interdisciplinary approach in which concepts from the sci-
ences of the complexity may be very useful. Not only com-
plexity sciences are important for ecology, but ecological
research has also provided concepts and ideas to the sci-
ence of complexity, for example in the context of deter-
ministic chaos.

Introduction

Ecology is a relatively new science. It focuses on the rela-
tionships of species among themselves and with their en-
vironments. Because of the huge number of entities and
their multiple interactions and feedbacks, the study of
ecosystems is amenable to some macroscopic approaches.

Although ecology has been an eminently descriptive
science, important theoretical contributions were made
almost from the beginning starting with the pioneering
work by Lotka [68], Volterra [125], and Nicholson and
Bailey [89]. These first contributions analyzed the dynam-
ics of simple models describing two coupled populations
such as a predator and its prey or two competing species.
This early theoretical work defined the steady state solu-
tions of these systems and their stability. The lessons from
this exercise were to understand the possible dynamic out-
comes from species interactions. For example, predators
and their prey may become engaged in cycles. Some of
these cycles were quite similar to cycles observed in na-
ture such as the textbook example of the Canadian lynx
and its main prey, the snowshoe hare. The competition
models, on the other hand, were used to understand under
what circumstances two species will coexist. These type
of models are usually more useful when they do not de-
scribe appropriately the reality pointing towards impor-
tant missing variables. It is the case with the Nicholson–
Bailey model [89] of a host-parasitoid interaction, a type of
specific predator-prey interaction in which an insect such
as a wasp lays its eggs in, at or near the body of an arthro-
pod such as a caterpillar. It is nature’s own version of the
celebrated movie Alien. Nicholson was fascinated by the
coexistence of these insects whose abundances tend to os-
cillate in the field. However, the model was unstable and
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led to the extinction of one of the species. Thus, something
else, such as the consideration of space, was needed as we
will see below.

Models of one or a few species were later on replaced
by other type of models representing entire communities.
The dominant question revolved around the relationship
between the complexity and stability of ecological com-
munities [74]. Also, single population models were ana-
lyzed in the context of nonlinearities, as for example in re-
lation to deterministic chaos [75]. Another emphasis was
in stochastic models where ecologists explored how time
to extinction scales with population size [31,43,62], and
how species coexistence depends on fluctuating environ-
ments [23,24]

Similarly, another extension of single-population, or
two coupled population models were in the direction of
addressing spatial degrees of freedom, that is, incorporat-
ing a spatial dimension and exploring how this new di-
mension made species coexistence easier.

Field ecologists, on the other hand, took other av-
enues but with similar goals. What regulates populations?
What shapes the structure of communities? The first type
of question emphasized the role of density-dependence
versus external variables in explaining population change
through time. The interest of this work is twofold since it
may guide a biologically-informed pest control as William
Murdoch and colleagues have advocated [83,84]. At the
community level, the question was to understand the suite
of mechanisms allowing the high levels of biodiversity
that can be found in coral reefs and tropical rainforests.
Joseph Connell, for example, analyzed the role of compet-
itive interaction in structuring the marine intertidal [26].
In particular, he analyzed how patterns of recruitment,
mortality and competition affected the distribution of bar-
nacles [26]. More generally, he addressed how the high
diversity in coral reefs and tropical forests is related to
external perturbations in his famous intermediate distur-
bance hypothesis [27]. This states that the highest diver-
sity levels are found neither in the absence of perturbations
(competitive exclusion eliminates some species), nor with
perturbations too frequent or intense (the bulk of species
can not survive). Highest diversity levels are found at in-
termediate levels of perturbation.

Robert Paine emphasized the role of predation in con-
trolling biodiversity in the intertidal [95]. His seminal
work led to the concept of keystone species. He exper-
imentally excluded the starfish in plots of the intertidal.
The starfish is an important predator. It mainly preys on
a species of algae which is competitively superior, keeping
a control on its abundance and allowing the coexistence
of several algae species. When Paine removed the starfish,

the competitively superior algae out-competed the other
algae species and the system became quite simplified. The
predator had a strong interaction with its main prey and
that had implications for the whole ecosystem. The impor-
tance of some species is much higher than what one would
have predicted based on their abundance. The keystone
concept is extremely important in ecology. It has shown
beyond any doubt the potential ecological impact of a sin-
gle species, and thus that we need to consider the roles of
individual species in order to manage ecological commu-
nities [95].

What precedes is a very simplified and biased review
of milestones in ecology and does not claim to be repre-
sentative of the wonderful work that has been achieved
in its century of history. It just tries to provide some gen-
eral background on the ideas of diversity, complexity, non-
linear dynamics and threshold behavior that will be illus-
trated in the following sections as examples of applications
of the paradigm of complex systems to the problems of
ecology and the preservation of natural resources in the
face of human-induced perturbations. Next, I will explore
this suite of studies and how they have shed light on our
understanding of ecological processes.

Information Theory andDiversity

A great contribution in ecology was made from the per-
spectives of general systems. Ramon Margalef was pio-
neering the use of Information Theory as a way to describe
ecological systems [70]. He was inspired by the work of
Norbert Wiener, who introduced the concept of cyber-
netics [4,126]. The key idea was to emphasize the feed-
backs between components of the ecosystem as a way to
understand the control of one system by another. A clas-
sic example of negative feed-back is that between a preda-
tor and its prey. Predator and prey regulate each other’s
population as a thermostat would regulate a room’s tem-
perature. Margalef’s book Perspective in Theoretical Ecol-
ogy [71] was a classic in that regard. Margalef felt com-
pletely comfortable in the context of cybernetics because
it perfectly described his view of ecology, a view defined
as “the study of systems at a level in which individuals or
whole organisms may be considered elements of interac-
tion, either among themselves, or with a loosely organized
environmental matrix” [70]. Information Theory was ap-
plied to ecology mainly as a way to characterize the di-
versity of an ecosystem measured as the number of differ-
ent species and their relative abundances. Diversity would
be maximum when each individual was from a different
species, and minimum when all individuals were from the
same species. Margalef used to talk about the museum
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and the field of agriculture to refer to these two extreme
cases.

In the context of the theory of information, an ecosys-
tem is like a channel that transfers information. The am-
plitude of this channel is measured by the Shannon En-
tropy, which is a measure of disorder or uncertainty. In
our context, let’s say that we randomly pick up an individ-
ual. What is the uncertainty that this individual belongs to
a specific species? Let’s assume that an ecosystem has s dif-
ferent species, each one with an abundance n1; n2; : : : ; ns ,
so that the total number of individuals is N D

Ps
iD1 ni .

The probability that the randomly picked individual be-
longs to species i is then pi D ni /N , and one can define
the diversity of the community as

H D �
sX

iD1

pi log2 pi : (1)

MacArthur [69] andmany others advocated the use of this
type of measure to describe diversity and many different
uses of these indices have been applied since then, for ex-
ample in trophic studies of animals’ diets, or in the quan-
tification of energy flows in food webs [123].

Networks

Another significant contribution to a general system
view of ecology was the concept of food webs, networks
that represent who eats whom in ecological commu-
nities. These graphical representations of communities
were first drawn by ecologists such as Lindenman and
Odum [32,67,90]. Odum [90] used his engineering train-
ing to represent the interrelationships of ecological sys-
tems. As in the case of Margalef, he was emphasizing
the interrelationships more than the nodes. He also had
a broad and rich background that allowed him to think
about ecosystems with fresh views. And he insisted on the
concept of energy as one of the most important curren-
cies in ecology. Odum used energy diagrams in the hope
of seeing general patterns across systems regardless of tax-
onomic differences [118].

Food webs have constituted one of the classic subjects
in ecology, with changing emphasis through the years. In
the 1970s, and as a consequence of the seminal paper by
Robert M. May [74], people started looking at food web
structure due to the evidence that structure greatly affects
food web dynamics.

Stability and Complexity

May [74] used Gardner and Ashby’s previous result to de-
termine under what circumstances a random food webwill

be stable. This work was based on matrix algebra and was
very successful at starting a rich research agenda. Roughly
speaking, May was using Lotka–Volterra models with ran-
dom interactions among species, and analyzed the proba-
bility of this model to be linearly stable. Given a certain
connectance C measuring the fraction of non-zero inter-
actions among species, May used previous results on ran-
dom matrices to show that the system will be stable if

˛ < SC�
1
2 ; (2)

where S is the number of species and ˛ is the average in-
teraction strength among species. As noted from the pre-
vious inequality, the probability of a community to remain
stable decreases as either the number of species or connec-
tions increases. This result essentially tells us that there are
some constraints to randomly built communities in order
to remain stable. Complexity begets instability, which con-
trasted with classical arguments by MacArthur, Elton and
Margalef that suggested that complex ecosystems are more
stable than simple ones. The question, thus, was to explore
what properties of food webs counterbalance this tendency
towards instability.

As a consequence of May’s [74] paper, ecologists be-
come interested in the modularity or compartmentaliza-
tion of these ecological networks. The reason, at least in
part, was the discussion at the end of that influential pa-
per. May, after showing that complexity begets instabil-
ity, performed some numerical experiments with non-ran-
dom networks. He concluded his paper by noting that
“such examples suggest that our model multispecies com-
munities, for a given average interaction strength and web
connectance, will do better if the interactions tend to be ar-
ranged in “blocks” – again a feature observed in many nat-
ural ecosystems”. Thus a whole research program was set
on compartments. Part of the research focused on explor-
ing the theoretical implications of compartments [98]; part
was trying to explore whether real food webs are compart-
mentalized [58,100,103]. For a review on the studies on
food webs see [25,94,99,117]. This body of work empha-
sized invariant properties of food webs, their structure, the
frequency distribution of interaction strengths, and simple
models able to generate food webs with a similar structure
as the observed in nature. I will not review this interesting
literature here, instead I will emphasize the latest round of
research in food webs that echoes similar work in complex
networks. Recently, tools from the study of complex net-
works have been successfully applied to food webs. Food
webs are now seen as another example of a complex net-
work, with several papers comparing their structure with
that shown by other types of networks such as the Internet,
protein networks, or social networks [2].
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Scaling in Ecological Networks

A first descriptor of network structure is the connectivity
distribution, defined as the probability distribution of the
number of interactions per node. The idea is to pick ran-
domly a node in the network and represent the probability
of this node interacting with one, two, : : : ; n other nodes.
The relevance of this descriptor of network structure stems
from two facts. First, from its relationship with early graph
theory by Paul Erdös and Alfred Rényi [34] and recent
build upmodels that generated a good correspondence be-
tween several models of network formation and their con-
sequent connectivity distribution. Second, because the pa-
per by Albert et al. [1] clearly related the shape of the con-
nectivity correlation with the network robustness to error
and attack. Albert et al. [1] found that the Internet has
a connectivity distribution that follows a scale-free distri-
bution defined by a power-law of the type:

p(k) / k�� ; (3)

where p(k) is the probability of a node having k links and �
is a critical exponent. In a log-log plot, this relationship
is defined by a straight line of slope �� for all the range
of k values. That is, Eq. (3) is a relationship not defined on
a particular scale. This would not be the case, for example,
for an exponential distribution that has a specific scale, the
average number of links per node [108].

Barabasi and Albert [6], building on a previous result
by Simon [110] showed that a process of network build
up where new nodes link preferentially with already well-
connected nodes (a type of “rich gets richer process”) is
a simple recipe to generate scale-free networks. On the
contrary, a random model such as the classical random
graph by Erdös and Rényi [34] generates distributions
with Poisson distributions or exponential distributions if
the number of nodes keeps growing. The important point
is that in the latter case, the resulting network is much
more homogeneous in the sense that all nodes have a sim-
ilar number of interactions.

A randomly built network with connectivity distri-
butions with thin tails, such as the Erdös–Rény random
graphs, are very fragile to the random deletion of nodes.
After a certain fraction has been removed, the networks
fragment. This fragmentation threshold will be revisited
later on in the context of spatial processes, where space is
represented as a regular (or irregular) network of points.
Thus, random networks are very fragile [1]. On the other
hand, scale-free networks are much more robust to the
random deletion of nodes. One has to remove a high frac-
tion before the network gets fragmented. The reason is that
the few highly connected nodes (the hubs) play a major

Ecological Systems, Figure 1
The mutually beneficial interactions between plants and their
animal pollinators (picture) and seed dispersers have played
a major role in the generation of earths’ biodiversity. Picture
courtesy of Mark Chappell

role in keeping the entire network together. Since these
hubs are quite rare, it is very unlikely to remove them by
chance. However, as shown by Albert et al. [1], these hubs
are the Achilles’ heel of the network. If one now starts
removing the most connected nodes, the whole network
collapses. Thus, scale-free networks are very robust to the
random loss of nodes but very fragile to the loss of the
hubs.

The work by Albert et al. inspired ecologists who
turned to food webs in search of their connectivity dis-
tributions. Solé and Montoya [112] first analyzed a few
food webs and found evidence for a scale-free distribution,
while Camacho et al. [20] compared different distributions
and found the best fit to be to an exponential distribution.
Dunne et al. [30] generalized these previous results by us-
ing a broader data set and testing several functions. Their
conclusion was that even when there were a few food webs
described by fat tail distributions, the bulk of the food webs
had tails following an exponential distribution.

Jordano et al. [53] extended the argument by focusing
on a different type of ecological network, the one describ-
ing the mutually beneficial interactions between plants
and their animal pollinators or seed dispersers (Fig. 1).
These are two-mode networks with a much higher level
of resolution than traditional food webs. While food webs
have a high level of lumping so that a node contains sev-
eral taxonomic species, mutualistic networks have a level
of resolution almost always corresponding to a taxonomic
species. These networks describe the coevolutionary pro-
cess in species-rich communities [8]. This study analyzed
53 communities and concluded that in the bulk of cases,
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Ecological Systems, Figure 2
The mutualistic interactions such as the one depicted in Fig. 1
form complex networks of species interdependence. The archi-
tecture of these networks greatly affect their robustness to the
extinction of one of the species. The picture represents a plant-
pollinator network in the Arctic. Plants and insects are repre-
sented as green and yellow nodes, respectively

connectivity distribution for both plants and animals was
best fitted by a truncated power law, a distribution of the
following form:

p(k) / k��e�k/kc : (4)

The main difference in relation to Eq. (3) is the existence
of a critical connectivity level kc beyond which the connec-
tivity distribution decays faster than expected for a power-
law. These mutualistic networks are still very heteroge-
neous but not as heterogeneous as predicted for a scale-
free distribution (Fig. 2) [53].

There are several non-exclusive factors that may ac-
count for the existence of these truncated power-law dis-
tributions. Jordano et al. [53] focused on what they termed
forbidden links, that is, the existence of interactions that
are not possible due to size or phenology uncoupling. For
example, an insect cannot pollinate a plant species if it
is a migrant that arrives after the flowering period of the
plant. Or a bird species will not disperse a tree species if
their seeds are larger than the width of the bird’s beak. By
combining analytic thinking and natural history, Jordano
et al. [53] were able to account for a large fraction of the
non-observed interactions in two well-studied communi-
ties.

Of course the fact that forbidden links exist and that
their existence can lead to a truncation of an otherwise
power-law does not exclude additional mechanisms. For-
bidden links and similar mechanisms such as filtering in-
formation (i. e., a new node can sample only a subset of
the network) constrain the preferential attachment mech-
anism. Other processes also lead to truncated power-law
distributions without any constraint on such a process. For
example, the same preferential attachment process taking
place on a bipartite network leads to a truncated power-
law distribution if there is any asymmetry between the two

sets such as one set (e. g., plants) growing faster than the
other set (e. g., animals) [39,41].

From the point of view of the robustness to species
extinction of these mutualistic networks, the truncated
power-law distribution confers more robustness than an
exponential distribution to the random extinction of
species but less dependence to the extinction of the hubs
than for a power-law distribution.

Network Structure: Modules

The connectivity distribution is just a first description of
network structure. In the general field of complex net-
works, scientists looked at deeper measures of network
structure such as connectivity correlation or modularity.
This was mainly analyzed for genetic networks and the
Internet. For example, the connectivity correlation mea-
sures the average correlation between the number of links
of a node and the average number of links of the nodes it
interacts with. Maslov and Sneppen [73] found that both
the internet and protein networks had a negative con-
nectivity correlation, which means that hubs tend to in-
teract with poorly connected nodes. This corresponds to
an organization in compartments, which may buffer from
the propagation of mutations or other perturbations [73].
Melián and Bascompte [78] applied this idea to food webs
and found that they are more cohesive than the Internet
or protein networks. Generalist species tend to interact
among themselves. This maymake these communities less
robust to the propagation of a perturbation such as a con-
taminant, but more resistant to the extinction of a species.
There is more than a single way to be robust [78]. This
description of food webs is complementary to a cohesive
modular organization where several k-subwebs, that is,
groups of species with at least k interactions among other
species in the subweb, are linked to a densest central sub-
web which induces cohesion to the entire food web [79].

This work on the structure of food webs links to
the early attempts to characterize compartments men-
tioned above [74,100,103]. In this regard, research on food
webs [74,98] pioneered the search for network structure
that 30 years later would be so important in complex net-
works. The search for compartmentalization in food webs
has not found too much evidence, partly because a lack
of high quality data, partly because a lack of appropriate
statistical tools to unambiguously define and characterize
modules. More recently, Krause et al. [58] used software
available to sociologists and found the strongest evidence
of compartmentalization in three out of five food webs
studied. In the context of the physics of complex networks,
recent work has addressed the role of compartments in the
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Ecological Systems, Figure 3
The nested assembly of mutualistic networks. Two-mode interacting networks are represented as a matrix with plants in rows and
animals in columns. A square indicates that the plant in this row and the animal in this column interact. Panels a, b and c represent
a totally nested, random and real network. The line in c represents the isocline of perfect nestedness. Modified from [14]

structure of complex networks such as the world-wide air
traffic [42]. Several algorithms to quantify modularity are
now available.Olesen et al. [92] have used these algorithms
to detect modularity in pollination networks. These mod-
ules are interpreted as the basic units of coevolution, that
is, small groups of highly interacting plants and animals.
The modularity analysis is useful in this context in show-
ing the denser areas of the network. These denser areas
have the potential to be coevolutionary hotspots or vor-
tices [119].

Another concept ecologists have used to further de-
scribe the structure of mutualistic networks provides from
island biogeography, nestedness. In the mutualistic con-
text, a matrix of plant-animal interactions is nested if spe-
cialists interact with species that form perfect subsets of the
species with which generalists interact (Fig. 3) [14]. This
is a pervasive community organization that has been de-
scribed for other ecological interaction such as those be-

tween cleaning fish and their hosts [41], or parasites [60].
Nestedness implies a central core of interactions where
generalist plants and generalist animals interact among
themselves. This originates a dense core of interactions
with a high level of redundancy and the possibility for the
system to respond to perturbations. This is somehow in
agreement with the cohesive organization of food webs
found through the connectivity correlation and k-subweb
distribution seen above. On the other hand, a nested mu-
tualistic pattern implies an asymmetric pattern of special-
ization since specialists tend to interact with generalists.
The latter tend to be more abundant and less fluctuating,
and thus these community patterns confer mechanisms
for the persistence of rare species [14]. Ecologists are now
starting to explore the implications of these universal com-
munity patterns from the point of view of community re-
sponses to perturbations such as habitat loss [5,37] or the
invasions of foreign species [19,80,82,91].
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Weighted Ecological Networks

These heterogeneous, asymmetric network patterns in
mutualistic networks are also observed in weighted net-
works. In this case, species strength, the weighted equiva-
lent of species degree, grows faster than linear with species
degree [7]. This pattern had been previously found for the
world-wide airport network, but not for the scientific col-
laboration network [7]. The strength of highly connected
species is even higher than expected based on their degree
because specialists tend to interact exclusively with the
most generalized species [14], and so depend completely
on them. Thus, specialists contribute disproportionately to
increase the overall strength of the generalists they depend
upon. The nested structure of these mutualistic networks
accounts for this pattern. The predominance of weak in-
teractions and the asymmetry in pairwise interaction when
a plant, for example, depends highly on an animal, tends to
increase the conditions for the persistence and stability of
species-rich communities as indicated by analytical results
of a simple community model [16].

The role of weak interaction strengths on community
stability has also been analyzed in studies of weighted food
webs. This research agendamay be traced back to the sem-
inal work by Robert Paine [95,96] who in his classic exper-
iments on the intertidal noted in the introduction, found
that the strength of interactions between predators and
their prey are defined by a few strong interactions in a ma-
trix of weak interactions. This pattern has then been ob-
served over and over in other food webs and using other
measures of interaction strength [15,35,103,123,127]. Sim-
ple dynamic models have shown that this frequency dis-
tribution of interaction strengths increases the stability of
communities [57,77]. However, the frequency distribution
of interaction strength is only a first descriptor that does
not tell us how these interaction strengths are combined
in the basic components of the food web. Thus, Neutel et
al. [88] found that weak interactions tend to be distributed
in long loops. This avoidance of strong interactions in long
loops induces the stability of the whole community [88].
Similarly, Bascompte et al. [15] found that the co-occur-
rence of two strong interactions in a tri-trophic food chain
occurs less often than expected by chance, and that in the
few cases in which this occurs, it tends to be accompa-
nied by strong omnivory (predator preying on two con-
secutive levels of the food chain) more often than expected
by chance. These results have implications for the likeli-
hood of trophic cascades, that is, changes in species abun-
dance that transmit at least through two consecutive levels
of a food chain. An example of a tropic cascade would be
a decrease in sharks through overfishing, a subsequent in-

crease in abundance of big fish that constitute their prey,
and a concomitant decrease in the abundance of smaller,
herbivorous fish the former prey on. Two strong interac-
tion strengths have the potential to induce trophic cas-
cades after the overfishing of top predators, but when ac-
companied by strong omnivory the magnitude of this cas-
cade is severely reduced. Thus, in the light of the dynamic
results of a biologically parametrized bioenergetic model,
one can conclude that, other things being equal, the re-
duced frequency of two consecutive interaction strengths
and their association to strong omnivory reduce the like-
lihood of trophic cascades [15]. However, this global pat-
tern does not assure that the marine food web is buffered
from the effects of overfishing, since overfishing does not
affect randomly picked species but tends to focus on large,
top predators. In the Caribbean food web, fishing selec-
tively targets a biased sample of species belonging to up-
per trophic levels [86,97]. These species include ten heav-
ily fished shark species from seven families that account
for almost one-half of the strongly interacting food chains
in the Caribbean food web [15]. The likelihood of trophic
cascades after the overfishing of these predators is thus
high. These cascades can contribute to the depletion of
herbivorous fishes at the base of the chain such as parrot-
fishes that are important grazers of the algae. The reduc-
tion of these herbivorous fishes can accelerate the tran-
sition from corals to algae, an example of bistable steady
state that will be considered later on in the context of
ecosystem shifts as examples of phase transitions (see be-
low).

First quantifications of interaction strength through
energy fluxes was using information theory, the same
framework we have described in the previous section in
the context of species diversity [123]. Newmetrics to char-
acterize weighted food webs build on this preliminary
study [18].

Network Motifs and Trophic Modules

A final parallelism between complex networks and eco-
logical food webs has to do with network motifs, patterns
of interconnections that are over-represented in complex
networks and that can be considered as the simple build-
ing blocks of complex networks [81]. Interestingly enough,
there is a significant difference between research on net-
workmotifs and its equivalent research in ecology. The ap-
proach in complex networks is eminently structural, while
that of their ecological counterpart is eminently dynami-
cal. For example, the first papers on network motifs quan-
tified their representation in entire networks and com-
pared their frequency with that predicted by appropriate
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null models. Only later on there were some studies ex-
ploring the dynamics of these different motifs [101]. On
the other hand, ecology has been studying the dynamics
of simple trophic modules such a tri-trophic food chain
without looking at how frequent are these simple modules
in entire food webs [9]. What remains to be done now is
to scale-up from these isolated modules to the entire food
web.

Complex Dynamics

Let us now move from structural complexity to dynamical
complexity. There is a strong relationship between ecol-
ogy and complexity sciences in the context of population
dynamics. As a matter of fact, one of the more seminal
contributions to deterministic chaos came from theoreti-
cal ecology. Once more, the great talent of Robert May was
behind this contribution [79]. May was looking at one of
the simplest models one could think of in theoretical ecol-
ogy. It describes the dynamics of populations with non-
overlapping generations. Let’s assume that the density of
insects in a generation t is Nt. Let’s first normalize this
value by dividing it by the highest density ever observed
Nmax so that xt D Nt/Nmax. If we imagine a deterministic
model with density dependence, one can write what the
density of insects at the next generation will be

xtC1 D �xt(1 � xt) ; (5)

where � represents the population rate of increase. Robert
May analyzed the temporal dynamics of system (5) as he
was increasing the growth rate �. For very low values,
the population goes extinct. When � > 1 the population
reaches a steady state. If � is further increased, at � > 3
the steady state becomes unstable and a cycle of period
two becomes stable. For even higher �-values, there are
other period-doubling bifurcations and so the population
oscillates with cycles of higher frequency. Finally, when �
reaches a critical value the dynamics never repeats itself,
the system shows deterministic chaos [79].

Finding this period-doubling route to chaos in an eco-
logical model opened a research agenda that found that
this scenario has universal properties, e. g., the relation-
ship between the successive critical �k values at which
a new bifurcation k appears are independent of the model.
More than that, even in experimental systems one could
observe the same universal laws [37]. Specifically, Feigen-
baum showed that for a large enough �-value, the follow-
ing relationship takes place:

ı D lim
k!1

�k � �k�1

�kC1 � �k
D 4:6692 : : : ; (6)

The co-discovery of deterministic chaos in the logistic
equation (together with parallel work in meteorology and
mathematics) had a huge importance, not only in the field
of ecology, but beyond. It is one of the few examples in
which the flow of ideas has gone from ecology to physics.
Since this important discovery, a rich research program of
research in ecology revolved around the role of determin-
istic chaos in ecological systems, both theoretically [76] as
well as empirically [51,106].

Chaos in the Real World

William Schaffer and Mark Kot [106] were among the pi-
oneers in the search for deterministic chaos in real ecolog-
ical systems such as the cycles of the Canadian lynx or the
monthly records of measles in big cities. Ecology was fac-
ing the possibility that complex temporal series were not
the result of hundreds of stochastic variables, but of a few
variables in deterministic, yet non-linear dynamical sys-
tems [52]. This is not just a technical issue. If complex dy-
namics in the populations of diseases or pests were deter-
ministic we could understand the underlying rules. How-
ever, the evidence for chaos has been more evasive due to
the shortness of temporal series and their high amounts of
noise.

Arguably, the first serious attempt to quantify chaos
in nature was the paper by Hassell et al. [46], who an-
alyzed the temporal series of 28 arthropod insects from
both the lab and the field. Detecting chaos depends very
much on the way it is attempted, and ecologists have been
very imaginative in their search for chaos in a noisy world.
In this first study, Hassell et al. fitted their temporal se-
ries to a previously studied non-linear population model.
Twenty-six populations had temporal series which best
fit model parameters within the parameter region corre-
sponding to steady states, and only one example corre-
sponded to the region of deterministic chaos. This was
thought to be of little empirical support for chaos to be-
gin with.

Schaffer and Kott [106] used a different approach and
different data sets, and their work supported the notion
that chaosmay be common in ecology. They used the same
techniques physicists were using, such as attractor recon-
struction and estimation of its fractal dimension. Several
time series such as the Canadian lynx had attractors rem-
iniscent of the strange attractors that are the hallmark of
deterministic chaos. Similar results were obtained for the
measles records in Baltimore [3,106].

Sugihara and May [116] used non-linear forecasting
techniques to distinguish deterministic chaos from noise
(both correlated and uncorrelated). This clever approach
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is based on dividing the temporal series in two halves and
using the first half as a source of known data, and consider-
ing the second half as the unknown future. The correlation
coefficient between predicted and observed values is plot-
ted versus prediction time. Deterministic systems show an
exponential decay in correlation, while this is constant for
noisy systems. Ellner and Turchin [32] used non-linear
techniques to estimate the largest Lyapunov exponent, i. e.,
the parameter telling at which rate two nearby trajectories
in the phase space will diverge. Their strategy to reduce the
high levels of noise present in the original time series was
to first estimate the map that best fits their temporal series,
and then use it to calculate the Lyapunov exponent from
the dynamics of the map. Tilman and Wedin [120] built
a Poincaré map by plotting the biomass of annual plants
one year versus the same biomass the next year. The slope
of this map for a vegetationmodel previously used dictates
whether the system is or is not chaotic. In summary, there
was a serious effort to find chaos in real ecosystems by us-
ing a broad spectrum of techniques. There was evidence
of chaos, but also evidence against its presence. This line
of research is almost extinguished, but a recent paper by
Sibly et al. [109] touched on it by estimating return rates
after a perturbation for a very large number of temporal
series of groups of mammals, birds, fish, and insects. They
found that in the bulk of cases the return rates were quite
below the threshold for chaos, which corresponds to stable
populations. However, there is a clear case for the poten-
tial of chaos in population dynamics, a beautiful example
that comes from an interaction between analytical and lab
work.

Costantino and colleagues [28,29] combined an exper-
imental setting where a population of the flour beetle Tri-
bolium was growing in milk bottles, and a population dy-
namic model that, although simple, incorporated the basic
dynamics of the species life cycle. This was a discrete time
model that described the three phases of the beetle life cy-
cle, namely feeding larvae, non-feeding larvae, and adults.
Cannibalism is very common in this species and mathe-
matically induces a strong nonlinear term that is partly
responsible for the presence of deterministic chaos. This
team first proceeded by parametrizing their model with
the temporal data they obtained in the lab. From the exper-
imental point of view, they manipulated the recruitment
rate into the adult stage by adding or removing adults at
the time of the census. As this recruitment rate was in-
creased, there was a sequence of period-doubling route to
chaos shown both by their lab census as well as by their
model with the adequate parameter values.

In sum, maybe chaos is not common in nature, but na-
ture certainly has the potential to show chaos.

Spatiotemporal Dynamics

Deterministic chaos was perhaps the first pedagogical ex-
ample of the potential for non-linear dynamics in ecol-
ogy. The lesson was that other dynamical behaviors be-
yond steady states and cycles are compatible with a de-
terministic, density-dependent model. The next finding of
the potential of non-linear dynamics to generate complex
phenomena was provided by the study of dynamic systems
extended in space. Imagine a discrete lattice of sites sim-
ulating the patchy distribution of some available habitat.
Within each one of these habitat patches a local popula-
tion can be described by a dynamic model such as the lo-
gistic map. However, we allow now for the fact that a frac-
tion of the individuals born in a patch disperse to neigh-
boring sites. The resulting spatiotemporal dynamics can
be described by a coupled map lattice (CML), a dynamical
system with discrete time, discrete space and continuous
state, first used by the Japanese physicist Kunihiko Kaneko
working with problems of diffusion and spatiotemporal
chaos [54,55]. This approach allows one to easily study
the combined action of two processes: local dynamics (de-
scribed by an appropriatemap or discrete timemodel such
as the logistic Eq. (5), and the coupling through dispersal
of these local maps. A CML can be written in the following
way:

xtC1(i) D (1 � D)Ffxt(i)g C
D
k

kX

jD1

Ffxt( j)g ; (7)

where xt(i) is the density of population at site i and time t,
D is the fraction of individuals leaving its patch and k is
a certain neighborhood around a local patch to where in-
dividuals can move. Coupled map lattices such as (7) have
been extensively used in ecology [10,112]. For example,
coupled map lattices have shown how dispersal may affect
the temporal dynamics [49], and the length of the tran-
sients [50]. Particularly relevant is the finding of spatial
self-organizing patterns such as spiral waves in the abun-
dance of populations [47,48,115]. This phenomenon is
qualitatively similar to the one found for excitable media
where symmetry breaking takes place around a pace-
maker [85]. From the point of view of ecology this
suggests that simple rules can create long-range spatial
patterns. Similar spatial models belong to the class of in-
teracting particle systems, where not only space and time
are discrete, but also the state of a cell is on one of a few dis-
crete values. As opposed to CMLs, the latter are stochastic
models for which there is a rich body of mathematical
work addressing, among others, how spatial pattern arises
in ecology [31]



Ecological Systems E 2721

Coupled map lattices are useful to link patterns at dif-
ferent spatial scales. The problem of pattern and scale is
at the core of ecology [63]. For example, one can describe
the population dynamics at a lattice site. In the case of
a chaotic map, this dynamics will be quite unstable, with
strong fluctuations. This unstable characteristic was one of
the arguments by which some field ecologists argued that
chaos would not be common in nature [17]. If populations
oscillate so heavily, at some point population density will
be low enough for stochastic events to lead the population
to extinction. However we can now see the same unstable
dynamics from a larger spatial scale, let’s say that we plot
the total abundance in 2 � 2 lattice sites, 4 � 4 lattice sites,
and so on. How unstable will the chaotic dynamics look?
Surprisingly, the dynamics will now appear very constant.
Solé and Bascompte [12,111] coined the term chaotic sta-
bility to refer to the fact that chaos and its instability at
a local scale can induce a strong stability at a global scale.
Thus, the criticism of chaos based on its instability does
not apply when space is considered.

One way to understand the previous result is to re-
member the strong dependence on initial conditions of
a chaotic system. Because of this, two nearby local pop-
ulations will start to oscillate out of phase, and so ups and
downs will soon cancel each other. Technically, this can
be analytically proved following reference [105]. These au-
thors found a relationship between the largest Lyapunov
exponent and the spatial coherence length. The coherence
length describes how far away two points oscillate in a cor-
related way. As a matter of fact, the inverse Lyapunov
exponent can be regarded as a correlation time, i. e., the
time horizon beyond which two initial trajectories fluc-
tuate totally independent from each other. In the vicinity
of the onset of chaos, the following relationship between
the largest Lyapunov exponent () and the spatial coher-
ence length (�) holds: � � �1. Thus, the more chaotic
a system is, the faster spatial correlation decays with dis-
tance. An application of this idea in ecology was proposed
by [10], providing a clear mechanism for an early sugges-
tion by [120] on the difficulty of detecting chaos at larger
spatial scales even when present at local scales.

Another interesting application of coupled map lat-
tices is to the problem of pattern formation, which is a cel-
ebrated one in several fields such as developmental biology
and excitable media [85]. In the context of ecology, pat-
tern formation in space is related to the problem of species
coexistence. This is another example where introducing
spatial degrees of freedom changes entirely our picture of
ecological systems. At the beginning of this contribution I
mentioned that Lotka and Volterra had derived a mathe-
matical model for two competing species. The lesson from

that model was that the coexistence of the two species
is only compatible with low values of interspecific com-
petition. One interesting avenue has been analyzing the
mathematical conditions under which species coexist with
different environmental fluctuations [23,24]. Another as-
pect has been considering the spatial component. If one
considers the spatial extension of a competitive model,
local exclusion is compatible with global coexistence if
stochasticity plays a role in the dynamics. From a spa-
tially homogeneous setting where both species were ini-
tially present, one ends up with clusters of patches where
species one is the survivor and alternative clusters where
the second species wins [114]. These steady state spatial
patterns are equivalent to Turing patterns in models of
development.

An even more striking example of spatial self-organi-
zation is the existence of spiral waves such as the ones
observed in excitable media as some chemical reactions
or electric activity in the heart [38,85]. If one extends the
host parasitoid model by Nicholson and Bailey into a cou-
pled map lattice, one can observe the spontaneous emer-
gence of traveling waves in the density of one of the species
(Fig. 4) [47,113,115]. This is relevant from several points
of view. From the point of view of complex systems, this
shows how the interplay between local non-linear dynam-
ics and short-range dispersal can generate large scale self-
organized spatial patterns as first shown by the greatmath-
ematician Alan Turing [63,121]. This opens a new way to
interpret large scale patterns in ecology, traditionally ad-
duced to reflect environmental causes [15]. Interestingly,
these spiral waves are related to the persistence of inter-
acting species: once more, despite the local instability, the
system is globally stable and all species coexist more easily
than predicted by non-spatial models.

Coupled models have also shown how dynamics can
be affected by dispersal. For example, reaction-diffusion
models of population dynamics have illustrated the disper-
sal-induced route to chaos, that is, the change in the type
of dynamics from steady states to cycles and to chaos as the
dispersal rate is increased [59,93]. Similarly, coupled map
lattices have shown how the transient time in non-spatial
models becomes now extremely large [50], which had also
been noted by Kaneko from a physical perspective. This
has important implications in ecology. We implicitly as-
sume that the steady state is the relevant dynamics, but if
transients are as long as thousands of years, transient dy-
namics may be much more relevant for ecology than long-
term steady states [50].

As for the case of deterministic chaos, a myriad of pa-
pers looked for these self-organizing patterns in nature,
and good evidence for pattern formation come from ex-
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Ecological Systems, Figure 4
Spiral waves in a coupled map lattice model of interacting populations. The figure corresponds to an iteration and each lattice size
codes the abundance of hosts in a host-parasitoid system. These self-organizing spatial patterns are verymuch related to the persis-
tence of populations

amples of rodents in northern Europe [104], host-para-
sitoid interactions [72], and outbreaks of the moth Zeira-
phera diniana in the Alps [19]. Once more, theory was
ahead and lead field ecologists to search for examples of
complexity in real nature. This was expanding our hori-
zons andmoving from a classical view of ecosystemswhere
all complex processes were associated with external vari-
ables, to another scenario where internal processes were
able to account for much of the complexity observed in
real nature.

Thresholds

One important application of the sciences of complexity is
the concept of phase transition from statistical mechanics.
This is very important because in ecology we are used to
thinking in terms of linear relationships between a cause
and its effects. Oftentimes, as we tune a parameter we find
the occurrence of a critical point in which a sudden quali-
tative change takes place. A previously stable solution be-
comes unstable and two new stable solutions emerge, as we
have seen in the period-doubling route to chaos. A sym-
metry-breaking process takes place and the system chooses
one of two possible solutions. Amechanical analogy would
be a ball rolling on a surface with two minima. This de-
scribes the dynamics of a phase transition.

The paradigmatic example of a second-order phase
transition in physics is the Ising model. This model de-

scribes the behavior of a set of magnets on a square lat-
tice of length side N. The state of each lattice site i at
time t is defined by the spin St(i). Each spin can be in
the states upwards (1) or downwards (� 1) and inter-
acts with its four nearest neighbors to minimize energy,
that is, to have parallel alignment. The global magnetiza-
tion is M D

P
K Si , and the idea is to plot this measure

as a function of the temperature. For high temperatures,
noise dominates, and the distribution of spins is random,
i. e., M D 0. At very low temperatures, the system is or-
dered and all spins point towards the same direction (ei-
ther upwards or downwards). M becomes maximum. As
we progressively decrease the temperature, a sudden tran-
sition takes place at a critical temperature Tc. Themagneti-
zation per spinm D M/N behaves close to Tc (for T < Tc)
as m � j� j˛ where � D (T � Tc)/Tc [107].

A relevant parameter to characterize spatially dis-
tributed systems is the correlation length � . For T > Tc we
already said the system is random and correlation lengths
are small. Close to Tc, � scales as � � j� j�� , � being an-
other critical exponent. Below the critical point, the model
exhibits long-range order. Clusters exist on every length
scale. That is, the system is scale-free. The correlation
length �, the size of the maximum cluster, and the vari-
ance in sizes diverges to infinity as we approach the critical
point.

Percolation theory has had a nice application as a null
model in landscape ecology [122]. A useful example is its
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application to the problem of habitat fragmentation. This
is an extraordinarily complex problem due to the acceler-
ating rates of habitat destruction everywhere and the well-
known fact that habitat transformation is the number one
cause of biodiversity decline. Imagine a spatial lattice as
the one described above. A direct application of percola-
tion consists in envisioning a situation in which each site
is originally pristine, i. e., occupied by vegetation, and one
proceeds by destroying an increasing fraction of randomly
placed sites. As for the Ising example, the size of the largest
patch starts declining smoothly at the beginning. A new
destruction event just reduces the size of the single large
patch by one site. But close to the percolation threshold,
an additional destruction implies that the previously con-
tinuous cluster breaks down in small pieces. To separate
the effects of habitat loss from those of habitat fragmenta-
tion, one can use the following order parameter [13]:

˝ D
Smax

PN
kD1	(k)

; (8)

where Smax is the size of the largest cluster, and	(k) is one
if site k is available, and zero if it is destroyed. As can be
easily seen, when all available sites belong to the same clus-
ter, the previous equation is one. From a biological point
of view, it means that we are only facing habitat loss. How-
ever, when habitat loss induces habitat fragmentation, the
value of the order parameter drops suddenly. This is be-
cause we have now several disjoint clusters of vegetation,
and thus only a small fraction of the available sites belong
to the largest cluster. Interestingly enough, the order pa-
rameter drops really fast near the percolation threshold, so
its value is one below a critical level of habitat destruction,
and becomes almost zero after that threshold.

Extinction Thresholds

The above non-linear changes in landscape structure as
more habitat is destroyed have implications for the per-
sistence of a species inhabiting such a landscape. Species
inhabiting heterogeneous landscapes living in a dynam-
ical balance between local extinctions and recoloniza-
tions from neighborhood patches are called metapop-
ulations [44,66]. If we plot the regional abundance of
a metapopulation (i. e., the fraction of sites occupied) ver-
sus the fraction of sites destroyed, one observes the pres-
ence of an extinction threshold defined as a critical de-
struction value at which the metapopulation goes extinct
despite a fraction of the habitat is still available [61]. In
spatially explicit systems with local dispersal, the rate at
which a metapopulation’s regional abundance decreases is

faster than in the case of spatially implicit models. That
is, the effects of habitat loss are higher as more habi-
tat has already been destroyed [13]. The reason has to
do with the previously reported non-linear changes in
the landscape. Essentially thus, habitat destruction mod-
els are equivalent to models of phase transitions in statisti-
cal mechanics. This theory has served to better understand
the consequences of habitat destruction on metapopu-
lations. It has been very pedagogical in suggesting how
changes in ecological systems are not smooth, but rather
non-linear.

The presence of extinction thresholds in metacom-
munity dynamics is equivalent to the eradication thresh-
olds in epidemiological models. Nee [87] already noted
the equivalence between these two types of models and
their critical points. These critical points can be simpli-
fied to expressions where species-specific parameters such
as colonization or transmission rates cancel out. Eradica-
tion thresholds can be phrased as the points at which the
destructive process reaches the amount of resource used
when all the resource is available. For example, consider
the following metapopulation model originally proposed
by Levins [66]:

dv
dt
D cv(1 � v � D) � ev : (9)

The previous equation assumes an infinite number of
habitat sites and describes the temporal dynamics in the
fraction of sites occupied by a metapopulation (v). It con-
tains a positive term describing the increase in occupied
sites due to the colonization of empty sites. c is the species-
specific colonization rate, andD is the fraction of sites per-
manently destroyed. The second term in Eq. (9) refers to
the loss of previously occupied sites due to local extinction,
e being the extinction rate. Note that the previous model
can also be used as a toy model of an infectious disease,
in which case v would be the fraction of hosts infected,
c would be the transmission rate, D would be the frac-
tion of hosts vaccinated and e would be the clearance rate.
Model (9) has a positive steady state as long as the frac-
tion of sites destroyed (hosts vaccinated) is lower than the
threshold Dc D 1 � e/c. As noted by Nee [87], this thresh-
old is equivalent to the steady state in the absence of de-
struction: v� D 1 � e/c. Thus, one can predict Dc without
knowing the parameters c and e by measuring the amount
of habitat occupied when all habitat is pristine. This sim-
ple rule was coined as the Levins rule by Hanski et al. [45].
In epidemiological models, the infectious disease disap-
pears when the fraction of hosts vaccinated is equal to the
fraction of non-infected hosts when all hosts are suscep-
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tible [11,87]. Similar ideas can be applied to the dynam-
ics of transposable elements, a type of intragenomic para-
sites [11].

Stochastic spatial models such as the contact process
have allowed us to derive mathematical conditions un-
der which a species will persist or die out with almost
certainty, that is, similar thresholds for species persis-
tence [31]. In this review we have encountered both spa-
tially explicit models such as the CMLs and the interacting
particle system, as well as spatially implicit models such
as Model (9). There are analytical approaches such as mo-
ment-closure that allow to bridge between these two ex-
tremes [64].

Ecosystem Shifts

Thresholds such as the one here illustrated for the case
of habitat loss are common in ecology. One can find sev-
eral examples in which a variable is smoothly changed
with no apparent consequence in the macroscopic prop-
erties of the system until a threshold in which an abrupt
transition in the state of the system takes place. These are
known as ecosystem shifts [107,111]. One classical exam-
ple of an ecosystem showing two alternative steady states
is that provided by shallow lakes [22,107]. There are docu-
mented examples where a lake has shifted between an ini-
tial state characterized by clear water and submerged veg-
etation to a state characterized by turbulent water, a high
concentration of phytoplankton, and an absence of sub-
merged vegetation. This lack of vegetation is associated
with a reduction in diversity, since several species of fish
and other taxa use vegetation as food and refugia [107].
This transition in shallow lakes occurs as a consequence of
human-induced eutrophication, and constitutes a global
problem affecting also small seas such as the Baltic. The
tuning parameter in this example would be the amount
of fertilizers dumped into the lake. As one starts increas-
ing this parameter nothing seems to occur for a while.
Until the critical point is reached and the new state sud-
denly takes place. Once more, there is no apparent cor-
relation between the last push and its amplified conse-
quence. Shallow lakes show a profound hysteresis in re-
sponse to nutrient load [107]. This means that the system
is irreversible, and that environmental actions to recover
the pristine state may be costly. Now one needs to almost
clean the lake completely to revert the change to the pris-
tine state.

The case of a lake is by no means the only exam-
ple. Other examples involve the transitions from corals to
macroalgae, or from herbaceous vegetation to bare desert.
In the first case, extensive areas of coral reef have been

replaced by a system dominated by algae. Corals hosts
countless numbers of other species. Currently, ecologists
have started documenting these transitions and looked for
their explanations. Several non-exclusive explanations in-
volve increased nutrient loading and overfishing that have
decreased the abundance of herbivorous fish, thus free-
ing algae from their control and allowing them to take
over and replace corals [52]. Overfishing of sharks may
have also contributed to the depletion of herbivorous fish
through trophic cascades [15].

The transition from a vegetated state to a desert one is
also one of concern. Vegetated and desert seem to be two
alternative stable states. This example has further impli-
cations in the context of global change and can feed-back
into further increases of temperature without the layer of
vegetation. Knowing that these transitions are irreversible
due to the hysteresis cycle is worrisome as it has also pro-
found implications in the context of human migration in
search of available water.

Future Directions

The previous cases of ecosystem shifts suggest the role
for non-linearities in conservation biology. The take home
message is that we can not think anymore in linear terms.
There is not necessarily a proportional relationship be-
tween cause and consequence. This calls for caution when
assessing the consequences of global change and other
types of human-induced perturbations. For example, the
consequences of habitat destruction may even be worse
than expected and further destruction values may cause
the system to cross a threshold where extinctions may take
place at a much higher rate. The existence of ecosystem
shifts suggests that ecological systems may behave in qual-
itatively similar terms as other simpler physical systems.
This is good news in the sense of being able to use a well-
developed theoretical framework to make predictions of
ecological systems. Near the critical points the system’s
macroscopic properties may be described by simple mod-
els [111].

On the other hand, due to the abrupt changes that
take place in the critical points, it is very important to
develop early indicators of the proximity of a system to
such thresholds. For example, Kleinen et al. [56] analyzed
changes in the power spectrum of temporal series and con-
cluded that there is a reddening of the signal in the vicinity
of the critical point. Similarly, there is increasing evidence
that a clear early-warning signal of an ecosystem shift is
an increase in the variance of the temporal series [21,124].
Further studies will be very useful in developing new and
easy to measure early-warning signs. This may be very im-
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portant in predicting major shifts in the state of ecosys-
tems and the services they provide.

To sum up, ecological systems are wonderful examples
of complex systems with multiple states, phase transitions,
and non-linear dynamics. They provide opportunities to
further apply concepts and tools from the physics of com-
plex systems. And in the face of the multiple risks from
global change, there is an urgent need to do so.
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Glossary

Network A network is (1) a set of system entities (nodes),
which may be interconnected through (2) links.

Graph Agraph is themathematical notation of a network,
i. e., it is an abstraction of a network.

Nodes Nodes are the separate entities of a network, i. e.,
the system components that may be interconnected.
Sometimes they are called vertices.

Links Links are the realizations of the possible connec-
tions among the nodes of a network. Sometimes they
are called edges.

Topology Topology, in this context, represents the pat-
tern of interconnections, i. e., the links, of a network.
A topological analysis is hence concerned with ana-
lyzing the structural characteristics of the set of links
defining the network.

Network analysis Network analysis refers to all kinds of
quantitative approaches used in analyzing the topol-
ogy of networked systems. In doing so, methods from
the mathematical branch of graph theory are often ap-
plied.

Definition of the Subject

Ecology is, simply speaking, the science of ecosystems,
i. e., sets of interacting species constrained by the physical
environment. Due to earth’s enormous species diversity,
species’ patterns of interactions quickly become very com-
plex and thus difficult to oversee, although it is clear that
the interaction patterns themselves often have profound
effects on the behaviors and functioning of the ecosys-
tems. To enable systematic pattern analyses, it is often fa-
vorable to represent these patterns of interactions as net-

works where the nodes are some sort of biological entities
and the links represent some sort of interaction between
these entities. The entities can e. g., represent species, but
they could also represent individuals or groups of organ-
isms. The links could e. g., represent trophic interactions
(“who eats whom”). By representing interacting species as
a network, analytical focus is set on the actual pattern, or
topology, of the interactions themselves. Topological anal-
ysis of ecological systems has a relatively long history in
ecology which can be exemplified by the long-lasting sci-
entific debate, spurred by Sir Robert May in the 1970s
when he, against prevailing interpretation, suggested that
an increased number of species interaction would actu-
ally lead to decreased ecosystem stability. More recently,
an increased interest among various scientific disciplines
on network approaches in complex systems research has
re-energized the topological perspective of ecosystem re-
search.

Introduction

In nature, species interact in many different ways; no
species exists in isolation. Understanding these interac-
tions and how these affect individual organisms, species
and whole ecosystems are, therefore, key to a systemic un-
derstanding of the natural environment. In the early twen-
tieth century, Lotka and Voltera [1,2] paved the way for
theoretical and mathematical approaches in understand-
ing predator-prey interaction and the resulting dynam-
ics of species populations. In the 1950s, the Odum broth-
ers [3] revolutionized ecology by emphasizing the need
for a systemic perspective of the natural environment [4].
In order to take the field of ecology beyond a mainly de-
scriptive science, and to find solution to challenges facing
the natural environment, they argued that better under-
standing of the large-scale properties of the environment
is needed [4].

Ecosystems, although over time defined and/or per-
ceived in many different ways, are basically systems of
interacting species limited by constraints arising from
the physical environment. The Odum brothers originally
modeled ecosystems as sets of components (e. g., species)
and flows of energy (the common denominator) cycling
through these components. Thus, they essentially laid the
foundation for seeing the environment as a networked sys-
tem consisting of nodes and links.What constitutes a node
depends on the question at hand; it could be a species,
a group of similar species, an individual organism, groups
of organisms, physical objects, etc. The links, i. e., the rela-
tions between the system components of interest, also de-
pends on the chosen question; they could e. g., be flows
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of energy going from prey to predators in food webs
(e. g., [5]), or flows of genes spread through species dis-
persals among localized populations (e. g., [6]). Networks
can be viewed as maps that outline these local interactions
and preserve their importance at the system level [7]. The
perspective of networks carries the advantage of simulta-
neously addressing the members of the systems as well as
the patterns of their interactions. This modeling approach,
emphasizing localized interaction between separated parts
of the system, captures some of the fundamental charac-
teristics of a complex adaptive system [8].

As mentioned earlier, the ecological impact of various
characteristics of patterns of interactions has been studied
and debated for a considerable period of time. Of focal in-
terest here is, however, research approaches paying special
attention to the actual pattern, or topology, of the interac-
tions themselves. For example, how may the distribution
of links among the nodes in food webs affect ecosystem
stability in terms of risk of species extinctions? Alterna-
tively, how may the average topological distance between
pairs of habitat patches in a fragmented landscape affect
metapopulation dynamics? These, and other topological
aspects of ecological systems, are the subject of this review.

In order to analyze networked systems, formal meth-
ods addressing the topology are needed. Such methods
have, fortunately, been developed in various scientific dis-
ciplines such as sociology, computer sciences and math-
ematics over a considerable amount of time (e. g., [9]).
These methods aim at quantifying different topological
aspects of concern, some of which are briefly described
in the following section. Recently, the interest for topo-
logical analyses of various kinds of systems has grown
tremendously; a development that e. g., has generated an
abundance of new insights and approaches in topological
analyses. This development has, among other things, con-
tributed to re-energize the topological perspective in eco-
logical research.

Network Analysis

A system of interconnected entities, i. e., a network, is
mathematically represented as a graph. Graphs consist of
nodes and links. Nodes are the terminal points or inter-
section points of the graph (sometimes called vertices).
Links represent connections between nodes and represent
the structure of the network over which interaction occurs.
There is an entire branch of mathematics called graph the-
ory that deals with the analysis of such graphs. Further-
more, network-oriented analyses are undertaken in several
other disciplines; thus methodological, technical and the-
oretical developments of relevance for networked systems

are taking place across disciplines. An example of an inter-
disciplinary endeavor is the fast-growing organization IN-
SNA (International Network for Social Network Analysis,
see http://www.insna.org) consisting of sociologists, math-
ematicians, physicists, computer scientists and others that
are mainly occupied with studying patterns of social in-
teractions (i. e., social networks). Thus, the term network
analysis will be used here when referring to all kinds of
quantitative approaches in analyzing the patterns of inter-
connections in networked systems.

Modeling a Networked System

In conducting topological analyses, the first step would be
to represent the system under study as a network, i. e., to
define what entities will constitute the nodes, and what
kind of relations among the nodes will constitute the links.
Modeling a system as a network is in some cases straight
forward, because it is more or less obvious what enti-
ties will make up the nodes, and what kind of relations
would constitute the links. For example, in studying pat-
tern of friendships among students in a classroom each
student would constitute a node, and the reported friend-
ship between any two students would be represented by
a link. In other cases, it might be less obvious how to
define a node. In studying the dynamic interactions in
a ecosystem, should the nodes be represented by individ-
ual species, groups of similar species, or even by individual
organisms? The method by which one chooses a suitable
level of abstraction will depend on the research questions.
The problem is, as always in modeling, to choose a level of
abstraction that is as simple and aggregated as possible, but
still fine-grained enough to capture the essential character-
istics of the system in order to help answer the questions
at hand.

The issue of choosing an appropriate level of abstrac-
tion likewise applies when defining the links. Often many
different kinds of relations exist between the different enti-
ties (nodes) of the system under study; thus the question is
which type of relations should be modeled? Furthermore,
in many cases the strengths of the relations are of inter-
est. The strength of a relation could be though of as the
intensity, and/or the frequency of interactions, the flow
of energy, material, information etc between the nodes in
question. Although the focus here is primarily on anal-
ysis of the topological properties of a networked system
(where differences in the strength of the links are not con-
sidered), the issue of link strength is important when e. g.,
constructing the network. If the strength, or intensity, of
the type of relation under consideration varies, it might
be useful to define a threshold; and relations between any
pair of nodes with strengths below such threshold would

http://www.insna.org
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thus be ignored. Therefore, when defining the threshold
value, the resulting topology is affected since links below
the threshold are omitted. Also, in this context it is im-
portant to mention that many commonly used measures
defining various network characteristics can, in addition to
purely topological characteristics, also take links strengths
into account.

Finally, the links of the network representing the stud-
ied system could be bidirectional or unidirectional. For
example, in food webs the predator consumes the prey,
which is an example of a unidirectional flow of energy
(which in a network context translates to a unidirectional
link). If, however, two species prey on each other, the flow
of energy is bidirectional.

Topological Characteristics

In this section, three important characteristics of net-
works, and some of the associated and commonly used
measures defining these characteristics, are briefly re-
viewed. These are degree distribution, modularity and
centrality. How these are of relevance in ecology will be
discussed and exemplified in coming sections. Naturally,
there are many characteristics that define a network other
than those presented here. The applicability of various ex-
isting network measures in network-oriented ecological
studies is almost a research topic in itself e. g., [10,11,12].

Degree Distribution and Small-World Properties In
most real-world networks, links are very unevenly dis-
tributed among the nodes (see e. g., [13] for a review).
If, for example, all links were distributed randomly, the
degree distribution would follow a Poisson distribution.
There are, however, lots of examples of real networks not
following this distribution; thus there must be processes
other than chance alone that are in play when networks are
formed and shaped over time (e. g., [13]). Of recent inter-
est are the so-called scale free networks following a power-
law degree distribution, meaning thatmost nodes have few
links, but that some rare nodes posses very many links
(these nodes are often called hubs). Such networks are
quite robust (in terms of the risk for severe network frag-
mentation) to random node removals (since most of the
nodes have very few links), but they would be very vulner-
able to a targeted removal of the hubs [14].

Somewhat related to the degree distribution is the con-
cept of small world networks [15]. A small world network
displays a high level of clustering, meaning that two nodes
that both possess links to a common third are much more
likely to be directly linked to each other as compared to the
likelihood that any other arbitrary pair of nodes should be
directly linked. In spite of this high degree of clustering,

in a small world network the average topological distance
between any arbitrary chosen pair of node remains rela-
tively short, thus implying that there are still many links
that cross boundaries and therefore link together differ-
ent clusters. A small world network does not necessarily
follow any particular degree distribution, but it has been
shown that scale-free networks often display small-world
characteristics see (e. g., [13]).

Modularity Within a network there may be groups (or
modules) of nodes that, from a topological perspective, dis-
tinguish themselves from the rest. For example, it could
be that these groups of nodes are more internally than
externally interlinked, i. e., the distinction of groups is
based on a high density of interconnecting links among
each group’s members. In this way, a group would have
a relatively high frequency of direct (or indirect) relations
within the group compared to outside the group. Examples
of such group-assessmentmethods are LS-sets and lambda
sets (see [16] and references therein).

A specific example of another type of group definition
is the clique ([17] and references therein). In a clique every
member is connected to every othermember; thus this def-
inition of a group does not define members based on their
relative cohesion versus non-member – instead it uses an
absolute criterion for defining a group. The definition of
a clique can be extended to account for directional and
weighted links as well.

Generally, methods of assessing groups can be classi-
fied as either generating hierarchically nested groups, or
as generating groups that can partially overlap. In the for-
mer case, an individual node cannot be a member of more
than one hierarchal branch. Furthermore, a decomposi-
tion algorithm used to identify hierarchical branches can
be either divisive or agglomerative, where agglomerative
algorithms have beenmore commonly used [18]. If the fo-
cus is to find cores of strongly and/or intensely interlinked
groups, agglomerative methods are preferred since they
will identify groups using a bottom-up approach, starting
with the most densely connected subgroups. Divisive al-
gorithms, on the other hand, uses a top-down approach
and iteratively divide the network in smaller and smaller
branches.

A different way of distinguishing groups within a net-
work is to group nodes according to the set of rela-
tions they have with one another (called equivalence, see
e. g., [17]). Here, twomembers of a group would have sim-
ilar sets of relations to others, i. e., they occupy similar po-
sitions in the network. This kind of group can e. g., be use-
ful to locate functionally similar groups of species in a food
web (as will be described below).



Ecological Topology and Networks E 2731

Centrality A fundamental topological characteristic of
a node in a network is its level of centrality. The con-
cept of centrality is devoted to analyzing the position of
nodes’ in the network. The underlying assumption is that
some positions are more favorable than others in terms of
the influence the nodes occupying them can exert on oth-
ers (for an introduction and review of the literature, see
e. g., [17]). There are, however, numerous ways to exert in-
fluence, and accordingly many different measures of cen-
trality have been developed – each focusing on different
topological aspects. Here some of these are presented:

1. Degree centrality. This is the number of links a node
possesses. In a network with directed links, one could
distinguish between in-degree and out-degree central-
ity.

2. Betweenness centrality (see [19]). Thismeasure assesses
how much “in-between” a particular node is, based on
how many shortest pathways (connecting other nodes)
that goes through this particular node.

3. Closeness centrality [20]. This measure assesses how
close (from a topological perspective) a particular node
is to the rest of the nodes in the network.

FoodWebs

In nature, species interact in many ways. One of these
types of interactions is predation, i. e., when a species eat
another species. Predation can also occur within species
(cannibalism) when larger individuals eats smaller one. In
a food web, the nodes represent a set of interacting species
and the links represent the structure of energy flows, i. e.,
the links represent who eats who. Typically, the links in
a food web are directed, meaning that a specific predator
species consumes one or several specific prey species, and
not vice versa (even if bi-directed size-dependent preda-
tion does occur, which may e. g., pose challenges in mod-
eling food webs, see e. g., [21]).

The strength of the link between species A and species
B can be assessed in various ways. First, it can be modeled
as binary, i. e., either species A eats species B or not, and
the analytical focus is thus set on the food-web’s topology
alone. The strength could, however, be weighted accord-
ing to the change in the abundance of species A follow-
ing the removal of species B (functional edges, see [5]).
It could also be assessed based on the flow of energy be-
tween species A and species B. Other assessment methods
are also available (for an overview, see [22]).

When assessing the link strength as in the last two ex-
amples, research focus is not set solely on the topology of

the food-web. This increases the complexity of the anal-
ysis, since the researcher has to (1) somehow assess the
link strength, and (2) take the assessed strength into ac-
count in studying the food-web structures. In some cases
the increased level of complexity may be redundant (i. e.,
a topological analysis would suffice given the particular
research question at hand), but in other cases the more
complex approach might be needed to find structural net-
work characteristics of interest (e. g., [5]). An example of
the latter is a study by Krause et al. [23], where it was
shown that the modular structure for some of the studied
food webs was only detectable when taking link strength
into account. Another example is given by Scotti and col-
leagues [24], where they showed that the ranking order
of the most central nodes were highly affected when link
weights were taken into account.

Much of early research, up until the late 1980s, in food
web topology was in fact highly affected by problems as-
sociated with assessing link strength. Much of the empir-
ical data available at the time were lacking information
of the weakest links, i. e., the links representing low levels
of energy flows (corresponding to gut content <5%, see
e. g., [25] for a review). However, weak links abound in
empirical food webs (e. g., [26,27,28]). Later research has
subsequently showed that when weak links are taken into
account, structural patterns of food webs change drasti-
cally (e. g., [29]). Up to this point, theoretical development
was inmany cases actually based on incomplete data, often
leading to false conclusions on the structural properties of
food webs. One example was the false assumption of the
independence between a species average number of links
and the total number of species in the food web. Instead,
the number of links per species increases as the number of
available species increase [30].

Finally, of significant interest with respect to the topo-
logical research approach of complex ecosystem as de-
scribed here, is the insight that the actual pattern of link-
ages, i. e., the food web topology alone (regardless of link
strengths) appears to be extremely important in defin-
ing ecosystem characteristics (e. g., [31]). In this context,
weak interactions representing relatively small rates of en-
ergy flows can have a large impact on systemic properties
whereas interactions with large flows can reversely have
a relatively small impact (see [32] for a review of a number
of important contributions in this research).

Degree Distribution

In terms of degree distributions, it appears that food
webs, like many other types of networks, often experi-
ence a skewed link distribution where a few nodes pos-
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sess many links [33]. This is completely different from
what would be expected if the links were distributed ran-
domly. This makes food webs, in accordance with other
systems experiencing, a skewed link distribution, quite ro-
bust with respect to a random removal of nodes (i. e.,
species), but quite vulnerable to a targeted removal of the
most connected nodes [33]. The distribution of links in
food webs is generally different from the previously men-
tioned scale-free degree distribution in that the tail of
the distribution towards very high degree centralities is
truncated (see e. g., [7] and references therein). Further-
more, since food webs often tend to experience a relatively
high density of links as compared to many other kind of
networks, the degree distribution accordingly gets more
uniform.

In using a method designed to find subgroups (identi-
cal to amethod named k-core used to find cohesive groups
in social network, see [34]), Melián and Bascompte [35]
found that of the five studied food webs, all had one dense
and cohesive core subgroup. In these dense subgroups all
species have a least k links to other group members. Thus,
it is not only the distribution of links that is skewed; the
species with most links appear to be connected to other
highly connected species. Such a positive correlation be-
tween a species number of links and its neighbors average
number of links (connectivity correlation, see e. g., [36]),
has been reported in other studies as well (e. g., [37]).

Sparsely connected food webs do also experience the
small world effect [15], but this gets much less clearly ar-
ticulated as the number of links increases [38,39,40]. Fur-
thermore, it appears that the average distance between any
two species in a food web is even smaller than in a small
world network [33,41]. Thus, food webs could be consid-
ered as being rather tight when, on average, only two inter-
mediate links are needed to jump between any two species
in the network, and that >95% of the species are within
three degrees of separation from each other [41].

In food webs with a high number of links, the small
world effect often disappears. If, however, a food web’s
minimal spanning tree is analyzed, some interesting in-
sights can be found. A minimal spanning tree is essen-
tially a simplified version of the original food web where
only the links that are minimizing the distances from all
species to the basal species are kept, the rest are removed
(e. g., [25]). Garlaschelli and colleagues [38] found that the
minimal spanning trees experienced both the small-world
effect and adhered to a scale-free degree distribution irre-
spective of the size or the link density of the set of seven
different food webs studied. This suggests that there may
exist some core structural principles upon which all food
webs are built upon.

Modularity

With the significantly increased resolution in empirical
food web data collection starting in the early 1990s, it
has become increasingly feasible to look at the possibil-
ities for modular structures in food webs (see [25] for
a review). Modularity can, however, be defined – topo-
logically – in (at least) two different ways. Modules can
be defined as groups of species that are structural simi-
lar to each other, or it can be defined as groups of species
that are interacting more intensively and/or frequently
among themselves than with other species outside the
group (hereafter called compartments). The former def-
inition is exemplified in the concepts of trophic role or
trophic level, although neither of these (and other simi-
lar) terms has been fully defined and collectively accepted
in the ecological research community (see e. g., [10]).
From a topological perspective, an interesting approach
is to define, or single out, groups of species with simi-
lar trophic roles by analyzing the structure of the food
web. Luczkovich and colleagues [10] used the network an-
alytical approach based on regular equivalence, developed
within the field of social network analysis (e. g., [17]), to
partition species that play the same structural roles into
different isotrophic classes (see Fig. 1). The approach, as
described earlier, is based on finding positionally equiva-
lent species in the food web, and provides a way to math-
ematically formalize trophic position, trophic group and
trophic niche.

Research studying compartmentalization in food
webs, according to the latter definition of modularity
based on the frequency and/or intensity of interactions,
has gained interest in recent years. One reason for the in-
terest in compartmentalization lies in its potential effect
on ecosystem stability and robustness (or using different
terminology, resilience) (see e. g., [42]). A food web con-
sisting of just one single coherent group of species would
likely help to propagate both harmful and beneficial ef-
fects throughout the ecological community, whereas the
presence of internally coherent but externally isolated or
only weakly connected subgroups would reduce the pos-
sibilities for such large-scale propagations. This has lead
to the hypothesis that intermediate modularity may be
the most beneficial structural composition of food webs
(see e. g., [43]). Such structures are formed in networks
where coherent groups of species with strong and/or fre-
quent internal interactions are only weakly coupled to
other groups. If this hypothesis holds true, one would ex-
pect to find modular structures in food webs since, over
time, only the most robust food webs would be expected
to prevail despite disturbances in the past.



Ecological Topology and Networks E 2733

Ecological Topology and Networks, Figure 1
a A food web where nodes (species) are patterned according to their regular equivalence, and b the same food web, but here are
regular equivalent species grouped together. Thus, a simplified image of the food web is created where the relations among groups
of species occupying analogous positions is presented. (Source: [10])

Food webs appear to be more coherent (i. e., less com-
partmentalized) than many other kind of biological net-
works (see e. g., [37,44]). This tendency seems to be de-
rived, at least partly, from the relatively high link den-
sity that many food webs exhibit (e. g., [39]). It is obvi-
ously harder to distinguish subgroups when every species
is connected to many others. In spite of this, recent studies
have been able to find evidence for compartmentalization
in food webs. Girvan and Newman [45] used e. g., a di-
visive hierarchical decomposition algorithm to detect eco-
logically relevant subgroups in a coastal food web. In addi-
tion, Krause and colleagues [23] were able to detect modu-
larity in three out of five complex food webs (see Fig. 2 for
an example) using a group assessment methods developed
for analysis of groups in social networks [46].

Interestingly, Krause and colleagues barely found any
compartments when the weakest links were left unconsid-
ered, or when the food web consisted of very few species.
In addition, the ability to detect compartments increased
by taking link strengths into account. However, in another
recent study by Dunne and colleagues [39], the presence
of compartmentalization was not very pronounced. They
found only five of sixteen food webs exhibiting a clear
tendency for compartmentalization. Interestingly, but per-
haps not surprisingly considering the previous argument,
these were the sparsest food webs among the studied set.

Hence, although it seems clear that food webs of-
ten experience compartmentalization, existing evidence of
a clear trend of intermediate level of compartmentaliza-
tion in respect of stability is mainly from anecdotal evi-
dence and models [7]. In the previously mentioned study
by Krause and colleagues [23], they simulated the effect

of selectively removing species, one at the time, in one
of the two distinct compartments in the Chesapeake Bay
food web (each compartment corresponded to benthic
and pelagic species respectively) alternatively. The result-
ing loss of links was found to be significantly higher in the
compartment from where the species were removed. Thus
this simulation supported the idea that compartmental-
ization reduces the spread of harmful effects. Direct eval-
uation of the impact of intermediate levels of compart-
mentalization for food web stability will, however, require
long term food web data, for many different systems, with
varying levels of compartmentalization which have experi-
enced disturbance at some point during their monitoring.

Similar arguments as the ones proposing the beneficial
effect of intermediate modularity are to be found in the
discussion of the importance of weak links. Not only did
the increased resolution of food web data reveal the abun-
dance of weak links leading to the realization that food
webs are much more complex then previously thought.
Weak links may also help to stabilize oscillatory dynam-
ics resulting from strongly interacting species [47], but see
also May [48] for a different view on stability. In coupling
oscillatory pairs, or groups, of species to other more sta-
ble groups of species, weak links act to reduce the am-
plitude of variations, thus helping to create a more sta-
ble system. Furthermore, if hypothesizing that interaction
strength among species within coherent compartment is
high, it may seem natural to assume that links bridging
different compartments would be mostly weak. The pres-
ence of weak links thus suggests that the food web exhibits
a modular structure (see e. g., [7]), although support for
such statement is scant.
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Ecological Topology and Networks, Figure 2
Graphical display of the results for theChesapeakeBay foodwebwith 45 taxa andweighted by interaction strength. Units are relative
distances based on the inverse of the density of interactions. Within-compartment distances were decreased by a factor of 6.2 for
aesthetic purposes. Circles indicate compartment boundaries and numbers identify taxa (yellow, within compartment a; blue, within
compartment b). Arrows indicate interactions between taxa (solid red, within compartment; dashed green, between compartments;
thickness indicates rank of associated interaction strength) and point from predator to prey (Source: [23])
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Network Centrality and Keystone Species

The concept of keystone species in ecology is different,
but related to, the concept of dominant species. A dom-
inant species is a species that is high in abundance, and
exert a large impact on the ecosystem where they are situ-
ated (see e. g., [33]). Keystone species, on the other hand,
differ from dominant species in that their effects on the
ecosystem are much larger than would be predicted from
their abundance alone (e. g., [49]). It has been suggested
that a keystone species is a species with a disproportion-
ably high number of links in the food web [50]. Dunne et
al. [33] have also put forward the idea of a structural key-
stone, i. e., a species that exerts influence on the basis of its
structural position within the food web, and not only on
the basis of the number of links it has to others.

The recent interest in using network analytical ap-
proaches in studying food webs have caused a renewed
interest in the debate on whether increased ecosystem
complexity (levels of diversity and connectivity) leads to
less stability. Although many food webs do not experi-
ence a truly scale-free degree distribution, they nonethe-
less appear to be much more sensitive to a targeted re-
moval of highly connected species than to a random re-
moval (as described above). This is an effect of the skewed
degree distribution, where the removal of the most con-
nected species (i. e., the species with most links – high-
est degree centrality) will increase the average path length
(i. e., increase the distance between consumer species and
basal resources), and may also lead to network fragmenta-
tion. If a food web fragments into smaller isolated pieces,
species might become excluded from their energy sources
(their prey and/or basal resources); leading to secondary
extinctions. From a purely topological perspective, a sec-
ondary extinction occurs when a non-basal species loses
all of if prey species (e. g., [33]). Hence, in considering the
risk of network fragmentation leading to secondary extinc-
tions, and degree centrality is obviously of great relevance
in assessing individual species’ importance. Furthermore,
the number of secondary extinctions following random
species removal is often highly non-linear. Dense food
webs are relatively insensitive to species loss up to a certain
point. Beyond this point, the number of secondary extinc-
tions sharply increases [33].

Dunne and colleagues [33] have, however, demon-
strated that degree centrality alone cannot always pre-
dict the number of secondary species extinctions follow-
ing species loss. In some cases the removal of species with
a relatively few links led to a disproportional large num-
ber of secondary extinctions (hence leading to their notion
of structural keystone species). Such structural keystone

species might play an important role in maintaining the
minimum spanning tree, i. e., they may possess exclusive,
non-redundant links that, more so than other links, help
keep the food web together (see discussion below on non-
redundant links and structural holes).

The insight that a species structural position in a food
web may have a strong impact on the ecosystem is not
entirely new. There are several examples in the literature
of cascading effects taking place on the level of entire
ecosystems following the extinction of certain keystone
species. One of the most famous examples is the large
scale destruction of underwater kelp forests following the
extinction of sea otters due to intensive hunting for the
fur trade [51,52,53]. Sea otters predate sea urchins, which
in turn predate algae such as kelp. When sea otters dis-
appeared, urchin abundance increased drastically leading
to the destruction of the kelp forests. The destruction of
kelp forests, in turn, produced cascading effects on other
species dependant on the kelp resulting in a species-poor
ecological community. Later, conservation measures de-
signed to protect sea otters were implemented, which re-
sulted in a recovery of the original ecological community
composition [54]. Hence, as seen from a topological per-
spective, this example shows how a species (the sea otter),
in occupying a structurally influential position in a food
web (here, the Pacific coastal marine food web), become
a keystone species.

Related to the discussion on structural keystone
species is the insight that not only direct links, but also in-
direct links, are important in food webs because, in combi-
nation, they determine a species contribution in maintain-
ing the overall structure of the food web. This was e. g.,
clearly demonstrated by the sea otter example presented
above. The influence of indirect links is caused by the fact
that these connect otherwise disconnected species. For ex-
ample, a species that in itself possesses only very few links,
but has network neighbors that possess many links, can
still exert a very large impact if it is the only species that,
indirectly, links its neighbor’s neighboring species. This
example illustrates the relevance of betweenness central-
ity [19], described earlier, in studying aspects of species’
structural influence in food web. A similar example of
a centrality measure is the concept of structural holes in
social network analysis [55], where a distinction is made
based on whether a particular link is redundant or not.
A redundant link (or path) has an equivalent counterpart
in the sense that there are other links that also connect its
corresponding pair of nodes, whereas removing a non-re-
dundant link would disconnect the pair of nodes. Species
possessing non-redundant links clearly exert a negative in-
fluence on a food webs ability to withstand species loss or
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extinctions since, if removed, they would disconnect con-
sumer species from basal and fundamental energy sources.
Non-redundant links can be particular important when
they connect otherwise disconnected groups of species.

Finally, there are numerous other measures of central-
ity available; each designed to assess a particular charac-
teristic of a node’s structural importance in a network.
Research exploring the applicability of such, and other,
topological centrality measures in advancing the concept
of keystone species in food webs has just started (see
e. g., [56,57,58]). In all, species abundance, link distribu-
tions, network position, and the strength of the links,
clearly play a role in determining the impact a certain
species exerts on the ecosystem. Thus, the relationships
among network positions, keystone species, and highly in-
teractive species (i. e., species with many connections) are
not entirely straightforward but characterized by complex
dependencies and dynamics. Some of these will be dis-
cussed below.

Dynamics of Secondary Extinctions

The topological approach to analysis of food web stability,
with respect to their vulnerability to secondary extinctions
following species removals, clearly lacks a dynamic part.
I. e., the analysis is based solely on the topological changes
of the food web following species removals. Hence, sec-
ondary extinctions are assessed only on the assumption
that species that become isolated from all their prey species
go extinct, otherwise they remain. Although this assump-
tion is reasonable in many cases, it does not take into ac-
count indirect dynamical effects resulting from species loss
(see e. g., [59]). For example, two competing prey species
may coexist due to predator mediation. If the predator
goes extinct, one of the prey speciesmay then out-compete
the other. This leads to the counter-intuitive result that
a prey species may in fact depend on its predator for its
prevalence. Such effects are very difficult to assess in purely
topological analyses, as are effects of varying link strengths
(see e. g., [60]). Also, the time it takes for a ghost species
(a species doomed to become extinct, see [61]) to go ex-
tinct may be important. If, for example, the time it takes
for a certain species to go extinct is significantly longer
than the rate upon which new individuals are moving into
the area, the extinction might never take place [62].

However, the strength in using topological analyses
lies in its relative simplicity. A dynamical perspective typ-
ically involves solving N coupled differential equations
(N-species Lotka-Volterra models) numerically in study-
ing food webs with N species. This requires access to large
computer processing capacity even for rather small food

webs. Secondly, in order to correctly parameterize the set
of differential equations, detailed empirical data on the
strength of all species interactions are needed.

Plant/Pollinator (Mutualistic) Networks

Until now, focus has been on patterns of predation among
species. In nature, species relations are, however, often
mutualistic. In such cases both species benefit from their
interactions. A typical example of mutualism is given
by the relations between plants and pollinators (e. g., in-
sects, birds, mammals etc.). Such mutualism may be just
as ecologically important as trophic interactions [63]. As
for food webs, the set of mutualistic interactions among
a given set of species, such as plants and pollinators, can
favorably be described as an ecological network. Thus,
the topological characteristics of mutualistic networks
have spurred interest among scholars. Jordano and col-
leagues [64] have e. g., studied a large set of mutualistic
network of plants and the animals that pollinate them or
disperse their seeds. They found that the degree distribu-
tion follows a truncated power law. That is, up to a cer-
tain degree, the relation between the number of links per
species versus the number of species follows a power law
(i. e., the scale free characteristic as discussed previously).
Beyond that critical degree, the number of species decline
much faster. Thus, these networks are, as for many food
webs, vulnerable to a targeted removal of highly connected
species, but not as vulnerable as other kinds of networks
that strictly follows the power law.

Furthermore, Bascompte and colleagues [65] have
studied 27 plant-frugivore networks and 25 plant-polli-
nator networks, and they found that most of these net-
work consisted of a highly connected core and asymmetri-
cally connected peripherals. This topological characteristic
was denoted nestedness, which is similar to the concept of
core-peripheral structures in social network analysis (see
e. g., [66]). The core consists of generalist species where,
ideally, every species is connected to every other general-
ist species; whereas the peripherals are specialized species
that, ideally, only link to generalist species. This topolog-
ical structure clearly departs from the compartmentaliza-
tion that is often found in food webs as discussed previ-
ously.

Network Perspective of Fragmented Landscapes

In the early days of theoretical ecology, space was largely
omitted from the analysis. The only dimension was time,
and two-species interaction described by continuous time
equations made up the bulk of the work ([32], which
present a comprehensive review of the development in



Ecological Topology and Networks E 2737

theoretical ecology up to present time). As time went on,
observations from the real world began to challenge the-
ory development; it seemed something was missing in the
equations. It was later shown that this missing ingredi-
ent was space. For example, Alan Turing showed, in the
early 1950s, that an initially homogenous system could
emerge into a heterogeneous and ordered spatial struc-
ture – a finding that influenced e. g., theoretical ecology
(see also [32,67]). Following the introduction of space into
ecology, species movements were hereafter acknowledged
as being of crucial importance.

In the late 60s, Levin [68] introduced the concept of
metapopulation. A metapopulation is a set of spatially
separated local populations which may, individually, un-
dergo local extinctions, but where the aggregated popu-
lation is maintained by re-colonization events resulting
from dispersing organisms. Thus, even though a local pop-
ulation (confined to a spatially distinct patch in the land-
scape) may go extinct, dispersing organisms from other
local populations can re-colonize the empty patch. The
fairly simplistic model of metapopulation dynamics intro-
duced by Levin was later extended by Lande [69] who in-
corporated more details. He also applied his metapopula-
tion models to study the dynamics of the northern spot-
ted owl in northern California. By assessing the fraction
of occupied patches, and the fraction of suitable patches,
he could define an extinction threshold. If the amount of
suitable patches drops below a certain threshold, the whole
metapopulation would go extinct.

Levin’s and Lande’s models are spatially implicit, i. e.,
they take space into account, but they do not explicitly
incorporate geographic location in the models. They as-
sume global mixing, i. e., a mean field approximation of
dispersals where all patches are equally likely to receive
dispersing organisms. Thus, these models are not able
to model the effect of habitat fragmentation, i. e., when
habitat patches gets more and more separated, or even
disconnected, from each other (from the perspective of
a dispersing organism). To enable that kind of analysis,
spatially explicit metapopulations models are needed (see
e. g., [70,71,72]).

Hanski and Ovaskainen [73] used a matrix notation
to describe the flux of dispersing organisms between indi-
vidual patches at the landscape level in their spatially ex-
plicit metapopulation model. They then defined the lead-
ing eigenvalue of the matrix as the metapopulation capac-
ity, and that single parameter summarized how the spatial
structure of the landscape influenced themetapopulation’s
dynamics. Of particular interest here is the matrix repre-
sentation. This matrix can be interpreted as a graph where
each matrix element represents the link strength between

each pair of nodes (patches). Thus, it describes a network
of interconnected patches. Keitt and colleagues [6] explic-
itly applied the graph-theoretical perspective in studying
the level of connectivity of fragmented patches of pon-
derosa pine and mixed-conifer forest at the landscape
level. They modeled how these patches might be experi-
enced in terms of connectivity, or isolation, by dispersing
juvenileMexican spotted owls. Connectivity is, in this con-
text, defined as the degree to which the scattered habitat
patches in the landscape facilitate the dispersals of organ-
isms [74].

The landscape network modeled by Keitt and col-
leagues consisted of nodes (representing individually and
spatially distinct habitat patches in the landscape) and
links (representing the possibility for dispersal between in-
dividual patches, see Fig. 3). Hence, such a network rep-
resents the landscape’s spatial structure of connectivity
(from an organism’s point of view). It encapsulates the po-
tential of an organism to traverse the landscape by mov-
ing from patch to patch [11]. Using this network perspec-
tive on fragmented landscapes, topological analysis of in-
teracting local species populations is made possible. The
network approach merges recruitment and dispersal pro-
cesses with spatial patterns of habitat patches, thus en-
abling process-oriented analyses of landscape connectiv-
ity [75]. In comparison with food web analysis, where fo-
cus was on different interacting species, the network ap-
proach is here applied in studying how patterns of dis-
persals between separated habitat patches in the landscape
may affect a target species metapopulation dynamics.

Modeling a Landscape as a Network

The starting point in studying topology of fragmented
landscapes is to construct the network representation of
the patches and their dispersal linkages. The first step
in this process is to define what type of land is habitat,
and what is not. In it simplest form, a binary image rep-
resenting the landscape is then created, where all kinds
of land cover assessed as being hospitable by the target
species is marked, and the rest left unmarked and thus
considered as inhospitable (called the landscape matrix,
not to be confused with the matrix defined by Hanski
and Ovaskainen [73]). The input data in constructing such
binary image could be a satellite images or aerial pho-
tographs of the landscape under study. This binary sim-
plification may, however, be too simplistic in analyzing
heterogeneous landscapes (as will be discussed below), but
there are available methods that can incorporate this het-
erogeneity into the model. Using the binary landscape im-
age, a patch is defined as a coherent area of hospitable land
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Ecological Topology and Networks, Figure 3
Construction of a landscape graph (d D distance, dt D threshold distance). This example landscape contains three separate habitat
patches and a single component. The three patches belong to a single component because there exists a path along the links (solid
lines) that connects all three patches. If either one of the links shownwere removed, therewould be two components. If all links were
removed, then there would be three components, each consisting of a single patch (Adapted from: [6])

(in practice, all adjacent pixels that are marked as hos-
pitable make up a single patch). From a network perspec-
tive, a patch is from now on seen as a node.

Emanating from the binary image, the dispersal links
of the patches are then assessed. The simplest way to assess
the links is to define a threshold distance [6]. Two habi-
tat patches that are separated by a distance less than the
threshold distance are considered connected, otherwise
they are considered mutually disconnected and thus no
link exists between these. The threshold distance should
be defined based on the target species dispersal ability, i. e.,
how far the species is able to move in the inhospitable
matrix. The threshold distance for a species depends on
a number of different factors such as e. g., body mass,
movement strategy, visual ability, and the type of land be-
tween the habitat patches.

Refinement of the dichotomous distance-based link as-
sessment procedure is often preferred. Instead of the bi-
nary link/no link assessment; the link strength could be
weighted proportionally, taking more factors than dis-
tance into account. The area of the patches could e. g., be
factored in using a negative dispersal kernel (cf. [71], see
also [76]). Thus, two large patches could be considered as
connected, while another pair of smaller patches (although
separated by the same distance) could be considered as dis-
connected (Eq. 1). Furthermore, directionality of disper-
sals could be accounted for. For example, consider a pair
of patches where one is large and the other is small. Here,
it might be reasonable to assume that organisms’ move-
ment towards the large patch is more probable than the
opposite. Although link strengths are taken into consider-

ation, it would simplify the analysis if the weakest links are
disregarded (by introducing a cut-off value C, see Eq. (1)).

Si j D b
q
Aje˛Di j

Si j D 0 (if Si j was less than C)
(1)

(see further details in [76])
Sij = Metric proportional to the dispersal flux rate from

patch i to patch j
Aj = Area of patch j (m2)
Dij = Distance between patch i and patch j(m)
˛ = Constant (1/m)
C = Cut-off value
b = Constant (1/m)

Until now, a binary habitat/matrix landscape has been
assumed. This approximationmay be too simplistic in het-
erogeneous landscapes where the permeability of differ-
ent types of land covers differs considerably. If the ma-
trix consists of an array of different land cover types, the
ability to move between any arbitrary pair of patches de-
pends on the exact composition of land types in-between,
and not only on the geographic distance separating these
patches (e. g., [77]). Fortunately, there are methods avail-
able that take the differing permeability of a heterogeneous
matrix into account when calculating the least cost paths
(or effective distance) of moving between any two arbi-
trary locations in the landscape [78,79,80,81]. Thus, more
sophisticated link-assessment methods than just applying
a threshold distance could favorably be used in analyzing
heterogeneous landscapes. The key point is, however, that
after all links have been assessed, the resulting network
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representation will incorporate the topological character-
istics of the fragmented landscape, and further analyses of
the network do not depend on the chosen link-assessment
method.

Assessing Fragmentation and Modularity

In spite of being fragmented, a landscape may very well be
perceived as connected by species being able to move be-
tween patches of habitats [74]. In studying landscape con-
nectivity, the overall research question is therefore to what
extent the landscape supports species movement, i. e., how
well connected are the scattered habitat patches as per-
ceived by an organism on themove?Of central importance
is the level of traversability, i. e., how far can dispersing or-
ganisms reach by moving from patch to patch in the land-
scape?

In terms of network terminology, traversability can be
expressed as if the network itself is divided into separate
subnets, or whether all nodes are confined within one sin-
gle coherent network [6]. A subset of nodes where a path
between all member nodes exists is called a network com-
ponent. Thus, by definition, no paths exist between nodes
of different components. Therefore, if a network is made
up of two, or more, components, it is not possible to tra-
verse the whole network by moving from node to node.
Ecologically, an organism located in an arbitrary habitat
patch can, directly or indirectly, move to any other patch
within the same component, but it can never disperse to
a patch belonging to another component (the landscape is
compartmentalized). Thus, a component can host a set of
connected but localized populations – a metapopulation –
but the metapopulation itself would be isolated from other
metapopulations confined to other components [11,75].

The number of components in a network represent-
ing the landscape’s spatial structure of connectivity for
a dispersing species would, therefore, directly relate to
the actual level of fragmentation (or connectivity) in the
landscape. A large number of components correspond
to a heavily fragmented landscape, whereas a network
with just one component implies a well-connected land-
scape where a large and persistent metapopulation may
thrive. A secondmetric of connectivity is the percentage of
patches confined to the largest component in the network.
If the fraction of patches that belong to the largest com-
ponent is high, the fraction of the landscape that is within
reach for a single metapopulation would be high.

In recalling the concept of threshold distance, a ques-
tion that arises is how the number of components relates
to the threshold distance. Obviously, a very large thresh-
old distance would imply that all patches would be reach-

Ecological Topology and Networks, Figure 4
The figures show an agricultural landscape in southern Mada-
gascar with three different overlaid networks representing the
connectivity among scattered forest patches assuming disper-
sal abilities set to a 500m, b 1000m, and c 1500m. The for-
est patches are identifiable by the distinct dark spots, situated
within a matrix consisting of cultivated land (light grey). Patches
range in size from <1–95ha and are fairly evenly distributed in
the landscape. In the western and northern part of the studied
area, the shaded/darker grey zones indicate areas classified as
potential source areas (Source: [76])

able from each other, whereas a very small threshold dis-
tance would imply that virtually no patch is connected
to any other patch (see Fig. 4). Thus, by measuring the
number of components as a function of the threshold dis-
tance (edge thinning, see [78]), one can assess at what
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Ecological Topology and Networks, Figure 5
Number of components (solid line) and sizeof largest component
(dotted line) as a function of threshold distance (Source: [78])

threshold distance the landscape starts to be perceived as
connected (see Fig. 5). The transition interval, i. e., where
the number of components rapidly decreases as a func-
tion of an increased threshold distance, has been suggested
as a scalar measure of the landscape’s structural scale of

Ecological Topology and Networks, Figure 6
Decomposition of the largest component in the landscape (from Fig. 4b), using the Community Structure method [45], taken at the
hierarchical level with the best “fit” (“Modularity” equal to 0.84, see [18]). Note that the largest component is decomposed into ten
smaller compartments

connectivity [82]. Species with dispersal capabilities below
this transition interval would experience the landscape as
severely fragmented, whereas species with dispersal capa-
bilities above the interval would experience the landscape
as connected.

Measuring the number of component seems to be
a useful method in assessing spatial compartmentaliza-
tion of the landscape. In some circumstances, it may how-
ever be too crude as it lacks the ability to estimate a more
continual degree of landscape compartmentalization (i. e.,
where compartments are not necessarily isolated from
each other, but merely separated to a certain degree) [11].
These types of loosely detached compartments of inter-
nally well-connected habitat patches can affect age and
sex structures of populations in the landscape [83], and
it could potentially contribute to genetic differentiations
even at small temporal and spatial scales (cf. [84,85]). The
inability to assess such structures is a consequence of the
binary perspective of the component-based analysis; ei-
ther two patches are being considered as connected, or else
they are considered as being completely isolated. But what
if a set of patches are very well connected internally, but
rather weakly connected to the outside landscape? Using
component-based analysis, such set of patches would not
be identifiable unless they are completely isolated from the
remaining landscape.
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Bodin and Norberg [11] addressed this possible lim-
itation of the component-based analysis by using a di-
visive hierarchical decomposition algorithm called Com-
munity Structure recently proposed by Girvan and New-
man [45]. This method fulfilled three potentially impor-
tant topological criteria: (1) groups of coherent sets of
patches could be assessed even though not necessarily be-
ing completely isolated from each other, (2) the algorithm
is hierarchical and would therefore create non-overlap-
ping groups of patches which means that it would help
to divide the landscape into spatially separated compart-
ments, and (3) it did not discriminate against peripheral
patches (e. g., patches with just one link would be assigned
the same group membership as their neighbor instead of
being treated as isolated). Figure 6 illustrates how this
method can be applied to decompose a single large com-
ponent into a set of spatially distinguishable groups of
patches.

Pascual–Hortal and Saura [86] have systematically
studied how a set of ten different network-based mea-
sures, including the size of the largest component, respond
to a number of different spatially explicit fragmentation
scenarios. They suggest a new measure called Integral in-
dex of connectivity (IIC) which extends the previous size-
of-largest-components analysis by also incorporating the
area of the patches, as well as the actual topological dis-
tances between patches, into a single normalized measure
of connectivity. They showed that the only measure that
responded in a desirable and consistent way to the full set
of fragmentation scenarios was the proposed IIS. How-
ever, the size of the largest component did also respond
reasonably well.

Assessing Critical Habitat Patches

The concept of stepping stones is similar to the topologi-
cal importance assigned to certain keystone species in food
webs. A stepping stone patch can be seen as a bridge con-
necting otherwise separated groups of internally intercon-
nected patches. A particular patch may also, although not
being the very last remaining bridging patch in a other-
wise largely fragmented landscape, exert influence since it
could make it much more difficult for dispersing species
to reach over the whole landscape if it is removed (i. e.,
its presence in the landscape provide shortcuts, thus re-
ducing the overall topological distance between patches,
see also [16]). Accordingly, assessing the impact indi-
vidual patches exert on the overall landscape connectiv-
ity would be of uttermost importance in management
targeted to preserve functional and well-connected land-
scapes (e. g., [11,75,86]).

A reasonable approach to assess individual patches’
contribution to the overall connectivity of the landscape
is to remove them, one by one, from the modeled network
and then measure the effect on some relevant measures of
landscape connectivity [75,78,86]. If, for example, the issue
of interest is the topological traversability of the landscape,
it is relevant to measure the size, or diameter, of the largest
component following the removal of each and every patch,
and then rank the patches according to the induced change
their removal inflicted on the largest component [75,78].
Similarly, in the previously mentioned study by Pascual–
Hortal and Saura [86], the effect on the chosen set of 10
different connectivity measures were assessed for a num-
ber of spatially explicit fragmentation scenarios wherein
individual patches occupying different kinds of topologi-
cal positions were removed.

Large changes in the size of the largest component fol-
lowing the removal of a certain patch would, however,
only occur if the removal would split the largest com-
ponent into two or more non-trivial components. From
a management perspective, it would be desirable if such
patches were identified before they become that critical
(as a result of continuous fragmentation). If such early
identification was possible, it would enable managers to
more proactively target conservation efforts in order to
protect patches that could become critical. The trial-and-
error method of removing nodes, one-by-one, lacks this
ability.

To enable such proactive topological analysis of indi-
vidual patches’ contribution to the landscapes connectiv-
ity, various measures of network centrality may be plausi-
ble. Following this line of though, the betweenness central-
ity index [19] has been suggested as a potentially relevant
measure in the context of landscape fragmentation [11,87].
Patches with a high score of betweenness centrality are
e. g., expected to significantly contribute to: (1) Reduc-
ing the overall topological distances between all pair of
patches, and (2) Linking otherwise separated groups of
patches [11]. As opposed to the trial-and-error approach
described earlier, it appears that by using the between-
ness centrality as the criterion for ranking the topologi-
cal importance of individual patches, potentially critical
patches could be identified even in cases where their re-
moval would not split the network into isolated compo-
nents. Furthermore, even in cases where the overall con-
nectivity of the landscape is fairly high, the betweenness
centrality index could be of use in identifying patches that
may be critical in the future as a consequence of further
fragmentation ([11], but see also [87]).

Another approach to identifying critical habitat
patches is to study the minimal spanning tree (MST) of the
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network representation of the landscape. The MST would
visually represent the “backbone” of the connected patches
in the landscape, and from there important patches can
be identified [75]. Furthermore, if the strength of the links
are accounted for (using e. g., Eq. 1), a link-weighted MST
can be constructed where the specific patches which con-
tribute, more than others, to species dispersals stand out by
their high number of links [78]. Furthermore, Fall and col-
leagues [81] have developed a modeling approach, which
they call spatial graphs, where they explicitly incorporate
geographical details in a network representation of a frag-
mented landscape. A spatial graph is e. g., spatially explicit
in describing the geometrics of the least-cost paths a dis-
persing organism would follow when moving from patch
to patch. Using this representation of the landscape, they
suggest that critical passages, barriers and stepping stone
patches can be visually identified and targeted for manage-
ment and/or restoration efforts. This modeling approach
has also been tested using empirical data on the movement
of woodland caribou (Rangifer tarandus caribou), where
a strong relationship between the distribution of caribou
and larger clusters of high-quality habitat (identified using
spatial graphs) was shown [88].

Summary

Three topological characteristics, degree distribution,
modularity and centrality, all appear to be of relevance in
studying different aspects of ecological systems. In food
webs, the degree distribution affects the stability in terms
of the risk for secondary extinctions following species loss.
In addition, the density of links is believed to have ef-
fects on the stability of ecosystems, although how, and in
what direction, is not entirely clear. Many food webs have
a modular structure, i. e., the web is divided into several
groups that are only weakly connected to each other. This
may effect how far disturbances spread throughout the
food web. In a web with many dense but separated groups
of species, disturbances may very well be confined within
groups. On the other hand, a highly modular structure im-
plies there are fewer opportunities for species to compen-
sate if some of their prey species would decline.

Furthermore, some species may be more influential
than others, and that influence may be attributed to their
structural position in the food web (structural keystone
species). Influence may result from having many links to
others, but it could also derive from the possession of
structurally important links that for example connects oth-
erwise disconnected groups of species.

In order to analyze the spatial structure of connec-
tivity of fragmented landscapes, a network representation

where nodes are patches and links are dispersal possibil-
ities paves the way for topological analyses at the level of
landscapes. It appears that simple network characteristics,
such as the number of components, can help in assessing
how connected different species, with varying dispersal ca-
pabilities, actually experience the landscape. Furthermore,
network analysis targeted at finding compartments of in-
ternally well-connected habitat patches can help in identi-
fying population and metapopulation boundaries. Finally,
by assessing the structural importance of individual habi-
tat patches (similar to structural keystone species), land
management could be made more efficient by letting dif-
ferent network centrality measures provide guidance in
prioritizing conservation efforts.

Future Directions

Topological analyses alone can provide important insights
into complex ecological systems. However, in many cases,
it is desirable to also include the strengths of the links in
the analyses. Many network analytical approaches support
the inclusion of link strengths, but there are many others
that do not. Furthermore, the network perspective has tra-
ditionally been rather static, and the analytical focus has
been the topological structure currently at hand. But net-
works evolve and develop dynamically; thus the topology
given at one moment in time may be outdated later on.
Better understanding of processes that shape network evo-
lution are needed, as are methods capable of longitudi-
nal network analyses applicable in an ecological context.
The last statement touches upon the fact that a topological
perspective will only be of any significant value when we
possess knowledge and/or well-grounded assumptions of
important processes. Thus topological approaches need to
develop alongside theoretical advances of understanding
key ecological processes.
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Glossary

Filtered probability of a regime The probability that the
unobserved Markov chain for a Markov-switching
model is in a particular regime in period t, conditional
on observing sample information up to period t.

Gibbs sampler An algorithm to generate a sequence of
samples from the joint probability distribution of
a group of random variables by repeatedly sampling
from the full set of conditional distributions for the
random variables.

Markov chain A process that consists of a finite number
of states, or regimes, where the probability of moving
to a future state conditional on the present state is in-
dependent of past states.

Markov-switching model A regime-switching model in
which the shifts between regimes evolve according to
an unobserved Markov chain.

Regime-Switching Model A parametric model of a time
series in which parameters are allowed to take on
different values in each of some fixed number of
regimes.

Smooth transition threshold model A threshold mod-
el in which the effect of a regime shift on model pa-
rameters is phased in gradually, rather than occurring
abruptly.

Smoothed probability of a regime The probability that
the unobserved Markov chain for a Markov-switching
model is in a particular regime in period t, conditional
on observing all sample information.

Threshold model A regime-switching model in which
the shifts between regimes are triggered by the level of
an observed economic variable in relation to an unob-
served threshold.

Time-varying transition probability A transition pro-
bability for a Markov chain that is allowed to
vary depending on the outcome of observed informa-
tion.

Transition probability The probability that a Markov
chain will move from state j to state i.

1I am grateful to Jim Hamilton and Bruce Mizrach for comments
on an earlier draft.

Definition of the Subject

Regime-switching models are time-series models in which
parameters are allowed to take on different values in each
of some fixed number of “regimes.” A stochastic process
assumed to have generated the regime shifts is included as
part of the model, which allows for model-based forecasts
that incorporate the possibility of future regime shifts. In
certain special situations the regime in operation at any
point in time is directly observable. More generally the
regime is unobserved, and the researcher must conduct
inference about which regime the process was in at past
points in time. The primary use of these models in the ap-
plied econometrics literature has been to describe changes
in the dynamic behavior of macroeconomic and financial
time series.

Regime-switching models can be usefully divided into
two categories: “threshold” models and “Markov-switch-
ing” models. The primary difference between these ap-
proaches is in how the evolution of the state process is
modeled. Threshold models, introduced by Tong [91],
assume that regime shifts are triggered by the level of
observed variables in relation to an unobserved thresh-
old. Markov-switching models, introduced to economet-
rics by [16,39,41], assume that the regime shifts evolve ac-
cording to a Markov chain.

Regime-switching models have become an enor-
mously popular modeling tool for applied work. Of par-
ticular note are regime-switching models of measures of
economic output, such as real Gross Domestic Product
(GDP), which have been used to model and identify the
phases of the business cycle. Examples of such mod-
els include [3,7,41,57,60,61,73,75,77,90,93]. A sampling of
other applications include modeling regime shifts in in-
flation and interest rates [2,25,34], high and low volatility
regimes in equity returns [23,46,48,92], shifts in the Fed-
eral Reserve’s policy “rule” [55,83], and time variation in
the response of economic output to monetary policy ac-
tions [35,53,69,81].

Introduction

There is substantial interest in modeling the dynamic
behavior of macroeconomic and financial quantities ob-
served over time. A challenge for this analysis is that these
time series likely undergo changes in their behavior over
reasonably long sample periods. This change may occur in
the form of a “structural break”, in which there is a shift
in the behavior of the time series due to some perma-
nent change in the economy’s structure. Alternatively, the
change in behavior might be temporary, as in the case of
wars or “pathological” macroeconomic episodes such as



2746 E Econometrics: Models of Regime Changes

economic depressions, hyperinflations, or financial crises.
Finally, such shifts might be both temporary and recur-
rent, in that the behavior of the time series might cycle
between regimes. For example, early students of the busi-
ness cycle argued that the behavior of economic variables
changed dramatically in business cycle expansions vs. re-
cessions.

The potential for shifts in the behavior of economic
time series means that constant parameter time series
models might be inadequate for describing their evolu-
tion. As a result, recent decades have seen extensive inter-
est in econometric models designed to incorporate param-
eter variation. One approach to describing this variation,
denoted a “regime-switching” model in the following, is
to allow the parameters of the model to take on different
values in each of some fixed number of regimes, where,
in general, the regime in operation at any point in time
is unobserved by the econometrician. However, the pro-
cess that determines the arrival of new regimes is assumed
known, and is incorporated into the stochastic structure of
the model. This allows the econometrician to draw infer-
ence about the regime that is in operation at any point in
time, as well as form forecasts of which regimes are most
likely in the future.

Applications of regime-switching models are usually
motivated by economic phenomena that appear to involve
cycling between recurrent regimes. For example, regime-
switching models have been used to investigate the cycling
of the economy between business cycle phases (expansion
and recession), “bull” and “bear” markets in equity re-
turns, and high and low volatility regimes in asset prices.
However, regime switching models need not be restricted
to parameter movement across recurrent regimes. In par-
ticular, the regimes might be non-recurrent, in which case
the models can capture permanent “structural breaks” in
model parameters.

There are a number of formulations of regime-switch-
ing time-series models in the recent literature, which can
be usefully divided into two broad approaches. The first
models regime change as arising from the observed behav-
ior of the level of an economic variable in relation to some
threshold value. These “threshold”models were first intro-
duced by Tong [91], and are surveyed by [78]. The second
models regime change as arising from the outcome of an
unobserved, discrete, random variable, which is assumed
to follow a Markov process. These models, commonly re-
ferred to as “Markov-switching” models, were introduced
in econometrics by [16,39], and became popular for ap-
plied work following the seminal contribution of Hamil-
ton [41]. Hamilton and Raj [47] and Hamilton [44] pro-
vide surveys of Markov-switching models, while Hamil-

ton [43] and Kim and Nelson [62] provide textbook treat-
ments.

There are by now a number of empirical applications
of regime-switching models that establish their empirical
relevance over constant parameter alternatives. In partic-
ular, a large amount of literature has evaluated the statis-
tical significance of regime-switching autoregressive mod-
els of measures of US economic activity. While the early
literature did not find strong evidence for simple regime-
switching models over the alternative of a constant param-
eter autoregression for US real GDP (e. g. [33]), later re-
searchers have found stronger evidence using more com-
plicated models of real GDP [57], alternative measures of
economic activity [45], and multivariate techniques [63].
Examples of other studies finding statistical evidence in
favor of regime-switching models include Garcia and Per-
ron [34], who document regime switching in the condi-
tional mean of an autoregression for the US real interest
rate, and Guidolin and Timmermann [40], who find ev-
idence of regime-switching in the conditional mean and
volatility of UK equity returns.

This article surveys the literature surrounding regime-
switching models, focusing primarily on Markov-switch-
ing models. The organization of the article is as fol-
lows. Section “Threshold and Markov-Switching Models
of Regime Change” describes both threshold andMarkov-
switching models using a simple example. The article then
focuses on Markov-switching models, with Sect. “Estima-
tion of a Basic Markov-Switching Model” discussing esti-
mation techniques for a basic model, Sect. “Extensions of
the Basic Markov-Switching Model” surveying a number
of primary extensions of the basic model, and Sect. “Speci-
fication Testing for Markov-Switching Models” surveying
issues related to specification analysis. Section “Empirical
Example: Identifying Business Cycle Turning Points” gives
an empirical example, discussing how Markov-switching
models can be used to identify turning points in the US
business cycle. The article concludes by highlighting some
particular avenues for future research.

Threshold andMarkov-SwitchingModels
of Regime Change

This section describes the threshold and Markov-switch-
ing approaches to modeling regime-switching using a spe-
cific example. In particular, suppose we are interested in
modeling the sample path of a time series, fytgTtD1, where
yt is a scalar, stationary, random variable. A popular choice
is an autoregressive (AR) model of order k:

yt D ˛ C
kX

jD1

� j yt� j C "t ; (1)
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where the disturbance term, "t, is assumed to be normally
distributed, so that "t � N(0; �2). The AR(k) model in (1)
is a parsimonious description of the data, and has a long
history as a tool for establishing stylized facts about the dy-
namic behavior of the time series, as well as an impressive
record in forecasting.

In many cases however, we might be interested in
whether the behavior of the time series changes across dif-
ferent periods of time, or regimes. In particular, we may
be interested in the following regime-switching version
of (1):

yt D ˛St C
kX

jD1

� j;St yt� j C "t ; (2)

where "t � N(0; �2St ). In (2), the parameters of the AR(k)
depend on the value of a discrete-valued state variable,
St D i; i D 1; : : : ;N , which denotes the regime in op-
eration at time t. Put simply, the parameters of the AR(k)
model are allowed to vary among one of N different values
over the sample period.

There are several items worth emphasizing about the
model in (2). First, conditional on being inside of any par-
ticular regime, (2) is simply a constant parameter linear
regression. Such models, which are commonly referred to
as “piecewise linear”, make up the vast majority of the ap-
plications of regime-switching models. Second, if the state
variable were observed, the model in (2) is simply a lin-
ear regression model with dummy variables, a fact that
will prove important in our discussion of how the param-
eters of (2) might be estimated. Third, although the spec-
ification in (2) allows for all parameters to switch across
all regimes, more restrictive models are certainly possible,
and indeed are common in applied work. For example,
a popular model for time series of asset prices is one in
which only the variance of the disturbance term is allowed
to vary across regimes. Finally, the shifts in the parame-
ters of (2) are modeled as occurring abruptly. An example
of an alternative approach, in which parameter shifts are
phased in gradually, can be found in the literature investi-
gating “smooth transition” threshold models. Such models
will not be described further here, but are discussed in de-
tail in [93].

Threshold and Markov-switching models differ in the
assumptions made about the state variable, St. Threshold
models assume that St is a deterministic function of an ob-
served variable. In most applications this variable is taken
to be a particular lagged value of the process itself, in which
case regime shifts are said to be “self-exciting”. In partic-
ular, define N � 1 “thresholds” as �1 < �2 < : : : < �N�1.
Then, for a self-exciting threshold model, St is defined as

follows:

St D 1 yt�d < �1 ;
St D 2 �1 � yt�d < �2 ;
:::

:::

St D N �N�1 � yt�d :

(3)

In (3), d is known as the “delay” parameter. In most cases
St is unobserved by the econometrician, because the de-
lay and thresholds, d and � i, are generally not observ-
able. However, d and � i can be estimated along with other
model parameters. [78] surveys classical and Bayesian ap-
proaches to estimation of the parameters of threshold
models.

Markov-switching models also assume that St is un-
observed. In contrast to threshold models however, St is
assumed to follow a particular stochastic process, namely
an N-state Markov chain. The evolution of Markov chains
are described by their transition probabilities, given by:

P(St D ijSt�1 D j; St�2 D q; : : :)
D P(St D ijSt�1 D j) D pi j ; (4)

where, conditional on a value of j, we assume
PN

iD1 pi j D
1. That is, the process in (4) specifies a complete proba-
bility distribution for St . In the general case, the Markov
process allows regimes to be visited in any order and for
regimes to be visited more than once. However, restric-
tions can be placed on the pij to restrict the order of regime
shifts. For example, [12] notes that the transition proba-
bilities can be restricted in such a way so that the model
in (2) becomes a “changepoint” model in which there are
N � 1 structural breaks in the model parameters. Finally,
the vast majority of the applied literature has assumed that
the transition probabilities in (4) evolve independently of
lagged values of the series itself, so that

P(St D ijSt�1 D j; St�2 D q; : : : ; yt�1; yt�2; : : :)
D P(St D ijSt�1 D j) D pi j ; (5)

which is the polar opposite of the threshold process de-
scribed in (3). For this reason, Markov-switching mod-
els are often described as having regimes that evolve “ex-
ogenously” of the series, while threshold models are said
to have “endogenous” regimes. However, while popu-
lar in practice, the restriction in (5) is not necessary for
estimation of the parameters of the Markov-switching
model. Section “Extensions of the Basic Markov-Switch-
ing Model” of this article discusses models in which the
transition probabilities of the Markov process are allowed
to be partially determined by lagged values of the series.
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The threshold and Markov-switching approaches are
best viewed as complementary, with the “best” model
likely to be application specific. Certain applications ap-
pear tailor-made for the threshold assumption. For exam-
ple, we might have good reason to think that the behavior
of time series such as an exchange rate or inflation will ex-
hibit regime shifts when the seriesmoves outside of certain
thresholds, as this will trigger government intervention.
The Markov-switching model might instead be the obvi-
ous choice when one does not wish to tie the regime shifts
to the behavior of a particular observed variable, but in-
stead wishes to let the data speak freely as to when regime
shifts have occurred.

In the remainder of this article I will survey various
aspects regarding the econometrics of Markov-switching
models. For readers interested in learning more about
threshold models, the survey article of Potter [78] is an ex-
cellent starting point.

Estimation of a BasicMarkov-SwitchingModel

This section discusses estimation of the parameters of
Markov-switching models. The existing literature has fo-
cused almost exclusively on likelihood-based methods for
estimation. I retain this focus here, and discuss both max-
imum likelihood and Bayesian approaches to estimation.
An alternative approach based on semi-parametric estima-
tion is discussed in [4].

To aid understanding, we focus on a specific baseline
case, which is the Markov-switching autoregression given
in (2) and (5). We simplify further by allowing for N = 2
regimes, so that St = 1 or 2. It is worth noting that in many
cases two regimes is a reasonable assumption. For exam-
ple, in the literature using Markov-switching models to
study business cycles phases, a two regime model, meant
to capture an expansion and recession phase, is an obvi-
ous starting point that has been used extensively.

Estimation of Markov-switching models necessitates
two additional restrictions over constant parameter mod-
els. First of all, the labeling of St is arbitrary, in that switch-
ing the vector of parameters associated with St = 1 and
St = 2 will yield an identical model. A commonly used ap-
proach to normalize the model is to restrict the value of
one of the parameters when St = 1 relative to its value when
St = 2. For example, for the model in (2) we could restrict
˛2 <˛1. For further details on the choice of normalization,
see [49]. Second, the transition probabilities in (5) must be
constrained to lie in [0,1]. One approach to implement this
constraint, which will be useful in later discussion, is to use
a probit specification for St . In particular, the value of St is
assumed to be determined by the realization of a random

variable, �t , as follows:

St D
�

1 if �t < �St�1
2 if �t � �St�1

�
; (6)

where �t � i:i:d:N(0; 1). The specification in (6) depends
on two parameters, � 1 and � 2, which determine the tran-
sition probabilities of the Markov process as follows:

p1 j D P(�t < � j) D ˚(� j)
p2 j D 1 � p1 j

; (7)

where j= 1, 2 and ˚ is the standard normal cumulative
distribution function.

There are two main items of interest on which to con-
duct statistical inference for Markov-switching models.
The first are the parameters of the model, of which there
are 2(k+ 3) for the two-regime Markov-switching autore-
gression. In the following we collect these parameters in
the vector

� D (˛1; �1;1; �2;1; : : : ; �k;1; �1; ˛2; �1;2; �2;2; : : : ;
�k;2; �2; �1; �2)0 :

(8)

The second item of interest is the regime indicator vari-
able, St . In particular, as St is unobserved, we will be in-
terested in constructing estimates of which regime was in
operation at each point in time. These estimates will take
the form of posterior probabilities that St D i; i D 1; 2.
We assume that the econometrician has a sample of T + k
observations, (yT ; yT�1; yT�2; : : : ; y�(k�1)). The series of
observations available up to time t is denoted as ˝t D

(yt ; yt�1; yt�2; : : : ; y�(k�1)).
We begin with maximum likelihood estimation of � .

Maximum likelihood estimation techniques for various
versions of Markov-switching regressions can be found
in the existing literature of multiple disciplines, for ex-
ample [52,76,79] in the speech recognition literature,
and [16,41] in the econometrics literature. Here we fo-
cus on the presentation of the problem given in [41], who
presents a simple iterative algorithm that can be used to
construct the likelihood function of a Markov-switching
autoregression, as well as compute posterior probabilities
for St .

For a given value of � , the conditional log likelihood
function is given by:

L(�) D
TX

tD1

log f (yt j˝t�1; �) : (9)

Construction of the conditional log likelihood function
then requires construction of the conditional density func-
tion, f (yt j˝t�1; �), for t D 1; : : : ; T . The “Hamilton
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Filter” computes these conditional densities recursively
as follows: Suppose for the moment that we are given
P(St�1 D jj˝t�1; �), which is the posterior probability
that St�1 D j based on information observed through pe-
riod t� 1. Equations (10) and (11) can then be used to con-
struct f (yt j˝t�1; �):

P(St D ij˝t�1; �) D
2X

jD1

P
�
St D ijSt�1 D j;˝t�1; �



� P
�
St�1 D jj˝t�1; �


; (10)

f
�
yt j˝t�1; �


D

2X

iD1

f
�
ytjSt D i;˝t�1; �



� P (St D ij˝t�1; �) : (11)

From (5), the first term in the summation in (10) is simply
the transition probability, pij, which is known for any par-
ticular value of � . The first term in (11) is the conditional
density of yt assuming that St = i, which, given the within-
regime normality assumption for " t , is:

f (yt jS1 D i;˝0; �)

D
1

�i
p
2�

exp

0

B
BBB
B
@

�

 

yt � ˛i �
kP

jD1
� j;i yt� j

!2

2�2i

1

C
CCC
C
A
:
(12)

With f (ytj˝t�1; �) in hand, the next step is then to up-
date (10) and (11) to compute f (ytC1j˝t ; �). To do so
requires P(St D ij˝t ; �) as an input, meaning we must
update P(St D ij˝t�1; �) to reflect the information con-
tained in yt . This updating is done using Bayes’ rule:

P(St D ij˝t ; �)

D
f (ytjSt D i;˝t�1; �)P (St D ij˝t�1)

f
�
yt j˝t�1; �

 ;
(13)

where each of the three elements on the right-hand side
of (13) are computable from the elements of (10) and (11).
Given a value for P(S0 D ij˝0; �) to initialize the filter,
Eqs. (10) through (13) can then be iterated to construct
f (ytj˝t�1; �); t D 1; : : : ; T , and therefore the log like-
lihood function, L(�). The maximum likelihood estimate
�̂MLE, is then the value of � that maximizes L(�), and can
be obtained using standard numerical optimization tech-
niques.

How do we set P(S0 D ij˝0; �) to initialize the filter?
As is discussed in [41], exact evaluation of this probabil-
ity is rather involved. The usual practice, which is possi-
ble when St is an ergodic Markov chain, is to simply set

P(S0 D ij˝0; �) equal to the unconditional probability,
P(S0 D i). For the two-regime case considered here, these
unconditional probabilities are given by:

P(S0 D 1) D
1 � p22

2 � p11 � p22
P(S0 D 2) D 1 � P(S0 D 1) :

(14)

Alternatively, P(S0 D ij˝0; �) could be treated as an ad-
ditional parameter to be estimated. See Hamilton [43] and
Kim and Nelson [62] for further details.

An appealing feature of the Hamilton filter is that, in
addition to the likelihood function, the procedure also di-
rectly evaluates P(St D ij˝t ; �), which is commonly re-
ferred to as a “filtered” probability. Inference regarding the
value of St is then sometimes based on P(St D ij˝t ; �̂MLE),
which is obtained by running the Hamilton filter with
� D �̂MLE. In many circumstances, we might also be inter-
ested in the so-called “smoothed” probability of a regime
computed using all available data, or P(St D ij˝T ; �). [54]
presents an efficient recursive algorithm that can be ap-
plied to compute these smoothed probabilities.

We now turn to Bayesian estimation of Markov-
switching models. In the Bayesian approach, the parame-
ters � are themselves assumed to be random variables, and
the goal is to construct the posterior density for these pa-
rameters given the observed data, denoted f (� j˝T). In all
but the simplest of models, this posterior density does not
take the form of any well known density whose properties
can be analyzed analytically. In this case, modern Bayesian
inference usually proceeds by sampling the posterior den-
sity repeatedly to form estimates of posterior moments
and other objects of interest. These estimates can be made
arbitrarily accurate by increasing the number of samples
taken from the posterior. In the case of Markov-switch-
ing models, Albert and Chib [1] demonstrate that samples
from f (� j˝T) can be obtained using a simulation-based
approach known as the Gibbs Sampler. The Gibbs Sam-
pler, introduced by [37,38,89], is an algorithm that pro-
duces random samples from the joint density of a group of
random variables by repeatedly sampling from the full set
of conditional densities for the random variables.

We will sketch out the main ideas of the Gibbs Sam-
pler in the context of the two-regime Markov-switching
autoregression. It will prove useful to divide the parameter
space into � D (� 01; �

0
2)
0, where �1 D (˛1; �1;1; �2;1; : : : ;

�k;1; �1; ˛2; �1;2; �2;2; : : : ; �k;2; �2)0 and �2 D (�1; �2)0.
Suppose it is feasible to simulate draws from the three con-
ditional distributions, f (�1j�2; S̃;˝T ), f (�2j�1; S̃;˝T ),
and P(S̃j�1; �2;˝T ), where S̃ D (S1; S2; : : : ; ST )0.
Then, conditional on arbitrary initial values, � (0)2 and
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S̃(0), we can obtain a draw of �1, denoted �
(1)
1 , from

f (�1j�
(0)
2 ; S̃(0);˝T ), a draw of �2, denoted �

(1)
2 , from

f (�2j� (1)1 ; S̃(0);˝T ), and a draw of S̃, denoted S̃(1), from
P(S̃j� (1)1 ; �

(1)
2 ;˝T ). This procedure can be iterated to ob-

tain � ( j)1 ; �
( j)
2 , and S̃( j) , for j= 1, . . . , J. For large enough J,

and assuming weak regularity conditions, these draws will
converge to draws from f (� j˝T) and P(S̃j˝T ). Then, by
taking a large number of such draws beyond J, one can es-
timate any feature of f (� j˝T) and P(S̃j˝T ), such as mo-
ments of interest, with an arbitrary degree of accuracy. For
example, an estimate of P(St D ij˝T) can be obtained by
computing the proportion of draws of S̃ for which St = i.

Why is the Gibbs Sampler useful for a Markov-
switching model? It turns out that although f (� j˝t) and
P(S̃j˝T ) cannot be sampled directly, it is straightfor-
ward, assuming natural conjugate prior distributions, to
obtain samples from f (�1j�2; S̃;˝T ), f (�2j�1; S̃;˝T ), and
P(S̃j�1; �2;˝T ) . This is most easily seen for the case of
�1, which, when S̃ is conditioning information, represents
the parameters of a linear regression with dummy vari-
ables, a case for which techniques to sample the parameter
posterior distribution are well established (Zellner 96). An
algorithm for obtaining draws of S̃ from P(S̃j�1; �2;˝T )
was first given in Albert and Chib [1], while Kim and Nel-
son [59] develop an alternative, efficient, algorithm based
on the notion of “multi-move”Gibbs Sampling introduced
in [6]. For further details regarding the implementation
of the Gibbs Sampler in the context of Markov-switching
models, see Kim and Nelson [62].

The Bayesian approach has a number of features that
make it particularly attractive for estimation of Markov-
switching models. First of all, the requirement of prior
density functions for model parameters, considered by
many to be a weakness of the Bayesian approach in
general, is often an advantage for Bayesian analysis of
Markov-switching models [42]. For example, priors can
be used to push the model toward capturing one type
of regime-switching vs. another. The value of this can
be seen for Markov-switching models of the business cy-
cle, for which the econometrician might wish to focus on
portions of the likelihood surface related to business cy-
cle switching, rather than those related to longer term
regime shifts in productivity growth. Another advantage
of the Bayesian approach is with regards to the infer-
ence drawn on St . In the maximum likelihood approach,
the methods of [54] can be applied to obtain P(St D
ij˝T ; �̂MLE). As these probabilities are conditioned on the
maximum likelihood parameter estimates, uncertainty re-
garding the unknown values of the parameters has not
been taken into account. By contrast, the Bayesian ap-

proach yields P(St D ij˝T), which is not conditional
on a particular value of � and thus incorporates uncer-
tainty regarding the value of � that generated the observed
data.

Extensions of the Basic Markov-SwitchingModel

The basic, two-regime Markov-switching autoregression
in (2) and (5) has been used extensively in the literature,
and remains a popular specification in appliedwork. How-
ever, it has been extended in a number of directions in the
substantial literature that follows [41]. This section surveys
a number of these extensions.

The estimation techniques discussed in Sect. “Es-
timation of a Basic Markov-Switching Model” can be
adapted in a straightforward manner to include several ex-
tensions to the basic Markov-switching model. For exam-
ple, the filter used in (10) through (13) can be modified in
obvious ways to incorporate the case of N > 2 regimes, as
well as to allow yt to be a vector of random variables, so
that the model in (2) becomes a Markov-switching vector
autoregression (MS-VAR). Hamilton [43] discusses both
of these cases, while Krolzig [68] provides an extensive dis-
cussion of MS-VARs. [83] is a recent example of applied
work using an MS-VAR with a large number of regimes.
In addition, the (known) within-regime distribution of the
disturbance term, "t, could be non-Gaussian, as in [23]
or [45]. Further, the parameters of (2) could be extended
to depend not just on St , but also on a finite number of
lagged values of St , or even a second state variable possibly
correlated with St . Indeed, such processes can generally be
rewritten in terms of the current value of a single, suitably
redefined, state variable. [58,66] provide examples of such
a redefinition. For further discussion of all of these cases,
see [43].

The specification for the transition probabilities in (5)
restricted the probability St = i to depend only on the value
of S t� 1. However, in some applications we might think
that these transition probabilities are driven in part by ob-
served variables, such as the past evolution of the pro-
cess. To this end, [21,28] developMarkov-switching mod-
els with time-varying transition probabilities (TVTP), in
which the transition probabilities are allowed to vary de-
pending on conditioning information. Suppose that zt
represents a vector of observed variables that are thought
to influence the realization of the regime. The probit rep-
resentation for the state process in (6) and (7) can then be
extended as follows:

St D
�

1 if �t <
�
�St�1 C z0tSt�1



2 if �t �
�
�St�1 C z0tSt�1


�
; (15)
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with associated transition probabilities:

p1 j(zt) D P
�
�t < (� j C z0t j)


D ˚

�
� j C z0t j



p2 j(zt) D 1 � p1 j(zt) ;
(16)

where j= 1, 2 and ˚ is again the standard normal cu-
mulative distribution function. Estimation of the Markov-
switching autoregression with TVTP is then straightfor-
ward. In particular, assuming that zt contains lagged val-
ues of yt or exogenous random variables, a maximum
likelihood estimation proceeds by simply replacing pij
with pi j(zt) in the filter given in (10) through (13).
Bayesian estimation of TVTP models via the Gibbs Sam-
pler is also straightforward, and is discussed in [29]. De-
spite its intuitive appeal, the literature contains relatively
few applications of the TVTP model. A notable example
of the TVTP framework is found in Durland and Mc-
Curdy [24], Filardo and Gordon [29] and Kim and Nel-
son [59], who study business cycle “duration dependence”,
or whether the probability of a business cycle phase shift
depends on how long the economy has been in the current
phase. Other applications include Ang and Bekaert [2],
who model regime-switches in interest rates, and Lo and
Piger [69], who investigate sources of time-variation in the
response of output to monetary policy actions.

The TVTP model is capable of relaxing the restric-
tion that the state variable, St, is independent of the lagged
values of the series, yt , and thus of lagged values of the
disturbance term, "t. Kim, Piger and Startz [65] consider
a Markov-switching model in which St is also correlated
with the contemporaneous value of "t, and is thus “en-
dogenous”. They model this endogenous switching by as-
suming that the shock to the probit process in (6), �t , and
"t are jointly normally distributed as follows:

�
"t
�t

�
� N(0; ˙); ˙ D

�
1 �

� 1

�
: (17)

Kim, Piger and Startz [65] show that when � 6D 0, the con-
ditional density in (12) is no longer Gaussian, but can be
evaluated analytically. Thus, the likelihood function for
the endogenous switching model can be evaluated with
simple modifications to the recursive filter in (10) through
(13). Tests of the null hypothesis that St is exogenous can
also be implemented in a straightforward manner. Chib
and Dueker [13] consider endogenous switching as in (17)
from a Bayesian perspective.

The extensions listed above are primarily modifica-
tions to the stochastic process assumed to drive St. A more
fundamental extension of (2) is to consider Markov-
switching in time series models that are more complicated
than simple autoregressions. An important example of this

is a state-space model with Markov-switching parameters.
Allowing for Markov-switching in the state-space repre-
sentation for a time series is particularly interesting be-
cause a large number of popular time-series models can
be given a state-space representation. Thus, incorporat-
ing Markov-switching into a general state-space represen-
tation immediately extends the Markov-switching frame-
work to these models.

To aid discussion, consider the following Markov-
switching state-space representation for a vector of R ran-
dom variables, Yt D (y1t ; y2t ; : : : ; yRt)0, given as follows:

Yt D H0St Xt CWt

Xt D ASt C FSt Xt�1 C Vt
; (18)

where Xt D (x1t ; x2t; : : : ; xDt)0;Wt � N(0; BSt ) and
Vt � N(0;QSt ). The parameters of the model undergo
Markov switching, and are contained in the matrices
HSt ; BSt ;ASt ; FSt ;QSt . A case of primary interest is when
some or all of the elements of Xt are unobserved. This is
the case for a wide range of important models in practice,
including models with moving average (MA) dynamics,
unobserved components (UC) models, and dynamic fac-
tor models.However, in the presence ofMarkov-switching
parameters, the fact that Xt is unobserved introduces sub-
stantial complications for construction of the likelihood
function. In particular, as is discussed in detail in [54]
and Kim and Nelson [62], exact construction of the con-
ditional density f (yt j˝t�1; �) requires that one consider
all possible permutations of the entire history of the state
variable, St ; St�1; St�2; : : : ; S1. For even moderately sized
values of t, this quickly becomes computationally infeasi-
ble.

Tomake inference viamaximum likelihood estimation
feasible, [54] develops a recursive filter that constructs an
approximation to the likelihood function. This filter “col-
lapses” the number of lagged regimes that are necessary
to keep track of by approximating a nonlinear expecta-
tion with a linear projection. Kim and Nelson [62] pro-
vide a detailed description of the Kim [54] filter, as well as
a number of examples of its practical use.

If one is willing to take a Bayesian approach to the
problem, Kim and Nelson [59] show that inference can be
conducted via the Gibbs Sampler without resorting to ap-
proximations. As before, the conditioning features of the
Gibbs sampler greatly simplifies the analysis. For exam-
ple, by conditioning on S̃ D (S1; S2; : : : ; ST )0, the model
in (18) is simply a linear, Gaussian, state-space model with
dummy variables, for which techniques to sample the pos-
terior distribution of model parameters and the unob-
served elements of Xt are well established [6]. Kim and
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Nelson [62] provide detailed descriptions of how theGibbs
Sampler can be implemented for a state-space model with
Markov switching.

There are many applications of state space models
with Markov switching. For example, a large literature
uses UCmodels to decompose measures of economic out-
put into trend and cyclical components, with the cyclical
component often interpreted as a measure of the busi-
ness cycle. Until recently, this literature focused on lin-
ear representations for the trend and cyclical compo-
nents [14,51,72,94]. However, one might think that the
processes used to describe the trend and cyclical compo-
nents might display regime switching in a number of di-
rections, such as that related to the phase of the business
cycle or to longer-run structural breaks in productivity
growth or volatility. A UC model with Markov switch-
ing in the trend and cyclical components can be cast
as a Markov-switching state-space model as in (18). Ap-
plications of such regime-switching UC models can be
found in [58,60,64,71,84]. Another primary example of
a Markov-switching state-space model is a dynamic fac-
tor model with Markov-switching parameters, examples
of which are given in [7,59]. Section “Empirical Example:
Identifying Business Cycle Turning Points” presents a de-
tailed empirical example of such a model.

Specification Testing forMarkov-SwitchingModels

Our discussion so far has assumed that key elements in the
specification of regime-switchingmodels are known to the
researcher. Chief among these is the number of regimes,
N. However, in practice there is likely uncertainty about
the appropriate number of regimes. This section discusses
data-based techniques that can be used to select the value
of N .

To fix ideas, consider a simple version of the Markov-
switching model in (2):

yt D ˛St C "t ; (19)

where "t � N(0; �2). Consider the problem of trying to
decide between a model with N = 2 regimes vs. the sim-
plermodel withN = 1 regimes. Themodel with one regime
is a constant parameter model, and thus this problem can
be interpreted as a decision between a model with regime-
switching parameters vs. one without. An obvious choice
for making this decision is to construct a test of the null
hypothesis of N = 1 vs. the alternative of N = 2. For exam-
ple, one might construct the likelihood ratio statistic:

LR D 2
�
L(�̂MLE(2)) � L(�̂MLE(1))


; (20)

where �̂MLE(1) and �̂MLE(2) are the maximum likelihood es-
timates under the assumptions of N = 1 and N = 2 respec-
tively. Under the null hypothesis there are three fewer pa-
rameters to estimate, ˛2, � 1 and � 2, than under the alter-
native hypothesis. Then, to test the null hypothesis, one
might be tempted to proceed by constructing a p-value for
LR using the standard �2 (3) distribution.

However, this final step is not justified, and can lead
to very misleading results in practice. In particular, the
standard conditions for LR to have an asymptotic �2 dis-
tribution include that all parameters are identified under
the null hypothesis [17]. In the case of the model in (19),
the parameters � 1 and � 2, which determine the transition
probabilities pij, are not identified assuming the null hy-
pothesis is true. In particular, if ˛1 =˛2, then pij can take
on any values without altering the likelihood function for
the observed data. A similar problem exists when testing
the general case of N vs. N + 1 regimes.

Fortunately, a number of contributions in recent years
have produced asymptotically justified tests of the null
hypothesis of N regimes vs. the alternative of N + 1
regimes. In particular, [33,50] provide techniques to com-
pute asymptotically valid critical values for LR. Recently
Carrasco, Hu and Ploberger [5] have developed an asymp-
totically optimal test for the null hypothesis of parame-
ter constancy against the general alternative of Markov-
switching parameters. Their test is particularly appealing
because it does not require estimation of the model under
the alternative hypothesis, as is the case with LR.

If one is willing to take a Bayesian approach, the com-
parison of models withN vs.N + 1 regimes creates no spe-
cial considerations. In particular, one can proceed by com-
puting standard Bayesianmodel comparison metrics, such
as Bayes Factors or posterior odds ratios. Examples of such
comparisons can be found in [11,63,78].

Empirical Example:
Identifying Business Cycle Turning Points

This section presents an empirical example demonstrat-
ing how the Markov-switching framework can be used to
model shifts between expansion and recession phases in
the US business cycle. This example is of particular in-
terest for two reasons. First, although Markov-switching
models have been used to study a wide variety of top-
ics, their most common application has been as formal
statistical models of business cycle phase shifts. Second,
the particular model we focus on here, a dynamic fac-
tor model with Markov-switching parameters, is of inter-
est in its own right, with a number of potential applica-
tions.
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The first presentation of a Markov-switching model
of the business cycle is found in [41]. In particular, [41]
showed that US real GDP growth could be characterized
as an autoregressive model with a mean that switched be-
tween low and high growth regimes, where the estimated
timing of the low growth regime corresponded closely
to the dates of US recessions as established by the Busi-
ness Cycle Dating Committee of the National Bureau of
Economic Research (NBER). This suggested that Markov-
switchingmodels could be used as tools to identify the tim-
ing of shifts between business cycle phases, and a great
amount of subsequent analysis has been devoted toward
refining and using the Markov-switching model for this
task.

The model used in [41] was univariate, considering
only real GDP. However, as is discussed in [22], a long em-
phasized feature of the business cycle is comovement, or
the tendency for business cycle fluctuations to be observed
simultaneously in a large number of economic sectors and
indicators. This suggests that, by using information from
many economic indicators, the identification of business
cycle phase shifts might be sharpened. One appealing way
of capturing comovement in a number of economic in-
dicators is through the use of dynamic factor models, as
popularized by [85,86]. However, these models assumed
constant parameters, and thus do not model business cy-
cle phase shifts explicitly.

To simultaneously capture comovement and business
cycle phase shifts, [7] introduces Markov-switching pa-
rameters into the dynamic factor model of [85,86]. Specifi-
cally, defining y�r t D yr t � ȳr as the demeaned growth rate
of the rth economic indicator, the dynamic factor Markov-
switching (DFMS) model has the form:

y�r t D ˇr ct C er t : (21)

In (21), the demeaned first difference of each series is made
up of a component common to each series, given by the
dynamic factor ct, and a component idiosyncratic to each
series, given by ert. The common component is assumed
to follow a stationary autoregressive process:

�(L)(ct � �St ) D "t ; (22)

where "t � i:i:d:N(0; 1). The unit variance for "t is im-
posed to identify the parameters of the model, as the fac-
tor loading coefficients, ˇr, and the variance of "t are not
separately identified. The lag polynomial �(L) is assumed
to have all roots outside of the unit circle. Regime switch-
ing is introduced by allowing the common component
to have a Markov-switching mean, given by �St , where
St D f1; 2g. The regime is normalized by setting �2 < �1.

Finally, each idiosyncratic component is assumed to fol-
low a stationary autoregressive process:

�r(L)er t D !r t : (23)

where � r(L) is a lag polynomial with all roots outside the
unit circle and !r t � N(0; �2!;r).

[7] estimates the DFMSmodel for USmonthly data on
non-farm payroll employment, industrial production, real
manufacturing and trade sales, and real personal income
excluding transfer payments, which are the four monthly
variables highlighted by the NBER in their analysis of busi-
ness cycles. The DFMS model can be cast as a state-space
model with Markov switching of the type discussed in
Sect. “Extensions of the Basic Markov-Switching Model”.
Chauvet estimates the parameters of the model via max-
imum likelihood, using the approximation to the likeli-
hood function given in [54]. Kim and Nelson [59] instead
use Bayesian estimation via the Gibbs Sampler to estimate
the DFMS model.

Here I update the estimation of the DFMS model pre-
sented in [59] to a sample period extending from Febru-
ary 1967 through February 2007. For estimation, I use
the Bayesian Gibbs Sampling approach, with prior distri-
butions and specification details identical to those given
in [59]. Figure 1 displays P(St D 2j�T) obtained from the
Gibbs Sampler, which is the estimated probability that the
low growth regime is active. For comparison, Fig. 1 also
indicates NBER recession dates with shading.

There are two items of particular interest in Fig. 1.
First of all, the estimated probability of the low growth
regime is very clearly defined, with P(St D 2j�T) gener-
ally close to either zero or one. Indeed, of the 481 months

Econometrics: Models of Regime Changes, Figure 1
Probability of US Recession from Dynamic Factor Markov-
Switching Model
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in the sample, only 32 had P(St D 2j�T ) fall between
0.2 and 0.8. Second, P(St D 2j�T) is very closely aligned
with NBER expansion and recession dates. In particular,
P(St D 2j�T) tends to be very low during NBER expan-
sion phases and very high during NBER recession phases.

Figure 1 demonstrates the added value of employing
the DFMS model, which considers the comovement be-
tween multiple economic indicators, over models consid-
ering only a single measure of economic activity. In par-
ticular, results for the Markov-switching autoregressive
model of real GDP presented in [41] were based on a data
sample ending in 1984, and it is well documented that
Hamilton’s original model does not perform well for cap-
turing the two NBER recessions since 1984. Subsequent
research has found that allowing for structural change in
the residual variance parameter [61,70] or omitting all lin-
ear dynamics in the model [1,9] improves the Hamilton
model’s performance. By contrast, the results presented
here suggest that the DFMSmodel accurately identifies the
NBER recession dates without a need for structural breaks
or the omission of linear dynamics.

In some cases, we might be interested in converting
P(St D 2j�T) into a specific set of dates establishing the
timing of shifts between business cycle phases. To do so
requires a rule for establishing whether a particular month
was an expansion month or a recession month. Here we
consider a simple rule, which categorizes any particular
month as an expansion month if P(St D 2j�T) � 0:5 and
a recession month if P(St D 2j�T) > 0:5. Table 1 displays
the dates of turning points between expansion and reces-
sion phases (business cycle peaks), and the dates of turning
points between recession and expansion phases (business
cycle troughs) that are established by this rule. For com-
parison, Table 1 also lists the NBER peak and trough dates.

Table 1 demonstrates that the simple rule applied to
P(St D 2j�T ) does a very good job of matching the
NBER peak and trough dates. Of the twelve turning points
in the sample, the DFMS model establishes eleven within

Econometrics: Models of Regime Changes, Table 1
Dates of Business Cycle Turning Points Produced by NBER and Dynamic Factor Markov-SwitchingModel

Peaks Troughs
DFMS NBER Discrepancy DFMS NBER Discrepancy
Oct 1969 Dec 1969 2M Nov 1970 Nov 1970 0M
Dec 1973 Nov 1973 �1M Mar 1975 Mar 1975 0M
Jan 1980 Jan 1980 0M Jun 1980 Jul 1980 1M
Jul 1981 Jul 1981 0M Nov 1982 Nov 1982 0M
Aug 1990 Jul 1990 �1M Mar 1991 Mar 1991 0M
Nov 2000 Mar 2001 4M Nov 2001 Nov 2001 0M

two months of the NBER date. The exception is the peak
of the 2001 recession, for which the peak date from the
DFMS model is four months prior to that established by
the NBER. In comparing peak and trough dates, the DFMS
model appears to do especially well at matching NBER
trough dates, for which the date established by the DFMS
model matches the NBER date exactly in five of six cases.

Why has the ability of Markov-switching models to
identify business cycle turning points generated so much
attention? There are at least four reasons. First, it is some-
times argued that recession and expansion phases may not
be of any intrinsic interest, as they need not reflect any
real differences in the economy’s structure. In particular,
as noted by [95], simulated data from simple, constant pa-
rameter, time-series models, for which the notion of sepa-
rate regimes is meaningless, will contain episodes that look
to the eye like “recession” and “expansion” phases. By cap-
turing the notion of a business cycle phase formally inside
of a statistical model, the Markov-switching model is then
able to provide statistical evidence as to the extent to which
business cycle phases are a meaningful concept. Second,
although the dates of business cycle phases and their asso-
ciated turning points are of interest to many economic re-
searchers, they are not compiled in a systematic fashion for
many economies. Markov-switching models could then be
applied to obtain business cycle turning point dates for
these economies. An example of this is given in [74], who
use Markov-switching models to establish business cycle
phase dates for US states. Third, if economic time-series do
display different behavior over business cycle phases, then
Markov-switching models designed to capture such dif-
ferences might be exploited to obtain more accurate fore-
casts of economic activity. Finally, the current probabil-
ity of a new economic turning point is likely of substantial
interest to economic policymakers. To this end, Markov-
switching models can be used for “real-time” monitoring
of new business cycle phase shifts. Indeed, Chauvet and
Piger [10] provide evidence that Markov-switching mod-
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els are often quicker to establish US business cycle turn-
ing points, particularly at business cycle troughs, than is
the NBER. For additional analysis of the ability of regime-
switching models to establish turning points in real time,
see [8,9].

Future Directions

Research investigating applied and theoretical aspects of
regime-switching models should be an important compo-
nent of the future research agenda inmacroeconomics and
econometrics. In this section I highlight three directions
for future research which are of particular interest.

To begin, additional research oriented toward improv-
ing the forecasting ability of regime-switching models is
needed. In particular, given that regime-switching mod-
els of economic data contain important deviations from
traditional, constant parameter, alternatives, we might ex-
pect that they could also provide improved out-of-sample
forecasts. However, as surveyed in [15], the forecasting im-
provements generated by regime-switching models over
simpler alternatives is spotty at best. That this is true is
perhaps not completely surprising. For example, the abil-
ity of a Markov-switching model to identify regime shifts
in past data does not guarantee that the model will do
well at detecting regime shifts quickly enough in real time
to generate improved forecasts. This is particularly prob-
lematic when regimes are short lived. Successful efforts to
improve the forecasting ability of Markov-switching mod-
els are likely to come in the form of multivariate models,
which can utilize additional information for quickly iden-
tifying regime shifts.

A second potentially important direction for future re-
search is the extension of the Markov-switching dynamic
factor model discussed in Sects.“Extensions of the Basic
Markov-Switching Model” and “Empirical Example: Iden-
tifying Business Cycle Turning Points” to settings with
a large cross-section of data series. Indeed, applications
of the DFMS model have been largely restricted to a rel-
atively small number of variables, such as in the model of
the US business cycle considered in Sect. “Empirical Ex-
ample: Identifying Business Cycle Turning Points”. How-
ever, in recent years there have been substantial develop-
ments in the analysis of dynamic factor models compris-
ing a large number of variables, as in [31,32,87,88,92]. Re-
search extending the regime-switching framework to such
“big data” factor models will be of substantial interest.

Finally, much remains to be done incorporating
regime-switching behavior into structural macroeco-
nomic models. A number of recent studies have begun
this synthesis by considering the implications of regime-

switches in the behavior of a fiscal or monetary poli-
cymaker for the dynamics and equilibrium behavior of
model economies [18,19,20,26,27]. This literature has al-
ready yielded a number of new and interesting results, and
is likely to continue to do so as it expands. Less atten-
tion has been paid to reconciling structural models with
a list of new “stylized facts” generated by the application
of regime-switching models in reduced-form settings. As
one example, there is now a substantial list of studies, in-
cluding [3,45,57,58,82], and Kim and Nelson [60] find-
ing evidence that the persistence of shocks to key macroe-
conomic variables varies dramatically over business cycle
phases. However, such an asymmetry is absent from most
modern structural macroeconomic models, which gener-
ally possess a symmetric propagation structure for shocks.
Research designed to incorporate and explain business cy-
cle asymmetries and other types of regime-switching be-
havior inside of structural macroeconomic models will be
particularly welcome.
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Glossary

Cointegration Cointegration is an econometric property
relating time series variables. If two or more series are
themselves nonstationary, but a linear combination of
them is stationary, then the series are said to be coin-
tegrated.

Short memory A time series is said to be short memory if
its information decays through time. In particular, we
say that a variable is short memory in mean (in distri-
bution), if the conditional mean (distribution) of the
variable at time t given the information at time t � h
converges to a constant (to an unconditional distribu-
tion) as h diverges to infinity. Shocks in short memory
time series have transitory effects.

Extended memory A time series is said to be extended
memory in mean (in distribution), if it is not short
memory in mean (distribution). Shocks in extended
memory time series have permanent effects.

Nonlinear cointegration If two or more series are of ex-
tended memory, but a nonlinear transformation of
them is short memory, then the series are said to be
nonlinearly cointegrated.

Error correction model An Error Correction Model is
a dynamic model in which the rate of growth of the
variables in any period is related to the previous pe-
riod’s gap from long-run equilibrium.

Definition of the Subject

This paper is a selective review of the literature on non-
linear cointegration and nonlinear error correction mod-
els. The concept of cointegration plays a major role in
macroeconomics, finance and econometrics. It was intro-
duced by Granger in [42] and since then, it has achieved
immense popularity among econometricians and applied
economists. In fact in 2003 the Royal Swedish Academy of
Science gave the Bank of Sweden Prize in Economic Sci-
ences in Memory of Alfred Nobel to C. W. J. Granger for
his contribution to the analysis of economic relationships
based on cointegrated variables. In this paper we discuss
the nonlinear extensions of the linear cointegration theory.
Some authors consider nonlinear cointegration as a partic-
ular case of nonlinear error correction models. Although
both concepts are related, we believe that it is useful to
distinguish between them. After making this point clear,
by relating linear and nonlinear error correction models,
we discuss alternative measures of temporal dependence
(memory) and co-dependence that are useful to character-
ize the usual notion of integration of order zero, I(0), and
cointegration in nonlinear contexts. We discuss paramet-
ric and nonparametric notions of nonlinear cointegration.

Finally, we conclude pointing out several lines of research
that we think are promising in nonlinear and nonstation-
ary contexts and therefore deserve further analysis.

Introduction

Granger in [42] introduced the concept of cointegration in
a linear context; for further development see [20,64,65,85].
The alternative ways to deal with integrated and cointe-
grated series are now clear only in the linear context; see
for example [43,52,57,59,67,77,105].

Inmacroeconomic and financial applications there are
many cases where nonlinearities have been found in non-
stationary contexts and therefore, there is a need for a the-
oretical justification of those empirical results. To reach
this goal is not an easy target since the usual difficulties
analyzing nonlinear time series models within a station-
ary and ergodic framework are enhanced in nonstationary
contexts.

The purpose of this survey on nonlinear cointegration
is to give a selected overview on the state of the art of
econometrics that simultaneously analyzes nonstationar-
ites and nonlinearities. The structure of this paper is the
following: Sect. “Linear Measures of Memory and Lin-
ear Error Correction Models” discusses linear concepts of
memory and dependence, cointegrated and error correc-
tion models. Section “Nonlinear Error Correction (NEC)
Models” introduces nonlinear error correction models.
Section “Nonlinear Cointegration” investigates nonlinear
measures of memory and dependence and nonlinear coin-
tegration. Finally, Sect. “Future Directions” concludes and
mentions some open questions for future research.

Linear Measures ofMemory
and Linear Error CorrectionModels

The time series xt is integrated of order d, denoted
xt � I(d), if
d xt D (1 � L)d xt � I(0), where L is the lag
operator such that Lkxt D xt�k and d is an integer num-
ber. Here I(0) denotes a covariance stationary short mem-
ory process with positive and bounded spectral density.
We can extrapolate the concepts of integration to the frac-
tional case where now d is not an integer but a real num-
ber. However, in this paper we will not cover fractional
integration nor fractional cointegration; see Chapter 9.4.1
in [103] for a review.

Following the ideas of the seminal paper of [42], the
most simple definition of cointegration could be the fol-
lowing; we say that two I(1) series, yt and xt , are cointe-
grated if there is a linear combination (1;�ˇ)(yt , xt)0 that
is I(0); zt D yt � ˇxt is I(0), but any other linear com-
bination, zt D yt � ˛xt , is I(1) where ˛ ¤ ˇ. For sim-
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plicity, through all this paper we will assume a bivariate
system with a single cointegrating vector. Notice that the
second condition of the above definition of cointegration
(zt D yt � ˛xt , is I(1) for any ˛ ¤ ˇ) is redundant in the
linear context. However, it will be useful for the identifica-
tion of the cointegrating vector in nonlinear cointegration,
see Definition 3.

A nonparametric characterization of cointegration
was introduced by [1] and [78]. Let xt; yt be the two
I(d) time series of interest, d D 1, and let �yx (�; t) rep-
resent the cross-covariance function (CCF) of xt; yt , de-
fined by �yx (�; t) D cov

�
yt; xt��


, where we make ex-

plicit the time dependence in �yx (�; t) to allow for some
degree of heterogeneity in the series. Similarly, define
�x (�; t) D cov (xt; xt�� ). Cointegration implies that the
rates of convergence of �yx (�; t) and �x (�; t) should be
the same as � increases without bound and � D o(t).
Intuitively, under cointegration, the remote past of xt
should be as useful as the remote past of yt in terms of
the long-run linear forecast of yt . For example, suppose
xt; yt � I(1) and zt D yt � ˇxt a sequence of indepen-
dent and identically distributed (i.i.d.) random variables
independent of xt . In this case, �yx (�; t)/�x (�; t) D ˇ for
all �; t, � 6 t. In more general cases, zt might have serial
correlation and might not be independent of xt and there-
fore, the constancy of this ratio will only take place for � ’s
beyond some value, see the Monte Carlo simulation re-
sults in [78]. On the other hand, in the spurious cointe-
gration case where xt ; yt are stochastically independent,
lim�!1 �yx (�; t)/�x (�; t) D 0 for all �; t, � 6 t, there-
fore the ratio �yx (�; t)/�x (�; t) is consistent against this
type of spurious alternative hypothesis. As we will see later
on, this notion of cointegration accepts nonlinear general-
izations (nonlinear cointegration).

The most simple version of Granger’s Representation
Theorem, see [20], states that two series yt and xt are coin-
tegrated if and only if they have an error correction rep-
resentation, see Eqs (1a)–(1c) below. Therefore, either xt
Granger-causes yt or yt Granger-causes xt or both.

Let yt and xt be two I(1) series, where xt is a pure ran-
dom walk and yt is generated by the following linear error
correction (EC) model (1a) with linear cointegration (1b),


yt D  1
xt C �zt�1 C (t (1a)

yt D ˇxt C zt (1b)


xt D "t (1c)

where all the random error terms (( t , zt , "t) are I(0). The
errors zt of (1b) form the error correction terms of (1a)
and have usually more persistence (longer memory) than

the other two random error terms (( t , "t). Therefore, in
the system of Eqs. (1a)–(1c), xt Granger-causes yt but not
the other way around.

Notice that we can write Eq. (1a), with �1 D  1 � ˇ,
in an equivalent way that will be very useful to introduce
later on nonlinear error correction (NEC) models,

zt D zt�1 C �1
xt C �zt�1 C (t : (2)

Several alternative estimation procedures have been
discussed in the literature to estimate the cointegrating pa-
rameter ˇ:

i) Maximum likelihood approach of [66] and [7]. As-
sumes that the conditional distribution of y given x
and the lagged values of x and y is Normal and that
the bivariate data generating process (DGP) of y and
x is a VAR of finite autoregressive order k, VAR(k) in
error correction form. Furthermore, if the contem-
poraneous x-variable is weakly exogenous, then the
partial maximum likelihood estimators is obtained by
nonlinear least squares (NLS) on the error correc-
tion model obtained substituting (1b) in (1a). [98]
and [38], derived the asymptotic properties of the
NLS estimator of the error correction model (1a)
and (1b), without the Normality assumption.

ii) Two-step approach of Engle and Granger, see [20]. In
the first step, Eq. (1b) is estimated by ordinary least
squares (OLS) to get the residuals (z). In the second
step, Eq. (1a) is estimated by OLS after substituting
zt�1 by the corresponding lagged residuals from the
first step. The OLS estimator of the first step is super-
consistent but biased, and the limiting distribution de-
pends on nuisance parameters. However, if zt is seri-
ally uncorrelated and xt is strictly exogenous, then the
OLS estimator in (1b) coincides with the fully mod-
ified estimator and therefore it is asymptotically effi-
cient, see [38].

iii) Fully modified OLS, FM-OLS. This is a 2-step proce-
dure developed by [79,80,86], and [81]. In the first
step, Eq. (1b) is estimated by OLS. In the second
step, semiparametric corrections are made for the se-
rial correlation of the residuals zt and for the en-
dogeneity of the x-regressors. Under general condi-
tions the fully modified estimator, is asymptotically
efficient. The small sample behavior of these esti-
mators was analyzed by Monte Carlo simulations
by [53,56,57,58,71,86].

iv) Fully modified instrumental variable estimator, FM-
IV, of [71,86]. [78] showed that their nonparametric
notion of cointegration has an instrumental variable
(IV) interpretation if the instruments are the lagged
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values of x. Furthermore, they showed that choosing
those instruments has an extra advantage; we do not
need to make the usual two corrections (endogeneity
and serial correlation) to obtain a fully modified es-
timator. This particular IV-estimator has important
advantages (bias reductions) over OLS in small sam-
ples.

v) Recently [89] also studied the asymptotic properties
of instrumental variables estimators (IV) in a frac-
tional cointegration context, as in [78]. They propose
to use IV estimates based on single equations estima-
tion like (1b) employing exclusion and normalization
restrictions, without correcting for the serial correla-
tion of zt.

vi) [100] and [91], suggested a parametric correction for
the endogeneity of the regressor (xt) when estimat-
ing (1b) by OLS. The idea, based on the work of [97]
about testing for causality, is to include additional fu-
ture and past values of the 
xt in Eq. (1b) when esti-
mating it by OLS.

vii) [87] proposed to add integral error correction terms
(lagged values of the EC terms), to the procedure de-
scribed in vi) in order to parsimoniously correct for
serial correlation.

[63], using Monte Carlo simulations, compares some
of these parametric and semi parametric estimators of
the cointegrating vector. In the context of normally dis-
tributed errors, [63] recommends to model explicitly
the dynamics instead of using nonparametric corrections
based on fully modified estimators.

Nonlinear Error Correction (NEC) Models

There are interesting macroeconomic applications where
nonlinearities have been found in nonstationary contexts.
The first example of a nonlinear error correction (NEC)
model is the UK money demand from 1878 to 1970
of [25,27]. Later on [61] used this nonlinear error cor-
rection strategy in their money demand estimation as an
improvement over the usual linear money demands equa-
tions suggested by [37,60,76].

The variables of the usual money demand are:m D log
money stock (millions), y D log real net national product
Y , p D log of the price deflator of Y , rs D log of short
term interest rate, rl D log of long-term interest rate, and
RS D short term interest rate (without logs). Let V be the
velocity of circulation of money, a version of the quantity
theory of money says that MV(RS) D PY or in logs m C
v(RS) D pC y. Rearranging terms we can write (m� p�
y) D �v(RS) as a long run money demand.

[27] applied the 2-step approach of [20] obtaining the
following results:

1st Step:
�
m � p � y


t D �0:31 � 7RSt C ût (3a)

where ût are the residuals from 1878 to 2000 of the
cointegrating relationship estimated by the super-con-
sistent ordinary least squares (OLS) estimator. The in-
verse of the log of velocity of circulation of money,
(m � p � y) D log

� M
PY

D �v(RS), is I(1) and the short

run interest rate (RS) is also I(1). Therefore, since the er-
ror term ût is stable and significant it is I(0), see conditions
(e) and (f) of Theorem 1 below. Equation (3a), or (3b), is
the first example of nonlinear cointegration given by;

M
PY
D exp(�0:31 � 7RS C û) : (3b)

Similar nonlinear cointegrating relationships based on
long run money demand equations are recently estimated
by [3].

[22] and [27] showed that, even if OLS might not
be a consistent estimator (see [95]) when the errors
of (3a), (3b) are nonlinear, the OLS estimates of (3a) and
the NLS estimates of (4) in 1-step are very similar.

2nd Step:

(1 � L)
�
m � p


t D 0:45 (1 � L)

�
m � p


t�1

� (1 � L)2
�
m � p


t�2 � 0:60 (1 � L) pt

C 0:39 (1 � L) pt�1 � 0:021 (1 � L) rst
� 0:062

�
1 � L2


rlt � 2:55 (ût�1 � 0:2) û2t�1

C 0:005C 3:7 (D1C D3)C "̂t

(4)

where D1 and D3 are dummy variables for the two world
wars. The second nonlinear characteristic of model (4),
apart from the nonlinear cointegration relationship,
comes from the fact that the ût�1 term enters in a cubic
polynomial form as a particular nonlinear error correction
(NEC) model, see also Sect. 3.3 in [17,18,95] discuss the
inconsistencies derived from the 2-step approach OLS es-
timator in the context of nonlinear smooth transition er-
ror correction model. However, Monte Carlo simulations
should be done to identify the type of nonlinearities that
create series biases and inconsistencies using the 2-step es-
timation of NECmodels.

A Nonlinear Version
of Granger Representation Theorem

To justify this type of nonlinear models, we need to gen-
eralize the linear notions of temporal memory based on



Econometrics: Non-linear Cointegration E 2761

the linear ARIMA concepts of integration, usually I(1) and
I(0), to nonlinear measures of dependence. Several gener-
alizations have been proposed in the literature, as we will
see later on. Our first definition is motivated from asymp-
totic theory, more concretely from functional central limit
theorems (FCLT). See Subsect. “A Nonlinear Version of
Granger Representation Theorem” for alternative defini-
tions.

FCLT-Based Definition of I(0): A sequence fmtg is I(0)
if the “high level” condition that mt verifies a FCLT is satis-
fied, i. e.

T�1/2
[Tr]X

tD1

mt
d
�! B(r)

where B(r) is a Brownian motion, see [73,74,99].

Definition 1 (Strong mixing) Let fvtg be a sequence of
random variables. Let =ts � �(vs ; : : : ; vt) be the generated
sigma-algebra. Define the ˛-mixing coefficients

˛m � sup
t

sup
n
F2=t�1 ;G2=1tCm

o jP (G \ F) � P (G) P (F)j

The process fvtg is said to be strong mixing (also ˛-mix-
ing) if ˛m ! 0 as m!1. If ˛m 6 m�a we say that fvtg
is strong mixing of size �a.

Definition 2 (NED) Let fwtg be a sequence of random
variables with E

˚
w2
t
�
<1 for all t. It is said that fwtg is

NED on the underlying sequence fvtg of size �a if � (n) is
of size �a, where � (n) given by

sup
�
�wt � EtCn

t�n (wt)
�
�
2 � � (n)

where EtCn
t�n (wt) D E(wt jvt�n ; : : : ; vtCn) and k�k2 is the

L2 norm of a random vector, defined as E1/2 j�j2 where j�j
denotes the Euclidean norm.

Weak-Dependence-Based Definition of I(0): A se-
quence is I(0) if it is NED on an underlying ˛-mixing se-
quence fvtg but the sequence fxtg given by xt D

Pt
sD1 ws

is not NED onfvtg. In this case, we will say that xt is I(1).

Notice that if xt is I(1) then
xt is I(0). This definition ex-
cludes I(�1) series as I(0), like zt D et � et�1 for ˛-mix-
ing sequences et, since in this case

Pt
sD1 zs is ˛-mixing.

Definition 3 Two I(1) sequences fytg and fxtg are (lin-
early) cointegrated with cointegrating vector [1;�ˇ]0, if
yt � ˇxt is NED on a particular ˛-mixing sequence but
yt � ı12xt is not NED for ı12 ¤ ˇ.

Theorem 1 (Granger’s Representation Theorem,
see [31]) Consider the nonlinear correction model (NEC)
for the (2 � 1) vector Xt D (yt ; xt)0, given by


Xt D �1
Xt�1 C F(Xt�1)C (t : (5)

Assume that:

(a) (t D ((yt ; (xt )
0 is˛-mixing of size�s/(s � 2) for s > 2

(b)
P

t vt is not NED on ˛-mixing sequence
(c) E kvtk2 6 
v
(d) F(Xt�1) D J(Zt�1), where Zt � yt � ˇxt and J (�) is

a continuously differentiable function, which satisfies
a generalized Lipschitz condition of Lemma 2 of [31].

(e) Let SR (�1) < 1, where SR(M) is the spectral radius of
the matrix M, and

(f) for some fixed ı 2 (0; 1)

SR
�
�1 rz J(Z)
ˇ0�1 Ir C ˇ0rz J(z)

�
6 1 � ı :

The above conditions ensure that;

(i) 
Xt and Zt are simultaneously NED on the ˛-mixing
sequence (vt ; ut), where ut D vy;t � ˇ0vx;t ; and

(ii) Xt is I(1).

This theorem gives sufficient conditions for cointegrated
variables to be generated by a nonlinear error correction
model.

Single-Equation Parametric NECModels
with Linear Cointegration

Consider the following NEC with linear cointegration


yt D  1
xt C f (zt�1; � )C (t
yt D ˇxt C zt :

As we said in the previous section, it is not difficult to gen-
eralize this model to include other variables, lags and coin-
tegrating relations. Consider two independent ˛-mixing
sequences fatg and f(tg with a zero mean. Then the fol-
lowing three equations represent the DGP,

xt D xt�1 C at (6a)

zt D zt�1 C �1
xt C f (zt�1; � )C vt (6b)

yt D ˇxt C zt (6c)

where the nonlinear function f (zt�1; �) form the nonlin-
ear error correction term and ˇ ¤ 0. Notice that xt is I(1)
by construction from (6a). Notice the similarity between
Eqs. (6b) and the linear error correction of Eq. (2).
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If we can ensure that zt is NED then yt is also I(1) and
linearly cointegrated with xt , where the cointegration re-
lationship, yt � ˇxt , is linear. If we apply the difference
operator to (6c) and substitute in (6b) we obtain (7),


yt D (ˇ C �1)
xt C f (zt�1; �)C vt (7)

which is a nonlinear error correction model with linear
cointegration, with  1 D ˇ C �1. For the sake of simplic-
ity, and without loss of generality, we impose a common
factor restriction so that �1 D 0 on (7) obtaining,

zt D zt�1 C f (zt�1; � )C vt (8)

and then  1 equals ˇ, the cointegration parameter, and
therefore (8) is a nonlinear extension of the Dickey–Fuller
equation used in unit root testing. The errors of the cointe-
gration relation are given by zt�1 D yt�1 � ˇxt�1, and the
OLS residuals are given by ẑt�1 D yt�1 � ˆ̌xt�1, where ˆ̌
is the value of ˇ estimated in the OLS regression (6c). Sub-
stituting zt by ẑt�1 in (8) we obtain a nonlinear version of
Engle and Granger’s cointegration test (cf. [20]).

Differentiating (8) with respect to zt�1 we obtain

d
dzt�1

zt D 1C
d

dzt�1
f (zt�1; � )

and therefore, our boundedness condition (see assump-
tions (e) and (f) of Theorem 1) is �1 < d

dzt�1 zt < 1, or

�2 < d f (zt�1;�)
dzt�1 < 0 (models (6b), (7) and (8) are error

correcting), which is sufficient to ensure that the series zt
is near epoch dependent (NED) and therefore yt and xt are
cointegrated, see [26,27] and [31].

We discuss now few alternative nonlinear error correc-
tion (or equilibrium correction) functions f (:) that could
generate the series zt from the system (6a) to (6c).

NECModel 1: Arctan, [32]

f (z; ı1; ı2; �2) D ��2 arctan (ı1z C ı2) for �2 > 0 :

NECModel 2: Rational Polynomial, [27]

f (z; ı1; ı2; ı3; ı4; �2) D ��2
�
(z C ı1)3 C ı2


/

�
(z C ı3)2 C ı4


for �2 > 0 :

In the first two models, the derivatives are in the de-
sired region (satisfy assumptions (e) and (f)) for appro-
priate values of some of the parameters but not for all.
However, within the class of rational polynomials the
model considered can satisfy the condition on the abso-
lute value of the derivative, see [27] and [30,32]. Other

empirical examples of nonlinear error correction models
are [11,22,29,33,49,61,72].

An important body of the literature has focused on
threshold models, see [5,6,39,48,54,75,94], among others.

NECModel 3: Switching Exponential, [30,32]

f (z; ı1; ı2; ı3; ı4; �2) D �2 (exp (�ı1z)� ı2) Ifz>0g

C �2 (ı4 � exp (ı3z)) Ifz<0g ;

where IfSg is the characteristic function of the set S,
�2 > 0; ı1 > 0 and ı3.

NEC Model 4: Regime Switching Error Correction
Models, [92]

f (z; ı1; ı2; �2) D
3X

sD1

1(z 2 Rs )�s z ;

where 1(:) is the indicator function selecting the three
regimes, R1 D (�1; c1], R2 D (c1; c2] and R3 D (c2;1).

NECModel 5: RandomRegime Switching Error Correc-
tion Models, [6] and [92]

f (z; ı1; ı2; �2) D
3X

sD1

1(z C � 2 Rs )�s z ;

where 1(:) is the indicator function selecting the three
regimes, R1 D (�1; c1], R2 D (c1; c2] and R3 D (c2;1).

Another important literature is related to smooth tran-
sition error correction models, see [50,90,92].

NEC Model 6: Smooth Transition Error Correction
Models, [102] and [92]

f (z; ı1; ı2; �2) D
3X

sD1

h(z)�s z

h(z) D

8
<

:

1 � L1(z); s D 1
L1(z) � L2(z); s D 2
L3(z); s D 3

9
=

;

where Ls (z) D (1C exp f�� (z � cs )g
for � � 0 and s D 1; 2 :

Notice, that many smooth transition error correction
models allow the nonlinear error correction function to
affect all the parameters of the model, and not only the
error correction term. However, in this paper we do not
discuss them since they belong to a more general class of
time varyingmodels which is out of the context of this sur-
vey, see for example [50,101,102].
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Nonparametric NECModels with Linear Cointegration

[25,27] applied the semi-parametric smoothing splines es-
timation procedure of [21,96,104] to the estimation of the
unknown nonlinear error correction function of Eq. (4).
They found that in the long run money demand of
the UK, see Eq. (3a), there are either multiple equilib-
ria, or a threshold error correction with two attraction
points (two equilibria); one negative and equal to � 0.05
and one positive and equal to 0.2. They suggest esti-
mating those unknown thresholds using a cubic poly-
nomial parametric functional form, see Eq. (4). Notice
that the corresponding cubic polynomial error correction
term, �2:55 (ût�1 � 0:2) û2t�1, identifies perfectly one of
the thresholds, the one that is equal to 0.2. The second
threshold could be obtained from the roots of the poly-
nomial. Other empirical examples of threshold error cor-
rection models are [5,10,48,54]. In fact [10] used a simi-
lar nonparametric approach to estimate the nonlinear er-
ror correction function, but instead of using smoothing
splines they used the Nadaraya–Watson kernel estimator
discussed in [55].

Nonlinear Cointegration

In the recent years several proposals have been considered
to extend linear cointegration and linear error correction
of Granger [42] to a nonlinear framework. One possibility
is to allow for a NEC model in the Granger’s representa-
tion. We have discussed such an approach in the previous
section. Alternatively, one may consider a nonlinear coin-
tegration relation.

Despite the fact that many macroeconomic and finan-
cial time series dynamics are nonlinear, there are still to-
day relatively few useful analytical tools capable of assess-
ing the dependence and persistence behavior of nonlinear
time series appropriately (cf. [50]). This problem is even
more accentuated by the fact that traditional measures of
dependence, such as autocorrelations and periodograms,
may be inappropriate when the underlying time series is
nonlinear and/or non-Gaussian. Then, it is generally ac-
cepted that new measures of dependence have to be de-
fined in order to develop a new concept of nonlinear coin-
tegration. We have already discussed measures based on
FCLT and on NED concepts. We shall explore several al-
ternative measures in this section. All the measures con-
sidered can be grouped in measures of conditional mean
dependence or in distributional dependence. Higher order
conditional moments, other than the mean, can of course
be considered. In any case, we shall use the general ter-
minology extended memory and short memory to indicate

a nonlinear persistence and non-persistence process, re-
spectively (cf. [44]).

Once a concept of nonlinear persistence is introduced,
a general definition of nonlinear cointegration is as fol-
lows. We say that two “extended memory” series yt and
xt are nonlinear cointegrated if there exist a function f
such that zt D f (yt ; xt) is short memory. This definition
is more appropriate when dealing with distributional per-
sistence, and it is perhaps too general to be fully oper-
ative. Identification problems arise in this general con-
text, as noted by many authors, so one should restrict the
class of functions f to avoid such identification problems.
[46] considered functions of the form zt D g(yt) � h(xt),
and estimate g and h nonparametrically by means of the
Alternating Conditional Expectations (ACE) algorithm.
See also [40] for a related approach. It is still an open prob-
lem the theoretical justification of these nonparametric es-
timation procedures.

A less ambitious approach is to consider transforma-
tions of the form zt D yt � f (xt). This framework is espe-
cially convenient with conditional mean persistence mea-
sures. We review the existing measures in the next section.

Nonlinear Measures of Memory

As already discussed by [46], a generalization of linear
cointegration to a nonlinear set-up goes through proper
extensions of the linear concepts of I(0) and I(1). We in-
troduce in this section alternative definitions of nonlinear
I(0) and I(1) processes.We first focus on conditional mean
persistence, we shall discuss distributional dependence at
the end of this section. Define the conditional mean func-
tion E(ytCh jIt), where It D (xt ; xt�1; : : : ) is the condi-
tioning set at time t. [44] defines the Short Memory in
Mean (SMM) and Extended Memory in Mean (EMM)
concepts as follows.

Definition 4 (SMM and EMM) fytg is said to be
SMM if for all t, M(t; h) D E(ytCh jIt), h > 0, tends
to a constant � as h becomes large. More precisely,
E jM(t; h) � �j2 < c(h), where c(h) � c(h; t) is some
positive sequence that tends to zero as h increases to infin-
ity, for all t. If fytg does not satisfy the previous condition
is called EMM.

Note that to be mathematically precise in Definition 4, we
should specify that fytg is SMM or EMM with respect to
fxtg. Referring to this definition, [44] considered the case
xt D yt . [46] replaced the name of EMM by long mem-
ory in mean, and [40] denoted EMM and SMM by non-
linear integrated (NLI) and nonlinear integrated of order
zero (NLI(0)), respectively. As noted by [44] the concepts
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of SMM and EMM are related to a kind of “mixing in
mean” property, more precisely to the concept of mixin-
gale, see [16].

[23] introduced the pairwise equivalent measures of
the previous concepts, which, although weaker, are more
operative because they only involve finite-dimensional
random variables.

Definition 5 (PSMM and PEMM) fytg is said to be
Pairwise SMM (PSMM) if for all t, m(t; h) D E(ytCh jxt),
h > 0, tends to a constant � as h becomes large. More
precisely, Ejm(t; h) � �j2 < c(h), where c(h) � c(h; t) is
some positive sequence that tends to zero as h increases to
infinity, for all t. If fytg does not satisfy the previous con-
dition is called Pairwise EMM (PEMM).

From the previous definitions and the law of iterated
expectations, we easily observe that a process SMM is
PSMM. The reciprocal is false. There exist processes which
are PSMM but not SMM, although they are rare in prac-
tice.

We now discuss generalizations of the usual autoco-
variances and crosscovariances to a nonlinear framework.
These generalizations were introduced by [23]. It is well-
known that in the presence of nonlinearity (or non-Gaus-
sianity) the autocovariances do not characterize the de-
pendence and the practitioner needs more reliable mea-
sures such as the pairwise regression functions m(t; h).
In general, inference on these functions involves non-
parametric estimation with bandwidth choices, hamper-
ing their application to practical situations. By a measure-
theoretic argument, the regression function m(t; h) can be
characterized by the integrated regression function �t;h(x)
given by

�t;h(x) D E
�
(ytCh � �t)1(xt 6 x)

�

D E
�
m(t; h)1(xt 6 x)

�
;

where the second equality follows by the law of iterated
expectations. The measures �t;h(x) are called the Inte-
grated Pairwise Regression Functions (IPRF), see [24].
Extensions to other weight functions different from the in-
dicator weight 1(xt 6 x) are possible. The integrated mea-
sures of dependence �t;h(x) are useful for testing interest-
ing hypotheses in a nonlinear time series framework and,
unlike m(t; h), they do not need of smoothing estimation
and are easily estimated by the sample analogue. More-
over, they characterize the pairwise versions of the con-
cepts introduced by [44], making these concepts more op-
erative. First we need a definition, a norm kk is nonde-
creasing if for all f and g with j f (x)j 6 jg(x)j for all x, it
holds that k f k 6 kgk. Associated to the norm kk, we de-

fine the distance d( f ; g) D k f � gk. Usual nondecreasing
norms are the L2 norm and the supremum norm.

Definition 6 (PSMMd and PEMMd ) fytg is said to be
Pairwise SMM relative to d (PSMMd) if for all t,

�
��t;h(x)

�
�,

h > 0, tends to zero as h becomes large for any t. More
precisely,

���t;h(x)
�� < c(h), where c(h) � c(h; t) is some

positive sequence that tends to zero as h increases to infin-
ity for all t. If fytg does not satisfy the previous condition
is called Pairwise EMM relative to d (PEMMd ).

Theorem 2 (Relationship between PSMM and
PSMMd [23]) If the norm kk is non-decreasing and
E
˚
y2t
�
< 1 for all t, then fytg is PSMM if and only if

fytg is PSMMd.

Based on these concepts we define nonlinear cointegration
as follows. We say that two PEMMd series yt and xt are
nonlinear cointegrated if there exist a function f such that
zt D yt � f (xt) is PSMMd .

In analogy with the linear world and based on the re-
sults in [1,78], a possible nonparametric characterization
of nonlinear cointegration can be based on the rates of
convergence of �t;h(x) and � xt;h(x) D E

�
(xtCh��t)1(xt 6

x)
�
as h diverges to infinity. Intuitively, under cointegra-

tion, the remote past of xt should be as useful as the remote
past of yt in long-run non-linearly forecasting yt .

Similarly, we can define distributional measures of
persistence and nonlinear cointegration. [45] defines
a persistent process in distribution using the bivariate and
marginal densities at different lags. [41] considered para-
metric and nonparametric methods for studying serial dis-
tributional dependence. In the nonparametric case [45]
consider series expansions estimators for the nonlinear
canonical analysis of the series. These authors apply their
results to study the dynamics of the inter-trade durations
of the Alcatel-stock on the Paris Borse and find evidence
of nonlinear strong persistence in distribution.

Regarding distributional dependence, we formalize
a definition given in [45]. Let ft;h(y; x), ktCh(y) and gt(x)
be, respectively, the bivariate and marginal densities of
ytCh and xt . To define persistence in distribution one can
use the Hellinger distance

Ht;h D

“ ˇ̌
ˇ f 1/2t;h (y; x) � k1/2tCh(y)g

1/2
t (x)

ˇ̌
ˇ
2
dydx ;

and define Pairwise Short Memory in Distribution
(PSMD) according to the decay of Ht;h to zero as h di-
verges to infinity. Alternative definitions can be given in
terms of other divergence measures or distances, see [51]
and references therein. This approach is explored in [1],
who define nonlinear cointegration usingmutual informa-
tion measures.
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Persistence in distribution is related to mixing con-
cepts. In fact, uniformly in t, Ht;h 6 2˛(h), where ˛(h) is
certain ˛-mixing coefficient, see [23] for details.

The aforementioned measures of nonlinear distribu-
tional dependence need of smoothing estimation, e. g. ker-
nel estimators. Similarly to the case of conditional mean
measures, we can avoid smoothing by means of the inte-
grated measures of dependence

�t;h(y; x) D cov(1(ytCh 6 y); 1(xt 6 x))
D Ft;h(y; x) � KtCh(y)Gt(x) ;

where Ft;h(y; x), KtCh(y) and Gt(x) are, respectively, the
bivariate and marginal cumulative distribution functions
(cdf) of ytCh and xt . The measures �t;h(y; x) can bt esti-
mated at different lags by using the sample analogue, i. e.
the empirical distribution functions. Similar definitions to
Definition 6 can be given for distributional persistence
based on �t;h(y; x). See [23] for further generalizations
and definitions. Definitions of nonlinear cointegration can
be formulated along the lines in [1]. For instance, we can
say that two persistent (in distribution) series yt and xt are
nonlinear cointegrated (in distribution) if

lim
�!1

���
��
�t;� (�)
�xt;� (�)

� ˇ

���
��
D 0

for all �; t, � 6 t, where �xt;h(y; x) is defined as �t;h(y; x)
but replacing yt by xt there, ˇ is a real number and kk
a suitable norm.

Integration and Cointegration Based
on Order Statistics

[9,36,47] have considered rank based unit roots test to
avoid the extreme sensitivity of usual test like the Dickey–
Fuller type test to presence of nonlinearities and outliers,
see [19] for an overview of the problems of unit root tests
in general contexts. [2] suggested a range unit root test
(RUR) based on the first differences of the ranges of a se-
ries. The range is the difference between the maximum
and the minimum taken by a series at any given point in
time. Therefore, the difference of the ranges is a measure of
records. Counting the number of new records is an inter-
esting way of distinguishing between stationary and non-
stationary series since the frequency of new records van-
ishes faster for stationary series than for series containing
unit roots. They have shown that this RUR test is robust
to monotonic transformations, distributions of the errors
and many structural breaks and additive outliers.

[8] suggests using the differences between the se-
quences of ranks. If there is no cointegration the sequence

of ranks tends to diverge, while under cointegration they
evolve similarly. [34] consider a record counting cointe-
gration test (RCC) based on the synchronicity of the jumps
between cointegrated series. They suggest a test statistic
based on counting the number of jumps (records) that si-
multaneously occur in both series. Certainly, those series
that are cointegrated have a much larger number of simul-
taneous jumps in the ranges of the series. They show that
the cointegration test based on RCC is robust to mono-
tonic nonlinearities and many structural breaks and does
not require a prior estimation of the nonlinear or linear
cointegrating function. There is a large literature on the
effects of structural breaks and outliers on unit root and
on cointegration testing but it is out of the scope of this
paper, see for example the references in [62].

Another cointegration test robust to nonlinearities and
structural breaks is based on induced order statistics. In
particular [35] consider that two series yt and xt are coin-
tegrated (either linear or nonlinear) if the correspond-
ing induced order series are plotted around the 45° line.
Their test-statistic compares the two induced order series
by comparing their corresponding empirical distributions,
the empirical distribution of yt and the empirical distribu-
tion of yt induced by xt , using the Kolmogorov–Smirnov
type statistic.

Parametric Nonlinear Cointegration

As previously discussed, an important body of research
has focused on nonlinear cointegration relations. The
model used being a nonlinear cointegration regression or
a nonlinear regression model with integrated regressors.
References on this line of research include [12,13,82,84].
[93] study smooth transition regressions with integrated
regressors. An example considered by these authors is the
nonlinear extension of (1b)

yt D ˛xt C ıxt g(xt � c; � )C vt ;

where g(x � c; � ) D �1/(1C e��(x�c)) is the logistic
function. Under the restriction ı D 0 the latter model re-
duces to the linear model in (1b), see [14] for linearity tests
under this framework. Other examples of parametric non-
linear cointegration are given by Eqs. (3a), (3b) and by the
exponential model of [68], see also the references given
in [19]. Thosemodels are a particular case of themore gen-
eral nonlinear parametric cointegrationmodel of the form,

yt D f (xt; ˇ)C vt ;

where xt is px1 vector of I(1) regressors, vt is zero-mean
stationary error term, and f (xt; ˇ) an smooth function of
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the process xt, known up to the finite-dimensional param-
eter vector ˇ.

At least, there are two different asymptotic justifica-
tions within these nonlinear cointegration models. In the
classical asymptotic theory (e. g. [82,84]) all the existing
literature has been confined to the case p D 1, although
some extensions to single-index type regressions have
been studied, see [83]. The main reason for the restric-
tion to the univariate case is that commonly used asymp-
totic techniques are not appropriate for the case p > 1,
e. g. asymptotics based on local times are not available for
p > 2. Intrinsic to this problem is the non-recurrent prop-
erty of the p-variate Brownian motion when p > 2. On the
other hand, the triangular array asymptotics used in [93]
allow for a general p > 0.

In the classical asymptotic theory, the properties of es-
timators of ˇ, e. g. the nonlinear least squares estimator
(NLSE), depend on the specific class of functions where
f (xt; ˇ) belongs. Commonly used classes are integrable
functions, asymptotic homogeneous functions or expo-
nential functions, see [82]. The rate of convergence of the
NLSE is class-specific and, in some cases, involves random
scaling. In the triangular array asymptotic theory of [93]
the distribution theory of estimators of ˇ, e. g. rates of con-
vergence, does not depend on the specific class of func-
tions.

Several authors exploit the previous asymptotic re-
sults on ˇ to develop tests of nonlinear cointegration in
this parametric framework. In [15] the so-called KPSS test
is applied to the parametric residuals. Since the result-
ing limiting distribution depends on nuisance parameters,
these authors implement the test with the assistance of
a subsampling procedure as a smoothing device.

Nonparametric Nonlinear Cointegration

Nonparametric estimates of nonlinear cointegration rela-
tions were already computed by [46], but it has not been
until the recent works by [69,70,88] that a nonparamet-
ric estimation theory for nonstationary processes has been
developed. [88] considered a theory based on local time ar-
guments, whereas [69,70] used the theory of null recurrent
Markov processes. A comparison of both methodologies
is discussed in [4], where near-integrated nonparametric
asymptotics are studied.

More specifically, these authors estimate the transfer
function f (xt) in the nonlinear regression model

yt D f (xt)C vt ;

where the series yt and xt are univariate observed non-
stationary processes and vt is a non-observed stationary

process. [70] study the nonparametric kernel estimation
of f (xt) as

f̂ (x) D
Pn

tD0 ytKx;h(xt)Pn
tD0 Kx;h(xt)

;

where Kx;h(xt) D h�1K((y � x)/h),K is a kernel function
and h is a bandwidth parameter. These authors investi-
gate the asymptotic theory for f̂ (x) under some regularity
conditions and different assumptions on the dependence
relation between xt and vt . Especially convenient for the
nonlinear cointegration framework are those assumptions
that allow for dependence between xt and vt . The family of
nonstationary processes considered by these authors is the
class of the so-called ˇ-null recurrent Markov processes
satisfying a restriction on the tail distribution of the recur-
rence time. The class is large enough to contain the ran-
dom walk, unit-root processes as well as other nonlinear
nonstationary processes. It is shown that the nonparamet-
ric estimation theory is different to that in the stationary
case, with slower rates of convergences, as expected. This
new nonparametric asymptotic theory opens the door for
future developments in inferences in nonlinear cointegra-
tion models.

Future Directions

This chapter has provided a selected overview of the avail-
able nonlinear extensions of this concept. While in the lin-
ear set-up there exists a complete theory and set of tools
for studying the cointegration problem, it has been made
clear that a nonlinear version of this theory possesses non-
trivial challenges. A first natural nonlinear extension is to
allow for a NEC model but still a linear cointegration re-
gression. On the other hand, one can consider a nonlinear
regression cointegration equation. It has been recognized
that an extension of the concept of linear cointegration to
a nonlinear set-up needs of appropriate extensions of the
linear concepts of I(0) and I(1) to nonlinear time series
(cf. [46]). Several extensions have been provided and dis-
cussed. We recommend operative integrated measures of
dependence, since they are simple to estimate and avoid
smoothing of the data, which can be a challenging prob-
lem when dealing with nonstationary variables (cf. [69]).
An important line of future research is the development
of inferential procedures for nonlinear cointegration based
on these new integrated measures. This is currently inves-
tigated by the authors.

There is a large evidence of empirical applications in
economics and finance where nonlinearities are found in
nonstationary contexts. However, given the difficulty of
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the theory involved, only few papers provide a sound jus-
tification of the empirical use of cointegration regressions
(nonlinear cointegration) in nonlinear frameworks. The
difficulties analyzing nonlinear time series models within
a stationary and ergodic frameworks are substantially en-
hanced in nonstationary contexts. In particular, the clas-
sical asymptotic theory for nonlinear transformations of
nonstationary variables becomes case-dependent (i. e. de-
pends on the specific class of functions), and the available
results are confined to the univariate case. A challenging
and important line of research deals with the extension of
this theory to multivariate frameworks.

Recently, an important step towards the development
of a nonlinear cointegration theory has been accomplished
by the nonparametric estimation theory of [69,70]. The
application of this theory to inference in nonlinear coin-
tegrated models is not fully explored yet. Residual-based
tests for testing nonlinear cointegration, such as the so-
called KPSS test (cf. [73]), can be constructed using non-
parametric residuals. Moreover, model specification tests
for nonlinear parametric cointegration can be based on
the comparison between parametric and nonparametric
fits. Finally, in a recent unpublished lecture, Clive Granger
suggested to extend the concept of cointegration to quan-
tiles. These are promising lines of future research which
deserve serious attention in the economics literature.
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Glossary

Panel data Data on a set of cross-sectional units followed
over time.

Unobserved effects Unobserved variables that affect the
outcome which are constant over time.

Fixed effects estimation An estimation method that re-
moves the unobserved effects, implying that the unob-
served effects can be arbitrarily related to the observed
covariates.

Correlated random effects An approach to modeling
where the dependence between the unobserved effects
and the history of the covariates is parametricallymod-
eled. The traditional random effects approach is a spe-
cial case under the assumption that he unobserved ef-
fects are independent of the covariates.

Average partial effect The partial effect of a covariate av-
eraged across the distribution of the unobserved ef-
fects.

Definition of the Subject

Panel data consist of repeated observations over time on
the same set of cross-sectional units. These units can be
individuals, firms, schools, cities, or any collection of units
one can follow over time. Special econometric methods
have been developed to recognize and exploit the rich in-
formation available in panel data sets. Because the time di-
mension is a key feature of panel data sets, issues of se-
rial correlation and dynamic effects need to be considered.
Further, unlike the analysis of cross-sectional data, panel
data sets allow the presence of systematic, unobserved dif-
ferences across units that can be correlated with observed
factors whose effects are to be measured. Distinguishing
between persistence due to unobserved heterogeneity and
that due to dynamics in the underlying process is a lead-
ing challenge for interpreting estimates from panel data
models.

Panel data methods are the econometric tools used
to estimate parameters compute partial effects of inter-
est in nonlinear models, quantify dynamic linkages, and
perform valid inference when data are available on re-
peated cross sections. For linear models, the basis for
many panel data methods is ordinary least squares ap-
plied to suitably transformed data. The challenge is to de-
velop estimators assumptions with good properties un-
der reasonable assumptions, and to ensure that statis-
tical inference is valid. Maximum likelihood estimation

plays a key role in the estimation of nonlinear panel data
models.

Introduction

Many questions in economics, especially those with foun-
dations in the behavior of relatively small units, can be em-
pirically studied with the help of panel data. Even when
detailed cross-sectional surveys are available, collecting
enough information on units to account for systematic
differences is often unrealistic. For example, in evaluating
the effects of a job training program on labor market out-
comes, unobserved factors might affect both participation
in the program and outcomes such as labor earnings. Un-
less participation in the job training program is randomly
assigned, or assigned on the basis of observed covariates,
cross-sectional regression analysis is usually unconvinc-
ing. Nevertheless, one can control for this individual het-
erogeneity – including unobserved, time-constant human
capital – by collecting a panel data set that includes data
points both before and after the training program.

Some of the earliest econometric applications of panel
data methods were to the estimation of agricultural pro-
duction functions, where the worry was that unobserved
inputs – such as soil quality, technical efficiency, or man-
agerial skill of the farmer – would generally be correlated
with observed inputs such as capital, labor, and amount of
land. Classic examples are [31,45].

The nature of unobserved heterogeneity was discussed
early in the development of panel data models. An impor-
tant contribution is [46], which argued persuasively that in
applications with many cross-sectional units and few time
periods, it always makes sense to treat unit-specific het-
erogeneity as outcomes of random variables, rather than
parameters to estimate. As Mundlak made clear, for eco-
nomic applications the key issue is whether the unob-
served heterogeneity can be assumed to be independent,
or at least uncorrelated, with the observed covariates. [25]
developed a testing framework that can be used, and often
is, to test whether unobserved heterogeneity is correlated
with observed covariates. Mundlak’s perspective has had
a lasting impact on panel data methods, and his insights
have been applied to a variety of dynamic panel data mod-
els with unobserved heterogeneity.

The 1980s witnessed an explosion in both method-
ological developments and applications of panel data
methods. Following the approach in [15,16,46], and [17]
provided a unified approach to linear and nonlinear panel
data models, and explicitly dealt with issues of inference in
cases where full distributions were not specified. Dynamic
linear models, and the problems they pose for estimation
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and inference, were considered in [4]. Dynamic discrete
response models were analyzed in [29,30]. The hope in
estimating dynamic models that explicitly contain unob-
served heterogeneity is that researchers can measure the
importance of two causes for persistence in observed out-
comes: unobserved, time-constant heterogeneity and so-
called state dependence, which describes the idea that, con-
ditional on observed and unobserved factors, the probabil-
ity of being in a state in the current time period is affected
by last period’s state.

In the late 1980s and early 1990s, researchers began
using panel data methods to test economic theories such
as rational expectations models of consumption. Unlike
macro-level data, data at the individual or family level
allows one to control for different preferences, and per-
haps different discount rates, in testing the implications of
rational expectations. To avoid making distributional as-
sumptions on unobserved shocks and heterogeneity, re-
searchers often based estimation on conditions on ex-
pected values that are implied by rational expectations, as
in [40].

Other developments in the 1990s include studying
standard estimators under fewer assumptions – such as
the analysis in [53] of the fixed effects Poisson estimator
under distributional misspecification and unrestricted se-
rial dependence – and the development of estimators in
nonlinear models that are consistent for parameters under
no distributional assumptions – such as the new estima-
tor proposed in [33] for the panel data censored regression
model.

The past 15 years has seen continued development of
both linear and nonlinear models, with and without dy-
namics. For example, on the linear model front, meth-
ods have been proposed for estimating models where the
effects of time-invariant heterogeneity can change over
time – as in [2]. Semiparametric methods for estimat-
ing production functions, as in [48], and dynamic mod-
els, as in the dynamic censored regression model in [34],
have been developed. Flexible parametric models, esti-
mated by maximum likelihood, have also been proposed
(see [57]).

Many researchers are paying closer attention to esti-
mation of partial effects, and not just parameters, in non-
linear models – with or without dynamics. Results in [3]
show how partial effects, with the unobserved heterogene-
ity appropriately averaged out, can be identified under
weak assumptions.

The next several sections outline a modern approach
to panel data methods. Section “Future Directions” pro-
vides an account of more recent advances, and discusses
where those advances might head in the future.

Overview of Linear Panel DataModels

In panel data applications, linear models are still the most
widely used. When drawing data from a large population,
random sampling is often a realistic assumption; therefore,
we can treat the observations as independent and identi-
cally distributed outcomes. For a random draw i from the
population, the linear panel data model with additive het-
erogeneity can be written as

yi t D �t C xi tˇ C ci C ui t ; t D 1; : : : ; T ; (1)

where T is the number of time periods available for each
unit and t indexes time periods. The time periods are of-
ten years, but the span between periods can be longer or
shorter than a year. The distance between any two time
periods need not be the same, although different spans
can make it tricky to estimate certain dynamic models. As
written, Eq. (1) assumes that we have the same time peri-
ods available for each cross-sectional unit. In other words,
the panel data set is balanced.

As in any regression analysis, the left-hand-side vari-
able is the dependent variable or the response variable. The
terms �t , which depend only only time, are treated here as
parameters. In most microeconometric applications, the
cross-sectional sample size, denoted N, is large – often
very large – compared with T. Therefore, the �t can be
estimated precisely in most cases. Almost all applications
should allow for aggregate time effects as captured by �t .
Including such time effects allows for secular changes in
the economic environment that affect all units in the same
way (such as inflation or aggregate productivity). For ex-
ample, in studying the effects of school inputs on perfor-
mance using school-level panel data for a particular state,
including �t allows for trends in statewide spending along
with separate, unrelated trends in statewide test perfor-
mance. It could be that, say, real spending rose at the same
time that the statewide standardized tests were made eas-
ier; a failure to account for such aggregate trends could
lead to a spurious association between performance and
spending. Only occasionally are the �t the focus of a panel
data analysis, but it is sometimes interesting to study the
pattern of aggregate changes once the covariates contained
in the 1 � K vector xi t are netted out.

The parameters of primary interest are contained in
the K � 1 vector ˇ, which contains the coefficients on the
set of explanatory variables. With the presence of �t in (1),
xi t cannot include variables that change only over time.
For example, if yit is a measure of labor earnings for indi-
vidual i in year t for a particular state in the US, xi t can-
not contain the state-level unemployment rate. Unless in-
terest centers on how individual earnings depend on the
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state-level unemployment rate, it is better to allow for dif-
ferent time intercepts in an unrestricted fashion: this way,
any aggregate variables that affect each individual in the
same way are accounted for without even collecting data
on them. If the �t are restricted to be functions of time –
for example, a linear time trend – then aggregate variables
can be included, but this is always more restrictive than
allowing the �t to be unrestricted.

The composite error term in (1), ci C ui t , is an im-
portant feature of panel data models. With panel data, it
makes sense to view the unobservables that affect yit as
consisting of two parts: the first is the time-constant vari-
able, ci, which is often called an unobserved effect or unit-
specific heterogeneity. This term aggregates all factors that
are important for unit i’s response that do not change over
time. In panel data applications to individuals, ci is often
interpreted as containing cognitive ability, family back-
ground, and other factors that are essentially determined
prior to the time periods under consideration. Or, if i in-
dexes different schools across a state, and (1) is an equa-
tion to see if school inputs affect student performance, ci
includes historical factors that can affect student perfor-
mance and also might be correlated with observed school
inputs (such as class sizes, teacher competence, and so on).
The word “heterogeneity” is often combined with a qual-
ifier that indicates the unit of observation. For example,
ci might be “individual-specific heterogeneity” or “school-
specific heterogeneity”. Often in the literature ci is called
a “random effect” or “fixed effect”, but these labels are not
ideal. Traditionally, ci was considered a random effect if
it was treated as a random variable, and it was considered
a fixed effect if it was treated as a parameter to estimate (for
each i). The flaws with this way of thinking are revealed
in [46]: the important issue is not whether ci is random,
but whether it is correlated with xi t .

The sequence of errors fui t : t D 1; : : : ; Tg are specific
to unit i, but they are allowed to change over time. Thus,
these are the time-varying unobserved factors that affect
yit , and they are often called the idiosyncratic errors. Be-
cause uit is in the error term at time t, it is important
to know whether these unobserved, time-varying factors
are uncorrelated with the covariates. It is also important
to recognize that these idiosyncratic errors can be serially
correlated, and often are.

Before treating the various assumptions more formally
in the next subsection, it is important to recognize the
asymmetry in the treatment of the time-specific effects,
�t , and the unit-specific effects, ci. Language such as “both
time and school fixed effects are included in the equation”
is common in empirical work. While the language itself is
harmless, with large N and small T it is best to view the

time effects, �t, as parameters to estimate because they can
be estimated precisely. As alreadymentioned earlier, view-
ing ci as random draws is the most general, and natural,
perspective.

Assumptions and Estimators for the Basic Model

The assumptions discussed in this subsection are best
suited to cases where random sampling from a (large) pop-
ulation is realistic. In this setting, it is most natural to
describe large-sample statistical properties as the cross-
sectional sample size, N, grows, with the number of time
periods, T, fixed.

In describing assumptions in the model (1), it proba-
bly makes more sense to drop the i subscript in (1) to em-
phasize that the equation holds for an entire population.
Nevertheless, (1) is useful for emphasizing which factors
change i, or t, or both. It is sometimes convenient to sub-
sume the time dummies in xi t , so that the separate inter-
cepts �t need not be displayed.

The traditional starting point for studying (1) is to
rule out correlation between the idiosyncratic errors, uit ,
and the covariates, xi t . A useful assumption is that the se-
quence of explanatory variables fxi t : t D 1; : : : ; Tg is con-
temporaneously exogenous conditional on ci:

E(ui t jxi t; ci ) D 0 ; t D 1; : : : ; T : (2)

This assumption essentially definesˇ in the sense that, un-
der (1) and (2),

E(yi t jxi t; ci ) D �t C xi tˇ C ci ; (3)

so the ˇj are partial effects holding fixed the unobserved
heterogeneity (and covariates other than xtj). Strictly
speaking, ci need not be included in the conditioning set
in (2), but including it leads to the useful Eq. (3). Plus, for
purposes of stating assumptions for inference, it is conve-
nient to express the contemporaneous exogeneity assump-
tion as in (2).

Unfortunately, with a small number of time periods,
ˇ is not identified by (2), or by the weaker assumption
Cov(xi t; ui t) D 0. Of course, if ci is assumed to be un-
correlated with the covariates, that is Cov(xi t ; ci ) D 0 for
any t, then the composite error, vi t D ci C ui t is uncorre-
lated with xi t , and then ˇ is identified and can be consis-
tently estimated by a cross section regression using a single
time period t, or by using pooled regression across t. (See
Chaps. 7 and 10 in [55] for further discussion.) But one
of the main purposes in using panel data is to allow the
unobserved effect to be correlated with time-varying xi t .

Arbitrary correlation between ci and xi D (xi1; xi2;
: : : ; xiT) is allowed if the sequence of explanatory variables
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is strictly exogenous conditional on ci,

E(ui t jxi1; xi2; : : : ; xiT ; ci ) D 0 ; t D 1; : : : ; T ; (4)

which can be expressed as

E(yi t jxi1; : : : ; xiT ; ci ) D E(yi t jxi t; ci ) D �tCxi tˇC ci :
(5)

Clearly, assumption (4) implies (2). Because the entire his-
tory of the covariates is in (4) for all t, (4) implies that xir
and uit are uncorrelated for all r and t, including r D t.
By contrast, (2) allows arbitrary correlation between xir
and uit for any r ¤ t. The strict exogeneity assumption (4)
can place serious restrictions on the nature of the model
and dynamic economic behavior. For example, (4) can
never be true if xi t contains lags of the dependent variable.
Of course, (4) would be false under standard economet-
ric problems, such as omitted time-varying variables, just
as would (2). But there are important cases where (2) can
hold but (4) might not. If, say, a change in uit causes reac-
tions in future values of the explanatory variables, then (4)
is generally false. In applications to the social sciences, the
potential for these kind of “feedback effects” is important.
For example, in using panel data to estimate a firm-level
production function, a shock to production today (cap-
tured by changes in uit) might affect the amount of capital
and labor inputs in the next time period. In other words,
uit and xi;tC1 would be correlated, violating (4).

How does assumption (4) (or (5)) identify the pa-
rameters? In fact, it only allows estimation of coefficients
on time-varying elements of xi t . Intuitively, because (4)
puts no restrictions on the dependence between ci and
xi , it is not possible to distinguish between the effect of
a time-constant observable covariate and that of the unob-
served effect, ci. For example, in an equation to describe
the amount of pension savings invested in the stock mar-
ket, ci might include innate of tolerance for risk, assumed
to be fixed over time. Once ci is allowed to be correlated
with any observable covariate – including, say, gender –
the effects of gender on stock market investing cannot be
identified because gender, like ci, is constant over time.
Mechanically, common estimation methods eliminate ci
alongwith any time-constant explanatory variables. (What
is meant by “time-varying” xitj is that for at least some i,
xitj changes over time. For some units i, xitj might be con-
stant). When a full set of year intercepts – or even just
a linear time trend – is included, the effects of variables
that increase by the same amount in each period – such as
a person’s age – cannot be included in xi t . The reason is
that the beginning age of each person is indistinguishable

from ci, and then, once the initial age is know, each subse-
quent age is a deterministic – in fact, linear – function of
time.

Perhaps the most common method of estimating ˇ
(and the �t) is so-called fixed effects (FE) or within esti-
mation. The FE estimator is obtained as a pooled OLS re-
gression on variables that have had the unit-specific means
removed. More precisely, let ÿ i t D yi t � T�1

PT
rD1 yir D

yi t � ȳ i be the deviation of yit from the average over time
for unit i, ȳ i and similarly for ẍi t (which is a vector). Then,

ÿ i t D �̈t C ẍi tˇ C üi t ; t D 1; : : : ; T ; (6)

where the year intercepts and idiosyncratic errors are,
of course, also demeaned. Consistency of pooled OLS
(for fixed T and N !1) applied to (6) essentially
requires rests on

PT
tD1 E(ẍ

0
i t üi t) D

PT
tD1 E(ẍ

0
i tui t) D 0,

which means the error uit should be uncorrelated with xir
for all r and t. This assumption is implied by (4). A rank
condition on the demeaned explanatory variables is also
needed. If �̈t is absorbed into ẍi t , the condition is rankPT

tD1 E(ẍ
0
i t ẍi t) D K, which rules out time constant vari-

ables and other variables that increase by the same value
for all units in each time period (such as age).

A different estimation method is based on an equation
in first differences. For t > 1, define 
yi t D yi t � yi;t�1,
and similarly for the other quantities. The first-differenced
equation is


yi t D ıt C
xi tˇ C
ui t ; t D 2; : : : ; T ; (7)

where ıt D �t � �t�1 is the change in the intercepts. The
first-difference (FD) estimator is pooled OLS applied to (7).
Any element xith of xi t such that
xi th is constant for all i
and t (most often zero) drops out, just as in FE estima-
tion. Assuming suitable time variation in the covariates,
E(
x0i t
ui t) D 0 is sufficient for consistency. Naturally,
this assumption is also implied by assumption (4).

Whether FE or FD estimation is used – and it is of-
ten prudent to try both approaches – inference about
ˇ can and generally should be be made fully robust
to heteroksedasticity and serial dependence. The robust
asymptotic variance of both FE and FD estimators has
the so-called “sandwich” form, which allows the vector
of idiosyncratic errors, ui D (ui1; : : : ; uiT )0, to contain
arbitrary serial correlation and heteroskedasticity, where
the conditional covariances and variances can depend
on xi in an unknown way. For notational simplicity,
absorb dummy variables for the different time periods
into xi t . Let ˆ̌

FE denote the fixed effects estimator and
b̈ui D ÿi � Ẍi ˆ̌ FE the T � 1 vector of fixed effects residu-
als for unit i. Here, Ẍi is the T � K matrix with tth row ẍi t .
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Then a fully robust estimator of the asymptotic variance of
ˆ̌
FE is

bAvar( ˆ̌ FE) D

 NX

iD1

Ẍ0iẌi

!�1  NX

iD1

Ẍ0ib̈uib̈u0iẌi

!

�

 NX

iD1

Ẍ0iẌi

!�1

; (8)

where it is easily seen that
PN

iD1 Ẍ
0
iẌi D

PN
iD1

PT
tD1 ẍi t

ẍi t and the middle part of the sandwich consists of terms
b̈uirb̈ui t ẍ0ir ẍi t for all r; t D 1; : : : ; T . See Chap. 10 in [55] for
further discussion. A similar expression holds for ˆ̌ FD but
where the demeaned quantities are replaced by first differ-
ences.

When T D 2, it can be shown that the FE and FD es-
timation and inference about ˇ are identical. If T > 2,
the procedures generally differ. If (4) holds and T > 2,
how does one choose between the FE and FD approaches?
Because both are consistent and

p
N-asymptotically nor-

mal, the only way to choose is from efficiency consider-
ations. Efficiency of the FE and FD estimators hinges on
secondmoment assumptions concerning the idiosyncratic
errors. Briefly, if E(uiu0i jxi) D E(uiu0i) D �

2
uIT , then the

FE estimator is efficient. Practically, the most impor-
tant implication of this assumption is that the idiosyn-
cratic errors are serially uncorrelated. But they should
also be homoskedastic, which means the variances can
neither depend on the covariates nor change over time.
The FD estimator is efficient if the errors in (7) are se-
rially uncorrelated and homoskedasticity, which can be
stated as E(
ui
u0i jxi) D E(
ui
u0i ) D �

2
e IT�1, where

ei t D ui t � ui;t�1 and 
ui is the T � 1 vector of first-
differenced errors. These two sets of conditions – that
fui t : t D 1; : : : ; Tg is a serially uncorrelated sequence (for
FE to be efficient) versus fui t : t D 1; : : : ; Tg is a random
walk (for FD to be efficient) – represent extreme cases. Of
course, there is much in between. In fact, probably neither
condition should be assumed to be true, which is a good
argument for robust inference. More efficient estimation
can be based on generalized method of moments (GMM –
see Chap. 8 in [55] – or minimum distance estimation, as
in [16]).

It is good practice to compute both FE and FD esti-
mates to see if they differ in substantive ways. It is also
helpful to have a formal test of the strict exogeneity as-
sumption that is easily computable and that maintains
only strict exogeneity under the null – in particular, that
takes no stand on whether the FE or FD estimator is
asymptotically efficient. Because lags of covariates can al-

ways be included in a model, the primary violation of (4)
that is of interest is due to feedback. Therefore, it makes
sense to test that xi;tC1 is uncorrelated with uit . Actually,
let wi t be a subset of xi t that is suspected of failing the
strict exogeneity assumption, and consider the augmented
model

yi t D �t C xi tˇ C wi;tC1ı C ci C ui t ;
t D 1; : : : ; T � 1 : (9)

Under the null hypothesis that fxi t : t D 1; : : : ; Tg is
strictly exogenous, H0 : ı D 0, and this is easily tested us-
ing fixed effects (using all but the last time period) or first
differencing (where, again, the last time period is lost). It
makes sense, as always, to make the test fully robust to se-
rial correlation and heteroskedasticity. This test may prob-
ably has little power for detecting contemporaneous endo-
geneity, that is, correlation between wi t and uit .

A third common approach to estimation of unob-
served effects models is so-called random effects estima-
tion. RE estimation differs from FE and FD by leaving ci
in the error term and then accounting for its presence via
generalized least squares (GLS). Therefore, the exogene-
ity requirements of the covariates must be strengthened.
The most convenient way of stating the key random effects
(RE) assumption is

E(ci jxi) D E(ci ) ; (10)

which ensures that every element of xi – that is, all ex-
planatory variables in all time periods – is uncorrelated
with ci. Together with (4), (10) implies

E(vi t jxi ) D 0 ; t D 1; : : : ; T ; (11)

where vi t D ci C ui t is the composite error. Condi-
tion (11) is the key condition for general least squares
methods that exploit serial correlation in vit to be consis-
tent (although zero correlation would be sufficient). The
random effects estimator uses a special structure for the
variance-covariate matrix of vi , the T � 1 vector of com-
posite errors. If E(uiu0i ) D �

2
uIT and ci is uncorrelated

with each uit (as implied by assumption (4)), then

Var(vi ) D

0

BBBB
@
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A
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Both �2c and �2u can be estimated after, say, preliminary es-
timation by pooled OLS (which is consistent under (11)) –
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see, for example, Chap. 10 in [55] – and then a feasi-
ble GLS is possible. If (12) holds, along with the system
homoskedasticity assumption Var(vi jxi) D Var(vi), then
feasible GLS is efficient, and the inference is standard.
Even if Var(vi jxi) is not constant, or Var(vi ) does not
have the random effects structure in (12), the RE estima-
tor is consistent provided (11) holds (Again, this is with N
growing and T fixed). Therefore, although it is still not
common, a good case can be made for using robust in-
ference – that is, inference that allows an unknown form
of Var(vi jxi) – in the context of random effects. The idea
is that the RE estimator can be more efficient than pooled
OLS even if (12) fails, yet inference should not rest on (12).
Chapter 10 in [55] contains the sandwich form of the esti-
mator.

Under the key RE assumption (11), xi t can contain
time-constant variables. In fact, one way to ensure that the
omitted factors are uncorrelated with the key covariates
is to include a rich set of time-constant controls in xi t . RE
estimation is most convincing when many good time-con-
stant controls are available. In some applications of RE, the
key variable of interest does not change over time, which is
why FE and FD cannot be used. (Methods proposed in [26]
can be used when some covariates are correlated with ci,
but enough others are assumed to be uncorrelated with ci).

Rather than eliminate ci using the FE or FD transfor-
mation, or assuming (10) and using GLS, a different ap-
proach is to explicitly model the correlation between ci and
xi . A general approach is to write

ci D  C xi�C ai ; (13)

E(ai ) D 0 and E(x0i ai) D 0 ; (14)

where � is a TK � 1, vector of parameters. Equations (13)
and (14) are definitional, and simply define the population
linear regression of ci on the entire set of covariates, xi .
This representation is due to [16], and is an example of
a correlated random effects (CRE)model. The uncorrelated
random effects model occurs when � D 0.

A special case of (13) was used in [46], assuming that
each xir has the same set of coefficients. Plus, [46] actually
used conditional expectations (which is unnecessary but
somewhat easier to work with):

ci D  C x̄i� C ai (15)

E(ai jxi) D 0 ; (16)

where recall that x̄i D T�1
PT

tD1 xi t . This formulation
conserves on degrees of freedom, and extensions are useful
for nonlinear models.

Plugging (15) into the original equation gives

yi t D �t C xi tˇ C x̄i� C ai C ui t ; (17)

where  is absorbed into the time intercepts. The com-
posite error ai C ui t satisfies E(ai C ui t jxi) D 0, and so
pooled OLS or random effects applied to (17) produces
consistent,

p
N-asymptotically normal estimators of all

parameters, including �. In fact, if the original model sat-
isfies the second moments ideal for random effects, then
so does (17). Interesting, both pooled OLS and RE ap-
plied to (17) produce the fixed effects estimate of ˇ (and
the �t). Therefore, the FE estimator can be derived from
a correlated random effects model. (Somewhat surpris-
ingly, the same algebraic equivalence holds using Cham-
berlain’s more flexible device. Of course, the pooled OLS
estimator is not generally efficient, and [16] shows how to
obtain the efficient minimum distance estimator. See also
Chap. 11 in [55]).

One advantage of Eq. (17) is that it provides another
interpretation of the FE estimate: it is obtained by holding
fixed the time averages when obtaining the partial effects
of each xitj. This results in a more convincing analysis than
not controlling for systematic differences in the levels of
the covariates across i.

Equation (17) has other advantages over just using the
time-demeaned data in pooled OLS: time-constant vari-
ables can be included in (17), and the resulting equation
gives a simple, robust way of testing whether the time-
varying covariates are uncorrelated with It is helpful to
write the original equation as

yi t D gt�CziCwi tıC ciCui t ; t D 1; : : : ; T ; (18)

where gt is typically a vector of time period dummies but
could instead include other variables that change only over
time, including linear or quadratic trends, zi is a vector
of time-constant variables, and wi t contains elements that
vary across i and t. It is clear that, in comparing FE to RE
estimation,  can play no role because it cannot be esti-
mated by FE. What is less clear, but also true, is that the
coefficients on the aggregate time variables, �, cannot be
included in any comparison, either. Only the M � 1 esti-
mates of ı, say ı̂FE and ı̂RE, can be compared. If �̂FE and
�̂RE are included, the asymptotic variance matrix of the
difference in estimators has a nonsingularity in the asymp-
totic variance matrix. (In fact, RE and FE estimation only
with aggregate time variables are identical.) The Mundlak
equation is now

yi t D gt�CziCwi tıCw̄i�CaiCui t ; t D 1; : : : ; T;
(19)
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where the intercept is absorbed into gt . A test of the key RE
assumption is H0 : � D 0 is obtained by estimating (19)
by RE, and this equation makes it clear there M restric-
tions to test. This test was described in [5,46] proposed the
robust version. The original test based directly on com-
paring the RE and FE estimators, as proposed in [25],
it more difficult to compute and not robust because it
maintains that the RE estimator is efficient under the
null.

The model in (19) gives estimates of the coefficients
on the time-constant variables zi . Generally, these can be
given a causal interpretation only if

E(ci jwi ; zi) D E(ci jwi) D  C w̄i� ; (20)

where the first equality is the important one. In other
words, zi is uncorrelated with ci once the time-varying co-
variates are controlled for. This assumption is too strong
in many applications, but one still might want to include
time-constant covariates.

Before leaving this subsection, it is worth point out that
generalized least squares methods with an unrestricted
variance-covariance matrix can be applied to every esti-
mating equation just presented. For example, after elim-
inating ci by removing the time averages, the resulting
vector of errors, üi , can have an unrestricted variance
matrix. (Of course, there is no guarantee that this ma-
trix is the same as the variance matrix conditional on
the matrix of time-demeaned regressors, Ẍi .) The only
glitch in practice is that Var(üi ) has rank T � 1, not T.
As it turns out, GLS with an unrestricted variance ma-
trix for the original error vector, ui , can be implemented
on the time-demeaned equation with any of the T time
periods dropped. The so-called fixed effects GLS esti-
mates are invariant to whichever equation is dropped.
See [41] or [37] for further discussion. The initial estima-
tor used to estimate the variance covariance matrix would
probably be the usual FE estimator (applied to all time
periods).

Feasible GLS can be applied directly the first differ-
enced equation, too. It can also be applied to (19), allow-
ing the composite errors ai C ui t , t D 1; : : : ; T , to have
an unrestricted variance-covariance matrix. In all cases,
the assumption that the conditional variancematrix equals
the unconditional variance can fail, and so one should
use fully robust inference even after using FGLS. Chap-
ter 10 in [55] provides further discussion. Such options are
widely available in software, sometimes under the rubric
of generalized estimating equations (GEE). See, for exam-
ple, [43].

Models with Heterogeneous Slopes

The basic model described in the previous subsection in-
troduces a single source of heterogeneity in the additive
effect, ci. The form of the model implies that the partial ef-
fects of the covariates depend on a fixed set of population
values (and possibly other unobserved covariates if inter-
actions are included in xi t). It seems natural to extend the
model to allow interactions between the observed covari-
ates and time-constant, unobserved heterogeneity:

yi t D ci C xi tbi C ui t (21)

E(ui t jxi ; ci ; bi ) D 0 ; t D 1; : : : ; T ; (22)

where bi is K � 1. With small T, one cannot precisely esti-
mate bi . Instead, attention usually focuses on the average
partial effect (APE) or population averaged effect (PAE).
In (21), the vector of APEs is ˇ � E(bi ), the K � 1 vector
of means. In this formulation, aggregate time effects are in
xi t . This model is sometimes called a correlated random
slopes model – which means the slopes are allowed to be
correlated with the covariates.

Generally, allowing (ci ; bi ) and xi to be arbitrarily cor-
related requires T > K C 1 – see [56]. With a small num-
ber of time periods and even a modest number of re-
gressors, this condition often fails in practice. Chapter 11
in [55] discusses how to allow only a subset of coefficients
to be unit specific. Of interest here is the question: if the
usual FE estimator is applied – that is, ignoring the unit-
specific slopes bi – does this ever consistently estimate the
APEs in ˇ? In addition to the usual rank condition and the
strict exogeneity assumption (22), [56] shows that a simple
sufficient condition is

E(bi jẍi t) D E(bi ) D ˇ ; t D 1; : : : ; T : (23)

Importantly, condition (23) allows the slopes, bi , to be cor-
related with the regressors xi t through permanent compo-
nents. It rules out correlation between idiosyncratic move-
ments in xi t and bi . For example, suppose the covari-
ates can be decomposed as xi t D fi C ri t; t D 1; : : : ; T .
Then (23) holds if E(bi jri1; ri2; : : : ; riT) D E(bi). In other
words, bi is allowed to be arbitrarily correlated with the
permanent component, fi . Condition (23) is similar in
spirit to the key assumption in [46] for the intercept ci:
the correlation between the slopes bij and the entire his-
tory (xi1; : : : ; xiT) is through the time averages, and not
through deviations from the time averages. If bi changes
across i, ignoring it by using the usual FE estimator effec-
tively puts ẍi t(bi � ˇ) in the error term, which induces
heteroskedasticity and serial correlation in the compos-
ite error even if the fui tg are homoskedastic and serially
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independent. The possible presence of this term provides
another argument for making inference with FE fully ro-
bust to arbitrary conditional and unconditional second
moments.

The (partial) robustness of FE to the presence of cor-
related random slopes extends to a more general class of
estimators that includes the usual fixed effects estimator.
Write an extension of the basic model as

yi t D gtai C xi tbi C ui t ; t D 1; : : : ; T ; (24)

where gt is a set of deterministic functions of time. A lead-
ing case is gt D (1; t), so that each unit has its own time
trend along with a level effect. (The resulting model is
sometimes called a random trend model). Now, assume
that the random coefficients, ai , are swept away be re-
gressing yit and xi t each on gt for each i. The residu-
als, ÿ i t and ẍi t , have had unit-specific trends removed,
but the bi are treated as constant in the estimation. The
key condition for consistently estimating ˇ can still be
written as in (23), but now ẍi t has had more features re-
moved at unit-specific level. When gt D (1; t), each co-
variate has been demeaned within each unit. Therefore, if
xi t D fi C hi t C ri t , then bi can be arbitrarily correlated
with (fi ;hi ). Of course, individually detrending the xi t re-
quires at least three time periods, and it decreases the vari-
ation in ẍi t compared with the usual FE estimator. Not
surprisingly, increasing the dimension of gt (subject to the
restriction dim(gt) < T), generally leads to less precision
of the estimator. See [56] for further discussion.

Sequentially Exogenous Regressors
and DynamicModels

The summary of models and estimators from Sect.
“Overview of Linear Panel DataModels” used the strict ex-
ogeneity assumption E(ui t jxi ; ci ) D 0 for all t, and added
an additional assumption for models with correlated ran-
dom slopes. As discussed in Sect. “Overview of Linear
Panel Data Models”, strict exogeneity is not an especially
natural assumption. The contemporaneous exogeneity as-
sumption E(ui t jxi t; ci ) D 0 is attractive, but the parame-
ters are not identified. In this section, a middle ground be-
tween these assumptions, which has been called a sequen-
tial exogeneity assumption, is used. But first, it is helpful to
understand properties of the FE and FD estimators when
strict exogeneity fails.

Behavior of Estimators Without Strict Exogeneity

Both the FE and FD estimators are inconsistent (with
fixed T, N !1) without the strict exogeneity assump-
tion stated in Eq. (4). But it is also pretty well known that,

at least under certain assumptions, the FE estimator can
be expected to have less “bias” for larger T. Under the
contemporaneous exogeneity assumption (2) and the as-
sumption that the data series f(xi t ; ui t) : t D 1; : : : ; Tg is
“weakly dependent” – in time series parlance, “integrated
of order zero”, or I(0) – then it can be shown that

plim ˆ̌
FE D ˇ C O(T�1) (25)

plim ˆ̌
FD D ˇ C O(1) ; (26)

see Chap. 11 in [55]. In some very special cases, such as the
simple AR(1) model discussed below, the “bias” terms can
be calculated, but not generally.

Interestingly, the same results can be shown if
fxi t : t D 1; : : : ; Tg has unit roots as long as fui tg is I(0)
and contemporaneous exogeneity holds. However, there
is a catch: if fui tg is I(1) – so that the time series version of
the “model” would be a spurious regression (yit and xi t
are not “cointegrated”), then (25) is no longer true. On
the other hand, first differencing means any unit roots are
eliminated and so there is little possibility of a spurious
regression. The bottom line is that using “large T” approx-
imations such as those in (25) and (26) to choose between
FE over FD obligates one to take the time series properties
of the panel data seriously; one must recognize the pos-
sibility that the FE estimation is essentially a spurious re-
gression.

Consistent Estimation Under Sequential Exogeneity

Because both the FE and FD estimators are inconsistent
for fixed T, it makes sense to search for estimators that are
consistent for fixed T. A natural specification for dynamic
panel data models, and one that allows consistent estima-
tion under certain assumptions, is

E(yi t jxi1; : : : ; xi t ; ci ) D E(yi t jxi t; ci ) D �tCxi tˇC ci ;
(27)

which says that xi t contains enough lags so that further
lags of variables are not needed.When themodel is written
in error form, (27) is the same as

E(ui t jxi1; : : : ; xi t; ci ) D 0 ; t D 1; 2; : : : ; T : (28)

Under (28), the covariates fxi t : t D 1; : : : ; Tg are said to
be sequentially exogenous conditional on ci . Some estima-
tion methods are motivated by a weaker version of (28),
namely,

E(x0i sui t) D 0 ; s D 1; : : : ; t ; t D 1; : : : ; T ; (29)

but (28) is natural in most applications.
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Assumption (28) is appealing in that it allows for finite
distributed lag models as well as models with lagged de-
pendent variables. For example, the finite distributed lag
model

yi t D �tCzi tı0Czi;t�1ı1C� � �Czi;t�LıLCciCui t (30)

allows the elements of zi t to have effects up to L time peri-
ods after a change.With xi t D (zi t ; zi;t�1; : : : ; zi;t�L), As-
sumption (28) implies

E(yi t jzi t; zi;t�1; zi;t�2; : : : ; ci )
D E(yi t jzi t; zi;t�1; zi;t�2; ci )
D �t C zi tı0 C zi;t�1ı1 C � � � C zi;t�LıL C ci ;

(31)

which means that the distributed lag dynamics are cap-
tured by L lags. The important difference with the strict
exogeneity assumption is that sequential exogeneity allows
feedback from uit to zir for r > t.

How can (28) be used for estimation? The FD transfor-
mation is natural because of the sequential nature of the
restrictions. In particular, write the FD equation as


yi t D 
xi tˇ C
ui t ; t D 2; : : : ; T : (32)

Then, under (29),

E(x0i s
ui t) D 0 ; s D 1; : : : ; t � 1 ;
t D 2; : : : ; T ; (33)

which means any xi s with s < t can be used as an instru-
ment for the time t FD equation. An efficient estimator
that uses (33) is obtained by stacking the FD equations as


yi D 
Xiˇ C
ui ; (34)

where 
yi D (
yi2; 
yi3; : : : ;
yiT )0 is the (T � 1) � 1
vector of first differences and 
Xi is the (T � 1) � K ma-
trix of differences on the regressors. (Time period dum-
mies are absorbed into xi t for notational simplicity.) To
apply a system estimation method to (34), define

xoi t � (xi1; xi2; : : : ; xi t) ; (35)

which means the valid instruments at time t are in xoi;t�1
(minus redundancies, of course). The matrix of instru-
ments to apply to (34) is

Wi D diag(xoi1; x
o
i2; : : : ; x

o
i;T�1) ; (36)

which has T � 1 rows and a large number of columns. Be-
cause of sequential exogeneity, the number of valid instru-
ments increases with t.

GivenWi , it is routine to apply generalized method of
moments estimation, as summarized in [27,55]. A simpler
strategy is available that can be used for comparison or as
the first-stage estimator in computing the optimal weight-
ing matrix. First, estimate a reduced form for 
xi t sep-
arately for each t. In other words, at time t, run the re-
gression 
xi t on xoi;t�1, i D 1; : : : ;N, and obtain the fit-
ted values, c
xi t . Of course, the fitted values are all 1 � K
vectors for each t, even though the number of available in-
struments grows with t. Then, estimate the FD Eq. (32) by
pooled IV using c
xi t as instruments (not regressors). It is
simple to obtain robust standard errors and test statistics
from such a procedure because the first stage estimation to
obtain the instruments can be ignored (asymptotically, of
course).

One potential problem with estimating the FD equa-
tion using IVs that are simply lags of xi t is that changes in
variables over time are often difficult to predict. In other
words, 
xi t might have little correlation with xoi;t�1. This
is an example of the so-called “weak instruments” prob-
lem, which can cause the statistical properties of the IV
estimators to be poor and the usual asymptotic inference
misleading. Identification is lost entirely if xi t D �t C

xi;t�1C qi t , where E(qi t jxi;t�1; : : : ; xi1) D 0 – that is, the
elements of xi t are random walks with drift. Then, then
E(
xi t jxi;t�1; : : : ; xi1) D 0, and the rank condition for
IV estimation fails. Of course, if some elements of xi t are
strictly exogenous, then their changes act as their own in-
struments. Nevertheless, typically at least one element of
xi t is suspected of failing strict exogeneity, otherwise stan-
dard FE or FD would be used.

In situations where simple estimators that impose few
assumptions are too imprecise to be useful, sometimes one
is willing to improve estimation of ˇ by adding more as-
sumptions. How can this be done in the panel data case
under sequential exogeneity? There are two common ap-
proaches. First, the sequential exogeneity condition can be
strengthened to the assumption that the conditional mean
model is dynamically complete, which can be written in
terms of the errors as

E(ui t jxi t; yi;t�1xi;t�1; : : : ; yi1; xi1; ci ) D 0 ;
t D 1; : : : ; T : (37)

Clearly, (37) implies (28). Dynamic completeness is nei-
ther stronger nor weaker than strict exogeneity, because
the latter includes the entire history of the covariates
while (37) conditions only on current and past xi t . Dy-
namic completeness is natural when xi t contains lagged
dependent variables, because it basically means enough
lags have been included to capture all of the dynamics. It
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is often too restrictive in finite distributed lag models such
as (30), where (37) would imply

E(yi t jzi t; yi;t�1zi;t�1; : : : ; yi1; zi1; ci )
D E(yi t jzi t; zi;t�1; : : : ; zi�L ; ci ) ; t D 1; : : : ; T ;

(38)

which puts strong restrictions on the fully dynamic con-
ditional mean: values yir , r � t � 1, do not help to predict
yit once (zi t ; zi;t�1; : : : ) are controlled for. FDLs are of in-
terest even if (38) does not hold. Imposing (37) in FDLs
implies that the idiosyncratic errors must be serially un-
correlated, something that is often violated in FDLs.

Dynamic completeness is natural in a model such as

yi t D �yi;t�1 C zi tı0 C zi;t�1ı1 C ci C ui t : (39)

Usually – although there are exceptions – (39) is supposed
to represent the conditional mean E(yi t jzi t; yi;t�1zi;t�1;
: : : ; yi1; zi1; ci ), and then the issue is whether one lag of
yit and zi t suffice to capture the dynamics.

Regardless of what is contained in xi t , assumption (37)
implies some additional moment conditions that can be
used to estimate ˇ. The extra moment conditions, first
proposed in [1] in the context of the AR(1) unobserved
effects model, can be written as

E[(
yi;t�1 �
xi;t�1ˇ)0(yi t � xi tˇ)] D 0 ;
t D 3; : : : ; T ; (40)

see also [9]. The conditions can be used in conjunction
with those in Eq. (33) in a method of moments estima-
tion method. In addition to imposing dynamic complete-
ness, the moment conditions in (40) are nonlinear in pa-
rameters, which makes them more difficult to implement
than just using (33). Nevertheless, the simulation evidence
in [1] for the AR(1) model shows that (40) can help con-
siderably when the coefficient � is large.

[7] suggested a different set of restrictions,

Cov(
x0i t ; ci ) D 0 ; t D 2; : : : ; T : (41)

Interestingly, this assumption is very similar in spirit to as-
sumption (23), except that it is in terms of the first differ-
ence of the covariates, not the time-demeaned covariates.
Condition (41) generates moment conditions in the levels
of equation,

E
�

x0i t(yi t � ˛ � xi tˇ)

�
D 0 ; t D 2; : : : ; T ; (42)

where ˛ allows for a nonzero mean for ci. [10] applies
these moment conditions, along with the usual conditions

in (33), to estimate firm-level production functions. Be-
cause of persistence in the data, they find the moments
in (33) are not especially informative for estimating the pa-
rameters, whereas (42) along with (33) are. Of course, (42)
is an extra set of assumptions.

The previous discussion can be applied to the AR(1)
model, which has received much attention. In its simplest
form the model is

yi t D �yi;t�1 C ci C ui t ; t D 1; : : : ; T ; (43)

so that, by convention, the first observation on y is at
t D 0. The minimal assumptions imposed are

E(yisui t) D 0 ; s D 0; : : : ; t�1 ; t D 1; : : : ; T ; (44)

in which case the available instruments at time t are wi t D

(yi0; : : : ; yi;t�2) in the FD equation


yi t D �
yi;t�1 C
ui t ; t D 2; : : : ; T : (45)

Written in terms of the parameters and observed data, the
moment conditions are

E[yis (
yi t � �
yi;t�1) D 0 ;
s D 0; : : : ; t � 2 ; t D 2; : : : ; T : (46)

[4] proposed pooled IV estimation of the FD equation with
the single instrument yi;t�2 (in which case all T � 1 peri-
ods can be used) or
yi;t�2 (in which case only T � 2 pe-
riods can be used). A better approach is pooled IV where
T � 1 separate reduced forms are estimated for 
yi;t�1
as a linear function of (yi0; : : : ; yi;t�2). The fitted values
c
yi;t�1, can be used as the instruments in (45) in a pooled
IV estimation. Of course, standard errors and inference
should be made robust to the MA(1) serial correlation in

ui t . [6] suggested full GMM estimation using all of the
available instruments (yi0; : : : ; yi;t�2), and this estimator
uses the conditions in (44) efficiently.

Under the dynamic completeness assumption

E(ui t jyi;t�1; yi;t�2; : : : ; yi0; ci ) D 0 ; (47)

the extra moment conditions in [1] become

E[(
yi;t�1 � �
yi;t�2)(yi t � �yi;t�1)] D 0 ;
t D 3; : : : ; T : (48)

[10] noted that if the condition

Cov(
yi1; ci ) D Cov(yi1 � yi0; ci ) D 0 (49)
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is added to (47) then the combined set of moment condi-
tions becomes

E[
yi;t�1(yi t�˛��yi;t�1)] D 0 ; t D 2; : : : ; T ; (50)

which can be added to the usual moment conditions (46).
Conditions (46) and (50) combined are attractive because
they are linear in the parameters, and they can produce
much more precise estimates than just using (46).

As discussed in [10], condition (49) can be interpreted
as a restriction on the initial condition, yi0, and the steady
state. When j�j < 1, the steady state of the process is
ci /(1 � �). Then, it can be shown that (49) holds if the de-
viation of yi0 from its steady state is uncorrelated with ci.
Statistically, this condition becomes more useful as � ap-
proaches one, but this is when the existence of a steady
state is most in doubt. [22] shows theoretically that such
restrictions can greatly increase the information about �.

Other approaches to dynamic models are based on
maximum likelihood estimation. Approaches that condi-
tion on the initial condition yi0, suggested by [10,13,15],
seem especially attractive. Under normality assumptions,
maximum likelihood conditional on yi0 is tractable.

If some strictly exogenous variables are added to the
AR(1) model, then it is easiest to use IV methods on the
FD equation, namely,


yi t D �
yi;t�1 C
zi t C
ui t ;
t D 1; : : : ; T : (51)

The available instruments (in addition to time period
dummies) are (zi ; yi;t�2; : : : ; yi0), and the extra condi-
tions (42) can be used, too. If sequentially exogenous vari-
ables, say hi t , are added, then (hi;t�1; : : : ;hi1) would be
added to the list of instruments (and 
hi t would appear
in the equation).

Unbalanced Panel Data Sets

The previous sections considered estimation of models us-
ing balanced panel data sets, where each unit is observed
in each time period. Often, especially with data at the indi-
vidual, family, or firm level, data are missing in some time
periods – that is, the panel data set is unbalanced. Stan-
dard methods, such as fixed effects, can often be applied
to produce consistent estimators, and most software pack-
ages that have built-in panel data routines typically allow
unbalanced panels. However, determining whether apply-
ing standard methods to the unbalanced panel produces
consistent estimators requires knowing something about
the mechanism generating the missing data.

Methods based on removing the unobserved effect
warrant special attention, as they allow some nonrandom-
ness in the sample selection. Let t D 1; : : : ; T denote the
time periods for which data can exist for each unit from
the population, and again consider the model

yi t D �t C xi tˇ C ci C ui t ; t D 1; : : : ; T : (52)

It is helpful to have, for each i and t, a binary selection
variable, sit, equal to one of the data for unit i in time t
can be used, and zero otherwise. For concreteness, con-
sider the case where time averages are removed to elim-
inate ci, but where the averages necessarily only include
the si t D 1 observations. Let ÿ i t D yi t � T�1i

PT
rD1 sir yir

and ẍi t D xi t � T�1i
PT

rD1 sirxir be the time-demeaned
quantities using the observed time periods for unit i, where
Ti D

PT
tD1 si t is the number of time periods observed for

unit i – properly viewed as a random variable. The fixed ef-
fects estimator on the unbalanced panel can be expressed
as
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:

(53)

With fixed T and N !1 asymptotics, the key condition
for consistency is

TX

tD1

E(si t ẍ0i tui t) D 0 : (54)

In evaluating (54), it is important to remember that ẍi t
depends on (xi1; : : : ; xiT ; si1; : : : ; siT ), and in a nonlinear
way. Therefore, it is not sufficient to assume (xir ; sir) are
uncorrelated with uit for all r and t. A condition that is
sufficient for (54) is

E(ui t jxi1; : : : ; xiT ; si1; : : : ; siT ; ci ) D 0 ;
t D 1; : : : ; T : (55)

Importantly, (55) allows arbitrary correlation between the
heterogeneity, ci, and selection, sit, in any time period t. In
other words, some units are allowed to be more likely to
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be in or out of the sample in any time period, and these
probabilities can change across t. But (55) rules out some
important kinds of sample selection. For example, selec-
tion at time t, sit , cannot be correlated with the idiosyn-
cratic error at time t, uit . Further, feedback is not allowed:
in affect, like the covariates, selection must be strictly ex-
ogenous conditional on ci.

Testing for no feedback into selection is easy in the
context of FE estimation. Under (55), si;tC1 and uit should
be uncorrelated. Therefore, si;tC1 can be added to the FE
estimation on the unbalanced panel – where the last time
period is lost for all observations – and a t test can be
used to determine significance. A rejection means (55) is
false. Because serial correlation and heteroskedasticity are
always a possibility, the t test should be made fully robust.

Contemporaneous selection bias – that is, correlation
between sit and uit – is more difficult to test. Chapter 17
in [55] summarizes how to derive tests and corrections
by extending the corrections in [28] (so-called “Heckman
corrections”) to panel data.

First differencing can be used on unbalanced panels,
too, although straight first differencing can result in many
lost observations: a time period is used only if it is observed
along with the previous or next time period. FD is more
useful in the case of attrition in panel data, where a unit is
observed until it drops out of the sample and never reap-
pears. Then, if a data point is observed at time t, it is also
observed at time t � 1. Differencing can be combined with
the approach in [28] to solve bias due to attrition – at least
under certain assumptions. See Chap. 17 in [55].

Random effects methods can also be applied with un-
balanced panels, but the assumptions under which the RE
estimator is consistent are stronger than for FE. In addi-
tion to (55), one must assume selection is unrelated to ci.
A natural assumption, that also imposes exogeneity on the
covariates with respect to ci, is

E(ci jxi1; : : : ; xiT ; si1; : : : ; siT) D E(ci ) : (56)

The only case beside randomly determined sample selec-
tion where (56) holds is when sit is essentially a function
of the observed covariates. Even in this case, (56) requires
that the unobserved heterogeneity is mean independent of
the observed covariates – as in the typical RE analysis on
balanced panel.

NonlinearModels

Nonlinear panel data models are considerably more diffi-
cult to interpret and estimate than linear models. Key is-
sues concern how the unobserved heterogeneity appears

in the model and how one accounts for that heterogene-
ity in summarizing the effects of the explanatory variables
on the response. Also, in some cases, conditional indepen-
dence of the response is used to identify certain parameters
and quantities.

Basic Issues and Quantities of Interest

As in the linear case, the setup here is best suited for situ-
ations with small T and large N. In particular, the asymp-
totic analysis underlying the discussion of estimation is
with fixed T and N !1. Sampling is assumed to be ran-
dom from the population. Unbalanced panels are gener-
ally difficult to deal with because, except in special cases,
the unobserved heterogeneity cannot be completely elim-
inated in obtaining estimating equations. Consequently,
methods that model the conditional distribution of the
heterogeneity conditional on the entire history of the co-
variates – as we saw with the Chamberlain–Mundlak ap-
proach – are relied on heavily, and such approaches are
difficult when data are missing on the covariates for some
time periods. Therefore, this section considers only bal-
anced panels. The discussion here takes the response vari-
able, yit , as a scalar for simplicity.

The starting point for nonlinear panel data models
with unobserved heterogeneity is the conditional distribu-
tion

D(yi tjxi t; ci ) ; (57)

where ci is the unobserved heterogeneity for observation
i drawn along with the observables. Often there is a par-
ticular feature of this distribution, such as E(yi t jxi t; ci ), or
a conditional median, that is of primary interest. Even fo-
cusing on the conditional mean raises some tricky issues
in models where ci does not appear in an additive or lin-
ear form. To be precise, let E(yi t jxi t D xt ; ci D c) D
mt(xt ; c) be the mean function. If xtj is continuous, then
the partial effect can be defined as

� j(xt ; c) �
@mt(xt ; c)
@xt j

: (58)

For discrete (or continuous) variables, (58) can be replaced
with discrete changes. Either way, a key question is: How
can one account for the unobserved c in (58)? In order to
estimate magnitudes of effects, sensible values of c need to
be plugged into (58), which means knowledge of at least
some distributional features of ci is needed. For example,
suppose �c D E(ci ) is identified. Then the partial effect at
the average (PEA),

� j(xt ;�c) ; (59)
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can be identified if the regression function mt is identi-
fied. Given more information about the distribution of ci ,
different quantiles can be inserted into (59), or a certain
number of standard deviations from the mean.

An alternative to plugging in specific values for c is to
average the partial effects across the distribution of ci :

APE(xt) D Eci [� j(xt ; ci )] ; (60)

the so-called average partial effect (APE). The difference
between (59) and (60) can be nontrivial for nonlinear
mean functions. The definition in (60) dates back at least
to [17], and is closely related to the notion of the average
structural function (ASF), as introduced in [12]. The ASF
is defined as

ASF(xt) D Eci [mt(xt ; ci )] : (61)

Assuming the derivative passes through the expectation
results in (60); computing a discrete change in the ASF
always gives the corresponding APE. A useful feature of
APEs is that they can be compared across models, where
the functional form of the mean or the distribution of the
heterogeneity can be different. In particular, APEs in gen-
eral nonlinear models are comparable to the estimated co-
efficients in a standard linear model.

Average partial effects are not always identified, even
when parameters are. Semi-parametric panel data meth-
ods that are silent about the distribution of ci , uncondi-
tionally or conditional on (xi1; : : : ; xiT), cannot generally
deliver estimates of APEs, essentially by design. Instead,
an index structure is usually imposed so that parameters
can be consistently estimated.A common setupwith scalar
heterogeneity is

mt(xt ; c) D G(xtˇ C c) ; (62)

where, say,G(�) is strictly increasing and continuously dif-
ferentiable. The partial effects are proportional to the pa-
rameters:

� j(xt ; c) D ˇ j g(xtˇ C c) ; (63)

where g(�) is the derivative of G(�). Therefore, if ˇj is iden-
tified, then so is the sign of the partial effect, and even the
relative effects of any two continuous variables: the ratio
of partial effects for xtj and xth is ˇ j/ˇh . However, even if
G(�) is specified (the common case), the magnitude of the
effect evidently cannot be estimated without making as-
sumptions about the distribution of ci; otherwise, the term
E[g(xtˇ C ci )] cannot generally be estimated. The probit
example below shows how the APEs can be estimated in
index models under distributional assumptions for ci.

The previous discussion holds regardless of the exo-
geneity assumptions on the covariates. For example, the
definition of the APE for a continuous variable holds
whether xt contains lagged dependent variables or only
contemporaneous variables. However, approaches for es-
timating the parameters and the APEs depend critically on
exogeneity assumptions.

Exogeneity Assumptions on the Covariates

As in the case of linear models, it is not nearly enough
to simply specify a model for the conditional distribution
of interest, D(yi tjxi t; ci ), or some feature of it, in order
to estimate parameters and partial effects. This section of-
fers two exogeneity assumptions on the covariates that are
more restrictive versions of the linear model assumptions.

It is easiest to deal with estimation under a strict ex-
ogeneity assumption. The most useful definition of strict
exogeneity for nonlinear panel data models is

D(yi tjxi1; : : : ; xiT ; ci ) D D(yi tjxi t; ci ) ; (64)

which means that xir , r ¤ t, does not appear in the condi-
tional distribution of yit once xi t and ci have been counted
for. [17] labeled (64) strict exogeneity conditional on the
unobserved effects ci . Sometimes, a conditional mean ver-
sion is sufficient:

E(yi t jxi1; : : : ; xiT ; ci ) D E(yi t jxi t; ci ) ; (65)

which already played a role in linear models. Assump-
tion (64), or its conditional mean version, are less restric-
tive than if ci is not in the conditioning set, as discussed
in [17]. Indeed, it is easy to see that, if (64) holds and
D(ci jxi) depends on xi , then strict exogeneity without
conditioning on ci , D(yi t jxi1; : : : ; xiT) D D(yi tjxi t), can-
not hold. Unfortunately, both (64) and (65) rule out lagged
dependent variables, as well as other situations where there
may be feedback from idiosyncratic changes in yit to future
movements in xir , r > t. Nevertheless, the conditional
strict exogeneity assumption underlies the most common
estimation methods for nonlinear models.

More natural is sequential exogeneity conditional on
the unobserved effects, which, in terms of conditional dis-
tributions, is

D(yi tjxi1; : : : ; xi t ; ci ) D D(yi tjxi t; ci ) : (66)

Assumption (66) allows for lagged dependent variables
and does not restrict feedback. Unfortunately, (66) is sub-
stantially more difficult to work with than (64) for general
nonlinear models.
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Because xi t is conditioned on, neither (64) nor (66)
allows for contemporaneous endogeneity of xi t as would
arise with measurement error, time-varying omitted vari-
ables, or simultaneous equations. This chapter does not
treat such cases. See [38] for a recent summary.

Conditional Independence Assumption

The exogeneity conditions stated in Subsect. “Exogeneity
Assumptions on the Covariates” generally do not restrict
the dependence in the responses, fyi t : t D 1; : : : ; Tg. Of-
ten, a conditional independence assumption is explicitly
imposed, which can be written generally as

D(yi1; : : : ; yiT jxi ; ci ) D
TY

tD1

D(yi tjxi ; ci ) : (67)

Equation (67) simply means that, conditional on the en-
tire history fxi t : t D 1; : : : ; Tg and the unobserved het-
erogeneity ci , the responses are independent across time.
One way to think about (67) is that time-varying unob-
servables are independent over time. Because (67) condi-
tions on xi , it is useful only in the context of the strict exo-
geneity assumption (64). Then, conditional independence
can be written as

D(yi1; : : : ; yiT jxi ; ci ) D
TY

tD1

D(yi tjxi t; ci ) : (68)

Therefore, under strict exogeneity and conditional inde-
pendence, the panel data modeling exercise reduces to
specifying a model for D(yi tjxi t; ci ), and then determin-
ing how to treat the unobserved heterogeneity, ci . In ran-
dom effects and correlated RE frameworks, conditional in-
dependence can play a critical role in being able to esti-
mate the parameters and the distribution of ci . As it turns
out, conditional independence plays no role in estimating
APEs for a broad class of models. Before explaining how
that works, the key issue of dependence between the het-
erogeneity and covariates needs to be addressed.

Assumptions About the Unobserved Heterogeneity

For general nonlinear models, the random effects assump-
tion is independence between ci and xi D (xi1; : : : ; xiT):

D(ci jxi1; : : : ; xiT ) D D(ci) : (69)

Assumption (69) is very strong. To illustrate how strong it
is, suppose that (69) is combined with a model for the con-
ditional mean, E(yi t jxi t D xt ; ci D c) D mt(xt ; c). With-
out any additional assumptions, the average partial effects

are nonparametrically identified. In particular, the APEs
can be obtained directly from the conditional mean

rt(xt) � E(yi t jxi t D xt) : (70)

(The argument is a simple application of the law of iterated
expectations; it is discussed in [56]). Nevertheless, (69) is
still common inmany applications, especially when the ex-
planatory variables of interest do not change over time.

As in the linear case, a correlated random effects (CRE)
framework allows dependence between ci and xi , but the
dependence in restricted in some way. In a parametric set-
ting, a CRE approach involves specifying a distribution
for D(ci jxi1; : : : ; xiT), as in [15,17,46], and many subse-
quent authors; see, for example, [55] and [14]. For many
models – see, for example, Subsect. “Binary Response
Models” – one can allow D(ci jxi1; : : : ; xiT) to depend on
(xi1; : : : ; xiT) in a “nonexchangeable” manner, that is, the
distribution need not be symmetric on its conditioning ar-
guments. However, allowing nonexchangeability usually
comes at the expense of potentially restrictive distribu-
tional assumptions, such as homoskedastic normal with
a linear conditional mean. For estimating APEs, it is suffi-
cient to assume, along with strict exogeneity,

D(ci jxi ) D D(ci jx̄i ) ; (71)

without specifying D(ci jx̄i) or restricting any feature of
this distribution. (See, for example, [3,56].) As a practical
matter, it makes sense to adopt (71) – or perhaps allow
other features of fxi t : t D 1; : : : ; Tg – in a flexible para-
metric analysis.

Condition (71) still imposes restrictions on D(ci jxi ).
Ideally, as in the linear model, one could estimate at least
some features of interest without making any assumption
about D(ci jxi ). Unfortunately, the scope for allowing un-
restricted D(ci jxi ) is limited to special nonlinear models,
at least with smallT. Allowing D(ci jxi) to be unspecified is
the hallmark of a “fixed effects” analysis, but the label has
not been used consistently. Often, fixed effects has been
used to describe a situation where the ci are treated as pa-
rameters to be estimated, along with parameters that do
not vary across i. Except in special cases or with large T,
estimating the unobserved heterogeneity is prone to an
incidental parameters problem. Namely, using a fixed T,
N !1 framework, one cannot get consistent estimators
of the ci , and the inconsistency in, say, ĉi , generally trans-
mits itself to the parameters that do not vary with i. The
incidental parameters problem does not arise in estimat-
ing the coefficients ˇ in a linear model because the estima-
tor obtained by treating the ci as parameters to estimate
is equivalent to pooled OLS on the time-demeaned data –
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that is, the fixed effects estimator can be obtained by elimi-
nating the ci using the within transformation or estimating
the ci along with ˇ. This occurrence is rare in nonlinear
models. Section “Future Directions” further discusses this
issue, as there is much ongoing research that attempts to
reduce the asymptotic bias in nonlinear models.

The “fixed effects” label has also been applied to set-
tings where the ci are not treated as parameters to esti-
mate; rather, the ci can be eliminated by conditioning on
a sufficient statistic. Let wi be a function of the observed
data, (xi ; yi), such that

D(yi1; : : : ; yi t jxi ; ci ;wi ) D D(yi1; : : : ; yi t jxi ;wi ) : (72)

Then, provided the latter conditional distribution de-
pends on the parameters of interest, and can be de-
rived or approximated from the original specification of
D(yi1; : : : ; yi t jxi ; ci ), maximum likelihood methods can
be used. Such an approach is also called conditional max-
imum likelihood estimation (CMLE), where “conditional”
refers to conditioning on a function of yi . (In traditional
treatments of MLE, conditioning on so-called “exoge-
nous” variables is usually implicit.) In most cases where
the CMLE approach applies, the conditional indepen-
dence assumption (67) is maintained, although one con-
ditional MLE is known to have robustness properties: the
so-called “fixed effects” Poisson estimator (see [53]).

Maximum Likelihood Estimation and Partial MLE

There are two common approaches to estimating the pa-
rameters in nonlinear, unobserved effects panel data mod-
els when the explanatory variables are strictly exogenous.
(A third approach, generalized method of moments, is
available in special cases but is not treated here. See, for
example, Chap. 19 in [55].) The first approach is full
maximum likelihood (conditional on the entire history
of covariates). Most commonly, full MLE is applied un-
der the conditional independence assumption, although
sometimes models are used that explicitly allow depen-
dence in D(yi1; : : : ; yiT jxi ; ci ). Assuming strict exogene-
ity, conditional independence, a model for the density of
yit given (xi t ; ci ) (say, ft(yt jxt; c; �)), and a model for the
density of ci given xi (say, h(cjx; ı)), the log likelihood for
random draw i from the cross section is

log

("Z TY

tD1

ft(yi t jxi t; c; �)

#

h(cjxi ; ı)dc

)

: (73)

This log-likelihood function “integrates out” the un-
observed heterogeneity to obtain the joint density of

(yi1; : : : ; yiT) conditional on xi . In the most commonly
applied models, including logit, probit, Tobit, and vari-
ous count models (such as the Poisson model), the log
likelihood in (73) identifies all of the parameters. Com-
putation can be expensive but is typically tractable. The
main methodological drawback to the full MLE approach
is that it is not robust to violations of the conditional
independence assumption, except for the linear model
where normal conditional distributions are used for yit
and ci.

The partial MLE ignores temporal dependence in the
responses when estimating the parameters – at least when
the parameters are identified. In particular, obtain the den-
sity of yit given xi by integrating the marginal density for
yit against the density for the heterogeneity:

gt(yt jx; �; ı) D
Z

ft(yt jxt; c; �)h(cjx; ı)dc : (74)

The partialMLE (PMLE) (or pooled MLE) uses, for each i,
the partial log likelihood

TX

tD1

log[gt(yi t jxi ; �; ı) : (75)

Because the partial MLE ignores the serial dependence
caused by the presence of ci , it is essentially never effi-
cient. But in leading cases, such as probit, Tobit, and Pois-
son models, gt(yt jx; �; ı) has a simple form when h(cjx; ı)
is chosen judiciously. Further, the PMLE is fully robust
to violations of (67). Inference is complicated by the ne-
glected serial dependence, but an appropriate adjustment
to the asymptotic variance is easily obtained; see Chap. 13
in [55].

One complication with PMLE is that in the cases where
it leads to a simple analysis (probit, ordered probit, and
Tobit, to name a few), not all of the parameters in � and
ı are separately identified. The conditional independence
assumption and the use of full MLE serves to identify all
parameters. Fortunately, the PMLE does identify the pa-
rameters that index the average partial effects, a claim that
will be verified for the probit model in Subsect. “Binary
Response Models”.

Dynamic Models

General models with only sequentially exogenous vari-
ables are difficult to estimate. [8] considered binary re-
sponse models and [54] suggested a general strategy that
requires modeling the dynamic distribution of the vari-
ables that are not strictly exogenous.
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Much more is known about the specific case where
the model contains lagged dependent variables along with
strictly exogenous variables. The starting point is a model
for the dynamic distribution,

D(yi tjzi t; yi;t�1; zi;t�1 : : : ; yi1; zi1; yi0; ci ) ;
t D 1; : : : ; T ; (76)

where zi t are variables strictly exogenous (conditional on
ci ) in the sense that

D(yi tjzi ; yi;t�1; zi;t�1 : : : ; yi1; zi1; yi0; ci )
D D(yi tjzi t; yi;t�1; zi;t�1 : : : ; yi1; zi1; yi0; ci ) ; (77)

where zi is the entire history fzi t : t D 1; : : : ; Tg.
In the leading case, (76) depends only on (zi t ; yi;t�1;

ci ) (although putting lags of strictly exogenous variables
only slightly changes the notation). Let ft(yt jzt ; yt�1; c; �)
denote a model for the conditional density, which depends
on parameters � . The joint density of (yi1; : : : ; yiT ) given
(yi0; zi ; ci ) is

TY

tD1

ft(yt jzt ; yt�1; c; �) : (78)

The problem with using (78) for estimation is that, when it
is turned into a log likelihood by plugging in the “data”, ci
must be inserted. Plus, the log likelihood depends on the
initial condition, yi0. Several approaches have been sug-
gested to address these problems: (i) Treat the ci as pa-
rameters to estimate (which results in an incidental pa-
rameters problem). (ii) Try to estimate the parameters
without specifying conditional or unconditional distribu-
tions for ci. (This approach is available for very limited
situations, and other restrictions are needed. And, gener-
ally, one cannot estimate average partial effects.) (iii) Find,
or, more practically, approximate D(yi0jci ; zi ) and then
model D(ci jzi). Integrating out ci gives the density for
D(yi0; yi1; : : : ; yiT jzi ), which can be used in anMLE anal-
ysis (conditional on zi ), (iv) Model D(ci jyi0; zi ). Then,
integrate out ci conditional on (yi0; zi ) to obtain the
density for D(yi1; : : : ; yiT jyi0; zi ). Now, MLE is condi-
tional on (yi0; zi ). As shown by [57], in some leading
cases – probit, ordered probit, Tobit, Poisson regression –
there is a density h(cjy0; z) that mixes with the density
f (y1; : : : ; yT jy0; z; c) to produce a log-likelihood that is in
a common family and programmed in standard software
packages.

If mt(xt ; c; �) is the mean function E(yt jxt; c), with
xt D (zt ; yt�1), then APEs are easy to obtain. The average

structural function is

ASF(xt) D Eci [mt(xt ; ci ; �)]

D E
��Z

mt(xt ; c; �)h(cjyi0; zi ;)dc
�
jyi0; zi

�
:

(79)

The term inside the brackets, say rt(xt ; yi0; zi ; �;) is
available, at least in principle, because mt() and h() have
been specified. Often, they have simple forms, or they can
be simulated. A consistent estimator of the ASF is obtained
by averaging out (yi0; zi ):

bASF(xt) D N�1
TX

tD1

rt(xt ; yi0; zi ; �̂ ; ̂) : (80)

Partial derivatives and differences with respect to elements
of xt (which, remember, includes functions of yt�1) can be
computed. With large N and small T, the panel data boot-
strap – where resampling is carried out in the cross sec-
tion so that every time period is kept when a unit i is re-
sampled – can be used for standard errors and inference.
The properties of the nonparametric bootstrap are stan-
dard in this setting because the resampling is carried out
in the cross section.

Binary Response Models

Unobserved effects models – static and dynamic – have
been estimated for various kinds of response variables, in-
cluding binary responses, ordered responses, count data,
and corner solutions.Most of the issues outlined above can
be illustrated by binary responsemodels, which is the topic
of this subsection.

The standard specification for the unobserved effects
(UE) probit model is

P(yi t D 1jxi t; ci ) D ˚(xi tˇC ci) ; t D 1; : : : ; T ; (81)

where xi t does not contain an overall intercept but would
usually include time dummies, and ci is the scalar hetero-
geneity. Without further assumptions, neither ˇ nor the
APEs are identified. The traditional RE probit model im-
poses a strong set of assumptions: strict exogeneity, con-
ditional independence, and independence between ci and
xi with ci � Normal(�c ; �

2
c ). Under these assumptions, ˇ

and the parameters in the distribution of ci are identified
and are consistently estimated by full MLE (conditional
on xi ).

Under the strict exogeneity assumption (64), a corre-
lated random effects version of the model is obtained from
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the Chamberlain–Mundlak device under conditional nor-
mality:

ci D  C x̄i� C ai ; ai jxi � Normal(0; �2a ) : (82)

The less restrictive version ci D  C xi� C ai D  C

xi1�1C� � �CxiT�T C ai can be used, but the time average
conserves on degrees of freedom.

As an example, suppose that yit is a binary variable in-
dicating whether firm i in year t was awarded at least one
patent, and the key explanatory variable in xi t is current
and past spending on research and development (R&D).
It makes sense that R&D spending is correlated, at least
on average, with unobserved firm heterogeneity, and so
a correlated random effects model seems natural. Unfor-
tunately, the strict exogeneity assumption might be prob-
lematical: it could be that being awarded a patent in year t
might affect future values of spending on R&D. Most stud-
ies assume this is not the case, but one should be aware
that, as in the linear case, the strict exogeneity assumption
imposes restrictions on economic behavior.

When the conditional independence assumption (67)
is added to (81), strict exogeneity, and (82), all parame-
ters in (81) and (82) are identified (assuming that all ele-
ments of xi t are time-varying) and the parameters can be
efficiently estimated by maximum likelihood (conditional
on xi ). Afterwards, the mean of ci can be consistently esti-
mated as �̂c D  ̂ C

�
N�1

PN
iD1 x̄i


�̂ and the variance as

�̂2c D �̂
0�
N�1

PN
iD1 x̄

0
i x̄i

�̂ C �̂2a . Because ai is normally

distributed, ci is not normally distributed unless x̄i� is.
A normal approximation for D(ci ) gets better as T gets
large. In any case, the estimated mean and standard de-
viation can be used to plug in values of c that are a cer-
tain number of estimated standard deviations from �̂c , say
�̂c ˙ �̂c or �̂c ˙ 2�̂c .

The APEs are identified from the ASF, which is consis-
tently estimated by

bASF(xt) D N�1
NX

iD1

˚(xt ˆ̌ a C  ̂a C x̄i �̂a) (83)

where the “a” subscript means that a coefficient has been
divided by (1C �̂2a )1/2, for example, ˆ̌ a D ˆ̌ /(1C �̂2a )1/2.
The derivatives or changes of bASF(xt) with respect to el-
ements of xt can be compared with fixed effects estimates
from a linear model. Often, to obtain a single scale fac-
tor, a further averaging across xi t is done. The APEs com-
puted from such averaging can be compared to linear FE
estimates.

The CRE probit model is an example of a model where
the APEs are identified without the conditional indepen-

dence assumption. Without (67) – or any restriction on
the joint distribution – it can still be shown that

P(yi t D 1jxi) D ˚(xi tˇa C  a C x̄i�a) ; (84)

which means a number of estimation approaches identify
the scaled coefficients ˇa ,  a, and �a . The estimates of
these scaled coefficients can be inserted directly into (83).
The unscaled parameters and �2a are not separately identi-
fied, but in most cases this is a small price to pay for relax-
ing the conditional independence assumption. Note that
for determining directions of effects and relative effects,ˇa
is just as useful as ˇ. Plus, it is ˇa that appears in the APEs.
The partial effects at themean value of ci are not identified.

Using pooled probit can be inefficient for estimating
the scaled parameters. Full MLE, with a specified correla-
tion matrix for the T � 1 vector ui , is possible in princi-
ple but difficult in practice. An alternative approach, the
generalized estimating equations (GEE) approach, can be
more efficient than pooled probit but just as robust in that
only (84) is needed for consistency. See [38] for a summary
of how GEE – which is essentially the same as multivari-
ate weighted nonlinear least squares – applies to the CRE
probit model.

A simple test of the strict exogeneity assumption is to
add selected elements of xi;tC1, say wi;tC1, to the model
and computing a test of joint significance. Unless the full
MLE is used, the test should be made robust to serial de-
pendence of unknown form. For example, as a test of strict
exogeneity of R&D spending when yit is a patent indicator,
one can just include next year’s value of R&D spending
and compute a t test. In carrying out the test, the last time
period is lost for all firms.

Because there is nothing sacred about the standard
model (81) under (82) – indeed, these assumptions are
potentially quite restrictive – it is natural to pursue other
models and assumptions. Even with (81) as the starting
point, and under strict exogeneity, there are no known
ways of identifying parameters or partial effects with-
out restricting D(ci jxi). Nevertheless, as mentioned in
Subsect. “Assumptions About the Unobserved Hetero-
geneity”, there are nonparametric restrictions on D(ci jxi)
that do identify the APEs under strict exogeneity – even
if (81) is dropped entirely. As shown in [3], the restric-
tion D(ci jxi) D D(ci jx̄i) identifies the APEs. While fully
nonparametric methods can be used, some simple strate-
gies are evident. For example, because the APEs can be ob-
tained from D(yi tjxi t; x̄i ), it makes sense to apply flexible
parametric models directly to this distribution – without
worrying about the original models for D(yi t jxi t; ci ) and
D(ci jxi).
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As an example of this approach, a flexible parametric
model, such as

P(yi t D 1jxi t; x̄i )
D ˚[�t C xi tˇC x̄i C (x̄i ˝ x̄i)ıC (xi t ˝ x̄i)�] ;

(85)

might provide a reasonable approximation. The average
structural function is estimated as

bASF(xt) D

N�1
NX

iD1

˚[�̂tCxt ˆ̌Cx̄i ̂C(x̄i˝x̄i )ı̂C(xt˝x̄i )�̂];

(86)

where the estimates can come from pooled MLE, GEE, or
a method of moments procedure. The point is that exten-
sions of the basic probit model such as (85) can provide
considerable flexibility and deliver good estimators of the
APEs. The drawback is that one has to be willing to aban-
don standard underlying models for P(yi t D 1jxi t; ci ) and
D(ci jxi); in fact, it seems very difficult to characterize
models for these two features that would lead to an expres-
sion such as (85).

An alternativemodel for the response probability is the
logit model

P(yi t D 1jxi t; ci ) D �(xi tˇ C ci ) ; (87)

where �(z) D exp(z)/[1 C exp(z)]. In cross section ap-
plications, researchers often find few practical differences
between (81) and (87). But when unobserved heterogene-
ity is added in a panel data context, the logit formula-
tion has an advantage: under the conditional indepen-
dence assumption (and strict exogeneity), the parame-
ters ˇ can be consistently estimated, with a

p
N-asymp-

totic normal distribution, without restricting D(ci jxi). The
method works by conditioning on the number of “suc-
cesses” for each unit, that is, ni D

PT
tD1 yi t . [17] shows

that D(yi1; : : : ; yiT jxi ; ci ; ni) D D(yi1; : : : ; yiT jxi ; ni ),
and the latter depends on ˇ (at least when all elements of
xi t are time varying). The conditional MLE – sometimes
called the “fixed effects logit” estimator – is asymptotically
efficient in the class of estimators putting no assumptions
on D(ci jxi). While this feature of the logit CMLE is attrac-
tive, the method has two drawbacks. First, it does not ap-
pear to be robust to violations of the conditional indepen-
dence assumption, and little is known about the practical
effects of serial dependence in D(yi1; : : : ; yiT jxi ; ci ). Sec-
ond, and perhaps more importantly, because D(ci jxi) and
D(ci ) are not restricted, it is not clear how one estimates

magnitudes of the effects of the covariates on the response
probability. The logit CMLE is intended to estimate the
parameters, which means the effects of the covariates on
the log-odds ratio, logf[P(yi t D 1jxi t; ci )]/[1 � P(yi t D
1jxi t; ci )]g D xi tˇ C ci , can be estimated. But the mag-
nitudes of the effects of covariates on the response proba-
bility are not available. Therefore, there are tradeoffs when
choosing between CRE probit and “fixed effects” logit: the
CRE probit identifies average partial effects with or with-
out the conditional independence assumptions, at the cost
of specifying D(ci jxi), while the FE logit estimates param-
eters without specifying D(ci jxi), but requires conditional
independence and still does not deliver estimates of par-
tial effects. As often is the case in econometrics, there are
tradeoffs between assumptions between the logit and pro-
bit approaches, and also tradeoffs. See [38] for further dis-
cussion.

Estimation of parameters and APEs is more difficult in
simple dynamic probit models. Consider

P(yi t D 1jzi t; yi;t�1; ci ) D ˚(zi tıC�yi;t�1C ci) ; (88)

which assumes first-order dynamics and strict exogeneity
of fzi t : t D 1; : : : ; Tg. Treating the ci as parameters to es-
timate causes inconsistency in ı and � because of the inci-
dental parameters problem. A simple analysis is available
under the assumption

ci jyi0; zi � Normal( C �0yi0 C zi�; �2a ) : (89)

Then,

P(yi t D 1jzi ; yi;t�1; : : : ; yi0; ai)
D ˚(zi tı C �yi;t�1 C  C �0yi0 C zi� C ai) ;

(90)

where ai � ci �  � �0yi0 � zi�. Because ai is indepen-
dent of (yi0; zi ), it turns out that standard random effects
probit software can be used, with explanatory variables
(1; zi t ; yi;t�1; yi0; zi ) in time period t. All parameters, in-
cluding �2a , are consistently estimated, and the ASF is esti-
mated by averaging out (yi0; zi ):

bASF(zt ; yt�1) D

N�1
NX

iD1

˚(zt ı̂a C �̂a yt�1 C  ̂a C �̂a0yi0 C zi �̂a) ;

(91)

where the coefficients are multiplied by (1C �̂2a )�1/2.
APEs are gotten, as usual, by taking differences or deriva-
tives with respect to elements of (zt ; yt�1). Both (88) and
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the model for D(ci jyi0; zi ) can be made more flexible
(such as including interactions, or letting Var(ci jzi ; yi0)
be heteroskedastic). See [57] for further discussion.

Similar analyses hold for other nonlinear models, al-
though the particulars differ. For count data, maximum
likelihood methods are available – based on correlated
random effects or conditioning on a sufficient statistic.
In this case, the CMLE based on the Poisson distribution
has very satisfying robustness properties, requiring only
the conditional mean in the unobserved effects model to
be correctly specified along with strict exogeneity (Condi-
tional independence is not needed). These and dynamic
count models are discussed in Chap. 19 in [55,57].

Correlated random effects Tobit models are specified
and estimated in a manner very similar to CRE probit
models; see Chap. 16 in [55]. Unfortunately, there are no
known conditional MLEs that eliminate the unobserved
heterogeneity in Tobit models. Nevertheless, [33,34] show
how the parameters in models for corner solutions can be
estimated without distributional assumptions on D(ci jxi ).
Such methods do place exchangeability restrictions on
D(yi1; : : : ; yiT jxi ; ci ), but they are not as strong as con-
ditional independence with identical distributions.

Future Directions

Research in panel data methods continues unabated. Dy-
namic linear models are a subject of ongoing interest. The
problem of feedback in linear models when the covariates
are persistent – and the weak instrument problem that it
entails – is important for panels with small T. For exam-
ple, with firm-level panel data, the number of time peri-
ods is typically small and inputs into a production func-
tion would often be well-approximated as random walks
with perhaps additional short-term dependence. The es-
timators described in Sect. “Sequentially Exogenous Re-
gressors and Dynamic Models” that impose additional as-
sumptions should be studied when those assumptions fail.
Perhaps the lower variance of the estimators from the mis-
specified model is worth the additional bias.

Models with random coefficients, especially when
those random coefficients are on non-strictly exogenous
variables (such as lagged dependent variables), have re-
ceived some attention, but many of the proposed solutions
require large T. (See, for example, [49,50]). An alternative
approach is flexible MLE, as in [57], where one models
the distribution of heterogeneity conditional on the initial
condition and the history of covariates. See [19] for any
application to dynamic product choice.

When T is large enough so that it makes sense to
use large-sample approximations with large T, as well as

large N, one must make explicit assumptions about the
time series dependence in the data. Such frameworks are
sensible for modeling large geographical units, such as
states, provinces, or countries, where long stretches of time
are observed. The same estimators that are attractive for
the fixed T case, particularly fixed effects, can have good
properties when T grows with N, but the properties de-
pend on whether unit-specific effects, time-specific effects,
or both are included. The rates at which T and N are as-
sumed to grow also affect the large-sample approxima-
tions. See [52] for a survey of linear model methods with T
and N are both assumed to grow in the asymptotic analy-
sis. A recent study that considers estimation when the data
have unit roots is [44]. Unlike the fixed T case, a unified
theory for linear models, let alone nonlinear models, re-
mains elusive when T grows with N and is an important
area for future research.

In the models surveyed here, a single coefficient is as-
sumed for the unobserved heterogeneity, whereas the ef-
fect might change over time. In the linear model, the addi-
tive ci can be replaced with t ci (with 1 D 1 as a normal-
ization). For example, the return to unobserved manage-
rial talent in a firm production function can change over
time. Conditions under which ignoring the time-varying
loads,  t, and using the usual fixed effects estimator, con-
sistently estimates the coefficients on xi t are given in [47].
But one can also estimate the  t along with ˇ using
method of moments frameworks. Examples are [2,32]. An
area for future research is to allow heterogeneous slopes
on observed covariates along with time-varying loads on
the unobserved heterogeneity. Allowing for time-varying
loads and heterogeneous slopes in nonlinear models can
allow for significant flexibility, but only parametric ap-
proaches to estimation have been studied.

There is considerable interest in estimating produc-
tion functions using proxy variables, such as investment,
for time-varying, unobserved productivity. The pioneer-
ing work is [48]; see also [42]. Estimation in this case does
not rely on differencing or time-demeaning to remove un-
observed heterogeneity, and so the estimates can be con-
siderably more precise than the FE or FD estimators. But
the assumption that a deterministic function of invest-
ment can proxy for unobserved productivity is strong. [11]
provides an analysis that explicitly allows for unobserved
heterogeneity and non-strictly exogenous inputs using the
methods described in Sect. “Sequentially Exogenous Re-
gressors and Dynamic Models”. An interesting challenge
for future researchers is to unify the two approaches to ex-
ploit the attractive features of each.

The parametric correlated random effects approach for
both static and dynamic nonlinear models is now fairly
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well understood in the balanced case. Much less attention
has been paid to the unbalanced case, and missing data,
especially for fully dynamic models, is a serious challenge.
[57] discusses the assumptions under which using a bal-
anced subset produces consistent estimates.

Identification of average partial effects (equivalently,
the average structural function) has recently received the
attention that it deserves, although little is known about
how robust are the estimatedAPEs under variousmisspec-
ifications of parametric models. One might hope that us-
ing flexible models for nonlinear responses might provide
good approximations, but evidence on this issue is lacking.

As mentioned earlier, recent research in [3] has shown
how to identify and estimate partial effects withoutmaking
parametric assumptions about E(yi t jxi t; ci ) or D(ci jxi).
The setup in [3] allows for D(ci jxi) to depend on xi D
(xi1; : : : ; xiT) in an exchangeable way. The simplest case is
the one given in (71), D(ci jxi) D D(ci jx̄i). Under (71)
and the strict exogeneity assumption E(yi t jxi ; ci ) D
E(yi t jxi t; ci ), the average structural function is identified
as

ASFt(xt) D Ex̄i [rt(xt ; x̄i )] ; (92)

where rt(xi t; x̄i ) D E(yi t jxi t; x̄i). Because rt(xi t ; x̄i ) can
be estimated very generally – even using nonparametric
regression of yit on (xi t; x̄i ) for each t – the average par-
tial effects can be estimated without any parametric as-
sumptions. Research in [3] shows how D(ci jxi) can de-
pend on other exchangeable functions of (xi1; : : : ; xiT),
such as sample variances and covariances. As discussed
in [38], nonexchangeable functions, such as trends and
growth rates, can be accommodated, provided these func-
tions are known. For example, for each i, let (f̂i ; ĝi ) be
the vectors of intercepts and slopes from the regression
xi t on 1; t, t D 1; : : : ; T . Then, an extension of (71) is
D(ci jxi) D D(ci jf̂i ; ĝi). It appears these kinds of assump-
tions have not yet been applied, but they are a fertile area
for future research because they extend the typical CRE
setup.

Future research on nonlinear models will likely con-
sider the issue of the kinds of partial effects that are of most
interest. [3] studies identification and estimation of the lo-
cal average response (LAR). The LAR at xt for a continuous
variable xtj is

Z
@mt(xt ; c)
@xt j

dHt(cjxt) ; (93)

where mt(xt ; c) is the conditional mean of the response
and Ht(cjxt) denotes the cdf of D(ci jxi t D xt). This is
a “local” partial effect because it averages out the hetero-
geneity for the slice of the population described by the

vector of observed covariates, xt . The APE averages out
over the entire distribution of ci , and therefore can be
called a “global average response”. See also [21]. The re-
sults in [3] include general identification results for the
LAR, and future empirical researchers using nonlinear
panel data models may find the local nature of the LAR
more appealing (although more difficult to estimate) than
APEs.

A different branch of the panel data literature has stud-
ied identification of coefficients or, more often, scaled co-
efficients, in nonlinear models. For example, [35] shows
how to estimate ˇ in the model

yi t D 1[wit C xi tˇ C ci C ui t � 0] (94)

without distributional assumptions on the composite er-
ror, ci C ui t . In this model, wit is a special continuous
explanatory variable (which need not be time varying).
Because its coefficient is normalized to unity, wit neces-
sarily affects the response, yit . More importantly, wit is
assumed to satisfy the distributional restriction D(ci C
ui t jwit; xi t; zi ) D D(ci C ui t jxi t; zi ), which is a condi-
tional independence assumption. The vector zi is assumed
to be independent of uit in all time periods. (So, if two time
periods are used, zi could be functions of variables deter-
mined prior to the earliest time period). The most likely
scenario where the framework in [35] applies is when wit
is randomized and therefore independent of the entire vec-
tor (xi t ; zi ; ci C ui t). The key condition seems unlikely to
hold if wit is related to past outcomes on yit . The estima-
tor of ˇ derived in [35] is

p
N-asymptotically normal, and

fairly easy to compute; it requires estimation of the den-
sity of wit given (xi t ; zi ) and then a simple IV estimation.
Essentially by construction, estimation of partial effects on
the response probability is not possible.

Recently, [36] shows how to obtain bounds on param-
eters and APEs in dynamic models, including the dynamic
probit model in Eq. (85) under the strict exogeneity as-
sumption on fzi t : t D 1; : : : ; Tg. A further assumption
is that ci and zi are independent. By putting restrictions
on D(ci ) – which nevertheless allow flexibility – [36] ex-
plains how to estimate bounds for the unknown �. The
bounds allow one to determine howmuch information are
in the data when few assumptions are made. Similar calcu-
lations can be made for average partial effects, so that the
size of so-called state dependence – the difference between
Eci [˚(ztı C �C ci ) �˚(ztı C ci )] – can be bounded.

Because CRE methods require some restriction on the
distribution of heterogeneity, and estimation of scaled co-
efficients leaves partial effects unidentified, the theoreti-
cal literature has returned to the properties of parame-
ter estimates and partial effects when the heterogeneity
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is treated as unit-specific parameters to estimate. Recent
work has focused on adjusting the “fixed effects” estimates
(of the common population parameters) so that they have
reduced bias.

An emerging question is whether the average partial
effects might be estimated well even though the parame-
ters themselves are biased. In other words, suppose that for
a nonlinearmodel one obtains f�̂ ; ĉ1; ĉ2; : : : ; ĉNg, typically
by maximizing a pooled log-likelihood function across
all i and t. If mt(xt ; c; �; ) D E(yt jxt; c) is the conditional
mean function, the average partial effects can be estimated
as

N�1
NX

iD1

@mt(xt ; ĉi ; �̂)
@xt j

: (95)

In the unobserved effects probit model, (95) becomes

N�1
NX

iD1

ˆ̌ j�(xt ˆ̌ C ĉi ) : (96)

[20] studied the properties of (96) with strictly exogenous
regressors under conditional independence, assuming that
the covariates are weakly dependent over time. Interest-
ingly, the bias in (96) is of order T�2 when there is no het-
erogeneity, which suggests that estimating the unobserved
effects might not be especially harmful when the amount
of heterogeneity is small. Unfortunately, these findings do
not carry over to models with time heterogeneity or lagged
dependent variables. While bias corrections are available,
they are difficult to implement.

[24] proposes both jackknife and analytical bias cor-
rections and show that they work well for the probit case.
Generally, the jackknife procedure to remove the bias in �̂
is simple but can be computationally intensive. The idea is
this. The estimator based on T time periods has probabil-
ity limit (as N !1) that can be written as

�T D � C b1/T C b2/T2 C O(T�3) (97)

for vectors b1 and b2. Now, let �̂(t) denote the estimator
that drops time period t. Then, assuming stability across t,
it can be shown that the jackknife estimator,

�̃ D T�̂ � (T � 1)T�1
TX

tD1

�̂(t) (98)

has asymptotic bias of �̃ on the order of T�2.
Unfortunately, there are currently some practical limi-

tations to the jackknife procedure, as well as to the analyti-
cal corrections derived in [24]. First, aggregate time effects

are not allowed, and they would be very difficult to include
because the analysis is with T !1. (In other words, time
effects would introduce an incidental parameters problem
in the time dimension, in addition to the incidental param-
eters problem in the cross section). Plus, heterogeneity in
the distribution of the response yit across t changes the bias
terms b1 and b2 when a time period is dropped, and so the
adjustment in (98) does not remove the bias terms. Sec-
ond, [24] assumes independence across t conditional on
ci. It is a traditional assumption, but in static models it is
often violated, and it must be violated in dynamic models.
Plus, even without time heterogeneity, the jackknife does
not apply to dynamic models; see [23].

Another area that has seen a resurgence is so-called
pseudo panel data, as initially exposited in [18]. A pseudo-
panel data set is constructed from repeated cross sections
across time, where the units appearing in each cross sec-
tion are not repeated (or, if they are, it is a coincidence
and is ignored). If there is a natural grouping of the cross-
sectional units – for example, for individuals, birth year
cohorts – one can create a pseudo-panel data set by con-
structing group or cohort averages in each time period.
With relatively few cohorts and large cross sections, one
can identify pseudo panels in the context of minimum dis-
tance estimation. With a large number of groups, a dif-
ferent large-sample analysis might be warranted. A re-
cent contribution is [39] and [38] includes a recent sur-
vey. Open questions include the most efficient way to use
the full set of restrictions in the underlying individual-level
model.

As mentioned earlier, this chapter did not consider
panel data model with explanatory variables that are en-
dogenous in the sense that they are correlated with time-
varying unobservables. For linear models, the usual fixed
effects and first differencing transformations can be com-
bined with instrumental variables methods. In nonlinear
models, the Chamberlain–Mundlak approach can be com-
bined with so-called “control function” methods, provided
the endogenous explanatory variables are continuous. [38]
includes a discussion of some recent advances for com-
plicated models such as multinomial response models;
see also [51]. Generally, structural estimation in discrete
response models with unobserved heterogeneity and en-
dogenous explanatory variables is an area of great interest.
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Glossary

Cross national comparisons Comparing cross-national
data for a specific phenomenon, e. g. a surge in hous-
ing prices, is the key to distinguishing between essen-
tial factors which are common to all episodes and those
which are accessory and context dependent.

Economathematicians Mathematicians or theoretical
physicists who develop mathematical tools, models or
simulations for social phenomena but do not try to
confront these models to actual observations.

Econophysics A field of physics which originated in the
mid-1990s. Throughout this article, we use the term
in a broad sense which includes econophysics, socio-
physics and historiophysics. As a matter of fact, these
fields can hardly be studied separately in the sense that
economic effects depend upon social reactions (e. g. re-
actions of consumers to advertising campaigns); fur-
thermore, economic investigations crucially rely on
statistics which typically must combine present-day
data with data from former historical episodes.

Econophysicists Physicists who study social, economic or
political issues.

Endogenous mechanisms Models usually describe endo-
genous mechanisms. For instance a population model
would describe how people get married and have chil-
dren.

Exogenous factors Exogenous factors are more or less
unexpected external forces which act on the system.
Thus, for a population wars or epidemics may bring
about sudden population changes. It is only when ex-
ogenous factors are recurrent and fairly repetitive that
they can be taken into account in models.

Experiment Apart from its standard meaning in physics
or biology we also use this term to designate the pro-
cess of (i) defining the phenomenon that one wants
to study (ii) locating and collecting the data which are
best suited for the investigation (iii) analyzing the data
and deriving regularity rules or testing a model.

Model testing Before confronting the predictions of
a model to statistical evidence it is necessary to ensure
that the system was not subject to unexpected exoge-
nous shocks. The impact of exogenous factors which
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are not accounted for in the model must in some way
be removed, that is to say the data must be corrected in
a way which takes these shocks out of the picture. Usu-
ally, such corrections are very tricky to implement.

Definition of the Subject

“No science thrives in the atmosphere of direct
practical aim. We should still be without most of
the conveniences of modern life if physicists had
been as eager for immediate applications as most
economists are and always have been.” (J. Schum-
peter p.6 in [11])

“The free fall is a very trivial physical phenomenon,
but it was the study of this exceedingly simple fact
and its comparison with the astronomical material
which brought forth mechanics. The sound proce-
dure [in every science] is to obtain first utmost pre-
cision and mastery in a limited field, and then to
proceed to another, somewhatwider one and so on.”
(J. von Neumann and O. Morgenstern [5])

These two quotes define fairly well the path that econo-
physics tries to follow. They both insist on the fact that one
should begin by focusing on simple phenomena even if at
first sight they have little practical implications. In what
follows we will develop this point but first of all we must
address a question which comes to the mind of all persons
who hear about econophysics for the first time, namely:

“Why should physicists have something to say about
economic and social phenomena. Admittedly, biol-
ogy can benefit from physics because of themeans of
observation [e. g. exploration of protein molecules
by X-ray scattering] that it provides, but there are
no similar needs in economics.”

I have heard this question asked repeatedly by many of
my colleagues. Inmy answer I usually emphasize that what
matters is more the method of investigation than the phe-
nomena by themselves. I stress that applying to the social
sciences the experimental methodology invented by physi-
cists and chemists would mark a great progress. However,
with the benefit of insight, I realize that these answers may
have appeared far fetched and unconvincing to many of
my listeners. A better and more factual claim is to observe
that over the past century several of the most renowned
economists and sociologists were in fact econophysicists
in the sense defined in the glossary. Indeed, back in the
nineteenth century, the only way to get a decent math-
ematical training was to study astronomy, engineering,

mathematics or physics. When such people entered the so-
cial sciences this lead to two kinds of approaches which
we may designate as econophysics and economathemat-
ics (see Sect. “Glossary”). In the first category one may
mention the astronomer Adolphe Quételet (1796–1874),
Clément Juglar (1819–1905) educated as a medical doctor,
Vilfredo Pareto (1848–1923) educated as an engineer, the
mathematician Louis Bachelier (1870–1946), the physicist
Elliott Montroll (1916–1983), the mathematician Benoît
Mandelbrot (1924-). In the second category one maymen-
tion LéonWalras (1834–1910) who was educated as an en-
gineer, the astronomer Simon Newcomb (1835–1905), the
physicist Maurice Allais (1911–).

Of course, if the economic discipline had been highly
successful there would be little need for an alternative ap-
proach. However, great doubts have been expressed by
some of the most renowned economists about the attain-
ments of their discipline. We have already cited Schum-
peter’s opinion on this matter. In addition one may men-
tion the judgments of Vassily Leontief, Anna Schwartz,
Lawrence Summers or the thesis developed in a recent
book by Masanao Aoki and Hiroshi Yoshikawa.

� Leontief and Schwartz emphasized that the present or-
ganization of economic research discourages observa-
tional research. In Schwartz’s words [12]1

“The main disincentive to improve the handling
and use of data is that the profession withholds
recognition to those who devote their energies to
measurement. Someone who introduces an in-
novation in econometrics, by contrast, will win
plaudits.”

� The assessmentmade by Summers in a paper published
in 1991 is well summarized by its title: “The scientific
illusion of empirical macroeconomics”.

� In their book, Aoki and Yoshikawa ( p. 25 in [1]) point
out that the representative agent assumption which is
supposed to provide a connection between micro- and
macroeconomics is fundamentally flawed because it
neglects both social variability and stochastic fluctua-
tions. It may be true that in recent years a greater em-
phasis has been put on the issue of heterogeneity. Yet,
is this the right way to takle the problem? A model is
a simplification of reality anyway, so if it is not tenable
to use loosely defined representative agents, an alterna-
tive solution may be to focus on sharply defined agent’s

1Leontief (p. xi in [3]) has even stronger words: “The methods
used to maintain intellectual discipline in this country’s most influen-
tial economics departments can occasionally remind one of those em-
ployed by theMarines to maintain discipline on Parris Island [a train-
ing camp of US Marines].”
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attitudes. For instance, whereas without further speci-
fication home buyers may not be well defined as a use-
ful category, the behavior of investors during the final
phases of speculative price peaks may be sufficiently re-
current to make up for a well defined category.

Introduction

What are the main characteristics of econophysics? In
what follows we will try to summarize some basic prin-
ciples. Each of them will be illustrated by one or sev-
eral studies performed by econophysicists over the past
decade. Although the wording that we use is fairly per-
sonal, we believe that fundamentally these principles are
shared by many econophysicists. In the course of more
than a decade, econophysics has become a big tree with
many branches. Obviously it is impossible to describe all
of them if only because the knowledge and understanding
of the present author is limited. He apologizes in advance
for his limitations and for the fact that the present selec-
tion is by necessity fairly subjective.

The Primacy of Observation

Econophysics started around 1995 in sync with the cre-
ation of huge computerized databases giving minute by
minute transactions on financial markets such as the New
York stock market, the dollar-yen exchange rate, the for-
ward interest rates or providing individual income data
for millions of people. It may be estimated that between
1995 and 2005 about two thirds of the papers published
by econophysicists aimed at deriving regularity rules from
such databases. Let us illustrate this point by the case of
income data. Since Pareto’s work we know that the distri-
bution of high incomes can be described by a power law
with an exponent ˛ comprised between 1 and 1.5. With
databases comprising millions of income data one can get
high accuracy estimates for ˛ and observe how ˛ changes
as the result of economic booms or stock market crashes.
It turns out that ˛ decreases during booms and increases
in the wake of stock market collapses [6].

Other empirical investigations were carried out in the
past decades. We list some of them below. The list is ar-
ranged by topic and by research teams.

� Stock transactions, (i) Boston University: see publica-
tions involving G. Stanley. (ii) CEA (i. e. Commissariat
à l’Energie Atomique whichmeans Institute for Atomic
Research) and “Science-Finance”: see publications in-
volving J.P. Bouchaud. (iii) Nice University andUCLA:
see publications involving D. Sornette. (iv) University
of Warsaw: see publications involving J. Kertesz.

� Forward interest rates, Singapore University: see publi-
cations involving B. Baaquie.

� Exchange rates, Zurich: see publications involving
M. Dacorogna.

To many physicists the statement that observation is
supreme could seem self evident. In economics, however,
such a statement represents a revolution.We alreadymen-
tioned the fact that observation is a neglected topic in eco-
nomics. As a matter of fact, before econophysics started
it was impossible to publish a paper which would iden-
tify regularity rules without at the same time providing
a model2.

Investigating One Effect at a Time

In most natural phenomena different effects occur simul-
taneously. For instance, if one leaves a glass of cold wa-
ter in the sun, the water will of course get warmer but if
one looks at the mechanisms which are implied this in-
volves many different effects: interaction of light and wa-
ter, interaction of light and glass, conduction of heat, cre-
ation of convection currents between layers of water which
are at different temperatures, and so on. One of the main
challenges of physics was to identify these effects and to
study them separately. Similarly, most social phenomena
involve different effects; thus, one of the main tasks of the
social sciences should be to disentangle and decompose
complex phenomena into simple effects. In principle this
is easier to do in physics than in the social sciences be-
cause one can change experimental conditions fairly easily.
However, history shows that themain obstacle are concep-
tual. The previous phenomenon involves the transforma-
tion of one form of energy (light) into other forms of en-
ergy and it is well know that it took centuries for a clear
understanding of these processes to emerge. In order to
convince the reader that the same approach can be used in
the social sciences we briefly describe a specific case.

Suicide is commonly considered as a phenomenon
which is due to many factors. One of them is the strength
of the marital bond. How can we isolate that factor? Of
course, it is impossible to isolate it completely but one can
at least make it so predominant that other factors become
negligible. To achieve that objective, we consider a popu-
lation in which the number of males is much larger than

2In what economists call “empirical econometrics” the researcher
necessarily must provide a multivariate econometric model which
means that even before he analyses the data he already knows the the-
ory which rules the phenomenon. Moreover, all factors whether they
have a weak or a strong impact are treated on the same footing. As we
will see in the next point this has important implications.



Econophysics, Observational E 2795

the number of females. Such a population will necessar-
ily have a large proportion of bachelors and therefore will
be an ideal testing ground to study the role of the marital
bond.Where canwe find populations with a large excess of
men? Almost all populations of immigrants are character-
ized by an excess of males. It turns out that due to specific
circumstances, this imbalance was particularly large in the
population of Chinese people living in the United States.
By the end of the 19th century there were about 27 Chi-
nese men for one Chinese woman3.

What makes the present principle important? Unless
one is able to estimate the impact of each factor separately,
one will never gain a lasting understanding. It is impor-
tant to understand why. Let us for a moment return to
the previous experiment. In the econometric approach one
would conduct multivariate regressions of the tempera-
ture as a function of various (pre-conceived) parameters
such as the volume of the liquid, the thickness of the glass
and so on. Now suppose we wish to predict what hap-
pens when water is replaced by black ink. As a result of
greater light absorption temperature differentials will be
larger and convection currents will be stronger. The fact
that many effects change at the same time will make the
multivariate estimates irrelevant. Unless one has an under-
standing of the various individual effects it will be impos-
sible to make any sound prediction. To sum up, any ma-
jor change in business and social conditions will invalidate
the previously accepted econometric models. This explains
why the econometric approach fails to ensure that knowl-
edge grows in a cumulative way.

What Guidance Can Physics Provide?

One can recall that the experimental methodology pio-
neered by researchers such as Tycho Brahe (1546–1601),
Johannes Kepler (1571–1630) or Galileo (1564–1642)
marked the beginning of modern physics. Two centuries
later, that methodology was adapted to the exploration of
the living world by people such as Claude Bernard (1813–
1878), Louis Pasteur (1822–1895) and Gregor Mendel
(1822–1884). In a sense it is a paradox that this method
has been used successfully for the understanding of living
organisms but has not yet gained broad acceptance in the
social sciences for it can be argued with good reason that
living organisms are more complex systems than are states
or societies4. In short, applying the experimental method-

3For more details about this case, see [9].
4We will not develop this point here but it can be observed that

a bacteria or a cell contains thousands of different proteins which in-
teract in various ways. In the same line of thought one may recall that
living organisms have been around for several billions years whereas

ology to the social sciences is a move which seems both
natural and long overdue. Actually, serious efforts were
made in this direction by social scientists such as Emile
Durkheim (1858–1917) or Vilfredo Pareto (1848–1923)
but this route seems to have been sidetracked in the sec-
ond half of the 20th century.

Can we use the mathematical framework of physics in
the investigation of social phenomena? This approach has
been tried with some success by renowned econophysi-
cists such as Belal Baaquie and coworkers (2004, 2007)
and Jean-Philippe Bouchaud and coworkers [2,4]. In those
cases the success must probably be attributed to the fact
that the methods of theoretical physics which were used
could be formulated in a purely mathematical way which
did not rely on any physical concepts such as energy, mo-
mentum or temperature. As we do not yet know how these
notions should be transposed to social systems, it seems
impossible to apply the formalism of statistical mechanics
to social phenomena5.

Our claim that the experimental methodology of
physics can be used to explore social phenomena must be
substantiated by explaining how it is possible to carry out
“experiments” in social phenomena. This is the purpose of
the next section.

How Cross-National Observations Can Be Used
to Test the Role of Different Factors

Nowadays when a solid state physicist wants to measure,
say, the interaction between ultraviolet light and a crystal
of germanium, the experiment involves little uncertainties.
That is so because this field of physics is already well un-
derstood. On the contrary, in the case of new and not well
understood phenomena there is considerable uncertainty
about the specific conditions of the experimental set up. In
the two years after Léon Foucault demonstrated the Fou-
cault pendulum experiment, at least twenty physicists tried
to repeat it. Some succeeded while others did not. Indeed
the experimental conditions, e. g. the length of the pendu-
lum or the nature of the suspension wire, ensuring that the
Foucault effect will be observed were not well understood.

societies appeared less than 100,000 years ago and states less than
10,000 years ago.

5It could be argued that one is free to define “social energy” in the
way which one wishes. However, one should remember that the no-
tion of energy is pivotal in physics only because it is ruled by (experi-
mentally proved) conservation laws, such as the equivalence between
heat and mechanical energy demonstrated by James Joule. Naturally,
prior to defining a “social temperature”, it would seem natural to de-
fine a herd- or swarm-temperature describing aggregated populations
of bacteria, insects or animals. As far as we know, no operational def-
inition of this kind has yet been proposed.
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It is only through various attempts with different settings
that a better understanding progressively emerged. For in-
stance it was realized that by using a pendulum of great
length one would be able to reduce two undesirable effects
(i) the sensitivity of the pendulum to exogenous noise6 (ii)
the Puiseux effect which generates a rotation of the oscil-
lation plane which interferes with the Foucault effect.

Few (if any) sociological phenomena are well under-
stood which means that social researchers are basically in
the same situation as those physicists in the years 1851–
1852 who tried to observe the Foucault effect7. As an il-
lustration suppose we wish to know if the publication of
a specific type of news has an effect on the number of sui-
cides8. Such an observation depends upon many parame-
ters: the nature of the news and the amount of attention
that it receives, the time interval (days, weeks or months?)
between the publication of the news and the occurrence of
the suicides. In addition one does not know if there will be
an increase or a decrease in the number of suicides, if men
will be more or less affected than women, and so on. All
these questions can in principle be answered by conduct-
ing many observations in different countries and in differ-
ent periods of time. In other words, if we are sufficiently
determined, patient and tenacious and if we can get access
to the statistical data that are needed, we should be able to
disentangle and unravel the phenomenon under consider-
ation in the same way as experimenters have been able to
determine how the Foucault effect can be observed.

How Vested Interests May Affect the Accessibility
and Reliability of Social Data

So far we have emphasized the similarities between natu-
ral and social phenomena but there are also some stum-
bling blocks which are specific to the social sciences. One
of them is the fact that some data may have been altered
or swept under the carpet by some sort of ideological, po-
litical or social bias, pressure or interference. Needless to
say, extreme care must be exercised in such cases before
making use of the data.

As an illustration, suppose that an econophysicist or
a sociologist wants to study episodes of military occu-
pation of one country by another. Such episodes are of

6Indeed, it is when the speed of the pendulum goes through zero
that it is particularly sensitive to external perturbations; increasing the
length of the pendulum reduces the number of oscillations in a given
time interval and therefore the drift due to noise.

7As a more recent and even less understood case, one canmention
the physicists who keep on trying to observe the cold fusion effect.

8This question is connected to what is known in sociology as the
Werther effect; for more details see the papers written by Phillips (in
particular [7]) and Chap. 3 in [9].

particular interest from a sociological perspective because
they bring about strong interactions and can serve to probe
the characteristics of a society. Moreover, because armies
display many similarities nomatter their country of origin,
such episodes offer a set of controlled experiments. Natu-
rally, in order to be meaningful the comparison must rely
on trustworthy accounts for each of the episodes. Unfor-
tunately, it turns out that in many cases only scant and
fairly unreliable information is available . Consider for in-
stance the occupation of Iceland by British and Ameri-
can forces during World War II. Among all occupation
episodes this one was particularly massive with troops rep-
resenting 50% of the population of Iceland prior to the oc-
cupation. The same proportion in a country such as Japan
would have meant 30 million occupation troops that is
60 times more than the peak number of 500,000 reached
at the end of 1945. Quite understandably for such a high
density of troops, there were many incidents with the pop-
ulation of Iceland9; yet, is is difficult to find detailed evi-
dence. Due to the paucity of data a superficial investigation
would easily lead to the conclusion that there were in fact
only few incidents. It does not require much imagination
to understand why this information has not been released.
The fact that in a general way all countries whatsoever are
reluctant to recognize possible misconduct of their mili-
tary personnel explains why the information is still clas-
sified in British and American archives. Because Iceland
and the United States became close allies after 1945, one
can also understand that the Icelandic National Archive is
reluctant to release information about these incidents. The
same observation also applies (and for the same reasons)
to the occupation of Japan, 1946–1951; for more details see
Roehner pp. 90–98 in [9] and [10]. Naturally, similar cases
abound. Due to a variety of reasons well-meaning govern-
ments, archivists and statistical offices keep sensitive files
closed to social scientists. Most often it is in fact sufficient
to catalog sensitive file units in a fairly obscure way. The
plain effect is that the information will not be found ex-
cept perhaps by pure luck, a fairly unlikely prospect in big
archives.

How Can Exogenous Factors be Taken into Account?

This question is not specific to social phenomena, it is also
of importance in physics. As a matter of fact, in astronomy

9According to a report that Prime Minister Hermann Jonasson
sent to the American Headquarters, there were 136 incidents between
troops and Icelanders during the period between July 1941 (arrival
of the American troops) and April 1942 (Hunt 1966) in Reykjavik
alone. Unfortunately, no copy of this report seems to be available at
the National Archives of Iceland.
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it provides a powerful method for observing objects that
cannot be observed directly. Thus, we know the existence
of exoplanets only from the perturbing effect which they
have on the position of the star around which they move.
However, for social phenomena the problem of exogenous
factors is much more serious because (i) they may not be
known to observers (ii) even once they are identified it is
very difficult to correct the data in a reliable way. One of
the main pitfalls in the modeling of socio-economic phe-
nomena is to explain them through endogenous mecha-
nisms while they are in fact due to exogenous factors. The
following examplesmake clear that this difficulty exists for
many phenomena, whether they belong to the financial,
economic or social sphere.

� In their paper of 2005 about consensus formation and
shifts in opinion Michard and Bouchaud confront their
theory to two classes of social phenomena: (i) the dif-
fusion of cell phones (ii) the diffusion of birth rate pat-
terns. In the first case it is clear that advertising cam-
paigns may have played an important role. Of course,
one could argue that these campaigns were part of
the endogenous diffusion process. However, this argu-
ment does not hold for big telecom companies (e. g.
Vodafone) which operate in many countries. In such
cases the decision about the magnitude of the advertis-
ing campaigns are taken by the board of the company
which means that such campaigns can hardly be con-
sidered as endogenous effects. Similarly, birth rates de-
pend upon exogenous factors. For instance the length
of time spent in higher education has an effect on the
average age of marriage and the later has an effect on
birth rates.

� On 21 July 2004 the share price of Converium, a Swiss
reinsurance company listed on the New York Stock
Exchange dropped 50%. Was this fall the result of an
avalanche effect due to a movement of panic among in-
vestors? In fact, the most likely explanation is that it
was the consequence of a decision taken by the board
of Fidelity International, a major investment fund and
one of the main shareholders of Converium. Indeed in
a statement issued by Converium on August 3, 2004 it
was announced that Fidelity had reduced its holdings
from 9.87% to 3.81%. In other words, it would be com-
pletely irrelevant to explain such a fall through a herd
effect model or through any other endogenous mech-
anism (more details can be found in [8]). Similar con-
clusions apply to corporate stock buybacks, as well as
to mergers, acquisitions, buyouts and takeovers; in all
these cases decisions taken by a few persons (the aver-
age board of directors has nine members) may trigger

substantial changes in share prices. How should such
effects be taken into account by stock market models?

� At the end of 2004 and in the first months of 2005
British housing prices began to decline after having
risen rapidly during several years. Yet after May 2005,
they suddenly began to pick up again at an annual
rate of about 10%. This resurgence was particularly in-
triguing because at the same time US housing prices
began to decline. To what factor should this unex-
pected rise be attributed? Most certainly this was the
market response to a plan introduced by the Chancel-
lor of the Exchequer Gordon Brown in late May (The
EconomistMay 28, 2005). Under this plan which aimed
at propping up house prices new buyers would benefit
from a zero-interest loan for 12% of the price. In ad-
dition, the government would cover all losses incurred
by banks as a result of possible bankruptcies of borrow-
ers (at least so long as prices did not fall by more than
12%). It appears that the plan indeed propped up the
market. Consequently, in order to confront the predic-
tions of any model (e. g. see Richmond’s paper which
was published in 2007) with observation the impact of
this plan effect must first be taken out of the picture.

� The same difficulty is also encountered in socio-polit-
ical phenomena. Here is an illustration. On 5 October
2000, in protest against the publication of the results of
the presidential election there was a huge mass demon-
stration in Belgrade which involved thousands of peo-
ple from the provinces who were transported to the
federal capital by hundreds of buses. It clearly showed
that president Milosevic was no longer in control of
the police and army and lead to his retirement from
the political scene. Thus, what NATO air strikes (24
March-11 June 199910) had not been able to achieve
was accomplished by one night of street demonstra-
tions. What was the part of exogenous factors in this
event? Although in many similar cases it is very dif-
ficult to know what really happened, in this specific
case a partial understanding is provided by a long ar-
ticle published in the New York Times11. In this article

10It can be noted that similarly to what would happen in 2003 for
the invasion of Iraq, these air strikes were carried out without the
authorization of the United Nations Security Council.

11New York Times, Sunday 26 November 2000, Magazine Section,
p. 43, 7705 words; the article by Roger Cohen is entitled: “Who re-
ally brought down Milosevic”. What makes this account particularly
convincing is the fact that it was preceded by another article entitled:
“US anti-Milosevic plan faces major test at polls” which appeared on
September 23, 2000 (p. 6, 1150 words); this article described the way
Milosevic would be removed from power two weeks before the events.
The article makes clear that the course of events would be the same
no matter what the results of the election would be.
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we learn that several American organizations belong-
ing to the intelligence network supported, financed and
trained Serbian opposition groups. For instance the ar-
ticle mentions the Albert Einstein Foundation, the In-
ternational Republican Institute, the National Endow-
ment for Democracy, the US Agency for International
Development. Although the amount of the total finan-
cial support is not known, the New York Times article
says that it exceeded $ 28 million. The plan comprised
two facets: the organization of demonstrations on the
one hand and the infiltration of the army and police on
the other hand in order to undermine their loyalty and
convince them to remain passive during the demon-
strations. According to the article this second facet re-
mains classified. With an exogenous interference of
such a magnitude, it would clearly be meaningless to
describe this upheaval as a purely endogenous process.
Moreover, the fact that we have only partial knowledge
about the exogenous forces makes it very difficult (if
not altogether impossible) to come up with a satisfac-
tory description. It should also be noted that the influ-
ence of these groups did not disappear overnight after
October 4, which means that the subsequent history of
Serbiamust also take them into account at least to some
extent.

Future Directions

In this article we have described the challenges and obsta-
cles to which one is confronted in trying to understand so-
cio-economic phenomena. In parallel we have shown that
the econophysics approach has many assets. One of them
which has not yet been mentioned is the fact that econo-
physicists are not subject to the rigid barriers which ex-
ist between various fields and subfields of the human sci-
ences. Thus, if it turns out that in order to explain an eco-
nomic phenomena one needs to understand a social effect,
econophysicists would have no problem in shifting from
one field to another. There is another historical chance that
we have not mentioned so far, namely the development of
the Internet. In the past decade 1997–2007 the amount of
information to which one has access has increased tremen-
dously. Electronic catalogs of major libraries or of national
archives, indexes of newspaper, search engines on the In-
ternet, searchable databases of books, all these innovations
contributed to give the researcher easy access to informa-
tion sources that have never been available before. In par-
ticular it has become fairly easy to find cross-national data.
Thus, social scientists and econophysicists are in a better
position than ever for carrying out the kind of compara-
tive studies that we called for in this article.
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Glossary

Probability density P(x) is defined so that the probability
of finding a random variable x in the interval from x to
x C dx is equal to P(x) dx.

Cumulative probability C(x) is defined as the integral
C(x) D

R1
x P(x)dx. It gives the probability that the

random variable exceeds a given value x.
The Boltzmann–Gibbs distribution gives the probabil-

ity of finding a physical system in a state with the en-
ergy ". Its probability density is given by the exponen-
tial function (1).

The Gamma distribution has the probability density
given by a product of an exponential function and
a power-law function, as in (9).

The Pareto distribution has the probability density
P(x) / 1/x1C˛ and the cumulative probability
C(x) / 1/x˛ given by a power law. These expres-
sions apply only for high enough values of x and do
not apply for x ! 0.

The Lorenz curve was introduced by American eco-
nomist Max Lorenz to describe income and wealth in-
equality. It is defined in terms of two coordinates x(r)
and y(r) given by (19). The horizontal coordinate x(r)
is the fraction of the population with income below r,
and the vertical coordinate y(r) is the fraction of in-
come this population accounts for. As r changes from 0
to1, x and y change from 0 to 1, parametrically defin-
ing a curve in the (x; y)-plane.

The Gini coefficient G was introduced by the Italian
statistician Corrado Gini as a measure of inequality in
a society. It is defined as the area between the Lorenz
curve and the straight diagonal line, divided by the area
of the triangle beneath the diagonal line. For perfect
equality (everybody has the same income or wealth)
G D 0, and for total inequality (one person has all in-
come or wealth, and the rest have nothing) G D 1.

The Fokker–Planck equation is the partial differential
equation (22) that describes evolution in time t of the
probability density P(r, t) of a random variable r expe-
riencing small random changes 
r during short time
intervals 
t. It is also known in mathematical liter-
ature as the Kolmogorov forward equation. The dif-
fusion equation is an example of the Fokker–Planck
equation.

Definition of the Subject

Econophysics is an interdisciplinary research field apply-
ing methods of statistical physics to problems in eco-
nomics and finance. The term “econophysics” was first
introduced by the prominent theoretical physicist Eu-

gene Stanley in 1995 at the conference Dynamics of Com-
plex Systems, which was held in Calcutta (now known as
Kolkata) as a satellite meeting to the STATPHYS-19 con-
ference in China [1,2]. The term appeared in print for
the first time in the paper by Stanley et al. [3] in the
proceedings of the Calcutta conference. The paper pre-
sented a manifesto of the new field, arguing that “behavior
of large numbers of humans (as measured, e. g., by eco-
nomic indices) might conform to analogs of the scaling
laws that have proved useful in describing systems com-
posed of large numbers of inanimate objects” [3]. Soon
the first econophysics conferences were organized: Inter-
national Workshop on Econophysics, Budapest, 1997 and
InternationalWorkshop on Econophysics and Statistical Fi-
nance, Palermo, 1998 [2], and the book An Introduction to
Econophysics [4] was published.

The term “econophysics” was introduced by analogy
with similar terms, such as “astrophysics”, “geophysics”,
and “biophysics”, which describe applications of physics to
different fields. Particularly important is the parallel with
biophysics, which studies living creatures, which still obey
the laws of physics. It should be emphasized that econo-
physics does not literally apply the laws of physics, such
as Newton’s laws or quantum mechanics, to humans, but
rather uses mathematical methods developed in statistical
physics to study statistical properties of complex economic
systems consisting of a large number of humans. So, it may
be considered as a branch of applied theory of probabili-
ties. However, statistical physics is distinctly different from
mathematical statistics in its focus, methods, and results.

Originating from physics as a quantitative science,
econophysics emphasizes quantitative analysis of large
amounts of economic and financial data, which became
increasingly available with the massive introduction of
computers and the Internet. Econophysics distances it-
self from the verbose, narrative, and ideological style of
political economy and is closer to econometrics in its
focus. Studying mathematical models of a large number
of interacting economic agents, econophysics has much
common ground with the agent-based modeling and
simulation. Correspondingly, it distances itself from the
representative-agent approach of traditional economics,
which, by definition, ignores statistical and heterogeneous
aspects of the economy.

Twomajor directions in econophysics are applications
to finance and economics. Observational aspects are cov-
ered in the article � Econophysics, Observational. The
present article,� Econophysics, Statistical Mechanics Ap-
proach to, concentrates primarily on statistical distribu-
tions of money, wealth, and income among interacting
economic agents.
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Another direction related to econophysics has been
advocated by the theoretical physicist Serge Galam since
the early 1980s under the name “sociophysics” [5], with
the first appearance of the term in print in [6]. It echoes
the term physique sociale proposed in the nineteenth cen-
tury by Auguste Comte, the founder of sociology. Un-
like econophysics, the term “sociophysics” did not catch
on when first introduced, but it is coming back with the
popularity of econophysics and active promotion by some
physicists [7,8,9]. While the principles of both fields have
a lot in common, econophysics focuses on the narrower
subject of economic behavior of humans, where more
quantitative data are available, whereas sociophysics stud-
ies a broader range of social issues. The boundary be-
tween econophysics and sociophysics is not sharp, and
the two fields enjoy a good rapport [10]. A more detailed
description of the historical development in presented in
Sect. “Historical Introduction”.

Historical Introduction

Statistical mechanics was developed in the second half of
the nineteenth century by James Clerk Maxwell, Ludwig
Boltzmann, and JosiahWillard Gibbs. These physicists be-
lieved in the existence of atoms and developedmathemati-
cal methods for describing their statistical properties, such
as the probability distribution of velocities of molecules
in a gas (the Maxwell–Boltzmann distribution) and the
general probability distribution of states with different en-
ergies (the Boltzmann–Gibbs distribution). There are in-
teresting connections between the development of statis-
tical physics and statistics of social phenomena, which
were recently brought up by the science journalist Philip
Ball [11,12].

Collection and study of “social numbers”, such as the
rates of death, birth, and marriage, has been growing
progressively since the seventeenth century (see Chap. 3
in [12]). The term “statistics” was introduced in the eigh-
teenth century to denote these studies dealing with the
civil “states”, and its practitioners were called “statists”.
Popularization of social statistics in the nineteenth cen-
tury is particularly accredited to the Belgian astronomer
Adolphe Quetelet. Before the 1850s, statistics was consid-
ered an empirical arm of political economy, but then it
started to transform into a general method of quantitative
analysis suitable for all disciplines. It stimulated physicists
to develop statistical mechanics in the second half of the
nineteenth century.

Rudolf Clausius started development of the kinetic
theory of gases, but it was James Clerk Maxwell who
made a decisive step of deriving the probability distribu-

tion of velocities of molecules in a gas. Historical stud-
ies show (see Chap. 3 in [12]) that, in developing statis-
tical mechanics, Maxwell was strongly influenced and en-
couraged by the widespread popularity of social statistics
at the time. This approach was further developed by Lud-
wig Boltzmann, who was very explicit about its origins (see
p. 69 in [12]):

“The molecules are like individuals, . . . and the
properties of gases only remain unaltered, because
the number of these molecules, which on the aver-
age have a given state, is constant.”

In his book Populäre Schriften from 1905 [13], Boltz-
mann praises JosiahWillard Gibbs for systematic develop-
ment of statistical mechanics. Then, Boltzmann says (cited
from [14]):

“This opens a broad perspective if we do not only
think of mechanical objects. Let’s consider to apply
this method to the statistics of living beings, society,
sociology and so forth.”

(The author is grateful to Michael E. Fisher for bring-
ing this quote to his attention.)

It is worth noting that many now-famous economists
were originally educated in physics and engineering. Vil-
fredo Pareto earned a degree in mathematical sciences and
a doctorate in engineering. Working as a civil engineer,
he collected statistics demonstrating that distributions of
income and wealth in a society follow a power law [15].
He later became a professor of economics at Lausanne,
where he replaced Léon Walras, also an engineer by edu-
cation. The influential American economist Irving Fisher
was a student of Gibbs. However, most of the mathemat-
ical apparatus transferred to economics from physics was
that of Newtonian mechanics and classical thermodynam-
ics [16]. It culminated in the neoclassical concept of mech-
anistic equilibrium where the “forces” of supply and de-
mand balance each other. Themore general concept of sta-
tistical equilibrium largely eluded mainstream economics.

With time, both physics and economics became more
formal and rigid in their specializations, and the social ori-
gin of statistical physics was forgotten. The situation is well
summarized by Philip Ball (see p. 69 in [12]):

“Today physicists regard the application of statis-
tical mechanics to social phenomena as a new and
risky venture. Few, it seems, recall how the process
originated the other way around, in the days when
physical science and social science were the twin sib-
lings of a mechanistic philosophy and when it was
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not in the least disreputable to invoke the habits of
people to explain the habits of inanimate particles”.

Some physicists and economists attempted to connect
the two disciplines during the twentieth century. The the-
oretical physicist Ettore Majorana argued in favor of ap-
plying the laws of statistical physics to social phenom-
ena in a paper published after his mysterious disappear-
ance [17]. The statistical physicist Elliott Montroll co-
authored the book Introduction to Quantitative Aspects of
Social Phenomena [18]. Several economists applied statis-
tical physics to economic problems [19,20,21,22]. An early
attempt to bring together the leading theoretical physicists
and economists at the Santa Fe Institute was not entirely
successful [23]. However, by the late 1990s, the attempts
to apply statistical physics to social phenomena finally co-
alesced into the robust movements of econophysics and
sociophysics, as described in Sect. “Definition of the Sub-
ject”.

The current standing of econophysics within the
physics and economics communities is mixed. Although
an entry on econophysics has appeared in the New Pal-
grave Dictionary of Economics [24], it is fair to say that
econophysics is not accepted yet by mainstream eco-
nomics. Nevertheless, a number of open-minded, nontra-
ditional economists have joined this movement, and the
number is growing. Under these circumstances, econo-
physicists have most of their papers published in physics
journals. The journal Physica A: Statistical Mechanics and
Its Applications emerged as the leader in econophysics
publications and has even attracted submissions from
some bona fide economists. The mainstream physics com-
munity is generally sympathetic to econophysics, although
it is not uncommon for econophysics papers to be re-
jected by Physical Review Letters on the grounds that “it
is not physics”. There are regular conferences on econo-
physics, such as Applications of Physics in Financial Anal-
ysis (sponsored by the European Physical Society), Nikkei
Econophysics Symposium, and Econophysics Colloquium.
Econophysics sessions are included in the annual meet-
ings of physical societies and statistical physics confer-
ences. The overlap with economics is the strongest in the
field of agent-based simulation. Not surprisingly, the con-
ference series WEHIA/ESHIA, which deals with hetero-
geneous interacting agents, regularly includes sessions on
econophysics.

StatisticalMechanics of Money Distribution

When modern econophysics started in the middle of
the 1990s, its attention was primarily focused on anal-
ysis of financial markets. However, three influential pa-

pers [25,26,27], dealing with the subject of money and
wealth distributions, were published in 2000. They started
a new direction that is closer to economics than finance
and created an expanding wave of follow-up publications.
We start reviewing this subject with [25], whose results are
the most closely related to the traditional statistical me-
chanics in physics.

The Boltzmann–Gibbs Distribution of Energy

The fundamental law of equilibrium statistical mechan-
ics is the Boltzmann–Gibbs distribution. It states that the
probability P(") of finding a physical system or subsystem
in a state with the energy " is given by the exponential
function

P(") D ce
�"
T ; (1)

where T is the temperature, and c is a normalizing con-
stant [28]. Here we set the Boltzmann constant kB to unity
by choosing the energy units for measuring the physical
temperature T. Then, the expectation value of any physi-
cal variable x can be obtained as

hxi D
P

k xke
�"k
T

P
k e
�"k
T

; (2)

where the sum is taken over all states of the system. Tem-
perature is equal to the average energy per particle: T �
h"i, up to a numerical coefficient of the order of 1.

Equation (1) can be derived in different ways [28]. All
derivations involve the two main ingredients: statistical
character of the system and conservation of energy ". One
of the shortest derivations can be summarized as follows.
Let us divide the system into two (generally unequal) parts.
Then, the total energy is the sum of the parts, " D "1C "2,
whereas the probability is the product of probabilities,
P(") D P("1)P("2). The only solution of these two equa-
tions is the exponential function (1).

A more sophisticated derivation, proposed by Boltz-
mann himself, uses the concept of entropy. Let us consider
N particles with total energy E. Let us divide the energy
axis into small intervals (bins) of width 
" and count the
number of particles Nk having energies from "k to "kC
".
The ratio Nk/N D Pk gives the probability for a particle
having the energy "k . Let us now calculate the multiplic-
ity W, which is the number of permutations of the parti-
cles between different energy bins such that the occupation
numbers of the bins do not change. This quantity is given
by the combinatorial formula in terms of the factorials

W D
N!

N1!N2!N3! : : :
: (3)
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The logarithm of multiplicity of called the entropy S D
lnW . In the limit of large numbers, the entropy per parti-
cle can be written in the following form using the Stirling
approximation for the factorials:

S
N
D �

X

k

Nk

N
ln
�
Nk

N

�
D �

X

k

Pk ln Pk : (4)

Now we would like to find what distribution of particles
between different energy states has the highest entropy,
i. e. the highest multiplicity, provided that the total energy
of the system, E D

P
k Nk"k , has a fixed value. Solution

of this problem can be easily obtained using the method of
Lagrange multipliers [28], and the answer gives the expo-
nential distribution (1).

The same result can be derived from the ergodic the-
ory, which says that the many-body system occupies all
possible states of a given total energy with equal probabil-
ities. Then it is straightforward to show [29,30] that the
probability distribution of the energy of an individual par-
ticle is given by (1).

Conservation of Money

The derivations outlined in Sect. “The Boltzmann–Gibbs
Distribution of Energy” are very general and use only the
statistical character of the system and the conservation of
energy. So, one may expect that the exponential Boltz-
mann–Gibbs distribution (1) may apply to other statistical
systems with a conserved quantity.

The economy is a big statistical system with millions of
participating agents, so it is a promising target for applica-
tions of statistical mechanics. Is there a conserved quan-
tity in economy? Drăgulescu and Yakovenko [25] argue
that such a conserved quantity is money m. Indeed, the
ordinary economic agents can only receive money from
and give money to other agents. They are not permitted to
“manufacture” money, e. g., to print dollar bills. When one
agent i pays money
m to another agent j for some goods
or services, themoney balances of the agents change as fol-
lows:

mi ! m0i D mi �
m ;

mj ! m0j D mj C
m :
(5)

The total amount of money of the two agents before and
after the transaction remains the same,

mi C mj D m0i C m0j ; (6)

i. e., there is a local conservation law for money. The
rule (5) for the transfer of money is analogous to the trans-
fer of energy from one molecule to another in molecular

collisions in a gas, and (6) is analogous to conservation of
energy in such collisions.

Addressing some misunderstandings developed in
economic literature [31,32,33,34], we should emphasize
that, in the model of [25], the transfer of money from
one agent to another happens voluntarily, as a payment
for goods and services in a market economy. However, the
model only keeps track of money flow, and does not keep
track of what kinds of goods and service are delivered. One
reason for this is that many goods, e. g., food and other
supplies, and most services, e. g., getting a haircut or going
to a movie, are not tangible and disappear after consump-
tion. Because they are not conserved and also because they
are measured in different physical units, it is not very prac-
tical to keep track of them. In contrast, money is measured
in the same unit (within a given country with a single cur-
rency) and is conserved in transactions, so it is straightfor-
ward to keep track of money flow.

Unlike ordinary economic agents, a central bank or
a central government can inject money into the economy.
This process is analogous to an influx of energy into a sys-
tem from external sources, e. g., the Earth receives energy
from the Sun. Dealingwith these situations, physicists start
with an idealization of a closed system in thermal equi-
librium and then generalize to an open system subject to
an energy flux. As long as the rate of money influx from
central sources is slow compared with relaxation processes
in the economy and does not cause hyperinflation, the
system is in quasi-stationary statistical equilibrium with
slowly changing parameters. This situation is analogous to
heating a kettle on a gas stove slowly, where the kettle has
a well-defined, but slowly increasing temperature at any
moment of time.

Another potential problem with conservation of
money is debt. This issue is discussed in more detail in
Sect. “Models with Debt”. As a starting point, Drăgulescu
and Yakovenko [25] first considered simple models, where
debt is not permitted. This means that money balances of
agents cannot go below zero: mi � 0 for all i. Transac-
tion (5) takes place only when an agent has enough money
to pay the price, mi � 
m, otherwise the transaction does
not take place. If an agent spends all the money, the bal-
ance drops to zero mi D 0, so the agent cannot buy any
goods from other agents. However, this agent can still pro-
duce goods or services, sell them to other agents, and re-
ceive money for them. In real life, cash balance dropping
to zero is not at all unusual for people who live from pay-
check to paycheck.

The conservation law is the key feature for the suc-
cessful functioning of money. If the agents were permitted
to “manufacture” money, they would be printing money
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and buying all goods for nothing, which would be a dis-
aster. The physical medium of money is not essential, as
long as the conservation law is enforced. Money may be in
the form of paper cash, but today it is more often repre-
sented by digits in computerized bank accounts. The con-
servation law is the fundamental principle of accounting,
whether in the single-entry or in the double-entry form.
More discussion of banks and debt is given in Sect. “Mod-
els with Debt”.

The Boltzmann–Gibbs Distribution of Money

Having recognized the principle of money conservation,
Drăgulescu and Yakovenko [25] argued that the stationary
distribution of money should be given by the exponential
Boltzmann–Gibbs function analogous to (1):

P(m) D ce
�m
Tm : (7)

Here c is a normalizing constant, and Tm is the “money
temperature”, which is equal to the average amount of
money per agent: T D hmi D M/N , whereM is the total
money, and N is the number of agents.

To verify this conjecture, Drăgulescu and Yako-
venko [25] performed agent-based computer simulations
of money transfers between agents. Initially all agents were
given the same amount of money, say, $ 1000. Then, a pair
of agents (i, j) were randomly selected, the amount 
m
was transferred from one agent to another, and the process
was repeated many times. Time evolution of the probabil-
ity distribution of money P(m) can be seen in computer
animation videos at the Web pages [35,36]. After a transi-
tory period, money distribution converges to the station-
ary form shown in Fig. 1. As expected, the distribution is
very well fitted by the exponential function (7).

Several different rules for
m were considered in [25].
In one model, the amount transferred was fixed to a con-
stant 
m D 1$. Economically, it means that all agents
were selling their products for the same price 
m D 1$.
Computer animation [35] shows that the initial distri-
bution of money first broadens to a symmetric, Gaus-
sian curve, characteristic for a diffusion process. Then, the
distribution starts to pile up around the m D 0 state,
which acts as the impenetrable boundary, because of the
imposed condition m � 0. As a result, P(m) becomes
skewed (asymmetric) and eventually reaches the station-
ary exponential shape, as shown in Fig. 1. The bound-
ary at m D 0 is analogous to the ground-state energy in
statistical physics. Without this boundary condition, the
probability distribution of money would not reach a sta-
tionary state. Computer animation [35,36] also shows how
the entropy of money distribution, defined as S/N D

Econophysics, Statistical Mechanics Approach to, Figure 1
Stationary probability distribution of money P(m) obtained in
agent-based computer simulations. Solid curves: fits to the Boltz-
mann–Gibbs law (7). Vertical lines: the initial distribution of
money. (Reproduced from [25])

�
P

k P(mk ) ln P(mk ), grows from the initial value S D 0,
when all agents have the same money, to the maximal
value at the statistical equilibrium.

While the model with 
m D 1 is very simple and in-
structive, it is not very realistic, because all prices are taken
to be the same. In another model considered in [25], 
m
in each transaction is taken to be a random fraction of the
average amount of money per agent, i. e.,
m D �(M/N),
where � is a uniformly distributed random number be-
tween 0 and 1. The random distribution of 
m is sup-
posed to represent the wide variety of prices for different
products in the real economy. It reflects the fact that agents
buy and consume many different types of products, some
of them simple and cheap, some sophisticated and ex-
pensive. Moreover, different agents like to consume these
products in different quantities, so there is variation in the
amounts
m paid, even though the unit price of the same
product is constant. Computer simulation of this model
produces exactly the same stationary distribution (7) as in
the first model. Computer animation for this model is also
available on the Web page [35].

The final distribution is universal despite different
rules for 
m. To amplify this point further, Drăgulescu
and Yakovenko [25] also considered a toy model, where

m was taken to be a random fraction of the average
amount of money of the two agents:
m D �(miCmj)/2.
This model produced the same stationary distribution (7)
as the other two models.

The pairwise models of money transfer are attrac-
tive in their simplicity, but they represent a rather prim-
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itive market. The modern economy is dominated by big
firms, which consist of many agents, so Drăgulescu and
Yakovenko [25] also studied a model with firms. One
agent at a time is appointed to become a “firm”. The firm
borrows capital K from another agent and returns it with
interest hK, hires L agents and pays them wagesW, man-
ufactures Q items of a product, sells them to Q agents at
price R, and receives profit F D RQ�LW�hK. All of these
agents are randomly selected. The parameters of themodel
are optimized following a procedure from economics text-
books [37]. The aggregate demand–supply curve for the
product is used in the form R(Q) D v/Q� , where Q is the
quantity consumers would buy at price R, and � and v are
some parameters. The production function of the firm has
the traditional Cobb–Douglas form: Q(L;K) D L�K1��,
where � is a parameter. Then the profit of the firm F is
maximized with respect to K and L. The net result of the
firm activity is a many-body transfer of money, which still
satisfies the conservation law. Computer simulation of this
model generates the same exponential distribution (7), in-
dependently of the model parameters. The reasons for the
universality of the Boltzmann–Gibbs distribution and its
limitations are discussed from a different perspective in
Sect. “Additive Versus Multiplicative Models”.

Well after paper [25] appeared, Italian econophysi-
cists [38] found that similar ideas had been published
earlier in obscure journals in Italian by Eleonora Ben-
nati [39,40]. They proposed calling these models the Ben-
nati–Drăgulescu–Yakovenko game [41]. The Boltzmann
distribution was independently applied to social sciences
by Jürgen Mimkes using the Lagrange principle of maxi-
mization with constraints [42,43]. The exponential distri-
bution of money was also found in [44] using a Markov
chain approach to strategic market games. A long time
ago, Benoit Mandelbrot observed (see p. 83 in [45]):

“There is a great temptation to consider the ex-
changes of money which occur in economic interac-
tion as analogous to the exchanges of energy which
occur in physical shocks between gas molecules”.

He realized that this process should result in the expo-
nential distribution, by analogy with the barometric dis-
tribution of density in the atmosphere. However, he dis-
carded this idea, because it does not produce the Pareto
power law, and proceeded to study the stable Lévy dis-
tributions. Ironically, the actual economic data, discussed
in Sect. “Empirical Data on Money and Wealth Distribu-
tions” and “Empirical Data on Income Distribution”, do
show the exponential distribution for the majority of the
population. Moreover, the data have finite variance, so the

stable Lévy distributions are not applicable because of their
infinite variance.

Models with Debt

Now let us discuss how the results change when debt is
permitted. Debt may be considered as negative money.
When an agent borrows money from a bank (considered
here as a big reservoir of money), the cash balance of the
agent (positive money) increases, but the agent also ac-
quires a debt obligation (negative money), so the total bal-
ance (net worth) of the agent remains the same, and the
conservation law of total money (positive and negative)
is satisfied. After spending some cash, the agent still has
the debt obligation, so the money balance of the agent be-
comes negative. Any stable economic system must have
a mechanism preventing unlimited borrowing and unlim-
ited debt. Otherwise, agents can buy any products without
producing anything in exchange by simply going into un-
limited debt. The exact mechanisms of limiting debt in the
real economy are complicated and obscured. Drăgulescu
and Yakovenko [25] considered a simple model where the
maximal debt of any agent is limited by a certain amount
md. This means that the boundary condition mi � 0
is now replaced by the condition mi � �md for all
agents i. Setting interest rates on borrowed money to be
zero for simplicity, Drăgulescu and Yakovenko [25] per-
formed computer simulations of the models described in
Sect. “The Boltzmann–Gibbs Distribution of Money” with
the new boundary condition. The results are shown in
Fig. 2. Not surprisingly, the stationary money distribu-
tion again has an exponential shape, but now with the new
boundary condition at m D �md and the higher money
temperature Td D md C M/N . By allowing agents to go
into debt up to md, we effectively increase the amount of
money available to each agent by md. So, the money tem-
perature, which is equal to the average amount of effec-
tively available money per agent, increases. A model with
nonzero interest rates was also studied in [25].

We see that debt does not violate the conservation law
of money, but rather modifies boundary conditions for
P(m). When economics textbooks describe how “banks
create money” or “debt creates money” [37], they count
only positive money (cash) as money, but do not count li-
abilities (debt obligations) as negative money. With such
a definition, money is not conserved. However, if we in-
clude debt obligations in the definition of money, then
the conservation law is restored. This approach is in
agreement with the principles of double-entry accounting,
which records both assets and debts. Debt obligations are
as real as positive cash, as many borrowers painfully real-
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Econophysics, Statistical Mechanics Approach to, Figure 2
Stationary distributions of money with and without debt. The
debt is limited tomd D 800. Solid curves: fits to the Boltzmann–
Gibbs laws with the “temperatures” T D 1800 and T D 1000.
(Reproduced from [25])

ized in their experience. A more detailed study of positive
and negative money and bookkeeping from the point of
view of econophysics is presented in a series of papers by
the physicist Dieter Braun [46,47,48].

One way of limiting the total debt in the economy is
the so-called required reserve ratio r [37]. Every bank is
required by law to set aside a fraction r of the money de-
posited with the bank, and this reserved money cannot be
loaned further. If the initial amount of money in the sys-

Econophysics, Statistical Mechanics Approach to, Figure 3
The stationary distribution of money for the required reserve ra-
tio r D 0:8. The distribution is exponential for positive and neg-
ative money with different “temperatures” TC and T� , as illus-
trated by the inset on log–linear scale. (Reproduced from [49])

tem (the money base) is M0, then with loans and borrow-
ing the total amount of positive money available to the
agents increases to M D M0/r, where the factor 1/r is
called the money multiplier [37]. This is how “banks cre-
ate money”. Where does this extra money come from? It
comes from the increase of the total debt in the system.
The maximal total debt is equal to D D M0/r � M0 and
is limited by the factor r. When the debt is maximal, the
total amounts of positive,M0/r, and negative,M0(1� r)/r,
money circulate between the agents in the system, so there
are effectively two conservation laws for each of them [49].
Thus, we expect to see the exponential distributions of
positive and negative money characterized by two differ-
ent temperatures: TC D M0/rN and T� D M0(1� r)/rN .
This is exactly what was found in computer simulations
in [49], shown in Fig. 3. Similar two-sided distributions
were also found in [47].

Proportional Money Transfers and Saving Propensity

In the models of money transfer considered thus far, the
transferred amount 
m is typically independent of the
money balances of agents. A different model was intro-
duced in the physics literature earlier [50] under the name
multiplicative asset exchangemodel. This model also satis-
fies the conservation law, but the amount of money trans-
ferred is a fixed fraction � of the payer’s money in (5):


m D �mi : (8)

The stationary distribution of money in this model, shown
in Fig. 4 with an exponential function, is close, but not ex-
actly equal, to the Gamma distribution:

P(m) D cmˇ e
�m
T : (9)

Equation (9) differs from (7) by the power-law prefactor
mˇ . From the Boltzmann kinetic equation (discussed in
more detail in Sect. “Additive Versus Multiplicative Mod-
els”), Ispolatov et al. [50] derived a formula relating the
parameters � and ˇ in (8) and (9):

ˇ D
�1 � ln 2
ln(1 � � )

: (10)

When payers spend a relatively small fraction of their
money � < 1/2, (10) gives ˇ > 0, so the low-money pop-
ulation is reduced and P(m! 0) D 0, as shown in Fig. 4.

Later, Thomas Lux brought to the attention of physi-
cists [32] that essentially the same model, called the in-
equality process, had been introduced and studied much
earlier by the sociologist John Angle [51,52,53,54,55], see
also the review [56] for additional references. While Ispo-
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Econophysics, Statistical Mechanics Approach to, Figure 4
Stationary probability distribution of money in the multiplica-
tive random exchange model (8) for � D 1/3. Solid curve: the
exponential Boltzmann–Gibbs law. (Reproduced from [25])

latov et al. [50] did not give much justification for the pro-
portionality law (8), Angle [51] connected this rule with
the surplus theory of social stratification [57], which ar-
gues that inequality in human society develops when peo-
ple can produce more than necessary for minimal subsis-
tence. This additional wealth (surplus) can be transferred
from original producers to other people, thus generating
inequality. In the first paper by Angle [51], the parameter�
was randomly distributed, and another parameter, ı, gave
a higher probability of winning to the agent with a higher
money balance in (5). However, in the following papers, he
simplified the model to a fixed � (denoted as ! by Angle)
and equal probabilities of winning for higher- and lower-
balance agents, which makes it completely equivalent to
the model of [50]. Angle also considered a model [55,56]
where groups of agents have different values of � , simulat-
ing the effect of education and other “human capital”. All
of these models generate a Gamma-like distribution, well
approximated by (9).

Another model with an element of proportionality
was proposed in [26]. (This paper originally appeared as
a follow-up preprint cond-mat/0004256 to the preprint
cond-mat/0001432 of [25].) In this model, the agents set
aside (save) some fraction of their money mi , whereas
the rest of their money balance (1 � )mi becomes avail-
able for random exchanges. Thus, the rule of exchange (5)
becomes

m0i D mi C �(1 � )(mi C mj) ;
m0j D mj C (1 � �)(1 � )(mi C mj) :

(11)

Here the coefficient  is called the saving propensity, and
the random variable � is uniformly distributed between 0
and 1. It was pointed out in [56] that, by the change of
notation  ! (1 � � ), (11) can be transformed to the
same form as (8), if the random variable � takes only dis-
crete values 0 and 1. Computer simulations [26] of the
model (11) found a stationary distribution close to the
Gamma distribution (9). It was shown that the parame-
ter ˇ is related to the saving propensity  by the formula
ˇ D 3/(1 � ) [38,58,59,60]. For  ¤ 0, agents always
keep some money, so their balances never go to zero and
P(m ! 0) D 0, whereas for  D 0 the distribution be-
comes exponential.

In the subsequent papers by the Kolkata school [1]
and related papers, the case of random saving propensity
was studied. In these models, the agents are assigned ran-
dom parameters  drawn from a uniform distribution be-
tween 0 and 1 [61]. It was found that this model produces
a power-law tail P(m) / 1/m2 at high m. The reasons
for stability of this law were understood using the Boltz-
mann kinetic equation [60,62,63], but most elegantly in
the mean-field theory [64]. The fat tail originates from the
agents whose saving propensity is close to 1, who hoard
money and do not give it back [38,65]. An interesting ma-
trix formulation of the problem was presented in [66]. Pa-
triarca et al. [67] studied the relaxation rate in the money
transfer models. Drăgulescu and Yakovenko [25] studied
a model with taxation, which also has an element of pro-
portionality. The Gamma distribution was also studied for
conservative models within a simple Boltzmann approach
in [68] and using much more complicated rules of ex-
change in [69,70].

Additive Versus Multiplicative Models

The stationary distribution of money (9) for the models of
Sect. “Proportional Money Transfers and Saving Propen-
sity” is different from the simple exponential formula (7)
found for the models of Sect. “The Boltzmann–Gibbs Dis-
tribution of Money”. The origin of this difference can be
understood from the Boltzmann kinetic equation [28,71].
This equation describes time evolution of the distribution
function P(m) due to pairwise interactions:

dP(m)
dt

D

“ ˚
� f[m;m0]![m��;m0C�]P(m)P(m0)

C f[m��;m0C�]![m;m0]P(m �
) � P(m0 C
)
�
dm0d
 :

(12)

Here f[m;m0]![m��;m0C�] is the probability of transfer-
ring money 
 from an agent with money m to an agent
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with money m0 per unit time. This probability, multi-
plied by the occupation numbers P(m) and P(m0), gives
the rate of transitions from the state [m,m0] to the state
[m�
;m0C
]. The first term in (12) gives the depopula-
tion rate of the statem. The second term in (12) describes
the reverse process, where the occupation number P(m)
increases. When the two terms are equal, the direct and
reverse transitions cancel each other statistically, and the
probability distribution is stationary: dP(m)/dt D 0. This
is the principle of detailed balance.

In physics, the fundamental microscopic equations of
motion of particles obey time-reversal symmetry. This
means that the probabilities of the direct and reverse pro-
cesses are exactly equal:

f[m;m0]![m��;m0C�] D f[m��;m0C�]![m;m0] : (13)

When (13) is satisfied, the detailed balance condition
for (12) reduces to the equation P(m)P(m0) D P(m �

)P(m0C
), because the factors f cancel out. The only so-
lution of this equation is the exponential function P(m) D
c exp(�m/Tm ), so the Boltzmann–Gibbs distribution is
the stationary solution of the Boltzmann kinetic equa-
tion (12). Notice that the transition probabilities (13) are
determined by the dynamical rules of the model, but the
equilibrium Boltzmann–Gibbs distribution does not de-
pend on the dynamical rules at all. This is the origin of
the universality of the Boltzmann–Gibbs distribution. It
shows that it may be possible to find out the stationary dis-
tribution without knowing details of the dynamical rules
(which are rarely known very well), as long as the symme-
try condition (13) is satisfied.

The models considered in Sect. “The Boltzmann–
Gibbs Distribution of Money” have the time-reversal sym-
metry. The model with the fixed money transfer 
 has
equal probabilities (13) of transferring money from an
agent with balancem to an agent with balancem0 and vice
versa. This is also true when 
 is random, as long as the
probability distribution of 
 is independent of m and m0.
Thus, the stationary distribution P(m) is always exponen-
tial in these models.

However, there is no fundamental reason to expect
time-reversal symmetry in economics, so (13) may be not
valid. In this case, the system may have a nonexponen-
tial stationary distribution or no stationary distribution
at all. In model (8), the time-reversal symmetry is bro-
ken. Indeed, when an agent i gives a fixed fraction � of
his money mi to an agent with balance mj , their balances
become (1 � � )mi and mj C �mi . If we try to reverse
this process and appoint an agent j to be the payer and

to give the fraction � of her money, � (mj C �mi ), to
agent i, the system does not return to the original configu-
ration [mi ,mj]. As emphasized by Angle [56], the payer
pays a deterministic fraction of his money, but the re-
ceiver receives a random amount from a random agent,
so their roles are not interchangeable. Because the propor-
tional rule typically violates the time-reversal symmetry,
the stationary distribution P(m) in multiplicative mod-
els is typically not exactly exponential.1Making the trans-
fer dependent on the money balance of the payer effec-
tively introduces a Maxwell’s demon into the model. That
is why the stationary distribution is not exponential, and,
thus, does not maximize entropy (4). Another view on
the time-reversal symmetry in economic dynamics is pre-
sented in [72].

These examples show that the Boltzmann–Gibbs dis-
tribution does not hold for any conservative model. How-
ever, it is universal in a limited sense. For a broad class
of models that have time-reversal symmetry, the station-
ary distribution is exponential and does not depend on the
details of the model. Conversely, when the time-reversal
symmetry is broken, the distribution may depend on the
details of the model. The difference between these two
classes of models may be rather subtle. Deviations from
the Boltzmann–Gibbs law may occur only if the tran-
sition rates f in (13) explicitly depend on the agent’s
moneym orm0 in an asymmetricmanner. Drăgulescu and
Yakovenko [25] performed a computer simulation where
the direction of payment was randomly selected in ad-
vance for every pair of agents (i, j). In this case, money
flows along directed links between the agents: i! j! k,
and the time-reversal symmetry is strongly violated. This
model is closer to the real economy, where one typically
receives money from an employer and pays it to a gro-
cery store. Nevertheless, the Boltzmann–Gibbs distribu-
tion was found in this model, because the transition rates f
do not explicitly depend on m and m0 and do not vio-
late (13).

In the absence of detailed knowledge of real micro-
scopic dynamics of economic exchanges, the semiuniver-
sal Boltzmann–Gibbs distribution (7) is a natural starting
point. Moreover, the assumption of [25] that agents pay
the same prices 
m for the same products, independent
of their money balances m, seems very appropriate for
themodern anonymous economy, especially for purchases
over the Internet. There is no particular empirical evidence
for the proportional rules (8) or (11). However, the differ-

1However, when�m is a fraction of the total money mi C mj of
the two agents, the model is time-reversible and has an exponential
distribution, as discussed in Sect. “The Boltzmann–Gibbs Distribu-
tion of Money”.



2810 E Econophysics, Statistical Mechanics Approach to

ence between the additive (7) and multiplicative (9) distri-
butions may be not so crucial after all. From the mathe-
matical point of view, the difference is in the implemen-
tation of the boundary condition at m D 0. In the addi-
tive models of Sect. “The Boltzmann–Gibbs Distribution
of Money”, there is a sharp cutoff of P(m) at m D 0.
In the multiplicative models of Sect. “Proportional Money
Transfers and Saving Propensity”, the balance of an agent
never reaches m D 0, so P(m) vanishes at m ! 0 in
a power-lawmanner. At the same time, P(m) decreases ex-
ponentially for largem for both models.

By further modifying the rules of money transfer and
introducing more parameters in the models, one can ob-
tain even more complicated distributions [73]. However,
one can argue that parsimony is the virtue of a good math-
ematical model, not the abundance of additional assump-
tions and parameters, whose correspondence to reality is
hard to verify.

StatisticalMechanics ofWealth Distribution

In the econophysics literature on exchange models, the
terms “money” and “wealth” are often used interchange-
ably; however, economists emphasize the difference be-
tween these two concepts. In this section, we review the
models of wealth distribution, as opposed to money distri-
bution.

Models with a Conserved Commodity

What is the difference between money and wealth? One
can argue [25] that wealthwi is equal to moneymi plus the
other property that an agent i has. The latter may include
durable material property, such as houses and cars, and fi-
nancial instruments, such as stocks, bonds, and options.
Money (paper cash, bank accounts) is generally liquid and
countable. However, the other property is not immediately
liquid and has to be sold first (converted into money) to be
used for other purchases. In order to estimate the mone-
tary value of property, one needs to know the price p. In
the simplest model, let us consider just one type of prop-
erty, say, stocks s. Then the wealth of an agent i is given by
the formula

wi D mi C psi : (14)

It is assumed that the price p is common for all agents and
is established by some kind of market process, such as an
auction, and may change in time.

It is reasonable to start with amodel where both the to-
tal money M D

P
i mi and the total stock S D

P
i si are

conserved [74,75,76]. The agents pay money to buy stock
and sell stock to get money, and so on. Although M and
S are conserved, the total wealth W D

P
i wi is gener-

ally not conserved, because of the price fluctuation [75]
in (14). This is an important difference from the money
transfer models of Sect. “Statistical Mechanics of Money
Distribution”. Here the wealth wi of an agent i, not par-
ticipating in any transactions, may change when transac-
tions between other agents establish a new price p. More-
over, the wealth wi of an agent i does not change after
a transaction with an agent j. Indeed, in exchange for pay-
ing money 
m, agent i receives the stock 
s D 
m/p,
so her total wealth (14) remains the same. In principle,
the agent can instantaneously sell the stock back at the
same price and recover the money paid. If the price p
never changes, then the wealth wi of each agent remains
constant, despite transfers of money and stock between
agents.

We see that redistribution of wealth in this model
is directly related to price fluctuations. One mathemat-
ical model of this process was studied in [77]. In this
model, the agents randomly change preferences for the
fraction of their wealth invested in stocks. As a result, some
agents offer stock for sale and some want to buy it. The
price p is determined from the market-clearing auction
matching supply and demand. Silver et al. [77] demon-
strated in computer simulations and proved analytically
using the theory of Markov processes that the station-
ary distribution P(w) of wealth w in this model is given
by the Gamma distribution, as in (9). Various modifi-
cations of this model [32], such as introducing monop-
olistic coalitions, do not change this result significantly,
which shows the robustness of the Gamma distribution.
For models with a conserved commodity, Chatterjee and
Chakrabarti [75] found the Gamma distribution for a fixed
saving propensity and a power law tail for a distributed
saving propensity.

Another model with conserved money and stock was
studied in [78] for an artificial stock market where traders
follow different investment strategies: random, momen-
tum, contrarian, and fundamentalist. Wealth distribu-
tion in the model with random traders was found have
a power-law tail P(w) � 1/w2 for large w. However, un-
like in most other simulation, where all agents initially
have equal balances, here the initial money and stock
balances of the agents were randomly populated accord-
ing to a power law with the same exponent. This raises
the question whether the observed power-law distribution
of wealth is an artifact of the initial conditions, because
equilibrization of the upper tail may take a very long sim-
ulation time.
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Models with Stochastic Growth of Wealth

Although the total wealth W is not exactly conserved in
the models considered in Sect. “Models with a Conserved
Commodity”, W nevertheless remains constant on aver-
age, because the total moneyM and stock S are conserved.
A different model for wealth distribution was proposed
in [27]. In this model, time evolution of the wealth wi of
an agent i is given by the stochastic differential equation

dwi

dt
D �i (t)wi C

X

j(¤i)

Ji jw j �
X

j(¤i)

J jiwi ; (15)

where �i(t) is a Gaussian random variable with mean h�i
and variance 2�2. This variable represents growth or loss
of wealth of an agent due to investment in stock mar-
ket. The last two terms describe transfer of wealth be-
tween different agents, which is taken to be proportional
to the wealth of the payers with the coefficients Ji j . So,
the model (15) is multiplicative and invariant under the
scale transformation wi ! Zwi . For simplicity, the ex-
change fractions are taken to be the same for all agents:
Ji j D J/N for all i ¤ j, where N is the total number of
agents. In this case, the last two terms in (15) can be writ-
ten as J(hwi � wi ), where hwi D

P
i wi /N is the aver-

age wealth per agent. This case represents a “mean-field”
model, where all agents feel the same environment. It can
be easily shown that the average wealth increases in time
as hwit D hwi0e(h�iC


2)t . Then, it makes more sense to
consider the relative wealth w̃i D wi /hwit . Equation (15)
for this variable becomes

dw̃i

dt
D (�i (t) � h�i � �2)w̃i C J(1 � w̃i) : (16)

The probability distribution P(w̃; t) for the stochastic dif-
ferential equation (16) is governed by the Fokker–Planck
equation:

@P
@t
D
@[J(w̃ � 1)C �2w̃]P

@w̃
C�2

@

@w̃

�
w̃
@(w̃P)
@w̃

�
: (17)

The stationary solution (@P/@t D 0) of this equation is
given by the following formula:

P(w̃) D c
e
�J
�2w̃

w̃
2CJ
�2

: (18)

The distribution (18) is quite different from the Boltz-
mann–Gibbs (7) and Gamma (9) distributions. Equa-
tion (18) has a power-law tail at large w̃ and a sharp cut-
off at small w̃. Equation (15) is a version of the generalized
Lotka–Volterra model, and the stationary distribution (18)

was also obtained in [79,80]. The model was generalized to
include negative wealth in [81].

Bouchaud and Mézard [27] used the mean-field ap-
proach. A similar result was found for a model with pair-
wise interaction between agents in [82]. In this model,
wealth is transferred between the agents using the propor-
tional rule (8). In addition, the wealth of the agents in-
creases by the factor 1 C � in each transaction. This fac-
tor is supposed to reflect creation of wealth in economic
interactions. Because the total wealth in the system in-
creases, it makes sense to consider the distribution of rela-
tive wealth P(w̃). In the limit of continuous trading, Slan-
ina [82] found the same stationary distribution (18). This
result was reproduced using a mathematically more in-
volved treatment of this model in [83]. Numerical simula-
tions of the models with stochastic noise � in [69,70] also
found a power-law tail for large w.

Let us contrast the models discussed in Sect. “Models
with a Conserved Commodity” and “Models with Stochas-
tic Growth of Wealth”. In the former case, where money
and commodity are conserved and wealth does not grow,
the distribution of wealth is given by the Gamma distri-
bution with an exponential tail for large w. In the latter
models, wealth grows in time exponentially, and the distri-
bution of relative wealth has a power-law tail for large w̃.
These results suggest that the presence of a power-law tail
is a nonequilibrium effect that requires constant growth or
inflation of the economy, but disappears for a closed sys-
tem with conservation laws.

Reviews of the models discussed were also given
in [84,85]. Because of lack of space, we omit discus-
sion of models with wealth condensation [27,50,86,87,88],
where a few agents accumulate a finite fraction of the
total wealth, and studies of wealth distribution on net-
works [89,90,91,92]. Here we discuss the models with
long-range interaction, where any agent can exchange
money and wealth with any other agent. A local model,
where agents trade only with the nearest neighbors, was
studied in [93].

Empirical Data on Money andWealth Distributions

It would be very interesting to compare theoretical re-
sults for money and wealth distributions in various mod-
els with empirical data. Unfortunately, such empirical data
are difficult to find. Unlike income, which is discussed in
Sect. “Data and Models for Income Distribution”, wealth
is not routinely reported by the majority of individuals to
the government. However, in many countries, when a per-
son dies, all assets must be reported for the purpose of
inheritance tax. So, in principle, there exist good statis-
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Econophysics, Statistical Mechanics Approach to, Figure 5
Cumulative probability distribution of net wealth in the UK
shown on log–log and log–linear (inset) scales. Points represent
the data from the Inland Revenue, and solid lines are fits to the
exponential (Boltzmann–Gibbs) and power (Pareto) laws. (Re-
produced from [95])

tics of wealth distribution among dead people, which, of
course, is different from the wealth distribution among
living people. Using an adjustment procedure based on
the age, gender, and other characteristics of the deceased,
the UK tax agency, the Inland Revenue, reconstructed
the wealth distribution of the whole population of the
UK [94]. Figure 5 shows the UK data for 1996 reproduced
from [95]. The figure shows the cumulative probability
C(w) D

R1
w P(w0)dw0 as a function of the personal net

wealth w, which is composed of assets (cash, stocks, prop-
erty, household goods, etc.) and liabilities (mortgages and
other debts). Because statistical data are usually reported at
nonuniform intervals of w, it is more practical to plot the
cumulative probability distribution C(w) rather than its
derivative, the probability density P(w). Fortunately, when
P(w) is an exponential or a power-law function, then C(w)
is also an exponential or a power-law function.

The cumulative probability distribution in Fig. 5 is
plotted on a log–log scale, where a straight line represents
a power-law dependence. The figure shows that the dis-
tribution follows a power law C(w) / 1/w˛ with expo-
nent ˛ D 1:9 for wealth greater than about £100,000. The
inset in Fig. 5 shows the data on log–linear scale, where
the straight line represents an exponential dependence.
We observe that below £100,000 the data are well fitted
by the exponential distribution C(w) / exp(�w/Tw ) with
the effective “wealth temperature” Tw D £60,000, (which
corresponds to the median wealth of £41,000). So, the dis-

tribution of wealth is characterized by the Pareto power
law in the upper tail of the distribution and the exponen-
tial Boltzmann–Gibbs law in the lower part of the distribu-
tion for the great majority (about 90%) of the population.
Similar results are found for the distribution of income,
as discussed in Sect. “Data and Models for Income Dis-
tribution”. One may speculate that the wealth distribution
in the lower part is dominated by distribution of money,
because the corresponding people do not have other sig-
nificant assets, so the results of Sect. “Statistical Mechan-
ics ofMoney Distribution” give the Boltzmann–Gibbs law.
On the other hand, the upper tail of the wealth distribu-
tion is dominated by investment assess, where the results
of Sect. “Models with Stochastic Growth of Wealth” give
the Pareto law. The power law was studied by many re-
searchers for the upper-tail data, such as the Forbes list of
the 400 richest people [96,97], but much less attention was
paid to the lower part of the wealth distribution. Curiously,
Abdul-Magd [98] found that the wealth distribution in an-
cient Egyptian society was consistent with (18).

For direct comparison with the results of Sect. “Statis-
tical Mechanics of Money Distribution”, it would be very
interesting to find data on the distribution of money, as
opposed to the distribution of wealth.Making a reasonable
assumption that most people keep most of their money in
banks, one can approximate the distribution of money by
the distribution of balances on bank accounts. (Balances
on all types of bank accounts, such as checking, saving, and
money manager, associated with the same person should
be added up.) Despite imperfections (people may have ac-
counts with different banks or not keep all their money
in banks), the distribution of balances on bank accounts
would give valuable information about the distribution of
money. The data for a big enough bankwould be represen-
tative of the distribution in the whole economy. Unfortu-
nately, it has not been possible to obtain such data thus
far, even though it would be completely anonymous and
not compromise the privacy of bank clients.

Measuring the probability distribution of money
would be very useful, because it determines how much
people can, in principle, spend on purchases without going
into debt. This is different from the distribution of wealth,
where the property component, such as house, car, or re-
tirement investment, is effectively locked up and, in most
cases, is not easily available for consumer spending. So, al-
though wealth distribution may reflect the distribution of
economic power, the distribution of money is more rele-
vant for consumption. Money distribution can be useful
for determining prices that maximize revenue of a manu-
facturer [25]. If a price p is set too high, few people can
afford it, and, if a price is too low, the sales revenue is
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small, so the optimal price must be in-between. The frac-
tion of the population who can afford to pay the price p
is given by the cumulative probability C(p), so the total
sales revenue is proportional to pC(p). For the exponential
distribution C(p) D exp(�p/Tm ), the maximal revenue
is achieved at p D Tm , i. e., at the optimal price equal to
the average amount of money per person [25]. Indeed, the
prices of mass-market consumer products, such as com-
puters, electronics goods, and appliances, remain stable for
many years at a level determined by their affordability to
the population, whereas the technical parameters of these
products at the same price level improve dramatically ow-
ing to technological progress.

Data andModels for IncomeDistribution

In contrast to money and wealth distributions, a lot more
empirical data are available for the distribution of income r
from tax agencies and population surveys. In this section,
we first present empirical data on income distribution and
then discuss theoretical models.

Empirical Data on Income Distribution

Empirical studies of income distribution have a long his-
tory in the economics literature [99,100,101]. Following
the work by Pareto [15], much attention was focused
on the power-law upper tail of the income distribution
and less on the lower part. In contrast to more compli-
cated functions discussed in the literature, Drăgulescu and
Yakovenko [102] introduced a new idea by demonstrating
that the lower part of income distribution can be well fitted
with a simple exponential function P(r) D c exp(�r/Tr )
characterized by just one parameter, the “income tem-
perature” Tr . Then it was recognized that the whole in-
come distribution can be fitted by an exponential func-
tion in the lower part and a power-law function in the
upper part [95,103], as shown in Fig. 6. The straight line
on the log–linear scale in the inset of Fig. 6 demonstrates
the exponential Boltzmann–Gibbs law, and the straight
line on the log–log scale in the main panel illustrates the
Pareto power law. The fact that income distribution con-
sists of two distinct parts reveals the two-class structure
of American society [104,105]. Coexistence of the expo-
nential and power-law distributions is known in plasma
physics and astrophysics, where they are called the “ther-
mal” and “superthermal” parts [106,107,108]. The bound-
ary between the lower and upper classes can be defined as
the intersection point of the exponential and power-law
fits in Fig. 6. For 1997, the annual income separating the
two classes was about $120,000. About 3% of the popula-

Econophysics, Statistical Mechanics Approach to, Figure 6
Cumulative probability distribution of tax returns for USA in
1997 shown on log–log and log–linear (inset) scales. Points rep-
resent the Internal Revenue Service (IRS) data, and solid lines are
fits to the exponential and power-law functions. (Reproduced
from [103])

tion belonged to the upper class, and 97% belonged to the
lower class.

Silva and Yakovenko [105] studied time evolution of
income distribution in the USA during 1983–2001 on the
basis of data from the Internal Revenue Service (IRS), the
government tax agency. The structure of the income distri-
bution was found to be qualitatively the same for all years,
as shown in Fig. 7. The average income in nominal dol-
lars approximately doubled during this time interval. So,
the horizonal axis in Fig. 7 shows the normalized income
r/Tr , where the “income temperature” Tr was obtained by
fitting of the exponential part of the distribution for each
year. The values of Tr are shown in Fig. 7. The plots for
the 1980s and 1990s are shifted vertically for clarity. We
observe that the data points in the lower-income part of
the distribution collapse on the same exponential curve
for all years. This demonstrates that the shape of the in-
come distribution for the lower class is extremely stable
and does not change in time, despite the gradual increase
of the average income in nominal dollars. This observation
suggests that the lower-class distribution is in statistical,
“thermal” equilibrium.

On the other hand, Fig. 7 shows that the income distri-
bution in the upper class does not rescale and significantly
changes in time. Silva and Yakovenko [105] found that the
exponent ˛ of the power law C(r) / 1/r˛ decreased from
1.8 in 1983 to 1.4 in 2000. This means that the upper tail
became “fatter”. Another useful parameter is the total in-
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Econophysics, Statistical Mechanics Approach to, Figure 7
Cumulative probability distribution of tax returns plotted on log–log scale versus r/Tr (the annual income r normalized by the aver-
age income Tr in the exponential part of the distribution). The IRS data points are for 1983–2001, and the columns of numbers give
the values of Tr for the corresponding years. (Reproduced from [105])

come of the upper class as the fraction f of the total in-
come in the system. The fraction f increased from 4% in
1983 to 20% in 2000 [105]. However, in 2001, ˛ increased
and f decreased, indicating that the upper tail was reduced
after the stock market crash at that time. These results in-
dicate that the upper tail is highly dynamical and not sta-
tionary. It tends to swell during the stock market boom
and shrink during the bust. Similar results were found for
Japan [109,110,111,112].

Although relative income inequality within the lower
class remains stable, the overall income inequality in the
USA has increased significantly as a result of the tremen-
dous growth of the income of the upper class. This is illus-
trated by the Lorenz curve and the Gini coefficient shown
in Fig. 8. The Lorenz curve [99] is a standard way of rep-
resenting income distribution in the economics literature.

It is defined in terms of two coordinates x(r) and y(r) de-
pending on a parameter r:

x(r) D
Z r

0
P(r0)dr0 ;

y(r) D
R r
0 r0P(r0)dr0

R1
0 r0P(r0)dr0

:

(19)

The horizontal coordinate x(r) is the fraction of the pop-
ulation with income below r, and the vertical coordinate
y(r) is the fraction of the income this population accounts
for. As r changes from 0 to1, x and y change from 0 to 1
and parametrically define a curve in the (x, y)-plane.

Figure 8 shows the data points for the Lorenz curves in
1983 and 2000, as computed by the IRS [113]. Drăgulescu
andYakovenko [102] analytically derived the Lorenz curve
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Econophysics, Statistical Mechanics Approach to, Figure 8
Lorenz plots for income distribution in 1983 and 2000. The data
points are from the IRS [113], and the theoretical curves repre-
sent (20) with f from Fig. 7. Inset: The closed circles are the IRS
data 113 for the Gini coefficient G, and the open circles show the
theoretical formula GD (1C f )/2. (Reproduced from [105])

formula y D xC (1� x) ln(1� x) for a purely exponential
distribution P(r) D c exp(�r/Tr ). This formula is shown
by the red line in Fig. 8 and describes the 1983 data rea-
sonably well. However, for 2000, it is essential to take into
account the fraction f of income in the upper tail, which
modifies the Lorenz formula as follows [103,104,105]:

y D (1� f )[x C (1� x) ln(1� x)]C f	(x � 1) : (20)

The last term in (20) represent the vertical jump of the
Lorenz curve at x D 1, where a very small percentage of
the population in the upper class accounts for a substantial
fraction f of the total income. The blue curve represent-
ing (20) fits the 2000 data in Fig. 8 very well.

The deviation of the Lorenz curve from the straight
diagonal line in Fig. 8 is a certain measure of income in-
equality. Indeed, if everybody had the same income, the
Lorenz curve would be a diagonal line, because the frac-
tion of income would be proportional to the fraction of
the population. The standard measure of income inequal-
ity is the so-called Gini coefficient 0 � G � 1, which is
defined as the area between the Lorenz curve and the diag-
onal line, divided by the area of the triangle beneath the di-
agonal line [99]. Time evolution of the Gini coefficient, as
computed by the IRS [113], is shown in the inset of Fig. 8.
Drăgulescu and Yakovenko [102] derived analytically the
result that G D 1/2 for a purely exponential distribution.

In the first approximation, the values of G shown in the
inset of Fig. 8 are indeed close to the theoretical value 1/2.
If we take into account the upper tail using (20), the for-
mula for the Gini coefficient becomesG D (1C f )/2 [105].
The inset in Fig. 8 shows that this formula is a very good
fit to the IRS data for the 1990s using the values of f de-
duced from Fig. 7. The values G < 1/2 for the 1980s can-
not be captured by this formula, because the Lorenz data
points are slightly above the theoretical curve for 1983 in
Fig. 8. Overall, we observe that income inequality has been
increasing for the last 20 years, because of swelling of the
Pareto tail, but decreased in 2001 after the stock market
crash.

Thus far we have discussed the distribution of individ-
ual income. An interesting related question is the distribu-
tion P2(r) of family income r D r1 C r2, where r1 and r2
are the incomes of spouses. If individual incomes are dis-
tributed exponentially P(r) / exp(�r/Tr ), then

P2(r) D
Z r

0
dr0P(r0)P(r � r0) D cr exp(�r/Tr ) ; (21)

where c is a normalization constant. Figure 9 shows
that (21) is in good agreement with the family income dis-
tribution data from the US Census Bureau [102]. In (21),
we assumed that incomes of spouses are uncorrelated. This
simple approximation is indeed supported by the scatter
plot of incomes of spouses shown in Fig. 10. Each family
is represented in this plot by two points (r1, r2) and (r2, r1)
for symmetry. We observe that the density of points is ap-
proximately constant along the lines of constant family in-

Econophysics, Statistical Mechanics Approach to, Figure 9
Probability distribution of family income for families with two
adults (USCensusBureaudata). Solid line: fit to (21). (Reproduced
from [102])
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Econophysics, Statistical Mechanics Approach to, Figure 10
Scatter plot of the spouses’ incomes (r1, r2) and (r2, r1) based on
the data from the Panel Study of Income Dynamics (PSID). (Re-
produced from [103])

come r1 C r2 D const, which indicates that incomes of
spouses are approximately uncorrelated. There is no sig-
nificant clustering of points along the diagonal r1 D r2,
i. e., no strong positive correlation of spouses’ incomes.

The Gini coefficient for the family income distribu-
tion (21) was calculated in [102] as G D 3/8 D 37:5%.
Figure 11 shows the Lorenz quintiles and the Gini coeffi-
cient for 1947–1994 plotted from the US Census Bureau
data. The solid line, representing the Lorenz curve calcu-
lated from (21), is in good agreement with the data. The
systematic deviation for the top 5% of earners results from
the upper tail, which has a less pronounced effect on fam-
ily income than on individual income, because of income
averaging in the family. The Gini coefficient, shown in the
inset of Fig. 11, is close to the calculated value of 37.5%.
Moreover, the averageG for the developed capitalist coun-
tries of North America and western Europe, as determined
by the World Bank [103], is also close to the calculated
value of 37.5%.

Income distribution has been examined in econo-
physics papers for different countries: Japan [68,109,110,
111,112,114,115,116], Germany [117,118], the UK [68,85,
116,117,118], Italy [118,119,120], the USA [117,121], In-
dia [97], Australia [91,120,122], and New Zealand [68,
116]. The distributions are qualitatively similar to the
results presented in this section. The upper tail follows
a power law and comprises a small fraction of the pop-

Econophysics, Statistical Mechanics Approach to, Figure 11
Lorenz plot for family income calculated from (21), compared
with the US Census data points. Inset: The US Census data points
for the Gini coefficient for families, compared with the theoreti-
cally calculated value 3/8=37.5%. (Reproduced from [102])

ulation. To fit the lower part of the distribution, the use
of exponential, Gamma, and log-normal distributions was
reported in different papers. Unfortunately, income distri-
bution is often reported by statistical agencies for house-
holds, so it is difficult to differentiate between one-earner
and two-earner income distributions. Some papers re-
ported the use of interpolating functions with different
asymptotic behavior for low and high incomes, such as the
Tsallis function [116] and the Kaniadakis function [118].
However, the transition between the lower and upper
classes is not smooth for the US data shown in Figs. 6
and 7, so such functions would not be useful in this case.
The special case is income distribution in Argentina dur-
ing the economic crisis, which shows a time-dependent bi-
modal shape with two peaks [116].

Theoretical Models of Income Distribution

Having examined the empirical data on income distribu-
tion, let us now discuss theoretical models. Income ri is the
influx of money per unit time to an agent i. If the money
balance mi is analogous to energy, then the income ri
would be analogous to power, which is the energy flux per
unit time. So, one should conceptually distinguish between
the distributions of money and income. While money is
regularly transferred from one agent to another in pairwise
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transactions, it is not typical for agents to trade portions
of their income. Nevertheless, indirect transfer of income
may occur when one employee is promoted and another
demoted, while the total annual budget is fixed, or when
one company gets a contract, whereas another one loses it,
etc. A reasonable approach, which has a long tradition in
the economics literature [123,124,125], is to treat individ-
ual income r as a stochastic process and study its probabil-
ity distribution. In general, one can study a Markov pro-
cess generated by a matrix of transitions from one income
to another. In the case where income r changes by a small
amount 
r over a time period 
t, the Markov process
can be treated as income diffusion. Then one can apply the
general Fokker–Planck equation [71] to describe evolution
in time t of the income distribution function P(r, t) [105]:
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The coefficients A and B in (22) are determined by the first
and second moments of income changes per unit time.
The stationary solution @tP D 0 of (22) obeys the follow-
ing equation with the general solution:
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For the lower part of the distribution, it is reasonable to
assume that 
r is independent of r, i. e., the changes of
income are independent of income itself. This process is
called additive diffusion [105]. In this case, the coefficients
in (22) are constants A0 and B0. Then (23) gives the ex-
ponential distribution P(r) / exp(�r/Tr ), with the effec-
tive income temperature Tr D B0/A0. Notice that a mean-
ingful stationary solution (23) requires that A > 0, i. e.,
h
ri < 0. The coincidence of this result with the Boltz-
mann–Gibbs exponential law (1) and (7) is not acciden-
tal. Indeed, instead of considering pairwise interaction be-
tween particles, one can derive (1) by considering en-
ergy transfers between a particle and a big reservoir, as
long as the transfer process is “additive” and does not in-
volve aMaxwell-demon-like discrimination. Stochastic in-
come fluctuations are described by a similar process. So,
although money and income are different concepts, they
may have similar distributions, because they are governed
by similar mathematical principles. It was shown explicitly
in [25,82,83] that the models of pairwise money transfer
can be described in a certain limit by the Fokker–Planck
equation.

On the other hand, for the upper tail of the income
distribution, it is reasonable to expect that 
r / r, i. e.,
income changes are proportional to income itself. This is
known as the proportionality principle of Gibrat [123],
and the process is called multiplicative diffusion [105]. In
this case, A D ar and B D br2, and (23) gives the power-
law distribution P(r) / 1/r˛C1, with ˛ D 1C a/b.

Generally, lower-class income comes from wages and
salaries, where the additive process is appropriate, whereas
upper-class income comes from bonuses, investments,
and capital gains, calculated in percentages, where the
multiplicative process applies [126]. However, the additive
and multiplicative processes may coexist. An employee
may receive a cost-of-living rise calculated in percentages
(the multiplicative process) and a merit rise calculated in
dollars (the additive process). In this case, we have A D
A0C ar and B D B0Cbr2 D b(r20C r2), where r20 D B0/b.
Substituting these expressions into (23), we find

P(r) D c
e�(

r0
Tr ) arctan(

r
r0
)

[1C ( r
r0 )

2]
1Ca
2b

: (24)

The distribution (24) interpolates between the exponen-
tial law for low r and the power law for high r, because
either the additive or the multiplicative process dominates
in the corresponding limit. The crossover between the two
regimes takes place at r � r0, where the additive and
multiplicative contributions to B are equal. The distribu-
tion (24) has three parameters: the “income temperature”
Tr D A0/B0, the Pareto exponent ˛ D 1 C a/b, and
the crossover income r0. It is a minimal model that cap-
tures the salient features of the empirical income distribu-
tion shown in Fig. 6. A mathematically similar, but more
economically oriented model was proposed in [114,115],
where labor income and asset accumulation are described
by the additive and multiplicative processes correspond-
ingly. A general stochastic process with additive and mul-
tiplicative noise was studied numerically in [127], but the
stationary distribution was not derived analytically. A sim-
ilar process with discrete time increments was studied by
Kesten [128]. Recently, a formula similar to (24) was ob-
tained in [129].

To verify the multiplicative and additive hypotheses
empirically, it is necessary to have data on income mobil-
ity, i. e., the income changes 
r of the same people from
one year to another. The distribution of income changes
P(
rjr) conditional on income r is generally not available
publicly, although it can be reconstructed by researchers
at the tax agencies. Nevertheless, the multiplicative hy-
pothesis for the upper class was quantitatively verified
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in [111,112] for Japan, where tax identification data is pub-
lished for the top taxpayers.

The power-law distribution is meaningful only when it
is limited to high enough incomes r > r0. If all incomes r
from 0 to 1 follow a purely multiplicative process, then
one can change to a logarithmic variable x D ln(r/r�)
in (22) and show that it gives a Gaussian time-dependent
distribution Pt(x) / exp(�x2/2�2t) for x, i. e., the log-
normal distribution for r, also known as the Gibrat distri-
bution [123]. However, the width of this distribution in-
creases linearly in time, so the distribution is not station-
ary. This was pointed out by Kalecki [124] a long time
ago, but the log-normal distribution is still widely used
for fitting income distribution, despite this fundamental
logical flaw in its justification. In a classic paper, Cham-
pernowne [125] showed that a multiplicative process gives
a stationary power-law distribution when a boundary con-
dition is imposed at r0 ¤ 0. Later, this result was rediscov-
ered by econophysicists [130,131]. In our (24), the expo-
nential distribution of the lower class effectively provides
such a boundary condition for the power law of the up-
per class. Notice also that (24) reduces to (18) in the limit
r0 ! 0, which corresponds to purely multiplicative noise
B D br2.

There are alternative approaches to income distribu-
tion in the economics literature. One of them, proposed
by Lydall [132], involves social hierarchy. Groups of peo-
ple have leaders, who have leaders of a higher order, and
so on. The number of people decreases geometrically (ex-
ponentially) with the increase of the hierarchical level. If
individual income increases by a certain factor (i. e., mul-
tiplicatively) when moving to the next hierarchical level,
then income distribution follows a power law [132]. How-
ever, the original argument of Lydall can be easilymodified
to produce an exponential distribution. If individual in-
come increases by a certain amount, i. e., income increases
linearly with the hierarchical level, then income distribu-
tion is exponential. The latter process seems to be more
realistic for moderate incomes below $ 100,000. A simi-
lar scenario is the Bernoulli trials [133], where individuals
have a constant probability of increasing their income by
a fixed amount. We see that the deterministic hierarchi-
cal models and the stochastic models of additive and mul-
tiplicative income mobility represent essentially the same
ideas.

Other Applications of Statistical Physics

Statistical physics was applied to a number of other sub-
jects in economics. Because of lack of space, only two such
topics are briefly discussed in this section.

Economic Temperatures in Different Countries

As discussed in Sect. “Empirical Data on Money and
Wealth Distributions” and “Empirical Data on Income
Distribution”, the distributions of money, wealth, and in-
come are often described by exponential functions for the
majority of the population. These exponential distribu-
tions are characterized by the parameters Tm , Tw , and
Tr , which are mathematically analogous to temperature
in the Boltzmann–Gibbs distribution (1). The values of
these parameters, extracted from the fits of the empirical
data, are generally different for different countries, i. e., dif-
ferent countries have different economic “temperatures”.
For example, Drăgulescu and Yakovenko [95] found that
the US income temperature was 1.9 times higher than the
UK income temperature in 1998 (using the exchange rate
of dollars to pounds at that time). Also, there was ˙25%
variation between income temperatures of different states
within the USA. [95].

In physics, a difference of temperatures allows one to
set up a thermal machine. In was argued in [25] that the
difference of money or income temperatures between dif-
ferent countries allows one to extract profit in interna-
tional trade. Indeed, as discussed at the end of Sect. “Em-
pirical Data on Money and Wealth Distributions”, the
prices of goods should be commensurate with money
or income temperature, because otherwise people can-
not afford to buy those goods. So, an international trad-
ing company can buy goods at a low price T1 in a “low-
temperature” country and sell them at a high price T2
in a “high-temperature” country. The difference of prices
T2 � T1 would be the profit of the trading company. In
this process, money (the analog of energy) flows from
the “high-temperature” to the “low-temperature” coun-
try, in agreement with the second law of thermodynam-
ics, whereas products flow in the opposite direction. This
process very much resembles what is going on in the
global economy now. In this framework, the perpetual
trade deficit of the USA is the consequence of the sec-
ond law of thermodynamics and the difference of temper-
atures between the USA and “low-temperature” countries,
such as China. Similar ideas were developed in more detail
in [134,135], including a formal Carnot cycle for interna-
tional trade.

The statistical physics approach demonstrates that
profit originates from statistical nonequilibrium (the dif-
ference of temperatures), which exists in the global econ-
omy. However, it does not answer the question what is
the origin of this difference. By analogy with physics, one
would expect that the money flow should reduce the tem-
perature difference and, eventually, lead to equilibrization
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of temperatures. In physics, this situation is known as the
“thermal death of the universe”. In a completely equili-
brated global economy, it would be impossible to make
profit by exploiting differences of economic temperatures
between different countries. Although globalization of the
modern economy does show a tendency toward equilib-
rization of living standards in different countries, this pro-
cess is far from straightforward, and there are many ex-
amples contrary to equilibrization. This interesting and
timely subject certainly requires further study.

Society as a Binary Alloy

In 1971, Thomas Schelling [136] proposed the now-
famous mathematical model of segregation. He consid-
ered a lattice, where the sites can be occupied by agents
of two types, e. g., blacks and whites in the problem of
racial segregation. He showed that if the agents have some
probabilistic preference for the neighbors of the same type,
the system spontaneously segregates into black and white
neighborhoods. This mathematical model is similar to the
so-called Ising model, which is a popular model for study-
ing phase transitions in physics. In this model, each lat-
tice site is occupied by a magnetic atom, whose magnetic
moment has only two possible orientations, up or down.
The interaction energy between two neighboring atoms
depends on whether their magnetic moments point in the
same or in the opposite directions. In physics language, the
segregation found by Schelling represents a phase transi-
tion in this system.

Another similar model is the binary alloy, a mixture
of two elements which attract or repel each other. It was
noticed in [137] that the behavior of actual binary alloys
is strikingly similar to social segregation. In the following
papers [42,138], this mathematical analogy was developed
further and compared with social data. Interesting con-
cepts, such as the coexistence curve between two phases
and the solubility limit, were discussed in this work. The
latter concept means that a small amount of one substance
dissolves in another up to some limit, but phase separa-
tion (segregation) develops for higher concentrations. Re-
cently, similar ideas were rediscovered in [139,140,141].
The vast experience of physicists in dealing with phase
transitions and alloys may be helpful for practical appli-
cations of such models [142].

Future Directions, Criticism, and Conclusions

The statistical models described in this review are quite
simple. It is commonly accepted in physics that theoreti-
cal models are not intended to be photographic copies of

reality, but rather to be caricatures, capturing the most es-
sential features of a phenomenon with a minimal num-
ber of details. With only few rules and parameters, the
models discussed in Sect. “Statistical Mechanics of Money
Distribution”, “Statistical Mechanics of Wealth Distribu-
tion”, and “Data and Models for Income Distribution”
reproduce spontaneous development of stable inequality,
which is present in virtually all societies. It is amazing that
the calculated Gini coefficients, G D 1/2 for individu-
als and G D 3/8 for families, are actually very close to
the US income data, as shown in Figs. 8 and 11. These
simple models establish a baseline and a reference point
for development of more sophisticated and more realis-
tic models. Some of these future directions are outlined
below.

Future Directions

Agents with a Finite Lifespan The models discussed in
this review consider immortal agents who live forever,
like atoms. However, humans have a finite lifespan. They
enter the economy as young people and exit at an old
age. Evolution of income and wealth as functions of age
is studied in economics using the so-called overlapping-
generations model. The absence of the age variable was
one of the criticisms of econophysics by the economist
Paul Anglin [31]. However, the drawback of the standard
overlapping-generationsmodel is that there is no variation
of income and wealth between agents of the same age, be-
cause it is a representative-agentmodel. It would be best to
combine stochastic models with the age variable. Also, to
take into account inflation of average income, (22) should
be rewritten for relative income, in the spirit of (17). These
modifications would allow one to study the effects of de-
mographic waves, such as baby boomers, on the distribu-
tions of income and wealth.

Agent-Based Simulations of the Two-Class Society
The empirical data presented in Sect. “Empirical Data on
Income Distribution” show quite convincingly that the US
population consists of two very distinct classes character-
ized by different distribution functions. However, the the-
oretical models discussed in Sect. “Statistical Mechanics of
Money Distribution” and “Statistical Mechanics ofWealth
Distribution” do not produce two classes, although they do
produce broad distributions. Generally, not much atten-
tion has been paid in the agent-based literature to simula-
tion of two classes. One exception is [143], in which spon-
taneous development of employers and employees classes
from initially equal agents was simulated [36]. More work
in this direction would be certainly desirable.
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Access to Detailed Empirical Data A great amount of
statistical information is publicly available on the Inter-
net, but not for all types of data. As discussed in Sect.
“Empirical Data on Money and Wealth Distributions”, it
would be very interesting to obtain data on the distribu-
tion of balances on bank accounts, which would give in-
formation about the distribution of money (as opposed to
wealth). As discussed in Sect. “Theoretical Models of In-
come Distribution”, it would be useful to obtain detailed
data on income mobility, to verify the additive and mul-
tiplicative hypotheses for income dynamics. Income dis-
tribution is often reported as a mix of data on individual
income and family income, when the counting unit is a tax
return (joint or single) or a household. To have ameaning-
ful comparison with theoretical models, it is desirable to
obtain clean data where the counting unit is an individual.
Direct collaboration with statistical agencies would be very
useful.

Economies in Transition Inequality in developed cap-
italist countries is generally quite stable. The situation is
very different for former socialist countries making a tran-
sition to a market economy. According to theWorld Bank
data [103], the average Gini coefficient for family income
in eastern Europe and the former Soviet Union jumped
from 25% in 1988 to 47% in 1993. The Gini coefficient in
the socialist countries before the transition was well be-
low the equilibrium value of 37.5% for market economies.
However, the fast collapse of socialism left these coun-
tries out of market equilibrium and generated a much
higher inequality. One may expect that, with time, their
inequality will decrease to the equilibrium value of 37.5%.
It would be very interesting to trace how fast this relax-
ation takes place. Such a study would also verify whether
the equilibrium level of inequality is universal for all mar-
ket economies.

Relation to Physical Energy The analogy between en-
ergy and money discussed in Sect. “Conservation of
Money” is a formal mathematical analogy. However, ac-
tual physical energy with low entropy (typically in the
form of fossil fuel) also plays a very important role in the
modern economy, as the basis of current human technol-
ogy. In view of the looming energy and climate crisis, it
is imperative to find realistic ways for making a transition
from the current “disposable” economy based on “cheap”
and “unlimited” energy and natural resources to a sustain-
able one. Heterogeneity of human society is one of the im-
portant factors affecting such a transition. Econophysics,
at the intersection of energy, entropy, economy, and sta-
tistical physics, may play a useful role in this quest [144].

Criticism from Economists

As econophysics is gaining popularity, some criticism
has appeared from economists [31], including those
who are closely involved with the econophysics move-
ment [32,33,34]. This reflects a long-standing tradition in
economic and social sciences of writing critiques on dif-
ferent schools of thought. Much of the criticism is useful
and constructive and is already being accommodated in
econophysics work. However, some criticism results from
misunderstanding or miscommunication between the two
fields and some from significant differences in scientific
philosophy. Several insightful responses to the criticism
have been published [145,146,147]; see also [7,148]. In this
section, we briefly address the issues that are directly re-
lated to the material discussed in this review.

Awareness of Previous Economics Literature One
complaint of [31,32,33,34] is that physicists are not well
aware of the previous economics literature and either
rediscover known results or ignore well-established ap-
proaches. To address this issue, it is useful to keep in
mind that science itself is a complex system, and scien-
tific progress is an evolutionary process with natural se-
lection. The sea of scientific literature is enormous, and
nobody knows it all. Recurrent rediscovery of regularities
in the natural and social world only confirms their valid-
ity. Independent rediscovery usually brings a different per-
spective, broader applicability range, higher accuracy, and
better mathematical treatment, so there is progress even
when some overlap with previous results exists. Physicists
are grateful to economists for bringing relevant and spe-
cific references to their attention. Since the beginning of
modern econophysics, many old references have been un-
covered and are now routinely cited.

However, not all old references are relevant to the
new development. For example, Gallegati et al. [33] com-
plained that the econophysics literature on income dis-
tribution ignores the so-called Kuznets hypothesis [149].
The Kuznets hypothesis postulates that income inequal-
ity first rises during an industrial revolution and then
decreases, producing an inverted-U-shaped curve. Galle-
gati et al. [33] admitted that, to date, the large amount
of literature on the Kuznets hypothesis is inconclusive.
Kuznets [149] mentioned that this hypothesis applies to
the period from colonial times to the 1970s; however, the
empirical data for this period are sparse and not very reli-
able. The econophysics literature deals with reliable vol-
umes of data for the second half of the twentieth cen-
tury, collected with the introduction of computers. It is
not clear what is the definition of industrial revolution
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and when exactly it starts and ends. The chain of tech-
nological progress seems to be continuous (steam engine,
internal combustion engine, cars, plastics, computers, In-
ternet), so it is not clear where the purported U-curve is
supposed to be placed in time. Thus, the Kuznets hypoth-
esis appears to be, in principle, unverifiable and unfalsifi-
able. The original paper by Kuznets [149] actually does not
contain any curves, but it has one table filled with made-
up, imaginary data! Kuznets admits that he has “neither
the necessary data nor a reasonably complete theoretical
model” (p. 12 in [149]). So, this paper is understandably
ignored by the econophysics community. In fact, the data
analysis for 1947–1984 shows amazing stability of income
distribution [150], consistent with Fig. 11. The increase of
inequality in the 1990s resulted from growth of the upper
class relative to the lower class, but the relative inequal-
ity within the lower class remains very stable, as shown in
Fig. 7.

Reliance on Visual Data Analysis Another complaint
of [33] is that econophysicists favor graphic analysis of
data over the formal and “rigorous” testing prescribed
by mathematical statistics, as favored by economists. This
complaint goes against the trend of all sciences to use in-
creasingly sophisticated data visualization for uncovering
regularities in complex systems. The thick IRS publication
1304 [151] is filled with data tables, but has virtually no
graphs. Despite the abundance of data, it gives a reader no
idea about income distribution, whereas plotting the data
immediately gives insight. However, intelligent plotting is
the art with many tools, which not many researchers have
mastered. The author completely agrees with Gallegati et
al. [33] that too many papers mindlessly plot any kind of
data on a log–log scale, pick a finite interval, where any
smooth curved line can be approximated by a straight line,
and claim that there is a power law. In many cases, replot-
ting the same data on a log–linear scale converts a curved
line into a straight line, which means that the law is actu-
ally exponential.

Good visualization is extremely helpful in identifying
trends in complex data, which can then be fitted to amath-
ematical function; however, for a complex system, such
a fit should not be expected with infinite precision. The
fundamental laws of physics, such asNewton’s law of grav-
ity or Maxwell’s equations, are valid with enormous preci-
sion. However, the laws in condensed matter physics, un-
covered by experimentalists with a combination of visual
analysis and fitting, usually have much lower precision, at
best 10% or so. Most of these laws would fail the formal
criteria of mathematical statistics. Nevertheless these ap-
proximate laws are enormously useful in practice, and ev-

eryday devices engineered on the basis of these laws work
very well for all of us.

Because of the finite accuracy, different functions may
produce equally good fits. Discrimination between the ex-
ponential, Gamma, and log-normal functions may not be
always possible [122]. However, the exponential function
has fewer fitting parameters, so it is preferable on the basis
of simplicity. The other two functions can simply mimic
the exponential function with a particular choice of the ad-
ditional parameters [122]. Unfortunately, many papers in
mathematical statistics introduce too many fitting param-
eters into complicated functions, such as the generalized
beta distribution mentioned in [33]. Such overparameter-
ization is more misleading than insightful for data fitting.

Quest for Universality Gallegati et al. [33] criticized
physicists for trying to find universality in economics data.
They also seemed to equate the concepts of power law,
scaling, and universality. These are three different, albeit
overlapping, concepts. Power laws usually apply only to
a small fraction of data at the high ends of various distri-
butions. Moreover, the exponents of these power laws are
usually nonuniversal and vary from case to case. Scaling
means that the shape of a function remains the same when
its scale changes. However, the scaling function does not
have to be a power-law function. A good example of scal-
ing is shown in Fig. 7, where income distributions for the
lower class collapse on the same exponential line for about
20 years of data. We observe amazing universality of in-
come distribution, unrelated to a power law. In a general
sense, the diffusion equation is universal, because it de-
scribes a wide range of systems, from dissolution of sugar
in water to a random walk in the stock market.

Universalities are not easy to uncover, but they form
the backbone of regularities in the world around us. This
is why physicists are so interested in them. Universalities
establish the first-order effect, and deviations represent the
second-order effect. Different countries may have some-
what different distributions, and economists often tend to
focus on these differences. However, this focus on details
misses the big picture that, in the first approximation, the
distributions are quite similar and universal.

Theoretical Modeling of Money, Wealth, and Income
It was pointed out in [31,33,34] that many econophysics
papers confuse or misuse the terms for money, wealth, and
income. It is true that terminology is sloppy in many pa-
pers and should be refined. However, the terms in [25,26]
are quite precise, and this review clearly distinguishes be-
tween these concepts in Sect. “Statistical Mechanics of
Money Distribution”, “Statistical Mechanics of Wealth
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Distribution”, and “Data and Models for Income Distri-
bution”.

One contentious issue is about conservation of money.
Gallegati et al. [33] agree that “transactions are a key eco-
nomic process, and they are necessarily conservative”, i. e.,
money is indeed conserved in transactions between agents.
However, Anglin [31], Gallegati et al. [33], and Lux [34]
complain that the models of conservative exchange do not
consider production of goods, which is the core economic
process and the source of economic growth. Material pro-
duction is indeed the ultimate goal of an economy, but
it does not violate conservation of money by itself. One
can grow coffee beans, but nobody can grow money on
a money tree. Money is an artificial economic device that
is designed to be conserved. As explained in Sect. “Statis-
tical Mechanics of Money Distribution”, the money trans-
fer models implicitly assume that money in transactions is
voluntarily paid for goods and services generated by pro-
duction for the mutual benefit of the parties. In principle,
one can introduce a billion variables to keep track of ev-
ery coffee bean and other product of the economy. What
difference would it make for the distribution of money?
Despite the claims in [31,33], there is no contradiction
between models of conservative exchange and the classic
work of Adam Smith and David Ricardo. The difference is
only in the focus: We keep track of money, whereas they
keep track of coffee beans, from production to consump-
tion. These approaches address different questions, but do
not contradict each other. Because money constantly cir-
culates in the system as payment for production and con-
sumption, the resulting statistical distribution of money
may very well not depend on what exactly is produced and
in what quantities.

In principle, the models with random transfers of
money should be considered as a reference point for de-
veloping more sophisticated models. Despite the totally
random rules and “zero intelligence” of the agents, these
models develop well-characterized, stable, and stationary
distributions of money. One can modify the rules to make
the agents more intelligent and realistic and see howmuch
the resulting distribution changes relative to the reference
one. Such an attempt was made in [32] by modifying the
model of [77] with various more realistic economic ingre-
dients. However, despite the modifications, the resulting
distributions were essentially the same as in the original
model. This example illustrates the typical robustness and
universality of statistical models: Modifying details of mi-
croscopic rules does not necessarily change the statistical
outcome.

Another misconception, elaborated in [32,34], is that
the money transfer models discussed in Sect. “Statistical

Mechanics of Money Distribution” imply that money is
transferred by fraud, theft, and violence, rather than vol-
untarily. One should keep in mind that the catchy labels
“theft-and-fraud”, “marriage-and-divorce”, and “yard-
sale” were given to the money transfer models by the jour-
nalist Brian Hayes [152] in a popular article. Econophysi-
cists who originally introduced and studied these models
do not subscribe to this terminology, although the early
work of Angle [51] did mention violence as one source
of redistribution. In the opinion of the author, it is in-
deed difficult to justify the proportionality rule (8), which
implies that agents with high balances pay proportionally
greater amounts in transactions than agents with low bal-
ances. However, the additive model of [25], where money
transfers 
m are independent of money balances mi of
the agents, does not have this problem. As explained in
Sect. “The Boltzmann–Gibbs Distribution of Money”, this
model simply means that all agents pay the same prices for
the same product, although prices may be different for dif-
ferent products. So, this model is consistent with voluntary
transactions in a free market.

McCauley [145] argued that conservation of money
is violated by credit. As explained in Sect. “Models with
Debt”, credit does not violate conservation law, but cre-
ates positive and negative money without changing net
worth. Negative money (debt) is as real as positive money.
McCauley [145] claimed that money can be easily created
with the tap of a computer key via credit. Then why would
an employer not tap the key and double salaries, or a fund-
ing agency double research grants? Because budget con-
straints are real. Credit may provide a temporary relief,
but sooner or later it has to be paid back. Allowing debt
may produce a double-exponential distribution as shown
in Fig. 3, but it does not change the distribution funda-
mentally.

As discussed in Sect. “Conservation of Money”, a cen-
tral bank or a central government can inject new money
into the economy. As discussed in Sect. “Statistical Me-
chanics of Wealth Distribution”, wealth is generally not
conserved. As discussed in Sect. “Data and Models for In-
comeDistribution”, income is different frommoney and is
described by a different model (22). However, the empir-
ical distribution of income shown in Fig. 6 is qualitatively
similar to the distribution of wealth shown in Fig. 5, and
we do not have data on money distribution.

Conclusions

The “invasion” of physicists into economics and finance at
the turn of the millennium is a fascinating phenomenon.
The physicist Joseph McCauley proclaims that “Econo-
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physics will displace economics in both the universities
and boardrooms, simply because what is taught in eco-
nomics classes doesn’t work” [153]. Although there is
some truth in his arguments [145], one may consider a less
radical scenario. Econophysics may become a branch of
economics, in the same way as games theory, psycholog-
ical economics, and now agent-based modeling became
branches of economics. These branches have their own in-
terests, methods, philosophy, and journals. The main con-
tribution from the infusion of new ideas from a differ-
ent field is not in answering old questions, but in raising
new questions. Much of the misunderstanding between
economists and physicists happens not because they are
getting different answers, but because they are answering
different questions.

The subject of income and wealth distributions and so-
cial inequality was very popular at the turn of another cen-
tury and is associated with the names of Pareto, Lorenz,
Gini, Gibrat, and Champernowne, among others. Follow-
ing the work by Pareto, attention of researchers was pri-
marily focused on the power laws. However, when physi-
cists took a fresh, unbiased look at the empirical data, they
found a different, exponential law for the lower part of the
distribution. Themotivation for looking at the exponential
law, of course, came from the Boltzmann–Gibbs distribu-
tion in physics. Further studies provided a more detailed
picture of the two-class distribution in a society. Although
social classes have been known in political economy since
KarlMarx, the realization that they are described by simple
mathematical distributions is quite new. Demonstration of
the ubiquitous nature of the exponential distribution for
money, wealth, and income is one of the new contribu-
tions produced by econophysics.
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Glossary

Boson peak The Boson peak is an excess of low frequency
modes observed in glasses, as manifested, for example,
in inelastic neutron scattering data. In rigidity percola-
tion the Boson peak is related to the number of floppy
modes.

Constraint Edges in a graph constrain the degrees of free-
dom of the nodes in the graph. If edges are indepen-
dent, each edge acts as one constraint.

Degrees of freedom In d dimensions a point object
has d degrees of freedom, while a body has d(d C 1)/2
degrees of freedom due to rotations and translations.

Floppy mode A floppy mode is a deformation of a struc-
ture which is soft and in ideal models is treated as
a zero energy deformation.

Generic rigidity A network is generic if none of its edges
are dependent due to the particular geometric arrange-
ment of the nodes in the network. With high probabil-
ity random networks are generic, while regular lattices
are non-generic.

Isostatic network An isostatic network is rigid but has
no redundant bonds. Isostatic networks are marginally
rigid as removal of any edge induces a floppy mode.
Ideal generic granular media are isostatic at jamming.

Redundant bond A redundant bond is not essential to
the rigidity of a structure. Generic networks which
contain redundant bonds are overconstrained and in-
ternally stressed.

Rigidity percolation threshold The rigidity threshold
marks the transition from floppy networks which have
zero elastic moduli to rigid networks with finite elastic
moduli.

Definition of the Subject

Materials or structures with sufficiently low connectiv-
ity are floppy and have very low elastic moduli, while at
high connectivity they are rigid and have relatively high
elastic moduli. Elastic percolation networks describe the
transition from floppy to rigid that occurs as the network

connectivity increases. The percolative geometry and elas-
tic behavior near percolation are of particular interest.
Conventional percolative geometries describe some exper-
imental systems however the elastic critical behavior falls
into several different universality classes. Moreover, dis-
tinct percolative geometries occur in systems with only
central forces or which have soft torsional forces and in
these cases both the geometry and elastic behavior may
be distinct from conventional percolation. Granular me-
dia manifest a further distinct elastic percolation network,
with the concept of an isostatic network underlying elastic
behavior near jamming. This rich fundamental research
framework is relevant to an enormous range of materials
of scientific and technical interest [79], including physical
and chemical gels [84,87], semiflexible networks in biol-
ogy [6,42], proteins [79], chalcogenide glasses [10,79] and
granular media [85]. This brief review outlines the broad
underlying principles common to these diverse systems.

Introduction

Many materials exhibit a sharp change in elastic behav-
ior as the degree of interconnection in the material is in-
creased. One well studied example is the gel transition,
in which a liquid becomes a gel (solid) as the number of
short-range crosslinks increases [18,28,73,84,87]. A simi-
lar behavior occurs in epoxies where a polymer melt is ir-
reversibly crosslinked by addition of crosslinking agents to
form a stiff, hard solid [18,28,72,73,84]. Crosslinking can
be invoked using a variety of stimuli, including chemical,
microwave or thermalmethods, given the appropriate pre-
cursors. Vulcanization in rubber formation is another ex-
ample. Following the work by de Gennes [17], there has
been considerable debate about the elastic scaling behav-
ior occurring near the gelation point. Semiflexible rod net-
works in biology, including actin filaments in the cell and
F filaments in blood clots, [6,42] are also gels. Moreover,
paper is composed of cellulose rods and their crosslinking
is critical to their mechanical performance [1]. As eluci-
dated in Sects. “Idealized Experiments”–“GranularMedia”
the ideas of floppy modes and network rigidity are useful
in understanding the elastic behavior of these materials,
particularly near the gel point.

Elastic percolation is richer than conductivity perco-
lation in that transmission of stress is a vector process
while transmission of current only requires simple con-
nectivity. Nevertheless, in some cases simple connectivity
is sufficient to enable transmission of stress, while in oth-
ers a more highly connected structure is required [67,79].
At the engineering level, the reasons for these distinctions
have been known at least since the time of Maxwell [48],
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though explicit models to elucidate the various types of
elastic percolation processes in disordered media were
only developed in the early 1980’s [24,41]. Chalcogenide
glasses, for example Se1�xGex , are miscible and provide
a unique system in which to study the effect of increasing
the crosslinking of low coordination networks. Selenium
is relatively floppy as it is two-fold coordinated, while ger-
manium is tetrahedrally bonded and rigid [59,78]. Though
computational studies of these glasses indicate critical be-
havior near average co-ordination rc D 2:4 [32], the ex-
perimental consensus is for rather smooth elastic moduli
near threshold, presumably due to rounding effects such as
dihedral forces or entropic elasticity. Nevertheless quan-
tities such as the number of floppy modes in the Boson
peak [40] and Raman scattering [26], do have a clear ex-
perimental signature near rc.

The jamming transition of hard particles is different
than the examples listed above as hard core repulsion pro-
vides a strong resistance to compression while there is no
resistance to extension [2,30,55,85]. However in colloidal
gels where there is a weak attractive potential, the behav-
ior may be restored to that of rigidity percolation. Even
in the absence of these attractive terms, some of the ideas
of rigidity percolation are very useful in granular media,
particularly the idea of an isostatic network [21,55]. In this
picture, the onset of rigidity in a granular packing occurs
at a stress free isostatic critical point. By considering sys-
tems with soft repulsive potentials, the elastic behavior in

Elastic Percolation Networks, Figure 1
Constraint counting methods are similar at the scale of bridges or atoms. aMaxwell asked how many beams are required to make
engineering structures rigid. Triangulation is the standard method for ensuring enough central force bonds (rods or beams) are
available to support a load, as illustrated by the Cairo Mississippi River bridge from www.bridgehunter.com. b Phillips [59] asked
how many higher co-ordination atoms are required to make a random network rigid, for example a structure such as silica from
www.phys.uu.nl/~Barkema. Dohler et al. [20] showed that Maxwell counting implies that in bond-bending networks rigidity sets in
when the average co-ordination is rc D 2:4

compression can be described by deviations from this crit-
ical point, as evident in recent large scale computational
studies [57]. Experiments generally support the idea of an
isostatic critical point [30,46,85].

The onset of elastic percolation can be determined by
making realistic models and by studying their response
to an applied stress. This strategy is important, however
a deeper understanding has emerged through combina-
torial methods which identify constraints that reduce the
number of floppy modes [38,52,59,78]. These constraint
counting methods enable determination of the ability of
a structure or graph to transmit stress, as developed by
Maxwell for engineering structures [48] (see Fig. 1). Un-
derstanding of stress bearing geometries enables a broader
view of elasticity percolation, unifying a broad range of
experimental examples and elucidating the aspects which
are universal and those that are not. It also enables uni-
fication of perspectives from several disciplines (as il-
lustrated in Fig. 1), including engineering, mathemat-
ics, material science, physics and more recently biological
physics. Algorithms and concepts developed in the graph
theory and topology communities have proved particu-
larly rich [34,43,83]. These methods and their relation to
elastic percolation are surveyed in Sect. “Exact Algorithms
and Percolative Geometries”. Constraint counting meth-
ods also enable an exact analysis on Bethe lattices [22]
which demonstrate that rigidity percolation is often first
order (see Sect. “Exact Solution on Bethe Lattices”). From

http://www.bridgehunter.com
http://www.phys.uu.nl/~Barkema
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Elastic Percolation Networks, Figure 2
Examples of networks which have just enough connectivity to be rigid. These structures are called isostatic and are stress free. They
have a finite elastic constant and no floppymodes. aWhen central forces, bond angle forces and dihedral terms are all important (all
three terms in Eq. (1) or (2)). bWhen dihedral terms are not important (only the first two terms in Eq. (1) or (2) are important). cWhen
only central forces are important (only the first term in (1) or (2))

a theoretical perspective, replica symmetry breaking is not
required in solving the rigidity percolation problem on
Bethe lattices, though the system is frustrated [22,64].

There are several different types of elastic percolation,
depending on the interaction energy, as illustrated by con-
sidering standard force fields, such as the CHARMM [12],
AMBER [82] and the Dreiding [49] potentials. They con-
tain three short range terms in their potential energy ex-
pressions, with a common form being,

E DKb
X

bonds

(b � b0)2 C K�
X

angles

(� � �0)2

C K�
X

torsions

(1C cos(n� � �0)) :
(1)

The first term in this expression describes the energy re-
quired to change the length of a nearest neighbor bond
and is a central force term, while the second and third
terms provide a restoring force when bond angles or di-
hedral (torsion) angles are deformed. For the arguments
that follow we only need to be able to divide the energy
into three terms so that,

E D Ebonds C Eangles C Etorsions : (2)

Even long-range non-bonded interaction terms can be
represented using this type of model, by adding further
neighbor bonds. The theoretical problem is then: Given
a graph or network where the nodes interact with a po-
tential such as Eq. (1), what is the elastic response? Where
is the rigidity percolation threshold located as we increase
the average connectivity of the network? Howmany floppy
modes are there?

The most interesting geometric aspect of elastic per-
colation is that the geometry which can support a stress

depends on the forces which are important, so that three
different cases are illustrated by considering Eq. (1): (i) If
all terms in Eq. (1) are important so that, Kb � K� � K� ,
the underlying geometry is the same as connectivity per-
colation as any connected network transmits stress (see
Fig. 2a); (ii) If only the first two terms are important (i. e.
Kb � K� 	 K�) then the underlying geometry is a spe-
cial sort of rigidity percolation which can be solved using
efficient combinatorial methods (see Fig. 2b). This applies
to many Chalcogenide glasses as well as to many poly-
mers and proteins, and is often called the bond-bending
case; (iii) The hardest case is when only central force terms
are present (i. e. Kb 	 K� ;K�) in three dimensions (see
Fig. 2c). This problem is called the central force rigid-
ity problem and has no rigorous combinatorial charac-
terization, so that we have to resort to direct simulations
or approximations. Note that in two dimensions the tor-
sional term is absent and the central force rigidity perco-
lation problem can be solved using combinatorial meth-
ods [34,37,50].

It is intuitively evident that as the number of connec-
tions in a network increases, the system becomes more
rigid or constrained. This intuitive observation is the ba-
sis of constraint counting methods introduced by James
Clerk Maxwell in 1864 [48], who asked the question: “how
many edges are required to make a graph internally rigid,
so that it can support an applied stress?” He made the
following simple constraint counting argument for three
dimensional systems. Consider the case of central forces
(only the first term in Eq. (1)) and a set of “n” nodes con-
nected by “b” bonds. Each node has three degrees of free-
dom, its three translations. If a graph is internally rigid, it
still has six degrees of freedom due to its global transla-
tions and rotations. Maxwell then stated that the minimal
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number of bonds required to make a central force system
rigid is given by the relation,

b D 3n � 6 : (3)

The example in Fig. 2c has n D 5 and b D 9 and so it satis-
fies this “Maxwell counting” condition. Maxwell counting
is not exact but it provides a useful mean field model for
most rigidity problems. It can also be applied to connec-
tivity percolation, but it is a much poorer approximation
in that case.

In 1970, Laman [43] proved a theorem showing that
for a restricted class of rigidity problems, namely planar
graphs, a Maxwell counting calculation on subgraphs can
be used to infer the rigidity of a graph. This revived inter-
est in combinatorial rigidity and several methods for im-
plementing his theorem were developed, with Hendrick-
son’s [34] bond-testing procedure yielding the highly effi-
cient algorithms in use today. Extensions of Laman’s theo-
rem to body-bar networks and the conjecture of its exten-
sion to molecular frameworks [36,83] have yielded practi-
cal algorithms for a wide range of macromolecular systems
and other networks. Maxwell’s work is also important in
engineering where truss networks are analogous to central
force systems and have a variety of applications (see e. g.
Fig. 1a).

Basic Theoretical Concepts

Maxwell Counting in Random Networks

Maxwell counting [59,78] provides a quick, and frequently
quite accurate, estimate of the number of floppy modes
and the rigidity threshold. For example, consider bond-
diluted triangular lattices where a fraction p of bonds are
present. Following Thorpe [78], an unconstrained or flex-
ible degree of freedom is called a floppy mode so that the
number of floppy modes, F, remaining in a diluted trian-
gular lattice is,

F D 2N � 1
2 pzN C R ; (4)

where N is the number of nodes in the lattice z D 6 is the
coordination number of the lattice and R is the number
of redundant bonds. In this expression 2N is the number
of degrees of freedom in the absence of any bonds, while
pzN/2 is the the number of bonds in the network. Maxwell
counting sets R D 0 so that every bond added to the lat-
tice reduces the number of floppy modes by one. Redun-
dant bonds are not essential for the rigidity of a structure,
though they do increase the elastic moduli and they may
also induce internal stresses in rigidity percolation prob-
lems. A comparison of the simplest examples of redundant

Elastic Percolation Networks, Figure 3
The simplest subgraphs on a triangular lattice which contain
a redundant bond (dashed). Connectivity case (left), g D 2 rigid-
ity case (right). From article by C. Moukarzel and P. M. Duxbury
in [79]

bonds occurring in connected and rigid clusters on a tri-
angular lattice is presented in Fig. 3.

In Maxwell counting we make the mean field approxi-
mation that the number of redundant bonds is zero, and
that the rigidity transition occurs when the number of
floppy modes goes to zero. In that case, Eq. (4) predicts
that the rigidity transition for bond diluted triangular lat-
tices occurs at, pr D 2/3. This is surprisingly accurate as
large scale simulations using methods which count the
number of redundant bonds exactly, determine the thresh-
old pr D 0:6602(3) [38] which is within 1% of theMaxwell
counting estimate. The percolation threshold for bond
bending systems is the same as that for connectivity per-
colation which is known exactly for bond diluted trian-
gular lattices, pc D 2 sin(�/18) D :347 : : :. It is then clear
that the central-force rigidity threshold occurs at a much
higher bond concentration than the connectivity thresh-
old [24]. Note that the Maxwell estimate of the connectiv-
ity percolation threshold is found from F D N � pzN/2,
yielding pc D 0:33, which is a much poorer approxima-
tion than for the central force rigidity case. In general
Maxwell counting is a good approximation to the perco-
lation threshold for all rigidity problems studied so far, ex-
cept for cases where the connectivity percolation geometry
applies!

Though Maxwell counting is very useful, the fact that
it ignores redundant bond makes it incomplete. A Bethe
lattice approach [22,53], and field theory methods [56,64]
provide more complete theories. These approaches and
also simulations on certain two [51] and three dimen-
sional lattices [15], e. g. body-centered-cubic lattices, have
demonstrated that the rigidity percolation transition is fre-
quently first order with a large jump in the infinite clus-
ter probability at the rigidity threshold. In fully random



Elastic Percolation Networks E 2831

networks, the onset of an infinite rigid cluster and the
onset of an internally stressed cluster occur at the same
threshold. However, in several important cases, the infi-
nite cluster is unstressed or isostatic which is believed to
occur in granularmedia [55,57] due to repulsive terms and
in chalcogenide glasses due to self-organization [9,80]. In
these cases, a mixed transition may occur where a first or-
der jump and a continuous singularity occur at the same
threshold. This behavior was first observed in Bethe lattice
models of rigidity percolation [53].

Elastic Behavior

In all random connectivity and rigidity percolation prob-
lems studied so far the elastic behavior is continuous near
the rigidity threshold, even in cases where the infinite rigid
cluster undergoes a first order jump [15,51,56]. However,
the question remains open in models of granular media
and in self-organizing glass systemswhere an isostatic crit-
ical point plays a role. Direct numerical studies of the
elastic constants of bond diluted central force systems in-
dicate that they are quite linear for p > pr, except very
near the rigidity threshold, and that mean field estimates
of the elastic behavior are surprisingly accurate in these
cases [24,25,70]. In contrast the elastic behavior of bond
bending networks in three dimensions is non-linear over
most of the concentration range (see Fig. 4). Nevertheless,
in all cases, the number of floppy modes as a function of
r < rc is close to linear as is consistent with the simple
Maxwell estimate.

In ideal elastic percolation networks, the elastic behav-
ior is singular with a behavior typical of a continuous sin-

Elastic Percolation Networks, Figure 4
Elastic behavior of glass models as a function of average site co-
ordination using continuous random network models like that
of Fig. 1b, from [32]

gularity, (p � pr)T . The value of the critical exponent T
has been a matter of debate. There is general agreement
that in cases where bond-bending terms are dominant, the
critical exponent T is larger than the conductivity expo-
nent t [41]. For example in two dimensional lattices with
bond-bending terms, t D 1:31(1) while T D 3:96(3) [90].
It is also well accepted that continuum systems may ex-
hibit non-universal critical behavior due to the occurrence
of necks of varying size in continuum systems [23]. More-
over, even in the absence of continuum effects there are
several different elasticity models, with three well stud-
ied cases being: gel models where entropic effects are im-
portant [17,62] and following de Gennes, T � t: bond-
ing bending networks where T � t C 2� [8,24,69,90] and:
central force networks where the elastic critical behavior is
close to the bond bending case [31,68], at least on regular
lattices.

However, in connecting network geometry to elastic
behavior in central force networks and in three dimen-
sional networks without torsional forces, it is important
to distinguish between generic networks and non-generic
networks. This distinction is noticed in granular media
where perfectly monodisperse spheres can form regular
packings in two dimensions with average contact number
six, while random packings, through jamming of regular
or polydisperse spheres, have average contact number near
four. The latter case is the generic case, while the former
is the non-generic case. Non-generic systems are charac-
terized by constraints which are degenerate and occur in
the dynamical matrix as dependent equations. In network
structures they can occur as special sets of parallel bonds
or series combinations of bonds pointing in the same di-
rection (see Sect. “Exact Algorithms and Percolative Ge-
ometries”). These configurations do not occur on random
networks which are therefore generic. Regular lattices such
as the triangular lattice are thus non-generic and the con-
sequences of this on elasticity is still poorly understood.

Idealized Experiments

Idealized experiments have been carried out to test the
prediction that, for a given geometric structure, the elas-
tic moduli have different critical exponents than the those
which apply to conductivity. A simple tabletop experiment
to test this prediction was devised by Benguigui [7]. In his
experiment, holes are drilled on a square grid in a metal
sheet. The conductivity, � and Young’s modulus, C, were
measured as a function of the remaining metal, � . From
these experiments the elastic exponent T � 3:5, and con-
ductivity exponent t � 1:3 were extracted, which are in
agreement with theoretical expectations in two dimen-
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sions, within the experimental uncertainty. Conductiv-
ity and elasticity measurements on sintered sub micron
silver powder aggregates [19] yielded t D 2:15(25) and
T D 3:8(5), which agree with theoretical calculations on
bond-bending networks in three dimensions which pre-
dict T D t C 2� [8] and with simulations [69]. To our
knowledge there have been no idealized experiments on
central force systems, or on systems without torsional
forces in three dimensions.

Chalcogenide Glasses

Following Phillips and Thorpe [20,59,78], Maxwell count-
ing for the number of floppy modes in the Se1�xGex sys-
tem proceeds as follows. Each atom has three degrees of
freedom while each r-fold co-ordinated atom imposes r/2
central-force constraints and 2r � 3 bond bending con-
straints on the network. A two fold Se atom then imposes
two constraints while a four fold Ge atom imposes seven
constraints. Here we assume that the torsional forces are
negligible and the network is continuous with all atoms in
one connected cluster. The Maxwell counting estimate for
the number of floppy modes is then,

F D 3N � 2(1 � x)N � 7xN (5)

where N is the number of atoms in the network and r D 2
for Se while r D 4 for Ge so that the average co-ordina-

Elastic Percolation Networks, Figure 5
Evidence for rigidity percolation in chalcogenides. a The boson peak near the critical coordination rc � 2:4. �(!) is the density of
inelastic neutron scattering modes at frequency! [40]. b Evidence for an intermediate phase in the chalcogenide glasses Se1�xAsx .
The intermediate phase observed in the derivative of the viscosity d�/dT at Tg and in the non-reversible enthalpy	Hnr , from [9]

tion of a glass is r D 4x C 2(1 � x). Equation (5) indicates
that the number of floppy modes is linear in x and goes
to zero at xc D 0:2, which corresponds to the critical av-
erage co-ordination rc D 2:4 [20]. This critical co-ordina-
tion also applies when a fraction y of three-fold coordi-
nated atoms are added to the model, as is relevant to the
ternary Se1�x�yAsyGex . In that case F D 3N � 2(1 �
x � y)N � 9yN/2 � 7xN , and the average site coordi-
nation, r D 2(1 � x � y)C 3y C 4x. Of course torsional
forces are non-zero in these materials and have to be con-
sidered in comparisons with experiment.

The prediction of critical coordination rc D 2:4 in
chalcogenide glasses stimulated a search for experimen-
tal signatures of rigidity percolation. Though early experi-
ments indicated a singular behavior in the elastic constants
near rc, these results were later found to be due to ex-
perimental artifacts. Later experiments indicated that the
elastic moduli of chalcogenides are smooth near rc. How-
ever the number of floppy modes [40] and an appropri-
ately defined asymptotic glass transition temperature [3]
do clearly indicate a rigidity threshold. The number of
floppy modes is manifested in inelastic neutron scatter-
ing data [40] where a strong low frequency peak, called
the Boson peak, exists for r < rc (see Fig. 5). The number
of modes in the Boson peak gives a measure of the num-
ber of floppy modes and the location of the peak provides
an estimate of the dihedral forces in the material. Theo-
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retical analysis of the dynamical response of glassy net-
works yields good agreement with this data [13]. Several
other measurements, including Mössbauer spectra [11],
Raman scattering [26], vibrational lifetimes [81], also sup-
port a critical value of rc which is close to 2.4.

A stimulating, though still controversial, concept is the
intermediate phase in chalcogenide glasses [9,10,80]. The
intermediate phase lies between the traditional floppy and
rigid phases and occurs by self-organization to avoid in-
ternal stress. There are then two co-ordination thresholds
r1 and r2, with the first heralding the onset of a rigid but
stress-free network and the second the onset of a rigid
but internally-stressed network [80]. The extent of the in-
termediate regime between r1 and r2 has been explored
in a variety of models [80] and experimental support has
come from studies of chalcogenide glasses over narrow
composition regimes [9,10], as illustrated in Fig. 5b.

Constraint counting and rigidity concepts developed
in chalcogenide glasses have been applied to a wide va-
riety of covalently bonded materials, ranging from amor-
phous carbons to complex ternaries. Thermal effects along
with local structural and chemical ordering often con-
found a simple interpretation of the data as a purely ran-
dom rigidity percolation process, nevertheless rigidity and
elastic percolation concepts are fundamental to much of
the literature in this area [2,3,79,85].

Gels and Semiflexible Rod Networks

Soon after the development of percolation theory, gelation
was recognized as a related process and the geometry of
gels has been compared to percolation in many different
systems [6,42,47,66,73,84,87,89]. Though percolation pro-
vides a useful framework for the description of the onset

Elastic Percolation Networks, Figure 6
Elastic percolation of biofibers. a, b Two views of the actin filament network in a human cell, from [77]. The right panel is a schematic
phase diagramof semiflexible rod networks, from [33]. The solid line is associatedwith a rigidity threshold in a random rod network.
The mean distance between crosslinks or entanglements is lc, and c � 1/lc. L is the molecular weight of the semiflexible polymers
and the rigidity threshold occurs at L � 1/cwhich defines the sol-gel transition in this model

of rigidity in gels, it is often difficult to access the critical
regime [65].

Gels are ubiquitous in science, nature and technol-
ogy though there is no consensus definition of what con-
stitutes a gel. Nevertheless we are all familiar with gels,
ranging from jelly to clay dispersions and to chemically
crosslinked systems such as rubber and epoxies. Gelation
may occur through physical or chemical crosslinking, or
through a combination of both processes. Crosslinking is
a short range concept and long range forces can some-
times be critical. Nevertheless a broad range of physical
and chemical gels can be understood using rigidity con-
cepts based on the change in structure as the crosslinking
in a network increases. Even at the single molecule level
it is sometimes reasonable to use rigidity percolation ideas
to evaluate flexibility as a function of internal crosslinking,
for example in proteins [63]. Colloidal gels with strong re-
pulsive terms and weak short-range attractive interactions
have many features in common with granular media, as
described in the next section.

The original work on gels related the gelation point
to connectivity percolation [73], while recent work re-
lates the gel point in rod networks to rigidity percola-
tion [33,35,44,45], as illustrated in Fig. 6. Maxwell count-
ing in two dimensional rod networks [44] states that the
number of floppy modes in a network with N rods con-
nected by P pivots is given by,

F D 3N � 2P � 3 : (6)

There are three degrees of freedom per rod, two trans-
lations and one rotation, while each pivot removes two
translational degrees of freedom from the two rods which
it connects. The Maxwell counting estimate, found by set-
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ting F D 0 in Eq. (6), for the onset of rigidity in these
two dimensional rod networks is then Pr/N D 3/2, so that
there are three pivot points on each rod. Connectivity per-
colation occurs at Pc /N D 1. Elastic models have been
simulated and good agreement with Eq. (6) was found.
However experimental gels exhibit correlations in local
structure [87], and in the case of fibers orientational order-
ing and bundling [6,42]. Moreover the elastic behavior of
crosslinks is difficult to quantify. These factors are partic-
ularly important for non-universal parameters such as the
percolation or gelation threshold, and they strongly affect
the non-linear response of gels.

The elastic behavior near gelation is expected to be
more universal provided long-range correlations in struc-
ture are absent. In a well known paper, de Gennes pre-
dicted that the elastic critical exponent, T, of gels should be
the same as the conductivity exponent t [17]. However, as
discussed in Sect. “Basic Theoretical Concepts” and elab-
orated upon in Sect. “Elastic Critical Behavior”, purely ge-
ometric models predict that the elasticity exponent is sig-
nificantly larger than t3D D 2:01(1), and is well described
by T3D D t3D C 2v3D D 3:77(3), where �3D D 0:88 is the
percolation correlation length exponent [8,24,41,69,90].
Over the years many experiments have measured T at the

Elastic Percolation Networks, Figure 7
Behavior of a theoretical and b experimental dense packings near jamming. a schematic of phase behavior found from simulations
of purely repulsive models, from [57]. The jamming point J is an isostatic critical point.˙ is the applied shear stress, T is tempera-
ture and � is packing fraction. b Behavior of the pressure, P and average co-ordination number Z � Zc on approach to jamming of
photoelastic spheres.� ��c is the deviation from close packing, from [46]. In the top panel and in the inset, the diamonds exclude
rattlers while the stars include them

gelation threshold, for example [4,29,47,65,84,87], with
the consensus that T D t in most gels as predicted by de
Gennes. This issue will be discussed further in Sect. “Elas-
tic Critical Behavior”.

GranularMedia

Jamming occurs as the packing fraction or density of a col-
loidal or granular system increases. Though the relations
between rigidity and jamming have been discussed for
many years [30], it is only recently that the relationship
has yielded to a clear quantitative analysis [2,55,57,85].
Alexander [2] discussed the presence of floppy modes or
rattlers in granular systems and recent work has noted
their relation to the Boson peak in glasses [86].

The presence of complex stress bearing networks has
been imaged [30] and studied analytically and computa-
tionally and the relation to an isostatic network was noted
by Moukarzel [55] who developed the idea of jamming as
an isostatic critical point. Molecular dynamics simulations
in systems with purely repulsive potentials provide a beau-
tiful synthesis of the relations between rigidity, colloidal
glasses and granular media [57] (see Fig. 7). These sim-
ulations demonstrate that the zero temperature jamming
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point provides insight into the whole phase diagram and
enables calculation of the way in which various properties
approach zero on approach to jamming from above. These
simulations avoid the non-generic critical point which is
characteristic of the crystal phase of monodisperse pack-
ings, and instead focused upon non-crystalline random
packing states which are characteristic of generic rigid-
ity. The computed critical exponents for the shear mod-
ulus depend on the form of the repulsive potential but not
on the spatial dimension. Later simulations suggest that
the stress bearing backbone has a mixed behavior on ap-
proach to the jamming point, and its behavior is argued to
be essentially the same as that observed in the Bethe lattice
theory near an isostatic critical point [71]. Experiments on
photoelastic spheres [46] are in general supportive of the
physical picture emerging from these theoretical insights
(see Fig. 7), including the idea of a jump in average co-
ordination at the jamming point.

Exact Solution on Bethe Lattices

Maxwell counting provides a very useful mean field theory
for the rigidity transition, nevertheless, it is not a complete
theory as it ignores redundant bonds and does not provide
a geometry for the rigidity percolation process. Moreover
Maxwell counting predicts that the onset of rigidity occurs
when all floppy modes are removed so that the whole net-
work is in one giant isostatic cluster.

Bethe lattice theory is a more complete theory which
resolves most of the problems with Maxwell counting
methods, moreover it is simple and exactly solvable. In the
following we describe the simplest Bethe lattice theory to
illustrate the way in which the classic theory of connectiv-
ity percolation compares to rigidity percolation [27] and
how Maxwell counting should be modified in light of the
Bethe analysis. The extent of the intermediate phase [80]
can also be simply calculated from the results of the Bethe
lattice rigidity theory, as outlined at the end of this section.

The rigidity problem on Bethe lattices encompasses
a wide range of different models [53], though here we fo-
cus on one generic case [22]. In d dimensions a point ob-
ject has d degrees of freedom (d translations), while ex-
tended objects or bodies also have rotational modes and
a total of d(d C 1)/2 degrees of freedom. We define g as
the number of degrees of freedom of a free or unbonded
site, so that g D 1 corresponds to connectivity percola-
tion, g D d to point objects and g D d(d C 1)/2 to bod-
ies. A network with N sites (and no edges) has a total of
F D Ng degrees of freedom, or floppy (zero frequency)
modes. Constraint counting notes that each time an inde-
pendent edge is added to the network, the number floppy

modes is reduced by one, so that

F D Ng � E C R (7)

where E is the number edges in the graph and R is the
number of redundant edges. Note the additional termR on
the right hand side. This term is key in understanding
the relation between constraint counting and percolation,
and in finding algorithms for rigidity percolation. An edge
does not reduce the number of floppy modes if it is placed
between two sites which are already mutually rigid, in
which case this edge is redundant. The simplest exam-
ples of subgraphs containing a redundant bond on a tri-
angular lattice are illustrated in Fig. 3 for the connectivity
(g D 1) and g D 2 rigidity cases. Note that any one of the
bonds in these structures could be labeled as the redundant
one. However once any one of them is removed, all of the
others are necessary to ensure the mutual rigidity of the
structure. The set of all bonds which are mutually redun-
dant form an overconstrained or stressed cluster. In rigid-
ity theory each edge can be considered to be a central force
spring, which means that there is a restoring force only in
tension and compression. Then an overconstrained clus-
ter of such springs (with random natural lengths) is inter-
nally stressed due to a redundant bond. In the connectiv-
ity case each bond is like a wire which can carry current
or fluid flow. The simplest overconstrained cluster is then
a loop which can support an internal eddy current. Rigid
structures which contain no redundant bonds are mini-
mally rigid or isostatic. In connectivity percolation iso-
static structures are trees, whereas in (g > 1) rigidity per-
colation isostatic structures always contain many loops.

In percolation problems, we are interested in the
asymptotic limit of very large graphs (N !1), and it is
more convenient to work with intensive quantities, so we
define f (p) D F/gN and r(p) D 2R/gzN , so that

f (p) D 1 �
z
2g

(p � r(p)) (8)

where, on average, the number of edges is E/N D zp/2.
g  r(p) is the probability that a bond is redundant [22,38].
The number of floppy modes, f (p), acts as a free en-
ergy for both connectivity and rigidity problems, so that
if @ f (p)/@p undergoes a jump discontinuity, the transition
is first order [22]. The behavior of this quantity is directly
related to the probability that a bond is overconstrained
Pov via the relation,
@ f
@p
D �

z
2g

(1 � Pov) : (9)

If the transition is second order, the second derivative
@2 f /@p2 � (p � pc)�˛ , where ˛ is the specific heat expo-
nent [38].
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Elastic Percolation Networks, Figure 8
Dangling ends connected to a backbone (shaded). Connectivity
case (left) and g D 2 rigidity case (right). Dangling ends don’t
contribute to current (left) or stress (right) which is applied in the
vertical direction

The infinite cluster probability in rigidity problems is
composed of the stress-bearing backbone plus dangling
ends. Dangling ends are rigidly connected to the backbone
but are not part of the stress bearing backbone. Examples
of dangling ends in the connectivity and rigidity cases are
illustrated in Fig. 8 for central force problems on the trian-
gular lattice.

The quantities, f (p); @ f (p)/@p; r(p); P1 ; Pov can be
calculated exactly on Bethe lattices of general coordina-
tion z, where p is the bond probability of the Bethe lattice.
The key quantity from which all the others is derived is the
probability, T, that a site on a branch of a Bethe lattice is
part of the infinite rigid cluster. This quantity has a steady
state solution which is found from the equation,

T D
z�1X

lDg

 
z � 1
l

!

(pT)l (1 � pT)z�1�l ; (10)

Elastic Percolation Networks, Figure 9
Domains of attraction of the mean field equations, Eq. (10). a Typical connectivity percolation behavior (this example is z D 3); b
a typical rigidity percolation behavior (this example is z D 6, g D 2). Dark lines are stable (attractive) solutions and the dashed line
is unstable, from article by C. Moukarzel and P. Duxbury in [79]

where T is the probability that a site is connected to the in-
finite rigid cluster through one branch of the Bethe lattice.
The case g D 1 recovers the well known Bethe lattice equa-
tion for connectivity percolation [27] while for general g,
these equations are the same as those for k-core percola-
tion on Bethe lattices [14], where k D g C 1. As illustrated
in Fig. 9, the solutions to Eq. (10) depend sensitively on
the value of g. The case g D 1 corresponds to connectiv-
ity percolation and shows a typical continuous behavior,
while the case g D 2 is first order and is typical of all cases
where g > 1. This means that central force percolation on
random graphs is typically first order [22,54].

It is clearly seen from these figures that the rigidity
transition is first order on Bethe lattices, while the connec-
tivity transition is second order. We identify the point at
which the stable solution becomes nonzero as ps, the spin-
odal point, and in the connectivity case ps D pc because
the transition is second order.

Combining the stable solutions to branch probabili-
ties, yields the infinite cluster probability of the Bethe lat-
tice,

P1 D
zX

lDg

 
z
l

!

(pT)l (1 � pT)z�l : (11)

The other quantities of interest are found from the stable
solution for T as follows. The probability that a bond is
overconstrained is [22],

Pov D T2 ; (12)

so that Eq. (9) yields,

@ f
@p
D �

z
2g

(1 � T2) : (13)
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Elastic Percolation Networks, Figure 10
The order parameters, floppy modes and its derivative as a function of p for a a typical connectivity percolation case z D 3;g D 1,
and b a typical rigidity percolation case, z D 6;g D 2. The quantities plotted are f (p) (dashed), r(p) (dot dashed), �df/dp (heavy
dashed), Pov (thin solid), Pinf (heavy solid). In the connectivity case we find pc D ps, while in rigidity cases ps < pc. For the rigidity
case, ps D 0:605 and pc D 0:655, from article by C. Moukarzel and P. M. Duxbury in [79]

The probability that a bond is on the infinite cluster is,

Pinf D T2 C 2TT1 : (14)

where T1 is the probability that a site has one degree of
freedom and can also be found straightforwardly [22]. We
also want to find the total number of redundant bonds r(p)
and the total number of floppy modes f (p). In order to
find these quantities, we integrate Eq. (13) and then use
Eq. (7). However, the integration of Eq. (13) leads to one
free constant. To determine this constant, for a lattice of
co-ordination z, we impose the constraint [22],

r(1) D 1 �
2g
z
: (15)

We then find that r(p) approaches zero at a critical
point pc, which lies above ps, for any g > 1, and that pc is
close to the Maxwell estimate pc D 2g/z. Results for five
key quantities found from Bethe lattice theory are pre-
sented in Fig. 10 for typical conductivity and rigidity per-
colation cases.

The Bethe lattice theory outlined above has been care-
fully compared with exact simulations of random graphs
which demonstrate that it is exact [22]. This is a sym-
metric theory as the order parameter does not need to be
described by a non-trivial distribution. The fact that this
symmetric theory is exact [64] and yet applies to glassy
systems such as granular media and rod networks is in-
triguing as replica symmetry breaking would be expected
in those cases, as occurs in problems such as KSAT, spin
glasses, and lattice gases. It is worth noting that the Bethe
lattice Eqs. (10)–(11) are the same as the Bethe lattice
equations for k-core percolation [14] which is also being

used as a simple model for granular media [71]. Exten-
sions of the Bethe lattice theory to chalcogenide glasses
have been carried out and provide a more complete the-
ory than Maxwell counting [79].

Extension to the Intermediate Phase

In the intermediate phase [80], the network is dominated
by a giant rigid but isostatic cluster. To generate such
a cluster, we consider adding bonds to a graph, with the
constraint that any redundant bond is not added to the
network. As described in the next section this is how the
exact constraint counting algorithms proceed, so com-
putation of geometric structures which are stress free is
straightforward using Hendrickson’s bond testing proce-
dure [34].

In the Bethe lattice solution, the onset of a metastable
solution occurs at ps, however this solution contains
a number, r(ps), of redundant bonds. Since bonds are
added randomly, the lowest threshold at which a stress-
free percolating cluster can occur is p1 D ps � r(ps). In
first order rigidity cases r(ps) is small, so to a good ap-
proximation p1 � ps. The upper limit of the intermedi-
ate phase is an isostatic network to which no more iso-
static bonds can be added. This is just the Maxwell count-
ing estimate, so p2 � pm. Calculation of p1 and p2 for
other graphs and lattices can be carried out in a similar
way, using the exact algorithms outlined in the next sub-
section. In second order cases however, ps D pc, so that
p1 D pc � r(pc) and p2 D pm. In glasses, it is unlikely that
all stress inducing bonds can be avoided so we expect the
observed values of the intermediate regime to begin at
p > p1 and to end at p < p2.
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Exact Algorithms and PercolativeGeometries

Exact constraint counting provides a procedure for figur-
ing out if a structure can carry stress, without having to
solve the elastic equations for the structure. The proce-
dure is based on determining whether all internal degrees
of freedom in the structure are fixed by the constraints.
A small activity in this area has been ongoing for many
years in the graph theory and topology branches of mathe-
matics. The problem is call the graph rigidity problem and
is a subset of the problem of graphic matroids. Laman’s
theorem in 1970 [43] provides the basis for practical al-
gorithms and states that: A bar-joint graph in the plane
is rigid iff it has no redundant bonds and b D 2n � 3,
where b is the number of edges (bars) in the graph and n is
the number of nodes. The is basically Maxwell counting
(see Eq. (3)) in two dimensions, modified by the key re-
quirement that there be no redundant bonds. Hendrick-
son [34] provided a practical algorithm which tests if
a bond in a graph is redundant. In his algorithm, edges are
added to the graph one at a time, and tested to see if they
are redundant. If they are redundant, then they are not
placed in the structure but are noted and stored elsewhere.
In this way an isostatic graph obeying Maxwell counting
is generated. A structure with no redundant bonds has
the Maxwell counting value, F D 2n � b � 3, of floppy
modes. The number of redundant bonds are also counted
enabling a check of the relation Eq. (7). It is also possible
to use this method to find the number of stressed bonds,
as when a redundant bonds is added to a network, an in-
ternally stressed cluster of bonds is generated. By cleverly
adding a redundant bond across the whole network, this
can also be used to identify the stressed backbone [37,50].

Laman’s theorem has been extended to body-bar sys-
tems in arbitrary dimensions [75,76]. There is also a con-
jecture that it is exact for molecular frameworks which is

Elastic Percolation Networks, Figure 11
Illustration of two key issues in combinatorial rigidity. a The double banana configuration which violates Laman’s theorem and il-
lustrates a difficulty in applying combinatorial rigidity to three dimensional central force networks. b Non-generic and c generic
geometric structures. Laman’s theorem and its extensions apply only to generic networks. The non-generic case depends on geom-
etry and so a theory depending only on connectivity is insufficient. The probability of finding non-generic configurations in large
random structures is negligible so generic rigidity applies

important in applications to chalcogenide glasses, poly-
mers and proteins [36,83]. Molecular frameworks are sys-
tems where central forces and bond-bending terms are
strong but torsional terms are neglected. However a key
system where no combinatorial characterization is avail-
able is the central force rigidity problem in three dimen-
sions where exceptions to Laman’s theorem are known to
exist, such as the famous double banana configuration of
Fig. 11a.

A second issue, of significance to a variety of appli-
cations including granular media, is the issue of generic
rigidity as compared to non-generic rigidity. The issue is
illustrated in Fig. 11 where two examples of systems with
two bodies and three bars in two dimensions are com-
pared. In the generic rigidity case of Fig. 11c, the three bars
have different lengths and are at different angles. Maxwell
counting indicates that this system is rigid as there are
three degrees of freedomper body and there are three bars.
However the non-generic example in Fig. 11b is not rigid
as the three bars are parallel enabling a shear distortion of
the two bodies with respect to each other. The three bars,
which are the constraints in this system, are not indepen-
dent and this dependence is due to the particular way in
which the bars are arranged. In this non-generic case, it is
not sufficient to know only the connectivity of the graph
as the particular geometry of the structure plays a key role.
Clearly regular lattices and regular packings of granular
media are non-generic while random lattices, polydisperse
packings and random packings are typically generic. Com-
binatorial rigidity applies to generic cases so that disorder
in some sense makes the generic problem more tractable.

To illustrate Hendrickson’s redundant bond testing
procedure, we consider percolation on diluted triangular
lattices. The procedure applies to both rigidity and con-
nectivity cases and it is useful to compare the way in which
bond testing compares in the two cases. In the connectivity
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case Hendrickson’s algorithm checks for loops. His redun-
dant bond testing procedure is based on bipartite match-
ing which is a well known problem in combinatorial opti-
mization. It is implemented as follows [34,37,50]:

Start with an empty triangular lattice (no bonds)
and assign to each node g degrees of freedom.
Then:

1. Randomly add a bond to the lattice.
2. Test whether this bond is redundant with respect

to the bonds which are currently in the lattice.
3. If the bond is redundant do not add it to the lat-

tice, but instead store its location in a different
array.

4. Return to 1.

End

Step 2 is the key one and is implemented by matching
constraints (bonds) to degrees of freedom, with the restric-
tion that the number of constraints assigned to each node
must be less than or equal to the number of degrees of free-
dom at a node (g D 2). It is natural to represent the assign-
ment of constraints to nodes using arrows as illustrated in
Fig. 12. When a new bond is added, we add G C 1 bonds
to take account of the global translations and rotations of
a body. For a triangular lattice a body has three degrees of
freedom, so we add four bonds as indicated in the figure.
Hendrickson noted that if the G C 1 added bonds can be
matched to the degrees of freedom in the graph, then the
bond is not redundant. However, if the arrows cannot be
matched, added edge is redundant. Another useful way to
think about the matching procedure is to consider associ-
ating pebbles with the degrees of freedom of the nodes in
a graph. Then these pebbles may be placed on the edges
of the graph with the constraint that they may only cover
edges which enter the node. The matching of arrows to
nodes then corresponds to placing pebbles on edges, with
the constraint that pebbles can only sit on adjacent edges.
The matching fails if it is not possible to cover all edges
with pebbles [38]. A successful and a failedmatch are illus-
trated in Fig. 12 for a connectivity (g D 1) case and a rigid-
ity (g D 2) case. Note that the bond that is being tested
carries with itG additional copies which account for global
degrees of freedom of a rigid cluster. In the connectivity
case G D 1, while on central-force bar-joint networks in
two dimensions G D 3.

When the bond test fails, the algorithm identifies all
bonds which are overconstrained or stressed with respect
to the redundant bond. This set of bonds is called a Laman
subgraph. Note that if a redundant bond is already in

Elastic Percolation Networks, Figure 12
Examples of successful (top figures a and b) and failed (bottom
figures, c and d) matches in the connectivity (g D GD 1, left fig-
ures, a and c) and joint-bar rigidity (g D 2;G D 3, right figures,
b and d) cases on triangular lattices. AB is the new bond that is
being tested. Each site has g degrees of freedom and therefore
accepts at most g incoming arrows. Each new bond carries with
it G auxiliary arrows, which must also be matched. If any of the
arrows cannot bematched (dashed), the new bond is redundant.
From article by C. Moukarzel and P. M. Duxbury in [79]

a graph, it is not possible to add a new bond and test its
redundancy with this method. This is the reason that the
algorithm proceeds by adding bonds one at a time start-
ing with an empty lattice. Any error in testing the redun-
dancy of a bond invalidates the rest of the addition se-
quence. However since this algorithm is an integermethod
there is no problem with roundoff. It is easy to see that
the matching algorithm is quite efficient, however it re-
quires quite a bit of effort to fully optimize these methods.
A key step in this optimization procedure is to identify
rigid clusters and to describe them in a more condensed
way.Moukarzel [50] condenses rigid clusters to a body and
hence renormalizes an original bar-joint network to an ef-
fective body-joint-bar network. Jacobs [37] instead uses
a reduced bar-joint representation of rigid subgraphs. In
either case the computational complexity is reduced sig-
nificantly especially for p > pr.

The geometry of rigidity percolation on a triangular
lattice is presented in Fig. 13 [51]. Because of the fact that
we add bonds one at a time until the percolation point
is reached, it is possible to identify pc or pr exactly for
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Elastic Percolation Networks, Figure 13
Thegeometry of rigidity percolation on site diluted triangular lattices. a The infinite-cluster geometry at threshold.Darkwide lines are
cutting bonds,wide lines are non-critical backbone bonds (blobs) and thin lines are dangling ends. b The density of backbone bonds
(circles), infinite cluster bonds (diamonds) and dangling bonds (squares) at pr. A fit to the backbone density yields the exponent
PB � L�ˇ0/� , with ˇ0 D 0:25(2). The dangling ends have not reached the asymptotic regime so it is not clear if the infinite cluster
probability has either. Nevertheless, the transition is second order with correlation length exponent  D 1:16(2) found from the
finite size scaling of the number of cutting bonds and also from the scaling of finite size corrections to pc [39,51,52], from [51]

each sample, and thereforemeasure the components of the
spanning cluster exactly at pc or pr. This eliminates the
error associated with measurements at fixed values of p,
since estimated exponents are known to depend very sen-
sitively on p. Just as in connectivity percolation, at pr we
identify three different types of bonds: backbone bonds,
dangling ends and cutting bonds, as illustrated in Fig. 13a.
These together form the infinite cluster. The cutting bonds
are stressed (belong to the backbone), but they are “criti-
cal” because if one of them is removed, load is no longer
transmitted across the infinite cluster.

In order to find the correlation length exponent, two
relations were used [38,39,51,52]: the size dependence
of the threshold behaves as ıpc � L�1/� and secondly,
the number of cutting bonds varies as nc � L1/� , yield-
ing � D 1:16(2) [52] or � D 1:20(3) [38]. Calculations on
the rigidity of rod networks [44] find � D 1:18(2). From
data such as Fig. 13b the backbone density is found to
decrease algebraically PB � L�ˇ 0/� , with ˇ0 D 0:25 ˙
0:02 [51,52,54]. It also appears that the infinite-cluster
probability is decreasing algebraically, however that is dif-
ficult to reconcile with the behavior of the dangling ends
which must also eventually decrease for this trend to be
asymptotic.

Since it has a diverging correlation length, rigidity per-
colation on triangular lattices is second order, however
first order cases do occur in two dimensions, for exam-
ple a square network to which diagonals are added at ran-
dom locations exhibits a strong first order transition, even
though the elastic behavior remains continuous [51,56].
Moreover, simulations of central force networks in three

dimensions [15] demonstrate a strong first order transi-
tion, as illustrated in Fig. 14.

Elastic Critical Behavior

After a flurry of activity in the 1980’s and early 1990’s study
of elastic critical exponents has diminished, nevertheless
many issues remain unresolved. The distinction between
bond-bending networks and central force networks was
brought into sharp focus in the early 1980’s [24], more-
over the distinction between the critical exponents de-
scribing conductivity and elasticity was emphasized [41].
Many studies were purely energetic, so that thermal effects
were ignored. In contrast, de Gennes [17] early argument
concerning the equivalence of the conductivity and elastic-
ity exponents of gels relies on entropic springs. The effect
of entropic terms has been simulated more recently, sup-
porting the early analysis by de Gennes [60,61].

In two dimensional systems with bond-bending terms
or in three dimensional systems with both bond-bend-
ing and torsion or dihedral terms (see Eq. (1)), elastic
percolation occurs at the conductivity percolation thresh-
old. In the absence of entropic terms, it is well es-
tablished that in this case the elastic critical behavior,
E � (ıp)T is different than the conductivity critical be-
havior, � � (ıp)t . E is the Young’s modulus while � is
the conductivity, and ıp D p � pc with pc the conduc-
tivity percolation threshold. T is the elastic critical ex-
ponent and t is the conductivity critical exponent. A va-
riety of methods have been applied to the calculation
of t and T in two and three dimensions, with the currently
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Elastic Percolation Networks, Figure 14
The number of floppy modes (top panel). The infinite-cluster
probability and stressed backboneprobability (bottompanel) on
bond diluted bcc lattices. The transition is strongly first order,
though the elastic behavior appears to be continuous, from [15]

accepted values being t2D D 1:30(1); t3D D 2:01(2) and
T2D D 3:96(4) [90]. In three dimensional bond-bending
networks T3D � 3:75 [69], and both of these elastic criti-
cal exponents are consistent with the relation T D t C 2�,
which is claimed to be exact [8]. Here � is the percola-
tion critical exponent and �2D D 4/3 and �3D D 0:88(1).
It is worth noting that a model where hard inclusions are
placed in a soft elastic background has a different behav-
ior. The critical point is the point at which an infinite hard
cluster percolates. On approach to this point from below,
the elastic constant diverges E � j
pj�S . The analogous
electrical problem consists of perfectly conducting inclu-
sions in a finite conductivity matrix where � � j
pj�s .
In this case Bergman [8] argues that s D S. The lattice
results quoted above require modification in the case of
continuum systems, for example in cases where holes are

punched randomly in a sheet so that narrow necks of ma-
terial can exist [23]. This case is non-universal in both the
conductivity and elasticity cases, though the geometric ex-
ponents, such as �, remain universal.

Elastic percolation on central force networks occurs
at different thresholds than conductivity percolation on
the same networks. Maxwell counting gives a good first
approximation to the elastic percolation thresholds, how-
ever precise values can only be found by direct simula-
tion. Direct simulations of central force networks in two
and three dimensions have been quite controversial, how-
ever the consensus seems to be that the behavior in two
dimensions close to criticality is in the bond-bending uni-
versality class described in the paragraph above [31]. How-
ever central force systems in three dimensions [68] exhibit
a different behavior, with T/� � 2:1 for body centered cu-
bic lattices, which is much smaller than the bond bend-
ing value T/� � 4:4. Moreover, the geometry of these sys-
tems is now known to exhibit a strong first order jump (see
Fig. 14) in three dimensions [15].

The elastic behavior of bond-diluted central force sys-
tems is remarkably simple away from pr and is well de-
scribed by a simple linear relation found using effective
medium theory [25]. The critical regime appears to be
quite narrow in these central force models. It is also impor-
tant to note that the results for pr found from combinato-
rial methods apply to triangular lattices where the sites are
randomly displaced from their regular locations to remove
degeneracies. This may be the reason that geometric cal-
culations of pr on triangular lattices are higher 0.6603 [38]
than values found from direct solution of elastic response
on regular lattices where pr � 0:64 [16]. A further compli-
cation is that elastic calculations on displaced lattices lead
to a non-linear stiffening of the lattice as bonds which are
nearly co-linear are brought into alignment by the applied
stress and lead to a stiffening of the network [52].

In geometric models of rigidity, as described above
and in Sect. “Exact Solution on Bethe Lattices”, the rigid-
ity percolation threshold, pr, lies above the connectiv-
ity percolation threshold, pc. However in real materials
there is usually a finite elastic modulus even in the regime
pc < p < pr, which may arise through a variety of differ-
ent effects. In polymers, proteins and chalcogenide glasses,
the torsional forces are smaller but significant leading to
the onset of elasticity at pc rather than pr. Moreover en-
tropic effects may be significant even in ideal central force
systems, so that thermal fluctuations lead to a finite elas-
tic modulus for all p > pc. This has been demonstrated in
simple central force systems such as diluted square, trian-
gular and cubic lattices [62]. This effect is even more pro-
nounced in crosslinked polymeric systems, such as rubber,
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where entropic rubber elasticity dominates [5,17,88]. In
these systems the regime pc < p < pr is extremely broad
so that even heavily crosslinked flexible polymeric systems
are in this regime. A further mechanism which leads to
a reduction of the percolation threshold from that pre-
dicted by geometric rigidity is the presence of tension in
the network [74], or if the natural length of the springs in
the network is taken to zero. Moreover the elastic critical
exponent observed in entropic systems and in systems in
tension is usually quite close to the conductivity value, as
first predicted by de Gennes in 1976 [5,17,88] and as ob-
served in many experiments on gels (see Sect. “Gels and
Semiflexible Rod Networks”).

Final Remarks and Future Directions

The relevance of rigidity percolation to granular media
and to semiflexible polymer networks is now well estab-
lished, though many issues remain unresolved. Ideal ex-
periments to test the recent theoretical predictions will
greatly clarify the extent to which current rigidity concepts
are sufficient to describe these systems. The intermediate
phase in chalcogenide glasses is a stimulating, and physi-
cally very natural, concept, that perhaps could be observed
in large scale molecular dynamics simulations with real-
istic potentials of systems such as Se1�xGex . Presumably
there is a dynamical lengthscale at which self-organiza-
tion is possible, which limits the extent of the intermediate
phase.

Graph combinatorial methods and direct elastic model
simulations provide complementary information about
the mechanical response of complex materials. The com-
binatorial methods however remain limited due to the ab-
sence of an exact combinatorial characterization of rigid
structures in three dimensional central force networks.
Moreover, the physical significance of banana configura-
tions, as illustrated in Fig. 11a, remains unexplored and is
an intriguing outstanding problem. The common occur-
rence of a strong first order jump in the infinite rigid clus-
ter along with a continuous elastic behavior [15,51,56] is
surprising and also largely unexplored.

Rigidity percolation is emerging as a geometric model
for structural glasses [85]. Clearly thermal effects are crit-
ical in many applications of rigidity percolation so that
models which treat both geometric and thermal effects
are valuable. Molecular dynamics models provide insight
into the interplay of geometry and temperature and war-
rant further study. In particular the evolution of the bo-
son peak in model glasses as a function of geometry and
temperature remains unexplored and would help resolve

contrasting models which emphasize either temperature
effects [58] or geometric effects [85].

The role of generic as compared to non-generic con-
figurations is critical to granular media and to the elastic-
ity of lattices. Even the most basic questions remain unre-
solved, for example are the elastic exponents of regular lat-
tices the same as the elastic exponents of random lattices
with the same co-ordination? Is the elasticity of random
generic networks inherently non-linear due to alignment
of bonds under stress?

Nevertheless, rigidity percolation provides a useful
model for a broad range of physical phenomena, signif-
icantly generalizing the connectivity percolation model.
Combinatorial methods drawn from graph theory have
greatly extended our understanding of rigidity, providing
both practical tools as well as conceptual novelties includ-
ing the distinction between generic and non-generic rigid-
ity. The applications of related geometricmethods to gran-
ular media and to semiflexible gels is extremely rich and
are harbingers of a broader use of rigidity concepts in the
analysis of the mechanical behavior of complex materials.
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Glossary

Phylogenesis Indicates the variations of the genetic char-
acteristics of a population of artificial agents through-
out generations.

Ontogenesys Indicates the variations which occur in the
phenotypical characteristics of an artificial agent (i. e.
in the characteristics of the control system or of the
body of the agent) while it interacts with the environ-
ment.

Embodied agent Indicates an artificial system (simulated
or physical) which has a body (characterized by physi-
cal properties such us shape, dimension, weight, etc),
actuators (e. g. motorized wheels, motorized articu-
lated joints), and sensors (e. g. touch sensors or vision
sensors). For a more restricted definition see the con-
cluding section of the paper.

Situated agent Indicates an artificial system which is lo-
cated in a physical environment (simulated or real)
with which it interacts on the basis of the law of
physics. For a more restricted definition see the con-
cluding section of the paper.
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Morphological computation Indicates the ability of the
body of an agent (with certain specific characteristics)
to control its interaction with the environment so to
produce a given desired behavior.

Definition of the Subject

Adaptive behavior concerns the study of how organ-
isms develop their behavioral and cognitive skills through
a synthetic methodology which consists in designing ar-
tificial agents which are able to adapt to their environ-
ment autonomously. These studies are important both
from a modeling point of view (i. e. for making progress in
our understanding of intelligence and adaptation in natu-
ral beings) and from an engineering point of view (i. e. for
making progresses in our ability to develop artefacts dis-
playing effective behavioral and cognitive skills).

Introduction

Adaptive behavior research concerns the study of how or-
ganisms can develop behavioral and cognitive skills by
adapting to the environment and to the task they have
to fulfill autonomously (i. e. without human intervention).
This goal is achieved through a syntheticmethodology, i. e.
through the synthesis of artificial creatures which: (i) have
a body, (ii) are situated in an environment with which they
interact, and (iii) have characteristics which vary during an
adaptation process. In the rest of the paper we will use the
term “agent” to indicate artificial creatures which posses
the first two features described above and the term “adap-
tive agent” to indicate artificial creatures which also posses
the third feature.

The agents and the environmentmight be simulated or
real. In the former case the characteristics of agents’ body,
motor, and sensory system, the characteristics of the en-
vironment, and the rules that regulate the interactions be-
tween all the elements are simulated on a computer. In the
latter case, the agents consist of physical entities (mobile
robots) situated in a physical environment with which they
interact on the basis of the physical laws.

The adaptive process which regulates how the charac-
teristics of the agents (and eventually of the environment
change) change might consist of a population-based evo-
lutionary process and/or of a developmental/learning pro-
cess. In the former case, the characteristics of the agents
do not vary during their “lifetime” (i. e. during the time in
which the agents interact with the environment) but phy-
logenetically, while individual agents “reproduce”. In the
latter case, the characteristics of the agents vary ontogenet-
ically, while they interact with the environment. The crite-
ria which determine how variations are generated and/or

whether or not variations are retained can be task-depen-
dent and/or task-independent, i. e. might be based on an
evaluation of whether the variation increase or decrease
agents’ ability to display a behavior which is adapted to the
task/environment or might be based on task-independent
criteria (i. e. general criteria which do not reward directly
the exhibition of the requested skill).

The paper is organized as follows. In Sect. “Intro-
duction” we briefly introduce the notion of embodiment
and situatedness and their implications. In Sect. “Embod-
iment and Situatedness” we claim that behavior and cog-
nition in embodied and situated adaptive agents should be
characterized as a complex adaptive system. In Sect. “Be-
havior and Cognition as Complex Adaptive Systems” we
briefly describe the methods which can be used to syn-
thesize embodied and situated adaptive agents. Finally in
Sect. “Adaptive Methods”, we draw our conclusions.

Embodiment and Situatedness

The notion of embodiment and situatedness has been in-
troduced [8,9,12,34,48] to characterize systems (e. g. natu-
ral organism and robots) which have a physical body and
which are situated in a physical environment with which
they interact. In this and in the following sections we will
briefly discuss the general implications of these two funda-
mental properties. This analysis will be further extended in
the concluding section where we will claim on the neces-
sity to distinguish between a weak and a strong notion of
embodiment and situatedness.

One first important implication of being embodied
and situated consists in the fact that these agents and their
parts are characterized by their physical properties (e. g.
weight, dimension, shape, elasticity etc.), are subjected to
the laws of physics (e. g. inertia, friction, gravity, energy
consumption, deterioration etc.), and interact with the en-
vironment through the exchange of energy and physical
material (e. g. forces, sound waves, light waves etc.). Their
physical nature also implies that they are quantitative in
state and time [49]. The fact that these agents are quan-
titative in time implies, for example, that the joints which
connect the parts of a robotic arm can assume any possible
position within a given range. The fact that these agents are
quantitative in time implies, for example, that the effects of
the application of a force to a joint depend from the time
duration of its application.

One second important implication is that the infor-
mation measured by the sensors is not only a function
of the environment but also of the relative position of
the agent in the environment. This implies that the mo-
tor actions performed by an agent, by modifying the



2846 E Embodied and Situated Agents, Adaptive Behavior in

agent/environmental relation or the environment, co-de-
termine the agent sensory experiences.

One third important implication is that the informa-
tion measured by the sensors provide information about
the external environment which is egocentric (depends
from the current position and the orientation of the agent
in the environment), local (only provide information re-
lated to the local observable portion of the environment),
incomplete (due to visual occlusion, for example), and
subjected to noise. Similar characteristics apply to the mo-
tor actions produced by the agent’s effectors.

It is important to notice that these characteristics do
not only represent constraints but also opportunities to
be exploited. Indeed, as we will see in the next section,
the exploitation of some of these characteristics might al-
low embodied and situated agents to solve their adaptive
problems through solutions which are robust and parsi-
monious (i. e. minimal) with respect to the complexity of
the agent’s body and control system.

Behavior and Cognition
as Complex Adaptive Systems

In embodied and situated agents, behavioral and cogni-
tive skills are dynamical properties which unfold in time
and which arise from the interaction between agents’ ner-
vous system, body, and the environment [3,11,19,29,31]
and from the interaction between dynamical processes
occurring within the agents’ control system, the agents’
body, and within the environment [4,15,45]). Moreover,
behavioral and cognitive skills typically display a multi-
level and multi-scale organization involving bottom-up
and top-down influences between entities at different lev-
els of organization. These properties imply that behavioral
and cognitive skills in embodied and situated agents can be
properly characterized as complex adaptive systems [29].

These aspects and the complex systemnature of behav-
ior and cognition will be illustrated in more details in the
next subsections also with the help of examples. The theo-
retical and practical implication of these aspects for devel-
oping artificial agents able to exhibit effective behavioral
and cognitive skills will be discussed in the forthcoming
sections.

Behavior and Cognition
as Emergent Dynamical Properties

Behavior and cognition are dynamical properties which
unfold in time and which emerge from high-frequent non-
linear interactions between the agent, its body, and the ex-
ternal environment [11].

Embodied and Situated Agents, Adaptive Behavior in, Figure 1
A schematic representation of the relation between agent’s con-
trol system, agent’s body, and the environment. The behav-
ioral and cognitive skills displayed by the agent are the emer-
gent result of the bi-directional interactions (represented with
full arrows) between the three constituting elements – agent’s
control system, agent’s body, and environment. The dotted ar-
rows indicate that the three constituting elements might be dy-
namical systems on their own. In this case, agents’ behavioral
and cognitive skills result of the dynamics originating from the
agent/body/environmental interactions but also from the com-
bination and the interaction between dynamical processes oc-
curring within the agent’s body, within the agent’s control sys-
tem, and within the environment (see Sect. “Embodiment and
Situatedness”)

At any time step, the environmental and the agent/
environmental relation co-determine the body and the
motor reaction of the agent which, in turn, co-determines
how the environment and/or the agent/environmental re-
lation vary. Sequences of these interactions, occurring at
a fast time rate, lead to a dynamical process – behavior –
which extends over significant larger time span than the
interactions (Fig. 1).

Since interactions between the agent’s control system,
the agent’s body, and the external environment are non-
linear (i. e. small variations in sensory states might lead to
significantly different motor actions) and dynamical (i. e.
small variations in the action performed at time t might
significantly impact later interactions at time tCx ) the re-
lation between the rules that govern the interactions and
the behavioral and cognitive skills originating from the in-
teractions tend to be very indirect. Behavioral and cogni-
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Embodied and Situated Agents, Adaptive Behavior in, Figure 2
A schematization of the passive walking machine developed by
McGeer [24]. The machine includes two passive knee joints and
a passive hip joint

tive skills thus emerge from the interactions between the
three foundational elements and cannot be traced back to
any of the three elements taken in isolation. Indeed, the
behavior displayed by an embodied and situated agent can
hardly be predicted or inferred from an external observer
even on the basis of a complete knowledge of the interact-
ing elements and of the rules governing the interactions.

A clear example of how behavioral skill might emerge
from the interaction between the agents’ body and the en-
vironment is constituted by the passive walking machines
developed in simulation by McGeer [24] – a two-dimen-
sional bipedal machines able to walk down a four-degree
slope with no motors and no control system (Fig. 2). The
walking behavior arises from the fact that the physical
forces resulting from gravity and from the collision be-
tween the machine and the slope produce a movement
of the robot and the fact that robot’s movements produce
a variation of the agent-environmental relation which in
turn produce amodification of the physical forces to which
the machine will be subjected in the next time step. The se-
quence of by-directional effects between the robot’s body
and the environment can lead to a stable dynamical pro-
cess – the walking behavior.

The type of behavior which arises from the robot/
environmental interaction depends from the characteris-
tics of the environment, the physics law which regulate the
interaction between the body and the environment, and
the characteristics of the body. The first two factors can
be considered as fixed but the third factor, the body struc-
ture, can be adapted to achieve a given function. Indeed, in
the case of this biped robot, the author carefully selected

Embodied and Situated Agents, Adaptive Behavior in, Figure 3
Left: The agent situated in the environment. The agent is
a Khepera robot [26]. The environment consists of an arena of
60× 35 cm containing cylindrical objects placed in a randomly
selected location. Right:Angular trajectories of an evolved robot
close to a wall (top graph) and to a cylinder (bottom graph). The
picture was obtained by placing the robot at a random position
in the environment, leaving it free to move for 500 time steps
each lasting 100ms, and recording its relative movements with
respect to the two types of objects for distances smaller than
45mm. The x-axis and the y-axis indicate the relative angle (in
degrees) and distance (in mm) between the robot and the corre-
sponding object. For sake of clarity, arrows are used to indicate
the relative direction, but not the amplitude of movements

the leg length, the leg mass, and the foot size to obtain
the desired walking behavior. In more general term, this
example shows how the role of regulating the interaction
between the robot and the environment in the appropri-
ate way can be played not only but the control system but
also from the body itself providing that the characteris-
tics of the body has been shaped so to favor the exhibi-
tion of the desired behavior. This property, i. e. the abil-
ity of the body to control its interaction with the environ-
ment, has been namedwith the term “morphological com-
putation” [35]. For related work which demonstrate how
effective walking machines can be obtained by integrat-
ing passive walking techniques with simple control mecha-
nisms, see [6,13,50]. For relatedworks which show the role
of elastic material and elastic actuators for morphological
computing see [23,40].

To illustrate of how behavioral and cognitive skills
might emerge from agent’s body, agent’s control sys-
tem, and environmental interactions we describe a sim-
ple experiment in which a small wheeled robot situated
in an arena surrounded by walls has been evolved to find
and to remain close to a cylindrical object. The Khepera
robot [26] is provided with eight infrared sensors and two
motors controlling the two corresponding wheels (Fig. 3).

From the point of view of an external observer, solv-
ing this problem requires robots able to: (a) explore the
environment until an obstacle is detected, (b) discriminate
whether the obstacle detected is a wall or a cylindrical ob-



2848 E Embodied and Situated Agents, Adaptive Behavior in

ject, and (c) approach or avoid objects depending on the
object type. Some of these behaviors (e. g. the wall-avoid-
ance behavior) can be obtained through simple control
mechanisms but others require non trivial control mecha-
nisms. Indeed, a detailed analysis of the sensory patterns
experienced by the robot indicated that the task of dis-
criminating the two objects is far from trivial since the two
classes of sensory patterns experienced by robots close to
a wall and close to cylindrical objects largely overlap.

The attempt to solve this problem through an evolu-
tionary adaptive method (see Sect. “Behavior and Cog-
nition as Complex Adaptive Systems”) in which the free
parameters (i. e. the parameters which regulate the fine-
grained interaction between the robot and the environ-
ment) are varied randomly and in which variations are re-
tained or discarded on the basis on an evaluation of the
overall ability of the robot (i. e. on the basis of the time
spent by the robot close to the cylindrical object) demon-
strated how adaptive robots can find solutions which
are robust and parsimonious in term of control mecha-
nisms [28]. Indeed, in all replications of these experiment,
evolved robot solve the problem by moving forward, by
avoiding walls, and by oscillating back and fourth and left
and right close to cylindrical objects (Fig. 3, right). All
these behaviors result from sequences of interactions be-
tween the robot and the environment mediated by four
types of simple control rules which consist in: turning left
when the right infrared sensors are activated, turning right
when the left infrared sensors are activated, moving back
when the frontal infrared sensors are activated, and mov-
ing forward when the frontal infrared sensors are not acti-
vated.

To understand how these simple control rules can
produce the required behaviors and the required arbi-
tration between behaviors we should consider that the
same motor responses produce different effects on differ-
ent agent/environmental situations. For example, the exe-
cution of a left-turning action close to a cylindrical object
and the subsequent modification of the robot/object rel-
ative position produce a new sensory state which triggers
a right-turning action. Then, the execution of the latter ac-
tion and the subsequent modification of the robot/object
relative position produce a new sensory state which trig-
gers a left-turning action. The combination and the al-
ternation of these left and right-turning actions over time
produce an attractor in the agent/environmental dynamics
(Fig. 3, right, bottom graph) which allows the robot to re-
main close to the cylindrical object. On the other hand the
execution of a left-turning behavior close to a wall object
and the subsequentmodification of the robot/wall position
produce a new sensory state which triggers the reiteration

of the same motor action. The execution of a sequence of
left-turning action then leads to the avoidance of the ob-
ject and to a modification of the robot/environmental re-
lation which finally lead to a perception of a sensory state
which trigger a move-forward behavior (Fig. 4, right, top
graph).

Before concluding the description of this experiment,
it is important to notice that, although the rough classifica-
tion of the robot motor responses into four different types
of actions is useful to describe the strategy with which
these robots solve the problem qualitatively, the quantita-
tive aspects which characterize the robot motor reactions
(e. g. how sharply a robot turns given a certain pattern of
activation of the infrared sensors) are crucial for determin-
ing whether the robot will be able to solve the problem
or not. Indeed, small differences in the robot’s motor re-
sponse tend to cumulate in time and might prevent the
robot for producing successful behavior (e. g. might pre-
vent the robot to produce a behavioral attractor close to
cylindrical objects).

This experiment clearly exemplifies some important
aspects which characterize all adaptive behavioral system,
i. e. systems which are embodied and situated and which
have been designed or adapted so to exploit the proper-
ties that emerge from the interaction between their control
system, their body, and the external environment. In par-
ticular, it demonstrates how required behavioral and cog-
nitive skills (i. e. object categorization skills) might emerge
from the fine-grained interaction between the robot’s con-
trol system, body, and the external environment without
the need of dedicated control mechanisms. Moreover, it
demonstrates how the relation between the control rules
which mediate the interaction between the robot body and
the environment and the behavioral skills exhibited by the
agents are rather indirect. Thismeans, for example, that an
external human observer can hardly predict the behaviors
which will be produced by the robot, before observing the
robot interacting with the environment, even on the basis
of a complete description of the characteristics of the body,
of the control rules, and of the environment.

Behavior and Cognition
as Phenomena Originating from the Interaction
Between Coupled Dynamical Processes

Up to this point we restricted our analysis to the dynam-
ics originating from the agent’s control system, agents’
body, and environmental interactions. However, the body
of an agent, its control system, and the environment
might have their own dynamics (dotted arrows in Fig. 1).
For the sake of clarity, we will refer to the dynami-
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Embodied and Situated Agents, Adaptive Behavior in, Figure 4
Left: The e-puck robot developed at EPFL, Switzerland http://www.e-puck.org/. Center: The environment which have a size of 52 cm
by 60 cm. The light produced by the light bulb located on the left side of the central corridor cannot be perceived from the other two
corridors. Right: The motor trajectory produced by the robot during a complete lap of the environment

cal processes occurring within the agent control system,
within the agent body, or within the environment as in-
ternal dynamics and to the dynamics originating from
the agent/body/environmental interaction as external dy-
namics. In cases in which agents’ body, agents’ control
system, or the environment have their own dynamics,
behavior should be characterized as a property emerg-
ing from the combination of several coupled dynamical
processes.

The existence of several concurrent dynamical pro-
cesses represents an important opportunity for the possi-
bility to exploit emergent features. Indeed, behavioral and
cognitive skills might emerge not only from the external
dynamics, as we showed in the previous section, but also
from the internal dynamical processes or from the inter-
action between different dynamical processes.

As an example which illustrates how complex cog-
nitive skills can emerge from the interaction between
a simple agent/body/environmental dynamic and a sim-
ple agent’s internal dynamic consider the case of a wheeled
robot placed in a maze environment (Fig. 4) which has
been trained to: (a) produce a wall-following behavior
which allows the robot to periodically visit and re-visit
all environmental areas, (b) identify a target object con-
stituted by a black disk which is placed in a randomly se-
lected position of the environment for a limited time du-
ration, and (c) recognize the location in which the target
object was previously found every time the robot re-visit
the corresponding location [15].

The robot has infrared sensors (which provide infor-
mation about nearby obstacles), light sensors (which pro-
vide information about the light gradient generated by
the light bulb placed in the central corridor), ground sen-
sors (which detect the color of the ground), two motors

(which control the desired speed of the two corresponding
wheels), and one additional output units which should be
turned on when the robot re-visit the environmental area
in which the black disk was previously found. The robot’s
controller consists of a three layers neural network which
includes a layer of sensory neurons (which encode the state
of the corresponding sensors), a layer of motor neurons
which encode the state of the actuators, and a layer of in-
ternal neurons which consist of leaky integrators operat-
ing at tuneable time scale [3,15]. The free parameters of
the robot’s neural controllers (i. e. the connection weights,
and the time constant of the internal neurons which regu-
late the time rate at which this neurons change their state
over time) were adapted through an evolutionary tech-
nique [31].

By analyzing the evolved robot the authors observed
how they are able to generate a spatial representation of
the environment and of their location in the environment
while they are situated in the environment itself. Indeed,
while the robot travel by performing different laps of the
environment (see Fig. 4, right), the states of the two inter-
nal neurons converge on a periodic limit cycle dynamic in
which different states correspond to different locations of
the robot in the environment (Fig. 5).

As we mentioned above, the ability to generate this
form of representation which allow the robot to solve
its adaptive problem originate from the coupling be-
tween a simple robot’s internal dynamics and a simple
robot/body/environmental dynamics. The former dynam-
ics is characterized by the fact that the state of the two
internal neurons tends to move slowly toward different
fixed point attractors, in the robot’s internal dynamics,
which correspond to different type of sensory states ex-
emplified in Fig. 5. The latter dynamics originate from the

http://www.e-puck.org/
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Embodied and Situated Agents, Adaptive Behavior in, Figure 5
The state of the two internal neurons (i1 and i2) of the robot
recorded for 330 s while the robot performs about 5 laps of
the environment. The s, a, b, c, and d labels indicate the inter-
nal states corresponding to five different positions of the robot
in the environment shown in Fig. 4. The other labels indicate
the position of the fixed point attractors in the robot’s internal
dynamics corresponding to five types of sensory states experi-
enced by the robot when it detects: a light in its frontal side (LF),
a light on its rear side (LR), an obstacle on its right and frontal
side (OFR), an obstacle on its right side (OR), no obstacles and no
lights (NO)

fact that different types of sensory states last for different
time durations and alternate with a given order while the
robot move in the environment. The interaction between
these two dynamical processes leads to a transient dynam-
ics of agents’ internal state which moves slowly toward the
current fixed point attractor without never fully reaching
it (thus preserving information about previously experi-
enced sensory states, the time duration of these states, and
the order with which they have been experienced). The
coupling between the two dynamical processes originates
from the fact that the free parameters which regulate the
agent/environmental dynamics (e. g. the trajectory and the
speed with which the robot moves in the environment)
and the agent internal dynamics (e. g. the direction and the
speed with which the internal neurons change their state)
have been co-adapted and co-shaped during the adaptive
process.

For related works which show how navigation and lo-
calization skills might emerge from the coupling between
agent’s internal and external dynamics, see [45]. For other
works addressing other behavioral/cognitive capabilities
see [4] for what concerns categorization, [16,41] for what
concerns selective attention and [44] for what concern lan-
guage and compositionality.

Embodied and Situated Agents, Adaptive Behavior in, Figure 6
A schematic representation of multi-level and multi-scale or-
ganization of behavior. The behaviors represented in the inner
circles represent elementary behaviors which arise from fine-
grained interactions between the control system, the body, and
the environment, andwhich extend over limited time spans. The
behaviors represented in the external circles represent higher
level behaviors which arise from the combination and inter-
action between lower-level behaviors and which extend over
longer time spans. The arrows which go from higher level be-
havior toward lower levels indicate the fact that the behaviors
currently exhibited by the agents later affect the lower level be-
haviors and/or the fine-grained interaction between the consti-
tuting elements (agent’s control system, agent’s body, and the
environment)

Behavior and Cognition as Phenomena
with a Multi-Level and Multi-Scale Organization

Another fundamental feature that characterizes behavior
is the fact that it is a multi-layer systemwith different levels
of organizations extending at different time scales [2,19].
More precisely, as exemplified in Fig. 6, the behavior of an
agent or of a group of agents involve both lower and higher
level behaviors which extend for shorter or longer time
spans, respectively. Lower level behaviors arise from few
agent/environmental interactions and short term internal
dynamical processes. Higher level behaviors, instead, arise
from the combination and interaction of lower level be-
haviors and/or from long term internal dynamical pro-
cesses.

Themulti-level andmulti-scale organization of agents’
behavior play important roles: it is one of the factors
which allow agents to produce functionally useful be-
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Embodied and Situated Agents, Adaptive Behavior in, Figure 7
Left: Four robots assembled into a linear structure. Right: A simulation of the robots shown in the left part of the figure

havior without necessarily developing dedicated control
mechanisms [8,9,29], it might favor the development of
new behavioral and/or cognitive skills thanks to the re-
cruitment of pre-existing capabilities [22], it allow agents
to generalize their skills in new task/environmental condi-
tions [29].

An exemplification of how the multi-level and multi-
scale organization of behavior allow agents to generalize
their skill in new environmental conditions is represented
by the experiments carried our by Baldassarre et al. [2] in
which the authors evolved the control system of a group
of robots assembled into a linear structure (Fig. 7) for the
ability to move in a coordinated manner and for the ability
to display a coordinated light approaching behavior.

Each robot [27] consists of a mobile base (chassis) and
a main body (turret) that can rotate with respect to the
chassis along the vertical axis. The chassis has two drive
mechanisms that control the two corresponding tracks
and teethed wheels. The turret has one gripper, which al-
lows robots to assemble together and to grasp objects, and
a motor controlling the rotation of the turret with respect
to the chassis. Robots are provided with a traction sensor,
placed at the turret-chassis junction, that detects the in-
tensity and the direction of the force that the turret exerts
on the chassis (along the plane orthogonal to the vertical
axis) and light sensors. Given that the orientations of in-
dividual robots might vary and given that the target light
might be out of sight, robots need to coordinate to choose
a common direction of movement and to change their di-
rection as soon as one or few robots start to detect a light
gradient.

Evolved individuals show the ability to negotiate
a common direction of movement and by approaching
light targets as soon as a light gradient is detected. By test-
ing evolved robots in different conditions the authors ob-
served that they are able to generalize their skills in new

conditions and also to spontaneously produce new behav-
iors which have not been rewarded during the evolution-
ary process. More precisely, groups of assembled robots
display a capacity to generalize their skills with respect to
the number of robots which are assembled together and
to the shape formed by the assembled robots. Moreover,
when the evolved controllers are embodied in eight robots
assembled so to form a circular structure and situated in
the maze environment shown in Fig. 8, the robots display
an ability to collectively avoid obstacles, to rearrange their
shape so to pass through narrow passages, and to explore
the environment. The ability to display all these behavioral
skills allow the robots to reach the light target even in large
maze environments, i. e. even in environmental conditions
which are rather different from the conditions that they
experienced during the training process (Fig. 8).

By analyzing the behavior displayed by the evolved
robots tested in the maze environment, a complex multi-
level organization can be observed. The simpler behaviors
that can be identified consist of low level individual behav-
iors which extend over short time spans:

1. Amove-forward behavior which consists of the individ-
uals’ ability to move forward when the robot is coordi-
nated with the rest of the team, is oriented toward the
direction of the light gradient (if any), and does not col-
lide with obstacles. This behavior results from the com-
bination of: (a) a control rule which produces a move
forward action when the perceived traction has a low
intensity and when difference between the intensity of
the light perceived on the left and the right side of the
robot is low, and (b) the sensory effects of the execution
of the move forward action selected mediated by the
external environment which does not produce a varia-
tion of the state of the sensors until the conditions that
should be satisfied to produce this behaviors hold.
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Embodied and Situated Agents, Adaptive Behavior in, Figure 8
The behavior produced by eight robots assembled into a circu-
lar structure in amaze environment includingwalls and cylindri-
cal objects (represented with gray lines and circles). The robots
start in the central portion of the maze and reach the light tar-
get located in the bottom-left side of the environment (repre-
sented with an empty circle) by exhibiting a combination of co-
ordinated-movement behaviors, collective obstacle-avoidance,
and collective light-approaching behaviors. The irregular lines,
that represent the trajectories of the individual robots, show
how the shape of the assembled robots changes during motion
by adapting to the local structure of the environment

2. A conformistic behavior which consists of the individ-
uals’ ability to conform its orientation with that of the
rest of the team when the two orientations differ signif-
icantly. This behavior results from the combination of:
(a) a control rule that makes the robot turns toward the
direction of the traction when its intensity is significant,
and (b) the sensory effects produced by the execution of
this action mediated by the external environment that
lead to a progressive reduction of the intensity of the
traction until the orientation of the robot conform with
the orientation of the rest of the group.

3. A phototaxis behavior which consists of the individu-
als’ ability to orient toward the direction of the light
target. This behavior results from the combination of:
(a) a control rule that makes the robot turns toward the
direction in which the intensity of the light gradient is
higher, and (b) the sensory effects produced by the exe-
cution of this action mediated by the external environ-
ment that lead to a progressive reduction of the differ-
ence in the light intensity detected on the two side of the

robot until the orientation of the robot conforms with
the direction of the light gradient.

4. An obstacle-avoidance behavior which consists of the
individuals’ ability to change direction of motion when
the execution of a motor action produced a collision
with an obstacle. This behavior results from the combi-
nation of: (a) the same control rule which lead to behav-
ior #2 which make the robot turns toward the direction
of the perceived traction (which in this case is caused
by the collision with the obstacle while in the case of be-
havior #2 is caused by the forces exhorted by the other
assembled robots), and (b) the sensory effects produced
by the execution of the turning action mediated by the
external environment which make the robot turns un-
til collisions do not prevent anymore the execution of
a moving forward behavior.

The combination and the interaction between these three
behaviors produce the following higher levels collective
behaviors that extend over a longer time span:

5. A coordinated-motion behavior which consists in the
ability of the robots to negotiate a common direction of
movement and to keep moving along such direction by
compensating further misalignments originating dur-
ing motion. This behavior emerges from the combina-
tion and the interaction of the conformistic behavior
(which plays the main role when robots are misaligned)
and the move-forward behavior (which plays the main
role when robots are aligned).

6. A coordinated-light-approaching behavior which con-
sists in the ability of the robots to co-ordinately move
toward a light target. This behavior emerges from the
combination of the conformistic, the move-forward,
and the phototaxis behaviors (which is triggered when
the robots detect a light gradient). The relative impor-
tance of the three control rules which lead to the three
corresponding behaviors depends both on the strength
of the corresponding triggering condition (i. e. the ex-
tent of lack of traction forces, the intensity of traction
forces, and the intensity of the light gradient, respec-
tively) and on a priority relations among behaviors (i. e.
the fact that the conformistic behavior tends to play
a stronger role than the phototaxis behavior).

7. A coordinated-obstacle-avoidance behavior which con-
sists in the ability of the robots to co-ordinately turn to
avoid nearby obstacles. This behavior arises as the re-
sult of the combination of the obstacle avoidance-, the
conformistic and the move-forward behaviors.

The combination and the interaction between these be-
haviors lead to the following higher levels collective behav-
iors that extend over still longer time spans:
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8. A collective-exploration-behavior which consists in the
ability of the robots to visit different area on the en-
vironment when the light target cannot be detected.
This behavior emerges from the combination of the co-
ordinated-motion behavior and the coordinate obsta-
cle-avoidance behavior which ensures that the assem-
bled robots can move in the environment without get-
ting stuck and without entering into limit cycle trajec-
tories.

9. A shape-re-arrangement behavior which consists in the
ability of the assembled robots to dynamically adapt
their shape to the current structure of the environment
so to pass through narrow passages especially when the
passages to be negotiated are in the direction of the light
gradient. This behavior emerges from the combination
and the interaction between coordinated motion and
coordinated-light-approaching behaviors mediated by
the effects produced by relative differences in motion
between robots resulting from the execution of differ-
ent motor actions and/or from differences in the colli-
sions. The fact that the shape of the assembled robots
adapt to the current environmental structure so to fa-
cilitate the overcoming of narrow passages can be ex-
plained by considering that collisions produce a modi-
fication of the shape which affect on particular the rela-
tive position of the colliding robots.

The combination and the interaction of all these behavior
leads to a still higher level behavior:

10. A collective-navigation-behavior which consists in the
ability of the assembled robots to navigate toward
the light target by producing coordinated move-
ments, exploring the environment, passing through
narrow passages, and producing a coordinated-light-
approaching behavior (Fig. 8).

This analysis illustrates two important mechanisms which
explain the remarkable generalization abilities of these
robots. The first mechanism consists in the fact that the
control rules which regulate the interaction between the
agents’ and the environment so to produce certain behav-
ioral skills in certain environmental conditions will pro-
duce different but related behavioral skills in other en-
vironmental conditions. In particular, the control rules
which generate the behaviors #5 and #6 for which evolv-
ing robots have been evolved in an environment without
obstacles also produce behavior #7 in an environmentwith
obstacles. The second mechanism consists in the fact that
the development of certain behaviors at a given level of
organization which extend for a given time span will au-
tomatically lead to the exhibition of related higher-level

behaviors extending at longer time spans which originate
form the interactions from the former behaviors (even
if these higher level behaviors have not being rewarded
during the adaptation process). In particular, the com-
bination and the interaction of behaviors #5, #6, and #7
(which have been rewarded during the evolutionary pro-
cess or which arise from the same control rules which
lead to the generation of rewarded behaviors) automat-
ically lead to the production of behaviors #8, #9, and
#10 (which have not been rewarded). Obviously, there no
warranty that the new behaviors obtained as a result of
these generalization processes will play useful functions.
However, the fact that these behaviors are related to the
other functional behavioral skills implies that the proba-
bilities that these new behavior will play useful functions is
significant.

In principle, these generalization mechanisms can also
be exploited by agents during their adaptive process to
generate behavioral skills which play new functionalities
and which emerge from the combination and the interac-
tion between pre-existing behavioral skills playing differ-
ent functions.

On the Top-Down Effect
from Higher to Lower Levels of Organization

In the previous sections we have discussed how the in-
teractions between the agents’ body, the agents’ control
system, and the environment lead to behavioral and cogni-
tive skills and how such skills have a multi-level andmulti-
scale organization in which the interaction between lower-
level skills lead to the emergence of higher-level skills.
However, higher level skills also affect lower level skills up
to the fine-grained interaction between the constituting el-
ements (agents’ body, agents’ control system, and environ-
ment). More precisely, the behaviors which originate from
the interaction between the agent and the environment
and from the interaction between lower levels behaviors,
later affect the lower levels behaviors and the interaction
from which they originate. These bi-directional influences
between different levels of organization can lead to circu-
lar causality [20] where high level processes act as inde-
pendent entities which constraint the lower level processes
from which they originate.

One of the most important effects of this top-down
influences consists in the fact that the behavior exhib-
ited by an agent constraint the type of sensory patterns
that the agent will experience later on (i. e. constraint the
fine-grained agent/environmental interactions which de-
termine the behavior that will be later exhibited by the
agent). Since the complexity of the problem faced by an
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agent depends on the sensory information experienced by
the agent itself, this top down influences can be exploited
in order to turn hard problems into simple ones.

One neat demonstration of this type of phenomena
is given by the experiments conducted by Marocco and
Nolfi [32] in which a simulated finger robot with six degree
of freedom provided with sensors of its joint positions and
with rough touch sensors is asked to discriminate between
cubic and spherical objects varying in size. The problem
is not trivial since, in general terms, the sensory patterns
experienced by the robot do not provide clear regulari-
ties for discriminating between the two types of objects.
However, the type of sensory states which are experienced
by the agent also depend on the behavior previously ex-
hibited by the agent itself – agents exhibiting different be-
havior might face simpler or harder problems. By evolv-
ing the robots in simulation for the ability to solve this
problem and by analyzing the complexity of the problem
faced by robots of successive generations, the authors ob-
served that the evolved robot manage to solve their adap-
tive problem on the basis of simple control rules which al-
low the robot to approach the object and to move follow-
ing the surface of the object from left to right, indepen-
dently from the object shape. The exhibition of this behav-
ior in interaction with objects characterized by a smooth
or irregular surface (in the case of spherical or cubic ob-
jects, respectively) ensures that the same control rules lead
to two types of behaviors depending on the type of the
object. These behaviors consist in following the surface
of the object and then moving away from the object in
the case of spherical objects, and in following the surface
of the object by getting stuck in a corner in the case of
cubic objects. The exhibition of these two behaviors al-
lows the agent to experience rather different propriocep-
tors states as a consequence of having had interacted with
spherical or cubic object which nicely encode the regular-
ities which are necessary to differentiate the two types of
objects.

For other examples which shows how adaptive agents
can exploit the fact that behavioral and cognitive processes
which arise from the interaction between lower-level be-
haviors or between the constituting elements later affect
these lower level processes see [4,28,39].

AdaptiveMethods

In this section we briefly review the methods through
which artificial embodied and situated agents can develop
their skill autonomously while they interact at different
levels of organization with the environment and eventually
with other agents. Thesemethods are inspired by the adap-

tive process observed in nature: evolution, maturation, de-
velopment, and learning.

We will focus in particular on self-organized adap-
tive methodologies in which the role of the experi-
menter/designer is reduced to the minimum and in which
the agents are free to develop their strategy to solve their
adaptive problems within a large number of potentially al-
ternative solutions. This choice is motivated by the follow-
ing considerations:

(a) These methods allow agents to identify the behavioral
and cognitive skills which should be possessed, com-
bined, and integrated so to solve the given problem.
In other words, these methods can come up with ef-
fective ways of decomposing the overall required skill
into a collection of simpler lower levels skills. Indeed,
as we showed in the previous section, evolutionary
adaptive techniques can discover ways of decompos-
ing the high-level requested skill into lower-levels be-
havioral and cognitive skills so find solutions which
are effective and parsimonious thanks to the exploita-
tion of properties emerging from the interaction be-
tween lower-levels processes and skills and thanks to
the recruitment of previously developed skills for per-
forming new functions. In other words, these methods
release the designer from the burden of deciding how
the overall skill should be divided into a set of sim-
pler skills and how these skills should be integrated.
More importantly, these methods can come up with
solutions exploiting emergent properties which would
be hard to design [17,31].

(b) These methods allow agents to identify how a given
behavioral and cognitive skill can be produced,
i. e. the appropriate fine-grained characteristics of
agents’ body structure and control rules regulating the
agent/environmental interaction. As for the previous
aspect, the advantage of using adaptive techniques lies
not only in the fact that the experimenter is released
from the burden of designing the fine-grained char-
acteristics of the agents but also in the fact that adap-
tation might prove more effective than human design
due to the inability of an external observer to foresee
the effects of large number of non-linear interactions
occurring at different levels of organization.

(c) These methods allow agents to adapt to variations of
the task, of the environment, and of the social condi-
tions.

Current approaches, in this respect, can be grouped into
two families which will be illustrated in the following sub-
sections and which include Evolutionary Robotics meth-
ods and Developmental Robotics methods.
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Evolutionary RoboticsMethods

Evolutionary Robotics [14,31] is a method which allow to
create embodied and situated agents able to adapt to their
task/environment autonomously through an adaptive pro-
cess inspired by natural evolution [18] and, eventually,
through the combination of evolutionary, developmental,
and learning processes.

The basic idea goes as follows (Fig. 9). An initial
population of different artificial genotypes, each encod-
ing the control system (and possibly the morphology) of
an agent, is randomly created. Each genotype is trans-
lated into a corresponding phenotype (i. e. a correspond-
ing agent) which is then left free to act (move, look around,
manipulate the environment etc.) while its performance
(fitness) with respect to a given task is automatically eval-
uated. In cases in which this methodology is applied to
collective behaviors, agents are evaluated in groups which
might be heterogeneous or homogeneous (i. e. might con-
sist of agents which differ not with respect to their ge-
netic and phenotypic characteristics). The fittest individ-
uals (those having higher fitness) are allowed to reproduce
by generating copies of their genotype with the addition of

Embodied and Situated Agents, Adaptive Behavior in, Figure 9
A schematic representation of the evolutionary process. The
stripes with black and white squares represent individual geno-
types. The rectangular boxes indicate the genome of a popula-
tion of a certain generation. The small robots placed inside the
square on the right part of the figure represent a group of robots
situated in an environment which interact with the environment
and between themselves

changes introduced by some genetic operators (e. g., mu-
tations, exchange of genetic material). This process is re-
peated for a number of generations until an individual or
a group of individuals is born which satisfies the perfor-
mance level set by the user.

The process that determines how a genotype (i. e. typi-
cally a string of binary values) is turned into a correspond-
ing phenotype (i. e. a robot with a given morphology and
control system)might consist of a simple one-to-one map-
ping or of a complex developmental process. In the for-
mer case, many of the characteristics of the phenotypical
individual (e. g. the shape of the body, the number and
position of the sensors and of the actuators, and in some
case the architecture of the neural controller) are pre-de-
termined and fixed and the genotype encodes a vector of
free parameters (e. g. the connection weights of the neu-
ral controller [31]). In the latter case, the genotype might
encode a set of rules that determine how the body struc-
ture and the control system of the individual growth dur-
ing an artificial developmental processes. Through these
type of indirect developmentalmappingsmost of the char-
acteristics of the phenotypical robot can be encoded in
the genotype and subjected to the evolutionary adaptive
process [31,36]. Finally, in some cases the adaptation pro-
cess might involve both an evolutionary process that reg-
ulates how the characteristics of the robots vary phylo-
genetically (i. e. throughout generations) and a develop-
mental/learning process which regulates how the charac-
teristics of the robots vary ontogenetically (i. e. during the
phase in which the robots act in the environment [30]).

Evolutionary methods can be used to allow agents to
develop the requested behavioral and cognitive skills from
scratch (i. e. starting from agents which do not have any
behavioral or cognitive capability) or in an incremental
manner (i. e. starting from pre-evolved robots which al-
ready have some behavioral capability which consists, for
example, in the ability to solve a simplified version of the
adaptive problem).

The fitness function which determines whether an in-
dividual will be reproduced or not might also include, in
the addition to a component that score the performance
of the agent with respect to a given task, additional task-
independent components. These additional components,
in fact, can lead to the development of behavioral skills
which are not necessarily functional but which can favor
the development of functional skills later on [37].

Evolutionary methods can allow agents to develop
low-levels behavioral and cognitive skills which have been
previously identified by the designer/experimenter, which
might later be combined and integrated in order to real-
ize the high-level requested skill, or directly to develop the
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high-level requested skill. In the former case the adaptive
process leads to the identification of the fine-grained fea-
tures of the agent (e. g. number and type of sensors, body
shape, architecture and connection weights of the neural
controller) which by interacting between themselves and
with the environment will produce the required skill. In
the latter case, the adaptive process leads to the identifi-
cation of the lower-levels skills (at different levels of or-
ganization) which are necessary to produce the required
high-level skill, the identification of the way in which these
lower levels skills should be combined and integrated,
and (as for the formed case) the identification of the fine
grained features of the agent which, in interaction with the
physical and social environment, will produce the required
behavioral or cognitive skills.

Developmental Robotics Methods

Developmental Robotics [1,10,21], also known as epigenetic
robotics, is a method for developing embodied and situated
agents that adapt to their task/environment autonomously
through processes inspired by biological developmental
and learning processes.

Evolutionary and developmental robotics methods
share the same fundamental assumptions but also present
differences for what concerns the way in which they are
realized and the type of situations in which they are typ-
ically applied. For what concerns the former aspect, un-
like evolutionary robotics methodswhich operate on ‘long’
phylogenetic time scales, developmental methods typi-
cally operate on ‘short’ ontogenetic time scales. For what
concerns the latter aspects, unlike evolutionary methods
which are usually used to develop behavioral and cogni-
tive skills from scratch, developmental methods are typ-
ically adopted to model the development of complex de-
velopmental and cognitive skills from simpler pre-existing
skills which represents pre-requisites for the development
of the required skills.

At the present stage, developmental robotics does not
consist of a well defined methodology [1,21] but rather of
a collection of approaches and methods often addressing
complementary aspects which hopefully would be inte-
grated in a single methodology in the future. Below briefly
summarize some of the most important methodological
aspects of the developmental robotics approach.

The Incremental Nature of the Developmental Process
Development should be characterized as an incremental
process in which pre-existing structures and behavioral
skills constitute important prerequisites and constraints
for the development of more complex structures and be-

havioral skills and in which the complexity of the internal
and external characteristics increases during developmen-
tal. One crucial aspect of developmental approach there-
fore consists in the identification of the initial character-
istics and skills which should enable the bootstrapping of
the developmental process: the layering of new skills on
top of existing ones [10,25,38]. Another important aspect
consists in shaping the developmental process so to en-
sure that the progressive increase in the complexity of the
task matches the current competency of the system and
so to drive the developmental process toward the progres-
sive acquisition of the skills which represent the prereq-
uisites for further developments. The progressive increase
in complexity might concern not only the complexity of
the task or of the required skills but also the complexity
of single components of the robot/environmental interac-
tion such us, for example, the number of freeze/unfreeze
degrees of freedom [5].

The Social Nature of the Developmental Process De-
velopment should involve social interaction with human
subjects and with other developing robots. Social interac-
tions (e. g. scaffolding, tutelage, mimicry, emulation, and
imitation), in fact, play an important role not only for the
development of social skills [7] but also as facilitators for
the development of individual cognitive and behavioral
skills [47].Moreover, other types of social interactions (i. e.
alignment processes or social games) might lead to the de-
velopment of cognitive and/or behavioral skills which are
generated by a collection of individuals and which could
not be developed by a single individual robot [43].

Exploitation of the Interaction Between Concurrent De-
velopmental Processes Development should involve the
exploitation of properties originating from the interaction
and the integration of several co-occurring processes. In-
deed, the co-development of different skills at the same
time can favor the acquisition of the corresponding skills
and of additional abilities arising from the combination
and the integration of the developed skills. For example,
the development of an ability to anticipate the sensory
consequences of our own actions might facilitate the con-
current development of other skills such us categorical
perception skills [46]. The development of an ability to pay
attention to new situations (curiosity) and to look for new
experiences after some time (boredom) might improve
the learning of a given functional skill [33,42]. The co-
development of behavioral and linguistic skills might fa-
vor the acquisition of the corresponding skills and the de-
velopment of semantic combinatoriality skills Sugita and
Tani [44].
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Discussion and Conclusion

In this paper we described how artificial agents which are
embodied and situated can develop behavioral and cog-
nitive skills autonomously while they interact with their
physical and social environment.

After having introduced the notion of embodiment
and situatedness, we illustrated how the behavioral and
cognitive skills displayed by adaptive agents can be prop-
erly characterized as complex system with multi-level and
multi-scale properties resulting from a large number of
interaction at different levels of organization and involv-
ing both bottom-up processes (in which the interaction
between elements at lower levels of organization lead
to higher levels properties) and top-down processes (in
which properties at a certain level of organization later af-
fect lower level properties or processes).

Finally, we briefly introduced the methods which can
be used to synthesize adaptive embodied and situated
agents.

The complex system nature of adaptive agents which
are embodied and situated has important implications
which constraint the organization of these systems and the
dynamics of the adaptive process through which they de-
velop their skills.

For what concerns the organization of these systems,
it implies that agents’ behavioral and/or cognitive skills
(at any stage of the adaptive process) cannot be traced
back to anyone of the three foundational elements (i. e. the
body of the agents, the control system of the agents, and
the environment) in isolation but should rather be char-
acterized as properties which emerge from the interac-
tions between these three elements and the interaction be-
tween behavioral and cognitive properties emerging from
the former interactions at different levels of organizations.
Moreover, it implies that ‘complex’ behavioral or cognitive
skills might emerge from the interaction between simple
properties or processes.

For what concerns agents’ adaptive process, it implies
that the development of new ‘complex’ skills does not nec-
essarily require the development of new ‘complex’ mor-
phological features or new ‘complex’ control mechanisms.
Indeed, new ‘complex’ skills might arise from the addi-
tion of new ‘simple’ features or new ‘simple’ control rules
which, in interaction with the pre-existing features and
processes, might produce the required new behavioral or
cognitive skills.

The study of adaptive behavior in artificial agents
which has been reviewed in this paper has important im-
plication both from an engineering point of view (i. e. for
progressing in our ability to develop effective machines)

and from a modeling point of view (i. e. for understanding
the characteristics of biological organisms).

In particular, from an engineering point of view, pro-
gresses in our ability to develop adaptive embodied and
situated agents can lead to development of machines play-
ing useful functionalities.

From a modeling point of view, progresses in our abil-
ity to model and analyze artificial adaptive agents can im-
prove our understanding of the general mechanisms be-
hind animal and human intelligence. For example, the
comprehension of the complex system nature of behav-
ioral and cognitive skills illustrated in this paper can al-
low us to better define the notion of embodiment and sit-
uatedness which represent two foundational concepts in
the study of natural and artificial intelligence. Indeed, al-
though possessing a body and being in a physical environ-
ment certainly represent a pre-requisite for considering
an agent embodied and situated, a more useful definition
of embodiment (or of truly embodiment) can be given in
term of the extent to which a given agent exploits its body
characteristics to solve its adaptive problem (i. e. the extent
to which its body structure is adapted to the problem to be
solved, or in other words, the extent to which its body per-
formsmorphological computation). Similarly, a more use-
ful definition of situatedness (or truly situatedness) can be
given in terms of the extent to which an agent exploits its
interaction with the physical and social environment and
the properties originating from this interaction to solve its
adaptive problem. For sake of clarity we can refer to the
former definition of the terms (i. e. possessing a physical
body and being situated in a physical environment) as em-
bodiment and situatedness as weak sense, and to the lat-
ter definition as embodiment and situatedness in a strong
sense.
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Glossary

Absolute temperature Denoted T.
Clausius entropy Also called thermodynamic entropy.

Denoted S.
Boltzmann–Gibbs entropy Basis of Boltzmann–Gibbs

statistical mechanics. This entropy, denoted SBG, is ad-
ditive. Indeed, for two probabilistically independent
subsystemsA andB, it satisfies SBG(ACB) D SBG(A)C
SBG(B).

Nonadditive entropy It usually refers to the basis of
nonextensive statistical mechanics. This entropy, de-
noted Sq, is nonadditive for q ¤ 1. Indeed, for two
probabilistically independent subsystems A and B, it
satisfies Sq(AC B) ¤ Sq(A)C Sq(B) (q ¤ 1). For his-
torical reasons, it is frequently (but inadequately) re-
ferred to as nonextensive entropy.

q-logarithmic and q-exponential functions Denoted
lnq x (ln1 x D ln x), and exq (e

x
1 D ex ), respectively.

Extensive system So called for historical reasons. A more
appropriate name would be additive system. It is a sys-
tem which, in one way or another, relies on or is con-
nected to the (additive) Boltzmann–Gibbs entropy. Its
basic dynamical and/or structural quantities are ex-
pected to be of the exponential form. In the sense of
complexity, it may be considered a simple system.

Nonextensive system So called for historical reasons.
A more appropriate name would be nonadditive sys-
tem. It is a system which, in one way or another, relies
on or is connected to a (nonadditive) entropy such as
Sq(q ¤ 1). Its basic dynamical and/or structural quan-
tities are expected to asymptotically be of the power-
law form. In the sense of complexity, it may be consid-
ered a complex system.

Definition of the Subject

Thermodynamics and statistical mechanics are among
the most important formalisms in contemporary physics.
They have overwhelming and intertwined applications in
science and technology. They essentially rely on two ba-
sic concepts, namely energy and entropy. The mathemati-
cal expression that is used for the first one is well known
to be nonuniversal; indeed, it depends on whether we are
say in classical, quantum, or relativistic regimes. The sec-
ond concept, and very specifically its connection with the
microscopic world, has been considered during well over
one century as essentially unique and universal as a physi-
cal concept. Although some mathematical generalizations
of the entropy have been proposed during the last forty
years, they have frequently been considered as mere prac-
tical expressions for disciplines such as cybernetics and
control theory, with no particular physical interpretation.
What we have witnessed during the last two decades is the
growth, among physicists, of the belief that it is not neces-
sarily so. In other words, the physical entropy would ba-
sically rely on the microscopic dynamical and structural
properties of the system under study. For example, for sys-
tems microscopically evolving with strongly chaotic dy-
namics, the connection between the thermodynamical en-
tropy and the thermostatistical entropy would be the one
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found in standard textbooks. But, for more complex sys-
tems (e. g., for weakly chaotic dynamics), it becomes ei-
ther necessary, or convenient, or both, to extend the tradi-
tional connection. The present article presents the ubiqui-
tous concept of entropy, useful even for systems for which
no energy can be defined at all, within a standpoint re-
flecting a nonuniversal conception for the connection be-
tween the thermodynamic and the thermostatistical en-
tropies. Consequently, both the standard entropy and its
recent generalizations, as well as the corresponding statis-
tical mechanics, are here presented on equal footing.

Introduction

The concept of entropy (from the Greek �� ����!, en
trepo, at turn, at transformation) was first introduced in
1865 by the German physicist and mathematician Rudolf
Julius Emanuel Clausius, Rudolf Julius Emanuel in or-
der to mathematically complete the formalism of classi-
cal thermodynamics [55], one of the most important the-
oretical achievements of contemporary physics. The term
was so coined to make a parallel to energy (from the Greek
�����o& , energos, at work), the other fundamental con-
cept of thermodynamics. Clausius connection was given
by

dS D
ıQ
T
; (1)

where ıQ denotes an infinitesimal transfer of heat. In
other words, 1/T acts as an integrating factor for ıQ.
In fact, it was only in 1909 that thermodynamics was
finally given, by the Greek mathematician Constantin
Caratheodory, a logically consistent axiomatic formula-
tion.

In 1872, some years after Clausius proposal, the Aus-
trian physicist Ludwig Eduard Boltzmann introduced
a quantity, that he noted H, which was defined in terms
of microscopic quantities:

H �
•

f (v) ln[ f (v)] dv ; (2)

where f (v)dv is the number of molecules in the veloc-
ity space interval dv. Using Newtonian mechanics, Boltz-
mann showed that, under some intuitive assumptions
(Stoßzahlansatz or molecular chaos hypothesis) regarding
the nature of molecular collisions, H does not increase
with time. Five years later, in 1877, he identified this quan-
tity with Clausius entropy through �kH � S, where k is
a constant. In other words, he established that

S D �k
•

f (v) ln[ f (v)] dv ; (3)

later on generalized into

S D �k
“

f (q;p) ln[ f (q;p)] dq dp ; (4)

where (q;p) is called the�-space and constitutes the phase
space (coordinate q and momentum p) corresponding to
one particle.

Boltzmann’s genius insight – the first ever mathemat-
ical connection of the macroscopic world with the micro-
scopic one – was, during well over three decades, highly
controversial since it was based on the hypothesis of the
existence of atoms. Only a few selected scientists, like
the English chemist and physicist John Dalton, the Scot-
tish physicist and mathematician James Clerk Maxwell,
and the American physicist, chemist and mathematician
Josiah Willard Gibbs, believed in the reality of atoms and
molecules. A large part of the scientific establishment was,
at the time, strongly against such an idea. The intricate
evolution of Boltzmann’s lifelong epistemological strug-
gle, which ended tragically with his suicide in 1906, may
be considered as a neat illustration of Thomas Kuhn’s
paradigm shift, and the corresponding reaction of the sci-
entific community, as described in The Structure of Sci-
entific Revolutions. There are in fact two important for-
malisms in contemporary physics where the mathematical
theory of probabilities enters as a central ingredient. These
are statistical mechanics (with the concept of entropy as
a functional of probability distributions) and quantum
mechanics (with the physical interpretation of wave func-
tions and measurements). In both cases, contrasting view-
points and passionate debates have taken place alongmore
than one century, and continue still today. This is no sur-
prise after all. If it is undeniable that energy is a very deep
and subtle concept, entropy is even more. Indeed, energy
concerns the world of (microscopic) possibilities, whereas
entropy concerns the world of the probabilities of those
possibilities, a step further in epistemological difficulty.

In his 1902 celebrated book Elementary Principles of
Statistical Mechanics, Gibbs introduced the modern form
of the entropy for classical systems, namely

S D �k
Z

d� f (q;p) ln[C f (q;p)] ; (5)

where � represents the full phase space of the system, thus
containing all coordinates and all momenta of its elemen-
tary particles, and C is introduced to take into account the
finite size and the physical dimensions of the smallest ad-
missible cell in � -space. The constant k is known today to
be a universal one, called Boltzmann constant, and given
by k D 1:3806505(24) � 10�23 Joule/Kelvin. The studies
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of the German physicist Max Planck along Boltzmann and
Gibbs lines after the appearance of quantum mechanical
concepts, eventually led to the expression

S D k lnW ; (6)

which he coined as Boltzmann entropy. This expression is
carved on the stone of Boltzmann’s grave at the Central
Cemetery of Vienna. The quantity W is the total number
of microstates of the system that are compatible with our
macroscopic knowledge of it. It is obtained from Eq. (5)
under the hypothesis of an uniform distribution or equal
probabilities.

The Hungarian–American mathematician and physi-
cist Johann von Neumann extended the concept of BG en-
tropy in two steps – in 1927 and 1932 respectively –, in or-
der to also cover quantum systems. The following expres-
sion, frequently referred to as the von Neumann entropy,
resulted:

S D �k Tr � ln � ; (7)

� being the density operator (with Tr � D 1).
Another important step was given in 1948 by the

American electrical engineer and mathematician Claude
Elwood Shannon. Having in mind the theory of digital
communications he explored the properties of the discrete
form

S D �k
WX

iD1

pi ln pi ; (8)

frequently referred to as Shannon entropy (with
PW

iD1
pi D 1). This form can be recovered from Eq. (5) for the
particular case for which the phase space density f (q;p) DPW

iD1 pi ı(q� qi) ı(p� pi). It can also be recovered from
Eq. (7) when � is diagonal. We may generically refer to
Eqs. (5), (6), (7) and (8) as the BG entropy, noted SBG. It
is a measure of the disorder of the system or, equivalently,
of our degree of ignorance or lack of information about
its state. To illustrate a variety of properties, the discrete
form (8) is particularly convenient.

SomeBasic Properties

Non-negativity It can be easily verified that, in all cases,
SBG � 0, the zero value corresponding to certainty,
i. e., pi D 1 for one of the W possibilities, and zero
for all the others. To be more precise, it is exactly so
whenever SBG is expressed either in the form (7) or in
the form (8). However, this property of non-negativity
may be no longer true if it is expressed in the form (5).

This violation is one of the mathematical manifesta-
tions that, at the microscopic level, the state of any
physical system exhibits its quantum nature.

Expansibility Also SBG(p1; p2; : : : ; pW ; 0) D SBG(p1; p2;
: : : ; pW ), i. e., zero-probability events do not modify
our information about the system.

Maximal value SBG is maximized at equal probabilities,
i. e., for pi D 1/W ;8i. Its value is that of Eq. (6). This
corresponds to the Laplace principle of indifference or
principle of insufficient reason.

Concavity If we have two arbitrary probability distribu-
tions fpig and fp0ig for the same set ofW possibilities,
we can define the intermediate probability distribution
p00i D � pi C (1 � �) p0i (0 < � < 1). It straightfor-
wardly follows that SBG(fp00i g) � � SBG(fpig) C (1 �
�) SBG(fp0ig). This property is essential for thermody-
namics since it eventually leads to thermodynamic sta-
bility, i. e., to robustness with regard to energy fluctu-
ations. It also leads to the tendency of the entropy to
attain, as time evolves, its maximal value compatible
with our macroscopic knowledge of the system, i. e.,
with the possibly known values for the macroscopic
constraints.

Lesche stability or experimental robustness B. Lesche
introduced in 1982 [107] the definition of an interest-
ing property, which he called stability. It reflects the
experimental robustness that a physical quantity is ex-
pected to exhibit. In other words, similar experiments
should yield similar numerical results for the physi-
cal quantities. Let us consider two probability distribu-
tions fpig and fp0ig, assumed to be close, in the sense
that

PW
iD1 jpi � p0i j < ı ; ı > 0 being a small number.

An entropic functional S(fpig) is said stable or exper-
imentally robust if, for any given � > 0, a ı > 0 exists
such that jS(fpig) � S(fp0i g)j/Smax < � ;where Smax is
the maximal value that the functional can attain
(lnW in the case of SBG). This implies that limı!0
limW!1(S(fpig) � S(fp0i g))/Smax D 0. As we shall
see soon, this property is much stronger than it seems
at first sight. Indeed, it provides a (necessary but not
sufficient) criterion for classifying entropic functionals
into physically admissible or not. It can be shown that
SBG is Lesche-stable (or experimentally robust).

Entropy production If we start the (deterministic) time
evolution of a generic classical system from an arbi-
trarily chosen point in its � phase space, it typically
follows a quite erratic trajectory which, in many cases,
gradually visits the entire (or almost) phase space. By
making partitions of this � -space, and counting the
frequency of visits to the various cells (and related
symbolic quantities), it is possible to define probabil-
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ity sets. Through them, we can calculate a sort of time
evolution of SBG(t). If the system is chaotic (sometimes
called strongly chaotic), i. e., if its sensitivity to the
initial conditions increases exponentially with time,
then SBG(t) increases linearly with t in the appropri-
ate asymptotic limits. This rate of increase of the en-
tropy is called Kolmogorov–Sinai entropy rate, and, for
a large class of systems, it coincides (Pesin identity
or Pesin theorem) with the sum of the positive Lya-
punov exponents. These exponents characterize the
exponential divergences, along various directions in
the � -space, of a small discrepancy in the initial con-
dition of a trajectory.
It turns out, however, that the Kolmogorov–Sinai en-
tropy rate is, in general, quite inconvenient for com-
putational calculations for arbitrary nonlinear dynam-
ical systems. In practice, another quantity is used in-
stead [102], usually referred to as entropy production
per unit time, which we note KBG. Its definition is as
follows. We first make a partition of the � -space into
many W cells (i D 1; 2; : : : ;W). In one of them, ar-
bitrarily chosen, we randomly place M initial condi-
tions (i. e., an ensemble). As time evolves, the occu-
pancy of the W cells determines the set fMi(t)g, withPW

iD1 Mi(t) D M. This set enables the definition of
a probability set with pi (t) � Mi(t)/M, which in turn
determines SBG(t). We then define the entropy produc-
tion per unit time as follows:

KBG � lim
t!1

lim
W!1

lim
M!1

SBG(t)
t

: (9)

Up to date, no theorem guarantees that this quan-
tity coincides with the Kolmogorov–Sinai entropy
rate. However, many numerical approaches of various
chaotic systems strongly suggest so. The same turns
out to occur with what is frequently referred in the lit-
erature as a Pesin-like identity. For instance, if we have
a one-dimensional dynamical system, its sensitivity to
the initial conditions � � lim�x(0)!0
x(t)/
x(0) is
typically given by

�(t) D e�t ; (10)

where
x(t) is the discrepancy in the one-dimensional
phase space of two trajectories initially differing by

x(0), and  is the Lyapunov exponent ( > 0 corre-
sponds to strongly sensitive to the initial conditions, or
strongly chaotic, and  < 0 corresponds to strongly in-
sensitive to the initial conditions). The so-called Pesin-
like identity amounts, if  � 0, to

KBG D  : (11)

Additivity and extensivity If we consider a system AC B
constituted by two probabilistically independent sub-
systems A and B, i. e., if we consider pACB

i j D pAi p
B
j ,

we immediately obtain from Eq. (8) that

SBG(AC B) D SBG(A)C SBG(B) : (12)

In other words, the BG entropy is additive [130]. If
our system is constituted by N probabilistically inde-
pendent identical subsystems (or elements), we clearly
have SBG(N) / N . It frequently happens, however,
that the N elements are not exactly independent but
only asymptotically so in the N !1 limit. This is the
usual case of many-body Hamiltonian systems involv-
ing only short-range interactions, where the concept of
short-range will be focused in detail later on. For such
systems, SBG is only asymptotically additive, i. e.,

0 < lim
N!1

SBG(N)
N

<1 : (13)

An entropy S(fpig) of a specific systems is said exten-
sive if it satisfies

0 < lim
N!1

S(N)
N

<1 ; (14)

where no hypothesis at all is made about the possible
independence or weak or strong correlations between
the elements of the systemwhose entropy Swe are con-
sidering. Equation (13) amounts to say that the addi-
tive entropy SBG is extensive for weakly correlated sys-
tems such as the already mentioned many-body short-
range-interacting Hamiltonian ones. It is important to
clearly realize that additivity and extensivity are inde-
pendent properties. An additive entropy such as SBG is
extensive for simple systems such as the ones just men-
tioned, but it turns out to be nonextensive for other,
more complex, systems that will be focused on later
on. For many of these more complex systems, it is the
nonadditive entropy Sq (to be analyzed later on) which
turns out to be extensive for a non standard value of q
(i. e., q ¤ 1).

Boltzmann–Gibbs StatisticalMechanics

Physical systems (classical, quantum, relativistic) can be
theoretically described in very many ways, through mi-
croscopic, mesoscopic, macroscopic equations, reflecting
either stochastic or deterministic time evolutions, or even
both types simultaneously. Those systems whose time evo-
lution is completely determined by a well defined Hamil-
tonian with appropriate boundary conditions and ad-
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missible initial conditions are the main purpose of an
important branch of contemporary physics, named sta-
tistical mechanics. This remarkable theory (or formalism,
as sometimes called), which for large systems satisfacto-
rily matches classical thermodynamics, was primarily in-
troduced by Boltzmann and Gibbs. The physical system
can be in all types of situations. Two paradigmatic such
situations correspond to isolation, and thermal contact
with a large reservoir called thermostat. Their stationary
state (t !1) is usually referred to as thermal equilib-
rium. Both situations have been formally considered by
Gibbs within his mathematical formulation of statistical
mechanics, and they respectively correspond to the so-
calledmicro-canonical and canonical ensembles (other en-
sembles do exist, such as the grand-canonical ensemble,
appropriate for those situations in which the total num-
ber of elements of the system is not fixed; this is however
out of the scope of the present article).

The stationary state of themicro-canonical ensemble is
determined by pi D 1/W (8i, where i runs over all possi-
ble microscopic states), which corresponds to the extrem-
ization of SBG with a single (and trivial) constraint, namely

WX

iD1

pi D 1 : (15)

To obtain the stationary state for the canonical ensem-
ble, the thermostat being at temperature T, we must (typi-
cally) add one more constraint, namely

WX

iD1

pi Ei D U ; (16)

where fEig are the energies of all the possible states of the
system (i. e., eigenvalues of the Hamiltonian with the ap-
propriate boundary conditions). The extremization of SBG
with the two constraints above straightforwardly yields

pi D
e�ˇEi

Z
(17)

Z �
WX

jD1

e�ˇE j (18)

with the partition function Z, and the Lagrange param-
eter ˇ D 1/kT . This is the celebrated BG distribution
for thermal equilibrium (or Boltzmann weight, or Gibbs
state, as also called), which has been at the basis of an
enormous amount of successes (in fluids, magnets, su-
perconductors, superfluids, Bose–Einstein condensation,
conductors, chemical reactions, percolation, among many

other important situations). The connection with classi-
cal thermodynamics, and its Legendre-transform struc-
ture, occurs through relations such as

1
T
D
@S
@U

(19)

F � U � TS D �
1
ˇ
ln Z (20)

U D �
@

@̌
ln Z (21)

C � T
@S
@T
D
@U
@T
D �T

@2F
@T2 ; (22)

where F, U and C are the Helmholtz free energy, the in-
ternal energy, and the specific heat respectively. The BG
statistical mechanics historically appeared as the first con-
nection between the microscopic and the macroscopic de-
scriptions of the world, and it constitutes one of the cor-
nerstones of contemporary physics. The Establishment re-
sisted heavily before accepting the validity and power of
Boltzmann’ s revolutionary ideas. In 1906 Boltzmann dra-
matically committed suicide, after 34 years that he had first
proposed the deep ideas that we are summarizing here. At
that early 20th century, few people believed in Boltzmann’s
proposal (among those few, wemust certainly mentionAl-
bert Einstein), andmost physicists were simply unaware of
the existence of Gibbs and of his profound contributions.
It was only half a dozen years later that the emerging new
generation of physicists recognized their respective genius
(thanks in part to various clarifications produced by Paul
Ehrenfest, and also to the experimental successes related
with Brownian motion, photoelectric effect, specific heat
of solids, and black-body radiation).

On the Limitations of Boltzmann–Gibbs Entropy
and StatisticalMechanics

Historical Background

As any other human intellectual construct, the applicabil-
ity of the BG entropy, and of the statistical mechanics to
which it is associated, naturally has restrictions. The un-
derstanding of present developments of both the concept
of entropy, and its corresponding statistical mechanics,
demand some knowledge of the historical background.

Boltzmann was aware of the relevance of the range
of the microscopic interactions between atoms and
molecules. He wrote, in his 1896 Lectures on Gas The-
ory [41], the following words:

When the distance at which two gas molecules inter-
act with each other noticeably is vanishingly small
relative to the average distance between a molecule
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and its nearest neighbor—or, as one can also say,
when the space occupied by the molecules (or their
spheres of action) is negligible compared to the space
filled by the gas—then the fraction of the path of each
molecule during which it is affected by its interac-
tion with other molecules is vanishingly small com-
pared to the fraction that is rectilinear, or simply de-
termined by external forces. [ . . . ] The gas is “ideal”
in all these cases.

Also Gibbs was aware. In his 1902 book [88], he wrote:

In treating of the canonical distribution, we shall al-
ways suppose the multiple integral in equation (92)
[the partition function, as we call it nowadays] to
have a finite value, as otherwise the coefficient of
probability vanishes, and the law of distribution be-
comes illusory. This will exclude certain cases, but not
such apparently, as will affect the value of our results
with respect to their bearing on thermodynamics. It
will exclude, for instance, cases in which the system
or parts of it can be distributed in unlimited space
[ . . . ]. It also excludes many cases in which the en-
ergy can decrease without limit, as when the system
contains material points which attract one another
inversely as the squares of their distances. [ . . . ]. For
the purposes of a general discussion, it is sufficient to
call attention to the assumption implicitly involved in
the formula (92).

The extensivity/additivity of SBG has been challenged,
along the last century, by many physicists. Let us mention
just a few. In his 1936 Thermodynamics [82], Enrico Fermi
wrote:

The entropy of a system composed of several parts is
very often equal to the sum of the entropies of all the
parts. This is true if the energy of the system is the
sum of the energies of all the parts and if the work
performed by the system during a transformation is
equal to the sum of the amounts of work performed
by all the parts. Notice that these conditions are not
quite obvious and that in some cases they may not
be fulfilled. Thus, for example, in the case of a system
composed of two homogeneous substances, it will be
possible to express the energy as the sum of the ener-
gies of the two substances only if we can neglect the
surface energy of the two substances where they are
in contact. The surface energy can generally be ne-
glected only if the two substances are not very finely
subdivided; otherwise, it can play a considerable role.

Laszlo Tisza wrote, in his Generalized Thermodynam-
ics [178]:

The situation is different for the additivity postu-
late P a2, the validity of which cannot be inferred
from general principles. We have to require that the
interaction energy between thermodynamic systems
be negligible. This assumption is closely related to
the homogeneity postulate P d1. From the molecular
point of view, additivity and homogeneity can be ex-
pected to be reasonable approximations for systems
containing many particles, provided that the inter-
molecular forces have a short range character.

Corroborating the above, virtually all textbooks of quan-
tum mechanics contain the mechanical calculations cor-
responding to a particle in a square well, the harmonic
oscillator, the rigid rotator, a spin 1/2 in the presence of
a magnetic field, and the Hydrogen atom. In the textbooks
of statistical mechanics we can find the thermostatistical
calculations of all these systems . . . excepting the Hydro-
gen atom! Why? Because the long-range electron-proton
interaction produces an energy spectrum which leads to
a divergent partition function. This is but a neat illustra-
tion of the above Gibbs’ alert.

A Remark on the Thermodynamics
of Short- and Long-Range Interacting Systems

We consider here a simple d-dimensional classical fluid,
constituted by many N point particles, governed by the
Hamiltonian

H D K C V D
NX

iD1

p2i
2m
C
X

i¤ j

V (ri j) ; (23)

where the potential V(r) has, if it is attractive at short
distances, no singularity at the origin, or an integrable
singularity, and whose asymptotic behavior at infinity
is given by V(r) � �B/r˛ with B > 0 and ˛ � 0. One
such example is the d D 3 Lennard–Jones fluid, for
which V(r) D A/r12 � B/r6(A > 0), i. e., repulsive at short
distances and attractive at long distances. In this case
˛ D 6. Another example could be Newtonian gravita-
tion with a phenomenological short-distance cutoff (i. e.,
V (r)!1 for r � r0 with r0 > 0. In this case, ˛ D 1.
The full � -space of such a system has 2dN dimensions.
The total potential energy is expected to scale (assuming
a roughly homogeneous distribution of the particles) as

Upot(N)
N

/ �B
Z 1

1
dr rd�1 r�˛ ; (24)

where the integral starts appreciably contributing above
a typical cutoff, here taken to be unity. This integral is finite
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[ D �B/(˛ � d) ] for ˛/d > 1 (short-range interactions),
and diverges for 0 � ˛/d � 1 (long-range interactions). In
other words, the energy cannot be generically character-
ized by Eq. (24), and we must turn onto a different and
more powerful estimation. Given the finiteness of the size
of the system, an appropriate one is, in all cases, given by

Upot(N)
N

/ �B
Z N1/d

1
dr rd�1 r�˛ D �

B
d
N? ; (25)

where

N? �
N1�˛/d � 1
1 � ˛/d

�

8
ˆ̂̂
ˆ̂<

ˆ̂
ˆ̂̂
:

1
˛/d � 1

if ˛/d > 1 ;

lnN if ˛/d D 1 ;

N1�˛/d

1 � ˛/d
if 0 < ˛/d < 1 :

(26)

Notice that N? D ln˛/d N where the q-log func-
tion lnq x � (x1�q � 1)/(1 � q)(x > 0; ln1 x D ln x) will
be shown to play an important role later on. Satisfacto-
rily enough, Eqs. (26) recover the characterization with
Eq. (24) in the limit N !1, but they have the great ad-
vantage of providing, for finite N , a finite value. This fact
will be now shown to enable to properly scale the macro-
scopic quantities in the thermodynamic limit (N !1),
for all values of ˛/d � 0.

Let us address the thermodynamical consequences of
the microscopic interactions being short- or long-ranged.
To present a slightly more general illustration, we shall as-
sume from now on that our homogeneous and isotropic
classical fluid is made by magnetic particles. Its Gibbs free
energy is then given by

G(N; T; p;H) D U(N; T; p;H) � TS(N; T; p;H)
C pV(N; T; p;H) � HM(N; T; p;H) ; (27)

where (T; p;H) correspond respectively to the tempera-
ture, pressure and external magnetic field, V is the volume
and M the magnetization. If the interactions are short-
ranged (i. e., if ˛/d > 1), we can divide this equation by N
and then take the N !1 limit. We obtain

g(T; p;H) D u(T; p;H) � Ts(T; p;H)
C pv(T; p;H) � Hm(T; p;H) ; (28)

where g(T; p;H) � limN!1 G(N; T; p;H)/N , and anal-
ogously for the other variables of the equation. If the in-
teractions were instead long-ranged (i. e., if 0 � ˛/d � 1),
all these quantities would be divergent, hence thermody-
namically nonsense. Consequently, the generically correct

procedure, i. e. 8˛/d � 0, must conform to the following
lines:

lim
N!1

G(N; T; p;H)
NN?

D lim
N!1

U(N; T; p;H)
NN?

� lim
N!1

T
N?

S(N; T; p;H)
N

C lim
N!1

p
N?

V (N; T; p;H)
N

� lim
N!1

H
N?

M(N; T; p;H)
N

(29)

hence

g(T?; p?;H?) D u(T?; p?;H?) � T?s(T?; p?;H?)
C p?v(T?; p?;H?) � H?m(T?; p?;H?) ; (30)

where the definitions of T? and all the other variables are
self-explanatory (e. g., T? � T/N?). In other words, in or-
der to have finite thermodynamic equations of states, we
must in general express them in the (T?; p?;H?) vari-
ables. If ˛/d > 1, this procedure recovers the usual equa-
tions of states, and the usual extensive (G;U; S;V ;M)
and intensive (T; p;H) thermodynamic variables. But, if
0 � ˛/d � 1, the situation is more complex, and we real-
ize that three, instead of the traditional two, classes of ther-
modynamic variables emerge. We may call them exten-
sive (S;V ;M;N), pseudo-extensive (G;U) and pseudo-in-
tensive (T; p;H) variables. All the energy-type thermody-
namical variables (G; F;U) give rise to pseudo-extensive
ones, whereas those which appear in the usual Legendre
thermodynamical pairs give rise to pseudo-intensive ones
(T; p;H; �) and extensive ones (S;V ;M;N). See Figs. 1
and 2.

The possibly long-range interactions within Hamil-
tonian (23) refer to the dynamical variables themselves.
There is another important class of Hamiltonians, where
the possibly long-range interactions refer to the coupling
constants between localized dynamical variables. Such is,
for instance, the case of the following classical Hamilto-
nian:

H D K C V D
NX

iD1

L2i
2I

�
X

i¤ j

Jx sxi s
x
j C Jys

y
i s

y
j C Jz szi s

z
j

r˛i j
(˛ � 0) ; (31)

where fLig are the angular momenta, I the moment of
inertia, f(sxi ; s

y
i ; s

z
i )g are the components of classical ro-

tators, (Jx ; Jy ; Jz) are coupling constants, and rij runs
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Entropy, Figure 1
For long-range interactions (0 � ˛/d � 1) we have three classes
of thermodynamic variables, namely the pseudo-intensive (scal-
ing with N?), pseudo-extensive (scaling with NN?) and exten-
sive (scaling with N) ones. For short range interactions (˛/d > 1)
the pseudo-intensive variables become intensive (independent
from N), and the pseudo-extensive merge with the extensive
ones, all being now extensive (scaling with N), thus recovering
the traditional two textbook classes of thermodynamical vari-
ables

Entropy, Figure 2
The so-called extensive systems (˛/d > 1 for the classical ones)
typically involve absolutely convergent series, whereas the so-
called nonextensive systems (0 � ˛/d < 1 for the classical ones)
typically involve divergent series. Themarginal systems (˛/d D 1
here) typically involve conditionally convergent series, which
therefore depend on the boundary conditions, i. e., typically on
the external shape of the system. Capacitors constitute a notori-
ous example of the ˛/d D 1 case. The model usually referred to
in the literature as the Hamiltonian–Mean–Field (HMF) one lies
on the ˛ D 0 axis (8d > 0). The model usually referred to as
the d-dimensional˛-XY model [19] lies on the vertical axis at ab-
scissa d (8˛ � 0)

over all distances between sites i and j of a d-dimen-
sional lattice. For example, for a simple hypercubic lattice
with unit crystalline parameter we have ri j D 1; 2; 3; : : : if
d D 1, ri j D 1;

p
2; 2; : : : if d D 2, ri j D 1;

p
2;
p
3; 2; : : :

if d D 3, and so on. For such a case, we have that

N? �
NX

iD2

r�˛1i ; (32)

which has in fact the same asymptotic behaviors as in-
dicated in Eq. (26). In other words, here again ˛/d > 1
corresponds to short-range interactions, and 0 � ˛/d � 1
corresponds to long-range ones.

The correctness of the present generalized thermo-
dynamical scalings has already been specifically checked
in many physical systems, such as a ferrofluid-like
model [97], Lennard–Jones-like fluids [90], magnetic sys-
tems [16,19,59,158], anomalous diffusion [66], percola-
tion [85,144].

Let us mention that, for the ˛ D 0 models (i. e., mean
field models), it is largely spread in the literature to divide
by N the potential term of the Hamiltonian in order to
make it extensive by force. Although mathematically ad-
missible (see [19]), this is obviously very unsatisfactory in
principle since it implies a microscopic coupling constant
which depends on N. What we have described here is the
thermodynamically proper way of eliminating the mathe-
matical difficulties emerging in the models in the presence
of long-range interactions.

Last but not least, we verify a point which is crucial for
the developments here below, namely that the entropy S is
expected to be extensive no matter the range of the interac-
tions.

The Nonadditive Entropy Sq
Introduction and Basic Properties

The possibility was introduced in 1988 [183] (see
also [42,112,157,182]) to generalize the BG statistical me-
chanics on the basis of an entropy Sq which general-
izes SBG. This entropy is defined as follows:

Sq � k
1 �

PW
iD1 p

q
i

q � 1
(q 2 R; S1 D SBG): (33)

For equal probabilities, this entropy takes the form

Sq D k lnq W (S1 D k lnW) ; (34)

where the q-logarithmic function has already been de-
fined.

Remark With the same or different prefactor, this en-
tropic form has been successively and independently in-
troduced in many occasions during the last decades.
J. Havrda and F. Charvat [92] were apparently the first to
ever introduce this form, though with a different prefactor
(adapted to binary variables) in the context of cybernet-
ics and information theory. I. Vajda [207], further studied
this form, quoting Havrda and Charvat. Z. Daroczy [74]
rediscovered this form (he quotes neitherHavrda–Charvat
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nor Vajda). J. Lindhard and V. Nielsen [108] rediscovered
this form (they quote none of the predecessors) through
the property of entropic composability. B.D. Sharma and
D.P. Mittal [163] introduced a two-parameter form which
reproduces both Sq and Renyi entropy [145] as partic-
ular cases. A. Wehrl [209] mentions the form of Sq in
p. 247, quotes Daroczy, but ignores Havrda–Charvat, Va-
jda, Lindhard–Nielsen, and Sharma–Mittal. Myself I re-
discovered this form in 1985 with the aim of generalizing
Boltzmann–Gibbs statistical mechanics, but quote none of
the predecessors in the 1988 paper [183]. In fact, I started
knowing the whole story quite a few years later thanks to
S.R.A. Salinas and R.N. Silver, whowere the first to provide
me with the corresponding informations. Such rediscov-
eries can by no means be considered as particularly sur-
prising. Indeed, this happens in science more frequently
than usually realized. This point is lengthily and colorfully
developed by S.M. Stigler [167]. In p. 284, a most inter-
esting example is described, namely that of the celebrated
normal distribution. It was first introduced by Abraham
De Moivre in 1733, then by Pierre Simon de Laplace in
1774, then by Robert Adrain in 1808, and finally by Carl
Friedrich Gauss in 1809, nothing less than 76 years after
its first publication! This distribution is universally called
Gaussian because of the remarkable insights of Gauss con-
cerning the theory of errors, applicable in all experimen-
tal sciences. A less glamorous illustration of the same
phenomenon, but nevertheless interesting in the present
context, is that of Renyi entropy [145]. According to I.
Csiszar [64], p. 73, the Renyi entropy had already been es-
sentially introduced by Paul-Marcel Schutzenberger [161].

The entropy defined in Eq. (33) has the following main
properties:

(i) Sq is nonnegative (8q);
(ii) Sq is expansible (8q > 0);
(iii) Sq attains its maximal (minimal) value k lnq W for

q > 0 (for q < 0);
(iv) Sq is concave (convex) for q > 0 (for q < 0);
(v) Sq is Lesche-stable (8q > 0) [2];
(vi) Sq yields a finite upper bound of the entropy pro-

duction per unit time for a special value of q, when-
ever the sensitivity to the initial conditions exhibits
an upper bound which asymptotically increases as
a power of time. For example, many D D 1 non-
linear dynamical systems have a vanishing maximal
Lyapunov exponent 1 and exhibit a sensitivity to
the initial conditions which is (upper) bounded by

� D e�q t
q ; (35)

with q > 0, q < 1, the q-exponential function exq
being the inverse of lnq x. More explicitly (see Fig. 3)

exq �

(
[1C (1 � q) x]

1
1�q if 1C (1 � q)x > 0 ;

0 otherwise :

(36)

Such systems have a finite entropy production per
unit time, which satisfies a q-generalized Pesin-like
identity, namely, for the construction described in
Sect. “Introduction”,

Kq � lim
t!1

lim
W!1

lim
M!1

Sq(t)
t
D q : (37)

The situation is in fact sensibly much richer than
briefly described here. For further details, see [27,28,
29,30,93,116,117,146,147,148,149,150,151,152].

(vii) Sq is nonadditive for q ¤ 1. Indeed, for indepen-
dent subsystemsA and B, it can be straightforwardly
proved

Sq(AC B)
k

D
Sq(A)
k
C

Sq(B)
k
C (1�q)

Sq(A)
k

Sq(B)
k

;

(38)

or, equivalently,

Sq(ACB) D Sq(A)C Sq (B)C
(1 � q)

k
Sq(A) Sq(B) ;

(39)

which makes explicit that (1 � q)! 0 plays the
same role as k!1. Property (38), occasion-
ally referred to in the literature as pseudo-additiv-
ity, can be called subadditivity (superadditivity) for
q > 1 (q < 1).

(viii) Sq D �k Dq
PW

iD1 p
x
i jxD1, where the 1909 Jackson

differential operator is defined as follows:

Dq f (x) �
f (qx)� f (x)

qx � x
(D1 f (x) D d f (x)/dx) :

(40)

(ix) An uniqueness theorem has been proved by San-
tos [159], which generalizes, for arbitrary q, that of
Shannon [162].
Let us assume that an entropic form S(fpi g) satisfies
the following properties:
(a)

S(fpig) is a continuous function of fpig;
(41)
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(b)

S(pi D 1/W;8i)monotonically increases
with the total number of possibilitiesW ;

(42)
(c)

S(AC B)
k

D
S(A)
k
C

S(B)
k
C (1 � q)

S(A)
k

S(B)
k

if pACB
i j D pAi p

B
j 8(i; j) ; with k > 0;

(43)
(d)

S(fpig) D S(pL ; pM)C pqLS(fpi /pLg)C pqMS(fpi /pMg)

with pL �
X

L terms

pi ; pM �
X

M terms

pi (LC M D W) ;

and pL C pM D 1 :
(44)

Then and only then [159] S(fpig) D Sq(fpig).
(x) Another (equivalent) uniqueness theorem was

proved by Abe [1], which generalizes, for arbitrary q,
that of Khinchin [100].
Let us assume that an entropic form S(fpi g) satisfies
the following properties:
(a)

S(fpi g) is a continuous function of fpig; (45)
(b)

S(pi D 1/W;8i) monotonically increases
with the total number of possibilitiesW ;

(46)
(c)

S(p1; p2 ; : : : ; pW ; 0) D S(p1; p2 ; : : : ; pW ) ;
(47)

(d)

S(AC B)
k

D
S(A)
k
C

S(BjA)
k
C (1 � q)

S(A)
k

S(BjA)
k

where S(AC B) � S

n

pACB
i j

o�
;

S(A) � S

0

@

8
<

:

WBX

jD1

pACB
i j

9
=

;

1

A ; and the conditional entropy

S(BjA) �

PWA
iD1

�
pAi
qS


n
pACB
i j /pAi

o�

PWA
iD1

�
pAi
q (k > 0)

(48)

Then and only then [1] S(fpig) D Sq(fpig).

Additivity Versus Extensivity of the Entropy

It is of great importance to distinguish additivity from
extensivity. An entropy S is additive [130] if its value
for a system composed by two independent subsys-
tems A and B satisfies S(AC B) D S(A)C S(B) (hence,
for N independent equal subsystems or elements, we
have S(N) D NS(1)). Therefore, SBG is additive, and
Sq(q ¤ 1) is nonadditive. A substantially different mat-
ter is whether a given entropy S is extensive for
a given system. An entropy is extensive if and only if
0 < limN!1 S(N)/N <1. What matters for satisfacto-
rily matching thermodynamics is extensivity not addi-
tivity. For systems whose elements are nearly indepen-
dent (i. e., essentially weakly correlated), SBG is extensive
and Sq is nonextensive. For systems whose elements are
strongly correlated in a special manner, SBG is nonexten-
sive, whereas Sq is extensive for a special value of q ¤ 1
(and nonextensive for all the others).

Let us illustrate these facts for some simple ex-
amples of equal probabilities. If W(N) � A�N (A > 0,
� > 1, and N !1), the entropy which is extensive
is SBG. Indeed, SBG(N) D k lnW(N) � (ln�)N / N (it
is equally trivial to verify that Sq(N) is nonexten-
sive for any q ¤ 1). If W(N) � BN�(B > 0, � > 0, and
N !1), the entropy which is extensive is S1�(1/�). In-
deed, S1�(1/�)(N) � k�B1/�N / N (it is equally trivial
to verify that SBG(N) / lnN, hence nonextensive). If
W(N) � C�N� (C > 0,� > 1, � ¤ 1, and N !1), then
Sq(N) is nonextensive for any value of q. Therefore, in
such a complex case, one must in principle refer to some
other kind of entropic functional in order to match the ex-
tensivity required by classical thermodynamics.

Various nontrivial abstract mathematical models can
be found in [113,160,186,198,199] for which Sq(q ¤ 1) is
extensive. Moreover, a physical realization is also avail-
able now [60,61] for a many-body quantum Hamiltonian,
namely the ground state of the following one:

H D �
N�1X

iD1

�
(1C � )Sxi S

x
iC1 C (1 � � )Syi S

y
iC1
�

� 2
NX

iD1

Szi ; (49)

where  is a transverse magnetic field, and (Sxi ; S
y
i ; S

z
i )

are Pauli matrices; for j� j D 1 we have the Ising model,
for 0 < j� j < 1, we have the anisotropic XY model, and,
for � D 0, we have the isotropic XY model. The two
former share the same symmetry and consequently be-
long to the same critical universality class (the Ising uni-
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Entropy, Figure 3
The q-exponential and q-logarithm functions in typical representations: a Linear-linear representation of exq; b Linear-linear repre-
sentation of e�x

q ; c Log-log representation of y(x) D e
�aq x
q , solution of dy/dx D �aq yq with y(0) D 1; d Linear-linear representation

of Sq D lnq W (value of the entropy for equal probabilities)

versality class, which corresponds to a so-called central
charge c D 1/2), whereas the latter one belongs to a dif-
ferent universality class (the XX one, which corresponds
to a central charge c D 1). At temperature T D 0 and
N !1, this model exhibits a second-order phase tran-
sition as a function of . For the Ising model, the criti-
cal value is  D 1, whereas, for the XX model, the entire
line 0 �  � 1 is critical. Since the system is at its ground
state (assuming a vanishingly small magnetic field compo-
nent in the x � y plane), it is a pure state (i. e., its density
matrix �N is such that Tr �2N D 1, 8N), hence the entropy
Sq(N)(8q > 0) is strictly zero. However, the situation is
drastically different for any L-sized block of the infinite
chain. Indeed, �L � TrN�L�N is such that Tr �2L < 1, i. e.,
it is a mixed state, hence it has a nonzero entropy. The
block entropy Sq(L) � limN!1 Sq(N; L) monotonically

increases with L for all values of q. And it does so linearly
for

q D
p
9C c2 � 3

c
; (50)

where c is the central charge which emerges in quan-
tum field theory [54]. In other words, 0 < limL!1
S(
p
9Cc2�3)/c (L)/L <1. Notice that q increases from zero

to unity when c increases from zero to infinity; q D
p
37�

6 ' 0:083 for c D 1/2 (Ising model), q D
p
10�3 ' 0:16

for c D 1 (isotropic XY model), q D 1/2 for c D 4 (dimen-
sion of space-time), and q D (

p
685 � 3)/26 ' 0:89 for

c D 26, related to string theory [89]. The possible phys-
ical interpretation of the limit c !1 is still unknown,
although it could correspond to some sort of mean field
approach.
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Nonextensive Statistical Mechanics

To generalize BG statistical mechanics for the canonical
ensemble, we optimize Sq with constraint (15) and also

WX

iD1

Pi Ei D Uq ; (51)

where

Pi �
pqiPW
jD1 p

q
i

 WX

iD1

Pi D 1

!

(52)

is the so-called escort distribution [33]. It follows that
pi D P1/qi /

PW
jD1 P

1/q
j . There are various converging rea-

sons for being appropriate to impose the energy constraint
with the fPig instead of with the original fpig. The full dis-
cussion of this delicate point is beyond the present scope.
However, some of these intertwined reasons are explored
in [184]. By imposing Eq. (51), we follow [193], which in
turn reformulates the results presented in [71,183]. The
passage from one to the other of the various existing
formulations of the above optimization problem are dis-
cussed in detail in [83,193].

The entropy optimization yields, for the stationary
state,

pi D
e�ˇq(Ei�Uq)
q

Z̄q
; (53)

with

ˇq �
ˇ

PW
jD1 p

q
j

; (54)

and

Z̄q �

WX

i

e�ˇq (Ei�Uq)
q ; (55)

ˇ being the Lagrange parameter associated with the con-
straint (51). Equation (53) makes explicit that the proba-
bility distribution is, for fixed ˇq, invariant with regard to
the arbitrary choice of the zero of energies. The station-
ary state (or (meta)equilibrium) distribution (53) can be
rewritten as follows:

pi D
e
�ˇ 0qEi
q

Z0q
; (56)

with

Z0q �
WX

jD1

e
�ˇ 0q E j
q ; (57)

and

ˇ0q �
ˇq

1C (1 � q)ˇqUq
: (58)

The form (56) is particularly convenient for many appli-
cations where comparison with experimental or computa-
tional data is involved. Also, it makes clear that pi asymp-
totically decays like 1/E1/(q�1)

i for q > 1, and has a cut-
off for q < 1, instead of the exponential decay with Ei for
q D 1.

The connection to thermodynamics is established in
what follows. It can be proved that

1
T
D
@Sq
@Uq

; (59)

with T � 1/(kˇ). Also we prove, for the free energy,

Fq � Uq � TSq D �
1
ˇ
lnq Zq ; (60)

where

lnq Zq D lnq Z̄q � ˇUq : (61)

This relation takes into account the trivial fact that, in con-
trast with what is usually done in BG statistics, the en-
ergies fEig are here referred to Uq in (53). It can also be
proved

Uq D �
@

@̌
lnq Zq ; (62)

as well as relations such as

Cq � T
@Sq
@T
D
@Uq

@T
D �T

@2Fq
@T2 : (63)

In fact the entire Legendre transformation structure of
thermodynamics is q-invariant, which is both remarkable
and welcome.

A Connection Between Entropy and Diffusion

We review here one of the main common aspects of en-
tropy and diffusion. We shall present on equal footing
both the BG and the nonextensive cases [13,138,192,216].
Let us extremize the entropy

Sq D k
1 �

R1
�1 d(x/�) [� p(x)]q

q � 1
(64)

with the constraints
Z 1

�1

dx p(x) D 1 (65)
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and

hx2iq �
R1
�1 dx x2[p(x)]q
R1
�1 dx [p(x)]q

D �2 ; (66)

� > 0 being some fixed value having the same physical di-
mensions of the variable x. We straightforwardly obtain
the following distribution:

pq(x) D
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

1



�
q� 1
	(3� q)

�1/2 �

�
1

q� 1

�

�

�
3� q

2(q� 1)

�
1

�
1C

q � 1
3� q

x2


2

�1/(q�1)

if 1 < q < 3 ;

1



1
p
2	

e�x2/2�2

if q D 1 ;

1



�
1� q
	(3� q)

�1/2 �
�

5� 3q
2(1� q)

�

�

�
2� q
1� q

�
�
1�

1� q
3� q

x2


2

�1/(1�q)

for jxj < 
 [(3� q)/(1� q)]1/2 ; and zero otherwise ,
if q < 1 :

(67)

These distributions are frequently referred to as q-Gaus-
sians. For q > 1, they asymptotically have a power-law
tail (q � 3 is not admissible because the norm (65) can-
not be satisfied); for q < 1, they have a compact sup-
port. For q D 1, the celebrated Gaussian is recovered; for
q D 2, the Cauchy–Lorentz distribution is recovered; fi-
nally, for q! �1, the uniform distribution within the
interval [�1; 1] is recovered. For q D 3Cm

1Cm , m being an
integer (m D 1; 2; 3; : : :), we recover the Student’s t-dis-
tributions with m degrees of freedom [79]. For q D n�4

n�2 ,
n being an integer (n D 3; 4; 5; : : :), we recover the so-
called r-distributions with n degrees of freedom [79]. In
other words, q-Gaussians are analytical extensions of Stu-
dent’s t- and r-distributions. In some communities they
are also referred to as the Barenblatt form. For q < 5/3,
they have a finite variance which monotonically increases
for q varying from �1 to 5/3; for 5/3 � q < 3, the vari-
ance diverges.

Let us now make a connection of the above optimiza-
tion problem with diffusion. We focus on the following
quite general diffusion equation:

@ı p(x; t)
@tı

D
@

@x

�
@U(x)
@x

p(x; t)
�
C D

@˛[p(x; t)]2�q

@jxj˛

(0 < ı � 1; 0 < ˛ � 2; q < 3; t � 0) ; (68)

with a generic nonsingular potential U(x), and a gen-
eralized diffusion coefficient D which is positive (nega-
tive) for q < 2 (2 < q < 3). Several particular instances
of this equation have been discussed in the literature
(see [40,86,106,131,188] and references therein).

For example, the stationary state for ˛ D 2, 8ı, and
any confining potential (i. e., limjxj!1 U(x) D 1) is
given by [106]

p(x;1)q D
e�ˇ [U(x)�U(0)]
q

Z
; (69)

Z �
Z 1

�1

dx e�ˇ [U(x)�U(0)]
q ; (70)

1/ˇ � kT / jDj ; (71)

which precisely is the distribution obtained within nonex-
tensive statistical mechanics through extremization of Sq.

Also, the solution for ˛ D 2, ı D 1, U(x) D �k1x C
k2
2 x2(8 k1, and k2 � 0), and p(x; 0) D ı(x) is given
by [188]

pq(x; t) D
e�ˇ (t)[x�xM (t)]2
q

Zq(t)
; (72)

ˇ(t)
ˇ(0)

D

�
Zq(0)
Zq(t)

�2

D

��
1 �

1
K2

e�t/�
�
C

1
K2

��2/(3�q)
;

(73)

K2 �
k2

2(2 � q)Dˇ(0)[Zq(0)]q�1
; (74)

� �
1

k2(3 � q)
; (75)

xM(t) �
k1
k2
C

�
xM(0) �

k1
k2

�
e�k2 t : (76)

In the limit k2 ! 0, Eq. (73) becomes

Zq(t) D
˚
[Zq(0)]3�q C 2(2 � q)(3 � q)Dˇ(0)

[Zq(0)]2 t
�1/(3�q)

; (77)

which, in the t!1 limit, yields

1
ˇ(t)

/ [Zq(t)]2 / t2/(3�q) : (78)

In other words, x2 scales like t� , with

� D
2

3 � q
; (79)

hence, for q > 1 we have � > 1 (i. e., superdiffusion; in
particular, q D 2 yields � D 2, i. e., ballistic diffusion),
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for q < 1 we have � < 1 (i. e., subdiffusion; in particular,
q! �1 yields � D 0, i. e., localization), and naturally,
for q D 1, we obtain normal diffusion. Four systems are
known for which results have been found that are con-
sistent with prediction (79). These are the motion of Hy-
dra viridissima [206], defect turbulence [73], simulation of
a silo drainage [22], and molecular dynamics of a many-
body long-range-interacting classical system of rotators
(˛ � XY model) [143]. For the first three, it has been
found (q; � ) ' (3/2; 4/3). For the latter one, relation (79)
has been verified for various situations corresponding to
� > 1.

Finally, for the particular case ı D 1 and U(x) D 0,
Eq. (68) becomes

@p(x; t)
@t

D D
@˛[p(x; t)]2�q

@jxj˛
(0 < ˛ � 2; q < 3) : (80)

The diffusion constant D just rescales time t. Only two pa-
rameters are therefore left, namely ˛ and q.

The linear case (i. e., q D 1) has two types of solutions:
Gaussians for ˛ D 2, and Lévy- (or ˛-stable) distributions
for 0 < ˛ < 2. The case ˛ D 2 corresponds to the Central
Limit Theorem, where the N !1 attractor of the sums
of N independent random variables with finite variance
precisely is a Gaussian. The case 0 < ˛ < 2 corresponds to
the sometimes called Levy–Gnedenko Central Limit Theo-
rem, where the N !1 attractor of the sums of N inde-
pendent random variables with infinite variance (and ap-
propriate asymptotics) precisely is a Lévy distribution with
index ˛.

The nonlinear case (i. e., q ¤ 1) has solutions that
are q-Gaussians for ˛ D 2, and one might conjecture that,
similarly, interesting solutions exist for 0 < ˛ < 2. Fur-
thermore, in analogy with the q D 1 case, one expects cor-
responding q-generalized Central Limit Theorems to ex-
ist [187]. This is precisely what we present in the next Sec-
tion.

Standard and q-GeneralizedCentral Limit Theorems

The q-Product

It has been recently introduced (independently and virtu-
ally simultaneously) [43,125] a generalization of the prod-
uct, which is called q-product. It is defined, for x � 0 and
y � 0, as follows:

x ˝q y �
(
[x1�q C y1�q � 1]1/(1�q) if x1�q C y1�q > 1 ;
0 otherwise :

(81)

It has, among others, the following properties:
it recovers the standard product as a particular instance,
i. e.,

x ˝1 y D xy ; (82)

it is commutative, i. e.,

x ˝q y D y ˝q x ; (83)

it is additive under q-logarithm, i. e.,

lnq(x ˝q y) D lnq x C lnq y (84)

(whereas we remind that lnq(x y) D lnq x C lnq y C (1 �
q)(lnq x)(lnq y);
it has a (2 � q)-duality/inverse property, i. e.,

1/(x ˝q y) D (1/x)˝2�q (1/y) ; (85)

it is associative, i. e.,

x ˝q (y ˝q z) D (x ˝q y)˝q z D x ˝q y ˝q z

D (x1�q C y1�q C z1�q � 2)1/(1�q) ;
(86)

it admits unity, i. e.,

x ˝q 1 D x : (87)

and, for q � 1, also a zero, i. e.,

x ˝q 0 D 0 (q � 1) : (88)

The q-Fourier Transform

We shall introduce the q-Fourier transform of a quite
generic function f (x) (x 2 R) as follows [140,189,202,
203,204,205]:

Fq[ f ](�) �
Z 1

�1

dx eix�q ˝q f (x)

D

Z 1

�1

dx eix�[ f (x)]
q�1

q f (x)
; (89)

where we have primarily focused on the case q � 1. In
contrast with the q D 1 case (standard Fourier transform),
this integral transformation is nonlinear for q ¤ 1. It has
a remarkable property, namely that the q-Fourier trans-
form of a q-Gaussian is another q-Gaussian:

Fq
h
Nq
p
ˇ e�ˇ x

2

q

i
(�) D e�ˇ1 �

2

q1 ; (90)
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with

Nq �

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�
q � 1
	

�1/2 �

�
1

q� 1

�

�

�
3� q

2(q� 1)

� if 1 < q < 3 ;

1
p
	

if q D 1 ;

3� q
2

�
1� q
	

�1/2 �
�

3� q
2(1� q)

�

�

�
1

1� q

� if q < 1 ;

(91)

and

q1 D z(q) �
1C q
3 � q

; (92)

ˇ1 D
1

ˇ2�q
N2(1�q)

q (3 � q)
8

: (93)

Equation (93) can be re-written as ˇ
p
2�qˇ

1/
p
2�q

1 D

[(N2(1�q)
q (3 � q))/8]1/

p
2�q � K(q), which, for q D 1, re-

covers the well known Heisenberg-uncertainty-principle-
like relation ˇˇ1 D 1/4.

If we iterate n times the relation z(q) in Eq. (92), we
obtain the following algebra:

qn(q) D
2qC n(1 � q)
2C n(1 � q)

(n D 0;˙1;˙2; : : : ) ; (94)

which can be conveniently re-written as

2
1 � qn(q)

D
2

1 � q
C n (n D 0;˙1;˙2; : : : ) : (95)

(See Fig. 4). We easily verify that qn(1) D 1 (8n),
q˙1(q) D 1 (8q), as well as

1
qnC1

D 2 � qn�1 : (96)

This relation connects the so called additive duality q !
(2 � q) and multiplicative duality q! 1/q, frequently
emerging in all types of calculations in the literature.
Moreover, we see from Eq. (95) that multiple values of q
are expected to emerge in connection with diverse proper-
ties of nonextensive systems, i. e., in systems whose basic
entropy is the nonadditive one Sq. Such is the case of the
so called q-triplet [185], observed for the first time in the
magnetic field fluctuations of the solar wind, as it has been
revealed by the analysis of the data sent to NASA by the
spacecraft Voyager 1 [48].

Entropy, Figure 4
The q-dependence of qn(q) 	 q2;n(q)

q-Independent RandomVariables

Two random variables X [with density fX(x)] and Y [with
density fY (y)] having zero q-mean values (e. g., if fX(x)
and fY (y) are even functions) are said q-independent, with
q1 given by Eq. (92), if

Fq[X C Y](�) D Fq[X](�)˝q1 Fq[Y](�) ; (97)

i. e., if
Z 1

�1

dz eiz�q ˝q fXCY (z) D
�Z 1

�1

dx eix�q ˝q fX(x)
�
˝(1Cq)/(3�q)

�Z 1

�1

dy ei y�q ˝q fX(y)
�
; (98)

with

fXCY (z) D
Z 1

�1

dx
Z 1

�1

dy h(x; y) ı(x C y � z)

D

Z 1

�1

dx h(x; z � x)

D

Z 1

�1

dy h(z � y; y)

(99)

where h(x; y) is the joint density.
Clearly, q-independence means independence for

q D 1 (i. e., h(x; y) D fX(x) fY (y)), and implies a special
correlation for q ¤ 1. Although the full understanding of
this correlation is still under progress, q-independence ap-
pears to be consistent with scale-invariance.
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Entropy, Table 1
The attractors corresponding to the four basic cases, where the N variables that are being summed are q-independent (i. e., globally
correlated) with q1 D (1C q)/(3� q); �Q 	 (

R
1

�1
dx x2 [f (x)]Q)/(

R
1

�1
dx [f (x)]Q) with Q 	 2q� 1. The attractor for (q; ˛) D (1;2) is

a Gaussian G(x) 	 L1;2 (standard Central Limit Theorem); for q D 1 and 0 < ˛ < 2, it is a Lévy distribution L˛ 	 L1;˛ (the so called
Lévy-Gnedenko limit theorem); for ˛ D 2 and q ¤ 1, it is a q-Gaussian Gq 	 Lq;2 (the q-Central Limit Theorem; [203]); finally, for
q ¤ 1 and 0 < ˛ < 2, it is a generic (q;˛)-stable distribution Lq;˛ ([204,205]). See [140,189] for typical illustrations of the four types
of attractors. Thedistribution L˛(x) remains, for 1 < ˛ < 2, close to aGaussian for jxjup to about xc(1;˛), where itmakes a crossover
to a power-law. The distribution Gq(x) remains, for q > 1, close to a Gaussian for jxj up to about xc(q;2), where it makes a crossover
to a power-law. The distribution Lq;˛(x) remains, for q > 1 and ˛ < 2, close to a Gaussian for jxj up to about x(1)c (q;˛), where it
makes a crossover to a power-law (intermediate regime), which lasts further up to about x(2)c (q; ˛), where it makes a second crossover
to another power-law (distant regime)

q D 1 [independent] q ¤ 1 (i. e., Q ¤ 1) [globally correlated]

Q <1 G(x) Gq(x) D G(3q1�1)/(1Cq1)(x)
(˛ D 2) [with same 
1 of f (x)] [with same 
Q of f (x)]

Gq(x) � G(x) if jxj � xc(q; 2)
Gq(x) � Cq;2/jxj2/(q�1) if jxj � xc(q; 2)
for q > 1, with limq!1 xc(q; 2) D1


Q!1 L˛ (x) Lq;˛ (x)
(˛ < 2) [with same jxj ! 1 behavior of f (x)] [with same jxj ! 1 behavior of f (x)]

L˛ (x) � G(x) if jxj � xc(1; ˛) Lq;˛ � C(intermediate)
q;˛ /jxj

2(1�q)�˛(3�q)
2(q�1)

L˛ (x) � C1;˛/jxj1C˛ if jxj � xc(1; ˛) if x(1)c (q; ˛)� jxj � x(2)c (q; ˛)

with lim˛!2 qc(1; ˛) D1 Lq;˛ � C(distant)
q;˛ /jxj

1C˛
1C˛(q�1)

if jxj � x(2)c (q; ˛)

q-Generalized Central Limit Theorems

It is out of the scope of the present survey to provide the
details of the complex proofs of the q-generalized cen-
tral limit theorems. We shall restrict to the presentation
of their structure. Let us start by introducing a notation
which is important for what follows. A distribution is said
(q; ˛)-stable distribution Lq;˛(x) if its q-Fourier transform
Lq;˛(�) is of the form

Lq;˛(�) D a e�b j�j
˛

q1

[a > 0; b > 0; 0 < ˛ � 2; q1 D (qC 1)/(3 � q)] :
(100)

Consistently, L1;2 are Gaussians, L1;˛ are Lévy distribu-
tions, and Lq;2 are q-Gaussians.

We are seeking for the N !1 attractor associated
with the sum of N identical and distinguishable random
variables each of them associated with one and the same
arbitrary symmetric distribution f (x). The random vari-
ables are independent for q D 1, and correlated in a spe-
cial manner for q ¤ 1. To obtain the N !1 invariant
distribution, i. e. the attractor, the sum must be rescaled,
i. e., divided by Nı , where

ı D
1

˛(2 � q)
: (101)

For (˛; q) D (2; 1), we recover the traditional 1/
p
N

rescaling of Brownian motion. At the present stage, the
theorems have been established for q � 1 and are summa-
rized in Table 1. The case q < 1 is still open at the time
at which these lines are being written. Two q < 1 cases
have been preliminarily explored numerically in [124]
and in [171]. The numerics seemed to indicate that the
N !1 limits would be q-Gaussians for both models.
However, it has been analytically shown [94] that it is
not exactly so. The limiting distributions numerically are
amazingly close to q-Gaussians, but they are in fact differ-
ent. Very recently, another simple scale-invariant model
has been introduced [153], whose attractor has been ana-
lytically shown to be a q-Gaussian.

These q ¤ 1 theorems play for the nonadditive en-
tropy Sq and nonextensive statistical mechanics the same
grounding role that the well known q D 1 theorems play
for the additive entropy SBG and BG statistical mechanics.
In particular, interestingly enough, the ubiquity of Gaus-
sians and of q-Gaussians in natural, artificial and social
systems may be understood on equal footing.

Future Directions

The concept of entropy permeates into virtually all quan-
titative sciences. The future directions could therefore
be very varied. If we restrict, however, to the evidence
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Entropy, Figure 5
Snapshot of a nongrowing dynamic network with N D 256
nodes (see details in [172], by courtesy of the author)

presently available, the main lines along which evolution
occurs are:
Networks Many of the so-called scale-free networks,

among others, systematically exhibit a degree distribu-
tion p(k) (probability of a node having k links) which
is of the form

p(k) /
1

(k0 C k)�
(� > 0; k0 > 0) ; (102)

or, equivalently,

p(k) / e�k/�q (q � 1; � > 0) ; (103)

with � D 1/(q � 1) and k0 D �/(q � 1) (see Figs. 5
and 6). This is not surprising since, if we associate
to each link an “energy” (or cost) and to each node
half of the “energy” carried by its links (the other
half being associated with the other nodes to which
any specific node is linked), the distribution of en-
ergies optimizing Sq precisely coincides with the de-
gree distribution. If, for any reason, we consider k
as the modulus of a d-dimensional vector k, the op-
timization of the functional Sq[p(k)] may lead to
p(k) / k� e�k/�q , where k� plays the role of a den-
sity of states, �(d) being either zero (which repro-
duces Eq. (103)) or positive or negative. Several exam-
ples [12,39,76,91,165,172,173,212,213] already exist in
the literature; in particular, the Barabasi–Albert uni-
versality class � D 3 corresponds to q D 4/3. A deeper
understanding of this connectionmight enable the sys-

Entropy, Figure 6
Nongrowing dynamic network: a Cumulative degree distribu-
tion for typical values for the number N of nodes; b Same data
of a in the convenient representation linear q-log versus linear
with Zq(k) 	 lnq[Pq(> k)] 	 ([Pq(> k)]1�q � 1)/(1� q) (the opti-
mal fitting with a q-exponential is obtained for the value of q
which has the highest value of the linear correlation r as indi-
cated in the inset; here this is qc D 1:84, which corresponds to
the slope�1.19 in a). See details in [172,173]

tematic calculation of several meaningful properties of
networks.

Nonlinear dynamical systems, self-organized criticality,
and cellular automata Various interesting phenomena

emerge in both low- and high-dimensional weakly
chaotic deterministic dynamical systems, either dis-
sipative or conservative. Among these phenomena
we have the sensitivity to the initial conditions and
the entropy production, which have been briefly ad-
dressed in Eq. (37) and related papers. But there
is much more, such as relaxation, escape, glassy
states, and distributions associated with the station-
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Entropy, Figure 7
Distribution of velocities for the HMF model at the quasi-stationary state (whose duration appears to diverge when N!1). The
blue curves indicate a Gaussian, for comparison. See details in [137]

ary state [14,15,31,46,62,67,68,77,103,111,122,123,154,
170,174,176,177,179]. Also, recent numerical indi-
cations suggest the validity of a dynamical version of
the q-generalized central limit theorem [175]. The pos-
sible connections between all these various properties
is still in its infancy.

Long-range-interacting many-body Hamiltonians
A wide class of long-range-interacting N-body clas-
sical Hamiltonians exhibits collective states whose
Lyapunov spectrum has a maximal value that vanishes
in the N !1 limit. As such, they constitute natural
candidates for studying whether the concepts derived
from the nonadditive entropy Sq are applicable. A vari-
ety of properties have been calculated, through molec-
ular dynamics, for various systems, such as Lennard–
Jones-like fluids, XY and Heisenberg ferromagnets,
gravitational-like models, and others. One or more
long-standing quasi-stationary states (infinitely long-
standing in the limit N !1) are typically observed
before the terminal entrance into thermal equilib-
rium. Properties such as distribution of velocities
and angles, correlation functions, Lyapunov spectrum,
metastability, glassy states, aging, time-dependence of
the temperature in isolated systems, energy whenever
thermal contact with a large thermostat at a given
temperature is allowed, diffusion, order parameter,
and others, are typically focused on. An ongoing de-
bate exists, also involving Vlasov-like equations, Lyn-
den–Bell statistics, among others. The breakdown of
ergodicity that emerges in various situations makes
the whole discussion rich and complex. The activity
of the research nowadays in this area is illustrated
in papers such as [21,26,45,53,56,57,63,104,119,121,

Entropy, Figure 8
QuantumMonte Carlo simulations in [81]: aVelocity distribution
(superimposedwith a q-Gaussian);b Index q (superimposedwith
Lutz prediction [110], by courtesy of the authors)

126,127,132,133,134,135,136,142,169,200]. A quite re-
markable molecular-dynamical result has been ob-
tained for a paradigmatic long-range Hamiltonian: the
distribution of time averaged velocities sensibly differs
from that found for the ensemble-averaged velocities,
and has been shown to be numerically consistent with
a q-Gaussian [137], as shown in Fig. 7. This result pro-
vides strong support to a conjecture made long ago:
see Fig. 4 at p. 8 of [157].
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Entropy, Figure 9
Experiments in [81]: a Velocity distribution (superimposed with a q-Gaussian); b Index q as a function of the frequency; c Velocity
distribution (superimposed with a q-Gaussian; the red curve is a Gaussian); d Tail of the velocity distribution (superimposed with the
asymptotic power-law of a q-Gaussian). [By courtesy of the authors]

Stochastic differential equations Quite generic Fokker–
Planck equations are currently being studied. Aspects
such as fractional derivatives, nonlinearities, space-de-
pendent diffusion coefficients are being focused on,
as well as their connections to entropic forms, and
associated generalized Langevin equations [20,23,24,
70,128,168,214]. Quite recently, computational (see
Fig. 8) and experimental (see Fig. 9) verifications of
Lutz’ 2003 prediction [110] have been exhibited [81],
namely about the q-Gaussian form of the velocity
distribution of cold atoms in dissipative optical lat-
tices, with q D 1C 44ER/U0(ER and U0 being en-

ergy parameters of the optical lattice). These exper-
imental verifications are in variance with some of
those exhibited previously [96], namely double-Gaus-
sians. Although it is naturally possible that the ex-
perimental conditions have not been exactly equiv-
alent, this interesting question remains open at the
present time. A hint might be hidden in the recent
results [62] obtained for a quite different problem,
namely the size distributions of avalanches; indeed,
at a critical state, a q-Gaussian shape was obtained,
whereas, at a noncritical state, a double-Gaussian was
observed.
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Quantum entanglement and quantum chaos The non-
local nature of quantum physics implies phenomena
that are somewhat analogous to those originated by
classical long-range interactions. Consequently, a va-
riety of studies are being developed in connection
with the entropy Sq [3,36,58,59,60,61,155,156,195].
The same happens with some aspects of quantum
chaos [11,180,210,211].

Astrophysics, geophysics, economics, linguistics, cog-
nitive psychology, and other interdisciplinary appli-
cations Applications are available and presently searched

in many areas of physics (plasmas, turbulence, nuclear
collisions, elementary particles, manganites), but also
in interdisciplinary sciences such astrophysics [38,47,
48,49,78,84,87,101,109,129,196], geophysics [4,5,6,7,8,
9,10,62,208], economics [25,50,51,52,80,139,141,197,
215], linguistics [118], cognitive psychology [181], and
others.

Global optimization, image and signal processing
Optimizing algorithms and related techniques for
signal and image processing are currently being de-
veloped using the entropic concepts presented in this
article [17,35,72,75,95,105,114,120,164,166,191].

Superstatistics and other generalizations The methods
discussed here have been generalized along a vari-
ety of lines. These include Beck–Cohen superstatis-
tics [32,34,65,190], crossover statistics [194,196], spec-
tral statistics [201]. Also, a huge variety of entropies
have been introduced which generalize in different
manners the BG entropy, or even focus on other pos-
sibilities. Their number being nowadays over forty, we
mention here just a few of them: see [18,44,69,98,99,
115].
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Glossary

Some of the following definitions refer to the “Notation”
paragraph immediately below. Use mpt for ‘measure-pre-
serving transformation’.
Measure space A measure space (X;X; �) is a set X,

a field (that is, a �-algebra) X of subsets of X, and
a countably-additive measure� : X! [0;1]. (We of-
ten just write (X; �), with the field implicit.) For a col-
lection C � X, use Fld(C) � C for the smallest field in-
cluding C. The number �(B) is the “�-mass of B”.

Measure-preserving map A measure-preserving map
 : (X;X; �)! (Y ;Y; �) is a map  : X ! Y such
that the inverse image of each B 2 Y is in X, and
�( �1(B)) D �(B). A (measure-preserving) transfor-
mation is a measure-preserving map T : (X;X; �) !
(X;X; �). Condense this notation to (T : X;X; �) or
(T : X; �).

Probability space A probability space is a measure space
(X; �) with �(X) D 1; this � is a probability mea-
sure. All our maps/transformations in this article are
on probability spaces.

Factor map A factor map

 : (T : X;X; �)! (S : Y ;Y; �)

is a measure-preserving map  : X ! Y which inter-
twines the transformations,  ı T D S ı  . And  is
an isomorphism if – after deleting a nullset (a mass-
zero set) in each space – this  is a bijection and  �1

is also a factor map.
Almost everywhere (a.e.) A measure-theoretic statement

holds almost everywhere, abbreviated a.e., if it holds
off of a nullset. (Eugene Gutkin once remarked to me
that the problem with Measure Theory is . . . that you
have to say “almost everywhere”, almost everywhere.)
For example, B

a:e:
� Ameans that �(B X A) is zero. The

a.e. will usually be implicit.
Probability vector A probability vector Ev D (v1; v2; : : : )

is a list of non-negative reals whose sum is 1.We gener-
ally assume that probability vectors and partitions (see

http://dx.doi:10.1007/s00032-008-0087-y
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below) have finitely many components. Write “count-
able probability vector/partition”, when finitely or de-
numerably many components are considered.

Partition A partition P D (A1;A2; : : : ) splitsX into pair-
wise disjoint subsets Ai 2 X so that the disjoint unionF

i Ai is all of X. Each Ai is an atom of P. Use jPj or #P
for the number of atoms. When P partitions a proba-
bility space, then it yields a probability vector Ev, where
v j :D �(Aj). Lastly, use Phxi to denote the P-atom that
owns x.

Fonts We use the font H ;E; I for distribution-entropy,
entropy and the information function. In contrast, the
script font ABC : : : will be used for collections of sets;
usually subfields of X. Use E(�) for the (conditional)
expectation operator.

Notation Z D integers, ZC D positive integers, and
N D natural numbers D 0; 1; 2; : : :. (Some well-
meaning folk use N for ZC, saying ‘Nothing could be
more natural than the positive integers’. And this is
why 0 2 N. Use d�e and b�c for the ceiling and floor
functions; b�c is also called the “greatest-integer func-
tion”. For an interval J :D [a; b) � [�1;C1], let
[a : : : b) denote the interval of integers J \ Z (with
a similar convention for closed and open intervals).
E. g., (e : : : �] D (e : : : �) D f3g.
For subsets A and B of the same space, ˝ , use A � B
for inclusion and A ¦ B for proper inclusion. The dif-
ference set B X A is f! 2 B j ! … Ag. Employ Ac for
the complement˝ X A. Since we work in a probability
space, if we let x :D �(A), then a convenient conven-
tion is to have

xc denote 1 � x ;

since then �(Ac ) equals xc.
Use A4B for the symmetric difference [AXB][[BXA].
For a collection C D fEjg j of sets in˝ , let the disjoint
union

F
j E j or

F
(C) represent the union

S
j E j and

also assert that the sets are pairwise disjoint.
Use “8largen” to mean: “9n0 such that 8n > n0”. To
refer to left hand side of an Eq. (20), use LhS(20); do
analogously for RhS(20), the right hand side.

Definition of the Subject

The word ‘entropy’ (originally German, Entropie) was
coined by Rudolf Julius Emanuel Clausius circa 1865 [2,3],
taken from the Greek ����o��˛, ‘a turning towards’. This
article thus begins (Prolegomenon, “introduction”) and
ends (Exodos1, “the path out”) in Greek.

1This is the Greek spelling.

Clausius, in his coinage, was referring to the thermo-
dynamic notion in physics. Our focus in this article, how-
ever, will be the concept in measurable and topological
dynamics. (Entropy in differentiable dynamics2 would re-
quire an article by itself.) Shannon’s 1948 paper [6] on In-
formation Theory, then Kolmogorov’s [4] and Sinai’s [7]
generalization to dynamical systems, will be our starting
point. Our discussion will be of the one-dimensional case,
where the acting-group is Z.

“My greatest concern was what to call it. I thought
of calling it ‘information’, but the word was overly
used, so I decided to call it ‘uncertainty’. John von
Neumann had a better idea, he told me, ‘You should
call it entropy, for two reasons. In the first place your
uncertainty function goes by that name in statisti-
cal mechanics. In the second place, and more im-
portant, nobody knows what entropy really is, so
in a debate you will always have the advantage.’ ”
(Shannon as quoted in [59])

Entropy example:Howmany questions?

Imagine a dartboard, Fig. 1, split in five regions A; : : : ; E
with known probabilities. Blindfolded, you throw a dart
at the board. What is the expected number V of Yes/No
questions needed to ascertain the region in which the dart
landed?

Solve this by always dividing the remaining probability
in half. ‘Is it A?’ – if Yes, then V D 1. Else: ‘Is it B or C?’ –
if Yes, then ‘Is it B?’ – if No, then the dart landed in C,
and V D 3 was the number of questions. Evidently V D 3
also for regions B;D; E. Using “log” to denote base-2 log-
arithm3, the expected number of questions4 is thus

E(V ) D
1
2
� 1C

1
8
� 3C

1
8
� 3C

1
8
� 3C

1
8
� 3

D

4X

jD0

p j log
�

1
p j

�
note
D 2 : (1)

2For instance, see [15,18,24,25].
3In this paper, unmarked logs will be to base-2. In entropy theory,

it does not matter much what base is used, but base-2 is convenient
for computing entropy for messages described in bits. When using
the natural logarithm, some people refer to the unit of information as
a nat. In this paper, I have picked bits rather than nats.

4This is holds when each probability p is a reciprocal power of two.
For general probabilities, the “expected number of questions” inter-
pretation holds in a weaker sense: Throw N darts independently at
N copies of the dartboard. Efficiently ask Yes/No questions to deter-
mine where all N darts landed. Dividing byN, then sending N !1,
will be the p log

� 1
p

sum of Eq. 1.
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Entropy in Ergodic Theory, Figure 1
This dartboard is a probability space with a 5-set partition. The
atoms have probabilities 1

2 ;
1
8 ;

1
8 ;

1
8 ;

1
8 . This probability distribu-

tion will be used later in Meshalkin’s example

Letting Ev :D
� 1
2 ;

1
8 ;

1
8 ;

1
8 ;

1
8

be the probability vector, we

can write this expectation as

E(V ) D
X

x2Ev

�(x) :

Here, � : [0; 1]! [0;1) is the important function5

�(x) :D x log(1/x) ; so extending by continuity gives
�(0) D 0 :

(2)

An interpretation of “�(x)” is the number of questions
needed to winnow down to an event of probability x.

Distribution Entropy

Given a probability vector Ev, define its distribution en-
tropy as

H (Ev) :D
X

x2Ev

�(x) : (3)

This article will use the term distropy for ‘distribution en-
tropy’, reserving the word entropy for the corresponding
dynamical concept, when there is a notion of time in-
volved.Getting ahead of ourselves, the entropy of a station-
ary process is the asymptotic average value that its distropy
decays to, as we look at larger and larger finite portions of
the process.

An equi-probable vector Ev :D
� 1
K ;

K: : :; 1
K

evidently

hasH (Ev) D log(K). On a probability space, the “distropy
of partition P”, written H (P) or H (A1;A2; : : :) shall
mean the distropy of probability vector j 7! �(Aj).

A (finite) partition necessarily has finite distropy.
A countable partition can have finite distropy, e. g.

5There does not seem to be a standard name for this function. I
use �, since an uppercase � looks like an H, which is the letter that
Shannon used to denote what I am calling distribution-entropy.

H
� 1
2 ;

1
4 ;

1
8 ; : : :


D 2. One could also have infinite dis-

tropy: Consider a piece B � X of mass 1/2N . Split-
ting B into 2k many equal-mass atoms gives an �-sum
of 2k(k C N)/(2k2N). Setting k D kN :D 2N � N makes
this �-sum equal 1; so splitting the pieces of X DF1

ND1 BN , with �(BN ) D 1
2N , yields an1-distropy parti-

tion.

Function �

The �(x) D x log(1/x) function6 has vertical tangent at
x D 0, maximum at 1/e and, when graphed in nats slope
�1 at x D 1.

Consider partitions P and Q on the same space (X; �).
Their join, written P _ Q, has atoms A\ B, for each pair
A 2 P and B 2 Q. They are independent, written P?Q
if �(A\ B) D �(A)�(B) for each A; B pair. We write
P < Q, and say that “P refinesQ”, if each P-atom is a subset
of some Q-atom. Consequently, each Q-atom is a union of
P-atoms.

Recall, for ı a real number, our convention that ıc

means 1 � ı, in analogy with �(Bc ) equaling 1 � �(B) on
a probability space.

Distropy Fact

For partitions P;Q; R on probability space (X; �):

(a) H (P) � log(#P), with equality IFF P is an equi-mass
partition.

(b) H (Q _ R) �H (Q)CH (R), with equality IFF Q?R.
(c) For ı 2

�
0; 12

�
, the function ı 7!H (ı; ıc ) is strictly

increasing.
(d) R 4 P implies H (R) �H (P), with equality IFF

R a:e:
D P.

Proof Use the strict concavity of �(�), together with
Jensen’s inequality. �

Remark 1 Although we will not discuss it in this paper,
most distropy statements remain true with ‘partition’ re-
placed by ‘countable partition of finite distropy’.

6Curiosity: Just in this paragraph we compute distropy in nats,
that is, using natural logarithm. Given a small probability p 2 [0; 1]
and setting x :D 1/p, note that �(p) D log(x)

x 	 1/	(x), where 	(x)
denotes the number of prime numbers less-equal x. (This approx-
imation is a weak form of the Prime Number Theorem.) Is there
any actual connection between the ‘approximate distropy’ function
H
 (Ep) :D

P
p2Ep 1/	(1/p) and Number Theory, other than a coin-

cidence of growth rate?
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Entropy in Ergodic Theory, Figure 2
Using natural log, here are the graphs of: �(x) in solid red,
H (x; xc) in dashed green, 1� x in dotted blue. Both �(x) and
H (x; xc) are strictly convex-down. The 1� x line is tangent to
�(x) at x D 1

Entropy in Ergodic Theory, Figure 3
Using natural log: The graph ofH (x1; x2; x3) in barycentric co-
ordinates; a slice has been removed, between z D 0:745 and
z D 0:821. The three arches are copies of thedistropy curve from
Fig. 2.

Binomial Coefficients

The dartboard gave an example where distropy arises in
a natural way. Here is a second example.

For a small ı > 0, one might guess that the binomial
coefficient

� n
ın

grows asymptotically (as n!1) like 2"n ,

for some small ". But what is the correct relation between "
and ı?

Well, Stirling’s formula n! � [n/e]n gives

n!
[ın]![ıc n]!

�
nn

[ın][ın][ıc n][ı c n]

D
1

[ıın[ıc]ı c n]
(recall ıc D 1 � ı) :

Thus 1
n log

� n
ın

�H (ı; ıc). But by means of the above

distropy inequalities, we get an inequality true for all n,
not just asymptotically.

Lemma 2 (Binomial Lemma) Fix a ı 2
�
0; 12

�
and let

H :DH (ı; ıc ). Then for each n 2 ZC:

X

j2[0:::ın]

 
n
j

!

� 2Hn : (4)

Proof Let X � f0; 1gn be the set of Ex with

#fi 2 [1 : : : n] j xi D 1g � ın :

On X, let P1; P2; : : : be the coordinate partitions; e. g.
P7 D (A7;Ac

7), where A7 :D fEx j x7 D 1g. Weighting each
point by 1

jXj , the uniform distribution on X, gives that
�(A7) � ı. SoH (P7) � H, by (c) in Sect. “Distropy Fact”.

Finally, the join P1 _ � � � _ Pn separates the points ofX.
So

log(#X) DH (P1 _ � � � _ Pn)
�H (P1)C : : :CH (Pn)
� Hn ;

making use of (a),(b) in “Distropy Fact”. And #X equals
LhS (4). �

A Gander at Shannon’s Noisy Channel Theorem

We can restate the Binomial lemma using the Hamming
metric on f0; 1gn ,

Dist(Ex; Ey) :D #fi 2 [1 : : : n] j xi ¤ yig :

Use Bal(Ex; r) for the open radius-r ball centered at Ex, and

Bal(Ex; r) :D fEy j Dist (Ex; Ey) � rg

for the closed ball. The above lemma can be interpreted as
saying that

jBal(Ex; ın)j � 2H (ı;ı c )n ; for each Ex 2 f0; 1gn : (5)

Corollary 3 Fix n 2 ZC and ı 2
�
0; 12

�
, and let

H :DH (ı; ıc) :

Then there is a set C � f0; 1gn, with #C � 2[1�H]n, that is
strongly ın-separated. I. e., Dist (Ex; Ey) > ın for each dis-
tinct pair Ex; Ey 2 C.
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Noisy Channel

Shannon’s theorem says that a noisy channel has a channel
capacity. Transmitting above this speed, there is a mini-
mum error-rate (depending how much “above”) that no
error-correcting code can fix. Conversely, one can trans-
mit below – but arbitrarily close to – the channel capac-
ity, and encode the data so as to make the error-rate less
than any given ". We use Corollary 3 to show the exis-
tence of such codes, in the simplest case where the noise7

is a binary independent-process (a “Bernoulli” process, in
the language later in this article).

We have a channel which can pass one bit per sec-
ond. Alas, there is a fixed noise-probability � 2 [0; 12 )
so that a bit in the channel is perturbed into the other
value. Each perturbation is independent of all others. Let
H :DH (�; �c ). The value [1 �H] bits-per-second is the
channel capacity of this noise-afflicted channel.

Encoding/Decoding Encode using an “k; n–block-
code”; an injective map F : f0; 1gk ! f0; 1gn . The source
text is split into consecutive k-bit blocks. A block
Ex 2 f0; 1gk is encoded to F(Ex) 2 f0; 1gn and then sent
through the channel, where it comes out perturbed to
Ę 2 f0; 1gn . The transmission rate is thus k/n bits per
second.

For this example, we fix a radius r > 0 to determine
the decoding map,

Dr : f0; 1gn ! fOopsg t f0; 1gk :

We set Dr( Ę) to Ez if there is a unique Ez with
F(Ez) 2 Bal( Ę; r); else, set Dr( Ę) :D Oops.

One can think of the noise as a f0; 1g-independent-
process, with Prob(1) D �, which is added mod-2 to
the signal-process. Suppose we can arrange that the set
fF(Ex)) j Ex 2 f0; 1gkg of codewords, is a strongly r-sepa-
rated-set. Then

The probability that a block is mis-decoded
is the probability, flipping a �-coin n times
that we get more than r many Heads: (6)

Theorem 4 (Shannon) Fix a noise-probability � 2
�
0; 12



and let H :DH (�; �c). Consider a rate R < [1 �H] and
an " > 0. Then 8largen there exists a k and a code
F : f0; 1gk ! f0; 1gn so that: The F-code transmits bits at
faster than R bits-per-second, and with error-rate < ".

7The noise-process is assumed to be independent of the signal-
process. In contrast, when the perturbation is highly dependent on
the signal, then it is sometimes called distortion.

Proof Let H0 :DH (ı; ıc ), where ı > � was chosen so
close to � that

ı <
1
2

and 1 �H0 > R : (7)

Pick a large n for which

k
n
> R ; where k :D b[1 �H0]nc : (8)

By Corollary 3, there is a strongly ın-separated-set
C � f0; 1gn with #C � 2[1�H0]n . So C is big enough to
permit an injection F : f0; 1gk ! C. Courtesy Eq. (6), the
probability of a decoding error is that of getting more than
ın many Heads in flipping a �-coin n times. Since ı > �,
the Weak Law of Large Numbers guarantees – once n is
large enough – that this probability is less than the given ".

�

The Information Function

Agree to use P D (A1; : : :),Q D (B1; : : :), R D (C1; : : :) for
partitions, and F;G for fields.

With C a (finite or infinite) family of subfields of X,
their join

W
G2C G is the smallest field F such that G � F,

for each G 2 C. A partition Q can be interpreted also as
a field; namely, the field of unions of its atoms. A join of
denumerably many partitions will be interpreted as a field,
but a join of finitelymany, P1 _ � � � _ PN , will be viewed as
a partition or as a field, depending on context.

Conditioning a partition P on a positive-mass set B, let
PjB be the probability vector A 7! �(A\B)

�(B) . Its distropy is

H (PjB) D
X

A2P

log
�

1
�(A\ B)/�(B)

�
�(A\ B)
�(B)

:

So conditioning P on a partition Q gives conditional dis-
tropy

H (PjQ) D
X

B2Q

H (PjB)�(B)

D
X

A2P;B2Q

log
�

1
�(A\ B)/�(B)

�
�(A\ B) :

(9)

A “dartboard” interpretation ofH (PjQ) is

The expected number of questions to ascertain the
P-atom that a random dart x 2 X fell in, given that
we are told its Q-atom.
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For a set A � X, use 1A : X ! f0; 1g for its indicator
function; 1A(x) D 1 IFF x 2 A. The information function
of partition P, a map IP : X ! [0;1), is

IP :D
X

A2P

log
�

1
�(A)

�
1A(�) : (10)

The information function has been defined so that its ex-
pectation is the distropy of P,

E(IP) D
Z

X
IP(�)d� DH (P) :

Conditioning on a Field

For a subfield F � X, recall that each function g 2 L1(�)
has a conditional expectation E(gjF) 2 L1(�). It is the
unique F-measurable function with

8B 2 F :
Z

B
E(gjF)d� D

Z

B
gd� :

Returning to distropy ideas, use �(AjF) for the condi-
tional probability function; it is the conditional expecta-
tion E(1AjF). So the conditional information function is

IPjF(x) :D
X

A2P

log
�

1
�(AjF(x))

�
1A(x) : (11)

Its integral

H (PjF) :D
Z
IPjFd� ;

is the conditional distropy of P on F.
When F is the field of unions of atoms from some

partition Q, then the numberH (PjF) equals theH (PjQ)
from Eq. (9).

Write G j % F to indicate that fields G1 � G2 � : : : are
nested, and that Fld

�S1
1 G j


D F, a.e. The Martingale

Convergence Theorem (p. 103 in [20]) gives (c) below.

Conditional-Distropy Fact Consider partitions P;Q; R
and fields F and G j . Then

(a) 0 �H (PjF) �H (P), with equality IFF P
a:e:
� F, re-

spectively, P?F.
(b) H (Q _ RjF) �H (QjF)CH (RjF).
(c) Suppose G j % F. ThenH (PjG j)&H (PjF).
(d) H (Q _ R) DH (QjR)CH (R).
(d’) H (Q _ R1jR0) DH (QjR1 _ R0)CH (R1jR0).

Imagining our dartboard (Fig. 1) divided by superim-
posed partitions Q and R, equality (d) can interpreted as
saying: ‘You can efficiently discover where the dart landed

in both partitions, by first asking efficient questions about R,
then – based on where it landed in R – asking intelligent
questions about Q.’

Entropy of a Process

Consider a transformation (T : X; �) and partition
P D (A1;A2; : : :). Each “time” n determines a parti-
tion Pn :D TnP, whose jth-atom is T�n(Aj). The pro-
cess T; P refers to how T acts on the subfield

W1
0 Pn � X.

(An alternative view of a process is as a stationary se-
quence V0;V1; : : : of random variables Vn : X ! ZC,
where Vn(x) :D j because x is in the jth-atom of Pn .)

Write E(T; P) or ET (P) for the “entropy” of the T; P
process”. It is the limit of the conditional-distropy-num-
bers

cn :DH (P0jP1 _ P2 _ � � � _ Pn�1) :

This limit exists sinceH (P) D c1 � c2 � � � � � 0.
Define the average-distropy-number 1

n hn , where

hn :DH (P0 _ P1 _ � � � _ Pn�1) :

Certainly hn D cn CH (P1 _ � � � _ Pn�1) D cn C hn�1,
since T is measure preserving. Induction gives hn DPn

jD1 c j . So the Cesàro averages 1
n hn converge to the

entropy.

Theorem 5 The entropy of process (T; P : X;X; �) equals

lim
n!1

1
n
H (P0 _ � � � _ Pn�1)

D lim
n!1

H
 

P0

ˇ̌
ˇ
ˇ

n_

1

P j

!

DH
 

P0

ˇ̌
ˇ
ˇ

1_

1

P j

!

:

Both limits are non-increasing. The entropy ET (P) � 0,
with equality IFF P �

W1
1 P j . And ET (P) �H (P), with

equality IFF T; P is an independent process.

Generators

We henceforth only discuss invertible mpts, that is, when
T�1 is itself an mpt. Viewing the atoms of P as “letters”,
then, each x 2 X has a T; P-name

: : : x�2x�1x0x1x2x3 : : : ;

where xn is PhTn(x)i, the P-letter owning Tn(x).
A partition P generates (the whole field) un-

der (T : X; �), if
W1
�1 TnP D� X. It turns out8 that

8I am now at liberty to reveal that our X has always been
a Lebesgue space, that is, measure-isomorphic to an interval of R to-
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P generates IFF P separates points. That is, after delet-
ing a (T-invariant) nullset, distinct points of X have dis-
tinct T; P-names.

A finite set [1 : : : L] of integers, interpreted as an al-
phabet, yields the shift space X :D [1 : : : L]Z of dou-
bly-infinite sequences x D (: : : x�1x0x1 : : : ). The shift
T : X ! X acts on X by

T(x) :D [n 7! xnC1] :

The time-zero partition P separates points, under the ac-
tion of the shift. This L-atom time-zero partition has
Phxi D Phyi IFF x0 D y0. So no matter what shift-invari-
ant measure is put on X, the time-zero partition will gen-
erate under the action of T.

Time Reversibility

A transformation need not be isomorphic to its in-
verse. Nonetheless, the average-distropy-numbers show
that E(T�1; P) D E(T; P); although this is not obvious
from the conditioning-definition of entropy. Alternatively,

H
 

P0

ˇ̌
ˇ̌
n_

1

P j

!

DH (P0 _ � � � _ Pn) �H (P1 _ � � � _ Pn)
DH (P�n _ � � � _ P0) �H (P�n _ � � � _ P�1)

DH
 

P0

ˇ̌
ˇ̌
�n_

�1

P j

!

: (12)

Bernoulli Processes

A probability vector Ev :D (v1; : : : ; vL) can be viewed as
a measure on alphabet [1 : : : L]. Let �Ev be the resulting
product measure on X :D [1 : : : L]Z, with T the shift on X
and P the time-zero partition. The independent process
(T; P : X; �Ev ) is called, by ergodic theorists, a Bernoulli
process. Not necessarily consistently, we tend to refer to
the underlying transformation as a Bernoulli shift.

The
� 1
2 ;

1
2

-Bernoulli and the

� 1
3 ;

1
3 ;

1
3

-Bernoulli have

different process-entropies, but perhaps their underly-
ing transformations are isomorphic? Prior to the Kol-

gether with countably many point-atoms (points with positive mass).
The equivalence of generating and separating is a technical theorem,
due to Rokhlin.
Assuming � to be Lebesgue is not much of a limitation. For in-

stance, if � is a finite measure on any Polish space, then � extends
to a Lebesgue measure on the �-completion of the Borel sets. To not
mince words: All spaces are Lebesgue spaces unless you are actively
looking for trouble.

mogorov–Sinai definition of entropy9 of a transformation,
this question remained unanswered.

Entropy of a Transformation

The Kolmogorov–Sinai definition of the entropy of anmpt
is

E(T) :D supfET (Q) j Q a partition on Xg :

Certainly entropy is an isomorphism invariant – but is it
useful? After all, the supremumof distropies of partitions is
always infinite (on non-atomic spaces) and one might fear
that the same holds for entropies. The key observation (re-
stated in Lemma 8c and proved below) was this, from [4]
and [7].

Theorem 6 (Kolmogorov–Sinai Theorem) If P gener-
ates under T, then E(T) D E(T; P).

Thereupon the
� 1
2 ;

1
2

and

� 1
3 ;

1
3 ;

1
3

Bernoulli-shifts are

not isomorphic, since their respective entropies are
log(2) ¤ log(3).

Wolfgang Krieger later proved a converse to the Kol-
mogorov–Sinai theorem.

Theorem 7 (Krieger Generator Theorem, 1970) Sup-
pose T ergodic. If E(T) <1, then T has a generating par-
tition. Indeed, letting K be the smallest integer K > E(T),
there is a K-atom generator.10

Proof See Rudolph [21], or § 5.1 in� Joinings in Ergodic
Theory, where Krieger’s theorem is stated in terms of join-
ings. �

Entropy Is Continuous

Given ordered partitions Q D (B1; : : :) andQ0 D (B01; : : :),
extend the shorter by null-atoms until jQj D jQ0j. Let
Fat :D

F
j[Bj \ B0j]; this set should have mass close to 1

if Q and Q0 are almost the same partition. Define a new
partition

Q4Q0 :D fFatg t fBi \ B0j j with i ¤ jg :

(In other words, take Q _ Q0 and coalesce, into a single
atom, all the Bk \ B0k sets.) Topologize the space of parti-

9This is sometimes called measure(-theoretic) entropy or (per-
haps unfortunately)metric entropy, to distinguish it from topological
entropy. Tools known prior to entropy, such as spectral properties,
did not distinguish the two Bernoulli-shifts; see � Spectral Theory of
Dynamical Systems for the definitions.

10It is an easier result, undoubtedly known much earlier, that every
ergodic T has a countable generating partition – possibly of1-dis-
tropy.
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tions by saying11 that Q(L) ! Q whenH


Q4Q(L)

�
! 0.

Then Lemma 8b says that process-entropy varies continu-
ously with varying the partition.

Lemma 8 Fix a mpt (T : X; �). For partitions P;Q;Q0, de-
fine R :D Q4Q0 and let ı :DH (R). Then

(a) jH (Q)�H (Q0)j � ı. (Distropy varies continuously
with the partition.)

(b) jET (Q) � ET (Q0)j � ı. (Process-entropy varies contin-
uously with the partition.)

(c) For all partitions Q � Fld(T; P) : ET (Q) � ET (P).

Proof (of (a)) Evidently Q0 _ R D Q0 _ Q D Q _ R. So
H (Q0) �H (Q _ R) �H (Q)C ı. �

Proof (of (b)) As above,

H
 N_

1

Q0j

!

�H
 N_

1

Q j

!

CH
 N_

1

R j

!

:

Sending N !1 gives ET (Q0) � ET (Q)C ET (R). Finally,
ET (R) �H (R) and so ET (Q0) � ET (Q)C ı. �

Proof (of (c)) Let K :D jQj. Then there is a sequence of
K-set partitions Q(L) ! Q with Q(L) 4

WL
�L P`. By above,

ET (Q(L))! ET (Q), so showing that

ET

 L_

�L

P`

!
?
� ET (P)

will suffice. Note that

hN :DH
 N�1_

nD0

Tn

 L_

�L

P`

!!

DH

0

@
N�1CL_

jD�L

P j

1

A :

So 1
N hN � 1

NH

WN�1

0 P j

�
C 1

N 2LH (P). Now send
N !1. �

Entropy Is Not Continuous

The most common topology placed on the space ˝ of
mpts is the coarse topology12 that Halmos discusses in his
“little red book” [14].

11On the set of ordered K-set partitions (with K fixed) this conver-
gence is the same as: Q(L) ! Q when �

�
Fat

�
Q(L);Q


! 1.

An alternative approach is the Rokhlin metric, Dist(P;Q) :D
H (PjQ) C H (QjP), which has the advantage of working for un-
ordered partitions.

12i. e, Sn ! T IFF 8A 2 X : �(Sn�1(A)4T�1(A))! 0; this is
a metric-topology, since our probability space is countably generated.
This can be restated in terms of the unitary operator UT on L2(�),
where UT ( f ) :D f ı T . Namely, Sn ! T in the coarse topology IFF
USn ! UT in the strong operator topology.

The Rokhlin lemma (see p. 33 in [21]) implies that the
isomorphism-class of each ergodicmpt is dense in˝ , (e. g.,
see p. 77 in [14]) disclosing that the S 7! E(S) map is ex-
orbitantly discontinuous.

Indeed, the failure happens already for process-en-
tropy with respect to a fixed partition. A Bernoulli pro-
cess T; P has positive entropy. Take mpts Sn ! T , each
isomorphic to an irrational rotation. Then each E(Sn ; P) is
zero, as shown in the later section "Determinism andZero-
Entropy".

Further Results When F is a T-invariant subfield, agree
to use T�F for “T restricted to F”, which is a factor (see
Glossary) of T. Transformations T and S are weakly iso-
morphic if each is isomorphic to a factor of the other.

The foregoing entropy tools make short shrift of the
following.

Lemma 9 (Entropy Lemma) Consider T-invariant sub-
fields G j and F.

(a) Suppose G j % F. Then ET�G j % E(T�F). In partic-
ular, G � F implies that E(T�G) � E(T�F), so en-
tropy is an invariant of weak-isomorphism.

(b) E(T �G1_G2_:::) �
P

j E(T�G j ).
And E(T;Q1 _ Q2_ : : :) �

P
j E(T;Q j).

(c) For mpts (S j : Yj; � j): E(S1 � S2 � � � �) D
P

j E(S j).
(d) E(T�1) D E(T). More generally, E(Tn) D jnj � E(T).

Meshalkin’s Map

In the wake of Kolmogorov’s 1958 entropy paper, for two
Bernoulli-shifts to be isomorphic one now knew that they
had to have equal entropies. Meshalkin provided the first
non-trivial example in 1959 [45].

Let S : Y ! Y be the Bernoulli-shift over the “let-
ter” alphabet fE;D;P;Ng, with probability distribu-
tion

� 1
4 ;

1
4 ;

1
4 ;

1
4

. The lettersE;D;P;N stand for Even, oDd,

Positive, Negative, and will be used to describe the code
(isomorphism) between the processes.

Use T : X ! X for the Bernoulli-shift over “digit”
alphabet f0;C1;�1;C2;�2g, with probability distribu-
tion

� 1
2 ;

1
8 ;

1
8 ;

1
8 ;

1
8

. Both distributions

� 1
4 ;

1
4 ;

1
4 ;

1
4

and� 1

2 ;
1
8 ;

1
8 ;

1
8 ;

1
8

have distropy log(4).

After deleting invariant nullsets from X and Y , the
construction will produce a measure-preserving isomor-
phism  : X ! Y so that T ı  D  ı S.

The Code In X, consider this point x:

: : : 0 0 0 �1 0 0 +1 +2 �1 +1 0 : : :
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Regard each 0 as a left-parenthesis, and each non-zero as
a right-parenthesis. Link them according to the legal way
of matching parentheses, as shown in the top row, below:

0 0 0 �1 0 0 +1 +2 �1 +1 0
P N N D P P D E D D ?

The leftmost 0 is linked to the rightmost +1, as indicated
by the longest-overbar. The left/right-parentheses form
a
� 1
2 ;

1
2

-random-walk. Since this random walk is recur-

rent, every position in x will be linked (except for a nullset
of points x).

Below each 0, write “P” or “N” as the 0 is linked to
a positive or negative digit. And below the other digits,
write “E” or “D” as the digit is even or odd. So the upper
name in X is mapped to the lower name, a point y 2 Y .

This map  : X ! Y carries the upstairs� 1
2 ;

1
8 ;

1
8 ;

1
8 ;

1
8


distribution to
� 1
4 ;

1
4 ;

1
4 ;

1
4

, downstairs.

It takes some arguing to show that independence is pre-
served.

The inversemap �1 views D and E as right-parenthe-
ses, and P and N as left. Above D, write the odd digitC1 or
�1, as this D is linked to Positive or Negative.

Markov Shifts

A Bernoulli process T; P has independence P(�1:::0]?P1
whereas aMarkov process is a bit less aloof:

The infinite Past P(�1:::0] doesn’t provide anymore
information about Tomorrow than Today did.

That is, the conditional distribution P1jP(�1:::0] equals
P1jP0. Equivalently,

H (P1jP0) DH
�
P1jP(�1:::0]

 note
D E(T; P) : (13)

The simplest non-trivial Markov process (T; P : X; �)
is over a two-letter alphabet fa;bg, and has transition
graph Fig. 4, for some choice of transition probabilities s
and c. The graph’s Markov matrix is

M D [mi; j]i; j D
�
s c
1 0

�
;

where c D 1 � s, andmi; j denotes the probability of going
from state i to state j.

If Today’s distribution on the two states is the proba-
bility-vector Ev :D [pa pb], then Tomorrow’s is the prod-
uct EvM. So a stationary process needs EvM D Ev. This equa-
tion has the unique solution pa D 1

1Cc and pb D c
1Cc .

An example of computing the probability of a word or

Entropy in Ergodic Theory, Figure 4
Call the transition probabilities s :D Prob(a!a) for stay, and
c :D Prob a!b for change. These are non-negative reals, and
sC c D 1

cylinder set; (see Sect. “The Carathéodory Construction”
in�Measure Preserving Systems) in the process, is

�s (baaaba) D pbmbamaamaamabmba

D
c

1C c
� 1 � s � s � c � 1 :

The subscript on �s indicates the dependence on the tran-
sition probabilities; let’s also mark the mpt and call it Ts.
Using Eq. (13), the entropy of our Markov map is

E(Ts ) D pa �H (s; c)C pb �H (1; 0)„ ƒ‚ …
D0

D
�1

1C c
� [s log(s)C c log(c)] : (14)

Determinism and Zero-Entropy

Irrational rotations have zero-entropy; let’s reveal this in
two different ways.

Equip X :D [0; 1) with “length” (Lebesgue) measure
and wrap it into a circle. With “˚” denoting addition
mod-1, have T : X ! X be the rotation T(x) :D x ˚ ˛,
where the rotation number ˛ is irrational. Pick distinct
points y0; z0 2 X, and let P be the partition whose two
atoms are the intervals [y0; z0) and [z0; y0), wrapping
around the circle.

The T-orbit of each point x is dense13 in X. In par-
ticular, y0 has dense orbit, so P separates points – hence
generates – under T. Our goal, thus, is E(T; P) ?

D 0.

Rotations are Deterministic

The forward T-orbit of each point is dense. This is true
for y0, and so the backward T; P-name of each x actu-
ally tells us which point x is. I. e., P �

W�1
�1 TnP, which

is our definition of “process T; P is deterministic”. Our P
being finite, this determinism implies that E(T; P) is zero,
by Theorem 5.

13Fix an " > 0 and an N > 1/". Points x;T(x); : : : ; TN (x) have
some two at distance less than 1

N ; say, Dist(Ti (x);T j(x)) < ", for
some 0 � i < j � N . Since T is an isometry, " > Dist(x;Tk (x)) >
0, where k :D j� i. So the Tk-orbit of x is "-dense.
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Counting Names in a Rotation The P0 _ � � � _ Pn�1
partition places n translates of points y0 and of z0,
cutting the circle into at most 2n intervals. Thus
H (P0 _ : : : _ Pn�1) � log(2n). And 1

n log(2n)! 0.
Alternatively, the below SMB-theorem implies, for an

ergodic process T; P, that the number of length-n names is
approximately 2E(T;P)�n ; this, after discarding small mass
from the space. But the growth of n 7! 2n is sub-exponen-
tial and so, for our rotation, E(T; P) must be zero.

Theorem 10 (Shannon–McMillan–Breiman Theorem
(SMB-Theorem)) Set E :D E(T; P), where the tuple
(T; P : X; �) is an ergodic process. Then the average infor-
mation function

1
n
IP[0:::n) (x)

n!1
�! E ; for a.e. x 2 X : (15)

The functions fn :D IP[0:::n) converge to the constant func-
tion E both in the L1-norm and in probability. 14

Proof See the texts of Karl Petersen (p. 261 in [20]), or
Dan Rudolph (p. 77 in [21]).

�

Consequences Recall that P[0:::n) means P0 _ P1 _ � � � _
Pn�1, where P j :D T jP. As usual, P[0:::n)hxi denotes the
P[0:::n)-atom owning x.

Having deleted a nullset, we can restate Eq. (15) to now
say that 8";8x;8largen:

1/2[EC"]n � �
�
P[0:::n)hxi


� 1/2[E�"]n : (16)

This has the following consequence. Fixing a number
ı > 0, we consider any set with �(B) � ı and count the
number of n-names of points in B. The SMB-Thm implies

8";8largen;8B
�
� ı :

ˇ
ˇfn-names in Bg

ˇ
ˇ � 2[E�"]n : (17)

Rank-1 Has Zero-Entropy

There are several equivalent definitions for “rank-1 trans-
formation”, several of which are discussed in the introduc-
tion of [28]. (See Chap. 6 in [13] as well as [51] and [27] for
examples of stacking constructions.)

A rank-1 transformation (T : X; �) admits a generat-
ing partition P and a sequence of Rokhlin stacks Sn � X,
with heights going to1, and with �(Sn)! 1. Moreover,
each of these Rokhlin stacks is P-monochromatic, that is,
each level of the stack lies entirely in some atom of P.

Taking a stack of some height 2n, let B D Bn be the
union of the bottom n levels of the stack. There are at most

14In engineering circles, this is called the Almost-everywhere equi-
partition theorem.

nmany length-n names starting in Bn, by monochromatic-
ity. Finally, �(Bn) is almost 1

2 , so is certainly larger than
ı :D 1

3 . Thus Eq. (17) shows that our rank-1 T has zero
entropy.

Cautions on Determinism’s Relation to Zero-Entropy

A finite-valued process T; P has zero-entropy iff
P �

W�1
�1 P j . Iterating gives

1_

0

P j �

�1_

�1

P j ;

i. e., the future is measurable with respect to the past.
This was the case with the rotation, where a point’s

past uniquely identified the point, thus telling us its future.
While determinism and zero-entropy mean the same

thing for finite-valued processes, this fails catastrophi-
cally for real-valued (i. e., continuum-valued) processes, as
shown by an example of the author’s. A stationary real-
valued process V D : : :V�1 V0 V1 V2 : : : is constructed
in [40] which is simultaneously

strongly deterministic: The two values V0;V1 deter-
mine all of V, future and past.

and non-consecutively independent. This latter means
that for each bi-infinite increasing integer sequence
fnjg

1
jD�1 with no consecutive pair (always 1 C nj <

njC1), then the list of random variables : : :Vn�1 Vn0 Vn1
Vn2 : : : is an independent process.

Restricting the random variables to be countably-
valued, how much of the example survives? Joint work
with Kalikow [39] produced a countably-valued stationary
V which is non-consecutively independent as well as de-
terministic. (Strong determinism is ruled out, due to car-
dinality considerations.) A side-effect of the construction
is that V’s time-reversal n 7! V�n is not deterministic.

The Pinsker–Field and K-Automorphisms

Consider the collection of zero-entropy sets,

Z D ZT :D fA 2 X j E(T; (A;Ac )) D 0g : (18)

Courtesy of Lemma 9b, Z is a T-invariant field, and

8Q � Z : E(T;Q) D 0 : (19)

The Pinsker field15 of T is thisZ. It is maximal with respect
to Eq. (19). Unsurprisingly, the Pinsker factor T�Z has

15Traditionally, this called the Pinsker algebra where, in this con-
text, “algebra” is understood to mean “
-algebra”.
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zero entropy, that is, E(T�Z) D 0. A transformation T is
said to have completely-positive entropy if it has no (non-
trivial) zero-entropy factors. That is, its Pinsker field ZT is
the trivial field, ; :D f¿; Xg.

K-Processes

Kolmogorov introduced the notion of a K-process or Kol-
mogorov process, in which the present becomes asymptot-
ically independent of the distant past. The asymptotic past
of the T; P process is called its tail field, where

Tail(T; P) :D
1\

MD1

�M_

jD�1

P j :

This T; P is a K-process if Tail(T; P) D ;. This turns out
to be equivalent to what we might a call a strong form of
“sensitive dependence on initial conditions”: For each fixed
length L, the distant future

_

j2(G:::GCL]

P j

becomes more and more independent of
_

j2(�1:::0]

P j ;

as the gap G !1.
A transformation T is a Kolmogorov automorphism

if it possesses a generating partition P for which T; P is
a K-process.

Here is a theorem that relates the “asymptotic forget-
fulness” of Tail(T; P) D ;, to the lack of determinism im-
plied by having no zero-entropy factors (SeeWalters, [23],
p. 113. Related results appear in Berg [44]).

Theorem 11 (Pinsker-Algebra Theorem) Suppose P is
a generating partition for an ergodic T. Then Tail(T; P)
equals ZT .

SinceZT does not depend on P, this means that all generat-
ing partitions have the same tail field, and therefore K-ness
of T can be detected from any generator.

Another non-evident fact follows from the above. The
future field of T; P is defined to be Tail (T�1P). It is not
obvious that if the present is independent of the distant
past, then it is automatically independent of the distant fu-
ture. (Indeed, the precise definitions are important; wit-
ness the Cautions on determinism section.) But since the
entropy of a process, E(T; (A;Ac )), equals the entropy of
the time-reversed process E(T�1; (A;Ac )), it follows that
ZT equals ZT�1 .

Ornstein Theory

In 1970, DonOrnstein [46] solved the long-standing prob-
lem of showing that entropy was a complete isomorphism-
invariant of Bernoulli transformations; that is, that two in-
dependent processes with same entropy necessarily have
the same underlying transformation. (Earlier, Sinai [52])
had shown that two such Bernoulli maps were weakly iso-
morphic, that is, each isomorphic to a factor of the other.)

Ornstein introduced the notion of a process being
finitely determined, see [46] for a definition, proved that
a transformation T was Bernoulli IFF it had a finitely-de-
termined generator IFF every partition was finitely-deter-
mined with respect to T, and showed that entropy com-
pletely classified the finitely-determined processes up to
isomorphism.

This seminal result led to a vast machinery for proving
transformations to be Bernoulli, as well as classification
and structure theorems [47,51,53]. Showing that the class
of K-automorphisms far exceeds the Bernoulli maps, Orn-
stein and Shields produced in [48] an uncountable fam-
ily of non-isomorphic K-automorphisms all with the same
entropy.

Topological Entropy

Adler, Konheim and McAndrew, in 1965, published the
first definition of topological entropy in the eponymous ar-
ticle [33]. Here, T : X ! X is a continuous self-map of
a compact topological space. The role of atoms is played
by open sets. Instead of a finite partition, one uses a finite16

open-cover V D fUjg
L
jD1, i. e. each patch Uj is open, and

their union
S
(V) D X. (Henceforth, ‘cover’ means “open

cover”.)
Let Card(V) be the minimum cardinality over all sub-

covers.

Card(V) :D Min
˚
]V0 j V0 � V and

[
(V0) D X

�
;

and let

H (V) DHtop(V) :D log(Card(V)) :

Analogous to the definitions for partitions, define

V _W :D fV \W j V 2 V andW 2 Wg ;

TV :D fT�1(U) j U 2 Vg

and V[0:::n) :D V0 _ V1 _ � � � _ Vn�1 ;
W < V ; if each W-patch is a subset of some V-patch:

16Because we only work on a compact space, we can omit “finite”.
Some generalizations of topological entropy to non-compact spaces
require that only finite open-covers be used [37].
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The T;V-entropy is

ET (V) D E(T;V) D Etop(T;V)

:D lim sup
n!1

1
n
Htop

�
V[0:::n)


: (20)

And the topological entropy of T is

Etop(T) :D supV Etop(T;V) ; (21)

taken over all open covers V.
Thus Etop counts, in some sense, the growth rate in the

number of T-orbits of length n.
Evidently, topological entropy is an isomorphism in-

variant. Two continuous maps T : X ! X and S : Y ! Y
are topologically conjugate (as isomorphism is called in
this category) if there exists a homeomorphism  : X !
Y with  T D S .

Lemma 12 (Subadditive Lemma) Consider a sequence
s D (sl )11 � [�1;1] satisfying skCl � sk C sl , for all
k; l 2 Z. Then the following limit exists in [�1;1], and
limn!1

sn
n D infn sn

n .

Topological entropy, or “top ent” for short, satisfies many
of the relations of measure-entropy.

Lemma 13

(a) V 4 W implies

H (V) �H (W) and E(T;V) � E(T;W) :

(b) H (V _W) �H (V)CH (W).
(c) H (T(V)) �H (V), with equality if T is surjective.

Also, E(T;V) �H (V).
(d) In Eq. (20), the limn!1

1
nH

�
V[0:::n)


exists.

(e) Suppose T is a homeomorphism. Then

E(T�1;V) D E(T;V) ;

for each cover V. Consequently, Etop(T�1) D Etop(T).
(f) Suppose C is a collection of covers such that: For each

cover W, there exists a V 2 C with V < W. Then
Etop(T) equals the supremum of Etop(T;V), just taken
over those V 2 C.

(g) For all ` 2 N :

Etop



T`
�
D `Etop(T) :

Proof (of (c)) Let C 4 V be a min-cardinality subcover.
Then TC is a subcover of TV. So Card TV � jTCj D jCj.

As for entropy, inequality (b) and the foregoing give
H (V[0:::n)) �H (V)n. �

Proof (of (d)) Set sn :DH (V[0:::n)). Then

skCl � sk CH


Tk �V[0:::l )

�
� sk C sl ;

by (b) and (c), and so the Subadditive Lemma 12, applies.
�

Proof (of (g)) WLOG, ` D 3. Given V a cover, triple it to
bV :D V \ TV \ T2V; so

_

j2[0:::N)

�
T3� j



bV
�
D

_

i2[0:::3N)

Ti(V) :

ThusH


T3;bV;N

�
DH (T;V; 3N), extending notation.

Part (d) and sending N !1, gives E(T3;bV) D

3H (T;V).
Lastly, take covers such that

E


T3;C(k)

�
! Etop

�
T3 and

E


T;D(k)

�
! Etop(T) ;

as k!1. Define V(k) :D C(k) _D(k). Apply the above to
V(k), then send k!1. �

Using a Metric

From now on, our space is a compact metric space (X; d).
Dinaburg [36] and Bowen [34,35], gave alternative,

equivalent, definitions of topological entropy, in the com-
pact metric-space case, that are often easier to work with
than covers. Bowen gave a definition also when X is not
compact17 (see [35] and Chap. 7 in [23]).

Metric Preliminaries An "-ball-cover comprises
finitely many balls, all of radius ". Since our space is
compact, every cover V has a Lebesgue number " > 0.
I. e., for each z 2 X, the Bal(z; ") lies entirely inside at least
one V-patch. (In particular, there is an "-ball-cover which
refines V.) Let LEB(V) be the supremum of the Lebesgue
numbers. Courtesy of Lemma 13f we can

Fix a “universal” list V(1) 4 V(2) 4 : : :, with V(k)

a 1
k -ball-cover. For every T : X ! X, then, the

limk E(T;V(k)) computes Etop(T).

17When X is not compact, the definitions need not coincide;
e. g. [37]. And topologically-equivalent metrics, but which are not
uniformly equivalent, may give the same T different entropies (see
p. 171 in [23]).
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An "-Microscope Three notions are useful in examin-
ing a metric space (X;m) at scale ". Subset A � X is an
"-separated-set, if m(z; z0) � " for all distinct z; z0 2 A.
Subset F � X is "-spanning if 8x 2 X; 9z 2 F with
m(x; z) < ".

Lastly, a cover V is "-small if Diam(U) < ", for each
U 2 V.

You Take the High Road and I’ll Take the Low Road
There are several routes to computing top-ent, some
via maximization, others, minimization. Our forego-
ing discussion computed Etop(T) by a family of sizes
fk(n) D f Tk (n), depending on a parameter k which spec-
ifies the fineness of scale. (In Sect. “Metric Preliminar-
ies”, this k is an integer; in the original definition, an open
cover.) Define two numbers:

bL f (k) :D lim sup
n!1

1
n
log fk(n) and

L f (k) :D lim inf
n!1

1
n
log fk(n) : (22)

Finally, let E f (T) :D supkbL f (k). If the limit exists
in Eq. (22) then agree to write L f (k) for the common value.

The A-K-M definition used the size fV(n) :D
Card(V[0:::n)), where

Card(W) :DMinimum cardinality of
a subcover from W:

Here are three metric-space sizes f"(n):

Sep(n; ") :DMaximum cardinality of
a dn–"-separated set:

Spn(n; ") :DMinimum cardinality of
a dn–"-spanning set:

Cov(n; ") :DMinimum cardinality of
a dn–"-small cover:

These use a list (dn)1nD1 of progressively finermetrics onX,
where

dN (x; y) :D Max j2[0:::N) d


T j(x); T j(y)

�
:

Theorem 14 (All-Roads-Lead-to-Rome Theorem) Fix "
and let W be any d-"-small cover. Then

(i) 8n :
Cov(n; 2")�Spn(n; ")�Sep(n; ")�Card(W[0:::n)) :

(ii) Take a cover V and a ı < LEB(V). Then 8n:
Card(V[0:::n)) � Cov(n; ı) :

(iii) The limit LCov(") D limn
1
n log(Cov(n; ")) exists in

[0 : : :1) :

(iv)

ESep(T) D ESpn(T) D ECov(T) D ECard(T)
by defn
D Etop(T) :

Proof (of (i)) Take F � X, a min-cardinality dn-"-span-
ning set. So

S
z2F Dz D X, where

Dz :D dn-Bal(z; ")
note
D

n�1\

jD0

T� j


Bal



T jz; "

��
:

This D :D fDzgz is a cover, and it is dn–2"–small. Thus
Cov(n; 2") � jDj D jFj.

For anymetric, amaximal "-separated-set is automati-
cally "-spanning; adjoin a putative unspanned point to get
a larger separated set.

Let A be a max-cardinality dn-"-separated set. Take C,
a min-cardinality subcover of W[0:::n). For each z 2 A,
pick a C-patch Cz 3 z. Could some pair x; y 2 A pick
the same C? Well, write C D

Tn�1
jD0 T

� j(Wj), with each
Wj 2 W. For every j 2 [0 : : : n), then,

d(T j(x); T j(y)) � Diam(Wj) < " :

Hence dn(x; y) < "; so x D y. Accordingly, the z 7! Cz
map is injective, whence jAj � jCj. �
Proof (of (ii)) Choose a min-cardinality dn-ı-small cover
C. For eachC 2 C and j 2 [0 : : : n), the d-Diam(T jC) < ı.
So there is a V-patch VC; j � T j(C). Hence

V[0:::n)
note
3

n�1\

jD0

T� j �VC; j

� C :

Thus V[0:::n) 4 C. So

Card
�
V[0:::n)


� Card(C) � jCj D Cov(n; ı) : �

Proof (of (iii)) To upper-bound Cov(k C l ; ") let V and
W bemin-cardinality "-small covers, respectively, for met-
rics dk and dl . Then V \ Tl (W) is a "-small for dkCl .
Consequently Cov(kCl; ") � Cov(k; ") � Cov(l ; "). Thus
n 7! log(Cov(n; ")) is subadditive. �
Proof (of (iv)) Pick a V from the list in Sect. “Met-
ric Preliminaries”, choose some 2" < LEB(V) followed by
an "-small W from Sect. “Metric Preliminaries”. Pushing
n!1 gives

LCard(V) � LCov(2") �
bLSpn(") �bLSep(")

LSpn(") � LSep(")
� LCard(W) :

(23)

Now send V and W along the list in Sect. “Metric Prelimi-
naries”. �
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Pretension Topological entropy takes its values
in [0;1]. A useful corollary of Eq. (23) can be stated
in terms of any Distance(�; �) which topologizes [0;1] as
a compact interval.

For each continuous T : X ! X on a compact
metric-space, the Distance



bLSep("); LSep(")

�
goes to

zero as "&0. Consequently, we can pretend that the

LSep(") D lim
n!1

1
n
log(Sep(n; ")) (24)

limit exists, in arguments that subsequently
send "&0. Ditto for LSpn(").

This will be used during the proof of theVariational Prin-
ciple. But first, here are two entropy computations which
illustrate the efficacy in having several characterizations of
topological entropy.

Etop(Isometry) D 0 Suppose (T : X; d) is a distance-
preserving map of a compact metric-space. Fixing ", a set
is dn-"-separated IFF it is d-"-separated. Thus Sep(n; ")
does not grow with n. So eachbLSep(") is zero.

Topological Markov Shifts Imagine ourselves back in
the days when computer data is stored on large reels of
fast-moving magnetic tape. One strategy to maximize the
density of binary data stored is to not put timing-marks
(which take up space) on the tape. This has the defect that
when the tape-writer writes, say, 577 consecutive 1-bits,
then the tape-reader may erroneously count 578 copies
of 1. We sidestep this flaw by first encoding our data so
as to avoid the 11577: : :1 word, then writing to tape.

Generalize this to a finite alphabet Q and a finite list
F of disallowed Q-words. Extend each word to a com-
mon length K C 1; now F � QKC1. The resulting “K-step
TMS (topological Markov shift)” is the shift on the set of
doubly-1Q-names having no substring in F. In the above
magnetic-tape example, K D 576. Making it more realis-
tic, suppose that some string of zeros, say 00574: : :0, is also
forbidden18. Extending to length 577, we get 23D8 new
disallowed words of form 00574: : :0b1b2b3.

We recode to a 1-step TMS (just called a TMS or
a subshift of finite type) over the alphabet P :D QK . Each
outlawed Q-word w0w1 � � �wK engenders a length-2 for-
bidden P-word (w0; : : : ;wK�1)(w1; : : : ;wK). The result-
ing TMS is topologically conjugate to the original K-step.
The allowed length-2 words can be viewed as the edges in

18Perhaps the ;-bad-length, 574, is shorter than the 1-bad-length
because, say, ;s take less tape-space than 1s and so – being written
more densely – cause ambiguity sooner.

Entropy in Ergodic Theory, Figure 5
Ignoring the labels on the edges, for the moment, the
Golden shift, T, acts on the space of doubly-infinite paths
through this graph. The space can be represented as a subset
XGold � fa;bgZ, namely, the set of sequences with no two con-
secutive b letters.

a directed-graph and the set of points x 2 X is the set of
doubly-1 paths through the graph. Once trivialities re-
moved, this X is a Cantor set and the shift T : X ! X is
a homeomorphism.

The Golden Shift As the simplest example, suppose our
magnetic-tape is constrained by the Markov graph, Fig. 5
that we studied measure-theoretically in Fig. 4.

We want to store the text of The Declaration of Inde-
pendence on our magnetic tape. Imagining that English is
a stationary process, we’d like to encode English into this
Golden TMS as efficiently as possible. We seek a shift-in-
variant measure � on XGold of maximum entropy, should
such exist.

View PDfa;bg as the time-zero partition on XGold;
that is, name xD: : : x�1x0x1x2 : : :, is in atom b IFF letter
x0 is “b”. Any measure � gives conditional probabilities

�(aja) D: s ; �(bja) D: c ;

�(ajb) note
D 1 ; �(bjb) note

D 0 :

But recall, E(T) DH (P1jP[�1:::0)) �H (P1jP0). So
among all measures that make the conditional distribution
Pja equal (s; c), the unique one maximizing entropy is the
(s; c)-Markov-process. Its entropy, derived in Eq. (14), is

f (s) :D
1

2 � s
H (s; 1 � s)

D
�1
2 � s

�
slog(s)C (1 � s)log(1 � s)

�
: (25)

Certainly f (0) D f (1) D 0, so f ’s maximum occurs at the
(it turns out) unique point bs where the derivative f 0(bs)
equals zero. Thisbs D (�1C

p
5)/2. Plugging in, the max-

imum entropy supportable by the Golden Shift is

MaxEnt D
2

5 �
p
5

"
�1C

p
5

2
log

�
2

�1C
p
5

�

C
3 �
p
5

2
log

�
2

3 �
p
5

�#

: (26)
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Exponentiating, the number of �-typical n-names grows
like Gn , where

G :D

2

4 2
�1C

p
5

�1C
p

5
5�
p

5

3

5

2

4 2
3 �
p
5

3�
p

5
5�
p

5

3

5 : (27)

This expression19 looks unpleasant to simplify – it isn’t
even obviously an algebraic number – and yet topologi-
cal entropy will reveal its familiar nature. This, because the
Variational Principle (proved in the next section) says that
the top-ent of a system is the supremum of measure-en-
tropies supportable by the system.

Top-ent of the Golden Shift For a moment, let’s work
more generally on an arbitrary subshift (a closed, shift-
invariant subset) X � QZ, where Q is a finite alphabet.
Here, the transformation is always the shift – but the space
is varying – so agree to refer to the top-ent as Etop(X).
Let NamesX(n) be the number of distinct words in the set˚
x�[0:::n) j x 2 X

�
. Note that a metric inducing the prod-

uct-topology on QZ is

d(x; x0) :D
1

1C jmj
; (28)

for the smallest jmj with xm ¤ x0m .

Lemma 15 Consider a subshift X. Then the

lim
n!1

1
n
log(NamesX(n))

exists in [0;1], and equals Etop(X).

Proof With " 2 (0; 1) fixed, two n-names are dn-"-
separated IFF they are not the same name. Hence
Sep(n; ") D NamesX(n). �

To compute Etop(XGold), declare that a word is “golden”
if it appears in some x 2 XGold. Each [nC 1]-golden word
ending ina has formwa, wherew is n-golden. An [nC 1]-
golden word ending in b, must end in ab and so has form
wab, where w is [n � 1]-golden. Summing up,

NamesXGold (nC 1)
D NamesXGold (n)C NamesXGold (n � 1) :

This is the Fibonacci recurrence, and indeed, these are
the Fibonacci numbers, since NamesXGold (0) D 1 and
NamesXGold (1) D 2. Consequently, we have that

NamesXGold (n) � Const � �n ;

19A popular computer-algebra-system was not, at least under my
inexpert tutelage, able to simplify this. However, once top-ent gave
the correct answer, the software was able to detect the equality.

where� D 1C
p
5

2 is the Golden Ratio. So the sesquipedali-
an number G from Eq. (27) is simply�, and Etop(XGold) D
log(�).

Since log(�) � 0:694, each thousand bits written on
tape (subject to the “no bb substrings” constraint) can
carry at most 694 bits of information.

Top-ent of a General TMS A (finite) digraph G engen-
ders a TMS T : XG ! XG, as well as a f0; 1g-valued ad-
jacency matrix ADAG, where ai; j is the number of di-
rected-edges from state i to j. (Here, each ai; j is 0 or 1.)
The (i; j)-entry in power An is automatically the number
of length-n paths from i to j. Employing the matrix-norm
kMk :D

P
i; j jmi; jj, then,

kAkn D NamesX(n) :

Happily Gelfand’s formula (see 10.13 in [58] or Spectral_
radius in [60]) applies: For an arbitrary (square) complex
matrix,

lim
n!1

kAnk
1
n D SpecRad(A) : (29)

This right hand side, the spectral radius of A, means the
maximum of the absolute values of A’s eigenvalues. So the
top-ent of a TMS is thus the

Etop(XG) D SpecRad(AG)
:D Max

˚
jej
ˇ
ˇ e is an eigenvalue of AG

�
: (30)

The (a;b)-adjacency matrix of Fig. 5 is
�
1 1
1 0

�
;

whose eigenvalues are � and �1
�
.

Labeling Edges Interpret (s; c; 1) simply as edge-labels
in Fig. 5. The set of doubly-1 paths can also be viewed
as a subset YGold � fs; c; 1gZ, and it too is a TMS. The
shift on YGold is conjugate (topologically isomorphic) to
the shift on XGold, so they a fortiori have the same top-
ent, log(�). The (s; c; 1)-adjacency matrix is
2

4
1 1 0
0 0 1
1 1 0

3

5 :

Its j � j-largest eigenvalue is still �, as it must.
Now we make a new graph. We modify Fig. 5 by man-

ufacturing a total of two s-edges, seven c-edges, and three
edges 11; 12; 13. Give these 2C 7C 3 edges twelve dis-
tinct labels. We could compute the resulting TMS-entropy

http://en.wikipedia.org/wiki/Spectral_radius
http://en.wikipedia.org/wiki/Spectral_radius
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from the corresponding 12 � 12 adjacency matrix. Alter-
natively, look at the (a;b)-adjacency matrix

A :D
�
2 7
3 0

�
:

The roots of its characteristic polynomial are 1˙
p
22.

Hence Etop of this 12-symbol TMS is log(1C
p
22).

The Variational Principle

Let M :D M(X; d) be the set of Borel probability mea-
sures, and M(T) :D M(T : X; d) the set of T-invariant
� 2M. Assign

EntSup(T) :D sup fE�(T) j � 2M(T)g :

Theorem 16 (Variational principle (Goodson))
EntSup(T) D Etop(T).

This says that top-ent is the top entropy – if there is a mea-
sure � which realizes the supremum. There doesn’t have
to be. Choose a sequence of metric-systems (Sk : Yk ;mk)
whose entropies strictly increase Etop(Sk)% L to some
limit in (0;1]. Let (S1 : Y1;m1) be the identity-map
on a 1-point space. Define a new system (T : X; d), where
X :D

F
k2[1:::1] Yk . Have T(x) :D Sk(x), for the unique k

with Yk 3 x. As for the metric, on Yk let d be a scaled
version of mk , so that the d-Diam(Yk ) is less than 1/2k .
Finally, for points in distinct components, x 2 Yk and
z 2 Y`, decree that d(x; z) :D

ˇ̌
2�k � 2�`

ˇ̌
. Our T is con-

tinuous, and is a homeomorphism if each of the Sk is. Cer-
tainly Etop(T) D L > Etop(Sk), for every k 2 [1 : : :1].

If L is finite then there is no measure � of maximal
entropy; for � must give mass to some Yk ; this pulls the
entropy below L, since there are no compensatory compo-
nents with entropy exceeding L.

In contrast, when L D 1 then there is a maximal-en-
tropy measure (put mass 1/2 j on some component Yk j ,
where k j%1 swiftly); indeed, there are continuum-many
maximal-entropymeasures.But there is no 20 ergodicmea-
sure of maximal entropy.

For a concrete L D 1 example, let Sk be the shift
on [1 : : : k]Z.

20The ergodic measures are the extreme points of M(T); call
them MErg(T). This M(T) is the set of barycenters obtained
from Borel probability measures on MErg(T) (see Krein-Milman_
theorem, Choquet_theory in [60]). In this instance, what explains the
failure to have an ergodic maximal-entropy measure? Let �k be an
invariant ergodic measure on Yk . These measures do converge to the
one-point (ergodic) probability measure �1 on Y1 . But the map
� 7! E�(T) is not continuous at�1 .

Topology on M Let’s arrange our tools for establishing
the Variational Principle. The argument will follow Mis-
iurewicz’s proof, adapted from the presentations in [23]
and [11].

EquipM with the weak- topology. 21 An A � X is�-
nice if its topological boundary @(A) is �-null. And a par-
tition is �-nice if each atom is.

Proposition 17 If ˛L ! � and A � X is �-nice, then
˛L(A)! �(A).

Proof Define operator U(D) :D lim supL ˛L(D). It suf-
fices to show that U(A) � �(A). For since Ac is �-nice
too, then U(Ac) � �(Ac). Thus limL ˛L(A) exists, and
equals �(A).

Because C :D A is closed, the continuous functions
fN & 1C pointwise, where

fN(x) :D 1 �Min(N � d(x;C); 1) :

By the Monotone Convergence theorem, then,
Z

fNd�
N
�! �(C) :

And �(C) D �(A), since A is nice. Fixing N, then, it suf-
fices to establishU(A) �

R
fNd�. But fN is continuous, so

Z
fNd� D lim sup

L!1

Z
fNd˛L

� lim sup
L!1

Z
1Ad˛L D U(A) : �

Corollary 18 Suppose ˛L ! �, and partition P is �-nice.
ThenH˛L (P)!H�(P).

The diameter of partition P is MaxA2PDiam(A).

Proposition 19 Take � 2 M and " > 0. Then there exists
a �-nice partition with Diam(P) < ".

Proof Centered at an x, the uncountably many balls
fBal(x; r) j r 2 (0; ")g have disjoint boundaries. So all but
countably many are �-nice; pick one and call it Bx . Com-
pactness gives a finite nice cover, say, fB1; : : : ; B7g, at
different centers. Then the partition P :D (A1; : : : ;A7) is
nice, 22 where Ak :D Bk X

Sk�1
jD1 Bj . �

Here is a consequence of Jensen’s inequality.

21Measures ˛L ! � IFF
R
f d˛L !

R
f d�, for each continu-

ous f : X! R. Thismetrizable topologymakesMcompact. Always,
M(T) is a non-void compact subset (see � Measure Preserving Sys-
tems.)

22For any two sets B; B0 � X, the union @B [ @B0 is a superset of
the three boundaries @(B [ B0); @(B \ B0); @(B X B0).

http://en.wikipedia.org/wiki/Krein-Milman_theorem
http://en.wikipedia.org/wiki/Krein-Milman_theorem
http://en.wikipedia.org/wiki/Choquet_theory
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Lemma 20 (Distropy-Averaging Lemma) For�; � 2 M,
a partition R, and a number t 2 [0; 1],

tH�(R)C tcH�(R) �Ht�Ctc�(R) :

Strategy for EntSup(T) � Etop(T). Choose an " > 0.
For L D 1; 2; 3; : : :, take a maximal (L; ")–separated–set
FL � X, then define

F D F" :D lim sup
L!1

1
L
log(jFLj) :

Let 'L() be the equi-probable measure on FL ; each point
has weight 1/jFLj. The desired invariant measure � will
come from the Cesàro averages

˛L :D
1
L

X

`2[0:::L)

T`'L ;

which get more and more invariant.

Lemma 21 Let � be any weak- accumulation point
of the above f˛Lg11 . (Automatically, � is T-invariant.)
Then E�(T) � F. Indeed, if Q is any �-nice partition with
Diam(Q) < ", then E�(T;Q) � F.

Tactics As usual,Q[0:::N) meansQ0_Q1_: : :_QN�1.
Our goal is

8N : F
?
�

1
N
H�

�
Q[0:::N)


: (31)

Fix N and P :D Q[0:::N), and a ı > 0. It suffices to ver-
ify: 8largeL	 N ,

1
L
log(jFLj)

?
� ı C

1
N
H˛L (P) ; (32)

since this and Corollary 17 will prove Eq. (31): Pushing
L!1 along the sequence that produced � essentially
sends LhS(32) to F, courtesy Eq. (24). And RhS(32) goes
to ı C 1

NH�(P), by Corollary 17, since P is �-nice. De-
scending ı & 0, hands us the needed Eq. (31).

Remark 22 The idea in the following proof is to mostly
fill interval [0::L) with N-blocks, starting with a offset
K 2 [0::N). Averaging over the offset will create a Cesàro
average over each N-block. Averaging over the N-blocks
will allow us to compute distropy with respect to the aver-
aged measure, ˛L .

Proof (of Eq. (32)) Since L is frozen, agree to use ' for
the 'L probability measure.

Our dL-"-separated set FL has at most one point in any
given atom of Q[0:::L), thereupon

log(jFLj) DH'

�
Q[0:::L)


:

Regardless of the “offset” K 2 [0 : : : N), we can always
fit C :D b L�NN c many N-blocks into [0 : : : L). Denote by
G(K) :D [K : : : K C CN), this union ofN-blocks, the good
set of indices. Unsurprisingly, B(K) :D [0 : : : L) X G(K) is
the bad index-set. Therefore,

H'

�
Q[0:::L)


�

Bad(K)
‚ …„ ƒ

H'

� _

j2B(K)

Q j

�
C

Good(K)
‚ …„ ƒ

H'

� _

j2G(K)

Q j

�
:

(33)

Certainly Bad(K) � 3Nlog(jQj). So

1
NL

X

K2[0:::N)

Bad(K) �
3N
L

log(jQj) :

This is less than ı, since L is large. Applying 1
NL
P

K2[0:::N)
to Eq. (28) now produces

1
L
log(jFLj) � ı C

1
NL

X

K

Good(K) : (34)

Note
_

j2G(K)

T j(Q) D
_

c2[0:::C)TKCcN (P)

:

So

Good(K) �
X

c
H'(TKCcNP) :

This latter, by definition, equals
P

cHTKCcN(')(P). We
conclude that

1
NL

X

K

Good(K) �
1
NL

X

K

X

c
HTKCcN'(P)

�
1
NL

X

`2[0:::L)

HT`'(P) ;

by adjoining a few translates of P;

�
1
N
H˛L (P) ;

by the Distropy-averaging lemma 18;

since ˛L is the average 1
L
P
` T

`'. Thus Eq. (34) im-
plies Eq. (32), our goal. �
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Proof (of EntSup(T) � Etop(T)) Fix a T-invariant �.
For partition Q D (B1; : : : ; BK), choose a compact set
Ak � Bk with �(Bk X Ak) small. (This can be done,
since � is automatically a regular measure [58].) Letting
D :D

�F
i Ai

�c and P :D (D;A1; : : : ;AK), we can have
madeH (PjQ) as small as desired. Courtesy of Lemma 8b,
then, we only need consider partitions of the form that P
has.

Open-coverV D (U1; : : : ;UK ) has patchesUk :D D[
Ak . What atoms of, say, P[0:::3), can the intersection U9 \

T�1(U2) \ T�2(U5) touch? Only the eight atoms

(D or A9) \ T�1(D or A2) \ T�2(D or A5) :

Thus ]P[0:::n) � 2n � ]V[0:::n). (Here, ]() counts the number
of non-void atoms/patches.) So

1
n
H�

�
P[0:::n)


� 1C

1
n
log



]V[0:::n)

�

� 1C 1C Etop(T) ;

this last inequality, when n is large. The upshot: E�(T) �
2C Etop(T).

Applied to a power T`, this asserts that E�(T`) � 2C
Etop(T`). Thus

E�(T) �
2
`
C Etop(T) ;

using Lemma 9d and using Lemma 13g. Now coax
`!1. �

Three Recent Results

Having given an survey of older results in measure-the-
oretic entropy and in topological entropy, let us end this
survey with a brief discussion of a few recent results, cho-
sen from many.

Ornstein–Weiss: Finitely-Observable Invariant

In a landmark paper [10], Ornstein and Weiss show that
all “finitely observable” properties of ergodic processes
are secretly entropy; indeed, they are continuous func-
tions of entropy. This was generalized by Gutman and
Hochman [9]; some of the notation below is from their
paper.

Here is the setting. Consider an ergodic process, on
a non-atomic space, taking on only finitely many values
in N ; let C be some family of such processes. An obser-
vation scheme is a metric space (˝; d) and a sequence of
functions S D (Sn)11 , where Sn mapsN � n: : : �N into˝ .
On a point Ex 2 N1, the scheme converges if

n 7! Sn(x1; x2; : : : xn) (35)

converges in˝ . And on a particular process X, say that S
converges, if S converges on a.e. Ex inX.

A function J : C! ˝ is isomorphism invariant if,
whenever the underlying transformations of two processes
X;X 0 2 C are isomorphic, then J(X) D J(X 0). Lastly, say
that S “converges to J”, if for each X 2 C, scheme S con-
verges to the value J(X).

The work of David Bailey [38], a student of Ornstein,
produced an observation scheme for entropy. The Lem-
pel-Ziv algorithm [43] was another entropy observer, with
practical application.

Ornstein and Weiss provided entropy schemes in [41]
and [42]. Their recent paper “Entropy is the only finitely-
observable invariant” [10], gives a converse, a uniqueness
result.

Theorem 23 (Ornstein, Weiss) Suppose J is a finitely ob-
servable function, defined on all ergodic finite-valued pro-
cesses. If J is an isomorphism invariant, then J is a continu-
ous function of the entropy.

Gutman–Hochman: Finitely-Observable Extension

Extending the Ornstein–Weiss result, Yonatan Gutman
and Michael Hochman, in [9] proved that it holds even
when the isomorphism invariant, J, is well-defined only on
certain subclasses of the set of all ergodic processes. In par-
ticular they obtain the following result on three classes of
zero-entropy transformations.

Theorem 24 (Gutman, Hochman) Suppose J() is
a finitely observable invariant on one of the following
classes:

(i) The Kronecker systems; the class of systems with pure
point spectrum.

(ii) The zero-entropy mild mixing processes.
(iii) The zero-entropy strong mixing processes.

Then J() is constant.

Entropy of Actions of Free Groups

Consider (G;G), a topological group and its Borel field
(sigma-algebra). Let G � X be the field on G � X gener-
ated by the two coordinate-subfields. A map

� : GxX ! X (36)

ismeasurable if

 �1(X) � G � X :

Use  g(x) for  (g; x).
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This map in Eq. (36) is a (measure-preserving)
group action if 8g; h 2 G:  g ı  h D  gh , and each
 g : X ! X is measure preserving.

This encyclopedia article has only discussed entropy
forZ-actions, i. e., whenG D Z. The ergodic theorem, our
definition of entropy, and large parts of ergodic theory, in-
volve taking averages (of some quantity of interest) over
larger and larger “pieces of time”. In Z, we typically use
the intervals In :D [0 : : : n). When G is Z � Z, we might
average over squares In � In .

The amenable groups are those which possess, in a cer-
tain sense, larger and larger averaging sets. Parts of er-
godic theory have been carried over to actions of amenable
groups, e. g. [49] and [55]. Indeed, much of the Bernoulli
theory was extended to certain amenable groups by Orn-
stein andWeiss, [50].

The stereotypical example of a non-amenable group, is
a free group (on more than one generator). But recently,
Lewis Bowen [8] succeeded in extending the definition of
entropy to actions of finite-rank free groups.

Theorem 25 (Lewis Bowen) Let G be a finite-rank free
group. Then two Bernoulli G-actions are isomorphic IFF
they have the same entropy.

The paper introduces a new isomorphism invariant, the
“f invariant”, and shows that, for Bernoulli actions, the
f invariant agrees with entropy, that is, with the distropy
of the independent generating partition.

Exodos

Ever since the pioneering work of Shannon, and of Kol-
mogorov and Sinai, entropy has been front and center
as a major tool in Ergodic Theory. Simply mentioning all
the substantial results in entropy theory would dwarf the
length of this encyclopedia article many times over. And,
as the above three results (cherry-picked out of many)
show, Entropy shows no sign of fading away. . .
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Glossary

Species richness the number of species per unit area;
a synonym is species density.

Species abundance the number of individuals or amount
of living biomass per species per unit area.

Per capita instantaneous growth rate the net number of
new individuals produced by an average individual in
a population at time t.

Deterministic chaos a pattern of change over time that
is perfectly determined by initial conditions, but for
which tiny changes in initial conditions result is diver-
gences in the dynamics such that the pattern appears
random.

Attractor a set of values (a point, a curve or higher – in-
cluding a fractal – dimensional object) towards which
a dynamic trajectory will move.

Basin of attraction the set of values from which any dy-
namic trajectory will move towards the same attractor.

Maximum entropy formalism a formal method for pro-
ducing probability estimates that agree with cer-
tain constraints specifying available information about
a system but that are otherwise maximally uninforma-
tive.

Maximally uninformative (or ignorance) prior a proba-
bility distribution that encodes the basic structure of
a logical problem as given by the definition of the vari-
able, but that contains no other information.

Definition of the Subject

An understanding of the determinants of biodiversity is
an important goal of academic ecology and the protection

of biodiversity is an important goal in conservation. Bio-
diversity has two components: the number (or density) of
species and the relative abundance of species. Both com-
ponents vary over different spatial and temporal scales.
The allocation of limiting resources to different species
in an ecological community is reflected in the abundance
of each species. The notion of a “community” in ecology
(as in more general usages of this word) is poorly defined
but will here mean the total number of organisms found
within a fixed area of space (a site). Abundance is mea-
sured in different ways but the most exact measure is the
total mass of living tissues (i. e. biomass) found in a given
species at the site. Relative abundance is the proportional
abundance of each species relative to the total abundance
of all species at the site. The species “pool” is the set of
species that can potentially disperse into the site, including
those that are not found within the community because
they have been excluded due either to biotic interactions
or to an inability to survive the abiotic conditions of the
site. The vector of abundances, a D faig, or relative abun-
dances, ra D fraig, of each species in the species pool that
is observed at the site is a description of the community
structure. The change in this vector over time is a descrip-
tion of the community dynamics.

As such, community structure and dynamics are fun-
damental properties of ecological communities and relate
to basic questions posed by ecologists: Which species will
be found at a site? Which of these will be rare? Which
species will dominate? How many species will be found?
How is the flow of matter and energy through the or-
ganisms affected by community structure? How will the
community structure change if the environmental condi-
tions of the site change? Every one of these questions in-
volves complex dynamics of large numbers of interactions
of organisms. Because of this, answers to these questions
will have to deal with this complexity. Most of the results
that follow are based on plant communities, since these
are the only ones that have been studied to date using en-
tropy maximization, but animal communities will be dis-
cussed when looking at future directions. The answers to
such questions have important applied implications for
forestry, agriculture and conservation.

Introduction

Four aspects of ecological communities are obvious
to even a casual observer of nature. First, the organ-
isms found at any given site are distributed into differ-
ent species. Second, the distribution of individuals and
biomass, and therefore of resources, is not equal between
species. It is not simply that some species are common and
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some are rare, but that a small number of species in ev-
ery community make up the majority of the biomass and
most species in every community make up a minority of
the biomass. Third, which species are common, which are
rare, and which are absent, differ across sites having differ-
ent physical (abiotic) environmental conditions. Fourth,
which species are common, which are rare, and which are
absent, change systematically at the same site over time
following a major disturbance (i. e. ecological succession).
Explaining and predicting these four properties of ecolog-
ical communities is a major goal of ecological science.

Although much progress has been made at the empir-
ical level, a general theoretical explanation of these prop-
erties with good predictive ability under field conditions
is still largely missing despite almost a century of effort by
influential theoretical ecologists. All of these theoretical ef-
forts were based on dynamicmodels derived from popula-
tion-level demography and based on an analogy withNew-
tonian mechanics. The purpose of this essay is to contrast
this majority tradition in ecological modeling of commu-
nities with a more recent statistical mechanistic approach
based on maximization of entropy or relative entropy.

Population dynamic models begin with two undeni-
able properties of any biological population. First, because
each mature member of the population can potentially
reproduce, population growth is a multiplicative process
defining a geometric series. This is the first fundamen-
tal insight of Malthus that inspired Darwin [1] and Wal-
lace [2] to propose the theory of evolution by natural selec-
tion: every biological population has the potential for ex-
ponential growth. If ni(t) is the number of individuals of
species i alive at time t, then the per capita instantaneous
growth rate at time t, ri (t), is defined as:

1
ni (t)

dni (t)
dt

D ri (t) : (1)

If ri (t) is constant over time then integration of Eq. (1)
leads to exponential growth: ni (t) D ni (0)er i t . Per capita
growth rates can also be expressed as difference equations
by an obvious modification of Eq. (1). The second undeni-
able property of any biological population is that exponen-
tial growth cannot persist indefinitely without resources
becoming exhausted. For instance a single bacterium with
a mass of 1 picogram that divides by binary fission once
every 20 minutes would, if this rate of growth contin-
ued without interruption, produce offspring weighting the
mass of the Earth in a little under two days. Therefore
there must be a negative feedback such that ri (t) decreases
in some fashion as population size, ni (t), increases. The
simplest type of feedback leads to the well-known logistic
(or Lotka–Volterra) equation, shown in Eq. (2). Lotka [3]

published his model in 1926 although the original idea
is due to Pierre–François Verhulst [4]. Volterra [5] pub-
lished the genesis of this model in 1926. Hutchinson [4]
gives a good historical description of the origins of this
equation.

1
ni (t)

dni (t)
dt

D ri
�
Ki � ˛i i ni (t)

Ki

�
: (2)

Here ri is the maximum per capita growth rate, attained
when ni ! 0 and therefore when all competition disap-
pears. Ki is the carrying capacity, attained when negative
feedback reduces birth rates and increases death rates such
that per capita birth and death rates are equal and lead-
ing to a constant population size with ri (t) D 0. The co-
efficient ˛ii (the per capita competition coefficient) is the
amount by which each additional individual of species i
decreases the per capita growth rate below the maximum
(ri). The extension to a community of S species leads to
a system of simultaneous differential equation that are
shown in Eq. (3), where the S � S matrix of competition
coefficients is called the community competition matrix.

1
ni (t)

dni (t)
dt

D ri

0

B
BBB
@

Ki �
SP

jD1
˛i jni (t)

Ki

1

C
CCC
A
: (3)

Equation (3) has been modified in many ways, including
the addition of time lags, of nonlinear terms, of replac-
ing constants by stochastic terms [6], and replacing the
generalized logistic equation by other feedback functions.
A more recent modification has been to replace the phe-
nomenological competition coefficients by a dynamic cou-
pling of organisms having a population feedback follow-
ing a Monod-type equation with an explicit description of
dynamic changes in resource levels [7]. This essentially ex-
tends the demographic approach to resources as well as or-
ganisms. Despite this body of theoretical work, the ability
of such demographically-based models to actually predict
the structure and dynamics of real ecological communities
under field conditions is very weak. In fact, even simplified
multispecies communities of phytoplankton [8] or fruit
flies reared under controlled laboratory conditions [9] are
not well described by these equations despite their intu-
itive logic. Of course, given the large number of parame-
ters that must be estimated in such models, they are not
applicable to real ecological communities in practice.

Recent theoretical and empirical work, involving very
simple one-species systems in controlled laboratory con-
ditions, has suggested one reason why such demographic
models have low predictive ability even in simplified sys-
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Entropy Maximization and Species Abundance, Figure 1
Time series of the deterministic discrete logistic equation showing extreme sensitivity to initial conditions. Top row: Time series with
the maximum per capita growth rate (r) set at either 1.7 or 1.71 and the relationship of population sizes at each time t. Bottom row:
Time series with the maximum per capita growth rate (r) set at either 2.7 or 2.71 and the relationship of population sizes at each
time t. Note that the same change in the maximum per capita growth rate (	 D 0:01) will produce changes in population sizes that
are very small (top right) or very large and essentially random (bottom right)

tems. It has been known since May [10] that the simple
logistic equation (Eq. (1)) can display deterministic chaos
over some ranges of the three parameters (r; ˛;K). In fact,
the basic structure of all such dynamic demographic mod-
els in ecology involves nonlinearity and feedback and these
two properties are necessary for deterministic chaos. Thus,
such models can be sensitive to initial conditions because
of the presence of chaotic attractors in phase space.

To illustrate the problem, consider the logistic equa-
tion for a single population written as a difference equa-
tion: N(t C 1) D N(t)C N(t) r ((K � N(t))/(K)). There
are no random variables in this equation and, given the
values of r, K and N(0), the subsequent population sizes,
N(t), over time are completely deterministic and pre-
dictable. The first row of Fig. 1 (top row) shows, from left
to right, the changes in population size over time when
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r D 1:7, when r D 1:71 and the relationship between the
population sizes at each time when comparing these two
dynamics. We see the classic discrete version of the logis-
tic equation and the tiny change (0.01) in the value of r is
mirrored by the tiny change in the population sizes over
time. The second row of Fig. 1 shows the same thing ex-
cept that the values of r are 2.7 versus 2.71. The behavior
of the population size over time looks completely random.
More importantly, the same tiny change in r (0.01) re-
sults in trajectories of population size that rapidly diverge
and that quickly become essentially independent. In other
words, making an error of 0.01 in the estimation of the
per capita growth rate would result in completely incorrect
predictions of population size. Yet, if r were measured in
a real field population, a difference of 0.01 would be far less
than the measurement error even for a huge sample size.
In such a case the population dynamics is, for all practical
purposes, unpredictable. Depending on the equation and
the part of parameter space that is being explored, even
changes in parameter values of 10�6 can produce equally
spectacular differences; this is an ecological example of Ed-
ward Lorenz’ famous “butterfly effect” [11].

A good real-life example of this is the series of mod-
eling and experimental studies described in Constantino
et al. [12]. The experimental system was extremely simple:
Flour beatles were grown over many generations in stan-
dardized containers in the laboratory. Each container re-
ceived a fixed amount of food at regular intervals. Temper-
ature, humidity and other environmental conditions are
maintained at fixed values. A simple nonlinear dynamic
model was developed to capture the essential elements
of the population dynamics of this species under these
carefully controlled conditions. An analysis of the model
showed which areas of parameter space resulted in chaotic
dynamics (as well as other dynamic properties) and the ex-
perimental conditions were then manipulated according
to the model predictions in order to bring the measured
parameters into these regions of parameter space. The ex-
periments reproduced the various predictions of chaotic
dynamics and showed that even very small differences in
parameter values could quickly lead to dynamic trajecto-
ries that rapidly diverge and soon become indistinguish-
able from independent random variables.

These experimental results are very bad news for mod-
els attempting to model community assembly from this
reductionist perspective of population dynamics. If even
such a simplified system – a single species growing in con-
trolled conditions in the laboratory – can exhibit such
complicated dynamics, then it seems very likely that much
more complicated systems, involving hundreds of compet-
ing species as well as their predators, prey, parasites and

pathogens existing in constantly fluctuating environmen-
tal conditions over many different temporal and spatial
scales, will also show at least such complicated dynamics.
If sensitivity to initial conditions, a signature of determin-
istic stochasticity, exists then it seems certain that accurate
predictions are beyond the reach of such models in field
conditions where parameter measurements are always es-
timated with a substantial degree of error.

These results, and the inherent difficulty in measur-
ing the large number of parameter values required by dy-
namic demographic models, suggest that a new approach
is needed to link properties of species to community struc-
ture.

Information Theory Basis of EntropyMaximization

Conceptually, the entire enterprize of modeling commu-
nity structure is one of describing the relationship between
macroscopic properties of communities (i. e. abundances
of each species or the distribution of abundances) and mi-
croscopic properties of resource allocation when there are
a large number of interacting entities. Stated in this way it
is tempting to draw an analogy between, on the one hand,
the patterns in ecological communities and the individ-
uals that make up such communities and, on the other
hand, the relationship between the macroscopic proper-
ties of a gas (pressure, volume, temperature) and the mi-
croscopic properties of individual molecules. Historically,
the relationship between macroscopic properties of gases
(for instance, temperature) and microscopic properties of
molecules, for instance, the amount of kinetic and poten-
tial energy possessed by each one, was not obtained by
solving a system of differential equations for the commu-
nity of molecules, but rather by a statistical mechanistic
approach based on macroscopic constraints [13,14]. Sta-
tistical mechanics tries to understand the macroscopic be-
havior of complex systems, involving large numbers of
interacting microscopic components, from a probabilistic
viewpoint. Although Boltzmann sought a dynamic expla-
nation, this explanation was refuted by Jaynes [15]. More
recent theoretical [16] and experimental studies [17] have
confirmed Jaynes claim. Maxwell [14] saw that the sec-
ond law of thermodynamics was a statistical, not a dy-
namic and deterministic, law; the seemingly deterministic
behavior of macroscopic systems was due to the fact that
such behavior was the most likely behavior by a very large
margin.

Historically, Bolzmann derived his distribution from
microstate counting arguments, but Gibbs [18] showed
how this, and other distributions from statistical mechan-
ics, could be derived by maximizing entropy subject to
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certain physical constraints. As a way of illustration, con-
sider N entities that can exist in one of S different states.
The number of different ways (W) that these N enti-
ties can be distributed into these S states such that the
macrostate distribution (i. e. the number ni of entities ex-
pressing each state i) is the same is given by the multi-
nomial formula (Eq. (4a)). Taking logarithms, applying
Sterling’s approximation (ln (x!) � x ln (x)� x for large
values of x), and re-expressing the numbers (ni ) as pro-
portions (pi D ni /N), we get Shannon’s information en-
tropy (Eq. (4b)). We then see that maximizing the num-
ber of ways (W) that different microstates will produce the
same macroscopic structure, consistent with certain phys-
ical constraints, is equivalent to maximizing the informa-
tion entropy of p D fpig subject to these constraints. This
link between counting microstates and entropy breaks
down when the states vary continuously rather than be-
ing discrete with a fixed number, and a more general link
is needed; this is explained below. In what follows we will
attempt to develop a macroscopic description of ecologi-
cal communities following this information theoretic ap-
proach to statistical mechanics. Although this approach
began with Gibbs it was developed into its modern and
generalized form, in the context of the Maximum Entropy
Formalism, by Jaynes [19,20,21].

W D
N!

n1!n2!:::nS !
(4a)

ln(W)
N
� H D �

SX

iD1

pi ln(pi ) (4b)

One begins by defining the average information content
of a probability distribution using a Bayesian interpre-
tation of probabilities, recognizing that the set of rela-
tive abundances ra D fraig has the formal properties of
a probability distribution. To emphasize this equivalence,
we will express relative abundances as Bayesian probabil-
ities ra D fpig where pi is the probability that a unit of
resource will be allocated to species i given certain infor-
mation about macroscopic properties of the community.
The uncertainty of the information contained in pi is de-
fined as Ii D � ln(pi ) and the average uncertainty of in-
formation content of a probability distribution,

P
pi Ii , is

the information (or Shannon) entropy (Eq. (4b)). For in-
stance, if our available information is sufficient to perfectly
predict which of S different states will be expressed by an
entity before it happens, then we would have zero uncer-
tainty, we would ascribe pi D 1 to the correct state and
ascribe p j D 0 (i ¤ j) to all others, and the Information
entropy would be zero. If, on the other hand, our avail-
able information was simply that there are S different and

mutually exclusive states and nothing else, then we would
ascribe pi D 1/S for all these states and the Information
entropy would be maximal:� ln(S).

Equation (4b) is valid when the different possible states
are discrete and fixed in number. A more general expres-
sion, valid for continuous states or when the number of
states is not fixed, is the relative entropy expressed with
reference to a maximally uninformative (or ignorance)
prior probability distribution q (Eq. (5). The ignorance
prior q is chosen using transformation groups such that
q is invariant under changes in scale or location; this is
equivalent to a scale-invariant measure on the probabil-
ity space [21]. For a fixed number of unordered discrete
states, q is the discrete uniform distribution and, in this
special case, the relative entropy (Eq. (5) equals the en-
tropy (Eq. (4b)). The relative entropy is the negative of the
Kullback–Leibler divergence [22] in Bayesian inference,
which measures the divergence between two probability
distributions (p, q).

RH D �
X

pi ln
�
pi
qi

�
(5a)

RH D �
Z

pi ln
�
pi
qi

�
: (5b)

The macroscopic constraints on the behavior of the sys-
tem are expressed as linear functions of products of p and
traits of each of the i states (xi j) in the form of j macro-
scopic constraints on means (Eq. (6)); examples will be
given shortly.

X̄ j D
X

xi j pi : (6)

From basic axioms of inductive reasoning [21] we want
to ascribe probability values (pi) that agree with the infor-
mation encoded in the constraint equations, but that do
not imply any additional information beyond this avail-
able macroscopic information. In other words, they agree
with what we know (the macroscopic constraints), but
that is otherwise maximally uncertain (i. e. that doesn’t as-
sume further information for which we are lacking). Since
Eqs. (4) and (5) each measure the average uncertainty of
information content of p, maximizing uncertainty subject
to the constraints is equivalent to maximizing the (rela-
tive) entropy subject to the constraints. This is done us-
ing the method of Lagrange multipliers. We first specify
our objective function (Q, Eq. (7)) which consists of the
relative entropy (RH) plus each of the j constraint equa-
tions multiplied by its Lagrange multiplier ( j) and solve
for the values of p that maximize Q (Eq. (8)). The solution
is a generalized exponential distribution (Eq. (9)). Analyt-
ical solutions to the values of  are possible when there
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are only a few constraint equations and numerical meth-
ods [23,24] are used for more complicated situations.

Q D RHC 0


1 �

X
pi
�
C 1



X1 �

X
pi xi1

�

C � � � C  j



X j �

X
pi xi j

�
(7)

@Q
@pi
D �

�
ln pi C 1


C ln qi � 0 �

KX

jD1

xi j j D 0 (8)

pi D
qie
�

KP

jD1
xi j� j

P

i
qie
�

KP

jD1
xi j� j

: (9)

The reason why entropy maximization works (when the
correct physical constraints are identified) is that if the
same macroscopic behavior arises every time we apply the
same physical constraints, then these constraints must be
sufficient in the explanation and the myriad complexities
of the microscopic dynamics must be irrelevant: the over-
whelmingmajority of microstates that are compatible with
the macroscopic constraints look the same at the macro-
scopic level. At the macroscopic level it does not matter
which of the macroscopically redundant microstates the
system finds itself.

Fixed Species Pools:
Predicting Community Composition

This section deals with the case in which the total num-
ber of species that can potentially arrive at a given site is
known, as are the values of certain morphological, physio-
logical or phenological traits of each species. This list of
potential species is called the species pool. In this case,
the goal is to predict the relative abundance of each of
these species in the pool. A more general, but less precise
problem arises when one does not know the number (and
therefore the specific identity) of the species making up
such a pool. This more general problem will be developed
later.

Imagine a collection of genotypes possessing different
values of some heritable morphological, physiological or
phenological trait x. If different values of this trait cause
differences in per capita growth rates of these genotypes
then natural selection will result in increases in relative
abundance of these genotypes according to the general
replicator equation [25] of natural selection (Eq. (10)).

dpi (t)
dt

D pi (t) (ri (t) � r̄ (t)) : (10)

If we assume for simplicity that the relationship between
per capita growth rates and the trait is linear plus a ran-
dom error term (") with zero mean, i. e. ri (t) D a (t) C
b (t) xi C "i , then the general replicator equation is:

dpi (t)
dt

D pi (t) b (t)
�
xi � X̄ (t)


: (11)

Equation (11), or more complicated versions if the rela-
tionship between per capita growth rates and traits is non-
linear, defines a dynamic for community composition. The
dynamics of such equations can be very complex, includ-
ing the presence of chaotic attractors. However complex
the dynamic might be, it is a function of the difference be-
tween the trait of each genotype, xi, and the average trait
value at a given time, X̄ (t) D

P
pi (t) Xi . The trajectory

of X̄ over time is a consequence of this dynamic and is
constrained by it.

The breeder’s equation of quantitative genetics
(Eqs. (12a), (12b)), or its multivariate equivalent [26],
gives the amount by which X̄ changes in one time unit
(formally, before and after a single selection event). In this
equation h2(t) is the heritability of the trait, varying be-
tween 1 (trait values are perfectly transmitted to offspring)
and 0 (trait values are independent between parents and
offspring) and S(t) is the selection gradient at time t, i. e.
the amount by which birth/death probabilities bias geno-
types possessing different values of the trait. This equation
therefore describes how the average trait value will behave
in a given environment and is subject to natural selection.
Because these average trait values change systematically
over time and across different environmental conditions,
they provide information about the trait distribution and
are constraints (Eq. (6)). Therefore, if we know the values
of these average trait values, and we know the trait values
of each species, then we have the same formal mathemati-
cal problem as given in theMaximumEntropy Formalism.

X̄ (t C 1) D h2 (t) S (t)C X̄ (t) (12a)

X̄ (t) D
tX

jD0

h2
�
j

S
�
j

C X̄ (0) (12b)

Natural selection, which describes the degree to which
genotypes possessing particular traits in a given envi-
ronmental setting have biased probabilities of reproduc-
tion and death, therefore represents a physical constraint
on the dynamics of the system. We don’t have to know
the details of this dynamic so long as we can predict,
or measure, these average trait values at the level of
the entire community. Natural selection among poten-
tially interbreeding genotypes (i. e. genotypes belonging
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to the same species) leads to evolution as genotypes pos-
sessing the favored trait replace those of genotypes se-
lected against. However, natural selection among geno-
types that are reproductively isolated (i. e. genotypes be-
longing to different species) cannot lead to evolution
since genes causing the particular phenotypic trait can-
not be transmitted across the species barrier. In this case,
natural selection leads to changes in the relative abun-
dance of different species. In other words, natural selection
among genotypes of different species leads to community
assembly.

Before describing a field test of this statistical mech-
anistic approach, it is useful to look at a simple simula-
tion. Consider a species pool consisting of six species, each
species having one relevant trait whose value for species i is
(xi D 1; 2; : : : ; 6). A neutral process of community assem-
bly [27] would consist of each individual of each species
having exactly the same probabilities of survival and re-
production irrespective of the trait value, so that any ac-
tual differences in population growth rates (i. e. ri (t), the
per capita growth rates) are due purely to sampling fluc-
tuations. We begin with 60 individuals per species and,
in each generation, each species adds one new individual
(reproduces) with a probability of 1/6 and loses one exist-
ing individual (death) with a probability of 1/6. Figure 2a
shows the results of a simulation over 5000 generations
and Fig. 2b shows the change in the average trait value
(a community aggregated trait) over time in the commu-
nity. Because probabilities of birth and death, and thus the
effect of natural selection, are independent of the pheno-
typic trait, the average trait value fluctuates randomly. No-
tice that, since the trait value has no causal relationship to
the probabilities of survival and reproduction and there-
fore does not constrain the population dynamics, the av-
erage trait value is very close to the value predicted by the
maximally uninformative prior for this problem which is
a discrete uniform distribution (pi D 1/6). Using the av-
erage trait value at generation 5000 as a constraint and
maximizing the entropy conditional on this average trait
value gives, as expected, a maximum entropy distribution
which is almost a discrete uniform distribution (Fig. 2c). In
other words, since the phenotypic traits did not constrain
the dynamics, the average trait value provided no new in-
formation that was not already present in the maximally
uninformative prior.

Now, we repeat the simulation except that the prob-
abilities of birth and death are functions of the trait xi:
larger values of xi increase the probability of an individ-
ual of species i dying, while larger values of xi decrease the
probability of an individual of species i reproducing. Fig-
ure 3 shows the result of a typical simulation run.

Now, since there is a causal connection between the
trait value and the probabilities of birth and death, these
trait values constrain the population dynamics of each
species and therefore the average trait value reflects the
direction of natural selection as specified in the breeder’s
equation. Since natural selection favors individuals with
low values of trait x, the average trait value (the commu-
nity aggregated trait value) deceases over time. Since the
trait constrains the dynamics, the average trait value pro-
vides information. Using the average trait value at the end
of this simulation (generation 1000) and maximizing the
entropy conditional on this average trait value correctly
predicts the relative abundance of each species at this time
(Fig. 3c).

It is possible to make these simulations much more
complicated and realistic but the basic result is the same.
If trait values are causally connected to probabilities of
survival, reproduction, immigration and emigration then
the population dynamics of the species will be constrained
by them as specified in the general replicator equation
(Eq. (11)) and the changes in these average trait values over
time will be described by the breeder’s equation or its mul-
tivariate version if (as there always is) there is more than
one trait involved in determining fitness. In fact, since the
general replicator equation is a mathematical expression
of the notion of evolutionary fitness that links heritable
phenotypic traits to probabilities of survival and reproduc-
tion relative to competing genotypes, such community av-
erage trait values are tracking the constraint of fitness over
time and this is why they provide information on relative
abundances.

An empirical example can be found in the context
of secondary succession in an herbaceous plant commu-
nity. Secondary succession is the well-known process of
re-colonization and subsequent vegetation change follow-
ing a major disturbance that kills off an existing plant
community. A classic example is the pattern of vegetation
change over time following abandonment of an agricul-
tural field. If one lists the species and their relative abun-
dances each year following abandonment in different re-
gions and compares these lists then the patterns are un-
intelligible. Different species will be found in each list. On
the other hand, if one lists the values of keymorphological,
physiological and phenological traits related to the ability
of species to survive and reproduce that are found over
time then very consistent patterns emerge. If one concen-
trates on the traits possessed by the more abundant species
in each list over time, the patterns are even more con-
sistent. Immediately following abandonment the common
species will possess traits that allow them to rapidly col-
onize the newly opened space [28]. For instance, species
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Entropy Maximization and Species Abundance, Figure 2
a An example of a neutral dynamic involving six species. Probabilities of birth and death are equal and all fluctuations in population
numbers are due to sampling fluctuations. bChanges in the community averaged (aggregated) trait value over time that is produced
by such a neutral dynamic. c Predicted relative abundances, given the community aggregated trait value at the end of the series,
using the Maximum Entropy Formalism

having rapid growth rate and having small seeds, and es-
pecially seeds with appendages that allow for long distance
dispersal, are very common. Species whose individuals
produce large numbers of seeds are common since larger
numbers of seeds increase the chances of some arriving at
the site. Species adapted to sites having frequent largemor-
tality events reproduce very rapidly following germination
and this limits their size. Small plants that are required to

produce many seeds must further decrease the size of each
one, and so on. Such ruderal species have physiologies that
are adapted to quickly acquire available resources and allo-
cate then to production rather than maintenance and this
leads to a correlated series of traits (specific leaf area, max-
imum photosynthetic rate, tissue nutrient supplies, tissue
turnover rates) that maximize production of new tissues
over maintenance of existing ones [29,30]. As a vegetation
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Entropy Maximization and Species Abundance, Figure 3
a An example of a dynamic involving six species in which one trait determines the differential probabilities of birth and death plus
fluctuations in population numbers due to sampling fluctuations. b Changes in the community averaged (aggregated) trait value
over time that is produced by such a dynamic. c Predicted relative abundances, given the community aggregated trait value at the
end of the series, using the Maximum Entropy Formalism

cover develops, these ruderal species are replaced by a se-
ries of other species, larger and better able to competitively
suppress those coming before, and this leads to changes in
the suite of traits possessed by such species.

A recent structural equation model linking such plant
traits to time following abandonment of vineyards in
southern France was published by Vile et al. [31]. To
test the ability of a maximum entropy approach to pre-

dicting secondary succession, Shipley et al. [32] used the
same series of 10 sites. The sites varied from two to
42 years post-abandonment and estimates of the above-
ground biomass of each species at each site were obtained
from two 0:5 � 0:5m2 quadrants in each. All were within
a 4 km2 distance and all had the same history of land use
before abandonment. Using the 30 species in these that
were more than transients in these 12 sites as the species
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Entropy Maximization and Species Abundance, Figure 4
Each point represents the community aggregated value of the trait measured in one field, whose successional age (years since aban-
donment) is given on the ordinate. Lines are regression (cubic spline) smoothers. Also shown is the Pearson correlation between
observed and predicted values. Figure taken from [32]

pool, and using eight traits measured on each of these 30
species, we calculated the community average (aggregated)
values for each trait in each site. Figure 4 shows the results.
As can be seen, there are clear systematic trends over time
in these community averaged traits and these are consis-
tent with trends reported by others.

If these traits are causally linked to fitness of these 30
species over this successional sequence then they will con-
strain the actual population dynamics as individual plants
possessing different values of these traits immigrate into
the sites, compete and reproduce. Using these eight com-

munity averaged trait values for each site, we then calcu-
lated the relative abundances assuming that these traits are
sufficient to determine the population dynamics except for
random sampling fluctuation. We did this by finding the
distributions of relative abundance having maximum en-
tropy after constraining then to agree with the community
averaged traits. This was done using an algorithm pub-
lished by Della Pietra et al. [24]. Figure 5 shows the result.

As can be seen, the predicted and observed values are
close and highly significant. Clearly, there are prediction
errors and this is probably be due to a combination of
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Entropy Maximization and Species Abundance, Figure 5
Observed and predicted relative abundances of each of 30 species in each of 10 different fields. Predicted relative abundances were
obtained by maximizing the entropy of the distribution of relative abundances for each field conditional on the eight community
aggregated traits shown in Fig. 4

missing constraints (i. e. unmeasured traits that contribute
to fitness), measurement error of the trait values and ran-
dom demographic fluctuations due to the fact that the
numbers of individuals per site are sufficiently small that
probabilities of survival and reproduction and actual fre-
quencies of survival and reproduction differ due to sam-
pling effects.

Species Abundance Distributions

The previous section considered the case in which we
know which species occur in the species pool and in which
interest resides in predicting the relative abundance of
each species given certain traits. In such a situation the
number of species (i. e. states in which biomass can be al-
located) is fixed. However, one can also imagine situations
in which the number and identity of species in the species
pool is unknown. In this case we cannot predict the abun-
dance of any particular species but we do know the distri-
bution of abundances of the species that are present. This
leads to the species abundance distribution (SAD) which
describes the probability that a species will have an abun-
dance of n individuals.

The empirical study of species abundance distribu-
tions has a long history in ecology. The first known treat-
ment was published in Japanese byMotomira [33], as cited
in Hutchinson [4]. The proposed distribution was the ge-
ometric series (Eq. (13)). Corbet [34] published a species
abundance distribution based on species of butterflies and
this distribution, like all others since, shows that a few
species are very common and most species are very rare.
C.B. Williams had collected similar data for moths and
so these two authors, in collaboration with the statistician
and evolutionary theorist R.A. Fisher, put forward the log-
series distribution (Eq. (14)) as a statistical description of
the species abundance relationship [35]. Pueyo [36], ap-
plying a Taylor series expansion to the log-series distri-
bution, found that small deviations from a log-series gave
a bounded power law (Eq. (15)). F.W. Preston, working
with birds, plotted the number of species having different
numbers of individuals (i. e. abundance) by binning values
on a logarithmic scale and showed that, in this form, the
species abundance distribution was a log-normal distribu-
tion [37,38], although any variable that must be greater
than zero and is strongly right-skewed will tend to show
a curve similar to a log-normal distribution after binning.
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More recently, so-called neutral models of population dy-
namics [27,39] have been shown to recreate these patterns.
Neutral models assume that all species have equal fitnesses
(thus probabilities of survival, reproduction and migra-
tion) and thus all changes in population size are due to
sampling fluctuations. Hubbell [27], in particular, has pro-
posed a slightly different SAD, the zero-sum multinomial.
However, differentiating between these different distribu-
tions using empirical data has proved problematic because
they are very similar over most of the range of observed
values [40]. Even more problematic is that authors search-
ing for specifically biological explanations for these pat-
terns tend to ignore that such statistical patterns are com-
monly found in non-biological systems. Significantly for
our purposes, Preston [41] noted the similarity of species
abundance distributions and gas laws as well as the dis-
tribution of wealth. Limpert et al. [42] and Nekola and
Brown [43] document other cases. If the patterns tran-
scend ecology then the explanation for the patterns must
also transcend ecology.

P(n) D
�

n
(13)

p(n) D
�xn

n
D
�


e�ˇ

�n

n
D
�e�ˇn

n
(14)

p(n) D
�e�ˇ1n

nˇ2
(15)

Very recently, two different groups have proposed that
the common patterns of species abundance distributions
can be more parsimoniously explained by the same sta-
tistical mechanistic approach as described above. The first
hurtle in applying a maximum entropy approach to this
area is to obtain the maximally uninformative prior. In the
case of a fixed species pool the maximally uninformative
prior is well-known: a discrete uniform distribution. How-
ever, when the number of species in the species pool is un-
known and abundance is measured in numbers of indi-
viduals (a discrete variable) the prior is not clear. If abun-
dance was measured as biomass, a continuous variable,
then the maximally uninformative prior is known based
on a consideration of invariance under transformations
of scale and location [21] and is a Jeffrey’s prior. Pueyo
et al. [44], again based on a consideration of invariance
under transformations of scale and location have shown
that when abundance is measured as counts of individu-
als the same maximally uninformative prior is obtained:
q (n) D 1/n.

The first constraint that one might propose is a limit
on the total number of individuals (N) that can exist at
a site, at least when averaged over time. This follows from

the fact that the total amount of resources within a fixed
area is itself fixed but also follows from basic postulates of
per capita growth, namely that as populations increase the
increased competition for resources leads to a decrease in
per capita reproductive rates and an increase in per capita
death rates, until the per capita growth rate is zero. The
second constraint is that the total number of species (S)
that can exist at a site is also fixed, at least when averaged
over time. This follows from the theory of island biogeog-
raphy [45] where, as the available resources at a site de-
crease, the rate of introduction of new species decreases
and the rate of local extinction of species already present
increases, each due to increased competition. If we accept
these two macroscopic constraints, then the average num-
ber of individuals per species must also be constrained
(Eq. (16)).

n̄ D
N
S
� k1 : (16)

To find the predicted proportion of species having abun-
dance n in the community, and assuming that the only
constraint acting on the system is to limit the average
number of individuals per species (Eq. (16)), we must
maximize the relative entropy conditional on this one con-
straint. In other words, find the values of p that maximize
Eq. (5a), subject to the constraint given in Eq. (16) plus
the constraint on normalization (

P
pi D 1). The solution,

given in Eq. (17), is Fisher’s log-series distribution where
Z is a constant.

pi D
qie��1ni

P

i
qie��1ni

D
e��1ni

ni Z
: (17)

We know that, in any real ecological community, the pro-
cess of community assembly involves a myriad of compli-
cated interactions between the individuals of each species
with each other and with those of other species plus the
interactions of each with the physical properties of the
environment. Equation (17) says that the statistical pat-
tern of species relative abundance that was fit to empiri-
cal data by Fisher, Corbet and Williams is simply a con-
sequence of two constraints: the total number of individ-
uals at the site is (approximately) constant and the total
number of species at the site is (approximately) constant.
Equation (17) doesn’t deny the existence of the compli-
cated biological interactions that are involved in commu-
nity assembly but does claim that these interactions are ir-
relevant with respect to the macroscopic pattern, except in
how they constrain the total number of individuals and
species. Pueyo et al. [44] call this an idiosyncratic model
of community assembly: the exact process (or model) de-
termining the abundance of species i is independent of the
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process determining the abundance of every other species,
therefore knowing the abundance of species i provides no
information about the abundance of species j. Thus, from
a macroscopic perspective, the abundances of each species
at any point in time can be viewed as independent and
identically distributed variables even though independent
does not imply no interactions and identically distributed
does not imply ecologically equivalent.

Can we imagine other macroscopic constraints that
might exist in real communities? The per capita growth
rate of species i over one small unit of time (
t) is given as
ri (t C At) D ln (ni (t C 1)) � ln (ni (t)). If each species
in the community is at a stable equilibrium by time t then
ri (t) � 0 for all species and so the following macroscopic
constraint must hold:

P
ln (n (t C 1))

S
D

P
ln (n (t))
S

D k2 : (18)

Given the per capita growth rate describes exponential
growth at time t, and since we are imagining a community

Entropy Maximization and Species Abundance, Figure 6
Distribution of abundances of tree species in a 50 hectare plot in Barro Colorado Island (Panama). Three theoretical curves, derived
the maximization of relative entropy, are shown. The Geometric and Log-series curves are indistinguishable at this scale

that is filledwith individuals, it seems quite reasonable that
Eq. (18) will hold; if it did not hold over any extended time
then there would be huge swings in total biomass, and this
is not observed. Maximizing the relative entropy condi-
tional on the constraints in Eqs. (16) and (18), we recover
the bounded power law of Pueyo [36], as given in Eq. (15).

Finally, we could imagine a case in which the com-
munity dynamics are such that the population trajectories
are in a basin of attraction but in which random exter-
nal perturbations result in total resource levels fluctuations
around some average values so that the per capita growth
rates, ri (t), are zero over a longer time scale but can ran-
domly deviate from zero at any instant. The fact that the
trajectories are in a basin of attraction means that there
will be a constraint on how far the ri (t) values can devi-
ate from zero and this will place a constraint on the vari-
ance of the ri (t) values and this would produce a bounded
log-normal distribution when maximizing the relative en-
tropy. Since this last constraint is quite speculative at this
point, we won’t explore this point further.
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To place these results in an empirical context, I have
fit the geometric series of Motomura, the log-series of
Fisher, and the bounded log-series of Pueyo to the ex-
tensive data set of tree species on Barro Colorado Is-
land (Panama); these data come from the appendix of
Volkov [46]. This data set consists of a complete cen-
sus of each tree whose stem diameter at breast height is
greater than 1 cm within a 50 hectare area [47]. The result-
ing curves are given in Eq. (19) and the result is shown in
Fig. 6. The fitted curves for the geometric series and the
log-series are not distinguishable and are not significantly
different (F1;1715 D 2:78; p D 0:10) but the fitted curves
for the log-series and the bounded log-series are highly sig-
nificant (F1;1715 D 534:43; p
 0:001).

pi D
1

933:32n
(19a)

pi D
e�(4:263e�4)n
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(19b)

pi D
e�(6:78e�3)n

1121n0:68
(19c)

Future Directions

Before discussing future directions, it is important to ap-
preciate how little published work has been done in ecol-
ogy using entropy maximization. Plank studied statisti-
cal mechanistic properties of the Lotka–Volterra equa-
tions [48,49,50]. A few studies have considered some the-
oretical aspects of entropy maximization in food webs [51,
52,53,54]. Levich and co-workers [55,56,57] applied en-
tropy maximization to algal communities but without in-
cluding maximally uninformative priors. Besides [44], dis-
cussed above, I am not aware of any other work in this
area. Clearly, future directions are many and varied.

At a theoretical level it will be important to more pre-
cisely link the dynamics of natural selection and the allo-
cation of energy and resources to individuals to microstate
properties of communities. In this context Dewar’s fluctu-
ation theorem [58,59,60] might prove fruitful since it links
entropy maximization with those dynamic trajectories of
microstates that maximize the production of entropy. If
possible this could open up a thermodynamic interpreta-
tion of community assembly and possibly even of evolu-
tion by natural selection.

Those few empirical results that have been obtained so
far come from plant communities. In part, this is because
it is easier to census plant communities, and therefore to
get reasonably accurate determinations of abundance for
all species present, but the main reason is probably id-
iosyncratic: the application of these ideas to ecology is very

recent and those very few ecologists who have explored
them have been trained in plant ecology. The extension
of these methods to animal communities is an obvious fu-
ture direction. The use of constraints based on food webs
seems particularly promising since such constraints can be
linked to basic thermodynamic principles of energy trans-
fer across trophic levels. As an example, homeotherms and
poikilotherms have different basal metabolic rates and so
the proportion of these two types of animals should con-
strain the length of food chains. Metabolic rate scales allo-
metrically with body size [61] and so the average body size
in a community should be constrained by the total amount
of available energy and this, in turn, will be related to po-
tential evapotranspiration (a function of average temper-
atures and precipitation). The ratio of predators to prey
also scales with body size and so this might also serve as
a constraint on the assembly of animal communities.

At an empirical level, it is clear that the success or
failure of this approach resides in our ability to prop-
erly identify those physical constraints that actually con-
trol community dynamics and how such constraints might
change as a function of environmental variables. This re-
quires further work in order to make statistical inferences
in the context of maximum entropy models and, espe-
cially, in detecting lack of fit. When the entities being al-
located to different states are discrete and mutually inde-
pendent and the states themselves are also discrete and
fixed in number then the problem is a classical one. Given
such assumptions then the statistic �2N

P
pi ln pi fol-

lows a chi-squared distribution with N � k � 1 degrees of
freedom (k D the number of constraints). However, such
conditions rarely apply to ecological problems either be-
cause the sequential allocations are not mutually indepen-
dent or because the total number (N) is unknown.

Roderick Dewar and Annabel Porté (INRA Centre de
Bordeaux–Aquitaine, France) have been exploring other
directions (pers. comm.). For instance, if we consider that
the total amount of available resources (R) in an area is
limited, that the organisms are using all of these resources,
and that each species has a characteristic per capita rate
of resource use, then the following constraint must hold:P

pi ri D R. If this is combined with some well-known
scaling laws in ecology relating body size with per capita
resource use then, even without knowing the number of
identity of species in a species pool, one can derive the
species abundance distribution. Using the exponent of the
Shannon entropy as an expression of the expected number
of species, they explore how species richness (Ŝ, the num-
ber of species per unit area) should vary as a function of
R at different scales. At local spatial scales it is well known
that Ŝ has a so-called humped-back distribution [62] with
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respect to productivity, and therefore R. At such local spa-
tial scales, it is reasonable to consider R fixed and S (the
number of species in the species pool) to be finite. At spa-
tial scales large enough to include substantial variation in
mean annual temperature and precipitation Ŝ scales allo-
metrically with potential evapotranspiration [63] and it is
perhaps reasonable to consider R free. Can these contrast-
ing patterns of biodiversity at different spatial scales be ac-
counted for by a statistical mechanistic approach in which
constraints on R and S change?

Bibliography
1. Darwin C (1859) On the origin of species. JohnMurray, London
2. Wallace AR (1858) On the tendency of species to form varieties;

and on the perpetuation of varieties and species by natural
means of selection. III. On the tendency of varieties to depart
indefinitely from the original type. J Proc Linnean Soc Lond
3:53–62

3. Lotka AJ (1925) Elements of physical biology. Williams and
Williams, Baltimore

4. Hutchinson GE (1978) An introduction to population ecology.
Yale University Press, New Haven

5. Volterra V (1926) Variazioni e fluttuazioni del numero
d’individui in specie animali conviventi. Mem R Acad dei Lin-
cei (Ser. 6) 2:31–113

6. Roughgarden J (1979) Theory of population genetics and evo-
lutionary ecology: An introduction.Macmillan Publishing, New
York

7. Tilman D (1982) Resource competition and community struc-
ture. Princeton University Press, Princeton

8. Vandermeer JH (1969) The competitive structure of commu-
nities: An experimental approach with protozoa. Ecology 50:
362–371

9. Gilpin ME, Carpenter MP, Pomerantz MJ (1986) The assem-
bly of a laboratory community: Multispecies competition in
drosophila. In: Diamond JM, Case T (eds) Community ecology.
Harper and Row, Cambridge

10. May RA (1974) Biological populations with nonoverlapping
generations: Stable points, stable cycles, and chaos. Science
186:645–647

11. Hilborn RC (2004) Seagulls, butterflies, and grasshoppers:
A brief history of the butterfly effect in nonlinear dynamics. Am
J Phys 72:425–427

12. Costantino RF et al (2005) Nonlinear stochastic population dy-
namics: The flour beetle tribolium as an effective tool of dis-
covery. Advances in ecological research: Population dynam-
ics and laboratory ecology, vol 37. Academic Press, London,
pp 101–141

13. Boltzmann L (1898) Lectures on gas theory. Dover Publications,
New York

14. Maxwell JC (1871) Theory of heat. Dover Publications, New
York

15. Jaynes ET (1971) Violations of boltzmann’s h theorem in real
gases. Phys Rev A4:747–751

16. Evans DJ, Searles DJ (2002) The fluctuation theorem. Adv Phys
51:1529–1585

17. Wang GM, Sevick EM, Mittag E, Searles DJ, Evans DJ (2002) Ex-
perimental demonstration of violations of the second law of

thermodynamics for small systems and short time scales. Phys
Rev Lett 89:50601

18. Gibbs JW (1902) Elementary principles in statistical mechanics.
Yale University Press, New Haven

19. Jaynes ET (1957) Information theory and statistical mechanics
i. Phys Rev 106:620–630

20. Jaynes ET (1957) Information theory and statistical mechanics
ii. Phys Rev 108:171–190

21. Jaynes ET (2003) Probability theory. The logic of science. Cam-
bridge University Press, Cambridge

22. Kullback S, Leibler RA (1951) On information and sufficiency.
Ann Math Statist 22:79–86

23. Agmon N, Alhassid Y, Levine RD (1979) An algorithm for
finding the distribution of maximal entropy. J Comput Phys
30:250–258

24. Della Pietra S, Della Pietra V, Lafferty J (1997) Inducing fea-
tures of random fields. IEEE Trans Pattern Anal Mach Intell 19:
1–13

25. Schuster P, Sigmund K (1983) Replicator dynamics. J Theor Biol
100:533–538

26. Roff DA (1997) Evolutionary quantitative genetics. Chapman
and Hall, NY

27. Hubbell SP (2001) The unified neutral theory of biodiversity
and biogeography. Princeton University Press, Princeton

28. Grime JP (2007) Comparative plant ecology. Castlepoint Press,
Colvend

29. Shipley B, LechoweiczMJ, Wright I, Reich PB (2006) Fundamen-
tal trade-offs generating the worldwide leaf economics spec-
trum. Ecology 87:535–541

30. Wright IJ et al (2004) The worldwide leaf economics spectrum.
Nature 428:821–827

31. Vile D, Shipley B, Garnier E (2006) A structural equation model
to integrate changes in functional strategies during old-field
succession. Ecology 87:504–517

32. Shipley B, Vile D, Garnier E (2006) From plant traits to plant
communities: A statistical mechanistic approach to biodiver-
sity. Science 314:812–814

33. Motomura I (1932) A statistical treatment of associations [in
japanese]. Jpn J Zool 44:379–383

34. Corbet AS (1941) The distribution of butterflies in the malay
peninsula (lepid.). Proc Roy Entomol Soc Ser A 16:101–116

35. Fisher RA, Corbet AS, Williams CB (1943) The relation between
the number of species and the number of individuals in a ran-
dom sample from an animal population. J Animal Ecol 12:
42–58

36. Pueyo S (2006) Diversity: Between neutrality and structure.
Oikos 112:392–405

37. Preston FW (1948) The commonness, and rarity, of species.
Ecology 29:254–283

38. Preston FW (1962) The canonical distribution of commonness
and rarity. Ecology 43:185–215

39. Bell G (2000) The distribution of abundance in neutral commu-
nities. Am Nat 155:606–617

40. McGill BJ, Maurer BA,Weiser MD (2006) Empirical evaluation of
neutral theory. Ecology 87:1411–1423

41. Preston FW (1950) Gas laws and wealth laws. Sci Mon 71:309–
311

42. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions
across the sciences: Keys and clues. Bioscience 51:341–352



2918 E Ergodicity and Mixing Properties

43. Nekola JC, Brown JH (2007) The wealth of species: Ecological
communities, complex systems and the legacy of frank pre-
ston. Ecol Lett 10:188–196

44. Pueyo S, He F, Zillio T (2007) The maximum entropy formalism
and the idiosyncratic theory of biodiversity. Ecol Lett 10:1017–
1028

45. MacArthur RH (1972) Geographical ecology: Patterns in the
distribution of species. Harper and Row, NY

46. Volkov I, Banavar JR, He FL, Hubbell SP, Maritan A (2005) Den-
sity dependence explains tree species abundance and diver-
sity in tropical forests. Nature 438:658–661

47. Hubbell SP, Foster RB (1990) Structure, dynamics and equilib-
rium status of old-growth forest on barro colorado island. In:
Gentry A (ed) Four neotropical forests. Yale University Press,
New Haven

48. Plank M (1995) Hamiltonian structures for the n-dimensional
Lotka–Volterra equations. J Math Phys 36:3520–3534

49. Plank M (1996) Bi-hamiltonian systems and Lotka–Volterra
equations: A three-dimensional classification. Nonlinearity
9:887–896

50. Plank M (1999) On the dynamics of Lotka–Volterra equations
having an invariant hyperplane. Siam J Appl Math 59:1540–
1551

51. Kerner EH (1964) Gibbs ensemble: Biological ensemble. Gor-
don and Brench, New York

52. Kerner EH (1979) The gibbs grand ensemble and the eco-ge-
netic gap. In: Levine RD, Tribus M (eds) The maximum en-
tropy formalism. Massachusetts Institute of Technology, Mas-
sachusetts, pp 468–476

53. Wagensberg J, Valls J (1987) The [extended]maximumentropy
formalismand the statistical structure of ecosystems. Bull Math
Biol 48:531–538

54. Lurie D, Wasenburg J (1985) An extremal principle for biomass
diversity in ecology. In: Lamprecht I, Zotin AI (eds) Thermo-
dynamics and regulation of biological processes. De Gruyter,
Berlin, pp 577–271

55. Levich AP (1988)What are the possible theoretical principles in
the ecology of communities? In: Kull K, Tiivel T (eds) Lectures in
theoretical biology. Valgus, Tallinn, pp 121–127

56. Alexeyev VL, Levich AP (1997) A search for maximum species
abundances in ecological communities under conditional di-
versity optimization. Bull Math Biol 59:649–677

57. Levich AP (2000) Variational modelling theorems and algo-
coenoses functioning principles. Ecol Model 131:207–227

58. Dewar R (2003) Information theory explanation of the fluc-
tuation theorem, maximum entropy production and self-or-
ganized criticality in non-equilibrium stationary states. J Phys
Math Gen 36:631–641

59. Dewar R (2004) Maximum entropy production and non-equi-
librium statistical mechanics. In: Kliedon A, Lorenz RD (eds)
Non-equilibrium thermodynamics and the production of en-
tropy: Life, earth and beyond. Springer, Berlin, pp 41–56

60. Dewar R (2005) Maximum entropy production and the fluctu-
ation theorem. J Phys Math Gen 38:L371–L381

61. Peters RH (1983) The ecological implications of body size. Cam-
bridge University Press, Cambridge

62. Al-Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR (1977)
A quantitative analysis of shoot phenology and dominance in
herbaceous vegetation. J Ecol 65:759–791

63. Currie DJ, Paquin V (1987) Large-scale biogeographic patterns
of species richness of trees. Nature 329:326–327

Ergodicity andMixing Properties
ANTHONY QUAS
Department of Mathematics and Statistics,
University of Victoria, Victoria, Canada

Article Outline

Glossary
Definition of the Subject
Introduction
Basics and Examples
Ergodicity
Ergodic Decomposition
Mixing
Hyperbolicity and Decay of Correlations
Future Directions
Bibliography

Glossary

Bernoulli shift Mathematical abstraction of the scenario
in statistics or probability in which one performs re-
peated independent identical experiments.

Markov chain A probability model describing a sequence
of observations made at regularly spaced time intervals
such that at each time, the probability distribution of
the subsequent observation depends only on the cur-
rent observation and not on prior observations.

Measure-preserving transformation Amap from amea-
sure space to itself such that for each measurable sub-
set of the space, it has the same measure as its inverse
image under the map.

Measure-theoretic entropy A non-negative (possibly in-
finite) real number describing the complexity of amea-
sure-preserving transformation.

Product transformation Given a pair of measure-pre-
serving transformations: T of X and S of Y , the prod-
uct transformation is the map of X � Y given by
(T � S)(x; y) D (T(x); S(y)).

Definition of the Subject

Many physical phenomena in equilibrium can be modeled
as measure-preserving transformations. Ergodic theory is
the abstract study of these transformations, dealing in par-
ticular with their long term average behavior.

One of the basic steps in analyzing a measure-preserv-
ing transformation is to break it down into its simplest
possible components. These simplest components are its
ergodic components, and on each of these components,
the system enjoys the ergodic property: the long-term time
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average of any measurement as the system evolves is equal
to the average over the component. Ergodic decomposi-
tion gives a precise description of the manner in which
a system can be split into ergodic components.

A related (stronger) property of a measure-preserv-
ing transformation is mixing. Here one is investigating
the correlation between the state of the system at different
times. The system is mixing if the states are asymptotically
independent: as the times between the measurements in-
crease to infinity, the observed values of the measurements
at those times become independent.

Introduction

The term ergodic was introduced by Boltzmann [8,9] in
his work on statistical mechanics, where he was study-
ing Hamiltonian systems with large numbers of particles.
The system is described at any time by a point of phase
space, a subset of R6N where N is the number of parti-
cles. The configuration describes the 3-dimensional posi-
tion and velocity of each of theN particles. It has long been
known that the Hamiltonian (i. e. the overall energy of the
system) is invariant over time in these systems. Thus, given
a starting configuration, all future configurations as the
system evolves lie on the same energy surface as the initial
one.

Boltzmann’s ergodic hypothesis was that the trajectory
of the configuration in phase space would fill out the en-
tire energy surface. The term ergodic is thus an amalgama-
tion of the Greek words for work and path. This hypothe-
sis then allowed Boltzmann to conclude that the long-term
average of a quantity as the system evolves would be equal
to its average value over the phase space.

Subsequently, it was realized that this hypothesis is
rarely satisfied. The ergodic hypothesis was replaced in
1911 by the quasi-ergodic hypothesis of the Ehrenfests [17]
which stated instead that each trajectory is dense in the
energy surface, rather than filling out the entire energy
surface. The modern notion of ergodicity (to be de-
fined below) is due to Birkhoff and Smith [7]. Koop-
man [44] suggested studying a measure-preserving trans-
formation by means of the associated isometry on Hilbert
space, UT : L2(X)! L2(X) defined by UT ( f ) D f ı T .
This point of view was used by von Neumann [91] in his
proof of the mean ergodic theorem. This was followed
closely by Birkhoff [6] proving the pointwise ergodic the-
orem. An ergodic measure-preserving transformation en-
joys the property that Boltzmann first intended to deduce
from his hypothesis: that long-term averages of an observ-
able quantity coincide with the integral of that quantity
over the phase space.

These theorems allow one to deduce a form of in-
dependence on the average: given two sets of configura-
tions A and B, one can consider the volume of the phase
space consisting of points that are in A at time 0 and in B
at time t. In an ergodic measure-preserving transforma-
tion, if one computes the average of the volumes of these
regions over time, the ergodic theorems mentioned above
allow one to deduce that the limit is simply the product of
the volume of A and the volume of B. This is the weak-
est mixing-type property. In this article, we will outline
a rather full range of mixing properties with ergodicity at
the weakest end and the Bernoulli property at the strongest
end.

We will set out in some detail the variousmixing prop-
erties, basing our study on a number of concrete examples
sitting at various points of this hierarchy. Many of themix-
ing properties may be characterized in terms of the Koop-
man operators operators mentioned above (i. e. they are
spectral properties), but we will see that the strongest mix-
ing properties are not spectral in nature.

We shall also see that there are connections between
the range of mixing properties that we discuss and mea-
sure-theoretic entropy. In measure-preserving transfor-
mations that arise in practice, there is a correlation be-
tween strong mixing properties and positive entropy, al-
thoughmany of these properties are logically independent.

One important issue for which many questions remain
open is that of higher-order mixing. Here, the issue is if
instead of asking that the observations at two times sep-
arated by a large time T be approximately independent,
one asks whether if one makes observations at more times,
each pair suitably separated, the results can be expected
to be approximately independent. This issue has an ana-
logue in probability theory, where it is well-known that it
is possible to have a collection of random variables that are
pairwise independent, but not mutually independent.

Basics and Examples

In this article, except where otherwise stated, the measure-
preserving transformations that we consider will be de-
fined on probability spaces.

More specifically, given a measurable space (X;B) and
a probability measure � defined on B, a measure-preserv-
ing transformation of (X;B; �) is a B-measurable map
T : X ! X such that �(T�1B) D �(B) for all B 2 B.

While this definition makes sense for arbitrary mea-
sures, not simply probability measures, most of the re-
sults and definitions below only make sense in the proba-
bility measure case. Sometimes it will be helpful to make
the assumption that the underlying probability space is
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a Lebesgue space (that is, the space together with its com-
pleted �-algebra agrees up to a measure-preserving bijec-
tion with the unit interval with Lebesgue measure and the
usual �-algebra of Lebesgue measurable sets). Although
this sounds like a strong restriction, in practice it is barely
a restriction at all, as almost all of the spaces that appear
in the theory (and all of those that appear in this article)
turn out to be Lebesgue spaces. For a detailed treatment
of the theory of Lebesgue spaces, the reader is referred
to Rudolph’s book [76]. The reader is referred also to the
chapter on �Measure Preserving Systems.

While many of the definitions that we shall present are
valid for both invertible and non-invertible measure-pre-
serving transformations, the strongest mixing conditions
are most useful in the case of invertible transformations.

It will be helpful to present a selection of simple exam-
ples, relative to which we will be able to explore ergodicity
and the various notions of mixing. These examples and the
lemmas necessary to show that they are measure-preserv-
ing transformations as claimed may be found in the books
of Petersen [64], Rudolph [76] andWalters [92]. More de-
tails on these examples can also be found in the chapter on
� Ergodic Theory: Basic Examples and Constructions.

Example 1 (Rotation on the circle) Let ˛ 2 R. Let
R˛ : [0; 1)! [0; 1) be defined by R˛(x) D x C ˛ mod 1.
It is straightforward to verify that R˛ preserves the re-
striction of Lebesgue measure  to [0; 1) (it is sufficient to
check that (R�1˛ (J)) D (J) for an interval J).

Example 2 (DoublingMap) LetM2 : [0; 1)! [0; 1) be de-
fined by M2(x) D 2x mod 1. Again, Lebesgue measure is
invariant underM2 (to see this, one observes that for an in-
terval J, M�12 (J) consists of two intervals, each of half the
length of J). This may be generalized in the obvious way to
a mapMk for any integer k � 2.

Example 3 (Interval Exchange Transformation) The class
of interval exchange transformations was introduced by
Sinai [85]. An interval exchange transformation is themap
obtained by cutting the interval into a finite number of
pieces and permuting them in such a way that the result-
ing map is invertible, and restricted to each interval is an
order-preserving isometry.

More formally, one takes a sequence of positive
lengths `1; `2; : : : ; `k summing to 1 and a permuta-
tion � of f1; : : : ; kg and defines ai D

P
j<i ` j and bi DP

	( j)<	(i) ` j (again with b0 D 0). The interval exchange
transformation defined by (`1; : : : ; `k) and � is the map
T : [0; 1)! [0; 1) defined by Tj[ai;aiC1)(x) D xC(bi�ai).
It is straightforward to check that any such interval ex-
change transformation preserves Lebesguemeasure on the
unit interval.

Example 4 (Bernoulli Shift) Let A be a finite set and fix
a vector (pi )i2A of positive numbers that sum to 1. Let
AN denote the set of sequences of the form x0x1x2 : : :,
where xn 2 A for each n 2 N and let AZ denote the set
of bi-infinite sequences of the form : : : x�2x�1 � x0x1x2 : : :
(the � is a placeholder that allows us to distinguish (for
example) between the sequences : : : 01010 � 10101 : : : and
: : : 10101 � 01010 : : :).

We define a map (the shift map) S on AN by
(S(x))n D xnC1 and define S on AZ by the same formula.
Note that S is invertible as a transformation on AZ but
non-invertible as a transformation on AN .

We need to equip AN and AZ with measures. This
is done by defining the measure of a preferred class of
sets, checking certain consistency conditions and appeal-
ing to the Kolmogorov extension theorem. Here the pre-
ferred sets are the cylinder sets. Given m � n in the in-
vertible case and a sequence am : : : an , we let [am : : : an]nm
denote fx 2 AZ : xm D am; : : : ; xn D ang and de-
fine �([am : : : an]nm) D pam pamC1 : : : pan . This is then
shown to uniquely define a measure � on the �-alge-
bra of AZ generated by the cylinder sets. It is immedi-
ate to see that for any cylinder set C, �(S�1C) D �(C),
and it follows that S is a measure-preserving transforma-
tion of (AZ;B; �). The construction is exactly analogous
in the non-invertible case. See the chapter on � Mea-
sure Preserving Systems or the books of Walters [92] or
Rudolph [76] for more details of defining measures in
these systems.

The class of Bernoulli shifts will play a distinguished role
in what follows.

Example 5 (Markov Shift) The spaces AN and AZ are ex-
actly as above, as is the shift map. All that changes is the
measure.

To define aMarkov shift, we need a stochastic matrix P
(i. e. a matrix with non-negative entries whose rows sum
to 1) with rows and columns indexed byA and a left eigen-
vector � for P with eigenvalue 1 with the property that
the entries of � are non-negative and sum to 1. The exis-
tence of such an eigenvector is a consequence of the Per-
ron–Frobenius theory of positive matrices. Provided that
the matrix P is irreducible (for each a and a0 in A, there is
an n > 0 such that Pn

a;a0 > 0), the eigenvector � is unique.
Given the pair (P; �), one defines the measure of

a cylinder set by �([am : : : an]nm) D �am PamamC1 : : :

Pan�1an and extends � as before to a probability measure
on AN or AZ.

Example 6 (Hard Sphere Gases and Billiards) We wish to
model the behavior of a gas in a bounded region. Wemake
the assumption that the gas consists of a large number N
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of identical balls which move at constant velocity until
two balls collide, whereupon they elastically swap mo-
mentum along the direction of contact. The phase space
for this system is a region of R6N (with N 3-dimensional
position vectors and N 3-dimensional velocity vectors).
More abstractly, the system is equivalent to the motion of
a single point particle in a region of RM �RM (with the
first M-vector representing position and the second rep-
resenting velocity). The system is constrained in that its
position is required to lie in a bounded region S of RM

with a piecewise smooth boundary. The system evolves
by moving the position at a constant rate in the direction
of the velocity vector until the point reaches @S, at which
time the component of the velocity parallel to the normal
to @S is reversed. This then defines a flow (i. e. a family
of maps (Tt)t2R satisfying TtCs D Tt ı Ts ) on the phase
space. Since the magnitude of the velocity is conserved, it
is convenient to restrict to flows with speed 1. This sys-
tem is clearly the closest of the examples that we consider
to the situation envisaged by Boltzmann. Perhaps not sur-
prisingly, proofs of even the most basic properties for this
system are much harder than those for the other examples
that we consider.

We will need to make use of the concept of measure-theo-
retic isomorphism. Two measure-preserving transforma-
tions T of (X;B; �) and S of (Y ;F ; �) are measure-theo-
retically isomorphic (or just isomorphic) if there exist mea-
surable maps g : X ! Y and h : Y ! X such that

1. g ı h and h ı g agree with the respective identity maps
almost everywhere;

2. �(g�1F) D �(F) and �(h�1B) D �(B) for all F 2 F
and B 2 B; and

3. S ı g(x) D g ı T(x) for �-almost every x (or equiva-
lently T ı h(y) D h ı S(y) for �-almost every y).

Measure-theoretic isomorphism is the basic notion of
‘sameness’ in ergodic theory. It is in some sense quite
weak, so that systemsmay be isomorphic that feel very dif-
ferent (for example, as we discuss later, the time one map
of a geodesic flow is isomorphic to a Bernoulli shift). For
comparison, the notion of sameness in topological dynam-
ical systems (topological conjugacy) is far stronger.

As an example of measure-theoretic isomorphism, it
may be seen that the doubling map is isomorphic to the
one-sided Bernoulli shift on f0; 1g with p0 D p1 D 1/2
(the map g takes an x 2 [0; 1) to the sequence of 0’s and
1’s in its binary expansion (choosing the sequence ending
with 0’s, for example, if x is of the form p/2n) and the in-
verse map h takes a sequence of 0’s and 1’s to the point in
[0; 1) with that binary expansion.)

Given a measure-preserving transformation T of
a probability space (X;B; �), T is associated to an isom-
etry of L2(X;B; �) by UT ( f ) D f ı T . This operator is
known as the Koopman Operator. In the case where T is
invertible, the operator UT is unitary. Two measure-pre-
serving transformations T and S of (X;B; �) and (Y ;F ; �)
are spectrally isomorphic if there is a Hilbert space iso-
morphism ‚ from L2(X;B; �) to L2(Y ;F ; �) such that
‚ ı UT D US ı‚. As we shall see below, spectral isomor-
phism is a strictly weaker property than measure-theoretic
isomorphism.

Since in ergodic theory, measure-theoretic isomor-
phism is the basic notion of sameness, all properties that
are used to describe measure-preserving systems are re-
quired to be invariant under measure-theoretic isomor-
phism (i. e. if two measure-preserving transformations are
measure-theoretically isomorphic, the first has a given
property if and only if the second does). On the other
hand, we shall see that somemixing-type properties are in-
variant under spectral isomorphism, while others are not.
If a property is invariant under spectral isomorphism, we
say that it is a spectral property.

There are a number of mixing type properties that
occur in the probability literature (˛-mixing, ˇ-mixing,
�-mixing,  -mixing etc.) (see Bradley’s survey [12] for
a description of these conditions). Many of these are
stronger than the Bernoulli property, and are therefore not
preserved under measure-theoretic isomorphism. For this
reason, these properties are not widely used in ergodic the-
ory, although ˇ-mixing turns out to be equivalent to the
so-called weak Bernoulli property (which turns out to be
stronger than the Bernoulli property that we discuss in this
article – see Smorodinsky’s paper [87]) and ˛-mixing is
equivalent to strong-mixing.

A basic construction (see the article on � Ergodic
Theory: Basic Examples and Constructions) that we shall
require in what follows is the product of a pair of
measure-preserving transformations: given transforma-
tions T of (X;B; �) and S of (Y ;F ; �), we define the
product transformation T � S : (X � Y ;B˝F ; � � �) by
(T � S)(x; y) D (Tx; Sy).

One issue that we face on occasion is that it is some-
times convenient to deal with invertible measure-preserv-
ing transformations. It turns out that given a non-invert-
ible measure-preserving transformation, there is a nat-
ural way to uniquely associate an invertible measure-
preserving transformation transformation sharing almost
all of the ergodic properties of the original transfor-
mation. Specifically, given a non-invertible measure-pre-
serving transformation T of (X;B; �), one lets X D

f(x0; x1; : : : ) : xn 2 X and T(xn) D xn�1 for all ng, B



2922 E Ergodicity and Mixing Properties

be the �-algebra generated by sets of the form Ān D

fx̄ 2 X : xn 2 Ag, �̄(Ān) D �(A) and T(x0; x1; : : : ) D
(T(x0); x0; x1; : : : ). The transformation T of (X;B; �) is
called the natural extension of the transformation T of
(X;B; �) (see the chapter on� Ergodic Theory: Basic Ex-
amples and Constructions for more details). In situations
where one wants to use invertibility, it is often possible to
pass to the natural extension, work there and then derive
conclusions about the original non-invertible transforma-
tion.

Ergodicity

Given a measure-preserving transformation T : X ! X, if
T�1A D A, then T�1Ac D Ac also. This allows us to de-
compose the transformation X into two pieces A and Ac

and study the transformation T separately on each. In fact
the same situation holds if T�1A and A agree up to a set
of measure 0. For this reason, we call a set A invariant if
�(T�1A
A) D 0.

Returning to Boltzmann’s ergodic hypothesis, exis-
tence of an invariant set of measure between 0 and 1 would
be a bad situation as his essential idea was that the orbit of
a single point would ‘see’ all of X, whereas if X were de-
composed in this way, the most that a point in A could see
would be all of A, and similarly the most that a point in Ac

could see would be all of Ac.
A measure-preserving transformation will be called er-

godic if it has no non-trivial decomposition of this form.
More formally, let T be a measure-preserving transforma-
tion of a probability space (X;B; �). The transformation T
is said to be ergodic if for all invariant sets, either the set or
its complement has measure 0.

Unlike the remaining concepts that we discuss in this
article, this definition of ergodicity applies also to infinite
measure-preserving transformations and even to certain
non-measure-preserving transformations. See Aaronson’s
book [1] for more information.

The following lemma is often useful:

Lemma 1 Let (X;B; �) be a probability space and let T :
X ! X be a measure-preserving transformation. Then T is
ergodic if and only if the onlymeasurable functions f satisfy-
ing f ı T D f (up to sets of measure 0) are constant almost
everywhere.

For the straightforward proof, we notice that if the con-
dition in the lemma holds and A is an invariant set, then
1A ı T D 1A almost everywhere, so that 1A is an a. e. con-
stant function and so A or Ac is of measure 0. Con-
versely, if f is an invariant function, we see that for each ˛,
fx : f (x) < ˛g is an invariant set and hence of measure 0

or 1. It follows that f is constant almost everywhere. We
remark for future use that it is sufficient to check that the
bounded measurable invariant functions are constant.

The following corollary of the lemma shows that er-
godicity is a spectral property.

Corollary 2 Let T be ameasure-preserving transformation
of the probability space (X;B; �). Then T is ergodic if and
only if 1 is a simple eigenvalue of UT.

The ergodic theorems mentioned earlier due to von Neu-
mann and Birkhoff are the following (see also the chapter
on � Ergodic Theorems).

Theorem 3 (vonNeumannMean Ergodic Theorem [91])
Let T be a measure-preserving transformation of the
probability space (X;B; �). For f 2 L2(X;B; �), let
AN f D 1/N( f C f ı T C � � � C f ı TN�1). Then for all
f 2 L2(X;B; �), AN f converges in L2 to an invariant func-
tion f �.

Theorem 4 (Birkhoff Pointwise Ergodic Theorem [6])
Let T be a measure-preserving transformation of the prob-
ability space (X;B; �). Let f 2 L1(X;B; �). Let AN f be as
above. Then for �-almost every x 2 X, (AN f (x)) is a con-
vergent sequence.

Of these two theorems, the pointwise ergodic theorem is
the deeper result, and it is straightforward to deduce the
mean ergodic theorem from the pointwise ergodic theo-
rem. The mean ergodic theorem was reproved very con-
cisely by Riesz [71] and it is this proof that is widely known
now. Riesz’s proof is reproduced in Parry’s book [63].
There have been many different proofs given of the point-
wise ergodic theorem. Notable amongst these are the argu-
ment due to Garsia [23] and a proof due to Katznelson and
Weiss [40] based on work of Kamae [35], which appears in
a simplified form in work of Keane and Petersen [42].

If the measure-preserving transformation T is ergodic,
then by virtue of Lemma 1, the limit functions appearing
in the ergodic theorems are constant. One sees that the
constant is simply the integral of f with respect to �, so
that in this situation AN f (x) converges to

R
f d� in norm

and pointwise almost everywhere, thereby providing a jus-
tification of Boltzmann’s original claim: for ergodic mea-
sure-preserving transformations, time averages agree with
spatial averages. In the case where T is not ergodic, it is
also possible to identify the limit in the ergodic theorems:
we have f � D E( f jI), where I is the �-algebra of T-in-
variant sets.

Note that the set on which the almost everywhere
convergence in Birkhoff’s theorem takes place depends
on the L1 function f that one is considering. Straight-
forward considerations show that there is no single full
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measure set that works simultaneously for all L1 func-
tions. In the case where X is a compact metric space,
it is well known that C(X), the space of continuous
functions on X with the uniform norm has a count-
able dense set, ( fn)n�1 say. If the invariant measure �
is ergodic, then for each n, there is a set Bn of measure
1 such that for all x 2 Bn , AN fn(x)!

R
fn d�. Letting

B D
T

n Bn , one obtains a full measure set such that for
all n and all x 2 B, AN fn(x)!

R
fn d�. A simple approx-

imation argument then shows that for all x 2 B and all
f 2 C(X), AN f (x)!

R
f d�. A point x with this prop-

erty is said to be generic for �. The observations above
show that for an ergodic invariant measure �, we have
�fx : x is generic for �g D 1.

If T is ergodic, but Tn is not ergodic for some n, then
one can show that the space X splits up as A1; : : : ;Ad for
some djn in such a way that T(Ai ) D AiC1 for i < d and
T(Ad ) D A1 with Tn acting ergodically on each Ai. The
transformation T is totally ergodic if Tn is ergodic for all
n 2 N . One can check that a non-invertible transforma-
tion T is ergodic if and only if its natural extension is er-
godic.

The following lemma gives an alternative characteriza-
tion of ergodicity, which in particular relates it to mixing.

Lemma 5 (Ergodicity as a Mixing Property) Let T
be a measure-preserving transformation of the probability
space (X;B; �). Then T is ergodic if and only if for all f
and g in L2,

1
N

NX

nD0

h f ; g ı Tni ! h f ; 1ih1; gi:

In particular, if T is ergodic, then (1/N)
PN�1

nD0 �(A \
T�nB)! �(A)�(B) for all measurable sets A and B.

Proof Suppose that T is ergodic. Then the left-hand
side of the equality is equal to h f ; (1/N)

PN�1
nD0 g ı T

ni.
The mean ergodic theorem shows that the second term
converges in L2 to the constant function with valueR
g d� D hg; 1i, and the equality follows.
Conversely, if the equation holds for all f and g in

L2, suppose that A is an invariant set. Let f D g D 1A .
Then since g ı Tn D 1A for all n, the left-hand side is
h1A; 1Ai D �(A). On the other hand, the right-hand side
is �(A)2, so that the equation yields �(A) D �(A)2, and
�(A) is either 0 or 1 as required.

Taking f D 1A and g D 1B for measurable sets A
and B gives the final statement. �

We now examine the ergodicity of the examples presented
above. Firstly, for the rotation of the circle, we claim that

the transformation is ergodic if and only if the ‘angle’ ˛ is
irrational. To see this, we argue as follows. If ˛ D p/q, then
we see that f (x) D e2	 i qx is a non-constant R˛-invariant
function, and hence R˛ is not ergodic. On the other hand,
if ˛ is irrational, suppose f is a bounded measurable in-
variant function. Since f is bounded, it is an L2 func-
tion, and so f may be expressed in L2 as a Fourier series:
f D

P
n2Z cn en where en(x) D e2	 inx . We then see that

f ı R˛ D
P

n2Z e2	 in˛cn en . In order for f to be equal in
L2 to f ı R˛ , they must have the same Fourier coefficients,
so that cn D e2	 in˛cn for each n. Since ˛ is irrational, this
forces cn D 0 for all n ¤ 0, so that f is constant as re-
quired.

The doubling map and the Bernoulli shift are both er-
godic, although we defer proof of this for the time be-
ing, since they in fact have the strong-mixing property.
A Markov chain with matrix P and vector � is ergodic if
and only if for all i and j in A with �i > 0 and � j > 0,
there exists an n � 0 with Pn

i j > 0. This follows from the
ergodic theorem forMarkov chains (which is derived from
the Strong Law of Large Numbers) (see [18] for details). In
particular, if the underlying Markov chain is irreducible,
then the measure is ergodic.

In the case of interval exchange transformations,
there is a simple necessary condition on the permuta-
tion for irreducibility, namely for 1 � j < k, we do not
have �f1; : : : ; jg D f1; : : : ; jg. Under this condition, Ma-
sur [49] and Veech [88] independently showed that for al-
most all values of the sequence of lengths (`i )1�i�k , the
interval exchange transformation is ergodic. (In fact they
showed the stronger condition of unique ergodicity: that
the transformation has no other invariant measure than
Lebesgue measure. This implies that Lebesgue measure is
ergodic, because if there were a non-trivial invariant set,
then the restriction of Lebesgue measure to that set would
be another invariant measure).

For the hard sphere systems, there are no results on
ergodicity in full generality. Important special cases have
been studied by Sinai [84], Sinai and Chernov [86], Krámli,
Simányi and Szász [45], Simányi and Szász [81], Sim-
nyi [79,80] and Young [95].

Ergodic Decomposition

We already observed that if a transformation is not er-
godic, then it may be decomposed into parts. Clearly if
these parts are not ergodic, they may be further decom-
posed. It is natural to ask whether the transformation can
be decomposed into ergodic parts, and if so what form
does the decomposition take? In fact such a decomposi-
tion does exist, but rather than decompose the transforma-
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tion, it is necessary to decompose the measure into ergodic
pieces. This is known as ergodic decomposition.

The set of invariant measures for a measurable map T
of a measurable space (X;B) to itself forms a simplex.
General functional analytic considerations (due to Cho-
quet [14,15] – see also Phelps’ account [66] of this theory)
mean that it is possible to write anymember of the simplex
as an integral-convex combination of the extreme points.
Further, the extreme points of the simplex may be iden-
tified as precisely the ergodic invariant measures for T. It
follows that any invariant probability measure� for Tmay
be uniquely expressed in the form

�(A) D
Z

Merg(X;T)
�(A) dm(�) ;

where Merg(X; T) denotes the set of ergodic T-invariant
measures on X andm is a measure on Merg(X; T).

We will give a proof of this theorem in the special case
of a continuous transformation of a compact space. Our
proof is based on the Birkhoff ergodic theorem and the
Riesz Representation Theorem identifying the dual space
of the space of continuous functions on a compact space
as the set of bounded signed measures on the space (see
Rudin’s book [75] for details). We include it here because
this special case covers many cases that arise in practice,
and because few of the standard ergodic theory references
include a proof of ergodic decomposition. An exception to
this is Rudolph’s book [76] which gives a full proof in the
case that X is a Lebesgue space. This is based on a detailed
development of the theory of these spaces and builds mea-
sures using conditional exceptions. Kalikow’s notes [32]
give a brief outline of a proof similar to that which follows.
Oxtoby [62] also wrote a survey article containing much
of the following (and much more besides).

Theorem 6 Let X be a compact metric space, B be the
Borel �-algebra, � be an invariant Borel probability mea-
sure and T be a continuous measure-preserving transfor-
mation of (X;B; �). Then for each x 2 X, there exists an
invariant Borel measure �x such that:

1. For f 2 L1(X;B; �),
R
f d� D

R �R
f d�x


d�(x);

2. Given f 2 L1(X;B; �), for �-almost every x 2 X, one
has AN f (x)!

R
f d�x ;

3. The measure �x is ergodic for �-almost every x 2 X.

Notice that conclusion (2) shows that �x can be under-
stood as the distribution on the phase space “seen” if one
starts the system in an initial condition of x. This inter-
pretation of the measures �x corresponds closely with the
ideas of Boltzmann and the Ehrenfests in the formulation

of the ergodic and quasi-ergodic hypotheses, which can be
seen as demanding that �x is equal to � for (almost) all x.

Proof The proof will be divided into 3 main steps: defin-
ing the measures �x , proving measurability with respect
to x and proving ergodicity of the measures.

Step 1: Definition of �x
Given a function f 2 L1(X;B; �), Birkhoff’s theorem
states that for �-almost every x 2 X, (AN f (x)) is conver-
gent. It will be convenient to denote the limit by f̃ (x).
Let f1; f2; : : : be a sequence of continuous functions that
is dense in C(X). For each k, there is a set Bk of x’s mea-
sure 1 for which (An fk(x))1nD1 is a convergent sequence.
Intersecting these gives a set B of full measure such that
for x 2 B, for each k � 1, An fk(x) is convergent. A simple
approximation argument shows that for x 2 B and f an ar-
bitrary continuous function, An f (x) is convergent. Given
x 2 B, define a map Lx : C(X)! R by Lx ( f ) D f̃ (x).
This is a continuous linear functional on C(X), and hence
by the Riesz Representation Theorem there exists a Borel
measure �x such that f̃ (x) D

R
f d�x for each f 2 C(X)

and x 2 B. Since Lx ( f ) � 0 when f is a non-negative
function and Lx (1) D 1, the measure �x is a probability
measure. Since Lx ( f ı T) D Lx ( f ) for f 2 C(X), one can
check that �x must be an invariant probability measure.
For x 62 B, simply define �x D �. Since Bc is a set of mea-
sure 0, this will not affect any of the statements that we are
trying to prove.

Now for f continuous, we have AN f is a bounded se-
quence of functions with AN f (x) converging to

R
f d�x

almost everywhere and
R
AN f d� D

R
f d� since T is

measure-preserving. It follows from the bounded conver-
gence theorem that for f 2 C(X),

Z
f d� D

Z �Z
f d�x

�
d�(x) : (1)

Step 2: Measurability of x 7! �x (A)

Lemma 7 Let C 2 B satisfy �(C) D 0. Then �x (C) D 0
for �-almost every x 2 X.

Proof Using regularity of Borel probability measures
(see Rudin’s book [75] for details), there exist open sets
U1 � U2 � � � � � C with �(Uk ) < 1/k. There exist con-
tinuous functions gk;m with (gk;m(x))1mD1 increasing to
1Uk everywhere (e. g. gk;m(x) D min(1;m � d(x;Uc

k ))). By
(1), we have

R
(
R
gk;m d�x ) d�(x) < 1/k for all k;m.

Note that
R
gk;m d�x D limn!1 Angk;m(x) is a mea-

surable function of x, so that using the monotone conver-
gence theorem (taking the limit in m), x 7!

R
1Uk d�x D

�x (Uk) is measurable and
R
(
R
1Uk d�x ) d�(x) � 1/k.

We now see that x 7! limk!1 �x (Uk ) D �x (
T

Uk)
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is also measurable, and by monotone convergence we seeR
�x (

T
Uk) d�(x) D 0. It follows that �x (

T
Uk) D 0

for �-almost every x. Since
T

Uk � C, the lemma follows.
�

Given a set A 2 B, let f k be a sequence of con-
tinuous functions (uniformly bounded by 1) satisfying
k fk � 1AkL1(�) < 2�n , so that in particular fk(x) !
1A(x) for �-almost every x. For each k, x 7!

R
fk d�x D

limn!1 An fk(x) is a measurable function. By Lemma 7,
for �-almost every x, fk ! 1A �x-almost everywhere,
so that by the bounded convergence theorem limk!1R
fk d�x D �x (A) for �-almost every x. Since the limit

of measurable functions is measurable, it follows that
x 7! �x (A) is measurable for any measurable set A 2 B.

This allows us to define a measure � by �(A) DR
�x (A) d�(x). For a bounded measurable function f , we

have
R
f d� D

R
(
R
f d�x ) d�(x). Since this agrees withR

f d� for continuous functions by (1), it follows that
� D �. Conclusion (1) of the theorem now follows easily.

Given f 2 L1(X), we let ( fk) be a sequence of contin-
uous functions such that k fk � f kL1(�) is summable. This
implies that k fk � f kL1(�x ) is summable for �-almost ev-
ery x and in particular,

R
fk d�x !

R
f d�x for almost

every x. On the other hand, by the remark following the
statement of Birkhoff ’s theorem, we have f̃k D E( fk jI)
so that k f̃ � f̃kkL1(�) is summable and f̃k(x)! f̃ (x) for
�-almost every x. Combining these two statements, we see
that for �-almost every x, we have

f̃ (x) D lim
k!1

f̃k(x) D lim
k!1

Z
fk d�x D

Z
f d�x :

This establishes conclusion (2) of the theorem.

Step 3: Ergodicity of �x
We have shown how to disintegrate the invariant mea-
sure � as an integral combination of �x’s, and we have in-
terpreted the�x ’s as describing the average behavior start-
ing from x. It remains to show that the �x ’s are ergodic
measures.

Fix for now a continuous function f and a number
0 < � < 1. Since An f (x)! f̃ (x) �-almost everywhere,
there exists anN such that�fx : jAN f (x)� f̃ (x)j > �/2g <
�3/8.

We now claim the following:

�
˚
x : �xfy : j f̃ (y) �

R
f d�x j > �g > �

�
< � : (2)

To see this, note that fy : j f̃ (y) �
R
f d�x j > �g �

fy : j f̃ (y)�AN f (y)j > �/2g[fy : jAN f (y)� f̃ (x)j > �/2g,
so that if �x fy : j f̃ (y) �

R
f d�x j > �g > �, then either

�xfy : j f̃ (y)�AN f (y)j > �/2g > �/2 or�xfy : jAN f (y)�
f̃ (x)j > �/2g > �/2. We show that the set of x’s satisfying
each condition is small.

Firstly, we have �3/8 > �fy : j f̃ (y) � AN f (y)j >
�/2g D

R
�xfy : j f̃ (y) � AN f (y)j > �/2g d�(x), so that

�fx : �xfy : j f̃ (y) � AN f (y)j > �/2g > �/2g < �2/4 <
�/2.

For the second term, given c 2 R, let Fc(x) D
jAN f (x)� cj and G(x) D F f̃ (x)(x). Note that

Z
F f̃ (x)(y) d�x (y) D lim

n!1
AnF f̃ (x)(x) D lim

n!1
AnG(x)

(using the facts that y 7! F f̃ (x)(y) is a continuous
function and that since f̃ (x) is an invariant function,
F f̃ (x)(T

kx) D G(Tkx)). Since
R
G(x) d�(x) < �3/8, it

follows that
R
F f̃ (x)(y) d�x (y) � �2/4 except on a set

of x’s of measure less than �/2. Outside this bad set, we
have �xfy : jAN f (y) � f̃ (x)j > �/2g < �/2 so that
�fx : �xfy : jAN f (y) � f̃ (x)j > �/2g > �/2g < �/2 as
required.

This establishes our claim (2) above. Since � > 0 is
arbitrary, it follows that for each f 2 C(X), for �-al-
most every x, �x-almost every y satisfies f̃ (y) D

R
f d�x .

As usual, taking a countable dense sequence ( fk) in
C(X), it is the case that for all k and �-almost every x,
f̃k(y) D

R
fk d�x �x-almost everywhere. Let the set of x’s

with this property be D. We claim that for x 2 D, �x is er-
godic. Suppose not. Then let x 2 D and let J be an invari-
ant set of �x measure between ı and 1 � ı for some ı > 0.
Then by density of C(X) in L1(�x ), there exists an f k with
k fk � 1JkL1(�x ) < ı. Since 1J is an invariant function, we
have 1̃J D 1J . On the other hand, f̃k is a constant function.
It follows that k f̃k � 1̃JkL1(�x ) � ı > k fk �1JkL1(�x ). This
contradicts the identification of the limit as a conditional
expectation and concludes the proof of the theorem.

�

Mixing

As mentioned above, ergodicity may be seen as an in-
dependence on average property. More specifically, one
wants to know whether in some sense �(A\ T�nB) con-
verges to �(A)�(B) as n!1. Ergodicity is the property
that there is convergence in the Césaro sense. Weak-mix-
ing is the property that there is convergence in the strong
Césaro sense. That is, a measure-preserving transforma-
tion T is weak-mixing if

1
N

N�1X

nD0

j�(A\T�nB)��(A)�(B)j ! 0 as N !1 :
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In order for T to be strong-mixing, we require sim-
ply�(A\ T�NB)! �(A)�(B) as N !1. It is clear that
strong-mixing implies weak-mixing and weak-mixing im-
plies ergodicity.

If Td is not ergodic (so that T�dAD A for some A of
measure strictly between 0 and 1), then j�(T�ndA\ A) �
�(A)2j D �(A)(1 � �(A)), so that T is not weak-mixing.

An alternative characterization of weak-mixing is as
follows:

Lemma 8 The measure-preserving transformation T is
weak-mixing if and only if for every pair of measurable
sets A and B, there exists a subset J of N of density 1 (i. e.
#(J \ f1; : : : ;Ng)/N ! 1) such that

lim
n!1 n 62J

�(A\ T�nB) D �(A)�(B) : (3)

By taking a countable family of measurable sets that are
dense (with respect to the metric d(A; B) D �(A
B)) and
taking a suitable intersection of the corresponding J sets,
one shows that for a given weak-mixing measure-preserv-
ing transformation, there is a single set J � N such that
(3) holds for allmeasurable setsA and B (see Petersen [64]
or Walters [92] for a proof).

We show that an irrational rotation of the circle is not
weak-mixing as follows: let ˛ 2 R nQ and let A be the in-
terval [ 14 ;

3
4 ). There is a positive proportion of n’s in the

natural numbers (in fact proportion 1/3) with the property
that jTn( 12 ) �

1
2 j <

1
6 . For these n’s �(A\ T�nA) > 1

3 ,
so that in particular j�(A\ T�nA) � �(A)�(A)j > 1

12 .
Clearly this precludes the required convergence to 0 in the
definition of weak-mixing, so that an irrational rotation is
ergodic but not weak-mixing. Since Rn

˛ D Rn˛ , the earlier
argument shows that Rn

˛ is ergodic, so that R˛ is totally
ergodic.

On the other hand, we show that any Bernoulli shift is
strong-mixing. To see this, let A and B be arbitrary mea-
surable sets. By standard measure-theoretic arguments, A
and B may each be approximated arbitrarily closely by
a finite union of cylinder sets. Since if A0 and B0 are fi-
nite unions of cylinder sets, we have that �(A0 \ T�nB0)
is equal to �(A0)�(B0) for large n, it is easy to deduce that
�(A\ T�nB)! �(A)�(B) as required. Since the dou-
bling map is measure-theoretically isomorphic to a one-
sided Bernoulli shift, it follows that the doubling map is
also strong-mixing.

Similarly, if a Markov Chain is irreducible (i. e. for
any states i and j, there exists an n � 0 such that
Pn
i j > 0) and aperiodic (there is a state i such that

gcdfn : Pn
i i > 0g D 1), then given any pair of cylinder sets

A0 and B0 we have by standard theorems of Markov chains

�(A0 \ T�nB0)! �(A0)�(B0). The same argument as
above then shows that an aperiodic irreducible Markov
Chain is strong-mixing. On the other hand, if a Markov
chain is periodic (d D gcdfn : Pn

i i > 0g > 0), then letting
A D B D fx : x0 D ig, we have that �(A\ T�nB) D 0
whenever d − n. It follows Td is not ergodic, so that T is
not weak-mixing.

Both weak- and strong-mixing have formulations in
terms of functions:

Lemma 9 Let T be a measure-preserving transformation
of the probability space (X;B; �).
1. T is weak-mixing if and only if for every f ; g 2 L2 one

has

1
N

N�1X

nD0

jh f ; g ı Tni � h f ; 1ih1; gij ! 0 as N !1 :

2. T is strong-mixing if and only if for every f ; g 2 L2, one
has

h f ; g ı TN i ! h f ; 1ih1; gi as N !1 :

Using this, one can see that both mixing conditions are
spectral properties.

Lemma 10 Weak- and strong-mixing are spectral proper-
ties.

Proof Suppose S is a weak-mixing transformation of
(Y ;F ; �) and the transformation T of (X;B; �) is
spectrally isomorphic to S by the Hilbert space iso-
morphism ‚. Then for f ; g 2 L2(X;B; �), h f ; g ı
TniX � h f ; 1iXh1; giX D h‚( f ); ‚(g) ı SniY �
h‚( f ); ‚(1)iY h‚(1); ‚(g)iY . Since 1 is an eigenfunction
of UT with eigenvalue 1, ‚(1) is an eigenfunction of US
with an eigenvalue 1, so since S is ergodic, ‚(1) must
be a constant function. Since ‚ preserves norms, ‚(1)
must have a constant value of absolute value 1 and hence
h f ; g ı TniX � h f ; 1iXh1; giX D h‚( f ); ‚(g) ı SniY �
h‚( f ); 1iY h1; ‚(g)iY . It follows from Lemma 9 that T is
weak-mixing.

A similar proof shows that strong-mixing is a spectral
property. �

Both weak- and strong-mixing properties are preserved by
taking natural extensions.

Recent work of Avila and Forni [4] shows that for in-
terval exchange transformations of k � 3 intervals with
the underlying permutation satisfying the non-degeneracy
condition above, almost all divisions of the interval (with
respect to Lebesgue measure on the k � 1-dimensional
simplex) lead to weak-mixing transformations. On the
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other hand, work of Katok [36] shows that no interval ex-
change transformation is strong-mixing.

It is of interest to understand the behavior of the ‘typi-
cal’ measure-preserving transformation. There are a num-
ber of Baire category results addressing this. In order to
state them, one needs a set of measure-preserving transfor-
mations and a topology on them. As mentioned earlier, it
is effectively no restriction to assume that a transformation
is a Lebesgue-measurablemap on the unit interval preserv-
ing Lebesgue measure. The classical category results are
then on the collection of invertible Lebesgue-measure pre-
serving transformations of the unit interval. One topology
on these is the ‘weak’ topology, where a sub-base is given
by sets of the form N(T;A; �) D fS : (S(A)
T(A)) < �g.
With respect to this topology, Halmos [26] showed that
a residual set (i. e. a dense Gı set) of invertible measure-
preserving transformations is weak-mixing (see also work
of Alpern [3]), while Rokhlin [72] showed that the set of
strong-mixing transformations is meagre (i. e. a nowhere
dense F
 set), allowing one to conclude that with respect
to this topology, the typical transformation is weak- but
not strong-mixing.

As often happens in these cases, even when a certain
kind of behavior is typical, it may not be simple to exhibit
concrete examples. In this case, a well-known example of
a transformation that is weak-mixing but not strong-mix-
ing was given by Chacon [13].

While on the face of it the formulation of weak-mix-
ing is considerably less natural than that of strong-mixing,
the notion of weak-mixing turns out to be extremely nat-
ural from a spectral point of view. Given a measure-pre-
serving transformation T, let UT be the Koopman opera-
tor described above. Since this operator is an isometry, any
eigenvalue must lie on the unit circle. The constant func-
tion 1 is always an eigenfunction with eigenvalue 1. If T is
ergodic and g and h are eigenfunctions of UT with eigen-
value , then gh̄ is an eigenfunction with eigenvalue 1,
hence invariant, so that g D Kh for some constant K . We
see that for ergodic transformations, up to rescaling, there
is at most one eigenfunction with any given eigenvalue.

If UT has a non-constant eigenfunction f , then one
has jhUn

T f ; f ij D k f k
2 for each n, whereas by Cauchy–

Schwartz, jh f ; 1ij2 < k f k2. It follows that jhUn
T f ; f i �

h f ; 1ih1; f ij � c for some positive constant c, so that using
Lemma 9, T is not weak-mixing.

Using the spectral theorem, the converse is shown to
hold.

Theorem 11 The measure-preserving transformation T is
weak-mixing if and only UT has no non-constant eigen-
functions.

Of course this also shows that weak-mixing is a spectral
property. Equivalently, this says that the transformation T
is weak-mixing if and only if the apart from the constant
eigenfunction, the operator UT has only continuous spec-
trum (that is, the operator has no other eigenfunctions).
For a very nice and concise development of the part of
spectral theory relevant to ergodic theory, the reader is re-
ferred to the Appendix in Parry’s book [63].

Using this theory, one can establish the following:

Theorem 12

1. T is weak-mixing if and only if T � T is ergodic;
2. If T and S are ergodic, then T � S is ergodic if and only

if US and UT have no common eigenvalues other than 1.

Proof The main factor in the proof is that the eigenvalues
of UT�S are precisely the set of ˛ˇ, where ˛ is an eigen-
value of UT and ˇ is an eigenvalue of US. Further, the
eigenfunctions of UT�S with eigenvalue � are spanned by
eigenfunctions of the form f ˝ g, where f is an eigenfunc-
tion of UT , g is an eigenfunction of US, and the product of
the eigenvalues is � .

Suppose that T is weak-mixing. Then the only eigen-
function is the constant function, so that the only eigen-
function of UT�T is the constant function, proving that
T � T is ergodic. Conversely, if UT has an eigenvalue (so
that f ı T D ˛T for some non-constant f ) then f ˝ f̄ is
a non-constant invariant function of T � T so that T � T
is not ergodic.

For the second part, if US and UT have a common
eigenvalue other than 1 (say f ı T D ˛ f and g ı T D ˛g),
then f ˝ ḡ is a non-constant invariant function. Con-
versely, if T � S has a non-constant invariant function h,
then h can be decomposed into functions of the form
f ˝ g, where f and g are eigenfunctions of UT and US
respectively with eigenvalues ˛ and ˇ satisfying ˛ˇ D 1.
Since the eigenvalues of S are closed under complex conju-
gation, we see that UT and US have a common eigenvalue
other than 1 as required. �

For a measure-preserving transformation T, we let K
be the subspace of L2 spanned by the eigenfunctions of
UT . It is a remarkable fact that K may be identified as
L2(X;B0; �) whereB0 is a sub-�-algebra ofB. The spaceK
is called the Kronecker factor of T. The terminology
comes from the fact that any sub-�-algebra F of B gives
rise to a factor mapping � : (X;B; �)! (X;F ; �) with
�(x) D x. By construction L2(X;B0; �) is the closed linear
span of the eigenfunctions of T considered as a measure-
preserving transformation of (X;B0; �). By the Discrete
Spectrum Theorem of Halmos and von Neumann [27],
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T acting on (X;B0; �) is measure-theoretically isomor-
phic to a rotation on a compact group. This allows one
to split L2(X;B; �) as L2(X;B0; �)˚ L2c (X;B; �), where,
as mentioned above the first part is the discrete spectrum
part, spanned by eigenfunctions, and the second part is the
continuous spectrum part, consisting of functions whose
spectral measure is continuous. Since we have split L2 into
a discrete part and a continuous part, it is natural to ask
whether the underlying transformation T can be split up in
some way into a weak-mixing part and a discrete spectrum
(compact group rotation) part, somewhat analogously to
the ergodic decomposition. Unfortunately, there is no-
such decomposition available. However for some appli-
cations, for example to multiple recurrence (starting with
the work of Furstenberg [20,21]), the decomposition of L2

(possibly into more complicated parts) plays a crucial role
(see the chapters on � Ergodic Theory: Recurrence and
� Ergodic Theory: Interactions with Combinatorics and
Number Theory).

For non-invertible measure-preserving transforma-
tions, the transformation is weak- or strong-mixing if and
only if its natural extension has that property.

The understanding of weak-mixing in terms of the dis-
crete part of the spectrum of the operator also extends to
total ergodicity. Tn is ergodic if and only if T has no eigen-
values of the form e2	 i p/n other than 1. From this it fol-
lows that an ergodic measure-preserving transformation T
is totally ergodic if and only if it has no rational spectrum
(i. e. no eigenvalues of the form e2	 i p/q other than the sim-
ple eigenvalue 1).

An intermediate mixing condition between strong-
and weak- mixing is that a measure-preserving transfor-
mation is mild-mixing if whenever f ı Tni ! f for an L2

function f and a sequence ni !1, then f is a.e. con-
stant. Clearly mild-mixing is a spectral property. If a trans-
formation has an eigenfunction f , then it is straightfor-
ward to find a sequence ni such that f ı Tni ! f , so
we see that mild-mixing implies weak-mixing. To see
that strong-mixing implies mild-mixing, suppose that T
is strong-mixing and that f ı Tni ! f . Then we haveR
f ı Tni f̄ ! k f k2. On the other hand, the strong mixing

property implies that
R
f ı Tni f̄ ! jh f ; 1ij2. The equality

of these implies that f is a. e. constant. Mild-mixing has
a useful reformulation in terms of ergodicity of general
(not necessarily probability) measure-preserving transfor-
mations: A transformation T is mild-mixing if and only if
for every conservative ergodic measure-preserving trans-
formation S, T � S is ergodic. See Furstenberg and Weiss’
article [22] for further information on mild-mixing.

The strongest spectral property that we consider is
that of having countable Lebesgue spectrum. While we

will avoid a detailed discussion of spectral theory in this
article, this is a special case that can be described sim-
ply. Specifically, let T be an invertible measure-preserv-
ing transformation. Then T has countable Lebesgue spec-
trum if there is a sequence of functions f1; f2; : : : such that
f1g [ fUn

T f j : n 2 Z; j 2 Ng forms an orthonormal basis
for L2(X).

To see that this property is stronger than strong-
mixing, we simply observe that it implies that hUt

TU
n
T f j;

Um
T fki ! 0 as t !1. Then by approximating f and g

by their expansions with respect to a finite part of the ba-
sis, we deduce that hUn

T f ; gi ! h f ; 1ih1; gi as required.
Since already strong-mixing is atypical from the topologi-
cal point of view, it follows that countable Lebesgue spec-
trum has to be atypical. In fact, Yuzvinskii [96] showed
that the typical invertible measure-preserving transforma-
tion has simple singular spectrum.

The property of countable Lebesgue spectrum is by
definition a spectral property. Since it completely describes
the transformation up to spectral isomorphism, there can
be no stronger spectral properties. The remaining prop-
erties that we shall examine are invariant under measure-
theoretic isomorphisms only.

An invertible measure-preserving transformation T of
(X;B; �) is said to be K (for Kolmogorov) if there is a sub-
�-algebraF of B such that

1.
T1

nD1 T
�nF is the trivial �-algebra up to sets of mea-

sure 0 (i. e. the intersection consists only of null sets and
sets of full measure).

2.
W1

nD1 T
nF D B (i. e. the smallest �-algebra contain-

ing TnF for all n > 0 is B).
The K property has a useful reformulation in terms of en-
tropy as follows: T is K if and only if for every non-trivial
partition P of X, the entropy of T with respect to the par-
tition P is positive: T has completely positive entropy. See
the chapter on � Entropy in Ergodic Theory for the rel-
evant definitions. The equivalence of the K property and
completely positive entropy was shown by Rokhlin and
Sinai [74]. For a general transformation T, one can con-
sider the collection of all subsets B of X such that with re-
spect to the partition PB D fB; Bcg, h(PB) D 0. One can
show that this is a �-algebra. This �-algebra is known as
the Pinsker �-algebra. The above reformulation allows us
to say that a transformation is K if and only if it has a trivial
Pinsker �-algebra.

The K property implies countable Lebesgue spectrum
(see Parry’s book [63] for a proof). To see that K is not im-
plied by countable Lebesgue spectrum, we point out that
certain measure-preserving transformations derived from
Gaussian systems (see for example the paper of Parry and
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Newton [52]) have countable Lebesgue spectrum but zero
entropy.

The fact that (two-sided) Bernoulli shifts have the K
property follows from Kolmogorov’s 0–1 law by taking
F DW1nD0 T

�nP, where P is the partition into cylinder
sets (see Williams’s book [93] for details of the 0–1 law).

Although the K property is explicitly an invertible
property, it has a non-invertible counterpart, namely
exactness. A transformation T of (X;B; �) is exact ifT1

nD0 T
�nB consists entirely of null sets and sets of mea-

sure 1. It is not hard to see that a non-invertible transfor-
mation is exact if and only if its natural extension is K.

The final and strongest property in our list is that of be-
ing measure-theoretically isomorphic to a Bernoulli shift.
If T is measure-theoretically isomorphic to a Bernoulli
shift, we say that T has the Bernoulli property. While in
principle this could apply to both invertible and non-in-
vertible transformations, in practice the definition applies
to a large class of invertible transformations, but occurs
comparatively seldom for non-invertible transformations.
For this reason, we will restrict ourselves to a discussion of
the Bernoulli property for invertible transformations (see
however work of Hoffman and Rudolph [29] andHeicklen
and Hoffman [28] for work on the one-sided Bernoulli
property).

In the case of invertible Bernoulli shifts, Orn-
stein [53,58] developed in the early 1970s a powerful iso-
morphism theory, showing that two Bernoulli shifts are
measure-theoretically isomorphic if and only if they have
the same entropy. Entropy had already been identified as
an invariant by Kolmogorov and Sinai [43,82], so this es-
tablished that it was a complete invariant for Bernoulli
shifts. Keane and Smorodinsky [41] gave a proof which
showed that two Bernoulli shifts of the same entropy are
isomorphic using a conjugating map that is continuous
almost everywhere. With other authors, this theory was
extended to show that the property of being isomorphic
to a Bernoulli shift applied to a surprisingly large class of
measure-preserving transformations (e. g. geodesic flows
on manifolds of constant negative curvature (Ornstein
and Weiss [60]), aperiodic irreducible Markov chains
(Friedman and Ornstein [19]), toral automorphisms
(Katznelson [39]) and more generally many Gibbs mea-
sures for hyperbolic dynamical systems (see the book of
Bowen [11])).

Initially, it was conjectured that the properties of be-
ing K and Bernoulli were the same, but since then a num-
ber of measure-preserving transformations that are K but
not Bernoulli have been identified. The earliest was due to
Ornstein [55]. Ornstein and Shields [59] then provided an
uncountable family of non-isomorphic K automorphisms.

Katok [37] gave an example of a smooth diffeomorphism
that is K but not Bernoulli; and Kalikow [33] gave a very
natural probabilistic example of a transformation that has
this property (the T,T�1 process).

While in systems that one regularly encounters there
is a correlation between positive entropy and the stronger
mixing properties that we have discussed, these properties
are logically independent (for example taking the prod-
uct of a Bernoulli shift and the identity transformation
gives a positive entropy transformation that fails to be er-
godic; also, the zero entropy Gaussian systems with count-
able Lebesgue spectrum mentioned above have relatively
strong mixing properties but zero entropy).

In many of the mixing criteria discussed above we
have considered a pair of sets A and B and asked for
asymptotic independence of A and B (so that for large n,
A and T�nB become independent). It is natural to ask,
given a finite collection of sets A0;A1; : : : ;Ak , under
what conditions �(A0 \ T�n1A1 \ � � � \ T�nk Ak) con-
verges to

Qk
jD0 �(Aj).

A measure-preserving transformation is said to be
mixing of order k+ 1 if for all measurable sets A0; : : : ;Ak ,

lim
n1!1;n jC1�n j!1

�
�
A0 \ T�n1A1 \ � � � \ T�nk Ak



D

kY

jD0

�(Aj) :

An outstanding open question asked by Rokhlin [73] ap-
pearing already in Halmos’ 1956 book [27] is to determine
whether mixing (i. e. mixing of order 2) implies mixing of
all orders. Kalikow [34] showed that mixing implies mix-
ing of all orders for rank 1 transformations (existence of
rank one mixing transformations having been previously
established by Ornstein in [54]). Later Ryzhikov [77] used
joining methods to establish the result for transformations
with finite rank, and Host [30] also used joining methods
to establish the result for measure-preserving transforma-
tions with singular spectrum, but the general question re-
mains open.

It is not hard to show using martingale arguments that
K automorphisms and hence all Bernoulli measure-pre-
serving transformations are mixing of all orders.

For weak-mixing transformations, Furstenberg [21]
has established the following weak-mixing of all orders
statement: if a measure-preserving transformation T is
weak-mixing, then given sets A0; : : : ;Ak , there is a sub-
sequence J of the integers of density 0 such that

lim
n!1 n 62J

�
�
A0\T�nA1\� � �\T�knAk


D

kY

iD0

�(Ai ) :



2930 E Ergodicity and Mixing Properties

Bergelson [5] generalized this by showing that

lim
n!1;n 62J

�
�
A0 \ T�p1(n)A1 \ � � � \ T�pk (n)Ak



D

kY

iD0

�(Ai )

whenever p1(n); : : : ; pk (n) are non-constant integer-val-
ued polynomials such that pi (n) � p j(n) is unbounded for
i ¤ j. The method of proof of both of these results was
a Hilbert space version of the van der Corput inequality of
analytic number theory. Furstenberg’s proof played a key
role in his ergodic proof [20] of Szemerédi’s theorem on
the existence of arbitrarily long arithmetic progressions in
a subset of the integers of positive density (see the chap-
ter on� Ergodic Theory: Interactions with Combinatorics
and Number Theory for more information about this di-
rection of study).

The conclusions that one draws here are much weaker
than the requirement for mixing of all orders. For mix-
ing of all orders, it was required that provided the gaps
between 0; n1; : : : ; nk diverge to infinity, one achieves
asymptotic independence, whereas for these weak-mixing
results, the gaps are increasing along prescribed sequences
with regular growth properties.

It is interesting to note that the analogous question of
whether mixing implies mixing of all orders is known to
fail in higher-dimensional actions. Here, rather than a Z
action, in which there is a single measure-preserving trans-
formation (so that the integer n acts on a point x 2 X by
mapping it to Tnx), one takes a Zd action. For such an
action, one has d commuting transformations T1; : : : ; Td
and a vector (n1; : : : ; nd ) acts on a point x by sending it to
Tn1
1 � � � T

nd
d x. Ledrappier [46] studied the following two-

dimensional action. Let X D fx 2 f0; 1gZ2 : xv C xvCe1 C

xvCe2 D 0 (mod 2)g and let Ti (x)v D xvCei . Since X is
a compact Abelian group, it has a natural measure � in-
variant under the group operations (the Haar measure). It
is not hard to show that this system is mixing (i. e. given
any measurable sets A and B, �(A \ T�n11 T�n22 B) !
�(A)�(B) as k(n1; n2)k ! 1). Ledrappier showed that
the system fails to be 3-mixing. Subsequently Masser [48]
established necessary and sufficient conditions for similar
higher-dimensional algebraic actions to be mixing of or-
der k but not order k C 1 for any given k.

Hyperbolicity and Decay of Correlations

One class of systems in which the stronger mixing
properties are often found is the class of smooth sys-
tems possessing uniform hyperbolicity (i. e. the tangent
space to the manifold at each point splits into stable

and unstable subspaces Es (x) and Eu(x) such that the
kDTjEs(x)k � a < 1 for all x and kDT�1jEu (x)k � a and
DT(Es (x)) D Es (T(x)) and DT(Eu(x)) D Eu(T(x))). In
some cases similar conclusions are found in systems pos-
sessing non-uniform hyperbolicity. See Katok and Hassel-
blatt’s book [38] for an overview of hyperbolic dynamical
systems, as well as the chapter in this volume on� Smooth
Ergodic Theory.

In the simple case of expanding piecewise continu-
ous maps of the interval (that is, maps for which the ab-
solute value of the derivative is uniformly bounded be-
low by a constant greater than 1), it is known that if
they are totally ergodic and topologically transitive (i. e.
the forward images of any interval cover the entire inter-
val), then provided that the map has sufficient smoothness
(e. g. the map is C1 and the derivative satisfies a certain
additional summability condition), the map has a unique
absolutely continuous invariant measure which is exact
and whose natural extension is Bernoulli (see the paper
of Góra [25] for results of this type proved under some
of the mildest hypotheses). These results were originally
established for maps that were twice continuously differ-
entiable, and the hypotheses were progressively weakened,
approaching, but never meeting, C1. Subsequent work of
Quas [68,69] provided examples of C1 expanding maps
of the interval for which Lebesgue measure was invari-
ant, but respectively not ergodic and not weak-mixing.
Some of the key tools in controlling mixing in one-di-
mensional expanding maps that are absent in the C1 case
are bounded distortion estimates. Here, there is a constant
1 � C <1 such that given any interval I on which some
power Tn of T acts injectively and any sub-interval J of I,
one has 1/C � (jTn Jj/jTnIj)/(jJj/jIj) � C. An early place
in which bounded distortion estimates appear is the work
of Rényi [70].

One important class of results for expanding maps es-
tablishes an exponential decay of correlations. Here, one
starts with a pair of smooth functions f and g and one esti-
mates

R
f � g ı Tn d� �

R
f d�

R
g d�, where � is an ab-

solutely continuous invariant measure. If � is mixing, we
expect this to converge to 0. In fact though, in good cases
this converges to 0 at an exponential rate for each pair of
functions f and g belonging to a sufficiently smooth class.
In this case, the measure-preserving transformation T is
said to have exponential decay of correlations. See Liv-
erani’s article [47] for an introduction to a method of es-
tablishing this based on cones. Exponential decay of cor-
relations implies in particular that the natural extension is
Bernoulli.

Hu [31] has studied the situation of maps of the in-
terval for which the derivative is bigger than 1 everywhere
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except at a fixed point, where the local behavior is of the
form x 7! x C x1C˛ for 0 < ˛ < 1. In this case, rather
than exhibiting exponential decay of correlations, the map
has polynomial decay of correlations with a rate depend-
ing on ˛.

In Young’s survey [94], a variety of techniques are out-
lined for understanding the strong ergodic properties of
non-uniformly hyperbolic diffeomorphisms. In her arti-
cle [95], methods are introduced for studyingmany classes
of non-uniformly hyperbolic systems by looking at suit-
ably high powers of the map, for which the power has
strong hyperbolic behavior. The article shows how to un-
derstand the ergodic behavior of these systems. These
methods are applied (for example) to billiards, one-dimen-
sional quadratic maps and Hénon maps.

Future Directions

Problem 1 (Mixing of all orders) Does mixing imply
mixing of all orders? Can the results of Kalikow, Ryzhikov
and Host be extended to larger classes of measure-preserv-
ing transformations? Thouvenot observed that it is suffi-
cient to establish the result for measure-preserving trans-
formations of entropy 0. This observation (whose proof is
based on the Pinsker �-algebra) was stated in Kalikow’s
paper [34] and is reproduced as Proposition 3.2 in recent
work of de la Rue [16] on the mixing of all orders problem.

Problem 2 (Multiple weak-mixing) As mentioned
above, Bergelson [5] showed that if T is a weak-mixing
transformation, then there is a subset J of the integers of
density 0 such that

lim
n!1;n 62J

�
�
A0 \ T�p1(n)A1 \ � � � \ T�pk (n)Ak



D

kY

iD0

�(Ai )

whenever p1(n); : : : ; pk (n) are non-constant integer-val-
ued polynomials such that pi (n) � p j(n) is unbounded for
i ¤ j. It is natural to ask what is the most general class of
times that can replace the sequences (p1(n)); : : : ; (pk(n)).
In unpublished notes, Bergelson and Håland considered
as times the values taken by a family of integer-val-
ued generalized polynomials (those functions of an in-
teger variable that can be obtained by the operations
of addition, multiplication, addition of or multiplica-
tion by a real constant and taking integer parts (e. g.
g(n) D b

p
2b�nc C b

p
3nc2c)). They conjectured neces-

sary and sufficient conditions for the analogue of Bergel-
son’s weak-mixing polynomial ergodic theorem to hold,
and proved the conjecture in certain cases.

In a recent paper of McCutcheon and Quas [50], the
analogous question was addressed in the case where T is
a mild-mixing transformation.

Problem 3 (Pascal adic transformation) Vershik [89,90]
introduced a family of transformations known as the adic
transformations. The underlying spaces for these trans-
formations are certain spaces of paths on infinite graphs,
and the transformations act by taking a path to its lex-
icographic neighbor. Amongst the adic transformations,
the so-called Pascal adic transformation (so-called because
the underlying graph resembles Pascal’s triangle) has been
singled out for attention in work of Petersen and oth-
ers [2,10,51,65]. In particular, it is unresolved whether this
transformation is weak-mixing with respect to any of its
ergodic measures. Weak-mixing has been shown by Pe-
tersen and Schmidt to follow from a number-theoretic
condition on the binomial coefficients [2,10].

Problem 4 (Weak Pinsker Conjecture) Pinsker [67]
conjectured that in a measure-preserving transformation
with positive entropy, one could express the transfor-
mation as a product of a Bernoulli shift with a system
with zero entropy. This conjecture (now known as the
Strong Pinsker Conjecture) was shown to be false by Orn-
stein [56,57]. Shields and Thouvenot [78] showed that the
collection of transformations that can be written as a prod-
uct of a zero entropy transformation with a Bernoulli shift
is closed in the so-called d̄-metric that lies at the heart of
Ornstein’s theory.

It is, however, the case that if T : X ! X has en-
tropy h > 0, then for all h0 � h, T has a factor S with
entropy h0 (this was originally proved by Sinai [83] and
reproved using the Ornstein machinery by Ornstein and
Weiss in [61]). The Weak Pinsker Conjecture states that
if a measure-preserving transformation T has entropy
h > 0, then for all � > 0, T may be expressed as a product
of a Bernoulli shift and a measure-preserving transforma-
tion with entropy less than �.
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Glossary

Dynamical system in its broadest sense, any set X, with
a map T : X ! X. The classical example is: X is a set
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whose points are the states of some physical system
and the state x is succeeded by the state Tx after one
unit of time.

Iteration repeated applications of the map T above to ar-
rive at the state of the system after n units of time.

Orbit of x the forward images x; Tx; T2X : : : of x 2 X
under iteration of T. When T is invertible one may
consider the forward, backward or two-sided orbit
of x.

Automorphism a dynamical system T : X ! X, where X
is a measure space and T is an invertible map preserv-
ing measure.

Ergodic average if f is a function on X let
An f (x) D n�1

Pn�1
iD0 f (Tix); the average of the values

of f over the first n points in the orbit of x.
Ergodic theorem an assertion that ergodic averages con-

verge in some sense.
Mean ergodic theorem an assertion that ergodic averages

converge with respect to some norm on a space of
functions.

Pointwise ergodic theorem an assertion that ergodic av-
erages An f (x) converge for some or all x 2 X, usually
for a.e. x.

Stationary process a sequence (X1; X2; : : :) of random
variables (real or complex-valued measurable func-
tions) on a probability space whose joint distribu-
tions are invariant under shifting (X1; X2; : : :) to
(X2; X3; : : :).

Uniform distribution a sequence fxng in [0; 1] is uni-
formly distributed if for each interval I � [0; 1], the
time it spends in I is asymptotically proportional to the
length of I.

Maximal inequality an inequality which allows one to
bound the pointwise oscillation of a sequence of func-
tions. An essential tool for proving pointwise ergodic
theorems.

Operator any linear operatorU on a vector space of func-
tions on X, for example one arising from a dynamical
system T by setting U f (x) D f (Tx). More generally
any linear transformation on a real or complex vector
space.

Positive contraction an operator T on a space of func-
tions endowed with a norm k � k such that T maps pos-
itive functions to positive functions and kT f k � j f j.

Definition of the Subject

Ergodic theorems are assertions about the long-term sta-
tistical behavior of a dynamical system. The subject arose
out of Boltzmann’s ergodic hypothesis which sought to
equate the spatial average of a function over the set of

states in a physical system having a fixed energy with the
time average of the function observed by starting with
a particular state and following its evolution over a long
time period.

Introduction

Suppose that (X;B; �) is a measure space and
T : (X;B; �)! (X;B; �) is a measurable and measure-
preserving transformation, that is �(T�1E) D �(E) for
all E 2 B. One important motivation for studying such
maps is that a Hamiltonian physical system (see the article
by Petersen in this collection) gives rise to a one-param-
eter group fTt : t 2 Rg of maps in the phase space of the
system which preserve Lebesgue measure. The ergodic
theorem of Birkhoff asserts that for f 2 L1(�)

1
n

n�1X

iD0

f (Tix) (1)

converges a.e. and that if T is ergodic (to be defined
shortly) then the limit is

R
f d�. This may be viewed

as a justification for Boltzmann’s ergodic hypothesis that
“space averages equal time averages”. See Zund [214] for
some history of the ergodic hypothesis. For physicists,
then, the problem is reduced to showing that a given phys-
ical system is ergodic, which can be very difficult. How-
ever ergodic systems arise in many natural ways in math-
ematics. One example is rotation z 7! z of the unit cir-
cle if  is a complex number of modulus one which is not
a root of unity. Another is the shift transformation on a se-
quence of i.i.d. random variables, for example a coin-toss-
ing sequence. Another is an automorphism of a compact
Abelian group. Often a transformation possesses an in-
variant measure which is not obvious at first sight. Knowl-
edge of such a measure can be a very useful tool. See Pe-
tersen’s article for more examples.

If (X;B; �) is a probability space and T is ergodic then
Birkhoff’s ergodic theorem implies that if A is a measur-
able subset of X then for almost every x, the frequency
with which x visits A is asymptotically equal to �(A),
a very satisfying justification of intuition. For example, ap-
plying this to the coin-tossing sequence one obtains the
strong law of large numbers which asserts that almost ev-
ery infinite sequence of coin tosses has tails occurring with
asymptotic frequency 1

2 . One also obtains Borel’s theo-
rem on normal numbers which asserts that for almost all
x 2 [0; 1] each digit 0; 1; 2; : : : ; 9 occurs with limiting fre-
quency 1

10 . The so-called continued fraction transforma-
tion x 7! x�1 mod 1 on (0; 1) has a finite invariant mea-
sure dx

1Cx . (Throughout this article x mod 1 denotes the
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fractional part of x.) Applying Birkhoff’s theorem then
gives precise information about the frequency of occur-
rence of any n 2 N in the continued fraction expansion
of x, for a.e. x. See for example Billingsley [34].

These are the classical roots of the subject of ergodic
theorems. The subject has evolved from these simple ori-
gins into a vast field in its own right, quite independent of
physics or probability theory. Nonetheless it still has close
ties to both these areas and has also forged new links with
many other areas of mathematics.

Our purpose here is to give a broad overview of the
subject in a historical perspective. There are several ex-
cellent references, notably the books of Krengel [135]
and Tempelman [194] which give a good picture of the
state of the subject at the time they appeared. There has
been tremendous progress since then. The time is ripe for
a much more comprehensive survey of the field than is
possible here.

Many topics are necessarily absent and many are only
glimpsed. For example this article will not touch on ran-
dom ergodic theorems. See the articles [75,143] for some
references on this topic.

I thankMustafa Akcoglu, Ulrich Krengel, Michael Lin,
Dan Rudolph and particularly Joe Rosenblatt and Vitaly
Bergelson for many helpful comments and suggestions.
I would like to dedicate this article to Mustafa Akcoglu
who has been such an important contributor to the de-
velopment of ergodic theorems over the past 40 years. He
has also played a vital role in my mathematical develop-
ment as well as ofmany other mathematicians.He remains
a source of inspiration to me, and a valued friend.

Ergodic Theorems forMeasure-PreservingMaps

Suppose (X;B; �) is a measure space. A (measure-pre-
serving) endomorphism of (X;B; �) is a measurable map-
ping T : X ! X such that �(T�1E) D �(E) for any mea-
surable subset E � X. If T has a measurable inverse then
one says that it is an automorphism. In this article the un-
qualified terms “endomorphism” or “automorphism” will
always mean measure-preserving. T is called ergodic if for
all measurable E one has

T�1E D E) �(E) D 0 or �(Ec ) D 0 :

A very general class of examples comes from the no-
tion of a stationary stochastic process in probability theory.
A stochastic process is a sequence of measurable functions
f1; f2; : : : on a probability space (X;B; �) taking values in
a measurable space (Y ;C). The distribution of the process,
a measure � on YN , is defined as the image of � under the

map ( f1; f2; : : :) : X ! YN . � captures all the essential in-
formation about the process f fig. In effect one may view
any process f fig as a probability measure on YN . The pro-
cess is said to be stationary if � is invariant under the left
shift transformation S on YN , S(y)(i) D y(i C 1), that is S
is an endomorphism of the probability space (YN ; �).

From a probabilistic point of view the most natural ex-
amples of stationary stochastic processes are independent
identically distributed processes, namely the case when �
is a product measure N for some measure  on (Y ;C).
More generally one can consider a stationary Markov pro-
cess defined by transition probabilities on the state space Y
and an invariant probability on Y . See for example Chap. 7
in [50], also Sect. “Pointwise Ergodic Theorems for Oper-
ators” below.

The first and most fundamental result about en-
domorphisms is the celebrated recurrence theorem of
Poincaré [173]).

Theorem 1 Suppose � is finite, A 2 B and �(A) > 0.
Then for a.e. x 2 A there is an n > 0 such that Tnx 2 A,
in fact there are infinitely many such n.

It may be viewed as an ergodic theorem, in that it is a qual-
itative statement about how x behaves under iteration of
T. For a proof, observe that if E � A is the measurable set
of points which never return to A then for each n > 0 the
set T�nE is disjoint from E. Applying T�m one gets also
T�(nCm)E \ T�mE D ;. Thus E; T�1E; T�2E; : : : is an
infinite sequence of disjoint sets all having measure �(E)
so �(E) D 0 since �(X) <1. Much later Kac [120] for-
mulated the following quantitative version of Poincaré’s
theorem.

Theorem 2 Suppose that �(X) D 1, T is ergodic and let
rAx denote the time of first return to A, that is rA(x) is the
least n > 0 such that Tnx 2 A. Then

1
�(A)

Z

A
rA d� D

1
�(A)

; (2)

that is, the expected value of the return time to A is �(A)�1.

Koopman [131] made the observation that associated to
an automorphism T there is a unitary operator U D UT
defined on the Hilbert space L2(�) by the formula
U f D f ı T . This led von Neumann [151] to prove his
mean ergodic theorem.

Theorem 3 Suppose H is a Hilbert space, U is a uni-
tary operator onH and let P denote the orthogonal projec-
tion on the subspace of U-invariant vectors. Then for any
x 2H one has

�
���
�
1
n

n�1X

iD0

Ui x � Px

�
���
�
! 0 as n !1 : (3)
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Von Neumann’s theorem is usually quoted as above but
to be historically accurate he dealt with unitary operators
indexed by a continuous time parameter.

Inspired by von Neumann’s theorem Birkhoff very
soon proved his pointwise ergodic theorem [35]. In spite
of the later publication by von Neumann his result did
come first. See [29,214] for an interesting discussion of the
history of the two theorems and of the interaction between
Birkhoff and von Neumann.

Theorem 4 Suppose (X;B; �) is a measure space and T
is an endomorphism of (X;B; �). Then for any f 2 L1 D
L1(�) there is a T-invariant function g 2 L1 such that

An f (x) D
1
n

n�1X

iD0

f (Tix)! g(x) a.e. (4)

Moreover if � is finite then the convergence also holds with
respect to the L1 norm and one has

R
E g d� D

R
E f d� for

all T-invariant subsets E.

Again this formulation of Birkhoff’s theorem is not histor-
ically accurate as he dealt with a smooth flow on a mani-
fold. It was soon observed that the theorem, and its proof,
remain valid for an abstract automorphism of a measure
space although the realization that T need not be invert-
ible seems to have taken a little longer.

The notation An f D An(T) f as above will occur of-
ten in the sequel. Whenever T is an endomorphism one
uses the notation T f D f ı T and with this notation
An(T) D 1

n
Pn�1

iD0 T
i . When the scalars (R orC) for an L1

space are not specified the notation should be understood
as referring to either possibility. In most of the theorems
in this article the complex case follows easily from the real
and any indications about proofs will refer to the real case.

Although von Neumann originally used spectral the-
ory to prove his result, there is a quick proof, attributed
to Riesz by Hopf in his 1937 book [100], which uses
only elementary properties of Hilbert space. Let I de-
note the (closed) subspace of U-invariant vectors and I0

the (usually not closed) subspace of vectors of the form
f � U f . It is easy to check that any vector orthogonal to
I0 must be in I, whence the subspace I C I0 is dense inH .
For any vector of the form x D y C y0; y 2 I; y0 2 I0 it is
clear that Anx D 1

n
Pn�1

iD0 U
i x converges to y D Px, since

An y D y and if y0 D z � Uz then the telescoping sum
An y0 D n�1(z � Unz) converges to 0. This establishes the
desired convergence for x 2 I C I0 and it is easy to extend
it to the closure of I C I0 since the operators An are con-
tractions ofH (kAnk � 1). Lorch [147] used a soft argu-
ment in a similar spirit to extend non Neumann’s theorem

from the case of a unitary operator on a Hilbert space to
that of an arbitrary linear contraction on any reflexive Ba-
nach space. Sine [188] gave a necessary and sufficient con-
dition for the strong convergence of the ergodic averages
of a contraction on an arbitrary Banach space.

Birkhoff’s theorem has the distinction of being one of
the most reproved theorems of twentieth century mathe-
matics. One approach to the pointwise convergence, par-
allel to the argument to argument just seen, is to find
a dense subspace E of L1 so that the convergence holds
for all f 2 E and then try to extend the convergence to
all f 2 L1 by an approximation argument. The first step
is not too hard. For simplicity assume that � is a finite
measure. As in the proof of von Neumann’s theorem the
subspace E spanned by the T-invariant L1 functions to-
gether with functions of the form g � Tg; g 2 L1, is dense
in L1(�). This can be seen by using the Hahn–Banach the-
orem and the duality of L1 and L1. (Here one needs finite-
ness of � to know that L1 � L1.) The pointwise conver-
gence of An f for invariant f is trivial and for f D g � Tg
it follows from telescoping of the sum and the fact that
n�1Tn g ! 0 a.e. This last can be shown by using the
Borel–Cantelli lemma. The second step, extending point-
wise convergence, as opposed to norm convergence, for f
in a dense subspace to all f in L1 is a delicate matter, re-
quiring amaximal inequality.

Roughly speaking amaximal inequality is an inequality
which bounds the pointwise oscillation of An f in terms of
the norm of f . The now standard maximal inequality in
the context of Birkhoff’s theorem is the following, due to
Kakutani andYosida [209]. Birkhoff’s proof of his theorem
includes a weaker version of this result. Let Sn f D nAn f ,
the nth partial sum of the iterates of f .

Theorem 5 Given any real f 2 L1 let A D
S

n�1fSn f �
0g. Then

Z

A
f d� � 0 : (5)

Moreover if one sets M f D supn�1 An f then for any ˛ > 0

�fM f > ˛g �
1
˛
k f k1 (6)

A distributional inequality such as (6) will be referred to as
a weak L1 inequality. Note that (6) follows easily from (5)
by applying (5) to f � ˛, at least in the case when � is fi-
nite. With the maximal inequality in hand it is straight-
forward to complete the proof of Birkhoff’s theorem. For
a real-valued function f let

Osc f D lim supAn f � lim infAn f : (7)
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Osc f D 0 a.e. if and only if An f converges a.e.(to a pos-
sibly infinite limit). One has lim supAn f � M f � Mj f j
and by symmetry lim infAn f � Mj f j, so Osc f � 2Mj f j.
To establish the convergence of An f for a real-val-
ued f 2 L1 let � > 0 and write f D g C h with g 2 E
(the subspace where convergence has already been estab-
lished), h 2 L1 and khk < �. Then since Osc g D 0 one
has Osc f D Osc h. Thus for any fixed ˛ > 0, using (6)

�fOsc f > ˛g D � fOsc h > ˛g � �
n
Mh >

˛

2

o

�
2khk1
˛

<
2�
˛
: (8)

Since � > 0 was arbitrary one concludes that
�fOsc f > ˛g D 0 and since ˛ > 0 is arbitrary it follows
that �fOsc f > 0g D 0, establishing the a.e. convergence.
Moreover a simple application of Fatou’s lemma shows
that the limiting function is in L1, hence finite a.e.

There are many proofs of (5). Two of particular inter-
est are Garsia’s [89], perhaps the shortest and most mys-
terious, and the proof via the filling scheme of Chacón
and Ornstein [61], perhaps the most intuitive, which goes
like this. Given a function g 2 L1 write gC D max(g; 0),
g� D gC � g and let Ug D TgC � g�. Interpretation:
the region between the graph of gC and the X-axis is
a sheaf of vertical spaghetti sticks, the intervals [0; gC(x)],
x in X, and �g� is a hole. Now move the spaghetti (hori-
zontally) by T and then let it drop (vertically) into the hole
leaving a new hole and a new sheaf which are the negative
and positive parts of Ug. Now let E0 D

S
n�1fU

n f � 0g,
the set of points x at which the hole is eventually filled after
finitely many iterations of U.

The key point is that E D E0. Indeed if Sn f (x) � 0
for some n, then the total linear height of sticks over
x; Tx; : : : Tn�1x is greater than the total linear depth of
holes at these points. The only way that spaghetti can es-
cape from these points is by first filling the hole at x,
which shows x 2 E0. Similar thinking shows that if x 2 E0

and the hole at x is filled for the first time at time n then
Sn f (x) � 0, so x 2 E, and that all the spaghetti that goes
into the hole at x comes from points Tix which belong to
E0. This shows that E D E0 and that the part of the hole
lying beneath E is eventually filled by spaghetti coming
from E0 D E. Thus the amount of spaghetti over E is no
less than the size of the hole under E, that is

R
E f d� � 0.

Most proofs of Birkhoff’s theorem use a maximal in-
equality in some form but a few avoid it altogether, for
example [126,186]. It is also straightforward to deduce
Birkhoff’s theorem directly from a maximal inequality,
as Birkhoff does, without first establishing convergence
on a dense subspace. However the technique of proving

a pointwise convergence theorem by finding an appropri-
ate dense subspace and a suitable maximal inequality has
proved extremely useful, not only in ergodic theory.

Indeed, in some sense maximal inequalities are un-
avoidable: this is the content of the following principle
proved already in 1926 by Banach. The principle has many
formulations; the following one is a slight simplification
of the one to be found in [135]. Suppose B is a Banach
space, (X;B; �) is a finite measure space and let E denote
the space of �-equivalence classes of measurable real-val-
ued functions on X. A linear map T : B! E is said to be
continuous in measure if for each � > 0

kxn � xk ! 0) �fjTxn � Txj > �g ! 0 :

Suppose that Tn is a sequence of linear maps from
B to E which are continuous in measure and let Mx D
supn jTnxj. Of course if Tnx converges a.e. to a finite limit
then Mx <1 a.e.

Theorem 6 (Banach principle) Suppose Mx <1 a.e.
for each x 2 X. Then there is a function C() such that
C()! 0 as !1 such that for all x 2 B and  > 0 one
has

�fMx � kxkg � C() : (9)

Moreover the set of x for which Tnx converges a.e. is closed
in B.

The first chapter of Garsia’s book [89] contains a nice in-
troduction to the Banach principle.

It should be noted that, for general integrable f , M f
need not be in L1. However if f 2 Lp for p > 1 then M f
does belong to Lp and one has the estimate

kM f kp �
p

p � 1
k f kp : (10)

This can be derived from (6) using also the (obvious) fact
that kM f k1 � k f k1. Any such estimate on the norm of
a maximal function will be called a strong Lp inequality. It
also follows from (6) that if �(X) is finite and f 2 L log L,
that is

R
j f j logC j f jd� <1, then M f 2 L1. In fact Orn-

stein [160] has shown that the converse of this last state-
ment holds provided T is ergodic.

There is a special setting where one has uniform con-
vergence in the ergodic theorem. Suppose T is a home-
omorphism of a compact metric space X. By a theorem
of Krylov and Bogoliouboff [138] there is at least one
probability measure on the Borel �-algebra of X which
is invariant under T. T is said to be uniquely ergodic if
there is only one Borel probability measure, say �, in-
variant under T. It is easy to see that when this is the
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case then T is an ergodic automorphism of (X;B; �). As
an example, if ˛ is an irrational number then the rota-
tion z 7! e2	 i˛z is a uniquely ergodic transformation of
the circle fjzj D 1g. Equivalently x 7! x C ˛ mod 1 is
a uniquely ergodic map on [0; 1]. A quick way to see this
is to show that the Fourier co-efficients �̂(n) of any invari-
ant probability � are zero for n ¤ 0. The Jewett–Krieger
theorem (see Jewett [109] and Krieger [137]) guarantees
that unique ergodicity is ubiquitous in the sense that any
automorphism of a probability space is measure-theoret-
ically isomorphic to a uniquely ergodic homeomorphism.
The following important result is due to Oxtoby [165]).

Theorem 7 If T is uniquely ergodic, � is its unique in-
variant probability measure and f 2 C(X) then the ergodic
averages An( f ) converge uniformly to

R
f d�.

This result can be proved along the same lines as the proof
given above of von Neumann’s theorem. In a nutshell, one
uses the fact that the dual of CR(X) is the space of finite
signed measures on X and the unique ergodicity to show
that functions of the form f � f ı T together with the in-
variant functions (which are just constant functions) span
a dense subspace of C(X).

A sequence fxng in the interval [0; 1] is said to be uni-
formly distributed if 1

n
Pn

iD1 f (xn)!
R 1
0 f (x)dx for any

f 2 C[0; 1] (equivalently for any Riemann integrable f or
for any f D 1I where I is any subinterval of [0; 1]). As
a simple application of Theorem 7 one obtains the linear
case of the following result of Weyl [202].

Theorem 8 If ˛ is irrational and p(x) is any non-con-
stant polynomial with integer coefficients then the sequence
fp(n)˛mod1g is uniformly distributed.

Furstenberg [84], see also [86], has shown that Weyl’s re-
sult, in full generality, can be deduced from the unique
ergodicity of certain affine transformations of higher di-
mensional tori. For polynomials of degree k > 1 Weyl’s
result is usually proved by inductively reducing to the case
k D 1, using the following important lemma of van der
Corput (see for example [139]).

Theorem 9 Suppose that for each fixed h > 0 the sequence

fxnCh � xn mod 1gn

is uniformly distributed. Then fxng is uniformly dis-
tributed.

When � is infinite and T is ergodic the limiting function
in Birkhoff’s theorem is 0 a.e. In 1937 Hopf [100] proved
a generalization of Birkhoff’s theorem which is more
meaningful in the case of an infinite invariant measure.

It is a special case of a later theorem of Hurewicz [105],
which we will discuss first.

Suppose that (X;B; �) is a �-finite measure space.
If � is another �-finite measure on B write � 
 � (� is
absolutely continuous relative to �) if �(E) D 0 implies
�(E) D 0 and one writes � � � if � 
 � and �
 �.
Consider a non-singular automorphism � : X ! X, mean-
ing that � is measurable with a measurable inverse
and that �(E) D 0 if and only if �(�E) D 0. In other
words � D � ı � � �. By the Radon–Nikodym theorem
there is a function � 2 L1(�) such that � > 0 a.e. and
�(E) D

R
E �d� for all measurable E. In order to obtain an

associated operator T on L1 which is an (invertible) isom-
etry one defines

T f (x) D �(x) f (�x) : (11)

The dual operator on L1 is then given by T�g D g ı ��1.
If � is a �-finite measure equivalent to � which is in-

variant under � then the ergodic theory of � can be re-
duced to the measure-preserving case using � . The in-
teresting case is when there is no such �. It was an open
problem for some time whether there is always an equiva-
lent invariant measure. In 1960 Ornstein [163] gave an ex-
ample of a � which does not have an equivalent invariant
measure. It is curious that, with hindsight, such examples
were already known in the fifties to people studying von
Neumann algebras.

For f 2 L1 let Sn f D
Pn

iD0 T
i f . � is said to be con-

servative if there is no set E with �(E) > 0 such that
��i E; i D 0; 1; : : : are pairwise disjoint, that is if the
Poincaré recurrence theorem remains valid. For example,
the shift on Z is not conservative. Hurewicz [105] proved
the following ratio ergodic theorem.

Theorem 10 Suppose � is conservative, f ; g 2 L1 and
g(x) > 0 a.e. Then Sn f /Sn g converges a.e. to a �-invariant
limit h. If � is ergodic then h D

R
f d�R
gd� .

In the case when� is �-invariant one has T f D f ı � . If �
is invariant and finite, taking g D 1 one recovers Birkhoff’s
theorem. If � is invariant and �-finite then Hurewicz’s
theorem becomes the theorem of Hopf alluded to earlier.

Wiener and Wintner [204] proved the following vari-
ant of Birkhoff’s theorem.

Theorem 11 (Wiener–Wintner) Suppose T is an auto-
morphism of a probability space (X;B; �). Then for any
f 2 L1 there is a subset X 0 � X of measure one such that
for each x 2 X 0 and  2 C of modulus 1 the sequence
1
n
Pn�1

iD0 
i T i f (x) converges.

It is an easy consequence of the ergodic theorem that one
has a.e. convergence for a given f and  but the point here



Ergodic Theorems E 2939

is that the set on which the convergence occurs is indepen-
dent of .

Generalizations to Continuous Time
and Higher-Dimensional Time

A (measure-preserving) flow is a one-parameter group
fTt ; t 2 Rg of automorphisms of (X;B; �), that is
TtCs D TtTs , such that Ttx is measurable as a function
of (t; x). It will always be implicitly assumed that the map
(t; x) 7! Ttx from R � X to X is measurable. Theorem 4
generalizes to flows by replacing sums with integrals and
this generalization follows without difficulty from Theo-
rem 4. (As already observed this observation reverses the
historical record.) Theorem 4 may be viewed as a theorem
about the “discrete flow” fTn D Tn : n 2 Zg. Wiener was
the first to generalize Birkhoff’s theorem to families of au-
tomorphisms fTgg indexed by groups more general than
R or Z.

A measure-preserving flow is an action of R while
a single automorphism corresponds to an action of Z.
A (measure-preserving) action of a group G is a homo-
morphism T : g 7! Tg from G into the group of auto-
morphisms of a measure space (X;B; �) (satisfying the
appropriate joint measurability condition in case G is
not discrete). Suppose now that G D Rk or Zk and T is
an action of G on (X;B; �). In the case of Zk an ac-
tion amounts to an arbitrary choice of commuting maps
T1; : : : Tk , Ti D T(ei) where ei is the standard basis of Zk .
In the case ofRk one must specify k commuting flows.

Let m denote counting measure on G in case G D Zk

and Lebesgue measure in case G D Rk . For any subset E
of G with m(E) <1 let

AE f (x) D
1

m(E)

Z

E
f (Tgx)dm(g) : (12)

One may then ask whether AE f converges to a limit, ei-
ther in the mean or pointwise, as E varies through some
sequence of sets which “grow large” or, in case G D Rk ,
“shrink to 0”. The second case is referred to as a local er-
godic theorem. In the case of ergodic theorems at infinity
the continuous and discrete theories are rather similar and
often the continuous analogue of a discrete result can be
deduced from the discrete result.

In Wiener [203] proved the following result for ac-
tions ofG D Rk and ergodic averages over Euclidean balls
Br D fx 2 Rk : kxk2 � rg.

Theorem 12 Suppose T is an action of Rk on (X;B; �)
and f 2 L1(�).

(a) For f 2 L1 limr!1 ABr f D g exists a.e. If � is finite
the convergence also holds with respect to the L1-norm,

g is T-invariant and
R
I gd� D

R
I f d� for every T-in-

variant set I.
(b) limr!0 ABr f D f a.e.

The local aspect of Wiener’s theorem is closely related
to the Lebesgue differentiation theorem, see for example
Proposition 3.5.4 of [132], which, in its simplest form,
states that for f 2 L1(Rk ;m) one has a.e. convergence of

1
m(Br )

R
Br

f (x C t)dt to f (x) as r ! 0. The local ergodic
theorem implies Lebesgue’s theorem, simply by consider-
ing the action ofRk on itself by translation. In fact the local
ergodic theorem can also be deduced from Lebesgue’s the-
orem by a simple application of Fubini’s theorem (see for
example [135], Chap. 1, Theorem 2.4 in the case k D 1).

The key point in Wiener’s proof is the following weak
L1 maximal inequality, similar to (6).

Theorem 13 Let M f D supr>0 jABr f j. Then one has

�fM f > ˛g �
C
˛
k f k1 ; (13)

where C is a constant depending only on the dimension d.
(In fact one may take C D 3d .)

In the case when T is the action of Rk on itself by
translation (13) is the well-known maximal inequal-
ity for the Hardy–Littlewood maximal function ([132],
Lemma 3.5.3). Wiener proves (13) by way of the follow-
ing covering lemma. If B is a ball in Rk let B0 denote the
concentric ball with three times the radius.

Theorem 14 Suppose a compact subset K ofRk is covered
by a (finite) collectionU of open balls. Then there exist pair-
wise disjoint Bi 2 U; i D 1; : : : k such that

S
i B
0
i covers K.

To find the Bi it suffices to let B1 be the largest ball in U,
then B2 the largest ball which does not intersect B1 and
in general Bn the largest ball which does not intersectSn�1

iD1 Bi . Then it is not hard to argue that the B0i cover K .
In general, a covering lemma is, roughly speaking, an

assertion that, given a coverU of a setK in some space (of-
ten a group), one may find a subcollectionU0 � U which
covers a substantial part of K and is in some sense efficient
in that

P
U2U0 1U � C, C some absolute constant. Cover-

ing lemmas play an important role in the proofs of many
maximal inequalities. See Sect. 3.5 of [132] for a discussion
of several of the best-known classical covering lemmas.

As Wiener was likely aware, the same kind of covering
argument easily leads to maximal inequalities and ergodic
theorems for averages over “sufficiently regular” sets. For
example, in the case of G D Zk use the standard total or-
der � on G and for n 2 N k let Sn D fm 2 Zk : 0 � m �



2940 E Ergodic Theorems

ng. Let e(n) denote the maximum value of ni /nj . Then one
has the following result.

Theorem 15 For any e > 0 and any integrable f

lim
n!1;e(n)<e

ASn f

exists a.e. and the limit is characterized by the same prop-
erties as in Theorem 12. Moreover there is a maximal in-
equality

�

(

sup
e(n)<e

jASn f j > ˛

)

�
C
˛
k f k1 ; (14)

where C is a constant depending only on e and the dimen-
sion k.

If one does not impose a bound on e(n) the a.e. conver-
gence of ASn f may fail for f 2 L1, (although it does hold
for any increasing sequence of n’s by Theorem 30 be-
low). Nonetheless Dunford [72] and independently Zyg-
mund [215] showed that one does have unrestricted con-
vergence if f 2 Lp for some p > 1, provided � is fi-
nite. Let T1; : : : ; Tk be any k (possibly non-commuting!)
automorphisms of a finite measure space (X;B; �). For
n D (n1; n2; : : : ; nk) let Tn D Tn1

1 : : : Tnk
k . (This is not

an action of Zk unless the Ti commute with each other.)
As before when F � Zk is a finite subset write AF f D
1
jFj
P

n2F Tn f . Finally let Pj f D limn An(Tj) f .

Theorem 16 For f 2 Lp

lim
n!1

ASn f D P1 : : : Pk f (15)

both a.e. and in Lp.

The proof of Theorem 16 uses repeated applications of
Birkhoff’s theorem and hinges on (10).

Somewhat surprisingly Hurewicz’s theorem was not
generalized to higher dimensions until the very recent
work of Feldman [79]. In fact the theorem fails if one con-
siders averages over the cube [0; n � 1]d in Zd . However
Feldman was able to prove a suitably formulated general-
ization of Hurewicz’s theorem for averages over symmet-
ric cubes.

For f 2 L1(R) the classicalHilbert transform is defined
for a.e. t by

H f (t) D
1
�

lim
�!0C

Z

jsj>�

f (t � s)
s

ds (16)

Let H� f (t) D 1
	
sup�>0 j

R
jsj>�

f (t�s)
s dsj, the correspond-

ing maximal function. The proof that the limit (16) exists
a.e. is based on the maximal inequality

mfH f > g �
C

k f k1 ; (17)

where C is an absolute constant. See Loomis [146] (1946)
for a proof of (17) using real-variable methods. Cotlar [65]
proved the existence of the following ergodic analogue
of the Hilbert transform (actually for the n-dimensional
Hilbert transform).

Theorem 17 Suppose fTtg is a measure-preserving flow on
a probability space (X;B; �) and f 2 L1. Then

lim
�!0

Z

�<t<��1

f (Ttx)
t

dt (18)

exists for a.a. x.

Motivated by Cotlar’s result Calderón [54]proved a gen-
eral transfer principle which allows one to transfer max-
imal inequalities and convergence theorems for functions
of a real or integer variable to the ergodic setting. Although
stated for functions on R it applies equally well to Rk or
Zk . This principle subsumes Birkhoff’s theorem,Wiener’s
theorem and Cotlar’s result. For simplicity only a special
case of Calderón’s result, in the discrete case, will be stated
here.

Let T be an automorphism of a probability space
(X;B; �), let m denote counting measure on Z and sup-
pose � is a probability measure onZ. For g 2 L1(m) define
�(g)(n) D

P
i2Z �(i)g(nC i). For f 2 L1(�) let �(T) f DP

i2Z �(i)T
i f , which is easily seen to converge a.e. and in

L1-norm. Given a fixed sequence �n of probabilities define
Mg D supn �n g and M(T) f D supn �n(T) f .

Theorem 18 (Calderón) Suppose there is a constant C
such that

mfMg > g <
C

kgk1 for all g 2 L1(m) : (19)

Then one also has

�fM(T) f > g <
C

k f k1 for all T and g 2 L1(�) :

(20)

In other words, in order to prove a maximal inequality for
general T it suffices to prove it in case T is the shift map
on the integers. The idea of transference could already be
seen in Wiener’s proof of the Rn ergodic theorem. Trans-
fer principles in various forms of have become an impor-
tant tool in the study of ergodic theorems. See Bellow [18]
for a very readable overview.

Pointwise Ergodic Theorems for Operators

Early in the history of ergodic theorems there were at-
tempts to generalize the ergodic theorem to more general
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linear operators on Lp spaces, that is, operators which do
not arise by composition with a mapping of X . In the case
p D 1 the main motivation for this comes from the theory
of Markov processes.

If (X;B) is a measurable space a sub-stochastic kernel
on X is a non-negative function P on X � B such that

(a) for each x 2 XP(x; �) D Px is a measure on B such
that Px (X) � 1 and

(b) P(�;A) is a measurable function for each A 2 B.

It is most intuitive to think about the stochastic case,
namely when each Px is a probability measure. One then
views P(x;A) as the probability that the point xmoves into
the set A in one unit of time, so one has stochastic dynam-
ics as opposed to deterministic dynamics, namely the case
when Px D ıTx for a map T. In this case the measures Px
are called transition probabilities.

If� is a �-finite measure onX onemay define themea-
sure P� D

R
Pxd�(x). P� is also meaningful if � is a finite

signed measure. The case when P� D � is the stochas-
tic analogue of measure-preserving dynamics and the case
when P�
 � is the analogue of non-singular dynamics.
It is easy to see that given any �-finite measure  there is
always a � such that 
 � and P�
 �. Let L̃1 denote
the space of finite signed measures � such that � 
 �,
which is identified with L1 D L1(�;R) via the Radon–
Nikodym theorem. If P�
 � then Pmaps L̃1(�) into it-
self so the restriction of P is an operator T on L1(�). T is
a positive contraction, that is kTk � 1 and T maps non-
negative functions to non-negative functions. As proved
in, for example, [153], every positive contraction arises in
this way from a substochastic kernel under the assump-
tion that (X;B) is standard. This simply means that there
is some complete metric on X for which B is the �-algebra
of Borel sets. Virtually all measurable spaces encountered
in analysis are standard so this should be viewed as a tech-
nicality only. See [153], [80] and [135] for more about the
relation between kernels and positive contractions.

The case when X is finite, P is stochastic and � is a a
probability measure is classical in probability theory. P
and � determine a probability measure � on XN char-
acterized by its values on cylinder sets, namely for all
x1; : : : ; xn 2 X

�fx 2 XN : x(i) D xi ; 1 � i � n � 1g

D �(x1)
n�1Y

iD1

Pxi (xiC1) : (21)

The co-ordinate functions Xi (x) D x(i) on the space XN

endowed with the probability � form a Markov process,

which will be stationary if and only if � is P-invariant.
For a generalX the analogous construction is possible pro-
vided X is standard.

Hopf [101] initiated the systematic study of positive L1
contractions and proved the following ergodic theorem.

Theorem 19 Suppose (X;B; �) is a probability space and
T is a positive contraction on L1(�) satisfying T1 D 1 and
T�1 D 1. Then limn!1 n�1

Pn�1
kD0 T

k f exists a.e.

The importance of Hopf’s article lies less in this conver-
gence result than in the methods he developed. He proved
that the maximal inequality (5) generalizes to all positive
L1 contractions T and used this to obtain the decomposi-
tion of X into its conservative and dissipative parts C and
D, characterized by the fact that for any p 2 L1 such that
p > 0 a.e.

P1
kD0 T

k p is infinite a.e. on C and finite a.e.
onD. These results are the cornerstone of much of the sub-
sequent work on L1 contractions.

Theorem 19 contains Birkhoff’s theorem for an auto-
morphism � of (X;B; �), simply by defining T f D f ı � .
In fact one can also deduce Theorem 19 from Birkhoff’s
theorem (if one assumes only that X is standard). Indeed
the hypotheses of Hopf’s theorem imply that the kernel
P associated to T is stochastic (T�1 D 1) and and that �
is P-invariant (T1 D 1). Hopf’s theorem then follows by
applying Birkhoff’s theorem to the shift on the station-
ary Markov process associated to P and �. In fact Kaku-
tani [123] (see also Doob [71]) had already made essen-
tially the same observation, except that his result assumes
the stationary Markov process to be already given.

In 1955 Dunford and Schwartz [73] made essential use
of Hopf’s work to prove the following result.

Theorem 20 Suppose �(X) D 1 and T is a (not neces-
sarily positive) contraction with respect to both the L1 and
L1 norms. Then the conclusion of Hopf’s theorem remains
valid.

Note that the assumption that T contracts the L1-norm is
meaningful, as L1 � L1. The proof of the result is reduced
to the positive case by defining a positive contraction jTj
analogous to the total variation of a complex measure.

Then in 1960 Chacón and Ornstein [61] proved
a definitive ratio ergodic theorem for all positive contrac-
tions of L1 which generalizes both Hopf’s theorem and the
Hurewicz theorem.

Theorem 21 Suppose T is a positive contraction of L1(�),
where � is �-finite, f ; g 2 L1 and g � 0. Then

Pn
iD0 T

i f
Pn

iD0 Ti g
(22)

converges a.e. on the set f
P1

iD0 T
i g > 0g.
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In 1963 Chacón [58] proved a very general theorem for
non-positive operators which includes the Chacón–Orn-
stein theorem as well as the Dunford–Schwartz theorem.

Theorem 22 Suppose T is a contraction of L1 and pn � 0
is a sequence of measurable functions with the property that

g 2 L1; jgj � pn ) jTgj � pnC1 : (23)

Then
Pn

iD0 T
i f

Pn
iD0 pi

(24)

converges a.e. to a finite limit on the set f
P1

iD0 pi > 0g.

If T is an L1; L1-contraction and pn D 1 for all n then the
hypotheses of this theorem are satisfied, so Theorem 22
reduces to the result of Dunford and Schwartz. See [59]
for a concise overview of all of the above theorems in this
section and the relations between them.

The identification of the limit in the Chacón–Ornstein
theorem on the conservative part C of X is a difficult prob-
lem. It was solved by Neveu [152] in case C D X, and
in general by Chacón [57]. Chacón [60] has shown that
there is a non-singular automorphism � of (X;B; �) such
that for the associated invertible isometry T of L1(�) given
by (11) there is an f 2 L1(�) such that lim supAn f D1
and lim infAn f D �1.

In 1975 Akcoglu [3] solved a major open problem
when he proved the following celebrated theorem.

Theorem 23 Suppose T : Lp 7! Lp is a positive contrac-
tion. Then An f D 1

n
Pn�1

iD0 T
i f converges a.e. Moreover

one has the strong Lp inequality
����sup

n
jAn f j

����
p
�

p
p � 1

k f kp : (25)

As usual, the maximal inequality (25) is the key to the
convergence. Note that it is identical in form to (10) the
classical strong Lp inequality for automorphisms. (25) was
proved by A. Ionesco–Tulcea (now Bellow) [106] in the
case of positive invertible isometries of Lp. It is a result of
Banach [16], see also [140], that in this case T arises from
a non-singular automorphism � of (X;B; �) in the form
T f D �1/p f ı � . By a series of reductions Bellow was able
to show that in this case (25) can be deduced from (10).

Akcoglu’s brilliant idea was to consider a dilation S
of T which is a positive invertible isometry on a larger
Lp space L̃p D Lp(Y ;C; �). What this means is that there
is a positive isometric injection D : Lp ! L̃p and a posi-
tive projection P on L̃p whose range is D(Lp) such that

DTn D PSnD for all n � 0. Given the existence of such
an S it is not hard to deduce (25) for T from (25) for S. In
fact Akcoglu constructs a dilation only in the case when Lp
is finite dimensional and shows how to reduce the proof
of (25) to this case. In the finite dimensional case the con-
struction is very concrete and P is a conditional expecta-
tion operator. Later Akcoglu and Kopp [7] gave a con-
struction in the general case. It is noteworthy that the
proof of Akcoglu’s theorem consists ultimately of a long
string of reductions to the classical strong Lp inequal-
ity (10), which in turn is a consequence of (5).

Subadditive andMultiplicative Ergodic Theorems

Consider a family fXn;mg of real-valued random vari-
ables on a probability space indexed by the set of pairs
(n;m) 2 Z2 such that 0 � n < m. fX(n;m)g is called a (sta-
tionary) subadditive process if

(a) the joint distribution of fXn;mg is the same as that of
fXnC1;mC1g

(b) Xn;m � Xn;l C Xl ;m whenever n < l < m.

Denoting the index set by fn < mg � Z2 the distribution
of the process is a measure� onRfn<mg which is invariant
under the shift Tx(n;m) D x(nC 1;mC 1). Thus there
is no loss of generality in assuming that there is an under-
lying endomorphism T such that Xn;m ı T D XnC1;mC1.
In 1968 Kingman [129] proved the following generaliza-
tion of Birkhoff’s theorem. � D inf 1

n
R
X0;nd� is called

the time constant of the process.

Theorem 24 If the Xn;m are integrable and � > �1 then
1
n X0;n converges a.e. and in L1-norm to aT -invariant limit
X̄ 2 L1(�) satisfying

R
X̄d� D � .

It is easy to deduce from the above that if one assumes only
that XC0;1 is integrable then 1

n X0;n still converges a.e. to
a T-invariant limit X̄ taking values in [�1;1).

Subadditive processes first arose in the work of Ham-
mersley and Welsh [99] on percolation theory. Here is an
example. Let G be the graph with vertex set Z2 and with
edges joining every pair of nearest neighbors. Let E de-
note the edge set and let fTe : e 2 Eg be non-negative in-
tegrable i.i.d. random variables. To each finite path P in G
associate the “travel time” T(P) D

P
e2E Te . For integers

m > n � 0 let Xn;m be the infimum of T(P) over all paths
P joining (0; n) to (0;m). This is a subadditive process with
0 � � <

R
Te d� and it is not hard to see that the under-

lying endomorphism is ergodic. Thus Kingman’s theorem
yields the result that 1

n X0;n ! � a.e.
Suppose now that T is an ergodic automorphism of

a probability space (X;B; �) and P is a function on X
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taking values in the space of d � d real matrices. Define
Pn;m D P(Tm�1x)P(Tm�2x) : : : P(Tnx) and let Pn;m(i; j)
denote the i; j entry of Pn;m . Then Xn;m D log(kPn;mk)
(use any matrix norm) is a subadditive process so one ob-
tains the first part of the following result of Furstenberg
and Kesten [87] (1960) originally proved by more elabo-
rate methods. The second part can also be deduced from
the subadditive theoremwith a little more work. See King-
man [130] for details and for some other applications of
subadditive processes.

Theorem 25

(a) Suppose
R
logC(jPj)d� <1. Then kP0;nk1/n con-

verges a.e. to a finite limit.
(b) Suppose that for each i; j P(i; j) is a strictly positive

function such that log P(i; j) is integrable. Then the
limit p D lim(P0;n(i; j))

1
n exists a.e. and is indepen-

dent of i and j.

Partial results generalizing Kingman’s theorem to the
multiparameter case were obtained by Smythe [189] and
Nguyen [157]. In 1981 Akcoglu and Krengel [8] obtained
a definitive multi-parameter subadditive theorem. They
consider an action fTmg of the semigroup G D Zd

�0 by
endomorphisms of a measure space (X;B; �). Using the
standard total ordering� ofG an interval inG is any set of
the form fk 2 G : m � k � ng for any m � n 2 G. Let I
denote the set of non-empty intervals. Reversing the direc-
tion of the inequality, they define a superadditive process
as a collection of integrable functions FI; I 2 I , such that

(a) FI ı Tm D FICm ,
(b) FI � FI1 C : : :C FIk whenever I is the disjoint union

of I1; : : : ; Ik and
(c) � D supI2I jIj�1

R
FI d� <1.

A sequence fIng of sets in I is called regular if there is an
increasing sequence I0n such that In � I0n and jI0nj � CjIn j
for some constant C.

Theorem 26 (Akcoglu–Krengel) Suppose FI is a super-
additive process and fIng is regular. Then 1

jIn j
FIn converges

a.e.

fFIg is additive if the inequality in (b) is replaced by equal-
ity. In this case FI D

P
n2I f ı Tn where f is an integrable

function. Thus in the additive case the Akcoglu–Krengel
result is a theorem about ordinary multi-dimensional er-
godic averages, which is in fact a special case of an earlier
result of Tempelman [196] (see Sect. “Amenable Groups”
below).

Kingman’s proof of Theorem 24 hinged on the exis-
tence of a certain (typically non-unique) decomposition

for subadditive processes. Akcoglu and Krengel’s proof of
the multi-parameter result does not depend on a King-
man-type decomposition, in fact they show that there is no
such decomposition in general. They prove a weak maxi-
mal inequality

�fsup jIn j�1FIn > g <
C

� ; (26)

where C is a constant depending only on the dimension,
and show that this is sufficient to prove their result. In the
case d D 1 the Akcoglu–Krengel argument provides a new
and more natural proof of Kingman’s theorem, similar in
spirit to Wiener’s arguments.

Akcoglu and Sucheston [9] have proved a ratio er-
godic theorem for subadditive processes with respect to
a positive L1 contraction, generalizing both the Chacón–
Ornstein theorem and Kingman’s theorem.

In 1968 Oseledec [164] proved his celebrated multi-
plicative ergodic theorem, which gives very precise in-
formation about the random matrix products studied by
Furstenberg and Kesten. His theorem is an important tool
for the study of Lyapunov exponents in differentiable dy-
namics, see notably Pesin [169]. If A is a d � d matrix let
kAk D supfkAxk : kxk D 1g where kxk is the Euclidean
norm on Rn .

Theorem 27 Suppose T is an endomorphism of the
probability space (X;B; �). Suppose P is a measur-
able function on X whose values are d � d real matri-
ces such that

R
logC kPkd� < 1 and let Pn(x) D

P(Tn�1x)P(Tn�2x) : : : P(x). Then there is a T-invariant
subset X 0 of X with measure 1 such that for x 2 X 0 the fol-
lowing hold.

(a) limn!1(P�n (x)Pn(x))
1
2n D A(x) exists.

(b) Let 0 � exp1(x) � exp2(x) � : : : � expr(x) be
the distinct eigenvalues of A(x) (r D r(x) may de-
pend on x and 1 may be �1) with multiplicities
m1(x); : : :mr (x). Let Ei (x) be the eigenspace corre-
sponding to exp(i (x)) and set

Fi(x) D E1(x)C : : :C Ei(x) :

Then for each u 2 Fi(x)nFi�1(x)

lim
1
n
log kPn(x)uk D i (x) :

(c) The functions mi and i are T-invariant.
(d) If T is ergodic, det P(x) D 1 a.e. and

lim sup
n

1
n

Z
log kPnkd� > 0

then the i are constants, 1 < 0 and r > 0.
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Raghunathan [174] gave a much shorter proof of Os-
eledec’s theorem, valid for matrices with entries in a lo-
cally compact normed field. He showed that it could be
reduced to the Furstenberg–Kesten theorem by consider-
ing the exterior powers of P. Ruelle [180] extended Os-
eledec’s theorem to the case where P takes values in the set
of bounded operators on aHilbert space.Walters [199] has
given a proof (under slightly stronger hypotheses) which
avoids the matrix calculations and tools from multilinear
algebra used in other proofs.

Entropy
and the Shannon–McMillan–BreimanTheorem

The notion of entropy was introduced by Shannon in
his landmark work [185] which laid the foundations for
a mathematical theory of information. Suppose (X;B; �)
is a probability space, P is a finite measurable partition of
X and T is an automorphism of (X;B; �). P(x) denotes the
atom of P containing x. The entropy of P is

h(P) D �
X

p2P

�(p) log(�(p))

D �

Z
log(�(P(x))d�(x) � 0 : (27)

� log(�(A)) may be viewed as a quantitative measure
of the amount of information contained in the statement
that a randomly chosen x 2 X happens to belong to A.
So h(P) is the expected information if one is about to
observe which atom of P a randomly chosen point falls
in. See Billingsley [34] for more motivation of this con-
cept. See also the article in this collection on entropy by
J. King or any introductory book on ergodic theory, e. g.
Petersen [171].

If P and Q are partitions P
W

Q denotes the common
refinement which consists of all sets p \ q, p 2 P; q 2
Q. It is intuitive and not hard to show that h(P

W
Q) �

h(P)C h(Q). Now let Pn
0 D

Wn�1
iD0 T

�i P and hn D h(Pn
0 ).

The subadditivity of entropy implies that hnCm � hn C
hm , so by a well-known elementary lemma the limit

h(P; T) D lim
n

hn
n
D inf

n

hn
n
� 0 (28)

exists.
If one thinks of P(x) as a measurement performed on

the space X and Tx as the state succeeding x after one sec-
ond has elapsed then h(P; T) is the expected information
per second obtained by repeating the experiment every
second for a very long time. See [177] for an alternative
and very useful approach to h(P; T) via name-counting.

The following result, which is known as the Shannon–
McMillan–Breiman theorem, has proved to be of funda-
mental importance in ergodic theory, notably, for exam-
ple, in the proof of Ornstein’s celebrated isomorphism the-
orem for Bernoulli shifts [159].

Theorem 28 If T is ergodic then

lim
n!1

�
1
n
log(�(Pn�1

0 (x)) D h(P; T) (29)

a.e. and in L1-norm.

In other words, the actual information obtained per sec-
ond by observing x over time converges to the constant
h(P; T), namely the limiting expected information per sec-
ond. Shannon [185] formulated Theorem 28 and proved
convergence in probability. McMillan [149] proved L1
convergence and Breiman [49] obtained the a.e. conver-
gence.

The original proofs of a.e. convergence used the mar-
tingale convergence theorem, were not very intuitive and
did not generalize to Zn-actions, where the martingale
theorem is not available. Ornstein and Weiss [161] (1983)
found a beautiful and more natural argument which by-
passes the martingale theorem and allows generalization
to a class of groups which includes Zn .

Amenable Groups

Let G be any countable group and T D fTgg an action of
G by automorphisms of a probability space. Suppose �
is a complex measure on G, that is, f�(g)gg2G is an
absolutely summable sequence. Let Tg act on functions
via Tg f D f ı Tg , so Tg is an isometry of Lp for every
1 � p � 1. Let �(T) D

P
g2G �(g)Tg . A very general

framework for formulating ergodic theorems is to con-
sider a sequence f�ng and ask whether �n(T) f converges,
a.e. or in mean, for f in some Lp space. When �n(T) f con-
verges for all actionsT and all f in Lp in p-norm or a.e. then
one says that �n is mean or pointwise good in Lp. When
the �n are probability measures it is natural to call such
results weighted ergodic theorems and this terminology is
retained for complex � as well.

Birkhoff’s theorem says that if G D Z and �n is the
normalized counting measure on f0; 1; : : : n � 1g then
f�ng is pointwise good in L1. This section will be con-
cerned only with sequences f�ng such that �n is normal-
ized counting measure on a finite subset Fn � G so one
speaks of mean or pointwise good sequences fFng. A nat-
ural condition to require of fFng, which will ensure that
the limiting function is invariant, is that it be asymptoti-
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cally (left) invariant in the sense that

jgFn
�

Fnj
jFnj

! 0 8g 2 G : (30)

Such a sequence is called a Følner sequence and a group G
is amenable if it has a Følner sequence. As in most of this
article G is restricted to be a discrete countable group for
simplicity but most of the results to be seen actually hold
for a general locally compact group.

Amenability of G is equivalent to the existence of
a finitely additive left invariant probability measure on G.
It is not hard to see that any Abelian, and more generally
any solvable, group is amenable. On the other hand the
free group F2 on two generators is not amenable. See Pa-
terson [167] for more information on amenable groups.
The Følner property by itself is enough to give a mean er-
godic theorem.

Theorem 29 Any Følner sequence is mean good in Lp for
1 � p <1.

The proof of this result is rather similar to the proof of
Theorem 3. In fact Theorem 29 is only a special case of
quite general results concerning amenable semi-groups
acting on abstract Banach spaces. See the book of Pater-
son [167] for more on this.

Turning to pointwise theorems, the Følner condition
alone does not yield a pointwise theorem, even when
G D Z and the Fn are intervals. For example Akcoglu
and del Junco [6] have shown that when G D Z and
Fn D [n; n C

p
n] \ Z the pointwise ergodic theorem

fails for any aperiodic T and for some characteristic func-
tion f . See also del Junco and Rosenblatt [119].

The following pointwise result of Tempelman [196]
is often quoted. A Følner sequence fFng is called regu-
lar if there is a constant C such that jF�1n Fnj � CjFn j and
there is an increasing sequence F 0n such that Fn � F 0n and
jF 0nj � CjFnj.

Theorem 30 Any regular Følner sequence is pointwise
good in L1.

In case the Fn are intervals in Zn this result can be
proved by a variant of Wiener’s covering argument and
in the general case by an abstraction thereof. The condi-
tion jF�1n Fnj � CjFn j captures the property of rectangles
which is needed for the covering argument. Emerson [78]
independently proved a very similar result.

The work on ergodic theorems for abstract locally
compact groups was pioneered by Calderón [53] who
built on Wiener’s methods. The main result in this pa-
per is somewhat technical but it already contains the
germ of Tempelman’s theorem. Other ergodic theorems

for amenable groups, whose main interest lies in the
case of continuous groups, include Tempelman [195],
Renaud [175], Greenleaf [93] and Greenleaf and Emer-
son[94]. The discrete versions of these results are all rather
close to Tempelman’s theorem.

Among pointwise theorems for discrete groups Tem-
pelman’s result was essentially the best available for a long
time. It was not known whether every amenable group had
a Følner sequence which is pointwise good for some Lp. In
1988 Shulman [187] introduced the notion of a tempered
Følner sequence fFng, namely one for which

ˇ̌
ˇ
ˇ̌
[

i<n

F�1i Fn

ˇ̌
ˇ
ˇ̌ < CjFnj ; (31)

for some constant C. The advantage of the tempered con-
dition is that any Følner sequence has a tempered subse-
quence, and in particular any amenable group has a tem-
pered Følner sequence.

Shulman proved a maximal inequality in L2 for such
Fn which implies that fFng is pointwise good in L2. An ac-
count of this work may be found in Section 5.6 of Tempel-
man’s book [194].

Lindenstrauss [145] was able to extend the result to L1.

Theorem 31 Any tempered Følner sequence is pointwise
good in L1.

The key new idea in his proof is to use a probabilistic
argument to establish a covering lemma. In the discrete
case Ornstein and Weiss [201] have given a non-proba-
bilistic proof of Lindenstrauss’s covering lemma. Linden-
strauss also generalizes the a.e. convergence in the Shan-
non–McMillan–Breiman theorem to this setting. L1 con-
vergence was already established by Kieffer [128] in 1975.

Subsequence andWeighted Theorems

In this section G and T are as in the previous section and
�n is a sequence of complex measures on G.

This section will be concerned with conditions on �n
that ensure that it is mean or pointwise good. For the most
part G will be Z.

Hopf’s ergodic theorem gives a class of examples for
free. Choose any probability measure  on G, define
the operator T� D (T) and observe that (T�)n D T��n ,
where �n denotes the convolution power. Since T� sat-
isfies the hypotheses of Hopf’s theorem it follows that the
sequence �n D 1

n
Pn�1

iD0 
�i is pointwise good in L1.

Another sort of example is given by choosing a se-
quence gn in G and letting �n D 1

n
Pn�1

iD0 ıgn . If one has
convergence for such a sequence one speaks of a subse-
quence ergodic theorem. This section will mainly focus on
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the case G D Z and sequences which are the increasing
enumeration of a subset S � N. Given S � N write �S;n
for the corresponding probabilities �n and say S is good if
�S;n is good.

Perhaps the first subsequence ergodic theorem is due
to Blum and Hanson [38] who proved that an auto-
morphism T of a probability space is strongly mixing
if and only if 1

n
Pn�1

iD0 T
mi f converges in L2 norm for

every f 2 L2 and every increasing fmig. Strong mixing
means that �(T�nA\ B)! �(A)�(B). In 1969 Brunel
and Keane [51] proved the first pointwise subsequence er-
godic theorem

Theorem 32 Suppose that T is a translation on a com-
pact Abelian group G with Haar measure , g 2 G, and
E � G is any Borel set with (E) > 0 and (@E) D 0. Let
S D fi > 0 : Ti g 2 Eg. Then S is pointwise good in L1.

Krengel [133] constructed the first example of a sequence
S � N which is pointwise universally bad, in the strong
sense that for any aperiodic T the a.e. convergence of
�S;n(T) f fails for some characteristic function f . Bel-
low [17] proved that any lacunary sequence (meaning
anC1 > can for some c > 1) is pointwise universally bad
in L1.

Later Akcoglu at al. [1] were able to show that for
lacunary sequences f�S;ng is even strongly sweeping out.
A sequence f�ng of probability measures on Z is said to
be strongly sweeping out if for any ergodic T and for all
ı > 0 there is a characteristic function f with

R
f d� < ı

such that lim sup�n(T) f D 1 a.e. It is not difficult to show
that if f�ng is strongly sweeping out then there are char-
acteristic functions f such that lim inf�n(T) f D 0 and
lim sup�n(T) f D 1. Thus for lacunary sequences the er-
godic theorem fails in the worst possible way.

Bellow and Losert [21] gave the first example of a se-
quence S � Z of density 0 which is universally good for
pointwise convergence, answering a question posed by
Furstenberg. They construct an S which is pointwise good
in L1. This paper also contains a good overview of the
progress on weighted and subsequence ergodic theorems
at that time.

Weyl’s theorem on uniform distribution (Theorem 9)
suggests the possibility of an ergodic theorem for the se-
quence fn2g. It is not hard to see that fn2g is mean good in
L2. In fact the spectral theorem and the dominated conver-
gence theorem show that it is enough to prove that theL1-
bounded sequence of functions 1

n
Pn�1

iD0 z
n2 on the unit

circle converges at each point z of the unit circle. When z
is not a root of unity the sequence converges to 0 byWeyl’s
result and when z is a root of unity the convergence is
trivial because fzn2g is periodic. In 1987 Bourgain [39,43]

proved his celebrated pointwise ergodic theorem for poly-
nomial subsequences.

Theorem 33 If p is any polynomial with rational coeffi-
cients taking integer values on the integers then S D fp(n)g
is pointwise good in L2.

The first step in Bourgain’s argument is to reduce the
problem of proving a maximal inequality to the case of the
shift map on the integers, via Calderón’s transfer princi-
ple. Then the problem is transferred to the circle by us-
ing Fourier transforms. At this point the problem becomes
a very delicate question about exponential sums and
a whole arsenal of tools is brought to bear. See Rosenblatt
and Wierdl [176] and Quas and Wierdl [28](Appendix B)
for nice expositions of Bourgain’s methods.

Bourgain subsequently improved this to all Lp, p > 1
and also extended it to sequences f[q(n)]g where now q is
an arbitrary real polynomial and [�] denotes the greatest
integer function. He also announced that his methods can
be used to show that the sequence of primes is pointwise
good in Lp for any p > 1C

p
3

2 . Wierdl [205] (1988) soon
extended the result for primes to all p > 1.

Theorem 34 The primes are pointwise good in Lp for
p > 1.

It has remained a major open question for quite some
time whether any of these results hold for p D 1. In 2005
there appeared a preprint of Mauldin and Buczolich [148],
which remains unpublished, showing that polynomial se-
quences are L1-universally bad.

Another major result of Bourgain’s is the so-called re-
turn times theorem [44]. A simplification of Bourgain’s
original proof was published jointly with Furstenberg,
Katznelson and Ornstein as an appendix to an article [47]
of Bourgain. To state it let us agree to say that a a se-
quence of complex numbers fa(n)gn�0 has property P if
the sequence of complex measures �n D 1

n
Pn�1

iD0 a(i)ıi
has property P, where ıi denotes the point mass at i.

Theorem 35 (Bourgain) Suppose T is an automorphism
of a probability space (X;B; �), 1 � p; q � 1 are conju-
gate exponents and f 2 Lp(�). Then for almost all x the
sequence f f (Tnx)g is pointwise good in Lq.

Applying this to characteristic functions f D 1E one sees
that the return time sequence fi > 0 : Si x 2 Eg is good for
pointwise convergence in L1. Theorem 32 is a very special
case. It is also easy to see that Theorem 35 contains the
Wiener–Wintner theorem.

In 1998 Rudolph [179] proved a far-reaching gener-
alization of the return times theorem using the technique
of joinings. For an introduction to joinings see the article
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by de la Rue in this collection and also Thouvenot [198],
Glasner [90] (2003) and Rudolph’s book [177]. Rudolph’s
result concerns the convergence of multiple averages

1
N

N�1X

nD0

kY

jD1

f j(Tn
j x) (32)

where each Tj is an automorphism of a probability space
(Xj;B j; � j) and the f j are L1 functions. The point is
that the convergence occurs whenever each x j 2 X 0j , sets
of measure one which may be chosen sequentially for
j D 1; : : : ; k without knowing what Ti or f i are for any
i > j. He actually proves something stronger, namely he
identifies an intrinsic property of a sequence faig, which
he calls fully generic, such that the following hold.

(a) The constant sequence {1} is fully generic.
(b) If faig is fully generic then for any T and f 2 L1 the

sequence ai f (Tix) is fully generic for almost all x.
(c) Fully generic implies pointwise good in L1.

The definition of fully generic will not be quoted here as it
is somewhat technical.

For a proof of the basic return times theorem us-
ing joinings see Rudolph [178]. Assani, Lesigne and
Rudolph [13] took a first step towards the multiple theo-
rem, a Wiener–Wintner version of the return times the-
orem. Also Assani [11] independently gave a proof of
Rudolph’s result in the case when all theTj are weaklymix-
ing.

Ornstein and Weiss [162] have proved the following
version of the return times theorem for abstract discrete
groups. As with Z, let us say that a sequence faggg2G of
complex numbers has property P for fFng if the sequence
�n D

1
jFn j

P
g2Fn a(g)ıg of complex measures has prop-

erty P.

Theorem 36 Suppose that the increasing Følner sequence
fFng satisfies the Tempelman condition supn jF�1n Fnj/
jFnj < 1 and

S
Fn D G. If b 2 L1 then for a.a. x the

sequence fb(Tgx)g is pointwise good in L1 for fFng.

Recently Demeter, Lacey, Tao and Thiele [67] have proved
that the return times theorem remains valid for any
1 < p � 1 and q � 2. On the other hand Assani, Buc-
zolich and Mauldin [14] (2005) showed that it fails for
p D q D 1.

Bellow, Jones and Rosenblatt have a series of pa-
pers [22,23,24,25] studying general weighted averages as-
sociated to a sequence �n of probability measures on Z,
and, in some cases, more general groups. The following
are a few of their results. [23] is concerned with Z-actions
and moving block averages given by �n D mIn , where the

In are finite intervals andmI denotes normalized counting
measure on I. They resolve the problem completely, ob-
taining a checkable necessary and sufficient condition for
such a sequence to be pointwise good in L1.

[24] gives sufficient conditions on a sequence �n for
it to be pointwise good in Lp, p > 1, via properties of
the Fourier transforms �̂n . A particular consequence is
that if limn!1

P
k2Z j�n(k)� �n(k � 1)j D 0 then f�ng

has a subsequence which is pointwise good in Lp, p > 1.
In [25] they obtain convergence results for sequences
�n D �

n , the convolution powers of a probability mea-
sure � . A consequence of one of their main results is that if
the expectation

P
k2Z k�(k) is zero, the second momentP

k2Z k2�(k) is finite and � is aperiodic (its support is not
contained in any proper coset in Z) then �n is pointwise
good in Lp for p > 1.

Bellow and Calderón [19] later showed that this last
result is valid also for p D 1. This is a consequence of the
following sufficient condition for a sequence T to satisfy
a weak L1 inequality. Given an automorphism of a prob-
ability space (X;B; �) let M f D sup j�n(T) f (x)j be the
maximal operator associated to f�ng.

Theorem 37 (Bellow and Calderón) Suppose there is an
˛ 2 (0; 1] and C > 0 such that for each n > 1 one has

j�n(x C y)� �n(x)j � C
jyj˛

jxj1C˛
for all x; y 2 Z

such that 0 < 2jyj � jxj

Then there is a constant D such that

�fM f > g �
D

k f k1 for all T; f 2 L1(�)

and  > 0 :

Ergodic Theorems andMultiple Recurrence

Suppose S � N . The upper density of S is

d̄(S) D lim sup
n

jS \ [1; n]j
n

: (33)

and the density d(S) is the limit of the same quantity, if it
exists. In 1975 Szemerédi [190] proved the following cel-
ebrated theorem, answering an old question of Erdős and
Turán.

Theorem 38 Any subset of N with positive upper den-
sity contains an arithmetic progression of length k for each
k � 1.

This result has a distinctly ergodic-theoretic flavor. Letting
T denote the shift map on Z, it says that for each k there
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is an n such that S0 D
Tk

iD1 T
�in S is non-empty. In fact

the result gives more: there is an n for which d̄(S0) > 0.
In this light Szemerédi’s theorem becomes a multiple re-
currence theorem for the shift map on N , equipped with
the invariant “measure-like” quantity d̄. Of course d̄ is not
even finitely additive so it is not a measure. d, however, is
at least finitely additive, when defined, and d(N) D 1.

This point of view suggests the following multiple re-
currence theorem.

Theorem 39 Suppose T is an automorphism of a probabil-
ity space (X;B; �), �(B) > 0 and k � 1. Then there is an
n > 0 such that �(

Tk
iD1 T

inB) > 0.

In 1977, Furstenberg [85] proved the following ergodic
theorem which implies the multiple recurrence theorem.
He also established a general correspondence principle
which puts the shaky analogy between the multiple recur-
rence theorem and Szemerédi’s theorem on a firm footing
and allows each to be deduced from the other. Thus he
obtained an ergodic theoretic proof of Szemerédi’s combi-
natorial result.

Theorem 40 Suppose T is an automorphism of a probabil-
ity space (X;B; �), f 2 L1, f � 0,

R
f d� > 0 and k � 1.

Then

lim inf
N

1
N

N�1X

nD0

Z kY

iD1

T in f d� > 0 : (34)

Furstenberg’s result opened the door to the study of so-
called ergodic Ramsey theory which has yielded a vast ar-
ray of deep results in combinatorics, many of which have
no non-ergodic proof as yet. The focus of this article is not
on this direction but the reader is referred to Furstenberg’s
book [86] for an excellent introduction and to Bergel-
son [27,28] for surveys of later developments. There is also
the article by Frantzikinakis and McCutcheon in this col-
lection.

Furstenberg’s proof relies on a deep structure theorem
for a general automorphism which was also developed in-
dependently by Zimmer [213], [212] in a more general
context. A factor of T is any sub-�-algebra F � B such
that T(F) D F . (It is more accurate to think of the factor
as the action of T on the measure space (X;F ; �jF).) The
structure theorem asserts that there is a transfinite increas-
ing sequence of factors fF˛g of T such that the following
conditions hold.

(a) F˛C1 is compact relative toF˛ .
(b) F˛ D

W
ˇ<˛ Fˇ whenever ˛ is a limit ordinal.

(c) B is weakly mixing relative to
WF˛ .

(
W

denotes the �-algebra generated by a collection of �-al-
gebras.)

W
˛ F˛ is called themaximal distal factor of T and

if
WF˛ D B then T is called distal. The definitions of the

relative properties in (a) and (c) above are somewhat tech-
nical so only their absolute versions (i. e. relative to the
trivial �-algebra f;; Xg) will be described here.

T is said to be compact if for each f 2 L2 the orbit
fTi f : i 2 Zg is pre-compact in the norm topology of L2.
This turns out to be equivalent to the statement that T is
a translation on a compact Abelian group endowed with
its Haar measure. The property of weak mixing is a funda-
mental notion in ergodic theory which has many equiva-
lent definitions. The most appropriate for our purposes is
that T is weakly mixing if it has no compact factors. This
turns out to be equivalent to the ergodicity of T � T acting
on the product measure space (X;B; �) � (X;B; �).

The verification of 37 in the case of compact T is rather
easy. In this case it is not hard to prove that for any f 2 L1
and � > 0 the set fn 2 Z : kTn f � f k2 < �g has bounded
gaps and (34) follows easily. In the case when T is weakly
mixing (34) is a consequence of the following theorem
which Furstenberg proves in [85] (as a warm-up for it’s
much harder relative version).

Theorem 41 If T is weakly mixing and f1; f2; : : : ; fk are
L1 functions then

lim
N

1
N

N�1X

nD0

Z kY

iD1

T in fid� D
kY

iD1

Z
fi (35)

Later Bergelson [26] showed that the result can be ob-
tained easily by an induction argument using the following
Hilbert space generalization of van der Corput’s lemma.

Theorem 42 (Bergelson) Suppose fxng is a bounded
sequence of vectors in Hilbert space such that for each
h > 0 one has 1

N
PN�1

nD0 hxnCh; xni ! 0 as N !1. Then
k 1
N
PN�1

nD0 xnk ! 0.

Ryzhikov has also given a beautiful short proof of The-
orem 41 using joinings ([182]). Bergelson’s van der Cor-
put lemma and variants of it have been a key tool in sub-
sequent developments in ergodic Ramsey theory and in
the convergence results to be be discussed in this section.
Bergelson [26] used it to prove the following mean ergodic
theorem for weakly mixing automorphisms.

Theorem 43 Suppose T is weakly mixing, f1; : : : ; fk are
L1 functions and p1; : : : ; pk are polynomials with rational
coefficients taking integer values on the integers such that no
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pi � p j is constant for i ¤ j. Then

lim
N!1

��
���
1
N

N�1X

nD0

kY

iD1

Tpi (n) fi �
kY

iD1

Z
fid�

��
���
D 0 : (36)

Theorems 40 and 41 immediately raise the question of
convergence of themultiple averages 1

N
PN�1

nD0
Qk

iD1 T
in fi

for a general T. Several authors obtained partial results on
the question of mean convergence. It was finally resolved
only recently by Host and Kra [104], who proved the fol-
lowing landmark theorem.

Theorem 44 Suppose f1; f2; : : : ; fk 2 L1. Then there is
a g 2 L1 such that

lim

���
��
1
N

N�1X

nD0

kY

iD1

T in fi � g

���
��
2

D 0 : (37)

Independently and somewhat later Ziegler [211]obtained
the same result by somewhat different methods. Fursten-
berg had already established Theorem 44 for k D 2 in [85].
It was proved for k D 3 in the case of a totally ergodic
T by Conze and Lesigne [63]and in general by Host and
Kra [102]. It can also be obtained using the methods de-
veloped by Furstenberg and Weiss [88]. In this paper
Furstenberg and Weiss proved a result for polynomial
powers of T in the case k D 2. They also formalized the
key notion of a characteristic factor. A factor C of T is said
to be characteristic for the averages (37) if, roughly speak-
ing, the L2 limiting behavior of the averages is unchanged
when any one of the f i’s is replaced by its conditional ex-
pectation on C. This means that the question of conver-
gence of these averages may be reduced to the case when
f i are all C-measurable. So the problem is to find the right
(smallest) characteristic factor and prove convergence for
that factor.

The importance of characteristic factors was already
apparent in Furstenberg’s original paper [85], where he
showed that the maximal distal factor is characteristic for
the averages (37). In fact he showed that for a given k
a k-step distal factor is characteristic. (An automorphism
is k-step distal if it is the top rung in a k-step ladder of fac-
tors as in the Furstenberg–Zimmer structure-theorem.) It
turns out, though, that the right characteristic factor for
(37) is considerably smaller. In their seminal paper [63]
Conze and Lesigne identified the characteristic factor for
k D 3, now called the Conze–Lesigne factor. As shown
in [104], and [211], the characteristic factor for a gen-
eral k is (isomorphic to) an inverse limit of k-step nil-
flows. A k-step nilflow is a compact homogeneous space
N/� of a k-step nilpotent Lie group N, endowed with its

unique left-invariant probability measure, on which T acts
via left translation by an element of N. Ergodic proper-
ties of nilflows have been studied for some time in er-
godic theory, for example in Parry [166]. In this way the
problem of L2-convergence of (37) is reduced to the case
when T is a nilflow. In this case one has more: the averages
converge pointwise by a result of Leibman [141] (See also
Ziegler [210]).

There have already been a good many generalizations
of (37). Host and Kra [103], Frantzikinakis and Kra [82,
83], and Leibman [141] have proved results which replace
linear powers ofT by polynomial powers. In increasing de-
grees of generality Conze and Lesigne [63], Frankzikinakis
andKra [81] and Tao [192] have obtained results which re-
place the maps T; T2; : : : ; Tk in (37) by commuting maps
T1; : : : ; Tk . Bergelson and Leibman [30,31] have obtained
results, both positive and negative, in the case of two non-
commuting maps.

In the direction of pointwise convergence the only
general result is the following theorem of Bourgain [48]
which asserts pointwise convergence in the case k D 2.

Theorem 45 Suppose S and T are powers of a single auto-
morphism R and f ; g 2 L1. Then 1

N
PN

nD1 f (T
nx)g(Snx)

converges a.e.

When T is a K-automorphism Derrien and Lesigne [68]
have proved that the averages (35) converge pointwise to
the product of the integrals, even with polynomial powers
of T replacing the linear powers.

Gowers [91] has given a new proof of Szemerédi’s the-
orem by purely finite methods using only harmonic anal-
ysis on Zn . His results give better quantitative estimates
in the statement of finite versions of Szemerédi’s theorem.
Although his proof contains no ergodic theory it is to some
extent guided by Furstenberg’s approach.

This section would be incomplete without mention-
ing the spectacular recent result of Green and Tao [92] on
primes in arithmetic progression and the subsequent ex-
tensions of the Green-Tao theorem due to Tao [191] and
Tao and Ziegler [193].

Rates of Convergence

There are many results which say in various ways that, in
general, there are no estimates for the rate of convergence
of the averages An f in Birkhoff’s theorem. For example
there is the following result of Krengel [134].

Theorem 46 Suppose limn!1 cn D 1 and T is any er-
godic automorphism of a probability space. Then there
is a bounded measurable f with

R
f d� D 0 such that

lim sup cnAn f D 1 a.e.
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See Part 1 of Derriennic [69] for a selection of other results
in this direction. In spite of these negative results one can
obtain quantitative estimates by reformulating the ergodic
theorem in various ways. Bishop [37] proved the following
result which is purely finite and constructive in nature and
evidently implies the a.e. convergence in Birkhoff’s theo-
rem. If y D (y1; : : : ; yn) is a finite sequence of real num-
bers and a < b, an upcrossing of y over [a; b] is a mini-
mal integer interval [k; l] � [1; n] satisfying yk < a and
yl > b.

Theorem 47 Suppose T is an automorphism of the prob-
ability space (X;B; �). Let U(n; a; b; f ; x) be the num-
ber of upcrossings of the sequence A0 f (x); : : : ;An f (x) over
[a; b]. Then for every n

�fx : U(n; a; b; f ; x) > kg �
k f k1

(b � a)k
: (38)

Ivanov [107] has obtained the following stronger upcross-
ing inequality for an arbitrary positivemeasurable f , which
also implies Birkhoff’s theorem.

Theorem 48 For any positive measurable f and 0 <

a < b

�fx : U(n; a; b; f ; x) > kg �

 a
b

�k
: (39)

Note the exponential decay and the remarkable fact that
the estimate does not depend on f . Ivanov has also ob-
tained the following result (Theorem 23 in [121]) about
fluctuations of An f . An �-fluctuation of a real sequence
y D (y1 : : : yn) is a minimal integer interval [k; l] satisfy-
ing jyk � yl j � �. If f 2 L1(R) let F(�; f ; x) be the num-
ber of �-fluctuations of the sequence fAn f (x)g1nD0.

Theorem 49

�fx : F(�; f ; x) � kg � C
(log k)

1
2

k
(40)

where C is a constant depending only on k f k1/�. If f 2 L1
then

�fx : F(�; f ; x) � kg � Ae�Bk ; (41)

where A and B are constants depending only on k f k1/�.

See Kachurovskii’s survey [121] of results on rates of con-
vergence in the ergodic theorem and also the article of
Jones et al. [115] for more results on oscillation type in-
equalities.

Under special assumptions on f and T it is possible to
give more precise results on speed of convergence. If the

sequence Ti f is independent then there is a vast litera-
ture in probability theory giving very precise results, for
example the central limit theorem and the law of the it-
erated logarithm (see, for example, [50]). See the surveys
of Derrienic [69] (2006) and of Merlevède, Peligrad and
Utev [150] for results on the central limit theorem for dy-
namical systems.

Ergodic Theorems for Non-amenable Groups

Guivarch [95] was the first to prove an ergodic theorem
for a general pair of non-commuting unitary operators.
Much work has been done in the last 15 years on mean
and pointwise theorems for non-amenable groups. See the
extensive survey by Nevo [155]. Here is just one result of
Nevo [154] as a sample. Suppose G is a discrete group
and f�ng is a sequence of probability measures on G. Say
that f�ng is mean ergodic if for any unitary representa-
tion � of G on a Hilbert space H and any x 2H one
has

P
g2G �n(g)�(g)x converges in norm to the projec-

tion of x on the subspace of �-invariant vectors. Say that
f�ng is pointwise ergodic if for any measure preserving ac-
tion T of G on a probability space and f 2 L2 one hasP

g2G �n(g)Tg f converges a.e. to the projection of f on
the subspace of T-invariant functions.

Theorem 50 Let G be the free group on k generators,
k � 1. Let �n be the normalized counting measure on the
set of elements whose word length (in terms of the genera-
tors and their inverses) is n. Let �n D (�n C �nC1)/2 and
� 0n D

1
n
Pn

iD1 �i . Then �n and �
0
n are mean and pointwise

ergodic but �n is not mean ergodic.

Future Directions

This section will be devoted to a few open problems and
some questions. Many of these have been suggested by my
colleagues acknowledged in the introduction.

The topic of convergence of Furstenberg’s multiple av-
erages has seen some remarkable achievements in the last
few years and will likely continue to be vital for some
time to come. The question of pointwise convergence of
multiple averages is completely open, beyond Bourgain’s
result (Theorem 45). Even extending Bourgain’s result
to three different powers of R or to any two commut-
ing automorphisms S and T would be a very significant
achievement. Another natural question is whether one has
pointwise convergence of the averages of the sequence
f (Tn(x))g(Tn2 (x)), which are mean convergent by the re-
sult of Furstenberg and Weiss [88] (which is now sub-
sumed in much more general results).
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A long-standing open problem relating to Akcoglu’s
ergodic theorem (Theorem 23) for positive contractions
of Lp is whether it can be extended to power-bounded op-
erators T (this means that kTkn is bounded). It is also an
open question whether it extends to non-positive contrac-
tions, excepting the case p D 2 where Burkholder [52] has
shown that it fails.

There are many natural questions in the area of sub-
sequence and weighted ergodic theorems. For example,
which of Bourgain’s several pointwise theorems can be ex-
tended to L1? Are there other natural subsequences of an
arithmetic character which have density 0 and for which
an ergodic theorem is valid, either mean or pointwise, and
in what Lp spaces might such theorems be valid? Are there
higher dimensional analogues?

Since lacunary sequences are bad, to have any sort
of pointwise theorem ln D log an

anC1
must get close to 0

and for simplicity let us assume that lim ln D 0. How
fast must the convergence be in order to get an ergodic
theorem? Jones and Wierdl [113] have shown that if
ln > (log n)�

1
2C� then the pointwise ergodic theorem fails

in L2 while Jones, Lacey andWierdl [116] have shown that
an only slightly faster rate permits a sequence which is
pointwise good in L2. How well or badly does the ergodic
theorem succeed or fail depending on the rate of conver-
gence of ln? In particular is there a (slow) rate which still
guarantees strong sweeping out? [116] contains some in-
teresting conjectures in this direction.

There are also interesting questions concerning the
mean and pointwise ergodic theorems for subsequences
which are chosen randomly in some sense. See Bour-
gain [42] and [116] for some results in this direction.
Again [116] contains some interesting conjectures along
these lines.

In a recent paper [32] Bergelson and Leibman prove
some very interesting and surprising results about the dis-
tribution of generalized polynomials. A generalized poly-
nomial is any function which can be built starting with
polynomials in R[x] using the operations of addition,
multiplication and taking the greatest integer. As a con-
sequence they derive a generalization of von Neumann’s
mean ergodic theorem to averages along generalized poly-
nomial sequences. The following is a special case.

Theorem 51 Suppose p is a generalized polynomial tak-
ing integer values on the integers and U is a unitary opera-
tor onH . Then 1

n
Pn�1

iD0 U
p(i)x is norm convergent for all

x 2H .

This begs the question: does one have pointwise conver-
gence? If so, this would be a far-reaching generalization of
Bourgain’s polynomial ergodic theorem.

There are also lots of questions concerning the nature
of Følner sequences fFng in an amenable group which give
a pointwise theorem. For example Lindenstrauss [145] has
shown that in the lamplighter group, a semi-direct product
of Z with

L
i2Z Z/2Z on which Z acts by the shift, there

is no sequence satisfying Tempelman’s condition and that
any fFng satisfying the Shulman condition must grow su-
per-exponentially. So, it is natural to ask for slower rates
of growth. In particular, in any amenable group is there al-
ways a sequence fFng which is pointwise good and grows
at most exponentially? Can one do better either in general
or in particular groups?

Lindenstrauss’s theorem at least guarantees the exis-
tence of Følner sequences which are pointwise good in L1
but in particular groups there are often natural sequences
which one hopes might be good. For example in

L1
iD1Z

one may take Fn to be a cube based at 0 of sidelength ln and
dimension dn (that is, all but the first dn co-ordinates are
zero), where both sequences increase to1. What condi-
tions on ln and dn will give a good sequence? Note that no
such sequence is regular in Tempelman’s sense. If dn D n
then flng must be superexponential to ensure Shulman’s
condition. Can one do better? What about ln D dn D n?
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Glossary

� A transformation T of a measure space (X;B; �) is
measure-preserving if �(T�1A) D �(A) for all mea-
surable A 2 B.

� A measure-preserving transformation (X;B; �; T) is
ergodic if T�1(A) D A (mod �) implies �(A) D 0 or
�(Ac ) D 0 for each measurable set A 2 B.

� A measure-preserving transformation (X;B; �; T) of
a probability space is weak-mixing if limn!1

1
nPn�1

iD0 j�(T
�i A \ B) � �(A)�(B)j D 0 for all mea-

surable sets A; B 2 B.
A measure-preserving transformation (X;B; �; T) of
a probability space is strong-mixing if limn!1 �

(T�nA \ B) D �(A)�(B) for all measurable sets
A; B 2 B.

� A continuous transformation T of a compact metric
space X is uniquely ergodic if there is only one T-in-
variant Borel probability measure on X. A continous
transformation of a topological space X is topologically
mixing for any two open sets U;V � X there exists
N > 0 such that T�n(U) \ V ¤ ;, for each n � N.

� Suppose (X;B; �) is a probability space. A finite parti-
tionP of X is a finite collection of disjoint (mod�, i. e.,
up to sets of measure 0) measurable sets fP1; : : : ; Png
such that X D [Pi (mod �). The entropy ofP with re-
spect to� is H(P) D �Pi �(Pi ) ln�(Pi ) (other bases
are sometimes used for the logarithm).

� The metric (or measure-theoretic) entropy of T with
respect to P is h�(T;P) D limn!1

1
n H(P _ � � � _

T�nC1(P)), where P _ � � � _ T�nC1(P) is the parti-
tion of X into sets of points with the same coding with
respect toP under Ti, i D 0; : : : ; n � 1. That is x, y are
in the same set of the partition P _ � � � _ T�nC1(P) if
and only if Ti (x) and Ti(y) lie in the same set of the
partition P for i D 0; : : : ; n � 1.

� Themetric entropy h�(T) of (X;B; �; T) is the supre-
mum of h�(T;P) over all finite measurable parti-
tions P.

� If T is a continuous transformation of a compact met-
ric space X, then the topological entropy of T is the
supremum of the metric entropies h�(T), where the
supremum is taken over all T-invariant Borel proba-
bility measures.

� A system (X;B; �; T) is loosely Bernoulli if it is iso-
morphic to the first-return system to a subset of posi-
tive measure of an irrational rotation or a (positive or
infinite entropy) Bernoulli system.
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� Two systems are spectrally isomorphic if the unitary
operators that they induce on their L2 spaces are uni-
tarily equivalent.

� A smooth dynamical system consists of a differentiable
manifoldM and a differentiable map f : M ! M. The
degree of differentiability may be specified.

� Two submanifolds S1, S2 of a manifold M intersect
transversely at p 2 M if Tp(S1)C Tp(S2) D Tp(M).

� An (�-) small Cr perturbation of a Cr map f of a man-
ifold M is a map g such that dCr ( f ; g) < � i. e. the
distance between f and g is less than � in the Cr topol-
ogy.

� A map T of an interval I D [a; b] is piecewise smooth
(Ck for k � 1) if there is a finite set of points a D x1 <
x2 < � � � < xn D b such that Tj(xi ; xiC1) is Ck for
each i. The degree of differentiability may be specified.

� A measure � on a measure space (X;B) is abso-
lutely continuous with respect to a measure � on
(X;B) if �(A) D 0 implies�(A) D 0 for all measurable
A 2 B.

� A Borel measure � on a Riemannian manifold M is
absolutely continuous if it is absolutely continuous with
respect to the Riemannian volume onM.

� A measure � on a measure space (X;B) is equivalent
to a measure � on (X;B) if � is absolutely continuous
with respect to � and � is absolutely continuous with
respect to �.

Definition of the Subject

Measure-preserving systems are a common model of pro-
cesses which evolve in time and for which the rules govern-
ing the time evolution don’t change. For example, in New-
tonian mechanics the planets in a solar system undergo
motion according to Newton’s laws of motion: the planets
move but the underlying rule governing the planets’ mo-
tion remains constant. The model adopted here is to con-
sider the time-evolution as a transformation (either a map
in discrete time or a flow in continuous time) on a proba-
bility space or more generally a measure space. This is the
setting of the subject called ergodic theory. Applications
of this point of view include the areas of statistical physics,
classical mechanics, number theory, population dynamics,
statistics, information theory and economics. The purpose
of this chapter is to present a flavor of the diverse range
of examples of measure-preserving transformations which
have played a role in the development and application of
ergodic theory and smooth dynamical systems theory. We
also present common constructions involving measure-
preserving systems. Such constructions may be considered
a way of putting ‘building-block’ dynamical systems to-

gether to construct examples or decomposing a compli-
cated system into simple ‘building-blocks’ to understand
it better.

Introduction

In this chapter we collect a brief list of some impor-
tant examples of measure-preserving dynamical systems,
which we denote typically by (X;B; �; T) or (T; X;B; �)
or slight variations. These examples have played a forma-
tive role in the development of dynamical systems the-
ory, either because they occur often in applications in one
guise or another or because they have been useful simple
models to understand certain features of dynamical sys-
tems. There is a fundamental difference in the dynami-
cal properties of those systems which display hyperbolic-
ity: roughly speaking there is some exponential divergence
of nearby orbits under iteration of the transformation. In
differentiable systems this is associated with the derivative
of the transformation possessing eigenvalues of modulus
greater than one on a ‘dynamically significant’ subset of
phase space. Hyperbolicity leads to complex dynamical be-
havior such as positive topological entropy, exponential
divergence of nearby orbits (“sensitivity to initial condi-
tions”) often coexisting with a dense set of periodic or-
bits. If �; are sufficiently regular functions on the phase
space X of a hyperbolic measure-preserving transforma-
tion (T; X; �), then typically we have fast decay of corre-
lations in the sense that
ˇ̌
ˇ
ˇ

Z

X
�(Tnx) (x)d� �

Z
� d�

Z
 d�

ˇ̌
ˇ
ˇ � Ca(n)

where a(n)! 0. If a(n)! 0 at an exponential rate we
say that the system has exponential decay of correla-
tions. A theme in dynamical systems is that the time se-
ries formed by sufficiently regular observations on systems
with some degree of hyperbolicity often behave statistically
like independent identically distributed random variables.

At this point it is appropriate to point out two per-
vasive differences between the usual probabilistic setting
of a stationary stochastic process fXng and the (smooth)
dynamical systems setting of a time series of observa-
tions on a measure-preserving system f� ı Tng. The most
crucial is that for deterministic dynamical systems the
time series is usually not an independent process, which
is a common assumption in the strictly probabilistic set-
ting. Even if some weak-mixing is assumed in the prob-
abilistic setting it is usually a mixing condition on the
�-algebras Fn D �(X1; : : : ; Xn) generated by successive
random variables, a condition which is not natural (and
usually very difficult to check) for dynamical systems.Mix-
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ing conditions on dynamical systems are given more nat-
urally in terms of the mixing of the sets of the �-algebraB
of the probability space (X;B; �) under the action of T
and not by mixing properties of the �-algebras generated
by the random variables f� ı Tng. The other difference is
that in the probabilistic setting, although fXng satisfy mo-
ment conditions, usually no regularity properties, such as
the Hölder property or smoothness, are assumed. In con-
trast in dynamical systems theory the transformation T
is often a smooth or piecewise smooth transformation of
a Riemannian manifold X and the observation � : X ! R
is often assumed continuous or Hölder. The regularity of
the observation � turns out to play a crucial role in prov-
ing properties such as rates of decay of correlation, central
limit theorems and so on.

An example of a hyperbolic transformation is an ex-
panding map of the unit interval T(x) D (2x) (where (x)
is xmodulo the integers). Here the derivative has modulus
2 at all points in phase space. This map preserves Lebesgue
measure, has positive topological entropy, Lebesgue al-
most every point x has a dense orbit and periodic points
for the map are dense in [0; 1).

Non-hyperbolic systems are of course also an im-
portant class of examples, and in contrast to hyperbolic
systems they tend to model systems of ‘low complex-
ity’, for example systems displaying quasiperiodic behav-
ior. The simplest non-trivial example is perhaps an irra-
tional rotation of the unit interval [0; 1) given by a map
T(x) D (x C ˛), ˛ 2 R nQ. T preserves Lebesgue mea-
sure, every point has a dense orbit (there are no peri-
odic orbits), yet the topological entropy is zero and nearby
points stay the same distance from each other under itera-
tion under T.

There is a natural notion of equivalence for measure-
preserving systems. We say that measure-preserving sys-
tems (T; X;B; �) and (S;Y ;C; �) are isomorphic if (possi-
bly after deleting sets of measure 0 from X and Y) there is
a one-to-one onto measurable map � : X ! Y with mea-
surable inverse ��1 such that � ı T D S ı � � a.e. and
�(��1(A)) D �(A) for allA 2 C. IfX,Y are compact topo-
logical spaces we say that T is topologically conjugate to
S if there exists a homeomorphism � : X ! Y such that
� ı T D S ı �. In this case we call � a conjugacy. If � is Cr

for some r � 1 we will call � a Cr-conjugacy and similarly
for other degrees of regularity.

We will consider X D [0; 1)(mod 1) as a representa-
tion of the unit circle S1 D fz 2 C : jzj D 1g (under the
map x ! e2	 i x ) and similarly represent the k-dimen-
sional torus Tk D S1 � � � � � S1 (k-times). If the �-algebra
is clear from the context we will write (T; X; �) instead of
(T; X;B; �) when denoting a measure-preserving system.

Examples

Rigid Rotation of a Compact Group

If G is a compact group equipped with Haar measure and
a 2 G, then the transformation T(x) D ax preserves Haar
measure and is called a rigid rotation of G. If G is abelian
and the transformation is ergodic (in this setting transitiv-
ity implies ergodicity), then the transformation is uniquely
ergodic. Such systems always have zero topological en-
tropy.

The simplest example of such a system is a circle rota-
tion. Take X D [0; 1)(mod 1), with

T(x) D (x C ˛) where ˛ 2 R :

Then T preserves Lebesgue (Haar) measure and is ergodic
(in fact uniquely ergodic) if and only if ˛ is irrational. Sim-
ilarly, the map

T(x1; : : : ; xk) D (x1 C ˛1; : : : ; xk C ˛k);
where ˛1; : : : ; ˛k 2 R ;

preserves k-dimensional Lebesgue (Haar) measure and is
ergodic (uniquely ergodic) if and only if there are no in-
tegers m1; : : : ;mk , not all 0, which satisfy m1˛1 C � � � C

mk˛k 2 Z.

Adding Machines

Let fkigi2N be a sequence of integers with ki � 2. Equip
each cyclic group Zki with the discrete topology and form
the product space˙ D

Q1
iD1Zki equippedwith the prod-

uct topology. An adding machine corresponding to the se-
quence fkigi2N is the topological space ˙ D

Q1
iD1Zki

together with the map

� : ˙ ! ˙

defined by

�(k1 � 1; k2 � 1; : : : ) D (0; 0; : : : )
if each entry in the Zki component is ki � 1 ,

while

�(k1 � 1; k2 � 1; : : : ; kn � 1; x1; x2; : : : )

D (0;

n times
‚ …„ ƒ
0; : : : ; 0; x1 C 1; x2; x3; : : : )

when x1 6D knC1 � 1.
The map � may be thought of as “add one and carry”

and also as mapping each point to its successor in a cer-
tain order. See Sect. “Adic Transformations” for general-
izations. If each ki D 2 then the system is called the dyadic
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(or von Neumann-Kakutani) adding machine or 2-odome-
ter. Addingmachines give examples of naturally occurring
minimal systems of low orbit complexity in the sense that
the topological entropy of an adding machine is zero. In
fact if f is a continuous map of an interval with zero topo-
logical entropy and S is a closed, topologically transitive
invariant set without periodic orbits, then the restriction
of f to S is topologically conjugate to the dyadic adding
machine (Theorem 11.3.13 in [46]).

We say a non-empty set � is an attractor for a map T
if there is an open set U containing � such that � D
\n�0Tn(U) (other definitions are found in the literature).
The dyadic adding machine is topologically conjugate to
the Feigenbaum attractor at the limit point of period dou-
bling bifurcations (see Sect. “Unimodal Maps”). Further-
more, attractors for continuous unimodal maps of the in-
terval are either periodic orbits, transitive cycles of inter-
vals, or Cantor sets on which the dynamics is topologically
conjugate to an adding machine [32].

Interval Exchange Maps

A map T : [0; 1]! [0; 1] is an interval exchange transfor-
mation if it is defined in the following way. Suppose that
� is a permutation of f1; : : : ; ng and li > 0, i D 1; : : : ; n,
is a sequence of subintervals of I (open or closed) withP

i li D 1. Define ti by li D ti � ti�1 with t0 D 0. Sup-
pose also that � is an n-vector with entries˙1. T is defined
by sending the interval ti�1 � x < ti�1 of length li to the
interval

X

	( j)<	(i)

l	( j) � x <
X

	( j)>	(i)

l	( j)

with orientation preserved if the ith entry of � is C1 and
orientation reversed if the ith entry of � is -1. Thus on each
interval li, T has the form T(x) D �i x C ai , where �i is
˙1. If �i D 1 for each i, the transformation is called orien-
tation preserving.

The transformation T has finitely many discontinuities
(at the endpoints of each li), and modulo this set of dis-
continuities is smooth. T is also invertible (neglecting the
finite set of discontinuities) and preserves Lebesgue mea-
sure. These maps have zero topological entropy and arise
naturally in studies of polygonal billiards and more gener-
ally area-preserving flows. There are examples of minimal
but non-ergodic interval exchange maps [56,69].

Full Shifts and Shifts of Finite Type

Given a finite set (or alphabet) AD f0; : : : ; d � 1g, take
X D ˝C(A) D AN (or X D AZ) the sets of one-sided

(two-sided) sequences, respectively, with entries from A.
For example sequences in AN have the form x D �x0x1 : : :
xn : : : . A cylinder set C(yn1 ; : : : ; ynk ), yni 2 A, of length k
is a subset of X defined by fixing k entries; for example,

C(yn1 ; : : : ; ynk ) D fx : xn1 D yn1 ; : : : ; xnk D ynk g:

We define the set Ak to consist of all cylinders C(y1;
: : : ; yk) determined by fixing the first k entries, i. e. an ele-
ment of Ak is specified by fixing the first k entries of a se-
quence �x0 � � � xk by requiring xi D yi , i D 0; : : : ; k.

Let p D (p0; : : : ; pd�1) be a probability vector: all
pi � 0 and

Pd�1
iD0 pi D 1. For any cylinder B D C(b1;

: : : ; bk) 2 Ak , define

gk(B) D pb1 : : : pbk : (1)

It can be shown that these functions on Ak extend to
a shift-invariant measure �p on AN (or AZ) called prod-
uct measure. (See the article on�Measure Preserving Sys-
tems.) The space AN or AZ may be given ametric by defin-
ing

d(x; y) D

(
1 if x0 6D y0 ;
1

2jnj if xn 6D yn and xi D yi for jij < n :

The shift �(:x0x1 � � � xn � � � ) D :x1x2 � � � xn � � � is ergodic
with respect to �p . The measure-preserving system
(˝;B; �; �) (with B the �-algebra of Borel subsets of
˝(A), or its completion), is denoted by B(p) and is called
the Bernoulli shift determined by p. This systemmodels an
infinite number of independent repetitions of an experi-
ment with finitely many outcomes, the ith of which has
probability pi on each trial.

These systems are mixing of all orders (i. e. � n is mix-
ing for all n � 1) and have countable Lebesgue spectrum
(hence are all spectrally isomorphic). Kolmogorov and
Sinai showed that two of them cannot be isomorphic un-
less they have the same entropy; Ornstein [81] showed the
converse. B(1/2; 1/2) is isomorphic to the Lebesgue-mea-
sure-preserving transformation x ! 2x mod 1 on [0; 1];
similarly, B(1/3; 1/3; 1/3) is isomorphic to x ! 3x mod 1.
Furstenberg asked whether the only nonatomic measure
invariant for both x ! 2x mod 1 and x ! 3x mod 1 on
[0; 1] is Lebesgue measure. Lyons [68] showed that if one
of the actions is K; then the measure must be Lebesgue,
and Rudolph [100] showed the same thing under the
weaker hypothesis that one of the actions has positive en-
tropy. For further work on this question, see [50,87].

This construction can be generalized to model one-
step finite-state Markov stochastic processes as dynamical
systems. Again letAD f0; : : : ; d�1g, and let p D (p0; : : : ;



2960 E Ergodic Theory: Basic Examples and Constructions

pd�1) be a probability vector. Let P be a d � d stochastic
matrix with rows and columns indexed by A. This means
that all entries of P are nonnegative, and the sum of the
entries in each row is 1. We regard P as giving the transi-
tion probabilities between pairs of elements of A. Now we
define for any cylinder B D C(b1; : : : ; bk ) 2 Ak

�p;P(B) D pb1Pb1b2Pb2b3 : : : Pbk�1bk : (2)

It can be shown that �p;P extends to a measure on the
Borel �-algebra of ˝C(A), and its completion. (See the
article on � Measure Preserving Systems.) The resulting
stochastic process is a (one-step, finite-state) Markov pro-
cess. If p and P also satisfy

pP D p ; (3)

then the Markov process is stationary. In this case we
call the (one or two-sided) measure-preserving system the
Markov shift determined by p and P.

Aperiodic and irreducible Markov chains (those for
which a power of the transition matrix P has all entries
positive) are strongly mixing, in fact are isomorphic to
Bernoulli shifts (usually by means of a complicated mea-
sure-preserving recoding).

More generally we say a set � � AZ is a subshift if it
is compact and invariant under � . A subshift � is said
to be of finite type (SFT) if there exists an d � d matrix
M D (ai j) such that all entries are 0 or 1 and x 2 � if and
only if axi xiC1 D 1 for all i 2 Z. Shifts of finite type are
also called topological Markov chains. There are many in-
variant measures for a non-trivial shift of finite type. For
example the orbit of each periodic point is the support
of an invariant measure. An important role in the the-
ory, derived from motivations of statistical mechanics, is
played by equilibrium measures (or equilibrium states) for
continuous functions � : �! R, i. e. those measures �
which maximize fh
 (�)C

R
� � d�g over all shift-invari-

ant probability measures, where h
 (�) is the measure-the-
oretic entropy of � with respect to �. The study of full
shifts or shifts of finite type has played a prominent role
in the development of the hyperbolic theory of dynam-
ical systems as physical systems with ‘chaotic’ dynamics
‘typically’ possess an invariant set with induced dynamics
topologically conjugate to a shift of finite type (see the dis-
cussion by Smale in p. 147 in [108]). Dynamical systems
in which there are transverse homoclinic connections are
a common example (Theorem 5.3.5 in [45]). Furthermore
in certain settings positive metric entropy implies the ex-
istence of shifts of finite type. One result along these lines
is a theorem of Katok [53]. Let htop( f ) denote the topolog-
ical entropy of a map f and h�( f ) denote metric entropy
with respect to an invariant measure �.

Theorem 1 (Katok) Suppose T : M ! M is a C1C� dif-
feomorphism of a closed manifold and � is an invari-
ant measure with positive metric entropy (i. e. h�(T) > 0).
Then for any 0 < � < h�(T) there exists an invariant set�
topologically conjugate to a transitive shift of finite type with
htop(Tj�) > h�(T) � �.

More Examples of Subshifts

We consider some further examples of systems that are
given by the shift transformation on a subset of the set
of (usually doubly-infinite) sequences on a finite alphabet,
usually f0; 1g:Associated with each subshift is its language,
the set of all finite blocks seen in all sequences in the sub-
shift. These languages are extractive (or factorial ) (every
subword of a word in the language is also in the language)
and insertive (or extendable) (every word in the language
extends on both sides to longer words in the language). In
fact these two properties characterize the languages (sub-
sets of the set of finite-length words on an alphabet) asso-
ciated with subshifts.

Prouhet–Thue–Morse An interesting (and often redis-
covered) element of f0; 1gZC is produced as follows.
Start with 0 and at each stage write down the opposite
(00 D 1; 10 D 0) or mirror image of what is available so far.
Or, repeatedly apply the substitution 0! 01; 1! 10:

0
0 1
0 1 10
0 1 10 0110
:::

The nth entry is the sum, mod 2, of the digits in the dyadic
expansion of n:Using Keane’s blockmultiplication [55] ac-
cording to which if B is a block, B � 0 D B; B � 1 D B0;
and B � (!1 � � �!n) D (B � !1) � � � (B � !n); we may also
obtain this sequence as

0 � 01 � 01 � 01 � � � � :

The orbit closure of this sequence is uniquely ergodic
(there is a unique shift-invariant Borel probability mea-
sure, which is then necessarily ergodic). It is isomor-
phic to a skew product (see Sect. “Skew Products”)
over the von Neumann-Kakutani adding machine, or
odometer (see Sect. “Adding Machines”). Generalized
Morse systems, that is, orbit closures of sequences like
0 � 001 � 001 � 001 � � � � ; are also isomorphic to skew
products over compact group rotations.
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Chacon System This is the orbit closure of the se-
quence generated by the substitution 0! 0010; 1! 1: It
is uniquely ergodic and is one of the first systems shown
to be weakly mixing but not strongly mixing. It is prime
(has no nontrivial factors) [30], and in fact has minimal
self joinings [31]. It also has a nice description by means
of cutting up the unit interval and stacking the pieces, us-
ing spacers (see Sect. “Cutting and Stacking”). This system
has singular spectrum. It is not known whether or not its
Cartesian square is loosely Bernoulli.

Sturmian Systems Take the orbit closure of the se-
quence !n D �[1�˛;1)(n˛); where ˛ is irrational. This is
a uniquely ergodic system that is isomorphic to rotation by
˛ on the unit interval. These systems have minimal com-
plexity in the sense that the number of n-blocks grows as
slowly as possible (nC 1) [29].

Toeplitz Systems A bi-infinite sequence (xi) is a Toe-
plitz sequence if the set of integers can be decomposed into
arithmetic progressions such that each xi is constant on
each arithmetic progression. A shift space X is a Toeplitz
shift if it is the closure of the orbit of a Toeplitz sequence. It
is possible to construct Toeplitz shifts which are uniquely
ergodic and isomorphic to a rotation on a compact abelian
group [34].

Sofic Systems These are images of SFT’s under continu-
ous factor maps (finite codes, or block maps). They corre-
spond to regular languages—languages whose words are
recognizable by finite automata. These are the same as
the languages defined by regular expressions—finite ex-
pressions built up from ; (empty set), � (empty word), +
(union of two languages), � (all concatenations of words
from two languages), and � (all finite concatenations of
elements). They also have the characteristic property that
the family of all follower sets of all blocks seen in the sys-
tem is a finite family; similarly for predecessor sets. These
are also generated by phase-structure grammars which are
linear, in the sense that every production is either of the
form A! Bw or A! w;whereA and B are variables and
w is a string of terminals (symbols in the alphabet of the
language).

(A phase-structure grammar consists of alphabets V of
variables and A of terminals, a set of productions, which is
finite set of pairs of words (˛;w); usually written ˛ ! w;
of words on V [ A; and a start symbol S. The associated
language consists of all words on the alphabet A of termi-
nals which can be made by starting with S and applying
a finite sequence of productions.)

Sofic systems typically support many invariant mea-
sures (for example they have many periodic points) but
topologically transitive ones (those with a dense orbit)
have a unique measures of maximal entropy (see [65]).

Context-free Systems These are generated by phase-
structure grammars in which all productions are of the
form A! w; where A is a variable and w is a string of
variables and terminals.

Coded Systems These are systems all of whose blocks
are concatenations of some (finite or infinite) list of blocks.
These are the same as the closures of increasing sequences
of SFT’s [60]. Alternatively, they are the closures of the
images under finite edge-labelings of irreducible count-
able-state topological Markov chains. They need not be
context-free. Squarefree languages are not coded, in fact
do not contain any coded systems of positive entropy.
See [13,14,15].

Smooth Expanding Interval Maps

Take X D [0; 1)(mod 1), m 2 N , m > 1 and define

T(x) D (mx):

Then T preserves Lebesgue measure � (recall that T pre-
serves � if �(T�1A) D �(A) for all A 2 B). Furthermore
it can be shown that T is ergodic.

This simple map exemplifies many of the characteris-
tics of systems with some degree of hyperbolicity. It is iso-
morphic to a Bernoulli shift. The map has positive topo-
logical entropy and exponential divergence of nearby or-
bits, and Hölder functions have exponential decay of cor-
relations and satisfy the central limit theorem and other
strong statistical properties [20].

If m D 2 the system is isomorphic to a model of toss-
ing a fair coin, which is a common example of random-
ness. To see this let P D fP0 D [0; 1/2); P1 D [1/2; 1]g
be a partition of [0; 1] into two subintervals. We code
the orbit under T of any point x 2 [0; 1) by 0’s and 1’s
by letting xk D i if Tkx 2 Pi ; k D 0; 1; 2; : : :. The map
� : X ! f0; 1gN which associates a point x to its itinerary
in this way is a measure-preserving map from (X; �)
to f0; 1gN equipped with the Bernoulli measure from
p0 D p1 D 1

2 . The map � satisfies � ı T D � ı �, � a.e.
and is invertible a.e., hence is an isomorphism. Further-
more, reading the binary expansion of x is equivalent to
following the orbit of x under T and noting which element
of the partition P is entered at each time. Borel’s theorem
on normal numbers (basem) may be seen as a special case
of the Birkhoff Ergodic Theorem in this setting.
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Piecewise C2 Expanding Maps The main statistical fea-
tures of the examples in Sect. “Smooth Expanding Interval
Maps” generalize to a broader class of expanding maps of
the interval. For example:

Let X D [0; 1] and let P D fI1; : : : ; Ing (n � 2) be
a partition of X into intervals (closed, half-open or open)
such that Ii \ I j D ; if i 6D j. Let Ioi denote the interior of
Ii. Suppose T : X ! X satisfies:

(a) For each i D 1; : : : ; n, TjIi has a C2 extension to the
closure Ī i of Ii and jT

0(x)j � ˛ > 1 for all x 2 Ioi .
(b) T(I j) D [i2Pj Ii Lebesgue a.e. for some non-empty

subset Pj � f1; : : : ; ng.
(c) For each Ij there exists nj such that Tn j (I j) D [0; 1]

Lebesgue a.e.

Then T has an invariant measure�which is absolutely
continuous with respect to Lebesguemeasurem, and there
exists C > 0 such that 1

C �
d�
dm � C. Furthermore T is er-

godic with respect to � and displays the same statistical
properties listed above for the C2 expanding maps [20].
(See the “Folklore Theorem” in the article on � Measure
Preserving Systems.)

More Interval Maps

Continued Fraction Map This is the map T : [0; 1] !
[0; 1] given by Tx D 1/x mod 1, and it corresponds to the
shift [0; a1; a2; : : : ]! [0; a2; a3; : : : ] on the continued
fraction expansions of points in the unit interval (a map
onNN): It preserves a unique finite measure equivalent to
Lebesgue measure, the Gauss measure dx/(log 2)(1C x):
It is Bernoulli with entropy �2/6 log 2 (in fact the natural
partition into intervals is a weak Bernoulli generator, for
the definition and details see [91]). By using the Ergodic
Theorem, Khintchine and Lévy showed that

(a1 � � � an)1/n !
1Y

kD1

�
1C

1
k2 C 2k

� log k
log 2

a.e. as n!1 ;

if [0; a1; : : : ; an] D
pn
qn
; then

1
n
log qn !

�2

12 log 2
a.e. ;

1
n
log

ˇ̌
ˇ̌x �

pn(x)
qn(x)

ˇ̌
ˇ̌!

�2

6 log 2
a.e. ;

and if m is Lebesgue measure (or any equivalent mea-
sure) and � is Gauss measure, then for each interval
I;m(T�n I)! �(I); in fact exponentially fast, with a best
constant 0:30366 : : : see [10,75].

The Farey Map This is the map U : [0; 1]! [0; 1]
given by Ux D x/(1 � x) if 0 � x � 1/2;Ux D (1 � x)/x

if 1/2 � x � 1: It is ergodic for the �-finite infinite mea-
sure dx/x (Rényi and Parry). It is also ergodic for the
Minkowski measure d, which is a measure of maximal en-
tropy. This map corresponds to the shift on the Farey tree
of rational numbers which provide the intermediate con-
vergence (best one-sided) as well as the continued frac-
tion (best two-sided) rational approximations to irrational
numbers. See [61,62].

f -Expansions Generalizing the continued fraction map,
let f : [0; 1]! [0; 1] and let fIng be a finite or infinite par-
tition of [0; 1] into subintervals. We study the map f by
coding itineraries with respect to the partition fIng: For
many examples, absolutely continuous (with respect to
Lebesgue measure) invariant measures can be found and
their dynamical properties determined. See [104].

ˇ-Shifts This is the special case of f -expansions when
f (x) D ˇx mod 1 for some fixed ˇ > 1: This map of
the interval is called the ˇ-transformation. With a proper
choice of partition, it is represented by the shift on a cer-
tain subshift of the set of all sequences on the alphabet
D D f0; 1; : : : ; bˇcg, called the ˇ-shift. A point x is ex-
panded as an infinite series in negative powers of ˇ with
coefficients from this set; dˇ (x)n D bˇ f n(x)c: (By con-
vention terminating expansions are replaced by eventually
periodic ones.) A one-sided sequence on the alphabet D is
in the ˇ-shift if and only if all of its shifts are lexicograph-
ically less than or equal to the expansion dˇ (1) of 1 base
ˇ. A one-sided sequence on the alphabet D is the valid
expansion of 1 for some ˇ if and only if it lexicograph-
ically dominates all its shifts. These were first studied by
Bissinger [11], Everett [35], Rényi [93] and Parry [84,85];
there are good summaries by Bertrand-Mathis [9] and
Blanchard [12].

For ˇ D 1C
p
5

2 ; dˇ (1) D 10101010 : : : .
For ˇ D 3

2 ; dˇ (1) D 101000001 : : : (not eventually peri-
odic).
Every ˇ-shift is coded.
The topological entropy of a ˇ-shift is logˇ: There is
a unique measure of maximal entropy logˇ.
A ˇ-shift is a shift of finite type if and only if the ˇ-expan-
sion of 1 is finite. It is sofic if and only if the expansion of 1
is eventually periodic. If ˇ is a Pisot–Vijayaragavhan num-
ber (algebraic integer all of whose conjugates have mod-
ulus less than 1), then the ˇ-shift is sofic. If the ˇ-shift is
sofic, then ˇ is a Perron number (algebraic integer of max-
imum modulus among its conjugates).

Theorem 2 (Parry [86]) Every strongly transitive (for ev-
ery nonempty open set U,[n>0TnU D X) piecewisemono-
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tonic map on [0; 1] is topologically conjugate to a ˇ-trans-
formation.

Gaussian Systems

Consider a real-valued stationary process f fk : � 1 <

k < 1g on a probability space (˝;F ; P): The process
(and the associated measure-preserving system consisting
of the shift and a shift-invariant measure on RZ) is called
Gaussian if for each d � 1, any d of the f k form an Rd -
valued Gaussian random variable on ˝ : this means that
with E( fk) D m for all k and

Ai j D

Z

˝

( fk i � m)( fk j � m)dP D C(ki � k j)

for i; j D 1; : : : ; d ;

where C(�) is a function, for each Borel set B � R,

Pf! : ( fk1 (!); : : : ; fkd (!)) 2 Bg

D
1

2�d/2
p
detA

Z

B
exp

�
�
1
2
(x � (m; : : : ;m))tr

�A�1(x � (m; : : : ;m))
�
dx1 � � �dxd :

where A is a matrix with entries (Ai j). The function C(k)
is positive semidefinite and hence has an associated mea-
sure � on [0; 2�) such that

C(k) D
Z 2	

0
ei k t d�(t) :

Theorem 3 (de la Rue [33]) The Gaussian system is er-
godic if and only if the “spectral measure” � is continuous
(i. e., nonatomic), in which case it is also weakly mixing. It
is mixing if and only if C(k)! 0 as jkj ! 1: If � is sin-
gular with respect to Lebesgue measure, then the entropy is
0; otherwise the entropy is infinite.

For more details see [28].

Hamiltonian Systems

(This paragraph is from the article on � Measure Pre-
serving Systems.) Many systems that model physical sit-
uations can be studied by means of Hamilton’s equations.
The state of the entire system at any time is specified by
a vector (q; p) 2 R2n , the phase space, with q listing the
coordinates of the positions of all of the particles, and p
listing the coordinates of their momenta.We assume there
is a time-independent Hamiltonian function H(q, p) such
that the time development of the system satisfies Hamil-
ton’s equations:

dqi
dt
D
@H
@pi

;
dpi
dt
D �

@H
@qi

; i D 1; : : : ; n : (4)

Often in applications the Hamiltonian function is the sum
of kinetic and potential energy:

H(q; p) D K(p)C U(q) : (5)

Solving these equations with initial state (q, p) for the
system produces a flow (q; p)! Tt(q; p) in phase space
which moves (q, p) to its position Tt(q; p)t units of time
later. According to Liouville’s formulaTheorem 3.2 in [69],
this flow preserves Lebesgue measure on R2n . Calculating
dH/dt by means of the Chain Rule

dH
dt
D
X

i

�
@H
@pi

dpi
dt
C
@H
@qi

dqi
dt

�

and using Hamilton’s equations shows that H is constant
on orbits of the flow, and thus each set of constant energy
X(H0) D f(q; p) : H(q; p) D H0g is an invariant set. There
is a natural invariant measure on a constant energy set
X(H0) for the restricted flow, namely the measure given
by rescaling the volume element dS on X(H0) by the fac-
tor 1/jjOHjj.

Billiard Systems These form an important class of ex-
amples in ergodic theory and dynamical systems, moti-
vated by natural questions in physics, particularly the be-
havior of gas models. Consider the motion of a particle
inside a bounded region D in Rd with piecewise smooth
(C1 at least) boundaries. In the case of planar billiards we
have d D 2. The particle moves in a straight line with con-
stant speed until it hits the boundary, at which point it un-
dergoes a perfectly elastic collision with the angle of in-
cidence equal to the angle of reflection and continues in
a straight line until it next hits the boundary. It is usual to
normalize and consider unit speed, as we do in this discus-
sion for convenience. We take coordinates (x, v) given by
the Euclidean coordinates in x 2 D together with a direc-
tion vector v 2 Sd�1. A flow �t is defined with respect to
Lebesgue almost every (x, v) by translating x a distance t
defined by the direction vector v, taking account of re-
flections at boundaries. �t preserves a measure absolutely
continuous with respect to Riemannian volume on (x, v)
coordinates. The flow we have described is called a billiard
flow. The corresponding billiard map is formed by taking
the Poincaré map corresponding to the cross-section given
by the boundary @D. We will describe the planar billiard
map; the higher dimensional generalization is clear. The
billiard map is a map T : @D! @D, where @D is coordina-
tized by (s; �), s 2 [0; L), where L is the length of @D and
� 2 (0; �) measures the angle that inward pointing vec-
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tors make with the tangent line to @D at s. Given a point
(s; �), the angle � defines an oriented line l(s; �) which in-
tersects @D in two points s and s0. Reflecting l in the tan-
gent line to @D at the point s0 gives another oriented line
passing through s0 with angle � 0 (measured with respect
to the angular coordinate system based at s0). The billiard
map is the map T(s; �) D (s0; � 0). T preserves a measure
� D sin �ds � d� . The billiard flow may be modeled as
a suspension flow over the billiard map (see Sect. “Suspen-
sion Flows”).

If the region D is a polygon in the plane (or polyhe-
dron in Rd), then @D consists of the faces of the polyhe-
dron. The dynamical behavior of the billiard map or flow
in regions with only flat (non-curved) boundaries is quite
different to that of billiard flows or maps in regionsD with
strictly convex or strictly concave boundaries. The topo-
logical entropy of a flat polygonal billiard is zero. Research
interest focuses on the existence and density of periodic or
transitive orbits. It is known that if all the angles between
sides are rational multiples of � then there are periodic or-
bits [17,74,112] and they are dense in the phase space [16].
It is also known that a residual set of polygonal billiards
are topologically transitive and ergodic [58,117].

On the other hand, billiard maps in which @D has
strictly convex components are physical examples of non-
uniformly hyperbolic systems (with singularities). The
meaning of concave or convex varies in the literature. We
will consider a billiard flow inside a circle to be a system
with a strictly concave boundary, while a billiard flow on
the torus from which a circle has been excised to be a bil-
liard flow with strictly convex boundary.

The class of billiards with some strictly convex bound-
ary components, sometimes called dispersing billiards or
Sinai billiards, was introduced by Sinai [106] who proved
many of their fundamental properties. Lazutkin [63]
proved that planar billiards with generic strictly con-
cave boundary are not ergodic. Nevertheless Buni-
movich [22,23] produced a large of billiard systems, Buni-
movich billiards, with strictly concave boundary segments
(perhaps with some flat boundaries as well) which were
ergodic and non-uniformly hyperbolic. For more details
see [26,54,66,109]. We will discuss possibly the simplest
example of a dispersing billiard, namely a toral billiard
with a single convex obstacle. Take the torus T2 and con-
sider a single strictly convex subdomain SwithC1 bound-
ary. The domain of the billiard map is [0; L) � (0; �),
where L is the length of @S. The measure sin(�)ds � d� is
preserved. If the curvature of @S is everywhere non-zero,
then the billiard map T has positive topological entropy,
periodic points are dense, and in fact the system is isomor-
phic to a Bernoulli shift [41].

KAM-Systems and Stably Non-Ergodic Behavior
A celebrated theorem of Kolmogorov, Arnold and Moser
(the KAM theorem) implies that the set of ergodic area-
preserving diffeomorphisms of a compact surface with-
out boundary is not dense in the Cr topology for r � 4.
This has important implications, in that there are natural
systems in which ergodicity is not generic. The constraint
of perturbing in the class of area-preserving diffeomor-
phisms is an appropriate imposition in many physical
models. We will take the version of the KAM theorem
as given in Theorem 5.1 in [69] (original references in-
clude [3,59,79]). An elliptic fixed point for an area-pre-
serving diffeomorphism T of a surface M is called a non-
degenerate elliptic fixed point if there is a local Cr , r � 4,
change of coordinates h so that in polar coordinates

hTh�1(r; �) D (r; � C ˛0 C ˛1r)C F(r; �) ;

where all derivatives of F up to order 3 vanish, ˛1 6D 0 and
˛0 6D 0; ˙	2 ; �;

˙2	
3 . A map of the form

�(r; �) D (r; � C ˛0 C ˛1r) ;

where ˛1 6D 0, is called a twist map. Note that a twist map
leaves invariant the circle r D k, for any constant k, and
rotates each invariant curve by a rigid rotation ˛1r, the
magnitude of the rotation depending upon r. With respect
to two-dimensional Lebesgue measure a twist map is cer-
tainly not ergodic.

Theorem 4 Suppose T is a volume-preserving diffeomor-
phism of class Cr, r � 4, of a surface M. If x is a non-degen-
erate elliptic fixed point, then for every � > 0 there exists
a neighborhood U� of x and a set U0;� � U� with the prop-
erties:

(a) U0;� is a union of T-invariant simple closed curves of
class Cr�1 containing x in their interior.

(b) The restriction of T to each such invariant curve is topo-
logically conjugate to an irrational rotation.

(c) m(U� � U0;�) � �m(U� ), where m is Lebesgue mea-
sure on M.

It is possible to prove the existence of a Cr volume preserv-
ing diffeomorphism (r � 4) with a non-degenerate elliptic
fixed point and also show that if T possesses a non-degen-
erate elliptic fixed point then there is a neighborhood V
of T in the Cr topology on volume-preserving diffeomor-
phisms such that each T 0 2 V possesses a non-degenerate
elliptic fixed point Chapter II, Sect. 6 in [69]. As a corollary
we have
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Corollary 1 Let M be a compact surface without bound-
ary andDiffr(M) the space of Cr area-preserving diffeomor-
phisms with the Cr topology. Then the set of T 2 Diffr(M)
which are ergodic with respect to the probability measure
determined by normalized area is not dense inDiffr(M) for
r � 4.

Smooth Uniformly Hyperbolic Diffeomorphisms
and Flows

Time series of measurements on deterministic dynamical
systems sometimes display limit laws exhibited by inde-
pendent identically distributed random variables, such as
the central limit theorem, and also various mixing proper-
ties. The models of hyperbolicity we discuss in this section
have played a key role in showing how this phenomenon
of ‘chaotic behavior’ arises in deterministic dynamical
systems. Hyperbolic sets and their associated dynamics
have also been pivotal in studies of structural stability.
A smooth system is Cr structurally stable if a small per-
turbation in the Cr topology gives rise to a system which
is topologically conjugate to the original. When modeling
a physical system it is desirable that slight changes in the
modeling parameters do not greatly affect the qualitative
or quantitative behavior of the ensemble of orbits consid-
ered as a whole. The orbit of a point may change drasti-
cally under perturbation (especially if the system has sen-
sitive dependence on initial conditions) but the collection
of all orbits should ideally be ‘similar’ to the original un-
perturbed system. In the latter case one would hope that
statistical properties also vary only slightly under pertur-
bation. Structural stability is one, quite strong, notion of
stability. The conclusion of a body of work on structural
stability is that a system is C1 structurally stable if and
only if it is uniformly hyperbolic and satisfies a technical
assumption called strong transversality (see below for de-
tails).

Suppose M is a C1 compact Riemannian manifold
equipped with metric d and tangent space TM with
norm kk. Suppose also that U � M is a non-empty open
subset and T : U ! T(U) is a C1 diffeomorphism. A com-
pact T invariant set� � U is called a hyperbolic set if there
is a splitting of the tangent space TpM at each point p 2 �
into two invariant subspaces, TpM D Eu(p)˚ Es(p), and
a number 0 <  < 1 such that for n � 0

kDpTnvk � Cnkvk for v 2 Es(p) ;

kDpT�nvk < Cnkvk for v 2 Eu(p) :

The subspace Eu is called the unstable or expanding sub-
space and the subspace Es the stable or contracting sub-
space. The stable and unstable subspacesmay be integrated

to produce stable and unstable manifolds

Ws(p) D fy : d(Tn p; Tn y)! 0g as n!1 ;

Wu(p) D fy : d(T�n p; T�n y)! 0g as n!1 :

The stable and unstable manifolds are immersions of Eu-
clidean spaces of the same dimension as Es(p) and Eu(p),
respectively, and are of the same differentiability as T.
Moreover, Tp(Ws(p)) D Es(p) and Tp(Wu(p)) D Eu(p).
It is also useful to define local stable manifolds and local
unstable manifolds by

Ws
� (p) D fy 2 Ws(p) : d(Tn p; Tn y) < �g for all n � 0 ;

Wu
� (p) D fy 2 Wu(p) : d(T�n p; T�n y) < �g

for all n � 0 :

Finally we discuss the notion of strong transversal-
ity. We say a point x is non-wandering if for each open
neighborhood U of x there exists an n > 0 such that
Tn(U) \ U 6D ;. The NW set of non-wandering points
is called the non-wandering set. We say a dynamical sys-
tem has the strong transversal property if Ws(x) intersects
Wu(y) transversely for each pair of points x; y 2 NW.
In the Cr , r � 1 topology Robbin [94], de Melo [78] and
Robinson [95,96] proved that dynamical systems with the
strong transversal property are structurally stable, and
Robinson [97] in addition showed that strong transversal-
ity was also necessary. Mañé [70] showed that a C1 struc-
turally stable diffeomorphism must be uniformly hyper-
bolic and Hayashi [47] extended this to flows. Thus a C1

diffeomorphism or flow on a compact manifold is struc-
turally stable if and only it is uniformly hyperbolic and sat-
isfies the strong transversality condition.

Geodesic Flow onManifold of NegativeCurvature The
study of the geodesic flow on manifolds of negative sec-
tional curvature by Hedlund and Hopf was pivotal to the
development of the ergodic theory of hyperbolic systems.
Suppose that M is a geodesically complete Riemannian
manifold. Let �p;v(t) be the geodesic with �p;v(0) D p and
�̇p;v(0) D v, where �̇p;v denotes the derivativewith respect
to time t. The geodesic flow is a flow �t on the tangent
bundle TM ofM, �t : R � TM ! TM, defined by

�t(p; v) D (�p;v (t); �̇p;v (t)) :

where (p; v) 2 TM. Since geodesics have constant speed, if
kvk D 1 then k�p;v(t)k D 1 for all t, and thus the unit tan-
gent bundle T1M D f(p; v) 2 TM : kvk D 1g is preserved
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under the geodesic flow. The geodesic flow and its restric-
tion to the unit tangent bundle both preserve a volume
form, Liouville measure. In 1934Hedlund [48] proved that
the geodesic flow on the unit tangent bundle of a surface
of strictly negative constant sectional curvature is ergodic,
and in 1939 Hopf [49] extended this result to manifolds of
arbitrary dimension and strictly negative (not necessarily
constant) curvature. Hopf’s technique of proof of ergod-
icity (Hopf argument) was extremely influential and used
the foliation of the tangent space into stable and unstable
manifolds. For a clear exposition of this technique, and
the property of absolute continuity of the foliations into
stable and unstable manifolds, see [66]. The geodesic flow
on manifolds of constant negative sectional curvature is
an Anosov flow (see Sect. “Anosov Systems”). We remark
that for surfaces sectional curvature is the same as Gaus-
sian curvature. Recently the time-one map of the geodesic
flow on the unit tangent bundle of a surface with constant
negative curvature, which is a partially hyperbolic system
(see Sect. “Partially Hyperbolic Dynamical Systems”), was
shown to be stably ergodic [44], so the geodesic flow is still
playing a major role in the development of ergodic theory.

Horocycle Flow All surfaces endowed with a Rieman-
nian metric of constant negative curvature are quotients
of the upper half-planeHC :D fx C iy 2 C : y > 0gwith
the metric ds2 D dx2Cdy2

y2 , whose sectional curvature is -
1. The orientation-preserving isometries of this metric are
exactly the linear fractional (also known as Möbius) trans-
formations:
�
a b
c d

�
2 SL(2;R); [z 2HC 7! azC b

cz C d
2HC] :

Since each matrix ˙I corresponds to the identity trans-
formation, we consider matrices in PSL(2;R) :D
SL(2;R)/f˙Ig.

The unit tangent bundle, SHC, of the upper half-
plane can be identified with PSL(2;R). Then the geodesic
flow corresponds to the transformations

t 2 R 7!

�
et 0
0 e�t

�

seen as acting on PSL(2;R). The unstable foliation of an
element A 2 PSL(2;R) Š SHC is given by
�
1 t
0 1

�
A; t 2 R ;

and the flow along this foliation, given by

t 2 R 7!

�
1 t
0 1

�
;

is called the horocycle flow. Similarly for the flow induced
on the unit tangent bundle of each quotient of the upper
half-plane by a discrete group of linear fractional transfor-
mations.

The geodesic and horocycle flows acting on a (finite-
volume) surface of constant negative curvature form the
fundamental example of a transverse pair of actions. The
geodesic flow often has many periodic orbits and many
invariant measures, has positive entropy, and is in fact
Bernoulli with respect to the natural measure [82], while
the horocycle flow is often uniquely ergodic [39,72] and of
entropy zero, although mixing of all orders [73]. See [46]
for more details.

Markov Partitions and Coding If (X; T;B; �) is a dy-
namical system then a finite partition of X induces a cod-
ing of the orbits and a semi-conjugacy with a subshift
on a symbol space (it may not of course be a full conju-
gacy). For hyperbolic systems a special class of partitions,
Markov partitions, induce a conjugacy for the invariant
dynamics to a subshift of finite type. AMarkov partitionP
for an invariant subset� of a diffeomorphism T of a com-
pact manifold M is a finite collection of sets Ri, 1 � i � n
called rectangles. The rectangles have the property, for
some � > 0, if x; y 2 Ri then Ws

� (x) \Wu
� (y) 2 Ri . This

is sometimes described as being closed under local prod-
uct structure. We let Wu(x; Ri ) denote Wu

� (x)\ Ri and
Ws(x; Ri ) denoteWs

� (x)\ Ri . Furthermore we require for
all i, j:

(1) Each Ri is the closure of its interior.
(2) � � [i Ri
(3) Ri \ Rj D @Ri \ @Rj if i 6D j
(4) if x 2 Ro

i and T(x) 2 Ro
j then Wu(T(x); Rj ) �

T(Wu(x; Ri )) andWs(x; Ri ) � T�1(Wu(T(x); Rj))

Anosov Systems An Anosov diffeomorphism [2] is a uni-
formly hyperbolic system in which the entire manifold
is a hyperbolic set. Thus an Anosov diffeomorphism is
a C1 diffeomorphism T of M with a DT-invariant split-
ting (which is a continuous splitting) of the tangent space
TM(x) at each point p into a disjoint sum

TpM D Eu(p)˚ Es(p)

and there exist constants 0 <  < 1, constant C > 0
such that kDTnvk < Cnkvk for all v 2 Es(p) and
kDT�nwk � Cnkwk for all w 2 Eu(p).

A similar definition holds for Anosov flows � : R �
M ! M. A flow is Anosov if there is a splitting of the
tangent bundle into flow-invariant subspaces Eu; Es; Ec so
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Dp�tEs
p D Es

�t (p), Dp�tEu
p D Eu

�t (p) and Dp�tEc
p D

Ec
�t (p), and at each point p 2 M

TpM D Es
p ˚ Eu

p ˚ Ec
p

k(Dp�t)vk < Ctkvk for v 2 Es(p)
k(Dp��t)vk < Ctkvk for v 2 Eu(p)

for some 0 <  < 1. The tangent to the flow direction
Ec(p) is a neutral direction:

k(Dp�t)vk D kvk for v 2 Ec(p) :

Anosov proved that Anosov flows and diffeomorphisms
which preserve a volume form are ergodic [2] and are
also structurally stable. Sinai [105] constructed Markov
partitions for Anosov diffeomorphisms and hence coded
trajectories via a subshift of finite type. Using ideas
from statistical physics in [107] Sinai constructed Gibbs
measures for Anosov systems. An SRB measure (see
Sect. “Physically Relevant Measures and Strange Attrac-
tors”) is a type of Gibbs measure corresponding to the
potential � log j det(DTjEu )j and is characterized by the
property of absolutely continuous conditional measures
on unstable manifolds.

The simplest examples of Anosov diffeomorphisms are
perhaps the two-dimensional hyperbolic toral automor-
phisms (the n > 2 generalization is clear). Suppose A is
a 2 � 2 matrix with integer entries
�
a b
c d

�

such that det(A) D 1 andA has no eigenvalues of modulus
1. ThenA defines a transformation of the two-dimensional
torus T2 D S1 � S1 such that if v 2 T2,

v D
�
v1
v2

�
;

then

Av D
�
(av1 C bv2)
(cv1 C dv2)

�
:

A preserves Lebesgue (or Haar) measure and is ergodic.
A prominent example of such a matrix is
�
2 1
1 1

�
;

which is sometimes called the Arnold Cat Map. Each
point with rational coordinates (p1/q1; p2/q2) is periodic.
There are two eigenvalues 1/ < 1 <  D (3C

p
5)/2

with orthogonal eigenvectors, and the projections of the
eigenspaces fromR2 to T2 are the stable and unstable sub-
spaces.

Axiom A Systems In the case of Anosov diffeomor-
phisms the splitting into contracting and expanding
bundles holds on the entire phase space M. A system
T : M ! M is anAxiomA system if the non-wandering set
NW is a hyperbolic set and periodic points are dense in the
non-wandering set. NW � M may have Lebesgue mea-
sure zero. A set� � M is locally maximal if there exists an
open set U such that� D \n2ZTn(U). The solenoid and
horseshoe discussed below are examples of locally maxi-
mal sets. Bowen [18] constructed Markov partitions for
Axiom A diffeomorphisms . Ruelle imported ideas from
statistical physics, in particular the idea of an equilibrium
state and the variational principle, to the study of Axiom
A systems (see [101,102]) This work extended the notion
of Gibbs measure and other ideas from statistical mechan-
ics, introduced by Sinai for Anosov systems [107], into Ax-
iom A systems.

One achievement of the Axiom A program was the
Smale Decomposition Theorem, which breaks the dynam-
ics of Axiom A systems into locally maximal sets and de-
scribes the dynamics on each [18,19,108].

Theorem 5 (Spectral Decomposition Theorem) If T is
Axiom A then there is a unique decomposition of the non-
wandering set NW of T

NW D �1 [ � � � [�k

as a disjoint union of closed, invariant, locally maximal hy-
perbolic sets �i such that T is transitive on each �i . Fur-
thermore each �i may be further decomposed into a dis-
joint union of closed sets� j

i , j D 1; : : : ; ni such that Tni is
topologically mixing on each � j

i and T cyclically permutes
the� j

i .

Horseshoe Maps This type of map was introduced by
Steven Smale in the 1960’s and has played a pivotal role
in the development of dynamical systems theory. It is per-
haps the canonical example of an Axiom A system [108]
and is conjugate to a full shift on 2 symbols. Let S be a unit
square in R2 and let T be a diffeomorphism of S onto its
image such that S \ T(S) consists of two disjoint horizon-
tal strips S0 and S1. Think of stretching S uniformly in
the horizontal direction and contracting uniformly in the
vertical direction to form a long thin rectangle, and then
bending the rectangle into the shape of a horseshoe and
laying the straight legs of the horseshoe back on the unit
square S. This transformation may be realized by a dif-
feomorphism and we may also require that T restricted to
T�1Si , i D 0; 1, acts as a linear map. The restriction of T
to the maximal invariant set H D \1iD�1Ti S is a Smale
horseshoe map. H is a Cantor set, the product of a Cantor
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set in the horizontal direction and a Cantor set in the verti-
cal direction. The conjugacy with the shift on two symbols
is realized by mapping x 2 H to its itinerary with respect
to the sets S0 and S1 under powers of T (positive and neg-
ative powers).
Solenoids The solenoid is defined on the solid torus X in
R3 which we coordinatize as a circle of two-dimensional
solid disks, so that

X D f(�; z) : � 2 [0; 1) and jzj � 1; z 2 Cg

The transformation T : X ! X is given by

T(�; z) D
�
2� (mod 1) ;

1
4
z C

1
2
e2	 i�

�

Geometrically the transformation stretches the torus to
twice its length, shrinks its diameter by a factor of 4, then
twists it and doubles it over, placing the resultant ob-
ject without self-intersection back inside the original solid
torus. T(X) intersects each disk Dc D f(�; z) : � D cg in
two smaller disks of 1

4 the diameter. The transformation T
contracts volume by a factor of 2 upon each application,
yet there is expansion in the � direction (� ! 2�). The
solenoid AD \n�0Tn(X) has zero Lebesgue measure, is
T-invariant and is (locally) topologically a line segment
cross a two-dimensional Cantor set (A intersects each disk
Dc in a Cantor set). The set A is an attractor, in that
all points inside X limit under iteration by T upon A.
T : A! A is an Axiom A system.

Partially Hyperbolic Dynamical Systems

Partially hyperbolic dynamical systems are a generaliza-
tion of uniformly hyperbolic systems in that an invari-
ant central direction is allowed but the contraction in the
central direction is strictly weaker than the contraction in
the contracting direction and the expansion in the cen-
tral direction is weaker than the expansion in the expand-
ing direction. More precisely, suppose M is a C1 compact
(adapted) Riemannian manifold equipped with metric d
and tangent space TM with norm kk. A C1 diffeomor-
phism T of M is a partially hyperbolic diffeomorphism if
there is a nontrivial continuous DT invariant splitting of
the tangent space TpM at each point p into a disjoint sum

TpM D Eu(p)˚ Ec(p)˚ Es(p)

and continuous positive functions m;M; �̃ ; � such that

� Es is contracted:
if vs 2 Es(x) n f0g then kDpTnvsk

kvsk � m(p) < 1;
� Eu is expanded:

if vu 2 Eu(x) n f0g then kDpTvuk
kvuk � M(p) > 1;

� Ec is uniformly dominated by Eu and Es:
if vc 2 Ec(x) n f0g then there are numbers �̃(p); � (p)
such that m(p) < �̃(p) � kDpTvck

kvck � � (p) < M(p) .

The notion of partial hyperbolicity was introduced
by Brin and Pesin [21] who proved existence and prop-
erties, including absolute continuity, of invariant folia-
tions in this setting. There has been intense recent inter-
est in partially hyperbolic systems primarily because sig-
nificant progress has been made in establishing that cer-
tain volume-preserving partially hyperbolic systems are
‘stably ergodic’—that is, they are ergodic and under small
(Cr topology) volume-preserving perturbations remain er-
godic. This phenomenon had hitherto been restricted to
uniformly hyperbolic systems. For recent developments,
and precise statements, on stable ergodicity of partially hy-
perbolic systems see [24,92].

Compact Group Extensions of Uniformly Hyperbolic
Systems A natural example of a partially hyperbolic sys-
tem is given by a compact group extension of an Anosov
diffeomorphism. If the following terms are not familiar see
Sect. “Constructions” on standard constructions. Suppose
that (T;M; �) is an Anosov diffeomorphism, G is a com-
pact connected Lie group and h : M ! G is a differen-
tiable map. The skew product F : M � G ! M � G given
by

F(x; g) D (Tx; h(x)g)

has a central direction in its tangent space corresponding
to the Lie algebra LG of G (as a group element h acts iso-
metrically on G so there is no expansion or contraction)
and uniformly expanding and contracting bundles cor-
responding to those of the tangent space of T : M ! M.
Thus T(M � G) D Eu ˚ LG ˚ Es.

Time-One Maps of Anosov Flows Another natu-
ral context in which partial hyperbolicity arises is in
time-one maps of uniformly hyperbolic flows. Suppose
�t : R �M ! M is an Anosov flow. The diffeomorphism
�1 : M ! M is a partially hyperbolic diffeomorphismwith
central direction given by the flow direction. There is no
expansion or contraction in the central direction.

Non-Uniformly Hyperbolic Systems

The assumption of uniform hyperbolicity is quite restric-
tive and few ‘chaotic systems’ found in applications are
likely to exhibit uniform hyperbolicity. A natural weak-
ening of this assumption, and one that is non-trivial and
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greatly extends the applicability of the theory, is to re-
quire the hyperbolic splitting (no longer uniform) to hold
only at almost every point of phase space. A systematic
theory was built by Pesin [89,90] on the assumption that
the system has non-zero Lyapunov exponents � almost
everywhere where � is a Lebesgue equivalent invariant
probability measure . Recall that a number  is a Lya-
punov exponent for p 2 M if kDpTnvk � e�n for some
unit vector v 2 TpM. Oseledet’s theorem [83] (see also p.
232 in [113]), which is also called the Multiplicative Er-
godic Theorem, implies that if T is a C1 diffeomorphism
of M then for any T-invariant ergodic measure � almost
every point has well-defined Lyapunov exponents. One of
the highlights of Pesin theory is the following structure
theorem: If T : M ! M is a C1C� diffeomorphism with
a T-invariant Lebesgue equivalent Borel measure � such
that T has non-zero Lyapunov exponents with respect to
� then T has at most a countable number of ergodic com-
ponents fCig on each of which the restriction of T is either
Bernoulli or Bernoulli times a rotation (by which we mean
the support of �i D �jCi consists of a finite number ni of
sets fSi1; : : : S

i
ni
g cyclically permuted and Tni is Bernoulli

when restricted to each Sij) [90,114]. This structure theo-
rem has been generalized to SRB measures with non-zero
Lyapunov exponents [64,90].

Physically Relevant Measures and Strange Attractors

(This paragraph is from the article on�Measure Preserv-
ing Systems.) For Hamiltonian systems and other volume-
preserving systems it is natural to consider ergodicity (and
other statistical properties) of the system with respect to
Lebesguemeasure. In dissipative systems a measure equiv-
alent to Lebesgue may not be invariant (for example the
solenoid). Nevertheless Lebesgue measure has a distin-
guished role since sampling by experimenters is done with
respect to Lebesgue measure. The idea of a physically rel-
evant measure � is that it determines the statistical be-
havior of a positive Lebesgue measure set of orbits, even
though the support of �may have zero Lebesgue measure.
An example of such a situation in the uniformly hyper-
bolic setting is the solenoid �, where the attracting set �
has Lebesgue measure zero and is (locally) topologically
the product of a two-dimensional Cantor set and a line
segment. Nevertheless � determines the behavior of all
points in a solid torus in R3. More generally, suppose that
T : M ! M is a diffeomorphism on a compact Rieman-
nian manifold and thatm is a version of Lebesguemeasure
onM, given by a smooth volume form. Although Lebesgue
measurem is a distinguished physically relevant measure,
mmay not be invariant under T, and the systemmay even

be volume contracting in the sense that m(TnA)! 0 for
all measurable sets A. Nevertheless an experimenter might
observe long-term “chaotic” behavior whenever the state
of the system gets close to some compact invariant set X
which attracts a positive m-measure of orbits in the sense
that these orbits limit on X. Possibly m(X) D 0, so that
X is effectively invisible to the observer except through its
effects on orbits not contained in X. The dynamics of T re-
stricted toX can in fact be quite complicated—maybe a full
shift, or a shift of finite type, or some other complicated
topological dynamical system. Suppose there is a T-invari-
ant measure� supported on X such that for all continuous
functions � : M ! R

1
n

n�1X

kD0

� ı Tk(x)!
Z

X
� d� ; (6)

for a positivem-measure of points x 2 M. Then the long-
term equilibrium dynamics of an observable set of points
x 2 M (i. e. a set of points of positive m measure) is de-
scribed by (X; T; �). In this situation � is described as
a physical measure. There has been a great deal of research
on the properties of systems with attractors supporting
physical measures.

In the dissipative non-uniformly hyperbolic setting the
theory of ‘physically relevant’ measures is best developed
in the theory of SRB (for Sinai, Ruelle and Bowen) mea-
sures. These dynamically invariant measures may be sup-
ported on a set of Lebesguemeasure zero yet determine the
asymptotic behavior of points in a set of positive Lebesgue
measure.

If T is a diffeomorphism of M and � is a T-invariant
Borel probability measure with positive Lyapunov expo-
nents which may be integrated to unstable manifolds, then
we call � an SRB measure if the conditional measure �
induces on the unstable manifolds is absolutely continu-
ous with respect to the Riemannian volume element on
these manifolds. The reason for this definition is techni-
cal but is motivated by the following observations. Sup-
pose that the diffeomorphism has no zero Lyapunov ex-
ponents with respect to �. Since T is a diffeomorphism,
this implies T has negative Lyapunov exponents as well
as positive Lyapunov exponents and corresponding local
stable manifolds as well as local unstable manifolds. Sup-
pose that aT-invariant setA consists of a union of unstable
manifolds and is the support of an ergodic SRB measure�
and that � : M ! R is a continuous function. Since � has
absolutely continuous conditional measures on unstable
manifolds with respect to conditional Lebesgue measure
on the unstable manifolds, almost every point x in the
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union of unstable manifolds U satisfies

lim
n!1

1
n

n�1X

jD0

� ı T j(x) D
Z
� d� : (7)

If y 2 Ws
� (x) for such an x 2 U then d(Tnx; Tn y) !

1 and hence (7) implies

lim
n!1

1
n

n�1X

jD0

� ı T j(y) D
Z
� d� :

Furthermore, if the holonomy between unstablemanifolds
defined by sliding along stable manifolds is absolutely con-
tinuous (takes sets of zero Lebesgue measure on Wu to
sets of zero Lebesgue measure on Wu), there is a posi-
tive Lebesguemeasure of points (namely an unstable man-
ifold and the union of stable manifolds through it) satisfy-
ing (7). Thus an SRB measure with absolutely continuous
holonomy maps along stable manifolds is a physically rel-
evant measure. If the stable foliation possesses this prop-
erty it is called absolutely continuous. An Axiom A attrac-
tor for a C2 diffeomorphism is an example of an SRB at-
tractor [19,101,102,107]. The examples we have given of
SRB measures and attractors and measures have been uni-
formly hyperbolic.

Recently much progress has beenmade in understand-
ing the statistical properties of non-uniformly hyperbolic
systems by using a tower (see Sect. “Induced Transforma-
tions”) to construct SRB measures. We refer to Young’s
original papers [115,116], the book by Baladi [5] and
to [114] for a recent survey on SRB measures in the non-
uniformly hyperbolic setting.

Unimodal Maps Unimodal Maps of an interval are sim-
ple examples of non-uniformly hyperbolic dynamical sys-
tems that have played an important role in the develop-
ment of dynamical systems theory. Suppose I � R is an
interval; for simplicity we take I D [0; 1]. A unimodal map
is a map T : [0; 1]! [0; 1] such that there exists a point
0 < c < 1 and

� T is C2;
� T 0(x) > 0 for x < c, T 0(x) < 0 for x > c;
� T 0(c) D 0.

Such a map is clearly not uniformly expanding, as
jT 0(x)j < 1 for points in a neighborhood of c. The family
of maps T�(x) D �x(1 � x), 0 < � � 4, is a family of uni-
modalmaps with c D 1/2 and T2(1/2) D 1/2, T4(1/2) D 1.

We could have taken the interval I to be [�1; 1] or
indeed any interval with an obvious modification of the
definition above. A well-studied family of unimodal maps

in this setting is the logistic family fa : [�1; 1]! [�1; 1],
fa(x) D 1 � ax2, a 2 (0; 2]. The families fa and T� are
equivalent under a smooth coordinate change, so state-
ments about one family may be translated into statements
about the other.

Unimodal maps are studied because of the insights
they offer into transitions from regular or periodic to
chaotic behavior as a parameter (e. g. � or a) is varied, the
existence of absolutely continuous measures, and rates of
decay of correlations of regular observations for non-uni-
formly hyperbolic systems.

Results of Jakobson [52] and Benedicks and Car-
leson [6] implies that in the case of the logistic family
there is a positive Lebesgue measure set of a such that
f a has an absolutely continuous ergodic invariant mea-
sure �a . It has been shown by Keller and Nowicki [57]
(see alsoYoung [116]) that if f a is mixing with respect
to �a then the decay of correlations for Lipshitz obser-
vations on I is exponential. It is also known that the set
of a such that f a is mixing with respect to �a has pos-
itive Lebesgue measure. There is a well-developed the-
ory concerning bifurcations the maps T� undergo as �
varies [27]. We briefly describe the period-doubling route
to chaos in the family T�(x) D x(1 � x). For a nice ac-
count see [46]. We let c� denote the fixed point ��1

�
. For

3 <  � 1C
p
6, all points in [0; 1] except for 0; c� and

their preimages are attracted to a unique periodic orbit
O(p�) of period 2. There is a monotone sequence of pa-
rameter values n ( 1 D 3) such that for n <  � nC1,
T� has a unique attracting periodic orbit O(n) of period
2n and for each k D 1; 2; : : : ; n � 1 a unique repelling or-
bit of period 2k. All points in the interval [0; 1] except
for the repelling periodic orbits and their preimages are
attracted to the attracting periodic orbit of period 2n. At
 D n the periodic orbit O(n) undergoes a period-dou-
bling bifurcation. Feigenbaum [36] found that the limit
ı D �n��n�1

�nC1��n
� 4:699 : : : exists and that in a wide class

of unimodal maps this period-doubling cascade occurs
and the differences between successive bifurcation param-
eters give the same limiting ratio, an example of universal-
ity. At the end of the period-doubling cascade at a param-
eter 1 � 3:569 : : :, T�1 has an invariant Cantor set C
(the Feigenbaum attractor) which is topologically conju-
gate to the dyadic adding machine coexisting with iso-
lated repelling orbits of period 2n, n D 0; 1; 2; : : :. There is
a unique repelling orbit of period 2n for n � 1 along with
two fixed points. The Cantor set C is the !-limit set for all
points that are not periodic or preimages of periodic or-
bits. C is the set of accumulation points of periodic orbits.
Despite this picture of incredible complexity the topolog-
ical entropy is zero for  � 1. For  > 1 the map T�
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has positive topological entropy and infinitely many peri-
odic orbits whose periods are not powers of 2. For each
 � 1, T� possesses an invariant Cantor set which is re-
pelling for  > 1. We say that T� is hyperbolic if there
is only one attracting periodic orbit and the only recur-
rent sets are the attracting periodic orbit, repelling peri-
odic orbits and possibly a repelling invariant Cantor set. It
is known that the set of  2 [0; 4] for which T� is hyper-
bolic is open and dense [43]. Remarkably, by Jakobson’s
result [52] there is also a positive Lebesgue measure set of
parameters  for which T� has an absolutely continuous
invariant measure �� with a positive Lyapunov exponent.

Intermittent Maps Maps of the unit interval
T : [0; 1]! [0; 1] which are expanding except at the point
x D 0, where they are locally of form T(x) � x C x1C˛ ,
˛ > 0, have been extensively studied both for the insights
they give into rates of decay of correlations for non-uni-
formly hyperbolic systems (hyperbolicity is lost at the
point x D 0, where the derivative is 1) and for their use
as models of intermittent behavior in turbulence [71].
A fixed point where the derivative is 1 is sometimes called
an indifferent fixed point. It is a model of intermittency
in the sense that orbits close to 1 will stay close for many
iterates (since the expansion is very weak there) and hence
a time series of observations will be quite uniform for long
periods of time before displaying chaotic type behavior
after moving away from the indifferent fixed into that part
of the domain where the map is uniformly expanding.

A particularly simple model [67] is provided by

T(x) D

(
x(1C 2˛x˛) if x 2 [0; 1/2) ;
2x � 1 if x 2 [1/2; 1] :

For ˛ D 0 the map is uniformly expanding and Lebesgue
measure is invariant. In this case the rate of decay of
correlations for Hölder observations is exponential. For
0 < ˛ < 1 the map has an SRB measure �˛ with support
the unit interval. For ˛ � 1 there are no absolutely con-
tinuous invariant probability measures though there are
�-finite absolutely continuous measures. Upper and lower
polynomial bounds on the rate of decay of observations on
such maps have been given as a function of 0 < ˛ < 1 and
the regularity of the observable. For details see [51,67,103].

Hénon Diffeomorphisms The Henón family of diffeo-
morphisms was introduced and studied as Poincaré maps
for the Lorenz system of equations. It is a two-parameter
two-dimensional family which sharesmany characteristics
with the logistic family and for small b > 0may be consid-
ered a two-dimensional ‘perturbation’ of the logistic fam-

ily. The parametrized mapping is defined as

Ta;b(x; y) D (1 � ax2 C y; bx) ;

so Ta;b : R2 ! R2 with 0 < a < 2 and b > 0. Benedicks
and Carleson [7] showed that for a positive-measure set
of parameters (a, b), Ta;b has a topologically transitive at-
tractor �a;b . Benedicks and Young [8] later proved that
for a positive-measure set of parameters (a, b), Ta;b has
a topologically transitive SRB attractor �a;b with SRB
measure �a;b and that (Ta;b ; �a;b ; �a;b) is isomorphic to
a Bernoulli shift.

Complex Dynamics

Complex dynamics is concerned with the behavior of ra-
tional maps

˛1zd C ˛2zd�1 C � � �˛dC1

ˇ1zd C ˇ2zd�1 C � � �ˇdC1

of the extended complex plane C̄ to itself, in which the do-
main is C completed with the point at infinity (called the
Riemann sphere). Recall that a family F of meromorphic
functions is called normal on a domainD if every sequence
possesses a subsequence that converges uniformly (in the
spherical metric C̄ � S2) on compact subsets ofD. A fam-
ily is normal at a point z 2 C̄ if it is normal on a neigh-
borhood of z. The Fatou set F(R) � C̄ of a rational map
R : C̄ ! C̄ is the set of points z 2 C̄ such that the family
of forward iterates fRngn�0 is normal at z. The Julia set
J(R) is the complement of the Fatou set F(R). The Fatou
set is open and hence the Julia set is a closed set. Another
characterization in the case d > 1 is that J(R) is the clo-
sure of the set of all repelling periodic orbits of R : C̄ ! C̄.
Both F(R) and J(R) are invariant underR. The dynamics of
greatest interest is the restriction R : J(R)! J(R). The Ju-
lia set often has a complicated fractal structure. In the case
that Ra(z) D z2 � a, a 2 C, theMandelbrot set is defined
as the set of a for which the orbit of the origin 0 is bounded.
The topology of the Mandelbrot set has been the subject of
intense research. The study of complex dynamics is impor-
tant because of the fascinating and complicated dynamics
displayed and also because techniques and results in com-
plex dynamics have direct implications for the behavior of
one-dimensional maps. For more details see [25].

Infinite Ergodic Theory

We may also consider a measure-preserving transforma-
tion (T; X; �) of a measure space such that �(X) D1.
For example X could be the real line equipped with
Lebesgue measure. This setting also arises with compact X
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in applications. For example, suppose T : [0; 1]! [0; 1] is
the simplemodel of intermittency given in Sect. “Intermit-
tent Maps” and � 2 (1; 2). Then T possesses an absolutely
continuous invariant measure � with support [0; 1], but
�([0; 1]) D1. The Radon–Nikodym derivative of � with
respect to Lebesgue measurem exists but is not in L1(m).

In this setting we say a measurable set A is a wander-
ing set for T if fT�nAg1nD0 are disjoint. Let D(T) be the
measurable union of the collection of wandering sets for
T. The transformation T is conservative with respect to �
if (X n D(T)) D X (mod �) (see the article on� Measure
Preserving Systems). It is usually necessary to assume T
conservative with respect to � to say anything interesting
about its behavior. For example if T(x) D x C ˛, ˛ > 0,
is a translation of the real line then D(T) D X. The def-
inition of ergodicity in this setting remains the same: T
is ergodic if A 2 B and T�1AD A mod � implies that
�(A) D 0 or �(Ac ) D 0. However the equivalence of er-
godicity of T with respect to � and the equality of time
and space averages for L1(�) functions no longer holds.
Thus in general � ergodic does not imply that

lim
n!1

1
n

n�1X

iD0

� ı T j(x) D
Z

X
� d� � a.e. x 2 X

for all � 2 L1(�). In the example of the intermittent map
with � 2 (1; 2) the orbit of Lebesgue almost every x 2 X
is dense in X, yet the fraction of time spent near the indif-
ferent fixed point x D 0 tends to one for Lebesgue almost
every x 2 X. In fact it may be shown Sect. 2.4 in [1] that
when �(x) D1 there are no constants an > 0 such that

lim
n!1

1
an

n�1X

iD0

� ı T j(x) D
Z

X
� d� � a.e. x 2 X

Nevertheless it is sometimes possible to obtain distribu-
tional limits, rather than almost sure limits, of Birkhoff
sums under suitable normalization. We refer the reader to
Aaronson’s book [1] for more details.

Constructions

We give examples of some of the standard constructions
in dynamical systems. Often these constructions appear in
modeling situations (for example skew products are often
used to model systems which react to inputs from other
systems, continuous time systems are often modeled as
suspension flows over discrete-time dynamics) or to re-
duce systems to simpler components (often a factor sys-
tem or induced system is simpler to study). Unless stated
otherwise, in the sequel wewill be discussingmeasure-pre-

serving transformations on Lebesgue spaces (see the article
on �Measure Preserving Systems).

Products

Given measure-preserving systems (X;B; �; T) and
(Y ;C; �; S), their product consists of their completed
product measure space with the transformation T�S : X�
Y ! X � Y defined by (T � S)(x; y) D (Tx; Sy) for all
(x; y) 2 X � Y . Neither ergodicity nor transitivity is in
general preserved by taking products; for example the
product of an irrational rotation on the unit circle with
itself is not ergodic. For a list of which mixing properties
are preserved in various settings by forming a product
see [113]. Given any countable family of measure-pre-
serving transformations on probability spaces, their direct
product is defined similarly.

Factors

We say that a measure-preserving system (Y ;C; �; S) is
a factor of a measure-preserving system (X;B; �; T) if
(possibly after deleting a set of measure 0 from X) there
is a measurable onto map � : X ! Y such that

��1C � B;
�T D S�; and

�T�1 D �:

(8)

For Lebesgue spaces, there is a correspondence of fac-
tors of (X;B; �; T) and T-invariant complete sub-�-al-
gebras of B. According to Rokhlin’s theory of Lebesgue
spaces [98] factors also correspond to certain partitions
of X (see the article on � Measure Preserving Systems).
A factor map � : X ! Y between Lebesgue spaces is an
isomorphism if and only if it has a measurable inverse, or
equivalently ��1C D B up to sets of measure 0.

Skew Products

If (X;B; �; T) is a measure-preserving system, (Y ;C; �) is
a measure-space, and fSx : x 2 Xg is a family of measure-
preservingmaps Y ! Y such that themap that takes (x, y)
to Sx y is jointly measurable in the two variables x and y,
then wemay define a skew product system consisting of the
product measure space of X and Y equipped with product
measure � � � together with the measure-preserving map
T Ë S : X � Y ! X � Y defined by

(T Ë S)(x; y) D (Tx; Sx y) : (9)

The space Y is called the fiber of the skew product and
the space X the base. Sometimes in the literature the word
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skew product has a more general meaning and refers to
the structure (T Ë S)(x; y) D (Tx; Sx y) (without any as-
sumption of measure-preservation), where the action of
the map on the fiber Y is determined or ‘driven’ by the
map T : X ! X.

Some common examples of skew products include:

Random Dynamical Systems Suppose that X indexes
a collection of mappings Sx : Y ! Y . We may have
a transformation T : X ! X which is a full shift. Then the
sequence of mappings fSTnxg may be considered a (ran-
dom) choice of a mapping Y ! Y from the set fSx : x 2
Xg. The projection onto Y of the orbits of (Tx; Sx y) give
the orbits of a point y 2 Y under a random composition of
maps STnx ı � � � ı STx ı Sx . More generally we could con-
sider the choice of maps Sx that are composed to come
from any ergodic dynamical system, (T; X; �) to model
the effect of perturbations by a stationary ergodic ‘noise’
process.

Group Extensions of Dynamical Systems Suppose Y
is a group, � is a measure on Y invariant under a left
group action, and Sx y :D g(x)y is given by a group-
valued function g : X ! Y . In this setting g is of-
ten called a cocycle, since upon defining g(n)(x) by
(T Ë S)(n)(x; y) D (Tnx; g(n)(x)y) we have a cocycle re-
lation, namely g(mCn)(x) D g(m)(Tnx)g(n)(x). Group ex-
tensions arise often in modeling systems with symme-
try [37]. Common examples are provided by a random
composition of matrices from a group of matrices (or
more generally from a set of matrices which may form
a group or not).

Induced Transformations

Since by the Poincaré Recurrence Theorem (see [113])
a measure-preserving transformation (T; X; �;B) on
a probability space is recurrent, given any set B of positive
measure, the return-time function

nB(x) D inffn � 1 : Tnx 2 Bg (10)

is finite � a.e. We may define the first-return map by

TBx D TnB(x)x : (11)

Then (after perhaps discarding as usual a set of measure
0) TB : B! B is a measurable transformation which pre-
serves the probability measure �B D �/�(B). The sys-
tem (B;B \ B; �B ; TB) is called an induced, first-return
or derived transformation. If (T; X; �;B) is ergodic then
(B;B \ B; �B ; TB) is ergodic, but the converse is not in
general true.

The construction of the transformation TB allows us
to represent the forward orbit of points in B via a tower or
skyscraper over B. For each n D 1; 2; : : :, let

Bn D fx 2 B : nB(x) D ng : (12)

Then fB1; B2; : : : g form a partition of B, which we think
of as the bottom floor or base of the tower. The next floor
is made up of TB2; TB3; : : :, which form a partition of
TB n B, and so on. All these sets are disjoint. A column is
a part of the tower of the form Bn [ TBn [ � � � [ Tn�1Bn
for some n D 1; 2; : : :. The action of T on the entire
tower is pictured as mapping each x not at the top of
its column straight up to the point Tx above it on the
next level, and mapping each point on the top level to
TnB x 2 B. An equivalent way to describe the transforma-
tion on the tower is to write for each n and j < n, T jBn
as f(x; j) : x 2 Bng, and then the transformation F on the
tower is

F(x; l)D

(
(x; l C 1) if l < nB(x)� 1 ;
(TnB(x)x; 0) if l D nB(x) � 1 :

If T preserves a measure�, then F preserves� � dl , where
l is counting measure.

Sometimes the process of inducing yields an induced
map which is easier to analyze (perhaps it has stronger
hyperbolicity properties) than the original system. Some-
times it is possible to ‘lift’ ergodic or statistical properties
from an induced system to the original system, so the pro-
cess of inducing plays an important role in the study of
statistical properties of dynamical systems [77].

It is possible to generalize the tower construction and
relax the condition that nB(x) is the first-return time func-
tion. We may take a measurable set B � X of positive �
measure and define for almost every point x 2 B a height
or ceiling function R : B! N and take a countable par-
tition fXng of B into the sets on which R is constant. We
define the tower as the set � :D f(x; l) : x 2 B; 0 � l <
R(x)g and the tower map F : �! � by

F(x; l)D

(
(x; l C 1) if l < R(x) � 1 ;
(TR(x)x; 0) if l D R(x) � 1 :

In this setting, if
R
B R(x)d� <1, we may define an F-in-

variant probability measure on� as �
C(R;B) � dl , where dl

is counting measure and C(R, B) is the normalizing con-
stant C(R; B) D �(B)

R
B R(x)d�. This viewpoint is con-

nected with the construction of systems by cutting and
stacking—see Sect. “Cutting and Stacking”.



2974 E Ergodic Theory: Basic Examples and Constructions

Suspension Flows

The tower construction has an analogue in which the
height function R takes values in R rather than N . Such
towers are commonly used to model dynamical systems
with continuous time parameter. Let (T; X; �) be a mea-
sure-preserving system and R : X ! (0;1) a measurable
“ceiling” function on X. The set

XR D f(x; t) : 0 � R(x) < tg ; (13)

with measure � given locally by the product of� onX with
Lebesgue measurem on R, is a measure space in a natural
way. If� is a finite measure andR is integrable with respect
to � then � is a finite measure. We define an action of R
on XR by letting each point x flow at unit speed up the
vertical lines f(x; t) : 0 � t < R(x)g under the graph of R
until it hits the ceiling, then jump to Tx, and so on. More
precisely, defining Rn(x) D R(x)C � � � C R(Tnx),

Ts(x; t) D

8
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

(x; sC t)
if 0 � sC t < R(x);

(Tx; sC t � R(x))
if R(x) � s C t < R(x)C R(Tx)

: : :

(Tnx; sC t � [R(x)C � � � C R(Tn�1x)])
if Rn�1(x) � sC t < Rn(x) :

(14)

Ergodicity of (T; X; �) implies the ergodicity of
(Ts ; XR ; �).

Cutting and Stacking

Several of the most interesting examples in ergodic theory
have been constructed by this method; in fact, because of
Rokhlin’s Lemma (see Sect. “Rokhlin’s Lemma”) every er-
godic measure-preserving transformation on a Lebesgue
space is isomorphic to one constructed by cutting
and stacking. For example, the von Neumann-Kakutani
adding machine (or 2-odometer) (Sect. “Adding Ma-
chines”), the Chacon weakly mixing but not strongly mix-
ing system (Sect. “Chacon System”), Ornstein’s mixing
rank one examples (see e. g. p. 160 ff. in [80]), and many
more.

We construct a Lebesgue measure-preserving trans-
formation T on an interval X (bounded or maybe un-
bounded) by defining it as a translation on each of a pair-
wise disjoint countable collection of subintervals. The con-
struction proceeds by stages, at each stage defining T on an
additional part of X, until eventually T is defined a.e.

At each stage X is represented as a tower, which is de-
fined to be a disjoint union of columns. A column is defined

to be a finite disjoint union of intervals of equal length,
which are numbered from 0, for the “floor”, to the last one,
for the “roof”, andwhich we picture as lying each above the
preceding-numbered interval. T is defined on each level of
a column (i. e. each interval in the column) except the roof
by mapping it by translation to the next higher interval in
the column.

At stage 0, we have just one column, consisting of all of
X as the floor, and T is not defined anywhere. To pass from
one stage to the next, the columns are cut and stacked. This
means that each column is divided, by vertical cuts, into
a disjoint union of subcolumns of equal height (but maybe
not equal width), and then some of these subcolumns are
stacked above others (of the same width) so as to form
a new tower. This allows the definition of T to be extended
to some parts of X that were previously tops of towers,
since they now may have levels above them. (Sometimes
columns of height 1 are thought of as forming a reser-
voir for “spacers” to be inserted between subcolumns that
are being stacked.) If the measure of the union of the tops
of the columns tends to 0, eventually T becomes defined
a.e. This description in words can be made precise with
cumbersome notation, but the process can also be given
a neater graphical description, which we sketch in the next
section.

Adic Transformations

A.M. Vershik has introduced a family of models, called
adic or Bratteli–Vershik transformations, into ergodic the-
ory and dynamical systems. One begins with a graph
which is arranged in levels, finitely many vertices on each
level, with connections only from each level to the adjacent
ones. The space X consists of the set of all infinite paths in
this graph; it is a compact metric space in a natural way.
We are given an order on the set of edges into each vertex,
and thenX is partially ordered as follows: x and y are com-
parable if they agree from some point on, in which case
we say that x < y if at the last level n where they traverse
different edges, the edge xn of x is smaller than the edge
yn of y: A map T is defined by letting Tx be the smallest
y that is larger than x; if there is one. In nice situations,
T is a homeomorphism after defining it and its inverse on
perhaps countably many maximal and minimal elements.
Invariant measures can sometimes be defined by assign-
ing weights to edges, which are then multiplied to define
the measure of each cylinder set. This is a nice combina-
torial way to present the cutting and stacking method of
constructing m.p.t.’s, allows for more convenient analy-
sis of questions such as orbit equivalence, and leads to the
construction of many interesting examples, such as those
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based on the Pascal or Euler graphs [4,38,76]. Odometers
and generalizations are natural examples of adic systems.
Vershik showed that in fact every ergodic measure-pre-
serving transformation on a Lebesgue space is isomorphic
to a uniquely ergodic adic transformation. See [111].

Rokhlin’s Lemma

The following result is the fundamental starting point for
many constructions in ergodic theory, from represent-
ing arbitrary systems in terms of cutting and stacking or
adic systems, to constructing useful partitions and sym-
bolic codings of abstract systems, to connecting conver-
gence theorems in abstract ergodic theory with those in
harmonic analysis. It allows us to picture arbitrarily long
stretches of the action of a measure-preserving transfor-
mation as a translation within the set of integers. In the er-
godic nonatomic case the statement follows readily from
the construction of induced transformations.

Lemma 1 (Rokhlin’s Lemma) Let T : X ! X be a mea-
sure-preserving transformation on a probability space
(X;B; �). Suppose that (X;B; �) is nonatomic and
T : X ! X is ergodic, or, more generally, (T; X;B; �) is
aperiodic: that is to say, the set fx 2 X : there is n 2
N such that Tnx D xg of periodic points has measure 0.
Then given n 2 N and � > 0, there is a measurable set
B � X such that the sets B; TB; : : : ; Tn�1B are pairwise
disjoint and �([n�1

kD0T
kB) > 1 � �.

Inverse Limits

Suppose that for each i D 1; 2; : : : we have a Lebesgue
probability space (Xi ;Bi ; �i ) and a measure-preserv-
ing transformation Ti : Xi ! Xi . Suppose also that for
each i � j there is a factor map � ji : (Tj; Xj;B j; � j) !
(Ti ; Xi ;Bi ; �i ; ), such that each � j j is the identity on Xj
and � ji�k j D �ki whenever k � j � i. Let

X D fx 2 ˘1iD1Xi : � ji x j D xi for all j � ig : (15)

For each j, let � j : X ! Xj be the projection defined by
� j x D x j .

Let B be the smallest �-algebra of subsets of X which
contains all the ��1j B j . Define � on each ��1j B j by

�(��1j B) D � j(B) for all B 2 B j : (16)

Because� ji� j D �i for all j � i, the��1j B j are increasing,
and so their union is an algebra. The set function � can,
with some difficulty, be shown to be countably additive on
this algebra: since we are dealing with Lebesgue spaces, by
means of measure-theoretic isomorphisms it is possible to
replace the entire situation by compact metric spaces and

continuous maps, then use regularity of the measures in-
volved—see p. 137 ff. in [88]. Thus by Carathéodory’s The-
orem (see the article on�Measure Preserving Systems) �
extends to all of B.

Define T : X ! X by T(x j) D (Tjx j). Then (T; X;
B; �) is a measure-preserving system such that any sys-
tem which has all the (Tj; Xj;B j; � j) as factors, also has
(T; X;B; �) a factor.

Natural Extension

The natural extension is a way to produce an invertible sys-
tem from a non-invertible system. The original system is
a factor of its natural extension and its orbit structure and
ergodic properties are captured by the natural extension,
as will be seen from its construction. Let (T; X;B; �) be
a measure-preserving transformation of a Lebesgue prob-
ability space. Define

˝ : D f(x0; x1; x2; : : : ) : xn
D T(xnC1); xn 2 X; n D 0; 1; 2; : : : g

with � : ˝ ! ˝ defined by �((x0; x1; x2; : : : )) D
(T(x0); x0; x1; : : : ). The map � is invertible on ˝ . Given
the invariant measure � we define the invariant measure
for the natural extension �̃ on ˝ by defining it first on
cylinder sets C(A0;A1; : : : ;Ak) by

�̃(C(A0;A1; : : : ;Ak))

D �(T�k(A0)\T�kC1(A1) � � �\T�kCi(Ai )\� � �\Ak)

and then extending it to ˝ using Kolmogorov’s exten-
sion theorem. We think of (x0; x1; x2; : : : ) as being an in-
verse branch of x0 2 X under the mapping T : X ! X.
The maps �; ��1 : ˝ ! ˝ are ergodic with respect to �̃
if (T; X;B; �) is ergodic [113]. If � : ˝ ! X is projection
onto the first component i. e. �(x0; : : : ; xn ; : : : ) D x0 then
� ı � n(x0; : : : ; xn ; : : : ) D Tn(x0) for all x0 and thus the
natural extension yields information about the orbits of X
under T.

The natural extension is an inverse limit. Let
(X;B; �) be a Lebesgue probability space and T : X ! X
a map such that T�1B � B and �T�1 D �. For each
i D 1; 2; : : : let (Ti ; Xi ;Bi ; �i ) D (T; X;B; �), and � ji D

T j�i for each j > i. Then the inverse limit (T̂; X̂; B̂; �̂)
of this system is an invertible measure-preserving system
which is the natural extension of (T; X;B; �). We have

T̂�1(x1; x2; : : : ) D (x2; x3; : : : ) : (17)

The original system (T; X;B; �) is a factor of (T̂; X̂; B̂; �̂)
(using any �i as the factor map), and any factor map-
ping from an invertible system onto (T; X;B; �) consists
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of a factor mapping onto (T̂; X̂; B̂; �̂) followed by projec-
tion onto the first coordinate.

Joinings

Given measure-preserving systems (T; X;B; �) and
(S;Y ;C; �), a joining of the two systems is a T � S-in-
variant measure P on their product measurable space
that projects to � and �, respectively, under the pro-
jections of X � Y to X and Y , respectively. That is, if
�1 : X � Y ! X is the projection onto the first compo-
nent i. e. �1(x; y) D x then P(��11 (A)) D �(A) for all
A 2 B and similarly for �2 : X � Y ! Y .

This concept is the ergodic-theoretic version of the no-
tion in probability theory of a coupling. The product mea-
sure � � � is always a joining of the two systems. If prod-
uct measure is the only joining of the two systems, then
we say that they are disjoint and write X ? Y [40]. If D
is any family of systems, we writeD? for the family of all
measure-preserving systems which are disjoint from every
system in D. Extensive recent accounts of the use of join-
ings in ergodic theory are in [42,99,110].

Future Directions

The basic examples and constructions presented here are
idealized, and many of the underlying assumptions (such
as uniform hyperbolicity) are seldom satisfied in appli-
cations, yet they have given important insights into the
behavior of real-world physical systems. Recent develop-
ments have improved our understanding of the ergodic
properties of non-uniformly and partially hyperbolic sys-
tems. The ergodic properties of deterministic systems will
continue to be an active research area for the foreseeable
future. The directions will include, among others: estab-
lishing statistical and ergodic properties under weakened
dependence assumptions; the study of systems which dis-
play ‘anomalous statistics’; the study of the stability and
typicality of ergodic behavior and mixing in dynamical
systems; the ergodic theory of infinite-dimensional sys-
tems; advances in number theory (see the sections on Sze-
merédi and Ramsey theory); research into models with
non-singular rather than invariant measures; and infinite-
measure systems. Other chapters in this Encyclopedia dis-
cuss in more detail these and other topics.
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Glossary

Configuration space and the shift Let M be a finitely
generated group or monoid (usually abelian). Typi-
cally, M D N :D f0; 1; 2; : : :g or M D Z :D f: : : ;
�1; 0; 1; 2; : : :g, or M D NE , ZD, or ZD �NE for
some D; E 2 N . In some applications, M could be
nonabelian (although usually amenable), but to avoid
notational complexity we will generally assume M is
abelian and additive, with operation ‘+’.
Let A be a finite set of symbols (called an alphabet).
Let AM denote the set of all functions a : M�!A,
which we regard as M-indexed configurations of
elements in A. We write such a configuration as
a D [am]m2M, where am 2A for all m 2M, and re-
fer toAM as configuration space.
TreatA as a discrete topological space; thenA is com-
pact (because it is finite), so AM is compact in the
Tychonoff product topology. In fact, AM is a Can-
tor space: it is compact, perfect, totally disconnected,
and metrizable. For example, if M D ZD , then the
standardmetric onAZD is defined d(a; b) D 2�#(a;b),
where�(a; b) :D min fjzj; az ¤ bzg.
Any v 2M, determines a continuous shift map
� v : AM�!AM defined by � v (a)m D amCv for all
a 2AM and m 2M. The set f� vgv2M is then a con-
tinuousM-action onAM, which we denote simply by
“�”.
If a 2AM and U �M, then we define aU 2AU

by aU :D [au]u2U . If m 2M, then strictly speaking,
amCU 2AmCU ; however, it will often be convenient
to ‘abuse notation’ and treat amCU as an element of
AU in the obvious way.

Cellular automata LetH �M be some finite subset, and
let � : AH�!A be a function (called a local rule). The
cellular automaton (CA) determined by � is the func-
tion ˚ : AM�!AM defined by ˚(a)m D �(amCH)
for all a 2AM andm 2M. Curtis, Hedlund and Lyn-
don showed that cellular automata are exactly the con-
tinuous transformations ofAM which commute with
all shifts (see Theorem 3.4 in [58]).We refer toH as the
neighborhood of˚ . For example, ifM D Z, then typ-
ically H :D [�` : : : r] :D f�`; 1 � `; : : : ; r � 1; rg for
some left radius ` � 0 and right radius r � 0. If
�` � 0, then � can either define CA on AN or de-
fine a one-sided CA onAZ. IfM D ZD , then typically
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H � [�R : : : R]D , for some radius R � 0. Normally we
assume that `, r, and R are chosen to be minimal. Sev-
eral specific classes of CA will be important to us:
Linear CA Let (A;C) be a finite abelian group (e. g.

A D Z/p , where p 2 N ; usually p is prime). Then
˚ is a linear CA (LCA) if the local rule � has the
form

�(aH) :D
X

h2H

'h(ah) ; 8aH 2AH ; (1)

where 'h : A�!A is an endomorphism of
(A;C), for each h 2 H. We say that ˚ has
scalar coefficients if, for each h 2 H, there is
some scalar ch 2 Z, so that 'h(ah) :D ch � ah;
then �(aH) :D

P
h2H chah. For example, if A D

(Z/p ;C), then all endomorphisms are scalar mul-
tiplications, so all LCA have scalar coefficients.
If ch D 1 for all h 2 H, then ˚ has local rule
�(aH) :D

P
h2H ah; in this case,˚ is called an ad-

ditive cellular automaton; see � Additive Cellular
Automata.

Affine CA If (A;C) is a finite abelian group, then an
affine CA is one with a local rule �(aH) :D c CP

h2H 'h(ah), where c is some constant and where
'h : A�!A are endomorphisms of (A;C). Thus,
˚ is an LCA if c D 0.

Permutative CA Suppose ˚ : AZ�!AZ has local
rule � : A[�`:::r]�!A. Fix b D [b1�`; : : : ; br�1;
br ] 2 A(�`:::r]. For any a 2A, define [a b] :D
[a; b1�`; : : : ; br�1; br ] 2A[�`:::r]. We then define
the function �b : A�!A by �b(a) :D �([a b]).
We say that˚ is left-permutative if �b : A�!A is
a permutation (i. e. a bijection) for all b 2A(�`:::r].
Likewise, given b D [b�`; : : : ; br�1] 2A[�`:::r)

and c 2A, define [b c] :D [b�`; b1�` : : : ; br�1; c]
2 A[�`:::r], and define b� : A�!A by b�(c) :D
�([bc]); then ˚ is right-permutative if b� : A�!
A is a permutation for all b 2A[�`:::r). We say ˚
is bipermutative if it is both left- and right-permu-
tative.More generally, ifM is anymonoid,H �M
is any neighborhood, and h 2 H is any fixed coor-
dinate, then we define h-permutativity for a CA on
AM in the obvious fashion.
For example, suppose (A;C) is an abelian group
and ˚ is an affine CA on AZ with local rule
�(aH) D c C

Pr
hD�` 'h(ah). Then ˚ is left-

permutative iff '�` is an automorphism, and
right-permutative iff 'r is an automorphism. If
A D Z/p , and p is prime, then every nontrivial
endomorphism is an automorphism(because it is

multiplication by a nonzero element of Z/p , which
is a field), so in this case, every affine CA is permu-
tative in every coordinate of its neighborhood (and
in particular, bipermutative). If A ¤ Z/p , how-
ever, then not all affine CA are permutative.
Permutative CA were introduced by Hedlund [58],
§6, and are sometimes called permutive CA. Right
permutative CA on AN are also called toggle
automata. For more information, see Sect. 7 of
� Topological Dynamics of Cellular Automata.

Subshifts A subshift is a closed, �-invariant subset X �
AM. For any U �M, let XU :D fxU ; x 2 Xg �
AU . We say X is a subshift of finite type (SFT)
if there is some finite U �M such that X is en-
tirely described by XU , in the sense that X D

fx 2AM; xUCm 2 XU ;8m 2Mg.
In particular, if M D Z, then a (two-sided) Markov
subshift is an SFT X �AZ determined by a set
Xf0;1g �Af0;1g of admissible transitions; equivalently,
X is the set of all bi-infinite directed paths in a di-
graph whose vertices are the elements of A, with an
edge a Ý b iff (a; b) 2 Xf0;1g. If M D N , then a one-
sided Markov subshift is a subshift of AN defined in
the same way.
If D � 2, then an SFT inAZD can be thought of as the
set of admissible ‘tilings’ of RD by Wang tiles corre-
sponding to the elements of XU . (Wang tiles are unit
squares (or (hyper)cubes) with various ‘notches’ cut
into their edges (or (hyper)faces) so that they can only
be juxtaposed in certain ways.)
A subshift X �AZD is strongly irreducible (or topo-
logically mixing) if there is some R 2 N such that,
for any disjoint finite subsets V ;U � ZD separated
by a distance of at least R, and for any u 2 XU and
v 2 XV , there is some x 2 X such that xU D u and
xV D v. Please see � Symbolic Dynamics for more
about subshifts.

Measures For any finite subsetU �M, and any b 2AU ,
let hbi :D fa 2AM; aU :D bg be the cylinder set de-
termined by b. Let B be the sigma-algebra on AM

generated by all cylinder sets. A (probability) mea-
sure � on AM is a countably additive function
� : B�![0; 1] such that �[AM] D 1. A measure on
AM is entirely determined by its values on cylinder
sets. We will be mainly concerned with the following
classes of measures:
Bernoulli measure Let ˇ0 be a probability measure

onA. The Bernoulli measure induced by ˇ0 is the
measure ˇ on AM such that, for any finite sub-
set U �M, and any a 2AU , if U :D jU j, then
ˇ[hai] D

Q
h2H ˇ0(ah).
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Invariant measure Let � be a measure on AM, and
let ˚ : AM�!AM be a cellular automaton. The
measure ˚� is defined by ˚�(B) D �(˚�1(B)),
for any B 2 B. We say that � is ˚ -invariant (or
that ˚ is �-preserving) if ˚� D �. For more in-
formation, see � Ergodic Theory: Basic Examples
and Constructions.

Uniform measure Let A :D jAj. The uniform mea-
sure � onAM is the Bernoulli measure such that,
for any finite subset U �M, and any b 2AU , if
U :D jU j, then �[hbi] D 1/AU .

The support of a measure � is the smallest closed sub-
set X �AM such that �[X] D 1; we denote this by
supp(�). We say � has full support if supp(�) D
AM – equivalently, �[C] > 0 for every cylinder sub-
set C �AM.

Notation Let CA(AM) denote the set of all cellular au-
tomata on AM. If X �AM, then let CA(X) be the
subset of all ˚ 2 CA(AM) such that ˚(X) � X. Let
Meas(AM) be the set of all probability measures on
AM, and let Meas(AM;˚) be the subset of ˚-invari-
ant measures. If X �AM, then let Meas(X) be the set
of probability measures � with supp(�) � X, and de-
fine Meas(X;˚) in the obvious way.

Font conventions Upper case calligraphic letters
(A;B;C; : : :) denote finite alphabets or groups.
Upper-case bold letters (A;B;C; : : :) denote subsets
of AM (e. g. subshifts), lowercase bold-faced letters
(a; b; c; : : :) denote elements of AM, and Roman let-
ters (a; b; c; : : :) are elements ofA or ordinary num-
bers. Lower-case sans-serif (: : : ;m;n;p) are elements
of M, upper-case hollow font (U ;V ;W ; : : :) are sub-
sets of M. Upper-case Greek letters (˚;�; : : :) are
functions on AM (e. g. CA, block maps), and lower-
case Greek letters (�; ; : : :) are other functions (e. g.
local rules, measures.)
Acronyms in square brackets (e. g. � Topological Dy-
namics of Cellular Automata) indicate cross-refer-
ences to related entries in the Encyclopedia; these are
listed at the end of this article.

Definition of the Subject

Loosely speaking, a cellular automaton (CA) is the ‘dis-
crete’ analogue of a partial differential evolution equation:
it is a spatially distributed, discrete-time, symbolic dynam-
ical system governed by a local interaction rule which is in-
variant in space and time. In a CA, ‘space’ is discrete (usu-
ally theD-dimensional lattice,ZD) and the local statespace
at each point in space is also discrete (a finite ‘alphabet’,
usually denoted byA).

A measure-preserving dynamical system (MPDS) is
a dynamical system equipped with an invariant probabil-
ity measure. Any MPDS can be represented as a station-
ary stochastic process (SSP) and vice versa; ‘chaos’ in the
MPDS can be quantified via the information-theoretic ‘en-
tropy’ of the corresponding SSP. An MPDS ˚ on a states-
pace X also defines a unitary linear operator ˚� on the
Hilbert space L2(X); the spectral properties of ˚� encode
information about the global periodic structure and long-
term informational asymptotics of˚ . Ergodic theory is the
study of MPDSs and SSPs, and lies at the interface be-
tween dynamics, probability theory, information theory,
and unitary operator theory.

Please refer to the Glossary for precise definitions of
‘CA’, ‘MPDS’, etc. Also, see � Ergodic Theory: Basic Ex-
amples and Constructions for an introduction to ergodic
theory.

Introduction

The study of CA as symbolic dynamical systems began
with Hedlund [58], and the study of CA as MPDSs began
with Coven and Paul [24] andWillson [144]. (Further his-
torical details will unfold below, where appropriate.) The
ergodic theory of CA is important for several reasons:

� CA are topological dynamical systems (� Topological
Dynamics of Cellular Automata,�Chaotic Behavior of
Cellular Automata). We can gain insight into the topo-
logical dynamics of a CA by identifying its invariant
measures, and then studying the corresponding mea-
surable dynamics.

� CA are often proposed as stylized models of spatially
distributed systems in statistical physics – for example,
as microscale models of hydrodynamics, or of atomic
lattices (� Cellular Automata Modeling of Physical
Systems). In this context, the distinct invariant mea-
sures of a CA correspond to distinct ‘phases’ of the
physical system (� Phase Transitions in Cellular Au-
tomata).

� CA can also act as information-processing systems
(� Cellular Automata, Universality of, � Cellular Au-
tomata as Models of Parallel Computation). Ergodic
theory studies the ‘informational’ aspect of dynamical
systems, so it is particularly suited to explicitly ‘infor-
mational’ dynamical systems like CA.

Article Roadmap

In Sect. “Invariant Measures for CA”, we characterize the
invariant measures for various classes of CA. Then, in
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Sect. “Limit Measures and Other Asymptotics”, we inves-
tigate which measures are ‘generic’ in the sense that they
arise as the attractors for some large class of initial condi-
tions. In Sect. “Measurable Dynamics” we study the mix-
ing and spectral properties of CA as measure-preserving
dynamical systems. Finally, in Sect. “Entropy”, we look at
entropy. These sections are logically independent, and can
be read in any order.

InvariantMeasures for CA

The Uniform Measure vs. Surjective Cellular Automata

The uniform measure � plays a central role in the ergodic
theory of cellular automata, because of the following re-
sult.

Theorem 1 Let M D ZD �NE , let ˚ 2 CA(AM) and
let � be the uniform measure onAM. Then (˚ preserves �)
() (˚ is surjective).

Proof sketch “H)” If ˚ preserves �, then ˚ must map
supp(�) onto itself. But supp(�) DAM; hence ˚ is sur-
jective.

“(H” The case D D 1 follows from a result of W.A.
Blankenship and Oscar S. Rothaus, which first appeared
in Theorem 5.4 in [58]. The Blankenship–Rothaus Theo-
rem states that, if˚ 2 CA(AZ) is surjective and has neigh-
borhood [�` : : : r], then for any k 2 N and any a 2Ak ,
the ˚-preimage of the cylinder set hai is a disjoint union
of exactly Ar+` cylinder sets of length k C r C `; it follows
that�[˚�1hai] D ArC`/AkCrC` D A�k D �hai. This re-
sult was later reproved by Kleveland (see Theorem 5.1
in [74]). The special caseA D f0; 1g also appeared in The-
orem 2.4 in [131].

The case D � 2 follows from the multidimensional
version of the Blankenship–Rothaus Theorem, which was
proved by Maruoka and Kimura (see Theorem 2 in [93])
(their proof assumes that D D 2 and that ˚ has a ‘qui-
escent’ state, but neither hypothesis is essential). Alter-
nately, “(H” follows from recent, more general results of
Meester, Burton, and Steif; see Example 9 below. �
Example 2 LetM D Z orN and consider CA onAM.
(a) Say that ˚ is bounded-to-one if there is some B 2 N

such that every a 2AM has at most B preimages.
Then (˚ is bounded-to-one)() (˚ is surjective).

(b) Any posexpansive CA onAM is surjective (see Sub-
sect. “Posexpansive and Permutative CA” below).

(c) Any left- or right-permutative CA on AZ (or right-
permutative CA on AN) is surjective. This includes,
for example, most linear CA.

Hence, in any of these cases,˚ preserves the uniformmea-
sure.

Proof For (a), see Theorem 5.9 in [58], or Corol-
lary 8.1.20, p. 271 in [81]. For (b), see Proposition 2.2
in [9], in the caseAN ; their argument also works forAZ.

Part (c) follows from (b) because any permutative
CA is posexpansive (Proposition 11 below). There is also
a simple direct proof for a right-permutative CA onAN :
using right-permutativity, you can systematically con-
struct a preimage of any desired image sequence, one entry
at a time. See Theorem 6.6 in [58] for the proof inAZ. �

The surjectivity of a one-dimensional CA can be deter-
mined in finite time using certain combinatorial tests
(� Topological Dynamics of Cellular Automata). How-
ever, for D � 2, it is formally undecidablewhether an arbi-
trary CA onAZD is surjective (� Tiling Problem and Un-
decidability in Cellular Automata). This problem is some-
times referred to as the Garden of Eden problem, because
an element of AZD with no ˚-preimage is called a Gar-
den of Eden (GOE) configuration for ˚ (because it could
only ever occur at the ‘beginning of time’). However, it is
known that a CA is surjective if it is ‘almost injective’ in
a certain sense, which we now specify.

Let (M;C) be any monoid, and let˚ 2 CA(AM) have
neighborhood H �M. If B �M is any subset, then we
define

B :D BCH D fbC h ;b 2 B;h 2 Hg ;

and @B :D B \ BC :

If B is finite, then so is B (because H is finite). If ˚
has local rule � : AH�!A, then � induces a function
˚B : AB�!AB in the obvious fashion. A B-bubble (or
B-diamond) is a pair b; b0 2AB such that:

b ¤ b0 ; b@B D b0@B ; and ˚B(b) D ˚B(b0) :

Suppose a; a0 2AM are two configurations such that

aB D b ; a0
B
D b0 ; and aBC D a0BC :

Then it is easy to verify that ˚(a) D ˚(a0). We say that a
and a0 form a mutually erasable pair (because ˚ ‘erases’
the difference between a and a0). Figure 1 is a schematic
representation of this structure in the case D D 1 (hence

Ergodic Theory of Cellular Automata, Figure 1
A ‘diamond’ inAZ
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the term ‘diamond’). If D D 2, then a and a0 are like two
membranes which are glued together everywhere except
for a B-shaped ‘bubble’. We say that ˚ is pre-injective if
any (and thus, all) of the following three conditions hold:

� ˚ admits no bubbles.
� ˚ admits no mutually erasable pairs.
� For any c 2AM, if a; a0 2 ˚�1fcg are distinct, then a

and a0 must differ in infinitely many locations.

For example, any injective CA is preinjective (because
a mutually erasable pair for˚ gives two distinct˚-preim-
ages for some point). More to the point, however, if B is
finite, and ˚ admits a B-bubble (b; b0), then we can em-
bed N disjoint copies of B into M, and thus, by making
various choices between b and b0 on different translates,
we obtain a configuration with 2N distinct ˚-preimages
(where N is arbitrarily large). But if some configurations
inAM have such a large number of preimages, then other
configurations in AM must have very few preimages, or
even none. This leads to the following result:

Theorem 3 (Garden of Eden) Let M be a finitely gener-
ated amenable group (e. g.M D ZD). Let ˚ 2 CA(AM).
(a) ˚ is surjective if and only if ˚ is pre-injective.
(b) Let X �AM be a strongly irreducible SFT such that

˚(X) � X. Then ˚(X) D X if and only if ˚ jX is pre-
injective.

Proof (a) The case M D Z2 was originally proved
by Moore [103] and Myhill [104]; see � Cellular Au-
tomata and Groups. The case M D Z was implicit Hed-
lund (Lemma 5.11, and Theorems 5.9 and 5.12 in [58]).
The case when M is a finite-dimensional group was
proved by Machi and Mignosi [92]. Finally, the general
case was proved by Ceccherini-Silberstein, Machi, and
Scarabotti (see Theorem 3 in [20]), see � Cellular Au-
tomata and Groups.

(b) The case M D Z is Corollary 8.1.20 in [81] (actu-
ally this holds for any sofic subshift); see also Fiorenzi [38].
The general case is Corollary 4.8 in [39]. �

Corollary 4 (Incompressibility) Suppose M is a finitely
generated amenable group and ˚ 2 CA(AM). If ˚ is injec-
tive, then ˚ is surjective.

Remark 5 (a) A cellular network is a CA-like system de-
fined on an infinite, locally finite digraph, with differ-
ent local rules at different nodes. By assuming a kind of
‘amenability’ for this digraph, and then imposing some
weak global statistical symmetry conditions on the local
rules, Gromov (see Theorem 8.F’ in [51]) has generalized
the GOE Theorem 3 to a large class of such cellular net-

works (which he calls ‘endomorphisms of symbolic alge-
braic varieties’). See also [19].

(b) In the terminology suggested by Gottschalk [46],
Incompressibility Corollary 4 says that the group M is
surjunctive; Gottschalk claims that ‘surjunctivity’ was first
proved for all residually finite groups by Lawton (un-
published); see � Cellular Automata and Groups. For
a recent direct proof (not using the GOE theorem), see
Weiss (see Theorem 1.6 in [143]). Weiss also defines sofic
groups (a class containing both residually finite groups
and amenable groups) and shows that Corollary 4 holds
whenever M is a sofic group (see Theorem 3.2 in [143]);
see also� Cellular Automata and Groups.

(c) If X �AM is an SFT such that ˚(X) � X, then
Corollary 4 holds as long as X is ‘semi-strongly irre-
ducible’; see Fiorenzi (see Corollary 4.10 in [40]).

Invariance of Maxentropy Measures

If X �AZD is any subshift with topological entropy
htop(X; �), and � 2Meas(X; �) has measurable entropy
h(�; �), then in general, h(�; �) � htop(X; �); we say � is
ameasure ofmaximal entropy (ormaxentropymeasure) if
h(�; �) D htop(X; �). (See Example 75(a) for definitions.)

Every subshift admits one or more maxentropy mea-
sures. If D D 1 and X �AZ is an irreducible subshift of
finite type (SFT), then Parry (see Theorem 10 in [110])
showed that X admits a unique maxentropy measure �X
(now called the Parry measure); see Theorem 8.10, p. 194
in [142] or Sect. 13.3, pp. 443–444 in [81]. Theorem 1 is
then a special case of the following result:

Theorem 6 (Coven, Paul, Meester and Steif) Let
X �AZD be an SFT having a unique maxentropy measure
�X, and let ˚ 2 CA(X). Then ˚ preserves �X if and only if
˚(X) D X.

Proof The case D D 1 is Corollary 2.3 in [24]. The case
D � 2 follows from Theorem 2.5(iii) in [95], which states:
if X and Y are SFTs, and ˚ : X�!Y is a factor mapping,
and � is a maxentropy measure on X, then˚(�) is a max-
entropy measure on Y. �

For example, if X �AZ is an irreducible SFT and �X is
its Parry measure, and ˚(X) D X, then Theorem 6 says
˚(�X) D �X, as observed by Coven and Paul (see Theo-
rem 5.1 in [24]). Unfortunately, higher-dimensional SFTs
do not, in general, have unique maxentropy measures.
Burton and Steif [14] provided a plethora of examples of
such nonuniqueness, but they also gave a sufficient condi-
tion for uniqueness of the maxentropy measure, which we
now explain.
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Let X �AZD be an SFT and let U � ZD . For any
x 2 X, let xU :D [xu]u2U be its ‘projection’ toAU , and let
XU :D fxU ; x 2 Xg �AU . Let V :D UC � ZD . For any
u 2AU and v 2AV , let [uv] denote the element ofAZD

such that [uv]U D u and [uv]V D v. Let

X(u) :D fv 2AV ; [uv] 2 Xg

be the set of all “X-admissible completions” of u (thus,
X(u) ¤ ; , u 2 XU ). If � 2Meas(AZD ), and u 2AU ,
then let �(u) denote the conditional measure on AV in-
duced by u. If U is finite, then �(u) is just the restriction
of � to the cylinder set hui. If U is infinite, then the pre-
cise definition of �(u) involves a ‘disintegration’ of � into
‘fibre measures’ (we will suppress the details).

Let �U be the projection of � ontoAU . If supp(�) �
X, then supp(�U ) � XU , and for any u 2 AU ,
supp(�(u)) � X(u). We say that � is a Burton–Steif mea-
sure on X if:

(1) supp(�) D X; and
(2) For anyU � ZD whose complementUC is finite, and

for �U -almost any u 2 XU , the measure �(u) is uni-
formly distributed on the (finite) set X(u).

For example, if X DAZD , then the only Burton–Steif
measure is the uniform Bernoulli measure. If X �AZ is
an irreducible SFT, then the only Burton–Steif measure is
the Parry measure. If r > 0 and B :D [�r : : : r]D � ZD ,
and X is an SFT determined by a set of admissible words
XB �AB, then it is easy to check that any Burton–Steif
measure � on X must be a Markov random field with in-
teraction range r.

Theorem 7 (Burton and Steif) Let X �AZD be a sub-
shift of finite type.
(a) Any maxentropy measure on X is a Burton–Steif mea-

sure.
(b) If X is strongly irreducible, then any Burton–Steif mea-

sure on X is a maxentropy measure for X.

Proof (a) and (b) are Propositions 1.20 and 1.21 of [15],
respectively. For a proof in the case whenX is a symmetric
nearest-neighbor subshift of finite type, see Propositions
1.19 and 4.1 of [14], respectively. �

Any subshift admits at least one maxentropy measure, so
any SFT admits at least one Burton–Steif measure. Theo-
rems 6 and 7 together imply:

Corollary 8 IfX �AZD is an SFTwhich admits a unique
Burton–Steif measure �X, then �X is the uniquemaxentropy
measure for X. Thus, if˚ 2 CA(AM) and˚(X) D X, then
˚(�X) D �X.

Example 9 If X DAZD , then we get Theorem 1, because
the unique Burton–Steif measure onAZD is the uniform
Bernoulli measure.

Remark If X �AM is a subshift admitting a unique
maxentropy measure �, and supp(�) D X, then
Wiess (see Theorem 4.2 in [143]) has observed that X
automatically satisfies Incompressibility Corollary 4. In
particular, this applies to any SFT having a unique Bur-
ton–Steif measure.

Periodic InvariantMeasures

If P 2 N , then a sequence a 2AZ is P-periodic if
� P(a) D a. If A :D jAj, then there are exactly AP such
sequences, and a measure � on AZ is called P-periodic
if � is supported entirely on these P-periodic sequences.
More generally, if M is any monoid and P �M is any
submonoid, then a configuration a 2AM is P -periodic
if �p(a) D a for all p 2 P . (For example, if M D Z and
P :D PZ, then theP -periodic configurations are the P-pe-
riodic sequences). Let AM/P denote the set of P -peri-
odic configurations. If P :D jM/P j, then jAM/P j D AP .
A measure � is called P -periodic if supp(�) �AM/P .

Proposition 10 Let ˚ 2 CA(AM). If P �M is any sub-
monoid and jM/P j is finite, then there exists a P -peri-
odic, ˚-invariant measure.

Proof sketch If ˚ 2 CA(AM), then ˚(AM/P ) �AM/P .
Thus, if � is P -periodic, then ˚ t(�) is P -periodic for all
t 2 N . Thus, the Cesàro limit of the sequence f˚ t(�)g1tD1
is P -periodic and˚-invariant. This Cesàro limit exists be-
causeAM/P is finite. �

These periodic measures have finite (hence discrete) sup-
port, but by convex-combining them, it is easy to obtain
(nonergodic) ˚-invariant measures with countable, dense
support. When studying the invariant measures of CA, we
usually regard these periodic measures (and their convex
combinations) as somewhat trivial, and concentrate in-
stead on invariant measures supported on aperiodic con-
figurations.

Posexpansive and Permutative CA

Let B �M be a finite subset, and let B :DAB. If
˚ 2 CA(AM), then we define a continuous function
˚N

B : AM�!BN by

˚N
B (a) :D [aB;˚(a)B ;˚2(a)B;˚3(a)B ; : : :] 2 BN : (2)

Clearly, ˚N
B ı ˚ D � ı ˚

N
B . We say that ˚ is B-posex-

pansive if ˚N
B is injective. Equivalently, for any a; a0 2



2986 E Ergodic Theory of Cellular Automata

AM, if a ¤ a0, then there is some t 2 N such that
˚ t(a)B ¤ ˚ t(a0)B . We say ˚ is positively expansive (or
posexpansive) if ˚ is B-posexpansive for some finite B (it
is easy to see that this is equivalent to the usual definition
of positive expansiveness a topological dynamical system).
For more information see Sect. 8� Topological Dynamics
of Cellular Automata.

Thus, if X :D ˚N
B (AM) � BN , then X is a compact,

shift-invariant subset of BN , and ˚N
B : AM�!X is an

isomorphism from the system (AM; ˚) to the one-sided
subshift (X; �), which is sometimes called the canonical
factor or column shift of˚ . The easiest examples of posex-
pansive CA are one-dimensional, permutative automata.

Proposition 11 (a) Suppose ˚ 2 CA(AN ) has neighbor-
hood [r : : : R], where 0 � r < R. Let B :D [0 : : : R) and let
B :DAB. Then

(˚ is right permutative )() (˚ is B-posexpansive, and

˚N
B (AN ) D BN) :

(b) Suppose ˚ 2 CA(AZ) has neighborhood [�L : : : R],
where�L < 0 < R. LetB :D [�L : : : R), and letB :DAB.
Then

(˚ is bipermutative )() (˚ is B-posexpansive, and

˚NB (AZ) D BN) :

Thus, one-sided, right-permutative CA and two-sided,
bipermutative CA are both topologically conjugate the one-
sided full shift (BN ; �), where B is an alphabet with
jAjRCL symbols (setting L D 0 in the one-sided case).

Proof Suppose a 2AM (where M D N or Z). Draw
a picture of the spacetime diagram for ˚ . For any t 2 N ,
and any b 2 B[0:::t), observe how (bi)permutativity al-
lows you to reconstruct a unique a[�tL:::tR) 2A[�tL:::tR)

such that b D (aB; ˚(a)B; ˚2(a)B; : : : ; ˚ t�1(a)B). By let-
ting t!1, we see that the function ˚N

B is a bijection be-
tweenAM and BN . �

Remark 12 (a) The idea of Proposition 11 is implicit
in Theorem 6.7 in [58], but it was apparently first stated
explicitly by Shereshevsky and Afraı̆movich (see Theo-
rem 1 in [130]). It was later rediscovered by Kleveland (see
Corollary 7.3 in [74]) and Fagnani and Margara (see The-
orem 3.2 in [35]).

(b) Proposition 11(b) has been generalized to higher
dimensions by Allouche and Skordev (see Proposition 1
in [3]), who showed that, if ˚ 2 CA(AZD ) is permutative
in the ‘corner’ entries of its neighborhood, then ˚ is con-
jugate to a full shift (KN ; �), whereK is an uncountable,
compact space.

Proposition 11 is quite indicative of the general case. Po-
sexpansiveness occurs only in one-dimensional CA, in
which it takes a very specific form. To explain this, sup-
pose (M; �) is a group with finite generating set G �M.
For any r > 0, let B(r) :D fg1 � g2 � � �gr ;g1; : : : ;gr 2 Gg.
The dimension (or growth degree) of (M; �) is de-
fined dim(M; �) :D lim supr!1 log jB(r)j/ log(r); see [50]
or [49]. It can be shown that this number is independent
of the choice of generating setG, and is always an integer.
For example, dim(ZD ;C) D D. If X �AM is a subshift,
then we define its topological entropy htop(X) with respect
to dim(M) in the obvious fashion (see Example 75(a)).

Theorem 13 Let˚ 2 CA(AM).
(a) If M D ZD �NE with DC E � 2, then ˚ cannot be

posexpansive.
(b) If M is any group with dim(M) � 2, and X �AM is

any subshift with htop(X) > 0, and˚(X) � X, then the
system (X; ˚) cannot be posexpansive.

(c) Suppose M D Z or N , and ˚ has neighbor-
hood [�L : : : :R] �M. Let L :D maxf0; Lg, R :D
maxf0; Rg and B :D [�L : : : R). If ˚ is posexpansive,
then ˚ is B-posexpansive.

Proof (a) is Corollary 2 in [127]; see also Theorem 4.4
in [37]. Part (b) follows by applying Theorem 1.1 in [128]
to the natural extension of (X; ˚).

(c) The caseM D Z is Proposition 7 in [75]. The case
M D N is Proposition 2.3 in [9]. �

Proposition 11 says bipermutative CA on AZ are conju-
gate to full shifts. Using his formidable theory of textile sys-
tems, Nasu extended this to all posexpansive CA onAZ.

Theorem 14 (Nasu’s) Let ˚ 2 CA(AZ) and let B � Z.
If˚ isB-posexpansive, then˚N

B (AZ) � BN is a one-sided
SFT which is conjugate to a one-sided full shift CN for some
alphabet C with jCj � 3.

Proof sketch The fact that X :D ˚NB (AZ) is an SFT fol-
lows from Theorem 10 in [75] or Theorem 10.1 in [76].
Next, Theorem 3.12(1) on p. 49 of [105] asserts that, if˚ is
any surjective endomorphism of an irreducible, aperiodic,
SFT Y �AZ, and (Y; ˚) is itself conjugate to an SFT,
then (Y; ˚) is actually conjugate to a full shift (CN ; �) for
some alphabet C with jCj � 3. Let Y :DAZ and invoke
Kůrka’s result.

For a direct proof not involving textile systems, see
Theorem 4.9 in [86]. �

Remark 15 (a) See Theorem 60(d) for an ‘ergodic’ version
of Theorem 14.
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(b) In contrast to Proposition 11, Nasu’s Theorem 14
does not say that˚N

B (AZ) itself is a full shift – only that it
is conjugate to one.

If (X; �;� ) is a measure-preserving dynamical system
(MPDS) with sigma-algebraB, then a one-sidedgenerator
is a finite partition P � B such that

W1
tD0 �

�tP � B.
If P has C elements, and C is a finite set with
jCj D C, then P induces an essentially injective function
p : X�!CN such that p ı � D � ı p. Thus, if  :D p(�),
then (X; �;� ) is measurably isomorphic to the (one-
sided) stationary stochastic process (CN ; ; �). If � is in-
vertible, then a (two-sided) generator is a finite parti-
tion P � B such that

W1
tD�1 �

tP � B. The Krieger
Generator Theorem says every finite-entropy, invertible
MPDS has a generator; indeed, if h(�;�) � log2(C), then
(X; �;� ) has a generator with C or less elements (� Er-
godic Theory: Basic Examples and Constructions). If
jCj D C, then once again,P induces ameasurable isomor-
phism from (X; �;� ) to a two-sided stationary stochastic
process (CZ; ; �), for some stationary measure  onAZ.

Corollary 16 (Universal Representation) LetM D N or
Z, and let ˚ 2 CA(AM) have neighborhoodH �M. Sup-
pose that
either M D N, ˚ is right-permutative, andH D [r : : : R]

for some 0 � r < R, and then let C :D R log2 jAj;
or M D Z, ˚ is bipermutative, and H D [�L : : : R],

and then let C :D (LC R) log2 jAj where
L :D maxf0; Lg and R :D maxf0; Rg;

or M D Z and ˚ is positively expansive, and
htop(AM; ˚) D log2(C) for some C 2 N.

(a) Let (X; �;� ) be any MPDS with a one-sided gen-
erator having at most C elements. Then there exists
� 2Meas(AM;˚) such that the system (AM; �;˚) is
measurably isomorphic to (X; �;� ).

(b) Let (X; �;� ) be an invertible MPDS, with mea-
surable entropy h(�; �) � log2(C). Then there exists
� 2Meas(AM;˚) such that the natural extension of
the system (AM; �;˚) is measurably isomorphic to
(X; �; � ).

Proof Under each of the three hypotheses, Proposi-
tion 11 or Theorem 14 yields a topological conjugacy
� : (CN ; �)�!(AM; ˚), where C is a set of cardinalityC.
(a) As discussed above, there is a measure  on CN such
that (CN ; ; �) is measurably isomorphic to (X; �; � ).
Thus, � :D � [] is a ˚-invariant measure on AM, and
(AM; �;˚) is isomorphic to (CN ; �; � ) via � .
(b) As discussed above, there is a measure  on CZ such
that (CZ; ; �) is measurably isomorphic to (X; �; � ).

Let N be the projection of  to CN ; then (CN ; N ; �)
is a one-sided stationary process. Thus, � :D � [N ] is
a ˚-invariant measure on AM, and (AM; �;˚) is iso-
morphic to (CN ; N ; �) via � . Thus, the natural exten-
sion of (AM; �;˚) is isomorphic to the natural extension
of (CN ; N ; �), which is (CZ; ; �), which is in turn iso-
morphic to (X; �;� ). �

Remark 17 The Universal Representation Corollary im-
plies that studying the measurable dynamics of the CA ˚
with respect to some arbitrary ˚-invariant measure � will
generally tell us nothing whatsoever about ˚ . For these
measurable dynamics to be meaningful, we must pick
a measure onAM which is somehow ‘natural’ for˚ . First,
this measure should be shift-invariant (because one of the
defining properties of CA is that they commute with the
shift). Second, we should seek a measure which has maxi-
mal ˚-entropy or is distinguished in some other way. (In
general, the measures � given by the Universal Represen-
tation Corollary will neither be �-invariant, nor havemax-
imal entropy for ˚ .)

If ˚N 2 CA(AN), and ˚Z 2 CA(AZ) is the CA obtained
by applying the same local rule to all coordinates in Z,
then ˚Z can never be posexpansive: if B D [�B : : : B],
and a; a0 2AZ are any two sequences such that
a(�1:::�B) ¤ a0(�1:::�B), then ˚

t(a)B D ˚ t(a0)B for all
t 2 N , because the local rule of ˚ only propagates infor-
mation to the left. Thus, in particular, the posexpansive
CA on AZ are completely unrelated to the posexpansive
CA on AN . Nevertheless, posexpansive CA on AN be-
have quite similarly to those onAZ.

Theorem 18 Let ˚ 2 CA(AN ) have neighborhood
[r : : : R], where 0 � r < R, and let B :D [0 : : : R). Sup-
pose ˚ is posexpansive. Then:
(a) X :D ˚N

B (AN) � BN is a topologically mixing SFT.
(b) The topological entropy of˚ is log2(k) for some k 2 N.
(c) If � is the uniform measure onAN , then ˚N

B (�) is the
Parry measure on X. Thus, � is the maxentropy mea-
sure for ˚ .

Proof See Corollary 3.7 and Theorems 3.8 and 3.9 in [9]
or Theorem 4.8(1,2,4) in [86]. �

Remark (a) See Theorem 58 for an ‘ergodic’ version of
Theorem 18.

(b) The analog of Nasu’s Theorem 14 (i. e. conjugacy
to a full shift) is not true for posexpansive CA on AN .
See [13] for a counterexample.

(c) If ˚ : AN�!AN is invertible, then we define
the function ˚Z

B : AN�!BZ by extending the defini-
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tion of ˚N
B to negative times. We say that ˚ is expan-

sive if ˚Z
B is bijective for some finite B � N . Expansive-

ness is a much weaker condition than positive expansive-
ness. Nevertheless, the analog of Theorem 18(a) is true:
if ˚ : AN�!AN is invertible and expansive, then BZ is
conjugate to a (two-sided) subshift of finite type; see The-
orem 1.3 in [106].

Measure Rigidity in Algebraic CA

Theorem 1 makes the uniform measure � a ‘natural’ in-
variant measure for a surjective CA ˚ . However, Propo-
sition 10 and Corollary 16 indicate that there are many
other (unnatural)˚-invariant measures as well. Thus, it is
natural to seek conditions under which the uniform mea-
sure � is the unique (or almost unique) measure which
is ˚-invariant, shift-invariant, and perhaps ‘nondegener-
ate’ in some other sense – a phenomenon which is some-
times called measure rigidity. Measure rigidity has been
best understood when ˚ is compatible with an underly-
ing algebraic structure onAM.

Let ? : AM �AM�!AM be a binary operation
(‘multiplication’) and let ��1 : AM�!AM be an unary
operation (‘inversion’) such that (AM; ?) is a group, and
suppose both operations are continuous and commute
with allM-shifts; then (AM; ?) is called a group shift. For
example, if (A; �) is itself a finite group, andAM is treated
as a Cartesian product and endowed with componentwise
multiplication, then (AM; �) is a group shift. However, not
all group shifts arise in this manner; see [70,71,72,73,124].
If (AM; ?) is a group shift, then a subgroup shift is
a closed, shift-invariant subgroupG �AM (i. e.G is both
a subshift and a subgroup).

If (G; ?) is a subgroup shift, then the Haar measure
on G is the unique probability measure �G on G which
is invariant under translation by all elements of G. That
is, if g 2 G, and U � G is any measurable subset, and
U ? g :D fu ? g;u 2 Ug, then �G[U ? g] D �G[U]. In par-
ticular, if G DAM, then �G is just the uniform Bernoulli
measure onAM. The Haar measure is a maxentropymea-
sure on G (see Subsect. “Invariance of Maxentropy Mea-
sures”).

If (AM; ?) is a group shift, and G �AM is a sub-
group shift, and ˚ 2 CA(AM), then ˚ is called an en-
domorphic (or algebraic) CA on G if ˚(G) � G and
˚ : G�!G is an endomorphism of (G; ?) as a topologi-
cal group. Let ECA(G; ?) denote the set of endomorphic
CA on G. For example, suppose (A;C) is abelian, and
let (G; ?) :D (AM;C) with the product group structure;
then the endomorphic CA on AM are exactly the lin-
ear CA. However, if (A; �) is a nonabelian group, then

endomorphic CA on (AM; �) are not the same as multi-
plicative CA.

Even in this context, CA admitmany nontrivial invari-
ant measures. For example, it is easy to check the follow-
ing:

Proposition 19 Let AM be a group shift and let ˚ 2
ECA(AM; ?). Let G �AM be any ˚-invariant subgroup
shift; then the Haar measure on G is ˚-invariant.

For example, if (A;C) is any nonsimple abelian group,
and (AM;C) has the product group structure, thenAM

admits many nontrivial subgroup shifts; see [73]. If ˚ is
any linear CA on AM with scalar coefficients, then every
subgroup shift of AM is ˚-invariant, so Proposition 19
yields many nontrivial ˚-invariant measures. To isolate �
as a unique measure, we must impose further restrictions.
The first nontrivial results in this direction were by Host,
Maass, andMartínez [61]. Let h(˚;�) be the entropy of˚
relative to the measure � (see Sect. “Entropy” for defini-
tion).

Proposition 20 Let A :D Z/p, where p is prime. Let
˚ 2 CA(AZ) be a linear CA with neighborhood f0; 1g,
and let � 2Meas(AZ;˚; �). If � is �-ergodic, and
h(˚;�) > 0, then � is the Haar measure � onAZ.

Proof See Theorem 12 in [61]. �

A similar idea is behind the next result, only with the
roles of ˚ and � reversed. If � is a measure on AN ,
and b 2A[1:::1), then we define the conditional measure
�(b) onA by �(b)(a) :D �[x0 D ajx[1:::1) D b], where x
is a �-random sequence. For example, if � is a Bernoulli
measure, then �(b)(a) D �[x0 D a], independent of b;
if � is a Markov measure, then �(b)(a) D �[x0 D ajx1 D
b1].

Proposition 21 Let (A; �) be any finite (possibly non-
abelian) group, and let ˚ 2 CA(AN ) have multiplicative
local rule � : Af0;1g�!A defined by �(a0; a1) :D a0 � a1.
Let � 2Meas(AZ;˚; �). If � is ˚-ergodic, then there is
some subgroup C �A such that, for every b 2A[1:::1],
supp(�(b)) is a right coset of C, and �(b) is uniformly dis-
tributed on this coset.

Proof See Theorem 3.1 in [113]. �

Example 22 Let˚ and � be as in Proposition 21. Let � be
the Haar measure onAN

(a) � has complete connections if supp(�(b)) DA
for�-almost all b 2A[1:::1). Thus, if� has complete con-
nections in Proposition 21, then � D �.
(b1) Suppose h(�; �) > h0 :D maxflog2 jCj ; C a proper
subgroup ofAg. Then � D �.



Ergodic Theory of Cellular Automata E 2989

(b2) In particular, suppose A D (Z/p;C), where p
is prime; then h0 D 0. Thus, if ˚ has local rule
�(a0; a1) :D a0 C a1, and� is any �-invariant,˚-ergodic
measure with h(�; �) > 0, then � D �. This is closely
analogous to Proposition 20, but ‘dual’ to it, because the
roles of˚ and � are reversed in the ergodicity and entropy
hypotheses.
(c) If C �A is a subgroup, and � is the Haar measure on
the subgroup shift CN �AN , then � satisfies the condi-
tions of Proposition 21. Other, less trivial possibilities also
exist (see Examples 3.2(b,c) in [113]).

If � is a measure onAZ, and X;Y �AZ, then we say X
essentially equals Y and write X � Y if �[X

�
Y] D 0. If

n 2 N , then let

In(�) :D
n
X �AZ ; � n(X) � X

o

be the sigma-algebra of subsets of AZ which are ‘essen-
tially’ � n-invariant. Thus, � is �-ergodic if and only if
I1(�) is trivial (i. e. contains only sets of measure zero or
one). We say� is totally � -ergodic if In(�) is trivial for all
n 2 N (� Ergodicity and Mixing Properties).

Let (AZ;) be any group shift. The identity el-
ement e of (AZ;) is a constant sequence. Thus, if
˚ 2 ECA(AZ;) is surjective, then ker(˚) :D fa 2 AZ;
˚(a) D eg is a finite, shift-invariant subgroup ofAZ (i. e.
a finite collection of �-periodic sequences).

Proposition 23 Let (AZ;) be a (possibly nonabelian)
group shift, and let ˚ 2 ECA(AZ;) be bipermutative,
with neighborhood f0; 1g. Let � 2Meas(AZ;˚; �). Sup-
pose that:
(IE) � is totally ergodic for � ; (H) h(˚;�) > 0; and
(K) ker(˚) contains no nontrivial �-invariant subgroups.
Then � is the Haar measure onAZ.

Proof See Theorem 5.2 in [113]. �

Example 24 If A D Z/p and (AZ;C) is the product
group, then˚ is a linear CA and condition (c) is automat-
ically satisfied, so Proposition 23 becomes a special case of
Proposition 20.

If ˚ 2 ECA(AZ;), then we have an increasing sequence
of finite, shift-invariant subgroups ker(˚) � ker(˚2) �
ker(˚3) � � � � . If K(˚) :D

S1
nD1 ker(˚

n), then K(˚) is
a countable, shift-invariant subgroup of (AZ;).

Theorem 25 Let (AZ;C) be an abelian group shift, and
let G �AZ be a subgroup shift. Let ˚ 2 ECA(G;C) be
bipermutative, and let � 2Meas(G;˚; �). Suppose:
(I) IkP(�) D I1(�), where P is the lowest common mul-

tiple of the �-periods of all elements in ker(˚), and

k 2 N is any common multiple of all prime factors of
jAj.

(H) h(˚;�) > 0.
Furthermore, suppose that either:
(E1) � is ergodic for the N � Z action (˚; �);
(K1) Every infinite, �-invariant subgroup of K(˚) \G is

dense inG;
or:
(E2) � is �-ergodic;
(K2) Every infinite, (˚; �)-invariant subgroup of K(˚) \

G is dense in G.
Then � is the Haar measure on G.

Proof See Theorems 3.3 and 3.4 of [122], or Théorèmes
V.4 and V.5 on p. 115 of [120]. In the special case when G
is irreducible and has topological entropy log2(p) (where p
is prime), Sobottka has given a different and simpler proof,
by using his theory of ‘quasigroup shifts’ to establish an
isomorphism between˚ and a linear CA onZ/p , and then
invoking Theorem 7. See Theorems 7.1 and 7.2 of [136],
or Teoremas IV.3.1 and IV.3.2 on pp. 100–101 of [134].�

Example 26 (a) Let A :D Z/p , where p is prime. Let
˚ 2 CA(AZ) be linear, and suppose that � 2 Meas(AZ;
˚; �) is (˚; �)-ergodic, h(˚;�) > 0, and Ip(p�1)(�) D
I1(�). Setting k D p and P D p � 1 in Theorem 25, we
conclude that � is the Haar measure onAZ. For ˚ with
neighborhood f0; 1g, this result first appeared as Theo-
rem 13 in [61].

(b) If (AZ;) is abelian, then Proposition 23 is a spe-
cial case of Theorem 25 [hypothesis (IE) of the former im-
plies hypotheses (I) and (E2) of the latter, while (K) im-
plies (K2)]. Note, however, that Proposition 23 also applies
to nonabelian groups.

An algebraic ZD-action is an action of ZD by automor-
phisms on a compact abelian group G. For example, if
G � AZD is an abelian subgroup shift, then � is an
algebraic ZD-action. The invariant measures of algebraic
ZD-actions have been studied in Schmidt (see Sect. 29
in [124]), Silberger (see Sect. 7 in [132]), and Einsied-
ler [28,29].

If ˚ 2 CA(G), then a complete history for ˚ is a se-
quence (gt)t2Z 2 GZ such that ˚(gt) D gtC1 for all t 2
Z. Let ˚Z(G) � GZ � (AZD )Z ŠAZDC1 be the set of
all complete histories for ˚ ; then ˚Z(G) is a subshift of
AZDC1 . If ˚ 2 ECA[G], then ˚Z(G) is itself an abelian
subgroup shift, and the shift action of ZDC1 on ˚Z(G)
is thus an algebraic ZDC1-action. Any (˚; �)-invariant
measure on G extends in the obvious way to a �-invari-
ant measure on ˚Z(G). Thus, any result about the invari-
ant measures (or rigidity) of algebraic ZDC1-actions can
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be translated immediately into a result about the invariant
measures (or rigidity) of endomorphic cellular automata.

Proposition 27 Let G �AZD be an abelian subgroup
shift and let ˚ 2 ECA(G). Suppose � 2Meas(G;˚; �)
is (˚; �)-totally ergodic, and has entropy dimension
d 2 [1 : : : D] (see Subsect. “Entropy Geometry and Expan-
sive Subdynamics”). If the system (G; �;˚; �) admits no
factors whose d-dimensional measurable entropy is zero,
then there is a˚-invariant subgroup shiftG0 � G and some
element x 2 G such that � is the translated Haar measure
on the ‘affine’ subsetG0 C x.

Proof This follows from Corollary 2.3 in [29]. �

If we remove the requirement of ‘no zero-entropy factors’,
and instead require G and ˚ to satisfy certain technical
algebraic conditions, then � must be the Haar measure
on G (see Theorem 1.2 in [29]). These strong hypothe-
ses are probably necessary, because in general, the system
(G; �; ˚) admits uncountably many distinct nontrivial in-
variant measures, even if (G; �; ˚) is irreducible, meaning
that G contains no proper, infinite, ˚-invariant subgroup
shifts:

Proposition 28 Let G �AZD be an abelian subgroup
shift, let ˚ 2 ECA(G), and suppose (G; �; ˚) is irreducible.
For any s 2 [0; 1), there exists a (˚; �)-ergodic mea-
sure � 2Meas(G;˚; �) such that h(�;˚ n ı � z) D s �
htop(G; ˚ n ı � z) for every n 2 N and z 2 ZD.

Proof This follows from Corollary 1.4 in [28]. �

Let � 2Meas(AM; �) and let H �M be a finite subset.
We say that� isH-mixing if, for anyH-indexed collection
fUhgh2H of measurable subsets ofAM,

lim
n!1

�

"
\

h2H

� nh(Uh)

#

D
Y

h2H

� [Uh] :

For example, if jHj D H, then any H-multiply �-mixing
measure (see Subsect. “Mixing and Ergodicity”) isH-mix-
ing.

Proposition 29 Let G �AZD be an abelian sub-
group shift and let ˚ 2 ECA(G) have neighborhood H
(with jHj � 2). Suppose (G; �; ˚) is irreducible, and let
� 2Meas(AZD ;˚; �). Then� isH-mixing if and only if�
is the Haar measure of G.

Proof This follows from [124], Corollary 29.5, p. 289
(note that Schmidt uses ‘almost minimal’ to mean ‘irre-
ducible’). A significant generalization of Proposition 29
appears in [115] �

The Furstenberg Conjecture

Let T 1 D R/Z be the circle group, which we identify with
the interval [0; 1). Define the functions �2;�3 : T 1�!T 1

by �2(t) D 2t (mod 1) and �3(t) D 3t (mod 1). Clearly,
these maps commute, and preserve the Lebesgue mea-
sure on T 1. Furstenberg [44] speculated that the only
nonatomic �2- and �3-invariant measure on T 1 was the
Lebesgue measure. Rudolph [119] showed that, if � is
(�2;�3)-invariant measure and not Lebesgue, then the
systems (T 1; �;�2) and (T 1; �;�3) have zero entropy;
this was later generalized in [60,69]. It is not known
whether any nonatomic measures exist on T 1 which sat-
isfy Rudolph’s conditions; this is considered an outstand-
ing problem in abstract ergodic theory.

To see the connection between Furstenberg’s Conjec-
ture and cellular automata, let A D f0; 1; 2; 3; 4; 5g, and
define the surjection � : AN�!T 1 by mapping each
a 2AN to the element of [0; 1) having a as its base-6 ex-
pansion. That is:

� (a0; a1; a2; : : :) :D
1X

nD0

an

6nC1 :

Themap� is injective everywhere except on the countable
set of sequences ending in [000 : : :] or [555 : : :] (on this
set, � is 2-to-1). Furthermore, � defines a semiconjugacy
from �2 and �3 into two CA onAN . LetH :D f0; 1g, and
define local maps �2; �3 : AH�!A as follows:

�2(a0; a1) D
h
2a0

i

6
C
l a1
3

m
and

�3(a0; a1) D
h
3a0

i

6
C
l a1
2

m
;

where, [a]6 is the least residue of a, mod 6. If
�p 2 CA(AN ) has local map �p (for p D 2; 3), then it is
easy to check that �p corresponds to multiplication by p
in base-6 notation. In other words, � ı �p D �p ı � for
p D 2; 3.

If  is the Lebesgue measure on T 1, then � () D �,
where � is the uniform Bernoulli measure onAN . Thus, �
is�2- and�3-invariant, and Furstenberg’s Conjecture as-
serts that � is the only nonatomicmeasure onAN which is
both�2- and�3-invariant. The shift map � : AN�!AN

corresponds to multiplication by 6 in base-6 notation.
Hence,�2 ı�3 D � . From this it follows that ameasure�
is (�2; �3)-invariant if and only if � is (�2; �)-invari-
ant if and only if � is (�;�3)-invariant. Thus, Fursten-
berg’s Conjecture equivalently asserts that � is the only
stationary, �3-invariant nonatomic measure onAN , and
Rudolph’s result asserts that � is the only such nonatomic
measure with nonzero entropy; this is analogous to the
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‘measure rigidity’ results of Subsect. “Measure Rigidity in
Algebraic CA”. The existence of zero-entropy, (�;�3)-in-
variant, nonatomic measures remains an open question.

Remark 30 (a) There is nothing special about 2 and 3; the
same results hold for any pair of prime numbers.

(b) Lyons [85] and Rudolph and Johnson [68] have
also established that a wide variety of �2-invariant prob-
ability measures on T 1 will weak* converge, under the it-
eration of �3, to the Lebesgue measure (and vice versa). In
the terminology of Subsect. “Asymptotic Randomization
by Linear Cellular Automata”, these results immediately
translate into equivalent statements about the ‘asymptotic
randomization’ of initial probability measures onAN un-
der the iteration of�2 or�3.

Domains, Defects, and Particles

Suppose ˚ 2 CA(AZ), and there is a collection of ˚-in-
variant subshifts P1;P2; : : : ;PN �AZ (called phases).
Any sequence a can be expressed a finite or infinite con-
catenation

a D [: : : a�2 d�2 a�1 d�1 a0 d0 a1 d1 a2 � � � ] ;

where each domain ak is a finite word (or half-infinite
sequence) which is admissible to phase Pn for some
n 2 [1 : : : N], and where each defect dk is a (possibly
empty) finite word (note that this decomposition may not
be unique). Thus, ˚(a) D a0, where

a0 D [: : : a0�2 d
0
�2 a

0
�1 d

0
�1 a

0
0 d
0
0 a
0
1 d
0
1 a
0
2 � � � ] ;

and, for every k 2 Z, a0k belongs to the same phase as ak .
We say that˚ has stable phases if, for any such a and a0 in
AZ, it is the case that, for all k 2 Z, jd0k j � jdk j. In other
words, the defects do not grow over time. However, they
may propagate sideways; for example,d0k may be slightly to
the right of dk , if the domain a0k is larger than ak , while the
domain a0kC1 is slightly smaller than akC1. If ak and akC1
belong to different phases, then the defect dk is sometimes
called a domain boundary (or ‘wall’, or ‘edge particle’). If
ak and akC1 belong to the same phase, then the defect dk
is sometimes called a dislocation (or ‘kink’).

Often Pn D fpg where p D [: : : ppp : : :] is a constant
sequence, or each Pn consists of the �-orbit of a single
periodic sequence. More generally, the phases P1; : : : ;PN
may be subshifts of finite type. In this case, most sequences
in AZ can be fairly easily and unambiguously decom-
posed into domains separated by defects. However, if the
phases are more complex (e. g. sofic shifts), then the ex-
act definition of a ‘defect’ is actually fairly complicated –
see [114] for a rigorous discussion.

Example 31 Let A D f0; 1g and let H D f�1; 0; 1g.
Elementary cellular automaton (ECA) #184 is the CA
˚ : AZ�!AZ with local rule � : AH�!A given as fol-
lows: �(a�1; a0; a1) D 1 if a0 D a1 D 1, or if a�1 D 1
and a0 D 0. On the other hand, �(a�1; a0; a1) D 0 if
a�1 D a0 D 0, or if a1 D 0 and a0 D 1. Heuristically, each
‘1’ represents a ‘car’ moving cautiously to the right on
a single-lane road. During each iteration, each car will
advance to the site in front of it, unless that site is al-
ready occupied, in which case the car will remain station-
ary. ECA#184 exhibits one stable phase P, given by the
2-periodic sequence [: : : 0101:0101 : : :] and its translate
[: : : 1010:1010 : : :] (here the decimal point indicates the
zeroth coordinate), and ˚ acts on P like the shift. The
phase P admits two dislocations of width 2. The dislo-
cation d0 D [00] moves uniformly to the right, while the
dislocation d1 D [11] moves uniformly to the left. In the
traffic interpretation, P represents freely flowing traffic,
d0 represents a stretch of empty road, and d1 represents
a traffic jam.

Example 32 Let A :D Z/N , and let H :D [�1 : : : 1].
The one-dimensional, N-color cyclic cellular automaton
(CCAN ) ˚ : AZ�!AZ has local rule � : AH�!A de-
fined:

�(a) :D

8
<̂

:̂

a0 C 1 if there is some h 2 H

with ah D a0 C 1 ;
a0 otherwise :

(here, addition is mod N). The CCA has phases
P0;P1; : : : ;PN�1, where Pa D f[: : : aaa : : :]g for each
a 2A. A domain boundary between Pa and Pa�1 moves
with constant velocity towards the Pa�1 side. All other do-
main boundaries are stationary.

In a particle cellular automaton (PCA), A D f;g t P,
whereP is a set of ‘particle types’ and ; represents a vacant
site. Each particle p 2 P is assigned some (constant) veloc-
ity vector v(p) 2 (�H) (where H is the neighborhood of
the automaton). Particles propagate with constant velocity
through M until two particles try to simultaneously en-
ter the same site in the lattice, at which point the outcome
is determined by a collision rule: a stylized ‘chemical reac-
tion equation’. For example, an equation “p1 C p2 Ý p3”
means that, if particle types p1 and p2 collide, they coa-
lesce to produce a particle of type p3. On the other hand,
“p1 C p2 Ý ;” means that the two particles annihilate on
contact. Formally, given a set of velocities and collision
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rules, the local rule � : AH�!A is defined

�(a) :D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

p if there is a unique h 2 H and p 2 P with
ah D p and v(p) D �h :

q if fp 2 P ; a�v(p) D pg D fp1; p2; : : : ; png;
and p1 C � � � C pn Ý q :

Example 33 The one-dimensional ballistic annihilation
model (BAM) contains two particle types:P D f˙1g, with
the following rules:

v(1) D 1 ; v(�1) D �1 ; and � 1C 1 Ý ; :

(This CA is sometimes also called Just Gliders.) Thus,
az D 1 if the cell z contains a particle moving to the
right with velocity 1, whereas az D �1 if the cell z con-
tains a particle moving left with velocity -1, and az D ;
if cell z is vacant. Particles move with constant veloc-
ity until they collide with oncoming particles, at which
point both particles are annihilated. If B :D f˙1;;g and
H D [�1 : : : 1] � Z, then we can represent the BAM us-
ing � 2 CA(BZ) with local rule  : BH�!B defined:

 (b�1; b0; b1) :D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

�1 if b1 D �1 and
b�1; b0 2 f�1;;g ;

1 if b�1 D 1 and b0; b1 2 f1;;g ;
; otherwise :

Particle CA can be seen as ‘toy models’ of particle physics
or microscale chemistry. More interestingly, however,
one-dimensional PCA often arise as factors of coalescent-
domain CA, with the ‘particles’ tracking the motion of the
defects.

Example 34 (a) Let A :D f0; 1g and let ˚ 2 CA(AZ) be
ECA#184. Let B :D f˙1; 0g, and let � 2 CA(BZ) be the
BAM. LetG :D f0; 1g, and let � : AZ�!BZ be the block
map with local rule � : AG�!B defined

� (a0; a1) :D 1�a0�a1 D

8
<̂

:̂

1 if [a0; a1] D [0; 0] D d0 ;
�1 if [a0; a1] D [1; 1] D d1 ;
0 otherwise :

Then � ı ˚ D � ı � ; in other words, the BAM is a factor
of ECA#184, and tracks the motion of the dislocations.
(b) Again, let � 2 CA(BZ) be the BAM. Let A D Z/3,
and let ˚ 2 CA(AZ) be the 3-color CCA. LetG :D f0; 1g,
and let � : AZ�!BZ be the block map with local rule
� : AG�!B defined

� (a0; a1) :D (a0 � a1) mod 3 :

Then � ı ˚ D � ı � ; in other words, the BAM is a factor
of CCA3, and tracks the motion of the domain boundaries.

Thus, it is often possible to translate questions about co-
alescent domain CA into questions about particle CA,
which are generally easier to study. For example, the in-
variant measures of the BAM have been completely char-
acterized.

Proposition 35 Let B D f˙1; 0g, and let � : BZ�!BZ

be the BAM.
(a) The sets R :D f0; 1gZ and L :D f0;�1gZ are � -in-

variant, and � acts as a right-shift on R and as a left-
shift on L.

(b) Let LC :D f0;�1gN and R� :D f0; 1g�N , and let

X :D
˚
a 2AZ ; 9 z 2 Z such that a(�1:::z] 2 R� and

a[z:::1) 2 LC
�
:

Then X is � -invariant. For any x 2 X, � acts as
a right shift on a(�1:::z), and as a left-shift on x(z:::1).
(The boundary point z executes some kind of random
walk.)

(c) Any � -invariant measure on AZ can be written in
a unique way as a convex combination of four mea-
sures ı0, �, , and �, where: ı0 is the point mass on the
‘vacuum’ configuration [: : : 0 0 0 : : :], � is any shift-in-
variant measure on R,  is any shift-invariant measure
on L, and � is a measure on X.
Furthermore, there exist shift-invariant measures ��
and �C on R� and LC, respectively, such that,
for �-almost all x 2 X, x(�1:::z] is ��-distributed and
x[z:::1) is �C-distributed.

Proof (a) and (b) are obvious; (c) is Theorem 1 in [8]. �

Remark 36 (a) Proposition 35(c) can be immediately
translated into a complete characterization of the invari-
ant measures of ECA#184, via the factor map � in Exam-
ple 34(a); see [8], Theorem 3. Likewise, using the factor
map in Example 34(b) we get a complete characterization
of the invariant measures for CCA3.

(b) Proposition 48 and Corollaries 49 and 50 describe
the limit measures of the BAM, CCA3, and ECA#184.
Also, Blank [10] has characterized invariant measures for
a broad class of multilane, multi-speed traffic models (in-
cluding ECA#184); see Remark 51(b).

(c) Kůrka [78] has defined, for any ˚ 2 CA(AZ),
a construction similar to the set X in Proposition 35(b).
For any n 2 N and z 2 Z, let Sz;n be the set of fixed points
of ˚ n ı � z ; then Sz;n is a subshift of finite type, which
Kůrka calls a signal subshift with velocity v D z/n. (For
example, if ˚ is the BAM, then R D S1;1 and L D S�1;1.)
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Now, suppose that z1/n1 > z2/n2 > � � � > zJ /nJ . The
join of the signal subshifts Sz1;n1 ; Sz2;n2 ; : : : ; SzJ ;nJ is
the set S of all infinite sequences [a1 a2 : : : aJ], where
for all j 2 [1::J], a j is a (possibly empty) finite word
or (half-)infinite sequence admissible to the subshift
Sz j;n j . (For example, if S is the join of S1;1 D R and
S�1;1 D L from Proposition 35(a), then S D L [ X [ R.)
It follows that S � ˚(S) � ˚2(S) � � � �. If we de-
fine ˚1(S) :D

S1
tD0˚

t(S), then ˚1(S) � ˚1(AZ),
where ˚1(AZ) :D

T1
tD0˚

t(AZ) is the omega limit set
of ˚ (see Proposition 5 in [78]). The support of any˚-in-
variant measure must be contained in ˚1(AZ), so in-
variant measures may be closely related to the joins of sig-
nal subshifts. See� Topological Dynamics of Cellular Au-
tomata for more information.

In the case of the BAM, it is not hard to check that
˚1(S) D S D ˚1(AZ); this suggests an alternate proof
of Proposition 35(c). It would be interesting to know
whether a conclusion analogous to Proposition 35(c) holds
for other˚ 2 CA(AZ) such that˚1(AZ) is a join of sig-
nal subshifts.

Limit Measures and Other Asymptotics

Asymptotic Randomization
by Linear Cellular Automata

The results of Subsect. “Measure Rigidity in Algebraic CA”
suggest that the uniform Bernoulli measure � is the ‘natu-
ral’ measure for algebraic CA, because � is the unique in-
variant measure satisfying any one of several collections
of reasonable criteria. In this section, we will see that � is
‘natural’ in quite another way: it is the unique limit mea-
sure for linear CA from a large set of initial conditions.

If f�ng
1
nD1 is a sequence of measures on AM,

then this sequence weak* converges to the measure �1
(“wk  lim

n!1
�n D �1”) if, for all cylinder sets B �AM,

lim
n!1

�n[B] D �1[B]. Equivalently, for all continuous

functions f : AM�!C, we have

lim
n!1

Z

AM
f d�n D

Z

AM
f d�1 :

The Cesàro average (or Cesàro limit) of f�ng
1
nD1 is

wk  lim
N!1

1
N

XN

nD1
�n , if this limit exists.

Let � 2Meas(AM) and let ˚ 2 CA(AM). For any
t 2 N , the measure ˚ t� is defined by ˚ t�(B) D

�(��t(B)), for any measurable subset B � AM. We say
that ˚ asymptotically randomizes � if the Cesàro average
of the sequence f�n�g1nD1 is �. Equivalently, there is a sub-

set J � N of density 1, such that

wk  lim
j!1
j2J

˚ j� D � :

The uniformmeasure � is the measure of maximal entropy
onAM. Thus, asymptotic randomization is kind of ‘Sec-
ond Law of Thermodynamics’ for CA.

Let (A;C) be a finite abelian group, and let˚ be a lin-
ear cellular automaton (LCA) on AM. Recall that ˚ has
scalar coefficients if there is some finite H �M, and in-
teger coefficients fchgh2H so that ˚ has a local rule of the
form

�(aH) :D
X

h2H

chah ; (3)

An LCA ˚ is proper if ˚ has scalar coefficients as in
Eq. (3), and if, furthermore, for any prime divisor p of
jAj, there are at least two h;h0 2 H such that ch 6� 0 6�
ch0 mod p. For example, ifA D Z/n for some n 2 N , then
every LCA onAM has scalar coefficients; in this case,˚ is
proper if, for every prime p dividing n, at least two of these
coefficients are coprime to p. In particular, ifA D Z/p for
some prime p, then ˚ is proper as long as jHj � 2.

Let PLCA(AM) be the set of proper linear CA on
AM. If � 2Meas(AM), recall that � has full support if
�[B] > 0 for every cylinder set B �AM.

Theorem 37 Let (A;C) be a finite abelian group,
let M :D ZD �NE for some D; E � 0, and let ˚ 2

PLCA(AM). Let � be any Bernoulli measure or Markov
random field on AM having full support. Then ˚ asymp-
totically randomizes �.

History Theorem 37 was first proved for simple one-di-
mensional LCA randomizing Bernoulli measures onAZ,
where A was a cyclic group. In the case A D Z/2, The-
orem 37 was independently proved for the nearest-neigh-
bor XOR CA (having local rule �(a�1; a0; a1) D a�1 C
a1 mod 2) by Miyamoto [100] and Lind [82]. This result
was then generalized toA D Z/p for any prime p by Cai
and Luo [16]. Next, Maass and Martínez [87] extended
theMiyamoto/Lind result to the binary Ledrappier CA (lo-
cal rule �(a0; a1) D a0 C a1 mod 2). Soon after, Ferrari
et al. [36] considered the case when A was an abelian
group of order pk (p prime), and proved Theorem 37 for
any Ledrappier CA (local rule �(a0; a1) D c0a0 C c1a1,
where c0; c1 6� 0 mod p) acting on any measure on AZ

having full support and ‘rapidly decaying correlations’ (see
Part II(a) below). For example, this includes any Markov
measure on AZ with full support. Next, Pivato and Yas-
sawi [116] generalized Theorem 37 to any PLCA act-
ing on any fully supported N-step Markov chain on AZ
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or any nontrivial Bernoulli measure on AZD�NE , where
A D Z/pk (p prime). Finally, Pivato and Yassawi [117]
proved Theorem 37 in full generality, as stated above.

The proofs of Theorem 37 and its variations all involve
two parts:
Part I. A careful analysis of the local rule of ˚ t (for all

t 2 N), showing that the neighborhood of ˚ t grows
large as t!1 (and in some cases, contains large
‘gaps’).

Part II. A demonstration that the measure � exhibits
‘rapidly decaying correlations’ between widely sepa-
rated elements of M; hence, when these elements are
combined using ˚ t , it is as if we are summing inde-
pendent random variables.

Part I Any linear CA with scalar coefficients can be writ-
ten as a ‘Laurent polynomial of shifts’. That is, if ˚ has
local rule (3), then for any a 2AM,

˚(a) :D
X

h2H

ch�h(a) (where we add configurations

componentwise) :

We indicate this by writing “˚ D F(�)”, where F 2

Z[x˙1
1 ; x˙1

2 ; : : : ; x˙1
D ] is the D-variable Laurent polyno-

mial defined:

F(x1; : : : ; xD) :D
X

(h1;:::;hD)2H

chxh11 xh22 : : : xhDD :

For example, if ˚ is the nearest-neighbor XOR CA, then
˚ D ��1 C �1 D F(�), where F(x) D x�1 C x. If ˚ is
a Ledrappier CA, then ˚ D c0IdC c1�1 D F(�), where
F(x) D c0 C c1x.

It is easy to verify that, if F and G are two such poly-
nomials, and ˚ D F(�) while � D G(�), then ˚ ı � D
(F � G)(�), where F � G is the product of F and G in the
polynomial ring Z[x˙1

1 ; x˙1
2 ; : : : ; x˙1

D ]. In particular, this
means that ˚ t D Ft(�) for all t 2 N . Thus, iterating an
LCA is equivalent to computing the powers of a polyno-
mial.

If A D Z/p , then we can compute the coefficients of
Ft modulo p. If p is prime, then this can be done us-
ing a result of Lucas [84], which provides a formula for
the binomial coefficient

�a
b

in terms of the base-p ex-

pansions of a and b. For example, if p D 2, then Lu-
cas’ theorem says that Pascal’s triangle, modulo 2, looks
like a ‘discrete Sierpinski triangle’, made out of 0’s and
1’s. (This is why fragments of the Sierpinski triangle ap-
pear frequently in the spacetime diagrams of linear CA
onA D Z/2, a phenomenon which has inspired much lit-
erature on ‘fractals and automatic sequences in cellular

automata’; see [2,4,5,6,7,52,53,54,55,56,57,94,138,139,140,
145,146,147,148,149].) Thus, Lucas’ Theorem, along with
some combinatorial lemmas about the structure of base-p
expansions, provides the machinery for Part I.

Part II There are two approaches to analyzing probabil-
ity measures on AM; one using renewal theory, and the
other using harmonic analysis.

II(a) Renewal theory This approach was developed by
Maass,Martínez and their collaborators. Loosely speaking,
if � 2Meas(AZ; �) has sufficiently large support and suf-
ficiently rapid decay of correlations (e. g. a Markov chain),
and a 2AZ is a �-random sequence, then we can treat a
as if there is a sparse, randomly distributed set of ‘renewal
times’ when the normal stochastic evolution of a is inter-
rupted by independent, random ‘errors’. By judicious use
of Part I described above, one can use this ‘renewal pro-
cess’ to make it seem as though ˚ t is summing indepen-
dent random variables.

For example, if (A;C) be an abelian group of order pk
where p is prime, and � 2Meas(AZ; �) has complete con-
nections (see Example 22(a)) and summable decay (which
means that a certain sequence of coefficients (measuring
long-range correlation) decays fast enough that its sum is
finite), and ˚ 2 CA(AZ) is a Ledrappier CA, then Ferrari
et al. (see Theorem 1.3 in [36]) showed that ˚ asymp-
totically randomizes �. (For example, this applies to any
N-step Markov chain with full support on on AZ.) Fur-
thermore, if A D Z/p � Z/p , and ˚ 2 CA(AZ) has lin-

ear local rule �

h

x0
y0

i
;
h
x1
y1

i�
D (y0; x0 C y1), thenMaass

andMartínez [88] showed that˚ randomizes anyMarkov
measure with full support on AZ. Maass and Martínez
again handled Part II using renewal theory. However, in
this case, Part I involves some delicate analysis of the
(noncommutative) algebra of the matrix-valued coeffi-
cients; unfortunately, their argument does not generalize
to other LCA with noncommuting, matrix-valued coeffi-
cients. (However, Proposition 8 of [117] suggests a general
strategy for dealing with such LCA).

II(b) Harmonic analysis This approach to Part II was
implicit in the early work of Lind [82] and Cai and
Luo [16], but was developed in full generality by Pivato
and Yassawi [116,117,118]. We regard AM as a direct
product of copies of the group (A;C), and endow it with
the product group structure; then (AM;C) a compact
abelian topological group. A character on (AM;C) is
a continuous group homomorphism� : AM�!T , where
T :D fc 2 C; jcj D 1g is the unit circle group. If � is
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a measure on AM, then the Fourier coefficients of � are
defined: �̂[�] D

R
AM �d�, for every character �.

If� : AM�!T is any character, then there is a unique
finite subsetK �M (called the support of�) and a unique
collection of nontrivial characters �k : A�!T for all
k 2 K, such that,

�(a) D
Y

k2K

�k(ak) ; 8 a 2AM : (4)

We define rank[�] :D jKj. The measure � is called har-
monicallymixing if, for all � > 0, there is some R such that
for all characters �, (rank[�] � R) H) (j�̂[�]j < �).

The set Hm(AM) of harmonically mixing mea-
sures on AM is quite inclusive. For example, if � is
any (N-step) Markov chain with full support on AZ,
then � 2 Hm(AZ) (see Propositions 8 and 10 in [116]),
and if � 2Meas(AZ) is absolutely continuous with re-
spect to this �, then � 2 Hm(AZ) also (see Corollary 9
in [116]). If A D Z/p (p prime) then any nontrivial
Bernoulli measure on AM is harmonically mixing (see
Proposition 6 in [116]). Furthermore, if � 2Meas(AZ; �)
has complete connections and summable decay, then
� 2 Hm(AZ) (see Theorem 23 in [61]). If M :D
Meas(AM;C) is the set of all complex-valuedmeasures on
AM, then M is Banach algebra (i. e. it is a vector space
under the obvious definition of addition and scalar multi-
plication for measures, and a Banach space under the to-
tal variation norm, and finally, sinceAM is a topological
group, M is a ring under convolution). Then Hm(AM) is
an ideal inM, is closed under the total variation norm, and
is dense in the weak* topology on M (see Propositions 4
and 7 in [116]).

Finally, if� is anyMarkov random field onAM which
is locally free (which roughly means that the boundary
of any finite region does not totally determine the inte-
rior of that region), then � 2 Hm(AM) (see Theorem 1.3
in [118]). In particular, this implies:

Proposition 38 If (A;C) is any finite group, and
� 2Meas(AM) is any Markov random field with full sup-
port, then � is harmonically mixing.

Proof This follows from Theorem 1.3 in [118]. It is also
a special case of Theorem 15 in [117]. �

If � is a character, and ˚ is a LCA, then � ı ˚ t is also
a character, for any t 2 N (because it is a composition of
two continuous group homomorphisms). We say ˚ is dif-
fusive if there is a subset J � N of density 1, such that, for
every character � ofAM,

lim
J3 j!1

rank[� ı ˚ j] D 1 :

Proposition 39 Let (A;C) be any finite abelian group
and let M be any monoid. If � is harmonically mixing
and ˚ is diffusive, then ˚ asymptotically randomizes�.

Proof See Theorem 12 in [117]. �

Proposition 40 Let (A;C) be any abelian group and
letM :D ZD �NE for some D; E � 0. If˚ 2 PLCA(AM),
then ˚ is diffusive.

Proof The proof uses Lucas’ theorem, as described in
Part I above. See Theorem 15 in [116] for the case A D
Z/p when p prime. See Theorem 6 in [117] for the case
when A is any cyclic group. That proof easily extends
to any finite abelian group A: write A as a product of
cyclic groups and decompose ˚ into separate automata
over these cyclic factors. �

Proof of Theorem 37 Combine Propositions 38, 39, and
40.

�

Remark (a) Proposition 40 can be generalized: we do not
need the coefficients of ˚ to be integers, but merely to be
a collection of automorphisms ofA which commute with
one another (so that Lucas’ theorem from Part I is still ap-
plicable). See Theorem 9 in [117].

(b) For simplicity, we stated Theorem 37 for mea-
sures with full support; however, Proposition 39 actually
applies to many Markov random fields without full sup-
port, because harmonic mixing only requires ‘local free-
dom’ (see Theorem 1.3 in [118]). For example, the support
of a Markov chain onAZ is Markov subshift. IfA D Z/p
(p prime), then Proposition 39 yields asymptotic random-
ization of the Markov chain as long as the transition di-
graph of the underlying Markov subshift admits at least
two distinct paths of length 2 between any pair of vertices
in A. More generally, if M D ZD , then the support of
any Markov random field on AZD is an SFT, which we
can regard as the set of all tilings of RD by a certain col-
lection of Wang tiles. IfA D Z/p (p prime), then Propo-
sition 39 yields asymptotic randomization of the Markov
random field as long as the underlyingWang tiling is flexi-
ble enough that any hole can always be filled in at least two
ways; see Sect. 1 in [118].

Remark 41 (Generalizations and Extensions) (a) Pivato
and Yassawi (see Thm 3.1 in [118]) proved a variation
of Theorem 60 where diffusion (of ˚) is replaced with
a slightly stronger condition called dispersion, so that har-
monic mixing (of�) can be replaced with a slightly weaker
condition called dispursion mixing (DM). It is unknown
whether all proper linear CA are dispersive, but a very
large class are (including, for example, ˚ D IdC �).
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Any uniformly mixing measure with positive entropy is
DM (see Theorem 5.2 in [118]); this includes, for exam-
ple, any mixing quasimarkov measure (i. e. the image of
a Markov measure under a block map; these are the natu-
ral measures supported on sofic shifts). Quasimarkovmea-
sures are not, in general, harmonically mixing (see Sect. 2
in [118]), but this result shows they are still asymptotically
randomized by most linear CA.

(b) Suppose G �AZD is a �-transitive subgroup shift
(see Subsect. “Measure Rigidity in Algebraic CA” for def-
inition), and let ˚ 2 PLCA(G). If G satisfies an algebraic
condition called the follower lifting property (FLP) and� is
any Markov random field with supp(�) D G, then Maass,
Martínez, Pivato, and Yassawi [89] have shown that ˚
asymptotically randomizes � to a maxentropy measure
on G. Furthermore, if D D 1, then this maxentropy mea-
sure is the Haar measure on G. In particular, if A is an
abelian group of prime-power order, then any transitive
Markov subgroup G �AZ satisfies the FLP, so this re-
sult holds for any multistep Markov measure on G. See
also [90] for the special case when ˚ 2 CA(AZ) has lo-
cal rule �(x0; x1) D x0 C x1. In the special case when ˚
has local rule �(x0; x1) D c0x0 C c1x1 C a, the result has
been extended tomeasureswith complete connections and
summable decay; see Teorema III.2.1, p. 71 in [134] or
see Theorem 1 in [91].

(c) All the aforementioned results concern asymp-
totic randomization of initial measures with nonzero en-
tropy. Is nonzero entropy either necessary or sufficient
for asymptotic randomization? First let XN �AZ be the
set of N-periodic points (see Subsect. “Periodic Invariant
Measures”) and suppose supp(�) � XN . Then the Cesàro
limit of f˚ t(�)gt2N will also be a measure supported on
XN , so�1 cannot be the uniformmeasure onAZ. Nor, in
general, will �1 be the uniform measure on XN ; this fol-
lows from Jen’s (1988) exact characterization of the limit
cycles of linear CA acting on XN .

What if � is a quasiperiodic measure, such as the
unique �-invariant measure on a Sturmian shift? There
exist quasiperiodic measures on (Z/2)Z which are not
asymptotically randomized by the Ledrappier CA (see
Sect. 15 in [112]). But it is unknown whether this extends
to all quasiperiodic measures or all linear CA.

There is also a measure� onAZ which has zero �-en-
tropy, yet is still asymptotically randomized by ˚ (see
Sect. 8 in [118]). Loosely speaking,� is a Toeplitz measure
with a very low density of ‘bit errors’. Thus, � is ‘almost’
deterministic (so it has zero entropy), but by sufficiently
increasing the density of ‘bit errors’, we can introduce just
enough randomness to allow asymptotic randomization to
occur.

(d) Suppose (G; �) is a nonabelian group and ˚ :
GZ�!GZ has multiplicative local rule �(g) :D gn1h1 g

n2
h2

� � � gnJ
hJ
, for some fh1; : : : ;hJg � Z (possibly not distinct)

and n1; : : : ; nJ 2 N. If G is nilpotent, then G can be de-
composed into a tower of abelian group extensions; this
induces a structural decomposition of ˚ into a tower of
skew products of ‘relative’ linear CA. This strategy was
first suggested by Moore [102], and was developed by Pi-
vato (see Theorem 21 in [111]), who proved a version of
Theorem 37 in this setting.

(e) Suppose (Q; ?) is a quasigroup – that is, F
is a binary operation such that for any q; r; s 2 Q,
(q ? r D q ? s) () (r D s) () (r ? q D s ? q). Any
finite associative quasigroup has an identity, and any asso-
ciative quasigroup with an identity is a group. However
there are also many nonassociative finite quasigroups. If
we define a ‘multiplicative’ CA ˚ : QZ�!QZ with local
rule � : Qf0;1g�!Q given by �(q0; q1) D q0 ? q1, then it
is easy to see that˚ is bipermutative if and only if (Q; ?) is
a quasigroup. Thus, quasigroups seem to provide the nat-
ural algebraic framework for studying bipermutative CA;
this was first proposed by Moore [101], and later explored
by Host, Maass, and Martínez (see Sect. 3 in [61]), Pi-
vato (see Sect. 2 in [113]), and Sobottka [134,135,136].

Note that QZ is a quasigroup under component-
wise F-multiplication. A quasigroup shift is a subshift
X � QZ which is also a subquasigroup; it follows that
˚(X) � X. If X and ˚ satisfy certain strong algebraic
conditions, and � 2Meas(X; �) has complete connec-
tions and summable decay, then the sequence f˚ t�g1tD1
Cesàro-converges to a maxentropy measure �1 on X
(thus, ifX is irreducible, then�1 is the Parry measure; see
Subsect. “Invariance of Maxentropy Measures”). See The-
orem 6.3(i) in [136], or Teorema IV.5.3, p. 107 in [134].

Hybrid Modes of Self-Organization

Most cellular automata do not asymptotically random-
ize; instead they seem to weak* converge to limit mea-
sures concentrated on small (i. e. low-entropy) subsets of
the statespace AM – a phenomenon which can be inter-
preted as a form of ‘self-organization’. Exact limit mea-
sures have been computed for a few CA. For example,
letA D f0; 1; 2g and let˚ 2 CA(AZD ) be the Greenberg–
Hastingsmodel (a simple model of an excitable medium).
Durrett and Steif [26] showed that, if D � 2 and � is any
Bernoulli measure on AZD , then �1 :D wk  lim

t!1
˚ t�

exists; �1-almost all points are 3-periodic for ˚ , and al-
though �1 is not a Bernoulli measure, the system (AZD

;

�1; �) is measurably isomorphic to a Bernoulli system.



Ergodic Theory of Cellular Automata E 2997

In other cases, the limit measure cannot be exactly
computed, but can still be estimated. For example, let
A D f˙1g, � 2 (0; 1), and R > 0, and let˚ 2 CA(AZ) be
the (R; �)-threshold voter CA (where each cell computes
the fraction of its radius-R neighbors which disagree with
its current sign, and negates its sign if this fraction is at
least �). Durret and Steif [27] and Fisch and Gravner [43]
have described the long-term behavior of ˚ in the limit
as R!1. If � < 1/2, then every initial condition falls into
a two-periodic orbit (and if � < 1/4, then every cell simply
alternates its sign). Let � be the uniform Bernoulli measure
onAZ; if 1/2 < � , then for any finite subset B � Z, if R is
large enough, then ‘most’ initial conditions (relative to �)
converge to orbits that are fixed inside B. Indeed, there is
a critical value �c � 0:6469076 such that, if �c < � , and R
is large enough, then ‘most’ initial conditions (for �) are
already fixed inside B; see also [137] for an analysis of be-
havior at the critical value.

In still other cases, the limit measure is is known to
exist, but is still mysterious; this is true for the Cesàro
limit measures of Coven CA, for example see [87], The-
orem 1. However, for most CA, it is difficult to even show
that limit measures exist. Except for the linear CA of Sub-
sect. “Asymptotic Randomization by Linear Cellular Au-
tomata”, there is no large class of CA whose limitmeasures
have been exactly characterized. Often, it is much easier to
study the dynamical asymptotics of CA at a purely topo-
logical level.

If ˚ 2 CA(AM), then AM � ˚(AM) � ˚2(AM)
� � � � . The limit set of ˚ is the nonempty sub-
shift ˚1(AM) :D

T1
tD1˚

t(AM). For any a 2AM, the
omega-limit set of a is the set !(a; ˚) of all cluster points
of the ˚-orbit f˚ t(a)g1tD1. A closed subset X �AM is
a (Conley) attractor if there exists a clopen subset U � X
such that˚(U) � U andX D

T1
tD1˚

t(U). It follows that
!(˚;u) � X for all u 2 U. For example, ˚1(AM) is an
attractor (let U :DAM). The topological attractors of CA
were analyzed by Hurley [63,65,66], who discovered severe
constraints on the possible attractor structures a CA could
exhibit; see Sect. 9 of � Topological Dynamics of Cellular
Automata and� Cellular Automata, Classification of.

Within pure topological dynamics, attractors and
(omega) limit sets are the natural formalizations of the
heuristic notion of ‘self-organization’. The corresponding
formalization in pure ergodic theory is the weak* limit
measure. However, both weak* limit measures and topo-
logical attractors fail to adequately describe the sort of
self-organization exhibited by many CA. Thus, several
‘hybrid’ notions self-organization have been developed,
which combine topological and measurable criteria. These
hybrid notions are more flexible and inclusive than purely

topological notions. However, they do not require the ex-
plicit computation (or even the existence) of weak* limit
measures, so in practice they aremuch easier to verify than
purely ergodic notions.

Milnor–Hurley �-attractors If X �AM is a closed
subset, then for any a 2AM, we define d(a;X) :D
infx2X d(a; x). If ˚ 2 CA(AM), then the basin (or realm)
of X is the set

Basin(X) :D
n
a 2AM ; lim

t!1
d
�
˚ t(a);X


D 0

o

D
n
a 2AM ; !(a; ˚) � X

o
:

Suppose ˚(X) � X. If � 2Meas(AM), then X is a �-at-
tractor if �[Basin(X)] > 0; we call X a lean �-attractor
if in addition, �[Basin(X)] > �[Basin(Y)] for any proper
closed subset Y ¨ X. Finally, a �-attractor X is minimal
if�[Basin(Y)] D 0 for any proper closed subsetY ¨ X. For
example, if X is a �-attractor, and (X; ˚) is minimal as
a dynamical system, then X is a minimal �-attractor. This
concept was introduced byMilnor [96,97] in the context of
smooth dynamical systems; its ramifications for CA were
first explored by Hurley [64,65].

If � 2Meas(AZD
; �), then � is weakly � -mixing if,

for any measurable sets U;V �AZD , there is a subset
J � ZD of density 1 such that limJ3j!1 �[� j(U)\V] D
�[U] � �[V] (see Subsect. “Mixing and Ergodicity”). For
example, any Bernoulli measure is weakly mixing. A sub-
shift X �AZD is � -minimal if X contains no proper non-
empty subshifts. For example, if X is just the �-orbit of
some �-periodic point, then X is �-minimal.

Proposition 42 Let˚ 2 CA(AM), let� 2Meas(AM; �),
and let X be a �-attractor.
(a) If � is �-ergodic, and X �AM is a subshift, then

�[Basin(X)] D 1.
(b) If M is countable, and X is �-minimal subshift with

�[Basin(X)] D 1, then X is lean.
(c) SupposeM D ZD and � is weakly �-mixing.

(i) If X is a minimal �-attractor, then X is a sub-
shift, so �[Basin(X)] D 1, and thus X is the only
lean �-attractor of ˚ .

(ii) If X is a ˚-periodic orbit which is also a lean�-at-
tractor, thenX is minimal,�[Basin(X)] D 1, andX
contains only constant configurations.

Proof (a) If X is �-invariant, then Basin(X) is also �-in-
variant; hence �[Basin(X)] D 1 because � is �-ergodic.

(b) Suppose Y ¨ X was a proper closed sub-
set with �[Basin(Y)] D 1. For any m 2M, it is easy
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to check that Basin(�m[Y]) D �m[Basin(Y)]. Thus, if
eY :D

T
m2M �m(Y), then Basin(eY) D

T
m2M �m[Basin(Y)],

so �[Basin(eY)] D 1 (because M is countable). Thus, eY is
nonempty, and is a subshift of X. But X is �-minimal, so
eY D X, which meansY D X. Thus,X is a lean�-attractor.

(c) In the case when � is a Bernoulli measure, (c)[i]
is Theorem B in [64] or Proposition 2.7 in [65], while
(c)[ii] is Theorem A in [65]. Hurley’s proofs easily ex-
tend to the case when � is weakly �-mixing. The only
property we require of � is this: for any nontrivial mea-
surable sets U;V �AZD , and any z 2 ZD , there is some
x; y 2 ZD with z D x � y, such that �[�y(U) \ V] > 0
and �[�x(U) \ V] > 0. This is clearly true if � is
weakly mixing (because if J � ZD has density 1, then
J \ (zC J ) ¤ ; for any z 2 ZD).

Proof sketch for (c)[i] IfX is a (minimal)�-attractor, then
so is �y(X), and Basin[�y(X)] D �y(Basin[X]). Thus, weak
mixing yields x; y 2 ZD such that Basin[�x(X)] \ Basin[X]
and Basin[�y(X)] \ Basin[X] are both nontrivial. But the
basins of distinct minimal �-attractors must be disjoint;
thus �x(X) D X D �y(X). But x � y D z, so this means
� z(X) D X. This holds for all z 2 ZD , so X is a subshift,
so (a) implies �[Basin(X)] D 1. �

Section 4 of [64] contains several examples showing that
the minimal topological attractor of ˚ can be different
from its minimal �-attractor. For example, a CA can have
different minimal �-attractors for different choices of �.
On the other hand, there is a CA possessing a minimal
topological attractor but with no minimal �-attractors for
any Bernoulli measure �.

Hilmy–Hurley Centers

Let a 2AM. For any closed subset X �AM, we define

�a[X] :D lim inf
N!1

1
N

NX

nD1

1X(˚ t(a)) :

(Thus, if� is a˚-ergodic measure onAM, then Birkhoff’s
Ergodic Theorem asserts that �a[X] D �[X] for �-almost
all a 2AM). The center of a is the set:

Cent < (a; ˚) :D
\n

closed subsets X �AM ; �a[X] D 1
o
:

Thus, Cent(a; ˚) is the smallest closed subset such that
�a[Cent(a; ˚)] D 1. If X �AM is closed, then the well of
X is the set

Well(X) :D
n
a 2AM ; Cent(a; ˚) � X

o
:

If � 2Meas(AM), then X is a �-center if
�[Well(X)] > 0; we call X a lean �-center if in addi-
tion, �[Well(X)] > �[Well(Y)] for any proper closed subset
Y ¨ X. Finally, a �-center X is minimal if �[Well(Y)] D 0
for any proper closed subset Y ¨ X. This concept was in-
troduced by Hilmy [59] in the context of smooth dynami-
cal systems; its ramifications for CA were first explored by
Hurley [65].

Proposition 43 Let˚ 2 CA(AM), let� 2Meas(AM; �),
and let X be a �-center.
(a) If � is �-ergodic, and X �AM is a subshift, then

�[Well(X)] D 1.
(b) If M is countable, and X is �-minimal subshift with

�[Well(X)] D 1, then X is lean.
(c) Suppose M D ZD and � is weakly �-mixing. If X is

a minimal �-center, then X is a subshift, X is the only
lean �-center, and �[Well(X)] D 1.

Proof (a) and (b) are very similar to the proofs of Propo-
sition 42(a,b).

(c) is proved for Bernoulli measures as Theorem B
in [65]. The proof is quite similar to Proposition 42(c)[i],
and again, we only need � to be weakly mixing. �
Section 4 of [65] contains several examples of minimal
�-centers which are not �-attractors. In particular, the
analogue of Proposition 42(c)[ii] is false for �-centers.

Kůrka–Maass �-limit Sets If ˚ 2 CA(AM) and � 2
Meas(AM; �), then Kůrka and Maass define the �-limit
set of ˚ :

�(˚;�) :D
\n

closed subsets X �AM ;

lim
t!1

˚ t�(X) D 1
o
:

It suffices to take this intersection only over all cylinder
sets X. By doing this, we see that �(˚;�) is a subshift
ofAM, and is defined by the following property: for any
finite B �M and any word b 2AB, b is admissible to
�(˚;�) if and only if lim inft!1˚ t�[b] > 0.

Proposition 44 Let ˚ 2 CA(AM) and � 2 Meas(AM;

�).
(a) If wk  lim

t!1
˚ t� D �, then�(˚;�) D supp(�).

SupposeM D Z.
(b) If ˚ is surjective and has an equicontinuous point, and

� has full support onAZ, then�(˚;�) DAZ.
(c) If ˚ is left- or right-permutative and � is connected

(see below), then�(˚;�) DAZ.

Proof For (a), see Proposition 2 in [79]. For (b,c),
see Theorems 2 and 3 in [77]; for earlier special cases of
these results, see also Propositions 4 and 5 in [79]. �
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Remark 45 (a) In Proposition 44(c), the measure � is
connected if there is some constant C > 0 such that,
for any finite word b 2A�, and any a 2A, we have
�[b a] � C � �[b] and �[a b] � C � �[b].

For example, any Bernoulli, Markov, or N-step
Markov measure with full support is connected. Also, any
measure with ‘complete connections’ (see Example 22(a))
is connected.

(b) Proposition 44(a) shows that �-limit sets are
closely related to the weak* limits of measures. Recall from
Subsect. “Asymptotic Randomization by Linear Cellular
Automata” that the uniform Bernoulli measure � is the
weak* limit of a large class of initial measures under the
action of linear CA. Presumably the same result should
hold for a much larger class of permutative CA, but so
far this is unproven, except in some special cases [see Re-
marks 41(d,e)]. Proposition .44(a,c) implies that the limit
measure of a permutative CA (if it exists) must have full
support – hence it can’t be ‘too far’ from �.

Kůrka’s Measure Attractors Let M�
inv :DMeas(AM; �)

have the weak* topology, and define ˚� : M�
inv�!M�

inv

by ˚�(�) D � ı ˚�1. Then ˚� is continuous, so we can
treat (M�

inv; ˚�) itself as a compact topological dynami-
cal system. The “weak* limit measures” of ˚ are simply
the attracting fixed points of (M�

inv; ˚�). However, even
if the ˚�-orbit of a measure � does not weak* converge
to a fixed point, we can still consider the omega-limit set
of �. In particular, the limit set ˚1� (M�

inv) is the union of
the omega-limit sets of all �-invariant initial measures un-
der˚�. Kůrka defines themeasure attractor of ˚ :

MeasAttr(˚) :D
[
fsupp(�) ; � 2 ˚1� (M�

inv)g �AM :

(The bar denotes topological closure.) A configuration
a 2AZD is densely recurrent if any word which occurs in
a does so with nonzero frequency. Formally, for any finite
B � ZD

lim sup
N!1

#
˚
z 2 [�N : : :N]D ; aBCz D aB

�

(2N C 1)D
> 0 :

If X �AZD is a subshift, then the densely recur-
rent subshift of X is the closure D of the set of all
densely recurrent points in X. If � 2M�

inv(X), then the
Birkhoff Ergodic Theorem implies that supp(�) � D;
see Proposition 8.8 in [1], p. 164. From this it fol-
lows that M�

inv(X) DM�
inv(D). On the other hand,

D D
S
fsupp(�) ; � 2M�

inv(D)g. In other words,
densely recurrent subshifts are the only subshifts which
are ‘covered’ by their own set of shift-invariant measures.

Proposition 46 Let ˚ 2 CA(AM)[AZD ]. Let D be
the densely recurrent subshift of ˚1(AZD ). Then
D D MeasAttr(˚), and˚1(M�

inv) DMeas(D; �).

Proof Case D D 1 is Proposition 13 in [78]. The same
proof works for D � 2. �

Synthesis

The various hybrid modes of self-organization are related
as follows:

Proposition 47 Let ˚ 2 CA(AM).
(a) Let � 2Meas(AM; �) and let X �AM be any closed

set.

[i] If X is a topological attractor and � has full sup-
port, then X is a �-attractor.

[ii] If X is a �-attractor, then X is a �-center.
[iii] Suppose M D ZD, and that � is weakly �-mix-

ing. Let Y be the intersection of all topological at-
tractors of ˚ . If ˚ has a minimal �-attractor X,
then X � Y.

[iv] If � is �-ergodic, then �(˚;�) �
T
fX � AM ;

X a subshift and �-attractorg � ˚1(AZD ).
[v] Thus, if � is �-ergodic and has full support, then

�(˚;�) �
\˚

X �AM ; X a subshift and

a topological attractor
�
:

[vi] If X is a subshift, then (�(˚;�) � X) ()
(!(˚�; �) �M�

inv(X)).

(b) Let M D ZD. Let B be the set of all Bernoulli mea-
sures onAZD , and for any ˇ 2 B, let Xˇ be the mini-
mal ˇ-attractor for ˚ (if it exists).
There is a comeager subset A �AZD such thatS
ˇ2B Xˇ �

T
a2A !(a; ˚).

(c) MeasAttr(˚) D
S˚

�(˚;�) ; � 2M�
inv(AM)

�
.

(d) IfM D ZD, thenMeasAttr(˚) � ˚1(AZD ).

Proof (a)[i]: If U is a clopen subset and ˚1(U) D X,
then U � Basin(X); thus, 0 < �[U] � �[Basin(X)], where
the “<” is because � has full support.

(a)[ii]: For any a 2AM, it is easy to see that
Cent(a; ˚) � !(a; ˚). Thus, Well(X) � Basin(X). Thus,
�[Well(X)] � �[Basin(X)] > 0.

(a)[iii] is Proposition 3.3 in [64]. (Again, Hurley states
and proves this in the case when � is a Bernoulli measure,
but his proof only requires weak mixing).

(a)[iv]: Let X be a subshift and a �-attractor; we claim
that�(˚;�) � X. Proposition 42(a) says�[Basin(X)] D 1.
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Let B �M be any finite set. If b 2AB n XB, then

˚
a 2AM ; 9 T 2 N such that 8t � T ; ˚ t(a)B ¤ b

�

� Basin(X) :

It follows that the left-hand set has �-measure 1, which
implies that limt!1˚

t�hbi D 0 – hence b is a forbidden
word in�(˚;�).

Thus, all the words forbidden in X are also forbid-
den in �(˚;�). Thus �(˚;�) � X. (The case M D Z of
(a)[iv] appears as Prop. 1 in [79] and as Prop. II.27, p. 67
in [120]; see also Cor. II.30 in [120] for a slightly stronger
result.)

(a)[v] follows from (a)[iv] and (a)[i].
(a)[vi] is Proposition 1 in [77] or Proposition 10

in [78]; the argument is fairly similar to (a)[iv]. (Kůrka as-
sumesM D Z, but this is not necessary.)

(b) is Proposition 5.2 in [64].
(c) Let X �AM be a subshift and let M�

inv D

M�
inv(AM). Then

(MeasAttr(˚) � X)
() (supp(�) � X ; 8 � 2 ˚1� (M�

inv))
() (� 2M�

inv(X) ; 8 � 2 ˚1� (M�
inv))

() (˚1� (M�
inv) �M�

inv(X))
() (!(˚�; �) �M�

inv(X) ; 8 � 2M�
inv)

()
(�)

(�(˚;�) � X ; 8 � 2M�
inv)

() (
[
f�(˚;�) � 2M�

invg � X) :

where () is by (a)[vi]. It follows that MeasAttr(˚) D
S˚

�(˚;�) ; � 2M�
inv(AM)

�
.

(d) follows immediately from Proposition 46. �

Examples and Applications The most natural examples
of these hybrid modes of self-organization arise in the par-
ticle cellular automata (PCA) introduced in Subsect. “Do-
mains, Defects, and Particles”. The long-term dynamics
of a PCA involves a steady reduction in particle density,
as particles coalesce or annihilate one another in colli-
sions. Thus, presumably, for almost any initial configura-
tion a 2AZ, the sequence f˚ t(a)g1tD1 should converge to
the subshift Z of configurations containing no particles (or
at least, no particles of certain types), as t!1. Unfortu-
nately, this presumption is generally false if we interpret
‘convergence’ in the strict topological dynamical sense: the
occasional particles will continue to wander near the ori-
gin at arbitrarily large times in the future orbit of a (albeit
with diminishing frequency), so !(a; ˚) will not be con-
tained in Z. However, the presumption becomes true if we

instead employ one of the more flexible hybrid notions in-
troduced above. For example,most initial probability mea-
sures� should converge, under iteration of˚ to ameasure
concentrated on configurations with few or no particles;
hence we expect that �(˚;�) � Z. As discussed in Sub-
sect. “Domains, Defects, and Particles”, a result about self-
organization in a PCA can sometimes be translated into
an analogous result about self-organization in associated
coalescent-domain CA.

Proposition 48 LetA D f0;˙1g and let� 2 CA(AZ) be
the Ballistic Annihilation Model (BAM) from Example 33.
Let R :D f0; 1gZ and L :D f0;�1gZ.
(a) If � 2Meas(AZ; �), then � D wk  limt!1 �

t(�)
exists, and has one of three forms: either
� 2Meas(R; �), or � 2Meas(L; �), or � D ı0, the
point mass on the sequence 0 D [: : : 000 : : :].

(b) Thus, the measure attractor of ˚ is R [ L (note that
R \ L D f0g).

(c) In particular, if � is a Bernoulli measure onAZ with
�[C1] D �[�1], then � D ı0.

(d) Let � be a Bernoulli measure onAZ.

[i] If �[C1] > �[�1], then R is a �-attractor – i. e.
�[Basin(R)] > 0.

[ii] If �[C1] < �[�1], then L is a �-attractor.
[iii] If �[C1] D �[�1], then f0g is not a �-attractor,

because �[Basinf0g] D 0. However, �(˚;�) D
f0g.

Proof (a) is Theorem 6 of [8], and (b) follows from
(a). (c) follows from Theorem 2 of [42]. (d)[i,ii] were
first observed by Gilman (see Sect. 3, pp. 111–112
in [45], and later by Kůrka and Maass (see Exam-
ple 4 in [80]). (d)[iii] follows immediately from (c): the
statement �(˚;�) D f0g is equivalent to asserting that
limt!1 ˚

t�[˙1] D 0, which a consequence of (c). An-
other proof of (d)[iii] is Proposition 11 in [80]; see also Ex-
ample 3 in [79] or Prop. II.32, p. 70 in [120]. �

Corollary 49 LetA D Z/3, let ˚ 2 CA(AZ) be the CCA3
(see Example 32), and let � be the uniform Bernoulli

measure onAZ. Then wk  lim
t!1

˚ t(�) D
1
3
(ı0 C ı1 C ı2),

where ıa is the point mass on the sequence [: : : aaa : : :] for
each a 2A.

Proof Combine Proposition 48(c) with the factor map �
in Example 34(b). See Theorem 1 of [42] for details. �

Corollary 50 Let A D f0; 1g, let ˚ 2 CA(AZ) be
ECA#184 (see Example 31).
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(a) MeasAttr(˚) D R[ L, where R �AZ is the set of se-
quences not containing [11], and L �AZ is the set of
sequences not containing [00].

(b) If � is the uniform Bernoulli measure on AZ, then

wk  lim
t!1

˚ t(�) D
1
2
(ı0 C ı1), where ı0 and ı1 are the

point masses on [: : : 010:101 : : :] and [: : : 101:010 : : :].
(c) Let � be a Bernoulli measure onAZ.

[i] If �[0] > �[1], then R is a �-attractor – i. e.
�[Basin(R)] > 0.

[ii] If �[0] < �[1], then L is a �-attractor.

Proof sketch Let � be the factor map from Example 34(a).
To prove (a), apply � to Proposition 48(b); see Exam-
ple 26, Sect. 9 in [78] for details. To prove (b), apply �
to Proposition 48(c); see Proposition 12 in [80] for details.
To prove (c), apply � to Proposition 48(d)[i,ii]; �

Remark 51 (a) The other parts of Proposition 48 can
likewise be translated into equivalent statements about
the measure attractors and �-attractors of CCA3 and
ECA#184.

(b) Recall that ECA#184 is a model of single-lane, traf-
fic, where each car is either stopped or moving rightwards
at unit speed. Blank [10] has extended Corollary 50(c) to
a much broader class of CA models of multi-lane, multi-
speed traffic. For any such model, let R �AZ be the set
of ‘free flowing’ configurations where each car has enough
space to move rightwards at its maximum possible speed.
Let L �AZ be the set of ‘jammed’ configurations where
the cars are so tightly packed that the jammed clusters
can propagate (leftwards) through the cars at maximum
speed. If � is any Bernoulli measure, then �[Basin(R)] D 1
if the�-average density of cars is greater than 1/2, whereas
�[Basin(L)] D 1 if the density is less than 1/2 Theorems 1.2
and 1.3 in [10]. Thus, L t R is a (non-lean) �-attractor,
although not a topological attractor Lemma 2.13 in [10].

Example 52 A cyclic addition and ballistic annihilation
model (CABAM) contains the same ‘moving’ particles
˙1 as the BAM (Example 33), but also has one or
more ‘stationary’ particle types. Let 3 � N 2 N , and let
P D f1; 2; : : : ;N � 1g � Z/N , where we identify N � 1
with -1, modulo N . It will be convenient to represent the
‘vacant’ state ; as 0; thus,A D Z/N . The particles 1 and –1
have velocities and collisions as in the BAM, namely:

v(1) D 1 ; v(�1) D �1 ; and � 1C 1 Ý ; :

We set v(p) D 0, for all p 2 [2 : : : N � 2], and employ the
following collision rule:

If p�1Cp0Cp1 � q; (mod N); then p�1Cp0Cp1Ýq:
(5)

(here, any one of p�1, p0, p1, or q could be 0, signifying
vacancy). For example, if N D 5 and a (rightward moving)
typeC1 particle strikes a (stationary) type 3 particle, then
theC1 particle is annihilated and the 3 particle turns into
a (stationary) 4 particle. If another C1 particle hits the 4
particle, then both are annihilated, leaving a vacancy (0).

Let B D Z/N , and let � 2 CA(AZ) be the
CABAM. Then the set of fixed points of � is F D

ff 2 BZ; fz ¤ ˙1;8z 2 Zg. Note that, if b 2 Basin[F] –
that is, if !(b; � ) � F – then in fact lim

t!1
� t(b) exists and

is a � -fixed point.

Proposition 53 Let B D Z/N, let � 2 CA(AZ) be the
CABAM, and let � be the uniform Bernoulli measure on
BZ. If N � 5, then F is a ‘global’ �-attractor – that is,
�[Basin(F)] D 1. However, if N � 4, then �[Basin(F)] D 0.

Proof See Theorem 1 of [41]. �

Let A D Z/N and let ˚ 2 CA(AZ) be the N-color CCA
from Example 32. Then the set of fixed points of ˚
is F D ff 2AZ; fz � fzC1 ¤ ˙1;8z 2 Zg. Note that, if
a 2 Basin[F], then in fact lim

t!1
˚ t(a) exists and is a˚-fixed

point.

Corollary 54 Let A D Z/N, let ˚ 2 CA(AZ) be the
N-color CCA, and let � be the uniform Bernoulli measure
on AZ If N � 5, then F is a ‘global’ �-attractor – that is,
�[Basin(F)] D 1. However, if N � 4, then �[Basin(F)] D 0.

Proof sketch Let B D Z/N and let � 2 CA(BZ) be
the N-particle CABAM. Construct a factor map
� : AZ�!BZ with local rule � (a0; a1) :D (a0 � a1)
mod N , similar to Example 34(b). Then � ı ˚ D � ı � ,
and the � -particles track the ˚-domain boundaries. Now
apply � to Proposition 53. �

Example 55 Let A D f0; 1g and let H D f�1; 0; 1g. Ele-
mentary Cellular Automaton #18 is the one-dimensional
CA with local rule � : AH�!A given: �[100] D 1 D
�[001], and �(a) D 0 for all other a 2AH.

Empirically, ECA#18 has one stable phase: the odd sofic
shift S, defined by theA-labeled digraph 1�� 0�� 0�.
In other words, a sequence is admissible to S as long as
an pair of consecutive ones are separated by an odd num-
ber of zeroes. Thus, a defect is any word of the form 102m1
(where 02m represents 2m zeroes) for any m 2 N . Thus,
defects can be arbitrarily large, they can grow and move
arbitrarily quickly, and they can coalesce across arbitrarily
large distances. Thus, it is impossible to construct a par-
ticle CA which tracks the motion of these defects. Never-
theless, in computer simulations, one can visually follow
the moving defects through time, and they appear to per-
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form random walks. Over time, the density of defects de-
creases as they randomly collide and annihilate. This was
empirically observed by Grassberger [47,48] and Boccara
et al. [11]. Lind (see Sect. 5 in [82]) conjectured that this
gradual elimination of defects caused almost all initial con-
ditions to converge, in some sense, to S under application
of ˚ .

Eloranta and Numelin [34] proved that the defects
of ˚ individually perform random walks. However, the
motions of neighboring defects are highly correlated. They
are not independent random walks, so one cannot use
standard results about stochastic interacting particle sys-
tems to conclude that the defect density converges to zero.
To solve problems like this, Kůrka [77] developed a theory
of ‘particle weight functions’ for CA.

Let A� be the set of all finite words in the alpha-
bet A. A particle weight function is a bounded function
p : A��!N , so that, for any a 2AZ, we interpret

#p(a) :D
1X

rD0

X

z2Z

p(a[z:::zCr]) and

ıp(a) :D
1X

rD0

lim
N!1

1
2N

NX

zD�N

p(a[z:::zCr])

to be, respectively the ‘number of particles’ and ‘den-
sity of particles’ in configuration a (clearly #p(a) is fi-
nite if and only if ıp(a) D 0). The function p can count
the single-letter ‘particles’ of a PCA, or the short-length
‘domain boundaries’ found in ECA#184 and the CCA
of Examples 31 and 32. However, p can also track the
arbitrarily large defects of ECA#18. For example, define
p18(102m1) D 1 (for any m 2 N), and define p18(a) D 0
for all other a 2A�.

Let Zp :D fa 2AZ; #p(a) D 0g be the set of vac-
uum configurations. (For example, if p D p18 as above,
then Zp is just the odd sofic shift S.) If the iteration of
a CA ˚ decreases the number (or density) of particles,
then one expects Zp to be a limit set for ˚ in some
sense. Indeed, if � 2M�

inv :DMeas(AZ; �), then we de-
fine �p(�) :D

R
AZ ıp d�. If ˚ is ‘p-decreasing’ in a cer-

tain sense, then �p acts as a Lyapunov function for the
dynamical system (M�

inv; ˚�). Thus, with certain technical
assumptions, we can show that, if � 2M�

inv is connected,
then�(˚;�) � Zp (see Theorem 8 in [77]). Furthermore,
under certain conditions,MeasAttr(˚) � Zp (see Theorem 7
in [77]). Using this machinery, Kůrka proved:

Proposition 56 Let ˚ : AZ�!AZ be ECA#18, and let
S �AZ be the odd sofic shift. If � 2Meas(AZ; �) is con-
nected, then�(˚;�) � S.

Proof See Example 6.3 of [77]. �

Measurable Dynamics

If ˚ 2 CA(AM) and � 2Meas(AM; ˚), then the triple
(AM; �;˚) is a measure-preserving dynamical system
(MPDS), and thus, amenable to the methods of classical
ergodic theory.

Mixing and Ergodicity

If ˚ 2 CA(AM), then the topological dynamical system
(AM; ˚) is topologically transitive (or topologically er-
godic) if, if, for any open subsets U;V �AM, there ex-
ists t 2 N such that U \˚�t(V) ¤ ;. Equivalently, there
exists some a 2AM whose orbit O(a) :D f˚ t(a)g1tD0
is dense in AM. If � 2Meas(AM; ˚), then the sys-
tem (AM; �;˚) is ergodic if, for any nontrivial mea-
surable U;V �AM, there exists some t 2 N such that
�[U \ ˚�t(V)] > 0. The system (AM; �;˚) is totally er-
godic if (AM; �;˚ n) is ergodic for every n 2 N. The sys-
tem (AM; �;˚) is (strongly) mixing if, for any nontrivial
measurableU;V �AM.

lim
t!1

�
�
U \˚�t(V)

�
D �[U] � �[V] : (6)

The system (AM; �;˚) is weakly mixing if the limit (6)
holds as n!1 along an increasing subsequence ftng1nD1
of density one – i. e. such that limn!1 tn/n D 1. For any
M 2 N , we say (AM; �;˚) is M-mixing if, for any mea-
surable U0;U1; : : : ;UM �AM.

lim
jtn�tm j!1
8n¤m2[0:::M]

�

" M\

mD0

˚�tm (Um )

#

D

MY

mD0

�[Um ] (7)

(thus, ‘strong’ mixing is 1-mixing). We say (AM; �;˚)
is multimixing (or mixing of all orders) if (AM; �;˚) is
M-mixing for all M 2 N .

We say (AM; �;˚) is a Bernoulli endomorphism if
its natural extension (� Ergodic Theory: Basic Examples
and Constructions) is measurably isomorphic to a system
(BZ; ˇ; �), whereˇ 2Meas(BZ; �) is a Bernoulli measure.
We say (AM; �;˚) is a Kolmogorov endomorphism if
its natural extension is a Kolmogorov (or “K”) automor-
phism; see � Ergodicity and Mixing Properties. The fol-
lowing chain of implications is well-known; see � Ergod-
icity and Mixing Properties.

Theorem 57 Let ˚ 2 CA(AM), let � 2Meas(AM;˚),
and let X D supp(�). Then X is a compact, ˚-invariant
set. Furthermore:
(�;˚) is Bernoulli H) (�;˚) is Kolmogorov
H) (�;˚) is multimixing H) (�;˚) is mixing
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H) (�;˚) is weakly mixing H) (�;˚) is totally er-
godic H) (�;˚) is ergodic H) The system (X; ˚) is
topologically transitive H) ˚ : X�!X is surjective.

Theorem 58 Let ˚ 2 CA(AN ) be posexpansive (see Sub-
sect. “Posexpansive and Permutative CA”). Then (AN ; ˚)
has topological entropy log2(k) for some k 2 N ,˚ preserves
the uniform measure �, and (AN ; �;˚) is a uniformly dis-
tributed Bernoulli endomorphism on an alphabet of cardi-
nality k.

Proof Extend the argument of Theorem 18. See Corol-
lary 3.10 in [9] or Theorem 4.8(5) in [86]. �
Example 59 Suppose ˚ 2 CA(AN ) is right-permu-
tative, with neighborhood [r : : : R], where 0 � r < R.
Then htop(˚) D log2(jAjR), so Theorem 58 says that
(AN ; �;˚) is a uniformly distributed Bernoulli endomor-
phism on the alphabetB :DAR .

In this case, it is easy to see this directly. If ˚N
B :

AN�!BN is as in Eq. (2), then ˇ :D ˚N
B (�) is the uni-

form Bernoulli measure on BN , and ˚N
B is an isomor-

phism from (AN ; �;˚) to (BN ; ˇ; �).

Theorem 60 Let ˚ 2 CA(AZ) have neighborhood
[L : : : R]. Suppose that
either (a) 0 � L < R and ˚ is right-permutative;
or (b) L < R � 0 and ˚ is left-permutative;
or (c) L < R and ˚ is bipermutative;
or (d) ˚ is posexpansive.
Then ˚ preserves the uniform measure �, and (AZ; �;˚)
is a Bernoulli endomorphism.

Proof For cases (a) and (b), see Theorem 2.2 in [125]. For
case (c), see Theorem 2.7 in [125] or Corollary 7.3 in [74].
For (d), extend the argument of Theorem 14; see Theo-
rem 4.9 in [86]. �
Remark Theorem 60(c) can be extended to some higher-
dimensional permutative CA using Proposition 1 in [3];
see Remark 12(b).

Theorem 61 Let ˚ 2 CA(AZ) have neighborhood
[L : : : R]. Suppose that
either (a) ˚ is surjective and 0 < L � R;
or (b) ˚ is surjective and L � R < 0;
or (c) ˚ is right-permutative and R ¤ 0;
or (d) ˚ is left-permutative and L ¤ 0.
Then˚ preserves �, and (AZ; �;˚) is a Kolmogorov endo-
morphism.

Proof Cases (a) and (b) are Theorem 2.4 in [125]. Cases
(c) and (d) are from [129]. �
Corollary 62 Any CA satisfying the hypotheses of Theo-
rem 61 is multimixing.

Proof This follows from Theorems 57 and 61. See
also Theorem 3.2 in [131] for a direct proof that any CA
satisfying hypotheses (a) or (b) is 1-mixing. See Theo-
rem 6.6 in [74] for a proof that any CA satisfying hypothe-
ses (c) or (d) is multimixing. �

Let ˚ 2 CA(AZD ) have neighborhood H. An element
x 2 H is extremal if hx; xi > hx;hi for all h 2 H n fxg. We
say ˚ is extremally permutative if ˚ is permutative in
some extremal coordinate.

Theorem 63 Let ˚ 2 CA(AZD ) and let � be the uniform
measure. If ˚ is extremally permutative, then (AZD

; �;˚)
is mixing.

Proof See Theorem A in [144] for the case D D 2 and
A D Z/2. Willson described ˚ as ‘linear’ in an extremal
coordinate (which is equivalent to permutative when
A D Z/2), and then concluded that ˚ was ‘ergodic’ –
however, he did this by explicitly showing that ˚ was
mixing. His proof technique easily generalizes to any ex-
tremally permutative CA on any alphabet, and any D � 1.

�

Theorem 64 LetA D Z/m. Let ˚ 2 CA(AZD ) have lin-
ear local rule � : AH�!A given by �(aH) D

P
h2H ch �

ah, where ch 2 Z for all h 2 H. Let � be the uniform mea-
sure onAZD . The following are equivalent:
(a) ˚ preserves � and (AZD

; �; ˚) is ergodic.
(b) (AZD

; ˚) is topologically transitive.
(c) gcdfchg0¤h2H is coprime to m.
(d) For all prime divisors p of m, there is some nonzero

h 2 H such that ch is not divisible by p.

Proof Theorem 3.2 in [18]; see also [17]. For a different
proof in the case D D 2, see Theorem 6 in [123]. �

Spectral Properties

If � 2Meas(AM), then let L2� D L2(AM; �) be the set
of measurable functions f : AM�!C such that k f k2 :D
(
R
AM j f j2 d�)1/2 is finite. If ˚ 2 CA(AM) and � 2

Meas(AM; ˚), then ˚ defines a unitary linear opera-
tor ˚� : L2��!L2� by ˚�( f ) D f ı ˚ for all f 2 L2�. If
f 2 L2�, then f is an eigenfunction of ˚ , with eigen-
value c 2 C, if ˚�( f ) D c � f . By definition of ˚�,
any eigenvalue must be an element of the unit circle
T :D fc 2 C ; jcj D 1g. Let S˚ � T be the set of all
eigenvalues of ˚ , and for any s 2 S˚ , let Es(˚) :D˚
f 2 L2� ; ˚� f D s f

�
be the corresponding eigenspace.

For example, if f is constant �-almost everywhere, then
f 2 E1(˚). Let E(˚) :D

F
s2S˚

Es (˚). Note that S˚ is
a group. Indeed, if s1; s2 2 S˚ , and f1 2 Es1 and f2 2 Es2 ,
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then ( f1 f2) 2 Es1s2 and (1/ f1) 2 E1/s1 . Thus, S˚ is called
the spectral group of ˚ .

If s 2 S˚ , then heuristically, an s-eigenfunction is an
‘observable’ of the dynamical system (AM; �;˚) which
exhibits quasiperiodically recurrent behavior. Thus, the
spectral properties of ˚ characterize the ‘recurrent aspect’
of its dynamics (or the lack thereof). For example:

� (AM; �;˚) is ergodic () E1(˚) contains only
constant functions () dim[Es(˚)] D 1 for all
s 2 S˚ .

� (AM; �;˚) is weakly mixing (see Subsect. “Mixing
and Ergodicity”) () E(˚) contains only constant
functions () (AM; �;˚) is ergodic and S˚ D f1g.

We say (AM; �;˚) has discrete spectrum if L2� is spanned
by E(˚). In this case, (AM; �;˚) is measurably isomor-
phic to an MPDS defined by translation on a compact
abelian group (e. g. an irrational rotation of a torus, an
odometer, etc.).

If � 2Meas(AM; �), then there is a natural unitary
M-action on L2�, where �m� ( f ) D f ı �m� . A character of
M is a monoid homomorphism � : M�!T . The set bM
of all characters is a group under pointwise multiplication,
called the dual group ofM. If f 2 L2� and � 2 bM, then f is
a �-eigenfunction of (AM; �; �) if �m� ( f ) D �(m) � f for
allm 2M; then � is called a eigencharacter. The spectral
group of (AM; �; �) is then the subgroup S
 � bM of all
eigencharacters. For any � 2 S
 , let E�(�) be the corre-
sponding eigenspace, and let E(�) :D

F
�2S˚

E�(�).

� (AM; �; �) is ergodic () E1(�) contains only con-
stant functions () dim[E�(�)] D 1 for all � 2 S
 .

� (AM; �; �) is weaklymixing () E(�) contains only
constant functions () (AM; �; �) is ergodic and
S
 D f1g.

(AM; �; �) has discrete spectrum if L2� is spanned by
E(�). In this case, the system (AM; �; �) is measurably
isomorphic to an action of M by translations on a com-
pact abelian group.

Example 65 Let M D Z; then any character � : Z�!T
has the form �(n) D cn for some c 2 T , so a �-eigenfunc-
tion is just a eigenfunction with eigenvalue c. In this case,
the aforementioned spectral properties for theZ-action by
shifts are equivalent to the corresponding spectral proper-
ties of the CA˚ D �1. Bernoulli measures and irreducible
Markov chains are weakly mixing. On other hand, several
important classes of symbolic dynamical systems have dis-

crete spectrum, including Sturmian shifts, constant-length
substitution shifts, and regular Toeplitz shifts; see � Sym-
bolic Dynamics and � Dynamics of Cellular Automata in
Non-compact Spaces.

Proposition 66 Let ˚ 2 CA(AM), and let � 2

Meas(AM;˚; �) be �-ergodic.
(a) E(�) � E(˚).
(b) If (AM; �; �) has discrete spectrum, then so does

(AM; �;˚).
(c) Suppose � is ˚-ergodic. If (AM; �; �) is weakly mix-

ing, then so is (AM; �;˚).

Proof (a) Suppose � 2 bM and f 2 E�. Then f ı ˚ 2 E�
also, because for all m 2M, f ı ˚ ı �m D f ı �m ı
˚ D �(m) � f ı ˚ . But if (AM; �; �) is ergodic, then
dim[E�(�)] D 1; hence f ı ˚ must be a scalar multiple of
f . Thus, f is also an eigenfunction for ˚ . (b) follows from
(a).

(c) By reversing the roles of ˚ and � in (a), we see
that E(˚) � E(�). But if (AM; �; �) is weakly mixing,
then E(�) D fconstant functionsg. Thus, (AM; �;˚) is
also weakly mixing. �

Example 67 (a) Let � be any Bernoulli measure onAM.
If � is ˚-invariant and ˚-ergodic, then (AM; �;˚) is
weakly mixing (because (AM; �; �) is weakly mixing).

(b) Let P 2 N and suppose � is a ˚-invariant mea-
sure supported on the set XP of P-periodic sequences (see
Proposition 10). Then (AZ; �; �) has discrete spectrum
(with rational eigenvalues). But XP is finite, so the system
(XP ; ˚) is also periodic; hence (AZ; �;˚) also has dis-
crete spectrum (with rational eigenvalues).

(c) Downarowicz [25] has constructed an example of
a regular Toeplitz shift X �AZ and ˚ 2 CA(AZ) (not
the shift) such that ˚(X) � X. Any regular Toeplitz shift
is uniquely ergodic, and the unique shift-invariant mea-
sure � has discrete spectrum; thus, (AZ; �;˚) also has
discrete spectrum.

Aside from Examples 67(b,c), the literature contains no
examples of discrete-spectrum, invariantmeasures for CA;
this is an interesting area for future research.

Entropy

Let ˚ 2 CA(AM). For any finite B �M, let B :DAB,
let ˚N

B : AN�!BN be as in Eq. (2), and let X :D
˚N

B (AM) �AN ; then define

Htop(B;˚) :D htop(X) D lim
T!1

1
T
log2(#X[0:::T)) :
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If � 2Meas(AM; ˚), let � :D ˚N
B (�); then � is a �-in-

variant measure on BN . Define

H�(B;˚) :D h� (�) D � lim
T!1

1
T

X

b2B[0:::T)

�[b] log2(�[b]):

The topological entropy of (AM; ˚) and the measurable
entropy of (AM; ˚; �) are then defined

htop(˚) :D sup
B�M
finite

Htop(B;˚) and

h�(˚) :D sup
B�M
finite

H�(B;˚) :

The famous Variational Principle states that htop(˚) D
sup fh�(˚);� 2Meas(AM;˚)g; see � Entropy in Er-
godic Theory or Sect. 10 � Topological Dynamics of Cel-
lular Automata.

If M has more than one dimension (e. g. M D ZD

or ND for D � 2) then most CA on AM have infinite
entropy. Thus, entropy is mainly of interest in the case
M D Z or N . Coven [23] was the first to compute the
topological entropy of a CA; he showed that htop(˚) D 1
for a large class of left-permutative, one-sided CA on
f0; 1gN (which have since been called Coven CA). Later,
Lind [83] showed how to construct CA whose topologi-
cal entropy was any element of a countable dense subset of
RC, consisting of logarithms of certain algebraic numbers.
Theorems 14 and 18(b) above characterize the topologi-
cal entropy of posexpansive CA. However, Hurd et al. [62]
showed that there is no algorithm which can compute the
topological entropy of an arbitrary CA; see� Tiling Prob-
lem and Undecidability in Cellular Automata.

Measurable entropy has also been computed for
a few special classes of CA. For example, if ˚ 2

CA(AZ) is bipermutative with neighborhood f0; 1g and
� 2Meas(AZ; ˚ ; �) is �-ergodic, then h�(˚) D log2(K)
for some integer K � jAj (see Thm 4.1 in [113]). If � is
the uniform measure, and ˚ is posexpansive, then Theo-
rems 58 and 60 above characterize h�(˚). Also, if ˚ sat-
isfies the conditions of Theorem 61, then h�(˚) > 0, and
furthermore, all factors of theMPDS (AZ; �;˚) also have
positive entropy.

However, unlike abstract dynamical systems, CA come
with an explicit spatial ‘geometry’. The most fruitful inves-
tigations of CA entropy are those which have interpreted
entropy in terms of how information propagates through
this geometry.

Lyapunov Exponents

Wolfram [150] suggested that the propagation speed of
‘perturbations’ in a one-dimensional CA ˚ could trans-

form ‘spatial’ entropy [i. e. h(�)] into ‘temporal’ entropy
[i. e. h(˚)]. He compared this propagation speed to the
‘Lyapunov exponent’ of a smooth dynamical system: it de-
termines the exponential rate of divergence between two
initially close ˚-orbits (see pp. 172, 261 and 514 in [151]).
Shereshevsky [126] formalized Wolfram’s intuition and
proved the conjectured entropy relationship; his results
were later improved by Tisseur [141]. Let ˚ 2 CA(AZ),
let a 2AZ, and let z 2 Z. Define

WCz (a) :D
n
w 2AZ ; w[z:::1) D a[z:::1)

o
; and

W�z (a) :D
n
w 2AZ ; w(�1:::z] D a(�1:::z]

o
:

Thus, we obtain each w 2WCz (a) (respectivelyW�z (a)) by
‘perturbing’ a somewhere to the left (resp. right) of coor-
dinate z. Next, for any t 2 N , define

e�Ct (a) :D min
˚
z 2 N ; ˚ t �WC0 (a)

�
�WCz

�
˚ t[a]

�
;

and
e��t (a) :D min

˚
z 2 N ; ˚ t �W�0 (a)

�
�W��z

�
˚ t[a]

�
:

Thus, e�˙t measures the farthest distance which any per-
turbation of a at coordinate 0 could have propagated
by time t. Next, define �˙t (a) :D max

z2Z
e�˙t [�

z(a)]. Then

Shereshevsky [126] defined the (maximum) Lyapunov ex-
ponents

C(˚; a) :D lim
t!1

1
t
�Ct (a) ; and

�(˚; a) :D lim
t!1

1
t
��t (a) ;

whenever these limits exist. Let G(˚) :D fg 2 AZ;˙

(˚; g) both existg. The subsetG(˚) is ‘generic’ withinAZ

in a very strong sense, and the Lyapunov exponents detect
‘chaotic’ topological dynamics.

Proposition 68 Let ˚ 2 CA(AZ).
(a) Let � 2Meas(AZ; �). Suppose that either: [i] � is

also ˚-invariant; or: [ii] � is �-ergodic and supp(�)
is a ˚-invariant subset. Then �(G) D 1.

(b) The set G and the functions ˙(˚; �) are (˚; �)-in-
variant. Thus, if � is either ˚-ergodic or �-er-
godic, then there exist constants ˙� (˚) � 0 such that
˙(˚; g) D ˙� (˚) for �- all g 2 G.

(c) If˚ is posexpansive, then there is a constant c > 0 such
that ˙(˚; g) � c for all g 2 G.

(d) Let � be the uniform Bernoulli measure. If ˚ is surjec-
tive, then htop(˚) �

�
C� (˚)C �� (˚)


� log jAj.

Proof (a) follows from the fact that, for any a 2AZ, the
sequence [�˙t (a)]t2N is subadditive in t. Condition [i]
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is Theorem 1 in [126], and follows from Kingman’s sub-
additive ergodic theorem. Condition [ii] is Proposition 3.1
in [141].

(b) is clear by definition of ˙. (c) is Theorem 5.2
in [37]. (d) is Proposition 5.3 in [141]. �

For any ˚-ergodic � 2Meas(AZ;˚; �), Shereshevsky
(see Theorem 2 in [126]) showed that h�(˚) �

�
C� (˚)C

��(˚)

� h�(�). Tisseur later improved this estimate. For

any T 2 N , let

eI CT (a) :D min
˚
z 2 N ; 8 t 2 [1 : : : T] ;

˚ t �WC�z(a)
�
�WC0

�
˚ t[a]

 �
and

eI �T (a) :D min
˚
z 2 N ; 8 t 2 [1 : : : T] ;

˚ t �W�z (a)
�
�W�0

�
˚ t[a]

 �
:

Next, for any � 2Meas(AZ; �), define bI
˙

T (�) :D
R
AZ
eI˙T (a)d�[a].

Tisseur then defined the average Lyapunov exponents:
I˙� (˚) :D lim inf

T!1
bI
˙

T (�)/T .

Theorem 69 Let ˚ 2 CA(AZ) and let � 2Meas(AZ; �).
(a) If supp(�) is ˚-invariant, then IC� (˚) � C� (˚) and

I��(˚) � ��(˚), and one or both inequalities are
sometimes strict.

(b) If � is �-ergodic and ˚-invariant, then
h�(˚) �

�
IC� (˚)C I��(˚)


� h�(�), and this inequal-

ity is sometimes strict.
(c) If supp(�) contains ˚-equicontinuous points, then

IC� (˚) D I��(˚) D h�(˚) D 0.

Proof See [141]: (a) is Proposition 3.2 and Example 6.1;
(b) is Theorem 5.1 and Example 6.2; and (c) is Proposi-
tion 5.2. �

Directional Entropy

Milnor [98,99] introduced directional entropy to cap-
ture the intuition that information in a CA propa-
gates in particular directions with particular ‘veloci-
ties’, and that different CA ‘mix’ information in differ-
ent ways. Classical entropy is unable to detect this in-
formational anisotropy. For example, if A D f0; 1g and
˚ 2 CA(AZ) has local rule �(a0; a1) D a0 C a1 (mod 2),
then htop(˚) D 1 D htop(�), despite the fact that ˚ vig-
orously ‘mixes’ information together and propagates any
‘perturbation’ outwards in an expanding cone, whereas �
merely shifts information to the left in a rigid and essen-
tially trivial fashion.

If˚ 2 CA(AZD ), then a complete history for˚ is a se-
quence (at)t2Z 2 (AZD )Z ŠAZDC1 such that ˚(at) D

atC1 for all t 2 Z. Let XHist :D XHist(˚) � AZDC1 be the
subshift of all complete histories for ˚ , and let � be the
ZDC1 shift action on XHist; then (XHist; �) is conjugate to
the natural extension of the system (Y;˚; �), where Y :D
˚1(AM) :D

T1
tD1˚

t(AZD ) is the omega-limit set of
˚ . If � 2Meas(AZD ;˚; �), then supp(�) � Y, and � ex-
tends to a �-invariant measure �̃ on XHist in the obvious
way.

Let Ev D (v0; v1; : : : ; vD) 2 R �RD Š RDC1. For any
bounded open subsetB � RDC1 and T > 0, letB(T Ev) :D
fb C tEv;b 2 B and t 2 [0; T]g be the ‘sheared cylin-
der’ in RDC1 with cross-section B and length TjEvj in
the direction Ev, and let B(T Ev) :D B(T Ev)\ ZDC1. Let
XHist

B(TEv) :D
˚
xB(TEv) ; x 2 XHist(˚)

�
. We define

Htop(˚ ;B; Ev) :D lim sup
T!1

1
T
log2[#X

Hist
B(TEv)] ; and

H�(˚ ;B; Ev) :D � lim sup
T!1

1
T

X

x2XHist
B(TEv)

�̃[x] log2(�̃[x]) :

We then define the Ev-directional topological entropy and
Ev-directional�-entropy of ˚ by

htop(˚ ; Ev) :D sup
B�RDC1

open & bounded

htop(˚ ;B; Ev) ; and (8)

h�(˚ ; Ev) :D sup
B�RDC1

open & bounded

h�(˚ ;B; Ev) : (9)

Proposition 70 Let ˚ 2 CA(AZD ) and let � 2

Meas(AZD ;˚; �).
(a) Directional entropy is homogeneous. That is, for

any Ev 2 RDC1 and r > 0, htop(˚; rEv) D r � htop(˚; Ev)
and h�(˚; rEv) D r � h�(˚; Ev).

(b) If Ev D (t; z) 2 Z � ZD, then htop(˚; Ev) D htop(˚ t ı

� z) and h�(˚; Ev) D h�(˚ t ı �z).
(c) There is an extension of the Z � ZD-system (XHist;

˚ ; �) to an R � RD-system (eX; e̊;e�) such that, for
any Ev D (t; Eu) 2 R � RD we have htop(˚; Ev) D
htop(e̊

t
ıe� Eu).

For any � 2 Meas(AZD ;˚; �), there is an extension
�̃ 2 Meas(eX; e̊;e� ) such that for any Ev D (t; Eu) 2
R �RD we have h�(˚; Ev) D h�̃(e̊

t
ıe� Eu).

Proof (a,b) follow from the definition. (c) is Proposi-
tion 2.1 in [109]. �

Remark 71 Directional entropy can actually be defined
for any continuous ZDC1-action on a compact metric
space, and in particular, for any subshift of AZDC1 . The
directional entropy of a CA ˚ is then just the directional
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entropy of the subshift XHist(˚). Proposition 70 holds for
any subshift.

Directional entropy is usually infinite for multidimen-
sional CA (for the same reason that classical entropy
is usually infinite). Thus, most of the analysis has been
for one-dimensional CA. For example, Kitchens and
Schmidt (see Sect. 1 in [72]) studied the directional topo-
logical entropy of one-dimensional linear CA, while Smil-
lie (see Proposition 1.1 in [133]) computed the directional
topological entropy for ECA#184. If ˚ is linear, then the
function Ev 7! htop(˚; Ev) is piecewise linear and convex,
but if ˚ is ECA#184, it is neither.

If Ev has rational entries, then Proposition 70(a,b)
shows that h(˚; Ev) is a rational multiple of the classical
entropy of some composite CA, which can be computed
through classical methods. However, if Ev is irrational, then
h(˚; Ev) is quite difficult to compute using the formulae (8)
and (9), and Proposition 70(c), while theoretically interest-
ing, is not very computationally useful. Can we compute
h(˚; Ev) as the limit of h(˚; Evk) where fEvkg

1
kD1 is a se-

quence of rational vectors tending to Ev? In other words,
is directional entropy continuous as a function of Ev? What
other properties has h(˚; Ev) as a function of Ev?

Theorem 72 Let˚ 2 CA(AZ) and let � 2Meas(AZ;˚).
(a) The functionR2 3 Ev 7! h�(˚; Ev) 2 R is continuous.
(b) Suppose there is some (t; z) 2 N �Z with t � 1,

such that ˚ t ı � z is posexpansive. Then the function
R2 3 Ev 7! htop(˚; Ev) 2 R is convex, and thus, Lips-
chitz-continuous.

(c) However, there exist other ˚ 2 CA(AZ) for which the
functionR2 3 Ev 7! htop(˚; Ev) 2 R is not continuous.

(d) Suppose ˚ has neighborhood [�` : : : r] � Z. If
Ev D (t; x) 2 R2, then let z` :D x � `t and zr :D x C
rt. Let L :D log jAj.

[i] Suppose z` � zr � 0. Then h�(˚ ; Ev) � maxfjz`j;
jzr jg � L. Furthermore:
� If ˚ is right-permutative, and jz`j � jzr j,

then h�(˚ ; Ev) D jzr j � L.
� If ˚ is left-permutative, and jzr j � jz`j, then

h�(˚ ; Ev) D jzr j � L.
[ii] Suppose z` � zr � 0. Then h�(˚ ; Ev) � jzr � z`j � L.

Furthermore, if ˚ is bipermutative in this case,
then h�(˚ ; Ev) D jzr � z`j � L.

Proof (a) is Corollary 3.3 in [109], while (b) is Théo-
rème III.11 and Corollaire III.12, pp. 79–80 in [120].
(c) is Proposition 1.2 in [133].

(d) summarizes the main results of [21]. See also Ex-
ample 6.2 in [99] for an earlier analysis of permutative

CA in the case r D ` D 1; see also Example 6.4 in [12]
and Sect. 1 in Sect. 1 in [72] for the special case when ˚
is linear. �

Remark 73 (a) In fact, the conclusion of Theorem 72(b)
holds as long as ˚ has any posexpansive directions (even
irrational ones). A posexpansive direction is analogous to
an expansive subspace (see Subsect. “Entropy Geometry
and Expansive Subdynamics”), and is part of Sablik’s the-
ory of ‘directional dynamics’ for one-dimensional CA; see
Remark 84(b) below. Using this theory, Sablik has also
shown that h�(˚ ; Ev) D 0 D htop(˚; Ev) whenever Ev is an
equicontinuous direction for ˚ , whereas h�(˚ ; Ev) ¤ 0 ¤
htop(˚; Ev) whenever Ev is a right- or left posexpansive di-
rection for ˚ . See Sect. §III.4.5–Sect. §III.4.6, pp. 86–88
in [120].

(b) Courbage and Kamiński have defined a ‘di-
rectional’ version of the Lyapunov exponents in-
troduced in Subsect. “Lyapunov Exponents”. If
˚ 2 CA(AZ), a 2AZ and Ev D (t; z) 2 N � Z, then
˙
Ev
(˚; a) :D ˙(˚ t ı � z ; a), where ˙ are defined as

in Subsect. “Lyapunov Exponents”. If Ev 2 R2 is irrational,
then the definition of ˙

Ev
(˚; a) is somewhat more subtle.

For any ˚ and a, the function R2 3 Ev 7! ˙
Ev
(˚; a) 2 R is

homogeneous and continuous (see Lemma 2 and Propo-
sition 3 in [22]). If � 2Meas(AZ;˚; �) is �-ergodic, then
˙
Ev
(˚; �) is constant �-almost everywhere, and is related

to h�(˚ ; Ev) through an inequality exactly analogous to
Theorem 69(b); see Theorem 1 in [22].

Cone Entropy For any Ev 2 RDC1, any angle � > 0, and
any N > 0, we define

K(N Ev; �) :D
n
z 2 ZDC1 ; jzj � NjEvj and

z � Ev/jzjjEvj � cos(�)
o
:

Geometrically, this is the set of all ZDC1-lattice points
in a cone of length NjEvj which subtends an angle of 2�
around an axis parallel to Ev, and which has its apex at
the origin. If ˚ 2 CA(AZD ), then let XHist(N Ev; �) :D˚
xK(NEv;�) ; x 2 XHist(˚)

�
. If� 2Meas(AZD ;˚), and �̃ is

the extension of � to XHist, then the cone entropy of (˚;�)
in direction Ev is defined

hcone
� (˚; Ev) :D

� lim
�&0

lim
N!1

1
N

X

x2XHist(NEv;�)

�̃[x] log2(�̃[x]) :

Park [107,108] attributes this concept to Doug Lind. Like
directional entropy, cone entropy can be defined for any
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continuousZDC1-action, and is generally infinite for mul-
tidimensional CA. However, for one-dimensional CA,
Park has proved:

Theorem 74 If ˚ 2 CA(AZ), � 2Meas(AZ;˚) and
Ev 2 R2, then hcone

� (˚; Ev) D h�(˚; Ev).

Proof See Theorem 1 in [108]. �

Entropy Geometry and Expansive Subdynamics

Directional entropy is the one-dimensional version of
a multidimensional ‘entropy density’ function, which was
introduced by Milnor [99] to address the fact that classical
and directional entropy are generally infinite for multidi-
mensional CA.Milnor’s ideas were then extended by Boyle
and Lind [12], using their theory of expansive subdynam-
ics.

Let X �AZDC1 be a subshift, and let � 2Meas(X; �).
For any bounded B � RDC1, let B :D B \ ZDC1, let
XB :D XB, and then define

HX(B) :D log2 jXBj and

H�(B) :D �
X

x2XB

�[x] log2(�[x]) :

The topological entropy dimension dim(X) is the smallest
d 2 [0 : : : DC1] having some constant c > 0 such that, for
any finite B � RDC1, HX(B) � c � diam [B]d . Themea-
surable entropy dimension dim(�) is defined similarly,
only with H� in place of HX. Note that dim(�) � dim(X),
because H�(B) � HX(B) for all B � RDC1.

For any bounded B � RDC1 and ‘scale factor’
s > 0, let sB :D fsb;b 2 Bg. For any radius r > 0, let
(sB)r :D

˚
x 2 RDC1 ; d(x; sB) � r

�
. Define the d-di-

mensional topological entropy density ofB by

hdX(B) :D sup
r>0

lim sup
s!1

HX[(sB)r]/sd : (10)

Define d-dimensional measurable entropy density hd�(B)
similarly, only using H� instead of HX. Note that, for
any d < dim(X) [respectively, d < dim(�)], hdX(B) [resp.
hd�(B)] will be infinite, whereas for for any d > dim(X)
[resp. d > dim(�)], hdX(B) [resp. hd�(B)] will be zero;
hence dim(X) [resp. dim(�)] is the unique value of d for
which the function hdX [resp. hd�] defined in Eq. (10) could
be nontrivial.

Example 75 (a) If d D DC 1, and B is a unit cube cen-
tered at the origin, then hDC1X (B) (resp. hDC1� (B)) is just
the classical (DC1)-dimensional topological (resp. mea-
surable) entropy of X (resp. �) as a (DC1)-dimensional

subshift (resp. random field); see � Entropy in Ergodic
Theory.

(b) However, the most important case for Milnor [99]
(and us) is whenX D XHist(˚) for some˚ 2 CA(AZD ). In
this case, dim(�) � dim(X) � D < DC1. In particular, if
d D 1, then for any Ev 2 RDC1, if B :D

˚
rEv; r 2 [0; 1]

�
,

then h1X(B) D htop(˚ ; Ev) and h1�(B) D h�(˚ ; Ev) are di-
rectional entropies of Subsect. “Directional Entropy”.

For any d 2 [0 : : : DC1], let d be the d-dimensional
Hausdorff measure on RDC1 such that, if P � RDC1

is any d-plane (i. e. a d-dimensional linear subspace of
RDC1), then d restricts to the d-dimensional Lebesgue
measure on P.

Theorem 76 Let X �AZDC1 be a subshift, and let
� 2Meas(X; �). Let d D dim(X) (or dim(�)) and let hd

be hdX (or hd�). LetB;C � RDC1 be compact sets. Then
(a) hd (B) is well-defined and finite.
(b) If B � C then hd (B) � hd (C).
(c) hd (B [C) � hd (B)C hd (C).
(d) hd (BC Ev) D hd (B) for any Ev 2 RDC1.
(e) hd (sB) D sd � hd (B) for any s > 0.
(f) There is some constant c such that hd (B) � cd (B) for

all compact B � RDC1.
(g) If d 2 N , then for any d-plane P � RDC1, there is

some Hd (P) � 0 such that hd (B) D Hd (P) � d (B)
for any compact subsetB � P with d (@B) D 0.

(h) There is a constant Hd
X <1 such that Hd

X(P) � Hd
X

for all d-planesP.

Proof See Theorems 1 and 2 and Corollary 1 in [99], or
see Theorems 6.2, 6.3, and 6.13 in [12]. �
Example 77 Let ˚ 2 CA(AZD ) and let X :D XHist(˚).
If P :D f0g �RD , then HD(P) is the classical D-dimen-
sional entropy of the omega limit set Y :D ˚1(AZD );
heuristically, this measures the asymptotic level of ‘spatial
disorder’ in Y. If P � RDC1 is some other D-plane, then
HD(P) measures some combination of the ‘spatial disor-
der’ of Y with the dynamical entropy of ˚ .

Let d 2 [1 : : : DC1], and let P � RDC1 be a d-plane. For
any r > 0, let P(r) :D fz 2 ZDC1; d(z;P) < rg. We sayP
is expansive for X if there is some r > 0 such that, for any
x; y 2 X, (xP(r) D yP(r)) () (x D y). IfP is spanned by
d rational vectors, then P \ ZDC1 is a rank-d sublattice
L � ZDC1, and P is expansive if and only if the induced
L-action on X is expansive. However, if P is ‘irrational’,
then expansiveness is a more subtle concept; see Sect. 2
in [12] for more information.

If˚ 2 CA(AZD ) andX D XHist(˚), then˚ is quasi-in-
vertible if X admits an expansive D-plane P (this is a nat-
ural extension of Milnor’s (1988; §7) definition in terms of
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‘causal cones’). Heuristically, if we regardZDC1 as ‘space-
time’ (in the spirit of special relativity), thenP can be seen
as ‘space’, and any direction transversal to P can be inter-
preted as the flow of ‘time’.

Example 78 (a) If ˚ is invertible, then it is quasi-invert-
ible, because f0g �RD is an expansiveD-plane (recall that
the zeroth coordinate is time).
(b) Let˚ 2 CA(AZ), so that X �AZ2 . Let˚ have neigh-
borhood [�` : : : r], with �` � 0 � r, and let L � R2 be
a line with slope S through the origin (Fig. 2).

[i] If ˚ is right-permutative, and 0 < S � 1
`C1 , then L

is expansive for X.
[ii] If ˚ is left-permutative, and �1rC1 � S < 0, then L is

expansive for X.
[iii] If ˚ is bipermutative, and �1rC1 � S < 0 or 0 < S �

1
`C1 , thenL is expansive for X.

[iv] If ˚ is posexpansive (see Subsect. “Posexpansive and
Permutative CA”) then the ‘time’ axisL D R � f0g is
expansive for X.

Hence, in any of these cases, ˚ is quasi-invertible. (Pre-
sumably, something similar is true for multidimensional
permutative CA.)

Proposition 79 Let ˚ 2 CA(AZD ), let X D XHist(˚), let
� 2Meas(X; �), and let Hd and Hd

X be as in Theo-
rem 76(g,h).
(a) If HD

X (f0g �RD) D 0, then HD
X D 0.

(b) Let d 2 [1 : : : D], and suppose thatX admits an expan-
sive d-plane. Then:

Ergodic Theory of Cellular Automata, Figure 2
Example 78(b)[ii]: A left permutative CA˚ is quasi-invertible. In this picture, [�` : : : r] D [�1 : : :2], andL is a line of slope �1/3.
If x 2 X and we know the entries of x in a neighborhood ofL, then we can reconstruct the rest of x as shown. Entries aboveL are
directly computed using the local rule of˚ . Entries belowL are interpolated via left-permutativity. In both cases, the reconstruction
occurs in consecutive diagonal lines, whose order is indicated by shading from darkest to lightest in the figure

[i] dim(X) � d;
[ii] There is a constant Hd

� <1 such that Hd
�(P) �

Hd
� for all d-planesP;

[iii] If Hd (P) D 0 for some expansive d-plane P, then
Hd
D 0.

Proof (a) is Corollary 3 in [99], (b)[i] is Corollary 1.4
in [128], and (b)[ii] is Theorem 6.19(2) in [12].

(b)[iii]: See Theorem 6.3(4) in [12] for “Hd
X D 0”.

See Theorem 6.19(1) in [12] for “Hd
� D 0”. �

If d 2 [1 : : : DC1], then a d-frame in RDC1 is a d-tu-
ple F :D (Ev1; : : : ; Evd ), where Ev1; : : : ; Evd 2 RDC1 are lin-
early independent. Let Frame(DC1; d) be the set of all
d-frames in RDC1; then Frame(DC1; d) is an open subset
of RDC1 � � � � �RDC1 :D R(DC1) � d]. Let

Expans(X; d) :D fF 2 Frame(DC1; d) ;
span(F) is expansive for Xg :

Then Expans(X; d) is an open subset of Frame(DC1; d),
by Lemma 3.4 in [12]. A connected component of
Expans(X; d) is called an expansive component for X. For
any F 2 Frame(DC1; d), let [F] be the d-dimensional par-
allelepiped spanned by F, and let hd

X(F) :D hdX([F]) D
Hd
X(span(F)) � 

d ([F]), where the last equality is by The-
orem 76(g). The next result is a partial extension of Theo-
rem 72(b).

Proposition 80 Let X �AZDC1 be a subshift, suppose
d :D dim(X) 2 N, and let C � Expans(X; d) be an expan-
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sive component. Then the function hd
X : C�!R is convex in

each of its d distinct RDC1-valued arguments. Thus, hd
X is

Lipschitz-continuous on C.

Proof See Theorem 6.9(1,4) in [12]. �

For measurable entropy, we can say much more. Recall
that a d-linear form is a function ! : R(DC1)�d�!R which
is linear in each of its d distinct RDC1-valued arguments
and antisymmetric.

Theorem 81 Let X �AZDC1 be a subshift and let
� 2 Meas(X; �). Suppose d :D dim(�) 2 N, and let C �

Expans(X; d) be an expansive component for X. Then there
is a d-linear form ! : R(DC1)�d�!R such that hd

� agrees
with ! on C.

Proof Theorem 6.16 in [12]. �

If Hd
� ¤ 0, then Theorem 81 means that there is

an orthogonal (D C 1 � d)-frame W :D (EwdC1; : : : ; EwDC1)
(transversal to all frames in C) such that, for any d-frame
V :D (Ev1; : : : ; Evd ) 2 C,

hd
�(V) D det(Ev1; : : : ; Evd ; EwdC1; : : : ; EwDC1) : (11)

Thus, the d-plane orthogonal to fEwdC1; : : : ; EwDC1g is the
d-plane which maximizes Hd

� – this is the d-plane mani-
festing the most rapid decay of correlation with distance.
On the other hand, span(W) is the (D C 1 � d)-plane along
which correlations decay the most slowly. Also, if V 2 C,
then Eq. (11) implies that C cannot contain any frame
spanning span(V) with reversed orientation (e. g. an odd
permutation of V), because entropy is nonnegative.

Example 82 Let ˚ 2 CA(AZD ) be quasi-invertible, and
let P be an expansive D-plane for X :D XHist(˚) (see Ex-
ample 78). The D-frames spanning P fall into two expan-
sive components (related by orientation-reversal); let C be
union of these two components. Let � 2Meas(AZD ;˚),
and extend � to a �-invariant measure on X. In this
case, Theorem 81 is equivalent to Theorem 4 in [99],
which says there a vector Ew 2 RDC1 such that, for any
D-frame (Ev1; : : : ; EvD) 2 C, hd

�(F) D
ˇ̌
det(Ev1; : : : ; EvD ; Ew)

ˇ̌
.

Thus, Hd
�(P) is maximized when P is the hyperplane or-

thogonal to Ew. Heuristically, Ew points in the direction of
minimum correlation decay (or maximum ‘causality’) –
the direction which could most properly be called ‘time’
for the MPDS (˚;�).

Theorem 81 yields the following generalization the Varia-
tional Principle:

Theorem 83 Let X �AZDC1 be a subshift and suppose
d :D dim(X) 2 N.

(a) If F 2 Expans(X; d), then there exists � 2Meas(X; �)
such that hd

X(F) D hd
�(F).

(b) Let C � Expans(X; d) be an expansive component for
X. There exists some � 2Meas(X; �) such that hd

X D

hd
� on C if and only if hd

X is a d-linear form on C.

Proof Proposition 6.24 and Theorem 6.25 in [12]. �

Remark 84 (a) If G �AZD is an abelian subgroup shift
and ˚ 2 ECA(G), then XHist(˚) is a subgroup shift of
AZDC1 , which can be viewed as an algebraic ZDC1-ac-
tion (see discussion prior to Proposition 27). In this
context, the expansive subspaces of XHist(˚) have been
completely characterized by Einsiedler et al. (see Theo-
rem 8.4 in [33]). Furthermore, certain dynamical prop-
erties (such as positive entropy, completely positive
entropy, or Bernoullicity) are common amongst all el-
ements of each expansive component of XHist(˚) (see
Theorem 9.8 in [33]) (this sort of ‘commonality’ within
expansive components was earlier emphasized by Boyle
and Lind (see [12])). If XHist(˚) has entropy dimen-
sion 1 (e. g. ˚ is a one-dimensional linear CA), the struc-
ture of XHist(˚) has been thoroughly analyzed by Ein-
siedler and Lind [30]. Finally, if G1 and G2 are subgroup
shifts, and ˚k 2 ECA(Gk ) and �k 2Meas(Gk ;˚; �) for
k D 1; 2, with dim(�1) D dim(�2) D 1, then Einsiedler
andWard [32] have given conditions for the measure-pre-
serving systems (G1; �1;˚1; �) and (G2; �2;˚2; �) to be
disjoint.

(b) Boyle and Lind’s ‘expansive subdynamics’ concerns
expansiveness along certain directions in the space-time
diagram of a CA. Recently, M. Sablik has developed a the-
ory of directional dynamics, which explores other topolog-
ical dynamical properties (such as equicontinuity and sen-
sitivity to initial conditions) along spatiotemporal direc-
tions in a CA; see [120], Chapitre II or [121].

Future Directions andOpen Problems

1. We now have a fairly good understanding of the er-
godic theory of linear and/or ‘abelian’ CA. The next
step is to extend these results to CA with nonlinear
and/or nonabelian algebraic structures. In particular:
(a) Almost all the measure rigidity results of Sub-

sect. “Measure Rigidity in Algebraic CA” are for en-
domorphic CA on abelian group shifts, except for
Propositions 21 and 23. Can we extend these results
to CA on nonabelian group shifts or other permu-
tative CA?

(b) Likewise, the asymptotic randomization results
of Subsect. “Asymptotic Randomization by Lin-
ear Cellular Automata” are almost exclusively
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for linear CA with scalar coefficients, and for
M D ZD �NE . Can we extend these results to
LCA with noncommuting, matrix-valued coeffi-
cients? (The problem is: if the coefficients do
not commute, then the ‘polynomial representation’
and Lucas’ theorem become inapplicable.) Also,
can we obtain similar results for multiplicative CA
on nonabelian groups? (See Remark 41(d).) What
about other permutative CA? (See Remark 41(e).)
Finally, what if M is a nonabelian group? (For ex-
ample, Lind and Schmidt (unpublished) [31] have
recently investigated algebraic actions of the dis-
crete Heisenberg group.)

2. Cellular automata are often seen as models of spa-
tially distributed computation. Meaningful ‘computa-
tion’ could possibly occur when a CA interacts with
a highly structured initial configuration (e. g. a substitu-
tion sequence), whereas such computation is probably
impossible in the roiling cauldron of noise arising from
a mixing, positive entropy measure (e. g. a Bernoulli
measure or Markov random field). Yet almost all the
results in this article concern the interaction of CA
with such mixing, positive-entropy measures. We are
starting to understand the topological dynamics of CA
acting on non-mixing and/or zero-entropy symbolic
dynamical systems, (e. g. substitution shifts, automatic
shifts, regular Toeplitz shifts, and quasisturmian shifts);
see� Dynamics of Cellular Automata in Non-compact
Spaces. However, almost nothing is known about the
interaction of CA with the natural invariant measures
on these systems. In particular:
(a) The invariant measures discussed in Sect. “Invari-

ant Measures for CA” all have nonzero entropy
(see, however, Example 67(c)). Are there any non-
trivial zero-entropy measures for interesting CA?

(b) The results of Subsect. “Asymptotic Randomiza-
tion by Linear Cellular Automata” all concern the
asymptotic randomization of initial measures with
nonzero entropy, except for Remark 41(c). Are
there similar results for zero-entropy measures?

(c) Zero-entropy systems often have an appealing
combinatorial description via cutting-and-stacking
constructions, Bratteli diagrams, or finite state ma-
chines. Likewise, CA admit a combinatorial de-
scription (via local rules). How do these combina-
torial descriptions interact?

3. As we saw in Subsect. “Domains, Defects, and Parti-
cles”, and also in Propositions 48–56, emergent defect
dynamics can be a powerful tool for analyzing the mea-
surable dynamics of CA. Defects in one-dimensional
CA generally act like ‘particles’, and their ‘kinematics’

is fairly well-understood. However, in higher dimen-
sions, defects can be much more topologically compli-
cated (e. g. they can look like curves or surfaces), and
their evolution in time is totally mysterious. Can we de-
velop a theory of multidimensional defect dynamics?

4. Almost all the results about mixing and ergodicity in
Subsect. “Mixing and Ergodicity” are for one-dimen-
sional (mostly permutative) CA and for the uniform
measure on AZ. Can similar results be obtained for
other CA and/or measures onAZ? What about CA in
AZD for D � 2?

5. Let � be a (˚; �)-invariant measure onAM. Proposi-
tion 66 suggests an intriguing correspondence between
certain spectral properties (namely, weak mixing and
discrete spectrum) for the system (AM; �; �) and those
for the system (AM; �;˚). Does a similar correspon-
dence hold for other spectral properties, such as contin-
uous spectrum, Lebesgue spectral type, spectral multi-
plicity, rigidity, or mild mixing?

6. Let X 2AZDC1 be a subshift admitting an expansive
D-plane P � RDC1. As discussed in Subsect. “Entropy
Geometry and Expansive Subdynamics”, if we regard
ZDC1 as ‘spacetime’, then we can treat P as a ‘space’,
and a transversal direction as ‘time’. Indeed, if P is
spanned by rational vectors, then the Curtis–Hedlund–
Lyndon theorem implies that X is isomorphic to the
history shift of some invertible˚ 2 CA(AZD ) acting on
some ˚-invariant subshift Y �AZD (where we em-
bed ZD in P). If P is irrational, then this is not the
case; however, X still seems very much like the his-
tory shift of a spatially distributed symbolic dynamical
system, closely analogous to a CA, except with a con-
tinually fluctuating ‘spatial distribution’ of state infor-
mation, and perhaps with occasional nonlocal interac-
tions. For example, Proposition 79(b)[i] implies that
dim(X) � D, just as for a CA. How much of the theory
of invertible CA can be generalized to such systems?

I will finish with the hardest problem of all. Cellular au-
tomata are tractable mainly because of their homogene-
ity: CA are embedded in a highly regular spatial geometry
(i. e. a lattice or other Cayley digraph) with the same local
rule everywhere. However, many of the most interesting
spatially distributed symbolic dynamical systems are not
nearly this homogeneous. For example:

� CA are often proposed as models of spatially dis-
tributed physical systems. Yet in many such systems
(e. g. living tissues, quantum ‘foams’), the underlying
geometry is not a flat Euclidean space, but a curved
manifold. A good discrete model of such a manifold
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can be obtained through a Voronoi tessellation of suf-
ficient density; a realistic symbolic dynamical model
would be a CA-like system defined on the dual graph
of this Voronoi tessellation.

� As mentioned in question #3, defects in multidimen-
sional CA may have the geometry of curves, surfaces,
or other embedded submanifolds (possibly with vary-
ing nonzero thickness). To model the evolution of such
a defect, we could treat it as a CA-like object whose un-
derlying geometry is an (evolving)manifold, andwhose
local rules (although partly determined by the local rule
of the original CA) are spatially heterogenous (because
they are also influenced by incoming information from
the ambient ‘nondefective’ space).

� The CA-like system arising in question #6 has a D-di-
mensional planar geometry, but the distribution of
‘cells’ within this plane (and, presumably, the local rules
between them) are constantly fluctuating.

More generally, any topological dynamical system on
a Cantor space can be represented as a cellular network:
a CA-like system defined on an infinite digraph, with dif-
ferent local rules at different nodes. Gromov [51] has gen-
eralized the Garden of Eden Theorem 3 to this setting (see
Remark 5(a)). However, other than Gromov’s work, basi-
cally nothing is known about such systems. Can we gener-
alize any of the theory of cellular automata to cellular net-
works? Is it possible to develop a nontrivial ergodic theory
for such systems?
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Glossary

Dynamical system A (discrete time) dynamical system
describes the time evolution of a point in phase space.
More precisely a space X is given and the time evolu-
tion is given by a map T : X ! X. The main interest
is to describe the asymptotic behavior of the trajecto-
ries (orbits) Tn(x), i. e. the evolution of an initial point
x 2 X under the iterates of the map T. More gener-
ally one is interested in obtaining information on the
geometrically complicated invariant sets or measures
which describe the asymptotic behavior.

Fractal geometry Many objects of interest (invariant sets,
invariant measures etc.) exhibit a complicated struc-
ture that is far from being smooth or regular. The aim
of fractal geometry is to study those objects. One of the
main tools is the fractal dimension theory that helps to
extract important properties of geometrically “irregu-
lar” sets.

Definition of the Subject

The connection between fractal geometry and dynamical
system theory is very diverse. There is no unified approach
and many of the ideas arose from significant examples.
Also the dynamical system theory has been shown to have
a strong impact on classical fractal geometry. In this article
there are first presented some examples showing nontriv-
ial results coming from the application of dimension the-
ory. Some of these examples require a deeper knowledge
of the theory of smooth dynamical systems then can be
provided here. Nevertheless, the flavor of these examples
can be understood. Then there is a brief overview of some
of the most developed parts of the application of fractal
geometry to dynamical system theory. Of course a rigor-
ous and complete treatment of the theory cannot be given.
The cautious readermay wish to check the original papers.
Finally, there is an outlook over the most recent develop-
ments. This article is by no meansmeant to be complete. It
is intended to give some of the ideas and results from this
field.

Introduction

In this section some of the aspects of fractal geometry in
dynamical systems are pointed out. Some notions that are
used will be defined later on and I intend only to give a fla-
vor of the applications. The nonfamiliar reader will find
the definitions in the corresponding sections and can re-
turn to this section later. The geometry of many invariant
sets or invariant measures of dynamical systems (includ-
ing attractors, measures defining the statistical properties)

look very complicated at all scales, and their geometry is
impossible to describe using standard geometric tools. For
some important classes of dynamical systems, these com-
plicated structures are intensively studied using notions
of dimension. In many cases it becomes possible to relate
these notions of dimension to other fundamental dynami-
cal characteristics, such as Lyapunov exponents, entropies,
pressure, etc.

On the other hand tools from dynamical systems, espe-
cially from ergodic theory and thermodynamic formalism,
are extremely useful to explore the fractal properties of the
objects in question. This includes dimensions of limit sets
of geometric constructions (the standard Cantor set being
the most famous example), which a priori, are not related
to dynamical systems [46,100]. Many dimension formulas
for asymptotic sets of dynamical systems are obtained by
means of Bowen-type formulas, i. e. as roots of some func-
tionals arising from thermodynamic formalism.

The dimension of a set is a subtle characteristic which
measures the geometric complexity of the set at arbitrar-
ily fine scales. There are many notions of dimension,
and most definitions involve a measurement of geomet-
ric complexity at scale " (which ignores the irregularities
of the set at size less than ") and then considers the limit-
ing measurement as "! 0. A priori (and in general) these
different notions can be different. An important result is
the affirmative solution of the Eckmann–Ruelle conjecture
by Barreira, Pesin and Schmeling [17], which says that for
smooth nonuniformly hyperbolic systems, the pointwise
dimension is almost everywhere constant with respect to
a hyperbolic measure. This result implies that many di-
mension characteristics for the measure coincide.

The deep connection between dynamical systems
and dimension theory seems to have been first discovered
by Billingsley [21] through several problems in number
theory.

Another link between dynamical systems and dimen-
sion theory is through Pesin’s theory of dimension-like
characteristics. This general theory is a unification of many
notions of dimension along withmany fundamental quan-
tities in dynamical system such as entropies, pressure, etc.

However, there are numerous examples of dynamical
systems exhibiting pathological behavior with respect to
fractal geometrical characteristics. In particular higher-di-
mensional systems seem to be as complicated as general
objects considered in geometric measure theory. There-
fore, a clean and unified theory is still not available.

The study of characteristic notions like entropy, ex-
ponents or dimensions is an essential issue in the the-
ory of dynamical systems. In many cases it helps to clas-
sify or to understand the dynamics. Most of these charac-
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teristics were introduced for different questions and con-
cepts. For example, entropy was introduced to distin-
guish nonisomorphic systems and appeared to be a com-
plete invariant for Bernoulli systems (Ornstein). Later, the
thermodynamic formalism (see [107]) introduced new
quantities like the pressure. Bowen [27] and also Ruelle
discovered a remarkable connection between the thermo-
dynamic formalism and the dimension theory for invari-
ant sets. Since then many efforts were taken to find the re-
lations between all these different quantities. It occurred
that the dimension of invariant sets or measures carries
lots of information about the system, combining its com-
binatorial complexity with its geometric complexity. Un-
fortunately it is extremely difficult to compute the dimen-
sion in general. The general flavor is that local divergence
of orbits and global recurrence cause complicated global
behavior (chaos). It is impossible to study the exact (infi-
nite) trajectory of all orbits. One way out is to study the
statistical properties of “typical” orbits by means of an in-
variant measure. Although the underlying system might
be smooth the invariant measures may often be singular.

Preliminaries

Throughout the article the following situation is consid-
ered. Let M be a compact Riemannian manifold without
boundary. On M is acting a dynamical system generated
by a C1C˛ diffeomorphism T : M ! M. The presence of
a dynamical system provides several important additional
tools and methods for the theory of fractal dimensions.
Also the theory of fractal dimensions allows one to draw
deep conclusions about the dynamical system. The impor-
tance and relevance of the study of fractal dimension will
be explained in later sections.

In the next sections some of the most important tools
in the fractal theory of dynamical systems are considered.
The definitions given here are not necessarily the original
definitions but rather the ones which are closer to contem-
porary use. More details can be found in [95].

Some Ergodic Theory

Ergodic theory is a powerful method to analyze statis-
tical properties of dynamical systems. All the following
facts can be found in standard books on ergodic theory
like [103,124].

The main idea in ergodic theory is to relate global
quantities to observations along single orbits. Let us con-
sider an invariantmeasure: �( f�1A) D �(A) for all mea-
surable setsA. Such ameasure “selects” typical trajectories.
It is important to note that the properties vary with the in-

variant measures. Any such invariant measure can be de-
composed into elementary parts (ergodic components).

An invariant measure is called ergodic if for any in-
variant set AD T�1A one has �(A)�(M n A) D 0 (with
the agreement 0 � 1 D 0), i. e. from the measure-theoretic
point of view there are no nontrivial invariant subsets.

The importance of ergodic probability measures (i. e.
�(M) D 1) lies in the following theorem of Birkhoff

Theorem 1 (Birkhoff) Let � be an ergodic probability
measure and ' 2 L1(�). Then

lim
n!1

1
n

n�1X

kD0

'(Tkx) D
Z

M
' d� � � a.e :

Hausdorff Dimension

With Z � RN and s � 0 one defines

mH(s; Z) D lim
ı!0

inf
fBig

�X

i

diam(Bi )s :

sup
i
diam(Bi ) < " and

[

i

Bi � Z
�
:

Note that this limit exists. mH(s; Z) is called the s-di-
mensional outer Hausdorffmeasure of Z. It is immediate
that there exists a unique value s�, called theHausdorff di-
mension of Z, at which mH(s; Z) jumps from1 to 0.

In general it is very hard to find optimal coverings and
hence it is often impossible to compute the Hausdorff di-
mension of a set. Therefore a simpler notion – the lower
and upper Box dimension – was introduced. The differ-
ence to the Hausdorff dimension is that the covering balls
are assumed to have the same radius ". Since then the limit
as "! 0 does not have to exist one arrives at the notion of
the upper and lower dimension.

Dimension of a Measure

Definition 1 Let Z � RN and let� be a probability mea-
sure supported on Z. Define the Hausdorff dimension of
the measure � by

dimH(�) � inf
K�Z : �(K)D1

dimH(K):

Pointwise Dimension

Most invariant sets or measures are not strongly self-sim-
ilar, i. e. the local geometry at arbitrarily fine scales might
look different from point to point. Therefore, the notion
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of pointwise dimension with respect to a Borel probability
measure is defined.

Let � be a Borel probability measure. By B(x; ") the
ball with center x and radius " is denoted. The pointwise
dimension of the measure � at the point x is defined as

d�(x) :D lim
"!0

log�(B(x; "))
log "

if the above limit exists. If d�(x) D d, then for small " the
measure of small balls scales as �(B(x; ")) � "d .

Proposition 1 Suppose � is a probability measure sup-
ported on Z � RN . Then d�(x) D d for � – almost all
x 2 Z implies dimH(�) D d.

One should not take the existence of a local dimension
(even for good measures) for granted. Later on it will be
seen that the spectrum of the pointwise dimension (di-
mension spectrum) is a main object of study in classical
multifractal analysis.

The dimension of a measure or a set of measures is
its geometric complexity. However, under the presence of
a dynamical system one also wants to measure the dynam-
ical (combinatorial) complexity of the system. This leads
to the notion of entropy.

Dimension-Like Characteristics
and Topological Entropy

Pesin’s theory of dimension-like characteristics provides
a unified treatment of dimensions and important dynami-
cal quantities like entropies and pressure. The topological
entropy of a continuous map f with respect to a subset Z
in a metric space (X; �) (in particular X D M – a Rieman-
nian manifold) can be defined as a dimension-like charac-
teristic. For each n 2 N and " > 0, define the Bowen ball
Bn(x; ") D fy 2 X : �(Ti (x); Ti (y)) � " for 0 � i � ng.
Then let

mh(Z; ˛; e; n) :D

lim
n!1

inf

(
X

i

e˛ni : ni > n;
[

i

Bni (x; e) � Z

)

:

This gives rise to an outer measure that jumps from1 to
0 at some value ˛�. This threshold value ˛� is called the
topological entropy of Z (at scale e). However, in many
situations this value does not depend on e. The topological
entropy is denoted by htop(TjZ).

If Z is f – invariant and compact, this definition of
topological entropy coincides with the usual definition of
topological entropy [124].

The entropy h� of a measure � is defined as h� D
inf
˚
htop(TjZ) : �(Z) D 1

�
. For ergodic measures this def-

inition coincides with the Kolmogorov–Sinai entropy
(see [95]).

One has to note that in the definition of entropy met-
ric (“round”) balls are substituted by Bowen balls and the
metric diameter by the “depth” of the Bowen ball. There-
fore, the relation between entropy and dimension is deter-
mined by the relation of “round” balls to “oval” dynamical
Bowen balls. If one understands howmetric balls can be ef-
ficiently used to cover dynamical balls one can use the dy-
namical and relatively easy relation to compute notion of
entropy to determine the dimension. However, in higher
dimensions this relation is by far nontrivial. A heuristic ar-
gument for comparing “round” balls with dynamical balls
is given in Subsect. “The Kaplan–Yorke Conjecture”.

The Pressure Functional

A useful tool in the dimension analysis of dynamical sys-
tems is the pressure functional. It was originally defined by
means of statistical physics (thermodynamic formalism) as
the free energy (or pressure) of a potential ' (see for exam-
ple [107]). However, in this article a dimension-like defi-
nition (see [95]) is more suitable. Again an outer measure
using Bowen balls will be used. Let ' : M ! R be a con-
tinuous function and

mP(Z; ˛; "; n; ') D lim
n!1

inf

(
X

i

exp
�
� ˛ni

C sup
x2Bni (x;")

nX

kD0

'(Tkx)
�)

:

This defines an outer measure that jumps from1 to 0 as ˛
increases.The threshold value ˛� is called the topological
pressure of the potential ' denoted by P('). In many sit-
uations it does not depend on ".

There is also a third way of defining the pressure in
terms of a variational principle (see [124]):

P(') D sup
��invariant

�
h� C

Z

M
' d�

�

Brief Tour Through Some Examples

Before describing the fractal theory of dynamical systems
in more detail some ideas about its role are presented.
The application of dimension theory has many different
aspects. At this point some (but by far not all) important
examples are considered that should give the reader some
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feeling about the importance and wide use of dimension
theory in dynamical system theory.

Dimension of Conformal Repellers:
Ruelle’s Pressure Formula

Computing or estimating a dimension via a pressure for-
mula is a fundamental technique. Explicit properties of
pressure help to analyze subtle characteristics. For exam-
ple, the smooth dependence of the Hausdorff dimension
of basic sets for Axiom- A surface diffeomorphisms on the
derivative of the map follows from smoothness of pres-
sure.

Ruelle proved the following pressure formula for the
Hausdorff dimension of a conformal repeller. A conformal
repeller J is an invariant set T(J) D J D fx 2 M : f nx 2
V8n 2 N and some neighborhood V of J} such that for
any x 2 J the differential DxT D a(x) Isox where a(x) is
a scalar with ja(x)j > 1 and Isox an isometry of the tan-
gent space TxM.

Theorem 2 ([108]) Let T : J ! J be a conformal repeller,
and consider the function t ! P(�t log jDxTj), where P
denotes pressure. Then

P(�s log jDxTj) D 0 () s D dimH(J)

Iterated Function Systems

In fractal geometry one of the most-studied objects are it-
erated function systems, where there are given n contrac-
tions F1; � � � ; Fn ofRd . The unique compact set J fulfilling
J D

S
i Fi(J) is called the attractor of the iterated function

system (see [42]). One question is to evaluate its Hausdorff
dimension. Often (for example under the open set condi-
tion) the attractor J can be represented as the repeller of
a piecewise expanding map T : Rd ! Rd where the Fi are
the inverse branches of the map T. In general it is by far
not trivial to determine the dimension of J or even the di-
mension of a measure sitting on J. The following example
explains some of those difficulties.

Let 1/2 <  < 1 and consider the maps Fi : [0; 1] !
[0; 1] given by F1(x) D x and F2(x) D x C (1 �
). Then the images of F1; F2 have an essential overlap
and J D [0; 1]. If one randomizes this construction in the
way that one applies both maps each with probability 1/2
a probability measure is induced on J. This measure might
be absolute continuous with respect to Lebesgue measure
or not. Already Erdös realized that for some special val-
ues of  (for example for the inverse of the golden mean)
the induced measure is singular. In a breakthrough pa-
per B. Solomyak ([119]) proved that for a.e.  the in-

duced measure is absolutely continuous. A main ingredi-
ent in the proof is a transversality condition in the param-
eter space: the images of arbitrary two random samples
of the (infinite) applications of the maps Fi have to cross
with nonzero speed when the parameter  changes. This
is a general mechanism which allows one to handle more
general situations.

Homoclinic Bifurcations
for Dissipative Surface Diffeomorphisms

Homoclinic tangencies and their bifurcations play
a fundamental role in the theory of dynamical sys-
tems [87,88,89]. Systems with homoclinic tangencies have
a complicated and subtle quasi-local behavior. Newhouse
showed that homoclinic tangencies can persist under small
perturbations, and that horseshoes may co-exist with in-
finitely many sinks in a neighborhood of the homoclinic
orbit and hence the system is not hyperbolic (Newhouse
phenomenon).

Let T� : M2 ! M2 be a smooth parameter family of
surface diffeomorphisms that exhibits for� D 0 an invari-
ant hyperbolic set �0 (horseshoe) and undergoes a ho-
moclinic bifurcation. The Hausdorff dimension of the hy-
perbolic set �0 for T0 determines whether hyperbolic-
ity is the typical dynamical phenomenon near T0 or not.
If dimH�0 < 1, then hyperbolicity is the prevalent dy-
namical phenomenon near f 0. This is not the case if
dimH�0 > 1.

More precisely, letNW� denote the set of nonwan-
dering points of T� in an open neighborhood of �0 after
the homoclinic bifurcation. Let ` denote Lebesgue mea-
sure.

Theorem 3 ([87,88]) If dimH�0 < 1, then

lim
�0!0

`f� 2 [0; �0] : NW� is hyperbolicg
�0

D 1 :

The hyperbolicity co-exists with the Newhouse phenom-
ena for a residual set of parameter values.

Theorem 4 (Palis–Yoccoz) If dimH�0 > 1, then

lim
�0!0

`f� 2 [0; �0] : NW� is hyperbolicg
�0

< 1 :

Some Applications to Number Theory

Sometimes dimension problems in number theory can be
transferred to dynamical systems and attacked using tools
from dynamics.
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Example Diadic expansion of numbers:
Consider a real number expanded in base 2, i. e.

x D
P1

nD1 xn/2
n . Let

Xp D

(

x : lim
n!1

1
n

n�1X

kD0

xk D p

)

:

Borel showed that `(X1/2) D 1, where ` denotes Lebesgue
measure. This result is an easy consequence of the Birkhoff
ergodic theorem applied to the characteristic function of
the digit 1 (which in this simple case is the Strong Law of
Large Numbers for i.i.d. processes).

One can ask how large is the set Xp in general. Eggle-
ston [39] discovered the following wonderful dimension
formula, which Billingsley [21] interpreted in terms of dy-
namics and reproved using tools from ergodic theory.

Theorem 5 ([39]) The Hausdorff dimension of Xp is given
by

dimH(Xp) D (1/ log 2)
�
� p log p� (1� p) log(1� p)

�
:

The underlying dynamical system is E2(x) D 2x mod 1
and the dimension is the dimension of the Bernoulli p
measure. Other cases included that by Rényi who pro-
posed generalization of the base d expansion from integer
base d to noninteger base ˇ. In this case the underlying
dynamical system is the (in general non-Markovian) beta
shift ˇ(x) D ˇx mod 1 studied in [110].

There are many investigations concerning the approx-
imation of real numbers by rationals by using dynamical
methods. The underlying dynamical system in this case
is the Gauss map T(x) D (1/x) mod 1. This map is uni-
formly expanding, but has infinitely many branches.

Example Continued fraction approximation of numbers
Consider the continued fraction expansion of

x 2 [0; 1], i. e.,

x D
1

a1 C
1

a2 C
1

a3 C
1

a4 C
: : :

D [a1; a2; a3; a4; � � � ] ;

and the approximants pn(x)/qn(x) D [a1; a2; : : : ; an]
(i. e. the approximation given by the finite continued frac-
tion after step n).

The set of numbers which admit a faster approximation by
rational numbers is defined as follows. For � � 2, let F�

F� D
n
x 2 [0; 1] :

ˇ̌
ˇ̌x �

p
q

ˇ̌
ˇ̌ �

1
q�

for infinitely many p/q
o
:

It is well known that this set has zero measure for each
� � 2. Jarnik [58] computed the Hausdorff dimension of
F� and showed that dimH(F� ) D 2/� . However, nowa-
days there are methods from dynamical systems which not
only allow unified proofs but also can handle more sub-
tle subsets of the reals defined by some properties of their
continued fraction expansion (see for example [3,105]).

Infinite Iterated Function Systems
and Parabolic Systems

In the previous section a system with infinitely many
branches appeared. This can be regarded as an iterated
function system with infinitely many maps Fi. This sit-
uation is quite general. If one considers a (one-dimen-
sional) system with a parabolic (indifferent) fixed point,
i. e. there is a fixed point where the derivative has absolute
value equal to 1, one often uses an induced system. For this
one chooses nearby the parabolic point a higher iterate of
the map in order to achieve uniform expansion away from
the parabolic point. This leads to infinitely many branches
since the number of iterates has to be increased the closer
the parabolic point is. The main difference to the finite it-
erated function system is that the setting is no longer com-
pact and many properties of the pressure functional are
lost.

Mauldin and Urbański and others (see for exam-
ple [3,75,76,78]) developed a thermodynamic formalism
adapted to the pressure functional for infinite iterated
function systems. Besides noncompactness one of the
main problems is the loss of analyticity (phase transitions)
and convexity of the pressure functional for infinite iter-
ated function systems.

Complex Dynamics

Let T : C ! C be a polynomial and J its Julia set (repeller
of this system). If this set is hyperbolic, i. e. the derivative at
each point has absolute value larger than 1 the study of the
dimension can be related to the study of a finite iterated
function system. However, in the presence of a parabolic
fixed point this leads to an infinite iterated function sys-
tem.

If one considers the coefficients of the polynomial
as parameters one often sees a qualitative change in the



Ergodic Theory: Fractal Geometry E 3021

asymptotic behavior. For example, the classical Mandel-
brodt set for polynomials z2 C c is the locus of values
c 2 C for which the orbit of the origin stays bounded. This
set is well known to be fractal. However, its complete de-
scription is still not available.

Embedology and Computational Aspects of Dimension

Tools from dynamical systems are becoming increasingly
important to study the time evolution of deterministic sys-
tems in engineering and the physical and biological sci-
ences. One of the main ideas is to model a “real world”
system by a smooth dynamical system which possesses
a strange attractor with a natural ergodic invariant mea-
sure. When studying a complicated real world system, one
can measure only a very small number of variables. The
challenge is to reconstruct the underlying attractor from
the time measurement of a scaler quantity. An idealized
measurement is considered as a function h : Mn ! R.

The main tool researchers currently use to reconstruct
the model system is called attractor reconstruction (see
papers and references in [86]). This method is based
on embedding with time delays (see the influential pa-
per [33], where the authors attribute the idea of delay co-
ordinates to Ruelle), where one attempts to reconstruct
the attractor for the model using a single long trajec-
tory. Then one considers the points in RpC1 defined by
(xk ; xkC� ; xkC2� ; : : : ; xkCp� ).

Takens [122] showed that for a smooth T : Mn ! Mn

and for typical smooth h, the mapping ' : Mn ! R2nC1

defined by x ! (h(x); h( f � (x)); � � � ; h( f 2n� (x)) is an em-
bedding. Since the box dimension of the attractor � may
be much less than the dimension of the ambient man-
ifold n, an interesting mathematical question is whether
there exists p < 2nC 1 such that the mapping on the at-
tractor ' : �! Rp defined by x ! (h(x); h( f (x)); : : : ;
h( f p(x)) is 1 � 1? It is known that for a typical smooth h
the mapping ' is 1 � 1 for p > 2 dimB(�) [29].

Denjoy Systems

This section will give some ideas indicating the princi-
ple difficulties that arise in systems with low complexity.
Contrary to hyperbolic systems (each vector in the tangent
space is either contracted or expanded) finer mechanisms
determine the local behavior of the scaling of balls. While
in hyperbolic systems the dynamical scaling of small balls
is exponential in a low-complexity system this scaling is
subexponential and hence the linearization error is of the
samemagnitude. Up to now there is no general dimension
theory for low complexity systems.

A specific example presented here is considered
in [67]. Poincaré showed that to each orientation pre-
serving homeomorphism of the circle S1 D R/Z is asso-
ciated a unique real parameter ˛ 2 [0; 1), called the ro-
tation number, so that the ordered orbit structure of T
is the same as that of the rigid rotation R˛ , where
R˛(t) D (t C ˛) mod 1, provided that ˛ is irrational. Half
a century later, Denjoy [35] constructed examples of C1

diffeomorphisms that are not conjugate (via a homeomor-
phism) to rotations. This was improved later on by Her-
man [55]. In these examples, the minimal set of T is nec-
essarily a Cantor set˝ .

The arithmetic properties of the rotation number have
a strong effect on the properties of T. One area that has
been well understood is the relation between the differen-
tiability of T, the differentiability of the conjugation and
the arithmetic properties of the rotation number. (See, for
example, Herman [55]) Without stating any precise the-
orem, the results differ sharply for Diophantine and for
Liouville rotation numbers (definition follows). Roughly
speaking the conjugating map is always regular for Dio-
phantine rotation numbers while it might be not smooth
at all for Liuoville rotation numbers.

Definition 2 An irrational number ˛ is of Diophantine
class � D �(˛) 2 RC if

kq˛k <
1
q�

has infinitely many solutions in integers q for � < � and
at most finitely many for � > � where k � k denotes the
distance to the nearest integer.

In [67] the effect of the rotation number on the dimension
of˝ is studied. There the main result is

Theorem 6 Assume that 0 < ı < 1 and that ˛ 2 (0; 1)
is of Diophantine class � 2 (0;1). Then an orientation
preserving C1Cı diffeomorphism of the circle with rotation
number ˛ and minimal set˝ı˛ satisfies

dimH˝
ı
˛ �

ı

�
:

Furthermore, these results are sharp, i. e. the standard Den-
joy examples attain the minimum.

Return Times and Dimension

Recently an interesting connection between the pointwise
dimensions, multifractal analysis, and recurrence behavior
of trajectories was discovered [1,11,23]. Roughly speaking,
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given an ergodic probability measure � the return time
asymptotics (as the neighborhood of the point shrinks)
of �-a.e point is determined by the pointwise dimension
of � at this point. The deeper understanding of this rela-
tion would help to get a unified approach to dimensions,
exponents, entropies, recurrence times and correlation de-
cay.

Dimension Theory of Low-Dimensional Dynamical
Systems – Young’s Dimension Formula

In this section a remarkable extension of Ruelle’s dimen-
sion formula by Young [128] for the dimension of a mea-
sure is discussed.

Theorem 7 Let T : M2 ! M2 be a C2 surface diffeomor-
phism and let � be an ergodic measure. Then

dimH(�) D h�( f )
�

1
1
�

1
2

�
;

where 1 � 2 are the two Lyapunov exponents for �.

In [79], Manning and McCluskey prove the following
dimension formula for a basic set (horseshoe) of an
Axiom-A surface diffeomorphism which is a set-version
of Young’s formula.

Theorem 8 Let� be a basic set for a C2 Axiom-A surface
diffeomorphism T : M2 ! M2. Then dimH(�) D s1 C s2,
where s1 and s2 satisfy

P(�s log kDTx jEu
xk) D 0

P(s log kDTx jEs
xk) D 0 :

where Es and Eu are the stable and unstable directions, re-
spectively.

Some Remarks on Dimension
Theory for Low-Dimensional
versus High-Dimensional Dynamical Systems

Unlike lower dimensions (one, two, or conformal re-
pellers), for higher-dimensional dynamical systems there
are no general dimension formulas (besides the Ledrap-
pier–Young formula), and in general dimension theory is
much more difficult. This is due to several problems:

1) The geometry of the Bowen balls differs in a substantial
way from round balls.

2) Number theoretic properties of some scaling rates [104,
106] enter into dimension calculations in ways they do

not in low dimensions (see Subsect. “Iterated Function
Systems”).

3) The dimension theory of sets is often reduced to the
theory of invariant measures. However, there is no
invariant measure of full dimension in general and
measure-theoretic considerations do not apply [79].

4) The stable and unstable foliations for higher dimen-
sional systems are typically not C1 [51,109]. Hence, to
split the system into an expanding and a contracting
part is far more subtle.

Dimension Theory
of Higher-Dimensional Dynamical Systems

Here an example of a hyperbolic attractor in dimension 3
is considered to highlight some of the difficulties. Let 4
denote the unit disc inR2. Let f : S1 �4 ! S1 �4 be of
the form

T(t; x; y) D ('(t);  1(t; x);  2(t; y)) ;

with

0 < max
S1�4

@

@x
 1(t; x) < min

S1�4

@

@y
 2(t; y) <  < 1 :

The limit set

� :D
\

n2N

Tn(S1 �4)

is called the attractor or the solenoid. It is an example of
a structurally stable basic set and is one of the fundamental
examples of a uniformly hyperbolic attractor.

The following result can be proved.

Theorem 9 ([24,52]) For all t, the thermodynamic pres-
sure

P
�
dimH�

s
t log

ˇ̌
ˇ̌ @
@y
 2(t; y)

ˇ̌
ˇ̌
�
D 0 :

In particular, the stable dimension is independent of the sta-
ble section.

In this particular case the invariant axes for strong and
weak contraction split the system smoothly and the dif-
ficulty is to show that the strong contraction is dominated
by the weaker. In particular one has to ensure that effects
as described in Subsect. “Iterated Function Systems” do
not appear. In the general situation this is not the case and
one lacks a similar theorem in the general situation. In par-
ticular, the unstable foliation is not better than Hölder and
does not provide a “nice” coordinate.
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Hyperbolic Measures

Given x 2 M and a vector v 2 TxM the Lyapunov expo-
nent is defined as

�(x; v) D lim
n!1

1
n
log kDxTnvk :

provided this limit exists. For fixed x, the numbers �(x; �)
attain only finitely many values. By ergodicity they are �-
a.e. constant, and the corresponding values are denoted by

�1 � � � � � �p ;

where p D dimM. Denote by s (s stands for stable) the
largest index such that �s < 0.

Definition 3 The invariant ergodic measure � is said to
be hyperbolic if �i ¤ 0 for every i D 1, : : :, p.

The Kaplan–Yorke Conjecture

In this section a heuristic argument for the dimension
of an invariant ergodic measure will be given. This argu-
ment uses a specific cover of a dynamical ball by “round”
balls. These ideas are essentially developed by Kaplan and
Yorke [61] for the estimation of the dimension of an in-
variant set. Their estimates always provide an upper bound
for the dimension. Kaplan and Yorke conjectured that
in typical situations these estimates also provide a lower
bound for the dimension of an attractor. Ledrappier and
Young [72,73] showed that in case this holds for an in-
variant measure, then this measure has to be very special:
an SBR-measure (after Sinai, Ruelle, and Bowen) (an SRB-
measure is a measure that describes the asymptotic behav-
ior for a set of initial points of positive Lebesgue measure
and has absolutely continuous conditional measures on
unstable manifolds).

Consider a small ball B in the phase space. The image
TnB is almost an ellipsoid with axes of length

e�1n ; � � � ; e�pn :

For 1 � i � s, cover TnB by balls of radius e�i n . Then ap-
proximately

exp[�iC1n]
exp[�i n]

: : :
exp[�pn]
exp[�i n]

:

balls are needed for covering. The dimension can be esti-
mated from above by

dimB � �

P
j>i � j

j�i j
C (p � i) :D dimi

L �: (1)

This is the Kaplan–Yorke formula.

General Theory

In this section the dimension theory of higher-dimen-
sional dynamical systems is investigated. Most developed
is this theory for invariantmeasures. There is an important
connection between Lyapunov exponents and the measure
theoretic entropy and dimensions of measures that will be
presented here.

Let � be an ergodic invariant measure. The Oseledec
and Pesin Theory guarantee that local stable manifolds ex-
ist at �-a.e. point. As for the Kaplan–Yorke formula the
idea is to consider the contributions to the entropy and to
the dimension in the directions of �i .

Historically the first connections between exponents
and entropy were discovered byMargulis and Ruelle. They
proved that

h�( f ) � �
sX

iD1

�i

for a C1 diffeomorphism T. Pesin [91] showed that this
inequality is actually an equality if the measure � is es-
sentially the Riemannian volume on unstable manifolds.
Ledrappier and Young [72] showed that this is indeed
a necessary condition. They also provided an exact for-
mula:

Theorem 10 (Ledrappier–Young [72,73]) With d0 D 0
for a C2 diffeomorphism holds

h�( f ) D �
sX

iD1

�i



di � di�1

�

where di are the dimensions of the (conditional) measure on
the ith unstable leaves.

The proof of this theorem is difficult and uses the theory
of nonuniform hyperbolic systems (Pesin theory).

In dimension 1 and 2 the above theorem resembles Ru-
elle’s and Young’s theorems.

The reader should note that the above theorem in-
cludes also the existence of the pointwise dimension along
the stable and unstable direction. Here the question arises
whether this implies the existence of the pointwise dimen-
sion itself.

The Existence of the Pointwise Dimension for
Hyperbolic Measure – the Eckmann–Ruelle Conjecture

In [17], Barreira, Pesin, and Schmeling prove that every
hyperbolic measure has an almost local product structure,
i. e., the measure of a small ball can be approximated by
the product of the stable conditional measure of the sta-
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ble component and the unstable conditional measure of
the unstable component, up to small exponential error.
This was used to prove the existence of the pointwise di-
mension of every hyperbolic measure almost everywhere.
Moreover, the pointwise dimension is the sum of the con-
tributions from its stable and unstable part. This implies
that most dimension-type characteristics of the measure
(including the Hausdorff dimension, box dimension, and
information dimension) coincide, and provides a rigorous
mathematical justification of the concept of fractal dimen-
sion for hyperbolic measures. The existence of the point-
wise dimension for hyperbolic measures had been conjec-
tured long before by Eckmann and Ruelle.

The hypotheses of this theorem are sharp. Ledrappier
and Misiurewicz [70] constructed an example of a non-
hyperbolic measure for which the pointwise dimension
is not constant a.e. In [101], Pesin and Weiss present an
example of a Hölder homeomorphism with Hölder con-
stant arbitrarily close to one, where the pointwise dimen-
sion for the unique measure of maximal entropy does
not exist a.e. There is also a one-dimensional example by
Cutler [34].

Endomorphisms

The previous section indicates that the dimensional prop-
erties of hyperbolic measures under invariant conditions
for a diffeomorphism are understood. However, par-
tial differential equations often generate only semi-flows
and the corresponding dynamical system is noninvert-
ible. Also, Poincaré sections sometimes introduce singu-
larities. For such dynamical systems the theory of diffeo-
morphisms does not apply. However, the next theorem
allows under some conditions application of this theory.
It essentially rules out similar situations as considered in
Subsect. “Iterated Function Systems”.

Definition 4 A system (possibly with singularities) is al-
most surely invertible if it is invertible on a set of full mea-
sure. This implies that a full measure set of points has
unique forward and backward trajectories.

Theorem 11 (Schmeling–Troubetzkoy [114]) A two-di-
mensional system with singularities is almost surely invert-
ible (w.r.t. an SRB–measure) if and only if Young’s formula
holds.

Multifractal Analysis

A group of physicists [50] suggested the idea of a multi-
fractal analysis.

The Dynamical Characteristic View
of Multifractal Analysis

The aim of multifractal analysis is an attempt to under-
stand the fine structure of the level sets of the fundamental
asymptotic quantities in ergodic theory (e. g., Birkhoff av-
erages, local entropy, Lyapunov exponents). For ergodic
measures these quantities are a.e. constant, however may
depend on the underlying ergodicmeasure. Important ele-
ments of multifractal analysis entail determining the range
of values these characteristics attain, an analysis of the di-
mension of the level sets, and an understanding of the sets
where the limits do not exist. A general concept of mul-
tifractal analysis was proposed by Barreira, Schmeling and
Pesin [16]. An important field of applications of multifrac-
tal analysis is to describe sets of real numbers that have
constraints on their digits or continued fraction expan-
sion.

General Multifractal Formalism

In this section the abstract theory of multifractal analy-
sis is described. Let X;Y be two measurable spaces and
g : X nB! Y be any measurable function where B is
a measurable (possibly empty) subset of X (in the standard
applications Y D R or Y D C). The associatedmultifrac-
tal decomposition of X is defined as

X D B [
[

˛2Y

Kg
˛

where

Kg
˛ :D fx 2 X : g(x) D ˛g

For a given set functionG : 2X ! R themultifractal spec-
trum is defined by

F(˛) :D G(Kg
˛) :

At this point some classical and concrete examples of
this general framework are considered.

The Entropy Spectrum

Let � be an ergodic invariant measure for T : X ! X. If
one sets

gE (x) :D h�(x) 2 Y D R

and

GE (Z) D htop(TjZ)

the associatedmultifractal spectrum f E� (˛) is called the en-
tropy spectrum.
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The Dimension Spectrum

This is the classical multifractal spectrum.
Let � be an invariant ergodic measure on a complete

separable metric space X.
Set

gD(x) :D d�(x) 2 Y D R

and

GD(Z) D dimH Z :

The associated multifractal spectrum f D� (˛) is called the
dimension spectrum.

The Lyapunov Spectrum

Let

gL(x) :D �(x) D lim
n!1

1
n

n�1X

kD0

 (T kx) 2 Y D R

where  (x) D log jDxTj and

GD(Z) D dimH Z or GE (Z) D htop(� jZ) :

The associated multifractal spectra f DL (˛) and f EL (˛) are
called Lyapunov spectra.

It was observed by H. Weiss [126] and Barreira, Pesin
and Schmeling [16] that for conformal repellers

f DL (˛) D f D�h

�
log 2
˛

�
(2)

where the dimension spectrum on the right-hand side is
with respect to the measure of maximal entropy, and

f EL (˛) D f E�D
(dimH� � ˛) (3)

where the entropy spectrum on the right-hand side is with
respect to the measure of maximal dimension.

The following list summarizes the state of the art for
the dynamical characteristic multifractal analysis of dy-
namical systems. The precise statements can be found in
the original papers.

� [102,126] For conformal repellers and Axiom-A sur-
face diffeomorphisms, a complete multifractal analysis
exists for the Lyapunov exponent.

� [16,102,126] Formixing a subshift of finite type, a com-
plete multifractal analysis exists for the Birkhoff aver-
age for a Hölder continuous potential and for the local
entropy for a Gibbs measure with Hölder continuous
potential.

� [12,97] There is a complete multifractal analysis for hy-
perbolic flows.

� [123] There is a generalization of the multifractal anal-
ysis on subshifts with specification and continuous po-
tentials.

� [13,19] There is an analysis of “mixed” spectra like
the dimension spectrum of local entropies and also an
analysis of joint level sets determined by more than one
(measurable) function.

� [105] For the Gauss map (and a class of nonuniformly
hyperbolic maps) a complete multifractal analysis ex-
ists for the Lyapunov exponent.

� [57] A general approach to multifractal analysis for re-
pellers with countably many branches is developed. It
shows in contrary to finitely many branches features of
nonanalytic behavior.

In the first three statements themultifractal spectra are an-
alytic concave functions that can be computed by means
of the Legendre transform of the pressure functional with
respect to a suitable chosen family of potentials. In the re-
maining items this is no longer the case. Analyticity and
convexity properties of the pressure functional are lost.
However, the authors succeeded to provide a satisfactory
theory in these cases.

Multifractal Analysis and Large Deviation Theory

There are deep connections between large deviation the-
ory and multifractal analysis. The variational formula for
pressure is an important tool in the analysis, and can be
viewed (and proven) as a large deviation result [41]. Some
authors use large deviation theory as a tool to effect multi-
fractal analysis.

Future Directions

The dimension theory is fast developing and of great im-
portance in the theory of dynamical systems. In the most
ideal situations (low dimensions and hyperbolicity) a gen-
erally far reaching and powerful theory has been devel-
oped. It uses ideas from statistical physics, fractal geom-
etry, probability theory and other fields.

Unfortunately, the richness of this theory does not
carry over to higher-dimensional systems. However, re-
cent developments have shown that it is possible to ob-
tain a general theory for the dimension of measures. Part
of this theory is the development of the analytic tools of
nonuniformly hyperbolic systems.

Therefore, the dimension theory of dynamical systems
is far from complete. In particular, it is usually difficult to
apply the general theory to concrete examples, for instance
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if one really wants to compute the dimension. The gen-
eral theory does not provide a way to compute the dimen-
sion but gives rather connections to other characteristics.
Moreover, in the presence of neutral directions (zero Lya-
punov exponents) one encounters all the difficulties aris-
ing in low-complexity systems.

Another important open problem is to understand the
dimension theory of invariant sets in higher-dimensional
spaces. One waywould be to relate the dimension of sets to
the dimension of measures. Such a connection is not clear.
The reason is that most systems do not exhibit a measure
whose dimension coincides with the dimension of its sup-
port (invariant set). But there are some reasons to conjec-
ture that any compact invariant set of an expanding map
in any dimension carries a measure of maximal dimension
(see [48,63]). If this conjecture is true one obtains an in-
variant measure whose unstable dimension coincides with
the unstable dimension of the invariant set. There is also
a measure of maximal stable dimension. Combining these
two measures one could establish an analogous theory for
invariant sets as for invariant measures.

Last but not least one has to mention the impact
of the dimension theory of dynamical systems on other
fields. This new point of view makes in many cases the
posed problems more tractable. This is illustrated in ex-
amples from number theory, geometric limit construc-
tions and others. The applications of the dimension the-
ory of dynamical systems to other questions seem to be
unlimited.
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Glossary

Diophantine approximation Diophantine approxima-
tion refers to approximation of real numbers by ratio-
nal numbers, or more generally, finding integer points
at which some (possibly vector-valued) functions at-
tain values close to integers.

Metric number theory Metric number theory (or, specif-
ically, metric Diophantine approximation) refers to
the study of sets of real numbers or vectors with pre-
scribed Diophantine approximation properties.

Homogeneous spaces A homogeneous space G/� of
a group G by its subgroup � is the space of cosets
fg� g. When G is a Lie group and � is a discrete sub-
group, the space G/� is a smooth manifold and locally
looks like G itself.

Lattice; unimodular lattice A lattice in a Lie group is
a discrete subgroup of finite covolume; unimodular
stands for covolume equal to 1.

Ergodic theory The study of statistical properties of or-
bits in abstract models of dynamical systems.

Hausdorff dimension Anonnegative number attached to
a metric space and extending the notion of topolog-
ical dimension of “sufficiently regular” sets, such as
smooth submanifolds of real Euclidean spaces.

Definition of the Subject

The theory of Diophantine approximation, named after
Diophantus of Alexandria, in its simplest set-up deals
with the approximation of real numbers by rational num-
bers. Various higher-dimensional generalizations involve
studying values of linear or polynomial maps at integer
points. Often a certain “approximation property” is fixed,
and one wants to characterize the set of numbers (vectors,
matrices) which share this property, by means of certain
measures (Lebesgue, or Hausdorff, or some other interest-
ing measures). This is usually referred to as metric Dio-
phantine approximation.

The starting point for the theory is an elementary fact
that Q, the set of rational numbers, is dense in R, the
reals. In other words, every real number can be approxi-
mated by rationals: for any y 2 R and any " > 0 there ex-
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ists p/q 2 Q with

jy � p/qj < " : (1)

To answer questions like “how well can various real num-
bers be approximated by rational numbers? i. e., how small
can " in (1) be chosen for varying p/q 2 Q?”, a natural
approach has been to compare the accuracy of the ap-
proximation of y by p/q to the “complexity” of the latter,
which can be measured by the size of its denominator q
in its reduced form. This seemingly simple set-up has led
to introducing many important Diophantine approxima-
tion properties of numbers/vectors/matrices, which show
up in various fields of mathematics and physics, such as
differential equations, KAM theory, transcendental num-
ber theory.

Introduction

As the first example of refining the statement about the
density of Q in R, consider a theorem by Kronecker stat-
ing that for any y 2 R and any c > 0, there exist infinitely
many q 2 Z such that

jy � p/qj < c/jqj i. e. jqy � pj < c (2)

for some p 2 Z. A comparison of (1) and (2) shows that
it makes sense to multiply both sides of (1) by q, since in
the right hand side of (2) one would still be able to get very
small numbers. In other words, approximation of y by p/q
translates into approximating integers by integer multiples
of y.

Also, if y is irrational, (p; q) can be chosen to be rela-
tively prime, i. e. one gets infinitely many different rational
numbers p/q satisfying (2). However if y 2 Q the latter is
no longer true for small enough c. Thus it seems to bemore
convenient to talk about pairs (p; q) rather than p/q 2 Q,
avoiding a necessity to consider the two cases separately.

At this point it is convenient to introduce the follow-
ing central definition: if  is a function N ! RC and
y 2 R, say that y is -approximable (notation: y 2W ( ))
if there exist infinitely many q 2 N such that

jqy � pj <  (q) (3)

for some p 2 Z. Because of Kronecker’s Theorem, it is nat-
ural to assume that  (x)! 0 as x !1. Often  will be
assumed non-increasing, although many results do not re-
quire monotonicity of  .

One can similarly consider a higher-dimensional ver-
sion of the above set-up. Note that y 2 R in the above for-
mulas plays the role of a linear map from R to another
copy of R, and one asks how close values of this map

at integers are from integers. It is natural to generalize it
by taking a linear operator Y from Rn to Rm for fixed
m; n 2 N , that is, an m � n-matrix (interpreted as a sys-
tem ofm linear forms Yi onRn). We will denote by Mm;n
the space of m � n matrices with real coefficients. For  
as above, one says that Y 2 Mm;n is  -approximable (no-
tation: Y 2Wm;n( )) if there are infinitely many q 2 Zn

such that

kYqC pk �  (kqk) (4)

for some p 2 Zm . Here k � k is the supremum norm onRk

given by kyk D max1�i�k jyi j. (This definition is slightly
different from the one used in [58], where powers of norms
were considered).

Traditionally, one of the main goals of metric Dio-
phantine approximation has been to understand how big
the sets Wm;n( ) are for fixed m; n and various func-
tions  . Of course, (4) is not the only interesting condi-
tion that can be studied; various modifications of the ap-
proximation properties can also be considered. For exam-
ple the Oppenheim Conjecture, now a theorem of Mar-
gulis [69] and a basis for many important recent develop-
ments [22,34,35], states that indefinite irrational quadratic
forms can take arbitrary small values at integer points; Lit-
tlewood’s conjecture, see (18) below, deals with a similar
statement about products of linear forms. See the article
� Ergodic Theory: Rigidity by Nitica and surveys [32,70]
for details.

We remark that the standard tool for studying Dio-
phantine approximation properties of real numbers (m D
n D 1) is the continued fraction expansion, or, equiva-
lently, the Gauss map x 7! 1/x mod 1 of the unit inter-
val, see [49]. However the emphasis of this survey lies in
higher-dimensional theory, and the dynamical system de-
scribed below can be thought of as a replacement for the
continued fraction technique applicable in the one-dimen-
sional case. Additional details about interactions between
ergodic theory and number theory can be found in the
article by Nitica mentioned above, in � Ergodic Theory:
Recurrence by Frantzikinakis and McCutcheon and� Er-
godic Theory: Interactions with Combinatorics and Num-
ber Theory byWard, as well as in the survey papers [32,33,
50,58,66,70,71].

Here is a brief outline of the rest of the arti-
cle. In the next section we survey basic results, some
classical, some obtained relatively recently, in metric
Diophantine approximation. Sect. “Connection with Dy-
namics on the Space of Lattices” is devoted to a de-
scription of the connection between Diophantine approx-
imation and dynamics, specifically flows on the space of
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lattices. In Sect. “Diophantine Approximation with De-
pendent Quantities: The Set-Up” and Sect. “Further Re-
sults”, we specialize to the set-up of Diophantine approx-
imation on manifolds, or, more generally, approximation
properties of vectors with respect to measures satisfying
some natural conditions, and show how applications of
homogeneous dynamics contributed to important recent
developments in the field. Sect. “Future Directions” men-
tions several open questions and directions for further
investigation.

Basic Facts

General references for this section: [17,80].
The simplest choice for functions  happens to be

the following: let us denote  c;v(x) D cx�v . It was shown
by Dirichlet in 1842 that with the choice c D 1 and
v D n/m, all Y 2 Mm;n are  -approximable. Moreover,
Dirichlet’s Theorem states that for any Y 2 Mm;n and
for any t > 0 there exist q D (q1; : : : ; qn) 2 Zn X f0g and
p D (p1; : : : ; pm) 2 Zm satisfying the following system of
inequalities:

kYq � pk < e�t/m and kqk � et/n : (5)

From this it easily follows thatWm;n( 1;n/m) D Mm;n . In
fact, it is this paper of Dirichlet which gave rise to his
box principle. Later another proof of the same result was
given by Minkowski. The constant c D 1 is not optimal:
the smallest value of c for whichW1;1( c;1) D R is 1/

p
5,

and the optimal constants are not known in higher dimen-
sions, although some estimates can be given [80].

Systems of linear forms which do not belong to
Wm;n( c;n/m) for some positive c are called badly approx-
imable; that is, we set

BAm;n
def
D Mm;n X[c>0Wm;n( c;n/m) :

Their existence in arbitrary dimensions was shown by Per-
ron. Note that a real number y (m D n D 1) is badly ap-
proximable if and only if its continued fraction coefficients
are uniformly bounded. It was proved by Jarnik [46] in the
case m D n D 1 and by Schmidt in the general case [78]
that badly approximable matrices form a set of full Haus-
dorff dimension: that is, dim(BAm;n) D mn.

On the other hand, it can be shown that each of the sets
Wm;n( c;n/m) for any c > 0 has full Lebesgue measure,
and hence the complement BAm;n to their intersection has
measure zero. This is a special case of a theorem due to
Khintchine [48] in the case n D 1 and to Groshev [42] in
full generality, which gives the precise condition on the
function  under which the set of -approximable matri-
ces has full measure. Namely, if  is non-increasing (this

assumption can be removed in higher dimensions but not
for n D 1, see [29]), then -almost no (resp. -almost ev-
ery) Y 2 Mm;n is  -approximable, provided the sum

1X

kD1

kn�1 (k)m (6)

converges (resp. diverges). (Here and hereafter  stands
for Lebesgue measure). This statement is usually referred
to as the Khintchine–Groshev Theorem. The convergence
case of this theorem follows in a straightforward man-
ner from the Borel–Cantelli Lemma, but the divergence
case is harder. It was reproved and sharpened in 1960 by
Schmidt [76], who showed that if the sum (6) diverges,
then for almost all Y the number of solutions to (4) with
kqk � N is asymptotic to the partial sum of the series (6)
(up to a constant), and also gave an estimate for the error
term.

A special case of the convergence part of the theorem
shows that Wm;n( 1;v ) has measure zero whenever v >
n/m. Y is said to be very well approximable if it belongs to
Wm;n( 1;v) for some v > n/m. That is,

VWAm;n
def
D [v>n/mWm;n( 1;v) :

More specifically, let us define the Diophantine exponent
!(Y) of Y (sometimes called “the exact order” of Y) to be
the supremum of v > 0 for which Y 2Wm;n( 1;v). Then
!(Y) is always not less than n/m, and is equal to n/m for
Lebesgue-a.e.Y ; in fact, VWAm;n D fY 2 Mm;n : !(Y) >
n/mg.

The Hausdorff dimension of the null setsWm;n( 1;v )
was computed independently by Besicovitch [14] and
Jarnik [45] in the one-dimensional case and by Dod-
son [26] in general: when v > n/m, one has

dim
�
Wm;n( 1;v )


D (n � 1)m C

mC n
v C 1

: (7)

See [27] for a nice exposition of ideas involved in the proof
of both the aforementioned formula and the Khintchine–
Groshev Theorem.

Note that it follows from (7) that the null set VWAm;n
has full Hausdorff dimension. Matrices contained in the
intersection
\

v
Wm;n( 1;v) D fY 2 Mm;n : !(Y) D1g

are called Liouville and form a set of Hausdorff dimension
(n � 1)m, that is, to the dimension of Y for which Yq 2 Z
for some q 2 Zn X f0g (the latter belong toWm;n( ) for
any positive  ).
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Note also that the aforementioned properties be-
have nicely with respect to transposition; this is de-
scribed by the so-called Khintchine’s Transference Prin-
ciple (Chap. V in [17]). For example, Y 2 BAm;n if and
only if YT 2 BAn;m , and Y 2 VWAm;n if and only if YT 2

VWAn;m . In particular, many problems related to approx-
imation properties of vectors (n D 1) and linear forms
(m D 1) reduce to one another.

We refer the readers to [43] and [8] for very detailed
and comprehensive recent accounts of various further as-
pects of the theory.

Connectionwith Dynamics on the Space of Lattices

General references for this section: [4,86].
Interactions between Diophantine approximation and

the theory of dynamical systems has a long history. Al-
ready in Kronecker’s Theorem one can see a connection.
Indeed, the statement of the theorem can be rephrased
as follows: the points on the orbit of 0 under the rota-
tion of the circle R/Z by y approach the initial point 0
arbitrarily closely. This is a special case of the Poincare
Recurrence Theorem in measurable dynamics. And, like-
wise, all the aforementioned properties of Y 2 Mm;n can
be restated in terms of recurrence properties of the Zn-
action on the m-dimensional torus Rm/Zm given by
x 7! Yx mod Zm . In other words, fixing Y gives rise to
a dynamical system in which approximation properties
of Y show up.

However the theme of this section is a different dy-
namical system, whose phase space is (essentially) the
space of parameters Y , and which can be used to read
the properties of Y from the behavior of the associated
trajectory.

It has been known for a long time (see [81] for a histor-
ical account) that Diophantine properties of real numbers
can be coded by the behavior of geodesics on the quotient
of the hyperbolic plane by SL2(Z). In fact, the latter flow
can be viewed as the suspension flow of the Gauss map
mentioned at the end of Sect. “Introduction”. There have
been many attempts to construct a higher-dimensional
analogue of the Gauss map so that it captures all the fea-
tures of simultaneous approximation, see [47,63,65] and
references therein. On the other hand, it seems to be more
natural and efficient to generalize the suspension flow it-
self, and this is where one needs higher rank homogeneous
dynamics.

As was mentioned above, in the basic set-up of simul-
taneous Diophantine approximation one takes a system
of m linear forms Y1; : : : ;Ym on Rn and looks at the val-
ues of jYi(q)C pi j; pi 2 Z, when q D (q1; : : : ; qn) 2 Zn

is far from 0. The trick is to put together

Y1(q)C p1; : : : ;Ym(q)C pm and q1; : : : ; qn ;

and consider the collection of vectors
� �

YqC p
q

�ˇˇ̌
ˇ p 2 Zm ; q 2 Zn

�
D LYZk

where k D mC n and

LY
def
D

�
Im Y
0 In

�
; Y 2 Mm;n : (8)

This collection is a unimodular lattice inRk , that is, a dis-
crete subgroup ofRk with covolume 1. Our goal is to keep
track of vectors in such a lattice having small projections
onto the first m components of Rk and big projections
onto the last n components. This is where dynamics comes
into the picture. Denote by gt the one-parameter subgroup
of SLk(R) given by

gt D diag(et/m ; : : : ; et/m„ ƒ‚ …
mtimes

; e�t/n ; : : : ; e�t/n„ ƒ‚ …
ntimes

) : (9)

The vectors in the lattice LYZk are moved by the action
of gt , t > 0, and a special role is played by the moment t
when the “small” and “big” projections equalize.

That is, one is led to consider a new dynamical system.
Its phase space is the space of unimodular lattices in Rk ,
which can be naturally identified with the homogeneous
space

˝k
def
D G/�; where G D SLk(R) and � D SLk(Z) ;

(10)

and the action is given by left multiplication by elements
of the subgroup (9) of G, or perhaps other subgroups
H � G. Study of such systems has a rich history; for ex-
ample, they are known to be ergodic and mixing when-
ever H is unbounded [74]. What is important in this par-
ticular case is that the space ˝k happens to be noncom-
pact, and its structure at infinity is described via Mahler’s
Compactness Criterion, see Chap. V in [4]: a sequence
of lattices giZk goes to infinity in ˝k () there ex-
ists a sequence fvi 2 Zk X f0gg such that gi (vi)! 0 as
i !1. Equivalently, for " > 0 consider a subset K" of
˝k consisting of lattices with no nonzero vectors of norm
less than "; then all the sets K" are compact, and ev-
ery compact subset of ˝k is contained in one of them.
Moreover, one can choose a metric on ˝k such that
dist(�;Zk) is, up to a uniform multiplicative constant,
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equal to � logminv2�Xf0g kvk (see [25]); then the length
of the smallest nonzero vector in a lattice� will determine
how far away is this lattice in the “cusp” of˝k.

Using Mahler’s Criterion, it is not hard to show that
Y 2 BAm;n if and only if the trajectory

fgtLYZk : t 2 RCg (11)

is bounded in ˝k. This was proved by Dani [20] in 1985,
and later generalized in [57] to produce a criterion for Y
to be  -approximable for any non-increasing function  .
An important special case is a criterion for a system of lin-
ear forms to be very well approximable: Y 2 VWAm;n if
and only if the trajectory (11) has linear growth, that is,
there exists a positive � such that dist(gt LYZk ;Zk) > � t
for an unbounded set of t > 0.

This correspondence allows one to link various Dio-
phantine and dynamical phenomena. For example, from
the results of [55] on abundance of bounded orbits on
homogeneous spaces one can deduce the aforementioned
theorem of Schmidt [78]: the set BAm;n has full Hausdorff
dimension. And a dynamical Borel–Cantelli Lemma estab-
lished in [57] can be used for an alternative proof of the
Khintchine–Groshev Theorem; see also [87] for an ear-
lier geometric approach. Note that both proofs are based
on the following two properties of the gt-action: mix-
ing, which forces points to return to compact subsets and
makes preimages of cusp neighborhoods quasi-indepen-
dent, and hyperbolicity, which implies that the behavior
of points on unstable leaves is generic. The latter is impor-
tant since the orbits of the group fLYZk : Y 2 Mm;ng are
precisely the unstable leaves with respect to the gt-action.

We note that other types of Diophantine problems,
such as conjectures of Oppenheim and Littlewood men-
tioned in the previous section, can be reduced to state-
ments involving ˝k by means of the same principle:
Mahler’s Criterion is used to relate small values of some
function at integer points to excursions to infinity in ˝k
of orbit of the stabilizer of this function.

Other important and useful recent applications of ho-
mogeneous dynamics to metric Diophantine approxima-
tion are related to the circle of ideas roughly called “Dio-
phantine approximation with dependent quantities” (ter-
minology borrowed from [84]), to be surveyed in the next
two sections.

Diophantine Approximation
with Dependent Quantities: The Set-Up

General references for this section: [12,84].
Here we restrict ourselves to Diophantine properties

of vectors in Rn . In particular, we will look more closely

at the set of very well approximable vectors, which we will
simply denote by VWA, dropping the subscripts. In many
cases it does not matter whether one works with row or
column vectors, in view of the duality remark made at the
end of Sect. “Basic Facts”.

We begin with a non-example of an application of dy-
namics to Diophantine approximation: a celebrated and
difficult theorem which currently, to the best of the au-
thor’s knowledge, has no dynamical proof. Suppose that
y D (y1; : : : ; yn) 2 Rn is such that each yi is algebraic and
1; y1; : : : ; yn are linearly independent over Q. It was es-
tablished by Roth for n D 1 [75] and then generalized to
arbitrary n by Schmidt [79], that y as above necessarily be-
longs to the complement of VWA. In other words, vectors
with very special algebraic properties happen to follow the
behavior of a generic vector inRn .

We would like to view the above example as a special
case of a general class of problems.Namely, suppose we are
given a Radon measure � on Rn . Let us say that � is ex-
tremal [85] if �-a.e. y 2 Rn is not very well approximable.
Further, define the Diophantine exponent !(�) of � to be
the �-essential supremum of the function !(�); in other
words,

!(�) def
D sup

˚
vj�

�
W ( 1;v)


> 0

�
:

Clearly it only depends on the measure class of �. If � is
naturally associated with a subsetM of Rn supporting �
(for example, ifM is a smooth submanifold of Rn and �
is the measure class of the Riemannian volume onM, or,
equivalently, the pushforward f� of  by a smooth map f
parametrizingM), one defines the Diophantine exponent
!(M) of M to be equal to that of �, and says that M is
extremal if f(x) is not very well approximable for -a.e. x.

Then !(�) � n for any �, and !() D !(Rn) is equal
to n. The latter justifies the use of the word “extremal”:
� is extremal if !(�) is equal to n, i. e. attains the small-
est possible value. The aforementioned results of Roth
and Schmidt then can be interpreted as the extremality of
atomic measures supported on algebraic vectors without
rational dependence relations.

Historically, the first measure (other than ) to be con-
sidered in the set-up described above was the pushforward
of  by the map

f(x) D (x; x2; : : : ; xn) : (12)

The extremality of f� for f as above was conjectured in
1932 by K. Mahler [67] and proved in 1964 by Sprind-
žuk [82,83]. It was important for Mahler’s study of tran-
scendental numbers: this result, roughly speaking, says
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that almost all transcendental numbers are “not very al-
gebraic”. At about the same time Schmidt [77] proved
the extremality of f� when f : I! R2, I � R, is C3 and
satisfies
ˇ̌
ˇ̌ f
0
1(x) f 02(x)
f 001 (x) f 002 (x)

ˇ̌
ˇ̌ ¤ 0 for -a.e. x 2 I ;

in other words, the curve parametrized by f has nonzero
curvature at almost all points. Since then, a lot of atten-
tion has been devoted to showing that measures f� are
extremal for other smooth maps f.

To describe a broader class of examples, recall the fol-
lowing definition. Let x 2 Rd and let f D ( f1; : : : ; fn) be
a Ck map from a neighborhood of x to Rn . Say that f
is nondegenerate at x if Rn is spanned by partial deriva-
tives of f at x up to some order. Say that f is nonde-
generate if it is nondegenerate at -a.e. x. It was con-
jectured by Sprindžuk [84] in 1980 that f� for real an-
alytic nondegenerate f are extremal. Many special cases
were established since then (see [12] for a detailed ex-
position of the theory and many related results), but the
general case stood open until the mid-1990s [56], when
Sprindžuk’s conjecture was proved using the dynamical
approach (later Beresnevich [6] succeeded in establishing
and extending this result without use of dynamics). The
proof in [56] uses the correspondence outlined in the pre-
vious section plus a measure estimate for flows on the
space of lattices which is described below.

In the subsequent work the method of [56] was
adapted to a much broader class of measures. To define it
we need to introduce some more notation and definitions.
If x 2 Rd and r > 0, denote by B(x; r) the open ball of ra-
dius r centered at x. If B D B(x; r) and c > 0, cB will de-
note the ball B(x; cr). For B � Rd and a real-valued func-
tion f on B, let

k f kB
def
D sup

x2B
j f (x)j :

If � is a measure on Rd such that �(B) > 0, define
k f k�;B

def
Dk f kB\ supp � ; this is the same as the L1(�)-norm

of f jB if f is continuous and B is open. If D > 0 and
U � Rd is an open subset, let us say that � is D-Fed-
erer on U if for any ball B � U centered at supp � one
has �(3B)

�(B) < D whenever 3B � U . This condition is often
called “doubling” in the literature. See [54,72] for exam-
ples and references. � is called Federer if for �-a.e. x 2 Rd

there exist a neighborhood U of x and D > 0 such that �
is D-Federer on U.

Given C; ˛ > 0, open U � Rd and a measure � on U,
a function f : U ! R is called (C; ˛)-good on U with re-
spect to � if for any ball B � U centered in supp � and any

" > 0 one has

�
�
fx 2 B : j f (x)j < "g


� C

�
"

k f k�;B

�˛
�(B) : (13)

This condition was formally introduced in [56] for � be-
ing Lebesgue measure, and in [54] for arbitrary �. A ba-
sic example is given by polynomials, and the upshot of the
above definition is the formalization of a property needed
for the proof of several basic facts [19,21,68] about poly-
nomial maps into the space of lattices.

In [54] a strengthening of this property was consid-
ered: f was called absolutely (C; ˛)-good on U with respect
to � if for B and " as above one has

�
�
fx 2 B : j f (x)j < "g


� C

�
"

k f kB

�˛
�(B) : (14)

There is no difference between (13) and (14) when � has
full support, but it turns out to be useful for describing
measures supported on proper (e. g. fractal) subsets ofRd .

Now suppose that we are given a measure � on
Rd , an open U � Rd with �(U) > 0 and a map f D
( f1; : : : ; fn) : Rd ! Rn . Following [62], say that a pair
(f; �) is (absolutely) good on U if any linear combination of
1; f1; : : : ; fn is (absolutely) (C; ˛)-good on U with respect
to �. If for �-a.e.X there exists a neighborhood U of X and
C; ˛ > 0 such that � is (absolutely) (C; ˛)-good on U, we
will say that the pair (f; �) is (absolutely) good.

Another relevant notion is the nonplanarity of (f; �).
Namely, (f; �) is said to be nonplanar if whenever B is
a ball with �(B) > 0, the restrictions of 1; f1; : : : ; fn to
B \ supp � are linearly independent over R; in other
words, f(B \ supp �) is not contained in any proper affine
subspace of Rn . Note that absolutely good implies both
good and nonplanar, but the converse is in general not
true.

Many examples of (absolutely) good and nonplanar
pairs (f; �) can be found in the literature. Already the case
n D d and f D Id is very interesting. A measure � on Rn

is said to be friendly (resp., absolutely friendly) if and only
if it is Federer and the pair (Id; �) is good and nonplanar
(resp., absolutely good). See [54,88,89] for many examples.
An important class of measures is given by limit measures
of irreducible system of self-similar or self-conformal con-
tractions satisfying the Open Set Condition [44]; those are
shown to be absolutely friendly in [54]. The prime exam-
ple is themiddle-third Cantor set on the real line. The term
“friendly” was cooked up as a loose abbreviation for “Fed-
erer, nonplanar and decaying”, and later proved to be par-
ticularly friendly in dealing with problems arising in met-
ric number theory, see e. g. [36].
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Also let us say that a pair (f; �) is nondegenerate if f is
nondegenerate at �-a.e. X. When � is Lebesgue measure
on Rd , it is proved in Proposition 3.4 in [56], that a non-
degenerate (f; �) is good and nonplanar. The same conclu-
sion is derived in Proposition 7.3 in [54], assuming that �
is absolutely friendly. Thus volume measures on smooth
nondegenerate manifolds are friendly, but not absolutely
friendly.

It turns out that all the aforementioned examples of
measures can be proved to be extremal by a generalization
of the argument from [56]. Specifically, let � be a Federer
measure on Rd , U an open subset of Rd , and f : U ! Rn

a continuous map such that the pair (f; �) is good and non-
planar; then f�� is extremal. This can be derived from the
Borel–Cantelli Lemma, the correspondence described in
the previous section, and the following measure estimate:
if �, U and f are as above, then for �-a.e. x0 2 U there ex-
ists a ball B � U centered at x0 and C̃; ˛ > 0 such that for
any t 2 RC and any " > 0,

�
�˚
x 2 B : gtLf(x)ZnC1 … K"

�
< C̃"˛ : (15)

Here gt is as in (9) with m D 1 (assuming that the row
vector viewpoint is adopted). This is a quantitative way
of saying that for fixed t, the “flow” x 7! gtLf(x)ZnC1,
B! ˝nC1, cannot diverge, and in fact must spend a big
(uniformly in t) proportion of time inside compact setsK".

The inequality (15) is derived from a general “quan-
titative non-divergence” estimate, which can be thought
of a substantial generalization of theorems of Margulis
and Dani [19,21,68] on non-divergence of unipotent flows
on homogeneous spaces. One of its most general ver-
sions [54] deals with a measure � on Rd , a continuous
map h : eB! G, whereeB is a ball inRd centered at supp �
and G is as in (10). To describe the assumptions on h,
one needs to employ the combinatorial structure of lat-
tices in Rk , and it will be convenient to use the follow-
ing notation: if V is a nonzero rational subspace of Rk

and g 2 G, define `V (g) to be the covolume of g(V \ Zk)
in gV . Then, given positive constants C;D; ˛, there ex-
ists C1 D C1(d; k;C; ˛;D) > 0 with the following prop-
erty. Suppose � isD-Federer oneB, 0 < � � 1, and h is such
that for each rational V � Rk

(i) `V ı h is (C; ˛)-good on B̃ with respect to �, and
(ii) k`V ı hk�;B � �, where B D 3�(k�1)B̃. Then
(iii) for any positive " � �, one has

�
�˚
x 2 B : h(x)Zk … K"

�
� C1("�)˛�(B) : (16)

Taking h(x) D gtLf(x) and unwinding the definitions of
good and nonplanar pairs, one can show that (i) and (ii)

can be verified for some balls B centered at �-almost every
point, and derive (15) from (16).

Further Results

The approach to metric Diophantine approximation us-
ing quantitative non-divergence, that is, the implication (i)
+ (ii)) (iii), is not omnipotent. In particular, it is diffi-
cult to use when more precise results are needed, such as
for example computing/estimating the Hausdorff dimen-
sion of the set of 1;v-approximable vectors on amanifold.
See [9,10] for such results. On the other hand, the dynam-
ical approach can often treat much more general objects
that its classical counterpart, and also can be perturbed in
a lot of directions, producing many generalizations and
modifications of the main theorems from the preceding
section.

One of the most important of them is the so-called
multiplicative version of the set-up of Sect. “Diophantine
Approximation with Dependent Quantities: The Set-Up”.
Namely, define functions ˘ (x) def

D
Q

i jxi j and ˘C(x)
def
DQ

i max(jxi j; 1) Then, given a function  : N ! RC, one
says that Y 2 Mm;n is multiplicatively  -approximable
(notation: Y 2 W�m;n( )) if there are infinitely many
q 2 Zn such that

˘ (YqC p)1/m �  
�
˘C(q)1/n


(17)

for some p 2 Zm . Since ˘ (x) � ˘C(x) � kxkk for
x 2 Rk , any  -approximable Y is multiplicatively  -ap-
proximable; but the converse is in general not true, see
e. g. [37]. However if one, as before, considers the fam-
ily f 1;vg, the critical parameter for which the drop from
full measure to measure zero occurs is again n/m. That
is, if one defines the multiplicative Diophantine exponent
!�(Y) of Y by !�(Y)defD supfv : Y 2W�m;n( 1;v)g, then
clearly !�(Y) � !(Y) for all Y , and yet !�(Y) D n/m
for -a.e. Y 2 Mm;n .

Now specialize to Rn (by the same duality principle
as before, it does not matter whether to think in terms of
row or column vectors, but we will adopt the row vector
set-up), and define the multiplicative exponent !�(�) of
a measure � on Rn by !�(�)defD sup

˚
vj�

�
W�( 1;v)


>

0
�
; then !�() D n. Following Sprindžuk [85], say that �

is strongly extremal if !�(�) D n. It turns out that all the
results mentioned in the previous section have their mul-
tiplicative analogues; that is, the measures described there
happen to be strongly extremal. This was conjectured by
A. Baker [1] for the curve (12), and then by Sprindžuk in
1980 [85] for analytic nondegenerate manifolds. (We re-
mark that only very few results in this set-up can be ob-
tained by the standard methods, see e. g. [10]). The proof
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of this stronger statement is based on using the multi-pa-
rameter action of

gt D diag(et1C���Ctn ; e�t1 ; : : : ; e�tn ) ;
where t D (t1; : : : ; tn)

instead of gt considered in the previous section. One
can show that the choice h(x) D gtLf(x) allows one to
verify (i) and (ii) uniformly in t 2 Rn

C, and the proof
is finished by applying a multi-parameter version of
the correspondence described in Sect. “Connection with
Dynamics on the Space of Lattices”. Namely, one can
show that y 2 VWA�1;n if and only if the trajectory
fgtLyZk : t 2 Rn

Cg grows linearly, that is, for some � > 0
one has dist(gtLYZnC1;ZnC1) > �ktk for an unbounded
set of t 2 Rn

C. A similar correspondence was recently
used in [30] to prove that the set of exceptions to Little-
wood’s Conjecture, which, using the terminology intro-
duced above, can be called badly multiplicatively approx-
imable vectors:

BA�n;1
def
D Rn X

[

c>0

W�n;1( c;1/n)

D

�
y : inf

q2ZXf0g;p2Zn
jqj �˘ (qy � p) > 0

�
; (18)

has Hausdorff dimension zero. This was done using amea-
sure rigidity result for the action of the group of diago-
nal matrices on the space of lattices. See [18] for an im-
plicit description of this correspondence and [32,66,70] for
more detail.

The dynamical approach also turned out to be fruit-
ful in studying Diophantine properties of pairs (f; �) for
which the nonplanarity condition fails. Note that obvi-
ous examples of non-extremal measures are provided by
proper affine subspaces ofRn whose coefficients are ratio-
nal or are well enough approximable by rational numbers.
On the other hand, it is clear from a Fubini argument that
almost all translates of any given subspace are extremal.
In [51] the method of [56] was pushed further to produce
criteria for the extremality, as well as the strong extremal-
ity, of arbitrary affine subspaces L of Rn . Further, it was
shown that if L is extremal (resp. strongly extremal), then
so is any smooth submanifold of L which is nondegener-
ate in L at a.e. point. (The latter property is a straightfor-
ward generalization of the definition of nondegeneracy in
Rn : a map f is nondegenerate in L at x if the linear part
of L is spanned by partial derivatives of f at x). In other
words, extremality and strong extremality pass from affine
subspaces to their nondegenerate submanifolds.

Amore precise analysis makes it possible to studyDio-
phantine exponents of measures with supports contained

in arbitrary proper affine subspaces ofRn . Namely, in [53]
it is shown how to compute !(L) for any L, and fur-
thermore proved that if � is a Federer measure on Rd , U
an open subset of Rd , and f : U ! Rn a continuous map
such that the pair (f; �) is good and nonplanar in L, then
!(f��) D !(L). Here we say, generalizing the definition
from Sect.“Diophantine Approximation with Dependent
Quantities: The Set-Up”, that (f; �) is nonplanar in L if
for any ball B with �(B) > 0, the f-image of B \ supp �
is not contained in any proper affine subspace of L. (It is
easy to see that for a smooth map f : U ! L, (f; ) is good
and nonplanar in L whenever f is nondegenerate in L at
a.e. point). It is worthwhile to point out that these new
applications require a strengthening of the measure esti-
mate described at the end of Sect. “Diophantine Approx-
imation with Dependent Quantities: The Set-Up”: it was
shown in [53] that (i) and (ii) would still imply (iii) if � in
(ii) is replaced by �dimV .

Another application concerns badly approximable
vectors. Using the dynamical description of the set
BA � Rn due to Dani [20], it turns out to be possible to
find badly approximable vectors inside supports of certain
measures on Rn . Namely, if a subset K of Rn supports
an absolutely friendly measure, then BA \ K has Haus-
dorff dimension not less than the Hausdorff dimension of
this measure. In particular, it proves that limit measures of
irreducible system of self-similar/self-conformal contrac-
tions satisfying the Open Set Condition, such as e. g. the
middle-third Cantor set on the real line, contain subsets
of full Hausdorff dimension consisting of badly approx-
imable vectors. This was established in [60] and later inde-
pendently in [64] using a different approach. See also [36]
for a stronger result.

The proof in [60] uses quantitative nondivergence esti-
mates and an iterative procedure, which requires the mea-
sure in question to be absolutely friendly and not just
friendly. A similar question for even the simplest not-ab-
solutely friendly measures is completely open. For exam-
ple, it is not known whether there exist uncountably many
badly approximable pairs of the form (x; x2). An analo-
gous problem for atomic measures supported on algebraic
numbers, that is, a “badly approximable” version of Roth’s
Theorem, is currently beyond reach as well — there are no
known badly approximable (or, for that matter, well ap-
proximable) algebraic numbers of degree bigger than two.

It has been recently understood that the quantitative
nondivergence method can be applied to the question of
improvement to Dirichlet’s Theorem (see the beginning
of Sect. “Basic Facts”). Given a positive " < 1, let us say
that Dirichlet’s Theorem can be "-improved for Y 2 Mm;n ,
writing Y 2 DIm;n("), if for every sufficiently large t the
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system

kYq � pk < "e�t/m and kqk < "et/n (19)

(that is, (5) with the right hand side terms multiplied by ")
has a nontrivial integer solution (p; q). It is a theorem
of Davenport and Schmidt [24] that 

�
DIm;n(")


D 0 for

any " < 1; in other words, Dirichlet’s Theorem cannot be
improved for Lebesgue-generic systems of linear forms.
By a modification of the correspondence between dynam-
ics and approximation, (19) is easily seen to be equiva-
lent to gtLYZk 2 K", and since the complement to K" has
nonempty interior for any " < 1, the result of Davenport
and Schmidt follows from the ergodicity of the gt-action
on˝k.

Similar questions with  replaced by f� for some spe-
cific smoothmaps fwere considered in [2,3,15,23]. For ex-
ample, [15], Theorem 7, provides an explicitly computable
constant "0 D "0(n) such that for f as in (12),

f�
�
DI1;n(")


D 0 for " < "0 :

This had been previously done in [23] for n D 2 and in [2]
for n D 3. In [62] this is extended to a much broader
class of measures using estimates described in Sect. “Dio-
phantine Approximation with Dependent Quantities: The
Set-Up”. In particular, almost every point of any nonde-
generate smooth manifold is proved not to lie in DI(") for
small enough " depending only on the manifold. Earlier
this was done in [61] for the set of singular vectors, de-
fined as the intersection of DI(") over all positive "; those
correspond to divergent gt-trajectories. As before, the ad-
vantage of the method is allowing a multiplicative gener-
alization of the Dirichlet-improvement set-up; see [62] for
more detail.

It is also worthwhile to mention that a generalization
of the measure estimate discussed in Sect. “Diophantine
Approximation with Dependent Quantities: The Set-Up”
was used in [13] to estimate the measure of the set of
points x in a ball B � Rd for which the system
8
<̂

:̂

jf(x) � qC pj < "
jf0(x) � qj < ı
jqi j < Qi ; i D 1; : : : ; n;

where f is a smooth nondegenerate map B! Rn , has
a nonzero integer solution. For that, Lf(x) as in (15) has
to be replaced by the matrix
0

@
1 0 f(x)
0 1 f0(x)
0 0 In

1

A ;

and therefore (i) and (ii) turn into more complicated
conditions, which nevertheless can be checked when f
is smooth and nondegenerate and � is Lebesgue mea-
sure. This has resulted in proving the convergence case
of Khintchine–Groshev Theorem for nondegenerateman-
ifolds [13], in both standard and multiplicative versions.
The aforementioned estimate was also used in [7] for the
proof of the divergence case, and in [38,40] for establishing
the convergence case of Khintchine–Groshev theorem for
affine hyperplanes and their nondegenerate submanifolds.
This generalized results obtained by standard methods for
the curve (12) by Bernik and Beresnevich [6,11].

Finally, let us note that in many of the problems
mentioned above, the ground field R can be replaced by
Qp , and in fact several fields can be taken simultane-
ously, thus giving rise to the S-arithmetic setting where
S D fp1; : : : ; psg is a finite set of normalized valuations of
Q, which may or may not include the infinite valuation
(cf. [83,90]). The space of lattices inRnC1 is replaced there
by the space of lattices in QnC1

S , where QS is the prod-
uct of the fieldsR andQp1 ; : : : ;Qps . This is the subject of
the paper [59], where S-arithmetic analogues of many re-
sults reviewed in Sect. “Diophantine Approximation with
Dependent Quantities: The Set-Up” have been established.
Similarly one can consider versions of the above theorems
over local fields of positive characteristic [39]. See also [52]
where Sprindžuk’s solution [83] of the complex case of
Mahler’s Conjecture has been generalized (the latter in-
volves studying small values of linear forms with coeffi-
cients in C at real integer points), and [31] which estab-
lishes a p-adic analogue of the result of [30] on the set of
exceptions to Littlewood’s Conjecture.

Future Directions

Interactions between ergodic theory and number theory
have been rapidly expanding during the last two decades,
and the author has no doubts that new applications of
dynamics to Diophantine approximation will emerge in
the near future. Specializing to the topics discussed in
the present paper, it is fair to say that the list of “fur-
ther results” contained in the previous section is by no
means complete, and many even further results are cur-
rently in preparation. This includes: extending proofs of
extremality and strong extremality of certain measures
to the set-up of systems of linear forms (namely, with
min(m; n) > 1; this was mentioned as work in progress
in [56]); proving Khintchine-type theorems (both conver-
gence and divergence parts) for p-adic and S-arithmetic
nondegenerate manifolds, see [73] for results in this direc-
tion; extending [38,40] to establish Khintchine-type theo-



3038 E Ergodic Theory on Homogeneous Spaces and Metric Number Theory

rems for submanifolds of arbitrary affine subspaces. The
work of Druţu [28], who used ergodic theory on homo-
geneous spaces to compute the Hausdorff dimension of
the intersection ofWn;1( 1;v), v > 1, with some rational
quadratic hypersurfaces inRn deserves a special mention;
it is plausible that using this method one can treat more
general situations. Several other interesting open direc-
tions are listed in [41], Section 9, in the final sections of
papers [7,54], in the book [15], and in surveys by Frantzik-
inakis–McCutcheon, Nitica and Ward in this volume.
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28. Druţu C (2005) Diophantine approximation on rational
quadrics. Ann Math 333:405–469

29. Duffin RJ, Schaeffer AC (1941) Khintchine’s problem in metric
Diophantine approximation. Duke Math J 8:243–255

30. Einsiedler M, Katok A, Lindenstrauss E (2006) Invariant mea-
sures and the set of exceptions to Littlewood’s conjecture. Ann
Math 164:513–560

31. Einsiedler M, Kleinbock D (2007) Measure rigidity and p-adic
Littlewood-type problems. Compositio Math 143:689–702

32. Einsiedler M, Lindenstrauss E (2006) Diagonalizable flows on
locally homogeneous spaces and number theory. In: Proceed-
ings of the International Congress of Mathematicians. Eur
Math Soc, Zürich, pp 1731–1759

33. Eskin A (1998) Counting problems and semisimple groups. In:
Proceedings of the International Congress of Mathematicians.
Doc Math, Berlin, pp 539–552

34. Eskin A, Margulis GA, Mozes S (1998) Upper bounds and
asymptotics in a quantitative version of the Oppenheim con-
jecture. Ann Math 147:93–141

35. Eskin A, Margulis GA, Mozes S (2005) Quadratic forms of signa-
ture (2,2) and eigenvalue spacings on rectangular 2-tori. Ann
Math 161:679–725

36. Fishman L (2006) Schmidt’s games on certain fractals. Israel S
Math (to appear)

37. Gallagher P (1962) Metric simultaneous diophantine approxi-
mation. J London Math Soc 37:387–390

38. Ghosh A (2005) A Khintchine type theorem for hyperplanes.
J London Math Soc 72:293–304

39. Ghosh A (2007) Metric Diophantine approximation over a local
field of positive characteristic. J Number Theor 124:454–469

40. Ghosh A (2006) Dynamics on homogeneous spaces and Dio-
phantine approximation on manifolds. Ph D Thesis, Brandeis
University, Walthum



Ergodic Theory on Homogeneous Spaces and Metric Number Theory E 3039

41. Gorodnik A (2007) Open problems in dynamics and related
fields. J Mod Dyn 1:1–35

42. Groshev AV (1938) Une théorème sur les systèmes des formes
linéaires. Dokl Akad Nauk SSSR 9:151–152

43. Harman G (1998) Metric number theory. Clarendon Press, Ox-
ford University Press, New York

44. Hutchinson JE (1981) Fractals and self-similarity. Indiana Univ
Math J 30:713–747

45. Jarnik V (1928-9) Zur metrischen Theorie der diophantischen
Approximationen. Prace Mat-Fiz 36:91–106

46. Jarnik V (1929) Diophantischen Approximationen und Haus-
dorffsches Mass. Mat Sb 36:371–382

47. Khanin K, Lopes-Dias L, Marklof J (2007) Multidimensional con-
tinued fractions, dynamical renormalization and KAM theory.
CommMath Phys 270:197–231

48. Khintchine A (1924) Einige Sätze über Kettenbrüche, mit An-
wendungen auf die Theorie der Diophantischen Approxima-
tionen. Math Ann 92:115–125

49. Khintchine A (1963) Continued fractions. P Noordhoff Ltd,
Groningen

50. Kleinbock D (2001) Some applications of homogeneous dy-
namics to number theory. In: Smooth ergodic theory and
its applications. American Mathematical Society, Providence,
pp 639–660

51. Kleinbock D (2003) Extremal subspaces and their submani-
folds. Geom Funct Anal 13:437–466

52. Kleinbock D (2004) Baker–Sprindžuk conjectures for complex
analytic manifolds. In: Algebraic groups and Arithmetic. Tata
Inst Fund Res, Mumbai, pp 539–553

53. Kleinbock D (2008) An extension of quantitative nondiver-
gence and applications to Diophantine exponents. Trans AMS,
to appear

54. Kleinbock D, Lindenstrauss E, Weiss B (2004) On fractal
measures and diophantine approximation. Selecta Math 10:
479–523

55. Kleinbock D, Margulis GA (1996) Bounded orbits of nonquasi-
unipotent flows on homogeneous spaces. In: Sinaı̆’s Moscow
Seminar on Dynamical Systems. American Mathematical Soci-
ety, Providence, pp 141–172

56. Kleinbock D, Margulis GA (1998) Flows on homogeneous
spaces and Diophantine approximation on manifolds. Ann
Math 148:339–360

57. Kleinbock D, Margulis GA (1999) Logarithm laws for flows on
homogeneous spaces. Invent Math 138:451–494

58. Kleinbock D, Shah N, Starkov A (2002) Dynamics of subgroup
actions on homogeneous spaces of Lie groups and applica-
tions to number theory. In: Handbook on Dynamical Systems,
vol 1A. Elsevier Science, North Holland, pp 813–930

59. Kleinbock D, Tomanov G (2007) Flows on S-arithmetic homo-
geneous spaces and applications to metric Diophantine ap-
proximation. CommMath Helv 82:519–581

60. Kleinbock D, Weiss B (2005) Badly approximable vectors on
fractals. Israel J Math 149:137–170

61. Kleinbock D, Weiss B (2005) Friendly measures, homogeneous
flows and singular vectors. In: Algebraic and Topological Dyna-
mics. AmericanMathematical Society, Providence, pp 281–292

62. Kleinbock D, Weiss B (2008) Dirichlet’s theorem on diophan-
tine approximation and homogeneous flows. J Mod Dyn 2:43–
62

63. Kontsevich M, Suhov Y (1999) Statistics of Klein polyhedra
and multidimensional continued fractions. In: Pseudoperi-

odic topology. American Mathematical Society, Providence,
pp 9–27

64. Kristensen S, Thorn R, Velani S (2006) Diophantine approxima-
tion and badly approximable sets. Adv Math 203:132–169

65. Lagarias JC (1994) Geodesic multidimensional continued frac-
tions. Proc London Math Soc 69:464–488

66. Lindenstrauss E (2007) Some examples how to use measure
classification in number theory. In: Equidistribution in number
theory, an introduction. Springer, Dordrecht, pp 261–303

67. Mahler K (1932) Über das Mass der Menge aller S-Zahlen. Math
Ann 106:131–139

68. Margulis GA (1975) On the action of unipotent groups in the
space of lattices. In: Lie groups and their representations (Bu-
dapest, 1971). Halsted, New York, pp 365–370

69. Margulis GA (1989) Discrete subgroups and ergodic theory.
In: Number theory, trace formulas and discrete groups (Oslo,
1987). Academic Press, Boston, pp 377–398

70. Margulis GA (1997) Oppenheim conjecture. In: Fields Medal-
ists’ lectures. World Sci Publishing, River Edge, pp 272–327

71. Margulis GA (2002) Diophantine approximation, lattices and
flows on homogeneous spaces. In: A panorama of number
theory or the view from Baker’s garden. Cambridge University
Press, Cambridge, pp 280–310
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Glossary

Almost everywhere (abbreviated a. e.) A property that
makes sense for each point x in a measure space (X;
B; �) is said to hold almost everywhere (or a. e.) if the
set N � X on which it does not hold satisfies N 2 B
and �(N) D 0.

Čech–Stone compactification of N, ˇN

A compact Hausdorff space that containsN as a dense
subset with the property that any map from N to
a compact Hausdorff space K extends uniquely to
a continuous map ˇN ! K. This property and the
fact that ˇN is a compact Hausdorff space contain-
ing N characterizes ˇN up to homeomorphism.

Curvature An intrinsic measure of the curvature of
a Riemannian manifold depending only on the Rie-
mannian metric; in the case of a surface it determines
whether the surface is locally convex (positive curva-
ture), locally saddle-shaped (negative) or locally flat
(zero).

Diophantine approximation Theory of the approxima-
tion of real numbers by rational numbers: how small

can the distance from a given irrational real number to
a rational number be made in terms of the denomina-
tor of the rational?

Equidistributed A sequence is equidistributed if the
asymptotic proportion of time it spends in an interval
is proportional to the length of the interval.

Ergodic A measure-preserving transformation is ergodic
if the only invariant functions are equal to a constant
a. e.; equivalently if the transformation exhibits the
convergence in the quasi-ergodic hypothesis.

Ergodic theory The study of statistical properties of or-
bits in abstract models of dynamical systems; more
generally properties of measure-preserving (semi-)
group actions on measure spaces.

Geodesic (flow) The shortest path between two points
on a Riemannian manifold; such a geodesic path is
uniquely determined by a starting point and the ini-
tial tangent vector to the path (that is, a point in the
unit tangent bundle). The transformation on the unit
tangent bundle defined by flowing along the geodesic
defines the geodesic flow.

Haar measure (on a compact group) If G is a compact
topological group, the unique measure � defined on
the Borel sets of G with the property that �(AC g) D
�(A) for all g 2 G and �(G) D 1.

Measure-theoretic entropy A numerical invariant of
measure-preserving systems that reflects the asymp-
totic growth in complexity of measurable partitions re-
fined under iteration of the map.

Mixing A measure-preserving system is mixing if
measurable sets (events) become asymptotically in-
dependent as they are moved apart in time (under
iteration).

(Quasi) Ergodic hypothesis The assumption that, in
a dynamical system evolving in time and preserving
a natural measure, there are some reasonable condi-
tions under which the ‘time average’ along orbits of
an observable (that is, the average value of a func-
tion defined on the phase space) will converge to the
‘space average’ (that is, the integral of the function
with respect to the preserved measure).

Recurrence Return of an orbit in a dynamical system
close to its starting point infinitely often.

S-Unit theorems A circle of results stating that linear
equations in fields of zero characteristic have only
finitely many solutions taken from finitely-generated
multiplicative subgroups of the multiplicative group of
the field (apart from infinite families of solutions aris-
ing from vanishing sub-sums).

Topological entropy A numerical invariant of topologi-
cal dynamical systems that measures the asymptotic
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growth in the complexity of orbits under iteration. The
variational principle states that the topological entropy
of a topological dynamical system is the supremum
over all invariant measures of the measure-theoretic
entropies of the dynamical systems viewed as measur-
able dynamical systems.

Definition of the Subject

Number theory is a branch of pure mathematics con-
cerned with the properties of numbers in general, and
integers in particular. The areas of most relevance to
this article are Diophantine analysis (the study of how
real numbers may be approximated by rational numbers,
and the consequences for solutions of equations in inte-
gers); analytic number theory, and in particular asymp-
totic estimates for the number of primes smaller than X
as a function of X; equidistribution, and questions about
how the digits of real numbers are distributed. Combi-
natorics is concerned with identifying structures in dis-
crete objects; of most interest here is that part of com-
binatorics connected with Ramsey theory, asserting that
large subsets of highly structured objects must automati-
cally contain large replicas of that structure. Ergodic the-
ory is the study of asymptotic behavior of group ac-
tions preserving a probability measure; it has proved
to be a powerful part of dynamical systems with wide
applications.

Introduction

Ergodic theory, part of the mathematical study of dynami-
cal systems, has pervasive connections with number the-
ory and combinatorics. This article briefly surveys how
these arise through a small sample of results. Unsurpris-
ingly, many details are suppressed, and of course the se-
lection of topics reflects the author’s interests far more
than it does the full extent of the flow of ideas between
ergodic theory and number theory. In addition the se-
lection of topics has been chosen in part to be comple-
mentary to those in related articles in the Encyclopedia.
A particularly enormous lacuna is the theory of arithmetic
dynamical systems itself – the recent monograph by Sil-
verman [94] gives a comprehensive overview.

More sophisticated aspects of this connection – in par-
ticular the connections between ergodic theory on homo-
geneous spaces and Diophantine analysis – are covered in
the articles � Ergodic Theory on Homogeneous Spaces
andMetric Number Theory and� Ergodic Theory: Rigid-
ity; more sophisticated overviews of the connections with
combinatorics may be found in the article� Ergodic The-
ory: Recurrence.

Ergodic Theory

While the early origins of ergodic theory lie in the quasi-
ergodic hypothesis of classical Hamiltonian dynamics, the
mathematical study of ergodic theory concerns various
properties of group actions on measure spaces, including
but not limited to several special branches:

1. The classical study of single measure-preserving trans-
formations.

2. Measure-preserving actions of Zd ; more generally of
countable amenable groups.

3. Measure-preserving actions of Rd and more general
amenable groups, called flows.

4. Measure-preserving actions of lattices in Lie groups.
5. Measure-preserving actions of Lie groups.

The ideas and conditions surrounding the quasi-ergodic
hypothesis were eventually placed on a firm mathemati-
cal footing by developments starting in 1890. For a single
measure-preserving transformation T : X ! X of a prob-
ability space (X;B; �), Poincaré [74] showed a recurrence
theorem: if E 2 B is anymeasurable set, then for a. e. x 2 E
there is an infinite set of return times, 0 < n1 < n2 < � � �
with Tn j (x) 2 E (of course Poincaré noted this in a spe-
cific setting, concerned with a natural invariant measure
for the “three-body” problem in planetary motion).

Poincaré’s qualitative result was made quantitative in
the 1930s, when von Neumann [105] used the approach
of Koopman [52] to show the mean ergodic theorem: if
f 2 L2(�) then there is some f 2 L2(�) for which

��
���
1
N

N�1X

nD0

f ı Tn � f

��
���
2

�! 0 as N �!1;

clearly f then has the property that k f � f ı Tk2 D 0 andR
f d� D

R
f d�. Around the same time, Birkhoff [13]

showed the more delicate pointwise ergodic theorem: for
any g 2 L1(�) there is some g 2 L1(�) for which

1
N

N�1X

nD0

g(Tnx)! g(x) a. e. ;

again it is then clear that g(Tx) D g(x) a. e. and
R
g d� DR

g d�.
The map T is called ergodic if the invariance condition

forces the function (f or g) to be equal to a constant a. e.
Thus an ergodic map has the property that the time or er-
godic average (1/N)

PN�1
nD0 f ı T j converges to the space

average
R
d�. An overview of ergodic theorems and their
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many extensions may be found in the article � Ergodic
Theorems.

Thus ergodic theory at its most basic level makes
strong statements about the asymptotic behavior of orbits
of a dynamical system as seen by observables (measurable
functions on the space X). Applying the ergodic theorem
to the indicator function of a measurable set A shows that
ergodicity guarantees that a. e. orbit spends an asymptotic
proportion of time in A equal to the volume �(A) of that
set (as measured by the invariant measure). This points to
the start of the pervasive connections between ergodic the-
ory and number theory – but as this and other articles re-
late, the connections extend far beyond this.

Frequency of Returns

In this section we illustrate the way in which a dynami-
cal point of view may unify, explain and extend quite dis-
parate results from number theory.

Normal Numbers

Borel [15] showed (as a consequence of what became the
Borel–Cantelli Lemma in probability) that a. e. real num-
ber (with respect to Lebesgue measure) is normal to every
base: that is, has the property that any block of k digits in
the base-r expansion appears with asymptotic frequency
r�k .

Continued Fraction Digits

Analogs of normality results for the continued fraction
expansion of real numbers were found by Khinchin,
Kuz’min, Lévy and others. Any irrational x 2 [0; 1] has
a unique expansion as a continued fraction

x D
1

a1(x)C
1

a2(x)C
1

a3(x)C � � �

and, just as in the case of the familiar base-r expansion,
it turns out that the digits (an(x)) obey precise statistical
rules for a. e. x. Gauss conjectured that the appearance of
individual digits would obey the law

1
N
jfk : 1 � k � N; ak(x) D jgj

�!
2 log(1C j) � log j � log(2C j)

log 2
: (1)

This was eventually proved by Kuz’min [54] and Lévy [59],
and the probability distribution of the digits is the Gauss–

Kuz’min law. Khinchin [50] developed this further, show-
ing for example that

lim
n!1

(a1(x)a2(x) : : : an(x))1/n

D

1Y

nD1

�
(n C 1)2

n(n C 2)

�log n/ log 2

D 2:68545 : : : for a. e. x :

Lévy [60] showed that the denominator qn(x) of the nth
convergent (pn(x))/(qn (x)) (the rational obtained by trun-
cating the continued fraction expansion of x at the nth
term) grows at a specific exponential rate,

lim
n!1

1
n
log qn(x) D

�2

12 log 2
for a. e. x :

First Digits

The astronomer Newcomb [67] noted that the first digits
of large collections of numerical data that are not dimen-
sionless have a specific and non-uniform distribution:

“The law of probability of the occurrence of num-
bers is such that all mantissæ of their logarithms are
equally probable.”

This is now known as Benford’s Law, following his
popularization and possible rediscovery of the phe-
nomenon [6]. In both cases, this was an empirical ob-
servation eventually made rigorous by Hill [42]. Arnold
(App. 12 in [3]), pointed out the dynamics behind this
phenomena in certain cases, best illustrated by the statisti-
cal behavior of the sequence 1; 2; 4; 8; 1; 3; 6; 1; : : : of first
digits of powers of 2. Empirically, the digit 1 appears about
30% of the time, while the digit 9 appears about 5% of the
time.

Equidistribution

Weyl [109] (and, separately, Bohl [14] and Sierpiński [91])
found an important instance of equidistribution. Writing
f�g for the fractional part, a sequence (an) of real numbers
is said to be equidistributed modulo 1 if, for any interval
[a; b] � [0; 1),

1
N
jfk : 1 � k � N; fakg 2 [a; b]gj ! (b � a)

as N ! 1 ;

equivalently if

1
N

NX

kD1

f (ak)!
Z 1

0
f (t)dt as N !1
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for all continuous functions f . Weyl showed that the se-
quence fn˛g is equidistributed if and only if ˛ is irrational.
This result was refined and extended in many directions;
for example, Hlawka [44] and others found rates for the
convergence in terms of the discrepancy of the sequence,
Weyl [110] proved equidistribution for fn2˛g, and Vino-
gradov for fpn˛g where pn is the nth prime.

The Ergodic Context

All the results of this section are manifestations of vari-
ous kinds of convergence of ergodic averages. Borel’s the-
orem on normal numbers is an immediate consequence of
the fact that Lebesgue measure on [0; 1) is invariant and
ergodic for the map x 7! bx modulo 1 with b > 2. The
asymptotic properties of continued fraction digits are all
a consequence of the fact that the Gauss measure defined
by

�(A) D
1

log 2

Z

A

dx
1C x

for A � [0; 1]

is invariant and ergodic for the Gauss map x 7!
˚ 1
x
�
,

and the orbit of an irrational number under the Gauss
map determine the digits appearing in the continued
fraction expansion much as the orbit under the map
x 7! bx (mod 1) determines the digits in the base b ex-
pansion.

The results on equidistribution and the frequency of
first digits are related to ergodic averaging of a different
sort. For example, writing R˛(t) D t C ˛modulo 1 for the
circle rotation by ˛, the first digit of 2n is the digit j if and
only if

log10 j � Rlog10(2)(0) < log10( jC 1) :

Thus the asymptotic frequency of appearance concerns the
orbit of a specific point. In order to see what this means,
consider a continuous map T : X ! X of a compact met-
ric space (X;d). The spaceM(T) of Borel probability mea-
sures on the Borel �-algebra of (X;d) is a non-empty
compact convex set in the weak*-topology, each extreme
point is an ergodic measure for T, and these ergodic mea-
sures are mutually singular. If M(T) is not a singleton
and �1; �2 2M(T) are distinct ergodic measures, then
for a continuous function f with

R
X f d�1 ¤

R
X f d�2 it is

clear that the ergodic averages 1
N
PN�1

nD0 f (Tnx)must con-
verge to

R
X f d�1 a. e. with respect to �1 and to

R
X f d�2

a. e. with respect to �2. Thus the presence of many invari-
ant measures for a continuous map means that ergodic
averages along the orbits of specific points need not con-
verge to the space average with respect to a chosen invari-
ant measure.

In the extreme situation of unique ergodicity (a single
invariant measure, which is necessarily an extreme point
of M(T) and hence ergodic) the convergence of ergodic
averages is much more uniform. Indeed, if T is uniquely
ergodic withM(T) D f�g then, for any continuous func-
tion f : X ! R,

1
N

N�1X

nD0

f (Tnx) �!
Z

X
f d� uniformly in x

(see Oxtoby [69]). The circle rotation R˛ is uniquely er-
godic for irrational ˛, leading to the equidistribution re-
sults.

The ergodic viewpoint on equidistribution also places
equidistribution results in a wider context. Weyl’s result
that fn2˛g (indeed, the fractional part of any polynomial
with at least one irrational coefficient) is equidistributed
for irrational ˛ was given another proof by Fursten-
berg [29] using the notion of unique ergodicity. These
methods were then used in the study of nilsystems (trans-
lations on quotients of nilpotent Lie groups) by Auslander,
Green and Hahn [4] and Parry [70], and these nilsystems
play an essential role for polynomial (and other non-con-
ventional) ergodic averaging (see Host and Kra [45] and
Leibman [58] in the polynomial case; Host and Kra [46] in
the multiple linear case). Remarkably, nilsystems are start-
ing to play a role within combinatorics – an example is the
work on the asymptotic number of 4-step arithmetic pro-
gressions in the primes by Green and Tao [40]. Pointwise
ergodic theorems have also been found along sequences
other thanN ; notably for integer-valued polynomials and
along the primes for L2 functions by Bourgain [16,17]. For
more details, see the survey paper of del Junco on ergodic
theorems.

Ergodic Ramsey Theory and Recurrence

In 1927 van der Waerden proved a conjecture attributed
to Baudet: if the natural numbers are written as a disjoint
union of finitely many sets,

N D C1 t C2 t � � � t Cr ; (2)

then there must be one set Cj that contains arbitrar-
ily long arithmetic progressions. That is, there is some
j 2 f1; : : : ; rg such that for any k > 1 there are a > 1 and
n > 1 with

a; aC n; aC 2n; : : : ; aC (k � 1)n 2 Cj :

The original proof appears in van der Waerden’s pa-
per [103], and there is a discussion of how he found the
proof in [104].
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Work of Furstenberg andWeiss [34] and others placed
the theorem of van derWaerden in the context of topolog-
ical dynamics, giving alternative proofs. Specifically, van
der Waerden’s theorem is a consequence of topological
multiple recurrence: the return of points under iteration in
a topological dynamical system close to their starting point
along finite sequences of times. The same approach read-
ily gives dynamical proofs of Rado’s extension [76] of van
der Waerden’s theorem, and of Hindman’s theorem [43].
The theorems of Rado and Hindman introduce a new
theme: given a set AD fn1; n2; : : : g of natural numbers,
write FS(A) for the set of numbers obtained as finite sums
ni1 C � � � C ni j with i1 < i2 < � � � < i j . Rado showed that
for any large n there is some Cs containing some FS(A)
for a set A of cardinality n. Hindman showed that there is
some Cs containing some FS(A) for an infinite set A.

In the theorem of van der Waerden, it is clear that for
any reasonable notion of “proportion” or “density” one of
the sets Cj must occupy a positive proportion of N . A set
A � N is said to have positive upper density if there are
sequences (Mi) and (Ni ) with Ni � Mi !1 as i!1
such that

lim
i!1

1
Ni �Mi

jfa 2 A : Mi < a < Nigj > 0 :

Erdős and Turán [26] conjectured the stronger statement
that any subset of N with positive upper density must
contain arbitrary long arithmetic progressions. This state-
ment was shown for arithmetic progressions of length 3
by Roth [79] in 1952, then for length 4 by Szemerédi [96]
in 1969. The general result was eventually proved by Sze-
merédi [97] in 1975 in a lengthy and extremely difficult
argument.

Furstenberg saw that Szemerédi’s Theorem would fol-
low from a deep extension of the Poincaré recurrence phe-
nomena described in Sect. “Ergodic Theory” and proved
that extension [30] (see also the survey article by Fursten-
berg, Katznelson and Ornstein [33]). The multiple recur-
rence result of Furstenberg says that for any measure-pre-
serving system (X;B; �; T) and set A 2 B with �(A) > 0,
and for any k 2 N ,

lim inf
N�M!1

1
N � M C 1

�

NX

nDM

�


A\ T�nA\ T�2nA\ � � � \ T�knA

�
> 0 :

An immediate consequence is that in the same setting
there must be some n > 1 for which

�


A\ T�nA\ T�2nA\ � � � \ T�knA

�
> 0 : (3)

A general correspondence principle, due to Furstenberg,
shows that statements in combinatorics like Szemerédi’s
Theorem are equivalent to statements in ergodic theory
like (3).

This opened up a significant new field of ergodic Ram-
sey theory, in which methods from dynamical systems and
ergodic theory are used to produce new results in infinite
combinatorics. For an overview, see the articles� Ergodic
Theory on Homogeneous Spaces and Metric Number
Theory, � Ergodic Theory: Rigidity, � Ergodic Theory:
Recurrence and the survey articles of Bergelson [7,8,10].
The field is too large to give an overview here, but a few
examples will give a flavor of some of the themes.

Call a set R � Z a set of recurrence if, for any fi-
nite measure-preserving invertible transformation T of
a finite measure space (X;B; �) and any set A 2 B with
�(A) > 0, there are infinitely many n 2 R for which
�(A\ T�nA) > 0. Thus Poincaré recurrence is the state-
ment that N is a set of recurrence. Furstenberg and
Katznelson [31] showed that if T1; : : : ; Tk form a family
of commuting measure-preserving transformations and A
is a set of positive measure, then

lim inf
N!1

1
N

N�1X

nD0

�(T�n1 A\ � � � \ T�nk A) > 0 :

This remarkable multiple recurrence implies a multi-di-
mensional form of Szemerédi’s theorem. Recently, Gowers
has found a non-ergodic proof of this [38].

Furstenberg also gave an ergodic proof of Sárközy’s
theorem [80]: if p 2 Q[t] is a polynomial with p(Z) � Z
and p(0) D 0, then fp(n)gn>0 is a set of recurrence.
This was extended to multiple polynomial recurrence by
Bergelson and Leibman [11].

Topology and Coloring Theorems

The existence of idempotent ultrafilters in the Čech–Stone
compactification ˇN gives rise to an algebraic approach to
many questions in topological dynamics (this notion has
its origins in the work of Ellis [24]). Using these meth-
ods, results like Hindman’s finite sums theorem find ele-
gant proofs, and many new results in combinatorics have
been found. For example, in the partition (2) there must
be one setCj containing a triple x; y; z solving x � y D z2.

A deeper application is to improve a strengthening of
Kronecker’s theorem. To explain this, recall that a set S
is called IP if there is a sequence (ni ) of natural num-
bers (which do not need to be distinct) with the property
that S contains all the terms of the sequence and all fi-
nite sums of terms of the sequence with distinct indices.
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A set S is called IP� if it has non-empty intersection with
every IP set, and a set S is called IP�C if there is some t 2 Z
for which S � t is IP�. Thus being IP� (or IP�C) is an ex-
treme form of ‘fatness’ for a set. Now let 1; ˛1; : : : ; ˛k be
numbers that are linearly independent over the rationals,
and for any d 2 N and kd non-empty intervals Ii j � [0; 1]
(1 � i � d; 1 � j � k), let

D D fn 2 N : fni˛ jg 2 Ii j for all i; jg :

Kronecker showed that if d D 1 then D is non-empty;
Hardy and Littlewood showed that D is infinite, and Weyl
showed that D has positive density. Bergelson [9] uses
these algebraic methods to improve the result by showing
that D is an IP�C set.

Polynomialization and IP-sets

As mentioned above, Bergelson and Leibman [11] ex-
tended multiple recurrence to a polynomial setting. For
example, let

fpi; j : 1 � i � k; 1 � j � tg

be a collection of polynomials with rational coefficients
and pi; j(Z) � Z, pi; j(0) D 0. Then if �(A) > 0, we have

lim inf
N!1

1
N

NX

nD1

�

0

@
k\

iD1

0

@
tY

jD1

Tpi; j(n)
j

1

A

�1

A

1

A > 0 :

Using the Furstenberg correspondence principle, this
gives amulti-dimensional polynomial Szemerédi theorem:
If P : Zr ! Z` is a polynomial mapping with the property
that P(0) D 0, and F � Zr is a finite configuration, then
any set S � Z` of positive upper Banach density contains
a set of the form u C P(nF) for some u 2 Z` and n 2 N .

In a different direction, motivated in part by Hind-
man’s theorem, the multiple recurrence results generalize
to IP-sets. Furstenberg andKatznelson [32] proved a linear
IP-multiple recurrence theorem in which the recurrence
is guaranteed to occur along an IP-set. A combinatorial
proof of this result has been found by Nagle, Rödl and
Schacht [66]. Bergelson and McCutcheon [12] extended
these results by proving a polynomial IP-multiple recur-
rence theorem. To formulate this, make the following defi-
nitions. WriteF for the family of non-empty finite subsets
of N , so that a sequence indexed by F is an IP-set. More
generally, an F-sequence (n˛)˛2F taking values in an
abelian group is called an IP-sequence if n˛[ˇ D n˛ C nˇ
whenever ˛ \ ˇ D ;. An IP-ring is a set of the form
F (1) D f

S
i2ˇ ˛i : ˇ 2 Fg where ˛1 < ˛2 < � � � is a se-

quence inF , and ˛ < ˇmeans a < b for all a 2 ˛, b 2 ˇ;

write Fm
< for the set of m-tuples (˛1; : : : ; ˛m) from Fm

with ˛i < ˛ j for i < j. Write PE(m; d) for the collec-
tion of all expressions of the form T(˛1; : : : ; ˛m) D
Qr

iD1 T
pi ((n

(b)
˛ j )1�b�k; 1� j�m )

i ; (˛1; : : : ; ˛m) 2 (F [ ;)m< ,
where each pi is a polynomial in a k � m matrix of vari-
ables with integer coefficients and zero constant term with
degree � d. Then for every m; t 2 N , there is an IP-ring
F (1), and an a D a(A;m; t; d) > 0, such that, for every set
of polynomial expressions fS0; : : : ; Stg � PE(m; d),

IP � lim�
(˛1;:::;˛m)2(F (1))m<

 t\

iD0

Si (˛1; : : : ; ˛m)�1A

!

> 0 :

There are a large number of deep combinatorial conse-
quences of this result, not all of which seem accessible by
other means.

Sets of Primes

In a remarkable development, Szemerédi’s theorem and
some of the ideas behind ergodic Ramsey theory joined
results of Goldston and Yıldırım [37] in playing a part in
Green and Tao’s proof [39] that the set of primes con-
tains arbitrarily long arithmetic progressions. This pro-
found result is surveyed from an ergodic point of view in
the article of Kra [53]. As with Szemerédi’s theorem itself,
this result has been extended to a polynomial setting by
Tao and Ziegler [101]. Given integer-valued polynomials
f1; : : : ; fk 2 Z[t] with

f1(0) D � � � D fk(0) D 0

and any " > 0, Tao and Ziegler proved that there are in-
finitely many integers x;m with 1 � m � x" for which
x C f1(m); : : : ; x C fk(m) are primes.

Orbit-Counting as an AnalogousDevelopment

Some of the connections between number theory and er-
godic theory arise through developments that are analo-
gous but not directly related. A remarkable instance of this
concerns the long history of attempts to count prime num-
bers laid alongside the problem of counting closed orbits
in dynamical systems.

Counting Orbits and Geodesics

Consider first the fundamental arithmetic function
�(X) D jfp � X : p is primegj. Tables of primes prepared
by Felkel andVega in the 18th century led Legendre to sug-
gest that �(X) is approximately x/(log(X) � 1:08). Gauss,
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using both computational evidence and a heuristic argu-
ment, suggested that �(X) is approximated by

li(X) D
Z X

2

dt
log t

:

Both of these suggestions imply the well-known asymp-
totic formula

�(X) �
X

log X
: (4)

Riemann brought the analytic ideas of Dirichlet and
Chebyshev (who used the zeta function to find a weaker
version of (4) with upper and lower bounds for the quan-
tity 	(X) log(X)X ) to bear by proposing that the zeta function

�(s) D
1X

nD1

1
ns
D
Y

p

�
1 � p�s

�1
; (5)

already studied by Euler, would connect properties of the
primes to analytic methods. An essential step in these de-
velopments, due to Riemann, is the meromorphic exten-
sion of � from the region <(s) > 1 in (5) to the whole
complex plane and a functional equation relating the value
of the extension at s to the value at 1� s. Moreover, Rie-
mann showed that the extension has readily understood
real zeros, and that all the other zeros he could find were
symmetric about <(s) D 1

2 . The Riemann hypothesis as-
serts that zeros in the region 0 < <(s) < 1 all lie on the
line <(s) D 1

2 , and this remains open.
Analytic properties of the Riemann zeta function were

used by Hadamard and de la Vallée Poussin to prove (4),
the Prime Number Theorem, in 1896. Tauberian methods
developed byWiener and Ikehara [111] later gave different
approaches to the Prime Number Theorem.

These ideas initiated the widespread use of zeta func-
tions in several parts of mathematics, but it was not until
themiddle of the 20th century that Selberg [88] introduced
a zeta function dealing directly with quantities arising in
dynamical systems: the lengths of closed geodesics on sur-
faces of constant curvature �1. The geodesic flow acts on
the unit tangent bundle to the surface by moving a point
and unit tangent vector at that point along the unique
geodesic they define at unit speed. Closed geodesics are
then in one-to-one correspondence with periodic orbits of
the associated geodesic flow on the unit tangent bundle,
and it is in this sense that the quantities are dynamical.
The function defined by Selberg takes the form

Z(s) D
Y

�

1Y

kD0



1 � e�(sCk)j� j

�
;

in which � runs over all the closed geodesics, and j� j de-
notes the length of the geodesic. In a direct echo of the
Riemann zeta function, Selberg found an analytic contin-
uation to the complex plane, and showed that the zeros
of Z lie on the real axis or on the line <(s) D 1

2 (the ana-
logue of the Riemann hypothesis for Z; see also the pa-
per of Hejhal [41]). The zeros of Z are closely connected
to the eigenvalues for the Laplace–Beltrami operator, and
thus give information about the lengths of closed geodesics
via Selberg’s trace formula in the same paper. Huber [47]
and others used this approach to give an analogue of the
prime number theorem for closed geodesics – a prime or-
bit theorem.

Sinai [92] considered closed geodesics on a mani-
foldM with negative curvature bounded between�R2 and
�r2, and found the bounds

(dim(M)� 1)r � lim inf
T!1

log�(T)
T

� lim sup
T!1

log�(T)
T

� (dim(M) � 1)R

for the number �(T) of closed geodesics of multiplicity
one with length less than T, analogous to Chebyshev’s re-
sult.

The essential dynamical feature behind the geodesic
flow on a manifold of negative curvature is that it is an
example of an Anosov flow [2]. These are smooth dynam-
ical R-actions (equivalently, first-order differential equa-
tions on Riemannianmanifolds) with the property that the
tangent bundle has a continuously varying splitting into
a direct sum Eu ˚ Es ˚ Eo and the action of the differ-
ential of the flow acts on Eu as an exponential expansion,
on Es as an exponential contraction, Eo is the one-dimen-
sional bundle of vectors that are tangent to orbits, and
the expansion and contraction factors are bounded. In the
setting of Anosov flows, the natural orbit counting func-
tion is �(X) D jf� : � a closed orbit of length j� j � Xgj.
Margulis [62,63] generalized the picture to weak-mixing
Anosov flows by showing a prime orbit theorem of the
form

�(X) �
ehtopX

htopX
(6)

for the counting function �(X) D jf� : � a closed orbit of
length j� j � Xgjwhere as before htop denotes the topolog-
ical entropy of the flow. Integral to Margulis’ work is a re-
sult on the spatial distribution of the closed geodesics re-
flected in a flow-invariant probability measure, now called
the Margulis measure.

Anosov also studied discrete dynamical systems with
similar properties: diffeomorphisms of compact manifolds
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with a similar splitting of the tangent space (though in this
setting Eo disappears). The archetypal Anosov diffeomor-
phism is a hyperbolic toral automorphism of the sort con-
sidered in Subsect. “Orbit Growth and Convergence”; for
such automorphisms of the 2-torus Adler and Weiss [1]
constructed Markov partitions, allowing the dynamics of
the toral automorphism to be modeled by a topological
Markov shift, and used this to determine when two such
automorphisms are measurably isomorphic. Sinai [93],
Ratner [77], Bowen [18,20] and others developed the con-
struction of Markov partitions in general for Anosov dif-
feomorphisms and flows.

Around the same time, Smale [95] introduced a more
permissive hyperbolicity axiom for diffeomorphisms, Ax-
iom A. Maps satisfying Axiom A are diffeomorphisms sat-
isfying the same hypothesis as that of Anosov diffeomor-
phisms, but only on the set of points that return arbitrar-
ily close under the action of the flow (or iteration of the
map).

Thus Markov partitions, and with them associated
transfer operators became a substitute for the geometri-
cal Laplace–Beltrami operators of the setting considered
by Selberg. Bowen [19] extended the uniform distribution
result of Margulis to this setting and found an analogue
of Chebychev’s theorem for closed orbits. Parry [71] (in
a restricted case) and Parry and Pollicott [73] went on to
prove the prime orbit theorem in this more general setting.
The methods are an adaptation of the Ikehara–Wiener–
Tauberian approach to the prime number theorem.

Thus many facets of the prime number theorem story
find their echoes in the study of closed orbits for hyper-
bolic flows: the role played by meromorphic extensions
of suitable zeta functions, Tauberian methods, and so on.
Moreover, related results from number theory have ana-
logues in dynamics, for example Mertens’ theorem [65] in
the work of Sharp [89] and Noorani [68] and Dirichlet’s
theorem in work of Parry [72].

The “elementary” proof (not using analytic methods)
of the prime number theorem by Erdős [25] and Sel-
berg [87] (see the survey by Goldfeld [36] for the back-
ground to the results and the unfortunate priority dis-
pute) has an echo in some approaches to orbit-counting
problems from an elementary (non-Tauberian) perspec-
tive, including work of Lalley [56] on special flows and
Everest, Miles, Stevens and the author [27] in the algebraic
setting.

In a different direction Lalley [55] found orbit asymp-
totics for closed orbits satisfying constraints in the Ax-
iom A setting without using Tauberian theorems. His
more direct approach is still analytic, using complex trans-
fer operators (the same objects used to by Parry and Pol-

licott to study the dynamical zeta function at complex
values) and indeed somewhat parallels a Tauberian argu-
ment.

Further resonances with number theory arise here. For
example, there are results on the distribution of closed or-
bits for group extensions (analogous to Chebotarev’s the-
orem) and for orbits with homological constraints (see
Sharp [90], Katsuda and Sunada [49]).

Of course the great diversity of dynamical systems sub-
sumed in the phrase “prime orbit theorem” creates new
problems and challenges, and in particular if there is not
much geometry to work with then the reliance on Markov
partitions and transfer operators makes it difficult to find
higher-order asymptotics.

Dolgopyat [22] has nonetheless managed to push the
Markov methods to obtain uniform bounds on iterates of
the associated transfer operators to the region <(s) > �0
with �0 < 1. This result has wide implications; an exam-
ple most relevant to the analogy with number theory is the
work of Pollicott and Sharp [75] in which Dolgopyat’s re-
sult is used to show that for certain geodesic flows there is
a two-term prime orbit theorem of the form

�(X) D li


ehtopX

�
CO



ecX

�

for some c < htop.
For non-positive curvature manifolds less is known:

Knieper [51] finds upper and lower bounds for the func-
tion counting closed geodesics on rank-1 manifolds of
non-positive curvature of the form

A
ehX

X
� �(X) � BehX

for constants A; B > 0.

Counting Orbits for Group Endomorphisms

A prism through which to view some of the deeper issues
that arise in Subsect. “Counting Orbits and Geodesics” is
provided by group endomorphisms. The price paid for
having simple closed formulas for all the quantities in-
volved is of course a severe loss of generality, but the di-
versity of examples illustratesmany of the phenomena that
may be expected in more general settings when hyperbol-
icity is lost.

Consider an endomorphism T : X ! X of a compact
group with the property that Fn(T) <1 for all n > 1. The
number of closed orbits of length n under T is then

On(T) D
1
n

X

djn

�(n/d)Fd (T) : (7)
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In simple situations (hyperbolic toral automorphisms for
example) it is straightforward to show that

�T (X) D jf� : � a closed orbit under T of length � Xgj

�
e(XC1)htop(T)

X
: (8)

Waddington [106] considered quasihyperbolic toral au-
tomorphisms, showing that the asymptotic (8) in this
case is multiplied by an explicit almost-periodic function
bounded away from zero and infinity.

This result has been extended further into non-hy-
perbolic territory, which is most easily seen via the so-
called connected S-integer dynamical systems introduced
by Chothi, Everest and the author [21]. Fix an algebraic
number field K with set of places P(K) and set of infinite
places P1(K), an element of infinite multiplicative order
� 2 K�, and a finite set S � P(K) n P1(K) with the prop-
erty that j�jw � 1 for all w … S [ P1(K). The associated
ring of S-integers is

RS D fx 2 K : jxjw � 1 for all w … S [ P1(K)g :

Let X be the compact character group of RS, and define
the endomorphism T : X ! X to be the dual of the map
x 7! �x on RS. Following Weil [108], write Kw for the
completion at w, and for w finite, write rw for the max-
imal compact subring of Kw . Notice that if S D P then
RS D K and Fn(T) D 1 for all n > 1 by the product for-
mula for A-fields. As the set S shrinks, more and more pe-
riodic orbits come into being, and if S is as small as pos-
sible (given �) then the resulting system is (more or less)
hyperbolic or quasi-hyperbolic.

For S finite, it turns out that there are still sufficiently
many periodic orbits to have the growth rate result (10),
but the asymptotic (8) is modified in much the same way
as Waddington observed for quasi-hyperbolic toral auto-
morphisms:

lim inf
X!1

X�T(X)
e(XC1)htop(T)

> 0 (9)

and there is an associated pair (X�; aT ), where X� is
a compact group and aT 2 X�, with the property that if
aN j
T converges in X� as j!1, then there is convergence

in (9).
A simple special case will illustrate this. Taking K D

Q, � D 2 and S D f3g gives a compact group endomor-
phism T with

Fn(T) D (2n � 1)j2n � 1j3 :

For this example the results of [21] are sharper: The ex-
pression in (9) converges along (Xj) if and only if 2X j con-
verges in the ring of 3-adic integersZ3, the expression has
uncountably many limit points, and the upper and lower
limits are transcendental.

Similarly, the dynamical analogue ofMertens’ theorem
found by Sharp may be found for S-integer systems with S
finite. Writing

MT (N) D
X

j� j�N

1
eh(T)j� j

;

it is shown in [21] that for an ergodic S-integermap T with
K D Q and S finite, there are constants kT 2 Q and CT
such that

MT (N) D kT logN C CT C O (1/N) :

Without the restriction thatK D Q, it is shown that there
are constants kT 2 Q, CT and ı > 0 with

MT (N) D kT logN C CT C O(N�ı ) :

Diophantine Analysis as a Toolbox

Many problems in ergodic theory and dynamical system
exploit ideas and results from number theory in a direct
way; we illustrate this by describing a selection of dynam-
ical problems that call on particular parts of number the-
ory in an essential way. The example of mixing in Sub-
sect. “Mixing and Additive Relations in Fields” is partic-
ularly striking for two reasons: the results needed from
number theory are relatively recent, and the ergodic appli-
cation directly motivated a further development in num-
ber theory.

Orbit Growth and Convergence

The analysis of periodic orbits – how their number grows
as the length grows and how they spread out through
space – is of central importance in dynamics (see Ka-
tok [48] for example). An instance of this is that for many
simple kinds of dynamical systems T : X ! X (where T is
a continuous map of a compact metric space (X;d)) the
logarithmic growth rate of the number of periodic points
exists and coincides with the topological entropy h(T) (an
invariant giving a quantitative measure of the average rate
of growth in orbit complexity under T). That is, writing

Fn(T) D jfx 2 X : Tnx D xgj ;

we find

1
n
log Fn(T) �! htop(T) (10)
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for many of the simplest dynamical systems. For example,
if X D T r is the r-torus and T D TA is the automorphism
of the torus corresponding to a matrix A in GLr (Z), then
TA is ergodic with respect to Lebesgue measure if and only
if no eigenvalue of A is a root of unity. Under this assump-
tion, we have

Fn(TA) D
rY

iD1

jni � 1j

and

htop(TA) D
rX

iD1

logmaxf1; ji jg (11)

where 1; : : : ; r are the eigenvalues of A. It follows that
the convergence in (10) is clear under the assumption that
TA is hyperbolic (that is, no eigenvalue has modulus one).
Without this assumption the convergence is less clear: for
r > 4 the automorphism TA may be ergodic without be-
ing hyperbolic. That is, while no eigenvalues are unit roots
some may have unit modulus. As pointed out by Lind [61]
in his study of these quasihyperbolic automorphisms, the
convergence (10) does still hold for these systems, but
this requires a significant Diophantine result (the theo-
rem of Gel’fond [35] suffices; one may also use Baker’s
theorem [5]). Even further from hyperbolicity lie the fam-
ily of S-integer systems [21,107]; their orbit-growth prop-
erties are intimately tied up with Artin’s conjecture on
primitive roots and prime divisors of linear recurrence se-
quences.

Mixing and Additive Relations in Fields

The problem of higher-order mixing for commuting
group automorphisms provides a striking example of the
dialogue between ergodic theory and number theory, in
which deep results from number theory have been used
to solve problems in ergodic theory, and questions arising
in ergodic theory have motivated further developments in
number theory.

An action T of a countable group � on a proba-
bility space (X;B; �) is called k-fold mixing or mixing
on (k C 1) sets if

�
�
A0 \ T�g1A1 \ � � � \ T�gk Ak


�! �(A0) � � ��(Ak)

(12)

as

gi g�1j �!1 for i ¤ j

with the convention that g0 D 1� , for any sets A0; : : : ;

Ak 2 B; gn !1 in � means that for any finite set
F � � there is an N with n > N H) gn … F . For k D 1

the property is called simply mixing. This notion for sin-
gle transformations goes back to the foundational work
of Rohlin [78], where he showed that ergodic group en-
domorphisms are mixing of all orders (and so the notion
is not useful for distinguishing between group endomor-
phisms as measurable dynamical systems). He raised the
(still open) question of whether any measure-preserving
transformation can be mixing without being mixing of all
orders.

A class of group actions that are particularly easy to
understand are the algebraic dynamical systems studied
systematically by Schmidt [83]: hereX is a compact abelian
group, each Tg is a continuous automorphism of X, and�
is the Haar measure on X. Schmidt [82] related mixing
properties of algebraic dynamical systems with � D Zd to
statements in arithmetic, and showed that a mixing action
on a connected group could only fail to mix in a certain
way. Later Schmidt and the author [85] showed that for X
connected, mixing implies mixing of all orders. The proof
proceeds by showing that the result is exactly equivalent
to the following statement: if K is a field of characteristic
zero, and G is a finitely generated subgroup of the multi-
plicative groupK�, then the equation

a1x1 C � � � C anxn D 1 (13)

for fixed a1; : : : ; an 2 K� has a finite number of solu-
tions x1; : : : ; xn 2 G for which no subsum

P
i2I ai xi with

I ¨ f1; : : : ; ng vanishes. The bound on the number of so-
lutions to (13) follows from the profound extensions to
W. Schmidt’s subspace theorem in Diophantine geome-
try [86] by Evertse and Schlickewei (see [28,81,102] for the
details).

The argument in [85] may be cast as follows: failure
of k-fold mixing in a connected algebraic dynamical sys-
tem implies (via duality) an infinite set of solutions to an
equation of the shape (13) in some field of characteristic
zero. The S-unit theorem means that this can only hap-
pen if there is some proper subsum that vanishes infinitely
often. This infinite family of solutions to a homogeneous
form of (13) with fewer terms can then be translated back
via duality to show that the system fails to mix for some
strictly lower order, proving that mixing implies mixing of
all orders by induction.

Mixing properties for algebraic dynamical systems
without the assumption of connectedness are quite dif-
ferent, and in particular it is possible to have mixing ac-
tions that are not mixing of all orders. This is a simple
consequence of the fact that the constituents of a dis-
connected algebraic dynamical system are associated with
fields of positive characteristic, where the presence of the
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Frobenius automorphism can prevent higher-order mix-
ing. Ledrappier [57] pointed this out via examples of the
following shape. Let

X D
n
x 2 FZ2

2 : x(aC1;b) C x(a;b) C x(a;bC1)

D 0 (mod 2)
o

and define the Z2-action T to be the natural shift action,

(T(n;m)x)(a;b) D x(aCn;bCm) :

It is readily seen that this action is mixing with respect
to the Haar measure. The condition x(aC1;b) C x(a;b) C
x(a;bC1) D 0 (mod 2) implies that, for any k > 1,

x(0;2k ) D
2kX

jD0

 
2k

j

!

x( j;0) D x(0;0)Cx(2k ;0) (mod 2) (14)

since every entry in the 2k th row of Pascal’s triangle is
even apart from the first and the last. Now let A D

fx 2 X : x(0;0) D 0g and let x� 2 X be any element with
x(0;0) D 1. Then X is the disjoint union of A and AC x�,
so

�(A) D �(AC x�) D 1
2 :

However, (14) shows that

x 2 A\ T�(2k ;0)A H) x 2 T�(0;2k )A ;

so

A\ T�(2k ;0)A\ T�(0;2k )(AC x�) D ;

for all k > 1, which shows that T cannot be mixing on
three sets.

The full picture of higher-order mixing properties
on disconnected groups is rather involved; see Schmidt’s
monograph [83]. A simple illustration is the construc-
tion by Einsiedler and the author [23] of systems with
any prescribed order of mixing. When such systems fail
to be mixing of all orders, they fail in a very specific
way – along dilates of a specific shape (a finite subset of
Zd ). In the example above, the shape that fails to mix is
f(0; 0); (1; 0); (0; 1)g. This gives an order of mixing as de-
tected by shapes; computing this is in principle an alge-
braic problem. On the other hand, there is a more natu-
ral definition of the order of mixing, namely the largest k
for which (12) holds; computing this is in principle a Dio-
phantine problem. A conjecture emerged (formulated ex-
plicitly by Schmidt [84]) that for any algebraic dynamical
system, if every set of cardinality r > 2 is a mixing shape,
then the system is mixing on r sets.

This question motivated Masser [64] to prove an ap-
propriate analogue of the S-unit theorem on the number of
solutions to (13) in positive characteristic as follows. LetH
be a multiplicative group and fix n 2 N. An infinite sub-
set A � Hn is called broad if it has both of the following
properties:

� if h 2 H and 1 � j � n, then there are at most finitely
many (a1; : : : ; an) in A with a j D h;

� if n > 2, h 2 H and 1 � i < j � n then there are at
most finitely many (a1; : : : ; an) 2 H with ai a�1j D h.

Then Masser’s theorem says the following. LetK be a field
of characteristic p > 0, let G be a finitely-generated sub-
group ofK� and suppose that the equation

a1x1 C � � � C anxn D 1

has a broad set of solutions (x1; : : : ; xn) 2 Gn for some
constants a1; : : : ; an 2 K�. Then there is an m � n, con-
stants b1; : : : ; bm 2 K� and some (g1; : : : ; gm) 2 Gm with
the following properties:

� g j ¤ 1 for 1 � j � m;
� gi g�1j ¤ 1 for 1 � i < j � m;
� there are infinitely many k for which

b1gk1 C b2gk2 C � � � C bmgkm D 1 :

The proof that shapes detect the order of mixing in alge-
braic dynamics then proceeds much as in the connected
case.

Future Directions

The interaction between ergodic theory, number theory
and combinatorics continues to expand rapidly, and many
future directions of research are discussed in the articles
� Ergodic Theory on Homogeneous Spaces and Metric
Number Theory, � Ergodic Theory: Rigidity and � Er-
godic Theory: Recurrence. Some of the directions most
relevant to the examples discussed in this article include
the following.

The recent developments mentioned in Subsect. “Sets
of Primes” clearly open many exciting prospects involv-
ing finding new structures in arithmetically significant
sets (like the primes). The original conjecture of Erdős
and Turán [26] asked if

P
a2A�N

1
a D 1 is sufficient to

force the set A to contain arbitrary long arithmetic pro-
gressions, and remains open. This would of course imply
both Szemerédi’s theorem [97] and the result of Green
and Tao [39] on arithmetic progressions in the primes.
More generally, it is clear that there is still much to come
from the dialogue subsuming the four parallel proofs of
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Szemerédi’s: one by purely combinatorial methods, one
by ergodic theory, one by hypergraph theory, and one
by Fourier analysis and additive combinatorics. For an
overview, see the survey papers of Tao [98,99,100].

In the context of the orbit-counting results in Sect.
“Orbit-Counting as an Analogous Development”, a natu-
ral problem is to on the one hand obtain finer asymptotics
with better control of the error terms, and on the other to
extend the situations that can be handled. In particular, re-
laxing the hypotheses related to hyperbolicity (or negative
curvature) is a constant challenge.
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Ergodic theory lies at the intersection of many areas of
mathematics, including smooth dynamics, statistical me-
chanics, probability, harmonic analysis, and group actions.
Problems, techniques, and results are related to many
other areas of mathematics, and ergodic theory has had
applications both within mathematics and to numerous
other branches of science. Ergodic theory has particularly
strong overlap with other branches of dynamical systems;
to clarify what distinguishes it from other areas of dynam-
ics, we start with a quick overview of dynamical systems.

Dynamical systems is the study of systems that evolve
with time. The evolution of a dynamical system is given
by some fixed rule that determines the states of the sys-
tem a short time into the future, given only the present
states. Reflecting the origins of the subject in celestial me-
chanics, the set of states through which the system evolves
with time is called an orbit. Many important concepts in
dynamical systems are related to understanding the orbits
in the system: Do the orbits fill out the entire space? Do
orbits collapse? Do orbits return to themselves? What are
statistical properties of the orbits? Are orbits stable under
perturbation? For simple dynamical systems, knowing the
individual orbits is often sufficient to answer such ques-
tions. However, in most dynamical systems it is impossi-
ble to write down explicit formulae for orbits, and even
when one can, many systems are too complicated to be un-
derstood just in terms of individual orbits. The orbits may
only be known approximately, some orbits may appear to
be randomwhile others exhibit regular behavior, and vary-
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ing the parameters defining the system may give rise to
qualitatively different behaviors. The various branches of
dynamical systems have been developed for understand-
ing long term properties of the orbits.

To make the notion of a dynamical system more pre-
cise, let X denote the collection of all states of the system.
The evolution of these states is given by some fixed rule
T : X ! X, dictating where each state x 2 X is mapped.
An application of the transformation T : X ! X corre-
sponds to the passage of a unit of time and for a posi-
tive integer n, the map Tn D T ı T ı : : : ı T denotes the
composition of T with itself taken n times. Given a state
x 2 X, the orbit of the point x under the transformation T
is the collection of iterates x; Tx; T2x; : : : of the state x.
Thus the single transformation T generates a semigroup
of transformations acting on X, by considering the pow-
ers Tn. More generally, one can consider a family of trans-
formations fTt : t 2 Rg with each Tt : X ! X. Assuming
that T0(x) D x and that TtCs(x) D Tt(Ts (x)) for all states
x 2 X and all real t and s, this models the evolution of con-
tinuous time in a system. Autonomous differential equa-
tions are examples of such continuous time systems.

In almost all cases of interest, the space X has some
underlying structure which is preserved by the transfor-
mation T. Different underlying structures X and differ-
ent properties of the transformation T give rise to differ-
ent branches of dynamical systems. When X is a smooth
manifold and T : X ! X is a differentiable mapping, one
is in the framework of differentiable dynamics. When X is
a topological space and T : X ! X is a continuous map,
one is in the framework of topological dynamics. When X
is a measure space and T : X ! X is a measure preserv-
ing map, one is in the framework of ergodic theory. These
categories are not mutually exclusive, and the relations
among them are deep and interesting. Some of these rela-
tions are explored in the articles� Topological Dynamics,
� Symbolic Dynamics, and� Smooth Ergodic Theory.

To further explain the role of ergodic theory, a few def-
initions are needed. The state space X is assumed to be
a measure space, endowed with a �-algebra B of measur-
able sets and a measure �. The measure � assigns each
set B 2 B a non-negative number (its measure), and usu-
ally one assumes that �(X) D 1 (thus � is a probabil-
ity measure). The transformation T : X ! X is assumed
to be a measurable and measure preserving map: For all
B 2 B, �(T�1B) D �(B). The quadruple (X;B; �; T) is
called a measure preserving system. For the precise def-
initions and background on measure preserving transfor-
mations, see the article�Measure Preserving Systems. An
extensive discussion of examples of measure preserving
systems and basic constructions used in ergodic theory is

given in� Ergodic Theory: Basic Examples and Construc-
tions.

The origins of ergodic theory are in the nineteenth
century work of Boltzmann on the foundations of statisti-
cal mechanics. Boltzmann hypothesized that for large sys-
tems of interacting particles in equilibrium, the “time aver-
age” is equal to the “space average”. This question can be
reformulated in the context of modern terminology. As-
sume that (X;B; �; T) is a measure preserving system and
that f : X ! R is somemeasurement taken on the system.
Thus if x 2 X is a state, evaluating the sequence

f (x) ; f (Tx) ; f (T2x); : : :

can be viewed as successive values of this measurement.
Boltzmann’s question can be phrased as: Under what con-
ditions is the timemean equal to the space mean? In short,
when does

lim
N!1

1
N

N�1X

nD0

f (Tnx) D
Z

X
f d� ?

Boltzmann hypothesized that if orbits went “everywhere”
in the space, then such a conclusion would hold.

The study of the equality of space and time averages
has been a major direction of research in ergodic theory.
The long term behavior of the average

lim
N!1

1
N

N�1X

nD0

f (Tnx) ;

and especially the existence of this limit, is a basic question.
Roughly speaking, the ergodic theorem states that starting
at almost any initial point, the distribution of its iterates
obeys some asymptotic law. This, and more general con-
vergence questions, are addressed in the article � Ergodic
Theorems.

Perhaps the earliest result in ergodic theory is the
Poincaré Recurrence Theorem: In a finite measure space,
some iterate of any set with positive measure intersects the
set itself in a set of positive measure. More generally, the
qualitative behavior of orbits is used to understand condi-
tions underwhich the time average is equal to the space av-
erage of the system (see the article � Ergodic Theory: Re-
currence). If the time average is equal almost everywhere
to the space average, then the system is said to be ergodic.
Ergodicity is a key notion, giving a simple expression for
the time average of an arbitrary function. Moreover, us-
ing the Ergodic Decomposition Theorem, the study of ar-
bitrary measure preserving systems can be reduced to er-
godic ones. Ergodicity and related properties of a system
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are discussed in the article� Ergodicity andMixing Prop-
erties.

Another central problem in ergodic theory is the clas-
sification of measure preserving systems. There are var-
ious notions of equivalence, and a classical approach to
checking if systems are equivalent is finding invariants
that are preserved under the equivalence. This subject, in-
cluding an introduction to Ornstein Theory, is covered
in the article � Isomorphism Theory in Ergodic Theory.
A map T : X ! X determines an associated unitary oper-
ator U D UT defined on L2(X) by

UT f (x) D f (Tx) :

There are also numerical invariants that can be assigned to
a system, for example entropy, and this is discussed in the
article � Entropy in Ergodic Theory.

When two systems are not equivalent, one would like
to understand what properties they do have in common.
An essential tool in such a classification is the notion of
joinings (see the article � Joinings in Ergodic Theory).
Roughly speaking, a joining is a way of embedding two
systems in the same space. When this can be done in
a nontrivial manner, one obtains information on proper-
ties shared by the systems.

Some systems have predictable behavior and can be
classified according to the behavior of individual points
and their iterates. Others have behavior that is too com-
plex or unpredictable to be understood on the level of or-
bits. Ergodic theory provides a statistical understanding of
such systems and this is discussed in the article � Chaos
and Ergodic Theory. A prominent role in chaotic dynam-
ical systems is played by one dimensional Gibbs measure
and by equilibrium states and (see the article � Pressure
and Equilibrium States in Ergodic Theory). Rigidity theory
addresses the opposite case, studying what kinds of prop-
erties in a system are obstructions to general chaotic be-
havior. The role of ergodic theory in this area is discussed
in the article� Ergodic Theory: Rigidity.

Another important class of systems arises when one
relaxes the condition that the transformation T preserves
the measure of sets on X, only requiring that the transfor-
mation preserve the negligible sets. Such systems are dis-
cussed in� Joinings in Ergodic Theory.

Ergodic theory has seen a burst of recent activity, and
most of this activity comes from interaction with other
fields. Historically, ergodic theory has interacted with nu-
merous fields, including other areas of dynamics, proba-
bility, statistical mechanics, and harmonic analysis. More
recently, ergodic theory and its techniques have been im-
ported into number theory and combinatorics, proving
new results that have yet to be proved by other methods,

and in turn, combinatorial problems have given rise to
new areas of research within ergodic theory itself. Prob-
lems related to Diophantine approximation are discussed
in� Ergodic Theory on Homogeneous Spaces and Metric
Number Theory and� Ergodic Theory: Rigidity and ones
related to combinatorial problems are addressed in � Er-
godic Theory: Interactions with Combinatorics and Num-
ber Theory and in� Ergodic Theory: Recurrence. Interac-
tion with problems that are geometric in nature, in partic-
ular dimension theory, is discussed in � Ergodic Theory:
Fractal Geometry.
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Glossary

Nonsingular dynamical system Let (X;B; �) be a stan-
dard Borel space equipped with a �-finite measure.
A Borel map T : X ! X is a nonsingular transfor-
mation of X if for any N 2 B, �(T�1N) D 0 if
and only if �(N) D 0. In this case the measure �
is called quasi-invariant for T; and the quadruple
(X;B; �; T) is called a nonsingular dynamical system.
If �(A) D �(T�1A) for all A 2 B then � is said to be
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invariant under T or, equivalently, T is measure-pre-
serving.

Conservativeness T is conservative if for all sets A of pos-
itive measure there exists an integer n > 0 such that
�(A\ T�nA) > 0.

Ergodicity T is ergodic if every measurable subset A of X
that is invariant under T (i. e., T�1AD A) is either �-
null or �-conull. Equivalently, every Borel function
f : X ! R such that f ı T D f is constant a. e.

Types II, II1, II1 and III Suppose that � is non-atomic
and T ergodic (and hence conservative). If there exists
a �-finite measure � onBwhich is equivalent to � and
invariant under T then T is said to be of type II. It is
easy to see that � is unique up to scaling. If � is finite
then T is of type II1. If � is infinite thenT is of type II1.
If T is not of type II then T is said to be of type III.

Definition of the Subject

An abstract measurable dynamical system consists of
a set X (phase space) with a transformation T : X ! X
(evolution law or time) and a finite or �-finite measure �
on X that specifies a class of negligible subsets. Nonsingu-
lar ergodic theory studies systems where T respects � in
a weak sense: the transformation preserves only the class
of negligible subsets but it may not preserve �. This sur-
vey is about dynamics and invariants of nonsingular sys-
tems. Such systems model ‘non-equilibrium’ situations in
which events that are impossible at some time remain im-
possible at any other time. Of course, the first question
that arises is whether it is possible to find an equivalent
invariant measure, i. e. pass to a hidden equilibrium with-
out changing the negligible subsets? It turns out that there
exist systems which do not admit an equivalent invariant
finite or even �-finite measure. They are of our primary in-
terest here. In a way (Baire category) most of systems are
like that.

Nonsingular dynamical systems arise naturally in vari-
ous fields of mathematics: topological and smooth dynam-
ics, probability theory, random walks, theory of numbers,
von Neumann algebras, unitary representations of groups,
mathematical physics and so on. They also can appear in
the study of probability preserving systems: some criteria
of mild mixing and distality, a problem of Furstenberg on
disjointness, etc. We briefly discuss this in Sect. “Appli-
cations. Connections with Other Fields”. Nonsingular er-
godic theory studies all of them from a general point of
view:

� What is the qualitative nature of the dynamics?
� What are the orbits?
� Which properties are typical withing a class of systems?

� How do we find computable invariants to compare or
distinguish various systems?

Typically there are two kinds of results: some are exten-
sions to nonsingular systems of theorems for finite mea-
sure-preserving transformations (for instance, the entire
Sect. “Basic Results”) and the other are about new prop-
erly ‘nonsingular’ phenomena (see Sect. “Mixing Notions
and Multiple Recurrence” or Sect. “Orbit Theory”). Philo-
sophically speaking, the dynamics of nonsingular systems
is more diverse comparatively with their finite measure-
preserving counterparts. That is why it is usually easier
to construct counterexamples than to develop a general
theory. Because of shortage of space we concentrate only
on invertible transformations, and we have not included
as many references as we had wished. Nonsingular endo-
morphisms and general group or semigroup actions are
practically not considered here (with some exceptions in
Sect. “Applications. Connections with Other Fields” de-
voted to applications). A number of open problems are
scattered through the entire text.

We thank J. Aaronson, J.R. Choksi, V.Ya. Golodets,
M. Lemańczyk, F. Parreau, E. Roy for useful remarks.

Basic Results

This section includes the basic results involving conser-
vativeness and ergodicity as well as some direct non-
singular counterparts of the basic machinery from clas-
sic ergodic theory: mean and pointwise ergodic theo-
rems, Rokhlin lemma, ergodic decomposition, generators,
Glimm–Effros theorem and special representation of non-
singular flows. The historically first example of a transfor-
mation of type III (due to Ornstein) is also given here with
full proof.

Nonsingular Transformations

In this paper we will consider only invertible nonsingu-
lar transformations, i. e. those which are bijections when
restricted to an invariant Borel subset of full measure.
Thus when we refer to a nonsingular dynamical sys-
tem (X;B; �; T) we shall assume that T is an invert-
ible nonsingular transformation. Of course, each mea-
sure � on B which is equivalent to �, i. e. � and �

have the same null sets, is also quasi-invariant under T.
In particular, since � is �-finite, T admits an equiva-
lent quasi-invariant probability measure. For each i 2 Z,
we denote by !�i or ! i the Radon–Nikodym derivative
d(� ı Ti )/d� 2 L1(X; �). The derivatives satisfy the co-
cycle equation !iC j(x) D !i(x)! j(Ti x) for a. e. x and all
i; j 2 Z.
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Basic Properties of Conservativeness and Ergodicity

A measurable set W is said to be wandering if for all
i; j � 0 with i ¤ j, T�iW \ T� jW D ;. Clearly, if T has
a wandering set of positive measure then it cannot be
conservative. A nonsingular transformation T is incom-
pressible if whenever T�1C � C, then �(C n T�1C) D 0.
A setW of positive measure is said to be weakly wandering
if there is a sequence ni !1 such that TniW \Tn jW D
; for all i ¤ j. Clearly, a finite measure-preserving trans-
formation cannot have a weakly wandering set. Hajian and
Kakutani [83] showed that a nonsingular transformation T
admits an equivalent finite invariant measure if and only
if T does not have a weakly wandering set.

Proposition 1 (see e. g. [123]) Let (X;B; �; T) be a non-
singular dynamical system. The following are equivalent:

(i) T is conservative.
(ii) For every measurable set A, �(A n

S1
nD1 T

�nA) D 0.
(iii) T is incompressible.
(iv) Every wandering set for T is null.

Since any finite measure-preserving transformation is in-
compressible, we deduce that it is conservative. This is the
statement of the classical Poincaré recurrence lemma. If T
is a conservative nonsingular transformation of (X;B; �)
and A 2 B a subset of positive measure, we can define an
induced transformation TA of the space (A;B \ A; � � A)
by setting TAx :D Tnx if n D n(x) is the smallest natu-
ral number such that Tnx 2 A. TA is also conservative. As
shown in [179], if �(X) D 1 and T is conservative and er-
godic,

R
A
Pn(x)�1

iD0 !(x)d�(x) D 1, which is a nonsingular
version of the well-known Kaçs formula.

Theorem 2 (Hopf Decomposition, see e. g. [3]) Let T
be a nonsingular transformation. Then there exist dis-
joint invariant sets C;D 2 B such that X D C t D, T
restricted to C is conservative, and D D

F1
nD�1 Tn W,

where W is a wandering set. If f 2 L1(X; �), f > 0,
then C D fx :

Pn�1
iD0 f (Tix)!i (x) D 1 a. e.g and D D

fx :
Pn�1

iD0 f (Tix)!i (x) <1 a. e.g.

The setC is called the conservative part of T andD is called
the dissipative part of T.

If T is ergodic and � is non-atomic then T is automat-
ically conservative. The translation by 1 on the group Z
furnished with the counting measure is an example of
an ergodic non-conservative (infinite measure-preserving)
transformation.

Proposition 4 Let (X;B; �; T) be a nonsingular dynami-
cal system. The following are equivalent:

(i) T is conservative and ergodic.

(ii) For every set A of positive measure, �(X nS1
nD1 T

�nA) D 0. (In this case we will say A sweeps
out.)

(iii) For every measurable set A of positive measure and
for a. e. x 2 X there exists an integer n > 0 such that
Tnx 2 A.

(iv) For all sets A and B of positive measure there exists an
integer n > 0 such that �(T�nA\ B) > 0.

(v) If A is such that T�1A � A, then �(A) D 0 or
�(Ac ) D 0.

This survey is mainly about systems of type III. For some
time it was not quite obvious whether such systems exist at
all. The historically first example was constructed by Orn-
stein in 1960.

Example 5 (Ornstein [149]) Let An D f0; 1; : : : ; ng,
�n(0) D 0:5 and �n(i) D 1/(2n) for 0 < i � n and all
n 2 N . Denote by (X; �) the infinite product probabil-
ity space

N1
nD1(An ; �n). Of course, � is non-atomic.

A point of X is an infinite sequence x D (xn)1nD1 with
xn 2 An for all n. Given a1 2 A1; : : : ; an 2 An , we denote
the cylinder fx D (xi)1iD1 2 X : x1 D a1; : : : ; xn D ang
by [a1; : : : ; an]. Define a Borel map T : X ! X by setting

(Tx)i D

8
<̂

:̂

0; if i < l(x)
xi C 1; if i D l(x)
xi ; if i > l(x) ;

(1)

where l(x) is the smallest number l such that xl ¤ l. It is
easy to verify that T is a nonsingular transformation of
(X; �) and

d� ı T
d�

(x) D
1Y

nD1

�n((Tx)n)
�n(xn)

D

8
<

:

(l(x)� 1)!
l(x)

; if xl (x) D 0

(l(x)� 1)! ; if xl (x) ¤ 0 :

We prove that T is of type III by contradiction. Suppose
that there exists a T-invariant �-finite measure � equiva-
lent to �. Let ' :D d�/d�. Then

!
�
i (x) D '(x)'(T

i x)�1 for a. a. x 2 X and all i 2 Z: (2)

Fix a realC > 1 such that the set EC :D '�1([C�1;C])�X
is of positive measure. By a standard approximation argu-
ment, for each sufficiently large n, there is a cylinder [a1;
: : : ;an] such that �(EC \ [a1; : : : ; an]) > 0:9�([a1; : : : ;
an]). Since �nC1(0) D 0:5, it follows that �(EC \ [a1;
: : : ; an ; 0]) > 0:8�([a1; : : : ; an ; 0]). Moreover, by the pi-
geon hole principle there is 0 < i � nC1 with �(EC \
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[a1; : : : ; an ; i]) > 0:8�([a1; : : : ; an ; i]). Find Nn > 0 such
that TNn [a1; : : : ; an ; 0] D [a1; : : : ; an; i]. Since !

�
Nn

is
constant on [a1; : : : ; an ; 0], there is a subset E0 � EC\
[a1; : : : ; an ; 0] of positive measure such that TNnE0 � EC
\[a1; : : : ; an ; i]. Moreover, !�Nn

(x)D�nC1(i)/�nC1(0)D
(n C 1)�1 for a. a. x 2 [a1; : : : ; an; 0]. On the other hand,
we deduce from (2) that !�Nn

(x) � C�2 for all x 2 E0,
a contradiction.

Mean and Pointwise Ergodic Theorems.
Rokhlin Lemma

Let (X;B; �; T) be a nonsingular dynamical system. De-
fine a unitary operator UT of L2(X; �) by setting

UT f :D

s
d(� ı T)

d�
� f ı T : (3)

We note that UT preserves the cone of positive functions
L2C(X; �). Conversely, every positive unitary operator in
L2(X; �) that preserves L2C(X; �) equals UT for a �-non-
singular transformation T.

Theorem 6 (von Neumann mean Ergodic Theorem, see
e. g. [3]) If T has no �-absolutely continuous T-invariant
probability, then n�1

Pn�1
iD0 U

i
T ! 0 in the strong operator

topology.

Denote by I the sub-�-algebra of T-invariant sets. Let
E�[:jI] stand for the conditional expectation with respect
to I . Note that if T is ergodic, then E�[ f jI] D

R
f d�.

Now we state a nonsingular analogue of Birkhoff’s point-
wise ergodic theorem, due to Hurewicz [105] and in the
form stated by Halmos [84].

Theorem 7 (Hurewicz pointwise Ergodic Theorem) If T
is conservative,�(X) D 1, f ; g 2 L1(X; �) and g > 0, then

n�1X

iD0

f (Tix)!i(x)

n�1X

iD0

g(Ti x)!i (x)

!
E�[ f jI]
E�[gjI]

as n!1 for a. e. x :

A transformation T is aperiodic if the T-orbit of a. e. point
from X is infinite. The following classical statement can be
deduced easily from Proposition 1.

Lemma 8 (Rokhlin’s lemma [161]) Let T be an aperi-
odic nonsingular transformation. For each " > 0 and in-
teger N > 1 there exists a measurable set A such that the
sets A; TA; : : : ; TN�1A are disjoint and �(A[ TA[ � � � [
TN�1A) > 1 � ".

This lemmawas refined later (for ergodic transformations)
by Lehrer andWeiss as follows.

Theorem 9 ("-free Rokhlin lemma [132]) Let T be er-
godic and � non-atomic. Then for a subset B � X and
any N for which

S1
kD0 T

�kN(X n B) D X, there is a set A
such that the sets A; TA; : : : ; TN�1A are disjoint and
A[ TA[ � � � [ TN�1A � B.

The condition
S1

kD0 T
�kN(X n B) D X holds of course

for each B ¤ X if T is totally ergodic, i. e. Tp is ergodic for
any p, or if N is prime.

Ergodic Decomposition

A proof of the following theorem may be found in [3].

Theorem 10 (Ergodic Decomposition Theorem) Let T
be a conservative nonsingular transformation on a stan-
dard probability space (X;B; �). There there exists a stan-
dard probability space (Y ; �;A) and a family of probability
measures �y on (X;B), for y 2 Y, such that

(i) For each A 2 B the map y 7! �y (A) is Borel and for
each A 2 B

�(A) D
Z
�y(A) d�(y) :

(ii) For y; y0 2 Y the measures �y and �y0 are mutually
singular.

(iii) For each y 2 Y the transformation T is nonsingular
and conservative, ergodic on (X;B; �y).

(iv) For each y 2 Y

d� ı T
d�

D
d�y ı T
d�y

�y-a. e :

(v) (Uniqueness) If there exists another probability space
(Y 0; �0;A0) and a family of probability measures �0y0
on (X;B), for y0 2 Y 0, satisfying (i)–(iv), then there
exists a measure-preserving isomorphism � : Y ! Y 0

such that �y D �
0
� y for �-a. e. y.

It follows that if T preserves an equivalent �-finite mea-
sure then the system (X;B; �y ; T) is of type II for a. a. y.
The space (Y ; �;A) is called the space of T-ergodic compo-
nents.

Generators

It was shown in [157,162] that a nonsingular trans-
formation T on a standard probability space (X;B; �)
has a countable generator, i. e. a countable parti-
tion P so that

W1
nD�1 TnP generates the measur-

able sets. It was refined by Krengel [126]: if T is of
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type II1 or III then there exists a generator P consist-
ing of two sets only. Moreover, given a sub-�-algebra
F � B such that F � TF and

S
k>0 T

kF D B, the set
fA 2 F j (A; X n A) is a generator of Tg is dense in F . It
follows, in particular, that T is isomorphic to the shift on
f0; 1gZ equipped with a quasi-invariant probability mea-
sure.

The Glimm–Effros Theorem

The classical Bogoliouboff–Krylov theorem states that
each homeomorphism of a compact space admits an er-
godic invariant probability measure [33]. The following
statement by Glimm [76] and Effros [61] is a “nonsin-
gular” analogue of that theorem. (We consider here only
a particular case of Z-actions.)

Theorem 11 Let X be a Polish space and T : X ! X an
aperiodic homeomorphism. Then the following are equiva-
lent:

(i) T has a recurrent point x, i. e. x D limn!1 Tni x for
a sequence n1 < n2 < � � � :

(ii) There is an orbit of T which is not locally closed.
(iii) There is no a Borel set which intersects each orbit of T

exactly once.
(iv) There is a continuous probability Borel measure �

on X such that (X; �; T) is an ergodic nonsingular sys-
tem.

A natural question arises: under the conditions of the the-
orem howmany such� can exists? It turns out that there is
a wealth of such measures. To state a corresponding result
we first write an important definition.

Definition 12 Two nonsingular systems (X;B; �; T) and
(X;B0; �0; T 0) are called orbit equivalent if there is a one-
to-one bi-measurable map ' : X ! X with �0 ı ' � �
and such that ' maps the T-orbit of x onto the T 0-orbit
of '(x) for a. a. x 2 X.

The following theorem was proved in [116,128] and [174].

Theorem 13 Let (X; T) be as in Theorem 11. Then for
each ergodic dynamical system (Y ;C; �; S) of type II1 or
III, there exist uncountably many mutually disjoint Borel
measures � on X such that (X; T;B; �) is orbit equivalent
to (Y ;C; �; S).
On the other hand, T may not have any finite invariant
measure. Indeed, let T be an irrational rotation on the
circle T and X a non-empty T-invariant Gı subset of T
of full Lebesgue measure. Let (X; T) contain a recurrent
point. Then the unique ergodicity of (T ; T) implies that
(X; T) has no finite invariant measures.

Let T be an aperiodic Borel transformation of
a standard Borel space X. Denote by M(T) the set of
all ergodic T-nonsingular continuous measures on X.
Given � 2M(T), let N(�) denote the family of all
Borel �-null subsets. Shelah and Weiss showed [178]
that

T
�2M(T) N(�) coincides with the collection of all

Borel T-wandering sets.

Special Representations of Ergodic Flows

Nonsingular flows (D R-actions) appear naturally in
the study of orbit equivalence for systems of type III
(see Sect. “Orbit Theory”). Here we record some ba-
sic notions related to nonsingular flows. Let (X;B; �)
be a standard Borel space with a �-finite measure �
on B. A nonsingular flow on (X; �) is a Borel map
S : X �R 3 (x; t) 7! Stx 2 X such that StSs D StCs for
all s; t 2 R and each St is a nonsingular transformation of
(X; �). Conservativeness and ergodicity for flows are de-
fined in a similar way as for transformations.

A very useful example of a flow is a flow built un-
der a function. Let (X;B; �; T) be a nonsingular dynam-
ical system and f a positive Borel function on X such
that

P1
iD0 f (T

ix) D
P1

iD0 f (T
�i x) D 1 for all x 2 X.

Set X f :D f(x; s) : x 2 X; 0 � s < f (x)g. Define �f to be
the restriction of the product measure � � Leb on X �R
to Xf and define, for t � 0,

S f
t (x; s) :D

 

Tnx; s C t �
n�1X

iD0

f (Tix)

!

;

where n is the unique integer that satisfies

n�1X

iD0

f (Tix) < sC t �
nX

iD0

f (Tix) :

A similar definition applies when t < 0. In particular,
when 0 < sC t < '(x), S f

t (x; s) D (x; s C t), so that the
flow moves the point (x; s) up t units, and when it
reaches (x; '(x)) it is sent to (Tx; 0). It can be shown that
S f D (S f

t )t2R is a free�f -nonsingular flow and that it pre-
serves �f if and only if T preserves � [148]. It is called the
flow built under the function ' with the base transforma-
tion T. Of course, S f is conservative or ergodic if and only
if so is T.

Two flows S D (St)t2R on (X;B; �) and V D (Vt)t2R

on (Y ;C; �) are said to be isomorphic if there exist invari-
ant co-null sets X 0 � X and Y 0 � Y and an invertible non-
singular map � : X 0 ! Y 0 that interwines the actions of
the flows: � ı St D Vt ı � on X 0 for all t. The following
nonsingular version of Ambrose–Kakutani representation
theorem was proved by Krengel [120] and Kubo [130].
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Theorem 14 Let S be a free nonsingular flow. Then it is
isomorphic to a flow built under a function.

Rudolph showed that in the Ambrose–Kakutani theorem
one can choose the function ' to take two values. Kren-
gel [122] showed that this can also be assumed in the non-
singular case.

Panorama of Examples

This section is devoted entirely to examples of nonsingular
systems. We describe here the most popular (and simple)
constructions of nonsingular systems: odometers, nonsin-
gular Markov odometers, tower transformations, rank-
one and finite rank systems and nonsingular Bernoulli
shifts.

Nonsingular Odometers

Given a sequencemn of natural numbers, we let An :Df0;1;
: : : ;mn � 1g. Let �n be a probability on An and �n(a) > 0
for all a 2 An . Consider now the infinite product prob-
ability space (X; �) :D

N1
nD1(An ; �n). Assume thatQ1

nD1 maxf�n(a) j a 2 Ang D 0. Then � is non-atomic.
Given a1 2 A1; : : : ; an 2 An , we denote by [a1; : : : ; an]
the cylinder x D (xi )i>0 j x1 D a1; : : : ; xn D an . If
x ¤ (0; 0; : : : ), we let l(x) be the smallest number l such
that the lth coordinate of x is not ml � 1. We define
a Borel map T : X ! X by (1) if x ¤ (m1;m2; : : : ) and
put Tx :D (0; 0; : : : ) if x D (m1;m2; : : : ). Of course, T is
isomorphic to a rotation on a compact monothetic totally
disconnected Abelian group. It is easy to check that T
is �-nonsingular and

d� ı T
d�

(x) D
1Y

nD1

�n((Tx)n)
�n(xn)

D
�l (x)(xl (x) C 1)
�l (x)(xl (x))

l (x)�1Y

nD1

�n(0)
�n(mn � 1)

for a. a. x D (xn)n>0 2 X. It is also easy to verify that T
is ergodic. It is called the nonsingular odometer associated
to (mn ; �n)1nD1. We note that Ornstein’s transformation
(Example 5) is a nonsingular odometer.

Markov Odometers

We define Markov odometers as in [54]. An ordered Brat-
teli diagram B [102] consists of

(i) a vertex set V which is a disjoint union of finite sets
V (n), n � 0, V0 is a singleton;

(ii) an edge set E which is a disjoint union of finite sets
E(n), n > 0;

(iii) source mappings sn : E(n) ! V (n�1) and range map-
pings rn : E(n) ! V (n) such that s�1n (v) ¤ ; for all
v 2 V (n�1) and r�1n (v) ¤ ; for all v 2 V (n), n > 0;

(iv) a partial order on E so that e; e0 2 E are comparable if
and only if e; e0 2 E(n) for some n and rn(e) D rn(e0).

A Bratteli compactum XB of the diagram B is the space of
infinite paths

˚
x D (xn)n>0 j xn 2 E(n) and r(xn) D s(xnC1)

�

on B. XB is equipped with the natural topology induced
by the product topology on

Q
n>0 E

(n). We will assume
always that the diagram is essentially simple, i. e. there
is only one infinite path xmax D (xn)n>0 with xn maxi-
mal for all n and only one xmin D (xn)n>0 with xn mini-
mal for all n. The Bratteli–Vershik map TB : XB ! XB is
defined as follows: Txmax D xmin. If x D (xn)n>0 ¤ xmax
then let k be the smallest number such that xk is not max-
imal. Let yk be a successor of xk. Let (y1; : : : ; yk) be the
unique path such that y1; : : : ; yk�1 are all minimal. Then
we let TBx :D (y1; : : : ; yk ; xkC1; xkC2; : : : ). It is easy to
see that TB is a homeomorphism of XB. Suppose that we
are given a sequence P(n) D (P(n)(v;e)2Vn�1�E(n) ) of stochas-
tic matrices, i. e.

(i) P(n)v;e > 0 if and only if v D sn(e) and
(ii)

P
fe2E(n)jsn (e)Dvg P

(n)
v;e D 1 for each v 2 V (n�1).

For e1 2 E(1); : : : ; en 2 E(n), let [e1; : : : ; en] denote the
cylinder fx D (x j) j>0 j x1 D e1; : : : ; xn D eng. Then we
define aMarkov measure on XB by setting

�P ([e1; : : : ; en]) D P1s1(e1);e1P
2
s2(e2);e2 � � � P

n
sn (en);en

for each cylinder [e1; : : : ; en]. The dynamical system
(XB ; �P ; TB) is called a Markov odometer. It is easy to see
that every nonsingular odometer is a Markov odometer
where the corresponding V (n) are all singletons.

Tower Transformations

This construction is a discrete analogue of flow un-
der a function. Given a nonsingular dynamical system
(X; �; T) and a measurable map f : X ! N , we define
a new dynamical system (X f ; � f ; T f ) by setting

X f :D f(x; i) 2 X � ZC j 0 � i < f (x)g ;

d� f (x; i) :D d�(x) and

T f (x; i) :D

(
(x; i C 1); if i C 1 < f (x)
(Tx; 0); otherwise :
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Then Tf is �f -nonsingular and (d� f ı T f /d� f )(x; i) D
(d� ı T/d�)(x) for a. a. (x; i) 2 X f . This transformation
is called the (Kakutani) tower over T with height function f .
It is easy to check that Tf is conservative if and only if T is
conservative; Tf is ergodic if and only if T is ergodic; Tf is
of type III if and only if T is of type III. Moreover, the in-
duced transformation (T f )X�f0g is isomorphic to T. Given
a subset A � X of positive measure,T is the tower over the
induced transformation TA with the first return time to A
as the height function.

Rank-One Transformations. Chacón Maps. Finite Rank

The definition uses the process of “cutting and stacking”.
We construct by induction a sequence of columns Cn.
A column Cn consists of a finite sequence of bounded in-
tervals (left-closed, right-open) Cn D fIn;0; : : : ; In;hn�1g
of height hn. A column Cn determines a column map TCn

that sends each interval In;i to the interval above it In;iC1
by the unique orientation-preserving affine map between
the intervals. TCn remains undefined on the top interval
In;hn�1. Set C0 D f[0; 1)g and let frn > 2g be a sequence
of positive integers, let fsng be a sequence of functions
sn : f0; : : : ; rn � 1g ! N0, and let fwng be a sequence of
probability vectors on f0; : : : ; rn � 1g. If Cn has been de-
fined, column CnC1 is defined as follows. First “cut” (i. e.,
subdivide) each interval In;i in Cn into rn subintervals
In;i[ j]; j D 0; : : : ; rn � 1, whose lengths are in the propor-
tions wn(0) : wn(1) : � � � : wn(rn � 1). Next place, for each
j D 0; : : : ; rn � 1, sn( j) new subintervals above In;hn�1[ j],
all of the same length as In;hn�1[ j]. Denote these intervals,
called spacers, by Sn;0[ j]; : : : ; Sn;sn ( j)�1[ j]. This yields, for
each j 2 f0; : : : ; rn � 1g, rn subcolumns each consisting of
the subintervals

In;0[ j]; : : : ; In;hn�1[ j]
followed by the spacers Sn;0[ j]; : : : ; Sn;sn ( j)�1[ j] :

Finally each subcolumn is stacked from left to right so
that the top subinterval in subcolumn j is sent to the bot-
tom subinterval in subcolumn jC 1, for j D 0; : : : ; rn � 2
(by the unique orientation-preserving affine map between
the intervals). For example, Sn;sn (0)�1[0] is sent to In;0[1].
This defines a new column CnC1 and new column map
TCnC1 , which remains undefined on its top subinterval.
Let X be the union of all intervals in all columns and let �
be Lebesgue measure restricted to X. We assume that as
n!1 the maximal length of the intervals in Cn con-
verges to 0, so we may define a transformation T of (X; �)
by Tx :D limn!1 TCn x. One can verify that T is well-
defined a. e. and that it is nonsingular and ergodic. T is

said to be the rank-one transformation associated with
(rn ;wn ; sn)1nD1. If all the probability vectors wn are uni-
form the resulting transformation is measure-preserving.
The measure is infinite (�-finite) if and only if the to-
tal mass of the spacers is infinite. In the case rn D 3 and
sn(0) D sn(2) D 0, sn(1) D 1 for all n � 0, the associated
rank-one transformation is called a nonsingular Chacón
map.

It is easy to see that every nonsingular odometer is of
rank-one (the corresponding maps sn are all trivial). Each
rank-one map T is a tower over a nonsingular odometer
(to obtain such an odometer reduce T to a column Cn).

A rank N transformation is defined in a similar way.
A nonsingular transformation T is said to be of rank N or
less if at each stage of its construction there exits N dis-
joint columns, the levels of the columns generate the �-al-
gebra and the Radon–Nikodym derivative of T is constant
on each non-top level of every column. T is said to be of
rank N if it is of rank N or less and not of rank N � 1 or
less. A rankN transformation, N � 2, need not be ergodic.

Nonsingular Bernoulli Transformations –
Hamachi’s Example

A nonsingular Bernoulli transformation is a transfor-
mation T such that there exists a countable generator
P (see Subsect. “Generators”) such that the partitions
TnP, n 2 Z, are mutually independent and such that the
Radon–Nikodym derivative !1 is measurable with respect
to the sub-�-algebra

W0
nD�1 TnP.

In [87], Hamachi constructed examples of conserva-
tive nonsingular Bernoulli transformations, hence ergodic
(see Subsect. “Weak Mixing, Mixing, K-Property”), with
a 2-set generating partition that are of type III. Kren-
gel [121] asked if there are of type II1 examples of non-
singular Bernoulli automorphisms and the question re-
mains open. Hamachi’s construction is the left-shift on
the space X D

Q1
nD�1f0; 1g. The measure is a product

� D
Q1

nD�1 �n where �n D (1/2; 1/2) for n � 0 and for
n < 0 �n is chosen carefully alternating on large blocks
between the uniform measure and different non-uniform
measures. Kakutani’s criterion for equivalence of infinite
product measures is used to verify that � is nonsingular.

Mixing Notions andmultiple recurrence

The study of mixing and multiple recurrence are central
topics in classical ergodic theory [33,70]. Unfortunately,
these notions are considerably less ‘smooth’ in the world
of nonsingular systems. The very concepts of any kind of
mixing and multiple recurrence are not well understood
in view of their ambiguity. Below we discuss nonsingular



3062 E Ergodic Theory: Non-singular Transformations

systems possessing a surprising diversity of such proper-
ties that seem equivalent but are different indeed.

Weak Mixing, Mixing, K-Property

Let T be an ergodic conservative nonsingular transforma-
tion. A number  2 C is an L1-eigenvalue for T if there
exists a nonzero f 2 L1 so that f ı T D  f a. e. It follows
that jj D 1 and f has constant modulus, which we assume
to be 1. Denote by e(T) the set of all L1-eigenvalues of T.
T is said to be weakly mixing if e(T) D f1g. We refer to
Theorem 2.7.1 in [3] for proof of the following Keane’s
ergodic multiplier theorem: given an ergodic probability
preserving transformation S, the product transformation
T � S is ergodic if and only if �S (e(T)) D 0, where �S de-
notes the measure of (reduced) maximal spectral type of
the unitary US (see (3)). It follows that T is weakly mix-
ing if and only T � S is ergodic for every ergodic proba-
bility preserving S. While in the finite measure-preserving
case this implies that T � T is ergodic, it was shown in [5]
that there exits a weakly mixing nonsingular T with T � T
not conservative, hence not ergodic. In [11], a weakly mix-
ing T was constructed with T � T conservative but not er-
godic. A nonsingular transformation T is said to be dou-
bly ergodic if for all sets of positive measure A and B there
exists an integer n > 0 such that �(A\ T�nA) > 0 and
�(A\ T�nB) > 0. Furstenberg [70] showed that for fi-
nite measure-preserving transformations double ergodic-
ity is equivalent to weakmixing. In [20] it is shown that for
nonsingular transformations weak mixing does not imply
double ergodicity and double ergodicity does not imply
that T � T is ergodic.

T is said to have ergodic index k if the Cartesian prod-
uct of k copies of T is ergodic but the product of k C 1
copies of T is not ergodic. If all finite Cartesian prod-
ucts of T are ergodic then T is said to have infinite er-
godic index. Parry and Kakutani [113] constructed for
each k 2 N [ f1g, an infinite Markov shift of ergodic in-
dex k. A stronger property is power weak mixing, which
requires that for all nonzero integers k1; : : : ; kr the prod-
uct Tk1 � � � � � Tkr is ergodic [47]. The following exam-
ples were constructed in [12,36,38]:

(i) power weakly mixing rank-one transformations,
(ii) non-power weakly mixing rank-one transformations

with infinite ergodic index,
(iii) non-power weakly mixing rank-one transforma-

tions with infinite ergodic index and such that
Tk1 � � � � � Tkr are all conservative, k1; : : : ; kr 2 Z,

of types II1 and III (and various subtypes of III, see
Sect. “Orbit Theory”). Thus we have the following scale

of properties (equivalent to weak mixing in the probabil-
ity preserving case), where every next property is strictly
stronger than the previous ones:

T is weakly mixing ( T is doubly ergodic
( T � T is ergodic
( T � T � T is ergodic
( � � �

( T has infinite ergodic index
( T is power weakly mixing :

We also mention a recent example of a power weakly
mixing transformation of type II1 which embeds into
a flow [46].

We now consider several attempts to generalize the
notion of (strong) mixing. Given a sequence of measurable
sets fAng let �k(fAng) denote the �-algebra generated by
Ak ;AkC1; : : : . A sequence fAng is said to be remotely triv-
ial if

T1
kD0 �k(fAng) D f;; Xgmod�, and it is semi-re-

motely trivial if every subsequence contains a subsequence
that is remotely trivial. Krengel and Sucheston [124] de-
fine a nonsingular transformation T of a �-finite measure
space to be mixing if for every set A of finite measure the
sequence fT�nAg is semi-remotely trivial, and completely
mixing if fT�nAg is semi-remotely trivial for all measur-
able sets A. They show that T is completely mixing if and
only if it is type II1 and mixing for the equivalent finite in-
variant measure. Thus there are no type III and II1 com-
pletely mixing nonsingular transformations on probability
spaces. We note that this definition of mixing in infinite
measure spaces depends on the choice of measure inside
the equivalence class (but it is independent if we replace
the measure by an equivalent measure with the same col-
lection of sets of finite measure).

Hajian and Kakutani showed [83] that an ergodic infi-
nite measure-preserving transformation T is either of zero
type: limn!1�(T�nA\ A)D0 for all setsA of finite mea-
sure, or of positive type: lim supn!1�(T�nA\ A)>0 for
all sets A of finite positive measure. T is mixing if and
only if it is of zero type [124]. For 0 � ˛ � 1 Kaku-
tani suggested a related definition of ˛-type: an infi-
nite measure preserving transformation is of ˛-type if
lim supn!1 �(A\ TnA)D˛�(A) for every subset A of
finite measure. In [153] examples of ergodic transforma-
tions of any ˛-type and a transformation of not any type
were constructed.

It may seem that mixing is stronger than any kind of
nonsingular weak mixing considered above. However, it
is not the case: if T is a weakly mixing infinite measure
preserving transformation of zero type and S is an ergodic
probability preserving transformation then T � S is er-
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godic and of zero type. On the other hand, the L1-spec-
trum e(T � S) is nontrivial, i. e. T � S is not weakly mix-
ing, whenever S is not weakly mixing. We also note that
there exist rank-one infinite measure-preserving transfor-
mations T of zero type such that T � T is not conservative
(hence not ergodic) [11]. In contrast to that, if T is of pos-
itive type all of its finite Cartesian products are conserva-
tive [7]. Another result that suggests that there is no good
definition of mixing in the nonsingular case was proved
recently in [110]. It is shown there that while the mixing
finite measure-preserving transformations are measurably
sensitive, there exists no infinite measure-preserving sys-
tem that is measurably sensitive. (Measurable sensitivity is
a measurable version of the strong sensitive dependence
on initial conditions – a concept from topological theory
of chaos.)

A nonsingular transformation T of (X;B; �) is called
K-automorphism [180] if there exists a sub-�-algebra
F � B such that T�1F � F ,

T
k�0 T

�kF D f;; Xg,
WC1

kD0 T
kF D B and the Radon–Nikodym derivative

d� ı T/d� is F-measurable (see also [156] for the case
when T is of type II1; the authors in [180] required T to
be conservative). Evidently, a nonsingular Bernoulli trans-
formation (see Subsect. “Nonsingular Bernoulli Transfor-
mations – Hamachi’s Example”) is a K-automorphism.
Parry [156] showed that a type II1 K-automorphism is ei-
ther dissipative or ergodic. Krengel [121] proved the same
for a class of Bernoulli nonsingular transformations, and
finally Silva and Thieullen extended this result to nonsin-
gular K-automorphisms [180]. It is also shown in [180]
that if T is a nonsingular K-automorphism, for any er-
godic nonsingular transformation S, if S � T is conser-
vative, then it is ergodic. It follows that a conservative
nonsingularK-automorphism is weakly mixing. However,
it does not necessarily have infinite ergodic index [113].
Krengel and Sucheston [124] showed that an infinite mea-
sure-preserving conservative K-automorphism is mixing.

Multiple and Polynomial Recurrence

Let p be a positive integer. A nonsingular transformation T
is called p-recurrent if for every subset B of positive mea-
sure there exists a positive integer k such that

�(B \ T�kB \ � � � \ T�kpB) > 0 :

If T is p-recurrent for any p > 0, then it is called multi-
ply recurrent. It is easy to see that T is 1-recurrent if and
only if it is conservative. T is called rigid if Tnk ! Id for
a sequence nk !1. Clearly, if T is rigid then it is mul-
tiply recurrent. Furstenberg showed [70] that every finite
measure-preserving transformation is multiply recurrent.

In contrast to that Eigen, Hajian and Halverson [64] con-
structed for any p 2 N [ f1g, a nonsingular odometer
of type II1 which is p-recurrent but not (pC 1)-recur-
rent. Aaronson and Nakada showed in [7] that an infinite
measure preserving Markov shift T is p-recurrent if and
only if the product T � � � � � T (p times) is conservative.
It follows from this and [5] that in the class of ergodic
Markov shifts infinite ergodic index implies multiple re-
currence. However, in general this is not true. It was shown
in [12,45] and [82] that for each p 2 N [ f1g there exist

(i) power weakly mixing rank-one transformations and
(ii) non-power weakly mixing rank-one transformations

with infinite ergodic index

which are p-recurrent but not (pC 1)-recurrent (the latter
holds when p ¤ 1, of course).

A subset A is called p-wandering if �(A\ TkA\ � � �
\TpkA) D 0 for each k. Aaronson andNakada established
in [7] a p-analogue of Hopf decomposition (see Theo-
rem 2).

Proposition 15 If (X;B; �; T) is conservative ape-
riodic nonsingular dynamical system and p 2 N then
X D Cp [ Dp, where Cp and Dp are T-invariant dis-
joint subsets, Dp is a countable union of p-wandering
sets, T � Cp is p-recurrent and

P1
kD1 �(B \ T�kB \ � � �

\T�dkB) D 1 for every B � Cp.

Let T be an infinite measure-preserving transformation
and let F be a �-finite factor (i. e., invariant subalge-
bra) of T. Inoue [106] showed that for each p > 0, if
T � F is p-recurrent then so is T provided that the exten-
sion T ! T � F is isometric. It is unknown yet whether
the latter assumption can be dropped. However, partial
progress was recently achieved in [140]: if T � F is multi-
ply recurrent then so is T.

Let P :D fq 2 Q[t] j q(Z) � Z and q(0) D 0g. An er-
godic conservative nonsingular transformation T is
called p-polynomially recurrent if for every q1; : : : ; qp 2 P
and every subset B of positive measure there exists k 2 N
with

�(B \ Tq1(k)B \ � � � \ Tqp(k)B) > 0 :

If T is p-polynomially recurrent for every p 2 N then it
is called polynomially recurrent. Furstenberg’s theorem on
multiple recurrence was significantly strengthened in [17],
where it was shown that every finite measure-preserv-
ing transformation is polynomially recurrent. However,
Danilenko and Silva [45] constructed

(i) nonsingular transformations T which are p-polyno-
mially recurrent but not (pC 1)-polynomially recur-
rent (for each fixed p 2 N),



3064 E Ergodic Theory: Non-singular Transformations

(ii) polynomially recurrent transformations T of type
II1,

(iii) rigid (and hence multiply recurrent) transforma-
tions T which are not polynomially recurrent.

Moreover, such T can be chosen inside the class of rank-
one transformations with infinite ergodic index.

Topological Group Aut(X,�)

Let (X;B; �) be a standard probability space and let
Aut(X; �) denote the group of all nonsingular transfor-
mations of X. Let � be a finite or �-finite measure equiv-
alent to �; the subgroup of the �-preserving transforma-
tions is denoted by Aut0(X; �). Then Aut(X; �) is a sim-
ple group [62] and it has no outer automorphisms [63].
Ryzhikov showed [169] that every element of this group is
a product of three involutions (i. e. transformations of or-
der 2). Moreover, a nonsingular transformation is a prod-
uct of two involutions if and only if it is conjugate to its
inverse by an involution.

Inspired by [85], Ionescu Tulcea [107] and Chacon
and Friedman [21] introduced the weak and the uniform
topologies respectively on Aut(X; �). The weak one –
we denote it by dw – is induced from the weak op-
erator topology on the group of unitary operators in
L2(X; �) by the embedding T 7! UT (see Subsect. “Mean
and Pointwise Ergodic Theorems. Rokhlin Lemma”).
Then (Aut(X; �); dw ) is a Polish topological group and
Aut0(X; �) is a closed subgroup of Aut(X; �). This topol-
ogy will not be affected if we replace � with any equiv-
alent measure. We note that Tn weakly converges to T
if and only if �(T�1n A

�
T�1A)! 0 for each A 2 B

and d(� ı Tn)/d�! d(� ı T)/d� in L1(X; �). Danilenko
showed in [34] that (Aut(X; �); dw ) is contractible. It fol-
lows easily from the Rokhlin lemma that periodic trans-
formations are dense in Aut(X; �).

For each p � 1, one can also embed Aut(X; �) into the
isometry group of Lp(X; �) via a formula similar to (3)
but with another power of the Radon–Nikodym derivative
in it. The strong operator topology on the isometry group
induces the very same weak topology on Aut(X; �) for all
p � 1 [24].

It is natural to ask which properties of nonsingular
transformations are typical in the sense of Baire category.
The following technical lemma (see see [24,68]) is an in-
dispensable tool when considering such problems.

Lemma 16 The conjugacy class of each aperiodic trans-
formation T is dense in Aut(X; �) endowed with the weak
topology.

Using this lemma and the Hurewicz ergodic theorem
Choksi and Kakutani [24] proved that the ergodic trans-
formations form a dense Gı in Aut(X; �). The same
holds for the subgroup Aut0(X; �) [24,170]. Combined
with [107] the above implies that the ergodic transforma-
tions of type III is a dense Gı in Aut(X; �). For further
refinement of this statement we refer to Sect. “Orbit The-
ory”.

Since the map T 7! T � � � � � T (p times) from
Aut(X; �) to Aut(Xp; �˝p) is continuous for each p > 0,
we deduce that the set E1 of transformations with infi-
nite ergodic index is a Gı in Aut(X; �). It is non-empty
by [113]. Since this E1 is invariant under conjugacy,
it is dense in Aut(X; �) by Lemma 16. Thus we obtain
that E1 is a dense Gı . In a similar way one can show
that E1 \ Aut0(X; �) is a dense Gı in Aut0(X; �) (see
also [24,26,170] for original proofs of these claims).

The rigid transformations form a dense Gı in
Aut(X; �). It follows that the set of multiply recurrent
nonsingular transformations is residual [13]. A finer result
was established in [45]: the set of polynomially recurrent
transformations is also residual.

Given T 2 Aut(X; �), we denote the centralizer fS 2
Aut(X; �) j ST D TSg of T by C(T). Of course, C(T) is
a closed subgroup of Aut(X; �) andC(T) � fTn j n 2 Zg.
The following problems solved recently (by the efforts of
many authors) for probability preserving systems are still
open for the nonsingular case. Are the properties:

(i) T has square root;
(ii) T embeds into a flow;
(iii) T has non-trivial invariant sub-�-algebra;
(iv) C(T) contains a torus of arbitrary dimension

typical (residual) in Aut(X; �)?
The uniform topology on Aut(X; �), finer than dw, is

defined by the metric

du(T; S) D �(fx : Tx ¤ Sxg)C�(fx : T�1x ¤ S�1xg) :

This topology is also complete metric. It depends only on
the measure class of �. However the uniform topology is
not separable and that is why it is of less importance in er-
godic theory. We refer to [21,24,27] and [68] for the prop-
erties of du.

Orbit Theory

Orbit theory is, in a sense, the most complete part of
nonsingular ergodic theory. We present here the seminal
Krieger’s theorem on orbit classification of ergodic non-
singular transformations in terms of ratio sets and associ-
ated flows. Examples of transformations of various types
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III�, 0 �  � 1 are also given here. Next, we consider the
outer conjugacy problem for automorphisms of the orbit
equivalence relations. This problem is solved in terms of
a simple complete system of invariants. We discuss also
a general theory of cocycles (of nonsingular systems) tak-
ing values in locally compact Polish groups and present an
important orbit classification theorem for cocycles. This
theorem is an analogue of the aforementioned result of
Krieger. We complete the section by considering ITPFI-
systems and their relation to AT-flows.

Full Groups. Ratio Set and Types III�, 0 � � � 1

Let T be a nonsingular transformation of a standard prob-
ability space (X;B; �). Denote by OrbT (x) the T-orbit
of x, i. e. OrbT (x) D fTnx j n 2 Zg. The full group [T]
of T consists of all transformations S 2 Aut(X; �) such
that Sx 2 OrbT(x) for a. a. x. If T is ergodic then [T] is
topologically simple (or even algebraically simple if T is
not of type II1) [62]. It is easy to see that [T] endowed
with the uniform topology du is a Polish group. If T is er-
godic then ([T]; du) is contractible [34].

The ratio set r(T) of T was defined by Krieger [126]
and as we shall see below it is the key concept in the orbit
classification (see Definition 1). The ratio set is a subset of
[0;C1) defined as follows: t 2 r(T) if and only if for every
A 2 B of positive measure and each � > 0 there is a sub-
set B � A of positive measure and an integer k ¤ 0 such
that TkB � A and j!�k (x) � tj < � for all x 2 B. It is easy
to verify that r(T) depends only on the equivalence class
of � and not on � itself. A basic fact is that 1 2 r(T) if and
only if T is conservative. Assume now T to be conservative
and ergodic. Then r(T) \ (0;C1) is a closed subgroup of
the multiplicative group (0;C1). Hence r(T) is one of the
following sets:

(i) f1g;
(ii) f0; 1g; in this case we say that T is of type III0,
(iii) fn j n 2 Zg [ f0g for 0 <  < 1; then we say that T

is of type III�,
(iv) [0;C1); then we say that T is of type III1.

Krieger showed that r(T) D f1g if and only if T is of
type II. Hence we obtain a further subdivision of type III
into subtypes III0, III�, or III1.

Example 17 (i) Fix  2 (0; 1). Let �n(0) :D 1/(1C ) and
�n(1) :D /(1C ) for all n D 1; 2; : : : . Let T be the non-
singular odometer associated with the sequence (2; �n)1nD1
(see Subsect. “Nonsingular Odometers”). We claim that T
is of type III�. Indeed, the group˙ of finite permutations
of N acts on X by (�x)n D x
�1(n), for all n 2 N, � 2 ˙
and x D (xn)1nD1 2 X. This action preserves�. Moreover,

it is ergodic by the Hewitt–Savage 0–1 law. It remains to
notice that (d� ı T/d�)(x) D  on the cylinder [0] which
is of positive measure.
(ii) Fix positive reals �1 and �2 such that log �1 and log �2
are rationally independent. Let �n(0) :D 1/(1C �1 C �2),
�n(1) :D �1/(1C �1 C �2) and �n(2) :D �2/(1C �1 C �2)
for all n D 1; 2; : : : . Then the nonsingular odometer
associated with the sequence (3; �n)1nD1 is of type III1. This
can be shown in a similar way as (i).

Non-singular odometer of type III0 will be constructed in
Example 19 below.

Maharam Extension, Associated Flow
and Orbit Classification of Type III Systems

On X �R with the �-finite measure � � �, where
d�(y) D exp (y)dy, consider the transformation

eT(x; y) :D
�
Tx; y � log

d� ı T
d�

(x)
�
:

We call it the Maharam extension of T (see [136],
where these transformations were introduced). It is
measure-preserving and it commutes with the flow
St(x; y) :D (x; y C t), t 2 R. It is conservative if and only
if T is conservative [136]. However eT is not necessarily
ergodic. Let (Z; �) denote the space of eT-ergodic compo-
nents. Then (St)t2R acts nonsingularly on this space. The
restriction of (St)t2R to (Z; �) is called the associated flow
of T. The associated flow is ergodic whenever T is ergodic.
It is easy to verify that the isomorphism class of the asso-
ciated flow is an invariant of the orbit equivalence of the
underlying system.

Proposition 18 ([90])

(i) T is of type II if and only if its associated flow is the
translation on R, i. e. x 7! x C t, x; t 2 R,

(ii) T is of type III�, 0 �  < 1 if and only if its associated
flow is the periodic flow on the interval [0;� log), i. e.
x 7! x C t mod (� log),

(iii) T is of type III1 if and only if its associated flow is the
trivial flow on a singleton or, equivalently,eT is ergodic,

(iv) T is of type III0 if and only if its associated flow is non-
transitive.

Example 19 Let An D f0; 1; : : : ; 22
n
g and �n(0) D 0:5

and �n(i) D 0:5 � 2�2n for all 0 < i � 2n . LetT be the non-
singular odometer associated with (22n C 1; �n)1nD0. It is
straightforward that the associated flow of T is the flow
built under the constant function 1 with the probability
preserving 2-adic odometer (associated with (2; �n)1nD1,
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�n(0) D �n(1) D 0:5) as the base transformation. In par-
ticular, T is of type III0.

A natural problem arises: to compute Krieger’s type (or
the ratio set) for the nonsingular odometers – the sim-
plest class of nonsingular systems. Some partial progress
was achieved in [56,141,152], etc. However in the general
setting this problem remains open.

The map � : Aut(X; �) 3 T 7! eT 2 Aut(X �R; ��
�) is a continuous group homomorphism. Since the
set E of ergodic transformations on X �R is a Gı
in Aut(X �R; � � �) (see Sect. “Topological Group
Aut(X,�)”), the subset ��1(E) of type III1 ergodic trans-
formations on X is also Gı . The latter subset is non-
empty in view of Example 17(ii). Since it is invariant un-
der conjugacy, we deduce from Lemma 16 that the set
of ergodic transformations of type III1 is a dense Gı in
(Aut(X; �); dw ) [23,159].

Now we state the main result of this section – Krieger’s
theorem on orbit classification for ergodic transforma-
tions of type III. It is a far reaching generalization of the
basic result by H. Dye: any two ergodic probability pre-
serving transformations are orbit equivalent [60].

Theorem 20 (Orbit equivalence for type III sys-
tems [125]–[129]) Two ergodic transformations of
type III are orbit equivalent if and only if their associated
flows are isomorphic. In particular, for a fixed 0 <  � 1,
any two ergodic transformations of type III� are orbit equiv-
alent.

The original proof of this theorem is rather complicated.
Simpler treatment of it can be found in [90] and [117].

We also note that every nontransitive ergodic flow can
be realized as the associated flow of a type III0 transforma-
tion. However it is somewhat easier to construct a Z2-ac-
tion of type III0 whose associated flow is the given one.
For this, we take an ergodic nonsingular transformation Q
on a probability space (Z;B; ) and a measure-preserv-
ing transformation R of an infinite �-finite measure space
(Y ;F ; �) such that there is a continuous homomorphism
� : R! C(R) with (d� ı �(t)/d�)(y) D exp (t) for a. a. y
(for instance, take a type III1 transformation T and put
R :D eT and �(t) :D St). Let ' : Z ! R be a Borel map
with infZ ' > 0. Define two transformations R0 and Q0 of
(Z � Y ;  � �) by setting:

R0(x; y) :D (x; Ry) ; Q0(x; y) D (Qx;Ux y) ;

where Ux D �('(x) � log(d� ı Q/d�)(x)). Notice that
R0 and Q0 commute. The corresponding Z2-action gener-
ated by these transformations is ergodic. Take any trans-
formation V 2 Aut(Z � Y ;  � �) whose orbits coincide

with the orbits of the Z2-action. (According to [29], any
ergodic nonsingular action of any countable amenable
group is orbit equivalent to a single transformation.)
Then V is of type III0. It is now easy to verify that the as-
sociated flow of V is the special flow built under ' ı Q�1

with the base transformation Q�1. Since Q and ' are arbi-
trary, we deduce the following from Theorem 14.

Theorem 21 Every nontransitive ergodic flow is an associ-
ated flow of an ergodic transformation of type III0.

In [129] Krieger introduced a map ˚ as follows. Let T be
an ergodic transformation of type III0. Then the associ-
ated flow of T is a flow built under function with a base
transformation ˚(T). We note that the orbit equivalence
class of ˚(T) is well defined by the orbit equivalent class
of T. If ˚ n(T) fails to be of type III0 for some 1 � n <1
then T is said to belong to Krieger’s hierarchy. For in-
stance, the transformation constructed in Example 19 be-
longs to Krieger’s hierarchy. Connes gave in [28] an ex-
ample of T such that ˚(T) is orbit equivalent to T (see
also [73] and [90]). Hence T is not in Krieger’s hierarchy.

Normalizer of the Full Group.
Outer Conjugacy Problem

Let

N[T] D fR 2 Aut(X; �) j R[T]R�1 D [T]g ;

i. e. N[T] is the normalizer of the full group [T] in
Aut(X; �). We note that a transformation R belongs
to N[T] if and only if R(OrbT (x))DOrbT(Rx) for
a. a. x. To define a topology on N[T] consider the T-or-
bit equivalence relation RT � X � X and a �-finite
measure �R on RT given by �RT D

R
X
P

y2OrbT (x)
ı(x;y)d�(x). For R 2 N[T], we define a transformation
i(R) 2 Aut(RT ; �RT ) by setting i(R)(x; y) :D (Rx; Ry).
Then the map R 7! i(R) is an embedding of N[T] into
Aut(RT ; �RT ). Denote by � the topology on N[T] in-
duced by the weak topology on Aut(RT ; �RT ) via i [34].
Then (N[T]; �) is a Polish group. A sequence Rn con-
verges to R in N[T] if Rn ! R weakly (in Aut(X; �)) and
RnTR�1n ! RTR�1 uniformly (in [T]).

Given R 2 N[T], denote by eR the Maharam exten-
sion of R. TheneR 2 N[eT] and it commutes with (St)t2R.
Hence it defines a nonsingular transformation modR on
the space (Z; �) of the associated flowW D (Wt)t2R of T.
Moreover, mod R belongs to the centralizer C(W) of W
in Aut(Z; �). Note that C(W) is a closed subgroup of
(Aut(Z; �); dw ).

Let T be of type II1 and let �0 be the invariant �-fi-
nite measure equivalent to �. If R 2 N[T] then it is easy
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to see that the Radon–Nikodym derivative d�0 ı R/d�0

is invariant under T. Hence it is constant, say c. Then
mod R D log c.

Theorem 22 ([86,90]) If T is of type III then the map
mod: N[T]! C(W) is a continuous onto homomor-
phism. The kernel of this homomorphism is the �-closure of
[T]. Hence the quotient group N[T]/[T]� is (topologically)
isomorphic to C(W). In particular, [T]� is co-compact in
N[T] if and only if W is a finite measure-preserving flow
with a pure point spectrum.

The following theorem describes the homotopical struc-
ture of normalizers.

Theorem 23 ([34]) Let T be of type II or III�, 0 �  < 1.
The group [T]� is contractible. N[T] is homotopically
equivalent to C(W). In particular, N[T] is contractible
if T is of type II. If T is of type III� with 0 <  < 1 then
�1(N[T]) D Z.

The outer period p(R) of R 2 N[T] is the smallest posi-
tive integer n such that Rn 2 [T]. We write p(R) D 0 if
no such n exists.

Two transformations R and R0 in N[T] are called
outer conjugate if there are transformations V 2 N[T] and
S 2 [T] such that VRV�1 D R0S. The following theorem
provides convenient (for verification) necessary and suffi-
cient conditions for the outer conjugacy.

Theorem 24 ([30] for type II and [18] for type III)
Transformations R; R0 2 N[T] are outer conjugate if and
only if p(R) D p(R0) andmod R is conjugate to mod R0 in
the centralizer of the associated flow for T.

We note that in the case T is of type II, the second con-
dition in the theorem is just mod R D mod R0. It is always
satisfied when T is of type II1.

Cocycles of Dynamical Systems. Weak Equivalence
of Cocycles

Let G be a locally compact Polish group and G a left Haar
measure on G. A Borel map ' : X ! G is called a cocycle
of T. Two cocycles ' and '0 are cohomologous if there is
a Borel map b : X ! G such that

'0(x) D b(Tx)�1'(x)b(x)

for a. a. x 2 X. A cocycle cohomologous to the triv-
ial one is called a coboundary. Given a dense subgroup
G0 � G, then every cocycle is cohomologous to a cocy-
cle with values in G0 [81]. Each cocycle ' extends to
a (unique) map ˛' : RT ! G such that ˛'(Tx; x) D '(x)
for a. a. x and ˛'(x; y)˛'(y; z) D ˛'(x; z) for a. a.
(x; y); (y; z) 2 RT . ˛' is called the cocycle of RT gen-

erated by '. Moreover, ' and '0 are cohomologous
via b as above if and only if ˛' and ˛'0 are cohomolo-
gous via b, i. e. ˛'(x; y) D b(x)�1˛'0 (x; y)b(y) for �RT -
a. a. (x; y) 2 RT . The following notion was introduced
by Golodets and Sinelshchikov [78,81]: two cocycles '
and '0 are weakly equivalent if there is a transforma-
tion R 2 N[T] such that the cocycles ˛' and ˛0' ı (R � R)
of RT are cohomologous. Let M(X;G) denote the set
of Borel maps from X to G. It is a Polish group when
endowed with the topology of convergence in measure.
Since T is ergodic, it is easy to deduce from Rokhlin’s
lemma that the cohomology class of any cocycle is dense in
M(X;G). Given ' 2M(X;G), we define the '-skew prod-
uct extension T' of T acting on (X � G; � � G ) by set-
ting T'(x; g) :D (Tx; '(x)g). Thus Maharam extension is
(isomorphic to) the Radon–Nikodym cocycle-skew prod-
uct extension. We now specify some basic classes of cocy-
cles [19,35,81,173]:

(i) ' is called transient if T' is of type I.
(ii) ' is called recurrent if T' is conservative (equiva-

lently, T' is not transient).
(iii) ' has dense range in G if T' is ergodic.
(iv) ' is called regular if ' cobounds with dense range into

a closed subgroup H of G (then H is defined up to
conjugacy).

These properties are invariant under the cohomology and
the weak equivalence. The Radon–Nikodym cocycle !1 is
a coboundary if and only if T is of type II. It is regular if
and only if T is of type II or III�, 0 <  � 1. It has dense
range (in the multiplicative group R�C) if and only if T is
of type III1. Notice that !1 is never transient (since T is
conservative).

Schmidt introduced in [176] an invariant R(') :D
fg 2 G j ' � g is recurrentg. He showed in particular that

(i) R(') is a cohomology invariant,
(ii) R(') is a Borel set in G,
(iii) R(log!1) D f0g for each aperiodic conservative T,
(iv) there are cocycles ' such that R(') and G n R(') are

dense in G,
(v) if �(X) D 1, � ı T D � and ' : X ! R is integrable

then R(') D f
R
' d�g.

We note that (v) follows from Atkinson theorem [15].
A nonsingular version of this theorem was established
in [183]: if T is ergodic and �-nonsingular and f 2 L1(�)
then

lim inf
n!1

ˇ
ˇ̌
ˇ
ˇ

n�1X

jD0

f (T jx)! j(x)

ˇ
ˇ̌
ˇ
ˇ
D 0 for a. a. x

if and only if
R
f d� D 0.
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Since T' commutes with the action of G on
X � G by inverted right translations along the sec-
ond coordinate, this action induces an ergodic G-action
W' D (W' (g))g2G on the space (Z; �) of T'-ergodic com-
ponents. It is called the Mackey range (or Poincaré flow)
of ' [66,135,173,188]. We note that ' is regular (and
cobounds with dense range into H � G) if and only ifW'

is transitive (and H is the stabilizer of a point z 2 Z, i. e.
H D fg 2 G j W'(g)z D zg). Hence every cocycle taking
values in a compact group is regular.

It is often useful to consider the double cocycle
'0 :D ' � !1 instead of '. It takes values in the group
G �R�C. Since T'0 is exactly the Maharam extension of
T' , it follows from [136] that '0 is transient or recurrent
if and only if ' is transient or recurrent respectively.

Theorem 25 (Orbit classification of cocycles [81]) Let
'; '0 : X ! G be two recurrent cocycles of an ergodic trans-
formation T. They are weakly equivalent if and only if their
Mackey ranges W'0 and W'00

are isomorphic.

Another proof of this theorem was presented in [65].

Theorem 26 Let T be an ergodic nonsingular transforma-
tion. Then there is a cocycle of T with dense range in G if
and only if G is amenable.

It follows that if G is amenable then the subset of cocy-
cles of T with dense range in G is a dense Gı inM(X;G)
(just adapt the argument following Example 19). The ‘only
if ’ part of Theorem 26 was established in [187]. The ‘if ’
part was considered by many authors in particular cases:
G is compact [186], G is solvable or amenable almost con-
nected [79],G is amenable unimodular [108], etc. The gen-
eral case was proved in [78] and [100] (see also a recent
treatment in [9]).

Theorem 21 is a particular case of the following result.

Theorem 27 ([10,65,80]) Let G be amenable. Let V be
an ergodic nonsingular action of G �R�C. Then there is an
ergodic nonsingular transformation T and a recurrent co-
cycle ' of T with values in G such that V is isomorphic to
the Mackey range of the double cocycle '0.

Given a cocycle ' 2M(X;G) of T, we say that a trans-
formation R 2 N[T] is compatible with ' if the cocy-
cles ˛' and ˛' ı (R � R) of RT are cohomologous. De-
note by D(T; ') the group of all such R. It has a natu-
ral Polish topology which is stronger than � [41]. Since
[T] is a normal subgroup in D(T; '), one can consider
the outer conjugacy equivalence relation inside D(T; ').
It is called '-outer conjugacy. Suppose that G is Abelian.
Then an analogue of Theorem 24 for the '-outer con-
jugacy is established in [41]. Also, the cocycles ' with
D(T; ') D N[T] are described there.

ITPFI Transformations and AT-Flows

A nonsingular transformation T is called ITPFI1 if it
is orbit equivalent to a nonsingular odometer (associ-
ated to a sequence (mn ; �n)1nD1, see Subsect. “Nonsingular
Odometers”). If the sequence mn can be chosen bounded
then T is called ITPFI of bounded type. If mn D 2 for
all n then T is called ITPFI2. By [74], every ITPFI-trans-
formation of bounded type is ITPFI2. A remarkable char-
acterization of ITPFI transformations in terms of their as-
sociated flows was obtained by Connes and Woods [31].
We first single out a class of ergodic flows. A nonsingular
flow V D (Vt)t2R on a space (˝; �) is called approximate
transitive (AT) if given � > 0 and f1; : : : ; fn 2 L1C(X; �),
there exists f 2 L1C(X; �) and 1; : : : ; n 2 L1C(R; dt)
such that
ˇ
ˇ̌
ˇ

ˇ
ˇ̌
ˇ f j �

Z

R
f ı Vt

d� ı Vt

d�
 j(t)dt

ˇ
ˇ̌
ˇ

ˇ
ˇ̌
ˇ
1
< �

for all 1 � j � n. A flow built under a constant ceiling
function with a funny rank-one [67] probability preserv-
ing base transformation is AT [31]. In particular, each
ergodic finite measure-preserving flow with a pure point
spectrum is AT.

Theorem 28 ([31]) An ergodic nonsingular transforma-
tion is ITPFI if and only if its associated flow is AT.

The original proof of this theorem was given in the frame-
work of von Neumann algebras theory. A simpler, purely
measure theoretical proof was given later in [96] (the ‘only
if ’ part) and [88] (the ‘if ’ part). It follows from Theorem28
that every ergodic flow with pure point spectrum is the
associated flow of an ITPFI transformation. If the point
spectrum of V is �� , where � is a subgroup of Q and
� 2 R, then V is the associated flow of an ITPFT2 trans-
formation [91].

Theorem 29 ([54]) Each ergodic nonsingular transforma-
tion is orbit equivalent to a Markov odometer (see Sub-
sect. “Markov Odometers”).

The existence of non-ITPFI transformations and ITPFI
transformations of unbounded type was shown in [127].
In [55], an explicit example of a non-ITPFI Markov
odometer was constructed.

Smooth Nonsingular Transformations

Diffeomorphisms of smooth manifolds equipped with
smooth measures are commonly considered as physi-
cally natural examples of dynamical systems. Therefore

1This abbreviates ‘infinite tensor product of factors of type I’
(came from the theory of von Neumann algebras).
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the construction of smooth models for various dynami-
cal properties is a well established problem of the modern
(probability preserving) ergodic theory. Unfortunately,
the corresponding ‘nonsingular’ counterpart of this prob-
lem is almost unexplored. We survey here several interest-
ing facts related to the topic.

For r 2 N [ f1g, denote by Diff r
C(T ) the group of

orientation preserving Cr-diffeomorphisms of the circle
T . Endow this set with the natural Polish topology. Fix
T 2 Diff r

C(T ). Since T D R/Z, there exists a C1-function
f : R! R such that T(x CZ) D f (x)CZ for all x 2 R.
The rotation number �(T) of T is the limit

lim
n!1

( f ı � � � ı f
„ ƒ‚ …

n times

)(x)(mod 1) :

The limit exists and does not depend on the choice of x
and f . It is obvious that T is nonsingular with respect
to Lebesgue measure T . Moreover, if T 2 Diff r

C(T ) and
�(T) is irrational then the dynamical system (T ; T ; T) is
ergodic [33]. It is interesting to ask: which Krieger’s type
can such systems have?

Katznelson showed in [114] that the subset of type III
C1-diffeomorphisms and the subset of type II1C1-dif-
feomorphisms are dense in Diff1C (T ). Hawkins and
Schmidt refined the idea of Katznelson from [114] to con-
struct, for every irrational number ˛ 2 [0; 1) which is not
of constant type (i. e. in whose continued fraction expan-
sion the denominators are not bounded) a transformation
T 2 Diff2

C(T ) which is of type III1 and �(T) D ˛ [97].
It should be mentioned that class C2 in the construction
is essential, since it follows from a remarkable result of
Herman that if T 2 Diff 3

C(T ) then under some condition
on ˛ (which determines a set of full Lebesgue measure),
T is measure theoretically (and topologically) conjugate to
a rotation by �(T) [101]. Hence T is of type II1.

In [94], Hawkins shows that every smooth paracom-
pact manifold of dimension � 3 admits a type III� dif-
feomorphism for every  2 [0; 1]. This extends a result
of Herman [100] on the existence of type III1 diffeomor-
phisms in the same circumstances.

It is also of interest to ask: which free ergodic
flows are associated with smooth dynamical systems of
type III0? Hawkins proved that any free ergodic C1-flow
on a smooth, connected, paracompact manifold is the as-
sociated flow for a C1-diffeomorphism on another mani-
fold (of higher dimension) [95].

A nice result was obtained in [115]: if T 2 Diff2
C(T )

and the rotation number of T has unbounded continued
fraction coefficients then (T ; T ; T) is ITPFI. Moreover,
a converse also holds: given a nonsingular odometer R,
the set of orientation-preserving C1-diffeomorphisms of

the circle which are orbit equivalent to R is C1-dense
in the Polish set of all C1-orientation-preserving diffeo-
morphisms with irrational rotation numbers. In contrast
to that, Hawkins constructs in [93] a type III0 C1-diffeo-
morphism of the 4-dimensional torus which is not ITPFI.

Spectral Theory for Nonsingular Systems

While the spectral theory for probability preserving sys-
tems is developed in depth, the spectral theory of nonsin-
gular systems is still in its infancy. We discuss below some
problems related to L1-spectrum which may be regarded
as an analogue of the discrete spectrum. We also include
results on computation of the maximal spectral type of the
‘nonsingular’ Koopman operator for rank-one nonsingu-
lar transformations.

L1-Spectrum and Groups of Quasi-Invariance

Let T be an ergodic nonsingular transformation of
(X;B; �). A number  2 T belongs to the L1-spec-
trum e(T) of T if there is a function f 2 L1(X; �) with
f ı T D  f . f is called an L1-eigenfunction of T corre-
sponding to . Denote by E(T) the group of all L1-eigen-
functions of absolute value 1. It is a Polish group when en-
dowedwith the topology of converges inmeasure. IfT is of
type II1 then the L1-eigenfunctions are L2(�0)-eigenfunc-
tions of T, where �0 is an equivalent invariant probability
measure. Hence e(T) is countable. Osikawa constructed
in [151] the first examples of ergodic nonsingular trans-
formations with uncountable e(T).

We state now a nonsingular version of the von Neu-
mann–Halmos discrete spectrum theorem. Let Q � T be
a countable infinite subgroup. Let K be a compact dual of
Qd, where Qd denotes Q with the discrete topology. Let
k0 2 K be the element defined by k0(q) D q for all q 2 Q.
Let R : K ! K be defined by Rk D k C k0. The system
(K; R) is called a compact group rotation. The following
theorem was proved in [6].

Theorem 30 Assume that the L1-eigenfunctions of T gen-
erate the entire �-algebraB. Then T is isomorphic to a com-
pact group rotation equipped with an ergodic quasi-invari-
ant measure.

A natural question arises: which subgroups of T can ap-
pear as e(T) for an ergodic T?

Theorem 31 ([1,143]) e(T) is a Borel subset of T and
carries a unique Polish topology which is stronger than the
usual topology on T . The Borel structure of e(T) under this
topology agrees with the Borel structure inherited from T .
There is a Borel map : e(T) 3  7!  � 2 E(T) such that
 � ı T D  � for each . Moreover, e(T) is of Lebesgue
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measure 0 and it can have an arbitrary Hausdorff dimen-
sion.

A proper Borel subgroup E of T is called

(i) weak Dirichlet if lim supn!1b(n) D 1 for each finite
complex measure  supported on E;

(ii) saturated if lim supn!1 jb(n)j � j(E)j for each fi-
nite complex measure  on T , where b(n) denote
the nth Fourier coefficient of .

Every countable subgroup of T is saturated.

Theorem 32 e(T) is �-compact in the usual topology on
T [104] and saturated [104,139].

It follows that e(T) is weak Dirichlet (this fact was estab-
lished earlier in [175]).

It is not known if every Polish group continuously em-
bedded in T as a �-compact saturated group is the eigen-
value group of some ergodic nonsingular transformation.
This is the case for the so-calledH2-groups and the groups
of quasi-invariance of measures on T (see below). Given
a sequence nj of positive integers and a sequence a j � 0,
the set of all z 2 T such that

P1
jD1 a jj1 � zn j j2 <1 is

a group. It is called an H2-group. Every H2-group is Pol-
ish in an intrinsic topology stronger than the usual circle
topology.

Theorem 33 ([104])

(i) Every H2-group is a saturated (and hence weakDirich-
let) �-compact subset of T .

(ii) If
P1

jD0 a j D C1 then the corresponding H2-group
is a proper subgroup of T .

(iii) If
P1

jD0 a j(nj/njC1)2 <1 then the corresponding
H2-group is uncountable.

(iv) Any H2-group is e(T) for an ergodic nonsingular com-
pact group rotation T.

It is an open problem whether every eigenvalue group e(T)
is an H2-group. It is known however that e(T) is close ‘to
be an H2-group’: if a compact subset L � T is disjoint
from e(T) then there is an H2-group containing e(T) and
disjoint from L.

Example 34 ([6], see also [151]) Let (X; �; T) be the
nonsingular odometer associated to a sequence (2; � j)1jD1.
Let nj be a sequence of positive integers such that nj >P

i< j ni for all j. For x 2 X, we put h(x) :D nl (x) �P
j<l (x) nj . Then h is a Borel map from X to the positive

integers. Let S be the tower over T with height function h
(see Subsect. “Tower Transformations”). Then e(S) is the
H2-group of all z 2 T with

P1
jD1 � j(0)� j(1)j1 � zn j j2 <

1.

It was later shown in [104] that if
P1

jD1 � j(0)� j(1)
(nj/njC1)2 <1 then the L1-eigenfunctions of S gener-
ate the entire �-algebra, i. e. S is isomorphic (measure the-
oretically) to a nonsingular compact group rotation.

Let � be a finite measure on T . Let H(�) :D fz 2 Z j
ız  � � �g, where * means the convolution of measures.
Then H� is a group called the group of quasi-invariance of
�. It has a Polish topology whose Borel sets agree with the
Borel sets which H(�) inherits from T and the injection
map of H(�) into T is continuous. This topology is in-
duced by the weak operator topology on the unitary group
in theHilbert space L2(T ; �) via themapH(�) 3 z 7! Uz ,
(Uz f )(x) D

p
(d(ız  �)/d�)(x) f (xz) for f 2 L2(T ; �).

Moreover, H(�) is saturated [104]. If �(H(�)) > 0 then
either H(�) is countable or � is equivalent to T [137].

Theorem 35 ([6]) Let � be an ergodic with respect to the
H(�)-action by translations on T . Then there is a com-
pact group rotation (K; R) and a finite measure on K quasi-
invariant and ergodic under R such that e(R) D H(�).
Moreover, there is a continuous one-to-one homomor-
phism  : e(R)! E(R) such that  � ı R D  � for all
 2 e(R).

It was shown by Aaronson and Nadkarni [6] that if
n1 D 1 and nj D a ja j�1 � � � a1 for positive integers a j � 2
with

P1
jD1 a

�1
j <1 then the transformation S from Ex-

ample 34 does not admit a continuous homomorphism
 : e(S)! E(S) with  � ı T D  � for all  2 e(S).
Hence e(S) ¤ H(�) for any measure � satisfying the con-
ditions of Theorem 35.

Assume that T is an ergodic nonsingular compact
group rotation. LetB0 be the �-algebra generated by a sub-
collection of eigenfunctions. ThenB0 is invariant under T
and hence a factor (see Sect. “Nonsingular Joinings and
Factors”) of T. It is not known if every factor of T is of this
form. It is not even known whether every factor of T must
have non-trivial eigenvalues.

Unitary Operator Associated
with a Nonsingular System

Let (X;B; �; T) be a nonsingular dynamical system. In
this subsection we consider spectral properties of the uni-
tary operator UT defined by (3). First, we note that the
spectrum of T is the entire circle T [147]. Next, if UT
has an eigenvector then T is of type II1. Indeed, if there
are  2 T and 0 ¤ f 2 L2(X; �) withUT f D  f then the
measure �, d�(x) :D j f (x)j2d�(x), is finite, T-invariant
and equivalent to �. Hence if T is of type III or II1 then
the maximal spectral type �T of UT is continuous. An-
other ‘restriction’ on �T was recently found in [166]: no
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Foïaş-Strătilă measure is absolutely continuous with re-
spect to �T if T is of type II1. We recall that a symmet-
ric measure on T possesses Foïaş-Strătilă property if for
each ergodic probability preserving system (Y ; �; S) and
f 2 L2(Y ; �), if � is the spectral measure of f then f is
a Gaussian random variable [134]. For instance, measures
supported on Kronecker sets possess this property.

Mixing is an L2-spectral property for type II1 trans-
formations: T is mixing if and only if �T is a Rajchman
measure, i. e. b�T (n) :D

R
zn d�T(z)! 0 as jnj ! 1.

Also, T is mixing if and only if n�1
Pn�1

iD0 U
ki
T ! 0 in the

strong operator topology for each strictly increasing se-
quence k1 < k2 < � � � [124]. This generalizes a well known
theorem of Blum and Hanson for probability preserving
maps. For comparison, we note that ergodicity is not an
L2-spectral property of infinite measure preserving sys-
tems.

Now let T be a rank-one nonsingular transforma-
tion associated with a sequence (rn ;wn; sn)1nD1 as in Sub-
sect. “Rank-One Transformations. Chacón Maps. Finite
Rank”.

Theorem 36 ([25,104]) The spectral multiplicity of UT is
1 and the maximal spectral type �T of UT (up to a discrete
measure in the case T is of type II1) is the weak limit of the
measures �k defined as follows:

d�k(z) D
kY

jD1

wj(0)jPj(z)j2 dz ;

where Pj(z) :D 1 C
p
wj(1)/wj(0)z�R1; j C � � � C

p
wj(mj � 1)/wj(0)z

�Rr j�1; j , z 2 T , Ri; j :D ih j�1 C

s j(0) C � � � C s j(i), 1 � i � rk � 1 and hj is the height
of the jth column.

Thus the maximal spectral type of UT is given by a so-
called generalized Riesz product. We refer the reader
to [25,103,104,148] for a detailed study of Riesz products:
their convergence, mutual singularity, singularity to T ,
etc.

It was shown in [6] that H(�T ) � e(T) for any ergodic
nonsingular transformation T. Moreover, �T is ergodic
under the action of e(T) by translations if T is isomorphic
to an ergodic nonsingular compact group rotation. How-
ever it is not known:

(i) Whether H(�T ) D e(T) for all ergodic T.
(ii) Whether ergodicity of �T under e(T) implies that T is

an ergodic compact group rotation.

The first claim of Theorem 36 extends to the rank N
nonsingular systems as follows: if T is an ergodic nonsin-
gular transformation of rankN then the spectral multiplic-

ity of UT is bounded by N (as in the finite measure-pre-
serving case). It is not known whether this claim is true for
a more general class of transformations which are defined
as rank N but without the assumption that the Radon–
Nikodym cocycle is constant on the tower levels.

Entropy and Other Invariants

Let T be an ergodic conservative nonsingular transfor-
mation of a standard probability space (X;B; �). If P is
a finite partition of X, we define the entropy H(P) of P
as H(P) D �PP2P �(P) log�(P). In the study of mea-
sure-preserving systems the classical (Kolmogorov–Sinai)
entropy proved to be a very useful invariant for isomor-
phism [33]. The key fact of the theory is that if � ı T D �
then the limit limn!1 n�1H(

Wn
iD1 T

�iP) exists for ev-
ery P. However if T does not preserve �, the limit may no
longer exist. Some efforts have been made to extend the
use of entropy and similar invariants to the nonsingular
domain. These include Krengel’s entropy of conservative
measure-preserving maps and its extension to nonsingu-
lar maps, Parry’s entropy and Parry’s nonsingular version
of Shannon–McMillan–Breiman theorem, critical dimen-
sion by Mortiss and Dooley, etc. Unfortunately, these in-
variants are less informative than their classical counter-
parts and they are more difficult to compute.

Krengel’s and Parry’s Entropies

Let S be a conservative measure-preserving transforma-
tion of a �-finite measure space (Y ;E; �). The Krengel en-
tropy [119] of S is defined by

hKr(S) D sup f�(E)h(SE ) j 0 < �(E) < C1g ;

where h(SE ) is the finite measure-preserving entropy of
SE. It follows from Abramov’s formula for the entropy of
induced transformation that hKr(S) D �(E)h(SE ) when-
ever E sweeps out, i. e.

S
i�0 S

�i E D X. A generic trans-
formation from Aut0(X; �) has entropy 0. Krengel raised
a question in [119]: does there exist a zero entropy infinite
measure-preserving S and a zero entropy finite measure-
preserving R such that hKr(S � R) > 0? This problem was
recently solved in [44] (a special case was announced by
Silva and Thieullen in an October 1995 AMS conference
(unpublished)):

(i) if hKr(S) D 0 and R is distal then hKr(S � R) D 0;
(ii) if R is not distal then there is a rank-one transforma-

tion S with hKr(S � R) D1.

We also note that if a conservative S 2 Aut0(X; �)
commutes with another transformation R such that
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� ı R D c� for a constant c ¤ 1 then hKr(S) is either 0
or1 [180].

Now let T be a type III ergodic transformation of
(X;B; �). Silva and Thieullen define an entropy h�(T)
of T by setting h�(T) :D hKr(eT), whereeT is the Maharam
extension of T (see Subsect. “Maharam Extension, Associ-
ated Flow and Orbit Classification of Type III Systems”).
Since eT commutes with transformations which ‘multiply’
eT-invariantmeasure, it follows that h�(T) is either 0 or1.

Let T be the standard III�-odometer from Exam-
ple 17(i). Then h�(T) D 0. The same is true for a so-
called ternary odometer associated with the sequence
(3; �n)1nD1, where �n(0) D �n(2) D /(1C 2) and �n(1)
D /(1C ) [180]. It is not known however whether ev-
ery ergodic nonsingular odometer has zero entropy. On
the other hand, it was shown in [180] that h�(T) D 1 for
every K-automorphism.

The Parry entropy [158] of S is defined by

hPa(S) :D
˚
H(S�1FjF) j F is a �-finite subalgebra

of B such that F � S�1F
�
:

Parry showed [158] that hPa(S) � hKr(S). It is still an open
question whether the two entropies coincide. This is the
case when S is of rank one (since hKr(S) D 0) and when S
is quasi-finite [158]. The transformation S is called quasi-
finite if there exists a subset of finite measure A � Y such
that the first return time partition (An)n>0 of A has finite
entropy. We recall that x 2 An () n is the smallest
positive integer such that Tnx 2 A. An example of non-
quasi-finite ergodic infinite measure preserving transfor-
mation was constructed recently in [8].

Parry’s Generalization
of Shannon–MacMillan–Breiman Theorem

Let T be an ergodic transformation of a standard non-
atomic probability space (X;B; �). Suppose that f ı T
2 L1(X; �) if and only if f 2 L1(X; �). This means that
there is K > 0 such that K�1 < (d� ı T)/(d�) (x) < K for
a. a. x. Let P be a finite partition of X. Denote by Cn(x) the
atom of

Wn
iD0 T

�iP which contains x. We put !�1 D 0.
Parry shows in [155] that

nX

jD0

log�
�
Cn� j(T jx)


(! j(x) � ! j�1(x))

nX

iD0

! j(x)

!

H

 

P
ˇ
ˇ̌
ˇ

1_

iD1

T�1P

!

�

Z

X
log E

 
d� ı T
d�

ˇ
ˇ̌
ˇ

1_

iD0

T�iP
!

d�

for a. a. x. Parry also shows that under the aforementioned
conditions on T,

1
n

0

@
nX

jD0

H

0

@
j_

iD0

T� jP

1
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n�1X

jD0

H

0
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T� jP
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iD1

T�iP
!

:

Critical Dimension

The critical dimension introduced by Mortiss [146] mea-
sures the order of growth for sums of Radon–Nikodym
derivatives. Let (X;B; �; T) be an ergodic nonsingular dy-
namical system. Given ı > 0, let

Xı :D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

x 2 X
ˇ
ˇ̌
ˇ lim inf

n!1

n�1X

iD0

!i(x)

nı
> 0

9
>>>>>=

>>>>>;

and (4)

Xı :D

8
ˆ̂̂
ˆ̂<

ˆ̂
ˆ̂̂
:

x 2 X
ˇ̌
ˇ
ˇ lim inf

n!1

n�1X

iD0

!i(x)

nı
D 0

9
>>>>>=

>>>>>;

: (5)

Then Xı and Xı are T-invariant subsets.

Definition 37 ([57,146]) The lower critical dimension
˛(T) of T is sup fı j �(Xı ) D 1g. The upper critical di-
mension ˇ(T) of T is inf fı j �(Xı ) D 1g.

It was shown in [57] that the lower and upper critical di-
mensions are invariants for isomorphism of nonsingular
systems. Notice also that

˛(T) D lim inf
n!1

log

 nX

iD1

!i(x)

!

log n
and

ˇ(T) D lim sup
n!1

log

 nX

iD1

!i(x)

!

log n
:

Moreover, 0 � ˛(T) � ˇ(T) � 1. If T is of type II1
then ˛(T) D ˇ(T) D 1. If T is the standard III�-odome-
ter from Example 17 then ˛(T) D ˇ(T) D log(1C )
�/(1C ) log .

Theorem 38

(i) For every  2 [0; 1] and every c 2 [0; 1] there exists
a nonsingular odometer of type III� with critical di-
mension equal to c [145].
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(ii) For every c 2 [0; 1] there exists a nonsingular odometer
of type II1 with critical dimension equal to c [57].

Let T be the nonsingular odometer associated with a se-
quence (mn ; �n)1nD1. Let s(n) D m1 � � �mn and let H(Pn)
denote the entropy of the partition of the first n coor-
dinates with respect to �. We now state a nonsingular
version of Shannon–MacMillan–Breiman theorem for T
from [57].

Theorem 39 Let mi be bounded from above. Then

(i)

˛(T) D lim inf
n!1

inf

�

nX

iD1

logmi (xi )

log s(n)

D lim inf
n!1

H(Pn)
log s(n)

and
(ii)

ˇ(T) D lim sup
n!1

inf

�

nX

iD1

logmi (xi )

log s(n)

D lim sup
n!1

H(Pn)
log s(n)

for a. a. x D (xi )i�1 2 X.

It follows that in the case when ˛(T) D ˇ(T), the crit-
ical dimension coincides with limn!1 H(Pn)/(log s(n)).
In [145] this expression (when it exists) was called AC-
entropy (average coordinate). It also follows from Theo-
rem 39 that if T is an odometer of bounded type then
˛(T�1) D ˛(T) and ˇ(T�1) D ˇ(T). In [58], Theorem 39
was extended to a subclass of Markov odometers. The crit-
ical dimensions for Hamachi shifts (see Subsect. “Nonsin-
gular Bernoulli Transformations – Hamachi’s Example”)
were investigated in [59]:

Theorem 40 For any � > 0, there exists a Hamachi shift S
with ˛(S) < � and ˇ(S) > 1 � �.

Nonsingular Restricted Orbit Equivalence

In [144] Mortiss initiated study of a nonsingular version
of Rudolph’s restricted orbit equivalence [167]. This work
is still in its early stages and does not yet deal with any
form of entropy. However she introduced nonsingular or-
derings of orbits, defined sizes and showed that much of
the basic machinery still works in the nonsingular setting.

Nonsingular Joinings and Factors

The theory of joinings is a powerful tool to study probabil-
ity preserving systems and to construct striking counterex-
amples. It is interesting to study what part of this machin-
ery can be extended to the nonsingular case. However, the
definition of nonsingular joining is far from being obvi-
ous. Some progress was achieved in understanding 2-fold
joinings and constructing prime systems of any Krieger
type. As far as we know the higher-fold nonsingular join-
ings have not been considered so far. It turned out how-
ever that an alternative coding technique, predating join-
ings in studying the centralizer and factors of the classical
measure-preserving Chacón maps, can be used as well to
classify factors of Cartesian products of some nonsingular
Chacón maps.

Joinings, Nonsingular MSJ and Simplicity

In this section all measures are probability measures.
A nonsingular joining of two nonsingular systems
(X1;B1; �1; T1) and (X2;B2; �2; T2) is a measure �̂ on
the product B1 � B2 that is nonsingular for T1 � T2 and
satisfies: �̂(A� X2) D �1(A) and �̂(X1 � B) D �2(B) for
all A 2 B1 and B 2 B2. Clearly, the product �1 � �2 is
a nonsingular joining. Given a transformation S 2 C(T),
the measure �S given by �S (A� B) :D �(A\ S�1B) is
a nonsingular joining of (X; �; T) and (X; � ı S�1; T). It
is called a graph-joining since it is supported on the graph
of S. Another important kind of joinings that we are go-
ing to define now is related to factors of dynamical sys-
tems. Recall that given a nonsingular system (X;B; �; T),
a sub-�-algebraA of B such that T�1(A) DAmod� is
called a factor of T. There is another, equivalent, defini-
tion. A nonsingular dynamical system (Y ;C; �; S) is called
a factor of T if there exists a measure-preserving map
' : X ! Y , called a factor map, with 'T D S' a. e. (If '
is only nonsingular, � may be replaced with the equiv-
alent measure � ı '�1, for which ' is measure-preserv-
ing.) Indeed, the sub-�-algebra '�1(C) � B is T-invari-
ant and, conversely, any T-invariant sub-�-algebra of B
defines a factor map by immanent properties of standard
probability spaces, see e. g. [3]. If ' is a factor map as
above, then � has a disintegration with respect to ', i. e.,
� D

R
�yd�(y) for a measurable map y 7! �y from Y to

the probability measures onX so that�y('�1(y)) D 1, the
measure �S'(x) ı T is equivalent to �'(x) and

d� ı T
d�

(x) D
d� ı S
d�

('(x))
d�S'(x) ı T

d�'(x)
(x) (6)

for a. e. x 2 X. Define now the relative product �̂ D
� �' � on X � X by setting �̂ D

R
�y � �y d�(y). Then
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it is easy to deduce from (6) that �̂ is a nonsingular self-
joining of T.

We note however that the above definition of joining is
not satisfactory since it does not reduce to the classical def-
inition when we consider probability preserving systems.
Indeed, the following result was proved in [168].

Theorem 41 Let (X1;B1; �1; T1) and (X2;B2; �2; T2) be
two finite measure-preserving systems such that T1 � T2 is
ergodic. Then for every ; 0 <  < 1, there exists a nonsin-
gular joining �̂ of �1 and �2 such that (T1 � T2; �̂) is er-
godic and of type III�.

It is not known however if the nonsingular joining �̂ can
be chosen in every orbit equivalence class. In view of the
above, Rudolph and Silva [168] isolate an important sub-
class of joining. It is used in the definition of a nonsingular
version of minimal self-joinings.

Definition 42

(i) A nonsingular joining �̂ of (X1; �1; T1) and
(X2; �2; T2) is rational if there exit measurable func-
tions c1 : X1 ! RC and c2 : X2 ! RC such that

!̂
�̂
1 (x1; x2) D !

�1
1 (x1)!

�2
1 (x2)c1(x1)

D !
�1
1 (x1)!

�2
1 (x2)c2(x2) �̂ a. e.

(ii) A nonsingular dynamical system (X;B; �; T) has
minimal self-joinings (MSJ) over a classM of probabil-
ity measures equivalent to �, if for every �1; �2 2M,
for every rational joining �̂ of �1; �2, a. e. ergodic
component of �̂ is either the product of its marginals
or is the graph-joining supported on Tj for some
j 2 Z.

Clearly, product measure, graph-joinings and the rela-
tive products are all rational joinings. Moreover, a ratio-
nal joining of finite measure-preserving systems is mea-
sure-preserving and a rational joining of type II1’s is of
type II1 [168]. Thus we obtain the finite measure-preserv-
ing theory as a special case. As for the definition of MSJ,
it depends on a classM of equivalent measures. In the fi-
nite measure-preserving case M D f�g. However, in the
nonsingular case no particular measure is distinguished.
We note also that Definition 42(ii) involves some restric-
tions on all rational joinings and not only ergodic ones as
in the finite measure-preserving case. The reason is that an
ergodic component of a nonsingular joining needs not be
a joining of measures equivalent to the original ones [2].
For finite measure-preserving transformations, MSJ over
f�g is the same as the usual 2-fold MSJ [49].

A nonsingular transformation T on (X;B; �) is called
prime if its only factors are B and fX;;gmod�. A (non-
empty) class M of probability measures equivalent to �
is said to be centralizer stable if for each S 2 C(T) and
�1 2M, the measure �1 ı S is inM.

Theorem 43 ([168]) Let (X;B; �; T) be a ergodic non-
atomic dynamical system such that T has MSJ over a class
M that is centralizer stable. Then T is prime and the cen-
tralizer of T consists of the powers of T.

A question that arises is whether if such nonsingular
dynamical system (not of type II1) exist. Expanding on
Ornstein’s original construction from [150], Rudolph and
Silva construct in [168], for each 0 �  � 1, a nonsingu-
lar rank-one transformation T� that is of type III� and
that has MSJ over a classM that is centralizer stable. Type
II1 examples with analogues properties were also con-
structed there. In this connection it is worth to mention
the example by Aaronson and Nadkarni [6] of II1 ergodic
transformations that have no factor algebras on which the
invariant measure is �-finite (except for the trivial and
the entire ones); however these transformations are not
prime.

A more general notion than MSJ called graph self-
joinings (GSJ), was introduced [181]: just replace the the
words “on Tj for some j 2 Z” in Definition 3(ii) with
“on S for some element S 2 C(T)”. For finite measure-
preserving transformations, GSJ over f�g is the same as
the usual 2-fold simplicity [49]. The famous Veech theo-
rem on factors of 2-fold simple maps (see [49]) was ex-
tended to nonsingular systems in [181] as follows: if a sys-
tem (X;B; �; T) has GSJ then for every non-trivial factor
A of T there exists a locally compact subgroup H in C(T)
(equipped with the weak topology) which acts smoothly
(i. e. the partition into H-orbits is measurable) and such
that A D fB 2 B j �(hB4B) D 0 for all h 2 Hg. It fol-
lows that there is a cocycle ' from (X;A; � � A) to H
such that T is isomorphic to the '-skew product ex-
tension (T � A)' (see Subsect. “Cocycles of Dynami-
cal Systems. Weak Equivalence of Cocycles”). Of course,
the ergodic nonsingular odometers and, more generally,
ergodic nonsingular compact group rotation (see Sub-
sect. “L1-Spectrum and Groups of Quasi-Invariance”)
have GSJ. However, except for this trivial case (the Carte-
sian square is non-ergodic) plus the systems with MSJ
from [168], no examples of type III systems with GSJ
are known. In particular, no smooth examples have been
constructed so far. This is in sharp contrast with the finite
measure preserving case where abundance of simple (or
close to simple) systems are known (see [39,40,49,182]).
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Nonsingular Coding and Factors of Cartesian Products
of Nonsingular Maps

As we have already noticed above, the nonsingular MSJ
theory was developed in [168] only for 2-fold self-joinings.
The reasons for this were technical problems with extend-
ing the notion of rational joinings form 2-fold to n-fold
self-joinings. However while the 2-fold nonsingular MSJ
or GSJ properties of T are sufficient to control the cen-
tralizer and the factors of T, it is not clear whether it im-
plies anything about the factors or centralizer of T � T .
Indeed, to control them one needs to know the 4-fold join-
ings of T. However even in the finite measure-preserving
case it is a long standing open question whether 2-foldMSJ
implies n-fold MSJ. That is why del Junco and Silva [51]
apply an alternative – nonsingular coding – techniques to
classify the factors of Cartesian products of nonsingular
Chacón maps. The techniques were originally used in [48]
to show that the classical Chacón map is prime and has
trivial centralizer. They were extended to nonsingular sys-
tems in [50].

For each 0 <  < 1 we denote by T� the Chacón map
(see Subsect. “Rank-One Transformations. Chacón Maps.
Finite Rank”) corresponding the sequence of probability
vectors wn D (/(1C 2); 1/(1C 2); /(1C 2)) for all
n > 0. One can verify that the maps T� are of type III�.
(The classical Chacón map corresponds to  D 1.) All of
these transformations are defined on the same standard
Borel space (X;B). These transformations were shown to
be power weakly mixing in [12]. The centralizer of any
finite Cartesian product of nonsingular Chacón maps is
computed in the following theorem.

Theorem 44 ([51]) Let 0 < 1 < : : : < k � 1 and
n1; : : : ; nk be positive integers. Then the centralizer of
the Cartesian product T˝n1

�1
� : : : � T˝nk

�k
is generated by

maps of the form U1 � : : : � Uk, where each Ui, acting on
the ni-dimensional product space Xni , is a Cartesian prod-
uct of powers of T�i or a co-ordinate permutation on Xni .

Let � denote the permutation on X � X defined by
�(x; y) D (y; x) and letB2ˇ denote the symmetric factor,
i. e. B2ˇ D fA 2 B˝ B j �(A) D Ag. The following the-
orem classifies the factors of the Cartesian product of any
two nonsingular type III�, 0 <  < 1, or type II1 Chacón
maps.

Theorem 45 ([51]) Let T�1 and T�2 be two nonsingular
Chacón systems. LetF be a factor algebra of T�1 � T�2 .

(i) If 1 ¤ 2 then F is equal mod 0 to one of the four
algebrasB˝ B,B˝N ,N ˝ B, orN ˝N , where
N D f;; Xg.

(ii) If 1 D 2 then F is equal mod 0 to one of the fol-
lowing algebras B˝ C, B˝N , N ˝ C, N ˝N ,
or (Tm � Id)B2ˇ for some integer m.

It is not hard to obtain type III1 examples of Chacón maps
for which the previous two theorems hold. However the
construction of type II1 and type III0 nonsingular Chacón
transformations is more subtle as it needs the choice of
!n to vary with n. In [92], Hamachi and Silva construct
type III0 and type II1 examples, however the only prop-
erty proved for these maps is ergodicity of their Cartesian
square. More recently, Danilenko [38] has shown that all
of them (in fact, a wider class of nonsingular Chacón maps
of all types) are power weakly mixing.

In [22], Choksi, Eigen and Prasad asked whether there
exists a zero entropy, finite measure-preserving mixing
automorphism S, and a nonsingular type III automor-
phism T, such that T � S has no Bernoulli factors. The-
orem 45 provides a partial answer (with a mildly mixing
only instead of mixing) to this question: if S is the finite
measure-preserving Chacón map and T is a nonsingular
Chacón map as above, the factors of T � S are only the
trivial ones, so T � S has no Bernoulli factors.

Applications. Connectionswith Other Fields

In this – final – section we shed light on numerous math-
ematical sources of nonsingular systems. They come from
the theory of stochastic processes, random walks, locally
compact Cantor systems, horocycle flows on hyperbolic
surfaces, von Neumann algebras, statistical mechanics,
representation theory for groups and anticommutation re-
lations, etc. We also note that such systems sometimes
appear in the context of probability preserving dynamics
(see also a criterium of distality in Subsect. “Krengel’s and
Parry’s Entropies”).

Mild Mixing

An ergodic finite measure-preserving dynamical system
(X;B; �; T) is called mildly mixing if for each non-trivial
factor algebraA � B, the restriction T � A is not rigid.
For equivalent definitions and extensions to actions of lo-
cally compact groups we refer to [3] and [177]. There is
an interesting criterium of the mild mixing that involves
nonsingular systems: T is mildly mixing if and only if for
each ergodic nonsingular transformation S, the product
T � S is ergodic [71]. Furthermore, T � S is then orbit
equivalent to S [98]. Moreover, if R is a nonsingular trans-
formation such that R � S is ergodic for any ergodic non-
singular S then R is of type II1 (and mildly mixing) [177].
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Disjointness and Furstenberg’s ClassW?

Two probability preserving systems (X; �; T) and (Y ; �; S)
are called disjoint if � � � is the only T � S-invariant
probability measure on X � Y whose coordinate projec-
tions are� and � respectively. Furstenberg in [69] initiated
studying the classW? of transformations disjoint from all
weakly mixing ones. LetD denote the class of distal trans-
formations and M(W?) the class of multipliers of W?
(for the definitions see [75]). ThenD �M(W?) �W?.
In [43] and [133] it was shown by constructing explicit ex-
amples that these inclusions are strict. We record this fact
here because nonsingular ergodic theory was the key in-
gredient of the arguments in the two papers pertaining to
the theory of probability preserving systems. The exam-
ples are of the form T';S (x; y) D (Tx; S'(x) y), where T is
an ergodic rotation on (X; �), (Sg )g2G a mildly mixing ac-
tion of a locally compact group G on Y and ' : X ! G
a measurable map. Let W' denote the Mackey action of G
associated with ' and let (Z; �) be the space of this action.
The key observation is that there exists an affine isomor-
phism of the simplex of T';S -invariant probability mea-
sures whose pullback on X is � and the simplex ofW' � S
quasi-invariant probability measures whose pullback on Z
is � and whose Radon–Nikodym cocycle is measurable
with respect to Z. This is a far reaching generalization of
Furstenberg theorem on relative unique ergodicity of er-
godic compact group extensions.

Symmetric Stable and Infinitely
Divisible Stationary Processes

Rosinsky in [163] established a remarkable connection be-
tween structural studies of stationary stochastic processes
and ergodic theory of nonsingular transformations (and
flows). For simplicity we consider only real processes in
discrete time. Let X D (Xn)n2Z be a measurable station-
ary symmetric ˛-stable (S˛S) process, 0 < ˛ < 2. This
means that any linear combination

Pn
kD1 akX jk , jk 2 Z,

ak 2 R has an S˛S-distribution. (The case ˛ D 2 corre-
sponds to Gaussian processes.) Then the process admits
a spectral representation

Xn D

Z

Y
fn(y)M(dy) ; n 2 Z ; (7)

where fn 2 L˛(Y ; �) for a standard �-finite measure
space (Y ;B;�) and M is an independently scattered
random measure on B such that E exp (iuM(A)) D
exp (�juj˛�(A)) for every A 2 B of finite measure.
By [163], one can choose the kernel ( fn)n2Z in a special
way: there are a�-nonsingular transformation T andmea-
surable maps ' : X ! f�1; 1g and f 2 L˛(Y ; �) such that

fn D Un f , n 2 Z, where U is the isometry of L˛(X; �)
given by Ug D ' � (d� ı T/d�)1/˛ � g ı T . If, in addition,
the smallest T-invariant �-algebra containing f�1(BR)
coincides with B and Supp f f ı Tn : n 2 Zg D Y then the
pair (T; ') is called minimal. It turns out that minimal
pairs always exist. Moreover, two minimal pairs (T; ')
and (T 0; '0) representing the same S˛S process are equiv-
alent in some natural sense [163]. Then one can re-
late ergodic-theoretical properties of (T; ') to probabilis-
tic properties of (Xn)n2Z. For instance, let Y D C t D
be the Hopf decomposition of Y (see Theorem 2). We
let XD

n : D
R
D fn(y)M(dy) and XC

n :D
R
C fn(y)M(dy).

Then we obtain a unique (in distribution) decomposition
of X into the sum XD C XC of two independent stationary
S˛S-processes.

Another kind of decomposition was considered
in [171]. Let P be the largest invariant subset of Y such that
T � P has a finite invariant measure. Partitioning Y into P
and N :D Y n N and restricting the integration in (7) to P
and N we obtain a unique (in distribution) decomposition
of X into the sum XP C XN of two independent stationary
S˛S-processes. Notice that the process X is ergodic if and
only if �(P) D 0.

Recently, Roy considered a more general class of in-
finitely divisible (ID) stationary processes [165]. Using
Maruyama’s representation of the characteristic function
of an ID process X without Gaussian part he singled out
the Lévy measure Q of X. Then Q is a shift invariant �-fi-
nite measure on RZ. Decomposing the dynamical sys-
tem (RZ; �;Q) in various natural ways (Hopf decomposi-
tion, 0-type and positive type, so-called ‘rigidity free’ part
and its complement) he obtains corresponding decom-
positions for the process X. Here � stands for the shift
on RZ.

Poisson Suspensions

Poisson suspensions are widely used in statistical mechan-
ics to model ideal gas, Lorentz gas, etc (see [33]). Let
(X;B; �) be a standard �-finite non-atomicmeasure space
and �(X) D 1. Denote by eX the space of unordered
countable subsets of X. It is called the space of configu-
rations. Fix t > 0. Let A 2 B have positive finite measure
and let j 2 ZC. Denote by [A; j] the subset of all configu-
rationsex 2 eX such that #(ex \ A) D j. Let eB be the �-al-
gebra generated by all [A; j]. We define a probability mea-
sure e�t oneB by two conditions:

(i) e�t([A; j]) D (t�(A)) j
j! exp (�t�(A));

(ii) if A1; : : : ;Ap are pairwise disjoint then
e�t(
Tp

kD1[Ak ; jk ]) D
Qp

kD1 e�t([Ak ; jk]).
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If T is a �-preserving transformation of X and
ex D (x1; x2; : : : ) is a configuration then we set eT! :D
(Tx1; Tx2; : : : ). It is easy to verify thateT is ae�-preserving
transformation of eX. The dynamical system (eX;eB;e�;eT)
is called the Poisson suspension above (X;B; �; T). It is
ergodic if and only if T has no invariant sets of finite
positive measure. There is a canonical representation of
L2(eX;e�) as the Fock space over L2(X; �) such that the
unitary operator UeT is the ‘exponent’ of UT . Thus, the
maximal spectral type of UeT is

P
n�0(n!)

�1��n , where �
is a measure of the maximal spectral type of UT . It is easy
to see that a �-finite factor of T corresponds to a factor
(called Poissonian) of eT. Moreover, a �-finite measure-
preserving joining (with �-finite projections) of two infi-
nite measure-preserving transformations T1 and T2 gen-
erates a joining (called Poissonian) of eT1 and eT2 [52,164].
Thus we see a similarity with the well studied theory of
Gaussian dynamical systems [134]. However, the Poisso-
nian case is less understood. There was a recent progress
in this field. Parreau and Roy constructed Poisson suspen-
sions whose ergodic self-joinings are all Poissonian [154].
In [111] partial solutions of the following (still open) prob-
lems are found:

(i) whether the Pinsker factor ofeT is Poissonian,
(ii) what is the relationship between Krengel’s entropy

of T, Parry’s entropy of T and Kolmogorov–Sinai en-
tropy ofeT .

Recurrence of RandomWalks
with Non-stationary Increments

Using nonsingular ergodic theory one can introduce the
notion of recurrence for random walks obtained from cer-
tain non-stationary processes. Let T be an ergodic non-
singular transformation of a standard probability space
(X;B; �) and let f : X ! Rn a measurable function. De-
fine for m � 1, Ym : X ! Rn by Ym :D

Pm�1
nD0 f ı Tn . In

other words, (Ym )m�1 is the random walk associated with
the (non-stationary) process ( f ı Tn)n�0. Let us call this
random walk recurrent if the cocycle f of T is recur-
rent (see Subsect. “Cocycles of Dynamical Systems. Weak
Equivalence of Cocycles”). It was shown in [176] that in
the case � ı T D �, i. e. the process is stationary, this def-
inition is equivalent to the standard one.

Boundaries of RandomWalks

Boundaries of random walks on groups retain valu-
able information on the underlying groups (amenabil-
ity, entropy, etc.) and enable one to obtain integral
representation for harmonic functions of the random

walk [112,186,187]. Let G be a locally compact group
and � a probability measure on G. Let T denote the
(one-sided) shift on the probability space (X;BX ; �) :D
(G;BG ; �)ZC and ' : X ! G a measurable map defined
by (y0; y1; : : : ) 7! y0. Let T' be the '-skew product ex-
tension of T acting on the space (X �G; ��G ) (for non-
invertible transformations the skew product extension is
defined in the very same way as for invertible ones, see
Subsect. “Cocycles of Dynamical Systems. Weak Equiva-
lence of Cocycles”). Then T' is isomorphic to the homo-
geneous random walk on G with jump probability �. Let
I(T') denote the sub-�-algebra of T'-invariant sets and
let F(T' ) :D

T
n>0 T

�n
' (BX ˝ BG). The former is called

the Poisson boundary of T' and the latter one is called
the tail boundary of T' . Notice that a nonsingular action
of G by inverted right translations along the second co-
ordinate is well defined on each of the two boundaries.
The two boundaries (or, more precisely, the G-actions on
them) are ergodic. The Poisson boundary is the Mackey
range of ' (as a cocycle of T). Hence the Poisson bound-
ary is amenable [187]. If the support of � generates a dense
subgroup of G then the corresponding Poisson boundary
is weakly mixing [4]. As for the tail boundary, we first
note that it can be defined for a wider family of non-
homogeneous random walks. This means that the jump
probability � is no longer fixed and a sequence (�n)n>0
of probability measures on G is considered instead. Now
let (X;BX ; �) :D

Q
n>0(G;BG ; �). The one-sided shift

on X may not be nonsingular now. Instead of it, we con-
sider the tail equivalence relation R on X and a cocycle
˛ : R ! G given by ˛(x; y) D x1 � � � xn y�1n � � � y1, where
x D (xi)i>0 and y D (yi )i>0 are R-equivalent and n
in the smallest integer such that xi D yi for all i > n.
The tail boundary of the random walk on G with time de-
pendent jump probabilities (�n)n>0 is the Mackey G-ac-
tion associated with ˛. In the case of homogeneous ran-
dom walks this definition is equivalent to the initial one.
Connes and Woods showed [32] that the tail boundary is
always amenable and AT. It is unknown whether the con-
verse holds for general G. However it is true for G D R
and G D Z: the class of AT-flows coincides with the class
of tail boundaries of the random walks on R and a simi-
lar statement holds forZ [32]. Jaworsky showed [109] that
if G is countable and a random walk is homogeneous then
the tail boundary of the random walk possesses a so-called
SAT-property (which is stronger than AT).

Classifying 	 -Finite Ergodic Invariant Measures

The description of ergodic finite invariant measures for
topological (or, more generally, standard Borel) systems
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is a well established problem in the classical ergodic the-
ory [33]. On the other hand, it seems impossible to obtain
any useful information about the system by analyzing the
set of all ergodic quasi-invariant (or just �-finite invariant)
measures because this set is wildly huge (see Subsect. “The
Glimm–Effros Theorem”). The situation changes if we im-
pose some restrictions on themeasures. For instance, if the
systemunder question is a homeomorphism (or a topolog-
ical flow) defined on a locally compact Polish space then
it is natural to consider the class of (�-finite) invariant
Radon measures, i. e. measures taking finite values on the
compact subsets. We give two examples.

First, the seminal results of Giordano, Putnam and
Skau on the topological orbit equivalence of compact Can-
tor minimal systems were extended to locally compact
Cantor minimal (l.c.c.m.) systems in [37] and [138]. Given
a l.c.c.m. system X, we denote by M(X) and M1(X) the
set of invariant Radon measures and the set of invariant
probability measures on X. Notice that M1(X) may be
empty [37]. It was shown in [138] that two systems X and
X 0 are topologically orbit equivalent if and only if there is
a homeomorphism of X onto X 0 which maps bijectively
M(X) ontoM(X 0) andM1(X) ontoM1(X 0). ThusM(X)
retains an important information on the system – it is ‘re-
sponsible’ for the topological orbit equivalence of the un-
derlying systems. Uniquely ergodic l.c.c.m. systems (with
unique up to scaling infinite invariant Radon measure)
were constructed in [37].

The second example is related to study of the smooth
horocycle flows on tangent bundles of hyperbolic sur-
faces. LetD be the open disk equipped with the hyperbolic
metric jdzj/(1 � jzj2) and let Möb(D) denote the group
of Möbius transformations of D. A hyperbolic surface
can be written in the form M :D � nMöb(D), where �
is a torsion free discrete subgroup of Möb(D). Suppose
that � is a nontrivial normal subgroup of a lattice � 0 in
Möb(D). Then M is a regular cover of the finite volume
surface M0 : D �0nMöb(D). The group of deck transfor-
mations G D �0/� is finitely generated. The horocycle
flow (ht)t2R and the geodesic flow (gt)t2R defined on
the unit tangent bundle T1(D) descend naturally to flows,
say h and g, on T1(M). We consider the problem of clas-
sification of the h-invariant Radon measures on M. Ac-
cording to Ratner, h has no finite invariant measures onM
if G is infinite (except for measures supported on closed
orbits). However there are infinite invariant Radon mea-
sures, for instance the volumemeasure. In the case whenG
is free Abelian and � 0 is co-compact, every homomor-
phism ' : G ! R determines a unique up to scaling er-
godic invariant Radonmeasure (e.i.r.m.)m on T1(M) such
that m ı dD D exp ('(D))m for all D 2 G [16] and ev-

ery e.i.r.m. arises this way [172]. Moreover all these mea-
sures are quasi-invariant under g. In the general case, an
interesting bijection is established in [131] between the
e.i.r.m. which are quasi-invariant under g and the ‘non-
trivial minimal’ positive eigenfunctions of the hyperbolic
Laplacian onM.

Von Neumann Algebras

There is a fascinating and productive interplay between
nonsingular ergodic theory and von Neumann algebras.
The two theories alternately influenced development of
each other. Let (X;B; �; T) be a nonsingular dynamical
system. Given ' 2 L1(X; �) and j 2 Z, we define opera-
tors A' and Uj on the Hilbert space L2(Z � Z; � � �) by
setting

(A' f )(x; i) :D '(Ti x) f (x; i) ;
(Uj f )(x; i) :D f (x; i � j) :

ThenUjA'U�j D A'ıT j . Denote byM the von Neumann
algebra (i. e. the weak closure of the -algebra) generated
by A' , ' 2 L1(X; �) and Uj, j 2 Z. If T is ergodic and
aperiodic then M is a factor, i. e. M \M0 D C1, where
M0 denotes the algebra of bounded operators commut-
ing with M. It is called a Krieger’s factor. Murray–von
Neumann–Connes’ type ofM is exactly the Krieger’s type
of T. The flow of weights of M is isomorphic to the as-
sociated flow of T. Two Krieger’s factors are isomorphic
if and only if the underlying dynamical systems are or-
bit equivalent [129]. Moreover, a number of important
problems in the theory of von Neumann algebras such
as classification of subfactors, computation of the flow
of weights and Connes’ invariants, outer conjugacy for
automorphisms, etc. are intimately related to the corre-
sponding problems in nonsingular orbit theory. We refer
to [42,66,73,74,89,142] for details.

Representations of CAR

Representations of canonical anticommutation relations
(CAR) is one of the most elegant and useful chapters of
mathematical physics, providing a natural language for
many body quantum physics and quantum field theory. By
a representation of CAR we mean a sequence of bounded
linear operators a1; a2; : : : in a separable Hilbert spaceK
such that a jak C aka j D 0 and a ja�k C a�k a j D ı j;k .

Consider f0; 1g as a group with addition mod 2.
Then X D f0; 1gN is a compact Abelian group. Let
� :D fx D (x1; x2; : : : ) : limn!1 xn D 0g. Then � is
a dense countable subgroup of X. It is generated by el-
ements � k whose k-coordinate is 1 and the other ones
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are 0. � acts on X by translations. Let � be an er-
godic � -quasi-invariant measure on X. Let (Ck )k�1 be
Borel maps from X to the group of unitary operators
in a Hilbert space H satisfying C�k (x) D Ck (x C ık),
Ck(x)Cl (x C ıl ) D Cl (x)Ck(x C ık), k ¤ l for a. a. x. In
other words, (Ck )k�1 defines a cocycle of the � -action.
We now put fH :D L2(X; �)˝H and define operators
ak infH by setting

(ak f )(x) D (�1)x1C���Cxk�1 (1 � xk)

� Ck(x)

s
d� ı ık
d�

(x) f (x C ık) ;

where f : X !H is an element of fH and x D (x1; x2;
: : : ) 2 X. It is easy to verify that a1; a2; : : : is a repre-
sentation of CAR. The converse was established in [72]
and [77]: every factor-representation (this means that the
von Neumann algebra generated by all ak is a factor) of
CAR can be represented as above for some ergodic mea-
sure �, Hilbert spaceH and a � -cocycle (Ck )k�1. More-
over, using nonsingular ergodic theory Golodets [77] con-
structed for each k D 2; 3; : : : ;1, an irreducible repre-
sentation of CAR such that dimH D k. This answered
a question of Gårding andWightman [72] who considered
only the case k D 1.

Unitary Representations of Locally Compact Groups

Nonsingular actions appear in a systematic way in the the-
ory of unitary representations of groups. Let G be a lo-
cally compact second countable group andH a closed nor-
mal subgroup of G. Suppose that H is commutative (or,
more generally, of type I, see [53]). Then the natural ac-
tion of G by conjugation on H induces a Borel G-action,
say ˛, on the dual space bH – the set of unitarily equivalent
classes of irreducible unitary representations of H. If now
U D (Ug )g2G is a unitary representation of G in a sepa-
rable Hilbert space then by applying Stone decomposition
theorem to U � H one can deduce that ˛ is nonsingular
with respect to a measure � of the ‘maximal spectral type’
for U � H on bH. Moreover, if U is irreducible then ˛ is
ergodic. Whenever� is fixed, we obtain a one-to-one cor-
respondence between the set of cohomology classes of ir-
reducible cocycles for ˛ with values in the unitary group
on a Hilbert space H and the subset of bG consisting of
classes of those unitary representations V for which the
measure associated to V � H is equivalent to �. This cor-
respondence is used in both directions. From information
about cocycles we can deduce facts about representations
and vise versa [53,118].

Concluding Remarks

While some of the results that we have cited for nonsin-
gular Z-actions extend to actions of locally compact Pol-
ish groups (or subclasses of Abelian or amenable ones),
many natural questions remain open in the general set-
ting. For instance: what is Rokhlin lemma, or the pointwise
ergodic theorem, or the definition of entropy for nonsin-
gular actions of general countable amenable groups? The
theory of abstract nonsingular equivalence relations [66]
or, more generally, nonsingular groupoids [160] and poly-
morphisms [184] is also a beautiful part of nonsingu-
lar ergodic theory that has nice applications: description
of semifinite traces of AF-algebras, classification of fac-
tor representations of the infinite symmetric group [185],
path groups [14], etc. Nonsingular ergodic theory is get-
ting even more sophisticated when we pass from Z-ac-
tions to noninvertible endomorphisms or, more generally,
semigroup actions (see [3] and references therein). How-
ever, due to restrictions of space we do not consider these
issues in our survey.
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Glossary

Almost every, essentially Given a Lebesgue measure
space (X;B; �), a property P(x) predicated of ele-
ments of X is said to hold for almost every x 2 X, if
the set X n fx : P(x) holdsg has zero measure. Two sets
A; B 2 B are essentially disjoint if �(A\ B) D 0.

Conservative system Is an infinite measure preserving
system such that for no set A 2 B with positive mea-
sure are A; T�1A; T�2A; : : : pairwise essentially dis-
joint.

(cn)-Conservative system If (cn)n2N is a decreasing se-
quence of positive real numbers, a conservative
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ergodic measure preserving transformation T is
(cn)-conservative if for some non-negative function
f 2 L1(�),

P1
nD1 cn f (T

nx) D 1 a. e.
Doubling map If T is the interval [0; 1] with its end-

points identified and addition performed modulo 1,
the (non-invertible) transformation T : T ! T , de-
fined by Tx D 2x mod 1, preserves Lebesgue measure,
hence induces a measure preserving system on T .

Ergodic system Is a measure preserving system (X;B;
�; T) (finite or infinite) such that every A 2 B
that is T-invariant (i. e. T�1AD A) satisfies either
�(A) D 0 or �(X n A) D 0. (One can check that the
rotation R˛ is ergodic if and only if ˛ is irrational, and
that the doubling map is ergodic).

Ergodic decomposition Every measure preserving sys-
tem (X;X; �; T) can be expressed as an integral of
ergodic systems; for example, one can write � DR
�td(t), where  is a probability measure on [0; 1]

and�t are T-invariant probability measures on (X;X)
such that the systems (X;X; �t ; T) are ergodic for
t 2 [0; 1].

Ergodic theorem States that if (X;B; �; T) is a mea-
sure preserving system and f 2 L2(�), then limN!1�� 1
N
PN

nD1 T
n f � Pf

��
L2(�) D 0, where Pf denotes the

orthogonal projection of the function f onto the sub-
space f f 2 L2(�) : T f D f g.

Hausdorff a-measure Let (X;B; �; T) be a measure pre-
serving system endowedwith a�-compatible metric d.
The Hausdorff a-measureHa(X) ofX is an outermea-
sure defined for all subsets of X as follows: First, for
A � X and " > 0 letHa;"(A) D inff

P1
iD1 r

a
i g, where

the infimum is taken over all countable coverings of A
by sets Ui � X with diameter ri < ". Then define
Ha(A) D lim sup"!0Ha;"(A).

Infinite measure preserving system Same as measure
preserving system, but �(X) D1.

Invertible system Is a measure preserving system (X;B;
�; T) (finite or infinite), with the property that there
exists X0 2 X, with �(X n X0) D 0, and such that
the transformation T : X0 ! X0 is bijective, with T�1

measurable.
Measure preserving system Is a quadruple (X;B; �; T),

where X is a set, B is a �-algebra of subsets of X (i. e.
B is closed under countable unions and complementa-
tion), � is a probability measure (i. e. a countably ad-
ditive function from B to [0; 1] with �(X) D 1), and
T : X ! X is measurable (i. e. T�1A D fx 2 X :
Tx 2 Ag 2 B for A 2 B), and �-preserving (i. e.
�(T�1A) D �(A)). Moreover, throughout the discus-
sion we assume that the measure space (X;B; �) is
Lebesgue (see Sect. 1.0 in [2]).

�-Compatible metric Is a separable metric on X, where
(X;B; �) is a probability space, having the property
that open sets are measurable.

Positive definite sequence Is a complex-valued sequence
(an)n2Z such that for any n1; : : : ; nk 2 Z and z1; : : : ;
zk 2 C,

Pk
i; jD1 ani�n j zi z j � 0.

Rotations on T If T is the interval [0; 1] with its end-
points identified and addition performed modulo 1,
then for every ˛ 2 R the transformation R˛ : T ! T ,
defined by R˛x D x C ˛mod1, preserves Lebesgue
measure on T and hence induces a measure preserv-
ing system on T .

Syndetic set Is a subset E � Z having bounded gaps. If
G is a general discrete group, a set E � G is syndetic if
G D FE for some finite set F � G.

Upper density Is the number d(�) D lim supN!1(j�\
f�N; : : : ;Ngj)/(2N C 1), where � � Z (assum-
ing the limit to exist). Alternatively for measurable
E � Rm , D(E) D lim supl (S)!1(m(S \ E))/(m(S)),
where S ranges over all cubes in Rm , and l(S) denotes
the length of the shortest edge of S.

Notation The following notation will be used throughout
the article: T f D f ı T , fxg D x � [x], D- limn!1
(an) D a $ d

�
fn : jan � aj > "g


D 0 for every

" > 0.

Definition of the Subject

The basic principle that lies behind several recurrence phe-
nomena is that the typical trajectory of a system with fi-
nite volume comes back infinitely often to any neighbor-
hood of its initial point. This principle was first exploited
by Poincaré in his 1890 King Oscar prize-winning memoir
that studied planetary motion. Using the prototype of an
ergodic-theoretic argument, he showed that in any system
of point masses having fixed total energy that restricts its
dynamics to bounded subsets of its phase space, the typ-
ical state of motion (characterized by configurations and
velocities) must recur to an arbitrary degree of approxi-
mation.

Among the recurrence principle’s more spectacularly
counterintuitive ramifications is that isolated ideal gas sys-
tems that do not lose energy will return arbitrarily closely
to their initial states, even when such a return entails a de-
crease in entropy from equilibrium, in apparent contradic-
tion to the second law of thermodynamics. Such concerns,
previously canvassed by Poincaré himself, were more in-
famously expounded by Zermelo [74] in 1896. Subsequent
clarifications by Boltzmann, Maxwell and others led to an
improved understanding of the second law’s primarily sta-
tistical nature. (For an interesting historical/philosophical
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discussion, see [68]; also [10]. For a probabilistic analy-
sis of the likelihood of observing second law violations in
small systems over short time intervals, see [28]).

These discoveries had a profound impact in dynam-
ics, and the theory of measure preserving transformations
(ergodic theory) evolved from these developments. Since
then, the Poincaré recurrence principle has been applied
to a variety of different fields in mathematics, physics, and
information theory. In this article we survey the impact it
has had in ergodic theory, especially as pertains to the field
of ergodic Ramsey theory. (The heavy emphasis herein on
the latter reflects authorial interest, and is not intended to
transmit a proportionate image of the broader landscape
of research relating to recurrence in ergodic theory.) Back-
ground information we assume in this article can be found
in the books [35,63,71] (�Measure Preserving Systems).

Introduction

In this section we shall give several formulations of the
Poincaré recurrence principle using the language of er-
godic theory. Roughly speaking, the principle states that in
a finite (or conservative)measure preserving system, every
set of positive measure (or almost every point) comes back
to itself infinitely many times under iteration. Despite the
profound importance of these results, their proofs are ex-
tremely simple.

Theorem 1 (Poincaré Recurrence for Sets) Let (X;B; �;
T) be a measure preserving system and A 2 B with �(A) >
0. Then �(A\ T�nA) > 0 for infinitely many n 2 N .

Proof Since T is measure preserving, the sets A; T�1A;
T�2A; : : : have the same measure. These sets cannot
be pairwise essentially disjoint, since then the union
of finitely many of them would have measure greater
than �(X) D 1. Therefore, there exist m; n 2 N , with
n > m, such that�(T�mA\ T�nA) > 0. Again since T is
measure preserving, we conclude that �(A\ T�kA) > 0,
where k D n � m > 0. Repeating this argument for the it-
erates A; T�mA; T�2mA; : : :, for all m 2 N , we easily de-
duce that �(A\ T�nA) > 0 for infinitely many n 2 N .�

We remark that the above argument actually shows that
�(A\ T�nA) > 0 for some n � [ 1

�(A) ]C 1.

Theorem 2 (Poincaré Recurrence for Points) Let
(X;B; �; T) be a measure preserving system and A 2 B.
Then for almost every x 2 A we have that Tnx 2 A for in-
finitely many n 2 N .

Proof Let B be the set of x 2 A such that Tnx … A for
all n 2 N . Notice that B D A n

S
n2N T�nA; in particular,

B is measurable. Since the iterates B; T�1B; T�2B; : : : are

pairwise essentially disjoint, we conclude (as in the proof
of Theorem 1) that �(B) D 0. This shows that for almost
every x 2 A we have that Tnx 2 A for some n 2 N. Re-
peating this argument for the transformation Tm in place
of T for all m 2 N, we easily deduce the advertised state-
ment. �
Next we give a variation of Poincaré recurrence for mea-
sure preserving systems endowed with a compatible met-
ric:

Theorem 3 (Poincaré Recurrence for Metric Systems)
Let (X;B; �; T) be a measure preserving system, and sup-
pose that X is endowed with a �-compatible metric. Then
for almost every x 2 X we have

lim inf
n!1

d(x; Tnx) D 0 :

The proof of this result is similar to the proof of Theorem 2
(see p. 61 in [35]). Applying this result to the doublingmap
Tx D 2x on T , we get that for almost every x 2 X, every
string of zeros and ones in the dyadic expansion of x oc-
curs infinitely often.

We remark that all three formulations of the Poincaré
Recurrence Theorem that we have given hold for conser-
vative systems as well. See, e. g., [2] for details.

This article is structured as follows. In Sect. “Quan-
titative Poincaré Recurrence” we give a few quantitative
versions of the previously mentioned qualitative results.
In Sects. “Subsequence Recurrence” and “Multiple Recur-
rence” we give several refinements of the Poincaré re-
currence theorem, by restricting the scope of the return
time n, and by considering multiple intersections (for
simplicity we focus on Z-actions). In Sect. “Connections
with Combinatorics and Number Theory” we give vari-
ous implications of the recurrence results in combinatorics
and number theory (� Ergodic Theory: Interactions with
Combinatorics and Number Theory). Lastly, in Sect. “Fu-
ture Directions” we give several open problems related to
the material presented in Sects. “Subsequence Recurrence”
to “Connections with Combinatorics and Number The-
ory”.

Quantitative Poincaré Recurrence

Early Results

For applications it is desirable to have quantitative ver-
sions of the results mentioned in the previous section. For
example one would like to know how large �(A\ T�nA)
can be made and for how many n.

Theorem 4 (Khintchine [55]) Let (X;B; �; T) be a mea-
sure preserving system and A 2 B. Then for every " > 0 we
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have �(A\ T�nA) > �(A)2 � " for a set of n 2 N that
has bounded gaps.

By considering the doubling map Tx D 2x on T and let-
ting AD 1[0;1/2), it is easy to check that the lower bound of
the previous result cannot be improved. We also remark
that it is not possible to estimate the size of the gap by
a function of �(A) alone. One can see this by consider-
ing the rotations Rkx D x C 1/k for k 2 N , defined on T ,
and letting AD 1[0;1/3].

Concerning the second version of the Poincaré recur-
rence theorem, it is natural to ask whether for almost ev-
ery x 2 X the set of return times Sx D fn 2 N : Tnx 2 Ag
has bounded gaps. This is not the case, as one can see
by considering the doubling map Tx D 2x on T with the
Lebesguemeasure, and letting AD 1[0;1/2). Since Lebesgue
almost every x 2 T contains arbitrarily large blocks of
ones in its dyadic expansion, the set Sx has unbounded
gaps. Nevertheless, as an easy consequence of the Birkhoff
ergodic theorem [19], one has the following:

Theorem 5 Let (X;B; �; T) be a measure preserving sys-
tem and A 2 B with �(A) > 0. Then for almost every
x 2 X the set Sx D fn 2 N : Tnx 2 Ag has well defined
density and

R
d(Sx ) d�(x) D �(A). Furthermore, for er-

godic measure preserving systems we have d(Sx ) D �(A)
a. e.

Another question that arises naturally is, given a setAwith
positive measure and an x 2 A, how long should one wait
until some iterate Tnx of x hits A? By considering an irra-
tional rotation R˛ on T , where ˛ is very near to, but not
less than, 1

100 , and letting AD 1[0;1/2], one can see that the
first return time is a member of the set f1; 50; 51g. So it
may come as a surprise that the average first return time
does not depend on the system (as long as it is ergodic),
but only on the measure of the set A.

Theorem 6 (Kac [51]) Let (X;B; �; T) be an ergodic
measure preserving system and A 2 B with �(A) > 0.
For x 2 X define RA(x) D minfn 2 N : Tnx 2 Ag. Then
for x 2 A the expected value of RA(x) is 1/�(A), i. e.R
A RA(x)d� D 1.

More Recent Results

As we mentioned in the previous section, if the space X is
endowed with a �-compatible metric d, then for almost
every x 2 X we have that lim infn!1 d(x; Tnx) D 0.
A natural question is, how much iteration is needed to
come back within a small distance of a given typical point?
Under some additional hypothesis on themetric dwe have
the following answer:

Theorem 7 (Boshernitzan [20]) Let (X;B; �; T) be
a measure preserving system endowed with a �-compati-
ble metric d. Assume that the Hausdorff a-measureHa(X)
of X is �-finite (i. e., X is a countable union of sets Xi with
Ha(Xi ) <1). Then for almost every x 2 X,

lim inf
n!1

˚
n

1
a � d(x; Tnx)

�
<1 :

Furthermore, ifHa(X) D 0, then for almost every x 2 X,

lim inf
n!1

˚
n

1
a � d(x; Tnx)

�
D 0 :

One can see from rotations by “badly approximable” vec-
tors ˛ 2 T k that the exponent 1/a in the previous theorem
cannot be improved. Several applications of Theorem 7 to
billiard flows, dyadic transformations, symbolic flows and
interval exchange transformations are given in [20]. For
a related result dealing with mean values of the limits in
Theorem 7 see [67].

An interesting connection between rates of recurrence
and entropy of an ergodic measure preserving system was
established by Ornstein and Weiss [62], following earlier
work of Wyner and Ziv [73]:

Theorem 8 (Ornstein and Weiss [62]) Let (X;B; �; T)
be an ergodic measure preserving system and P be a fi-
nite partition of X. Let Pn(x) be the element of the parti-
tion

Wn�1
iD0 T

�iP D fTn�1
iD0 T

�i P(i) : P(i) 2 P; 0 � i < ng
that contains x. Then for almost every x 2 X, the first re-
turn time Rn(x) of x to Pn(x) is asymptotically equivalent
to eh(T;P)n, where h(T;P) denotes the entropy of the system
with respect to the partition P. More precisely,

lim
n!1

log Rn(x)
n

D h(T;P) :

An extension of the above result to some classes of infinite
measure preserving systems was given in [42].

Another connection of recurrence rates, this time with
the local dimension of an invariant measure, is given by
the next result:

Theorem 9 (Barreira [4]) Let (X;B; �; T) be an ergodic
measure preserving system. Define the upper and lower re-
currence rates

R(x) D lim inf
r!0

log �r(x)
� log r

and

R(x) D lim sup
r!0

log �r(x)
� log r

;
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where �r(x) is the first return time of Tkx to B(x; r), and
the upper and lower pointwise dimensions

d�(x) D lim inf
r!0

log�(B(x; r))
log r

and

d�(x) D lim sup
r!0

log�(B(x; r))
log r

:

Then for almost every x 2 X, we have

R(x) � d�(x) and R(x) � d�(x) :

Roughly speaking, this theorem asserts that for typical
x 2 X and for small r, the first return time of x to B(x; r)
is at most r�d�(x). Since d�(x) �Ha(X) for almost every
x 2 X, we can conclude the first part of Theorem 7 from
Theorem 9. For related results the interested reader should
consult the survey [5] and the bibliography therein.

We also remark that the previous results and related
concepts have been applied to estimate the dimension
of certain strange attractors (see [49] and the references
therein) and the entropy of some Gibbsian systems [25].

We end this section with a result that connects “wan-
dering rates” of sets in infinite measure preserving systems
with their “recurrence rates”. The next theorem follows
easily from a result about lower bounds on ergodic aver-
ages for measure preserving systems due to Leibman [57];
a weaker form for conservative, ergodic systems can be
found in Aaronson [1].

Theorem 10 Let (X;B; �; T) be an infinite measure pre-
serving system, and A 2 B with �(A) <1. Then for all
N 2 N ,
0

@
�

SN�1

nD0 T
�nA

�

N
�

N�1X

nD0

�(A\ T�nA)

1

A �
1
2
�(�(A))2 :

Subsequence Recurrence

In this section we discuss what restrictions one can impose
on the set of return times in the various versions of the
Poincaré recurrence theorem. We start with:

Definition 11 Let R � Z. Then R is a set of:

(a) Recurrence if for any invertible measure preserving
system (X;B; �; T), and A 2 B with �(A) > 0, there
is some nonzero n 2 R such that �(A\ T�nA) > 0.

(b) Topological recurrence if for every compact metric
space (X; d), continuous transformation T : X ! X

and every " > 0, there are x 2 X and nonzero n 2 R
such that d(x; Tnx) < ".

It is easy to check that the existence of a single n 2 R sat-
isfying the previous recurrence conditions actually guar-
antees the existence of infinitely many n 2 R satisfying the
same conditions. Moreover, if R is a set of recurrence then
one can see from existence of some T-invariant measure�
that R is also a set of topological recurrence. A (compli-
cated) example showing that the converse is not true was
given by Kriz [56].

Before giving a list of examples of sets of (topolog-
ical) recurrence, we discuss some necessary conditions:
A set of topological recurrence must contain infinitely
many multiples of every positive integer, as one can see
by considering rotations on Zd , d 2 N . Hence, the sets
f2nC 1; n 2 Ng, fn2 C 1; n 2 Ng, fpC 2; p primeg are
not good for (topological) recurrence. If (sn)n2N is a lacu-
nary sequence (meaning lim infn!1(snC1/sn) D � > 1),
then one can construct an irrational number ˛ such that
fsn˛g 2 [ı; 1 � ı] for all large n 2 N , where ı > 0 de-
pends on � (see [54], for example). As a consequence,
the sequence (sn)n2N is not good for (topological) recur-
rence.

Lastly, we mention that by considering product sys-
tems, one can immediately show that any set of (topolog-
ical) recurrence R is partition regular, meaning that if R
is partitioned into finitely many pieces then at least one
of these pieces must still be a set of (topological) recur-
rence. Using this observation, one concludes for example
that any union of finitely many lacunary sequences is not
a set of recurrence.

We present now some examples of sets of recurrence:

Theorem 12 The following are sets of recurrence:

(i) Any set of the form
S

n2Nfan ; 2an; : : : ; nang where
an 2 N .

(ii) Any IP-set, meaning a set that consists of all finite
sums of the members of some infinite set.

(iii) Any difference set S � S, meaning a set that consists
of all possible differences of the members of some some
infinite set S.

(iv) The set fp(n); n 2 Ngwhere p is any nonconstant in-
teger polynomial with p(0) D 0 [35,66] (In fact we
only have to assume that the range of the polyno-
mial contains multiples of an arbitrary positive inte-
ger [53]).

(v) The set fp(n); n 2 Sg, where p is an integer polyno-
mial with p(0) D 0 and S is any IP-set [12].

(vi) The set of values of an admissible generalized
polynomial (this class contains in particular the
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smallest function algebra G containing all inte-
ger polynomials having zero constant term and
such that if g1; : : : ; gk 2 G and c1; : : : ; ck 2 R then
[[
Pk

iD1 ci gi ]] 2 G, where [[x]] D [x C 1
2 ] denotes the

integer nearest to x) [13].
(vii) The set of shifted primes fp � 1; p primeg, and the set

fpC 1; p primeg [66].
(viii) The set of values of a random non-lacunary se-

quence. (Pick n 2 N independently with probability
bn where 0 � bn � 1 and limn!1 nbn D 1. The
resulting set is almost surely a set of recurrence. If
lim supn!1 nbn <1 then the resulting set is al-
most surely a finite union of sets, each of which is the
range of some lacunary sequence, hence is not a set of
recurrence). Follows from [22].

Showing that the first three sets are good for recurrence
is a straightforward modification of the argument used
to prove Theorem 1. Examples (iv) � (viii) require more
work.

A criterion of Kamae and Mendés-France [53] pro-
vides a powerful tool that may be used in many instances
to establish that a set R is a set of recurrence. We mention
a variation of their result:

Theorem 13 (Kamae and Mendés-France [53]) Suppose
that R D fa1 < a2 < : : :g is a subset ofN such that:

(i) The sequence fan˛gn2N is uniformly distributed in
T for every irrational ˛.

(ii) The set Rm D fn 2 N : mjang has positive density for
every m 2 N .

Then R is a set of recurrence.

We sketch a proof for this result. First, recall Her-
glotz’s theorem: if (an)n2Z is a positive definite sequence,
then there is a unique measure � on the torus T such
that an D

R
e2	 int d�(t). The case of interest to us is

an D
R

T f (x) � f (Tnx) d�, where T is measure preserv-
ing and f 2 L1(�); (an) is positive definite, and we call
� D � f the spectral measure of f .

Let now (X;B; �; T) be a measure preserving system
and A 2 B with �(A) > 0. Putting f D 1A, one has

lim
N!1

1
N

NX

nD1

Z
f (x) � f (Tan x) d�

D

Z

T
lim

N!1

 
1
N

NX

nD1

e2	 i an t

!

d� f (t) : (1)

For t irrational the limit inside the integral is zero (by con-
dition (i)), so the last integral can be taken over the ratio-

nal points in T . Since the spectral measure of a function
orthogonal to the subspace

H D f f 2 L2(�) : there exists k 2 N with Tk f D f g
(2)

has no rational point masses, we can easily deduce that
when computing the first limit in (1), we can replace the
function f by its orthogonal projection g onto the sub-
spaceH (g is again nonnegative and g ¤ 0). To complete
the argument, we approximate g by a function g0 such that
Tmg0 D g0 for some appropriately chosenm, and use con-
dition (i i) to deduce that the limit of the average (1) is pos-
itive.

In order to apply Theorem 13, one uses the standard
machinery of uniform distribution. RecallWeyl’s criterion:
a real-valued sequence (xn)n2N is uniformly distributed
mod 1 if for every non-zero k 2 Z,

lim
N!1

1
N

NX

nD1

e2	 i kxn D 0 :

This criterion becomes especially useful when paired with
van der Corput’s so-called third principal property: if,
for every h 2 N , (xnCh � xn)n2N is uniformly distributed
mod 1, then (xn)n2N is uniformly distributed mod 1. Us-
ing the foregoing criteria and some standard (albeit non-
trivial) exponential sum estimates, one can verify for ex-
ample that the sets (iv) and (vii) in Theorem 12 are good
for recurrence.

In light of the connection elucidated above between
uniform distribution mod 1 and recurrence, it is not sur-
prising that van der Corput’s method has been adapted
by modern ergodic theorists for use in establishing recur-
rence properties directly.

Theorem 14 (Bergelson [7]) Let (xn)n2N be a bounded
sequence in a Hilbert space. If

D-lim
m!1

 

lim
N!1

1
N

NX

nD1

hxnCm; xni

!

D 0 ;

then

lim
N!1

���
��
1
N

NX

nD1

xn

���
��
D 0 :

Let us illustrate how one uses this “van der Corput
trick” by showing that S D fn2 : n 2 Ng is a set of recur-
rence. We will actually establish the following stronger
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fact: If (X;B; �; T) is a measure preserving system and
f 2 L1(�) is nonnegative and f ¤ 0 then

lim inf
N!1

1
N

NX

nD1

Z
f (x) � f (Tn2x) d� > 0 : (3)

Then our result follows by setting f D 1A for some A 2 B
with �(A) > 0.

The main idea is one that occurs frequently in ergodic
theory; split the function f into two components, one of
which contributes zero to the limit appearing in (3), and
the other one being much easier to handle than f . To do
this consider the T-invariant subspace of L2(X) defined by

H D f f 2 L2(�) : there exists k 2 N with Tk f D f g :
(4)

Write f D g C h where g 2H and h?H , and expand
the average in (3) into a sum of four averages involving the
functions g and h. Two of these averages vanish because
iterates of g are orthogonal to iterates of h. So in order to
show that the only contribution comes from the average
that involves the function g alone, it suffices to establish
that

lim
N!1

�
���
�
1
N

NX

nD1

Tn2h

�
���
�
L2(�)

D 0 : (5)

To show this we will apply the Hilbert space van der Cor-
put lemma. For given h 2 N , we let xn D Tn2h and com-
pute

lim
N!1

1
N

NX

nD1

hxnCm; xni

D lim
N!1

1
N

NX

nD1

Z
Tn2C2nmCm2

h � Tn2h d�

D lim
N!1

1
N

NX

nD1

Z
T2nm(Tm2

h) � h d� :

Applying the ergodic theorem to the transformation T2m

and using the fact that h?H , we get that the last limit is 0.
This implies (5).

Thus far we have shown that in order to compute the
limit in (3) we can assume that f D g 2H (g is also non-
negative and g ¤ 0). By the definition of H , given any
" > 0, there exists a function f 0 2H such that Tk f 0 D f 0

for some k 2 N and k f � f 0kL2(�) � ". Then the limit
in (3) is at least 1/k times the limit

lim inf
N!1

1
N

NX

nD1

Z
f (x) � f (T(kn)2x) d�:

Applying the triangle inequality twice we get that this is
greater or equal than

lim
N!1

1
N

NX

nD1

Z
f 0(x) � f 0(T(kn)2x) d�� c � "

D

Z
( f 0(x))2 d� � 2"

�

�Z
f 0(x) d�

�2
� c � ";

for some constant c that does not depend on " (we
used that Tk f 0 D f 0 and the Cauchy–Schwartz inequal-
ity). Choosing " small enough we conclude that the last
quantity is positive, completing the proof.

Multiple Recurrence

Simultaneous multiple returns of positive measure sets to
themselves were first considered by H. Furstenberg [34],
who gave a new proof of Szemerédi’s theorem [69] on
arithmetic progressions by deriving it from the following
theorem:

Theorem 15 (Furstenberg [34]) Let (X;B; �; T) be
a measure preserving system and A 2 B with �(A) > 0.
Then for every k 2 N , there is some n 2 N such that

�(A\ T�nA\ � � � \ T�knA) > 0 : (6)

Furstenberg’s proof came by means of a new structure the-
orem allowing one to decompose an arbitrary measure
preserving system into component elements exhibiting
one of two extreme types of behavior: compactness, charac-
terized by regular, “almost periodic” trajectories, andweak
mixing, characterized by irregular, “quasi-random” trajec-
tories. On T , these types of behavior are exemplified by
rotations and by the doubling map, respectively. To see
the point, imagine trying to predict the initial digit of the
dyadic expansion of Tnx given knowledge of the initial
digits of Ti x, 1 � i < n. We use the case k D 2 to illus-
trate the basic idea.

It suffices to show that if f 2 L1(�) is nonnegative
and f ¤ 0, one has

lim inf
N!1

1
N

NX

nD1

Z
f (x) � f (Tnx) � f (T2nx) d� > 0 : (7)

An ergodic decomposition argument enables us to assume
that our system is ergodic. As in the earlier case of the
squares, we split f into “almost periodic” and “quasi-ran-
dom” components. LetK be the closure in L2 of the sub-
space spanned by the eigenfunctions of T, i. e. the func-
tions f 2 L2(�) that satisfy f (Tx) D e2	 i˛ f (x) for some
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˛ 2 R. We write f D g C h, where g 2K and h?K. It
can be shown that g; h 2 L1(�) and g is again nonnega-
tive with g ¤ 0. We expand the average in (7) into a sum
of eight averages involving the functions g and h. In order
to show that the only non-zero contribution to the limit
comes from the term involving g alone, it suffices to estab-
lish that

lim
N!1

��
���
1
N

NX

nD1

Tn g � T2nh

��
���
L2(�)

D 0 ; (8)

(and similarly with h and g interchanged, and with g D h,
which is similar). To establish (8), we use the Hilbert space
van der Corput lemma on xn D Tn g � T2nh. Some routine
computations and a use of the ergodic theorem reduce the
task to showing that

D-lim
m!1

�Z
h(x) � h(T2mx) d�

�
D 0 :

But this is well known for h?K (in virtue of the fact that
for h?K the spectral measure �h is continuous, for exam-
ple).

We are left with the average (7) when f D g 2K. In
this case f can be approximated arbitrarily well by a lin-
ear combination of eigenfunctions, which easily implies
that given " > 0 one has kTn f � f kL2(�) � " for a set of
n 2 N with bounded gaps. Using this fact and the triangle
inequality, one finds that for a set of n 2 N with bounded
gaps,
Z

f (x) � f (Tnx) � f (T2nx) d� �
�Z

f d�
�3
� c � "

for a constant c that is independent of ". Choosing " small
enough, we get (7).

The new techniques developed for the proof of Theo-
rem 15 have led to a number of extensions, many of which
have to date only ergodic proofs. To expedite discussion of
some of these developments, we introduce a definition:

Definition 16 Let R � Z and k 2 N . Then R is a set of
k-recurrence if for every invertible measure preserving sys-
tem (X;B; �; T) and A 2 B with �(A) > 0, there is some
nonzero n 2 R such that

�(A\ T�nA\ � � � \ T�knA) > 0 :

The notions of k-recurrence are distinct for different val-
ues of k. An example of a difference set that is a set
of 1-recurrence but not a set of 2-recurrence was given
in [34]; sets of k-recurrence that are not sets of (k C 1)-
recurrence for general k were given in [31] (Rk D fn 2
N : fnkC1p2g 2 [1/4; 3/4]g is such).

Aside from difference sets, the sets of (1-)recurrence
given in Theorem 12 may well be sets of k-recurrence
for every k 2 N , though this has not been verified in
all cases. Let us summarize the current state of knowl-
edge. The following are sets of k-recurrence for every k:
Sets of the form

S
n2Nfan ; 2an; : : : ; nang where an 2 N

(this follows from a uniform version of Theorem 15
that can be found in [15]). Every IP-set [37]. The set
fp(n); n 2 Ng where p is any nonconstant integer poly-
nomial with p(0) D 0 [16], and more generally, when the
range of the polynomial contains multiples of an arbitrary
integer [33]. The set fp(n); n 2 Sg where p is an integer
polynomial with p(0) D 0 and S is any IP-set [17]. The
set of values of an admissible generalized polynomial [60].
Moreover, the set of shifted primes fp � 1; p primeg, and
the set fpC 1; p primeg are sets of 2-recurrence [32].

More generally, one would like to know for which se-
quences of integers a1(n); : : : ; ak(n) it is the case that for
every invertible measure preserving system (X;B; �; T)
and A 2 B with �(A) > 0, there is some nonzero n 2 N
such that

�(A\ T�a1(n)A\ � � � \ T�ak (n)A) > 0 : (9)

Unfortunately, a criterion analogous to the one given in
Theorem 13 for 1-recurrence is not yet available for k-re-
currence when k > 1. Nevertheless, there have been some
notable positive results, such as the following:

Theorem 17 (Bergelson and Leibman [16]) Let (X;
B; �; T) be an invertible measure preserving system and
p1(n); : : : ; pk(n) be integer polynomials with zero constant
term. Then for every A 2 B with �(A) > 0, there is some
n 2 N such that

�(A\ T�p1(n)A\ � � � \ T�pk (n)A) > 0 : (10)

Furthermore, it has been shown that the n in (10) can
be chosen from any IP set [17], and the polynomials
p1; : : : ; pk can be chosen to belong to the more general
class of admissible generalized polynomials [60].

Very recently, a new boost in the area of multiple
recurrence was given by a breakthrough of Host and
Kra [50]. Building on work of Conze and Lesigne [26,27]
and Furstenberg andWeiss [41] (see also the excellent sur-
vey [52], exploring close parallels with [45] and the sem-
inal paper of Gowers [43]), they isolated the structured
component (or factor) of ameasure preserving system that
one needs to analyze in order to prove various multiple re-
currence and convergence results. This allowed them, in
particular, to prove existence of L2 limits for the so-called
“Furstenberg ergodic averages” 1

N
PN

nD1
Qk

iD0 f (T
inx),
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which had been a major open problem since the origi-
nal ergodic proof of Szemerédi’s theorem. Subsequently
Ziegler in [75] gave a new proof of the aforementioned
limit theorem and established minimality of the factor in
question. It turns out that this minimal component ad-
mits of a purely algebraic characterization; it is a nilsystem,
i. e. a rotation on a homogeneous space of a nilpotent Lie
group. This fact, coupled with some recent results about
nilsystems (see [58,59] for example), makes the analysis of
some otherwise intractable multiple recurrence problems
muchmore manageable. For example, these developments
have made it possible to estimate the size of the multiple
intersection in (6) for k D 2; 3 (the case k D 1 is Theo-
rem 4):

Theorem 18 (Bergelson, Host and Kra [14]) Let (X;B;
�; T) be an ergodic measure preserving system and A 2 B.
Then for k D 2; 3 and for every " > 0,

�(A\ T�nA\ � � � \ T�knA) > �kC1(A) � " (11)

for a set of n 2 N with bounded gaps.

Based on work of Ruzsa that appears as an appendix to
the paper, it is also shown in [14] that a similar estimate
fails for ergodic systems (with any power of �(A) on the
right hand side) when k � 4. Moreover, when the system
is nonergodic it also fails for k D 2; 3, as can be seen with
the help of an example in [6]. Again considering the dou-
bling map Tx D 2x and the set AD [0; 1/2], one sees that
the positive results for k � 3 are sharp. When the polyno-
mials n; 2n; : : : ; kn are replaced by linearly independent
polynomials p1; p2; : : : ; pk with zero constant term, simi-
lar lower bounds hold for every k 2 N without assuming
ergodicity [30]. The case where the polynomials n; 2n; 3n
are replaced with general polynomials p1; p2; p3 with zero
constant term is treated in [33].

Connectionswith Combinatorics
and Number Theory

The combinatorial ramifications of ergodic-theoretic re-
currence were first observed by Furstenberg, who per-
ceived a correspondence between recurrence properties of
measure preserving systems and the existence of structures
in sets of integers having positive upper density. This gave
rise to the field of ergodic Ramsey theory, in which prob-
lems in combinatorial number theory are treated using
techniques from ergodic theory. The following formula-
tion is from [8].

Theorem 19 Let� be a subset of the integers. There exists
an invertible measure preserving system (X;B; �; T) and

a set A 2 B with �(A) D d(�) such that

d(� \ (� � n1) \ : : : \ (� � nk))
� �(A\ T�n1A\ � � � \ T�nk A) ; (12)

for all k 2 N and n1; : : : ; nk 2 Z.

Proof The space X will be taken to be the sequence space
f0; 1gZ, B is the Borel �-algebra, while T is the shift map
defined by (Tx)(n) D x(nC 1) for x 2 f0; 1gZ, and A is
the set of sequences x with x(0) D 1. So the only thing that
depends on � is the measure � which we now define. For
m 2 N set �0 D Z n� and �1 D �. Using a diagonal
argument we can find an increasing sequence of integers
(Nm)m2N such that limm!1 j� \ [1;Nm]j/Nm D d(�)
and such that

lim
m!1

ˇ̌
ˇ̌ (�i1 � n1) \ (�i2 � n2)\ � � �

\(�i r � nr) \ [1;Nm]

ˇ̌
ˇ̌

Nm
(13)

exists for every n1; : : : ; nr 2 Z, and i1; : : : ; ir 2 f0; 1g. For
n1; n2; : : : ; nr 2 Z, and i1; i2; : : : ; ir 2 f0; 1g, we define
the measure � of the cylinder set fx(n1) D i1; x(n2) D
i2; : : : ; x(nr ) D irg to be the limit (13). Thus defined,
� extends to a premeasure on the algebra of sets generated
by cylinder sets and hence by Carathéodory’s extension
theorem [24] to a probability measure on B. It is easy to
check that �(A) D d(�), the shift transformation T pre-
serves the measure � and (12) holds. �

Using this principle for k D 1, one may check that any set
of recurrence is intersective, that is intersects E � E for ev-
ery set E of positive density. Using it for n1 D n; n2 D
2n; : : : ; nk D kn, together with Theorem 15, one gets an
ergodic proof of Szemerédi’s theorem [69], stating that ev-
ery subset of the integers with positive upper density con-
tains arbitrarily long arithmetic progressions (conversely,
one can easily deduce Theorem 15 from Szemerédi’s the-
orem, and that intersective sets are sets of recurrence).
Making the choice n1 D n2 and using part (iv) of The-
orem 13, we get an ergodic proof of the surprising re-
sult of Sárközy [66] stating that every subset of the in-
tegers with positive upper density contains two elements
whose difference is a perfect square. More generally, us-
ing Theorem 19, one can translate all of the recurrence
results of the previous two sections to results in combi-
natorics. (This is not straightforward for Theorem 18 be-
cause of the ergodicity assumption made there. We refer
the reader to [14] for the combinatorial consequence of
this result). We mention explicitly only the combinatorial
consequence of Theorem 17:
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Theorem 20 (Bergelson and Leibman [16]) Let � � Z
with d(�) > 0, and p1; : : : ; pk be integer polynomials with
zero constant term. Then � contains infinitely many con-
figurations of the form fx; x C p1(n); : : : ; x C pk(n)g.

The ergodic proof is the only one known for this re-
sult, even for patterns of the form fx; x C n2; x C 2n2g or
fx; x C n; x C n2g.

Ergodic-theoretic contributions to the field of geomet-
ric Ramsey theory were made by Furstenberg, Katznelson,
and Weiss [40], who showed that if E is a positive up-
per density subset of R2 then: (i) E contains points with
any large enough distance (see also [21] and [29]), (ii) Ev-
ery ı-neighborhood of E contains three points forming
a triangle congruent to any given large enough dilation of
a given triangle (in [21] it is shown that if the three points
lie on a straight line one cannot always find three points
with this property in E itself). Recently, a generalization of
property (ii) to arbitrary finite configurations of Rm was
obtained by Ziegler [76].

It is also worth mentioning some recent exciting con-
nections ofmultiple recurrence with some structural prop-
erties of the set of prime numbers. The first one is in the
work of Green and Tao [45], where the existence of arbi-
trarily long arithmetic progressions of primes was demon-
strated, the authors, in addition to using Szemerédi’s the-
orem outright, use several ideas from its ergodic-theoretic
proofs, as appearing in [34] and [39]. The second one is
in the recent work of Tao and Ziegler [70], where a quan-
titative version of Theorem 17 was used to prove that the
primes contain arbitrarily long polynomial progressions.
Furthermore, several recent results in ergodic theory, re-
lated to the structure of the minimal characteristic fac-
tors of certain multiple ergodic averages, play an impor-
tant role in the ongoing attempts of Green and Tao to
get asymptotic formulas for the number of k-term arith-
metic progressions of primes up to x (see for example [46]
and [47]). This project has been completed for k D 3,
thus verifying an interesting special case of the Hardy–
Littlewood k-tuple conjecture predicting the asymptotic
growth rate of Na1;:::;ak (x) D the number of configura-
tions of primes having the form fp; pC a1; : : : ; pC akg
with p � x.

Finally, we remark that in this article we have restricted
attention to multiple recurrence and Furstenberg corre-
spondence for Z actions, while in fact there is a wealth of
literature on extensions of these results to general com-
mutative, amenable and even non-amenable groups. For
an excellent exposition of these and other recent develop-
ments the reader is referred to the surveys [9] and [11].
Here, we give just one notable combinatorial corollary to

some work of this kind, a density version of the classical
Hales–Jewett coloring theorem [48].

Theorem 21 (Furstenberg and Katznelson [38]) Let
Wn(A) denote the set of words of length n with letters
in the alphabet AD fa1; : : : ; akg. For every " > 0 there
exists N0 D N0("; k) such that if n � N0 then any sub-
set S of Wn(A) with jSj � "kn contains a combinatorial
line, i. e., a set consisting of k n-letter words, having
fixed letters in l positions, for some 0 � l < n, the re-
maining n � l positions being occupied by a variable let-
ter x, for x D a1; : : : ; ak. (For example, in W4(A) the sets
f(a1; x; a2; x) : x 2 Ag and f(x; x; x; x); : x 2 Ag are com-
binatorial lines).

At first glance, the uninitiated reader may not appreci-
ate the importance of this “master” density result, so it is
instructive to derive at least one of its immediate conse-
quences. Let AD f0; 1; : : : ; k � 1g and interpretWn(A) as
integers in base k having at most n digits. Then a com-
binatorial line in Wn(A) is an arithmetic progression of
length k – for example, the line f(a1; x; a2; x) : x 2 Ag cor-
responds to the progression fm;mC n;mC 2n;mC 3ng,
where m D a1 C a2d2 and n D d C d3. This allows
one to deduce Szemerédi’s theorem. Similarly, one can de-
duce from Theorem 21 multidimensional and IP exten-
sions of Szemerédi’s theorem [36,37], and some related
results about vector spaces over finite fields [37]. Again,
the only known proof for the density version of the Hales–
Jewett theorem relies heavily on ergodic theory.

Future Directions

In this section we formulate a few open problems relating
to the material in the previous three sections. It should be
noted that this selection reflects the authors’ interests, and
does not strive for completeness.

We start with an intriguing question of Katznel-
son [54] about sets of topological recurrence. A set S � N
is a set of Bohr recurrence if for every ˛1; : : : ; ˛k 2 R and
" > 0 there exists s 2 S such that fs˛ig 2 [0; "][ [1� "; 1)
for i D 1; : : : ; k.

Problem 1 Is every set of Bohr recurrence a set of topolog-
ical recurrence?

Background for this problem and evidence for a posi-
tive answer can be found in [54,72]. As we mentioned in
Sect. “Subsequence Recurrence”, there exists a set of topo-
logical recurrence (and hence Bohr recurrence) that is not
a set of recurrence.

Problem 2 Is the set S D fl !2m3n : l ;m; n 2 Ng a set of
recurrence? Is it a set of k-recurrence for every k 2 N?
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It can be shown that S is a set of Bohr recurrence. The-
orem 13 cannot be applied since the uniform distribu-
tion condition fails for some irrational numbers ˛. A rel-
evant question was asked by Bergelson in [9]: “Is the
set S D f2m3n : m; n 2 Ng good for single recurrence for
weakly mixing systems?”

As we mentioned in Sect. “Multiple Recurrence”, the
set of primes shifted by 1 (or � 1) is a set of 2-recur-
rence [32].

Problem 3 Show that the sets P � 1 and P C 1, where
P is the set of primes, are sets of k-recurrence for every
k 2 N .

As remarked in [32], a positive answer to this question
will follow if some uniformity conjectures of Green and
Tao [47] are verified.

Wementioned in Sect. “Subsequence Recurrence” that
random non-lacunary sequences (see definition there) are
almost surely sets of recurrence.

Problem 4 Show that random non-lacunary sequences are
almost surely sets of k-recurrence for every k 2 N .

The answer is not known even for k D 2, though, in un-
published work, Wierdl and Lesigne have shown that the
answer is positive for random sequences with at most
quadratic growth. We refer the reader to the survey [65]
for a nice exposition of the argument used by Bour-
gain [22] to handle the case k D 1.

It was shown in [31] that if S is a set of 2-recurrence
then the set of its squares is a set of recurrence for circle
rotations. The same method shows that it is actually a set
of Bohr recurrence.

Problem 5 If S � Z is a set of 2-recurrence, is it true that
S2 D fs2 : s 2 Sg is a set of recurrence?

A similar question was asked in [23]: “If S is a set of k-re-
currence for every k, is the same true of S2?”.

One would like to find a criterion that would allow one
to deduce that a sequence is good for double (or higher or-
der) recurrence from some uniform distribution proper-
ties of this sequence.

Problem 6 Find necessary conditions for double recur-
rence similar to the one given in Theorem 13.

It is now well understood that such a criterion should in-
volve uniform distribution properties of some generalized
polynomials or 2-step nilsequences.

We mentioned in Sect. “Connections with Combina-
torics and Number Theory” that every positive density
subset of R2 contains points with any large enough dis-
tance. Bourgain [21] constructed a positive density sub-
set E of R2, a triangle T, and numbers tn !1, such that

E does not contain congruent copies of all tn-dilations
of T. But the triangle T used in this construction is de-
generate, which leaves the following question open:

Problem 7 Is it true that every positive density subset of
R2 contains a triangle congruent to any large enough dila-
tion of a given non-degenerate triangle?

For further discussion on this question the reader can con-
sult the survey [44].

The following question of Aaronson and Nakada [1] is
related to a classical question of Erdős concerning whether
every K � N such that

P
n2K 1/n D 1 contains arbitrar-

ily long arithmetic progressions:

Problem 8 Suppose that (X;B; �; T) is a f1/ng-conserva-
tive ergodic measure preserving system. Is it true that for
every A 2 B with �(A) > 0 and k 2 N we have �(A \
T�nA\ � � � \ T�knA) > 0 for some n 2 N?

The answer is positive for the class of Markov shifts, and
it is remarked in [1] that if the Erdős conjecture is true
then the answer will be positive in general. The converse
is not known to be true. For a related result showing that
multiple recurrence is preserved by extensions of infinite
measure preserving systems see [61].

Our next problem is motivated by the question
whether Theorem 21 has a polynomial version (for a pre-
cise formulation of the general conjecture see [9]). Not
even this most special consequence of it is known to hold.

Problem 9 Let " > 0. Does there exist N D N(") having
the property that every family P of subsets of f1; : : : ;Ng2

satisfying jPj � "2N2 contains a configuration fA;A[ (� �
� )g, where A � f1; : : : ;Ng2 and � � f1; : : : ;Ng with A\
(� � � ) D ;?

A measure preserving action of a general countably infi-
nite group G is a function g ! Tg from G into the space
of measure preserving transformations of a probability
spaceX such that Tgh D TgTh . It is easy to show that a ver-
sion of Khintchine’s recurrence theorem holds for such
actions: if �(A) > 0 and " > 0 then fg : �(A \ TgA) >
(�(A))2 � "g is syndetic. However it is unknown whether
the following ergodic version of Roth’s theorem holds.

Problem 10 Let (Tg ) and (Sg ) be measure preserv-
ing G-actions of a probability space X that commute in
the sense that Tg Sh D ShTg for all g; h 2 G. Is it true
that for all positive measure sets A, the set of g such that
�(A\ TgA\ SgA) > 0 is syndetic?

We remark that for general (possibly amenable) groups G
not containing arbitrarily large finite subgroups nor ele-
ments of infinite order, it is not known whether one can
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find a single such g ¤ e. On the other hand, the answer
is known to be positive for general G in case (T�1g Sg) is
a G-action [18]; even under such strictures, however, it is
unknown whether a triple recurrence theorem holds.
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Local rigidity Local rigidity refers to the study of pertur-
bations of homomorphisms from discrete or continu-
ous groups into diffeomorphism groups.

Global rigidity Global rigidity refers to the classification
of all group actions on manifolds satisfying certain
conditions.

Measure rigidity Measure rigidity refers to the study of
invariant measures for actions of abelian groups and
semigroups.

Lattice A lattice in a Lie group is a discrete subgroup of
finite covolume.

Conjugacy Two elements g1; g2 in a group G are said to
be conjugated if there exists an element h 2 G such
that g1 D h�1g2h. The element h is called conjugacy.

Ck Conjugacy Two diffeomorphisms �1; �2 acting on the
same manifold M are said to be Ck-conjugated if
there exists a Ck diffeomorphism h of M such that
�1 D h�1 ı �2 ı h. The diffeomorphism h is called Ck

conjugacy.

Definition of the Subject

As one can see from this volume, chaotic behavior of com-
plex dynamical systems is prevalent in nature and in large
classes of transformations. Rigidity theory can be viewed
as the counterpart to the generic theory of dynamical sys-
tems which often investigates chaotic dynamics for a typ-
ical transformation belonging to a large class. In rigid-
ity one is interested in finding obstructions to chaotic, or
generic, behavior. This often leads to rather unexpected
classification results. As such, rigidity in dynamics and er-
godic theory is difficult to define precisely and the best
approach to this subject is to study various results and
themes that developed so far. A classification is offered be-
low in local, global, differentiable and measurable rigidity.
One should note that all branches are strongly intertwined
and, at this stage of the development of the subject, it is
difficult to separate them.

Rigidity is a well developed and prominent topic in
modern mathematics. Historically, rigidity has two main
origins, one coming from the study of lattices in semi-sim-
ple Lie groups, and one coming from the theory of hyper-
bolic dynamical systems. From the start, ergodic theory
was an important tool used to prove rigidity results, and
a strong interdependence developed between these fields.
Many times a result in rigidity is obtained by combin-
ing techniques from the theory of lattices in Lie groups
with techniques from hyperbolic dynamical systems and
ergodic theory. Among other mathematical disciplines us-
ing results and contributing to this field one can men-
tion representation theory, smooth, continuous and mea-

surable dynamics, harmonic and spectral analysis, partial
differential equations, differential geometry, and number
theory. Additional details about the appearance of rigidity
in ergodic theory as well as definitions for some terminol-
ogy used in the sequel can be found in the articles � Er-
godic Theory on Homogeneous Spaces and Metric Num-
ber Theory by Kleinbock, � Ergodic Theory: Recurrence
by Frantzikinakis, McCutcheon, and � Ergodic Theory:
Interactions with Combinatorics and Number Theory by
Ward. The theory of hyperbolic dynamics is presented in
the article�Hyperbolic Dynamical Systems by Viana and
in the article� Smooth Ergodic Theory by Wilkinson.

Introduction

The first results about classification of lattices in semi-sim-
ple Lie groups were local, aimed at trying to understand
the space of small perturbations of a given linear repre-
sentation. A major contributor was Weil [110,111,112],
who proved local rigidity of linear representations for large
classes of groups, in particular lattices. Another break-
through was the contribution of Kazhdan [66], who in-
troduced property (T), allowing to show that large classes
of lattices are finitely generated. Rigidity theory matured
due to the remarkable global rigidity results obtained by
Mostow [90] and Margulis [82], leading to a complete
classification of lattices in large classes of semi-simple Lie
groups.

Briefly, a hyperbolic (Anosov) dynamical system is one
that exhibits strong expansion and contraction along com-
plementary directions. An early contribution introducing
this class of objects is the paper of Smale [106], in which
basic examples and techniques are introduced. A break-
through came with the results of Anosov [1], who proved
structural stability of the Anosov systems and ergodic-
ity of the geodesic flow on a manifold of negative cur-
vature. Motivated by questions arising in mathematical
physics, chaos theory and other areas, hyperbolic dynam-
ics emerged as one of the major fields of contemporary
mathematics. From the beginning, a major unsolved prob-
lem in the field was the classification of Anosov diffeomor-
phisms and flows.

In the 80s a change in philosophy occurred, partially
motivated by a program introduced by Zimmer [114]. The
goal of the program was to classify the smooth actions
of higher rank semi-simple Lie groups and of their (irre-
ducible) lattices on compact manifolds. It was expected
that any such lattice action that preserves a smooth vol-
ume form and is ergodic can be reduced to one of the fol-
lowing standard models: isometric actions, linear actions
on infranilmanifolds, and left translations on compact ho-
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mogeneous spaces. This original conjecture was disproved
by Katok, Lewis (see [56]): by blowing up a linear nilman-
ifold-action at some fixed points they exhibit real-analytic,
volume preserving, ergodic lattice actions on manifolds
with complicated topology.

Nevertheless, imposing extra assumptions on a higher
rank action, for example the existence of some hyper-
bolicity, allows local and global classification results. The
concept of Anosov action, that is, an action that contains
at least one Anosov diffeomorphism, was introduced for
general groups by Pugh, Shub [99]. The significant dif-
ferences between the classical Z and R cases and those
of higher rank lattices, or at a more basic level, of higher
rank abelian groups, went unnoticed for a while. The surge
of activity in the 80s allowed these differences to surface:
for lattices in the work of Hurder, Katok, Lewis, Zimmer
(see [43,55,56,63]); and for higher rank abelian groups in
the work of Katok, Lewis [55] and Katok, Spatzier [59].
As observed in these papers, local and global rigidity are
typical for such Anosov actions. This generated additional
research which is summarized in Sects. “Local Rigidity”
and “Global Rigidity”.

Differentiable rigidity is covered in Sect. “Differen-
tiable Rigidity”. An interesting problem is to find moduli
for the Ck conjugacy, k � 1, of Anosov diffeomorphisms
and flows. This was tackled so far only for low dimensional
cases (n D 2 for diffeomorphisms and n D 3 for flows).
Another direction that can be included here refers to find-
ing obstructions for higher transverse regularity of the sta-
ble/unstable foliation of a hyperbolic system. A spin-off of
the research done so far, which is of high interest by itself,
and has applications to local and global rigidity, consists
of results lifting the regularity of solutions of cohomolog-
ical equations over hyperbolic systems. In turn, these re-
sults motivated a more careful study of analytic questions
about lifting the regularity of real valued continuous func-
tions that enjoy higher regularity along webs of foliations.
We also include in this section rigidity results for cocy-
cles over higher rank abelian actions. These are crucial to
the proof of local rigidity of higher rank abelian group ac-
tions. A more detailed presentation of the material rele-
vant to differentiable rigidity can be found in the forth-
coming monograph [58].

Measure rigidity refers to the study of invariant mea-
sures under actions of abelian groups and semigroups. If
the actions are hyperbolic, higher-rank, and satisfy natural
algebraic and irreducibility assumptions, one expects the
invariantmeasures to be rare. This direction was started by
a question of Furstenberg, asking if any nonatomic prob-
ability measure on the circle, invariant and ergodic under
multiplications by 2 and 3, is the Lebesgue measure. An

early contribution is that of Rudolph [103], who answered
positively if the action has an element of strictly posi-
tive entropy. Katok, Spatzier [61] extended the question
to more general higher rank abelian actions, such as ac-
tions by linear automorphisms of tori and Weyl chamber
flows. A related direction is the study of the invariant sets
and measures under the action of horocycle flows, where
important progress wasmade by Ratner [100,101] and ear-
lier by Margulis [16,81,83]. An application of these results
present in the last papers is the proof of the long stand-
ing Oppenheim’s conjecture, about the density of the val-
ues of the quadratic forms at integer points. Recent devel-
opments due to and Einsiedler, Katok, Lindenstrauss [20]
give a partial answer to another outstanding conjecture
in number theory, Littlewood’s conjecture, and emphasize
measure rigidity as one of a more promising directions in
rigidity. More details are shown in Sect. “Measure Rigid-
ity”.

Four other recent surveys of rigidity theory, each one
with a fair amount of overlap but also complementary in
part to the present one, that discuss various aspects of the
field and its significance are written by Fisher [23], Linden-
strauss [68], Ni̧tică, Török [95], and Spatzier [107]. Among
these, [23] concentrates mostly on local and global rigid-
ity, [95] on differentiable rigidity, [68] onmeasure rigidity,
and [107] gives a general overview.

Here is a word of caution for the reader. Many times,
instead of the most general results, we present an example
that contains the essence of what is available. Also, sev-
eral important facts that should have been included, are
left out. This is because stating complete results would re-
quire more space than allocated to this material. The lim-
ited knowledge of the author also plays a role here. He
apologizes for any obvious omissions and hopes that the
bibliography will help fill the gaps.

Basic Definitions and Examples

A detailed introduction to the theory of Anosov systems
and hyperbolic dynamics is given in the monograph [51].
The proofs of the basic results for diffeomorphisms stated
below can be found there. The proofs for flows are similar.
Surveys about hyperbolic dynamics in this volume are the
article�Hyperbolic Dynamical Systems by Viana and the
article � Smooth Ergodic Theory by Wilkinson.

Consider a compact differentiable manifold M and
f : M ! M a C1 diffeomorphism. Let TM be the tan-
gent bundle of M, and D f : TM ! TM be the derivative
of f . The map f is said to be an Anosov diffeomorphism if
there is a smooth Riemannianmetric k � k onM, which in-
duces ametric dM called adapted, a number 2 (0; 1), and
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a continuous Df invariant splitting TM D Es ˚ Eu such
that

kD f vk � kvk ; v 2 Es ; kD f�1vk � kvk ; v 2 Eu :

For each x 2 M there is a pair of embedded C1 discs
Ws

loc(x), W
u
loc(x), called the local stable manifold and the

local unstable manifold at x, respectively, such that:

1. TxWs
loc(x) D Es(x) ; TxWu

loc(x) D Eu(x);
2. f (Ws

loc(x)) � Ws
loc( f x) ; f

�1(Wu
loc(x)) � Wu

loc( f
�1x);

3. For any � 2 (; 1), there exists a constant C > 0 such
that for all n 2 N ,

dM( f nx; f n y) � C�ndM(x; y) ; for y 2 Ws
loc(x) ;

dM( f�nx; f�n y) � C�ndM(x; y) ; for y 2 Wu
loc(x) :

The local stable (unstable) manifolds can be extended
to global stable (unstable) manifolds Ws(x) and Wu(x)
which are well defined and smoothly injectively immersed.
These global manifolds are the leaves of global foliations
Ws andWu ofM. In general, these foliations are only con-
tinuous, but their leaves are differentiable.

Let � : R �M ! M be a C1 flow. The flow � is said
to be an Anosov flow if there is a Riemannian metric k � k
on M, a constant 0 <  < 1, and a continuous Df invari-
ant splitting TM D Es ˚ E0 ˚ Eu such that for all x 2 M
and t > 0:

1. d
dt jtD0�

t 2 Ec
x n f0g ; dim Ec

x D 1,
2. kD� tvk � tkvk ; v 2 Es,
3. kD��tvk � tkvk ; v 2 Eu.

For each x 2 M there is a pair of embedded C1 discs
Ws

loc(x) ;W
u
loc(x), called the local (strong) stable manifold

and the local (strong) unstable manifold at x, respectively,
such that:

1. TxWs
loc(x) D Es(x) ; TxWu

loc(x) D Eu(x);
2. � t(Ws

loc(x)) � Ws
loc(�

t x) ;
��t(Wu

loc(x)) � Wu
loc(�

�tx) for t > 0;
3. For any � 2 (; 1), there exists a constant C > 0 such

that for all n 2 N ,

dM(� tx ; � t y) � C�t dM(x; y) ;
for y 2Ws

loc(x) ; t > 0 ;
dM(��t x ; ��t y) � C�t dM(x; y) ;

for y 2Wu
loc(x) ; t > 0 :

The local stable (unstable) manifolds can be extended
to global stable (unstable) manifolds Ws(x) and Wu(x).
These global manifolds are the leaves of global foliations
Ws and Wu of M. One can also define weak stable and

weak unstable foliations with leaves given by Wcs (x) D
[t2R(Ws(x)) and Wcu(x) D [t2R(Wu(x)), which have
as tangent distributions Ecs D Ec˚Es and Ecu D Ec˚Es.
In general, all these foliations are only continuous, but
their leaves are differentiable.

Any Anosov diffeomorphism is structurally stable, that
is, any C1 diffeomorphism that is C1 close to an Anosov
diffeomorphism is topologically conjugate to the unper-
turbed one via a Hölder homeomorphism. An Anosov
flow is structurally stable in the orbit equivalence sense:
any C1 small perturbation of an Anosov flow has the orbit
foliation topologically conjugate via a Hölder homeomor-
phism to the orbit foliation of the unperturbed flow.

Let SL(n;R) be the group of all n-dimensional square
matrices with real valued entries of determinant 1. Let
SL(n;Z) � SL(n;R) be the subgroup with integer entries.
Basic examples of Anosov diffeomorphisms are automor-
phisms of the n-torus T n D Rn/Zn induced by hyper-
bolic matrices in SL(n;Z). A hyperbolic matrix is one that
has only nonzero eigenvalues, all away in absolute value
from 1. A specific example of such matrix in SL(2;Z) is
�
2 1
1 1

�
:

Basic examples of Anosov flows are given by the
geodesic flows of surfaces of constant negative curvature.
The unitary bundle of such a surface can be realized as
M D � n PSL(2;R), where PSL(2;R) D SL(2;R)/f˙1g
and � is a cocompact lattice in PSL(2;R). The action of
the geodesic flow on M is induced by right multiplication
with elements in the diagonal one-parameter subgroup
��

et/2 0
0 e�t/2

�
; t 2 R

�
:

A related transformation, which is not hyperbolic, but will
be of interest in this presentation, is the horocycle flow in-
duced by right multiplication onM by elements in the one
parameter subgroup
��

1 t
0 1

�
; t 2 R

�
:

Of interest in this survey are also actions of more gen-
eral groups thanZ andR. Typical examples of higher rank
Zk Anosov actions are constructed on tori using groups of
units in number fields. See [65] for more details about this
construction. A particular example of Anosov Z2-action
on T 3 is induced by the hyperbolic matrices:

AD

0

@
0 1 0
0 0 1
1 8 2

1

A ; B D

0

@
2 1 0
0 2 1
1 8 4

1

A :
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One can check, by looking at the eigenvalues, that A and B
are not multiples of the same matrix. Moreover, A and B
commute.

Typical examples of higher rank Anosov Rk-actions
are given by Weyl chamber flows, which we now describe
using some notions from the theory of Lie groups. A good
reference for the background in Lie group theory neces-
sary here is the book of Helgason [40]. Note that for a hy-
perbolic element of such an action the center distribution
is k-dimensional and coincides with the tangent distribu-
tion to the orbit foliation ofRk .

Let G be a semi-simple connected real Lie group of
the noncompact type, with Lie algebra g. Let K � G be
a maximal compact subgroup that gives a Cartan decom-
position g D k C p, where k is the Lie algebra of K and p is
the orthogonal complement of k with respect to the Killing
form of g. Let a � p be a maximal abelian subalgebra and
AD expa be the corresponding subgroup. The simulta-
neous diagonalization of adg(a) gives the decomposition

g D g C
X

�2�

g� ; g0 D aCm ;

where � is the set of restricted roots. The spaces g�
are called root spaces. A point H 2 a is called regular if
(H) ¤ 0 for all  2 �. Otherwise it is called singular.
The set of regular elements consists of the complement of
a union of finitely many hyperplanes. Its components are
cones in a called Weyl chambers. The faces of the Weyl
chambers are calledWeyl chamber walls.

Let M be the centralizer of A in K . Suppose � is an
irreducible torsion-free cocompact lattice in G. Since A
commutes withM, the action of A by right translations on
� n G descends to an A-action on N :D � n G/M. This
action is called a Weyl chamber flow. Any Weyl cham-
ber flow is an Anosov action, that is, has an element that
acts hyperbolically transversally to the orbit foliation of A.
Note that all maximal connected R diagonalizable sub-
groups of G are conjugate and their common dimension
is called the R-rank of G. If the R-rank k of G is higher
than 2, then the Weyl chamber flow is a higher rank hy-
perbolic Rk-action.

An example of semi-simple Lie group is SL(n;R).
Let A be the diagonal subgroup of matrices with positive
entries in SL(n;R). An example of Weyl chamber flow
that will be discussed in the sequel is the action of A by
right translations on � n SL(n;R), where � is a cocom-
pact lattice. In this case the centralizer M is trivial. The
rank of this action is n � 1. The picture of theWeyl cham-
bers for n D 3 is shown in Fig. 1. The signs that appear in
each chamber are the signs of half of the Lyapunov expo-
nents of a regular element from the chamber with respect

Ergodic Theory: Rigidity, Figure 1
Weyl chambers for SL(3;R)

to a certain fixed basis. For this action, the Lyapunov ex-
ponents appear in pairs of opposite signs.

An example of higher rank lattice Anosov action
that will be discussed in the sequel is the standard ac-
tion of SL(n;Z) on the torus T n , (A; x) 7! Ax;A 2
SL(n;Z); x 2 T n : SL(n;Z) is a (noncocompact!) lattice
in SL(n;R). As shown in [55], this action is generated by
Anosov diffeomorphisms.

We describe now a class of dynamical systems more
general than the hyperbolic one. A C1 diffeomorphism f
of a compact differentiable manifold M is called partially
hyperbolic if there exists a continuous invariant splitting
of the tangent bundle TM D Es ˚ E0 ˚ Eu such the the
derivative of f expands Eu much more than E0, and con-
tracts Es much more than E0. See [9,41] and [10] for the
theory of partially hyperbolic diffeomorphisms. Es and Eu

are called stable, respectively unstable distributions, and
are integrable. E0 is called center distribution and, in gen-
eral, it is not integrable. A structural stability result proved
by Hirsch, Pugh, Shub [41], that is a frequently used tool
in rigidity, shows that, if E0 is integrable to a smooth foli-
ation, then any perturbation f̄ of f is partially hyperbolic
and has an integrable center foliation. Moreover, the cen-
ter foliations of f̄ of f are mapped one into the other by
a homeomorphism that conjugates the maps induced on
the factor spaces of the center foliations by f̄ of f respec-
tively.

We review now basic facts about cocycles. These ba-
sic definitions refer to several regularity classes: measur-
able, continuous, or differentiable. Let G be a group act-
ing on a set M, and denote the action G �M ! M by
(g; x) 7! gx; thus (g1g2)x D g1(g2x). Let � be a group
with unit 1� . M is usually endowed with a measurable,
continuous, or differentiable structure. A cocycle ˇ over
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the action is a function ˇ : G �M ! � such that

ˇ(g1g2; x) D ˇ(g1; g2x)ˇ(g2; x) ; (1)

for all g1; g2 2 G; x 2 M. Note that any group representa-
tion � : G ! � defines a cocycle called constant cocycle.
The trivial representation defines the trivial cocycle.

A natural equivalence relation for the set of cocycles is
given by cohomology. Two cocycles ˇ1; ˇ2 : G �M ! �

are cohomologous if there exists a map P : M ! � , called
transfer map, such that

ˇ1(g; x) D P(gx)ˇ2(g; x)P(x)�1 ; (2)

for all g 2 G; x 2 M.

Differentiable Rigidity

We start by reviewing cohomological results. Several ba-
sic notions are already defined in Sect. “Basic Definitions
and Examples”. In this section we assume that the co-
cycles are at least continuous. A cocycle ˇ : G �M ! �

over an action (g; x) 7! gx; g 2 G; x 2 M, is said to sat-
isfy closing conditions if for any g 2 G and x 2 M such that
gx D x, one has ˇ(g; x) D 1� . Note that closing condi-
tions are necessary in order for a cocycle to be cohomolo-
gous to the trivial one. Since a Z-cocycle is determined by
a function ˇ : M ! �; ˇ(x) :D ˇ(1; x), the closing condi-
tions become

f nx D x implies ˇ( f n�1x) : : : ˇ(x) D 1� ; (3)

where f : M ! M is the function that implements the Z-
action.

The first cohomological results for hyperbolic systems
were obtained by Livshits [70,71]. Let M be a compact
Riemannian manifold with a Z-action implemented by
a topologically transitive Anosov C1 diffeomorphism f .
Then an ˛-Hölder function ˇ : M ! R determines a co-
cycle cohomologous to a trivial cocycle if and only if ˇ
satisfies the closing conditions (3). The transfer map
is ˛-Hölder. Moreover, for each Hölder class ˛ and each
finite dimensional Lie group � , there is a neighborhood U
of the identity in � such that an ˛-Hölder function
ˇ : M ! � determines a cocycle cohomologous to the
trivial cocycle if and only if ˇ satisfies the closing condi-
tions (3). The transfer map is again ˛-Hölder. Similar re-
sults are true for Anosov flows.

Using Fourier analysis, Veech [108] extended Liv-
shits’s result to real valued cocycles over Z-actions in-
duced by ergodic endomorphisms of an n-dimensional
torus, not necessarily hyperbolic. For cocycles with val-
ues in abelian groups, the question of two arbitrary co-
cycles being cohomologous reduces to the question of an

arbitrary cocycle being cohomologous to a trivial one.
This is not the case for cocycles with values in non-
abelian groups. Parry [98] extended Livshits’s criteria to
one for cohomology of two arbitrary cocycles with values
in compact Lie groups. Parry’s result was generalized by
Schmidt [104] to cocycles with values in Lie groups that,
in addition, satisfy a center bunching condition. Ni̧tică,
Török [92] extended Livshits’s result to cocycles with val-
ues in the group Diffk(M) of Ck diffeomorphism of a com-
pact manifold M with stably trivial bundle, k � 3. Exam-
ples of such manifolds are the tori and the spheres. In this
case, the transfer map takes values in Diffk�3(M), and it
is Hölder with respect to a natural metric on Diffk�3(M).
In [92] one can also find a generalization of Livshits’s re-
sult to generic Anosov actions, that is, actions generated
by families of Anosov diffeomorphisms that do not inter-
change the stable and unstable directions of elements in
the family. An example of such an action is the standard
action of SL(n;Z) on the n-dimensional torus.

A question of interest is the following: if two Ck co-
cycles, 1 � k � !, over a hyperbolic action, are cohomol-
ogous through a continuous/measurable transfer map P,
what can be said about the higher regularity of P? For real
valued cocycles the question can be reduced to one about
cohomologically trivial cocycles. Livshits showed that for
a real valued C1 cocycle cohomologous to a constant the
transfer map is C1. He also obtained C1 regularity re-
sults if the action is given by hyperbolic automorphisms of
a torus. After preliminary results by Guillemin and Kazh-
dan for geodesic flows on surfaces of negative curvature,
for general hyperbolic systems the question was answered
positively by de la Llave, Marco, Moriyon [76] in the C1

case and by de la Llave [74] in the real analytic case. Ni̧tică,
Török [93] considered the lift of regularity for a transfer
map between two cohomologous cocycles with values in
a Lie group or a diffeomorphism group. In contrast to the
case of cocycles cohomologous to trivial ones, here one
needs to require for the transfer map a certain amount of
Hölder regularity that depends on the ratio between the
expansion/contraction that appears in the base and the ex-
pansion/contraction introduced by the cocycle in the fiber.
This assumption is essential, as follows from a counterex-
ample found by de la Llave’s [73].

Useful tools in this development have been results
from analysis that lift the regularity of a continuous real
valued function which is assumed to have higher regular-
ity along pairs of transverse Hölder foliations. Many times
the foliations are the stable and unstable ones associated
to a hyperbolic system. Journé [46] proved the Cn;˛ reg-
ularity of a continuous function that is Cn;˛ along two
transverse continuous foliations with Cn;˛ leaves. If one
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is interested only in C1 regularity, a convenient alterna-
tive is a result of Hurder, Katok [44]. This has a simpler
proof and can be applied to the more general situation in
which the function is regular along a web of transverse fo-
liations. A real analytic regularity result along these lines
belongs to de la Llave [74]. In certain problems, for exam-
ple when working with Weyl chamber flows, it is difficult
to control the regularity in enough directions to span the
whole tangent space. Nevertheless, the tangent space can
be generated if one consider higher brackets of good di-
rections. A C1 regularity result for this case belongs to
Katok, Spatzier [60]. In order to apply this result, the fo-
liations need to be C1 not only along the leaves, but also
transversally.

An application of the above regularity results is to
questions about transverse regularity of the stable and un-
stable foliations of the geodesic flow on certain C1 sur-
faces of nonpositive curvature. For compact negatively
curved C1 surfaces, E. Hopf showed that these foliations
are C1, and it follows from the work of Anosov that in-
dividual leaves are C1. Hurder, Katok [44] showed that
once the weak-stable and weak-unstable foliations of a vol-
ume-preserving Anosov flow on a compact 3-manifold are
C2, they are C1 .

Another application of the regularity results is to the
study of invariants for Ck conjugacy of hyperbolic systems.
By structural stability, a small C1 perturbation of a hyper-
bolic system is C0 conjugate to the unperturbed one. The
conjugacy, in general, is only Hölder. If the conjugacy is
C1 then it preserves the eigenvalues of the derivative at the
periodic orbit. The following two results describe the in-
variants of smooth and real analytic conjugacy of low di-
mensional hyperbolic systems. They are proved in a series
of papers written in various combinations by de la Llave,
Marco, Moryion [72,74,75,79,80].

Let X;Y be two C1(C! ) transitive Anosov vector
fields on a compact three-dimensional manifold. If they
are C0 conjugate and the eigenvalues of the derivative at
the corresponding periodic orbits are the same, then the
conjugating homeomorphism is C1 (C! ). In particular,
any C1 conjugacy is C1 (C! ).

Assume now that f ; g are two C1 (C!) Anosov dif-
feomorphisms on a compact two dimensional manifold.
If they are C0 conjugate and the eigenvalues of the deriva-
tive at the corresponding periodic orbits are the same, then
the conjugating diffeomorphism isC1 (C!). In particular,
any C1 conjugacy is C1 (C! ).

An important direction was initiated by Katok,
Spatzier [59] who studied cohomological results over hy-
perbolicZk orRk-actions, k � 2. They show that real val-
ued smooth/Hölder cocycles over typical classes of hyper-

bolic Zk orRk , k � 2, actions are smoothly/Hölder coho-
mologous to constants. These results cover, in particular,
actions by hyperbolic automorphisms of a torus, andWeyl
chamber flows. The proofs rely on harmonic analysis tech-
niques, such as Fourier transform and group representa-
tions for semi-simple Lie groups.

A geometric method for cocycle rigidity was devel-
oped in [64]. One constructs a differentiable form using
invariant structures along stable/unstable foliations, and
the commutativity of the action. The form is exact if and
only if the cocycle is cohomologous to a constant one. The
method covers actions on nilmanifolds satisfying a con-
dition called TNS (Totally Non-Symplectic). This condi-
tion means that the action is higher rank abelian hyper-
bolic, and that the tangent space is a direct sum of invari-
ant distributions, with each pair of these included in the
stable distribution of a hyperbolic element of the action.
The method was also applied to small (i. e. close to iden-
tity on a set of generators) Lie group valued cocycles. A re-
lated paper is [96] which contains rigidity results for cocy-
cles over (TNS) actions with values in compact Lie groups.
In this situation the number of cohomology classes is fi-
nite. An example of (TNS) action is given by the action of
a maximal diagonalizable subgroup of SL(n;Z) on T n .

Recently Damjanović, Katok [14] developed a new
method that was applied to the action of the matrix
diagonal group on � n SL(n;R). They use techniques
from [54], where one finds cohomology invariants for co-
cycles over partially hyperbolic actions that satisfy acces-
sibility property. Accessibility means that one can con-
nect any two points from the manifold supporting the par-
tially hyperbolic dynamical system by transverse piecewise
smooth paths included in stable/unstable leaves. This no-
tion was introduced by Brin, Pesin [9] and it is playing
a crucial role in the recent surge of activity in the field
of partially hyperbolic diffeomorphisms. See [10] for a re-
cent survey of the subject. The cohomology invariants de-
scribed in [54] are heights of the cocycle over cycles con-
structed in the base out of pieces inside stable/unstable
leaves. They provide a complete set of obstructions for
solving the cohomology equation. A new tool introduced
in [14] is algebraic K-theory [88]. The method can be ex-
tended to cocycles with non-abelian range. In [57] one
finds related results for small cocycles with values in a Lie
group or the diffeomorphism group of a compact mani-
fold.

The equivalent of the Livshits theorem in the higher-
rank setting appears to be a description of the highest co-
homology rather than the first cohomology. Indeed, for
higher rank partially hyperbolic actions of the torus, the
intermediate cohomologies are trivial, while for the high-
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est one the closing conditions characterize the cohomol-
ogy classes. This behavior provides a generalization of
Veech cohomological result and of Katok, Spatzier coho-
mological result for toral automorphisms, and was discov-
ered by A. Katok, S. Katok [52,53].

Flaminio, Forni [27] studied the cohomological equa-
tion over the horocycle flow. It is shown that there are
infinitely many obstructions to the existence of a smooth
solution. Moreover, if these obstructions vanish, then one
can solve the cohomological equation. In [28] it is shown
a similar result for cocycles over area preserving flows
on compact higher-genus surfaces under certain assump-
tions that hold generically. Mieczkowski [87] extended
these techniques and studied the cohomology of parabolic
higher rank abelian actions. All these results rely on non-
commutative Fourier analysis, more specifically represen-
tation theory of SL(2;R) and SL(2;C).

Local Rigidity

Let � be a finitely (or compactly) generated group, G
a topological group, and � : � ! G a homomorphism.
The target of local rigidity theory is to understand the
space of perturbations of various homomorphisms � .
Trivial perturbations of a homomorphism arise from con-
jugation by an arbitrary element ofG. In order to rule them
out, one says that � is locally rigid if any nearby homo-
morphism � 0, (that is, � 0 close to � on a finite or com-
pact set of generators of � ), is conjugate to � by an ele-
ment g 2 G, that is, �(� ) D g� 0(� )g�1 for all � 2 � . If G
is path-wise connected, one can also consider deformation
rigidity, meaning that any nearby continuous path of ho-
momorphisms is conjugated to the initial one via a contin-
uous path of elements in G that has an end in the identity.

Initial results on local rigidity are about embeddings of
lattices into semi-simple Lie groups. The main results be-
long to Weil [110,111,112]. He showed that if G is a semi-
simple Lie group that is not locally isomorphic to SL(2;R)
and if � � G is an irreducible cocompact lattice, then
the natural embedding of � into G is locally rigid. Ear-
lier results were obtained by Selberg [105], Calabi, Vesen-
tini [12], and Calabi [11]. Selberg proved the local rigid-
ity of the natural embedding of cocompact lattices into
SL(n;R). His proof used the dynamics of iterates of ma-
trices, in particular the existence of singular directions,
or walls of Weyl chambers, in the maximal diagonaliz-
able subgroups of SL(n;R). Selberg’s approach inspired
Mostow [90] to use the boundaries at infinity in his proof
of strong rigidity of lattices, which in turn was crucial to
the development of superrigidity due toMargulis [82]. See
Sect. “Global Rigidity” for more details.

Recall that hyperbolic dynamical systems are struc-
turally stable. Thus they are, in a certain sense, locally
rigid. We introduce now a precise definition of local rigid-
ity in the infinite-dimensional setup. The fact that for gen-
eral group actions one needs to consider different regulari-
ties for the actions, perturbations and conjugacies is appar-
ent from the description of structural stability for Anosov
systems.

A Ck action ˛ of a finitely generated discrete
group � on a manifold M, that is, a homomorphism
˛ : � ! Diffk(M), is said to be Ck;l ;p;r locally rigid if any
Cl perturbation ˜̨ which is Cp close to ˛ on a family of
generators, is Cr conjugate to ˛, i.e there exists a Cr diffeo-
morphism H : M ! M which conjugates ˜̨ to ˛, that is,
H ı ˛(g) D ˜̨(g) ı H for all g 2 � . Note that for Anosov
Z-actions, C1;1;1;0 rigidity is known as structural stability.
One can also introduce the notion of deformation rigidity
if the initial action and the perturbation are conjugate by
a continuous path of diffeomorphisms that has an end co-
inciding to the identity.

A weaker notion of local rigidity can be defined in
the presence of invariant foliations for the initial group
action and for the perturbation. The map H is now re-
quired to preserve the leaves of the foliations and to conju-
gate only after factorization by the invariant foliations. The
importance of this notion is apparent from the leafwise
conjugacy structural stability theorem of Hirsch, Pugh,
Shub [41]. See Sect. “Basic Definitions and Examples”.
Moreover, for Anosov flows this is the natural notion of
structural stability, and appears by taking the invariant fo-
liation to be the one-dimensional orbit foliation. For more
general actions, of lattices or higher rank abelian groups,
this property is often used in combination to cocycle rigid-
ity in order to show local rigidity. We discuss more about
this when we review local rigidity results for partially hy-
perbolic actions.

We summarize now several developments in local
rigidity that emerged in the 80s. Initial results [67,115]
were about infinitesimal rigidity, that is, a weaker version
of local rigidity suitable for discrete groups representations
in infinite-dimensional spaces of smooth vector fields.
Then Hurder [43] proved C1;1;1;1 deformation rigidity
and Katok, Lewis, Zimmer [55,56,63] proved C1;1;1;1

local rigidity of the standard action of SL(n;Z); n � 3, on
the n-dimensional torus. In these results crucial use was
made of the presence of an Anosov element in the ac-
tion. Due to the uniqueness of the conjugacy coming from
structural stability, one has a continuous candidate for the
conjugacy between the actions. Margulis, Qian [85] used
the existence of a spanning family of directions that are
hyperbolic for certain elements of the action to show lo-
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cal rigidity of partially hyperbolic actions that are not hy-
perbolic. Another important tool present in many proofs
is Margulis and Zimmer superrigidity. These results allow
one to produce a measurable conjugacy for the perturba-
tion. Then one shows that the conjugacy has higher regu-
larity using the presence of hyperbolicity. Having enough
directions to span the whole tangent space is essential to
lift the regularity. A cocycle to which superrigidity can be
applied is the derivative cocycle.

The study of local rigidity of partially hyperbolic ac-
tions that contain a compact factor was initiated by Ni̧tică,
Török [92,94]. Let n � 3 and d � 1. Let � be the action
of SL(n;Z) on T nCd D T n � T d given by �(A)(x; y) D
(Ax; y) ; x 2 T n ; y 2 T d ;A 2 SL(n;Z). Then,
for K � 1, [92] shows that � is C1;1;5;K�1 deformation
rigid. The proof is based on three results in hyperbolic
dynamics: the generalization of Livshits’s cohomological
results to cocycles with values in diffeomorphism groups,
the extension of Livshits’s result to general Anosov actions,
and a version of the Hirsch, Pugh, Shub structural stability
theorem improving the regularity of the conjugacy.

Assume now n � 3 and K � 1. If � is the action of
SL(n;Z) on T nC1 D T n � T given by �(A)(x; y) D
(Ax; y) ; x 2 T n ; y 2 T ;A 2 SL(n;Z), [94] shows that
the action � is C1;1;2;K�1 locally rigid. Ingredients in
the proof are two rigidity results, one about TNS actions,
and one about actions of property (T) groups. A locally
compact group has property (T) if the trivial representa-
tion is isolated in the Fell topology. This means that if G
acts on a Hilbert space unitarily and it has almost invari-
ant vectors, then it has invariant vectors. Hirsch–Pugh–
Shub theorem implies that perturbations of abelian par-
tially hyperbolic actions of product type are conjugated to
skew-products of abelian Anosov actions via cocycles with
values in diffeomorphism groups. In addition, the TNS
property implies that the sum of the stable and unstable
distributions of any regular element of the perturbation is
integrable. The leaves of the integral foliation are closed,
covering the base simply. Thus one obtains a conjugacy
between the perturbation and a product action. Property
(T) is used to show that the conjugacy reduces the per-
turbed action to a family of perturbations of hyperbolic ac-
tions. But the last ones are already known to be conjugate
to the hyperbolic action in the base.

Recent important progress in the question of lo-
cal rigidity of lattice actions was made by Fisher, Mar-
gulis [24,25,26]. Their proofs are modeled along the proof
of Weil’s local rigidity result [112] and use an analog of
Hamilton’s [39] hard implicit function theorem. Let G be
a connected semi-simple Lie group with all simple factors
of rank at least two, and � � G a lattice. The main result

shows that a volume preserving affine action � of G or �
on a compact smooth manifold X is C1;1;1;1 locally
rigid. Lower regularity results are also available. A com-
ponent of the proof shows that if � is a group with prop-
erty (T), X a compact smooth manifold, and � a smooth
action of � on X by Riemannian isometries, then � is
C1;1;1;1 locally rigid. An earlier local rigidity result for
this type of actions by cocompact lattices was obtained by
Benveniste [5].

Many lattices act naturally on “boundaries” of type
G/P, where G is a semi-simple algebraic Lie group
and P is a parabolic subgroup. An example is given by
G D SL(2;R) and P the subgroup in G consisting of up-
per triangular matrices. Local rigidity results for this type
of actions were found by Ghys [34], Kanai [50] and Katok,
Spatzier [62].

Starting with the work of Katok and Lewis, a related
direction was the study of local rigidity for higher rank
abelian actions. They prove in [55] the C1;1;1;1 lo-
cal rigidity of the action of a Zn maximal diagonalizable
(over R) subgroup of SL(nC 1;Z); n � 2, acting on the
torus T nC1. These type of results were later pushed for-
ward by Katok, Spatzier [62]. Using the theory of nonsta-
tionary normal forms developed in [38] and [37] by Katok,
Guysinsky, they proved several local rigidity results. The
first one assumes that G is a semisimple Lie group with
all simple factors of rank at least two, � a lattice in G,
N a nilpotent Lie group and � a lattice in N. Then any
Anosov affine action of � on N/� is C1;1;1;1 locally
rigid. Second, let Zd be a group of affine transformations
of N/� for which the derivatives are simultaneously di-
agonalizable over R with no eigenvalues on the unit cir-
cle. Then theZd -action on N/� is C1;1;1;1 locally rigid.
A related result for continuous groups is the C1;1;1;1 lo-
cal rigidity (after factorization by the orbit foliation) of the
action of a maximal abelianR-split subgroup in anR-split
semi-simple Lie group of real rank at least two on G/�,
where� is a cocompact lattice in G.

One can also study rigidity of higher rank abelian par-
tially hyperbolic actions that are not hyperbolic. Natural
examples appear as automorphisms of tori and as vari-
ants of Weyl chamber flows. For the case of ergodic ac-
tions by automorphisms of a torus, this was investigated
using a version of the KAM (Kolmogorov, Arnold, Moser)
method by Damianović, Katok [15]. As usual in the KAM
method, one starts with a linearization of the conjugacy
equation. At each step of the iterative KAM scheme, some
twisted cohomological equations are solved. The existence
of the solutions is forced by the ergodicity of the action
and the higher rank assumptions. Diophantine conditions
present in this case allow to control the fixed loss of regu-
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larity which is necessary for the convergence of these solu-
tions to a conjugacy.

Global Rigidity

The first remarkable result in global rigidity belongs to
Mostow [90]. For G a connected non-compact semi-sim-
ple Lie group not locally isomorphic to SL(2;R), and
two irreducible cocompact lattices �1; �2 � G, Mostow
showed that any isomorphism � from � 1 into � 2 extends
to an isomorphism of G into itself. G has an involution �
whose fixed set is a maximal compact subgroup K . One
constructs the symmetric Riemannian space X D G/K . To
each chamber of X corresponds a parabolic group and
these parabolic groups are endowed with a Tits geome-
try similar to the projective geometry of lines, planes etc.
formed in the classical case when G D PGL(n;R). The
proof of Mostow’s result starts by building a �-equivariant
pseudo-isometric map � : G/K1 ! G/K2. The map � in-
duces an incidence preserving �-equivariant isomorphism
�0 of the Tits geometries. By Tits’ generalized fundamen-
tal theorem of projective geometry, �0 is induced by an
isomorphism of G. Finally, �(� ) D �0 � � � ��10 gives the
desired conclusion.

The next remarkable result in global rigidity is Mar-
gulis’ superrigidity theorem. An account of this devel-
opment can be found in the monograph [82]. For large
classes of irreducible lattices in semi-simple Lie groups,
this result classifies all finite dimensional representations.
Let G be a semi-simple simply connected Lie group of
rank higher than two and � < G an irreducible lattice.
Then any linear representation � of � is almost the re-
striction of a linear representation of G. That is, there ex-
ists a linear representation �1 of G and a bounded im-
age representation �2 of � such that � D �1�2. The pos-
sible representations �2 are also classified by Margulis
up to some facts concerning finite image representations.
As in the case of Mostow’s result, the proof involved the
analysis of a map defined on the boundary at infinity. In
this case the map is studied using deep results from dy-
namics like the multiplicativity ergodic theorem of Os-
eledec [97] or the theory of random walks on groups de-
veloped by Furstenberg [31]. An important consequence
of Margulis superrigidity result is the arithmeticity of ir-
reducible lattices in connected semi-simple Lie groups
of rank higher than two. A basic example of arithmetic
lattice can be obtained by taking the integer points in
a semi-simple Lie group that is a matrix group, like tak-
ing SL(n;Z) inside SL(n;R). Special cases of superrigid-
ity theorems were proved by Corlette [13] and Gromov,
Schoen [36] for the rank one groups Sp(1; n) and respec-

tively F4 using the theory of harmonic maps. A conse-
quence is the arithmeticity of lattices in these groups. Some
of these results are put into differential geometric setting
in [89].

Margulis supperrigidity result was extended to cocy-
cles by Zimmer. A detailed exposition, including a self
contained presentation of several rigidity results of Mar-
gulis, can be found in the monograph [113]. We mention
here a version of this result that can be found in [24]. LetM
be a compact manifold, H a matrix group, P D M � H,
and � a lattice in a simply connected, semi-simple Lie
group with all factors of rank higher that two. Assume
that � acts on M and H in a way that makes the pro-
jection from P to M equivariant. Moreover, the action
of � on P is measure preserving and ergodic. Then
there exists ameasurablemap s : M ! H, a representation
� : G ! H, a compact subgroup K < H which commute
with �(G) and a measurable map k : � �M ! K such
that � � s(m) D k(�;m) � �(� ) � s(� � m). One can easily
check from the last equation that k is a cocycle. So, up to
a measurable change of coordinates given by the map s,
the action of � on P is a compact extension via a cocycle
of a linear representation of G.

Developing further the method of Mostow for study-
ing the Tits building associated to a symmetric space
of non-positive curvature led Ballman, Brin, Eberlein,
Spatzier [2,3] to a number of characterizations of symmet-
ric spaces. In particular, they showed that if M is a com-
plete Riemannian manifold of non-positive curvature, fi-
nite volume, with simply connected cover, irreducible and
of rank at least two, then M is isometric to a symmetric
space with the connected component of Isom(M) having
no compact factors.

A topological rigidity theorem has been proved by Far-
rell, Jones [21]. They showed that if N is a complete con-
nected Riemannian manifold whose sectional curvature
lies in a closed interval included in (�1; 0], and M is
a topological manifold of dimension greater than 5, then
any proper homotopy equivalence f : M ! N is prop-
erly homotopic to a homeomorphism. In particular, if M
and N are both compact connected negatively curved Rie-
mannian manifolds with isomorphic fundamental groups,
thenM and N are homeomorphic.

Likewise to the case of local rigidity, a source of inspi-
ration for results in global rigidity was the theory of hyper-
bolic systems, in particular their classification. The only
known examples of Anosov diffeomorphisms are hyper-
bolic automorphisms of infranilmanifolds. Moreover, any
Anosov diffeomorphism on an infranilmanifold is topo-
logically conjugate to a hyperbolic automorphism [29,78].
It is conjectured that any Anosov diffeomorphism is topo-
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logically conjugate to a hyperbolic automorphism of an in-
franilmanifold. Partial results are obtained in [91], where
the conjecture is proved for Anosov diffeomorphisms with
codimension one stable/unstable foliation. The proof of
the general conjecture eluded efforts done so far. It is not
even known if any Anosov diffeomorphism is topologi-
cally transitive, that is, if it has a dense orbit. A few posi-
tive results are available. LetM be a C1 compact manifold
endowed with a C1 affine connection. Let f be a topo-
logically transitive Anosov diffeomorphism preserving the
connection and such that the stable and unstable distri-
butions are C1. Then Benoist, Labourie [4] proved that f
is C1 conjugate to a hyperbolic automorphism of an in-
franilmanifold.

The situation for Anosov flows is somehow different.
As shown in [30], there exist Anosov flows that are not
topologically transitive, so a general analog of the con-
jecture is false. Nevertheless, for the case of codimension
one stable or unstable foliation, it is conjectured in [109]
that any Anosov flow on a manifold of dimension greater
than three admits a global cross-section. This would imply
that the flow is topologically conjugate to the suspension
of a linear automorphism of a torus.

For actions of groups larger than Z, or R, global clas-
sification results are more abundant. A useful strategy in
these type of results, which are quite technical, is to start
by obtaining a measurable description of the action, most
of the time using Margulis–Zimmer superrigidity results,
and then use extra assumptions on the action, such as the
presence of a hyperbolic element, or the presence of an in-
variant geometric structure, or both, in order to show that
the measurable model is actually continuous or even dif-
ferentiable. For actions of higher rank Lie groups and their
lattices some representative papers are by Katok, Lewis,
Zimmer [63] and Goetze, Spatzier [35]. For actions of
higher rank abelian groups see Kalinin, Spatzier [49].

Measure Rigidity

Measure rigidity is the study of invariants measures for ac-
tions of one parameter andmultiparameter abelian groups
and semigroups acting on manifolds. Typical situations
when interesting rigidity phenomena appear are for one
parameter unipotent actions and higher rank hyperbolic
actions, discrete or continuous.

A unipotent matrix is one all of whose eigenvalues
are one. An important case where the action of a unipo-
tent flow appears is that of the horocycle flow. The invari-
ant measures for it were studied by Furstenberg [33], who
showed that the horocycle flow on a compact surface is
uniquely ergodic, that is, the ergodic measure is unique.

Dani and Smillie [17] extended this result to the case of
non-compact surfaces, with the only other ergodic mea-
sures appearing being those supported on compact horo-
cycles. An important breakthrough is the work of Mar-
gulis [81], who solved a long standing question in num-
ber theory, Oppenheim’s conjecture. The conjecture is
about the density properties of the values of an indefi-
nite quadratic form in three or more variables, provided
the form is not proportional to a rational form. The proof
of the conjecture is based on the study of the orbits for
unipotent flows acting by translations on the homogenous
space SL(n;Z) n SL(n;R). All these results were special
cases of the Raghunathan conjecture about the structure
of the orbits of the actions of unipotent flows on homoge-
nous spaces. Raghunathan’s conjecture was proved in full
generality by Ratner [100,101]. Borel, Prasad [8] raised
the question of an analog of Raghunathan’s conjecture for
S-algebraic groups. S-algebraic groups are products of real
and p-adic algebraic groups. This was answered indepen-
dently by Margulis, Tomanov [86] and Ratner [102].

A basic example of higher rank abelian hyperbolic ac-
tion is given by the action of Sm;n , the multiplicative semi-
group of endomorphisms generated by the multiplication
by m and n, two nontrivial integers, on the one dimen-
sional torus T 1. In a pioneering paper [32] Furstenberg
showed that for m; n that are not powers of the same inte-
ger the action of Sm;n has a unique closed, infinite invari-
ant set, namely T 1 itself. Since there are many closed, in-
finite invariant sets for multiplication bym, and by n, this
result shows a remarkable rigidity property of the joint ac-
tion. Furstenberg’s result was generalized later by Berend
for other group actions on higher dimensional tori and on
other compact abelian groups in [6] and [7].

Furstenberg further opened the field by raising the fol-
lowing question:

Conjecture 1 Let� be a Sm;n-invariant and ergodic prob-
ability measure on T 1. Then � is either an atomic measure
supported on a finite union of (rational) periodic orbits or�
is the Lebesgue measure.

While the statement appears to be simple, proving it
has been elusive. The first partial result was given by
Lyons [77] under the strong additional assumption that
the measure makes one of the endomorphisms gener-
ating the action exact. Later Rudolph [103] and John-
son [45] weaken the exactness assumption and proved
that � must be the Lebesgue measure provided that mul-
tiplication by m (or multiplication by n) has positive en-
tropy with respect to �. Their results have been proved
again using slightly different methods by Feldman [22].
A further extension was given by Host [42].
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Katok proposed another example for which measure
rigidity can be fruitfully tested, the Z2-action induced by
two commuting hyperbolic automorphisms on the torus
T 3. An example of such action is shown in Sect. “Basic
Definitions and Examples”. One can also consider the ac-
tion induced by a Zn�1 maximal abelian group of hy-
perbolic automorphisms acting on the torus T n . Katok,
Spatzier [61] developed a more geometric technique al-
lowing to prove measure rigidity for these actions if they
have an element acting with positive entropy. Their tech-
nique can be applied in higher generality if the action is
irreducible in a strong sense and, in addition, it has indi-
vidual ergodic elements or it is TNS. See also [47]. This
method is based on the study of conditional measures in-
duced by the invariant measure on certain invariant folia-
tions that appear naturally in the presence of a hyperbolic
action. Besides stable and unstable foliations, one can also
consider various intersections of them. Einsiedler, Linden-
strauss [19] were able to eliminate the ergodicity and TNS
assumptions.

Yet another interesting example of higher rank abelian
action is given by Weyl chamber flows. These do not sat-
isfy the TNS condition. Einsiedler, Katok [18] proved that
if G is SL(n;R); � � G is a lattice, H is the subgroup of
positive diagonal matrices in G, and � a H-invariant and
ergodic measure on G/� such that the entropy of � with
respect to all one parameter subgroups of H is positive,
then � is the G invariant measure on G/� .

These results are useful in the investigation of several
deep questions in number theory. Define X D SL(3;Z) n
SL(3;R) the diagonal subgroup of matrices with posi-
tive entries in SL(3;R). This space is not compact but is
endowed with a unique translation invariant probability
measure. The diagonal subgroup
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acts naturally on X by right translations. It was conjec-
tured by Margulis [83] that any compact H-invariant sub-
set of X is a union of compact H-orbits. A positive solu-
tion to this conjecture implies a long standing conjecture
of Littlewood:

Conjecture 2 Let kxk denote the distance between the real
number x and the closest integer. Then

lim inf
n!1

nkn˛kknˇk D 0 (4)

for any real numbers ˛ and ˇ.

A partial result was obtained by Einsiedler, Katok, Linden-
strauss [20] who proved that the set of pairs (˛; ˇ) 2 R2

for which (4) is not satisfied has Hausdorff dimension
zero. Applications of these techniques to questions in
quantum ergodicity were found by Lindenstrauss [69].

A current direction in measure rigidity is attempting
to classify the invariant measures under rather weak as-
sumptions about the higher rank abelian action, like the
homotopical data for the action. Kalinin and Katok [48]
proved that any Zk ; k � 2, smooth action ˛ on a k C 1-
dimensional torus whose elements are homotopic to the
corresponding elements of an action by hyperbolic auto-
morphisms preserves an absolutely continuous measure.

Future Directions

An important open problem in differential rigidity is to
find invariants for the Ck conjugacy of the perturbations
of higher dimensional hyperbolic systems. For Anosov dif-
feomorphisms, de la Llave counterexample [73] shows that
this extension is not possible for a four dimensional ex-
ample that appears as a direct product of two dimensional
Anosov diffeomorphisms. Indeed, there are C1 perturba-
tions of the product that are only Ck conjugate to the un-
perturbed system for any k � 1. In the positive direction,
Katok conjectured that generalizations are possible for the
diffeomorphism induced by an irreducible hyperbolic au-
tomorphism of a torus. One can also investigate this ques-
tion for Anosov flows.

Examples of higher rank Lie groups can be obtained
by taking products of rank one Lie groups. Many actions
of irreducible lattices in these type of groups are believed
to be locally rigid, but the techniques available so far can-
not be applied. A related problem is to study local rigid-
ity in low regularity classes, for example the local rigidity
of homomorphisms from higher rank lattices into homeo-
morphism groups. More problems related to local rigidity
can be found in [23].

An important problem in global rigidity, emphasized
by Katok and Spatzier, is to show that, up to differen-
tiable conjugacy, any higher rank Anosov or partially hy-
perbolic action is algebraic under the assumption that it
is sufficiently irreducible. The irreducibility assumption is
needed in order to exclude actions obtained by successive
application of products, extensions, restrictions and time
changes from basic ingredients which include some rank
one actions.

Another problem of current research in measure rigid-
ity is to develop a counterpart of Ratner’s theory for the
case of actions by hyperbolic higher rank abelian groups
on homogenous spaces. It was conjectured by Katok,
Spatzier [61] that the invariant measures for such actions
given by toral automorphisms or Weyl chamber flows are
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essentially algebraic, that is, supported on closed orbits of
connected subgroups. Margulis in [84] extended this con-
jecture to a rather general setup addressing both the topo-
logical and measurable aspects of the problem. More de-
tails about actions on homogenous spaces, as well as con-
nections to diophantine approximation, can be found in
the article� Ergodic Theory onHomogeneous Spaces and
Metric Number Theory by Kleinbock.
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14. Damianović D, Katok A (2005) Periodic cycle functionals and
cocycle rigidity for certain partially hyperbolic actions. Disc
Cont Dynam Syst 13:985–1005
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Glossary

Community A group of neighbors or people with a com-
monality of association and generally defined by loca-
tion, shared experience, or function [59].

Community empowerment Internally and externally
nurtures a community to accept that residents live
in a hazard zone, and they choose to do things as
a group to maximize their safety.

Community safety group Existing community groups
(such as NeighborhoodWatch) and individuals, work-
ing with formal response organizations form a coher-
ent affiliation in and near a hazard zone, to help maxi-
mize safety and care for all community members.

Disaster The interface between an extreme physical event
and a vulnerable human population [81].

Disaster lead time The time taken from first detection of
a natural disaster threat to the likely time of impact on
humans or human structures.

Disaster threat A natural extreme event which may im-
pact on a community.

Effective risk communication . That which motivates
people to maximize their own safety.

Emergency An actual or imminent event which endan-
gers or threatens to endanger life, property or the en-
vironment, and which requires a significant and coor-
dinated response [55].

Evacuation People relocating to safely escape hazardous
disaster impacts. To move from a high danger zone to
relative safety.

Hazard A source of potential harm or a situation with
a potential to cause loss. A situation or condition with
potential for loss or harm to the community or envi-
ronment [55]. Hazard is synonymous with ‘source of
risk’ [25].

Hazard zone Defined geographic areas which may be
subject to a natural disaster impact of flood, bush-
fire, storm surge, destructive winds, earthquake, land-
slide or damaging hail. Hazard zones include major
accident sites, including industrial, transport or min-
ing precincts; or biological or terrorist threat or im-
pact, or from-source predicted area(s) of pandemic
spread.

Mitigation Any efforts taken which may reduce the im-
pact of a threat.

Prevention Measures to eliminate or reduce the inci-
dence or severity of emergencies [55].

Ramp-up preparations The final set of preparations and
precautionary evacuations taken ahead of a forecast
disaster impact. This includes earlier final actions than
precipitated by formal organizations.

Risk treatment options Measures that modify the char-
acteristics of hazards, communities and environments
to reduce risk, e. g. prevention, preparedness, response
and recovery [55].

Vulnerability comprises ‘resilience’ and ‘susceptibility’.
‘Resilience’ is related to ‘existing controls’ and the ca-
pacity to reduce or sustain harm. ‘Susceptibility’ is re-
lated to ‘exposure’ [25].

Definition of the Subject

This article intends to show how system and complex-
ity science can contribute to an understanding and im-
provement of evacuation processes, especially considering
the roles of engaged communities at risk, the concepts of
community self-help, and clear communication about lo-
cal threats and remedies.

This article shows researchers in Complexity and Sys-
tems Science (CSS) a social sciences approach tomaximize
effective and precautionary evacuation, maximize safety,
minimize loss and speed full recovery. The computational
and analytical modeling tools of CSS may be considered to
apply to a complex interaction of community awareness,
inclination to accept the reality of a natural disaster threat,
along with achieving background and final preparations to
maximize safety and recovery from a natural disaster im-
pact. This article may stimulate CSS researchers to develop
detailed models of the complex systems and complexity of
melding information from Weather Bureaus and Disaster
Managers, via contacts and intervening media to commu-
nities at risk, with the shared social goal of maximizing
safety. This social sciences task requires cross-disciplinary
approaches of respect and response.

The old disastermanagementmodel lacked the predic-
tive and rapid communication systems now available and
developing in disaster predictive models (such as a flood
maps). An approach to modeling the great complexity of
human behavior responding to threat is provided. Such
a model must include people’s prior knowledge of a threat
type, and consider such fine detail as the overarching lan-
guage used in a country with threat zones, and the dom-
inant languages of all under threat. It is hoped this arti-
cle stimulates CSS models to further engage in this social
good of helping people get safe and stay safe through natu-
ral disasters by providing predictive tool to Authorities to
better inform and encourage those at risk to action, includ-
ing the possible need for precautionary evacuations ahead
of a predicted impact.

Disaster management in Australia, and increasingly,
globally, is focused on mitigation as part of a ‘threat con-
tinuum’, from acceptance that some locations are vulner-
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able to a hazard impact, through to recovery [13]. Emer-
gency warnings and a possible need to evacuate are em-
bedded as ‘spikes’ on that continuum. Thus, this article
stresses the importance of developing ways; incentives, to
mobilize aware at-risk community members to precau-
tionary self-evacuation. For this to happen, people need to
know and internalize the reality that they are in a hazard
zone.

Thus, in the cost-effective philosophy of engendering
self-help, the process of understanding the complexity of
achieving the shared social goal in maximizing safety and
minimizing loss is to engender creation of empowered
communities with a high motivation for safety-oriented
and precautionary action. This is likely to lead to mini-
mized loss and disruption, and maximized recovery. This
article details many elements of that process, and invites
detailed development of the Sustainability Implementa-
tion Research to achieve that goal through CSS.

To model the path to collective safety, the complexity
of the dynamics at play need to be clarified: impact pre-
paredness, including possible evacuation, is a communi-
cation and social issue.

This article demonstrates that acknowledgment of
hazard zones, developing community acceptance of threat
and needed action needs to be at the individual, household
and community levels. Evacuation modeling is needed
only for those whose homes may be at real threat of a dis-
aster impact. For those living in a hazard zone, a fully in-
formed community, who have internalized the reality of
the threat and have worked for maximum background
preparation, and have mechanisms to receive alerts and
warnings of a looming threat; a community predisposed
to precautionary evacuations will result.

Capturing this complexity is the challenge for mod-
elers. Evacuation is about hazard zone residents actively
monitoring a looming threat via refined communication
channels detailed in this article, within a developed social
predisposition to act. Some examples are given. For con-
sideration by scientists and students internationally, this
article introduces the Communication Safety Triangle and
the Seven Steps to Community Safety on the Preparedness
Continuum, within the new research frame of Sustainabil-
ity Implementation Research (SIR).

Introduction

The purpose of this article is to share with modelers and
complexity and system scientists the social and commu-
nication issues of modeling effective safety strategies to
a natural disaster threat. It is hoped, through the ap-
proaches and processes described in this article, that mod-

elers will more clearly link physical threats with warnings
and community engagement.

This article first looks at the definitions and language
used in risk communication and effective warnings, lead-
ing to informal and formal evacuations, then considers
some Australian policies relating to emergency manage-
ment. Theories related to risk communication are pre-
sented, with examples of evacuation issues provided from
Indigenous communities, and from non English speak-
ing households. The needed conceptual shift to self-help
is placed within the larger theoretical frame of paradigms
and paradigms shifts.

An example of including residents to internalize
threats is given, followed by a more general example of
transport evacuation.

A discussion of international evacuation issues pre-
cedes a broader view of some of the institutional barriers
which may restrict the uptake of the seven step approach
to an aware, informed community, relying on accurate in-
formation and choosing to self evacuate as a precaution.
These issues are discussed, considering effective ways of
allowing people to know that they are at risk so they are
inclined to evacuate themselves, as a practice. These ap-
proaches can be used or tested by other scholars. Recom-
mendations and a summary of the key issues to maximize
voluntary and safe evacuations finish this article.

Some Key Evacuation Issues

In an era of increasing social self-help [7,55] and commu-
nity empowerment [13,25,26], a part of global efforts to
embrace Ecologically Sustainable Development [8,62] is to
increasingly see evacuation as a social phenomenon.

This article provides a conceptual frame, the Commu-
nication Safety Triangle (CST) which includes responsi-
ble media telling people at risk what they need to know
and seven steps to community safety (7SCS). The 7SCS help
guide emergency managers and modelers to treat the pos-
sible need for evacuation as a decision-making process
where the community should be aware of the potential
threats and receive clear, detailed and reliable informa-
tion on the possible need to evacuate, so most residents in
a high impact zone self-evacuate in a precautionary way,
as a practice. Examples provided in this article illustrate
this new, sustainability implementation research (SIR) ap-
proach to disaster management.

Warnings precede a perceived need to evacuate. In the
USA, the need for an integrative approach to warnings
is identified: “There is a major need for better coordina-
tion among the warning providers, more effective deliv-
ery mechanisms, better education of those at risk, and new
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ways for building partnerships among the many public
and private groups involved” [63].

Sustainability implementation is the way to achieve
a sustainable future. Disaster management, effective risk
communication and community self-help provide a stark
and comprehensible example of what sustainability im-
plementation means, how it will benefit societies, and
will help channel us into a safer, more sustainable future.
Within this approach, scientists and students become ma-
jor agents for sustainability implementation, asmodels can
illustrate the needed paths to achievement.

Evacuation Overview

There are three types of disasters which may require evac-
uation: human induced and natural disasters with and
without lead times. This article is focused on precaution-
ary evacuations ahead of natural disasters with lead times
(Table 1). The research and conceptual frames draw on
and are applicable to all communities in hazard zones.
Defining, modeling and effectively communicating to at-
risk residents and travelers about specific geographic haz-
ards and safety-oriented behaviors are core elements of
successful precautionary evacuations.

Within Table 1, evacuation may be a response to
an emerging hazard of indicated intensity, direction and
speed. This article advocates development of informed
and directed communities which will actively respond to
a communicated threat, with the vulnerable moving them-

Evacuation as a Communication and Social Phenomenon, Table 1
Evacuation decisionmatrix – short to long warning times

Evacuation decision matrix, Evacuation around sudden onset impact
Hazard: Landslide Earthquake Tsunami
Possible safety-oriented response Stay in strong structure.

Move across slope as soon as
possible.

Get into the open or shelter
under strong structure.

Immediately flee to higher
ground.

Precautionary Evacuation (PE) decisions with lead time – signaled threats
Considerations for evacuation
decision

Hazard

Destructive wind/cyclone Fire Flood
1. Vulnerability of present
environment

If likely to be in a storm surge,
must PE; If shelter weak, must
PE

House material, surrounds,
water available. If poor, PE

May be inundated= PE; may
be cut off, consider PE

2. If 1 OK: vulnerability of
individuals (e. g. weak)

PE first Asthmatics and less able: PE Judgments of flood height. If
in any doubt, PE

3a. Distance to safe shelter The further, PE earlier The further, PE earlier The further, PE earlier
3b. Safety along exit route Know in preparation Know in preparation Know in preparation
3c. Means of travel Reliability and suitability Reliability and suitability Reliability and suitability
4. Community cohesion Help available Help available Help available

selves early to places of safety, or being helped by other
community members to move.

Concepts, Language andMathematicallyModeling
the Propensity to Evacuate

Precautionary self evacuation pivots on knowing who is
at risk. With the help of researchers, modelers; planning
and community involvement can prepare people and their
valuables to minimize loss. Very public hazard maps will
help people internalize that they are in a hazard zone, and
what they should do. The concept is not new or alarming:
every public building has emergency exit routes marked,
with all that implies. Air flight comes with the manda-
tory emergency preparation presentation. Minute or re-
current risks to where we live or travel to should be no
less public, nor more alarming than a fire drill in a public
building.

Hazard Types – Little or Considerable Warning Times

Hazards may ormay not have lead times (Table 1). Sudden
onset threats include: tsunami, earthquake, major erup-
tion, major toxic spill or discharge, mine disaster, terrorist
threat or attack. Signaled threats include: – cyclone, flood,
fire and destructive winds. This article focuses on disasters
with sufficient warning periods to be able to evacuate the
vulnerable away from the predicted worst impact areas.
Table 1 that with sudden onset impacts, sheltering to sur-
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vive the first few minutes is critical, then moving to open;
stable ground is important to avoid further aftershocks or
landslide. Always take direction from local authorities. For
natural disasters with lead times, Table 1 shows that, if
you will clearly be safe where you are, stay put, and pre-
pare as best you can. If, in the worst case, you may not
be safe, move early (Table 1). The vulnerability of individ-
uals needs to be considered. In a bush fire, for instance,
the general advice is: if the property is well prepared [7],
stay and defend. If, however, you may not be able to cope
with the psychological terror of staying through the fire
front, fully prepare your property, and then leave early
(Table 1). If the exit route may be blocked by flood wa-
ters, or by dense smoke or fire, evacuation needs to pre-
cede that obstruction. In the ‘background’ phase of com-
munity disaster preparation, all such possible obstacles to
a clear escape route (including gridlock congestion) need
to be factored in to the timing of precautionary evacuation
(Table 1).

Finally, as seen in the Woodgate Beach example of
Sect. “Experiences and Lessons – Some Case Studies”, the
level of community support in ensuring all residents are
aware of and prepared for the ‘ramp-up’ phase of a pos-
sible disaster impact, and receive the warning as soon as
possible, the able-bodiedwill help the less able to get out of
harm’s way early in the threat period, as a safety-oriented
practice, minimizing the demands of the formal response
groups as the likelihood of impact increases.

All effective communication involves sending signals
and having them received and processed, then incorpo-
rated into the receiver’s world view [27,40,41,76,81,82].
Effective risk communication [4,13], Sect. “Effective Risk
Communication”, motivates people to act to maximize
their own safety. This may not happen if people have not
internalized that the threat is real. They are in denial. Al-
ternatively, people may be ignorant of the threat, or why it
should be taken seriously. Salter [77] categorizes ignorance
from pure ignorance to acts of ignoring.

Disaster Definitions

A disaster may be seen as a negative impact of a hazard
on a community as measure of vulnerability. The language
of disaster mitigation evolved and is increasingly practiced
since the late 1990s i. e. [13,96]. Risk is seen as a function of
probability and consequence, related to exposure and the
level of force embedded in the threatening hazard.

Boughton [6] points out that natural disasters are
usually extremely rare for the individuals concerned but
they can cause massive impacts. Because Australia is so
vast, overall there are reasonably frequent natural disas-

ters. However, in most locations they are rare indeed.
Boughton [6] argues that a “natural disaster” is a natu-
ral event in which the community life is seriously and
traumatically disrupted. Embracing the way forward with
‘structural mitigation’, “. . . a key step in preventing natu-
ral disasters is to prevent building damage.” [6]. Like “dis-
asters”, “community” is difficult to define [84]. As devel-
oped in Sect. “Integrating Theory and Implementation”,
“community” is the collection of people in a close geo-
graphic area, particularly focused on near neighbors and
supportive friends of those in or near a known hazard
zone.

What to Communicate

Having the right words or approaches in place as policy
does not automatically guarantee community safety-ori-
ented responses to disruptive warnings. Since 1989 the ap-
proach to cope with disasters has been prevention, pre-
paredness, response and recovery training courses. This
helps focus all concerned on the temporal sequence. The
language could perhaps be refined to talk about accep-
tance that a threat exists, background, then ‘ramp-up’ (fi-
nal) preparations to safe shelter; impact, then orderly re-
turn and recovery. Classically, ‘response’ was seen as the
final, near impact flurry of ‘lock down’ activity [57].

Deeper than language is our conceptual frame (Sect.
“Integrating Theory and Implementation”). If researchers
encouraged disaster managers to move ‘response’ behav-
ior back a day; a few hours to ‘precautionary, early re-
sponse’, many of Lewis’s [57] legitimate concerns would
be addressed. Some disaster managers may see themselves
as dramatic figures in the early impact phase of a disaster,
rather than calm, precautionary minimizers of risk. This
culture has changed greatly over the last decade (Sect. “In-
tegrating Theory and Implementation”). For many rea-
sons, there is a clear divide between the US Federal re-
sponse to Cyclone Katrina (2005) and to the California
fires (October, 2007). This shift from passive to active
can be encouraged by modelers. As part of effective risk
communication to encourage precautionary impact pre-
paredness, research with remote Indigenous communi-
ties and recently arrived, non-English speaking refugees
(Sect. “Integrating Theory and Implementation”) showed
the importance of accurate, plain English, and the use of
images.

Yates [93] argues mitigation efforts need to be refined
to make sure they are focused on issues from the relevant
local communities. Much of the problem of non response
seems that ‘the message’ to take care does not effectively
get through to the target [68]. It is to do with communica-
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tion, with signals sent, signals received, and their interpre-
tation.

The types of received and interpreted messages are ex-
plored specifically in Sect. “Integrating Theory and Imple-
mentation”, which develops the intellectual foundation to
more fully understand the semiotics of risk communica-
tion. The following outlines the concepts and relevance of
semiotics.

Semiotics is the study of signs including words, sounds
and such things as ‘body language’. By the ‘message con-
veying’ principles of semiotics we can understand how
various authors on disasters and evacuations approach the
topic, and which cultural signs and symbols they manip-
ulate. For example, a sign showing a person running up-
slope ahead of an exaggerated tsunami wave contains all
the preferred imagery to tell people what to do in a tsunami
warning. Images, as seen for locating oneself in airports or
finding evacuation stairs, do not use words.

The next section lays the foundations for a mathemat-
ical modeling of propensity for householder self-evacua-
tion, centered on knowledge and refined communications
acting on residents in hazard zones who are predisposed
to act in their own safety.

MathematicalModeling

Foundations of the Household Safety Preparedness
and Action Index: the HSPA Index

This section does not consider refined algorithms to de-
fine how successfully people may respond to Authority’s
Perceived Need to Evacuate (APNE). This section consid-
ers the form and ingredients of how this could be done;
the elements and their possible interactions to predict the
success of APNE. Unfortunately, in the previously cited
Canberra 2003 bush fires, the APNE did not appear uni-
versally, nor was it properly conveyed to the residents in
dire risk.

Rohrmann [75] has clearly mapped a process from the
warning signal to the hoped-for response. The informa-
tion and processing flow to internalized inferences is called
intuitive heuristics [74]. Renn & Rohrmann [74] basically
argue that people process probabilistic information on the
likelihood of them needing to move, aligned and conver-
gent with researchers like Thompson [87]. Hence the need
for the seven step process (Fig. 8) to trigger a paradigm
shift for people in danger zones.

As seen in formula 1, there are finite evacuation trig-
gers (ET), ranging from no lead time LT0, such as an earth-
quake, to a LT of days (LTxd), such as a cyclone. So a key
component of a successful response to anAPNE is the time

in which to disseminate the warning (LT0�xd ;Table 1)
Also, Impact Severity (IS) is central to safety and loss.

As detailed in Sect. ”Integrating Theory and Imple-
mentation” and Fig. 8; The seven steps to community safety,
there is a convincing body of research which indicated that
People’s Propensity to Respond (PPR) to an emergency
warning (whether that response be to finalize preparation
to stay and defend the property or evacuate as a precau-
tion) is strongly linked to their Acceptance they are In
a Hazard Zone (AIHZ).

Community Resilience (linkage and inter-support and
communication – CR) is also important; along with a po-
tential evacuee’s Knowledge Base of the hazard and safety-
maximizing behavior (KB). Thinking Through to Recov-
ery (TR) is also important. As per points 6 and 7 in the
7SCS; Fig. 8, the medium of warning delivery, and the
quality of the warning information (Medium & Message:
MM) is a factor in the response of those under threat.
Overall, Sorenson and Mileti [81] believe that increased
credibility of the warning source means the specific warn-
ing will be more effective. They also provide evidence that
the electronic mass media produced the most believable
public warnings. This underlines why development of for-
mal links between all types and levels ofmedia information
about hazards and preparation from the weather bureau
and emergency managers is so important. Having formal
links with the media, coupled with web-delivered ‘real-ter-
rain’ simulations of the hazard will help produce a power-
ful and effective ‘active warning’ regime.

Issues of Exit Route(s) (ER), Possible Travel Mode
(PTM) may be crucial. A normally free-flowing exit route
may be blocked by the disaster itself, or others trying to
flee. This may involve accidents. People’s psychological
and physical states of Well-Being (WB) will also affect po-
tential effective evacuation decisions and accomplishment.
Authors like Rohrmann [75] have attempted to stylistically
model some of this complexity.

Many of the earlier recognized impediments to full
preparedness, like unrealistic optimism (Heller et al., [46])
are incorporated into one overarching factor of for-
mula (1): People’s Propensity to Respond (PPR), includ-
ing the centrally important feature of individual house-
holds fully accepting they are in a hazard zone, and that
they need to engage in background preparation, ‘listen up’
around a hazard threat, and undertake their own, precau-
tionary final preparations.

Cutter et al. [17] developed 11 factors indicating vul-
nerability caused by a major disaster, using principal com-
ponents analysis within factor analysis. The resultant So-
cial Vulnerability Index (SoVI), necessarily weights the
11 components according to the percentage of variation



Evacuation as a Communication and Social Phenomenon E 3115

of analysis of counties on the USA as to resident’s vul-
nerability. Personal wealth, age and housing density head
up the contributions of the 11 variables used to deter-
mine the SoVI of USA counties. Cutter’s SoVI contributes
to the likelihood that proper preparations; including for
a timely evacuation, would occur, either at a broad re-
gional or more individual level. This SoIV is included in
the HPSAI below. Its weighting remains to be tested. A fi-
nal issue overarching many others is Institutional Barri-
ers to change (IB), detailed in Sect. “Institutional Barriers
to Greater Community Self-Help”. The support or other-
wise of the media can play a critical role in effective crisis
communication – most messages are likely to be through
the media, so the media is part of the systems complexity
blend: Media Support (MS).

From the weight of SIR and the conceptual frame-
work described in this article, the following generic for-
mula expressing the above factors likely to impact on
householder propensity for precautionary evacuations
may entice other, more theoretical researchers, to develop
the needed algorithms. What follows is purely a design
base for others to develop predictive modeling of Peo-
ple’s Propensity and Capacity to Successfully Evacuate
(PPCSE – or safely and actively stay) PPCSE is better
named the Household Preparedness and Safety Action
Index: the HPSA Index . The following is a synthesis of
Bayesian Logic (Hoeting et al. [45]) and Eigenvalues.

Evacuation as a Communication and Social Phenomenon, Figure 1
Factors in the Eigen plane determining Household Preparedness and Safety Action Index

People’s Propensity and Capacity to Successfully
Evacuate (PPCSE) or Household Preparedness
and Safety Actions Index (HPSAI):

HPSAI ˛
f(PPR)(AIHZ)(LT0�xd )
(APNE)(ET)(IS)(AIHZ)(CR)(TR)(MM)(ER)

(PTM)(WB)(SoIV)(IB)(MS)

(1)

Formula (1) anticipates constants to ‘weigh’ each factor
according to its contributing importance on the resultant
HPSAI (see [45] p 384) for detail of the Bayesian modeling
approach.

Resultant safety (safety being a combination of suc-
cessfully evacuating to a safe place, or sheltering within
the impact zone in a safe place) of those under threat will
be greatest (Fig. 1) where the factors of formula (1) tend
to intersect in the positive quadrant of an Eigen plane
(Fig. 1) [94]. Equally, outcomes of loss will occur with, for
example, short lead times, insufficient warnings of evacua-
tion triggers or lack of belief that residents or travelers are
in a hazard zone. A journal search showed few links be-
tween disasters and Eigenvalues. An exception is Fowler
et al. (2007, [32]). With global warming and increased
populations increasingly encroaching into obvious hazard
zones, modeling to influence planning and to maximize
HPSAI must be a major growth industry.
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Calibrating the Model: the Greek Fires, August ‘07

[98] or California in late October ‘07 [99] show that
if various of the above variables or likely variable clus-
ters or Eigenvalues from factor analysis have low val-
ues, people will not be placed in a strong, precaution-
ary position of safety. This was true of fire-threatened
residents in Canberra in 2003 (http://www.abc.net.au/
canberra/bushfires/), all ultimately leading back to the
mathematical weight which needs to be given to each point
on in the 7SCS: especially accepting that the threat is real
(and possibly imminent).

Once the above-described preparedness paradigm is
internalized, it is difficult to experience any disasters news
coverage without feeling some despair: cars submerged or
floating in flood waters; people fleeing for their lives ahead
of imminent immolation; any reports of lost lives through
natural disasters with lead times of hours or longer. There
are few excuses for this to remain so. In most parts of the
developed world, there are prevailing technologies to de-
tect and rapidly convey threat. Researchers are well placed
to conceive, trial and link the threat information directly
to prepared populations; to close the gap between know-
ing and acting to maximize safety, as a social exercise of
community engagement and communication refinement.

Cyclone Larry [54] showed that, with general commu-
nity acceptance of the reality of the threat, good warnings
and a lead time of about 20 h, combined with well de-
veloped disaster management and media cooperation in
getting the needed messages to people well primed to the
7SCS, there was no loss of life, although about 5000 peo-
ple were directly subjected to destructive winds of a cat-
egory 4/5 cyclone. Residents of the impact zone generally
followed the 7SCS, supporting the general approach of for-
mula (1): the community was prepared and acted in a pre-
cautionary way to maximize their own safety.

The above model design offers elements/factors to
maximize People’s Propensity and Capacity to Successfully
Evacuate (PPCSE – or safely and actively stay); the House-
hold Safety Preparedness and Action Index (HSPAI), so
strengthening a paradigm among Agencies and hazard-
zone residents of ‘self-help’ and ‘community engagement’
approaches; less passive than earlier approaches used in
considering people’s vulnerability. This generic approach
is supported by model testing by Schadschneider et al.
(� Evacuation Dynamics: Empirical Results, Modeling
and Applications).

The Australian examples detailed in this article, in-
cluding the national shift to mitigation (COAG 2004 [13]),
best illustrated in theWoodgate Beach example (Sect. “Ex-
periences and Lessons – Some Case Studies”), show that

the conceptual frame and thus variables chosen to math-
ematically model evacuation propensity and capacity are
more important than the results of any model using ‘pas-
sive’ variables or variable clusters. The advantages and
means of achieving this shift from community passivity
to partnerships; place- and people-based community em-
powerment and self-help, form the basis of this article. The
abovemathematical approachmay help validate and guide
this necessary conceptual shift.

The next section considers policy, laws, concepts and
possible safety-oriented actions that words, images and
stories convey to vulnerable residents in hazard zones.
In Australia, policy and legislative requirements are in-
dicated, which aim to responsibly maximize commu-
nity safety [13,24,25,26,27,28,44,70]. Some new concepts,
epitomized by new language phrases (with their embed-
ded meanings) are discussed in Sect. “Integrating The-
ory and Implementation”, especially Community safety
groups. New phrases include ‘Social Burnoffs’ and ‘Prac-
tice evacuations’. Like “The Communication Safety Trian-
gle” and “Seven steps to community safety”, it is hoped
these expressions enter local, state and national lexicons
and modeling in disaster management.

Effective Risk Communication

Policy and Laws on Hazard Preparedness
and Evacuation

All risk communication operates within government poli-
cies and legislation. Forced evacuation may be normal in
some jurisdictions for all threats; outlawed in others. Pol-
icy may encourage passivity, or be energetically pro-active
in achieving the 7SCS, both in urban planning and build-
ing materials, and community engagement. In Australia,
for instance, there are many federal and regional guides to
urban growth, e. g. [2]. A new urban paradigm is, perhaps,
best expressed as: “Think globally, act locally, respond per-
sonally” ([2] pnp, [3] p 1). This paradigm shift can easily
embrace and be informed by computer modeling of indi-
vidual’s behavior, demonstrated in recent Springer’s Jour-
nal of Systems Science and Complexity articles, such as
Kikuchi T &Nakamori Y [97]. Agent model analysis to ex-
plore effects of interaction and environment on individual
performance [97]

From all decisions of urban development being in
the hands of ‘experts’, government policy increasingly re-
quires a dialog with local residents, through public par-
ticipation. The first barrier to ecologically sustainable ur-
ban development is “. . . belief systems – doubting a prob-
lem exists, or supporting the status quo. [Solutions in-
clude] . . . consciousness raising campaigns, public partici-

http://www.abc.net.au/canberra/bushfires/
http://www.abc.net.au/canberra/bushfires/
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pation in decision-making, demonstration projects and in-
centives and disincentives” ([76] p 46). This is the KB of
formula (1).

This article stresses that response models, Authorities
and all residents are constrained (and empowered) by na-
tional and regional laws and policies. Research can only
work within a prevailing frame, and will be welcomed by
or influence prevailing policy. It is thus useful to have clear
goals to achieve social or environmental ‘good’ [13,44,70].
This requires greater community involvement in mitiga-
tion, and responsible media helping to mitigate disaster
impacts (MS of formula 1). In Australia, the national ra-
dio broadcaster has a binding agreement with the weather
bureau and disastermanagers to read issued warnings ver-
batim; report and engage community members in safety
oriented behavior, by providing relevant information. Lo-
cal communitymedia are often willing to develop the same
responsible functions.

Risk Communication’s Core Goals

Risk communicators advise “individuals and communities
to respond appropriately to a threat in order to reduce the
risk of death, injury, property loss and damage.”[42]. Risk
communicators and disaster managers need to formally
work closely with the media to maximize social benefit.

Although it may be intended that information flows
and is received accurately; that desired behavior will re-
sult, and that only communication techniques are impor-
tant [49], humans tend to be irrational and optimistic,
and only hear what they want to hear. It is not what our
message is, but what, if anything, the listener does with
our message. To have any chance of ‘success’, information
needs to havemeaning which is shared between those who
construct and send the warning, and those for whom the
warning is meant to inform and motivate to action.

‘Action statements’ (what the at-risk person, family
or community should actually do to minimize damage)
are seen as central to the whole purpose of risk com-
munication [78]. Kasperson & Stallen [49], along with
Salter [77,78] and others detail risk communication mes-
sages in terms of content, clarity, understandability, con-
sistency, relevance, accuracy, certainty, frequency, chan-
nel, credibility, public participation, ethnicity, age, gender,
roles, responsibility, elements, sequencing, synopsis, prog-
nosis, location, action, warning timing, and action state-
ments. It is not a case of saying: “a category three cyclone
will pass over Smithfield”. It is more a case of making
sure the members of Smithfield hear that message, and feel
moved to and competent to take well-understood personal
risk-minimizing actions.

Knowledge, Self, World Views andMessages

For precautionary evacuations to be successful, the seven
steps to safety (Sect. “Integrating Theory and Implemen-
tation”) have occurred; or people have been coerced by
authorities, or they have seen others depart, and felt in-
secure, so they leave as a follower of the ‘innovation’ of
the ‘norm’: precautionary evacuation. This occurred in the
desktop exercise in an isolated settlement in March 2007,
detailed in Sect. “Experiences and Lessons – Some Case
Studies”.

It is now difficult to understand why people needed
prompting to take evasive action against the forecast Bris-
bane floods in 1974, but many ignored the prompts. Au-
thorities believed houses and roads would be flooded, so
people should finalize travel or evacuation early [10]. For
those in the flood zone, 88% of a later survey sample re-
ported evacuating their home. Some took this step very
early, but 67% of respondents only made preparations im-
mediately before leaving home. Twelve percent only left
on foot or in boats after waters entered the main living ar-
eas of their homes. Almost 22% of respondents said they
made no preparations, mainly because the threat was not
recognized in time [10]. This well documented ‘poor’ crisis
communication can help calibrate formula 1.

A key safety message surrounding floods is not to en-
ter flood waters. Figure 2 is one example of using images
to help convey the reality of a threat, and the pitfalls of be-
lated action.

Effectively Conveying Meaning

Because language is pivotal to acceptance of risk and con-
veyed warnings of need for evacuations, it is important
that all participants reasonably agree on word meanings.
This section starts in the comfort zone of simple defini-
tions, then considers semiotics, considers core issues of
world views (paradigms), and finishes with the uneasy
realities of our knowledge base, our epistemological ori-
entation. Sect. “Integrating Theory and Implementation”
shows that some cultures do not carry the background
cultural experience to absorb the meaning of cyclone or
bushfire – there is no shared experience or ‘stories’ of the
power of these extreme forces of nature. Some of the un-
derlying knowledge foundations of context, intent and be-
havioral motivation need to be considered – how humans
construct, transfer, acquire and use knowledge.

Imparting meteorological knowledge, then warnings,
to target audiences to engender safety-oriented responses
is a complex exercise in social empowerment, explored
in Sect. “Experiences and Lessons – Some Case Studies”.
As information promulgators, information and warning
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Evacuation as a Communication and Social Phenomenon, Figure 2
What flood-threatened residents need to consider (Photos courtesy Townsville City Council)

sources should understand a little of Perception (the raw
data from the outside world entering an organism via any
of the five senses), Cognition (internal processing, analyz-
ing, information storage and processing), Attitudes (how
we think and feel about particular issues, implying a pre-
disposition to specific action), Language use and links to
Behavior.

An intellectual framework to risk communication is
provided by Rohrmann [75]. It considers ‘the message fea-
tures’: the recipient features, social influences and con-
text which influences individual risk assessment and man-
agement, including preventative action. Rohrmann and
Handmers’ publications [41,42,43,75] inform the Com-
munication Safety Triangle and the seven steps to commu-
nity safety provided in this article.

Philosophy for Policy Review: CryingWolf
or Worse – Applying the Precautionary Principle

From the 1990s a strong issue of debate in risk com-
munication has been “the right to know” [4]. Some dis-
aster managers wish to avoid false alarms, which may
cause ‘concern fatigue’. This can be seen as an institu-
tional barrier to change (Sect. “Institutional Barriers to
Greater Community Self-Help”). ‘Avoiding undue alarm’
is in conflict with the right to know, and the precautionary
principle of ESD.

The ‘precautionary’ approach is supported by the Eco-
nomic Commission for Asia and the Pacific (ECAP), the
WorldMeteorological Organization and the RedCross So-
cieties. The alerting of the community and its responsible
authorities must begin, at least provisionally, as soon as
the existence of a tropical cyclone over the seas bordering
the country is known ([24] p 16). According to ECAP et
al. [24], the warning challenge is less clear for predicted
localized downpours and flash flooding – howmuch effort
should be taken to warn – what is the message, how do you

keep it to the affected area, and what do you want people
to do? These questions resonated in Australia after billion
dollar hail damage in Sydney in April 1999, or damaging
flash floods in Melbourne in December 2003.

Precautionary Evacuations

Handmer [43] reports an evacuation of 250,000 Dutch
ahead of a flood threat in 1995. Eighty-eight percent of
people surveyed in broad post-emergency surveys “believe
that evacuation was appropriate.” [43] p 24. In part this
may be because of floods experienced two years prior.
Good skills in dealing with the mass media appear to
have helped in the effective precautionary evacuation. The
Dutch experience showed a willingness to evacuate again
in future, even though the threatening flood waters did
not inundate to the level feared. This compares favorably
with the 2005 boat owners’ responses to Cyclone Ingrid in
Port Douglas, North Queensland (Sect. “Institutional Bar-
riers to Greater Community Self-Help”). Both Handmer
and Goudie’s research [33,36,38,41,42,43,52,53,54] show
clearly that people would rather practice (make a pre-
cautionary evacuation) than incur loss. It was treated as
a learning experience. The ‘boy who cried wolf’ argument
is not acceptable. This is an important message researchers
can test and convey to partnering Disaster Managers.

Have Clear, Consistent Messages

Part of the seven steps to community safety is clear, reli-
able, explicit languages and images. Salter et al. [78] point
out that the use of meteorological category systems such
as ‘minor’, ‘moderate’ or ‘major’ carry unambiguous in-
formation about the level of disruption likely from a par-
ticular flood. Language used should not be for the conve-
nience of the warning agencies. Its function is to convey
clear unambiguous messages to the threatened public.
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Use Past Events to ‘Make the Threat Real’

The purpose of risk communication is tomake people per-
ceive the threat as real, and to successfully motivate safety-
oriented action. Boughton (1992, p 6) argues that aware-
ness of hazards and disasters can be fostered by “drawing
attention to media coverage of hazards in other places”.
Images of large scale floods and evacuation in Holland in
1995 [42] may help prompt a future flood evacuation.

The Changing Politics of Risk Communication

Risk communication is often laden with values and polit-
ical implications (Sect. “Institutional Barriers to Greater
Community Self-Help”). For instance, in the 1990s in
Cairns, north Queensland, it was argued that the reason
for not having detailed local cyclone surge inundation
maps made available at the corner store level was that
such informationmay have a negative impact on local land
prices. This appeared more a political decision than an at-
tempt at effective risk communication. In 2007, such maps
are freely available on the local Council web site [9].

Sirens or Not

No or short lead time disasters are a powerful argument for
warning sirens to alert people, perhaps at 2 am, to “listen
to local media now”. Lives will be saved in future tsunamis
and bush fires with the reintroduction of sirens, as in-
sistent triggers to “find out more now”. However, “large
numbers of sirens are needed to cover populated areas and
to be loud enough to be heard indoors by most people.
Sirens are expensive to install and maintain and can only
provide limited information” [63] p 33. Fixed public ad-
dress systems or those on vehicles may be used. People
who hear such sirens will be encouraged to tune to local
media, and to phone others in the threat zone, to warn
them of the alert. Sorenson and Mileti [81] believe sirens
are most effective if used on populations without other
ways of receiving the warning. Wider use would appear
prudent, especially with short lead-time threats.

Media Roles

As community media moves from ‘sensationalism’ [13,
71], 2007 research by Goudie confirms that community
media organizations nowwant to become responsible con-
veyors of safety-oriented information to people at risk.
After the Canberra fires of 2003, where 300 homes and
four lives were lost in the nation’s ‘bush capital’, all lo-
cal media signed binding agreements with emergency au-
thorities to faithfully convey provided safety information.

The Communication Safety Triangle envisages local me-
dia and householders drawing detailed local threat infor-
mation from the internet, with media conveying that di-
rectly to readers, watchers and listeners. This forms the
basis of future ‘world best practice’ risk communication.
In the preparation for threat impact, the reliable informa-
tion will help people make informed decisions, rather that
remaining trapped and inactive in uncertainty.

Risk communication is complex, involving many
values, predispositions and distorting lenses. Rohr-
mann’s [75] fine risk communication explanations show
that we may tell the people at risk, but they may not inter-
pret as intended. Clear, consistent warnings in plain En-
glish, with clear images of the threat, showing safety-ori-
ented behavior are needed from reliable sources. Warn-
ings, seen on a continuum of risk and preparation actions,
should be able to be discussed and reinforced with infor-
mation from other sources. This is most likely to produce
safety-oriented behavior, with the constrained and clear
assistance of the media, as responsible agents for commu-
nity safety.

Given the previously fraught nature of risk communi-
cation, Sect. “Institutional Barriers to Greater Community
Self-Help” provides a conceptual framework, with Aus-
tralian examples of current community safety theory and
implementation, preceding some detailed examples.

Integrating Theory and Implementation

This section introduces a triangular model to best ensure
community safety. With disaster managers central, the
three elements are the community, local media and the in-
ternet. Also, there is a continuous spectrum of seven steps,
from accepting there is a risk, through early preparation,
final (ramp up) preparation, which may include evacua-
tion, surviving the hazard impact and achieving smooth
recovery. An exploration of motivation leads to a dis-
cussion of ‘world view’, including some insights into re-
mote Indigenous communities [36], and recently arrived,
non-English speaking immigrants. The conceptual frame
and steps are intended to help guide risk communicators
and potential modelers through the issues of acceptance,
preparations, evacuation and functional recovery. Within
CSS, all these factors have some bearing on consequent be-
havior.

Changing Values and Roles

In an attempt to understand why we support or ignore
certain messages relevant to our safety, and thus facili-
tate modeling, this section considers the Dominant So-
cial Paradigm and the New Environmental Paradigm.
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A paradigm is a coherent world view, “a mental image of
social reality that guides expectations in a society” ([23]
p 10, [29]). Shared paradigms change. The underlying phi-
losophy shift toward disaster mitigation generates a dis-
tinct policy move toward safe, self-helping communities.
Thus, the goal of disaster managers, effective risk commu-
nicators and computer modelers becomes one of champi-
oning or demonstrating the efficacy of self-help techniques
and information to and within communities.

World Views Which Accept Responsibilities
of Living in a Hazard Zone

‘Why do we do what we do?’ has long been a central ex-
ploration of psychology. Precautionary safety behavior, in-
cluding self-evacuations, may depend on a person’s world
view. Stern et al. [83] developed a simple and elegant
model to help explain human behavior, starting with a per-
son’s position in a social structure, with constraints and in-
centives which generate values. Values determine general
beliefs, leading to a consistent world view, specific beliefs
and attitudes, which predisposes intent and helps explain
behavior ([83] Fig. 3). Loosely translated, behavior results
from a linked sequence starting with: the where, when and
to whom of an individuals birth, the surrounding circum-
stances and ‘cultural sheath’ of their early childhood ex-
periences, leading to acceptance or rebellion against pre-
vailing social norms, determining an evolving world view.
Once we have our coherent world view, beliefs and values
give us our ‘predisposition to act’, our ‘intent’ which pre-
cedes action/behavior.

Many things now mold and modify world views, in-
cluding the media, and normative world views are muta-

Behavior is explained by:

1. a person’s position in a social structure,

2. with constraints and incentives as generators of values,
which lead to

3. general beliefs,

4. world view,

5. specific beliefs and attitudes, generating

6. intent, which helps explain

7. Behavior.

Evacuation as a Communication and Social Phenomenon, Fig-
ure 3
Stern’s 1995 behavioral explanation model

ble, changeable. Aligned starkly with our shared and col-
lective biological survival urge, andmuch concerted efforts
by scientists and conservationists for decades; publiciz-
ing by people like Al Gore, and the authority of Eng-
land’s uptake of the 2006 Stern Report, there is now
a global paradigm shift to the urgent need for behav-
ioral and technological change to minimize the gross im-
pacts of global warming, pertinent to increased disasters
and needed evacuation readiness. Modeling specific haz-
ard zones’ strengths and weaknesses and broadcasting pre-
diction simulations to the internet and TV will help mobi-
lize those at risk.

WhyWe DoWhat We Do

A behavioral model of causality ([91] Fig. 4) shows rela-
tionships between reported attitudes and actual behavior.
However, a complexmodel proposed by Kitchin [51], with
the strength of including social and environmental inter-
actions shows why we do what we do: Kitchin’s model in-
cludes a person’s ‘working and long term’ memory. Inter-
nal information is processed within ‘real world’ context,
such as cost [82], which may be processed within the ‘it
can’t happen to me’ cognitive frame [61] of subjective re-
ality. These complex but quantifiable attributes will con-
tribute to modeling maximum likelihood to accept, pre-
pare and act to maximize safety.

Learning from 18 Remote Indigenous Communities

Much of the rest of this section underlines why modelers
will need to deal in great detail with ‘cultural’ aspects of
massed responses to safety threats.

The Stern model (Fig. 3) helps explain why there is
such a strong sense of self-help in remote Indigenous com-
munities [27,29,80,94] helps explain why there is such
a strong sense of self-help in remote Indigenous com-
munities [27,29,80,94]. Elders decide responses to threats,
there are historic and immediate constraints, generating
a value system where community members need to look
out for each other.

In many traditional Australian Aboriginal stories,
most people drown in flood disasters, often as punishment
when people do not take care of each other [36,39,64,87,
88]. If general beliefs embrace self help, including the felt
need to ensure safety, and a resultant intent to achieve
community safety, this should lead to safety-centered be-
havior.

Each community ([36] Fig.5) was not greatly con-
cerned by weather extremes (values), but each relied on
and respected their traditional reading of threats, and in-
formation from the Bureau of Meteorology (the Bureau).
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Evacuation as a Communication and Social Phenomenon, Figure 4
Possible determinants of activity patterns (from [91])

Evacuation as a Communication and Social Phenomenon, Figure 5
Australian study sites
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Evacuation as a Communication and Social Phenomenon, Figure 6
Multicultural phone tree disaster warningsmodel

The world view is that flooding or worse may happen, and
that the Bureau will provide adequate warning. Responses
may be inhibited by the Social Vulnerability Index (SoVI)
of formula 1.

Community Links, Phone Trees
and the Web in Risk Communication
for Non-English Speaking Households (NESH)

Many multicultural organizations and focus group meet-
ings in 2005 helped develop the warnings phone tree
model for NESH in Fig. 6. NESH rarely listen to the
English language media. With about 30,000 NES peo-
ple arriving in Australia each year [18], there is Federal
government recognition of special emergency manage-
ment needs [28]. This way of getting evacuation warn-
ings through was developed once interviews revealed that
practically all NESH have a mobile phone, and are closely
connected with their nearest government funded Multi-
cultural Organization and their ‘community leader’; hence
the phone tree.Modeling is of and for the real world, so re-

search like this reported NESH study is needed to see what
‘complex systems’ may be possible. Further recommen-
dations to develop a multilingual warning web site with
a simple guide to the seven steps, in relevant languages, to
be accessed and used byMCO and NESH training sessions
is being considered by authorities. This provides another
example of the internet’s latent role in effective risk com-
munication.

The Australian Northern Territory has cyclone pre-
paredness kits with action guides in 8 languages; the NSW
Rural Fire Service has information in 27 languages. This
shows the importance of modeling all possible communi-
cation avenues, encapsulated as Medium & Message: MM
in the general formula for Household Preparedness and
Safety Actions Index (HPSAI).

An Holistic Approach
to Community Risk Management

The seven steps for effective warnings involves commu-
nity networking, ‘responsible’ media, and, increased web
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Evacuation as a Communication and Social Phenomenon, Figure 7
The Communication Safety Triangle

use. A ‘continuum’ approach to hazards which may lead
to a need to evacuate is important to modelers because
it is important to all people in hazard zones: they will
be able to access more accurate, detailed and timely in-
formation of any looming threat, assisting Emergency
Managers because a self-help public will decrease de-
mands on formal evacuation, rescue and property protec-
tion [93]. Recovery will be less arduous [67] if hazard im-
pact is minimized. Reducing disaster impacts will reduce
costs, to national benefit. This gives strength to support-
ing the very demanding goal of developing the model of
formula 1.

Risk Managers

Researchers can work with risk managers to achieve
“. . . better, timely warnings and advice on safe action dur-
ing fire events” [3]. With risk managers central, Fig. 7 sug-
gests that enhancing community links [7]; web informa-
tion for residents and media outlets, and cooperation of
community media with fire managers [89] will more em-
power householders to embrace self-help in fire safety. Fig-
ure 7, the Community Safety Triangle, with the “Seven
steps to community safety” (Fig. 8) provides the concep-
tual frame to enable maximum safety modeling.

Core of Risk Communication
for Community Safety Through Natural Disasters

Building Community Links
and Refining Media Delivery will Change
the Household Preparedness and Safety Actions Index

The disaster safety benefits of enhanced community links
fit positively with broader social policy [47]. Stronger com-
munity links will help ensure that threat information is
easily accessed and shared; and the need to actively self-
protect is internalized at the neighborhood level. Resi-
dents will benefit by enhanced community links (with such
innovations as social burn offs and Community Safety
Groups) in improving their general quality of local social
interaction. Changing Community Resilience (CR of the
formula) will then change overall preparedness, so pilot
tests of change to CR will show quantifiable changes to the
Household Preparedness and Safety Actions Index. Disas-
ter web site managers will be providing a product which is
rationalized to reduce national duplication of core infor-
mation. This will positively change Medium & Message,
MM, of the formula. Residents with few English language
skills will benefit by having disaster information delivered,
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Evacuation as a Communication and Social Phenomenon, Fig-
ure 8
Seven steps to community safety

via the web, in language and concepts that can be internal-
ized and acted upon.

Handmer [43] suggests that a flood, for instance is ac-
tually ‘owned’ by the communities at risk. Individuals and
organizations within these communities actively seek out
information and mobilize their personal networks for ac-
tion. In this way of looking at the warning process, the
warning specialists act asmediators between the threat and
the threatened. Local knowledge is used and the whole re-
sponse process remains focused on safety and loss-mini-
mization. For this plausible vision to become fact, local ca-
pacity building will need to proceed apace with these more
formal efforts to inform and maximize community safety.

The importance of ‘informal’ information sources and
community links are shown in Table 2, from about 200
people interviewed immediately after Cyclone Larry in
2006 [53], showing that about 90% are deeply dependent
on social and family support, if only for reassurance.

Finally for community enhancement within the CST
model, there is current and lucid national disaster mitiga-
tion policy [13] http://www.dotars.gov.au/localgovt/ndr/

Evacuation as a Communication and Social Phenomenon, Ta-
ble 2
Cyclone zone people havemuch personal contact

Contact with other relatives % of total response
(rounded)

Yes 25
Lots 20
Mobile contact 15
Landline Phone 30
No 10
Frequency of neighbor contact
Often or lots 50
A bit 20
Helped/contacted during eye 15
None 15

nat_disaster_report/naturaldis.pdf : in the statement of the
paradigm shift [13], p 13, “Principle 7 – Reform Com-
mitment 7: develop jointly improved national practices
in community awareness, education, and warnings which
can be tailored to suit State, Territory and local circum-
stances.”

Community Media

“The Media: Media organizations, particularly public and
private radio and television organizations, have responsi-
bilities in ensuring that timely and appropriate warnings
and advice on disasters is broadcast to communities at the
request of relevant authorities. They also have a role to play
in educating the community about natural disaster issues”
([13] p. 18).

TheWeb

Rationalized web information delivery: One national
generic provider and up keeper of core information,
known to all, is recommended; to which state and local
government will add their unique detail. A rationalized
disaster information web delivery can properly incorpo-
rate broad contents, fine (and zoom-in findable) andmulti
lingual information.

Simulations of predicted near-term fire or other threat
movement based on the above, akin to micro scale model-
ing of cyclone impact forecasts will help revolutionize the
way people react to fire and flood threat.With about one in
three households having the internet, prior to likely power
loss residents can draw on enhanced fine detail of the cur-
rent fire situation, to assist in their actual decision making.
Before Cyclone Larry struck, residents with web access to
the Bureau copied cyclone forecast maps and distributed

http://www.dotars.gov.au/localgovt/ndr/nat_disaster_report/naturaldis.pdf
http://www.dotars.gov.au/localgovt/ndr/nat_disaster_report/naturaldis.pdf
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Evacuation as a Communication and Social Phenomenon, Figure 9
O’Neil’s 2004 innovation uptake model

them to neighbors [53]. All the preceding is encapsulated
in Figs. 8 and 9.

Images Tell a Story

Images such as cyclone forecast track maps in risk
communication convey more information that words
alone [36,53].With this feedback from real residents, it be-
comes clear that linking fire zone residents, for instance,
to educative web fire images becomes an important goal
(e. g. [100]).

Community Story Telling Bonds Neighbors

The multi-pronged approach [33,52,54] fosters commu-
nity ‘story-telling’ links [50,59,90] relating to commu-
nity self-help and safety. Strengthening community bonds,
working with enhanced web resources and community
media [14,72] will increase community internalization of
risk [31], enhancing the likelihood of safety-oriented re-
sponses, leading to and possibly including evacuation.
People need to accept the reality of the threat, indeed, feel
some anxiety about the threat to help drive the intent to
seek more information, or the intent to prepare [68].

With easier access to relevant web information; with
greater detail of current fire behavior and nowcasts; fire
zone residents and community radio announcers can de-
scribe the looming threat, helping timely preparations and
the monumental ‘stay or go’ decision. Community radio,
like the National public radio, the ABC, will deliver au-
thoritative and timely risk communication directly from
the refined web information.

Theory and emerging practice converge on using re-
fined web-delivered material to households and their
neighbors, and to local media, to inform and motivate res-

idents through the whole continuum of the seven steps to
community safety. The next section considers institutional
barriers to change, followed by extensive research findings
and lessons from Australia in disaster management to de-
velop effective warnings and self evacuations.

Institutional Barriers
to Greater Community Self-Help

Institutional barriers to change take many forms, from
‘unconsciously’ avoiding consideration of the extreme
event as ‘too hard’, to a misuse of the power relationships
within bureaucracies because of fear of change, or mal-
ice. Clear examples of the ‘too hard syndrome’ mingled
with entrenched vested interests has been denial of links
between smoking and cancer, or delayed uptake of global
warming mitigation.

There were Institutional Barriers for disastermanagers
to consider land-based flooding from torrential rains pre-
ceding a cyclone (hurricane/typhoon) [34] in many cy-
clone-prone areas. The Queensland State Planning pol-
icy [70] now explicitly refers to Probable Maximum Flood.
Including maximum flooding is now part of emergency
manager’s internal planning base. This means the Exit
Routes (ER, formula 1) are now considered in planned
evacuations.

Since the early 90s researchers like Boughton [6] have
suggested having drills for schools and other institutions
in readiness for possible earthquakes, cyclones or other
hazards. This author supports precautionary evacuation
practices. There are, of course, liability barriers to eas-
ily undertaking practice evacuations. There is also un-
certainty of threat, which may restrain some risk man-
agers [86].
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Institutions have cultures which may passively express
antipathy to a paradigm shift toward sustainability, whilst
being required to usher in sustainability [19,37]. Emer-
gency Management Australia, the peak national body,
has the slogan: Safe, sustainable communities. However,
there is a multitude of conservative forces representing
the Dominant Social Paradigm restricting innovation, de-
spite sustainability policy. People engaging in sustainabil-
ity implementation may come into conflict with institu-
tional representatives of the old paradigm.

Withmost development taking place in urban settings,
concepts of urban sustainability attempt to merge two dif-
ferent fields of human endeavor – how we modify our
landscape, our built environment, and how we behave in
that environment. Disaster mitigation is obliged to fuse
these two seemingly disparate fields. There may be resis-
tance to that. That resistance needs to be included in any
mass disaster movement modeling. The following subsec-
tions indicate some reasons for IBs which modelers may
need to consider in the IB factor.

Political Insecurity, Real Estate Values,
or Undue Alarm

The tension between people’s right to know, government
duty of care and politicians’ perceptions of probability of
risk on ‘their shift’ form a complex interplay. If maximiz-
ing safety is the shared goal, all risk communication theory
suggests people will behave appropriately with the realistic
threat information, motivation and ‘how to’ instruction on
safety-oriented behavior leading into, through and recov-
ering from a natural disaster impact.

Paradigms of Politics: the Real Estate Industry
and Vested Interests

Broughton [6] argues that if people know of the threats,
they are likely to support politicians who make sound de-
cisions for community survival. Some plans are made but
they are hidden away for various financial and political
reasons. This is a case in which attitudinal changes on the
part of those communities may change the priorities of the
decision makers and promote the interests of the commu-
nity.

Those most empowered to assist in implementing
projects that require independence, initiative, local links
and knowledge may be the ones who prove most obstruc-
tive to innovation [1,48,56,69].

Action Research [16] sets out to research, develop and
document socially and environmentally desired outcomes
within sustainability principles. In this inclusive and ‘en-
gagement-focused’ research, gaining support from the top

is crucial to the success of any organizations’ efforts at ‘so-
cial change’ [66]. If innovation uptake is viewed as a nor-
mative uptake process [12,65] and Fig. 9, then the gradual,
long term paradigm shift to sustainability [30] is plausible
and has a conceptual frame.

Uptake of the Communication Safety Triangle and the
seven steps to community safety (Figs. 7 and 8) will make
them the disaster managers’ ‘norm’ over time, simply be-
cause that is the direction of social evolution in disaster
management. It fits social policy and advanced disaster
management approaches, and the technology and willing-
ness of regional media and residents is there. All that is
needed is the testing and roll-out by more innovative dis-
aster managers. The same applies for Community Safety
Groups and variants of over-managed, locally controlled
near-house “social burn-offs” in the case of fire risk man-
agement.

Bureaucratic processes need to support the stated goals
of their own work units, but individuals may be ambigu-
ous, contradictory, belated, bullying, ill informed and, due
perhaps to time pressure or arrogance, quite destructive.
Such individuals may be ‘corporate psychopaths’ (http://
www.abc.net.au/catalyst/stories/s1360571.htm). Instead,
innovators may be seen as threatening; troublesome. Any
innovative pilot project must develop strategies that will
maximize change within their unique situation. Ideally,
that happens within a supportive parent organization. The
next section discusses the emergent issues of effective risk
communication and precautionary self-evacuations.

Experiences and Lessons – Some Case Studies

This section considers disaster impacts and impacts from
north Queensland and from fire zones in SEAustralia to il-
lustrate the generally positive points of approaches already
outlined: living flesh for modelers to understand how sub-
tle, complex but do-able successful community prepared-
ness and willingness to act for maximum safety can be.
Researching these events, gaining community and disas-
ter managers feedback on risk communication; working
closely with the Australian Bureau of Meteorology over
15 years, through the Federal disaster ‘paradigm shift’ to
mitigation ([13] p 13) all inform the emergent CST and
seven steps to community safety.

Cairns and Storm Surge Considering Exit Routes
(ER, Formula 1)

Cairns City, North Queensland, is centered on land less
than 2m above high tide, and subject to cyclone (storm)
surge of up to 5m. A storm surge tracks just behind the
eye of a cyclone, a low mound of sea water, perhaps 50 km

http://www.abc.net.au/catalyst/stories/s1360571.htm
http://www.abc.net.au/catalyst/stories/s1360571.htm
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Evacuation as a Communication and Social Phenomenon, Figure 10
Cairns flood prone evacuation routes and schemata of wave reach and temporary coast line from 1998 information

wide and up to 3m above normal sea level. It may flow
overland for perhaps 4 h, as destructive winds to 280 km/h
tear at structures, and churning seas; both laden with
pounding debris, behave as battering rams and missiles.
Because cyclones have such long lead times from mod-
ern electronic detection to landfall, results of this deadly
combination [60] will be widespread destruction and loss
of infrastructure, but not life, with precautionary evacua-
tions [38,72]. At the macro-observation scale, people and
vehicles in motion within confining environments tend to
behave like fluids, capable of modeling. Constrictions of
flow paths cause congestion, as described by Helbing et al.,
(� Pedestrian, Crowd and Evacuation Dynamics), so early
and precautionary evacuation will help minimize the like-
lihood of grid-lock.

Land-based flooding may be a core issue to effective
evacuation [34,38,95], with up to 40,000 people in the vul-
nerable central city area and northern beach suburbs need-
ing early, precautionary evacuation [79], Fig. 10. Cairns
City Council now has a storm surge map on its public web
site ([101], posted in 2006), like the public and informative
flood map for the Redlands Shire, SE of Brisbane, Queens-
land ([102]).

Within the philosophical and moral frame of people’s
“right to know”, these local governments are using the in-
ternet to inform people they are in a hazard zone, the first
step in making the threat real to those residents. They have
made the paradigm shift to providing fine-detailed back-
ground information which says to residents: “you are in
a hazard zone, you may need to do things. Listen for warn-
ings and be prepared to act in a precautionary way.”

Figure 11 shows that after a devastating flood in 1997,
the flood-affected residents of Cloncurry, NW Queens-
land town would do things differently, with better warn-
ings, when faced with rising flood waters. Remote auto-
matic flood monitoring devices were requested, but the lo-
cal downpour over a fully flooded, vast and flat landscape
appeared to be the cause of the flood rising 2m higher than
any flood in the prior hundred years. Precautionary evacu-
ation of the low-lying homes would have prevented much
heartache and loss of valued possessions [52].

In 2005, north Queensland was threatened by cyclone
Ingrid. Newspaper-reading residents were left in no doubt
about the threat (Fig. 12); a good example of the clear
warning role played by the media, and non-language im-
age used to convey meaning (Sect. “Discussion”).
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Evacuation as a Communication and Social Phenomenon, Figure 11
Cloncurry reflective of likely responses to future floods

A portion of aWeather Bureau warningmedia bulletin
for Cyclone Ingrid follows, showing, verbatim, what the
nation radio broadcaster, the Indigenous Radio Network
andmost responsible media outlet relayed on. This is clear
information, including the possible impacts (M&Mof for-
mula 1).

Media: For immediate broadcast. Transmitters in
the area Cape Grenville to Cooktown are requested
to use the Standard EmergencyWarning Signal.

TOP PRIORITY

TROPICAL CYCLONE ADVICE NUMBER 14

Issued by the Bureau of Meteorology, Brisbane

Issued at 10:56 am on Wednesday the 9th of March
2005

A Cyclone WARNING is current for communities
between Cape Grenville and

Cooktown. The warning extends inland across cen-
tral Cape York Peninsula.

A CycloneWATCH is current for coastal and island
communities on the eastern Gulf of Carpentaria be-
tweenWeipa and Kowanyama.

The watch south to the Gilbert River Mouth has
been canceled.

At 10:00 am EST SEVERE TROPICAL CYCLONE
Ingrid, Category 4, with central pressure 935 hPa,
was located near latitude 13.5 south longitude 145.5
east, which is about 140 km northeast of Cape
Melville and 260 km east of Coen. The cyclone was
moving westward at 11 km/h.

Severe Tropical Cyclone Ingrid poses a serious
threat to the far north.

Queensland coast with very destructive wind gusts
to 280 km/hr near the center. Gales are expected
to develop between Cape Grenville and Cooktown
during the afternoon. Destructive winds are ex-
pected between Coen and Cape Flattery overnight.
The very destructive core of the cyclone is expected
near the coast between Coen and Cape Melville on
Thursday morning.

Coastal residents between Coen and Cape Flattery
are specifically warned of the dangerous storm tide
as the cyclone crosses the coast early Thursday. The
sea is likely to rise steadily to a level significantly
above the highest tides of the year with damaging
waves, strong currents and flooding of low-lying ar-
eas extending some way inland. People living in ar-
eas likely to be affected by this flooding should be
prepared to evacuate if advised to do so.
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Media coverage of threatening Cyclone Ingrid, 2005

Very heavy rain can be expected to develop on the
coast and ranges north of Cooktown.

Research in Port Douglas, NQ was conducted immedi-
ately following Cyclone Ingrid, to help clarify the ‘Boy

who cried wolf’ hypothesis about ‘concern fatigue’ over
precautionary evacuations (Sect. “Institutional Barriers
to Greater Community Self-Help”). Feedback from ma-
rine tourist operators and tourist businesses that removed
about 60 large vessels to safe, up-creek moorings, or fully
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Evacuation as a Communication and Social Phenomenon, Figure 13
People of Port Douglas appreciated a precautionary evacuation

shuttered their premises and raised all stock. These prepa-
rations were arduous, and costly. The cyclone veered
away from Port Douglas, with virtually no impact. De-
spite that, people were glad of the precautionary evacua-
tion, as a practice (Fig. 13), reinforcing the findings of the
Netherlands flood study [43]. People appreciate practice,
as part of the new paradigm of a precautionary approach to
hazards.

From Those Impacted by Larry, 2006

After Cyclone Larry, a powerful Category 4/5 severe cy-
clone which damaged the Innisfail region, Goudie lead
a social science research team into the impact area, in-
terviewing households for 4 days (King et al. [53,54]),
from the 150 householders survey, focused on risk com-
munication, we learned: as with fire zone residents and
those who experienced Cyclone Larry, that most people,
once they have experienced a major disaster, maintain
a healthy respect and inclination to act ahead of any fu-
ture such threat. Hence the advocated merit of encourag-
ing people with experience to ‘tell their story’; and com-
munity (Media and Message and Community Resilience
of formula 1) to help make the threat real to others. The
next section is, perhaps, at the leading edge of where dis-
aster management will go: living community self-help.
Such communities can provide pilot locations to ‘calibrate’
formula 1.

Woodgate Beach and Community Safety Groups
(CSGs)

This section reports a collaborative process between the
author and many others, mainly residents of Woodgate
Beach, Queensland (Fig. 5), to develop a Preparation and
Evacuation Plan for residents, formal response groups, the
Local Government Disaster Management Group (LDMG)
and Shire Council.

Through the 18 month consultation and development
process, the plan needed to be realistic and achievable, re-
lying mainly on locals working together under the LDMG
and local SES group, aiming to optimize each element of
formula 1.

Community networking and self-responsibility for
community safety is profoundly developed in the isolated,
700 strong, Central-coast Queensland settlement. The vol-
unteer community safety groups were made up of dedi-
cated people. Goudie led development of a community-
based evacuation plan, aiming to: ensure maxim prepara-
tion and minimum impact on property and residents; op-
timizing formula 1.

There were 5 meetings, of up to 80 residents and
representatives of all formal response groups, weather
and earthquake experts. Meetings included researcher-led
two-day ‘table-top’ evacuation exercise. Woodgate Beach
did not develop an evacuation plan, but a preparations and
evacuation plan:
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Preparations and Evacuation Self-Help Approach

To nurture aware, informed residents preparing to be safe
through, and recover from natural disaster impacts.

Overarching Evacuation Approach

� Identify vulnerable areas or houses
� Evacuate caravan park, visitors, people at risk unable to

easily move themselves

The Planning Process:

1. DEFINE THE THREATS – Fire, flood, wind, cyclone
surge, earth movement, tsunami.

2. MOVE FROM WHERE TO WHERE? Fires can be
fought; floods, storm surge and cyclonic winds, tsunami
or earthquake cannot be. In all threats, make sure your
property is as secure from impact as possible.

3. IDENTIFY THE VULNERABLE – Which buildings,
infrastructure and people may be in the threat zone.

Threats and Treatments An all-of-community ap-
proach has developed an annual round of public education
projects, press releases and pamphlets to inform residents
and tourists of the annual cycle of dangers to be wary of,
from cyclones to fire care and management. The Coun-
cil newsletter will be a consistent source of information
on threats and how to minimize risks (M & M), from the
flying debris of a wind storm to being patient at a flood-
swollen creek crossing.

A sequenced approach, where the aged and vulnerable
are moved first from the highest risk areas will be taken,
as a practice, as a precaution. To highlight the stages of
disaster and possible evacuation planning, the background
preparations phase is included in this article:

Background Preparations

1. Woodgate Beach residents recognize and act on the
need for background preparations to minimize the im-
pacts of all hazard impacts. This includes property
maintenance and upkeep. This maximizes PPR of for-
mula 1.

2. Provide newcomers with an information pack, includ-
ing a copy of extracts of this Community preparations
and evacuation plan (CPEP). All community members,
including tourists, the elderly, infirm, and needy are in-
corporated into this CPEP. This enhances the KB of for-
mula 1.

3. Provide dot points on evacuation for local residents in
the Disaster Preparedness Information Kit, delivered to
each household.

4. Expose tourists to the essence of local threats and what
will be expected of them: leave early, unless they or their
vehicles can actively help, under direction.

5. Define safe shelters – preferably with friends or com-
patible households. Organizing possible billets for any
major impact on portions or all of Woodgate Beach can
form a key function of the Community Safety Group.
This is the CR of formula 1.

6. Go through whole plan, and address matters like the
caravan park needing auxiliary power for fuel pumping
before the cyclone season.

The Community Safety Group Approach to Disas-
ter Management This approach is detailed to provide
a guide for researchers to use as a framework for other
communities:

The Community Safety Group

Purpose encourage:

1. Early Warning Alert The CSG is an affiliation of
existing community groups and neighborhood-level res-
idents who make first contact with ‘walking-distance’
neighbors as soon as anyone hears of a warning that a nat-
ural disaster may be approaching their area.

2. Final Preparations (Ramp-Up) Activation The
neighbor-level CSG will provide early local motivation for
final safety preparations.

Recovery – Thinking Through to Recovery (TR) of
formula 1.

Recovery is now seen as part of the preparations pack-
age, rather that just looking tominimizing impact. The de-
veloping approach is to see the whole threat event as one
continuous process: from awareness and structural pre-
paredness, through initial communication of threat, to fi-
nal precautionary preparations and impact and rapid re-
covery to a fully functional community.

International Snaps

The Center for Disaster Development within The North-
umbria University, Newcastle on Tyne, coastal north east
England specializes in recovery and response with an em-
phasis on development long term recovery and resilience-
building. Embedded in this approach is to undertake mit-
igation. Interviewed by Goudie in May 2005, the Director
reported “We use the approach that local knowledge is al-
ways drawn on, and that people involved should be in con-
trol”, KB and CR of formula (1) and agrees “all disaster
management is under the umbrella of sustainable devel-
opment”. Other interviewed staff support precautionary
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evacuation as a practice, and, independent of the media,
an alert signal for people to tune in to the media.

The Shetland Islands

Like Australia’s emerging approach to self-help commu-
nities, The Shetland Council’s Emergency Management
Planner (2005 interview) gave strong practical support to
the approach of an informed, aware, self-activating com-
munity ready to act on reliable, clear, how-to emergency
warnings, ranging from making safe if intrinsically out
of the main impact zones, to early ‘self-evacuation’. This
convergence from differently evolved and slightly differ-
ent disaster management systems is grounds for optimism
that the evacuation approach and formula expounded in
this article has widely applicable merit.

Remote communities like the Shetlands have lessons
for the mainstream in taking responsibility and perforce
being self reliant and oriented to robust self-help. Such iso-
lated communities represent matured examples of the in-
formed, aware communities, predisposed to precautionary
action that mainstream populations now aspire to. Com-
munity-building is an international aspiration, achievable
in urban settings.

Hurricane Katrina

Hurricane Katrina, USA late August, 2005 (Fig. 14) has
deliberately not been included in this evacuation analy-

Evacuation as a Communication and Social Phenomenon, Figure 14
What no-one should have to stay through – Katrina ‘05 http://news.bbc.co.uk/1/hi/in_pictures/4194032.stm

sis. With days of clear warning, general formal approaches
to precautionary action which underpin the CST and the
seven steps to safety and recovery were underplayed.

Figure 14 is included to remind all readers that hazards
are real threats to real people in real hazard zones. If all the
parameters to maximizing formula 1, such as Institutional
Barriers are not optimal to safety, great distress and loss
can ensue.

This section has provided a cross-section of disaster
threats, evolving reasons to empower communities, and
some factors to include in modeling greater community
safety. After discussion in the following section, some rec-
ommendations and future directions are provided.

Modeling not only the natural hazard but the various
social and communication parameters will provide a good
basis for not only simulating impact; say, of the extent of
flood waters; but will also highlight which impact areas are
the most and least likely to properly act in their own best
safety.

Discussion

Risk Communication Theory
and Residents in Hazard Zones

People need to know that an impact is possible before
they will willingly evacuate. The concept of risk charac-
terization [42,46,68,75,77,83]makes clear that people need
a practical understanding (the possibility of impact is real,

http://news.bbc.co.uk/1/hi/in_pictures/4194032.stm
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I fully accept that) to then illuminate practical choices. ‘In-
ternalizing’ that a threat is real and what you need to do to
maximize your safetymay be the core goal of risk commu-
nication. This internalization and safety-oriented action
may lead to a choice of precautionary evacuations. People
need tomake informed decisions, thus leading to decision-
driven activity.

Delivering Real-TimeWarnings

The idea of subjective uncertainty [74] is well displayed
by fire-zone residents who, despite all authority efforts to
have them commit to an early decision to stay and defend
or to leave their properties early, recurrently reported that
they would decide on the day whether they would stay or
go. There are tragic and recent international examples of
resident’s decisions made on too little understanding or
information.

The bushfire ‘stay or go’ decision point explored in
2007 research by the author with Australian fire-zone resi-
dents clarifies that decision impact on those under threat –
packing up their valuables, children and pets and fleeing
their house, almost certainly putting it at risk of burn-
ing down; as opposed to staying in their house and expe-
riencing the terror of the developing bushfire, was a de-
cision many preferred to delay. Further, many acknowl-
edged that to leave early with all of the disruption, only to
learn that the fire was not an actual threat to their property
helped induces people to delay that decision point.

Subjective uncertainty is a psychological problem. The
outcome of current research is to encourage the threat
information gatherers and providers; the weather bureau
and disaster managers, to refine information detail and
use all currently available modes of dissemination to pro-
vide the threatened with the maximum amount of fine de-
tails to make that evacuation decision in an informed and
timelymanner. This is a clear example of where theory and
the practical views of hazard zone residents converge.

The 2007 southeast Australian fire zone research
shows that people who are more obviously at risk from
bushfire are far more prepared than people who are at risk
from an occasional but as potentially destructive bushfire.
The literature [13,24,31] shows that the less frequent the
event, the less prepared people are likely to be. Aligned to
the goals of this publication, the formula explained in this
article on the realities and complex elements of combin-
ing physical with human geography to the ‘social good’ of
maximizing safety around disaster impacts is a great po-
tential application of complexity and systems science. This
complexity includes the Media (Media Support MS of for-
mula 1).

The Media

The media plays an ongoing role in socialization and the
development of normative values. Dominick [20] argues
that the media plays a key role in the cognitive develop-
ment of individuals. Cognition is the act of coming to
know something. Mass media can play a defining role in
people’s awareness and responses to disaster threats. The
CST embraces local media as an active agent in providing
needed local information. Local media outlets can draw on
and enhance Internet information to inform readers and
listeners of ‘how to’ actions to maximize their safety. In
this way the mass media can help clarify facts to help make
contentious decisions (which may result in life or major
property loss) by providing the fine details to reduce the
uncertainty surrounding decisions that householders un-
der threat need to make. The seven steps to community
safety (Sect. “Integrating Theory and Implementation”)
underline this core need for individuals in hazard zones to
accept they are at risk and for the Internet and local media
to act as providers of relevant, local, timely information for
informed decision-making.

The media can play a powerful role in mobilizing
communities [58], but they need to have accurate and
timely information from disaster managers. The informa-
tion which fire zone residents in southeastern Australia in
2007 asked for from the Internet is in full keeping with the-
ory, and a recognition that greater access to current facts
will reduce uncertainty in decision-making.

Triggering Action: Modeling and Simulating
This Geographic, Communications
and Psychological Complexity

The reason step one in the seven step process is so impor-
tant is to counteract a psychological defense against ac-
cepting threat. We need to have a sense of personal in-
vulnerability to get us through each day [75]. If we were
scared of all possible problems we would cease to operate.
The risk literature from Handmer, Goudie, Rohrmann,
Salter [34,42,75,77] and many others underlines the im-
portance of the clarity in the description of the threat and
safety oriented action. Thus Acceptance they are In a Haz-
ard Zone (AIHZ) of formula 1 is central to possible conse-
quent safety-oriented behavior.

One reason given for risk communication failing is
that it is not clear what should be done. The seven steps
include a requirement that ‘what to do’ information be an
integral part of any warning as a prelude to evacuation.
The clear message is that the process of people excepting
that a risk is real needs to well precede any actual impact.
This is underlined by Kasperson & Stallen [49], who also
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stress the importance of time perception and time hori-
zons. Hence the importance of Knowledge Base of the haz-
ard and safety-maximizing behavior (KB) of formula 1.

Timely Preparation, Final Actions and Evacuations

Timeliness of warnings is paramount to the effectiveness
of warnings [85]. In the early 1990s there was much psy-
chology research on perceptions of risk probabilities, indi-
vidual psychometric studies on perceptions of future time,
time orientation, planning horizons, and prediction of fu-
ture events. In 2007 Australian fire zone residents say they
want fine, detailed information as a threat approaches, so
the uncertainty of what they may face is minimized. Their
planning horizons are generally well oriented tomaximum
safety, but the crucial ‘stay or go’ decision will be based
on information as close to impact as allows them adequate
time to act safely.

Svenson [85] and others make clear that it is not only
what you may chose to do, but also when you do it. In
the case of remote area warnings of flooding, for instance,
when flood waters may take a week to block down-catch-
ment roads, traveling earlier than planned may be the best
way to avoid the fate of the truck shown in Fig. 15. This
is an example of an ‘Active warning image’, along with the
image of the person standing on the car roof in the flooded
road crossing (Fig. 16). Images like these are of use to re-
mind people to travel before or after expected flooding –
not during the flood.

In 2007, in a two day threat and evacuation exercise in
Woodgate Beach operated on the underlined imperative,
from the outset, that evacuation ahead of a storm surge
would need to be completed not as cyclonic winds struck,
but six hours before landfall. Once the winds gusted above
100 km per hour, all peoples, including disaster managers,
must be in safe shelter above cyclone surge height.

Disasters and evacuations are issues of people, infor-
mation, time and space. People in threat zones are enti-
tled to accurate and timely localized information, detailing
the threat and likely time-linked movement. People also
want to know, via the internet or battery operated radios,
what authorities are doing. That information may influ-
ence their own actions. What they ask for is the enhance-
ment of their ‘risk decision landscape’ [83].

In 1974 communicationmanagement of and responses
to disasters in Darwin and Brisbane shocked Australians.
Darwin’s Cyclone Tracy killed 65 people, and the Brisbane
floods killed 16 [10,11]. These catastrophes taught Aus-
tralian emergency planners much about the importance of
effective warnings, sharing honest, complete and open in-
formation in a timely way to emergency managers, emer-

Evacuation as a Communication and Social Phenomenon, Fig-
ure 15
Nearly crossing a flooded road – Tully NQ2004, From: Townsville
Bulletin, 28/4/4.

Evacuation as a Communication and Social Phenomenon, Fig-
ure 16
An image dissuadingpeople from driving in to flood waters

gency workers, and those at risk to ensure sound prepa-
ration and responses. The Australian natural disasters of
1974, with major flooding elsewhere in Australia that year,
also reinforced the importance of community and family
ties to get people through the often profound emotional
trauma allied with major natural disasters. The detailed
documentation of Cyclone Tracey can help guide develop-
ment of predictive models of disaster preparedness, com-
munications and responses. With so few well document
cases, a Bayesian Logic approach could be used, some
well documented disasters, communications and response
cases to develop the model, others to test and refine it.

The more recent and current disaster impacts all
point to the importance of communities being prop-
erly informed. Indeed, the literature on knowledge, risk
and inclusion of residents in the bushfire planning pro-
cess is well described by Goldammer [32]. Issues of in-
creased encroachment on to bush edges along with climate
change are causing increased international concern over
fire threats, often to places without much collective wis-
dom over the reality of those fire threats, or the nature of
the strategies needed to maximize community safety.
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South Eastern Australia is seen as one of the most
bushfire-prone environments in the world [92]. Boura [7],
an Australian fire manager, describes the development of
community fireguard groups in Victoria. These groups
are managed and instructed by the Country Fire Author-
ity, but they are residents within very localized neighbor-
hoods. They have their counterparts in the ACT and some
other Australian States. They draw on detailed, often tech-
nically advanced information from the weather bureau
and fire agencies to increase local awareness and action.
This is a real playing out of the theories of social ampli-
fication developed by psychologists and risk communi-
cation theorists [73]; advanced planning techniques [16]
and aligned with the way many feel about the direction of
emergency management in Australia [15].

Linking the People with the Message

The foci on culture, community and social frameworks, ei-
ther formal or informal neighborly links, is considered by
Douglas [21]. Douglas argues that there is a need for peo-
ple to understand that risk and danger exist where they
live, despite a low probability that an impact may occur
in any given hazard season. There is a large body of psy-
chology which considers why people ignore clear messages

Evacuation as a Communication and Social Phenomenon, Figure 17
Initiatives to empower residents to be prepared for fire

which may maximize their safety [12]. Douglas speaks of
artificially distorted world views. Douglas posits such bias
is rooted in over-simple views of heroic and bourgeois fic-
tion. Changing such a normative world view has been dis-
cussed in this article in terms of a paradigm shift, well dis-
played by the Australian Government [13]. A model con-
structed from formula 1 needs to include all the subtle
complex issues of social profiling.

Woodgate Beach (Sect. “Experiences and Lessons –
Some Case Studies”), perhaps because of physical isola-
tion, is fully embracing self-help, also displaying a deep
culture of volunteerism that can be nurtured and emulated
in ‘urban villages’. Sustainable urban planning concepts of
nodes or activity centers are now well evolved as the hub
of ‘urban villages’ [35]. What is happening in Woodgate
Beach can be used as a model for any formula of devel-
oped social collective will to self-help, ultimately whether
urban and surrounded by other neighborhoods, or more
physically isolated.

Like the Ferny Creek (Victoria) community who agi-
tated for a fixed bushfire siren after three of their neighbors
were burned to death in the flash fire of 1997, community
action needs a few individuals of vision and drive, resi-
dents of ‘neighborhoods’ can initiate and embrace safety-
oriented behaviors and structures. The best thing the insti-
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tutional systems can do is draw out, nurture and encour-
age these individuals to mobilize a focus on gaining threat
knowledge and acting to increase community responses.
Part of the community engagement in the fact they are in
a threat zone, as step 1 to action, is shown in Fig. 17; a great
road-side banners initiative by one section of the Victo-
rian Country Fire Authority to make the fire threat and
implications real for fire-prone residents. Figure 17 shows,
in few words, that if you intend to evacuate, do it early.
Figure 17 says that the support and creativity to maximize
communication effectiveness (the opposite of Institutional
Barriers) helps contribute to a positive Medium and Mes-
sage (MM) of formula 1.

Traditional Weather Warnings

Traditional weather warning signs include ant movement
for looming flood, and general bird movement for strong
winds, including cyclones [64,87,88]. On Palm Island,
when the birds and animals go quiet, it signals that a ma-
jor storm may be on the way [36,39]. The buildup to
the summer monsoon rains is the universal experience of
still, humid and hot conditions, continuing in intensity
and cloud until the rains come. All cultures in all hazard
zones have their traditional knowledge. Cultural Knowl-
edge Bases (KB of formula 1) needs to be modeled into any
mathematical prediction of likely propensity to respond to
a natural disaster threat.

Words and Images

Word and image use are critical to effective communica-
tion. A newspaper graphic ahead of the terrorist-threat-
ened 2004 Olympic Games (Fig. 18) conveys much about
the world we now occupy, and uses no words.

The need for clear messages, most likely to provoke
a precautionary response, is supported by the risk com-
munication literature of Sect. “Effective Risk Communi-
cation” and the communication and cognitive theory of

Evacuation as a Communication and Social Phenomenon, Fig-
ure 18
An image of terror in 2004 – Source: Townsville Bulletin

Sect. “Integrating Theory and Implementation”. If this
knowledge is melded to requests of remote Indigenous
peoples and NESH, the safety goal of clear, plain words
and images will become the risk communication norm.
There are many examples of images conveying meaning,
such as the internationally used figure running upstairs,
with an arrow; signifying an evacuation route. The symbol
for tsunami; a stylized figure racing up a steep slope with
a very large wave following, threatening to engulf them is
also without words, but conveys all we need to know about
evacuating ahead of a tsunami: get up slope immediately.

Images andWarningMaps

Risk communication is usually about attempts to prompt
considered action by a person or community. Effective
communication should make the future threat real in
present thinking. Alternative responses should be out-
lined, along with likely consequences. To further prompt
a considered and active response to the ‘action warning’,
the consequences of inaction or a range of defensive ac-
tions should be made lucid. ‘Preferred’ behavior should
seem reasonably attractive to ‘target individuals’ [85]. The
theoretical overview of risk communication in Sect. “Ef-
fective Risk Communication” explains why the message
must be clear to the target audience. It needs to have some
cognitive content to get people thinking about how it may
impact on them, and what the alternative outcomes for
them may be if the predicted impact strikes where they
are. Stimulus and local risk simulations, as embedded in
the Redlands shire flood map [102], should be saturation
broadcast into all hazard zones. The CST should be at-
tempted with at-risk groups; people in threat zones, en-
couraging them to properly think about the real threat and
to indicate to people what inaction may bring. A range of
safety-oriented actions should also be presented.

Modeling Risk Communication
into and Through Communities

Efforts have been made since the 1960s to see how well
people understood the hazard. These studies continue [5].
The model of hearing, understanding, believing and feel-
ing that the information is personalized so that those at
risk will act has been well understood since the early
90s [81]. The general issues of credibility [18,69,70] still
apply. Studies reported by Sorenson and Mileti [81] show
increased knowledge as a result of risk communication ef-
forts. People do become more aware of hazards and their
personal place within the hazard threats. Unfortunately
the link between knowledge and behavior remains tenu-
ous [35].
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Knowing that the normal first warning of major dis-
ruptive weather comes via the evening TV news in remote
settlements, simulations will carry a high embedded likeli-
hood of safety-oriented community response.

Sorenson and Mileti [81] showed that the believabil-
ity of warnings increases as people get more warnings
from officials with high credibility, and that women tend
to believe emergency warnings more than men. They also
showed that people higher up the socioeconomic ladder
tend to believewarningsmore than their counterparts.Mi-
nority groups have lower than average belief in warnings
while people with a high knowledge of the hazard tend to
find warnings more credible.

New Cultures to Hazard Zones

The issues discussed in this article from remote Indige-
nous communities and from non-English-speaking house-
holds make clear the importance of using plain English.
Work with representatives of both groups made clear that
plain English and images were necessary to convey the
concept of danger to people in hazard zones, concurring
with the expositions of Douglas [21]. The simpler the
language the better. Douglas argues that even the word
‘risk’ could be dropped and ‘danger’ used instead. Goudie’s
work with recent Somali arrivals in Australia showed that,
like Japanese tourists and many other people from non-
English-speaking backgrounds, they understood the word
and concept of ‘danger’, but did not, for instance, under-
stand the word ‘severe’. The importance of language clarity
to the intended audiences in theMM expression of formula
1 needs emphasis.

For risk communication and evacuation advice to pen-
etrate to all people in hazard zones, the language and im-
agesmust be clear, simple, and compelling. If risk commu-
nicators construct campaigns of engagement which work
for such ‘marginalized’ groups, the ‘mainstream’ can be
easily included in that campaign.

Playing the Odds

Renn and Rohrmann [74] make clear that the assump-
tion that risk judgments and evaluations are universal pro-
cesses independent of social status or national heritage are
unreasonable. Goudie’s Australian research with multicul-
tural organizations shows most clearly that there are many
populations in hazard zones and that each of those groups
must be addressed in ways that make the hazard real to
them. Findings from the Cyclone Larry research [53] also
show that there are many groups other than cultural, such
as ‘social isolates’ – the socially disenfranchised, who need

special attention around disaster threats to ensure their
safety.

Douglas [21] argues that risk perception and thus re-
sponse is also an issue of moral and political issues. West-
erners tend to consider the probability of an impact in
terms of gambling whereas other cultures may need other
triggers to internalize the threat and motivate them to ac-
tion. The concept of a low probability event needing to be
taken seriously is discussed by Douglas and others. Res-
idents of Florida are well used to a near-annual evacua-
tion ahead of frequent cyclones. Residents of the coastal
communities of Queensland may be less likely to take the
warning seriously, because they believe that there is no real
chance that they will be personally affected by a cyclone.
The whole issue of low probability and high impact events
needs to be stressed to relevant impact zone residents.

The first and hardest step in an effective community
evacuation remains convincing people in the projected
impact zone that the looming threat is real. Renn and
Rohrmann [74] suggest that to help make that threat real,
project the expected number of fatalities or the catas-
trophic potential or where the threat may come from.

Spreading the Warning

Handmer [43] recommends that the professional warning
agencies should attempt to harness the “personal informa-
tional networks of individuals within formal communica-
tion systems, and by assuring that formal warning advice
is consistent with local norms and behavior” ([43] p 27).
Shifting the normative values of recalcitrant disaster man-
agers, and residents in ignorance or denial in urban risk
zones becomes the key task of the seven steps to commu-
nity safety, along with the amalgamating approach of the
community safety triangle.

Part of the strength of the CST is that it taps into
and informs an existing social predisposition for people
to talk to each other, particularly in times of common
threat (King and Goudie 2006). Using emergent technolo-
gies to provide real-time information to communitymedia
and households helps realize aware informed communi-
ties, predisposed to action.

With literature and research results discussed through-
out this article, this discussion underlines the importance
of modeling local norms, and interactive, safety-focused
behavior. Emerging concepts which may be tested in fur-
ther research are Community Safety groups (Sect. “Ex-
periences and Lessons – Some Case Studies”) and Social
Burnoffs or flood evacuation practices. The main thrust
of this work is to encourage interested modelers to accu-
rately simulate how communities understand and act on
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the need for safety-oriented action, where people are inclu-
sive at the neighborhood level, acting as a self-preserving
group, no matter what the ethnicity or state of surround-
ing populations. Neighborhood cohesion and empower-
ment is current social policy consistent with ESD philoso-
phies and principles, enshrined in current planning laws
such as IPA 1997 [46].

To illustrate the power of the internet, consider that
any online reader globally can click on [103] and see the
social aspects of Queensland’s sustainability planning law.
Indeed, click on and draw from any of the web sites given.
If we were not suffering from information overload and
time paucity, the paradigm shift to sustainability imple-
mentation would be rapid, the modeling acted on by dis-
aster managers and financial cost-benefit analysts. Until
that time, models will help convince and guide people in
testable and demonstrable ways to increase community
safety. Our very busyness is perhaps the main barrier to
reducing global warming and natural disaster impacts. An
alternative way into a more sustainable future is centered
on local needs-meeting, including nurturing more local
community cohesion and sharing of reliable, safety-ori-
ented information and safety-oriented actions.

Future Directions in Modeling Disaster Preparedness
and Evacuations as a Social Issue

As global warming and climate change intensifies, the
need to model for preparedness and evacuations will in-
crease with more frequent and extreme weather events.
The total and fine detail of all needed background prepa-
rations and ramp-up preparations are too numerous and
arduous for formal disaster management organizations to
implement alone, hence the increased need to promote
and strongly support the role of community engagement,
of community empowerment and nurturing self-help in
maximizing effective natural disaster preparation, includ-
ing evacuations.

Australia has matured disaster policy, law and evolv-
ing practice, all embedded in concepts of ecologically sus-
tainable development. Researchers can access, model and
test local applicability of some of the Australian experi-
ences and culture of community self-help. Sustainability
Implementation Research will become universal as the era
of last-minute organizational flurries whilst goading an ig-
norant and passive population at threat is superseded by
prepared and bonded communities who are primed to re-
ceive well-deliveredwarnings, often sourced from the web,
and whomove themselves to safety in plenty of time.Mod-
eling this will help sell the approach to conservative disas-
ter managers.

The Sustainability Implementation Research, includ-
ing data-based simulations introduced in this article, is
the logical next step to ‘action research’ of the social sci-
ences and will become the norm in approaching all is-
sues of sustainability where the policies are mature, but
agencies are unsure how to implement the paradigm shift;
the behavioral and technological shift, to agreed long-term
goals.

Meaningful consultation is a defining requirement of
sustainability planning and good modeling, so all future
social research of merit will take the Human Geographer’s
approach and “ask the local residents, involve the local
residents.” Community empowerment, and its modeling
means local residents are entitled to help mold their own
future. With hazard management, the shared SIR goal is
to empower hazard-zone communities to be aware of the
threat, be basically prepared for any warning, and act, as
a community, in a precautionary way to maximize safety,
minimize loss, and speed recovery.

As we move forward, plain language(s), clear, widely
displayed hazard maps and images of like hazard impacts
will help energize hazard-zone residents to the threats and
their own needed safety-oriented behavior.

Researchers and Complexity and Systems Scientists
have a moral if onerous obligation to challenge any layer
of government clearly exercising or imposing barriers to
helping people internalize any threats, then be supported
in getting safe and staying safe, recognizing that change
may threaten some individuals or sections within bureau-
cracies. As disaster management moves from a militaristic
model of command and control to community empow-
erment and self help, the developing potential of the web
as a key information source into hazard zones – ultimately
web-to-air – will bear the fruit of greater community safety
and minimized loss. Web-to-TV in disaster warning will
be a fine conduit for showing residents-at-risk where the
threat may be in relation to their home in a few hours.
That immediacy of moving images is a compelling moti-
vator for safety-oriented action.

In future, researchers, modelers and others involved in
maximizing community safety will embrace some varia-
tions of the communications safety triangle and the seven
steps to community safety, simply because theymake sense;
are highly cost-effective and easily web-refined from inter-
national to local conditions, populations and threats.
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Glossary

Pedestrian A person traveling on foot. In this article,
other characterizations are used depending on the con-
text, e. g., agent or particle.

Crowd A large group of pedestrians moving in the same
area, but not necessarily in the same direction.
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Evacuation The movement of persons from a dangerous
place due to the threat or occurrence of a disastrous
event. In normal situations this is called “egress” in-
stead.

Flow The flow or current J is defined as the number of
persons passing a specified cross-section per unit time.
The common unit of flow is “persons per second”. Spe-
cific flow is the flow per unit cross-section. The maxi-
mal flow supported by a facility (or a part of it) is called
“capacity”.

Fundamental diagram In traffic engineering (and
physics): density-dependence of the flow: J(�). Due
to the hydrodynamic relation J D �vb equivalent rep-
resentations used frequently are v D v(�) or v D v(J).
The fundamental diagram is probably the most impor-
tant quantitative characterization of traffic systems.

Lane formation In bidirectional flows, lanes are often dy-
namically formed in which all pedestrians move in the
same direction.

Bottleneck A limited resource for pedestrian flows, for
example a door, a narrowing in a corridor, or stairs,
i. e., a location of reduced capacity. At bottlenecks jam-
ming occurs if the inflow is larger than the capacity.
Other phenomena that can be observed are the forma-
tion of lanes and the zipper-effect.

Microscopic models Models which represent each pedes-
trian separately with individual properties like walking
velocity or route choice behavior and the interactions
between them. Typical models that belong to this class
are cellular automata and the social-force model.

Macroscopic models Models which do not distinguish
individuals. The description is based on aggregate
quantities, e. g., appropriate densities. Typical models
belonging to this class are fluid-dynamic approaches.
Hand calculation methods which are based on related
ideas and are often used in the field of (fire-safety) en-
gineering belong to this class as well.

Crowd disaster An accident in which the specific behav-
ior of the crowd is a relevant factor, e. g., through com-
petitive and non-adaptive behavior. In the media, it is
often called “panic” which is a controversial concept in
crowd dynamics and should thus be avoided.

Definition of the Subject

Today, there are many occasions on which a large num-
ber of people gathers in a rather small area. Office build-
ings and apartment houses grow larger andmore complex.
Very large events related to sports, entertainment or cul-
tural and religious events are held all over the world on
a regular basis. This brings about serious safety issues for

the participants and for the organizers who must be pre-
pared for any case of emergency or critical situation. Usu-
ally in such cases the participants must be guided away
from the dangerous area as quickly as possible. Therefore
the understanding of the dynamics of large groups of peo-
ple is very important.

In general, evacuation is egress from an area, a build-
ing or a vessel due to a potential or actual threat. In the
cases described above, the dynamics of the evacuation pro-
cesses are quite complex due to the large number of people
and their interaction, external factors such as fire, com-
plex building geometries, etc. Evacuation dynamics must
be described and understood on different levels: physical,
physiological, psychological, and social. Accordingly, the
scientific investigation of evacuation dynamics involves
many research areas and disciplines. The system “evacu-
ation process” (i. e., the population and the environment)
can be modeled on many different levels of detail, rang-
ing from hydro-dynamic models to artificial intelligence
and multi-agent systems. There are at least three aspects
of evacuation dynamics that motivate its scientific investi-
gation:

1) As in most many-particle systems several interesting
collective phenomena can be observed that need to be
explained;

2) Models need to be developed that are able to reproduce
pedestrian dynamics in a realistic way, and

3) Pedestrian dynamics must be applied to facility design
and to emergency preparation and management.

The investigation of evacuation dynamics is a difficult
problem that requires close collaboration between differ-
ent fields. The origin of the apparent complexity lies in
the fact that one is concerned with a many-‘particle’ sys-
tem with complex interactions that are not fully under-
stood. Typically the systems are far from equilibrium and
so are, e. g., sensitive to boundary conditions. Motion and
behavior are influenced by several external factors and of-
ten crowds can be rather inhomogeneous.

In this article we want to deal with these problems
from different perspectives and will not only review the
theoretical background, but will also discuss some con-
crete applications.

Introduction

The awareness that emergency exits are one of the most
important factors to ensure the safety of persons in build-
ings can be traced back more than 100 years. Disasters due
to the fires in the Ring theater in Vienna and the urban
theater in Nizza in 1881 resulted in several hundred fatal-
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ities and led to a rethinking of the safety in buildings [24].
First, attempts were made to improve safety by using non-
flammable building materials. However, the disaster at the
Troquois Theater in Chicago with more than 500 fatali-
ties, where only the decorations burned, demonstrated the
need for more effective measures. This was a starting point
for studying the influences of emergency exits and thus the
dynamics of pedestrian streams [24,32].

In recent years there have been two major evacua-
tion incidents which gained immense global attention.
First, there was the capsizing of the Baltic Sea ferry MV
Estonia (September 28, 1994, 852 casualties) [100] and,
of course, the terrorist attacks of 9/11 (2,749 casualties).
Other prominent examples of the possible tragic outcomes
of the dynamics of pedestrian crowds are the Hillsbor-
ough stadium disaster in Sheffield (April 15, 1989, 96
casualties) [182], the accident at Bergisel (December 4,
1999, 5 casualties) [189], the stampede in Baghdad (Au-
gust 30, 2005, 1,011 casualties), the tragedy at the concert
of “TheWho” (December 3, 1979, 11 casualties) [73] and –
very early – the events at the crowning ceremony of Tsar
Nicholas II in St. Petersburg in May 1896 with 1,300 to
3,000 fatalities (sources vary considerably) [168]. In the
past, tragic accidents have happened frequently in Mecca
during the Hajj (1990: 1,426, 1994: 270, 1997: 343, 1998:
107, 2001: 35, 2003: 14, 2004: 244, and 2006: 364 casual-
ties). What stands out is that the initiating events are very
diverse and range from external human aggression (ter-
rorism) to external physical dangers (fire) and rumors to
various shades of greedy behavior in absence of any exter-
nal danger.

Many authors have pointed out that the results of ex-
perts’ investigations and the way the media typically re-
ports about an accident very often differ strongly [17,77,
109,155,156,178]. Public discussion has a much greater
tendency to identify “panic” as the cause of a disaster,
while expert commissions often conclude that there either
was no panic at all, or panic was merely a result of some
other preceding phenomenon.

This article first discusses the empirical basis of pedes-
trian dynamics in Sect. “Empirical Results”. Here we in-
troduce the basic observables and describe the main qual-
itative and quantitative results, focusing on collective phe-
nomena and the fundamental diagram. It is emphasized
that even for the most basic quantities, no consensus about
basic behavior has been reached.

In Sect. “Modeling” various model approaches that
have been applied to the description of pedestrian dynam-
ics are reviewed.

Section “Applications” discusses more practical issues
and gives a few examples for applications to safety analysis.

In this regard, prediction of evacuation times is an impor-
tant problem as legal regulations must often be fulfilled.
Here, commercial software tools are available. A compari-
son shows that the results must be interpreted with care.

Empirical Results

Overview

Pedestrians are three-dimensional objects and a complete
description of their highly developed and complicated
motion sequence is rather difficult. Therefore, in pedes-
trian and evacuation dynamics, pedestrian motion is usu-
ally treated as two-dimensional by considering the vertical
projection of the body.

In the following sections we review the present knowl-
edge of empirical results. These are relevant not only as
a basis for the development of models, but also for appli-
cations such as safety studies and legal regulations.

We start with the phenomenological description of
collective effects. Some of these are known from everyday
experience and will serve as benchmark tests for any kind
of modeling approach. Anymodel that does not reproduce
these effects is missing some essential part of the dynam-
ics. Next, the foundations of a quantitative description are
laid by introducing the fundamental observables of pedes-
trian dynamics. Difficulties arise from different conven-
tions and definitions. Then pedestrian dynamics in several
simple scenarios (corridor, stairs etc.) are discussed. Sur-
prisingly, even for these simple cases no consensus about
the basic quantitative properties exists. Finally, more com-
plex scenarios are discussed which are combinations of the
simpler elements. Investigations of scenarios such as evac-
uations of large buildings or ships suffer even more from
lack of reliable quantitative and sometimes even qualita-
tive results.

Collective Effects

One of the reasons why the investigation of pedestrian dy-
namics is attractive for physicists is the large variety of in-
teresting collective effects and self-organization phenom-
ena that can be observed. Thesemacroscopic effects reflect
the individuals’ microscopic interactions and thus give im-
portant information for any modeling approach.

Jamming Jamming and clogging typically occur for high
densities at locations where the inflow exceeds capac-
ity. Locations with reduced capacity are called bottle-
necks. Typical examples are exits (Fig. 1) or narrow-
ings. This kind of jamming phenomenon does not
depend strongly on the microscopic dynamics of the
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Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 1
Clogging near a bottleneck. The shape of the clog is discussed in
more detail in Subsect. “Theoretical Results”

particles. Rather it is a consequence of an exclusion
principle: space occupied by one particle is not avail-
able for others.
This clogging effect is typical for a bottleneck situa-
tion. It is important for practical applications, espe-
cially evacuation simulations.
Other types of jamming occur in the case of counter-
flow where two groups of pedestrians mutually block
each other. This happens typically at high densities and
when it is not possible to turn around and move back,
e. g., when the flow of people is large.

Density waves Density waves in pedestrian crowds can be
generally characterized as quasi-periodic density varia-
tions in space and time. A typical example is the move-
ment in a densely crowded corridor (e. g., in subway-
stations close to the density that causes a complete halt
of motion) where phenomena similar to stop-and-go
vehicular traffic can be observed, e. g., density fluctua-
tions in a longitudinal direction that move backwards
(opposite to the movement direction of the crowd)
through the corridor. More specifically, for the situ-
ation on the Jamarat Bridge in Makkah (during the
Hajj pilgrimage 2006), stop-and-go waves have been

reported. At densities of 7 persons per m2 upstream,
moving stop-and-go waves of period 45 s have been
observed that lasted for 20minutes [59]. Fruin reports,
that “at occupancies of about 7 persons per square
meter the crowd becomes almost a fluid mass. Shock
waves can be propagated through the mass sufficient
to lift people off their feet and propel them distances of
3m (10 ft) or more.” [36].

Lane formation In counterflow, i. e., two groups of peo-
ple moving in opposite directions, (dynamically vary-
ing) lanes are formed where people move in just one
direction [135,139,197]. In this way, strong interac-
tions with oncoming pedestrians are reduced which is
more comfortable and allows higher walking speeds.
The occurrence of lane formation does not require
a preference of moving on one side. It also occurs in
situations without left- or right-preference. However,
cultural differences for the preferred side have been
observed. Although this preference is not essential for
the phenomenon itself, it has an influence on the kind
of lanes formed and their order.
Several quantities for the quantitative characterization
of lane formation have been proposed. Yamori [197]
has introduced a band index which is basically the
ratio of pedestrians in lanes to their total number.
In [13] a characterization of lane formation through
the (transversal) velocity profiles at fixed positions has
been proposed. Lane formation has also been pre-
dicted to occur in colloidal mixtures driven by an
external field [15,28,158]. Here, an order parameter
� D 1

N h
PN

jD1 � ji has been introduced where � j D 1
if the lateral distance to all other particles of the other
type is larger than a typical density-dependent length
scale, and � j D 0 otherwise.
The number of lanes can vary considerably with the
total width of the flow. Figure 2 shows a street in the
city center of Cologne during World Youth Day in
Cologne (August 2005) where two comparatively large
lanes have been formed.
The number of lanes usually is not constant and
might change in time, even if there are relatively small
changes in density. The number of lanes in opposite di-
rections is not always identical. This can be interpreted
as a sort of spontaneous symmetry breaking.
Quantitative empirical studies of lane formation are
rare. Experimental results have been reported in [94]
where two groups with varying relative sizes had to
pass each other in a corridor with a width of 2m. On
one hand, similar to [197] a variety of different lane
patterns were observed, ranging from 2 to 4 lanes. On
the other hand, in spite of this complexity, surprisingly
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Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 2
The “Hohe Straße” in Cologne duringWorldYouth Day 2005. The
yellow line is the border of the two walking directions

large flows could be measured: the sum of (specific)
flow and counterflow was between 1.8 and 2.8 persons
per meter per second and exceeded the specific flow for
one-directional motion (� 1:4 P/ms).

Oscillations In counterflow at bottlenecks, e. g., doors,
one can sometimes observe oscillatory changes of the
direction of motion. Once a pedestrian is able to pass
the bottleneck it becomes easier for others to follow in
the same direction until somebody is able to pass the
bottleneck (e. g., through a fluctuation) in the opposite
direction.

Patterns at intersections At intersections, various collec-
tive patterns of motion can be formed. A typical ex-
ample is short-lived roundabouts which make motion
more efficient. Even if these are connected with small
detours, the formation of these patterns can be favor-
able since they allow for “smoother” motion.

Emergency situations, “panic” In emergency situations
various collective phenomena have been reported that
have sometimes misleadingly been attributed to panic
behavior. However, there is strong evidence that this is
not the case. Although a precise accepted definition of
panic is missing, usually certain aspects are associated
with this concept [77]. Typically “panic” is assumed to
occur in situations where people compete for scarce
or dwindling resources (e. g., safe space or access to
an exit) which leads to selfish, asocial or even com-
pletely irrational behavior and contagion that affects
large groups. A closer investigation of many crowd dis-
asters has revealed that most of the above characteris-
tics have played almost no role and most of the time
have not been observed at all (see e. g. [73]). Often

the reason for these accidents is much simpler, e. g.,
in several cases the capacity of the facilities was too
small for the actual pedestrian traffic, e. g., Luschniki
StadiumMoskau (October 20, 1982), Bergisel (Decem-
ber 4, 1999), pedestrian bridge Kobe (Akashi) (July
21, 2001) [186]. Therefore the term “panic” should be
avoided, crowd disaster being amore appropriate char-
acterization. Also it should be kept in mind that in
dangerous situations it is not irrational to fight for re-
sources (or for your own life), if everybody else does
this [18,113]. Only from the outside is this behavior
perceived as irrational since it might lead to a catas-
trophe [178]. The latter aspect is therefore better de-
scribed as non-adaptive behavior.We will discuss these
issues in more detail in Subsect. “Evacuations: Empiri-
cal Results”.

Observables

Before we review experimental studies in this section, the
commonly used observables are introduced.

The flow J of a pedestrian stream gives the number
of pedestrians crossing a fixed location of a facility per
unit of time. Usually it is taken as a scalar quantity since
only the flow normal to some cross-section is considered.
There are various methods to measure flow. The most
natural approach is to determine the times ti at which
pedestrians pass a fixed measurement location. The time
gaps 
ti D tiC1 � ti between two consecutive pedestri-
ans i and i C 1 are directly related to the flow

J D
1
h
ti i

with h
ti i D
1
N

NX

iD1

(tiC1�ti ) D
tNC1 � t1

N
:

(1)

Another possibility for measuring the flow of a pedes-
trian stream is borrowed from fluid dynamics. The flow
through a facility of width b is determined by the average
density � and the average speed v of a pedestrian stream as

J D �vb D Jsb : (2)

where the specific flow 1

Js D �v (3)

gives the flow per unit-width. This relation is also known
as hydrodynamic relation.

There are several problems concerning the way in
which velocities, densities or time gaps are measured and

1In strictly one-dimensional motion often a line density (dimen-
sion: 1/length) is used. Then the flow is given by J D �v.
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the conformance of the two definitions of flow. The flow
according to Eq. (1) is usually measured as a mean value
over time at a certain location, while the measurement of
the density in Eq. (2) is connected with an instantaneous
mean value over space. This can lead to a bias caused by
underestimation of fast moving pedestrians at the aver-
age over space compared to the mean value of the flow
over time at a single measurement line (see the discus-
sion for vehicular traffic e. g., in [51,81,102]). Furthermore,
most experimental studies measuring the flow according
to Eq. (2) combine for technical reasons an average veloc-
ity of a single pedestrian over time with an instantaneous
density. To ensure a correspondence of the mean values
the average velocity of all pedestrians contributing to the
density at a certain instant has to be considered. However
this procedure is very time consuming and not realized in
practice up to now. Moreover, the fact that the dimension
of the test section has usually the same order of magni-
tude as the extent of the pedestrians can influence the av-
erages over space. These all are possible factors why differ-
ent measurements can differ in a large way, see discussion
in Subsect. “Fundamental Diagram”.

Another way to quantify the pedestrian load of facili-
ties has been proposed by Fruin [35]. The “pedestrian area
module” is given by the reciprocal of the density. Thomp-
son and Marchant [184] introduced the so-called “inter-
person distance” d, which is measured between center co-
ordinates of the assessing and obstructing persons. Ac-
cording to the “pedestrian area module” Thompson and
Marchant call

p
1/� the “average inter-person distance”

for a pedestrian stream of evenly spaced persons [184]. An
alternative definition is introduced in [58] where the local
density is obtained by averaging over a circular region of
radius R,

�(r; t) D
X

j

f (r j(t) � r) ; (4)

where r j(t) are the positions of the pedestrians j encom-
passed by r and f (: : : ) is a Gaussian, distance-dependent
weight function.

In contrast to the density definitions above, Predtech-
enskii and Milinskii [151] consider the ratio of the sum of
the projection area f j of the bodies and the total area of the
pedestrian stream A, defining the (dimensionless) density
�̃ as

�̃ D

P
j f j
A

; (5)

a quantity known as occupancy in the context of vehicular
traffic. Since the projection area f j depends strongly on the

type of person (e. g., it is much smaller for a child than
for an adult), the densities for different pedestrian streams
consisting of the same number of persons and the same
stream area can be quite different.

Beside technical problems due to camera distortions
and camera perspective there are several conceptual prob-
lems, such as the association of averaged with instanta-
neous quantities, the need to choose an observation area
in the same order of magnitude as the extent of a pedes-
trian together with the definition of the density of objects
with nonzero extent and much more. A detailed analysis
of the ways in which measurement influences the relations
is necessary but still lacking.

Fundamental Diagram

The fundamental diagram describes the empirical relation
between density � and flow J. The name indicates its im-
portance and naturally it has been the subject of many in-
vestigations. Due to the hydrodynamic relation (3) there
are three equivalent forms: Js(�), v(�) and v(Js). In appli-
cations the relation is a basic input for engineering meth-
ods developed for the design and dimensioning of pedes-
trian facilities [35,136,150]. Furthermore, it is a quantita-
tive benchmark for models of pedestrian dynamics [21,86,
112,175].

In this section we will concentrate on planar facilities
such as sidewalks, corridors and halls. For various facilities
such as floors, stairs or ramps, the shape of the diagrams
differ, but in general it is assumed that the fundamental
diagrams for the same type of facilities but having differ-
ent widths merge into one diagram for the specific flow Js.
In first order this is confirmed by measurements on differ-
ent widths [49,135,139,142]. However, Navin andWheeler
observed in narrow sidewalks more orderly movement
leading to slightly higher specific flows than for wider side-
walks [135]. A natural lower bound for the independence
of the specific flow from the width is given by the body size
and the asymmetry in movement possibilities of the hu-
man body. Surprisingly, Kretz et al. found an increase of
the specific flow for bottlenecks with b � 0:7m [93]. This
will be discussed inmore detail later. For the following dis-
cussion we assume facility widths larger than b D 0:6m
and use the most common representations Js(�) and v(�).

Figure 3 shows various fundamental diagrams used
in planning guidelines and measurements of two selected
empirical studies representing the overall range of the
data. The comparison reveals that specifications and mea-
surements disagree considerably. In particular, the maxi-
mum of the function giving the capacity Js;max ranges from
1:2 (ms)�1 to 1:8 (ms)�1, the density value where the max-
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Evacuation Dynamics: Empirical Results, Modeling and Applications, Figure 3
Fundamental diagrams for pedestrian movement in planar facilities. The lines refer to specifications according to planning guide-
lines (SFPE Handbook [136]), Predtechenskii and Milinskii (PM) [150], Weidmann (WM) [192]). Data points give the range of experi-
mental measurements (Older [142] and Helbing [58])

imum flow is reached (�c) ranges from 1:75m�2 to 7m�2

and, most notably, the density �0, where the velocity ap-
proaches zero due to overcrowding, ranges from 3:8m�2

to 10m�2.
Several explanations for these deviations have been

suggested, including cultural and population differ-
ences [58,116], differences between uni- and multidirec-
tional flow [99,135,154], short-ranged fluctuations [154],
influence of psychological factors given by the incentive of
the movement [150] and, partially related to the latter, the
type of traffic (commuters, shoppers) [139].

It seems that the most elaborate fundamental diagram
is given by Weidmann who collected 25 data sets. An
examination of the data which were included in Weid-
mann’s analysis shows that most measurements with den-
sities larger then � D 1:8m�2 are performed on multidi-
rectional streams [135,139,140,142,148]. But data gained
by measurements on strictly unidirectional streams has
also been considered [35,49,188]. Thus Weidmann ne-
glected differences between uni- and multidirectional flow
in accordance with Fruin, who states in his often cited
book [35] that the fundamental diagrams of multidirec-
tional and unidirectional flow differ only slightly. This dis-
agrees with results of Navin andWheeler [135] and Lam et
al. [99] who found a reduction of the flow in dependence
of directional imbalances. Here lane formation in bidirec-
tional flow has to be considered. Bidirectional pedestrian
flow includes unordered streams as well as lane-separated
and thus quasi-unidirectional streams in opposite direc-
tions. A more detailed discussion and data can be found

in [99,135,154]. A surprising finding is that the sumof flow
and counterflow in corridors is larger than the unidirec-
tional flow and for equally distributed loads it can be twice
the unidirectional flow [94].

Another explanation is given byHelbing et al. [58] who
argue that cultural and population differences are respon-
sible for the deviations betweenWeidmann and their data.
In contrast to this interpretation the data of Hanking and
Wright [49] gained by measurements in the London sub-
way (UK) are in good agreement with the data of Mori and
Tsukaguchi [115] measured in the central business district
of Osaka (Japan), both on strictly uni-directional streams.
This brief discussion clearly shows that up to now there
is no consensus about the origin of the discrepancies be-
tween different fundamental diagrams and how one can
explain the shape of the function.

However, all diagrams agree in one characteristic: ve-
locity decreases with increasing density. As the discussion
above indicates there aremany possible reasons and causes
for the velocity reduction. For the movement of pedestri-
ans along a line, a linear relation between speed and the
inverse of the density was measured in [174]. The speed
for walking pedestrians depends also linearly on the step
size [192] and the inverse of the density can be regarded
as the required length for one pedestrian to move. Thus it
seems that smaller step sizes caused by a reduction of the
available space with increasing density is, at least for a cer-
tain density region, one cause for the decrease of speed.
However, this is only a starting point for amore elaborated
modeling of the fundamental diagram.
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Bottleneck Flow

The flow of pedestrians through bottlenecks shows a rich
variety of phenomena, e. g., the formation of lanes at the
entrance to the bottleneck [64,66,93,176], clogging and
blockages at narrow bottlenecks [24,57,93,121,122,150] or
some special features of bidirectional bottleneck flow [57].
Moreover, the estimation of bottleneck capacities by the
maxima of fundamental diagrams is an important tool for
the design and dimensioning of pedestrian facilities.

Capacity and Bottleneck Width One of the most
important practical questions is how the capacity of
a bottleneck rises with increasing width. Studies of this
dependence can be traced back to the beginning of the
last century [24,32] and, up to now, have been discussed
controversially. As already mentioned in the context of
the fundamental diagram there aremultiple possible influ-
ences on pedestrian flow and thus on the capacity. In the
following, the major findings are outlined, demonstrating
the complexity of the system and documenting a contro-
versial discussion over one hundred years.

At first sight, a stepwise increase of capacity with the
width appears to be natural if lanes are formed. For in-
dependent lanes, where pedestrians in one lane are not
influenced by those in others, the capacity increases only
if an additional lane can be formed. This is reflected in
the stepwise enlargement of exit width, which has been
a requirement of several building codes and design rec-
ommendations. See e. g., the discussion in [146] for the
USA and GB and [130] for Germany. e. g.; the German
building code requires an exit width (e. g., for a door) to
be at least 90 cm plus 60 cm for every 200 persons. Inde-
pendently from this simple lane model, Hoogendoorn and
Daamen [64,66] measured by a laboratory experiment the
trajectories of pedestrians passing a bottleneck. The trajec-
tories show that inside a bottleneck the formation of lanes
occurs, resulting from the zipper effect occurring on entry
to the bottleneck. Due to the zipper effect, a self-organiza-
tion phenomenon leading to an optimization of the avail-
able space and velocity; the lanes are not independent and
thus do not allow passing (Fig. 4). The empirical results
of [64,66] indicate a distance between lanes of d � 0:45m,
independent of the bottleneck width b, implying a step-
wise increase of capacity. However, the investigation was
restricted to two values (b D 1:0m and b D 2:0m) of the
width.

In contrast, the study [176] considered more values of
the width and found that the lane distance increases con-
tinuously as illustrated in Fig. 4. Moreover it was shown
that a continuous increase of the lane distance leads to

Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 4
A sketch of the zipper effect with continuously increasing lane
distances in x: The distance in the walking direction decreases
with increasing lateral distance. Density and velocities are the
same in all cases, but the flow increases continuously with the
width of the section

a very weak dependence on its width of the density and ve-
locity inside the bottleneck. Thus in reference to Eq. (2) the
flow does not necessarily depend on the number of lanes.
This is consistent with common guidelines and hand-
books 2 which assume that the capacity is a linear function
of the width [35,136,150,192]. It is given by the maximum
of the fundamental diagram and in reference to the spe-
cific flow concept introduced in Subsect. “Observables”,
Eqs. (2), (3), the maximum grows linearly with the facil-
ity width. To find a conclusive judgment on the question
if the capacity grows continuously with the width the re-
sults of different laboratory experiments [93,121,122,132,
176] are compared in [176].

In the following we discuss the data of flow mea-
surement collected in Fig. 5. The corresponding setups
are sketched in Fig. 6. First, note that all presented data
are taken under laboratory conditions where the test per-
sons are advised to move normally. The data by Muir
et al. [121], who studied the evacuation of airplanes (see
Fig. 6b), seem to support the stepwise increase of flow with
the width. They show constant flow values for b > 0:6m.
But the independence of flow over the large range from
b D 0:6m to b D 1:8m indicates that in this special setup
the flow is not restricted by the bottleneck width. More-
over, it was shown in [176] by determination of the tra-
jectories that the distance between lanes changes continu-
ously, invalidating the basic assumption leading to a step-
wise increasing flow. Thus all collected data for flow mea-
surements in Fig. 5 are compatible with a continuous

2One exception is the German MVStättV [130], see above.
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Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 5
Influence of the width of a bottleneck on the flow. Experimen-
tal data [121,122,132,176] of different types of bottlenecks and
initial conditions. All data are taken under laboratory conditions
where the test persons are advised to move normally

and almost linear increase with the bottleneck width for
b > 0:6m.

The data in Fig. 5 differ considerably in values of
bottleneck capacity. In particular, the flow values of Na-
gai [132] and Müller [122] are much higher than the
maxima of empirical fundamental diagrams (see Sub-

Evacuation Dynamics: Empirical Results, Modeling and Applications, Figure 6
Outlines of the experimental arrangements under which the data shown in Fig. 5 were taken

sect. “Fundamental Diagram”). The influence of “panic”
or pushing can be excluded since in all experiments the
participants were instructed to move normally. The com-
parison of the different experimental setups (Fig. 6) shows
that the exact geometry of the bottleneck is of only mi-
nor influence on the flow, while a high initial density in
front of the bottleneck can increase the resulting flow val-
ues. This is confirmed by the study of Nagai et al., see Fig-
ure 6 in [132]. There it is shown that for b D 1:2m the
flow grows from J D 1:04 s�1 to 3:31 s�1 when the initial
density is increased from 0:4m�2 to 5m�2.

The linear dependence of the flow on the width has
a natural limitation due to the nonzero body-size and the
asymmetry given by the sequence of movement in steps.
Movement of pedestrians through bottlenecks smaller
than shoulder width requires a rotation of the body. Kretz
et al. found in their experiment [93] that the specific
flow Js increases if the width decreases from b D 0:7m to
b D 0:4m.

Connection Between Bottleneck Flow and Fundamen-
tal Diagrams An interesting question is how the bottle-
neck flow is connected to the fundamental diagram. Gen-
eral results for driven diffusive systems [149] show that
boundary conditions only select between the states of the
undisturbed system instead of creating completely differ-
ent ones. Therefore it is surprising that the measuredmax-
imal flow at bottlenecks can exceed the maximum of the
empirical fundamental diagram. These questions are re-
lated to the common jamming criterion. Generally, it is
assumed that a jam occurs if the incoming flow exceeds
the capacity of the bottleneck. In this case one expects the
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flow through the bottleneck to continue with the capacity
(or lower values).

The data presented in [176] show a more compli-
cated picture. While the density in front of the bottleneck
amounts to � � 5:0(˙1)m�2, the density inside the bot-
tleneck tunes around � � 1:8m�2. The observation that
the density inside the bottleneck is lower than in front of
the bottleneck is consistent with measurements of Daa-
men and Hoogendoorn [20] and the description given by
Predtechenskii and Milinskii in [150]. The latter assumes
that in the case of a jam the flow through the bottleneck
is determined by the flow in front of the bottleneck. The
density inside the jam will be higher than the density asso-
ciated with the capacity. Thus the reduced flow in front of
the bottleneck causes a flow through the bottleneck smaller
than the bottleneck capacity. Correspondingly the associ-
ated density is also smaller than that at capacity. But the
discussion above cannot explain why the capacities mea-
sured at bottlenecks are significantly higher than the max-
ima of empirical fundamental diagrams and cast doubts
on the common jamming criterion. Possible unconsidered
influences are stochastic flow fluctuations, non-stationar-
ity of the flow, flow interferences due to the necessity of
local organization or changes of the incentive during the
access into the bottleneck.

Blockages inCompetitive Situations As stated above all
data collected in Fig. 5 are gained by runs where the test
persons were instructed to move normally. By definition
a bottleneck is a limited resource and it is possible that
under competitive situations pedestrian flow through bot-
tlenecks is different from the flow in normal situations.
One qualitative difference to normal situations is the oc-
currence of blockages. Regarding the term ‘panic’ one has
to bear in mind that for the occurrence of blockages some
kind of reward is essential, while the emotional state of
the test persons is not. This was a result of a very in-
teresting and often cited study by Mintz [113]. First ex-
periments with real pedestrians have been performed by
Dieckmann [24] in 1911 as a reaction to many fatalities
in theater fires at the end of the 19th century. In these
small scale experiments test persons were instructed to
go through great trouble to pass the door as fast as pos-
sible. Even in the first run he observed a stable “wedg-
ing”. In [150] it is described how these obstruction occurs
due to the formation of arches in front of the door un-
der high pressure. This is very similar to the well-known
phenomenon of arching occurring in the flow of granular
materials through narrow openings [194].

Systematic studies including the influence of the shape
and width of the bottleneck and comparisons with flow

values under normal situations have been performed by
Müller andMuir et al. [121,122].Müller found that funnel-
like geometries support the formation of arches and thus
blockages. For further discussion, one must distinguish
between temporary blockages and stable blockages lead-
ing to a zero flow. For the setup sketched in Fig. 6c Müller
found that temporary blockages occur only for b < 1:8m.
For b � 1:2m the flow shows strong pulsing due to un-
stable blockages. Temporal disruptions of the flow appear
for b � 1:0 m. In comparison to normal situations the
flow is higher, and in general the occurrence of block-
ages decreases with width. However a surprising result is
that for narrow bottlenecks, increasing the width can be
counterproductive since it also increases the probability of
blockages. Muir et al. for example note that in their setup
(Fig. 6b) the enlargement of the width from b D 0:5m
to b D 0:6m leads to an increase of temporary blockages.
The authors explain this by differences in the perception of
the situation by the test persons.While the smaller width is
clearly passable only for one person, the wider width may
lead to the perception that the bottleneck is sufficiently
wide to allow two persons to pass through. How many
people have direct access to the bottleneck is clearly in-
fluenced by the width of the corridor in front of the bottle-
neck. Also, Müller found hints that flow under competitive
situations did not increase in general with the bottleneck
width. He notes an optimal ratio of 0.75:1 between the bot-
tleneck width and the width of the corridor in front of the
bottleneck.

To reduce the occurrence of blockages, and thus evac-
uation times, Helbing et al. [54,55,83] suggested putting
a column (asymmetrically) in front of a bottleneck. It
should be emphasized that this theoretical prediction was
made under the assumption that the system parameters,
i. e., the basic behavior of the pedestrians, does not change
in the presence of the column. This is highly questionable
in real situations where a column can be perceived as an
additional obstacle or can make it difficult to find the exit.
In experiments [57] an increase of the flow of about 30%
has been observed for a door with b D 0:82m. But this ex-
periment was performed only for one width and the dis-
cussion above indicates the strong influence of the specific
setup used. Independent of this uncertainty this concept is
limited, as the occurrence of stable arches, to narrow bot-
tlenecks. In practice narrow bottlenecks are not suitable
for a large number of people and an opening in a room has
other important functionalities, which would be restricted
by a column.

Another finding is the observation that the total flow
at bottlenecks with bidirectional movement is higher than
it is for unidirectional flows [57].
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Stairs

Inmost evacuation scenarios stairs are important elements
that are a major determinant for the evacuation time. Due
to their physical dimension, which is often smaller than
other parts of a building, or due to a reduced walking
speed, stairs generally must be considered as bottlenecks
for the flow of evacuees. For the movement on stairs, just
as for the movement on flat terrain, the fundamental dia-
gram is of central interest. Compared to the latter there are
more degrees of freedom, which influence the fundamen-
tal diagram:

� One has to distinguish between upward and downward
movement.

� The influence of riser height and tread width (which
determine the incline) has to be taken into account.

� For upward motion exhaustion effects lead to a strong
time dependence of the free speed.

It is probably a consequence of the existence of a contin-
uum of fundamental diagrams in dependence of the in-
cline that there are no generally accepted fundamental di-
agrams for movement on stairs. However, there are stud-
ies on various details—mostly the free speed—of motion
on stairs in dependence of the incline [35,38,39,46], con-
ditions (comfortable, normal, dangerous) [151], age and
sex [35], tread width [33], and the length of a stair [95];
and in consideration of various disabilities [11].

In addition there are some compilations or “meta
studies”: Graat [46] compiled a list of capacity measure-
ments and Weidmann [192] built an average of 58 single
studies and found an average for the horizontal upstairs
speed—the speed when the motion is projected to the hor-
izontal level—of 0:610m/s.

Depending on various parameters, the aforesaid stud-
ies report horizontal upward walking speeds varying over
a wide range from 0.391 to 1.16m/s. Interestingly, on one
and the same short stairs it could be observed [95] that
people on average walked faster up- than downwards.

There is also a model where the upstairs speed is calcu-
lated from the stair geometry (riser and tread) [183] and an
empirical investigation of the collision avoidance behavior
on stairs [37].

On stairs (up- as well as downward) people like to put
their hand on the handrail, i. e., they tend to walk close to
walls, even if there is no counterflow. This is in contrast
to movement on flat terrain, where at least in situations of
low density there is a tendency to keep some distance from
walls.

The movement on stairs is typically associated with
a reduction of the walking speed. For upward motion this

follows from the increased physical effort required. This
has two aspects: first, there is the physical potential energy
that a pedestrian has to supply if he wants to rise in height;
second, the motion process itself is more exertive – the leg
has to be lifted higher – than during motion on a level,
even if this motion process is executed only on the spot.
Concerning the potential energy there is no comparable
effect for people going downstairs. But still one can ob-
serve jams forming at the upper end of downstairs streams.
These are due to the slight hesitation that occurs when
pedestrians synchronize their steps with the geometry of
the (down-)stairs ahead. Therefore the bottleneck char-
acter of downstairs is less a consequence of the speed on
the stairs itself and more of the transition from planar to
downward movement, at least as long as the steps are not
overly steep.

Evacuations: Empirical Results

Up to now this section has focused on empirical results
for pedestrian motion in rather simple scenarios. As we
have seen there are many open questions where no con-
sensus has been reached, sometimes even about the qual-
itative aspects. This becomes even more relevant for full-
scale descriptions of evacuations from large buildings or
cruise ships. These are typically a combination of many
of the simpler elements, so a lack of reliable information
is not surprising. In the following we will discuss several
complex scenarios in more detail.

Evacuation Experiments In the case of an emergency,
the movement of a crowd usually is more straightforward
than in the general case. Commuters in a railway station,
for example, or visitors of a building might have complex
itineraries which are usually represented by origin-desti-
nation matrices. In the case of an evacuation, however, the
aims and routes are known and usually the same, i. e., the
exits and the egress routes. This is the reason why an evac-
uation process is rather strictly limited in space and time,
i. e., its beginning and end are well-defined: the sound of
the alarm, initial position of all persons, safe areas (final
position of all persons), and the time at which the last per-
son reaches the safe area.When all people have left a build-
ing or vessel and reached a safe area (or the lifeboats or lif-
erafts), then the evacuation is finished. Therefore, it is also
possible to perform evacuation trials and measure overall
evacuation times. Before we go into details, we will clarify
three different aspects of data on evacuation processes:

(1) The definition and parts of evacuation time,
(2) The different sources of data, and
(3) The application of these data.
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Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 7
Empirical data can be roughly classified according to controlled/
uncontrolled and emergency/normal situations

Concerning the evacuation time, five different phases can
be distinguished [48,118,153]:

(1) Detection time,
(2) Awareness time,
(3) Decision time,
(4) Reaction time, and
(5) Movement time.

In IMO’s regulations [118,119], the first four are grouped
together into response time. Usually, this time is called pre-
movement time

One possible scheme for the classification of data on
evacuation processes is shown in the following Fig. 7.

Please note that not only data obtained from uncon-
trolled or emergency situations can be used in the context
of evacuation assessment. Knowledge about bottleneck ca-
pacities (i. e., flows through doors and on stairs) is espe-
cially important when assessing the layout of a building
with respect to evacuation. The purpose of empirical data
in the context of evacuation processes (and modeling in
general) is threefold [43,71]:

(1) Identify parameters (factors that influence the evacu-
ation process, e. g., bottleneck widths and capacities),

(2) Quantify (calibrate) those parameters, e. g., flow
through a bottleneck in persons per meter per second,
and

(3) Validate simulation results, e. g., compare the overall
evacuation time measured in an evacuation with sim-
ulation or calculation results.

The validation is usually based on data from the evacua-
tion of complete buildings, aircraft, trains or ships. These
are available from two different sources:

(1) Full scale evacuation trials and
(2) Real evacuations.

Evacuation trials are usually observed and videotaped. Re-
ports of real evacuation processes are obtained from eye-
witness records and a posteriori incident investigations.
Since the setting of a complete evacuation is not experi-
mental, it is hardly possible to measure microscopic fea-
tures of the crowd motion. Therefore, calibration of pa-
rameters is usually not the main purpose in evacuation tri-
als; rather, they are carried out to gain knowledge about
the overall evacuation process, the behavior of the persons,
to identify the governing influences/parameters and to val-
idate simulation results.

One major concern in evacuation exercises is the well-
being of the participants. Due to practical, financial, and
ethical constraints, an evacuation trial cannot be, by na-
ture, realistic. Therefore, an evacuation exercise does not
convey the increased stress of a real evacuation. To draw
conclusions on the evacuation process, the walking speed
observed in an exercise should not be assumed to be higher
in a real evacuation [145]. Along the same lines of ar-
gument, a simplified evacuation analysis based on, e. g.,
a hydro-dynamic model can predict an evacuation exer-
cise, and the same constraints apply for its results con-
cerning the prediction of evacuation times and the evac-
uation process. If population parameters (such as gen-
der, age, walking speed, etc.) are explicitly stated in the
model, increased stress can be simulated by adapting these
parameters.

In summary, evacuation exercises are just too expen-
sive, time consuming, and dangerous to be a standard
measure for evacuation analysis. An evacuation exercise
organized by the UK Marine Coastguard Agency on the
Ro-Ro ferry “Stena Invicta” held in Dover Harbor in 1996
cost more than 10,000 GBP [117]. This is one major argu-
ment for the use of evacuation simulations based on hy-
dro-dynamic models and calculations.

Panic, Herding, and Similar Conjectured Collective
Phenomena As already mentioned earlier in Subsect.
“Collective Effects”, the concept of “panic” and its rel-
evance for crowd disasters is rather controversial. It is
usually used to describe irrational and unsocial behavior.
In the context of evacuations, empirical evidence shows
that this type of behavior is rare [3,17,77,178]. On the
other hand there are indications that fear might be “con-
tagious” [22]. Related concepts like “herding” and “stam-
pede” imply a certain similarity between the behavior of
human crowds and animal behavior. This terminology is
quite often used in the public media. Herding has been
described in animal experiments [166] and is difficult to
measure in human crowds. However, it seems to be nat-
ural that herding exists in certain situations, e. g., limited
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visibility due to failing lights or strong smoke when exits
are hard to find.

Panic As stated earlier, “panic” behavior is usually char-
acterized by selfish and anti-social behaviorwhich through
contagion affects large groups and even leads to com-
pletely irrational actions. Often it is assumed, especially
in the media, to occur in situations where people com-
pete for scarce or dwindling resources, which in the case
of emergencies are safe space or access to an exit. How-
ever, this point of view does not stand close scrutiny and it
has turned out that this behavior has played no role at all
in many tragic events [73,77]. For these incidents crowd
disaster is a much more appropriate characterization.

Furthermore, lack of social behavior seems to be
more frequent during so called “acquisitive panics” or
“crazes” [179] than during “flight panics”. That is, social
behavior seems to be less stable if there is something to
gain than if there is some external danger which threatens
all members of a group. Examples of crazes (acquisitive
panics) include the Victoria Hall Disaster (1883) [150],
the crowning ceremony of Tsar Nicholas II (1896) [168],
a governmental Christmas celebration in Aracaju (2001),
the distribution of free Saris in Uttar Pradesh (2004), and
the opening of an IKEA store in Jeddah (2004). Crowd ac-
cidents which occur at rock concerts and religious events
as well bear more similarities with crazes than with panics.

However, it is not the case that altruism and coopera-
tion increase with danger. The events during the capsizing
of the MV Estonia (see Sect. 16.6 of [100]) show some be-
havioral threshold: faced with immediate life-threatening
danger, most people struggle for their own survival or that
of close relatives.

Herding Herding in a broad context means “go with the
flow” or “follow the crowd”. Like “panic”, the term “herd-
ing” is often used in the context of stock market crashes,
i. e., causing an avalanche effect. Like “panic” the term is
usually not well defined and is used in an allegoric way.
Therefore, it is advisable to avoid the term in a scien-
tific context (apart from zoology, of course). Furthermore,
“herding”, “stampede”, and “panic” have a strong conno-
tation of “deindividuation”. The conjecture of an auto-
matic deindividuation caused by large crowds [101] has
been replaced by a social attachment theory (“the typi-
cal response to a variety of threats and disasters is not
to flee but to seek the proximity of familiar persons and
places”) [109].

Stampede Stampede is – like herding – a term from zool-
ogy where herds of large mammals, such as buffalo, collec-
tively run in one direction and might overrun any obsta-

cles. This is dangerous for human observers if they cannot
get out of the way. The term “stampede” is sometimes used
for crowd accidents [73], too. It is furthermore assumed to
be highly correlated with panic. When arguing along those
lines, a stampede might be the result of “crowd panic” or
vice versa.

Shock or Density Waves Shock waves are reported for
rock concerts [180] and religious events [2,58]. Theymight
result in people standing close to each other falling down.
Pressures in dense crowds of up to 4; 450N/m2 have been
reported.

Although empirical data on crowd disasters exist, e. g.,
in the form of reports from survivors or even video
footage, it is almost impossible to derive quantitative re-
sults from them. Models that aim at describing such
scenarios make predictions for certain counter-intuitive
phenomena that should occur. In the faster-is-slower ef-
fect [54] a higher desired velocity leads to a slower move-
ment of a large crowd. In the freezing-by-heating ef-
fect [53] increasing the fluctuations can lead to a more or-
dered state. For a thorough discussion we refer to [54,55]
and references therein. However, from a statistical point
of view there is insufficient data to decide the relevance of
these effects in real emergency situations, not least because
it is almost impossible to perform “realistic” experiments.

Sources of Empirical Data on Evacuation Processes
The evacuation of a building can either be an isolated pro-
cess (due to fire restricted to this building, a bomb threat,
etc.) or it can be part of the evacuation of a complete area.
We will focus on the single building evacuation, here. For
the evacuation of complete areas, e. g., because of flooding
or hurricanes, cf. [157] and references therein.

For passenger ships, a distinction between High Speed
Craft (HSC), Ro-Ro passenger ferries, and other passen-
ger vessels (cruise ships) is made. High Speed Craft do
not have cabins and the seating arrangement is similar
to aircraft. Therefore, there is a separate guideline for
HSC [119]. A performance-based evacuation analysis at
an early stage of design is required for HSC and Ro-Pax.
There is currently no such requirement for cruise ships.
For an overview of IMO’s requirements and the histori-
cal development up to 2001 cf. [27]. In addition to the five
components for the overall evacuation time listed above,
there are three more specific to ships:

(6) Preparation time (for the life-saving appliances, i. e.,
lifeboats, life-rafts, davits, chutes),

(7) Embarkation time, and
(8) Launching time.
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Therefore, the evacuation procedure on ships is more
complex than for buildings. Additionally, SAR (Search
And Rescue) is an integral part of ship evacuation.

For High Speed Craft, the time limit is 17 minutes for
evacuation [70], for Ro-Ro passenger ships it is 60 min-
utes [118], and for all other passenger ships (e. g., cruise
ships) it is 60 minutes if the number of main vertical zones
is less or equal to five and 80 minutes otherwise [118]. For
HSC, no distinction is made between assembly and em-
barkation phases.

For aircraft, the approach can be compared to that of
HSC. First, an evacuation test is mandatory and there is
a time limit of 90 seconds that has to be complied to in the
test [31].

In many countries there is no strict criterion for the
maximum evacuation time of buildings. The requirements
are based on minimum exit widths and maximum escape
path lengths.

A number of real evacuations has been investigated
and reports are publicly available. Among the most recent
ones are: Beverly Hills Club [12], MGMGrand Hotel, [12],
retail store [4], department store [1], World Trade Cen-
ter [47] and www.wtc.nist.gov, high-rise buildings [144,
173], theater [191] for buildings, High Speed Craft “Sleip-
ner” [138] for HSC, an overview up to 1998 [143], exit
width variation [121], double deck aircraft [74], another
overview for aircraft [120], and for trains [43,169].

Modeling

A comprehensive theory of pedestrian dynamics has to
take into account three different levels of behavior (Fig. 8).
At the strategic level, pedestrians decide which activities
they like to perform and the order of these activities. With
the choices made at the strategic level, the tactical level
concerns the short-term decisions made by the pedestri-
ans, e. g., choosing the precise route taking into account
obstacles, density of pedestrians etc. Finally, the opera-
tional level describes the actual walking behavior of pedes-
trians, e. g., their immediate decisions necessary to avoid
collisions etc.

Processes at the strategic and tactical level are usually
considered to be exogenous to pedestrian simulation. Here
information from other disciplines (sociology, psychology
etc.) is required. In the following we will mostly be con-
cerned with the operational level, although some of the
models that we are going to describe allow us to take into
account certain elements of behavior at the tactical level as
well.

Modeling on the operational level is usually based on
variations of models from physics. Indeed the motion of

Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 8
The different levels of modeling pedestrian behavior (after [19,
65])

pedestrian crowds shares certain similarities with fluids
and the flow of granularmaterials. The goal is to findmod-
els which are as simple as possible, but at the same time can
reproduce “realistic” behavior in the sense that the empir-
ical observations are reproduced. Therefore, based on the
experience from physics, pedestrians are often modeled as
simple “particles” that interact with each other.

There are several characteristics which can be used to
classify the modeling approaches:

Microscopic vs. macroscopic In microscopic models
each individual is represented separately. Such an
approach allows us to introduce different types of
pedestrians with individual properties as well as is-
sues such as route choice. In contrast, in macroscopic
models, individuals cannot be distinguished. Instead
the state of the system is described by densities, usu-
ally a mass density derived from the positions of the
persons and a corresponding locally averaged velocity.

Discrete vs. continuous Each of the three basic variables
for a description of a system of pedestrians, namely
space, time and state variable (e. g., velocities), can be
either discrete (i. e., an integer number) or continuous
(i. e., a real number). Here all combinations are pos-
sible. In a cellular automaton approach all variables
are by definition discrete, whereas in hydrodynamic
models all are continuous. These are the most com-
mon choices, but other combinations are used as well.
Sometimes for a cellular automata approach a contin-
uous time variable is also allowed. In computer simu-
lation this is realized through a random-sequential up-
date where at each step the particle or site to be up-

http://www.wtc.nist.gov
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dated (moved) is chosen randomly (from all particles
or sites, respectively). A discrete time is usually real-
ized through a parallel or synchronous update where
all particles or sites are moved at the same time. This
introduces a timescale. In so-called coupled map lat-
tices time is discrete, whereas space and state variables
are continuous.

Deterministic vs. stochastic The dynamics of pedestri-
ans can either be deterministic or stochastic. In the first
case the behavior at a certain time is completely deter-
mined by the present state. In stochastic models, be-
havior is controlled by certain probabilities such that
the agents can react differently in the same situation.
This is one of the lessons learnt from the theory of
complex systemswhere it has been shown for many ex-
amples that through introduction of stochasticity into
rather simple systems very complex behavior can be
generated. On the other hand, the stochasticity in the
models reflects our lack of knowledge of the under-
lying physical processes that, e. g., determine the de-
cision-making of the pedestrians. Through stochastic
behavioral rules it often becomes possible to gener-
ate a rather realistic representation of complex systems
such as pedestrian crowds.
This “intrinsic” stochasticity should be distinguished
from “noise”. Sometimes external noise terms are
added to themacroscopic observables, such as position
or velocity. Often the main effect of these terms is to
avoid certain special configurations which are consid-
ered to be unrealistic, like completely blocked states.
Otherwise the behavior is very similar to the determin-
istic case. For true stochasticity, on the other hand, the
deterministic limit usually has very different properties
from the generic case.

Rule-based vs. force-based Interactions between the
agents can be implemented in at least two different
ways: In a rule-based approach agents make “deci-
sions” based on their current situation, the nature of
their neighborhood as well as their goals, etc. It fo-
cuses on the intrinsic properties of the agents and thus
the rules are often justified from psychology. In force-
based models, agents “feel” a force exerted by others
and the infrastructure. They therefore emphasize ex-
trinsic properties and their relevance for the motion
of the agents. This is a physical approach based on
the observation that the presence of others leads to
deviations from a straight motion. In analogy to New-
tonian mechanics a force is made responsible for these
accelerations.
Cellular automata are typically rule-based models,
whereas, e. g., the social-force model belongs to the

force-based approaches. However, sometimes a clear
distinction cannot be made; many models combine as-
pects of both approaches.

High vs. low fidelity Fidelity here refers to the apparent
realism of the modeling approach. High fidelity mod-
els try to capture the complexity of decision mak-
ing, actions, etc. that constitute pedestrian motion in
a realistic way. In contrast, in the simplest models
pedestrians are represented by particles without any
intelligence. Usually the behavior of these particles
is determined by “forces”. This approach can be ex-
tended, e. g., by allowing different “internal” states of
the particles so that they react differently to the same
force depending on the internal state. This can be
interpreted as some kind of “intelligence” and leads
to more complex approaches, like multi-agent mod-
els. Roughly speaking, the number of parameters in
a model is a good measure for fidelity in the sense in-
troduced here, but note that higher fidelity does not
necessarily mean that empirical observations are re-
produced better!

It should be mentioned that a clear classification ac-
cording to the characteristics outlined here is not always
possible. In the following we will describe some model
classes in more detail.

Fluid-dynamic and Gas kinetic Models

Pedestrian dynamics has some obvious similarities with
fluids. For example, the motion around obstacles appears
to follow “streamlines”.Motion at intermediate densities is
restricted (short-ranged correlations). Therefore it is not
surprising that, very much like for vehicular dynamics,
the earliest models of pedestrian dynamics took inspira-
tion from hydrodynamics or gas-kinetic theory [50,61,68,
69]. Typically these macroscopic models are deterministic,
force-based and of low fidelity.

Henderson [60,61] has tried to establish an analogy of
large crowds with a classical gas. From measurements of
motion in different crowds in a low density (“gaseous”)
phase he found good agreement of the velocity distribu-
tion functions with Maxwell–Boltzmann distribution [60].

Motivated by this observation, he later developed
a fluid-dynamic theory of pedestrian flow [61]. Describing
the interactions between the pedestrians as a collision pro-
cess where the particles exchange momenta and energy,
a homogeneous crowd can be described by the well-known
kinetic theory of gases. However, the interpretation of the
quantities is not entirely clear, e. g., what the analogues of
pressure and temperature are in the context of pedestrian
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motion. Temperature could be identified with the velocity
variance, which is related to the distribution of desired ve-
locities, whereas the pressure expresses the desire to move
against a force in a certain direction.

The applicability of classical hydrodynamic models is
based on several conservation laws. The conservation of
mass, corresponding to conservation of the total number
of pedestrians, is expressed through a continuity equation
of the form

@�(r; t)
@t

Cr � J(r; t) D 0 ; (6)

which connects the local density �(r; t) with the current
J(r; t). This equation can be generalized to include source
and sink terms. However, the assumption of conserva-
tion of energy and momentum is not true for interactions
between pedestrians which in general do not even sat-
isfy Newton’s Third Law (“actio = reaction”). In [50] sev-
eral other differences to normal fluids were pointed out,
e. g., the anisotropy of interactions or the fact that pedes-
trians usually have an individual preferred direction of
motion.

In [50] a better founded fluid-dynamical description
was derived on the basis of a gas kinetic model which de-
scribes the system in terms of a density function f (r; v; t).
The dynamics of this function are determined by Boltz-
mann’s transport equation that describes its change for
a given state as difference of inflow and outflow due to bi-
nary collisions.

An important new aspect in pedestrian dynamics is the
existence of desired directions of motion which allows us
to distinguish different groups � of particles. The corre-
sponding densities f� change in time due to four different
effects:

1. A relaxation term with characteristic time � describes
tendency of pedestrians to approach their intended ve-
locities.

2. The interaction between pedestrians is modeled by
a Stosszahlansatz as in the Boltzmann equation. Here,
pair interactions between types� and � occur with a to-
tal rate that is proportional to the densities f� and f� .

3. Pedestrians are allowed to change from type � to �
which, e. g., accounts for turning left or right at a cross-
ing.

4. Additional gain and loss terms allow us to model en-
trances and exits where pedestrian can enter or leave
the system.

The resulting fluid-dynamic equations derived from this
gas kinetic approach are similar to that of ordinary fluids.

However, due to the different types of pedestrians, corre-
sponding to individuals who have approximately the same
desired velocity, one actually obtains a set of coupled equa-
tions describing several interacting fluids. These equations
contain additional characteristic terms describing the ap-
proach to the intended velocity and the change of fluid-
type due to interactions in avoidance maneuvers.

Equilibrium is approached through the tendency to
walk with the intended velocity, not through interactions
as in ordinary fluids. Momentum and energy are not con-
served in pedestrian motion, but the relaxation towards
the intended velocity describes a tendency to restore these
quantities.

Unsurprisingly for a macroscopic approach, the gas-
kinetic models have problems at low densities. For a dis-
cussion, see e. g. [50].

HandCalculationmethod For practical applications ef-
fective engineering tools have been developed from the hy-
drodynamical description. In engineering these are often
called hand calculation methods. One could also classify
some of them as queuing models since the central idea is
to describe pedestrian dynamics as flow on a network with
links of limited capacities. These methods allow us to cal-
culate evacuation times in a relatively simple way that does
not require any simulations. Parameters entering in the
calculations can be adapted to the situation that is stud-
ied. Often they are based on empirical results, e. g., evacu-
ation trials. Details about this kind of model can be found
in Subsect. “Calculation of Evacuation Times”.

Social-Force Models

The social-force model [52] is a deterministic continuum
model in which interactions between pedestrians are im-
plemented by using the concept of a social force or social
field [103]. It is based on the idea that changes in behav-
ior can be understood in terms of fields or forces. Applied
to pedestrian dynamics, the social force F(soc)j represents
the influence of the environment (other pedestrians, in-
frastructure) and changes the velocity v j of pedestrian j.
Thus it is responsible for acceleration which justifies the
interpretation as a force. The basic equation of motion for
a pedestrian of massmj is then of the general form

dv j
dt
D f(pers)j C f(soc)j C f(phys)j (7)

where f(soc)j D 1
m j

F(soc)j D
P

l¤ j f
(soc)
j l is the total (specific)

force due to other pedestrians. f(pers)j denotes a “personal”
force which makes a pedestrian attempt to move with his
or her own preferred velocity v(0)j and thus acts as a driving
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term. It is given by

f(pers)j D
v(0)j � v j
� j

(8)

where � j is reaction or acceleration time. In high density
situations, physical forces f(phys)j l also become important,
e. g., friction and compression when pedestrians make
contact.

The most important contribution to the social force
f(soc)j comes from the territorial effect, i. e., the private
sphere. Pedestrians feel uncomfortable if they get too close
to others, which effectively leads to a repulsive force be-
tween them. Similar effects are observed for the environ-
ment, e. g., people prefer not to walk too close to walls.

Since social forces are difficult to determine empiri-
cally, some assumptions must be made. Usually an ex-
ponential form is assumed. Describing the pedestrians as
disks of radius Rj and position (of the center of mass) r j ,
the typical structure of the force between the pedestrians
is described by [54]

f(soc)j l D Aj exp
�Rjl �
r jl

� j

�
n j l (9)

with Rjl D RjCRl , the sum of the disk radii,
r jl D jr j�
rl j, the distance between the centers of mass, n j l D r j �
rl /
r jl , the normalized vector pointing from pedestrian l
to j. Aj can be interpreted as strength, � j as the range of the
interactions.

The appeal of the social-force model is given mainly
by analogy to Newtonian dynamics. For the solution of the
equations of motion of Newtonian many-particle systems,
well-foundedmolecular dynamics techniques exists. How-
ever, in most studies so far the distinctions between pedes-
trian and Newtonian dynamics are not discussed in detail.
A straightforward implementation of the equations of mo-
tion neglecting these distinctions can lead to unrealistic
movement of single pedestrians. For example, negative ve-
locities in the main moving direction cannot be excluded
in general even if asymmetric interactions (violating New-
ton’s Third Law) between the pedestrians are chosen. An-
other effect is the occurrence of velocities higher then the
preferred velocity v j (0) due to the forces on pedestrians in
the moving direction. To prevent this effect, additional re-
strictions for the degrees of freedom must be introduced,
see for example [52], or the superposition of forces has
to be discarded [175]. A general discussion of the limited
analogy betweenNewtonian dynamics and the social-force
model as well as the consequences for model implementa-
tions is still missing.

Apart from the ad hoc introduction of interactions,
the structure of the social-force model can also be derived
from an extremal principle [62,63]. It follows under the
assumption that pedestrian behavior is determined by the
desire to minimize a certain cost function which takes into
account not only kinematic aspects and walking comfort,
but also deviations from a planned route.

Cellular Automata

Cellular automata (CA) are rule-based dynamical models
that are discrete in space, time and state variable which in
the case of traffic usually corresponds to velocity. Discrete-
ness in time means that the positions of the agents are up-
dated in well defined steps. In computer simulations this
is realized through a parallel or synchronous update where
all pedestrians move at the same time. The time step cor-
responds to a natural timescale 
t which could be iden-
tified, e. g., with some reaction time. This can be used for
the calibration of the model which is essential for mak-
ing quantitative predictions. A natural space discretization
can be derived from the maximal densities observed in
dense crowds which gives the minimal space requirement
of one person. Usually each cell in the CA can be occupied
by only one particle (exclusion principle) so that this space
requirement can be identifiedwith the cell size. In this way,
a maximal density of 6:25 P/m2 [192] leads to a cell size of
40 � 40 cm2. Sometimes finer discretizations are more ap-
propriate (see Subsect. “Theoretical Results). In this case
pedestrians correspond to extended particles that occupy
more than one cell (e. g., four cells). The exclusion princi-
ple and the modeling of humans as non-compressible par-
ticles mimics short-range repulsive interactions, i. e., the
“private-sphere”.

The dynamics are usually defined by rules which spec-
ify transition probabilities for motion to one of the neigh-
boring cells (Fig. 9). The models differ in the specification
of these probabilities as well in that of the “neighborhood”.
For deterministic models, all but one are of probability
zero.

The first cellular automata (CA) models [7,41,89,129]
for pedestrian dynamics can be considered two-dimen-
sional variants of the asymmetric simple exclusion process
(ASEP) (for reviews, see [9,23,172]) or models for city or
highway traffic [6,16,133] based on it. Most of these mod-
els represent pedestrians by particles without any internal
degrees of freedom. They canmove to one of the neighbor-
ing cells based on certain transition probabilities which are
determined by three factors:

(1) The desired direction of motion, e. g., to find the
shortest connection,



Evacuation Dynamics: Empirical Results, Modeling and Applications E 3159

Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 9
A particle, its possible directions of motion and the correspond-
ing transition probabilities pij for the case of a von Neumann
neighborhood

(2) Interactions with other pedestrians, and
(3) Interactions with the infrastructure (walls, doors, etc.).

Fukui–Ishibashi Model One of the first CA models
for pedestrian dynamics was proposed by Fukui and
Ishibashi [40,41] and is based on a two-dimensional vari-
ant of the ASEP. They studied bidirectional motion in
a long corridor where particles moving in opposite direc-
tions were updated alternatingly. Particles move determin-
istically in their desired direction; only if the desired cell is
occupied by an oppositely moving particle do they make
a random sidestep.

Various extensions and variations of the model have
been proposed, e. g., an asymmetric variant [129] where
walkers prefer lane changes to the right, different update
types [193], simultaneous (exchange) motion of pedestri-
ans standing “face-to-face” [72], or the possibility of back-
stepping [107]. The influence of the shape of the particles
has been investigated in [131]. Also other geometries [128,
181] and extensions to full 2-dimensional motion have
been studied in various modifications [106,107,127]

Blue–Adler Model The model of Blue and Adler [7,8]
is based on a variant of the Nagel–Schreckenberg mo-
del [133] of highway traffic. Pedestrian motion is consid-
ered in analogy to a multi-lane highway. The structure of
the rules is similar to the basic two-lane rules suggested
in [159]. The update is performed in four steps which are
applied to all pedestrians in parallel. In the first step each
pedestrian chooses a preferred lane. In the second step the
lane changes are performed. In the third step the velocities
are determined based on the available gap in the new lanes.
Finally, in the fourth step the pedestrians move forward
according to the velocities determined in the previous step.

In counterflow situations head-on-conflicts occur.
These are resolved stochastically and with some proba-
bility opposing pedestrians are allowed to exchange posi-
tions within one time step. Note that the motion of a sin-

gle pedestrian (not interacting with others) is determinis-
tic otherwise.

Unlike the Fukui–Ishibashi model, motion is not re-
stricted to nearest-neighbor sites. Instead, pedestrians can
have different velocities vmax which correspond to the
maximal number of cells they are allowed to move for-
ward. In contrast to vehicular traffic, acceleration to vmax
can be assumed to be instantaneous in pedestrian motion.

In order to study the effects of inhomogeneities, the
pedestrians are assigned different maximal velocities vmax.
Fast walkers have vmax D 4, standard walkers vmax D 3
and slow walkers vmax D 2. The cell size is assumed to be
50 cm � 50 cm. The best agreement with empirical obser-
vations has been achieved with 5% slow and 5% fast walk-
ers [8]. Furthermore the fundamental diagram in more
complex situations, such as bi- or four-directional flows,
has been investigated.

Gipps–Marksjös Model A more sophisticated discrete
model was suggested by Gipps and Marksjös [45] in 1985.
One motivation for developing a discrete model was the
limited computer power at that time. Therefore a discrete
model, which reproduces the properties of pedestrian mo-
tion realistically, was in many respects a real improvement
over the existing continuum approaches.

Interactions between pedestrians are assumed to be
repulsive, anticipating the idea of social forces (see Sub-
sect. “Social-Force Models”). The pedestrians move on
a grid of rectangular cells of size 0:5 � 0:5m. To each cell
a score is assigned based on its proximity to other pedes-
trians. This score represents the repulsive interactions and
actual motion is then determined by the competition be-
tween these repulsions and the gain of approaching the
destination. Applying this procedure to all pedestrians,
a potential value is assigned to each cell which is the sum
of the individual contributions. The pedestrian then se-
lects the cell of its nine neighbors (Moore neighborhood)
which leads to the maximum benefit. This benefit is de-
fined as the difference between the gain of moving closer
to the destination and the cost of moving closer to other
pedestrians as represented by the potential. This requires
a suitable chosen gain function P.

The updating is done sequentially to avoid conflicts of
several pedestrians trying to move to the same position. In
order to model different velocities, faster pedestrians are
updated more frequently. Note that the model dynamics
are deterministic.

Floor Field CA Floor field CA [13,14,83,167] can also
be considered as an extension of the ASEP. However, the
transition probabilities to neighboring cells are no longer
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fixed but vary dynamically. This is motivated by the pro-
cess of chemotaxis (see [5] for a review) used by some in-
sects (e. g., ants) for communication. They create a chemi-
cal trace to guide other individuals to food sources. In this
way a complex trail system is formed that has many simi-
larities with human transport networks.

In the approach of [13] the pedestrians also create
a trace. In contrast to chemotaxis, however, this trace is
only virtual, although one could assume that it corre-
sponds to some abstract representation of the path in the
mind of the pedestrians. Although this is mainly a tech-
nical trick which reduces interactions to local ones that al-
low efficient simulations in arbitrary geometries, one could
also think of the trail as representation of the paths in the
mind of a pedestrian. The locality becomes important in
complex geometries as no algorithm is required to check
whether the interaction between particles is screened by
walls, etc. The number of interaction terms always grows
linearly with the number of particles.

The translation into local interactions is achieved by
the introduction of so-called floor fields. The transition
probabilities for all pedestrians depend on the strength
of the floor fields in their neighborhood in such a way
that transitions in the direction of larger fields are pre-
ferred. The dynamic floor field Dij corresponds to a vir-
tual trace which is created by the motion of the pedestri-
ans and in turn influences the motion of other individu-
als. Furthermore it has its own dynamics, namely through
diffusion and decay, which leads to a dilution and finally
the vanishing of the trace after some time. The static floor
field Sij does not change with time since it only takes into
account the effects of the surroundings. Therefore it ex-
ists even without any pedestrians present. It allows us to
model, e. g., preferred areas, walls and other obstacles. Fig-
ure 10 shows the static floor field used for the simulation
of evacuations from a room with a single door. Its strength
decreases with increasing distance from the door. Since
the pedestrians prefer motion into the direction of larger
fields, this is already sufficient to find the door.

Coupling constants control the relative influence of
both fields. For a strong coupling to the static field pedes-
trians will choose the shortest path to the exit. This corre-
sponds to a ‘normal’ situation. A strong coupling to the
dynamic field implies a strong herding behavior where
pedestrians try to follow the lead of others. This often hap-
pens in emergency situations.

The model uses a fully parallel update. Therefore con-
flicts can occur where different particles choose the same
destination cell. This is relevant for high density situations
and happens in all models with parallel update if motion
in different directions is allowed. Conflicts have been con-

Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 10
Left: Static floor field for the simulation of an evacuation from
a large room with a single door. The door is located in the mid-
dle of the upper boundary and the field strength increases with
increasing intensity. Right: Snapshot of the dynamical floor field
created by people leaving the room

Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 11
Refused movement due to the friction parameter� (form D 4)

sidered a technical problem for a long time and usually the
dynamics have been modified in order to avoid them. The
simplest method is to update pedestrians sequentially in-
stead of using fully parallel dynamics. However, this leads
to other problems, e. g., the identification of the relevant
timescale. Therefore it has been suggested in [84,85] to
take these conflicts seriously as an important part of the
dynamics.

For the floor field model it has been shown in [85]
that the behavior becomes more realistic if not all conflicts
are resolved by allowing one pedestrian to move while
the others stay at their positions. Instead with probabil-
ity � 2 [0; 1], which is called the friction parameter, the
movement of all involved pedestrians is denied [85] (see
Fig. 11).

This allows one to describe clogging effects between
the pedestrians in a much more detailed way [85].�works
as some kind of local pressure between the pedestrians.
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If � is high, the pedestrians handicap each other trying to
reach their desired target sites. This local effect can have
enormous influence on macroscopic quantities like flow
and evacuation time [85]. Note that the kind of friction in-
troduced here only influences interacting particles, not the
average velocity of a freely moving pedestrian.

Surprisingly, the qualitative behaviors of the floor field
model and the social-force models are very similar despite
the fact that the interactions are very different. In the floor
field model interactions are attractive, whereas in the so-
cial-force model they are repulsive. However, in the latter
interactions are between particle densities. In contrast, in
the floor field model the particle density interacts with the
velocity density.

Other Approaches

Lattice-gas models In 1986, Frisch, Hasslacher, and
Pomeau [34] showed that one does not have to take into
account detailed molecular motion within fluids in order
to obtain a realistic picture of (2d) fluid dynamics. They
proposed a lattice gas model [164,165] on a triangular lat-
tice with hexagonal symmetry, which is similar in spirit
to CA models, but the exclusion principle is relaxed: par-
ticles with different velocities are allowed to occupy the
same site. Note that the allowed velocities differ only in
the direction, not absolute value. The dynamics are based
on a succession of collision and propagation that can be
chosen in such a way that the coarse-grained averages of
this microscopic dynamic is asymptotically equivalent to
the Navier–Stokes equations of incompressible fluids.

In [108] a kind of mesoscopic approach inspired by
these lattice gas models has been suggested as a model for
pedestrian dynamics. In analogy with the description of
transport phenomena in fluids (e. g., the Boltzmann equa-
tion) the dynamics are based on a succession of collision
and propagation.

Pedestrians are modeled as particles, moving on a tri-
angular lattice, which have a preferred direction of motion
cF . However, the particles do not strictly follow this direc-
tion but also have a tendency to move with the flow. Fur-
thermore, at high densities the crowd motion is influenced
by a kind of friction which slows down the pedestrians.
This is achieved by reducing the number of individuals al-
lowed to move to neighboring sites.

As in a lattice gas model [165], the dynamics now con-
sists of two steps. In the propagation step each pedestrian
moves to the neighbor site in the direction of its velocity
vector. In the collision step the particles interact and new
velocities (directions) are determined. In contrast to phys-
ical systems, momentum, etc., does not need to be con-

served during the collision step. These considerations lead
to a collision step that takes into account the favorite direc-
tion cF , the local density (the number of pedestrians at the
collision site), and a quantity called mobility at all neigh-
bor sites which is a normalized measure of the local flow
after the collision.

Optimal-Velocity Model The optimal velocity (OV)
model originally introduced for the description of high-
way traffic can be generalized to higher dimensions [134]
which allows its application to pedestrian dynamics.

In the two-dimensional extension of the OVmodel the
equation of motion for particle i is given by

d2

dt2
xi (t) D a

�
V0C

X

j

V(x j(t)�xi (t))�
d
dt

xi (t)
�
; (10)

where xi D (xi ; yi ) is the position of particle i. It can be
considered as a special case of the general social-force
model (7) without physical forces. The optimal-velocity
function

V(x j � xi ) D f (ri j)(1C cos ')ni j ; (11)

f (ri j) D ˛ftanhˇ(ri j � b)C cg; (12)

where ri j D jx j � xi j, cos ' D (x j � xi )/ri j and ni j D

(x j � xi )/ri j is determined by interactions with other
pedestrians. V0 is a constant vector that represents a ‘de-
sired velocity’ at which an isolated pedestrian would move.
The strength of the interaction depends on the distance
rij between the ith and jth particles, and on the angle '
between the directions of x j � xi and the current velocity
dxi /dt. Due to the term (1C cos'), a particle reacts more
sensitively to particles in front than to those behind.

Now two cases can be distinguished: repulsive and at-
tractive interactions. The former is relevant for pedestrian
dynamics whereas the latter is more suitable for biologi-
cal motion. Therefore, for pedestrian motion one chooses
c D 1 which implies f < 0.

A detailed analysis [134] shows that the model exhibits
a rich phase diagram including the formation of various
patterns.

OtherModels Webrieflymention a few other model ap-
proaches that have been suggested. In [10] a discretized
version of the social-force model has been introduced and
shown to reproduce qualitatively the observed collective
phenomena.

In [141] a magnetic force model has been proposed
where pedestrians and their goals are treated as magnetic
poles of opposite sign.
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Evacuation Dynamics: Empirical Results, Modeling and Applications, Figure 12
The dynamics of lattice gas models proceed in two steps. Pedestrians coming from neighboring sites interact in the collision step
where velocities are redistributed. In the propagation step the pedestrians move to neighbor sites in directions determined by the
collision step

Another class of models is based on ideas from queu-
ing theory. In principle, some hand calculation methods
can be considered as macroscopic queuing models. Typi-
cally, rooms are represented as nodes in the queuing net-
work and links correspond to doors. In microscopic ap-
proaches, in the movement process each agent chooses
a new node, e. g., according to some probability [105].

Theoretical Results

As emphasized in Subsect. “Collective Effects”, the collec-
tive effects observed in the motion of pedestrian crowds
are a direct consequence of microscopic dynamics. These
effects are reproduced quite well by some models, e. g., the
social-force and floor-field model, at least on a qualitative
level. As mentioned before, the qualitative behavior of the
two models is rather similar despite the very different im-

Evacuation Dynamics: Empirical Results, Modeling and Applications, Figure 13
Lane formation in the floor-field model. The central window is the corridor and the light and dark squares are right- and left-mov-
ing pedestrians, respectively. In the bottom part well-separated lanes can be observed whereas in the top part the motion is still
disordered. The right part of the figure shows the floor fields for the right-movers (upper half ) and left-movers (lower half )

plementation of the interactions. This indicates a certain
robustness of the collective phenomena observed.

As an example we discuss the formation of lanes in
counterflow formation. Empirically one observes a strong
tendency to follow immediately in the “wake” of another
person heading in the same direction. Such lane formation
was reproduced in the social-force model [52,53] as well as
in the floor-field model [13,76] (see Fig. 13).While the for-
mation of lanes in general is essential to avoid deadlocks
and thus keep the chance of reproducing realistic fluxes,
the number of direction changes per meter cross section is
a parameter which in reality crucially depends on the sit-
uation [76]: the longer a counterflow situation is assumed
to persist, the fewer lanes per meter cross section can be
found. The correct reproduction of counterflow is an issue
for an accommodating animation, but more or less unim-
portant for macroscopic observables. This is probably the
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main reason why there seems to have been little effort put
into the attempt to reproduce different “kinds” of lane for-
mation in a controlled, situation-dependent manner.

On the quantitative side, the fundamental diagram is
the first and most serious test for any model. Since most
quantitative results rely on the fundamental diagram, it
can be considered the most important characteristic of
pedestrian dynamics. It is not only relevant for movement
in a corridor or through a bottleneck, but also as an impor-
tant determinant of evacuation times. However, as empha-
sized earlier, there is currently no consensus on the empir-
ical form of the fundamental diagram. Therefore, a cali-
bration of the model parameters is currently difficult.

Most cellular automata models are based on the asym-
metric simple exclusion process. This strictly one-dimen-
sional stochastic process has a fundamental diagramwhich
is symmetric around density � D 1/2. Lane changes in
two-dimensional extensions lead to only a small shift to-
wards smaller densities. Despite the discrepancies in the
empirical results, an almost symmetric fundamental dia-
gram can be excluded.

Based on the experience with modeling of highway
traffic [16,133], models with higher speeds have been in-
troduced which naturally lead to an asymmetric funda-
mental diagram. Typically this is implemented by allowing
the agents to move more than one cell per update step [82,
86,87,92,195,196]. These model variants have been shown
to be flexible enough to reproduce, e. g., Weidmann’s fun-
damental diagram for the flow in a corridor [192] with
high precision. Usually in the simulations a homoge-
neous population is assumed. However, in reality, differ-
ent pedestrians have different properties such as walking
speed, motivation, etc. This is easily taken into account in
every microscopic model. There are many parameters that
could potentially have an influence on the fundamental di-
agram. However, the current empirical situation does not
allow to decide this question.

Another problem occurring in CA models has its ori-
gin in the discreteness of space. Through the choice of the
lattice discretization, space is no longer isotropic. Motion
in directions not parallel to the main axis of the lattice are
difficult to realize and can only be approximated by a se-
quence of steps parallel to the main directions.

Higher velocities also require the extension of the
neighborhood of a particle which is no longer identical to
the cells adjacent to the current position. A natural defi-
nition of “neighborhood” corresponds to those cells that
could be reached within one time step. In this way the
introduction of higher velocities also reduces the prob-
lem of space isotropy as the neighborhoods become more
isotropic for larger velocities.

Other solutions to this problem have been proposed.
One way is to count the number of diagonal steps and
let the agent suspend from moving following certain rules
which depend on the number of diagonal steps [171].
A similar idea is to sum up the real distance that an agent
has moved during one round: a diagonal step counts

p
2

and a horizontal or vertical step counts 1. An agent has
to finish its round as soon as this sum is bigger than its
speed [87]. A third possibility – which works for arbi-
trary speeds – is to assign selection probabilities to each
of the four lattice positions adjacent to the exact final po-
sition [195,196]. Naturally these probabilities are inversely
proportional to the square area between the exact final po-
sition and the lattice point, as in this case the probabili-
ties are normalized by construction if one has a square lat-
tice with points on all integer number combinations. How-
ever, one also could think of other methods to calculate the
probability.

For the social-force model, the specification of the re-
pulsive interaction (with and without hard core, exponen-
tial or reciprocal with distance) as well as the parameter
sets for the forces changes in different publications [52,53,
54,114]. In [55] the authors state that “most observed self-
organization phenomena are quite insensitive to the spec-
ification of interaction forces”. However, at least for the
fundamental diagram, a relation connected with all phe-
nomena in pedestrian dynamics, this statement is ques-
tionable. As remarked in [56] the reproduction of the fun-
damental diagram “requires a less simple specification of
the repulsive interaction forces”. Indeed in [175] it was
shown that the choice of hard-core forces or repulsive soft
interactions as well as the particular parameter set can
strongly influence the resulting fundamental diagram re-
garding qualitative as well as quantitative effects.

Also a more realistic behavior at higher densities re-
quires a modification of the basic model. Here the use
of density-dependent desired velocities leads to a reduc-
tion of the otherwise unrealistically large number of colli-
sions [10].

The particular specification of forces and the previ-
ously mentioned problem with Newton’s Third law can
lead in principle to some unwanted effects, such as mo-
mentary velocities larger than the preferred velocity [52]
or the penetration of pedestrians into each other or into
walls [98]. It is possible that these effects can be suppressed
for certain parameter sets by contact or friction forces, but
the general appearance is not excluded. Only in the first
publication [52] are restrictions for the velocity explicitly
formulated to prevent velocities larger than the intended
speed; other authors tried to improve the model by in-
troducing more parameters [98]. But additional parame-
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ter and artificial restrictions of variables diminish the sim-
plicity and thus the attractiveness of the model. A general
discussion of how to deal with these problems of the so-
cial-force model and a verification that the observed phe-
nomena are not limited to a certain specification of the
interaction and a special parameter set is up to now still
missing.

While realistic reproduction within the empirical
range of these macroscopic observables, especially the
fundamental diagram, is absolutely essential to guaran-
tee safety standards in evacuation simulations, and while
a user should always be distrustful of models where no
fundamental diagram has ever been published, it is by no
means sufficient to exclusively check for the realism of
macroscopic observables. On the microscopic level there
are a large number of phenomena which need to be repro-
duced realistically, be it just to make a simulation anima-
tion look realistic or because microscopic effects can often
easily influence macroscopic observables.

If one compares simulations of bottleneck flows with
real events, one observes that in simulations the form of
the queue in front of bottlenecks is often a half-circle,
while in reality it is drop- or wedge-shaped. In most cases
this discrepancy probably does not have an influence on
the simulated evacuation time, but it is interesting to note
where it originates from. Most simulation models implic-
itly or explicitly use some kind of utility maximization to
steer the pedestrians – with the utility being foremost in-
versely proportional to the distance from the nearest exit.
This obviously leads to half-circle-shaped queues in front
of bottlenecks. So wherever one observes queues differ-
ent than half-circles, people have exchanged their normal
“utility function based on the distance” with something
else. One such alternative utility function could be that
people are just curious about what is inside or behind the
bottleneck, so they seek a position where they can look into
it. A more probable explanation would be that in any case
it is the time distance not the spatial distance which is is
sought to be minimized. As anyone knows what the in-
escapable loss in time a bottleneck means for the whole
waiting group, the precise waiting spot is not that impor-
tant. However, in societies with a strong feeling for egal-
ity, people would strongly wish to equally distribute the
waiting time and keep a first-in-first-out principle, which
can best be accomplished and controlled when the queue
is more or less one-dimensional, respectively just as wide
as the bottleneck itself.

Finally it should be mentioned that theoretical inves-
tigations based on simulations of models for pedestrian
dynamics have led to the prediction of some surprising
and counter-intuitive collective phenomena, such as the

reduction of evacuation times through additional columns
near exits (see Subsect. “Bottleneck Flow”) or the faster-
is-slower [54] and freezing-by-heating effect [53]. How-
ever, so far the empirical evidence for the relevance or even
the occurrence of these effects in real situations is rather
scarce.

Applications

In the following section we discuss more practical as-
pects of based on the modeling concepts presented in
Sect. “Modeling”. Tools of different sophistication have
been developed that are nowadays routinely used in safety
analysis. The latter becomes more and more relevant since
many public facilities must fulfill certain legal standards.
As an example we mention aircrafts which must be evac-
uated within 90 seconds. The simulations etc. are already
used in the planning stages because changes of the design
at a later stage are difficult and expensive.

For this kind of safety analysis tools of different so-
phistication have been developed. Some of them mainly
are able to predict just evacuation times whereas others
are based on microscopic simulations which allow also to
study various external influences (fire, smoke, . . . ) in much
detail.

Calculation of Evacuation Times

The basic idea of hand calculation methods has already
briefly been described at the end of Subsect. “Fluid-Dy-
namic and Gas Kinetic Models”. Here we want to discuss
its practical aspects in more detail.

The approach has been developed since the middle of
the 1950s [185]. The basic idea of these methods is the as-
sumption that people can be modeled to behave like fluids.
Knowledge of the flow (see Eq. 1) and the technical data of
the facility are then sufficient to evaluate evacuation times,
etc.

Hand calculation method can be divided into two
major approaches: methods with “dynamic” flow [35,42,
78,79,80,136,151,152,163,192] and methods with “fixed”
flow [110,123,124,125,126,137,145,173,185]. As methods
with “dynamic” flowwe cite methodswhere the pedestrian
flow is dependent on the density of the pedestrian stream
(see Subsect. “Observables”) in the selected facility, thus
the flow can be obtained from fundamental diagrams (see
Subsect. “Fundamental Diagram”) or it is explicitly pre-
scribed in the chosen method. This flow can change dur-
ing movement through the building, e. g., by using stairs,
thus the pedestrian stream has a “dynamic” flow. Meth-
ods with “fixed” flow do not use this concept of relation-
ship between density and flow. In these methods selected
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facilities (e. g., stairs or doors) have a fixed flow which is
independent from the density, which is usually not used
in these methods. The “fixed” flow is usually based upon
empirical and measured data of flow, which are specified
for a special type of building, such as high-rise buildings or
railway stations, for example. Because of much simplifica-
tion, in these “fixed” flowmethods a calculation can always
be done very quickly.

Methods with “dynamic” flow allow one to describe
the condition of the pedestrian flow in every part of a se-
lected building or environment, because they are mostly
based upon the continuity equation, thus it is possible to
calculate different kinds of buildings. This allows the user
to calculate transitions from wide to narrow, floor to door,
floor to stair, etc. The disadvantage is that some these
methods are very elaborate and time-intensive. But in gen-
eral, a method with “dynamic” flow is not complicated to
calculate, thus we want to divide hand calculation meth-
ods in simple [35,42,110,123,124,125,126,136,137,145,152,
163,173,185,192] and complex [78,79,80,151] for evacua-
tion calculation. All of these hand calculation methods are
able to predict total evacuation times for a selected build-
ing, but differences between different methods still exist.
Thus the user has to ensure that he is familiar with as-
sumptions made by each method to ensure that a result
is interpreted in a correct way [161].

Simulation of Evacuation Processes

Before we go into the details of evacuation simulation, let
us briefly clarify its scope and limitations and contrast it to
other methods used in evacuation analysis. When analyz-
ing evacuation processes, three different approaches can
be identified:

(1) Risk assessment,
(2) Optimization, and
(3) Simulation.

The aim and result of risk-assessment is a list of events
and their consequences (e. g., damage, financial loss, loss
of life), i. e., usually an event tree with probabilities and
expectation values for financial loss. Optimization aims at,
roughly speaking, minimizing the evacuation time and re-
ducing the area and duration of congestion. And finally,
simulation describes a system with respect to its function
and behavior by investigating a model of the system. This
model is usually non-analytic, so does not provide explicit
equations for the calculation of, e. g., evacuation time. Of
course, simulations are used for “optimization” in a more
general sense, too, i. e., they can be part of an optimization.
This holds for risk assessment, too, if simulations are used

to determine the outcomes of the different scenarios in the
event tree.

In evacuation analysis the system is, generally speak-
ing, a group of persons in an environment. More specif-
ically, four components (sub-systems/sub-models) of the
system evacuation process can be identified:

(1) Geometry,
(2) Environment,
(3) Population, and
(4) Hazards [43].

Any evacuation simulation must at least take into account
(1) and (3). The behavior of the persons (which can be de-
scribed on the strategic, tactical, and operational level—see
Sect. “Modeling”) is part of the population sub-model. An
alternative way of describing behavior is according to its
algorithmic representation: no behavior modeling – func-
tional analogy – implicit representation (equation) – rule
based – artificial intelligence [43].

In the context of evacuation, hazards are first of all
fire and smoke, which then require a toxicity sub-model,
e. g., the fractional effective dose model (FED), to as-
sess the physiological effect of toxic gases and tempera-
ture [25]. Further hazards to take into account might be
earthquakes, flooding, or in the case of ships, list, heel,
or roll motion. The sub-model environment comprises all
other influences that affect the evacuation process, e. g.,
exit signs, surface texture, public address system, etc.

In summary, aims of an evacuation analysis and sim-
ulation are to provide feedback and hints for improve-
ment at an early stage of design, information for safer
and more rigorous regulations, improvement of emer-
gency preparedness, training of staff, and accident inves-
tigation [43]. They usually do not provide direct results on
the probability of a scenario or a systematic search for op-
timal geometries.

Calculation of Overall Evacuation Time, Identification
of Congestion, and Corrective Actions The scope of
this section is to show general results that can be obtained
by evacuation simulations. They are general in the sense
that they can basically be obtained by any stochastic and
microscopic model, i. e., apart from these two require-
ments, the results are not model specific. In detail, five
different results of evacuation simulations can be distin-
guished:

(1) Distribution of evacuation times,
(2) Evacuation curve (number of persons evacuated vs.

time),
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(3) Sequence of the evacuation (e. g., snapshots/screen-
shots at specific times, e. g., every minute), and

(4) Identification of congestion, usually based on density
and time.

The last point (4), in particular, needs some more expla-
nation: congestion is defined based on density. Notwith-
standing the difficulties of measuring density, we suggest
density as the most suitable criterion for the identifica-
tion of congestion. In addition to the mere occurrence of
densities exceeding a certain threshold (say 3.5 persons
per square meter), the time this threshold is exceeded is
another necessary condition for a sensible definition of
congestion. In the case presented here, 10% of the overall
evacuation time is used. Both criteria are in accordance
with the IMO regulations [118].

Based on these results, evacuation time and areas of
congestion, corrective actions can be taken. The most
straightforward measure would be a change of geometry,
i. e., shorter or wider escape paths (floors, stairs, doors).
This can be directly put into the geometry sub-model,
the simulation can be re-run, and the result checked. Sec-
ondly, the signage, and therefore the orientation capabil-
ity, can be improved. This is not as straightforward as ge-
ometrical changes. It does depend more heavily on the
model characteristics as to how these changes influence
the evacuation sequence.

We will not go into these details in the following two
sections but rather show two typical examples for evacua-
tion simulations and the results obtained. We will also not
discuss the results in detail, since they are of an illustrative
nature in the context of this article. The following exam-
ples are based on investigations that have been performed
using a cellular automatonmodel which is described along
with the simulation program in [90,111].

Simulation Example 1 – Hotel The first example we
show is a hotel with 8069 persons. In Fig. 15 only the
ground floor is shown. There are nine floors altogether.
The upper floors influence the ground floor only via the
stair landings and the exits adjacent to them. Most of the
8069 persons are initially located in the ground floor, since
the theater and conference area is located there. The upper
floors are mainly covering bedrooms and some small con-
ference areas.

The first step in our example (which might well be
a useful recipe for evacuation analyses in general and is
again in accordance with [118]) is to perform a statisti-
cal analysis. To this end, 500 samples are simulated. The
evacuation time of a single run is the time it takes for all
persons to get out. In this context, no fire or smoke are

taken into account. Since there are stochastic influences
in the model used, the significant overall evacuation time
is taken to be the 95-percentile (cf. Fig. 14). Finally, the
maximum,minimum, mean, and significant values for the
evacuation curve (number of persons evacuated vs. time)
are also shown in Fig. 14.

The next figure (Fig. 16) shows the cumulated density.
The thresholds (red areas) are 3.5 persons per square me-
ter and 10% of the overall evacuation time (in this case
49 seconds). The overall evacuation time is 8:13 minutes
(493 seconds). This value is obtained by taking the 95-per-
centile of the frequency distribution for the overall evacu-
ation times (cf. Fig. 14).

Of course, a distribution of overall evacuation times
(for one scenario, i. e., the same initial parameters) can
only be obtained by a stochastic model. In a determinis-
tic model only one single value is calculated for the over-
all evacuation time. The variance of the overall evacuation
times is due to two effects in the model used here: the ini-
tial position of the persons is determined anew at the be-
ginning of each simulation run since only the statistical
properties of the overall population are set and the mo-
tion of the persons is governed by partially stochastic rules
(e. g., probabilistic parameters).

Simulation Example 2 –Passenger Ship The second ex-
ample we will show is a ship. The major difference from
the previous example is the addition of (1) the assembly
phase and (2) embarkation and launching.

T D AC
2
3
(E C L)

D fsafety � (treact C twalk)C
2
3
(E C L)

� 60 minutes :

Embarkation and launching time (E C L) are required
to be less than 30 minutes. For the sake of the evacua-
tion analysis at an early design stage, the sum of embarka-
tion and launching time can be assumed to be 30 minutes.
Therefore, the requirement for A is 40 minutes. Alterna-
tively, the embarkation and launching time can be deter-
mined by an evacuation trial.

Figure 17 shows the layout, initial population distribu-
tion (night case), density plot for the day case, and density
plot for the night case. The reaction times are different for
the day and the night case: 3 to 7 minutes (equally dis-
tributed) in the one and 7 to 13 minutes in the other. The
longer reaction time in the night case results in less con-
gestion (cf. Fig. 17). Both cases must be done in the analy-
sis according to [118]. Additionally, a secondary night and
day case are required (making up four cases altogether). In
these secondary cases the main vertical zone (MVZ) lead-
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Evacuation Dynamics: Empirical Results, Modeling and Applications, Figure 14
Frequency distribution for the overall evacuation time (a) and evacuation curve (b)

ing to the longest overall individual assembly time is iden-
tified, and then either half of the stairway capacity in this
zone is assumed to be not available, or 50% of the persons
initially located in this zone must be led via one neighbor-
ing zone to the assembly station.

In the same way as shown for the two examples, simu-
lations can be performed for other types of buildings and
vessels. This technique has been applied to various passen-

gers ships [112] to football stadiums [88] and the World
Youth Day 2005 [88], the Jamarat Bridge in Makkah [88],
a movie theater and schools (mainly for calibration and
validation) [90] and airports [171]. Of course, many exam-
ples of applications based on various models can be found
in the literature. For an overview, the proceedings of the
PED conference series are an excellent starting point [44,
170,190].
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Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 15
Initial population distribution and situation after two minutes

Comparison of Commercial Software Tools

From a practical point of view, application of models for
pedestrian dynamics and evacuation processes becomes
more and more relevant in safety analysis. This has led to
the development of a number of software tools that, with
different sophistication, help us study many aspects with-
out risking the health of test persons in evacuation trials.

There are commercial, as well as non-commercial soft-
ware tools. All tools might be based on different mod-
els [97,187]. They have become very popular since the
middle of the 1990s. A first comparison of different com-

Evacuation Dynamics: Empirical Results, Modeling and Applica-
tions, Figure 16
Density plot, i. e., cumulated person density exceeding 3.5 per-
sons per squaremeter and 10%of overall evacuation time

mercial software tools can be found in [191], where they
were said to produce “reasonable results”. Further com-
parisons of real evacuation data with software tools or
hand calculation methods can be found in [29,67,91,96,
104,160,161,177]. But results predicted by different com-
mercial software tools can differ by up to 40% for the
same building [96]. Results may differ, too, when calcu-
lating with different assumptions, e. g., different reaction
times, use of more or less detailed stair models, or when
calculating with a real occupant load in contrast to an un-
certainty analysis [96,104]. Contrary to these results, an-
other study [161] shows that calculations with different
software tools are able to predict total evacuation times
for high-rise buildings and there are no large differences
as shown in [96]. In [161] the results of an evacuation trial
and simulations with different commercial software tools
differed for selected floors of a highrise building. The den-
sities were very low in this instance. In this case human
behavior has a very large influence on the evacuation time.
By contrast, evacuations at medium or high densities, hu-
man behavior has a smaller influence on the evacuation
time of selected areas because congestion appears and con-
tinues larger than in low density situations – thus people
reach the exit while congestion is still a factor [162]. In
low density situations congestions are very rare, thus peo-
ple move narrowly with free walking velocity through the
building [162].

But the results presented in [161] also show that com-
mercial software tools sometimes have problems with the
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Evacuation Dynamics: Empirical Results, Modeling and Applications, Figure 17
Initial distribution for the night case, density plot for the day case, and density plot for the night case for the “AENEAS steamliner”

Evacuation Dynamics: Empirical Results, Modeling and Applications, Figure 18
Comparison of different software tools by simulating linear (left, narrow floor) and planar (right, 2m wide floor) movement [162]

empirical relationship of density and walking speed (see
Fig. 18). Furthermore, it is very important how boundary
conditions are implemented in these tools (see Fig. 19),
and the investigation of a simple scenario of a single room

using different software tools shows results differing by
about a factor of two (see Fig. 19) [161]. In this case all soft-
ware tools predict a congestion at the exit. Furthermore
it is possible that the implemented algorithm fails [161].
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Evacuation Dynamics: Empirical Results, Modeling and Applications, Figure 19
Comparison of different software tools by simulating a simple room geometry [162]

Thus for the user it is hard to know which algorithms
are implemented in closed-source tools so that such a tool
must be considered as “black box” [147]. It is also quite dif-
ficult to compare results about density and appearing con-
gestions calculated by different software tools [162] and so
it is questionable how these results should be interpreted.
But, as pointed out earlier, reliable empirical data are often
missing so that a validation of software tools or models is
quite difficult [162].

Future Directions

The discussion has shown that the problem of crowd dy-
namics and evacuation processes is far from being well
understood. One big problem is experimental basis. As in
many human systems, it is difficult to perform controlled
experiments on a sufficiently large scale. This would be
necessary since data from actual emergency situations is
usually not available, at least in sufficient quality. Progress
should be possible by using modern video and computer
technology which should allow us, in principle, to extract
precise data even for the trajectories of individuals.

The full understanding of the complex dynamics of
evacuation processes requires collaboration between engi-
neering, physics, computer science, psychology, etc. Engi-
neering in cooperation with computer science will lead to
an improved empirical basis. Methods from physics allow
us to develop simple but realistic models that capture the
main aspects of the dynamics. Psychology is then needed
to understand the interactions between individuals in suf-
ficient detail to get a reliable set of ‘interaction’ parameters
for the physical models.

In the end, we hope these joint efforts will lead to re-
alistic models for evacuation processes that not only allow
us to study these in the planning stages of facilities, but

even allow for dynamical real-time evacuation control in
case an emergency occurs.
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Glossary

Deterministic evolutionary dynamic A deterministic
evolutionary dynamic is a rule for assigning popula-
tion games to ordinary differential equations describ-
ing the evolution of behavior in the game. Determin-
istic evolutionary dynamics can be derived from re-
vision protocols, which describe choices (in economic
settings) or births and deaths (in biological settings)
on an agent-by-agent basis.

Evolutionarily stable strategy (ESS) In a symmetric nor-
mal form game, an evolutionarily stable strategy is
a (possibly mixed) strategy with the following prop-
erty: a population in which all members play this strat-
egy is resistant to invasion by a small group of mutants
who play an alternative mixed strategy.

Normal form game Anormal form game is a strategic in-
teraction in which each of n players chooses a strat-
egy and then receives a payoff that depends on all
agents’ choices choices of strategy. In a symmetric two-
player normal form game, the two players choose from

the same set of strategies, and payoffs only depend
on own and opponent’s choices, not on a player’s
identity.

Population game A population game is a strategic inter-
action among one or more large populations of agents.
Each agent’s payoff depends on his own choice of strat-
egy and the distribution of others’ choices of strategies.
One can generate a population game from a normal
form game by introducing random matching; how-
ever, many population games of interest, including
congestion games, do not take this form.

Replicator dynamic The replicator dynamic is a funda-
mental deterministic evolutionary dynamic for games.
Under this dynamic, the percentage growth rate of the
mass of agents using each strategy is proportional to
the excess of the strategy’s payoff over the population’s
average payoff. The replicator dynamic can be inter-
preted biologically as a model of natural selection, and
economically as a model of imitation.

Revision protocol A revision protocol describes both the
timing and the results of agents’ decisions about how
to behave in a repeated strategic interaction. Revision
protocols are used to derive both deterministic and
stochastic evolutionary dynamics for games.

Stochastically stable state In Game-theoretic models of
stochastic evolution in games are often described by
irreducible Markov processes. In these models, a pop-
ulation state is stochastically stable if it retains positive
weight in the process’s stationary distribution as the
level of noise in agents’ choices approaches zero, or as
the population size approaches infinity.

Definition of the Subject

Evolutionary game theory studies the behavior of large
populations of agents who repeatedly engage in strategic
interactions. Changes in behavior in these populations are
driven either by natural selection via differences in birth
and death rates, or by the application of myopic decision
rules by individual agents.

The birth of evolutionary game theory is marked by
the publication of a series of papers by mathematical biol-
ogist John Maynard Smith [137,138,140]. Maynard Smith
adapted the methods of traditional game theory [151,215],
which were created to model the behavior of rational eco-
nomic agents, to the context of biological natural selection.
He proposed his notion of an evolutionarily stable strategy
(ESS) as a way of explaining the existence of ritualized an-
imal conflict.

Maynard Smith’s equilibrium concept was provided
with an explicit dynamic foundation through a differential
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equation model introduced by Taylor and Jonker [205].
Schuster and Sigmund [189], following Dawkins [58],
dubbed this model the replicator dynamic, and recog-
nized the close links between this game-theoretic dynamic
and dynamics studied much earlier in population ecol-
ogy [132,214] and population genetics [73]. By the 1980s,
evolutionary game theory was a well-developed and firmly
established modeling framework in biology [106].

Towards the end of this period, economists realized
the value of the evolutionary approach to game theory
in social science contexts, both as a method of provid-
ing foundations for the equilibrium concepts of traditional
game theory, and as a tool for selecting among equilibria
in games that admit more than one. Especially in its early
stages, work by economists in evolutionary game theory
hewed closely to the interpretation set out by biologists,
with the notion of ESS and the replicator dynamic un-
derstood as modeling natural selection in populations of
agents genetically programmed to behave in specific ways.
But it soon became clear that models of essentially the
same form could be used to study the behavior of popu-
lations of active decision makers [50,76,133,149,167,191].
Indeed, the two approaches sometimes lead to identical
models: the replicator dynamic itself can be understood
not only as a model of natural selection, but also as one
of imitation of successful opponents [35,188,216].

While the majority of work in evolutionary game the-
ory has been undertaken by biologists and economists,
closely related models have been applied to questions in
a variety of fields, including transportation science [143,
150,173,175,177,197], computer science [72,173,177], and
sociology [34,62,126,225,226]. Some paradigms from evo-
lutionary game theory are close relatives of certain models
from physics, and so have attracted the attention of work-
ers in this field [141,201,202,203]. All told, evolutionary
game theory provides a common ground for workers from
a wide range of disciplines.

Introduction

This article offers a broad survey of the theory of evolution
in games. Section “Normal Form Games” introduces nor-
mal form games, a simple and commonly studied model
of strategic interaction. Section “Static Notions of Evolu-
tionary Stability” presents the notion of an evolutionarily
stable strategy, a static definition of stability proposed for
this normal form context.

Section “Population Games” defines population
games, a general model of strategic interaction in large
populations. Section “Revision Protocols” offers the no-
tion of a revision protocol, an individual-level description

of behavior used to define the population-level processes
of central concern.

Most of the article concentrates on these popula-
tion-level processes: Section “Deterministic Dynamics”
considers deterministic differential equation models of
game dynamics; Section “Stochastic Dynamics” studies
stochastic models of evolution based onMarkov processes;
and Sect. “Local Interaction” presents deterministic and
stochastic models of local interaction. Section “Applica-
tions” records a range of applications of evolutionary game
theory, and Sect. “Future Directions” suggests directions
for future research. Finally, Sect. “Bibliography” offers an
extensive list of primary references.

Normal FormGames

In this section, we introduce a very simple model of strate-
gic interaction: the symmetric two-player normal form
game. We then define some of the standard solution con-
cepts used to analyze this model, and provide some exam-
ples of games and their equilibria. With this background
in place, we turn in subsequent sections to evolutionary
analysis of behavior in games.

In a symmetric two-player normal form game, each of
the two players chooses a (pure) strategy from the finite
set S, which we write generically as S D f1; : : : ; ng. The
game’s payoffs are described by the matrix A 2 Rn�n . En-
try Ai j is the payoff a player obtains when he chooses strat-
egy i and his opponent chooses strategy j; this payoff does
not depend on whether the player in question is called
player 1 or player 2.

The fundamental solution concept of noncooperative
game theory is Nash equilibrium [151]. We say that the
pure strategy i 2 S is a symmetric Nash equilibrium of A if

Aii � Aji for all j 2 S: (1)

Thus, if his opponent chooses a symmetric Nash equilib-
rium strategy i, a player can do no better than to choose i
himself.

A stronger requirement on strategy i demands that it
be superior to all other strategies regardless of the oppo-
nent’s choice:

Aik > Ajk for all j; k 2 S: (2)

When condition (2) holds, we say that strategy i is strictly
dominant in A.

Example 1 The game below, with strategies C (“coop-
erate”) and D (“defect”), is an instance of a Prisoner’s
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Dilemma:

C D
C 2 0
D 3 1 :

(To interpret this game, note that ACD D 0 is the payoff
to cooperating when one’s opponent defects.) Since 1 > 0,
defecting is a symmetric Nash equilibrium of this game.
In fact, since 3 > 2 and 1 > 0, defecting is even a strictly
dominant strategy. But since 2 > 1, both players are better
off when both cooperate than when both defect.

In many instances, it is natural to allow players to
choose mixed (or randomized) strategies. When a player
chooses mixed strategy from the simplex X D fx 2
Rn
C :

P
i2S xi D 1g, his behavior is stochastic: he commits

to playing pure strategy i 2 S with probability xi .
When either player makes a randomized choice, we

evaluate payoffs by taking expectations: a player choos-
ing mixed strategy x against an opponent choosing mixed
strategy y garners an expected payoff of

x0Ay D
X

i2S

X

j2S

xiAi j y j : (3)

In biological contexts, payoffs are fitnesses, and represent
levels of reproductive success relative to some baseline
level; Eq. (3) reflects the idea that in a large population, ex-
pected reproductive success is what matters. In economic
contexts, payoffs are utilities: a numerical representation
of players’ preferences under which Eq. (3) captures play-
ers’ choices between uncertain outcomes [215].

The notion of Nash equilibrium extends easily to allow
for mixed strategies. Mixed strategy x is a symmetric Nash
equilibrium of A if

x0Ax � y0Ax for all y 2 X: (4)

In words, x is a symmetric Nash equilibrium if its expected
payoff against itself is at least as high as the expected payoff
obtainable by any other strategy y against x. Note that we
can represent the pure strategy i 2 S using themixed strat-
egy ei 2 X, the ith standard basis vector in Rn . If we do so,
then definition (4) restricted to such strategies is equiva-
lent to definition (1).

We illustrate these ideas with a few examples.

Example 2 Consider the Stag Hunt game:

H S
H h h
S 0 s :

Each player in the Stag Hunt game chooses between
hunting hare (H) and hunting stag (S). A player who hunts
hare always catches one, obtaining a payoff of h > 0. But
hunting stag is only successful if both players do so, in
which case each obtains a payoff of s > h. Hunting stag is
potentially more profitable than hunting hare, but requires
a coordinated effort.

In the Stag Hunt game, H and S (or, equivalently, eH
and eS ) are symmetric pure Nash equilibria. This game
also has a symmetric mixed Nash equilibrium, namely
x� D (x�H ; x

�
S ) D ( s�hs ;

h
s ). If a player’s opponent chooses

this mixed strategy, the player’s expected payoff is h
whether he chooses H, S, or any mixture between the two;
in particular, x� is a best response against itself.

To distinguish between the two pure equilibria, we
might focus on the one that is payoff dominant, in
that it achieves the higher joint payoff. Alternatively, we
can concentrate on the risk dominant equilibrium [89],
which utilizes the strategy preferred by a player who
thinks his opponent is equally likely to choose either op-
tion (that is, against an opponent playing mixed strategy
(xH ; xS ) D ( 12 ;

1
2 )). In the present case, since s > h, equi-

librium S is payoff dominant. Which strategy is risk dom-
inant depends on further information about payoffs. If
s > 2h, then S is risk dominant. But if s < 2h, H is risk
dominant: evidently, payoff dominance and risk domi-
nance need not agree.

Example 3 In theHawk–Dove game [139], the two players
are animals contesting a resource of value v > 0. The play-
ers choose between two strategies: display (D) or escalate
(E). If both display, the resource is split; if one escalates
and the other displays, the escalator claims the entire re-
source; if both escalate, then each player is equally likely to
claim the entire resource or to be injured, suffering a cost
of c > v in the latter case.

The payoff matrix for the Hawk–Dove game is there-
fore

D E
D 1

2v 0
E v 1

2 (v � c) :

This game has no symmetric Nash equilibrium in pure
strategies. It does, however, admit the symmetric mixed
equilibrium x� D (x�D ; x

�
E ) D ( c�vc ;

v
c ). (In fact, it can be

shown that every symmetric normal form game admits at
least one symmetric mixed Nash equilibrium [151].)

In this example, our focus on symmetric behavior
may seem odd: rather than randomizing symmetrically,
it seems more natural for players to follow an asymmet-
ric Nash equilibrium in which one player escalates and the
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other displays. But the symmetric equilibrium is the most
relevant one for understanding natural selection in popu-
lations whose members are randomly matched in pairwise
contests –;see Sect. “Static Notions of Evolutionary Stabil-
ity”.

Example 4 Consider the class of Rock–Paper–Scissors
games:

R P S
R 0 �l w
P w 0 �l
S �l w 0 :

Here w > 0 is the benefit of winning the match and l > 0
the cost of losing; ties are worth 0 to both players. We call
this game good RPS if w > l , so that the benefit of win-
ning the match exceeds the cost of losing, standard RPS
if w D l , and bad RPS if w < l . Regardless of the val-
ues of w and l, the unique symmetric Nash equilibrium
of this game, x� D (x�R ; x

�
P ; x
�
S ) D ( 13 ;

1
3 ;

1
3 ), requires uni-

form randomization over the three strategies.

Static Notions of Evolutionary Stability

In introducing game-theoretic ideas to the study of ani-
mal behavior, Maynard Smith advanced this fundamental
principle: that the evolutionary success of (the genes un-
derlying) a given behavioral trait can depend on the preva-
lences of all traits. It follows that natural selection among
the traits can be modeled as random matching of animals
to play normal form games [137,138,139,140]. Working
in this vein, Maynard Smith offered a stability concept
for populations of animals sharing a common behavioral
trait – that of playing a particular mixed strategy in the
game at hand. Maynard Smith’s concept of evolutionary
stability, influenced by the work of Hamilton [87] on the
evolution of sex ratios, defines such a population as stable
if it is resistant to invasion by a small group of mutants
carrying a different trait.

Suppose that a large population of animals is randomly
matched to play the symmetric normal form game A. We
call mixed strategy x 2 X an evolutionarily stable strategy
(ESS) if

x0A((1 � ")x C "y) > y0A((1 � ")x C "y)
for all " � "̄(y) and y ¤ x : (5)

To interpret condition (5), imagine that a population of
animals programmed to play mixed strategy x is invaded
by a group of mutants programmed to play the alterna-
tive mixed strategy y. Equation (5) requires that regardless
of the choice of y, an incumbent’s expected payoff from

a randommatch in the post-entry population exceeds that
of a mutant so long as the size of the invading group is
sufficiently small.

The definition of ESS above can also be expressed as
a combination of two conditions:

x0Ax � y0Ax for all y 2 X; (4)

For all y ¤ x; [x0Ax D y0Ax]
implies that [x0Ay > y0Ay] : (6)

Condition (4) is familiar: it requires that the incumbent
strategy x be a best response to itself, and so is none other
than our definition of symmetric Nash equilibrium. Con-
dition (6) requires that if a mutant strategy y is an alterna-
tive best response against the incumbent strategy x, then
the incumbent earns a higher payoff against the mutant
than the mutant earns against itself.

A less demanding notion of stability can be obtained
by allowing the incumbent and themutant in condition (6)
to perform equally well against the mutant:

For all y 2 X; [x0Ax D y0Ax]
implies that [x0Ay � y0Ay] : (7)

If x satisfies conditions (4) and (7), it is called a neutrally
stable strategy (NSS) [139].

Let us apply these stability notions to the games in-
troduced in the previous section. Since every ESS and
NSS must be a Nash equilibrium, we need only consider
whether the Nash equilibria of these games satisfy the ad-
ditional stability conditions, (6) and (7).

Example 5 In the Prisoner’s Dilemma game (Example 1),
the dominant strategy D is an ESS.

Example 6 In the Stag Hunt game (Example 2), each pure
Nash equilibrium is an ESS. But the mixed equilibrium
(x�H ; x

�
S ) D ( s�hs ;

h
s ) is not an ESS: if mutants playing ei-

ther pure strategy enter the population, they earn a higher
payoff than the incumbents in the post-entry population.

Example 7 In the Hawk–Dove game (Example 3), the
mixed equilibrium (x�D ; x

�
E ) D ( c�vc ;

v
c ) is an ESS. May-

nard Smith used this and other examples to explain the ex-
istence of ritualized fighting in animals. While an animal
who escalates always obtains the resource when matched
with an animal who merely displays, a population of esca-
lators is unstable: it can be invaded by a group of mutants
who display, or who merely escalate less often.

Example 8 In Rock–Paper–Scissors games (Example 4),
whether the mixed equilibrium x� D ( 13 ;

1
3 ;

1
3 ) is evolu-

tionarily stable depends on the relative payoffs to winning
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and losing a match. In good RPS (w > l), x� is an ESS; in
standard RPS (w D l), x� is a NSS but not an ESS, while in
bad RPS (w < l), x� is neither an ESS nor an NSS. The last
case shows that neither evolutionary nor neutrally stable
strategies need exist in a given game.

The definition of an evolutionarily stable strategy has been
extended to cover a wide range of strategic settings, and
has been generalized in a variety of directions. Prominent
among these developments are set-valued versions of ESS:
in rough terms, these concepts consider a set of mixed
strategies Y � X to be stable if the no population play-
ing a strategy in the set can be invaded successfully by
a population of mutants playing a strategy outside the set.
[95] provides a thorough survey of the first 15 years of
research on ESS and related notions of stability; key ref-
erences on set-valued evolutionary solution concepts in-
clude [15,199,206].

Maynard Smith’s notion of ESS attempts to capture the
dynamic process of natural selection using a static defi-
nition. The advantage of this approach is that his defini-
tion is often easy to check in applications. Still, more con-
vincingmodels of natural selection should be explicitly dy-
namicmodels, building on techniques from the theories of
dynamical systems and stochastic processes. Indeed, this
thoroughgoing approach can help us understand whether
and when the ESS concept captures the notion of robust-
ness to invasion in a satisfactory way.

The remainder of this article concerns explicitly dy-
namic models of behavior. In addition to being dynamic
rather than static, these models will differ from the one
considered in this section in two other important ways as
well. First, rather than looking at populations whose mem-
bers all play a particular mixed strategy, the dynamicmod-
els consider populations in which different members play
different pure strategies. Second, instead of maintaining
a purely biological point of view, our dynamic models will
be equally well-suited to studying behavior in animal and
human populations.

PopulationGames

Population games provide a simple and general frame-
work for studying strategic interactions in large popula-
tions whose members play pure strategies. The simplest
population games are generated by random matching in
normal form games, but the population game framework
allows for interactions of a more intricate nature.

We focus here on games played by a single population
(i. e., games in which all agents play equivalent roles). We
suppose that there is a unit mass of agents, each of whom
chooses a pure strategy from the set S D f1; : : : ; ng. The

aggregate behavior of these agents is described by a pop-
ulation state x 2 X, with x j representing the proportion
of agents choosing pure strategy j. We identify a popula-
tion game with a continuous vector-valued payoff func-
tion F : X ! Rn . The scalar Fi(x) represents the payoff to
strategy i when the population state is x.

Population state x� is a Nash equilibrium of F if no
agent can improve his payoff by unilaterally switching
strategies. More explicitly, x� is a Nash equilibrium if

x�i > 0 implies that Fi(x) � Fj(x) for all j 2 S:
(8)

Example 9 Suppose that the unit mass of agents are
randomly matched to play the symmetric normal form
game A. At population state x, the (expected) payoff to
strategy i is the linear function Fi(x) D

P
j2S Ai jx j ; the

payoffs to all strategies can be expressed concisely as
F(x) D Ax. It is easy to verify that x� is a Nash equilib-
rium of the population game F if and only if x� is a sym-
metric Nash equilibrium of the symmetric normal form
game A.

While population games generated by random matching
are especially simple, many games that arise in applica-
tions are not of this form. In the biology literature, games
outside the random matching paradigm are known as
playing the fieldmodels [139].

Example 10 Consider the following model of highway
congestion [17,143,166,173]. A pair of towns, Home and
Work, are connected by a network of links. To commute
from Home to Work, an agent must choose a path i 2 S
connecting the two towns. The payoff the agent obtains
is the negation of the delay on the path he takes. The de-
lay on the path is the sum of the delays on its constituent
links, while the delay on a link is a function of the number
of agents who use that link.

Population games embodying this description are
known as a congestion games. To define a congestion game,
let ˚ be the collection of links in the highway network.
Each strategy i 2 S is a route from Home to Work, and
so is identified with a set of links ˚i � ˚ . Each link � is
assigned a cost function c� : RC ! R, whose argument is
link � ’s utilization level u� :

u�(x) D
X

i2�(�)

xi ; where �(�) D fi 2 S : � 2 ˚ig

The payoff of choosing route i is the negation of the total
delays on the links in this route:

Fi(x) D �
X

�2˚i

c�(u� (x)) :
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Since driving on a link increases the delays experienced
by other drivers on that link (i. e., since highway con-
gestion involves negative externalities), cost functions in
models of highway congestion are increasing; they are typ-
ically convex as well. Congestion games can also be used to
model positive externalities, like the choice between differ-
ent technological standards; in this case, the cost functions
are decreasing in the utilization levels.

Revision Protocols

We now introduce foundations for our models of evolu-
tionary dynamics. These foundations are built on the no-
tion of a revision protocol, which describes both the timing
and results of agents’ myopic decisions about how to con-
tinue playing the game at hand [24,35,96,175,217]. Revi-
sion protocols will be used to derive both the deterministic
dynamics studied in Sect. “Deterministic Dynamics” and
the stochastic dynamics studied in Sect. “Stochastic Dy-
namics”; similar ideas underlie the local interaction mod-
els introduced in Sect. “Local Interaction”.

Definition

Formally, a revision protocol is a map � : Rn � X ! Rn�n
C

that takes the payoff vectors � and population states x as
arguments, and returns nonnegative matrices as outputs.
For reasons to be made clear below, scalar �i j (�; x) is
called the conditional switch rate from strategy i to strat-
egy j.

To move from this notion to an explicit model of evo-
lution, let us consider a population consisting of N <1

members. (A number of the analyzes to follow will con-
sider the limit of the present model as the population
size N approaches infinity – see Sects. “Mean Dynamics”,
“Deterministic Approximation”, and “Stochastic Stability
via Large Population Limits”.) In this case, the set of feasi-
ble social states is the finite set XN D X \ 1

NZ
n D fx 2

X : Nx 2 Zng, a grid embedded in the simplex X.
A revision protocol �, a population game F, and a pop-

ulation size N define a continuous-time evolutionary pro-
cess – a Markov process fXN

t g – on the finite state space
XN . A one-size-fits-all description of this process is as fol-
lows. Each agent in the society is equipped with a “stochas-
tic alarm clock”. The times between rings of of an agent’s
clock are independent, each with a rate R exponential
distribution. The ringing of a clock signals the arrival
of a revision opportunity for the clock’s owner. If an
agent playing strategy i 2 S receives a revision opportu-
nity, he switches to strategy j ¤ i with probability �i j/R. If
a switch occurs, the population state changes accordingly,

from the old state x to a new state y that accounts for the
agent’s change in strategy.

While this interpretation of the evolutionary process
can be applied to any revision protocol, simpler interpreta-
tions are sometimes available for protocols with additional
structure. The examples to follow illustrate this point.

Examples

Imitation Protocols and Natural Selection Protocols
In economic contexts, revision protocols of the form

�i j(�; x) D x j �̂i j(�; x) (9)

are called imitation protocols [35,96,216]. These protocols
can be given a very simple interpretation: when an agent
receives a revision opportunity, he chooses an opponent at
random and observes her strategy. If our agent is playing
strategy i and the opponent strategy j, the agent switches
from i to jwith probability proportional to �̂i j . Notice that
the value of the population share xj is not something the
agent need know; this term in (9) accounts for the agent’s
observing a randomly chosen opponent.

Example 11 Suppose that after selecting an opponent, the
agent imitates the opponent only if the opponent’s payoff
is higher than his own, doing so in this case with probabil-
ity proportional to the payoff difference:

�i j(�; x) D x j[� j � �i ]C:

This protocol is known as pairwise proportional imita-
tion [188].

Protocols of form (9) also appear in biological con-
texts, [144], [153,158], where in these cases we refer to
them as natural selection protocols. The biological inter-
pretation of (9) supposes that each agent is programmed
to play a single pure strategy. An agent who receives a re-
vision opportunity dies, and is replaced through asexual
reproduction. The reproducing agent is a strategy j player
with probability �i j(�; x) D x j �̂i j(�; x), which is propor-
tional both to the number of strategy j players and to some
function of the prevalences and fitnesses of all strategies.
Note that this interpretation requires the restriction
X

j2S

�i j(�; x) � 1:

Example 12 Suppose that payoffs are always positive, and
let

�i j(�; x) D
x j � jP
k2S xk �k

: (10)
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Understood as a natural selection protocol, (10) says that
the probability that the reproducing agent is a strategy j
player is proportional to x j� j , the aggregate fitness of
strategy j players.

In economic contexts, we can interpret (10) as an im-
itative protocol based on repeated sampling. When an
agent’s clock rings he chooses an opponent at random. If
the opponent is playing strategy j, the agent imitates him
with probability proportional to � j . If the agent does not
imitate this opponent, he draws a new opponent at ran-
dom and repeats the procedure.

Direct Evaluation Protocols In the previous examples,
only strategies currently in use have any chance of being
chosen by a revising agent (or of being the programmed
strategy of the newborn agent). Under other protocols,
agents’ choices are not mediated through the population’s
current behavior, except indirectly via the effect of behav-
ior on payoffs. These direct evaluation protocols require
agents to directly evaluate the payoffs of the strategies they
consider, rather than to indirectly evaluate them as under
an imitative procedure.

Example 13 Suppose that choices are made according to
the logit choice rule:

�i j(�; x) D
exp(��1� j)P
k2S exp(��1�k)

: (11)

The interpretation of this protocol is simple. Revision op-
portunities arrive at unit rate. When an opportunity is re-
ceived by an i player, he switches to strategy j with prob-
ability �i j(�; x), which is proportional to an exponential
function of strategy j’s payoffs. The parameter � > 0 is
called the noise level. If � is large, choice probabilities un-
der the logit rule are nearly uniform. But if � is near zero,
choices are optimal with probability close to one, at least
when the difference between the best and second best pay-
off is not too small.

Additional examples of revision protocols can be found in
the next section, and one can construct new revision pro-
tocols by taking linear combinations of old ones; see [183]
for further discussion.

Deterministic Dynamics

Although antecedents of this approach date back to the
early work of Brown and von Neumann [45], the use of
differential equations to model evolution in games took
root with the introduction of the replicator dynamic by
Taylor and Jonker [205], and remains an vibrant area of re-

search; Hofbauer and Sigmund [108] and Sandholm [183]
offer recent surveys. In this section, we derive a determin-
istic model of evolution: the mean dynamic generated by
a revision protocol and a population game. We study this
deterministic model from various angles, focusing in par-
ticular on local stability of rest points, global convergence
to equilibrium, and nonconvergent limit behavior.

While the bulk of the literature on deterministic evo-
lutionary dynamics is consistent with the approach we
take here, we should mention that other specifications
exist, including discrete time dynamics [5,59,131,218],
and dynamics for games with continuous strategy
sets [41,42,77,100,159,160] and for Bayesian population
games [62,70,179]. Also, deterministic dynamics for ex-
tensive form games introduce new conceptual issues;
see [28,30,51,53,55] and the monograph of Cressman [54].

Mean Dynamics

As described earlier in Sect. “Definition”, a revision proto-
col �, a population game F, and a population sizeN define
a Markov process fXN

t g on the finite state space XN . We
now derive a deterministic process – the mean dynamic –
that describes the expected motion of fXN

t g. In Sect. “De-
terministic Approximation”, we will describe formally the
sense in which this deterministic process provides a very
good approximation of the behavior of the stochastic pro-
cess fXN

t g, at least over finite time horizons and for large
population sizes. But having noted this result, we will focus
in this section on the deterministic process itself.

To compute the expected increment of fXN
t g over the

next dt time units, recall first that each of the N agents
receives revision opportunities via a rate R exponential
distribution, and so expects to receive Rdt opportunities
during the next dt time units. If the current state is x,
the expected number of revision opportunities received
by agents currently playing strategy i is approximately
Nxi Rdt: Since an i player who receives a revision oppor-
tunity switches to strategy j with probability �i j/R, the ex-
pected number of such switches during the next dt time
units is approximately Nxi �i jdt: Therefore, the expected
change in the number of agents choosing strategy i during
the next dt time units is approximately

N

0

@
X

j2S

x j� ji (F(x); x) � xi
X

j2S

�i j(F(x); x)

1

A dt: (12)

Dividing expression (12) by N and eliminating the time
differential dt yields a differential equation for the rate of
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change in the proportion of agents choosing strategy i:

ẋi D
X

j2S

x j� ji (F(x); x)� xi
X

j2S

�i j(F(x); x): (M)

Equation (M) is themean dynamic (ormean field) gen-
erated by revision protocol � in population game F. The
first term in (M) captures the inflow of agents to strategy i
from other strategies, while the second captures the out-
flow of agents to other strategies from strategy i.

Examples

We now describe some examples of mean dynamics, start-
ing with ones generated by the revision protocols from
Sect. “Examples”. To do so, we let

F(x) D
X

i2S

xi Fi(x)

denote the average payoff obtained by the members of the
population, and define the excess payoff to strategy i,

F̂i(x) D Fi(x) � F(x) ;

to be the difference between strategy i’s payoff and the
population’s average payoff.

Example 14 In Example 11, we introduced the pairwise
proportional imitation protocol �i j(�; x) D x j[� j��i ]C.
This protocol generates the mean dynamic

ẋi D xi F̂i(x) : (13)

Equation (13) is the replicator dynamic [205], the best-
known dynamic in evolutionary game theory. Under this
dynamic, the percentage growth rate ẋi /xi of each strat-
egy currently in use is equal to that strategy’s current ex-
cess payoff; unused strategies always remain so. There are
a variety of revision protocols other than pairwise propor-
tional imitation that generate the replicator dynamic as
their mean dynamics; see [35,96,108,217].

Example 15 In Example 12, we assumed that payoffs are
always positive, and introduced the protocol �i j / x j � j;

which we interpreted both as a model of biological natural
selection and as a model of imitation with repeated sam-
pling. The resulting mean dynamic,

ẋi D
xiFi(x)P

k2S xkFk(x)
� xi D

xi F̂i(x)
F(x)

; (14)

is the Maynard Smith replicator dynamic [139]. This dy-
namic only differs from the standard replicator dynamic

(13) by a change of speed, with motion under (14) being
relatively fast when average payoffs are relatively low. (In
multipopulationmodels, the two dynamics are less similar,
and convergence under one does not imply convergence
under the other – see [183,216].)

Example 16 In Example 13 we introduced the logit choice
rule �i j(�; x) / exp(��1� j): The corresponding mean dy-
namic,

ẋi D
exp(��1Fi(x))P
k2S exp(��1Fk(x))

� xi ; (15)

is called the logit dynamic [82].
If we take the noise level � to zero, then the probabil-

ity with which a revising agent chooses the best response
approaches one whenever the best response is unique. At
such points, the logit dynamic approaches the best re-
sponse dynamic [84]:

ẋ 2 BF (x) � x; (16)

where

BF (x) D argmaxy2X y0F(x)

defines the (mixed) best response correspondence for
game F. Note that unlike the other dynamics we consider
here, (16) is defined not by an ordinary differential equa-
tion, but by a differential inclusion, a formulation pro-
posed in [97].

Example 17 Consider the protocol

�i j(�; x) D
h
� j �

X

k2S
xk�k

i

C
:

When an agent’s clock rings, he chooses a strategy at ran-
dom; if that strategy’s payoff is above average, the agent
switches to it with probability proportional to its excess
payoff. The resulting mean dynamic,

ẋi BM D [F̂i (x)]C � xi
X

k2S

[F̂k(x)]C;

is called the Brown–von Neumann–Nash (BNN) dy-
namic [45]; see also [98,176,194,200,217].

Example 18
Consider the revision protocol

�i j(�; x) D [� j � �i]C :

When an agent’s clock rings, he selects a strategy at ran-
dom. If the new strategy’s payoff is higher than his cur-
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Evolutionary Game Theory, Table 1
Five basic deterministic dynamics

Revision Protocol Mean Dynamic Name and source
�ij D xj[	j � 	i]C ẋi D xi F̂i(x) Replicator [205]

�ij D
exp(��1	j)P
k2S exp(��1	k)

ẋi D
exp(��1Fi(x))P
k2S exp(��1Fk(x))

� xi Logit [82]

�ij D 1f jDargmaxk2S
kg ẋ 2 BF (x)� x Best response [84]

�ij D
�
	j �

P
k2S xk	k

�
C

ẋi D [F̂i(x)]C � xi
P

j2S
[F̂j(x)]C BNN [45]

�ij D [	j � 	i]C

ẋi D
X

j2S

xj[Fi(x)� Fj(x)]C

� xi
X

j2S

[Fj(x)� Fi(x)]C
Smith [197]

rent strategy’s payoff, he switches strategies with probabil-
ity proportional to the difference between the two payoffs.
The resulting mean dynamic,

ẋi D
X

j2S

x j[Fi(x) � Fj(x)]C � xi
X

j2S

[Fj(x) � Fi(x)]C;

(17)

is called the Smith dynamic [197]; see also [178].

We summarize these examples of revision protocols and
mean dynamics in Table 1.

Figure 1 presents phase diagrams for the five basic dy-
namics when the population is randomly matched to play
standard Rock–Paper–Scissors (Example 4). In the phase
diagrams, colors represent speed of motion: within each
diagram, motion is fastest in the red regions and slowest
in the blue ones.

The phase diagram of the replicator dynamic re-
veals closed orbits around the unique Nash equilibrium
x� D ( 13 ;

1
3 ;

1
3 ). Since this dynamic is based on imitation

(or on reproduction), each face and each vertex of the sim-
plex X is an invariant set: a strategy initially absent from
the population will never subsequently appear.

The other four dynamics pictured are based on direct
ecaluation, allowing agents to select strategies that are cur-
rently unused. In these cases, the Nash equilibrium is the
sole rest point, and attracts solutions from all initial con-
ditions. (In the case of the logit dynamic, the rest point
happens to coincide with the Nash equilibrium only be-
cause of the symmetry of the game; see [101,104].) Under
the logit and best response dynamics, solution trajectories
quickly change direction and then accelerate when the best
response to the population state changes; under the BNN
and especially the Smith dynamic, solutions approach the
Nash equlibrium in a less angular fashion.

Evolutionary Justification of Nash Equilibrium

One of the goals of evolutionary game theory is to jus-
tify the prediction of Nash equilibrium play. For this jus-
tification to be convincing, it must be based on a model
that makes only mild assumptions about agents’ knowl-
edge about one another’s behavior. This sentiment can be
captured by introducing two desiderata for revision proto-
cols:

(C) Continuity: � is Lipschitz continuous.
(SD) Scarcity of data: �i j only depends on

�i ; � j ; and x j :

Continuity (C) asks that revision protocols depend con-
tinuously on their inputs, so that small changes in aggre-
gate behavior do not lead to large changes in players’ re-
sponses. Scarcity of data (SD) demands that the condi-
tional switch rate from strategy i to strategy j only depend
on the payoffs of these two strategies, so that agents need
only know those facts that are most germane to the de-
cision at hand [183]. (The dependence of �i j on x j is in-
cluded to allow for dynamics based on imitation.) Proto-
cols that respect these two properties do not make unreal-
istic demands on the amount of information that agents in
an evolutionary model possess.

Our two remaining desiderata impose restrictions on
mean dynamics ẋ D VF (x), linking the evolution of ag-
gregate behavior to incentives in the underlying game.

(NS) Nash stationarity:

VF (x) D 0 if and only if x 2 NE(F) :
(PC) Positive correlation:

VF (x) ¤ 0 implies that VF (x)0F(x) > 0:

Nash stationarity (NS) is a restriction on stationary states:
it asks that the rest points of the mean dynamic be pre-
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Evolutionary Game Theory, Figure 1
Five basic deterministic dynamics in standard Rock–Paper–Scissors. Colors represent speeds: red is fastest, blue is slowest

cisely the Nash equilibria of the game being played. Posi-
tive correlation (PC) is a restriction on disequilibrium ad-
justment: it requires that away from rest points, strate-
gies’ growth rates be positively correlated with their pay-

offs. Condition (PC) is among the weakest of the many
conditions linking growth rates of evolutionary dynam-
ics and payoffs in the underlying game; for alternatives,
see [76,110,149,162,170,173,200].
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Evolutionary Game Theory, Table 2
Families of deterministic evolutionary dynamics and their properties; yes� indicates that a weaker or alternate form of the property
is satisfied

Dynamic Family (C) (SD) (NS) (PC)
Replicator Imitation yes yes no yes
Best response no yes� yes� yes�

Logit Perturbed best response yes yes� no no
BNN Excess payoff yes no yes yes
Smith Pairwise comparison yes yes yes yes

In Table 2, we report how the the five basic dynam-
ics fare under the four criteria above. For the purposes of
justifying the Nash prediction, the most important row in
the table is the last one, which reveals that the Smith dy-
namic satisfies all four desiderata at once: while the revi-
sion protocol for the Smith dynamic (see Example 18) re-
quires only limited information on the part of the agents
who employ it, this information is enough to ensure that
rest points of the dynamic and Nash equilibria coincide.

In fact, the dynamics introduced above can be viewed
as members of families of dynamics that are based on sim-
ilar revision protocols and that have similar qualitative
properties. For instance, the Smith dynamic is a member
of the family of pairwise comparison dynamics [178], un-
der which agents only switch to strategies that outperform
their current choice. For this reason, the exact functional
forms of the previous examples are not essential to estab-
lishing the properties noted above.

In interpreting these results, it is important to re-
member that Nash stationarity only concerns the rest
points of a dynamic; it says nothing about whether a dy-
namic will converge to Nash equilibrium from an ar-
bitrary initial state. The question of convergence is ad-
dressed in Sects. “Global Convergence” and “Nonconver-
gence”. There we will see that in some classes of games,
general guarantees of convergence can be obtained, but
that there are some games in which no reasonable dynamic
converges to equilibrium.

Local Stability

Before turning to the global behavior of evolutionary dy-
namics, we address the question of local stability. As we
noted at the onset, an original motivation for introduc-
ing game dynamics was to provide an explicitly dynamic
foundation for Maynard Smith’s notion of ESS [205].
Some of the earliest papers on evolutionary game dynam-
ics [105,224] established that being an ESS is a sufficient
condition for asymptotically stablity under the replicator
dynamic, but that it is not a necessary condition. It is cu-

rious that this connection obtains despite the fact that ESS
is a stability condition for a population whose members
all play the same mixed strategy, while (the usual version
of) the replicator dynamic looks at populations of agents
choosing among different pure strategies.

In fact, the implications of ESS for local stability are
not limited to the replicator dynamic. Suppose that the
symmetric normal form gameA admits a symmetric Nash
equilibrium that places positive probability on each strat-
egy in S. One can show that this equilibrium is an ESS if
and only if the payoff matrix A is negative definite with
respect to the tangent space of the simplex:

z0Az < 0 for all z 2 TX D
n
ẑ 2 Rn :

X

i2S
ẑi D 0

o
: (18)

Condition (18) and its generalizations imply local stability
of equilibrium not only under the replicator dynamic, but
also under a wide range of other evolutionary dynamics:
see [52,98,99,102,111,179] for further details.

The papers cited above use linearization and Lyapunov
function arguments to establish local stability. An alterna-
tive approach to local stability analysis, via index theory,
allows one to establish restrictions on the stability proper-
ties of all rest points at once – see [60].

Global Convergence

While analyses of local stability reveal whether a popula-
tion will return to equilibrium after a small disturbance,
they do not tell us whether the population will approach
equilibrium from an arbitrary disequilibrium state. To es-
tablish such global convergence results, we must restrict
attention to classes of games defined by certain interesting
payoff structures. These structures appear in applications,
lending strong support for the Nash prediction in the set-
tings where they arise.

Potential Games A potential game [17,106,143,166,173,
181] is a game that admits a potential function: a scalar val-
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ued function whose gradient describes the game’s payoffs.
In a full potential game F : Rn

C ! Rn (see [181]), all infor-
mation about incentives is captured by the potential func-
tion f : Rn

C ! R, in the sense that

r f (x) D F(x) for all x 2 Rn
C: (19)

If F is smooth, then it is a full potential game if and only if
it satisfies full externality symmetry:

@Fi
@x j

(x) D
@Fj

@xi
(x) for all i; j 2 S and x 2 Rn

C: (20)

That is, the effect on the payoff to strategy i of adding new
strategy j players always equals the effect on the payoff to
strategy j of adding new strategy i players.

Example 19 Suppose a single population is randomly
matched to play the symmetric normal form game
A 2 Rn�n , generating the population game F(x) D Ax.
We say that A exhibits common interests if the two players
in a match always receive the same payoff. This means that
Ai j D Aji for all i and j, or, equivalently, that the matrix A
is symmetric. Since DF(x) D A, this is precisely what we
need for F to be a full potential game. The full potential
function for F is f (x) D 1

2 x
0Ax; which is one-half of the

average payoff function F̄(x) D
P

i2S xi Fi(x) D x0Ax.
The common interest assumption defines a fundamental
model from population genetics, this assumption reflects
the shared fate of two genes that inhabit the same organ-
ism [73,106,107].

Example 20 In Example 10, we introduced congestion
games, a basic model of network congestion. To see that
these games are potential games, observe that an agent tak-
ing path j 2 S affects the payoffs of agents choosing path
i 2 S through the marginal increases in congestion on the
links � 2 ˚i \˚ j that the two paths have in common. But
since the marginal effect of an agent taking path i on the
payoffs of agents choosing path j is identical, full external-
ity symmetry (20) holds:

@Fi
@x j

(x) D �
X

�2˚i\˚ j

c0�(u� (x)) D
@Fj

@xi
(x):

In congestion games, the potential function takes the form

f (x) D �
X

�2˚

Z u (x)

0
c�(z) dz;

and so is typically unrelated to aggregate payoffs,

F(x) D
X

i2S

xi Fi(x) D �
X

�2˚

u�(x) c� (u� (x)):

However, potential is proportional to aggregate payoffs if
the cost functions c� are all monomials of the same de-
gree [56,173].

Population state x is a Nash equilibrium of the potential
game F if and only if it satisfies the Kuhn–Tucker first or-
der conditions for maximizing the potential function f on
the simplex X [17,173]. Furthermore, it is simple to verify
that any dynamic ẋ D VF (x) satisfying positive correla-
tion (PC) ascends the potential function:

d
dt f (xt) D r f (xt)0 ẋt D F(xt)0VF (xt) � 0:

It then follows from classical results on Lyapunov func-
tions that any dynamic satisfying positive correlation (PC)
converges to a connected set of rest points. If the dynamic
also satisfies Nash stationarity (NS), these sets consist en-
tirely of Nash equilibria. Thus, in potential games, very
mild conditions on agents’ adjustment rules are sufficient
to justify the prediction of Nash equilibrium play.

In the case of the replicator dynamic, one can say
more. On the interior of the simplex X, the replicator dy-
namic for the potential game F is a gradient system for
the potential function f (i. e., it always ascends f in the
direction of maximum increase). However, this is only
true after one introduces an appropriate Riemannian met-
ric on X [123,192]. An equivalent statement of this re-
sult, due to [2], is that the replicator dynamic is the gra-
dient system for f under the usual Euclidean metric if we
stretch the state space X onto the radius 2 sphere. This
stretching is accomplished using the Akin transformation
Hi(x) D 2

p
xi , which emphasizes changes in the use of

rare strategies relative to changes in the use of common
ones [2,4,185]. (There is also a dynamic that generates the
gradient system for f on X under the usual metric: the so-
called projection dynamic [130,150,185].)

Example 21 Consider evolution in 123 Coordination:

1 2 3
1 1 0 0
2 0 2 0
3 0 0 3 :

Figure 2a presents a phase diagram of the replicator
dynamic on its natural state space X, drawn atop of a con-
tour plot of the potential function f (x) D 1

2 ((x1)
2 C

2(x2)2C3(x3)2). Evidently, all solution trajectories ascend
this function and converge to one of the seven symmetric
Nash equilibria, with trajectories from all but a measure
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Evolutionary Game Theory, Figure 2
The replicator dynamic in 123Coordination. Colors represent the
value of the game’s potential function

zero set of initial conditions converging to one of the three
pure equilibria.

Figure 2b presents another phase diagram for the repli-
cator dynamic, this time after the solution trajectories and
the potential function have been transported to the surface
of the radius 2 sphere using the Akin transformation. In
this case, solutions cross the level sets of the potential func-
tion orthogonally, moving in the direction that increases
potential most quickly.

Stable Games A population game F is a stable game
[102] if

(y � x)0(F(y)� F(x)) � 0 for all x; y 2 X: (21)

If the inequality in (21) always holds strictly, then F is
a strictly stable game.

If F is smooth, then F is a stable game if and only if it
satisfies self-defeating externalities:

z0DF(x)z � 0 for all z 2 TX and x 2 X; (22)

where DF(x) is the derivative of F : X ! Rn at x. This
condition requires that the improvements in the payoffs of
strategies to which revising agents are switching are always
exceeded by the improvements in the payoffs of strategies
which revising agents are abandoning.

Example 22 The symmetric normal form game A is sym-
metric zero-sum if A is skew-symmetric (i. e., if AD �A0),
so that the payoffs of the matched players always sum
to zero. (An example is provided by the standard Rock–
Paper–Scissors game (Example 4).) Under this assump-
tion, z0Az D 0 for all z 2 Rn ; thus, the population game
generated by random matching in A, F(x) D Ax, is a sta-
ble game that is not strictly stable.

Example 23 Suppose that A satisfies the interior ESS
condition (18). Then (22) holds strictly, so F(x) D Ax is
a strictly stable game. Examples satisfying this condition
include the Hawk–Dove game (Example 3) and any good
Rock–Paper–Scissors game (Example 4).

Example 24 A war of attrition [33] is a symmetric normal
form game in which strategies represent amounts of time
committed to waiting for a scarce resource. If the two play-
ers choose times i and j > i, then the j player obtains the
resource, worth v, while both players pay a cost of ci: once
the first player leaves, the other seizes the resource imme-
diately. If both players choose time i, the resource is split,
so payoffs are v

2 � ci each. It can be shown that for any re-
source value v 2 R and any increasing cost vector c 2 Rn ,
random matching in a war of attrition generates a stable
game [102].

The flavor of the self-defeating externalities condi-
tion (22) suggests that obedience of incentives will push
the population toward some “central” equilibrium state.
In fact, the set of Nash equilibria of a stable game is
always convex, and in the case of strictly stable games,
equilibrium is unique. Moreover, it can be shown that
the replicator dynamic converges to Nash equilibrium
from all interior initial conditions in any strictly stable
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Evolutionary Game Theory, Table 3
Lyapunov functions for five basic deterministic dynamics in stable games

Dynamic Lyapunov function for stable games

Replicator Hx� (x) D
P

i2S(x� ) x
�

i log
x�i
xi

Logit G̃(x) D max
y2int(X)

�
y0F̂(x)� �

P
i2S yi log yi


C �

P
i2S xi log xi

Best response G(x) D max
i2S

F̂i(x)

BNN � (x) D 1
2

P
i2S[F̂i(x)]

2
C

Smith � (x)D 1
2

P

i2S

P

j2S
xi[Fj(x)�Fi(x)]2C

game [4,105,224], and that the direct evaluation dynam-
ics introduced above converge to Nash equilibrium from
all initial conditions in all stable games, strictly stable or
not [98,102,104,197]. In each case, the proof of conver-
gence is based on the construction of a Lyapunov function
that solutions of the relevant dynamic descend. The Lya-
punov functions for the five basic dynamics are presented
in Table 3.

Interestingly, the convergence results for direct evalu-
ation dynamics are not restricted to the dynamics listed in
Table 3, but extend to other dynamics in the same families
(cf Table 2). But compared to the conditions for conver-
gence in potential games, the conditions for convergence
in stable games demand additional structure on the adjust-
ment process [102].

Perturbed Best Response Dynamics in Supermodular
Games Supermodular games are defined by the property
that higher choices by one’s opponents (with respect to
the natural ordering on S D f1; : : : ; ng) make one’s own
higher strategies look relatively more desirable. Let the
matrix˙ 2 R(n�1)�n satisfy˙i j D 1 if j > i and˙i j D 0
otherwise, so that˙x 2 Rn�1 is the “decumulative distri-
bution function” corresponding to the “density function”
x. The population game F is a supermodular game if it ex-
hibits strategic complementarities:

If˙ y � ˙x; then
FiC1(y) � Fi(y) � FiC1(x) � Fi(x)

for all i < n and x 2 X: (23)

If F is smooth, condition (23) is equivalent to

@(FiC1 � Fi)
@(e jC1 � e j)

(x) � 0 for all i; j < n and x 2 X: (24)

Example 25 Consider this model of search with positive
externalities. A population of agents choose levels of search
effort in S D f1; : : : ; ng. The payoff to choosing effort
i is

Fi(x) D m(i) b(a(x)) � c(i);

where a(x) D
P

k�n kxk is the aggregate search effort, b is
some increasing benefit function, m is an increasing mul-
tiplier function, and c is an arbitrary cost function. Notice
that the benefits from searching are increasing in both own
search effort and in the aggregate search effort. It is easy to
check that F is a supermodular game.

Complementarity condition (23) implies that the agents’
best response correspondence is monotone in the stochas-
tic dominance order, which in turn ensures the existence
of minimal and maximal Nash equilibria [207]. One can
take advantage of the monotoncity of best responses in
studying evolutionary dynamics by appealing to the the-
ory of monotone dynamical systems [196]. To do so, one
needs to focus on dynamics that respect the monotonic-
ity of best responses and that also are smooth, so that the
the theory of monotone dynamics can be applied. It turns
out that the logit dynamic satisfies these criteria; so does
any perturbed best response dynamic defined in terms of
stochastic payoff perturbations. In supermodular games,
these dynamics define cooperative differential equations;
consequently, solutions of these dynamics from almost
every initial condition converge to an approximate Nash
equilibrium [104].

Imitation Dynamics in Dominance Solvable Games
Suppose that in the population game F, strategy i is
a strictly dominated by strategy j: Fi(x) < Fj(x) for all
x 2 X. Consider the evolution of behavior under the repli-
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cator dynamic (13). Since for this dynamic we have

d
dt

xi
x j
D

ẋi x j � ẋ jxi
(x j)2

D
xi F̂i(x)x j � x j F̂ j(x)xi

(x j)2

D
xi
x j

�
F̂i(x) � F̂ j(x)


;

solutions from every interior initial condition converge to
the face of the simplex where the dominated strategy is un-
played [3]. It follows that the replicator dynamic converges
in games with a strictly dominant strategy, and by iterat-
ing this argument, one can show that this dynamic con-
verges to equilibrium in any game that can be solved by
iterative deletion of strictly dominated strategies. In fact,
this argument is not specific to the replicator dynamic, but
can be shown to apply to a range of dynamics based on
imitation [110,170]. Even in games which are not domi-
nance solvable, arguments of a similar flavor can be used
to restrict the long run behavior of imitative dynamics to
better-reply closed sets [162]; see Sect. “Convergence to
Equilibria and to Better–Reply Closed Sets” for a related
discussion.

While the analysis here has focused on imitative dy-
namics, it is natural to expect that elimination of domi-
nated strategies will extend to any reasonable evolutionary
dynamic. But we will see in Sect. “Survival of Dominated
Strategies” that this is not the case: the elimination of dom-
inated strategies that obtains under imitative dynamics is
the exception, not the rule.

Nonconvergence

The previous section revealed that when certain global
structural conditions on payoffs are satisfied, one can es-
tablish global convergence to equilibrium under various
classes of evolutionary dynamics. Of course, if these con-
ditions are not met, convergence cannot be guaranteed.
In this section, we offer examples to illustrate some of the
possibilities for nonconvergent limit behavior.

Conservative Properties of the Replicator Dynamic in
Zero-Sum Games In Sect. “Stable Games”, we noted
that in strictly stable games, the replicator dynamic con-
verges to Nash equilibrium from all interior initial con-
ditions. To prove this, one shows that interior solutions
descend the function

Hx� (x) D
X

i2S(x�)

x�i log
x�i
x i ;

until converging to its minimizer, the unique Nash equi-
librium x�.

Now, random matching in a symmetric zero-sum
game generates a population game that is stable, but not
strictly stable (Example 22). In this case, for each interior
Nash equilibrium x�, the function Hx� is a constant of
motion for the replicator dynamic: its value is fixed along
every interior solution trajectory.

Example 26 Suppose that agents are randomly matched
to play the symmetric zero-sum game A, given by

1 2 3 4
1 0 �1 0 1
2 1 0 �1 0
3 0 1 0 �1
4 �1 0 1 0 :

The Nash equilibria of F(x) D Ax are the points on
the line segment NE connecting states ( 12 ; 0;

1
2 ; 0) and

(0; 12 ; 0;
1
2 ), a segment that passes through the barycenter

x� D ( 14 ;
1
4 ;

1
4 ;

1
4 ). Figure 3 shows solutions to the repli-

cator dynamic that lie on the level set Hx� (x) D :58. Ev-
idently, each of these solutions forms a closed orbit.

Although solution trajectories of the replicator dy-
namic do not converge in zero-sum games, it can be
proved that the the time average of each solution trajec-
tory converges to Nash equilibrium [190].

The existence of a constant of motion is not the only
conservative property enjoyed by replicator dynamics for
symmetric zero-sum games: these dynamics are also vol-

Evolutionary Game Theory, Figure 3
Solutions of the replicator dynamic in a zero-sum game. The so-
lutions pictured lie on the level set Hx� (x) D :58
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ume preserving after an appropriate change of speed or
change of measure [5,96].

Games with Nonconvergent Dynamics The conserva-
tive properties described in the previous section have been
established only for the replicator dynamic (and its dis-
tant relative, the projection dynamic [185]). Inspired by
Shapley [193], many researchers have sought to construct
games in which large classes of evolutionary dynamics fail
to converge to equilibrium.

Example 27 Suppose that players are randomly
matched to play the following symmetric normal form
game [107,109]:

1 2 3 4
1 0 0 �1 "

2 " 0 0 �1
3 �1 " 0 0
4 0 �1 " 0 :

When" D 0, the payoff matrix A" D A0 is symmet-
ric, so F0 is a potential game with potential func-
tion f (x) D 1

2 x
0A0x D �x1x3 � x2x4. The function f at-

tains its minimum of � 1
4 at states v D ( 12 ; 0;

1
2 ; 0) and

w D (0; 12 ; 0;
1
2 ), has a saddle point with value � 1

8 at the
Nash equilibrium x� D ( 14 ;

1
4 ;

1
4 ;

1
4 ), and attains its maxi-

mum of 0 along the closed path of Nash equilibria � con-
sisting of edges e1e2, e2e3, e3e4, and e4e1.

Let ẋ D VF (x) be an evolutionary dynamic that satis-
fies Nash stationarity (NS) and positive correlation (PC),
and that is based on a revision protocol that is continuous
(C). If we apply this dynamic to game F0, then the fore-
going discussion implies that all solutions to ẋ D VF0 (x)
whose initial conditions � satisfy f (�) > � 1

8 converge to
� . The Smith dynamic for F0 is illustrated in Fig. 4a.

Now consider the same dynamic for the game F",
where " > 0. By continuity (C), the attractor � ofVF0 con-
tinues to an attractor �" of VF" whose basin of attraction
approximates that of � under ẋ D VF0 (x) (Fig. 4b). But
since the unique Nash equilibrium of F" is the barycenter
x�, it follows that solutions from most initial conditions
converge to an attractor far from any Nash equilibrium.

Other examples of games in which many dynam-
ics fail to converge include monocyclic games [22,83,97,
106], Mismatching Pennies [91,116], and the hypnodisk
game [103]. These examples demonstrate that there is no
evolutionary dynamic that converges to Nash equilibrium
regardless of the game at hand. This suggests that in gen-
eral, analyses of long run behavior should not restrict at-
tention to equilibria alone.

Evolutionary Game Theory, Figure 4
Solutions of the Smith dynamic in a the potential game F0; b the
perturbed potential game F", "D 1

10

Chaotic Dynamics Wehave seen that deterministic evo-
lutionary game dynamics can follow closed orbits and ap-
proach limit cycles. We now show that they also can be-
have chaotically.

Example 28 Consider evolution under the replicator dy-
namic when agents are randomlymatched to play the sym-
metric normal form game below [13,195], whose lone inte-
rior Nash equilibrium is the barycenter x� D ( 14 ;

1
4 ;

1
4 ;

1
4 ):

1 2 3 4
1 0 �12 0 22
2 20 0 0 �10
3 �21 �4 0 35
4 10 �2 2 0 :
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Evolutionary Game Theory, Figure 5
Chaotic behavior under the replicator dynamic

Figure 5 presents a solution to the replicator dynamic for
this game from initial condition x0 D (:24; :26; :25; :25).
This solution spirals clockwise about x�. Near the right-
most point of each circuit, where the value of x3 gets close
to zero, solutions sometimes proceed along an “outside”
path on which the value of x3 surpasses .6. But they some-
times follow an “inside” path on which x3 remains be-
low .4, and at other times do something in between.Which
of these alternatives occurs is difficult to predict from ap-
proximate information about the previous behavior of the
system.

While the game in Example 28 has a complicated pay-
off structure, in multipopulation contexts one can find
chaotic evolutionary dynamics in very simple games [187].

Survival of Dominated Strategies In Sect. “Imitation
Dynamics in Dominance Solvable Games”, we saw that
dynamics based on imitation eliminate strictly dominated
strategies along solutions from interior initial conditions.
While this result seems unsurprising, it is actually ex-
tremely fragile: [25,103] prove that dynamics that satisfy
continuity (C), Nash stationarity (NS), and positive corre-
lation (PC) and that are not based exclusively on imitation
must fail to eliminate strictly dominated strategies in some
games. Thus, evolutionary support for a basic rationality
criterion is more tenuous than the results for imitative dy-
namics suggest.

Example 29 Figure 6a presents the Smith dynamic for
“bad RPS with a twin”:

Evolutionary Game Theory, Figure 6
The Smith dynamic in two games

R P S T
R 0 �2 1 1
P 1 0 �2 �2
S �2 1 0 0
T �2 1 0 0 :

The Nash equilibria of this game are the states on line
segment NE D fx� 2 X : x� D ( 13 ;

1
3 ; c;

1
3 � c)g, which is

a repellor under the Smith dynamic. Under this dynamic,
strategies gain players at rates that depend on their pay-
offs, but lose players at rates proportional to their current
usage levels. It follows that when the dynamics are not at
rest, the proportions of players choosing strategies 3 and
4 become equal, so that the dynamic approaches the plane
P D fx 2 X : x3 D x4g on which the twins receive equal
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weight. Since the usual three-strategy version of bad RPS,
exhibits cycling solutions here on the plane P approach
a closed orbit away from any Nash equilibrium.

Figure 6b presents the Smith dynamic in “bad RPS
with a feeble twin”,

R P S T
R 0 �2 1 1
P 1 0 �2 �2
S �2 1 0 0
T �2 � � 1 � � �� �� :

with " D 1
10 . Evidently, the attractor from Fig. 6a moves

slightly to the left, reflecting the fact that the payoff to
Twin has gone down. But since the new attractor is in
the interior of X, the strictly dominated strategy Twin is
always played with probabilities bounded far away from
zero.

Stochastic Dynamics

In Sect. “Revision Protocols” we defined the stochastic
evolutionary process fXN

t g in terms of a simple model of
myopic individual choice. We then turned to the study of
deterministic dynamics, which we claimed could be used
to approximate the stochastic process fXN

t g over finite
time spans and for large population sizes. In this section,
we turn our attention to the stochastic process fXN

t g it-
self. After offering a formal version of the deterministic
approximation result, we investigate the long run behav-
ior of fXN

t g, focusing on the questions of convergence to
equilibrium and selection among multiple stable equilib-
ria.

Deterministic Approximation

In Sect. “Revision Protocols”, we defined the Markovian
evolutionary process fXN

t g from a revision protocol �,
a population game F, and a finite population size N. In
Sect. “Mean Dynamics”, we argued that the expected mo-
tion of this process is captured by the mean dynamic

ẋi D VF
i (x) D

X

j2S

x j� ji (F(x); x)� xi
X

j2S

�i j(F(x); x):

(M)

The basic link between the Markov process fXN
t g and

its mean dynamic (M) is provided by Kurtz’s Theo-
rem [127], variations and extensions of which have been
offered in a number of game-theoretic contexts [24,29,43,
44,175,204]. Consider the sequence of Markov processes
ffXN

t gt�0g
1
NDN0

, supposing that the initial conditions XN
0

Evolutionary Game Theory, Figure 7
Deterministic approximation of the Markov process fXN

t g

converge to x0 2 X. Let fxtgt�0 be the solution to the
mean dynamic (M) starting from x0. Kurtz’s Theorem
tells us that for each finite time horizon T <1 and error
bound " > 0, we have that

lim
N!1

P

 

sup
t2[0;T]

ˇ
ˇXN

t � xt
ˇ
ˇ < "

!

D 1: (25)

Thus, when the population sizeN is large, nearly all sample
paths of the Markov process fXN

t g stay within " of a solu-
tion of the mean dynamic (M) through time T. By choos-
ing N large enough, we can ensure that with probability
close to one, XN

t and xt differ by no more than " for all
times t between 0 and T (Fig. 7).

The intuition for this result comes from the law of large
numbers. At each revision opportunity, the increment
in the process fXN

t g is stochastic. Still, at most popula-
tion states the expected number of revision opportunities
that arrive during the brief time interval I D [t; t C dt]
is large – in particular, of order Ndt. Since each oppor-
tunity leads to an increment of the state of size 1

N , the
size of the overall change in the state during time inter-
val I is of order dt. Thus, during this interval there are
a large number of revision opportunities, each following
nearly the same transition probabilities, and hence hav-
ing nearly the same expected increments. The law of large
numbers therefore suggests that the change in fXN

t g dur-
ing this interval should be almost completely determined
by the expected motion of fXN

t g, as described by the mean
dynamic (M).
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Convergence to Equilibria
and to Better–Reply Closed Sets

Stochastic models of evolution can also be used to ad-
dress directly the question of convergence to equilib-
rium [61,78,117,118,125,143,172,219]. Suppose that a so-
ciety of agents is randomly matched to play an (asym-
metric) normal form game that is weakly acyclic in better
replies: from each strategy profile, there exists a sequence
of profitable unilateral deviations leading to a Nash equi-
librium. If agents switch to strategies that do at least as well
as their current one against the choices of random sam-
ples of opponents, then the society will eventually escape
any better-response cycle, ultimately settling upon a Nash
equilibrium.

Importantly, many classes of normal form games
are weakly acyclic in better replies: these include po-
tential games, dominance solvable games, certain super-
modular games, and certain aggregative games, in which
each agent’s payoffs only depend on opponents’ behavior
through a scalar aggregate statistic. Thus, in all of these
cases, simple stochastic better-reply procedures are certain
to lead to Nash equilibrium play.

Outside these classes of games, one can narrow down
the possibilities for long run behavior by looking at bet-
ter-reply closed sets: that is, subsets of the set of strategy
profiles that cannot be escaped without a player switching
to an inferior strategy (cf. [16,162]). Stochastic better-re-
ply procedures must lead to a cluster of population states
corresponding to a better-reply closed set; once the society
enters such a cluster, it never departs.

Stochastic Stability and Equilibirum Selection

To this point, we used stochastic evolutionary dynamics
to provide foundations for deterministic dynamics and
to address the question of convergence to equilibrium.
But stochastic evolutionary dynamics introduce an en-
tirely new possibility: that of obtaining unique long-run
predictions of play, even in games with multiple locally
stable equilibria. This form of analysis, which we con-
sider next, was pioneered by Foster and Young [74], Kan-
dori, Mailath, and Rob [119], and Young [219], build-
ing on mathematical techniques due to Freidlin and
Wentzell [75].

Stochastic Stability To minimize notation, let us de-
scribe the evolution of behavior using a discrete-time
Markov chain fXN;"

k g
1
kD0 on XN , where the parameter

" > 0 represents the level of “noise” in agents’ decision
procedures. The noise ensures that the Markov chain is ir-
reducible and aperiodic: any state in XN can be reached

from any other, and there is positive probability that a pe-
riod passes without a change in the state.

Under these conditions, the Markov chain fXN;"
k g ad-

mits a unique stationary distribution, �N;", a measure on
the state space XN that is invariant under the Markov
chain:

X

x2XN

�N;"(x) P
�
XN;"
kC1 D y

ˇ̌
XN;"
k D x


D �N;"(y)

for all y 2 XN :

The stationary distribution describes the long run behav-
ior of the process fXN;"

t g in two distinct ways. First, �N;"

is the limiting distribution of fXN;"
t g:

lim
k!1

P
�
XN;"
k D y

ˇ̌
XN;"
0 D x


D �N;"(y)

for all x; y 2 XN :

Second,�N;" almost surely describes the limiting empirical
distribution of fXN;"

t g:

P
�

lim
K!1

1
K

K�1X

kD0

1
fXN;"

k 2Ag
D �N;"(A)


D 1

for any A � XN :

Thus, if most of the mass in the stationary distribution
�N;" were placed on a single state, then this state would
provide a unique prediction of long run behavior.

With this motivation, consider a sequence of Markov
chains ffXN;"

k g
1
kD0g"2(0;"̄) parametrized by noise levels "

that approach zero. Population state x 2 XN is said to be
stochastically stable if it retains positive weight in the sta-
tionary distributions of these Markov chains as " becomes
arbitrarily small:

lim
"!0

�N;"(x) > 0:

When the stochastically stable state is unique, it offers
a unique prediction of play that is relevant over sufficiently
long time spans.

Bernoulli Arrivals and Mutations Following the ap-
proach of many early contributors to the literature, let
us consider a model of stochastic evolution based on
Bernoulli arrivals of revision opportunities and best re-
sponses with mutations. The former assumption means
that during each discrete time period, each agent has prob-
ability � 2 (0; 1] of receiving an opportunity to update his
strategy. This assumption differs than the one we proposed
in Sect. “Revision Protocols”; the key new implication is
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that all agents may receive revision opportunities simulta-
neously. (Models that assume this directly generate similar
results.) The latter assumption posits that when an agent
receives a revision opportunity, he plays a best response
to the current strategy distribution with probability 1 � ",
and chooses a strategy at random with probability ".

Example 30 Suppose that a population ofN agents is ran-
domly matched to play the Stag Hunt game (Example 2):

H S
H h h
S 0 s :

Since s > h > 0, hunting hare and hunting stag are both
symmetric pure equilibria; the game also admits the sym-
metric mixed equilibrium x� D (x�H ; x

�
S ) D ( s�hs ;

h
s ).

If more than fraction x�H of the agents hunt hare, then
hare is the unique best response, while if more than frac-
tion x�S of the agents hunt stag, then stag is the unique best
response. Thus, under any deterministic dynamic that re-
spects payoffs, the mixed equilibrium x� divides the state
space into two basins of attraction, one for each of the two
pure equilibria.

Now consider our stochastic evolutionary process. If
the noise level " is small, this process typically behaves like
a deterministic process, moving quickly toward one of the
two pure states, eH D (1; 0) or eS D (0; 1), and remaining
there for some time. But since the process is ergodic, it will
eventually leave the pure state it reaches first, and in fact
will switch from one pure state to the other infinitely often.

To determine the stochastically stable state, we must
compute and compare the “improbabilities” of these tran-
sitions. If the current state is eH , a transition to eS re-

Evolutionary Game Theory, Figure 8
Equilibrium selection via mutation counting in Stag Hunt games

quires mutations to cause roughly Nx�S agents to switch to
the suboptimal strategy S, sending the population into the
basin of attraction of eS ; the probability of this event is of
order "Nx�S . Similarly, to transit from eS to eH , mutations
must cause roughly Nx�H D N(1 � x�S ) to switch from S to
H; this probability of this event is of order "N(1�x�S ).

Which of these rare events is more likely ones de-
pends on whether x�S is greater than or less than 1

2 . If
s > 2h, so that x�S <

1
2 , then "

Nx�S is much smaller than
"N(1�x�S ) when " is small; thus, state eS is stochastically
stable (Fig. 8a). If instead s < 2h, so that x�S >

1
2 , then

"N(1�x�S ) < "Nx�S , so eH is stochastically stable (Fig. 8b).
These calculations show that risk dominance – being

the optimal response against a uniformly randomizing op-
ponent – drives stochastic stability 2 � 2 games. In par-
ticular, when s < 2h, so that risk dominance and payoff
dominance disagree, stochastic stability favors the former
over the latter.

This example illustrates how under Bernoulli arrivals and
mutations, stochastic stability analysis is based on muta-
tion counting: that is, on determining how many simulta-
neous mutations are required to move from each equilib-
rium into the basin of attraction of each other equilibrium.
In games with more than two strategies, completing the
argument becomes more complicated than in the exam-
ple above: the analysis, typically based on the tree-analysis
techniques of [75,219], requires one to account for the rel-
ative difficulties of transitions between all pairs of equilib-
ria. [68] develops a streamlined method of computing the
stochastically stable state based on radius-coradius calcu-
lations; while this approach is not always sufficiently fine
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to yield a complete analysis, in the cases where it works it
can be considerably simpler to apply than the tree-analysis
method.

These techniques have been employed successfully
to variety of classes of games, including pure coordina-
tion games, supermodular games, games satisfying “band-
wagon” properties, and games with equilibria that sat-
isfy generalizations of risk dominance [68,120,121,134].
A closely related literature uses stochastic stability as a ba-
sis for evaluating traditional solution concepts for exten-
sive form games [90,115,122,128,152,168,169].

A number of authors have shown that variations on the
Bernoulli arrivals and mutations model can lead to differ-
ent equilibrium selection results. For instance, [165,211]
show that if choices are determined from the payoffs from
a single round of matching (rather than from expected
payoffs), the payoff dominant equilibrium rather than the
risk dominant equilibrium is selected. If choices depend
on strategies’ relative performances rather than their ab-
solute performances, then long run behavior need not
resemble a Nash equilibrium at all [26,161,171,198]. Fi-
nally, if the probability of mutation depends on the cur-
rent population state, then any recurrent set of the unper-
turbed process (e. g., any pure equilibrium of a coordina-
tion game) can be selected in the long run if the mutation
rates are specified in an appropriate way [27]. This last
result suggests that mistake probabilities should be pro-
vided with an explicit foundation, a topic we take up in
Sect. “Poisson Arrivals and Payoff Noise”.

Another important criticism of the stochastic stability
literature concerns the length of time needed for its predic-
tions to become relevant [31,67]. If the population size N
is large and the mutation rate " is small, then the probabil-
ity "cN that a transition between equilibria occurs during
given period is miniscule; the waiting time between tran-
sitions is thus enormous. Indeed, if the mutation rate falls
over time, or if the population size grows over time, then
ergodicity may fail, abrogating equilibrium selection en-
tirely [163,186]. These analyses suggest that except in ap-
plications with very long time horizons, the unique predic-
tions generated by analyses of stochastic stability may be
inappropriate, and that modelers would do better to focus
on history-dependent predictions of the sort provided by
deterministic models. At the same time, there are frame-
works in which stochastic stability becomes relevantmuch
more quickly. The most important of these are local inter-
action models, which we discuss in Sect. “Local Interac-
tion”.

Poisson Arrivals and Payoff Noise Combining the as-
sumption of Bernoulli arrivals of revision opportunities

with that of best responses with mutations creates a model
in which the probabilities of transitions between equilib-
ria are easy to compute: one can focus on events in which
large numbers of agents switch to a suboptimal strategy at
once, each doing so with the same probability. But the sim-
plicity of this argument also highlights the potency of the
assumptions behind it.

An appealing alternative approach is to model stochas-
tic evolution using Poisson arrivals of revision opportuni-
ties and payoff noise [29,31,38,39,63,135,145,209,210,222].
(One can achieve similar effects by looking at mod-
els defined in terms of stochastic differential equations;
see [18,48,74,79,113].) By allowing revision opportunities
to arrive in continuous time, as we did in Sect. “Revision
Protocols”, we ensure that agents do not receive oppor-
tunities simultaneously, ruling out the simultaneous mass
revisions that drive the Bernoulli arrival model. (One can
accomplish the same end using a discrete time model by
assuming that one agent updates during each period; the
resulting process is a random time change away from the
Poisson arrivals model.)

Under Poisson arrivals, transitions between equilibria
occur gradually, as the population works its way out of
basins of attraction one agent at a time. In this context,
the mutation assumption becomes particularly potent, en-
suring that the probabilities of suboptimal choices do not
vary with their payoff consequences. Under the alternative
assumption of payoff noise, one supposes that agents play
best responses to payoffs that are subject to random per-
turbations drawn from a fixed multivariate distribution.
In this case, suboptimal choices are much more likely near
basin boundaries, where the payoffs of second-best strate-
gies are not much less than those of optimal ones, than
they are at stable equilibria, where payoff differences are
larger.

Evidently, assuming Poisson arrivals and payoff noise
means that stochastic stability cannot be assessed by way of
mutation counting. To determine the unlikelihood of es-
caping from an equilibrium’s basin of attraction, one must
not only account for the “width” of the basin of attraction
(i. e., the number of suboptimal choices needed to escape
it), but also for its “depth” (the unlikelihood of each of
these choices). In two-strategy games this is not difficult to
accomplish: in this case the evolutionary process is a birth-
and-death chain, and its stationary distribution can be ex-
pressed using an explicit formula. Beyond this case, one
can employ the Freidlin and Wentzell [75] machinery, al-
though doing so tends to be computationally demanding.

This computational burden is less in models that re-
tain Poisson arrivals, but replace perturbed optimization
with decision rules based on imitation and mutation [80].
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Because agents imitate successful opponents, the popula-
tion spends the vast majority of periods on the edges of
the simplex, implying that the probabilities of transitions
between vertices can be determined using birth-and-death
chain methods [158]. As a consequence, one can reduce
the problem of finding the stochastically stable state in an
n strategy coordination game to that of computing the lim-
iting stationary distribution of an n state Markov chain.

Stochastic Stability via Large Population Limits The
approach to stochastic stability followed thus far relies
on small noise limits: that is, on evaluating the limit of
the stationary distributions �N;" as the noise level " ap-
proaches zero. Binmore and Samuelson [29] argue that in
the contexts where evolutionary models are appropriate,
the amount of noise in agents decisions is not negligible,
so that taking the low noise limit may not be desirable.
At the same time, evolutionary models are intended to de-
scribe behavior in large populations, suggesting an alterna-
tive approach: that of evaluating the limit of the stationary
distributions �N;" as the population size N grows large.

In one respect, this approach complicates the analysis.
When N is fixed and " varies, each stationary distribution
�N;" is a measure on the fixed state space XN D fx 2
X : Nx 2 Zng. But when " is fixed and N varies, the state
space XN varies as well, and one must introduce notions
of weak convergence of probability measures in order to
define stochastic stability.

But in other respects taking large population limits can
make analysis simpler.We saw in Sect. “Deterministic Ap-
proximation” that by taking the large population limit, we
can approximate the finite-horizon sample paths of the
stochastic evolutionary process fXN;"

t g by solutions to the
mean dynamic (M). Now we are concerned with infinite
horizon behavior, but it is still reasonable to hope that the
large population limit will again reduce some of our com-
putations to a calculus problems.

As one might expect, this approach is easiest to fol-
low in the two-strategy case, where for each fixed popu-
lation size N , the evolutionary process fXN;"

t g is a birth-
and-death chain. When one takes the large population
limit, the formulas for waiting times and for the station-
ary distribution can be evaluated using integral approxi-
mations [24,29,39,222]. Indeed, the approximations so ob-
tained take an appealing simple form [182].

The analysis becomes more complicated beyond
the two-strategy case, but certain models have proved
amenable to analysis. For instance [80], characterizes large
population stochastic stability in models based on imita-
tion and mutation. Imitation ensures that the population
spends nearly all periods on the edges of the simplex X,

and the large population limit makes evaluating the prob-
abilities of transitions along these edges relatively simple.

If one supposes that agents play best responses to noisy
payoffs, then one must account directly for the behav-
ior of the process fXN;"

t g in the interior of the simplex.
One possibility is to combine the deterministic approxi-
mation results from Sect. “Deterministic Approximation”
with techniques from the theory of stochastic approxima-
tion [20,21] to show that the large N limiting stationary
distribution is concentrated on attractors of the mean dy-
namic. By combining this idea with convergence results
for deterministic dynamics from Sect. “Global Conver-
gence”, Ref. [104] shows that the limiting stationary distri-
bution must be concentrated around equilibrium states in
potential games, stable games, and supermodular games.

The results in [104] do not address the question of
equilibrium selection. However, for the specific case of
logit evolution in potential games, a complete character-
ization of the large population limit of the process fXN;"

t g

has been obtained [23]. By combining deterministic ap-
proximation results, which describe the usual behavior of
the process within basins of attraction, with a large devi-
ations analysis, which characterizes the rare escapes from
basins of attraction, one can obtain a precise asymptotic
formula for the large N limiting stationary distribution.
This formula accounts both for the typical procession of
the process along solutions of the mean dynamic, and for
the rare sojourns of the process against this deterministic
flow.

Local Interaction

All of the game dynamics considered so far have been
based implicitly on the assumption of global interaction:
each agent’s payoffs depend directly on all agents’ actions.
In many contexts, one expects to the contrary that inter-
actions will be local in nature: for instance, agents may
live in fixed locations and interact only with neighbors.
In addition to providing a natural fit for these applica-
tions, local interactionmodels respond to some of the crit-
icisms of the stochastic stability literature. At the same
time, once one moves beyond relatively simple cases, lo-
cal interaction models become exceptionally complicated,
and so lend themselves to methods of analysis very differ-
ent from those considered thus far.

Stochastic Stability and Equilibrium Selection Revisited

In Sect. “Stochastic Stability and Equilibirum Selection”,
we saw the prediction of risk dominant equilibrium play
provided by stochastic stability models is subverted by the
waiting-time critique: namely, that the length of time re-
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quired before this equilibrium is reachedmay be extremely
long. Ellison [67,68] shows that if interactions are local,
then selection of the risk dominant equilibrium persists,
and waiting times are no longer an issue.

Example 31 In the simplest local interaction model,
a population ofN agents are located atN distinct positions
around a circle. During each period of play, each agent
plays the Stag Hunt game (Examples 2 and 30) with his
two nearest neighbors, following the same action against
both of his opponents. If we suppose that s 2 (h; 2h), so
that hunting hare is the risk dominant strategy, then by
definition, an agent whose neighbors play different strate-
gies finds it optimal to choose H himself.

Now suppose that there are Bernoulli arrivals of revi-
sion opportunities, and that decisions are based on best
responses and rare mutations. To move from the all S state
to the allH state, it is enough that a single agent mutates S
to H. This one mutation begins a chain reaction: the mu-
tating agent’s neighbors respond optimally by switching to
H themselves; they are followed in this by their own neigh-
bors; and the contagion continues until all agents choose
H. Since a single mutation is always enough to spur the
transition from all S to all H, the expected wait before this
transition is small, even when the population is large.

In contrast, the transition back from all H to all S is
extremely unlikely. Even if all but one of the agents si-
multaneouslymutate to S, the contagion process described
above will return the population to the all-H state. Thus,
while the transition from all-S to all-H occurs quickly, the
reverse transition takes even longer than in the global in-
teraction setting.

The local interaction approach to equilibrium selection
has been advanced in a variety of directions: by al-
lowing agents to choose their locations [69], or to pay
a cost to choose different strategies against different oppo-
nents [86], and by basing agents’ decisions on the attain-
ment of aspiration levels [11], or on imitation of success-
ful opponents [9,10]. A portion of this literature initiated
by Blume develops connections between local interaction
models in evolutionary game theory withmodels from sta-
tistical mechanics [36,37,38,124,141]. These models pro-
vide a point of departure for research on complex spatial
dynamics in games, which we consider next.

Complex Spatial Dynamics

The local interaction models described above address the
questions of convergence to equilibrium and selection
amongmultiple equilibria. In the cases where convergence
and selection results obtain, behavior in these models is

relatively simple, as most periods are spent with most
agents coordinating on a single strategy. A distinct branch
of the literature on evolution and local interaction focuses
on cases with complex dynamics, where instead of settling
quickly into a homogeneous, static configuration, behav-
ior remains in flux, with multiple strategies coexisting for
long periods of time.

Example 32 Cooperating is a dominated strategy in the
Prisoner’s Dilemma, and is not played in equilibrium in
finitely repeated versions of this game. Nevertheless, a pair
of Prisoner’s Dilemma tournaments conducted by Axel-
rod [14] were won by the strategy Tit-for-Tat, which coop-
erates against cooperative opponents and defects against
defectors. Axelrod’s work spawned a vast literature aiming
to understand the persistence of individually irrational but
socially beneficial behavior.

To address this question, Nowak and May [153,154,
155,156,157] consider a population of agents who are re-
peatedly matched to play the Prisoner’s Dilemma

C D
C 1 �"

D g 0 ;

where the greedy payoff g exceeds 1 and " > 0 is small. The
agents are positioned on a two-dimensional grid. During
each period, each agent plays the Prisoner’s Dilemma with
the eight agents in his (Moore) neighborhood. In the sim-
plest version of the model, all agents simultaneously up-
date their strategies at the end of each period. If an agent’s
total payoff that period is as high as that of any of neigh-
bor, he continues to play the same strategy; otherwise, he
switches to the strategy of the neighbor who obtained the
highest payoff.

Since defecting is a dominant strategy in the Prisoner’s
Dilemma, one might expect the local interaction process
to converge to a state at which all agents defect, as would
be the case in nearly any model of global interaction. But
while an agent is always better off defecting himself, he also
is better off the more of his neighbors cooperate; and since
evolution is based on imitation, cooperators tend to have
more cooperators as neighbors than do defectors.

In Figs. 9–11, we present snapshots of the local interac-
tion process for choices of the greedy payoff g from each of
three distinct parameter regions. If g > 5

3 (Fig. 9), the pro-
cess quickly converges to a configuration containing a few
rectangular islands of cooperators in a sea of defectors; the
exact configuration depending on the initial conditions. If
instead g < 8

5 (Fig. 10), the process moves towards a con-
figuration in which agents other than those in a “web” of
defectors cooperate. But for g 2 ( 85 ;

5
3 ) (Fig. 11), the sys-



Evolutionary Game Theory E 3199

Evolutionary Game Theory, Figure 9
Local interaction in a Prisoner’s Dilemma; greedy payoff g D 1:7. In Figs. 9–11, agents are arrayed on a 100 × 100 grid with periodic
boundaries (i. e., a torus). Initial conditions are random with 75% cooperators and 25% defectors. Agents update simultaneously,
imitating the neighbor who earned the highest payoff. Blue cells represent cooperators who also cooperated last period, green cells
represent new cooperators; red cells represent defectors whoalso defected last period, yellow cells represent new defectors. (Figs. 9–
11 created using VirtualLabs [92])

Evolutionary Game Theory, Figure 10
Local interaction in a Prisoner’s Dilemma; greedy payoff g D 1:55

Evolutionary Game Theory, Figure 11
Local interaction in a Prisoner’s Dilemma; greedy payoff g D 1:65
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tem evolves in a complicated fashion, with clusters of co-
operators and of defectors forming, expanding, disappear-
ing, and reforming. But while the configuration of behav-
ior never stabilizes, the proportion of cooperators appears
to settle down to about .30.

The specification of the dynamics considered above,
based on simultaneous updating and certain imitation of
the most successful neighbor, presents a relatively favor-
able environment for cooperative behavior. Nevertheless,
under Poisson arrivals of revision opportunities, or proba-
bilistic decision rules, or both, cooperation can persist for
very long periods of time for values of g significantly larger
than 1 [154,155].

The literature on complex spatial dynamics in evolution-
ary game models is large and rapidly growing, with the
evolution of behavior in the spatial Prisoners’ Dilemma
being the single most-studied environment. While anal-
yses are typically based on simulations, analytical re-
sults have been obtained in some relatively simple set-
tings [71,94].

Recent work on complex spatial dynamics has consid-
ered games with three or more strategies, including Rock–
Paper–Scissors games, as well as public good contribution
games and Prisoner’s Dilemmas with voluntary partici-
pation. Introducing more than two strategies can lead to
qualitatively novel dynamic phenomena, including large-
scale spatial cycles and traveling waves [93,202,203]. In ad-
dition to simulations, the analysis of complex spatial dy-
namics is often based on approximation techniques from
non-equilibrium statistical physics, and much of the re-
search on these dynamics has appeared in the physics liter-
ature. [201] offers a comprehensive survey of work on this
topic.

Applications

Evolutionary game theory was created with biological
applications squarely in mind. In the prehistory of the
field, Fisher [73] and Hamilton [87] used game-theoretic
ideas to understand the evolution of sex ratios. Maynard
Smith [137,138,139,140] introduced his definition of ESS
as a way of understanding ritualized animal conflicts. Since
these early contributions, evolutionary game theory has
been used to study a diverse array of biological questions,
including mate choice, parental investment, parent-off-
spring conflict, social foraging, and predator-prey systems.
For overviews of research on these and other topics in bi-
ology, see [65,88].

The early development of evolutionary game theory
in economics was motivated primarily by theoretical con-
cerns: the justification of traditional game-theoretic solu-

tion concepts, and the development of methods for equi-
librium selection in games with multiple stable equilibria.
More recently, evolutionary game theory has been applied
to concrete economic environments, in some instances as
a means of contending with equilibrium selection prob-
lems, and in others to obtain an explicitly dynamic model
of the phenomena of interest. Of course, these applications
are most successful when the behavioral assumptions that
underlie the evolutionary approach are appropriate, and
when the time horizon needed for the results to become
relevant corresponds to the one germane to the applica-
tion at hand.

Topics in economics theoretical studied using the
methods of evolutionary game theory range from behav-
ior in markets [1,6,7,8,12,19,64,112,129,212], to bargain-
ing and hold-up problems [32,46,57,66,164,208,220,221,
222], to externality and implementation problems [47,49,
136,174,177,180], to questions of public good provision
and collective action [146,147,148]. The techniques de-
scribed here are being appliedwith increasing frequency to
problems of broader social science interest, including res-
idential segregation [40,62,142,222,223,225,226] and cul-
tural evolution [34,126], and to the study of behavior in
transportation and computer networks [72,143,150,173,
175,177,197]. A proliferating branch of research extends
the approaches described in this article to address the evo-
lution of structure and behavior in social networks; a num-
ber of recent books [85,114,213] offer detailed treatments
of work in this domain.

Future Directions

Evolutionary game theory is a maturing field; many basic
theoretical issues are well understood, but many difficult
questions remain. It is tempting to say that stochastic and
local interaction models offer the more open terrain for
further explorations. But while it is true that we know less
about these models than about deterministic evolution-
ary dynamics, even our knowledge of the latter is limited:
while dynamics on one and two dimensional state spaces,
and for games satisfying a few interesting structural as-
sumptions, are well-understood, the dynamics of behavior
in the vast majority of many-strategy games are not.

The prospects for further applications of the tools of
evolutionary game theory are brighter still. In economics,
and in other social sciences, the analysis of mathematical
models has too often been synonymous with the compu-
tation and evaluation of equilibrium behavior. The ques-
tions of whether and how equilibrium will come to be are
often ignored, and the possibility of long-term disequilib-
rium behavior left unmentioned. For settings in which its
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assumptions are tenable, evolutionary game theory offers
a host of techniques for modeling the dynamics of eco-
nomic behavior. The exploitation of the possibilities for
a deeper understanding of human social interactions has
hardly begun.
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Glossary

Culture The attitudes, beliefs, and behaviors that, for
a certain group, define their general way of life and that
they have taken over from others.

Cultural evolution The development of culture over
time, as conceptualized through the mechanisms of
variation and natural selection of cultural elements.

Replicator An information pattern that is able to make
copies of itself, typically with the help of another
system. Examples are genes, memes, and (computer)
viruses.

Meme A cultural replicator; a unit of imitation or com-
munication.

Memeplex (or meme complex) A collection of mutually
supporting memes, which tend to replicate together.

Memetics The theoretical and empirical science that
studies the replication, spread and evolution of memes.
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Fitness The overall success rate of a replicator, as deter-
mined by its degree of adaptation to its environment,
and the three requirements of longevity, fecundity and
copying-fidelity.

Longevity The duration that an individual replicator sur-
vives.

Fecundity The speed of reproduction of a replicator, as
measured by the number of copies made per time unit.

Copying-fidelity The degree to which a replicator is ac-
curately reproduced.

Vertical transmission Transmission of traits (memes or
genes) from parents to offspring.

Horizontal transmission Transmission of traits between
individuals of the same generation.

Memotype Ameme in the form of information held in an
individual’s memory.

Mediotype A meme as expressed in an external medium,
such as a text, an artefact, a song, or a behavior.

Sociotype The group or community of individuals who
hold a particular meme in their memory.

Definition of the Subject

Cultural traits are transmitted from person to person, sim-
ilarly to genes or viruses. Cultural evolution therefore can
be understood through the same basic mechanisms of re-
production, spread, variation, and natural selection that
underlie biological evolution. This implies a shift from
genes as units of biological information to a new type
of units of cultural information: memes. The concept of
meme can be defined as an information pattern, held in
an individual’s memory, which is capable of being copied
to another individual’s memory. Memetics can then be de-
fined as the theoretical and empirical science that studies
the replication, spread and evolution of memes. Memes
differ in their degree of fitness, i. e. adaptedness to the
socio-cultural environment in which they propagate. Fit-
ter memes will be more successful in being communi-
cated, “infecting” more individuals, thus spreading over
a larger population. This biological analogy allows us to
apply Darwinian concepts and theories to model cultural
evolution.

Introduction

The transmission of cultural traits is a process that inmany
ways resembles the spread of an infectious disease: the car-
rier of a certain idea, behavior or attitude directly or indi-
rectly communicates this idea to another person, who now
also becomes a carrier, ready to “infect” further people. For
example, after you heard your neighbor whistling a catchy
tune a couple of times, youmaywell start whistling it your-

self, thus being ready to infect some more people with the
tune. Similarly, after you hear your friends recommend
a new electronic tool they have bought, you may well buy
one yourself, and, if you like it, start recommending it to
those acquaintances who do not know it yet. Thus, cultural
traits can be seen as analogous to mind viruses [18,28],
idea viruses [41] or thought contagions [59], which are re-
produced from mind to mind via imitation or communi-
cation. A truly successful trait is one that spreads like an
epidemic, infecting the whole of the population, in order
to end up as a stable, endemic component of that popu-
lation’s culture. For example, the tune may become part
of the repertoire of “evergreens” that everyone knows, and
the tool may become as widespread as the mobile phone
or color television.

This virus metaphor is attractive in that it suggests
a new perspective and new methods, such as epidemiol-
ogy [4], for studying the dynamics of culture. However, in
order to turn it into a well-founded scientific theory, we
need a deeper understanding of the underlying assump-
tions and implications of this analogy. For this, we can
turn to the science that studies viruses and other self-re-
producing systems: biology.

It is an old idea to see a correspondence between cul-
tural and biological evolution, with cultural entities under-
going similar processes of variation, reproduction and nat-
ural selection as organisms or genes. Around the end of the
18th century Western linguists discovered the similarities
between different languages. Sir William Jones gave birth
to the field of language evolution studies, more specifically
in the search for the origin of languages, and their “com-
mon descent” [72]. The German linguist August Schlei-
cher attempted to recreate this common ancestor of lan-
guages, publishing tree-diagrams of languages as early as
1853, six years before Darwin published his Origin of
Species. In an 1870 article one can already read: “How does
a new style of architecture prevail? How, again, does fash-
ion change? (. . . ) or take language itself (. . . ) it is the idea
of ‘natural selection’ that was wanted” [65]. The American
philosopher and psychologist William James [55] pointed
out in a presentation to the Harvard Natural History So-
ciety that: “A remarkable parallel, . . . , obtains between the
facts of social evolution on the one hand, and of zoological
evolution as expounded by Mr. Darwin on the other.”

By the end of the 20th century, the parallel study of cul-
tural and biological evolution got a new impetus with the
introduction, by Richard Dawkins [27] (first edition 1976),
of the concept of meme (for a review see [7]). A meme,
named in analogy with a gene, is defined as a cultural repli-
cator, i. e. an element of culture such as a tradition, belief,
idea, melody, or fashion, that can be held in memory and
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transmitted or copied to the memory of another person.
The core idea of memetics is that memes differ in their de-
gree of fitness, i. e. adaptedness to the socio-cultural envi-
ronment in which they propagate [29,50]. Mutations and
recombinations of existing ideas will produce a variety of
memes that compete with each other for the attention of
people. Fittermemeswill bemore successful in being com-
municated, “infecting” more individuals, thus spreading
over a larger population. The resulting evolutionary dy-
namics is one of variation creating new meme variants,
followed by natural selection retaining only the ones that
are most fit. Thus, the Darwinian principle of the survival
of the fittest can be seen to underlie cultural evolution as
well as biological evolution [3,5,6,33,58].

The memetic perspective on culture is complemen-
tary to the traditional social science perspective, which fo-
cuses on the characteristics of the individuals and groups
communicating rather than on the characteristics of the
information being communicated. This does not imply
a “memetic reductionism”, which would deny individual
control over what you communicate. It just notes that in
many cases the dynamics of information propagation and
the ensuing evolution of culture can bemodeledmore sim-
ply from the “meme’s point of view” than by analyzing the
conscious or unconscious intentions of the communicat-
ing agents.

Over the past thirty years, several models of cultural
evolution have been proposed that study the propagation
of memes or similarly defined cultural traits e. g. “cul-
turgens” [58] or “mnemons” [21]. Most of those models
are purely theoretical, proposing various conceptualiza-
tions, implications and speculations based on the memetic
perspective e. g. [15,31,38,54,57]. Some studies are math-
ematical in nature, applying techniques from mathemat-
ical genetics or epidemiology to quantitatively estimate
the spread of particular types of memes within a popu-
lation e. g. [17,23,58,60]. Others are computational, sim-
ulating the transmission of knowledge or behaviors be-
tween software agents e. g. [12,19,39]. A few are observa-
tional case studies, where the spread of a particular cul-
tural phenomenon, such as a chain letter, an urban legend,
or a social stereotype, is investigated qualitatively or quan-
titatively e. g. [10,24,42,68].

However, in spite of these advances, the memetic per-
spective on culture is not very well developed yet, and
remains controversial [2,3,34]. There are several reasons
why memeticists have not yet been able to convince the
bulk of social and cultural scientists of the soundness of
their approach.

First, the analogy with the gene, and its embodiment
as DNA, seems to indicate that a meme should have

a clear, well-delineated, stable structure. (Although one
should note that natural selection was proposed by Darwin
well before genes were postulated by Mendel, and a cen-
tury before their structure was elucidated by Watson and
Crick). Cultural entities, such as beliefs, ideas, fashions,
and norms, on the other hand are typically ambiguous, dif-
ficult to delimit and constantly changing. Memetic models
that are based on “hard”, explicitly defined units, there-
fore, only seem applicable to a very small subset of cul-
tural phenomena, such as chain letters. However, the bio-
logical analogy does not imply such rigidity: unlike higher
organisms, the genes of bacteria and viruses too are in
a flux, constantly mutating and exchanging bits of DNA
with other organisms, but that does not imply that they do
not obey evolutionary principles.

A second criticism of the memetic approach is that
people are not passive “vehicles” or “carriers” of ideas and
beliefs, the way theymay carry viruses. Individuals actively
interpret the information they receive in the light of their
existing knowledge and values, and on the basis of that
may decide to reject, accept, or modify the information
that is communicated to them. In order words, individ-
uals and groups actively intervene in the formulation and
propagation of culture. In that sense, cultural evolution is
Lamarckian rather than purely Darwinian.

A final criticism is that memetic models have not yet
been sufficiently subjected to empirical tests [25,34]. Part
of the reason is that most memetic theories do not make
sufficiently concrete predictions to be falsifiable by ob-
servation. Most of these theories remain very specula-
tive—often hardly better than a form of “armchair philos-
ophy”. Moreover, until now there simply have been very
few empirical studies of how memes propagate, whether
in the laboratory e. g. [62] or in real life e. g. [10], and even
fewer links have been established between these observa-
tions and theoretical or mathematical models.

We will try to address these criticisms in the remain-
der of this article. First, we will discuss the issue of how
to define a meme in an as accurate way as possible. Then
we will review the process of transmission of memes be-
tween individuals, emphasizing the active role played by
an individual’s cognitive structure. This will give us a ba-
sis to review the dynamics of memetic propagation across
a population, and the mathematical and simulation mod-
els that have been used to study it. To introduce empirical
tests, we will first discuss the criteria that determine the
fitness of a meme, specifying which memes are most likely
to spread. We will then summarize a few experiments and
case studies in which the predictive value of such selection
criteria was tested. Finally, we will discuss some potential
future applications of memetic research.
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Defining the Meme

Replicators

The original definition of a meme by Dawkins [27] was
based on the concept of replicator. A replicator is a system
that is able to make copies of itself, typically with the help
of some other system. Examples include real and computer
viruses, which need respectively a cell and a computer pro-
cessor to make copies of themselves. The fundamental ex-
ample discussed by Dawkins is the gene, the string of DNA
that carries the information on how to make a protein,
and that is copied with the help of the cellular machin-
ery whenever a cell divides. A meme too is a replicator, as
it is copied whenever information is transmitted from one
individual to another via communication or imitation.

Because replicators can be reproduced in different
quantities, they are subject to natural selection: the one
that tends to produce the largest number of replicas over
an extended time span will win the competition with less
productive replicators. To succeed in this, according to
Dawkins [27], a good replicator should exhibit the follow-
ing characteristics:

Longevity: The longer any instance of the replicating pat-
tern survives, the more copies can be made of it.
A drawing made by etching lines in the sand is likely
to be erased before anybody could have reproduced it.

Fecundity: The faster the rate of copying, the more the
replicator will spread. An industrial printing press can
churn out many more copies of a pamphlet than an
office-copying machine.

Copying-fidelity: The more accurate or faithful the copy,
the more will remain of the initial pattern after sev-
eral rounds of copying. If a painting is reproduced by
making photocopies from photocopies, the picture will
quickly become unrecognizable.

Dawkins called memes the “new” replicators, in the sense
that they appeared very recently compared to genes. The
reason for this evolution is clear: the typically human abil-
ity of imitation, i. e. learning new ideas, knowledge or be-
havior by copying what another individual already learnt,
provides a tremendous shortcut for the multiple experi-
ences of trial-and-error that are otherwise necessary to
discover a useful new behavior pattern [21]. While some
other animals are capable of limited imitation—e. g. song-
birds learn songs from each other, and apes can imitate
simple behaviors [16]—this capability is best developed in
humans [15]. This accounts for our ability to develop a cul-
ture that is passed on from generation to generation, thus
accumulating ever more useful knowledge in the course

of its evolution. In that sense, memes can be seen to be
responsible for the extremely fast development of human
society and its subsequent dominance of the ecosystem.

Memes vs. Genes

When we compare the two most important replicators,
genes andmemes,we immediately notice a number of fun-
damental differences. Genes can only be transmitted from
parent to offspring. Memes can in principle be transmit-
ted between any two individuals. For genes to be transmit-
ted, you need one generation. Memes can be transmitted
in the span of minutes. Meme propagation is also much
faster than gene spreading, because gene replication is re-
stricted by the relatively small number of offspring a single
parent can have, whereas the number of individuals that
can take over a meme from a single individual is almost
unlimited. Moreover, it seems much easier for memes to
undergo variation, since the information in the nervous
system is more plastic than that in the DNA, and since in-
dividuals can come into contact with many more different
sources of novel memes. On the other hand, selection pro-
cesses too are more efficient because of “vicarious” selec-
tion [21]: the carrier of a meme does not need to be killed
in order to eliminate an inadequate meme; it suffices that
he witnesses or hears about the troubles of another indi-
vidual due to that same meme.

The conclusion is that cultural evolution will be several
orders of magnitude faster and more efficient than genetic
evolution. It should not surprise us then that during the
last ten thousand years, humans have hardly changed on
the genetic level, whereas their culture has undergone the
most radical developments. In practice the superior evolv-
ability of memes also means that in cases where genetic
and memetic replicators are in competition, we would
expect the memes to win, even though the genes would
start with the advantage of a well-established, stable struc-
ture [15], as we will discuss further when reviewing com-
puter simulations of such dual evolution.

While memes have a much higher fecundity than
genes, their plasticity implies a much lower copying-fi-
delity: a message as received and understood by an indi-
vidual will rarely be identical to the one that was expressed,
as illustrated by the many misunderstandings and rein-
terpretations during communication. Yet, we should not
conclude from this that effective communication is impos-
sible: if you believed that, you would not be reading this ar-
ticle, hoping to assimilate the main ideas presented by its
authors. The reason for suchmixture of accurate transmis-
sion with creative reinterpretation is that, most fundamen-
tally, humans are cognitive agents. This means that they
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process incoming information depending on the knowl-
edge they already have and the computing machinery they
are endowed with, selectively retain some of that informa-
tion in their memory, and selectively express some of that
information to other agents. Generally, the transmission of
information by an agent will change both the agent, who
has learned something new, and the information, which
will be affected by the knowledge the agent already had.

Therefore, a meme reaching an agent, if it is repro-
duced at all, will typically be transmitted in a changed
form, possibly recombined with other information learned
earlier. This explains why it is often so difficult to define or
pinpoint an individual meme. In that sense, cultural evo-
lution is Lamarckian: characteristics acquired during the
lifetime of the meme’s carrier can be transmitted to later
carriers. Lamarckian evolution, while not beingDarwinian
in the strict sense, is still subject to the principle of nat-
ural selection: acquired characteristics too will be passed
on selectively, depending on their fitness. Natural selec-
tion by definition will pick out the memes who survive
this transmission process and are favorable among other
memes thanks to possible variations they underwent in
this process (although it is likely that most changes will
not be beneficial to the favorability). Therefore, the fittest
memes, such as certain songs, religious beliefs, scientific
laws, or brand names, will have a stable, recognizable iden-
tity, even though they may differ in appearance, as exem-
plified by the many renditions of a song or joke. All such
memes together define the culture shared by a community.

This identity will be reinforced by positive feed-
back that characterizes the non-linear interaction between
meme and carrier: the more people encounter a particular
version of a meme, the more they will tend to adapt their
own version to this common prototype, the more com-
monly they will express this version, and thus the more
people will encounter it. In this way, a variety of versions
that are constantly being exchanged within the same group
will tend to converge to a single, canonical version [8].
A newcomer to this group with a variant version will be
extensively subjected to the accepted version, and is likely
to eventually give in to this conformist pressure by adopt-
ing the majority version [17].

This winner-takes-all dynamics, where the initially
most frequent variant comes to dominate all others, is el-
egantly illustrated by computer simulations of the evolu-
tion of language, in which many communicating individ-
uals who use different words for the same concept quickly
converge on a single word [69]. Similarly, most systems
of ethics or religious belief tend to actively suppress any
variant from their canonical version. This explains why in
spite of the great variability of memes, we generally have

no problems determining whether an individual belongs
to a certain religious or linguistic group [51]. Note that
such non-linear reinforcement does not exist for genes,
since genes are transmitted only once, from parent to off-
spring. Moreover, once a gene is given, it can no longer be
affected by the presence of other versions in the popula-
tion.

Another fundamental difference between memes and
genes is that for memes there is no equivalent for the tradi-
tional distinction between genotype (the information car-
ried by the genes and passed on to the next generation)
and phenotype (the specific appearance of an organism as
determined by genes and environmental influences). In bi-
ological evolution, the genotype is the site of evolutionary
variation (since variations in the phenotype are not passed
on during reproduction) and the phenotype the site of se-
lection (since it is the organism as a whole that survives
and reproduces, or is eliminated). Inmemetics, we can dis-
tinguish three levels:

1. The memotype denotes the information as held in an
individual’s memory;

2. Themediotype denotes that information as expressed in
an external medium, such as a text, an artefact, a song,
or a behavior;

3. The sociotype denotes the group or community of in-
dividuals who hold that information in their mem-
ory [15].

Variation and selection take place on all three levels.
A memotype can vary or be eliminated (forgotten) while
residing in an individual’s brain. A mediotype can simi-
larly mutate (e. g. via a printing error) or be lost, and a so-
ciotype can change when new individuals are added to the
group, who may introduce different memes, or be elimi-
nated (as when an unsuccessful tribe dies out). In conclu-
sion, the processes of variation and selection, while anal-
ogous at the deepest level, are much more complex for
memes than for genes.

Delimiting the Memetic Unit

What are the elements that make up a meme? In order
to analyze meme structure, we can use some concepts
from cognitive science, the discipline that studies men-
tal content. Perhaps the most popular unit used to repre-
sent knowledge in artificial intelligence is the production
rule. It has the form “if condition, then action”. The ac-
tion leads in general to the activation of another condi-
tion or category. A production rule can thus be analyzed as
a combination of even more primitive elements: two con-
cepts or categories and a connection (the “then” part, which
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makes the first category entail the second one). For exam-
ple, a meme like “God is omnipotent” can be interpreted
as “if a phenomenon is God (it belongs to the category of
God-like entities), then that phenomenon is omnipotent
(it belongs to the category of omnipotent entities)”.

Production rules are connected when the output con-
dition (action) of the one matches the input condition of
the other. This makes it possible to construct complex cog-
nitive systems on the basis of simple rules. In memetics,
such systems are called meme complexes or memeplexes.
For example, a scientific theory or a religious system of
belief may be represented as a collection of mutually con-
nected propositions or production rules, such as “God is
omnipotent”, “God is good”, “God punishes bad people”,
“if you steal, you are bad”, etc. This collection of rules to-
gether determines a knowledge system that allows mak-
ing inferences, such as “if you steal, God will punish you”.
Evenmore concrete perceptual or behavioral memes, such
as a tune, might be modeled in this way, as concatenations
of production rules of the type “if C (musical note distin-
guished), then E (note produced and subsequently distin-
guished)”, “if E, then A”, and so on. (In fact, genetic infor-
mation too can be modeled using networks of “if. . . then”
productions: a DNA string is activated by the presence of
certain proteins (condition) to which it responds by pro-
ducing specific other proteins (action), see [56]).

Production rules—or at least a simplified, binary rep-
resentation of them, called “classifiers”—can be used to
build computer simulations of cognitive evolution, using
genetic algorithms, i. e. algorithmically applied operators
that perform the equivalents of mutation, recombination,
and selection on the basis of “fitness” on such strings [53].
Although classifier models generally do not take into ac-
count distinct carriers, this looks like a promising road
to study the evolution of memeplexes formally and com-
putationally. As we will see later, though, simulations of
cultural evolution are usually limited to the mutation and
spread of simple memes, ignoring the cognitive structures
and processes that support inferences and that create new
meme(plexe)s out of combinations of existing ones.

Even if we would model memes as connected sets of
production rules, we still have the problem of how many
production rules define a single meme(plex). If we call a re-
ligion or a scientific theory a meme, it is clear that this will
encompass a very large number of interconnected rules.
In practice it will be impossible to enumerate all rules, or
to define sharp boundaries between the rules that belong
to the meme and those that do not. For example, should
you believe in the existence of Hell, the creation of the
world in seven days, and the virginity of Mary to be called
a Catholic?

A pragmatic criterion that can be used in this regard is
to define a meme or memeplex as the smallest collection
of propositions or memory items that tends to replicate
as a whole cf. [73]. For example, a proposition like “God
is omnipotent” on its own, without specification of God’s
other characteristics, is much too abstract to be clearly un-
derstood or applied, and as such is unlikely to replicate
well. However, in combination with a number of other
propositions, like “God is good”, “God is the creator of
the world”, etc., that flesh out, apply, and support this ab-
stract idea, the package will makemuchmore sense, and be
more likely to be passed on to other individuals. Similarly,
the first three notes of a melody are unlikely to be remem-
bered as a unit, but the first eight, as in the beginning of
Beethoven’s fifth symphony, may well be.

It remains that often we can add or subtract a few pro-
duction rules (such as the virginity of Mary) from ameme-
plex without significantly changing its chances of repli-
cation. Therefore, in practice it will rarely be possible to
determine the precise boundaries of a meme(plex). How-
ever, this should not detract us from considering memes
while analyzing cultural evolution. Indeed, the same prob-
lem besets genetic models of biological evolution: as yet, it
is in practice impossible to specify the exact combination
of DNA codons that determine the gene for, say, fair skin,
big ears or altruism. The biochemical definition of a gene
as a string of DNA that codes for one protein is not very
useful when studying evolution, since most practical func-
tions require a combination of proteins, most proteins ex-
hibit a combination of functions, and much of the DNA is
non-coding, but therefore not necessarily useless, as it may
contain control information that determines the activation
of other DNA strings.

As Dawkins [27] notes, we do not need to know the
constitutive elements or boundaries of a gene in order to
explain the evolution of particular characteristics, such as
altruism or fair skin, for which such a gene would be re-
sponsible. It is sufficient that we can distinguish the effects
of that gene from the effects of its rival genes (alleles). If we
can determine the fitness differences resulting from these
effects, then we can make predictions about which type of
genes will win the competition in a particular situation,
and thus which characteristics the species is most likely to
evolve. For example, knowing that people with lighter skin
need less sunlight to produce sufficient vitamin D, we can
predict that in Northern regions natural selection will fa-
vor genes for light skin over genes for dark skin—whatever
DNA codons make up these respective genes.

The same applies to memes. If, for example, we ob-
serve that one meme (say Catholicism) induces its carriers
to have more children than its competitors (say Anglican-
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ism), and that the children tend to take over their memes
from their parents, then, all other things being equal, we
can predict that after sufficient time this meme will dom-
inate in the population. This prediction does not require
any explicit definition of the meme of Catholicism, but
only the ability to distinguish it from its competitors. Of
course, in practice it is never the case that all other things
are equal, but that is the predicament of all scientific mod-
eling: we must always simplify, and ignore potentially im-
portant influences. The question is to do that as wisely as
possible, and to maximally include relevant variables with-
out making the model too complex.

Dynamics of Meme Replication and Spread

To be replicated, a meme must pass successfully through
four subsequent stages:

1. Assimilation by an individual, who thereby becomes
a carrier or host of the meme;

2. Retention in that individual’s memory;
3. Expression by the individual in language, behavior, or

another form that can be perceived by others;
4. Transmission of the thus created message or mediotype

to one or more other individuals.

This last stage is followed again by stage 1, thus closing the
replication loop. At each stage there is selection, meaning
that some memes will be eliminated. Let us look in more
detail at the mechanisms governing these four stages.

Assimilation

A successful mememust be able to “infect” a newhost, that
is, enter into its memory, and thus acquire its memotype
form. Let us assume that a meme is presented to a poten-
tial new host. “Presented” means either that the individual
encounters an existing mediotype form of a meme, or that
he or she independently discovers the meme, by observa-
tion of outside phenomena or by thought, i. e. recombina-
tion of existing cognitive elements. To be assimilated, the
presented meme must be respectively noticed, understood
and accepted by the host. Noticing requires that themedio-
type be sufficiently salient to attract the host’s attention.
Understanding means that the host recognizes the meme
as something that fits in with his or her cognitive system.
The mind is not a blank slate on which any idea can be
impressed. To be understood, a new idea or phenomenon
must connect to cognitive structures that are already avail-
able to the individual. Finally, a host that has understood
a new idea must also be willing to believe it or to take it
seriously. For example, although you are likely to under-

stand the proposition that your car was built by little green
men from Mars, you are unlikely to accept that proposi-
tion without very strong evidence. Therefore, you will in
general not memorize it, and the memewill not manage to
infect you.

Retention

The second stage of memetic replication is the retention
of the meme in memory. The longer the meme stays, the
more opportunities it will have to spread further by infect-
ing other hosts. This is Dawkins’s [27] longevity character-
istic for replicators.

Just like assimilation, retention is characterized by
strong selection, which few memes will survive. Indeed,
most of the things we hear, see or understand during the
day are not stored in memory for longer than a few hours.
Although you may have clearly assimilated the news that
the national party won the Swaziland elections with 54%
of the votes, you are unlikely to remember this a week
later—unless you live in Swaziland, perhaps. Retention
will depend on how important the idea is to you, and how
often it is repeated, either by recurrent encounter or by in-
ternal rehearsal.

Expression

To be communicated to other individuals, a meme must
emerge from its storage as memory pattern or memotype
and enter its mediotype phase, i. e. assume a physical shape
that can be perceived by others. This process may be called
“expression”. The most obvious medium for expression is
speech. Other common means are text, pictures, behav-
ior, and the creation of artifacts such as tools, buildings
or works of art. Expression does not require the conscious
decision of the host to communicate the meme. A meme
can be expressed simply by the way somebody walks or
manipulates an object, or by what he or she wears.

Some retained memes will never be expressed, for ex-
ample because the host does not consider the meme inter-
esting enough for others to know, uses it unconsciously
without it showing up in his or her behavior, does not
know how to express it, or wants to keep it secret. On the
other hand, the host may be convinced that the meme is
so important that it must be expressed again and again to
everybody he or she meets.

Transmission

To reach another individual, an expression needs a phys-
ical carrier or medium that is sufficiently stable to trans-
mit the expression without too much loss or deformation.
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Speech, for example, uses sound to transmit an expres-
sion, while text will be transmitted through ink on paper
or electrical impulses in a wire. The expression will take
the form of a physical signal, modulating the carrier into
a specific shape—the mediotype—from which the original
meme can be re-derived. For example, mediotypes can be
books, photographs, artifacts or CD-ROMs.

Selection at the transmission stage happens through ei-
ther elimination of certain memes, when the mediotype
is destroyed or gets corrupted before it is perceived by
another individual, or through differential multiplication,
when the mediotype is reproduced into many copies. For
example, a manuscript may be put into the shredder or
turned into a book that is printed in millions of copies.
Especially since the emergence of mass media and mass
manufacturing, the transmission stage is the one where
the contrast between successful and unsuccessful memes
is largest, and where selection can have the largest impact.

Meme Fitness

The overall survival rate of a meme m can be expressed
as the meme fitness F(m), which measures the expected
number N(m) of memes at the next time step or genera-
tion t C 1 divided by the average number of memes at the
present time t. This fitness can be expressed in a simplified
model as the product of the survival/multiplication rates
for each of the four stages, respectively assimilation A, re-
tention R, expression E and transmission T:

F(m) �
N(m; t C 1)
N(m; t)

D A(m):P(m):E(m):T(m)

A denotes the proportion of mediotypes encountered by
the host that are assimilated. R represents the proportion
of these assimilated memes that are retained in memory.
Therefore, A 6 1, R 6 1. E is the number of times a re-
tained meme is expressed by the host. T is the number of
potential new hosts reached by a copy of the expression.
Unlike A and R, E and T do not have an upper bound, al-
though E is likely to be more restricted than T. Note that F
is zero as soon as one of its components (A, R, E, T) is zero.
This expresses the fact that a meme must successfully pass
through all four stages in order to replicate. Also note that
for ameme to spread (F > 1), youmust have at least E > 1
or T > 1.

Dynamics of Spread

From the standard definition of fitness F, we can derive
the rate of growth for the number N(t) of meme copies at
time t. This determines the speed with which the meme

spreads through the population of carriers:

dN
dt
Š

N(t C 1) � N(t)
1

D (F � 1):N

This results in a traditional exponential growth if F > 1,
exponential decay (and eventual extinction) if F < 1, and
stability if F D 1. This model is too simple if the popula-
tion is finite. In that case, we need to take into account the
total size of the population of potential carriers K , which
functions as the “carrying capacity” of the socio-cultural
environment in which a meme proliferates. The increase
in the number N(t) of memes can be represented by the
following Verhulst type of equation:

dN
dt
D (F � 1):N

�
1 �

N
K

�
:

This equation expresses the fact that the growth in meme
number (dN) is in first instance proportional to the num-
ber (N) that is already there—since more memes produce
more copies of themselves—, but eventually limited by the
number K of potential hosts in the population, so that
growth becomes zero when the population reaches this
limit (N D K). The function N(t) that is the solution to
this differential equation is the logistic function with its
characteristic sigmoid (S-like) shape.

Interactions Between Memes

The dynamics of a single growing meme population
N(m) could be extended to several interacting memes
Ni D N(mi ). Here we should add an interaction term Aij
which describes the strength of the influence of meme i on
meme j. This influence can be positive (Ai j > 0), which
means that an increase in i produces an increase in j, i. e. i
helps j to grow. A negative influence (Ai j < 0) means that
the growth of i suppresses the growth of j. A neutral rela-
tion (Ai j D 0) means that the spread of the one does not
influence the spread of the other. This applies to memes
from independent domains, such as “God exists” and “ap-
ples are healthy”. If we now consider the reciprocal influ-
ence (Aji), we can distinguish the following specific types
of interaction:

� Ai j > 0, Aji > 0: the memetic species i and j can be
seen as mutualists, that help each other to spread, e. g.
by reinforcing each others’ message. An example could
be “God is good” and “God is great”.

� Ai j < 0, Aji < 0: i and j are rivals or competitors [12]:
an increase in the one produces a decrease in the other.
Examples are “God is good” and “God does not exist”.
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� Ai j > 0, Aji < 0: i and j stand in a predator-prey type
of relationship, i. e. i grows at the expense of j. This
may happen when i (e. g. relativity theory) is a more
advanced version of j (e. g. Newtonian mechanics), so
that carriers of j would quickly convert to i, but non-
carriers of j would be more difficult to convince of i’s
value.

The overall dynamics can be represented by the follow-
ing system of non-linear differential

P
j equations:

dNi

dt
D Ni

0

@
X

j

Ai jN j C Bi

1

A

Aii, the influence of meme i on itself will here nor-
mally always be negative and equal to (1 � Fi)/K , while
Bi D Fi � 1, as in the previous equation for a single
meme. Such dynamical models quickly become very com-
plex to solve, but are not fundamentally different from tra-
ditional growth and competition models used in popula-
tion biology, epidemiology, or studies of the diffusion of
innovations [12]. However, they do not take into account
the dependence of a meme on its carrier, nor the specific
communication channels between carriers.

Social Structures

One way to make the model more realistic without adding
too much complication is to consider the structure of the
social space in which the potential carriers of a meme re-
side. Here we make the additional assumption of continu-
ity, namely that a meme cannot jump from one carrier to
another without there being some form of proximity or re-
lationship between the carriers.

Horizontal Transmission and the Evolution
of Cooperation

The simplest form of relationship is the one between
parents and their offspring. Parent-to-child transmission
(or more generally transmission between generations) is
called vertical transmission [23]. Memes belonging to do-
mains such as religion, language, ethics, and general cul-
ture are commonly transmitted in this way. This form
of propagation is analogous to the transmission of genes.
Therefore “vertical” models of cultural evolution find re-
sults similar to those of biological evolution. This means
that vertically transmitted memes, such as established re-
ligions, will typically reinforce or elaborate genetically
transmitted behavioral patterns and thus directly con-
tribute to biological fitness [26].

The same does not apply to horizontally transmitted
culture, i. e. memes exchanged between members of the
same generation [23]. Here what is good for a meme (e. g.
slavish imitation of fads and fashions) is not necessar-
ily good for the biological individual or gene pool, since
genes and memes are subjected to different kinds of natu-
ral selection. This may promote the evolution of parasitic
memes that are deleterious to their carriers, as we will dis-
cuss further.

However, in addition to the fact that it spreads new in-
formation more quickly, horizontal transmission also of-
fers another benefit that vertical transmission lacks. A clas-
sic problem in biological evolution is the evolution of co-
operation [27,51]: given that genes are selected to promote
their own good, with a disregard or even hostility toward
any rivals that compete for their scarce resources, how can
we explain cooperative or altruistic behavior where an in-
dividual invests more in helping another than in his or her
own good? In the animal world, cases of altruism, such as
among social insects, are usually explained via kin selec-
tion: individuals will help others as long as these are related
to them, i. e. share their genes. In human society, however,
people often help strangers that are totally unrelated. The
initially proposed explanation of group selection, namely
that groups of individuals that help each other survive bet-
ter than groups of selfish individuals, has the shortcoming
that, within altruist groups, it are the selfish profiteers that
do best, and thus spread their genes most [27].

Horizontal transmission of cooperation norms solves
this problem, since the members of a cultural group are
all memetically related to each other, sharing their memes
rather than their genes. Therefore, cultural kin selection
will extend to all members of the group [36]. This entails
a selective pressure for memes to support the fitness of the
whole group of their carriers, e. g. by promoting coopera-
tion. Moreover, selfish profiteers will not be able to under-
mine the cooperation produced by such altruism-promot-
ing memes because of conformist pressure [17,51], or what
we have called “winner-takes-all”: when one meme estab-
lishes a majority position it will eventually get imposed on
all members of the group, thus suppressing the appear-
ance of selfish dissidents—or at least not allowing them
to make any converts and thus spread their memes. This
cultural solution to the cooperation paradox in biological
evolution appears to have been developed more or less in-
dependently by different meme theorists [15,17,36,47].

Topologies of Communication

Horizontal transmission will generally follow existing so-
cial or geographical topologies. This can be modeled in
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two different ways:

1. Individuals are situated in a space (typically a two-di-
mensional plane, or its discrete equivalent, a two-di-
mensional lattice of cells);

2. Individuals are considered as nodes in a (social) net-
work, which are connected by ties of acquaintance or
trust.

The basic assumption in these models is that memes dif-
fuse continuously across the space or network. This means
that, in first instance, communications are considered to
be local, i. e. agents exchange memes only with their di-
rect neighbors in the space or social network. The neigh-
bor can pass on the meme to its neighbors, and so on, so
that a meme eventually may spread across the whole pop-
ulation.

When a population consists of different clusters or
local communities, that have little communication with
each other, this will typically lead to different cultures
establishing themselves in different communities [8,17].
The reason is that intense communication within each
community will produce a “winner-takes-all” dynamics
where by chance or local adaptation one of several vari-
ant memes becomes dominant. Memes from other com-
munities, however, will only rarely be encountered, so that
they will generally not receive enough reinforcement to
displace the established memes.

Recent research in complex networks, including social
networks, has shown that such networks commonly have
a scale-free structure [1]. This means that a few agents, the
so-called “hubs” of the network, have a great many social
ties, while most agents only have a few links. The implica-
tion for cultural diffusion is that memes hosted by “hub”
agents will have a disproportionately large effect, and are
much more likely to spread widely. A similar effect has
been observed in the spread of sexually transmitted dis-
eases, such as AIDS, where the infection of a few hubs in
the network (in this case individuals with a large num-
ber of sexual partners) may make the difference between
a large-scale epidemic and a few isolated infections. This
observation has provided inspiration to researchers in “vi-
ral” marketing, who look for methods to make publicity
for a brand or product by creating a “buzz”, i. e. a positive
message about their product that is propagated via word-
of-mouth [63,64]. Their strategies focus on identifying and
targeting the “opinion-leaders” within a community, i. e.
those central individuals that many know and tend to im-
itate.

Although it is in principle possible to make analytical
models of the propagation of memes across space or across
networks, calculating the precise spread in a realistic envi-

ronment is far too difficult. Therefore, these processes are
typically explored via multi-agent computer simulations.

Computer Simulations of Cultural Evolution

Cultural transmission of rules, norms or information
is a common ingredient in many social simulations
(e. g. [8,20,32,37,45], that are based on an “artificial so-
ciety” of interacting software agents [35]. However, such
memetic propagation is often added merely as one of the
many assumptions within a complicated model of a spe-
cific type of socio-cultural evolution, such as the evolution
of a shared vocabulary [69] or of cooperation norms [45].
There have been relatively few simulations that have ex-
plored cultural evolution in the broadest sense. We will
now discuss some typical examples that illustrate the wider
issue.

Probably the first explicitly memetic simulation,Meme
and Variations, was made by Gabora [39] (first written
1992). The assumptions underlying this, and related sim-
ulations of cultural diffusion e. g. [9,30] are the following:
agents search the best solution for a particular problem.
They can either find a solution on their own through trial-
and-error, or they can take over a solution from another
agent, by observing the solutions each of their neighbors
has found and imitating the best one. The result of the
simulation is that the agents collectively find the best so-
lutions if they partially imitate others, partially explore in-
dividually. If they only imitate, there is no creativity and
the best solution cannot be improved. If they only explore
individually, lots of search is needed to merely rediscover
what was already known elsewhere. In the ideal situation,
which is achieved by trying out different parameter values
for the simulation until one has found the optimal mix of
innovation and imitation, good solutions will spread very
quickly throughout the population, but this without pre-
venting the discovery of even better solutions by certain
agents.

This simulation investigated the relative effectiveness
of, and interaction between, individual learning and cul-
tural diffusionk. An older classic simulation [52] investi-
gated the relative effectiveness of, and interaction between,
individual learning and genetic evolution. Inspired by this
work, Best [14] studied the three-way interactions between
individual learning, genetic evolution, and cultural evolu-
tion. In Best’s simulation, agents can acquire knowledge
that allows them to maximize their fitness in three ways:
1) by inheriting it, possibly with variations, from their par-
ents (vertical, genetic transmission); 2) by copying it from
another, fitter agent (horizontal, cultural transmission); 3)
by individually discovering it via trial-and-error. The sim-
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ulation showed that cultural transmission, just like indi-
vidual learning, can enhance genetic evolution, accelerat-
ing its convergence to the optimal solution. Moreover, cul-
tural transmission appeared superior to individual learn-
ing in that it produced convergence more quickly.

Best [14] also examined the situation in which cultural
and genetic evolution pursue opposite goals, and found
that in this case genetic evolution normally wins the com-
petition. However, Bull, Holland and Blackmore [19] fur-
ther investigated this situation by allowing cultural evolu-
tion to be much more rapid than genetic evolution, as is
normally the case. They found that under these conditions
memetic effects are stronger than genetic effects, and the
only way genes can still keep some control over the process
is by evolving mechanisms to filter out particularly harm-
ful memes.

These simulations of cultural evolution are still rather
simplistic, in the sense that agents literally copy any
knowledge exhibited by a fitter agent. In practice, individ-
uals do not a priori know which individual is fitter, and
when they receive a message, this information will inter-
act with the knowledge they already had. Van Overwalle
and Heylighen [71] have proposed a more realistic simu-
lation model in which agents do not just copy a message,
but actively “reinterpret” it, based on their previous expe-
rience. Agents are modeled as simple neural networks that
learn from experience. A message corresponds to a pat-
tern of activation over the nodes in such a network, and
communication to the spread of that activation from agent
to agent via variable inter-agent connections. The strength
of the connection between two agents represents the de-
gree of trust of the one in the information received from
the other. This trust is learned on the basis of the degree
to which information received previously from that agent
is confirmed by own knowledge. Unlike most multi-agent
simulations, the Van Overwalle and Heylighen [71] model
is supported by solid empirical evidence, in that it man-
ages to accurately reproduce the results of several clas-
sic communication experiments, including the Lyons and
Kashima [61,62] study of meme transmission that we will
discuss in a later section.

SelectionCriteria forMemes

Since mathematical models and computer simulations of
meme spread necessarily have to make plenty of simpli-
fying assumptions, and cannot incorporate all the specific
social, psychological, linguistic and cultural factors that in-
fluence the propagation of a meme, they are not very use-
ful in predicting which concrete memes will be success-
ful and which will not. Yet, such predictions are neces-

sary if we want to arrive at an empirically testable theory,
which can be applied to practical problems. One way to
arrive at a more practical, predictive model is to formu-
late general selection criteria that distinguish fitter memes
from less fit ones. All other things being equal, a meme
that scores better on one of these criteria is predicted to be-
come more numerous than a meme that scores worse. This
is a falsifiable hypothesis that can be tested through experi-
ments or observations. It suffices to operationalize the cri-
teria so that satisfaction of a criterion can be objectively
measured.

Many authors have proposed criteria for memetic suc-
cess, and a few (e. g. [22,44,48,49,50]) have compiled lists
of such criteria. Since these proposals, while related, are
all different, we need to examine more clearly what is
needed for a good list of criteria. First, such criteria should
be formulated to be as much as possible independent or
non-overlapping, so that a piece of information can vary
along one dimension of evaluation without varying along
the others. Second, without becoming too restrictive, they
should be defined as precisely, concretely and unambigu-
ously as possible, so that different observers using these
criteria can come to the same conclusions.

To illustrate the importance of these methodologi-
cal considerations, let us review some proposed criteria,
and point to their shortcomings. For example, one might
naively propose that fit memes should be attractive to their
receivers. While this is true in a general sense, it helps
us very little in operationalizing meme fitness, as we can-
not say what makes a meme attractive without becom-
ing much more explicit about its properties. A somewhat
more sophisticated hypothesis may propose that good
memes should be communicable [68]. Again, this is ob-
viously correct, but communicability has so many differ-
ent aspects, depending on the meme itself, its audience,
the used medium, etc., that we might as well say that it
simply should be a good meme. A more specific crite-
rion, used e. g. by [46], is plausibility. The problem here is
that people may use very different procedures to estimate
plausibility, e. g. by looking at the source of the informa-
tion, the available evidence for it, or their own previous
experience.

We will here summarize the criteria proposed by Hey-
lighen [48,49,50], which are based on an extensive review
of relevant cognitive, social and communicative mecha-
nisms. At the most abstract level, there are three classes
of entities that information depends on: the object that it
refers to, the subject who assimilates and remembers it,
and the communication process that is used to transmit it
between subjects. These determine three categories of se-
lection criteria, objective, subjective and intersubjective:
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Objective Criteria

Distinctiveness Information that refers to something
precise, distinct or detailed, can be confirmed more
easily by observation.

Invariance Information that remains valid over a wide
range of contexts or situations, is more stable and
broadly applicable.

Evidence Information that is supported by independent
observations, is more reliable.

Subjective Criteria

Utility Information that is valuable or useful to its carrier
is more likely to be remembered and passed on.

Affectivity Information that provokes strong emotions is
more likely to be remembered and passed on: this typ-
ically stimulates instinctive reactions, such as fear, de-
sire or disgust [46].

Coherence The better information fits in with the knowl-
edge that individuals already have, themore easily they
will understand and accept it [70]

Simplicity Short, simple messages are easier to assimilate,
remember and transmit.

Novelty Information that is unexpected will attract more
attention.

Repetition Repeated exposure to the same message helps
it to be assimilated and retained.

Intersubjective Criteria

Publicity The more effort an individual puts into spread-
ing a message, the more people will receive it.

Formality Messages formulated explicitly and unambigu-
ously are less likely to be misinterpreted.

Expressivity Information must be easy to express in
a given language or medium.

Authority An authoritative, trustworthy source of the in-
formation makes it more likely to be accepted.

Conformity Information confirmed by many people is
more easily accepted [17].

Collective utility Information, if adopted by a group,
may help the group to function better, and therefore
to grow or function as a model for others. Examples
are standards, linguistic conventions, and traffic rules.

ParasiticMemes

Memes being communicated undergo natural selection.
Some memes are transmitted easily, thus reaching a large
number of people, while others are rejected, misunder-
stood, forgotten or otherwise eliminated from circulation.

This means that the memes best adapted to the under-
lying cognitive and communicative processes will spread
farthest. We may assume that our brain, general culture,
and social structures have evolved so as to maximize the
fitness of society and its members. This means that they
should be good at assimilating useful memes, and at re-
jecting bad ones, e. g. [15]. For example, we know that we
should not accept things without evidence, and that some
sources are more reliable than other. Insofar that these so-
cio-cognitive guidelines, as exemplified by the above list of
selection criteria, efficiently filter out poor-quality infor-
mation, successful memes will also increase the fitness of
their carriers.

However, since no system is foolproof, these mecha-
nisms will not always be reliable. This leaves a niche for
memes to evolve that propagate well, apparently satisfying
the criteria that people intuitively use, but without deliver-
ing any benefit to their carriers. We may call such memes
selfish [47] or parasitic cf. [26], as they free ride on the ef-
fort invested by individuals to gather and communicate
useful information. Such information parasites succeed by
faking the criteria that we use to recognize high-quality
information. This is similar to the way many biological
organisms mimic other phenomena, such as viruses that
mimic the cell’s own DNA, so that they are reproduced for
free by the cellular machinery. Memes have therefore been
described as “mind viruses” [18,28], since they similarly
exploit our cognitive machinery to get themselves repli-
cated.

There are plenty of examples of such parasitic memes.
Perhaps the most studied from a memetic point of view
are chain letters, whose only purpose is to have themselves
replicated and sent to as many people as possible [11,42].
A more modern variant are virus hoaxes [24,25], i. e. email
messages that warn the receivers for a non-existent type of
computer virus, and urge them to pass on this warning to
as many people as possible. Probably the most dangerous
information parasites are certain religious cults [26], which
indoctrinate their followers to make as many converts as
possible, while isolating them from alternative sources of
information, so that they tend to develop a view of reality
that is so distorted that it may end fatally, as in the mass
suicides of the Heaven’s Gate cult. Pseudosciences too can
be dangerous, parading as solid scientific theories, but as-
serting statements that at best are not supported by the
facts, like in astrology, at worst fatally wrong, like in cer-
tain quack cures for cancer. Somewhat more benign are
urban legends and various rumors and fads, which tend
to spread in waves, being passed on from person to per-
son but without any authoritative source or real evidence.
Bangerter and Heath [10] have tracked the evolution of
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one such legend, theMozart effect (i. e. the unfounded be-
lief that babies listening to classicalmusic becomemore in-
telligent), starting from its source: a scientific experiment
that merely found that after listening to music adults tem-
porarily scored better on certain tests—perhaps simply be-
cause they were more relaxed.

Several memeticists, e. g. [18,28,60], have investigated
the many tricks that memes use to appear more accept-
able than they deserve to be, including the following. Self-
justification means that the components of a memeplex
mutually justify each other, but without independent sup-
port. An example is: “God exists because the Bible says so”,
and “You should believe the Bible because it is the word
of God”. Self-reinforcementmeans that a meme stimulates
its host to rehearse itself, e. g. by repeated study, medita-
tion, prayer, etc. Intolerance means that a meme indoctri-
nates its host to a priori reject any potentially competing
memes. Proselytism occurs when a meme urges its host to
maximally spread the meme to other hosts, like in the case
of chain letters. Baiting occurs when a meme promises
its carriers a reward if they only accept and spread the
meme. All these tactics are common in religious cults,
which promise their adherents that they will go to Heaven
if they believe the teachings, pray, and spread the word,
while they will burn in Hell if they dare to doubt [28].

Parasitic memes have been the subject and inspira-
tion of most empirical approaches to memetics, since their
spread is relatively easy to track, and since they are prime
illustrations of the way in which cultural evolution is fun-
damentally different from genetic evolution.

Empirical Tests

Memetics has often been challenged and has known some
very virulent critics. One of the main criticisms is that
there are no empirical data to back up the theories that
were put forth, and in that sense memetics is merely a way
of thinking rather than a scientific discipline [34,40,43].
This criticism is to some degree justifiable. The lack of
a universally accepted meme definition and the vagueness
of meme boundaries cf. [2] indeed make empirical stud-
ies less evident. Yet, there have already been a few em-
pirical studies of meme propagation in different condi-
tion, both in the laboratory, e. g. [61,62], and in real life,
e. g. [11,24,42]. More generally, we must note that memet-
ics is an approach that illuminates important aspects of
culture, society and communication that more traditional
approaches, such as sociology, psychology or history, tend
to neglect. Empirical tests cannot confirm or falsify this
perspective as a whole, but merely specific implementa-
tions of it. This is analogous to the observation that ex-

periments in psychology or sociology can test particular
theories within their field, but not the field as such.

Within the memetics field, one simple way to test spe-
cific theories is by considering the memetic selection cri-
teria they imply [25]. We can then measure the apparent
success rate of different memes, and examine its correla-
tion with the degree to which the memes fulfill the pro-
posed selection criteria. Heath, Bell and Sternberg [46] ap-
plied this approach to investigate the criteria of affectivity
(which they call emotional selection) and plausibility. From
the affects, they focused on disgust because this is a rela-
tively simple emotion whose strength is easy to measure.
When comparing different urban legends that contained
an element of disgust (e. g. the story of a man who dis-
covers a dead rat in the cola bottle he has just been drink-
ing from), they found that the more disgusting variations
typically had spread more widely than the less disgusting
ones. The same applied to more plausible variations. Chie-
lens [24] used a similar method to examine the spread of
virus hoaxes. He used both expert and non-expert surveys
to score different hoaxes on different criteria, including
novelty, simplicity, utility, authority and proselytism. In
this case, the spread of the hoax correlated most strongly
with its novelty. Schaller, Conway and Tanchuk [68] ex-
amined the correlation between the communicability of
traits, i. e. the probability with which subjects would speak
about a particular trait, and the frequency of these traits.
They found that for traits used to describe different eth-
nic groups, the most communicable traits are also the
ones that are most widely spread and persistent in society.
Pocklington and Best [66] and [12,13] used automatic text
analysis to measure how often a certain discussion subject
was mentioned in a particular discussion group on the net.
They found evidence for memetic competition between
mutually incoherent subjects, meaning that an increase in
the one correlated with a decrease in the other.

While these studies merely observed existing patterns
of spread, Lyons and Kashima [61,62] performed a lab-
oratory experiment in which they deliberately produced
a memetic transmission chain. They created a fictional
story and asked the participants in the experiment to sub-
sequently tell the story from person 1 to person 2, from 2
to 3, and so one, like in the game of “telephone” or “Chi-
nese Whispers.” The story involved a fictitious tribe, the
Jamayans, about which all participants had received some
background information. After several experiments, a sta-
tistical analysis of the story elements that remained at the
end of the transmission chain (i. e. as reported by the last
person to hear the story) found a number of systematic
selection effects. These seem to confirm four of the previ-
ously mentioned criteria:
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1. Coherence: Elements inconsistent with the background
information were more likely to be left out;

2. Novelty: Elements that the speakers assumed were al-
ready known by the listeners were more likely to be left
out;

3. Simplicity: Details or embellishments that did not affect
the story line tended to be left out;

4. Conformity: When the participants were told that the
majority of them believed that the Jamayans were, e. g.,
peaceful, they were more likely to leave out elements
inconsistent with this fact than if they thought that this
was only a minority opinion.

Experiments on memes “in the wild” are more difficult to
control than in such a laboratory situation. Because of eth-
ical concerns it is hardly possible to release a well-doctored
meme upon the world to observe how it evolves. Another
problem is that it is hard to track memes once they are
released. Even when feedback is asked or if mechanical
trackers are included in thememe (for example, images in-
cluded in an email message that are automatically down-
loaded from a controlled server each time the message is
opened), it is hard to see whether the meme has already
been changed by the time these devices are triggered.

In conclusion, empirical memetics research remains in
its infancy. However, experiments have already shown that
one can quantitatively confirm or falsify a number of non-
trivial memetic predictions. It is to be hoped that many
more studies along these lines will be carried out. As long
as memetics has not been thoroughly investigated empir-
ically, it is likely to remain a theoretical niche framework
used only for description rather than prediction.

Future Directions

The theory of memetics and cultural evolution holds out
great promises for a better understanding, anticipation
and control of fundamental social problems that depend
on the propagation of ideas and behaviors. This will re-
quire more extensive empirical observations and tests,
more detailed computer models of the interaction between
memes and their hosts, and a better conceptualization of
what a meme precisely is. A first basic result that should
come out of such research is a concrete and reliable list
of criteria that characterize successful memes, i. e. ideas
or cultural traits that propagate widely and easily across
large populations. This would allow us not only to recog-
nize such memes, but to some degree to design or improve
them.

The ability to create successful memes is the Holy Grail
of marketing research [41], which is constantly on the
look-out for techniques to create a “buzz” and have their

publicity message or brand name [63,64] become as widely
known as possible. Another application of these princi-
ples lies in public education. For example, if the govern-
ment makes a campaign to convince people to stop smok-
ing, it would be very useful to have the campaign designed
according to sound memetic principles. This should take
into account both the characteristics of the message itself
(e. g. being sufficiently simple and unambiguous), of the
intended audience (e. g. being consistent with what the au-
dience already believes, while being sufficiently novel to at-
tract their attention), and of the way it is transmitted (e. g.
having the meme expressed in a commonmedium by peo-
ple considered trustworthy).

Memetic selection criteria can be applied not only pos-
itively, to help spread a beneficial idea, but negatively, to
prevent or suppress harmfulmemes. Examples are the idea
that it is cool to smoke, false rumors and scares that may
promote panic or accentuate social prejudice, fundamen-
talist ideologies that incite hatred or terrorism, and dan-
gerous superstitions, such as the belief that you can cure
AIDS by having sex with a virgin. A better understand-
ing of memetic dynamics may help us to understand how
such mind viruses arise and spread. It may moreover help
us to “immunize” the population by educating them about
basic memetics, so as not to be misled by apparently plau-
sible—but fundamentally misleading—cults, fads and su-
perstitions [18,28].

Another basic result of futurememetic research should
be a complex dynamical model of the interactions be-
tween individuals, groups, and the memes they carry.
This should allow making longer-term predictions about
the interactions between different groups and subcultures
within our globalizing society. A crucial issue in this re-
gard is whether minority cultures will eventually be assim-
ilated into the majority, or on the contrary become polar-
ized, asserting their divergent habits and beliefs ever more
forcefully [8,71]. Two concrete examples are minority lan-
guages, such as the Welsh still spoken in Britain, where
there is a tendency for the subculture to be slowly erased
by the majority culture, and the culture of Islamic immi-
grants in Europe, where there is a tendency towards polar-
ization in the sense of increased radicalism. Neither com-
plete assimilation nor polarization are desirable outcomes,
but at first sight they seem like the most likely results of
the “winner-takes-all” dynamics created by the pressure to
conform to the group one has most contact with. A more
detailed theory of cultural evolution may help us to find
a middle way that preserves cultural diversity without ex-
acerbating conflicts, and to pinpoint the crucial factors
that can steer the dynamics in one direction rather than
another.
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Glossary

Evolutionary algorithm A computer algorithm loosely
inspired by Darwinian evolution.

Generate-and-test The process of generating a potential
solution to a computational problem and testing it to
see how good a solution it is. The idea behind it is that
no human ingenuity is employed to make good solu-
tions more likely.

Genotype A string of information that encodes a poten-
tial solution instance of a problem and allows its suit-
ability to be assessed.

Evolution in materio The method of applying com-
puter controlled evolution to manipulate or configure
a physical system.

Liquid crystal Substances that have properties between
those of a liquid and a crystal.

Definition of the Subject

Evolution in materio refers to the use of computers run-
ning search algorithms, called evolutionary algorithms, to
find the values of variables that should be applied to ma-
terial systems so that they carry out useful computation.
Examples of such variablesmight be the location andmag-
nitude of voltages that need to be applied to a particu-
lar physical system. Evolution in materio is a method-
ology for programming materials that utilizes physical
effects that the human programmer need not be aware of.
It is a general methodology for obtaining analogue com-
putation that is specific to the desired problem domain.
Although a form of this methodology was hinted at in
the work of Gordon Pask in the 1950s it was not con-
vincingly demonstrated until 1996 by Adrian Thompson,
who showed that physical properties of a digital chip could
be exploited by computer controlled evolution. This arti-
cle describes the first demonstration that such a method
can be used to obtain specific analogue computation in
a non-silicon based physical material (liquid crystal). The
work is important for a number of reasons. Firstly, it pro-
poses a general method for building analogue computa-
tional devices. Secondly it explains how previously un-

known physical effects may be utilized to carry out com-
putations. Thirdly, it presents a method that can be used
to discover useful physical effects that can form the basis of
future computational devices.

Introduction

Physical Computation

Classical computation is founded on a mathematical
model of computation based on an abstract (but physically
inspired) machine called a Turing Machine [1]. A Turing
machine is a machine that can write or erase symbols on
a possibly infinite one dimensional tape. Its actions are de-
termined by a table of instructions that determinewhat the
machine will write on the tape (by moving one square left
or right) given its state (stored in a state register) and the
symbol on the tape. Turing showed that the calculations
that could be performed on such a machine accord with
the notion of computation in mathematics. The Turing
machine is an abstraction (partly because it uses a possibly
infinite tape) and to this day it is still not understood what
limitations or extensions to the computational power of
Turing’s model might be possible using real physical pro-
cesses. Von Neumann and others at the Institute for Ad-
vanced Study at Princeton devised a design for a computer
based on the ideas of Turing that has formed the founda-
tion of modern computers. Modern computers are digital
in operation. Although they are made of physical devices
(i. e. transistors), computations are made on the basis of
whether a voltage is above or below some threshold. Prior
to the invention of digital computers there have been a va-
riety of analogue computing machines. Some of these were
purely mechanical (e. g. an abacus, a slide-rule, Charles
Babbage’s difference engine, Vannevar Bush’s Differential
Analyzer) but later computing machines were built using
operational amplifiers [2].

There are many aspects of computation that were de-
liberately ignored by Turing in his model of computation.
For instance, speed, programmability, parallelism, ope-
ness, adaptivity are not considered. The speed at which an
operation can be performed is clearly an important issue
since it would be of little use to have a machine that can
calculate any computable function but takes an arbitrar-
ily large amount of time to do so. Programmability is an-
other issue that is of great importance. Writing programs
directly in the form of instruction tables that could be used
with a device based on a Turing is extremely tedious. This
is why many high-level computer languages have been de-
vised. The general issue of how to subdivide a computer
program into a number of parallel executing processes so
that the intended computation is carried out as quickly as



3222 E Evolution in Materio

possible is still unsolved. Openness refers to systems that
can interact with an external environment during their op-
eration. Openness is exhibited strongly in biological sys-
tems where new resources can be added or removed either
by an external agency or by the actions taken by the system
itself. Adaptivity refers to the ability of systems to change
their characteristics in response to an environment.

In addition to these aspects, the extent to which the un-
derlying physics affects both the abstract notion of com-
putation and its tractability has been brought to promi-
nence through the discovery of quantum computation,
where Deutsch pointed out that Turing machines implic-
itly use assumptions based on physics [3]. He also showed
that through ‘quantum parallelism’ certain computations
could be performed much more quickly than on classical
computers. Other forms of physical computation that have
recently been explored are: reaction-diffusion systems [4],
DNA computing [5,6] and synthetic biology [7].

In the UK a number of Grand Challenges in comput-
ing research have been proposed [8], in particular ‘Jour-
neys in Non-Classical Computation’ [9,10] seeks to ex-
plore, unify and generalize many diverse non-classical
computational paradigms to produce a mature science of
computation.

Toffoli argued that ‘Nothing Makes Sense in Comput-
ing Except in the Light of Evolution’ [11]. He argues firstly
that a necessary but not sufficient condition for a com-
putation to have taken place, is when a novel function is
produced from a fixed and finite repertoire of components
(i. e. logic gates, protein molecules). He suggests that a suf-
ficient condition requires intention. That is to say, we can-
not argue that computation has taken place unless a sys-
tem has arisen for a higher purpose (this is why he in-
sists on intention as being a prerequisite for computation).
Otherwise, almost everything is carrying out some form of
computation (which is not a helpful point of view). Thus
a Turing machine does not carry out computations unless
it has been programmed to do so, and since natural evo-
lution constructs organisms that have an increased chance
of survival (the higher ‘purpose’) we can regard them as
carrying out computations. It is in this sense that Toffoli
points to the fundamental role of evolution in the defini-
tion of a computation as it has provided animals with the
ability to have intention.

This brings us to one of the fundamental questions in
computation. How can we program a physical system to
perform a particular computation? The dominant method
used to answer this question has been to construct logic
gates and from these build a von Neumann machine (i. e.
a digital computer). The mechanism that has been used to
devise a computer program to carry out a particular com-

putation is the familiar top-down design process, where
ultimately the computation is represented using Boolean
operations. According to Conrad this process leads us to
pay “The Price of Programmability” [12], whereby in con-
ventional programming and design we proceed by exclud-
ing many of the processes that may lead to us solving the
problem at hand. Natural evolution does not do this. It
is noteworthy that natural evolution has constructed sys-
tems of extraordinary sophistication, complexity and com-
putational power. We argue that it is not possible to con-
struct computational systems of such power using a con-
ventional methodology and that complex software systems
that directly utilize physical effects will require some form
of search process akin to natural evolution together with
a way of manipulating the properties of materials. We sug-
gest that some form of evolution ought to be an appropri-
ate methodology for arriving at physical systems that com-
pute. In this chapter we discuss work that has adopted this
methodology. We call it evolution in materio.

Evolutionary Algorithms

Firstly we propose that to overcome the limitations of
a top-down design process, we should use a more uncon-
strained design technique that is more akin to a process
of generate-and-test. However, a guided search method is
also required that spends more time in areas of the search
space that confer favorable traits for computation. One
such approach is the use of evolutionary algorithms. These
algorithms are inspired by the Darwinian concepts of sur-
vival of the fittest and the genetic inheritance of informa-
tion. Using a computer, a population of randomly gener-
ated solutions is systematically tested, selected and modi-
fied until a solution has been found [13,14,15].

As in nature, a genetic algorithm optimizes a popula-
tion of individuals by selecting the ones that are best suited
to solving a problem and allowing their genetic make-up
to propagate into future generations. It is typically guided
only by the evolutionary process and often contains very
limited domain specific knowledge. Although these algo-
rithms are bio-inspired, it is important that any analogies
drawn with nature are considered only as analogies.

Their lack of specialization for a problem makes ge-
netic algorithms ideal search techniques where little is
known about a problem. As long as a suitable representa-
tion is chosen along with a fitness function that allows for
ease of movement around a search space, a GA can search
vast problem spaces rapidly. Another feature of their be-
havior is that provided that the genetic representation cho-
sen is sufficiently expressive the algorithm can explore po-
tential solutions that are unconventional. A human de-
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signer normally has a set of predefined rules and strate-
gies that they adopt to solve a problem. These preconcep-
tions may prevent trying a new method, and may prevent
the designer using a better solution. A genetic algorithm
does not necessarily require such domain knowledge. Evo-
lutionary algorithms have been shown to be competitive
or surpass human designed solutions in a number of dif-
ferent areas. The largest conference on evolutionary com-
putation called GECCO has an annual session on evolu-
tionary approaches that have produced human competi-
tive scientific and technological results. Moreover the in-
crease in computational power of computers makes such
results increasingly more likely.

Many different versions of genetic algorithms ex-
ist. Variations in representations and genetic operators
change the performance characteristics of the algorithm,
and depending on the problem, people employ a variety
of modifications of the basic algorithm. However, all the
algorithms follow a similar basic set of steps.

Firstly the numbers or physical variables that are re-
quired to define a potential solution have to be identified
and encoded into a data representation that can be manip-
ulated inside a computer program. This is referred to as
the encoding step. The representation chosen is of crucial
importance as it is possible to inadvertedly choose overly
constrained representations which limits the portions of
the space of potential solutions that will be considered
by the evolutionary algorithm. Generally the encoded in-
formation is referred to as a genotype and genotypes are
sometimes divided into a number of separate strings called
chromosomes. Each entry in the chromosome string is an
allele, and one or more of these make up a gene.

The second step is to create inside the computer
a number of independently generated genotypes whose al-
leles have been chosen with uniform probability from the
allowed set of values. This collection of genotypes is called
a population.

In its most basic form, an individual genotype is a sin-
gle chromosome made of 1 s and 0 s. However, it is also
common to use integer and floating-point numbers if they
more appropriate for the task at hand. Combinations of
different representations can also be used within the same
chromosome, and that is the approach used in the work
described in this article. Whatever representation is used,
it should be able to adequately describe the individual
and provide a mechanism where its characteristics can be
transferred to future generations without loss of informa-
tion.

Each of these individuals is then decoded into its phe-
notype, the outward, physical manifestation of the individ-
ual and tested to see howwell the candidate solution solves

the problem at hand. This is usually returned as a number
that is referred to as the fitness of the genotype. Typically
it is this phase in a genetic algorithm that is the most time
consuming.

The next stage is to select what genetic information
will proceed to the next generation. In nature the fitness
function and selection are essentially the same – individu-
als that are better suited to the environment survive to re-
produce and pass on their genes. In the genetic algorithm
a procedure is applied to determine what information gets
to proceed.

Genetic algorithms are often generational – where all
the old population is removed before moving to the next
generation, in nature this process is much less algorith-
mic. However, to increase the continuity of information
between generations, some versions of the algorithm use
elitism, where the fittest individuals are always selected for
promotion to the next generation. This ensures that good
solutions are not lost from the population, but it may have
the side effect of causing the genetic information in the
population to converge too quickly so that the search stag-
nates on a sub-optimal solution.

To generate the next population, a procedure analo-
gous to sexual reproduction occurs. For example, two in-
dividuals will be selected and they will then have their ge-
netic information combined together to produce the geno-
type for the offspring. This process is called recombination
or crossover. The genotype is split into sections at ran-
domly selected points called crossover points. A “simple”
GA has only one of these points, however it is possible to
perform this operation at multiple points.

Sections of the two chromosomes are then put together
to form a new individual. This individual shares some of
the characteristics of both parents. There are many dif-
ferent ways to choose which members of the population
to breed with each other, the aim in general is to try and
ensure that fit individuals get to reproduce with other fit
individuals. Individuals can be selected with a probabil-
ity proportional to their relative fitness or selected through
some form of tournament, which may choose two or more
chromosomes at random from the population and select
the fittest.

In natural recombination, errors occur when the DNA
is split and combined together. Also, errors in the DNA of
a cell can occur at any time under the influence of a mu-
tagen, such as radiation, a virus or toxic chemical. The ge-
netic algorithm also hasmutations. A number of alleles are
selected at random and modified in some way. For a bi-
nary GA, the bit may be flipped, in a real-numbered GA
a random value may be added to or subtracted from the
previous allele.
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Although GAs often have both mutation and cross-
over, it is possible to just use mutation. A mutation only
approach has in some cases been demonstrated to work,
and often crossover is seen as a macromutation operator –
effectively changing large sections of a chromosome.

After the previous operations have been carried out,
the new individuals in the population are then retested and
their new fitness scores calculated. Eventually this process
leads to an increase in the average fitness of the popula-
tion, and so the populationmoves closer toward a solution.
This cycle of test, select and reproduce is continued until
a solution is found (or some other termination condition
is reached), at which point the algorithm stops. The per-
formance of a genetic algorithm is normally measured in
terms of the number of evaluations required to find a so-
lution of a given quality.

Evolution inMaterio: Historical Background

It is arguable that ‘evolution in materio’ began in 1958
in the work of Gordon Pask who worked on experiments
to grow neural structures using electrochemical assem-
blages [16,17,18,19]. Gordon Pask’s goal was to create a de-
vice sensitive to either sound or magnetic fields that could
perform some form of signal processing – a kind of ear.
He realized he needed a system that was rich in struc-
tural possibilities, and chose to use a metal solution. Using
electric currents, wires can be made to self-assemble in an
acidic aqueous metal-salt solution (e. g. ferrous sulphate).
Changing the electric currents can alter the structure of
these wires and their positions – the behavior of the sys-
tem can be modified through external influence. Pask used
an array of electrodes suspended in a dish containing the
metal-salt solution, and by applying current (either tran-
siently or a slowly changing source) was able to build iron
wires that responded differently to two different frequen-
cies of sound – 50Hz and 100Hz.

Pask had developed a system whereby he could man-
ually train the wire formation in such a way that no com-
plete specification had to be given – a complete paradigm
shift from previous engineering techniques which would
have dictated the position and behavior of every compo-
nent in the system. His training technique relied on mak-
ing changes to a set of resistors, and updating the values
with given probabilities – in effect a test-randomly mod-
ify-test cycle. We would today recognize this algorithm as
some form of evolutionary, hill climbing strategy – with
the test stage as the fitness evaluation.

In 1996 Adrian Thompson started what we might call
the modern era of evolution in materio. He was investi-
gating whether it was possible to build working electronic

Evolution in Materio, Figure 1
Pask’s experimental set up for growing dendriticwires in ferrous
sulphate solution [17]

circuits using unconstrained evolution (effectively, gen-
erate-and-test) using a re-configurable electronic silicon
chip called an Field Programmable Gate Array (FPGA).
Carrying out evolution by defining configurations of ac-
tual hardware components is known as intrinsic evolu-
tion. This is quite possible using FPGAs which are devices
that have a two-dimensional array of logic functions that
a configuration bit string defines and connects together.
Thompson had set himself the task of evolving a digital
circuit that could discriminate between an applied 1 kHz
or 10 kHz applied signal [20,21]. He found that computer
controlled evolution of the configuring bit strings could
relatively easily solve this problem. However, when he an-
alyzed the successful circuits he found to his surprise that
they worked by utilizing subtle electrical properties of the
silicon. Despite painstaking analysis and simulation work
he was unable to explain how, or what property was being
utilized. This lack of knowledge of how the system works,
of course, prevents humans from designing systems that
are intended to exploit these subtle and complex physical
characteristics. However, it does not prevent exploitation
through artificial evolution. Since then a number of re-
searchers have demonstrated the viability of intrinsic evo-
lution in silicon devices [21,22,23,24,25,26,27].

The term evolution in materio was first coined by
Miller and Downing [28]. They argued that the lesson that
should be drawn from the work of [21] is that evolution
may be used to exploit the properties of a wider range of
materials than silicon.

In summary, evolution in materio can be described as:

Exploitation, using an unconstrained evolutionary
algorithm, of the non-linear properties of a mal-
leable or programmable material to perform a de-
sired function by altering its physical or electrical
configuration.
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Evolution in materio is a subset of a research field
known as evolvable hardware. It aims to exploit properties
of physical systems with much fewer preconditions and
constraints than is usual, and it deliberately tries to avoid
paying Conrad’s ‘Price of Programmability’. However, to
get access to physically rich systems, we may have to dis-
card devices designed with human programming in mind.
Such devices are often based on abstract idealizations of
processes occurring in the physical world. For example,
FPGAs are considered as digital, but they are fundamen-
tally analogue devices that have been constrained to be-
have in certain, human understandable ways. This means
that intrinsically complex physical processes are carefully
manipulated to represent extremely simple effects (e. g.
a rapid switch from one voltage level to another). Uncon-
strained evolution, as demonstrated by Thompson, allows
for the analogue properties of such devices to be effectively
utilized.

We would expect physically rich systems to exhibit
non-linear properties – they will be complex systems. This
is because physical systems generally have huge numbers
of parts interacting in complex ways. Arguably, humans
have difficulty working with complex systems, and the use
of evolution enables us to potentially overcome these lim-
itations when dealing with such systems.

When systems are abstracted, the relationship to the
physical world becomes more distant. This is highly con-
venient for human designers who do not wish to under-
stand, or work with, hidden or subtle properties of mate-
rials. Exploitation through evolution reduces the need for
abstraction, as it appears evolution is capable of discover-
ing and utilizing any physical effects it can find. The aim
of this new methodology in computation is to evolve spe-
cial purpose computational processors. By directly exploit-
ing physical systems and processes, one should be able to
build extremely fast and efficient computational devices.
It is our view that computer controlled evolution is a uni-
versal methodology for doing this. Of course, von Neu-
mann machines (i. e. digital computers) are individually
universal and this is precisely what confers their great util-
ity in modern technology, however this universality comes
at a price. They ignore the rich computational possibilities
of materials and try to create operations that are close to
a mathematical abstraction. Evolution in materio is a uni-
versal methodology for producing specific, highly tuned
computational devices.

It is important not to underestimate the real practical
difficulties associated with using an unconstrained design
process. Firstly the evolved behavior of the material may
be extremely sensitive to the specific properties of the ma-
terial sample, so each piece would require individual train-

ing. Thompson originally experienced this difficulty, how-
ever in later work he showed that it was possible to evolve
the configuration of FPGAs so that they produced reliable
behavior in a variety of environmental conditions [29].

Secondly, the evolutionary algorithmmay utilize phys-
ical aspects of any part of the training set-up. Both of these
difficulties have already been experienced [21,23]. A third
problem can be thought of as “the wiring problem”. The
means to supply huge amounts of configuration data to
a tiny sample. This problem is a very fundamental one. It
suggests that if we wish to exploit the full physical rich-
ness of materials we might have to allow the material to
grow its own wires and be self-wiring. This has profound
implications for intrinsic evolution as artificial hardware
evolution requires complete reconfigurability, this implies
that one would have to be able to “wipe-clean” the evolved
wiring and start again with a new artificial genotype. This
might be possible by using nanoparticles that assemble
into nanowires. These considerations bring us to an im-
portant issue in evolution in materio. Namely, the prob-
lem of choosing a suitable materials that can be exploited
by computer controlled evolution.

Evolution inMaterio: Defining SuitableMaterials

The obvious characteristic required by a candidate mate-
rial is the ability to reconfigure it in some way. Liquid crys-
tal, clay, salt solutions etc can be readily configured either
electrically or mechanically; their physical state can be ad-
justed, and readjusted, by applying a signal or force. In
contrast (excluding its electrical properties) the physical
properties of an FPGA would remain unchanged during
configuration. It is also desirable to bulk configure the sys-
tem. It would be infeasible to configure every molecule in
the material, so the material should support the ability to
be reconfigured over large areas using a small amount of
configuration.

The material needs to perform some form of transfor-
mation (or computation) on incident signals that we ap-
ply. To do this, the material will have to interfere with
the incident signal and perform a modification to it. We
will need to be able to observe this modification, in or-
der to extract the result of the computation. To perform
a non-trivial computation, the material should be capa-
ble of performing complex operations upon the signal.
Such capabilities would be maximized if the system ex-
hibited non-linear behavior when interacting with input
signals.

In summary, we can say that for a material to be useful
to evolution in materio it should have the following prop-
erties:
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� Modify incident signals in observable ways.
� The components of a system (i. e. the molecules within

a material) interact with each other locally such that
non-linear effects occur at either the local or global lev-
els.

� It is possible to configure the state of the material lo-
cally.

� It is possible to observe the state of the material – either
as a whole or in one or more locations.

� For practical reasons we can state that the material
should be reconfigurable, and that changes in state
should be temporary or reversible.

Miller and Downing [28] identified a number of physical
systems that have some, if not all, of these desirable prop-
erties. They identified liquid crystal as the most promising
in this regard as it digitally writable, reconfigurable and
works at a molecular level. Most interestingly, it is an ex-
ample of mesoscopic organization. Some people have ar-
gued that it is within such systems that emergent, orga-
nized behavior can occur [30]. Liquid crystals also exhibit
the phenomenon of self-assembly. They form a class of
substances that are being designed and developed in a field
of chemistry called Supramolecular Chemistry [31]. This is
a new and exciting branch of chemistry that can be char-
acterized as ‘the designed chemistry of the intermolecular
bond’. Supramolecular chemicals are in a permanent pro-
cess of being assembled and disassembled. It is interesting
to consider that conceptually liquid crystals appear to sit
on the ‘edge of chaos’ [32] in that they are fluids (chaotic)
that can be ordered, under certain circumstances.

Liquid Crystal

Liquid crystal (LC) is commonly defined as a substance
that can exist in a mesomorphic state [33,34]. Mesomor-
phic states have a degree of molecular order that lies be-
tween that of a solid crystal (long-range positional and ori-
entational) and a liquid, gas or amorphous solid (no long-
range order). In LC there is long-range orientational order
but no long-range positional order.

LC tends to be transparent in the visible and near in-
frared and quite absorptive in UV. There are three distinct
types of LC: lyotropic, polymeric and thermotropic. Ly-
otropic LC is obtained when an appropriate amount of
material is dissolved in a solvent. Most commonly this is
formed by water and amphiphilic molecules: molecules
with a hydrophobic part (water insoluble) and a hy-
drophillic part (strongly interacting with water). Poly-
meric LC is basically a polymer version of the aromatic
LC discussed. They are characterized by high viscosity and
include vinyls and Kevlar. Thermotropic LC (TLC) is the

most common form and is widely used. TLC exhibit vari-
ous liquid crystalline phases as a function of temperature.
They can be depicted as rod-like molecules and interact
with each other in distinctive ordered structures. TLC ex-
ists in three main forms: nematic, cholesteric and smec-
tic. In nematic LC the molecules are positionally arranged
randomly but they all share a common alignment axis.
Cholesteric LC (or chiral nematic) is like nematic how-
ever they have a chiral orientation. In smectic LC there is
typically a layered positionally disordered structure. The
three types A, B and C are defined as follows. In type A the
molecules are oriented in alignment with the natural phys-
ical axes (i. e normal to the glass container), however in
type C the common molecular axes of orientation is at an
angle to the container. LC molecules typically are dipolar.
Thus the organization of the molecular dipoles give an-
other order of symmetry to the LC. Normally the dipoles
would be randomly oriented. However in some forms the
natural molecular dipoles are aligned with one another.
This gives rise to ferroelectric and ferrielectric forms.

There is a vast range of different types of liquid crys-
tal. LC of different types can be mixed. LC can be doped
(as in Dye-Doped LC) to alter their light absorption char-
acteristics. Dye-Doped LC film has been made that is op-
tically addressable and can undergo very large changes in
refractive index [35]. There are Polymer-Dispersed Liquid
Crystals, which can have tailored, electrically controlled
light refractive properties. Another interesting form of LC
being actively investigated is Discotic LC. These have the
form of disordered stacks (1-dimensional fluids) of disc-
shaped molecules on a two-dimensional lattice. Although
discotic LC is an electrical insulator, it can bemade to con-
duct by doping with oxidants [36]. The oxidants are in-
corporated into the fluid hydrocarbon chain matrix (be-
tween disks). LC is widely known as useful in electronic
displays, however, there are in fact, many non-display ap-
plications too. There are many applications of LC (espe-
cially ferroelectric LC) to electrically controlled light mod-
ulation: phase modulation, optical correlation, optical in-
terconnects and switches, wavelength filters, optical neural
networks. In the latter case a ferroelectric LC is used to en-
code the weights in a neural network [37].

Conducting and Electroactive Polymers

Conducting polymer composites have been made that
rapidly change their microwave reflection coefficient when
an electric field is applied. When the field is removed, the
composite reverts to its original state. Experiments have
shown that the composite can change from one state to
the other in the order of 100ms [38]. Also, some poly-
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mers exhibit electrochromism. These substances change
their reflectance when a voltage is applied. This can be re-
versed by a change in voltage polarity [39]. Electroactive
polymers [40] are polymers that change their volume with
the application of an electric field. They are particularly
interesting as voltage controlled artificial muscle. Organic
semiconductors also look promising especially when some
damage is introduced. Further details of electronic proper-
ties of polymers and organic crystals can be found in [41].

Voltage Controlled Colloids

Colloids are suspensions of particles of sub-micron sizes
in a liquid. The phase behavior of colloids is not fully un-
derstood. Simple colloids can self assemble into crystals,
while multi-component suspensions can exhibit a rich va-
riety of crystalline structures. There are also electrorheo-
logical fluids. These are suspensions of extremely fine non-
conducting particles in an electrically insulating fluid. The
viscosity of these fluids can be changed in a reversible way
by large factors in response to an applied electric field
in times of the order of milliseconds [42]. Also colloids
can also be made in which the particles are charged mak-
ing them easily manipulatable by suitable applied electric
fields. Even if the particles are not charged they may be
moved through the action of applied fields using a phe-
nomenon known as dielectrophoresis which is the motion
of polarized but electrically uncharged particles in nonuni-
form electric fields [43]. In work that echoes the methods
of Pask nearly four decades ago, dielectrophoresis has been
used to grow tiny gold wires through a process of self-as-
sembly [44].

Langmuir–Blodgett Films

Langmuir–Blodgett films are molecular monolayers of or-
ganic material that can be transferred to a solid sub-
strate [45]. They usually consist of hydrophillic heads
and hydrophobic tails attached to the substrate. Multiple
monolayers can be built and films can be built with very
accurate and regular thicknesses. By arranging an elec-
trode layer above the film it seems feasible that the local
electronic properties of the layers could be altered. These
systems look like feasible systems whose properties might
be exploitable through computer controlled evolution of
the voltages.

Kirchoff–Lukasiewicz Machines

Work by Mills [46,47] also demonstrates the use of mate-
rials in computation. He has designed an ‘Extended Ana-
log Computer’ (EAC) that is a physical implementation of

Evolution in Materio, Figure 2
Kirchhoff–Lukasiewicz Machine

a Kirchhoff–Lukasiewicz Machine (KLM) [46]. The ma-
chines are composed of logical function units connected
to a conductive media, typically a conductive polymer
sheet. The logical units implement Lukasiewicz Logic –
a type of multi-valued logic [47]. Figure 2 shows how the
Lukasiewicz Logic Arrays (LLA) are connected to the con-
ductive polymer. The LLA bridge areas of the sheet to-
gether. The logic units measure the current at one point,
perform a transformation and then apply a current source
to the other end of the bridge.

Computation is performed by applying current sinks
and sources to the conductive polymer and reading the
output from the LLAs. Different computations can be per-
formed that are determined by the location of applied sig-
nals in the conducting sheet and the configuration of the
LLAs. Hence, computation is performed by an interac-
tion of the physics described by Kirchoff’s laws and the
Lukasiewicz Logic units. Together they form a physical de-
vice that can solve certain kinds of partial differential equa-
tions. Using this form of analogue computation, a large
number of these equations can be solved in nanoseconds –
much faster than on a conventional computer. The speed
of computation is dependent on materials used and how
they are interfaced to digital computers, but it is expected
that silicon implementationswill be capable of finding tens
of millions of solutions to the equations per second.

Examples of computation so far implemented in this
system include robot control, control of a cyclotron
beam [48], models of biological systems (including neural
networks) [49] and radiosity based image rendering.

One of the most interesting feature of these devices
is the programming method. It is very difficult to under-
stand the actual processes used by the system to perform
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computation, and until recently most of the reconfigura-
tion has been done manually. This is difficult as the system
is not amenable to traditional software development ap-
proaches. However, evolutionary algorithms can be used
to automatically define the parameters of the LLAs and the
placement of current sinks and sources. By defining a suit-
able fitness function, the configuration of the EAC can be
evolved – which removes the need for human interaction
and for knowledge of the underlying system.

Although it is clear that such KLMs are clearly using
the physical properties of a material to perform compu-
tation, the physical state of the material is not reconfig-
ured (i. e., programmed), only the currents in the sheet are
changed.

Evolution inMaterio Is Verifiedwith Liquid Crystal

Harding [50] has verified Miller’s intuition about the suit-
ability of liquid crystal as an evolvable material by demon-
strating that it is relatively easy to configure liquid crystal
to perform various forms of computation.

In 2004, Harding constructed an analogue processor
that utilizes the physical properties of liquid crystal for
computation. He evolved the configuration of the liquid
crystal to discriminate between two square waves of many
different frequencies. This demonstrated, for the first time,
that the principle of using computer-controlled evolution
was a viable and powerful technique for using non-silicon
materials for computation. The analogue processor con-
sists of a passive liquid crystal displaymounted on a recon-
figurable circuit, known as an evolvable motherboard. The
motherboard allows signals and configuration voltages to
be routed to physical locations in the liquid crystal.

Harding has shown that many different devices can be
evolved in liquid crystal including:

� Tone discriminator. A device was evolved in liquid
crystal that could differentiate many different frequen-
cies of square wave. The results were competitive, if not
superior to those evolved in the FPGA.

� Logic gates. A variety of two input logic gates were
evolved, showing that liquid crystal could behave in
a digital fashion. This indicates that liquid crystal is ca-
pable of universal computation.

� Robot controller. An obstacle avoidance system for
a simple exploratory robot was evolved. The results
were highly competitive, with solutions taking fewer
evaluations to find compared to other work on evolved
robot controllers.

One of the surprising findings in this work has been that
it turns out to be relatively easy to evolve the configura-

tion of liquid crystal to solve tasks; i. e., only 40 generations
of a modest population of configurations are required to
evolve a very good frequency discriminator, compared to
the thousands of generations required to evolve a simi-
lar circuit on an FPGA. This work has shown that evolv-
ing such devices in liquid crystal is easier than when us-
ing conventional components, such as FPGAs. The work
is a clear demonstration that evolutionary design can pro-
duce solutions that are beyond the scope of human design.

Evolution inMaterio Using Liquid Crystal:
Implementational Details

An evolvable motherboard (EM) [23] is a circuit that can
be used to investigate intrinsic evolution. The EM is a re-
configurable circuit that rewires a circuit under computer
control. Previous EMs have been used to evolve circuits
containing electronic components [23,51] – however they
can also be used to evolve in materio by replacing the stan-
dard components with a candidate material.

An EM is connected to an Evolvatron. This is essen-
tially a PC that is used to control the evolutionary pro-
cesses. The Evolvatron also has digital and analog I/O, and
can be used to provide test signals and record the response
of the material under evolution.

The Liquid Crystal Evolvable Motherboard (LCEM) is
a circuit that uses four cross-switch matrix devices to dy-
namically configure the circuits connecting to the liquid
crystal. The switches are used to wire the 64 connections
on the LCD to one of 8 external connections. The exter-
nal connections are: input voltages, grounding, signals and
connections to measurement devices. Each of the external
connectors can be wired to any of the connections to the
LCD.

The external connections of the LCEM are connected
to the Evolvatron’s analogue inputs and outputs. One con-
nection was assigned for the incident signal, one for mea-
surement and the other for fixed voltages. The value of the
fixed voltages is determined by the evolutionary algorithm,
but is constant throughout each evaluation.

In these experiments the liquid crystal glass sandwich
was removed from the display controller it was originally
mounted on, and placed on the LCEM. The display has
a large number of connections (in excess of 200), however
because of PCB manufacturing constraints we are limited
in the size of connection we canmake, and hence the num-
ber of connections. The LCD is therefore roughly posi-
tioned over the pads on the PCB, with many of the PCB
pads touching more than one of the connectors on the
LCD. This means that we are applying configuration volt-
ages to several areas of LC at the same time.
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Evolution in Materio, Figure 3
Equipment configuration

Evolution in Materio, Figure 4
The LCEM

Unfortunately neither the internal structure nor the
electrical characteristics of the LCD are known. This raises
the possibility that a configuration may be applied that
would damage the device. The wires inside the LCD are
made of an extremely thin material that could easily be
burnt out if too much current flows through them. To
guard against this, each connection to the LCD is made
through a 4.7 Kohm resistor in order to provide protec-
tion against short circuits and to help limit the current in
the LCD. The current supplied to the LCD is limited to
100mA. The software controlling the evolution is also re-
sponsible for avoiding configurations that may endanger
the device (such as short circuits).

It is important to note that other than the control
circuitry for the switch arrays there are no other active
components on the motherboard – only analog switches,
smoothing capacitors, resistors and the LCD are present.

Evolution in Materio, Figure 5
Schematic of LCEM

Stability and Repeatability Issues

When the liquid crystal display is observed while solving
a problem it is seen that some regions of the liquid dis-
play go dark indicating that the local molecular direction
has been changed. This means that the configuration of
the liquid crystal is changing while signals are being ap-
plied. To draw an analogy with circuit design, the incident
signals would be changing component values or changing
the circuit topology, which would have an affect on the be-
havior of the system. This is likely to be detrimental to the
measured performance of the circuit. When a solution is
evolved, the fitness function automatically measures it sta-
bility over the period of the evaluation. Changes made by
the incident signals can be considered part of the geno-
type-phenotype mapping. Solutions that cannot cope with
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their initial configurations being altered will achieve a low
score. However, the fitness function cannot measure the
behavior beyond the end of the evaluation time. Therein
lies the difficulty, in evolution in materio long term stabil-
ity cannot be guaranteed.

Another issue concerns repeatability. When a con-
figuration is applied to the liquid crystal the molecules
are unlikely go back to exactly where they were when
this configuration was tried previously. Assuming, that
there is a strong correlation between genotype and phe-
notype, then it is likely that evolution will cope with this
extra noise. However, if evolved devices are to be use-
ful one needs to be sure that previously evolved devices
will function in the same way as they did when originally
evolved.

In [27] it is noted that the behavior of circuits evolved
intrinsically can be influenced by previous configura-
tions – therefore their behavior (and hence fitness) is
dependent not only on the currently evaluated individ-
ual’s configuration but on those that came before. It is
worth noting that this is precisely what happens in nat-
ural evolution. For example, in a circuit, capacitors may
still hold charge from a previously tested circuit. This
charge would then affect the circuits operation, however
if the circuit was tested again with no stored charge a dif-
ferent behavior would be expected and a different fit-
ness score would be obtained. Not only does this affect
the ability to evolve circuits, but would mean that some
circuits are not valid. Without the influence of the pre-
viously evaluated circuits the current solution may not
function as expected. It is expected that such problems
will have analogies in evolution in materio. The config-
urations are likely to be highly sensitive to initial condi-
tions (i. e. conditions introduced by previous configura-
tions).

Dealing with Environmental Issues

Amajor problem when working with intrinsic evolution is
separating out the computation allegedly being carried out
by the target device, and that actually done by the material
being used. For example, whilst trying to evolve an oscil-
lator Bird and Layzell discovered that evolution was using
part of the circuit for a radio antenna, and picking up emis-
sions from the environment [22]. Layzell also found that
evolved circuits were sensitive to whether or not a solder-
ing iron was plugged in (not even switched on) in another
part of the room [23]!

An evolved device is not useful if it is highly sensitive
to its environment in unpredictable ways, and it will not
always be clear what environmental effects the system is

using. It would be unfortunate to evolve a device for use in
a space craft, only to find out it fails to work once out of
range of a local radio tower!

To minimize these risks, we will need to check the op-
eration of evolved systems under different conditions. We
will need to test the behavior of a device using a different
set up in a different location. It will be important to know
if a particular configuration only works with one particular
sample of a given material.

The Computational Power ofMaterials

In [52], Lloyd argued that the theoretical computing
power of a kilogram of material is far more than is possi-
ble with a kilogram of traditional computer. He notes that
computers are subject to the laws of physics, and that these
laws place limits on the maximum speed they can operate
and the amount of information it can process. Lloyd shows
that if we were fully able to exploit a material, we would get
an enormous increase in computing power. For example,
with 1 kg of matter we should be able to perform roughly
5 � 1050 operations per second, and store 1031 bits. Amaz-
ingly, contemporary quantum computers do operate near
these theoretical limits [52].

A small amount of material also contains a large num-
ber of components (regardless of whether we consider the
molecular or atomic scale). This leads to some interesting
thoughts. If we can exploit materials at this level, we would
be able to do a vast amount of computation in a small
volume. A small size also hints at low power consump-
tion, as less energy has to be spent to perform an oper-
ation. Many components also provide a mechanism for
reliability through redundancy. A particularly interesting
observation, especially when considered in terms of non
Von-Neumann computation, is themassive parallelismwe
may be able to achieve. The reason that systems such as
quantum, DNA and chemical computation can operate so
quickly is that many operations are performed at the same
time. A programmable material might be capable of per-
forming vast numbers of tasks simultaneously, and there-
fore provide a computational advantage.

In commercial terms, small is often synonymous with
low cost. It may be possible to construct devices using
cheaply available materials. Reliability may not be an is-
sue, as the systems could be evolved to be massively fault
tolerant using their intrinsic redundancy. Evolution is ca-
pable of producing novel designs. Koza has already redis-
covered circuits that infringe on recent patents, and his
genetic programming method has ‘invented’ brand new
circuit designs [53]. Evolving in materio could produce
many novel designs, and indeed given the infancy of pro-
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grammable materials all designs may be unique and hence
patentable.

Future Directions

The work described here concerning liquid crystal com-
putational devices is at an early stage. We have merely
demonstrated that it is possible to evolve configurations of
voltages that allow a material to perform desired compu-
tations. Any application that ensues from this work is un-
likely to be a replacement for a simple electronic circuit.
We can design and build those very successfully. What
we have difficulty with is building complex, fault tolerant
systems for performing complex computation. It appears
that nature managed to do this. It used a simple process of
a repetitive test and modify, and it did this in a universe
of unimaginable physical complexity. If nature can exploit
the physical properties of a material and its surroundings
through evolution, then so should we.

There are many important issues that remain to be ad-
dressed. Although we have made some suggestions about
materials worthy of investigation, it is at present unclear
which materials are most suitable. An experimental plat-
form needs to be constructed that allows many materials
to be tried and investigated. The use of microelectrode ar-
rays in a small volume container would allow this. This
would also have the virtue of allowing internal signals in
the materials to be inspected and potentially understood.

We need materials that are rapidly configurable. They
must not be fragile and sensitive to minute changes in
physical setup. Theymust be capable of maintaining them-
selves in a stable configuration. The materials should be
complex and allow us to carry out difficult computations
more easily than conventional means. One would like ma-
terials that can be packaged into small volumes. The mate-
rials should be relatively easily interfaced with. So far, ma-
terial systems have been configured by applying a constant
configuration pattern, however this may not be appropri-
ate for all systems. It may be necessary to put the physical
system under some form of responsive control, in order to
program and then keep the behavior stable.

We may or may not know if a particular material can
be used to perform some form of computation. However,
we can treat our material as a “black box”, and using evo-
lution as a search technique, automatically discover what,
if any, computations our black box can perform. The first
step is to build an interface that will allow us to commu-
nicate with a material. Then we will use evolution to find
a configuration we can apply using this platform, and then
attempt to find a mapping from a given problem to an in-
put suitable for that material, and a mapping from the ma-

terials response to an output. If this is done correctly, we
might be automatically able to tell if a material can per-
form computation, and then classify the computation.

When we evolve in materio, using mappings evolved
in software, how can we tell when the material is giving
us any real benefit? The lesson of evolution in materio
has been that the evolved systems can be very difficult to
analyze, and the principal obstacle to the analysis is the
problem of separating out the computational role that each
component plays in the evolved system. These issues are
by no means just a problem for evolution in materio. They
may be an inherent part of complex evolved systems. Cer-
tainly the understanding of biological systems are provid-
ing immense challenges to scientists.

The single most important aspect that suggests that
evolution in materio has a future is that natural evolution
has produced immensely sophisticated material computa-
tional systems. It would seem foolish to ignore this and
merely try to construct computational devices that operate
according to one paradigm of computation (i. e. Turing).
Oddly enough, it is precisely the sophistication of the latter
that allows us to attempt the former.
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Glossary

Cellular automaton (CA) Discrete-space and discrete-
time spatially extended lattice of cells connected in
a regular pattern. Each cell stores its state and a state-

transition function. At each time step, each cell applies
the transition function to update its state based on its
local neighborhood of cell states. The update of the sys-
tem is performed in synchronous steps – i. e., all cells
update simultaneously.

Cellular programming A variation of genetic algorithms
designed to simultaneously evolve state transition
rules and local neighborhood connection topologies
for non-homogeneous cellular automata.

Coevolution An extension to the genetic algorithm in
which candidate solutions and their “environment”
(typically test cases) are evolved simultaneously.

Density classification A computational task for binary
CAs: the desired behavior for the CA is to iterate to
an all-1s configuration if the initial configuration has
a majority of cells in state 1, and to an all-0s configura-
tion otherwise.

Genetic algorithm (GA) A stochastic search method in-
spired by the Darwinianmodel of evolution. A popula-
tion of candidate solutions is evolved by reproduction
with variation, followed by selection, for a number of
generations.

Genetic programming A variation of genetic algorithms
that evolves genetic trees.

Genetic tree Tree-like representation of a transition func-
tion, used by genetic programming algorithm.

Lookup table (LUT) Fixed-length table representation of
a transition function.

Neighborhood Pattern of connectivity specifying to
which other cells each cell is connected.

Non-homogeneous cellular automaton A CA in which
each cell can have its own distinct transition function
and local neighborhood connection pattern.

Ordering A computational task for one-dimensional bi-
nary CAs with fixed boundaries: The desired behavior
is for the CA to iterate to a final configuration in which
all initial 0 states migrate to the left-hand side of the
lattice and all initial 1 states migrate to the right-hand
side of the lattice.

Particle Periodic, temporally coherent boundary between
two regular domains in a set of successive CA configu-
rations. Particles can be interpreted as carrying infor-
mation about the neighboring domains. Collisions be-
tween particles can be interpreted as the processing of
information, with the resulting information carried by
new particles formed by the collision.

Regular domain Region defined by a set of successive CA
configurations that can be described by a simple regu-
lar language.

Synchronization A computational task for binary CAs:
the desired behavior for the CA is to iterate to a tem-

http://dcoward.best.vwh.net/analog/readlist.htm
http://dcoward.best.vwh.net/analog/readlist.htm
http://www.umsl.edu/~piccininig/CTModestorBold5.htm
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poral oscillation between two configurations: all cells
have state 1 and all cells have state 0s.

Transition function Maps a local neighborhood of cell
states to an update state for the center cell of that
neighborhood.

Definition of the Subject

Evolving cellular automata refers to the application of
evolutionary computation methods to evolve cellular au-
tomata transition rules. This has been used as one ap-
proach to automatically “programming” cellular automata
to perform desired computations, and as an approach to
model the evolution of collective behavior in complex sys-
tems.

Introduction

In recent years, the theory and application of cellular au-
tomata (CAs) has experienced a renaissance, due to ad-
vances in the related fields of reconfigurable hardware,
sensor networks, and molecular-scale computing systems.
In particular, architectures similar to CAs can be used
to construct physical devices such as field configurable
gate arrays for electronics, networks of robots for envi-
ronmental sensing and nano-devices embedded in inter-
connect fabric used for fault tolerant nanoscale comput-
ing. Such devices consist of networks of simple compo-
nents that communicate locally without centralized con-
trol. Two major areas of research on such networks are (1)
programming – how to construct and configure the locally
connected components such that they will collectively per-
form a desired task; and (2) computation theory – what
types of tasks are such networks able to perform efficiently,
and how does the configuration of components affect the
computational capability of these networks?

This article describes research into one particular auto-
matic programming method: the use of genetic algorithms
(GAs) to evolve cellular automata to perform desired tasks.
We survey some of the leading approaches to evolvingCAs
with GAs, and discuss some of the open problems in this
area.

Cellular Automata

A cellular automaton (CA) is a spatially extended lattice
of locally connected simple processors (cells). CAs can be
used both to model physical systems and to perform par-
allel distributed computations.

In a CA, each cell maintains a discrete state and a tran-
sition function that maps the cell’s current state to its next
state. This function is often represented as a lookup ta-

ble (LUT). The LUT stores all possible configurations of
a cell’s local neighborhood, which consists of its own cur-
rent state and the state of its neighboring cells. Change of
state is performed in discrete time steps: the entire lattice
is updated synchronously. There are many possible defini-
tions of a neighborhood, but here wewill define a neighbor-
hood as the cell to be updated and the cells adjacent to it
at a distance of radius r. The number of entries in the LUT
will be sN , where s is the number of possible states and N
is the total number of cells in the neighborhood: (2r C 1)d

for a square shaped neighborhood in a d-dimensional lat-
tice, also known as a Moore neighborhood. CAs typically
are given periodic boundary conditions, which treat the lat-
tice as a torus.

To transform a cell’s state, the values of the cell’s state
and those of its neighbors are encoded as a lookup index
to the LUT that stores a value representing the cell’s new
state (Fig. 1: left) [8,16,59]. For the scope of this article,
we will focus on homogeneous binary CAs, which means
that all cells in the CAs have the same LUT and each cell
has one of two possible states, s 2 f0; 1g. Figure 1 shows
the mechanism of updates in a homogeneous one-dimen-
sional two-state CA with a neighborhood radius r D 1.

CAs were invented in the 1940s by Stanislaw Ulam
and John von Neumann. Ulam used CAs as a mathemat-
ical abstraction to study the growth of crystals, and von
Neumann used them as an abstraction of a physical sys-
tem with the concepts of a cell, state and transition func-
tion in order to study the logic of self-reproducing sys-

Evolving Cellular Automata, Figure 1
Left top: A one-dimensional neighborhood of three cells (ra-
dius 1): Center cell,West neighbor, and East neighbor. Left mid-
dle: A sample look-up table in which all possible neighborhood
configurations are listed, alongwith the update state for the cen-
ter cell in each neighborhood. Left bottom: Mechanismof update
in a one dimensional binary CA of length 13: t0 is the initial con-
figuration at time 0 and t1 is the initial configuration at next time
step. Right: The sequence of synchronous updates starting at the
initial state t0 and ending at state t9
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tems [8,11,55]. Von Neumann’s seminal work on CAs had
great significance. Science after the industrial revolution
was primarily concerned with energy, force and motion,
but the concept of CAs shifted the focus to information
processing, organization, programming, and most impor-
tantly, control [8]. The universal computational ability of
CAs was realized early on, but harnessing this power con-
tinues to intrigue scientists [8,11,32,55].

Computation in CAs

In the early 1970s John Conway published a description
of his deceptively simple Game of Life CA [18]. Conway
proved that the Game of Life, like von Neumann’s self-re-
producing automaton, has the power of a universal Tur-
ing machine: any program that can be run on a Turing
machine can be simulated by the Game of Life with the
appropriate initial configuration of states. This initial con-
figuration (IC) encodes both the input and the program
to be run on that input. It is interesting that so simple
a CA as the Game of Life (as well as even simpler CAs –
see chapter 11 in [60]) has the power of a universal com-
puter. However, the actual application of CAs as universal
computers is, in general, impractical due to the difficulty
of encoding a given program and input as an IC, as well as
very long simulation times.

An alternative use of CAs as computers is to design
a CA to perform a particular computational task. In this
case, the initial configuration is the input to the program,
the transition function corresponds to the program per-
forming the specific task, and some set of final configura-
tions is interpreted as the output of the computation. The
intermediate configurations comprise the actual computa-
tion being done.

Evolving Cellular Automata, Figure 2
Two space-time diagrams illustrating the behavior of the “naïve” local majority voting rule, with lattice size N D 149, neighborhood
radius r D 3, and number of time stepsM D 149. Left: initial configuration has a majority of 0s. Right: initial configuration has a ma-
jority of 1s. Individual cells are colored black for state 1 and white for state 0. (Reprinted from [37] with permission of the author.)

Examples of tasks for which CAs have been de-
signed include location management in mobile comput-
ing networks [50], classification of initial configuration
densities [38], pseudo-random number generation [51],
multi-agent synchronization [47], image processing [26],
simulation of growth patterns of material microstruc-
tures [5], chemical reactions [35], and pedestrian dynam-
ics [45].

The problem of designing a CA to perform a task re-
quires defining a cell’s local neighborhood and boundary
conditions, and constructing a transition function for cells
that produces the desired input-output mapping. Given
a CA’s states, neighborhood radius, boundary conditions,
and initial configuration, it is the LUT values that must be
set by the “programmer” so that the computation will be
performed correctly over all inputs.

In order to study the application of genetic algorithms
to designing CAs, substantial experimentation has been
done using the density classification (or majority classifi-
cation) task. Here, “density” refers to the fraction of 1s in
the initial configuration. In this task, a binary-state CA
must iterate to an all-1s configuration if the initial con-
figuration has a majority of cells in state 1, and iterate
to an all-0s configuration otherwise. The maximum time
allowed for completing this computation is a function of
the lattice size.

One “naïve” solution for designing the LUT for this
task would be local majority voting: set the output bit to 1
for all neighborhood configurations with a majority of 1s,
and 0 otherwise. Figure 2 gives two space-time diagrams
illustrating the behavior of this LUT in a one-dimensional
binary CA with N D 149, and r D 3, where N denotes the
number of cells in the lattice, and r is the neighborhood
radius.
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Each diagram shows an initial configuration of 149
cells (horizontal) iterating over 149 time steps (vertical,
down the page). The left-hand diagram has an initial con-
figuration with a majority of 0 (white) cells, and the right-
hand diagram has an initial configuration with a majority
of 1 (black) cells. In neither case does the CA produce the
“correct” global behavior: an all-0s configuration for the
left diagram and an all-1s configuration for the right dia-
gram. This illustrates the general fact that human intuition
often fails when trying to capture emergent collective be-
havior by manipulating individual bits in the lookup table
that reflect the settings of the local neighborhood.

Evolving Cellular Automatawith Genetic Algorithms

Genetic Algorithms (GAs) are a group of stochastic search
algorithms, inspired by the Darwinian model of evolution,
that have proved successful for solving various difficult
problems [3,4,36].

A GA works as follows: (1) A population of individu-
als (“chromosomes”) representing candidate solutions to
a given problem is initially generated at random. (2) The
fitness of each individual is calculated as a function of its
quality as a solution. (3) The fittest individuals are then se-
lected to be the parents of a new generation of candidate
solutions. Offspring are created from parents via copying,
random mutation, and crossover. Once a new generation
of individuals is created, the process returns to step two.
This entire process is iterated for some number of gener-
ations, and the result is (hopefully) one or more highly fit
individuals that are good solutions to the given problem.

GAs have been used by a number of groups to evolve
LUTs for binary CAs [2,10,14,15,34,43,47,51]. The indi-
viduals in the GA population are LUTs, typically encoded
as binary strings. Figure 3 shows a mechanism of encoding
LUTs from a particular neighborhood configuration. For

Evolving Cellular Automata, Figure 3
Lookup table encoding for 1D CA with neighborhood r D 2. All permutations of neighborhood values are encoded as an offset to
the LUT. The LUT bit represents a new value for the center cell of the neighborhood. The binary string (LUT) encodes an individual’s
chromosome used by evolution

Evolving Cellular Automata, Figure 4
Reproduction applied to Parent1 and Parent2 producing Child1
and Child2. The one-point crossover is performed at a randomly
selected crossover point (bit 3) and a mutation is performed on
bits 2 and 5 in Child1 and Child2 respectively

example: the decimal value for the neighborhood 11010 is
26. The updated value for the neighborhood’s center cell
11010 is retrieved from the 26th position in the LUT, up-
dating cell’s value to 1.

The fitness of a LUT is a measure of how well the cor-
responding CA performs a given task after a fixed number
of time steps, starting from a number of test initial con-
figurations. For example, given the density classification
task, the fitness of a LUT is calculated by running the cor-
responding CA on some number k of random initial con-
figurations, and returning the fraction of those k on which
the CA produces the correct final configuration (all 1s for
initial configurations with majority 1s, all 0s otherwise).
The set of random test ICs is typically regenerated at each
generation.

For LUTs represented as bit strings, crossover is ap-
plied to two parents by randomly selecting a crossover
point, so that each child inherits one segment of bits from
each parent. Next, each child is subject to a mutation,
where the genome’s individual bits are subject to a bit
complement with a very low probability. An example of
the reproduction process is illustrated in Fig. 4 for a lookup
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table representation of r D 1. Here, one of two children
is chosen for survival at random and placed in an off-
spring population. This process is repeated until the off-
spring population is filled. Before a new evolutionary cycle
begins, the newly created population of offspring replaces
the previous population of parents.

PreviousWork on Evolving CAs

Von Neumann’s self-reproducing automaton was the first
construction that showed that CAs can perform universal
computation [55], meaning that the CAs are capable, in
principle, of performing any desired computation. How-
ever, in general it was unknown how to effectively “pro-
gram” CAs to perform computations or what information
processing dynamics CAs could best use to accomplish
a task. In the 1980s and 1990s, a number of researchers
attempted to determine how the generic dynamical be-
havior of a CA might be related to its ability to perform
computations [18,19,21,33,58]. In particular, Langton de-
fined a parameter on CA LUTs, , that he claimed cor-
related with computational ability. In Langton’s work,  is
a function of the state-update values in the LUT; for binary
CAs,  is defined as the fraction of 1s in the state-update
values.

Computation at the Edge of Chaos

Packard [40] was the first to use a genetic algorithm to
evolve CA LUTs in order to test the hypothesis that LUTs
with a critical value of  will have maximal computational
capability. Langton had shown that generic CA behav-
ior seemed to undergo a sequence of phase transitions –
from simple to “complex” to chaotic – as  was varied.
Both Langton and Packard believed that the “complex” re-
gion was necessary for non-trivial computation in CAs,
thus the phrase “computation at the edge of chaos” was
coined [33,40]. Packard’s experiments indicated that CAs
evolved by GAs to perform the density classification task
indeed tended to exhibit critical  values. However, this
conclusion was not replicated in later work [38]. Correla-
tions between  (or other statistics of LUTs) and compu-
tational capability in CAs have been hinted at in further
work, but have not been definitively established. A major
problem is the difficulty of quantifying “computational ca-
pability” in CAs beyond the general (and not very practi-
cal) capability of universal computation.

Computation via CA “Particles”

While Mitchell, Hraber, and Crutchfield were not able to
replicate Packard’s results on , they were able to show

that genetic algorithms can indeed evolve CAs to perform
computations [38]. Using earlier work by Hanson and
Crutchfield on characterizing computation in CAs [20,21],
Das, Mitchell and Crutchfield gave an information-pro-
cessing interpretation of the dynamics exhibited by the
evolvedCAs in terms of regular domains and particles [21].
This work was extended by Das, Crutchfield, Mitchell, and
Hanson [14] and Hordijk, Crutchfield and Mitchell [24].

In particular these groups showed that when regu-
lar domains – patterns described by simple regular lan-
guages – are filtered out of CA space-time behavior, the
boundaries between these domains become forefront and
can be interpreted as information-carrying “particles”.
These particles can characterize non-trivial computation
carried out by CAs [15,21].

The information-carrying role of particles becomes
clear when applied to CAs evolved by the GA for the den-
sity classification task. Figure 5, left, shows typical behav-
ior of the best CAs evolved by the GA. The CA contains
three regular domains: all white (0�), all black (1�), and
checkerboard ((01)�). Figure 5, right, shows the particles
remaining after the regular domains are filtered out. Each
particle has an origin and velocity, and carries informa-
tion about the neighboring regions [37]. Hordijk et al. [24]
showed that a small set of particles and their interactions
can explain the computational behavior (i. e., the fitness)
of the evolved cellular automata. Crutchfield et al. [13] de-
scribe how the analysis of evolvedCAs in terms of particles
can also explain how the GA evolvedCAs with high fitness.

Land and Belew [31] proved that no two-state homo-
geneous CA can perform the density classification task
perfectly. However, the maximum possible performance
for CAs on this task is not known.

The density classification task remains a popular
benchmark for studying the evolution of CAs with GAs,
since the task requires collective behavior: the decision
about the global density of the IC is based on informa-
tion only from each local neighborhood. Das et al. [14]
also used GAs to evolve CAs to perform a global synchro-
nization task, which requires that, starting from any ini-
tial configuration, all cells of the CA will synchronize their
states (to all 1s or 0s) and in the next time step all cellsmust
change state to the opposite value. Again, this behavior re-
quires global coordination based on local communication.
Das et al. showed that an analysis in terms of particles and
their interactions was also possible for this task.

Genetic Programming

Andre et al. [2] applied genetic programming (GP), a vari-
ation of GAs, to the density classification task. GPmethod-
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Evolving Cellular Automata, Figure 5
Analysis of a GA evolved CA for density classification task. Left: The original spacetime diagram containing particle strategies in a CA
evolved by GA. The regions of regular domains are all white, all black, or have a checkerboard pattern. Right: Spacetime diagram
after regular domains are filtered out. (Reprinted from [37] with permission of the author.)

ology also uses a population of evolving candidate solu-
tions, and the principles of reproduction and survival are
the same for both GP and GAs. The main difference be-
tween these two methods is the encoding of individuals in
the population. Unlike the binary strings used in GAs, in-
dividuals in a GP population have tree structures, made up
of function and terminal nodes. The function nodes (in-
ternal nodes) are operators from a pre-defined function
set, and the terminal nodes (leaves) represent operands
from a terminal set. The fitness value is obtained by eval-
uating the tree on a set of test initial configurations. The
crossover operator is applied to two parents by swapping
randomly selected sub-trees, and the mutation operation
is performed on a single node by creating a new node or
by changing its value (Fig. 6) [29,30].

The GP algorithm evolved CAs whose performance
is slightly higher than the performance of the best CAs
evolved by a traditional GA.

Unlike traditional GAs that use crossover and muta-
tion to evolve fixed length genome solutions, GP trees
evolve to different sizes or shapes, and the subtrees can
be substituted out and added to the function set as au-
tomatically defined functions. According to Andre et al.,
this allows GP to better explore the “regularities, sym-
metries, homogeneities, and modularities of the prob-
lem domain” [2]. The best-evolved CAs by GP revealed
more complex particles and particle interactions that than
the CAs found by the EvCA group [13,24]. It is unclear
whether the improved results were due to the GP repre-
sentation or to the increased population sizes and compu-
tation time used by Andre et al.

Parallel Cellular Machines

The field of evolving CAs has grown in several directions.
One important area is evolving non-homogeneous cellular
automata [22,47,48,54]. Each cell of a non-homogeneous
CA contains two independently evolving chromosomes.
One represents the LUT for the cell (different cells can
have different LUTs), and the second represents the neigh-
borhood connections for the cell. Both the LUTs and the
cell’s connectivity can be evolved at the same time. Since
a task is performed by a collection of cells with different
LUTs, there is no single best performing individual; the
fitness is a measure of the collective behavior of the cells’
LUTs and their neighborhood assignments [46,48].

One of many tasks studied by Sipper was the global
ordering task [47]. Here, the CA has fixed rather than pe-
riodic boundaries, so the “left” and “right” parts of the CA
lattice are defined. The ordering in any given IC pattern
will place all 0s on the left, followed by all 1s on the right.
The initial density of the IC has to be preserved in the fi-
nal configuration. Sipper designed a cellular programming
algorithmj to co-evolve multiple LUTs and their neigh-
borhood topologies. Cellular programming carries out the
same steps as the conventional GA (initialization, evalua-
tion, reproduction, replacement), but each cell reproduces
only with its local neighbors. The LUTs and connectiv-
ity chromosomes from the locally connected sites are the
only potential parents for the reproduction and replace-
ment of cell’s LUTs and the connectivity tables respec-
tively. The cell’s limited connectivity results in genetically
diverse population. If a current population has a cell with
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Evolving Cellular Automata, Figure 6
An example of the encoding of individuals in a GP population, similar to one used in [2]. The function set here consists of the logical
operators {and, or, not, nand, nor, and xor}. The terminal set represents the states of cells in a CA neighborhood, here {Center, East,
West, EastOfEastWestOfWest, EastOfEastOfEast,WestOfWestOfWest}. The figure shows the reproduction of Parent1 and Parent2 by
crossover with subsequentmutation to produce Child1 and Child2

a high-fitness LUT, its LUT will not be directly inherited
by a given cell unless they are connected. The connectivity
chromosome causes spatial isolation that allows evolution
to explore multiple CA rules as a part of a collective solu-
tion [47,48].

Sipper exhaustively tested all homogeneous CAs with
r D 1 on the ordering task, and found that the best per-
forming rule (rule 232) correctly ordered 71% of 1000
randomly generated ICs. The cellular programming algo-
rithm evolved a non-homogeneous CA that outperformed
the best homogeneous CA. The evolutionary search iden-
tified multiple rules that the non-homogeneous CA used
as the components in the final solution. The rules compos-
ing the collective CA solution were classified as state pre-
serving or repairing the incorrect ordering of the neigh-
borhood bits. The untested hypothesis is that the cellular

programming algorithm can discover multiple important
rules (partial traits) that compose more complex collective
behavior.

Coevolution

Coevolution is an extension of the GA, introduced by
Hillis [23], inspired by host-parasite coevolution in nature.
The main idea is that randomly generated test cases will
not continually challenge evolving candidate solutions.
Coevolution solves this problem by evolving two popula-
tions – candidate solutions and test cases – also referred
to as hosts and parasites. The hosts obtain high fitness by
performing well onmany of the parasites, whereas the par-
asites obtain high fitness by being difficult for the hosts. Si-
multaneously coevolving both populations engages hosts
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and parasites in a mutual competition to achieve increas-
ingly better results [7,17,56].

Successful applications of coevolutionary learning in-
clude discovery of minimal sorting networks, training ar-
tificial neural networks for robotics, function induction
from data, and evolving game strategies [9,23,41,44,56,57].
Coevolution also improved upon GA results on evolving
CA rules for density classification [28].

In the context of evolving CAs, the LUT candidate so-
lutions are hosts, and the ICs are parasites. The fitness of
a host is a fraction of correctly evaluated ICs from the par-
asite population. The fitness of a parasite is a function of
the number of hosts that failed to correctly classify it.

Pagie et al. and Mitchell et al. among others, have
found that embedding the host and parasite populations
in a spatial grid, where hosts and parasites compete and
evolve locally, significantly improves the performance of
coevolution on evolving CAs [39,41,42,57].

Other Applications

The examples described in previous sections illustrate the
power and versatility of genetic algorithms used to evolve
desired collective behavior in CAs. The following are some
additional examples of applications of CAs evolved by
GAs.

CAs are most commonly used for modeling physical
systems. CAs evolved by GAs modeled multi-phase fluid
flow in porous material [61]. A 3D CA represented a pore
model, and the GA evolved the permeability characteris-
tics of the model to match the fluid flow pattern collected
from the sample data. Another example is the modeling of
physical properties of material microstructures [5]. An al-
ternative definition of CAs (effector automata) represented
a 2D cross-section of a material. The rule table specified
the next location of the neighborhood’s center cell. The
results show that the GA evolved rules that reconstructed
microstructures in the sample superalloy.

Network theory and topology studies for distributed
sensor networks rely on connectivity and communication
among its components. Evolved CAs for location manage-
ment in mobile computing networks is an application in
this field [50]. The cells in themobile networks aremapped
to CA cells where each cell is either a reporting or non-
reporting cell. Subrata and Zomaya’s study used three net-
work datasets that assigned unique communication costs
to each cell. A GA evolved the rules that designate each
cell as reporting or not while minimizing the communi-
cation costs in the network. The results show that the GA
found optimal or near optimal rules to determine which
cells in a network are reporting. Sipper also hinted at ap-

plying his cellular programming algorithm to non-homo-
geneous CAs with non-standard topology to evolve net-
work topology assignments [47].

Chopra and Bender applied GAs to evolve CAs to pre-
dict protein secondary structure [10]. The 1D CA with
r D 5 represents interactions among local fragments of
a protein chain. A GA evolved the weights for each of
the neighboring fragments that determine the shape of the
secondary protein structure. The algorithm achieved su-
perior results in comparison with some other protein-sec-
ondary-structure prediction algorithms.

Built-In Self-Test (BIST) is a test method widely used
in the design and production of hardware components.
A combination of a selfish gene algorithm (a GA variant)
and CAs were used to program the BIST architecture [12].
The individual CA cells correspond to the circuitry’s in-
put terminals, and the transition function serves as a test
pattern generator. The GA identified CA rules that pro-
duce input test sequences that detect circuitry faults. The
results achieved are comparable with previously proposed
GA-based methods but with lower overhead.

Computer vision is a fast growing research area where
CAs have been used for low-level image processing. The
cellular programming algorithm has evolved non-homo-
geneous CAs to perform image thinning, finding and en-
hancing an object’s rectangle boundaries, image shrinking,
and edge detection [47].

Future Directions

Initial work on evolving two-dimensional CAs with GAs
was done by Sipper [47] and Jimènez-Morales, Crutch-
field, and Mitchell [27]. An extension of domain-particle
analysis for 2D CAs is needed in order to analyze the in-
formation processing of CAs and to identify the epochs of
innovations in evolutionary learning.

Spatially extended coevolution was successfully used
to evolve high performance CAs for density classification.
Parallel cellular machines also used spatial embedding of
their components and found better performing CAs than
the homogeneous CAs evolved by a traditional GA. The
hypothesis is that spatially extended search techniques are
successful more often than non-spatial techniques because
spatial embedding enforces greater genetic diversity and,
in the case of coevolution, more effective competition be-
tween hosts and parasites. This hypothesis deserves more
detailed investigation.

Additional important research topics include the study
of the error resiliency and the effect of noise on both the in-
formation processing in CAs and evolution of CAs. How
successful is evolutionary learning in noisy environment?
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What is the impact of failing CA components on infor-
mation processing and evolutionary adaptation? Similarly,
to make CAs more realistic as models of physical sys-
tems, evolving CAs with asynchronous cell updates is an
important topic for future research. A number of groups
have shown that CAs and similar decentralized spatially
extended systems using asynchronous updates can have
very different behavior from those using synchronous up-
dates (e. g., [1,6,25,49,53]). An additional topic for future
research is the effect of connectivity network structure on
the behavior and computational capability of CAs. Some
work along these lines has been done by Teuscher [52].
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Glossary

Evolving system In the context of this article the term
‘evolving’ is used in the sense of the self-development
of a system (in terms of both its structure and parame-
ters) based on the stream of data coming to the system
on-line and in real-time from the environment and the
system itself. The system is assumed to be mathemati-
cally described by a set of fuzzy rules of the form:

Rulei :

IF (Input1 is close to prototypei1)

AND . . . AND (Inputn is close to prototypein)

THEN (Outputi D InputsT ConseqPara ms)

(1)

In this sense, this definition strictly follows the mean-
ing of the English word “evolving” as described in [34],
p. 294, namely “unfolding; developing; being devel-
oped, naturally and gradually”. Contrast this to the
definition of “evolutionary” in the same source, which
is “development of more complicated forms of life
(plants, animals) from earlier and simpler forms”. The
terms evolutionary or genetic are also associated with
such phenomena (respectively operators that mimic
these) as chromosome crossover, mutation, selection
and reproduction, parents and off-springs [32]. Evolv-

Evolving Fuzzy Systems, Figure 1
Structure of the (neuro-fuzzy) system of TS type

ing (fuzzy and neuro-fuzzy) systems do not deal with
such phenomena. They rather consider a gradual de-
velopment of the underlying (fuzzy or neuro-fuzzy)
system structure.

Fuzzy system structure Structure of a fuzzy (or neuro-
fuzzy) system is constituted of a set of fuzzy rules (1).
Each fuzzy rule is composed of antecedent (IF) and
consequents (THEN) parts. They are linguistically ex-
pressed. The antecedent part consists of a number of
fuzzy sets that are linked with fuzzy logic aggregators
such as conjunction, disjunction, more rarely, nega-
tion [43]. In the above example, a conjunction (logi-
cal AND) is used. It can be mathematically described
by so-called t-norms or t-conorms between member-
ship functions. The most popular membership func-
tions are Gaussian, triangular, trapezoidal [73]. The
consequent part of the fuzzy rules in the so-called Tak-
agi–Sugeno (TS) form is represented by mathemati-
cal functions (usually linear). The structure of the TS
fuzzy system can also be represented as a neural net-
work with a specific (five layer) composition (Fig. 1).
Therefore, these systems are also called neuro-fuzzy
(NF).
The number of fuzzy rules and inputs (which in case
of classification problems are also called features or at-
tributes) is also a part of the structure.
The first layer consists of neurons corresponding to
the membership functions of a wparticular fuzzy set.
This layer takes the inputs, x and gives as output the
degree, μ to which these fuzzy descriptors are satis-
fied. The second layer represents the antecedent parts
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of the fuzzy rules. It takes as inputs the membership
function values and gives as output the firing level of
the ith rule, � i. The third layer of the network takes
as inputs the firing levels of the respective rule, � i and
gives as output the normalized firing level, i as “cen-
ter of gravity” [43] of � i. As an alternative one can use
the “winner takes all” operator. This operator is used
usually in classification, while the “center of gravity”
is preferred for time-series prediction and general sys-
temmodeling and control. The fourth layer aggregates
the antecedent and the consequent part that represents
the local sub-systems (singletons or hyper planes). Fi-
nally, the last 5th layer forms the total output of the NF
system. It performs a weighed summation of local sub-
systems.

Fuzzy system parameters Parameters of the NF system
of TS type include the center, c and spread, � of the
Gaussians or parameters of the triangular (or trape-
zoidal) membership functions. An example of a Gaus-
sian type membership function can be given as:

� D e�
1
2



d
r

�2

(2)

where d denotes distance between a data sample (point
in the data space) and a prototype/cluster center (fo-
cal point of a fuzzy set); r is the radius of the cluster
(spread of the membership function).
Note that the distance can be represented by Euclidean
(the most typical example), Mahalonobis [33], cosine
etc. forms.
These parameters are associated with the antecedent
part of the system. Consequent part parameters are
coefficients of the (usually) linear functions, singleton
coefficients or coefficients of more complex functions
(e. g. exponential) if such ones are used.

yi D ai0 C ai1x1 C � � � C ainxn (3)

where a denotes parameters of the consequent part; x
denote the inputs (features); i is the index of the ith
fuzzy rule; n is the number (dimensionality) of the in-
puts (features).

Potential Potential is a mathematical measure of the data
density. It is calculated at a data point, z and repre-
sents numerically the accumulated proximity (density)
of the data surrounding this data point. It resembles
the probability distribution used in so-called Parzen
windows [33] and is described in [26,72] by a Gaus-
sian-like function:

P(z) D e�
1
2r 


2
(4)

where z D [x; y] denotes the joint (input/output) vec-
tor;

�2k D
1

k�1

k�1P

iD1
d2(zk ; zi ) is the variance of the data in

terms of the cluster center.
In [3,9] the Cauchy function is used which has the
same properties as the Gaussian but is suitable for re-
cursive calculations.

P(z) D
1

1C �2
: (5)

Age of a cluster or fuzzy rule The age of the (evolving)
cluster is defined as the accumulated time of appear-
ance of the samples that form the cluster which sup-
port that fuzzy rule.

Ai D k �

S ikP

lD1
kl

Sik
(6)

where k denotes the current time instant; Sik denotes
the support of the cluster that is the number of data
samples (points) that are in the zone of influence of
the cluster (formed by its radius). It is derived by sim-
ple counting of data samples (points) at the moment of
their arrival (when they are first read) and assigned to
the nearest cluster [10].
The values of A vary from 0 to k and the derivative
of A in respect to time is always less or equal to 1 [17].
An “old” cluster (fuzzy rule) has not been updated re-
cently. A “young” cluster (fuzzy rule) is one that has
predominantly new samples or recent ones. The (first
and second) derivatives of the age are very informative
and useful for detection of data “shift” and “drift” [17].

Definition of the Subject

Evolving Fuzzy Systems (EFS) are a class of Fuzzy Rule-
based (FRB) and Neuro-Fuzzy (NF) systems that have
both their parameters and underlying structure self-adapt-
ing, self-developing, self-learning from the data in on-line
mode and, possibly, in real-time. The concept was con-
ceived at the beginning of this century [2,5]. Parallel in-
vestigations have led to similar developments in neural
networks (NN) [41,42]. EFS have the significant advan-
tage compared to the evolving NN of being linguistically
tractable and transparent. EFS have been instrumental in
the emergence of new branches of evolving clustering algo-
rithms [3], evolving classifiers [16,51], evolving time-series
predictors [9,47], evolving fuzzy controllers [4], evolving
fault detectors [30] etc. Over the last years EFS has demon-
strated a wide range of applications spanning robotics [76]
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and defense [24] to biomedical [70] and industrial pro-
cess [29] data processing in real-time, new generations of
self-calibrating, self-adapting sensors [52,53], speech [37]
and image processing [56] etc. EFS have the potential
to revolutionize such areas as autonomous systems [66],
intelligent sensors [45], early cancer detection and diag-
nosis; they are instrumental in raising the so-called ma-
chine intelligence quotient [74] by developing systems that
self-adapt in real-time to the dynamically changing envi-
ronment and to internal changes that occur in the system
itself (e. g. wearing, contamination, performance degrada-
tion, faults etc.). Although the terms intelligent and artifi-
cial intelligencehave been used often during the last several
decades the technical systems that claim to have such fea-
tures are in reality far from true intelligence. One of the
main reasons is that true intelligence is evolving, it is not
fixed. EFS are the first mathematical constructs that com-
bine the approximate reasoning typical for humans repre-
sented by the fuzzy inference with the dynamically evolv-
ing structure and respective formal mathematically sound
learning mechanisms to implement it.

Introduction

Fuzzy Sets and Fuzzy Logic were introduced by Lotfi
Zadeh in 1965 in his seminal paper [71]. During the last
decade of the previous century there was an increase of the
various applications of fuzzy logic-based systems mainly
due to the introduction of fuzzy logic controllers (FLC)
by Ebrahim Mamdani in 1975 [54], the introduction of
the fuzzily blended linear systems construct called Tak-
agi–Sugeno (TS) fuzzy systems in 1985 [65], and the the-
oretical proof that FRB systems are universal approxima-
tors (that is any arbitrary non-linear function in the [0; 1]
range can be asymptotically approximated by a FRB sys-
tem [68]). Historically, the FRB systems where first being
designed based entirely or predominantly on human ex-
pert knowledge [54,71]. This offers advantages and was
a novel technique at that time for incorporating uncer-
tain, subjective information, preferences, experience, in-
tuition, which are difficult or impossible to be described
otherwise. However, it poses enormous difficulties for the
process of designing and routine use of these systems, es-
pecially in real industrial environments and in on-line and
real-time modes. TS fuzzy systems made possible the de-
velopment of efficient algorithms for their design not only
in off-line, but also in on-line mode [14]. This is facili-
tated by their dual nature – they combine a fuzzy linguistic
premise (antecedent) part with a functional (usually lin-
ear) consequent part [65]. With the invention of the con-
cept of EFS [2,5] the problem of the design was completely

automated and data-driven. This means, EFS systems self-
develop their model, respectively system structure as well
as adapt their parameters “from scratch” on the fly using
experimental data and efficient recursive learning mecha-
nisms. Human expert knowledge is not compulsory, not
limiting, not essential (especially if it is difficult to obtain
in real-time). This does not necessarily mean that such
knowledge is prohibited or not possible to be used. On
the contrary, the concept of EFS makes possible the use
of such knowledge in initialization stages, even during the
learning process itself, but this is not essential, it is op-
tional. Examples of EFS are intelligent sensors for oil re-
fineries [52,53], autonomous self-localization algorithms
used by mobile robots [75,76], smart agents for machine
health monitoring and prognosis in the car industry [30],
smart systems for automatic classification of images in CD
production process [51] etc. This is a new promising area
of research and new applications in different branches of
industry are emerging.

Evolving Clustering

Data Clustering and, Fuzzy Clustering in particular, are
methods for grouping the data based on their similarity,
density in the data space and proximity. Partitioning of the
data into clusters can be done off-line (using a batch set of
data, performing iterative computations over this set, min-
imizing certain criteria/cost function) or on-line, incre-
mentally. Examples of incremental clustering approaches
are self-organizing maps (SOM) conceived by Teuvo Ko-
honen in the early 1980s [44], adaptive resonance theory
(ART) by Stephen Grossberg conceived in the same pe-
riod [25] etc. Clustering is a type of unsupervised learning
technique where the correct examples are not provided.
Usually, the number of clusters is pre-specified, e. g. in
SOM the number of nodes of the map is pre-defined; the
number of neighbors, k in the k-nearest neighbor cluster-
ing method [33] is also supposed to be provided, the num-
ber C in the fuzzy c-means (FCM) fuzzy clustering algo-
rithm by Jim Bezdek should also be provided [22]. Usually
these approaches rely on a threshold and are very sensitive
to the specific values of this threshold. Most of the existing
approaches are also mean-based (i. e. they use the mean of
all data or mean of groups of data). The problem is that
the mean is a virtual (non-existing and possibly infeasible)
point in the data space.

In contrast, the evolving clustering method eCluster-
ing conceived in the last decade [3] does not need the
number of clusters, the threshold or any other parameter
to be pre-specified. It is parameter-free and starts “from
scratch” to cluster the data based on their density distri-
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bution alone. It is based on the recursive calculation of the
potential (5). eClustering is prototype-based (some of the
data points are used as prototypes of cluster centers). The
procedure of the evolving clustering approach starts from
scratch assuming that the first available data point is a cen-
ter of a cluster. This assumption is temporary and if a pri-
ori knowledge exists the procedure can start with an initial
set of cluster centers that will be further refined. The co-
ordinates of the first cluster center are formed from the
coordinates of the first data point (z�1  z1). Its potential
is set to the ideal value, P1(z1)! 1. Starting from the next
data point which is read in real-time, the following steps
are performed for each new data point:

� calculate its potential, Pk(zk );

Evolving Fuzzy Systems, Figure 2
The Evolving Clusteringmethod applied to data concerningNOx
emissions; a top plot-after 43 samples are read (after 43 s be-
cause the sampling rate is 1 sample/second or 1Hz); b bottom
plot – after 124 samples are read (after 124 s)

� update the potential of the existing cluster centers (be-
cause their potential has been affected by adding a new
data point);

� compare the potential of the new data point with the
potential of the previously existing centers. On the basis
of this comparison and the membership of the existing
clusters one of the following actions is taken:
(add a new cluster center based on the new data point)
OR (remove the cluster that describes well the new
point which brings an increment to the potential)AND
(replace it with a cluster formed around the new point)
OR (ignore (do not change the cluster structure)).

The process is illustrated in Fig. 2 for the data of NOx
emissions from a car exhaust [13].

One can see that the clustering evolves (number of
clusters increases from two to three, their position and
their radius has changed. Note that in this experiment
only two normalized to the range [0; 1] inputs (features),
namely the engine output torque in N/m, x1 and pressure
in the second cylinder in Pa, x2 are used. For more details
on eClustering, please, consult the papers from the bibli-
ography, and especially [2,3,9,16].

Evolving TS Fuzzy Systems

TS fuzzy systems [as illustrated in Fig. 1 and described in
a very general form in Eq. (1)] were first introduced in
1985 [65] in the form:

<i : IF (x1 is Ai1) AND . . . AND (xn is Ain)
THEN (yi D ai0 C ai1x1 C � � � C ainxn)

(7)

where Ai denotes the ith fuzzy rule (i D [1; R]); R
is the number of fuzzy rules; x is the input vector;
x D [x1; x2; : : : ; xn]T; Aij denotes the antecedent fuzzy
sets, j 2 f1; ng; yi is the output of the ith linear subsys-
tem; ail are its parameters, l 2 f0; ng.

The structure of the TS system (number of fuzzy rules),
antecedent part of the rules, number of inputs etc., are sup-
posed to be known and are fixed. The data may be pro-
vided to the TS system in off-line or in on-line manner.
Different data-driven techniques were developed to iden-
tify the best in terms of certain (local or global) error min-
imization criteria such as using a (recursive) least squares
technique [65], using genetic algorithms [7,62] etc. The
overall output is found to be a weighted sum of local out-
puts produced by each fuzzy rule:

y D
RX

iD1

i yi : (8)
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Where the weights,  represent the normalized firing level
of the respective fuzzy rule and can be determined by:

i D

n
T
jD1

�i
j(x j)

RP

lD1

n
T
jD1

�l
j(x j)

: (9)

In a vector form the above equations can be represented
as:

y D  T� (10)

where  D [1xTe ; 2xTe ; : : : ; RxTe ]T is the vector of
weighted extended inputs; xTe D [1; xT];
� D

�
�T
1 ; �

T
2 ; : : : ; �

T
R
�T is the vector of parameters;

� i D

2

66
4

˛ i
01 ˛ i

02 : : : ˛ i
0m

˛ i
11 ˛ i

12 : : : ˛ i
1m

: : : : : : : : : : : :

˛ i
n1 ˛ i

n2 : : : ˛ i
nm

3

77
5

are the parameters of them local linear sub-systems.
The assumption that the TS fuzzy system structure has

to be known a priori was for the first time questioned
in [2,5] and ultimately in [9] with the proposal of evolv-
ing TS (eTS) systems. In [15] a further extension of the
eTS systemwas proposed, namely that they can havemany
outputs. In this way, the multi-input-multi-output eTS
systems were introduced (MIMO-eTS).

eTS is a very flexible and powerful tool for time-series
prediction, prognosis, modeling non-stationary phenom-
ena, intelligent sensors etc. The algorithm for its learn-
ing from streaming data in real-time has two basic phases,
which can both be performed very quickly (in one time
step between the arrival of two data samples – the current
one and the next one). The learning mechanism proposed
in [9] is computationally very efficient because it is fully
recursive. The two phases include:

(a) Data space partitioning and based on this forming and
update of the fuzzy rule-base structure;

(b) Learning parameters of the consequent part of the
fuzzy rules.

Note that the partitioning of the data space serves in
eTS identification a different purpose compared to the
purpose of data space partitioning in eClustering. In eTS
there are outputs and the aim is to find such (perhaps over-
lapping) clustering of the input-output joint data space
that fragments the input-output relationship into locally
valid simpler (possibly linear) dependences. In eClustering
the aim is to cluster the input data space into distinctive

regions. Other than that, the first phase of the eTS model
identification is the same as the procedure in the eCluster-
ing method described above.

The second phase of the learning is parameter iden-
tification. It can be performed using a fuzzily weighted
version [9] of the well-known recursive least squares
(RLS) method [50]. One can perform either local (11)
or global (12) identification by minimizing different cost
functions [9]:

JL D
RX

iD1

�
Y � XT�i

T
�i
�
Y � XT�i


(11)

JG D
�
Y � �T�

T �Y � �T�

: (12)

In one of the cases (when a local cost function is used) the
result will be a better approximation locally of the over-
all non-linear function by the local linear sub-models. The
pay-off is, however, a poorer overall approximation. This
is, however, compensated by a simpler and computation-
ally more efficient procedure (if we use a locally valid cost
function the covariance matrices of much smaller size can
be used and they require much less memory space and
time to perform computations) [9].

Evolving Fuzzy Classifiers

Classification is a problem that has been well studied and
a large number of conventional approaches exist to ad-
dress this problem [33]. Most of them, however, are de-
signed to operate in batch mode and do not change their
structure on-line (do not capture new patterns that may
be present in the streaming data once the classifier is built).
Off-line pre-trained classifiers may be good for certain sce-
narios, but they need to be redesigned or retrained if the
circumstances change. There are also so-called incremen-
tal (or on-line) classifiers which work on a “sample-by-
sample” basis and only require the features of that sam-
ple plus a small amount of aggregated information (a rule-
base, a small number of variables needed for recursive cal-
culations). They do not require all the history of the data
stream (all previously seen data samples). Sometimes they
are also called one-pass (each sample is processed only
once at a time and is then discarded from the memory).

FRB systems have been successfully applied to a range
of classification tasks including, but not limited to, deci-
sion making, fault detection, pattern recognition, image
processing [46]. FRB systems have become one of the al-
ternative frameworks for classifier design together with the
more established Bayesian classifiers, decision trees [33],
neural network-based classifiers [57], and support-vector
machines (SVM) [67]. The task of the classifier is to map
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the set of features of the sample data onto the set of class
labels. A particular advantage of the FRB classifiers is that
they are linguistic in form while being also proven univer-
sal approximators [68].

In the framework of the concept of evolving fuzzy sys-
tems a family of evolving fuzzy classifiers, eClass was pro-
posed in [16,17,51]. The first type of evolving fuzzy clas-
sifiers, eClass0 has the typical structure of a fuzzy classi-
fier [46] that differs from structure (1) by the consequent
part only:

Ri : IF (Feature1 is close to prototypei1)

AND : : : AND (Featuren is close to prototypein)

THEN (ClassLabeli)
(13)

The output of eClass0, in the same way as typical fuzzy
classifiers [46] provides the label of the class (0, 1 etc.) di-
rectly. In this sense, it is not a TS fuzzy system, but is closer
to the Mamdani-type fuzzy systems [54]. The main differ-
ence of the eClass0 from the typical classifiers [46] is its
ability to evolve, to expand the set of fuzzy rules that en-
ables it to capture new data patterns, to adapt to possibly
changing characteristics of the streaming data [16,17]. The
inference in eClass0 is produced using the so-called “win-
ner takes all” rule [33,46]:

Label D Labeli�; i� D
R

argmax
iD1

 
n
T
jD1

�i
j
�
x j

!

: (14)

It is much easier and faster to build and train eClass0 in
real-time, but the results of the classification can be fur-
ther significantly improved if the classifier structure is as-
sumed to be of TS-type. eClass is designed for on-line ap-
plications with an evolving (self-developing) FRB struc-
ture. The antecedents of the FRB are formed from the data
stream around highly descriptive focal points (prototypes)
per class in the input-output space. The features vector,
x is augmentedwith the class label, L to form a joint input-
output vector z D

�
xT; L

�T. The eClustering algorithm is
applied per class (not over all the data). In this way, in-
formation granules (primitive forms of knowledge) [36]
are formed in real-time around descriptive data samples,
represented linguistically by fuzzy sets. This on-line algo-
rithm works similarly to adaptive control [19] and estima-
tion [39] – in the period between two samples two phases
are performed: (1) class prediction (classification); (2) clas-
sifier update or evolution. During the first phase the class
label is not known and is being predicted; during the sec-
ond phase, however, it is known and is used as supervisory

information to update the classifier (including its structure
evolution as well as its parameters update).

An alternative structure of the fuzzy classifier, eClass1
is based on the TS-type fuzzy system which has a conse-
quent part of functional type as described in (7). The ar-
chitecture of eClass1 differs significantly from the archi-
tecture of eClass0 and the typical FRB [46]. It performs
a regression over the features. Having in mind that the
classification surface in a data stream changes dynami-
cally the goal of the evolving fuzzy classifier eClass1 is to
evolve a rule-base which takes these changes into account
by adapting parameters of the FRB (spreads, consequent
parameters) as well as the focal points and the size of the
rule-base. The output of each rule is a real (not integer as
in the typical fuzzy classifiers) value, which if normalized
represents the possibility of a data sample to be of certain
class [16,17]:

yi D
yi

RP

iD1
yi
: (15)

The overall output of the classifier is then taken as
a weighted average (not as winner takes all as in typical
fuzzy classifiers) of the normalized outputs of each fuzzy
rule:

y D
RX

iD1

n
T
jD1

�i
j

RP

lD1

n
T
jD1

�l
j

y i : (16)

This output is then used to discriminate between the
classes. If the problem has two classes (A and B) then the
target values are, obviously, 0 for one of the two classes
(e. g. Class A) and 1 for the other one (Class B) or vice
versa. To discriminate in this case one can simply use
a threshold of 0.5. All the outputs that are above 0.5 are
being classified as Class B while all the outputs below 0.5
are classified as Class A or vice versa:

IF (y > 0:5)
THEN (Class A)
ELSE (Class B)

(17)

When the problem has more than two classes, one can ap-
ply MIMO eTS where each of the K outputs corresponds
to the possibility that a data sample belongs to a certain
class (as discussed above). It is interesting to note that it
is possible to use MIMO eTS for a two-class problem. In
order to do this, one needs to have vectors that represent
the target outputs, for example y D [1 0] for Class A and
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y D [0 1] for Class B or vice versa. In eClass1-MIMO the
label is determined by the highest value of the discrimina-
tor, y l :

Label D Labeli�; i� D
K

argmax
lD1

yl (18)

where K denotes the number of classes.

Evolving Fuzzy Controllers

Fuzzy logic controllers have been applied in a range
of industrial processes [48,59] around the word includ-
ing in home appliances [21]. The structure of the con-
troller, however, is often decided in an ad hoc man-
ner [54,59] and parameters are tuned off-line using vari-
ous numerical techniques such as genetic algorithms for
example [27,32,63]. In reality, however, even if a valida-
tion test has been made beforehand, there is no guarantee
that a controller designed in this way will perform satisfac-
tory if the object of control or its environment change [4].
The reasons could be aging, wearing, change in the mode
of operation or development of a fault, seasonal changes in
the environment etc. An effective mechanism for tackling
such problems known from the classical control theory is
adaptation [19]. It is well developed for the linear mod-
els and controllers [38], but not for a general (very often
highly non-linear, complex and uncertain) case [2]. Adap-
tive control theory assumes a linear model with a fixed
structure and applies to parameters only [19,38].

The concept of evolving fuzzy systems has been ap-
plied to the control problem in [2,4] in terms of self-de-
veloping the structure of a controller from experimental
data in a data-driven manner based on the indirect adap-

Evolving Fuzzy Systems, Figure 3
Indirect learning-based control scheme

tive learning scheme proposed initially by Psaltis [60] and
developed further using NN by Anderson [1]. The indi-
rect learning (IL) control scheme is based on the approxi-
mation of the inverse dynamics of the plant. The IL-based
control scheme is a model-free concept. It feeds back the
integrated (or delayed one-step back) output signal instead
of feeding back the error between the plant output and the
reference signal as represented in Fig. 3.

Figure 3 represents only the basic concept of the ap-
proach. It has two phases and the switching between them
can be represented by an imaginary switch knob. When
the imaginary knob, K is in position “1” the controller is
used and we are in phase “Control”. When the imaginary
knob is in position “2” the controller learns, self-devel-
ops and we are in phase “Learning”. During the supervi-
sory learning phase, the true output signal (ykC1) at the
time-instant (k C 1) is fed back and the knob is in position
“2”. The controller also receives a signal that is a delayed
true output, yk. The controller has as an output the value
of the control signal, uk. During the control phase (when
the knob is in position “1”) the input is determined en-
tirely based on the reference signal (ref) as an alternative
to the predicted next step output, ykC1. In this way, the
controller already trained in the previous learning phases
produces such a control signal (uk), which brings the out-
put of the plant at the next time step (ykC1) close to the
reference signal (ref).

The IL scheme was taken further in [2,4] by imple-
menting the controller as an evolving FRB system of TS-
type. The original works realized the controller as a NN
that was trained off-line based on a batch set of training
data for the control action and output triplets of the form
[yk ; ykC1; uk] for k D 1; 2; : : : ;N ; where N denotes the
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number of training data samples. However, learning tech-
niques for NN are iterative and, therefore training of the
NN-controller as described in [1,60] is performed off-line.
Additionally, NN suffers from the important disadvantage
in comparison to the FRB systems that they are not trans-
parent. In [2,4] the basic scheme of IL control is taken fur-
ther by adding a disturbance and by using eTS to realize
the controller. This scheme was implemented on temper-
ature-control problems.

Application Case Studies

Self-Calibrating Intelligent Sensors
for Process Industries

So-called intelligent or inferential sensors have been
adopted by the process industries (chemical, petro-chem-
ical, manufacturing) for several decades [31]. The main
reason is that they provide accurate real time estimates
of difficult to measure otherwise parameters or can re-
place (substitute) expensive measurements such as gas
emissions, biomass, melt index, etc. They use as inputs
the available (“hard”) sensors for easy to measure phys-
ical variables, such as temperatures, pressures, and flows
which are also cheaper. The main disadvantage of the cur-
rently existing inferential or “soft” sensors is that signifi-
cant efforts must be made based on batch sets of data to
develop and maintain the mathematical models that sup-
port them (neural networks, statistical models etc.). Any
process changes outside the conditions used for off-line
model development can lead to significant performance

Evolving Fuzzy Systems, Figure 4
Fuzzy sets for different fractions of the crude that contribute to the different quality of the end product (naphtha in this case) can be
extracted automatically in real-time from the data stream using eSensor

deterioration which, in turn, requires maintenance and re-
calibration.

Evolving Fuzzy Systems offer an effective opportunity
to develop “soft” sensors that are more flexible, self-cal-
ibrating, and thus, more “intelligent” [45]. Several appli-
cations of EFS-based soft sensors, in particular for oil re-
fineries [52,53] and propylene production [12] were re-
ported. An important advantage of the evolving sensors
is that they extract human-interpretable knowledge in the
form of linguistic fuzzy rules. For example, Fig. 4 illustrates
membership functions of the fuzzy sets (in values in the
range [0;1] on the vertical axis) that describe the density of
the crude, d in gram per liter (g/l) on the horizontal axis.
The evolving fuzzy sensor (eSensor) implemented in the
oil refinery at Santa Cruz, Tenerife, Spain predicts in real-
time the temperature of the heavy naphtha (hn) Thn, °C
in degrees Celsius when it evaporates 95% liquid volume,
according to the ASTM D86-04b standard based on real-
time measurements of:

� The pressure of the tower, p, measured in kg/cm2g
� The amount of the product taking off, P, represented

in %
� The density of the crude, d in g/l (illustrated in Fig. 4)
� Temperature of the column overhead, Tco in °C
� Temperature of the naphtha extraction, Tne in °C

An expert in the area of oil refining processes can eas-
ily visually distinguish between the heavy crude and light
crude represented by respectivemembership functions de-
rived automatically from the data in real-time.
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Adaptive Real-Time Classifiers
(Image, Land-Mark, Robotic)

Presently the data that are to be processed in industry,
in defense and other real-life applications are not only
huge in volume, but very often they are in the form of
data streams [28]. This requires not only precise classifiers,
but also dynamically evolvable classifiers. For example, in
mobile robotics, an autonomous vehicle produces a video
stream while operating in a completely unknown envi-
ronment that needs to be processed [75,76]. The Evolv-
ing Clustering method was used to automatically generate
a fuzzy rule-base that describes the landmarks discovered
without any prior learning, “on the fly” by a mobile robot
Pioneer 3DX [58] exploring a completely unknown envi-
ronment [76]. The mobile robot is using its on-board pan-
tilt zoom camera to produce a video stream. The frames
were grasped and processed by the eClustering algorithm
based on a 3-dimensional color-vector (R, G, B). Fuzzy
rules of the following form were extracted from the data
automatically:

Note that the landmarks that were identified automat-
ically represented real objects on the route of the mobile
robot such as the underpass of Lancaster University from
the example. They were identified to be distinctive from
the surrounding background by eClustering. The fuzzy
rule base (Fig. 5) has evolved “from scratch” based on the
video information and the data distribution only.

Predictive Models (Air-Conditioning,
Financial Time-Series, Benchmark Data Sets)

There are different techniques that can be used for pre-
dictive models, such as ARMAX models [50], neural net-
works [34] non-evolving (fixed structure) fuzzy rule-based
models [65,73]. Evolving fuzzy systems, however, offer ad-
ditionally the capability to have a predictor that evolves

Evolving Fuzzy Systems, Figure 5
Fuzzy rule describing a Landmark (underpass at Lancaster University campus) that was discovered automatically by eClustering
using video streaming data

following the dynamic changes of the data by gradually
adapting not only its parameters, but also its structure.
In [6] the problem of predicting the characteristic tem-
perature difference across a coil in a heat exchanger of an
air-conditioning unit installed in a real building in Iowa,
USA is considered. The evolving fuzzy rule-based model
develops its structure and parameters based on the data
of the flow rate entering the coil, moisture content of the
air entering the coil, temperature of the chilled water, and
control signal to the valve as illustrated in Fig. 6. The
model proved to work satisfactorily in all season condi-
tions due to its ability to adapt to the changes in the en-
vironment (different seasons) as demonstrated in Fig. 6c.
When pre-trained (based on 400 samples) and fixed as
both structure and parameters the performance deteri-
orated unacceptably in changing seasonal conditions as
seen in Fig. 6a. A partial re-training improved significantly
the results (Fig. 6b), but still this was less valid when the
season changed (at around sample 912) and the model
structure evolution has stopped (at sample 1000). When,
the model structure evolution continued uninterrupted
the result was a satisfactory performance in all seasons as
seen in Fig. 6c.

Fault Detection and Prognostics

Evolving clustering and eTS fuzzy systems were applied
in Ford Motor Company to machine health monitoring
and prognosis in [30]. The ability of the evolving cluster-
ing method to form new clusters that represent different
operating modes of a machine was exploited and differ-
ent types of faults (incipient or drastic) were automatically
identified based on the difference in the cluster formation.
A prediction of the direction of movement of the cluster
centers was used for prediction of possible faults and of
the end-of-life of the machine.
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Evolving Fuzzy Systems, Figure 6
A predictive model of the characteristic temperature difference
across a coil in a heat exchanger of an air-conditioning unit in-
stalled in a real building in Iowa, USA. a An off-line pre-trained
model used in two different seasons (summer and spring);
b Evolving FRB model trained and used during the summer (up
to sample 1000) and then having its structure fixed during the
spring season; c Evolving FRBmodel left to evolve (self-develop)
during the whole period of usage (both spring and summer sea-
sons)

Speech Signal Reconstruction

The ETS fuzzy system is used in [37] for error conceal-
ment in the next-generation Voice over Internet Protocol
(VoIP) communication receivers. It is used in combina-
tion with parametric speech coders of analysis-by-synthe-
sis-type. eTSMIMO [15] is used to predict themissing val-
ues of the linear spectral pairs (LSP) that will allow one

to reconstruct the lost in transmission packets. The eTS
fuzzy model used ten inputs (current LSP parameter val-
ues) and ten outputs (predicted one step/20 milliseconds
ahead LSP values). This research was a joint work between
Lancaster University andNokia-UK and aims the develop-
ment of the next generation intelligent decoders at the re-
ceiver that will be able to conceal lost packets with a size of
80 to 160ms without significant deterioration to the qual-
ity of service (QoS) in VoIP transmission.

Future Directions

The area of evolving fuzzy systems is in its infancy and has
already demonstrated a remarkable success in addressing
some of the most vibrating issues of the development,
application and implementation of truly intelligent sys-
tems in a wide variety of branches of industry and real-life
problems [11]. It opens the door for future developments
that are related to the areas of autonomous systems, early
cancer diagnosis and prognosis of the progression, even to
the identification of structural changes in biological cells
that correspond to the evolution of the disease. In the area
of intelligent self-maintaining sensors the process indus-
try can benefit from more flexible and smarter solutions.
The problems that are yet to be addressed and can mark
the future development of this vibrant area are; (1) col-
laboration aspects between two or more evolving fuzzy
system-based intelligent systems (autonomous robots, in-
telligent sensors etc.); (2) further flexibility of the systems
in terms of real-time self-analysis, optimal features and
input selection, rule aggregation mechanism adaptation
etc.; (3) even more flexible system structure architectures
such as hierarchical, decentralized; (4) more robust learn-
ing algorithms that take care of missing data, different
sampling intervals etc.

From a broader prospective, the future developments
of this discipline will influence and are closely related to
similar developments in the area of communication net-
works (self-adaptive networks [64]), self-validating soft
sensors [61], autonomous aerial, ground-based, and un-
derwater vehicles [20,40,49] etc. The area is closely related
to the developments in the area of neural networks [34,48],
so-called autonomous mental development [23] and cog-
nitive psychology [55], mining data streams [28]. One
can also expect more hardware implementations (the first
hardware implementation of eClustering was reported in
2005 [8]). From the point of view of mathematical funda-
mentals and learning it is also closely related to adaptive
filters theory [69] and the recent developments in parti-
cle filters [17] will certainly influence the future, more ef-
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ficient techniques that will be developed in this emerging
and highly potential branch of research.
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Glossary

Ordinary differential equation An ordinary differential
equation is a relation between a (vector) function
u : I! Rm , (I an interval inR,m 2 N) and its deriva-
tives. A function u, which satisfies this relation, is
called a solution.

Initial value problem An initial value problem is an or-
dinary differential equation with a prescribed value for
the solution at one instance of its variable, often called
the initial time. The initial value is the pair consist-
ing of the initial time and the prescribed value of the
solution.

Vector field For an ordinary differential equation of the
form du

dt D f (t; u), the function f : R � Rm ! Rm is
called the vector field. Thus, at a solution, the vector
field gives the tangent to the solution.

Flow map The flow map describes the solution of
an ordinary differential equation for varying ini-
tial values. Hence, for an ordinary differential equa-
tion du

dt D f (t; u), the flow map is a function
˚ : R �R �Rm ! Rm such that ˚(t; t0; u0) is a so-
lution of the ordinary differential equation, starting at
t D t0 in u D u0.

Functions: bounded, continuous, uniformly Lipschitz
continuous Let D be a connected set in Rk with k 2 N

and let f : D! Rm be a function on D:

� The function f is bounded if there is some M > 0
such that j f (x)j � M for all x 2 D.

� The function f is continuous on D if
limx!x0 f (x) D f (x0), for every x0 2 D. A con-
tinuous function on a bounded and closed set D
is bounded. The function f is equicontinuous or
uniform continuous if the convergence of the limits
in the definition of continuity is uniform for all
x0 2 D, i. e., for every " > 0, there is a ı > 0, such
that for all x0 2 D and all x 2 Dwith jx � x0j < ı it
holds that j f (x)� f (x0)j < ". A continuous func-
tion on a compact interval is equicontinuous.

� Let D � R �Rm . The function f : D! Rm is uni-
formly Lipschitz continuous on D with respect to its
second variable, if f is continuous on D and there
exists some constant L > 0 such that

j f (t; u)� f (t; u)j � Lju � vj ;
for all (t; u); (t; v) 2 D :

The constant L is called the Lipschitz constant.

Pointwise and uniform convergence A sequence of
functions fung with un : I ! Rm is Pointwise con-

vergent if limn!1 un(t) exists for every t 2 I. The se-
quence of functions fung is uniform convergent with
limit function u : I ! Rm if limn!1 supfju � un j j
t 2 Ig D 0. A sequence of pointwise convergent, equi-
continuous functions is uniform convergent and the
limit function is equicontinuous.

Notation
u̇ Derivative of u, i. e., dudt
u(k) The kth derivative of u, i. e., d

k u
dtk

Ia(t0) The closed interval [t0; t0 C a]
Bb(u0) The closed ball with radius b about u0 in Rm ,

i. e., Bb(u0) :D fu 2 Rm j ju � u0j � bg
kuk1 The supremum norm for a bounded function

u : I! Rm , i. e., kuk1 D supfju(t)j j t 2 Ig

Definition of the Subject

Many problems in physics, engineering, biology, eco-
nomics, etc., can be modeled as relations between observ-
ables or states and their derivatives, hence as differential
equations. When only derivatives with respect to one vari-
able play a role, the differential equation is called an or-
dinary differential equation. The field of differential equa-
tions has a long history, starting with Newton and Leibniz
in the seventeenth century. In the beginning of the study
of differential equations, the focus is on finding explicit so-
lutions as the emphasis is on solving the underlying phys-
ical problems. But soon one starts to wonder: If a start-
ing point for a solution of a differential equation is given,
does the solution always exist? And if such a solution ex-
ists, how long does it exist and is there only one such solu-
tion? These are the questions of existence and uniqueness
of solutions of initial value problems. The first existence
result is given in the middle of the nineteenth century by
Cauchy. At the end of the nineteenth century and the be-
ginning of the twentieth century, substantial progress is
made on the existence and uniqueness of solutions of ini-
tial value problems and currently the heart of the topic is
quite well understood. But there are many open questions
as soon as one considers delay equations, functional differ-
ential equations, partial differential equations or stochas-
tic differential equations. Another area of intensive cur-
rent research, which uses the existence and uniqueness of
differential equations, is the area of finite- and infinite-
dimensional dynamical systems.

Introduction

As indicated before, an initial value problem is the prob-
lem of finding a solution of an ordinary differential equa-
tion with a given initial condition. To be precise, let
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D be an open, connected set in R �Rm . Given are
a function f : D! Rm and a point (t0; u0) 2 D. The ini-
tial value problem is the problem of finding an inter-
val I � R and a function u : I! Rm such that t0 2 I,
f(t; u(t)) j t 2 Ig � D and

du
dt
D f (t; u(t)) ; t 2 I ; with u(t0) D u0 : (1)

The function f is called the vector field and the
point (t0; u0) the initial value. One often writes the deriva-
tive as du

dt D u̇. If f is continuous, then the initial value
problem (1) is equivalent to finding a function u : I! Rm

such that

u(t) D u0 C
Z t

t0
f (�; u(�))d� ; for t 2 I : (2)

If f is continuous and a solution exists, then clearly this
solution is continuously differentiable on I.

It might seem restrictive to only consider first-order
systems; however, most higher-order equations can be
written as a system of first-order equations. Consider for
example the nth order differential equation for v : I ! R

v(n)(t) D F


t; v; v̇; : : : ; v(n�1)

�
;

with initial conditions

v(k)(t0) D vk ; k D 0; : : : ; n � 1 :

This can be written as a first-order system by using the vec-
tor function u : I! Rm defined as u D (v; v̇; : : : ; v(n�1)).
The equivalent initial value problem for u is

u̇ D f (t; u) D

0

BB
B
@

u2
:::

un
F(t; u1; u2; : : : ; un)

1

CC
C
A
;

with u(t0) D

0

BB
B
@

v0
v1
:::

vn�1

1

CC
C
A
:

Obviously, this system is not a unique representation,
there are many other ways of obtaining first-order systems
from the nth-order problem.

In the beginning of the study of differential equations,
the focus is on finding explicit solutions. The first exis-
tence theorem is by Cauchy [3] in the middle of the nine-
teenth century and an initial value problem is also called
a Cauchy problem. At the end of the nineteenth century

substantial progress is made on the existence of solutions
of an initial value problem when Peano [20] shows that if
f is continuous, then a solution exists near the initial value
(t0; u0), i. e., there is local existence of solutions. Global ex-
istence of solutions of initial value problems needs more
than smoothness, as is illustrated by the following exam-
ple.

Example 1 Consider the initial value problem on D D
R �R given as

u̇ D u2 and u(0) D u0

for some u0 > 0. As can be verified easily, the solution
is u(t) D u0/(1 � tu0), for t 2 (�1; 1/u0). This solution
cannot be extended for t � 1/u0, even though the vec-
tor field f (t; u) D u2 is infinitely differentiable on the full
domain. As can be seen from later theorems, the lack of
global existence is related to the fact that the vector field f
is unbounded.

Once existence of solutions of initial value problems is
known, the next question is if such a solution is unique.
As can be seen from the following example, continuity of f
is not sufficient for uniqueness of solutions.

Example 2 Consider the following initial value problem
on D D R �R:

u̇ D juj˛ and u(0) D 0 :

If 0 < ˛ < 1, then there is an infinite number of solu-
tions. Two obvious solutions for t 2 [0;1) are u(t) D 0
and û(t) D ((1 � ˛)t)

1
1�˛ . But these solutions are mem-

bers of a large family of solutions. For any c � 0, the fol-
lowing functions are solutions for I D R:

uc (t) D

(
0 ; t < c
((1 � ˛)(t � c))

1
1�˛ ; t � c :

A sufficient condition for uniqueness of solutions of the
initial value problem is uniform Lipschitz continuity of
the vector field f in its second variable u. Although the
ideas behind this theorem go back to Cauchy and Lips-
chitz, Picard [21] and Lindelöf [18] are usually credited
with this result. They used the so-called method of suc-
cessive approximations to prove the uniqueness result; see
Sect. “Uniqueness” for details.

Having determined existence and uniqueness, the next
issue is the relation between a solution and its initial value.
This is the topic of Sect. “Continuous Dependence on Ini-
tial Conditions”. The concept of a flow map is first in-
troduced. Roughly speaking, the flow map is the solution,
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with the initial value as an extra variable. If the vector field
is uniformly Lipschitz continuous in its second variable,
then the flow map is continuous. Thus, a small change in
the initial value, will only give a small change in the solu-
tion (locally).

The concept of an initial value problem can be ex-
tended to noncontinuous vector fields f and existence the-
orems can be shown if the vector fields satisfy the so-called
Carathéodory conditions. More details can be found in
Sect. “Extended Concept of Differential Equation“. This
chapter ends with a discussion of initial value problems
in more general differential equations and the use of exis-
tence and uniqueness of solutions of initial value problems
in dynamical systems.

Existence

Cauchy [3] seems to have been the first one to publish an
existence result for differential equations, using an approx-
imation of solutions by joined line segments. This work
was extended considerably by Peano [20] in 1890.

Theorem 1 (Cauchy–Peano Theorem) Let a; b > 0,
define Ia(t0) :D [t0; t0 C a] and Bb(u0) :D fu 2 Rm j

ju � u0j � bg and assume that the cylinder S :D Ia(t0) �
Bb(u0) � D. Let the vector field f be a continuous function
on the cylinder S. This implies that f is bounded on S, say,
M D maxfj f (t; u)j j (t; u) 2 Sg.

Define the parameter � D min


a; b

M

�
. Then there ex-

ists a solution u(t), with t0 � t � t0 C �, which solves the
initial value problem (1).

Existence and Uniqueness of Solutions of Initial Value Problems, Figure 1
The parameter � D min( bM ; a) guarantees that the solution is within the shaded area S, on the left in the case a < b

M and on the right
if a > b

M

The theorem can also be phrased for an interval
[t0 � �; t0] or [t0 � �; t0 C �]. The parameter � gives
a time interval such that that the solution (t; u(t)) is guar-
anteed to be within S. From the integral formulation of the
initial value problem (2), it follows that

ju(t) � u0j �
Z t

t0
j f (�; u(�))jd� � M(t � t0) :

To guarantee that u(t) is within S, the condition t � t0 � �
is sufficient as it gives M(t � t0) � b and t � t0 � a. In
Fig. 1, this is illustrated in the case D � R �R.

To prove the Cauchy–Peano existence theorem, a con-
struction which goes back to Cauchy is used. This so-
called Cauchy–Euler construction of approximate solu-
tions uses joined line segments which are such that the
tangent of each line segment is given by the vector field
evaluated at the start of the line segment. To be specific,
for any N 2 N, the interval I�(t0) D [t0; t0 C �] is divided
in N equal parts with intermediate points tk :D t0 C k

N �,
k D 1; : : : ;N . The approximate solution is the function
uN : I�(t0)! R, with

uN (t0) D u0;
uN (t) D uN (tk�1)C f (tk�1; uN (tk�1)) (t � tk�1) ;

tk�1 < t � tk ; k D 1; : : : ;N ;
(3)

see also Fig. 2. One sees immediately that function uN
is continuous and piecewise differentiable and, using the
bound on the vector field f ,

juN (t)� uN (s)j � Mjt� sj ; for all t; s 2 I�(t0) : (4)
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Existence and Uniqueness of Solutions of Initial Value Problems,
Figure 2
The approximate solution uN, with N D 5, and the solution u(t).
The dotted lines show the tangent given by the vector field f (t; u)
at the points (ti;u) for various values of u and i D 0; : : : ;5

This estimate implies that the sequence of functions fuNg
is uniformly bounded and that the functions uN are
equicontinuous. Indeed, the estimate above gives that for
any t 2 I�(t0) and any N 2 N ,

juN(t)j � juN (t0)j C Mjt � t0j � ju0j CM� :

And equicontinuity follows immediately from (4) as M
does not depend on N.

Arzela–Ascoli’s lemma states that a sequence of func-
tions which is uniformly bounded and equicontinuous on
a compact set has a subsequence which is uniformly con-
vergent on this compact set [5]. As the sequence fuNg
is uniformly bounded and equicontinuous on the com-
pact set I�(t0), it follows immediately that it has a con-
vergent subsequence. This convergent subsequence is de-
noted by uN�k and its limit by u. To prove the Cauchy–
Peano theorem, we will show that this limit function u sat-
isfies the integral equation (2) and hence is a solution of
the initial value problem (1).

Proof First it will be shown that if N is sufficiently large,
then the functions uN are close to solutions of the differ-
ential equation in the following sense: for all " > 0, there
is some N0 such that for all N > N0

ju̇N (t) � f (t; uN (t))j < " ;
t 2 I�(t0) ; t ¤ tk ; k D 0; : : : ;N : (5)

Let " > 0. As f is a continuous function on the com-
pact set S, it follows that f is uniform continuous. Thus,
there is some ı" such that for all (t; u); (s; v) 2 S with
jt � sj C ju � vj < ı"

j f (t; u)� f (s; v)j < " : (6)

Now define N0 D
l
(MC1)�
ın

m
and let N > N0. Then for

any t 2 I�(t0), t ¤ tk , k D 0; : : : ;N, we have u̇N (t) D
f (tl ; uN (tl )), where l is such that tl < t < tlC1. Hence, (6)
gives

ju̇N (t)� f (t; uN (t))j D j f (tl ; uN (tl ))� f (t; uN (t))j < "

as (4) shows that jtl � tj C juN (tl ) � uN (t)j < (1 C
M)jtl � tj < (1CM)�

N �
(1CM)�

N0
� ı".

Next it will be shown that (5) implies that the func-
tions uN almost satisfy the integral equation (2) for N suf-
ficiently large. From (5), it follows that f (t; uN (t)) � " <
u̇N (t) < f (t; uN (t))C " for all N > N0 and all t 2 I�(t0),
except at the special points tk, k D 0; : : : ;N . Hence, for
any k D 1; : : : ;N and all tk�1 < t � tk , this gives

uN (t) < uN (tk�1)C
Z t

tk�1

�
f (�; uN(�))C "


d�

� uN (tk�1)C
Z t

tk�1
f (�; uN (�))d� C

"�

N
:

Thus, also for any k D 1; : : : ;N , uN (tk) � uN (tk�1) <R tk
tk�1 f (�; uN (�))d� C

"�
N and hence

uN (tk )� uN (t0) D
kX

jD1

�
uN (t j)� uN (t j�1)

�

<

Z tk

t0
f (�; uN (�))d� C "� :

Combination of the last two results gives that for any
t 2 I�(t0)

uN (t) < uN (t0)C
Z t

t0

�
f (�; uN (�))C "


d� C "� :

In a similar way it can be shown that uN (t) > uN (t0) CR t
t0 f (�; uN(�))d� � �" and hence for all N > N0, the fol-
lowing holds:

ˇ̌
ˇ̌uN (t) � uN (t0) �

Z t

t0
f (�; uN (�)d�

ˇ̌
ˇ̌ < "� ;

for all t 2 I�(t0) : (7)

Thus, the function uN satisfies the integral equation (2) up
to an order " error if N is sufficiently large.

As the subsequence uNk converges uniformly to u
and f is continuous, this implies that

R t
t0 f (�; uNk (�)) !R t

t0 f (�; u(�))d� . Thus, from (7), it can be concluded that
u satisfies the integral equation (2) exactly. �
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Note that the full sequence fuNg does not necessarily con-
verge. A counterexample can be found in exercise 12 in
Chap. 1 of [5]. It is based on the initial value problem
u̇ D juj

1
4 sgn(u)C t sin(�/t) with u(0) D 0, and shows

that on a small interval near t0 D 0, the even approx-
imations are bounded below by a strictly positive con-
stant, while the odd approximations are bounded above
by a strictly negative constant.

However, if it is known that the solution of the ini-
tial value problem is unique, then the full sequence of ap-
proximate solutions fuNg must converge to the solution.
This can be seen by a contradiction argument. If there is
a unique solution, but the sequence fuNg is not conver-
gent, then there is a convergent subsequence and a remain-
ing set of functions which does not converge to the unique
solution. But Arzela–Ascoli’s lemma can be applied to the
remaining set as well; thus, there exists a convergent sub-
sequence in the remaining set, which must converge to
a different solution. This is not possible as the solution is
unique.

In case of the initial value problem as presented in Ex-
ample 2, the sequence of Cauchy–Euler approximate so-
lutions fuNg converges to the zero function; hence, no
subsequence is required to obtain a solution. As there are
many solutions of this initial value problem, this implies
that not all solutions of the initial value problem in Exam-
ple 2 solutions can be approximated by the Cauchy–Euler
construction of approximate solutions as defined in (3).
As indicated in exercise 2.2 in Chap. 2 of [13], it is possible
to get any solution by using appropriate Lipschitz contin-
uous approximations of the vector field f , instead of the
original vector field itself, in the Cauchy–Euler construc-
tion. In the example below this is illustrated for the vector
field f (t; u) D

p
juj.

Example 3 Let f : R �R be defined as f (t; u) D
p
juj.

First we define the approximate functions f̂n : [0; 2] �
[0;1)! [0;1) as

f̂n(t; u) D

(p
u ; u > 1

n
1p
n �

1
2
p
n
� 1
n � u


; u � 1

n

and the definition of the Euler–Cauchy approximate func-
tions is modified to

uN (t) D uN (tk�1)C f̂N(tk�1; uN (tk�1)) (t � tk�1);
tk�1 < t � tk ; k D 1; : : : ;N :

This sequence converges to the solution u(t) D 4t2 for
t 2 [0; 2].

Next define the approximate functions f̃n : [0; 2] �
[0;1)! [0;1) as

f̃n(t; u)

D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

p
u ; t � 1 ; u > 1

n ;
1
2n �

� 1
2n � u



Ca2
� 1
2n � u

2

Ca3
� 1
n � u

3
; t � 1 ; 1

2n < u � 1
n ;

u ; t � 1 ; u � 1
2n ;

with a2D4n(
p
n�1) and a3D12n3(3

p
n�2), f̃n(t; u) D

f̂n(t; u), for t � 1C 1
n and and a smooth connection be-

tween those two components of the approximation for
a < t < 1C 1

n . Then the related approximate solutions
will converge to the solution u(t) D 4(t � 1)2, 1 � t � 2
and u(t) D 0, 0 � t < 1. In a similar way all other solu-
tions presented in Example 2 can be obtained.

Example 2 gives a connected and closed family of solutions
to the initial value problem. The following theorem shows
this is typical.

Theorem 2 ([15]) Assume that the assumptions of The-
orem 1 are satisfied. Let t0 < c � t0 C � and define Ac to
be the set of points that can be reached at time t D c by
some solution of the initial value problem. Then Ac is closed,
bounded and connected.

If the initial value problem is one-dimensional, i. e.,
u 2 R, then this implies that the set of points reached by
possible solutions at time t D c is the empty set, a point or
a closed interval.

A proof of this theorem, based on [19], can be found in
Theorem 4.1 in Chap. 2 of [13].

The existence theorems presented so far give existence
of solutions near the initial value (t0; u0). But this local re-
sult can be extended to a global one.

Theorem 3 (Extension Theorem) Let f be continuous
on D. If u(t) is a solution of the initial value problem (1) on
some interval, then the solution can be extended to a max-
imal interval of existence (t�; tC) such that (t; u(t)) con-
verges to the boundary of D as t " tC or t # t� (where
t˙ D ˙1 is possible).

Proof Let Dn be open subsets of D such that [n2NDn D

D, the closures Dn are compact and Dn � DnC1 (e. g.,
Dn D f(t; u) 2 R j j(t; u)j < n; dist((t; u); @D) >

1/ng, see [13]). First it will be shown that for all n 2 N ,
there is some �n such that for each (t0; u0) 2 Dn , the
initial value problem has a solution on the interval
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[t0 � �n ; t0 C �n]. Indeed, for each n 2 N , the func-
tion f is continuous on the compact set Dn . Hence,
there is some Mn > 0 such that j f (t; u)j � Mn for all
(t; u) 2 Dn . Furthermore, for each n 2 N , the distance
dn :D dist(Dn ;DnC1) > 0. Thus, the Cauchy–Peano the-
orem implies that for each (t0; u0) 2 Dn , the solu-
tion of the initial value problem exists on the interval
[t0 � �n ; t0 C �n], with �n D 1/2 min (dn/MnC1; dn).

If the solution u(t) is defined on an interval I, which
is not a right maximal interval, then the argument above
shows that the right endpoint of I can be included in the
interval of existence. So it can be assumed that the inter-
val I is of the form [a1; a2]. The continuity of the solution u
gives that the set f(t; u(t)) j t 2 [a1; a2]g is a compact set
in the open set D; hence, there is some n 2 N such that
f(t; u(t)) j t 2 [a1; a2]g � Dn � Dn . But this implies that
the solution can be extended to the interval [a1; 12 C �n].
And if f(t; u(t)) j t 2 [a1; a2 C �n]g � Dn , then this
can be repeated. Since Dn is compact, there is some
k 2 N such that f(t; u(t)) j t 2 [a1; a2 C k�n]g 6� Dn ;
hence, there exists some (tn ; u(tn)) such that
(tn ; u(tn)) 2 DnC1nDn . This argument can be repeated
for each n 2 N to give sequence (tn ; u(tn)) 2 DnC1nDn ,
with tn < tnC1. Thus, the sequence tn is monotone in-
creasing. Either it is unbounded, which implies that the
solution exists on an interval [a1;1) and hence tC D 1
or it is bounded and hence is convergent to some limit tC.
Similarly, the sequence (tn ; u(tn)) is either an unbounded
sequence in D or has a cluster point on the boundary of D.
In either case it is clear that the solution cannot be ex-
tended outside the interval [a1; tC). A similar argument
can be used for the left endpoint and it can be concluded
that there exists a maximal interval of existence of the
form (t�; tC).

Finally it will be shown that the solution converges
to the boundary of D by a contradiction argument. As-
sume that the solution does not converge to the bound-
ary if t " tC. Then there is some "0 > 0 and a sequence
f�ng with tC � �n < 1

n and d(�n ; u(�n));D) > "0. This
implies that there is some N 2 N such that the sequence
f(�n ; u(�n))g � DN . With the arguments above, this im-
plies that the solution can be extend to an interval in-
cluding tC, which contradicts tC being the maximal right
point. �

Example 1 gives an example of a solution for which
u(t)!1 if t ! 1

u0 , the boundary of its interval of ex-
istence. Example 2 gives an example of a solution with an
unbounded interval of existence. Example 4 shows that the
endpoint can also be related to the failure of continuity
of f .

Example 4 Consider the initial value problem with
D D R � (0;1) and

u̇ D �
1
u
; and u(0) D 2 :

Then the solution is u(t) D
p
4 � 2t for t 2 (�1; 2). If

t ! 2, then (t; u(t))! (2; 0), hence the boundary of D
and the point where the continuity of f fails.

If the initial value problem has a nonunique solution, then
the maximal interval of extension in the extension theo-
rem will in general depend on the initial solution u(t).

Uniqueness

Uniqueness follows if the vector field f is Lipschitz contin-
uous with respect to its second variable u as shown first by
Picard [21] and Lindelöf [18]. Their proof is based again
on approximate solutions, but the approximate solutions
are smoother than the Cauchy–Euler ones. The approxi-
mate solutions are obtained by successive iterations and
are defined as

u0(t) :D u0 and

unC1(t) :D u0 C
Z t

t0
f (�; un(�))d� ; n 2 N ; t 2 I :

(8)

Sometimes this iteration is called Picard iteration. Clearly,
this iteration is based on the integral formula (2). The
iteration process fails if un(�) 62 D for some � 2 I. If f
is continuous, then there is some interval I for which
the sequence is well-defined, as follows from the proof
below.

Theorem 4 (Picard–Lindelöf Theorem) Let a; b > 0
be such that the cylinder S :D Ia(t0) � Bb(u0) � D. Let
the vector field f be a uniformly Lipschitz continuous
function on the cylinder S with respect to its second
variable u and let M be the upper bound on f , i. e.,
M D maxf f (t; u) j (t; u) 2 Sg.

Define the parameter � D min


a; b

M

�
. For t 2 [t0;

t0C�], there exists a unique solution u(t) of the initial value
problem (1).

Successive iterations play an important role in proving ex-
istence for more general differential equations. Thus, al-
though the existence of solutions already follows from the
Cauchy–Peano theorem, we will prove again existence by
using the successive iterations instead of the Cauchy–Euler
approximations as the ideas in the proof can be extended
to more general differential equations.
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Proof By using the bound on the vector field f , we will
show that if (t; un(t)) 2 S for all t 2 [t0; t0 C �0], then
(t; unC1(t)) 2 S for all t 2 [t0; t0 C �0]. Indeed, for any
t 2 [t0; t0 C �0],

junC1(t) � u0j �
Z t

t0
j f (�; un(�))jd�

�

Z t

t0
Md� � M(t � t0) � b ; (9)

thus, junC1(t) � u0j � M� � b and therefore unC1(t) 2
Bb(u0).

The boundedness of f also ensures that the func-
tions fung are equicontinuous as for any n 2 N and any
t0 � t1 < t2 � �C t0:

jun(t1)� un(t2)j �
Z t2

t1
j f (�; un(�))jd� � Mjt2 � t1j :

Up to this point, we have only used the boundedness of
f (which follows from the continuity of f ). But for the next
part, in which it will be shown that for any t 2 [t0; t0 C �0]
the sequence fun(t)g is a Cauchy sequence in Rm , we will
need the Lipschitz continuity. Let L be the Lipschitz con-
stant of f on S, then for any n 2 N and t 2 [t0; t0 C �0],
we have

junC1(t) � un(t)j �
Z t

t0
j f (�; un(�)) � f (�; un�1(�))jd�

�

Z t

t0
L jun(�) � un�1(�)jd�

� L kun � un�1k1
Z t

t0
d�

D L kun � un�1k1 (t � t0) ;

where kun � un�1k1 D supfjun(�) � un�1(�)j j t0 � �
� t0 C �g. This implies that

junC2(t) � unC1(t)j �
Z t

t0
L junC1(�) � un(�)jd�

� L2 kun � un�1k1
Z t

t0
(� � t0)d�

D
L2

2
kun � un�1k1 (t � t0)2 :

Repeating this process, it follows for any k 2 N that

junCkC1(t) � unCk(t)j �
Lk

k!
kun � un�1k1 (t � t0)k

�
Lk�k

k!
kun � un�1k1 :

By using the triangle inequality repeatedly this gives for
any n; k;2 N and t 2 [t0; t0 C �0],

junCkC1(t) � un(t)j �
kX

iD0

junCiC1(t) � unCi (t)j

�

kX

iD0

LnCi�nCi

(nC i)!
ku1 � u0k1

�
(L�)n

n!
ku1 � u0k1

kX

iD0

Li�i

i!

�
(L�)n

n!
b eL� :

Thus, for any t 2 [t0; t0 C �0], the sequence fun(t)g is
a Cauchy sequence inRm ; hence, the sequence has a limit,
which will be denoted by u(t). In other words, the se-
quence of functions fung is pointwise convergent in I�(t0).
We have already seen that the functions un are equicon-
tinuous; hence, the convergence is uniform and the limit
function u(t) is equicontinuous [23].

To see that u satisfies the integral equation (2), observe
that for any t 2 [t0; t0 C �0]

ˇ̌
ˇ̌u(t) � u0 �

Z t

t0
f (�; u(�))d�

ˇ̌
ˇ̌

� ju(t) � unC1(t)j

C

ˇ̌
ˇ
ˇ

Z t

t0
j f (�; un(�)) � f (�; u(�))jd�

ˇ̌
ˇ
ˇ

� ju(t) � unC1(t)j C Lku � unk1(t � t0)
� (1C L�) (ku � unC1k1 C ku � unk1)

for any n 2 N. As the sequence fung is uniformly
convergent, this implies that u(t) satisfies the integral
equation (2).

Finally the uniqueness will be proved using techniques
similar to those in “Existence.” Assume that there are two
solutions u and v of the integral equation (2). Hence, for
any t0 � t � t0 C �,

ju(t) � v(t)j �
Z t

t0
j f (�; u(�)) � f (�; v(�))jd�

� Lku � vk1(t � t0) :

Thus, for k D 1, it holds that

ju(t) � v(t)j �
Lkku � vk1(t � t0)k

k!
;

for any t0 � t � t0 C � : (10)
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For the induction step, assume that (10) holds for some
k 2 N . Then for any t0 � t � t0 C �,

ju(t) � v(t)j � L
Z t

t0

Lkku � vk1(� � t0)k

k!
d�

D
LkC1ku � vk1(t � t0)kC1

(k C 1)!
:

By using the principle of induction, it follows that (10)
holds for any k 2 N. This implies that for any
t0 � t � t0 C �, the solutions satisfy ju(t) � v(t)j �
(L�)kC1ku�vk1

(kC1)! for any k 2 N . Since the expression on
the right converges to 0 for k !1, this implies that
u(t) D v(t) for all t 2 [t0; t0 C �] and hence the solution
is unique. �

Implicitly, the proof shows that the integral equation gives
rise to a contraction on the space of continuous functions
with the supremum norm and this could also have been
used to show existence and uniqueness; see [11,25], where
Schauder’s fixed-point theorem is used to prove the Pi-

Existence and Uniqueness of Solutions of Initial Value Problems,
Figure 3
The first four iterations for initial value problem with the vector
field f (t; u) D t cos uC sin t and the initial value u(0) D 0. Note
that the convergence in the interval [0;1] is very fast (two steps
seem sufficient for graphical purposes), but near t D 2, the con-
vergence has not yet been reached in three steps

card–Lindelöf theorem. With Schauder’s fixed-point the-
orem, existence and uniqueness can be shown for much
more general differential equations than ordinary differ-
ential equations.

The iteration process in (8) does not necessarily have
to start with the initial condition. It can start with any con-
tinuously differentiable function u0(t) and the interation
process will still converge. In specific problems, there are
often obvious choices for the initial function u0 which give
a faster convergence or are more efficient, for instance,
when proving unboundedness.

Techniques similar to those in the proof can be used
to derive a bound on the difference between the successive
approximations and the solution, showing that

jun(t) � u(t)j �
MLn(t � t0)n

(nC 1)!
; t 2 [t0; t0 C �] ;

see [13]. This illustrates that the convergence is fast for t
near t0, but might be slow further away: see Fig. 3 for an
example.

Continuous Dependence on Initial Conditions

In this section, the vector field f is uniformly Lip-
schitz continuous on D with respect to its second vari-
able u and its Lipschitz constant is denoted by L. By
combining the Picard–Lindelöf theorem (Theorem 4)
and the extension theorem (Theorem 3), it follows that
for every (t0; u0) 2 D, there exists a unique solution
of (1) passing through (t0; u0) with a maximal inter-
val of existence (t�(t0; u0); tC(t0; u0)). The trajectory
through (t0; u0) is the set of points (t; u(t)), where u(t)
solves (1) and t�(t0; u0) < t < tC(t0; u0). Now define the
set E � RnC2 as

E :D f (t; t0; u0) j t�(t0; u0) < t < tC(t0; u0);
(t0; u0) 2 D g :

The flow map ˚ : E ! Rm is a mapping which describes
the solution of the initial value problem with the initial
condition varying through D, i. e.,

d
dt
˚(t; t0; u0) D f (t; ˚(t; t0; u0)) and

˚(t0; t0; u0) D u0 ; for (t; t0; u0) 2 E :

From the integral equation (2), it follows that the flowmap
satisfies

˚(t; t0; u0) D u0 C
Z t

t0
f (�; ˚(�; t0; u0))d� ;

for (t; t0; u0) 2 E :
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Existence and Uniqueness of Solutions of Initial Value Problems,
Figure 4
The flow map ˚(t; t0; u0). Note the group property
˚(t; s;˚(s; t0; u0)) D ˚(t; t0; u0). The lightly shaded area
is the tube Uı1 and the darker shaded area is the tube Uı as used
in the proof of Theorem 6. If a solution starts from within Uı ,
then it will stay within the tube Uı1 for t1 � t � t2, as the
solution˚(t; s0; v0) demonstrates

Furthermore, the uniqueness implies for the flow
map that starting at the point (t0; u0), flowing to
(t; ˚(t; t0; u0)) is the same as starting at the point (t0; u0)
and flowing to the intermediate point (s; ˚(s; t0; u0))
and continuing to the point (t; ˚(t; t0; u0)). This im-
plies that the flow map has a group structure: for any
(t0; u0) 2 D and any s; t 2 (t�(t0; u0); tC(t0; u0)), the
flow map satisfies ˚(t; s; ˚(s; t0; u0)) D ˚(t; t0; u0);
the identity map is given by ˚(t0; t0; u0) D u0; and
by combining the last two results, it follows that
˚(t0; t; ˚(t; t0; u0)) D ˚(t0; t0; u0) D u0, and hence
there is an inverse. See also Fig. 4 for a sketch of the
flow map for D � R �R.

To show that the flow map is continuous in all its vari-
ables, Gronwall’s lemma [9] will be very useful. There are
many versions of Gronwall’s lemma; the one presented
here follows [1].

Lemma 5 (Gronwall’s Lemma) Let  : [a; b]! R and
� : [a; b]! R be nonnegative continuous functions on an
interval [a; b]. Let K � 0 be some nonnegative constant
such that

�(t) � K C
Z t

a
 (�)�(�)d� ; for all a � t � b :

Then

�(t) � K exp
�Z t

a
 (�)d�

�
; for all a � t � b :

Proof Define F(t) D K C
R t
a  (�)�(�)d� , for a � t � b.

Then the assumption in the lemma gives �(t) � F(t) for
a � t � b. Furthermore, F is differentiable, with Ḟ D � ;
hence, for a � t � b

d
dt

�
F(t) exp

�
�

Z t

a
 (�)d�

��

D  (t)�(t) exp
�
�

Z t

a
 (�)d�

�

� F(t) (t) exp
�
�

Z t

a
 (�)d�

�
� 0

as �(t) � F(t). Integrating the left-hand side gives

F(t) exp
�
�

Z t

a
 (�)d�

�
� F(a) D K ;

which implies for � that �(t)�F(t)�K exp
hR t

a  (�)d�
i
.

�

Gronwall’s lemma will be used to show that small varia-
tions in the initial conditions give locally small variations
in the solution, or

Theorem 6 The flow map ˚ : E ! RnC2 is continuous
in E.

Proof Let (t; t0; u0)2E. As t; t0 2 (t�(t0; u0); tC(t0; u0)),
there is some t1 < t2 such that t; t0 2 (t1; t2), [t1; t2] �
(t�(t0; u0); tC(t0; u0)) and the solution ˚(s; t0; u0)
exists for any s 2 [t1; t2]. First we will show that
there is some tube around the solution curve
f(s; ˚(s; t0; u0)) j t1 � s � t2g such that for any (s0; v0)
in this tube, the solution ˚(s; s0; v0) exists for t1 � s � t2.

As D is open, there is some ı1 > 0 such that the closed
tubeUı1 :Df(s; v) j j˚(s; t0; u0)�vj�ı1; t1� s � t2g�D.
As f is Lipschitz continuous, hence continuous, there is
some M > 0 such that j f (s; v)j � M for all (s; v) 2 Uı1 .
Recall that the Lipschitz constant of f onD is denoted by L.
Now define ı :D ı1 e�L(t2�t1) < ı1 and the open tube

Uı D f(s; v) j j˚(s; t0; u0) � vj < ı; t1 < s < t2g ;

thus,Uı � Uı1 � D. Thus, for every (s0; v0) 2 Uı , the so-
lution ˚(s; s0; v0) exists for s in some closed interval in
[t1; t2] around s0 and the solution in this interval satisfies

˚(s; s0; v0) D v0 C
Z s

s0
f (�; ˚(�; s0; v0))d� ;
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see also Fig. 4. Furthermore, for any s 2 [t1; t2], we have

˚(s; t0; u0)
D ˚(s; s0; ˚(s0; t0; u0))

D ˚(s0; t0; u0)C
Z s

s0
f (�; ˚(�; s0; ˚(s0; t0; u0)))d�

D ˚(s0; t0; u0)C
Z s

s0
f (�; ˚(�; t0; u0))d� :

Subtracting these expressions gives

j˚(s; s0; v0) �˚(s; t0; u0)j
� jv0 � ˚(s0; t0; u0)j

C

Z s

s0
j f (�; ˚(�; s0; v0)) � f (�; ˚(�; t0; u0))j d�

� ı C

Z s

s0
L j˚(�; s0; v0)� ˚(�; t0; u0)jd� ;

so Gronwall’s lemma implies that j˚(s; s0; v0) �
˚(s; t0; u0)j � ıeL(s�s0) � ı1. Hence, for any s,
˚(s; s0; v0) 2 Uı1 � D, and hence this solution can be
extended to its maximal interval of existence, which con-
tains the interval [t1; t2]. So it can be concluded that for
any (s0; v0) 2 Uı , the solution ˚(s; s0; v0) exists for any
s 2 [t1; t2].

Next we will show continuity of the flowmap in its last
two variables, i. e., in the initial value. For any (s0; v0) 2 Uı
and t1 � t � t2, we have

j˚(t; s0; v0) �˚(t; t0; u0)j
� jv0 � u0j

C

ˇ̌
ˇ
ˇ

Z t

s0
f (�; ˚(�; s0; v0))d��

Z t

t0
f (�; ˚(�; t0; u0))d�

ˇ̌
ˇ
ˇ

� jv0 � u0j C
ˇ̌
ˇ
ˇ

Z t0

s0
j f (�; ˚(�; s0; v0))jd�

ˇ̌
ˇ
ˇ

C

ˇ
ˇ̌
ˇ

Z t

t0
j f (�; ˚(�; t0; u0)) � f (�; ˚(�; s0; v0))jd�

ˇ
ˇ̌
ˇ

� jv0 � u0j C Mjt0 � s0j

C

ˇ̌
ˇ
ˇ

Z t

t0
Lj˚(�; t0; u0) �˚(�; s0; v0)jd�

ˇ̌
ˇ
ˇ :

Thus, Gronwall’s lemma implies that

j˚(t; s0; v0) � ˚(t; t0; u0)j

� (jv0 � u0j CMjt0 � s0j) eLjt�t0j

� (jv0 � u0j CMjt0 � s0j) eLjt2�t1j ;

and it follows that ˚ is continuous in its last two argu-
ments. The continuity of ˚ in its first argument follows

immediately from the fact that the solution of the initial
value problem is continuous. �

If the vector field f is smooth, then the flow map ˚ is
smooth as well.

Theorem 7 Let f 2 C1(D; Rm). Then the flow map
˚ 2 C1(E; Rm ) and

det(Du0˚(t; t0; u0))

D exp
�Z t

t0
tr
�
Du f (�; ˚(�; t0; u0))


d�
�

for any (t; t0; u0) 2 E.

In this theorem, tr(Du f (�; ˚(�; t0; u0))) stands for the
trace of the matrix Du f (�; ˚(�; t0; u0)). For second-order
linear systems, this identity is known as Abel’s identity and
det(Du0˚(t; t0; u0)) is the Wronskian.

The proof of Theorem 7 uses the fact that
Du0˚(t; t0; u0) satisfies the linear differential equation

d
dt

Du0˚(t; t0; u0) D Du f (t; ˚(t; t0; u0))Du0˚(t; t0; u0);

with the initial condition Du0˚(t0; t0; u0)) D I. This last
fact follows immediately from ˚(t0; t0; u0) D u0. And the
linear differential equation follows by differentiating the
differential equation for ˚(t; t0; u0) with respect to u0.
The full details of the proof can be found, for example,
in [5,11].

Extended Concept of Differential Equation

Until now, we have looked for continuously differen-
tiable functions u(t), which satisfy the initial value prob-
lem (1). But the initial value problem can be phrased for
less smooth functions as well. For example, one can de-
fine a solution as an absolute continuous function u(t)
which satisfies (1). A function u : I ! Rm is absolutely
continuous on I if for every positive number ", no matter
how small, there is a positive number ı small enough so
that whenever a sequence of pairwise disjoint subintervals
[sk ; tk] of I, k D 1; 2; : : : ;N satisfies

PN
kD1 jtk � sk j < ı

then
nX

kD1

d (u(tk ); u(sk )) < " :

An absolute continuous function has a derivative almost
everywhere and is uniformly continuous, thus continu-
ous [24]. Thus, the initial value problem for an absolute
continuous function can be stated almost everywhere.

For the existence of absolute continuous solutions, the
continuity condition for the vector field in the Cauchy–
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Peano theorem (Theorem 1) is replaced by the so-called
Carathéodory conditions on the vector field. A function
f : D! Rm satisfies the Carathéodory conditions if [2]

� f (t; u) is Lebesgue measurable in t for each fixed u;
� f (t; u) is continuous in u for each fixed t;
� for each compact set A � D, there is a measurable

function mA(t) such that j f (t; u)j � mA(t) for any
(t; u) 2 A.

Similar theorems to the ones in the previous sections about
existence and uniqueness can be stated in this case.

Theorem 8 (Carathéodory) If D is an open set in RnC1

and f : D! Rm satisfies the Carathéodory conditions
on D, then for every (t0; u0) 2 D there is a solution of the
initial value problem (1) through (t0; u0).

Theorem 9 If D is an open set inRnC1, f : D! Rm sat-
isfies the Carathéodory conditions on D and u(t) satisfies
the initial value problem (1) on some interval, then there
exists a maximal open interval of existence. Furthermore, if
(t�; tC) denotes the maximal interval of existence, then the
solution u(t) tends to the boundary of D if t # t� or t " tC.

Theorem 10 If D is an open set inRnC1, f : D! Rm sat-
isfies the Carathéodory conditions on D and for every com-
pact set U � D there is an integrable function LU (t) such
that

j f (t; u)� f (t; v)j � LU ju�vj; for all (t; u); (t; v) 2 U ;

then for every (t0; u0) 2 D, there is a unique solution
˚(t; t0; u0) of the initial value problem (1). The domain E
of the flow map ˚ is open and˚ is continuous in E.

Proofs of those theorems can be found, for example, in
Sect. I.5 in [11].

Many other generalizations are possible, for example,
to vector fields which are discontinuous in u. Such vector
fields play an important role in control theory. More de-
tails can be found in [6,7,17].

Further Directions

As follows from the previous sections, the theory of ini-
tial value problems for ordinary differential equations is
quite well understood, at least for continuous vector fields.
For more general differential equations, the situation is
quite different. Consider for example a retarded differen-
tial equation, hence a differential equation with delay ef-
fects [12]. For retarded differential equations, there are
local existence and uniqueness theorems which are quite
similar to the ones for ordinary differential equations as

presented in the earlier sections and can be proved by us-
ing Schauder’s fixed-point theorem. But not all solutions
can be extended as in the extension theorem (Theorem 3);
see Chap. 2 in [12].

If one considers differential equations with more vari-
ables, i. e., partial differential equations, then there are no
straightforward general existence and uniqueness theo-
rems. For partial differential equations, the existence and
uniqueness depends verymuch on the details of the partial
differential equation. One possible theorem is the Cauchy–
Kowaleskaya theorem, which applies to partial differential
equations of the form @mt u D F(t; u; @x u; @tu; @2tx u; : : : ),
where the total number of derivatives of u in F should be
less than or equal to m [22]. But there are still many open
questions as well. A famous open question is the existence
and uniqueness of solutions of the three-dimensional
Navier–Stokes equations, a system of equations which de-
scribes fluid motion. Existence and uniqueness is known
for a fluid in a two-dimensional domain, but not in a three-
dimensional domain. The question is one of the seven
“Millennium Problems,” stated as prize problems at the
beginning of the third millennium by the Clay Mathemat-
ics Institute [26].

Existence and uniqueness results are also used in dy-
namical systems. An area of dynamical systems is bifur-
cation theory and for bifurcation theory the smooth de-
pendence on parameters is crucial. The following theorem
gives sufficient conditions for the smooth dependence pa-
rameters; see Theorem 3.3 in Chap. 1 of [11].

Theorem 11 If the vector field depends on parame-
ters � 2 Rk , i. e., f : D �Rk ! Rm and f 2 C1(D �
Rk ;Rm), then the flow map is continuously differentiable
with respect to its parameters �. Furthermore, D�˚ satis-
fies an inhomogeneous linear equation

d
dt

D�˚(t; t0; u0; �)

D Du f (t; ˚(t; t0; u0; �); �)D�˚(t; t0; u0; �)
C D� f (t; ˚(t; t0; u0; �); �)

with initial condition D�˚(t0; t0; u0; �) D 0.

Results and overviews of bifurcation theory can be found,
for example, in [4,8,10,14,16].

Another area of dynamical systems is stability theory.
Roughly speaking, a solution is called stable if other solu-
tions which start near this solution stay near it for all time.
Note that the local continuity result in Theorem 6 is not
a stability result as it only states that nearby solutions will
stay nearby for a short time. For stability results, long-time
existence of nearby solutions is a crucial property [10,14].
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Glossary

Complexity A state of intricacy, complication, variety, or
involvement, as in the interconnected parts of a sys-
tem – a quality of having many interacting, different
components.

Cosmic evolution A grand synthesis of the many varied
changes in the assembly and composition of radiation,
matter, and life throughout the history of the Universe.

Cosmology The study of the structure, evolution, and
destiny of the Universe.

http://www.claymath.org/millennium/Navier-Stokes_Equations/
http://www.claymath.org/millennium/Navier-Stokes_Equations/
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Energy The ability to do work or to cause change.
Energy rate density The amount of energy flowing

through a system per unit time per unit mass.
Evolution Any process of growth and change with time,

including an accumulation of historical information;
in its broadest sense, both developmental and genera-
tional change.

Exobiology The study of the origin, evolution, and dis-
tribution of past and present life in the Universe; also
known as astrobiology or bioastronomy.

Thermodynamics The study of the macroscopic changes
in the energy of a system, for which temperature is
a central property.

Definition of the Subject

Recent research, guided by theoretical searches for unifi-
cation as much as by compilation of huge new databases,
suggests that complex systems throughout Nature are lo-
calized, temporary islands of ordered structures within
vastly larger, disordered environments beyond those sys-
tems. All such complex systems – including, for example,
stars, life, and society – can be shown to obey quantita-
tively the principles of non-equilibrium thermodynamics,
and all can be modeled in a common, integral manner
by analyzing the energy passing through those systems.
The concept of energy flow does seem to be as universal
a process as anything yet found in Nature for the origin,
maintenance, and evolution of ordered, complex systems.
The optimization of such energy flows acts as an agent
of evolution broadly considered, thereby affecting, and to
some extent unifying, all of physical, biological, and cul-
tural evolution.

More specifically, non-equilibrium thermodynamics,
especially the energy flows resulting from contrasting tem-
poral behaviors of matter and radiation energy densities,
can generally explain the cosmic environments needed
for the emergence of increasingly ordered structures over
time. Furthermore, a necessary (though perhaps not suffi-
cient) condition for the natural flow of energy, and hence
for the growth of complexity, is the expansion of the Uni-
verse itself. Among all of Nature’s diverse systems, en-
ergy – acquired, stored, and expressed – is a principal
driver of the rising complexity among galaxies, stars, plan-
ets and life-forms throughout the cosmos. Neither new sci-
ence nor appeals to non-science are required to appreciate
the outstanding hierarchy of evolutionary change, from
atoms to galaxies, from cells to society.

One way to approach the topic of exobiology and com-
plexity – also known as astrobiology or bioastronomy – is
to place it within the grand context of cosmic evolution.

This interdisciplinary subject seeks to combine all the nat-
ural sciences into a unified whole, thereby effectively cre-
ating a new scientific worldview for the 21st century. Evo-
lution, broadly considered, has indeed become a power-
ful unifying concept in all of science. Life itself, including
complex life, seems to be a natural, but not necessarily in-
evitable, result of the way things complexify in an expand-
ing Universe.

Introduction

Cosmic evolution is the study of the sum total of the
many varied developmental and generational changes in
the assembly and composition of radiation, matter, and
life throughout all space and across all time. These are the
physical, biological, and cultural changes that have pro-
duced, in turn and among many other complex systems,
our Galaxy, our Sun, our Earth, and ourselves. The re-
sult is an inclusive evolutionary synthesis bridging a wide
variety of scientific specialties – physics, astronomy, ge-
ology, chemistry, biology, and anthropology – a genuine
scientific narrative of epic proportions extending from the
beginning of time to the present, from big bang to hu-
mankind.

The general idea of evolution – change writ large –
extends well beyond the subject of biology, granting it
a powerful unifying potential in all of science. Unquestion-
ably, change is widespread throughout all of Nature, much
as the Greek philosopher Heraclitus asserted 25 centuries
ago: “All flows . . . nothing stays”. Yet questions remain:
How realistic is the quest for interdisciplinary unification?
Can we reconcile the observed constructiveness of cosmic
evolution with the inherent destructiveness of thermody-
namics? Specifically, how have the amazing examples of
order all around us arisen from chaos – and how does all
this fit into complexity science?

We especially seek to understand the origins of the
many diverse structures spanning the Universe today,
notably those characterized by the term “complexity” –
a state of intricacy, complication, variety, or involvement,
as in the interconnected parts of a system. (In this arti-
cle, no definitional distinctions are made among the words
“order”, “form”, and “complexity”; we address only a gen-
eral understanding of an entire spectrum of structures of-
ten described by the intuitive usage of the term complex-
ity.) Particularly intriguing is the increase of complex-
ity over the course of time, indeed dramatically so (with
some exceptions) within the past half-billion years since
the Cambrian period on Earth. Perhaps some underlying
principle, a general law, or an ongoing process does cre-
ate, organize, and maintain all complex structures in the
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Universe, enabling us to study Nature’s many changes on
uniform, common ground – in the same quantitative way
and with the same mental tools, in other words “on the
same page”.

Both theory and experiment, as well as computer sim-
ulations, suggest affirmative answers to some of the above
questions: Islands of ordered complexity – namely, open
systems that are galaxies, stars, planets, and life-forms –
are numerically more than balanced by great seas of in-
creasing disorder elsewhere in the environments beyond
those systems. All quantitatively agrees with the valued
principles of thermodynamics, especially non-equilibrium
thermodynamics. Furthermore, energy flows produced
largely by the expanding cosmos do seem to be as uni-
versal a factor in the origin of structured systems as any-
thing yet found in Nature. The optimization of such en-
ergy flows might well act as the motor of evolution broadly
conceived, thereby affecting all of physical, biological, and
cultural evolution, the combination of which constitutes
cosmic evolution.

Therefore, a general outline for this article is:
Cosmic Evolution

� Subsets in time: physical evolution! biological evolu-
tion! cultural evolution.

Other researchers have addressed life and complex-
ity in a cosmic setting, originally Chambers [16], who
anonymously wrote a pre-Darwinian study of wide inter-
disciplinary insight, and notably Shapley [62], who pio-
neered a “cosmography” that classified all known struc-
tures according to increasing dimensions. Among others,
Spencer [64] championed the idea of growing complex-
ity in biological and cultural evolution, Henderson [31]
regarded the whole evolutionary process, both physical
and organic, as one and the same, Whitehead [72] sought
to broaden scientific thinking with his “organic philoso-
phy”, von Bertalanffy [75] championed a systems theo-
retic approach to physical, biological, and social studies,
and Sagan [57], Reeves [56], Jantsch [33] and Chaisson [7]
widely advanced the concept of complex (intelligent) life
within a cosmological framework.

Arrow of Time

Figure 1a sketches Nature’s main historical epochs diago-
nally atop the so-called arrow of time [3]; these 7 epochs
correspond to the major evolutionary phases comprising
the whole of cosmic evolution [14]. Regardless of its shape
or orientation, such an arrow symbolizes a sequence of
events that have changed systems from simplicity to com-
plexity, from inorganic to organic, from chaos in the early

Exobiology and Complexity, Figure 1
a An arrow of time symbolically chronicles the principal epochs
of cosmic history, from thebeginning of theUniverse�14 billion
years ago (at left) to the present (at right). Labeled diagonally
across the top are 7 major evolutionary phases (corresponding
to the main historical epochs) that have produced, in turn, in-
creasing amounts of order and complexity among all material
systems: particulate, galactic, stellar, planetary, chemical, bio-
logical, and cultural. Cosmic evolution encompasses all of these
phases, each of which represents a coarse temporal duration
when the emergence of key systems flourished in Nature. Time
is assumed to flow linearly and irreversibly, much as other ba-
sic tenets are presumed, including the fixed character of physi-
cal law and the idea that 2 + 2 = 4 everywhere. b Sketched here
qualitatively is the rise of order, form, and complexity typifying
the evolution of localizedmaterial structures throughout the his-
tory of the Universe. This family of curves depicts a widespread,
innate feeling, and not a rigid proof, that the complexity of or-
dered structures has generally increased over the course of time.
It is unknown if this rise of complexity has been linear, exponen-
tial, or even faster (as drawn here for the 3 curves); current re-
search aims to specify this curve and to describe it quantitatively

Universe to order more recently. That sequence, as deter-
mined by a large body of post-Renaissance data, accords
well with the idea that a chain of knowledge – a loose
continuity along an impressive hierarchy of complexity –
links, in turn:

� The evolution of primal energy into elementary parti-
cles and then atoms

� The evolution of those atoms into galaxies and stars
� The evolution of stars into heavy elements
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� The evolution of those elements into the molecular
building blocks of life

� The evolution of those molecules into life itself
� The evolution of advanced life forms into intelligence
� The evolution of intelligent life into a cultured and

technological civilization.

Despite the extreme specialization of modern science, evo-
lution marks no disciplinary boundaries; complexity sci-
ence is a truly interdisciplinary topic. A more specific out-
line for this article is then:
Cosmic Evolution

� Subsets: physical evolution ! biological evolution !
cultural evolution

� Phases: particulate ! galactic ! stellar ! plane-
tary! chemical! biological! cultural.

Accordingly, the most familiar kind of evolution – bi-
ological evolution, or neo-Darwinism – is just one, albeit
important, subset of a broader evolutionary scenario in-
cluding much more than life on Earth. In short, what Dar-
winian change does for plants and animals, cosmic evolu-
tion aspires to do for all things. And if Darwinism created
a revolution in understanding by helping to free us from
the anthropocentric belief that humans differ from other
life-forms on our planet, then cosmic evolution extends
that intellectual revolution by treating matter on Earth and
in our bodies no differently from that in the stars and
galaxies far beyond.

Note that time’s arrow does not imply that primi-
tive, “lower” life-forms have biologically changed directly
into advanced, “higher” organisms, any more than galax-
ies have physically changed into stars, or stars into planets.
Rather, with time –much time – the environmental condi-
tions suitable for spawning simple life eventually changed
into those favoring the biological origin and evolution of
more complex species. Likewise, in the earlier Universe,
the physical evolution of environments ripe for galactic
formation eventually gave waymore recently to conditions
conducive to stellar and planetary formation. Now, at least
on Earth, cultural evolution dominates, since our local
planetary environment has once more changed to foster
greater, societal complexity. Change in the surrounding
environments usually precedes change in organized sys-
tems, and the resulting changes for those systems selected
to endure have generally been toward greater amounts of
diverse order and complexity.

Anthropocentrism is neither intended nor implied by
the arrow of time; the arrow is not pointing at humankind.
Anthropic principles notwithstanding, no logic supports

the idea that the Universe was conceived in order to pro-
duce specifically us. Humans are not the pinnacle or cul-
mination of the cosmic-evolutionary scenario, nor are we
likely to be the only technologically competent beings that
have emerged in the organically rich Universe. The arrow
merely provides a convenient symbol, artistically suggest-
ing the building of increasingly complex structures, from
spiral galaxies to rocky planets to thinking beings.

Figure 1b graphs the widespread impression that ma-
terial systems have become more organized and complex,
especially in relatively recent times. This family of curves
graphs “islands” of complexity that comprise ordered sys-
tems per se – whether massive stars, colorful flowers, or
busy urban centers – not their vastly, indeed increasingly
disorganized surroundings. Modern science aims to ex-
plain this rise of complexity and to do so with accepted sci-
entific principles and observational or experimental data.

Non-equilibrium Thermodynamics

Cosmic evolution, as understood today, is governed
largely by the laws of physics, particularly those of ther-
modynamics. However, this does not mean classical re-
ductionism, for here we seek to model change guided by
a combination of randomness and determinism, of chance
and necessity. Nor does the cosmic-evolutionary narra-
tive employ mere equilibrium thermodynamics – the kind
most often used to explain closed systems isolated from
their surroundings and having maximum entropy states.
All structures observed in Nature, among them most no-
tably galaxies, stars, planets, and life-forms, are demon-
strably open, non-equilibrium systems, with flows of en-
ergy in and out being an important feature. And it is this
energy, often called available, or “free” energy that helps to
build structures [27,28,38,54,60,74].

By utilizing energy, order can be achieved temporarily,
or at least the environmental conditions made conducive
for the potential rise of order within open systems ripe
for growth. Energy flow plays a vital role in the creation,
maintenance, and fate of complex systems – all quantita-
tively in accord with the second law of thermodynamics,
which demands an overall rise in disorder. None of Na-
ture’s ordered structures, not even life itself, is a violation
(or even a circumvention) of the second law. Consider-
ing both any ordered system as well as its disordered sur-
roundings, non-equilibrium thermodynamics shows that
the net entropy of the system and its environment always
increases. (Quantitative details for many such systems can
be found in [10].)

Energy is now recognized as a key ingredient, not only
for biological systems such as plants and animals, but also
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for physical systems such as stars and galaxies, indeed
as well for social systems such as a city’s inward flow of
food and resources amidst its outward flow of products
and wastes (Weber [69]; Dyke [21]). The analysis is much
the same for all open systems, provided they are modeled
in broad, interdisciplinary ways; energy flow seems indis-
pensable for any system’s origin and evolution.

Figure 2, adapted from the work of Prigogine et al. [55]
and Salk [58], graphically diagrams the emergence of
structure in the presence of energy flow. Physicists relate
to the type of curves drawn in part (a); biologists are more
familiar with those in part (b). By crossing certain en-
ergy thresholds that depend on a system’s status, bifurca-
tions can occur, fostering the origin of whole new struc-
tures that display surprising amounts of coherent behav-
ior. Such “dissipative” structures can export some of their
entropy (or expel some of their energy) into their exter-
nal environments. Accordingly, order is created and sus-
tained by routine consumption of substances rich in en-
ergy, followed by discharge of substances low in energy.
This process, often misnamed, is not really self -ordering;
it is ordering in the presence of energy. “Self-assembling”
systems demonstrate an essential tension between energy
inflow and dissipative outflow; such systems do no func-
tion magically by themselves.

The emergence of order from a condition where orig-
inally there was none (or less of it) is relatively straight-
forward [54,59]. Fluctuations – random deviations from
some average, equilibrium value of, for example, density,
temperature, or pressure – inevitably yet stochastically ap-
pear in any natural system having many degrees of free-
dom. Normally, as in equilibrium thermodynamics, such
instabilities regress in time and disappear; they come and
go by chance since the statistical fluctuations diffuse as
quickly as they arise. Even in an isolated system, such in-
ternal fluctuations can generate local, microscopic reduc-
tions in entropy, but the second law ensures that they will
always balance out. Microscopic temperature fluctuations,
for instance, are said to be thermally relaxed, and entropy
remains maximized in such systems. Nor can an open sys-
tem near equilibrium change spontaneously to new and
interesting structures. But should those fluctuations be-
come too great for an open system to damp, that system
can then depart far from equilibrium and have a chance
to reorganize. Such restructuring generates a “dynamic
steady state”, provided the amplified fluctuations are con-
tinuously driven and stabilized by a flow of energy from
the surroundings – namely, provided the energy flow rate
exceeds the thermal relaxation rate. Systematic, coherent
cycling is often the result, since under these conditions the
spontaneous creation of macroscopic structures dissipates

Exobiology and Complexity, Figure 2
a The departure of an open system from equilibrium is drawn
here as a function of both time, t, and energy, E. The time
axis makes clear that this is an historical, evolutionary pro-
cess, whereas the parallel energy axis tracks free energy flowing
through theopen systemas a vital part of that process. At certain
critical energies, labeled here Ec, a system can spontaneously
change, or bifurcate, into new, non-equilibrium, dynamic steady
states. Statistical fluctuations – that’s chance – affect which fork
the system selects – that’s necessity – upon bifurcation (vertical
arrows), namely which spatial structure is achieved. Not all new
systems survive (solid curve); some are rejected (dashed curve).
The process, as always, is a mixture of randomness and deter-
minism, therefore the end result is inherently unpredictable, as
with all of evolution. b Events in evolutionary biology mimic
those of the diagram in a, although the results here are richer
in structural detail, system function, and energy flow. In phases
marked A, a species survives and thus persists until the environ-
ment changes (vertical arrows), after which further evolution oc-
curs – along phase B toward renewed survival or phase C toward
extinction. Both upwardly rising graphs (drawn by solid lines for
both parts of this figure) imply neither progress nor inevitability,
but they do suggest a general trend toward increasing complex-
ity with time – a trend that cannot be denied among organized
systems observed throughout Nature
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energy more rapidly than the ensuing, and damaging, heat
can damp the gradients and destroy those structures. Fur-
thermore, since each successive reordering often causes
more complexity than the preceding one, such systems be-
come even more susceptible to fluctuations. Complexity
itself consequently creates the conditions for greater insta-
bility, which in turn provides an opportunity for greater
reordering. Nothing is guaranteed; thermodynamics spec-
ifies what can happen, not what actually does happen. The
resulting phenomenon – termed “order through fluctu-
ations” – is a distinctly evolutionary one, complete with
feedback loops that help drive some systems further from
equilibrium. And as the energy consumption and resulting
complexity accelerate, so does the evolutionary process.
This is the realm of true thermodynamics, the older, estab-
lished subject of that name more properly labeled “ther-
mostatics”.

Numerous examples abound throughout Nature, and
not just among physical systems, but for biological and so-
cial systems as well. Naturally occurring phenomena such
as convection cells, river eddies, atmospheric storms, and
even artificially made devices such as kitchen refrigerators
and coherent lasers among an array of many physical sys-
tems that experience coherent order when amply fed with
sufficient energy, all display enhanced order when energy
flows exceed some threshold. Biological systems also obey
the rules of non-equilibrium thermodynamics, for we and
our living relatives are demonstrable examples of dynamic
steady states that emerge and function via energetically
enhanced neo-Darwinism (though biologists often worry
that such statements aim to reduce biology to physics –
whereas in reality physics is broadened to include biology.)
As are Lamarckian-type cultural systems of more recent
times also dynamic steady states, for among the bricks and
chips that civilization has built, energy has been a principal
driver (although, again, sociologists and anthropologists
often loathe their subjects being treated thermodynami-
cally). The result is that life and its cultural inventions dif-
fer not in kind, but merely in degree – specifically, degree
of complexity – among numerous ordered systems evident
in Nature.

Big-Bang Cosmology

The origin of Nature’s many complex structures depends
on the flow of free energy. And this, like the arrow of
time itself, is a direct consequence of the expanding Uni-
verse – a much tested “standard cosmological model”
based largely on three-fold observations of distant reced-
ing galaxies, microwave background radiation, and light-
element abundances. Time marches on and free energies

flow because the cosmos dynamically evolves – building,
maintaining, and often destroying systems. Indeed, it is
cosmic expansion, and probably nothing more, that has
caused the entire Universe to depart from its initial state of
thermodynamic equilibrium. (Thus, the free energies are
inevitable, not the resulting systems per se – which is why
it’s called “available”, or potential, energy freely capable of
doing work.) The stark contrast between localized hot stars
and the vast, cold interstellar space surrounding them now
guarantees a state of non-equilibrium, a cosmic condition
that has pertained for billions of years [26,40].

Matter

Although modern cosmology stipulates that matter only
later emerged from the primordial radiation of the early
Universe, it is pedagogically useful to quantify first the role
of matter and thereafter the primacy of radiation. In this
way, perhaps the greatest change in the history of the Uni-
verse – the transformation from radiation to matter – can
be mathematically justified.

Imagine an arbitrary shell of mass, m, and radius, r,
expanding isotropically with the Universe at a velocity, v,
from some central point. The sphere within the shell is not
necessarily meant to represent the entire Universe, only an
extremely large gas cloud within it – in fact, larger than the
extent of a typical galaxy supercluster (�50 Mpc across),
which comprises the highest rank in the known hierar-
chy of matter assemblages in the Universe. Invoking the
principle of energy conservation, we find the Friedmann–
Lemaitre equation that describes a family of models for the
Universe in bulk,

H2 �
8
3
�G�m D �kR�2 :

Here, H is Hubble’s constant (a measure of galaxy reces-
sion in the expanding Universe), G is the universal gravi-
tational constant, �m is the matter density, and k is a time-
dependent curvature constant. R is a scale factor which re-
lates the radius, r, at any time, t, in cosmic history to the
current radius, r0, at the present time – namely, r = Rr0. So-
lutions to the above equation specify three general models
for the Universe:

� The Universe is “open” (i. e., k negative) and thus re-
cedes forevermore

� The Universe is “closed” (i. e., k positive), meaning
it eventually stops and thereafter contracts to a point
much like that from which it began

� The Universe is precisely balanced between the open
and closed models, in which case it eternally expands
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and never contracts (because it can never reach infin-
ity).

Even if the Universe is, as now suspected, accelerating in
its outward expansion, the effect of “dark energy” (that
supposedly causes the acceleration) on stars and galaxies
is minimal, and that on smaller structures like planets and
their organized living systems is inconsequential; cosmic
acceleration likely affects only the dynamics of the Uni-
verse on the largest scales and not those of organized sys-
tems that are controlled by local energies within it.

The simplest case (k = 0, also known as the Einstein–
deSitter solution) leads to the critical density for closure,

�m;c D 3H2/8�G ;

which, when evaluated for G and H (�70 km/s/Mpc),
equals�10�29 g/cm3. This is �6 atoms in each cubic me-
ter of space, or about a million times thinner than in the
region between Earth and the Moon. Whether the actual
current density, on average everywhere, is smaller or larger
than this value, making the Universe open or closed, re-
spectively, is currently unknown; there is too much un-
certainty concerning “dark (non-baryonic) matter” that is
implied, but not found yet needed, to gravitationally bind
galaxies and their clusters. However, the above-noted ac-
celeration of the Universe does imply that it is expanding
ever faster, thereby giving it an open geometry that will re-
cede toward infinity forevermore.

To follow the evolution of matter throughout cosmic
history (up to the present), we appeal to the conservation
of material particles in the huge sphere postulated above,
�m D �m;0R�3, substitute into the special (k = 0) case of
the Friedmann–Lemaitre equation, and manipulate,
Z

dt D
�
8
3
�G�m;c

��0:5 Z
R0:5dR :

The result suggests that the Universe is �14 � 109 y old
(˙�10%). This equation additionally stipulates how the
average matter density thins with time,

�m � 106t�2 ;

where �m is expressed in g/cm3 and t in seconds.
Figure 3 plots this evolution of matter throughout all

of universal history. This run of density, �m, in standard,
big-bang cosmology demonstrates the essence of change
on the largest scales – the broadest view of the biggest pic-
ture. Here displayed in this one plot is the thermodynamic
history of the whole Universe, so the curve for �m in this
figure (as well as the curve for T discussed in the next sec-
tion) pertain to nothing in particular, just everything in
general.

Exobiology and Complexity, Figure 3
Log-log plot of the density (�m) of matter on average and the
temperature (T) of radiation on average, over the course of all
time, to date. The thick width of the density curve displays the
range of uncertainty in total mass density, whose true value de-
pends on the amount of “dark matter” in the Universe. By con-
trast, the cold cosmic background temperature is very accurately
measured today (2.7 K), and its thin curve here is equally ac-
curately extrapolated back into the hot, early Universe. Recent
findings that cosmic expansion is accelerating should not much
affect these curves

Radiation

The same analysis regarding matter can be applied to ra-
diation in order to follow the change of temperature with
time. Again, for the simplest k = 0 case,

H2 D
8�G�r;c
3R4 ;

where �r is the equivalent mass density of radiation. Here
the R4 term derives from the fact that radiation scales not
only as the volume (˛ R3) but also by one additional fac-
tor of R because radiation (unlike matter) is also affected
linearly by the Doppler shift. And noting that �rc2 = aT4,
where a is the universal radiation constant for any black-
body emitter and T is the temperature of radiation, we find
the temporal dependence of average temperature through-
out all time (in seconds),

T � 1010t�0:5 :

The universal radiation, having begun in a fiery expan-
sion (popularly called the “big bang”), has now cooled to
2.7 K, the average value of the cosmic microwave back-
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ground measured today by radio telescopes on the ground
and satellites in orbit [2].

Figure 3 also plots this run of T versus t. Again, for em-
phasis, the two curves in this figure show the prime twin
trends of big-bang cosmology: the cooling and thinning of
radiation and matter, based largely on observations of the
microwave background radiation and of the distant reced-
ing galaxies.

For the first few hundred millennia of the Uni-
verse, radiation reigned supreme over matter. Life was
nonexistent and matter only a submicroscopic precipi-
tate suspended in a glowing, chaotic fireball. All space
was flooded with high-frequency photons, especially light,
x-rays, and �-rays, ensuring a non-structured, undiffer-
entiated, (virtually) informationless, and highly uniform
plasma. Matter and radiation were intimately coupled to
each other – thermalized and equilibrated. Structure of
any sort had yet to emerge; the energy density of radiation
was too great. If single protons captured single electrons
to form simple hydrogen atoms, the radiation was then so
fierce as to destroy those atoms immediately. However, as
the Universe expanded with time, the energy of radiation
decreased faster than the energy equivalently contained in
matter.

To confirm this statement, compare the energy den-
sities of radiation and matter, and especially how these
two quantities have change over time. First convert the
matter density derived earlier to an equivalent energy
density by invoking the Einsteinian mass (m)-energy (E)
relation, E = mc2 – that is, by multiplying the above
equation for �m by c2. Now, �14 � 109 y after the big
bang, �m;0c2 � 10�9 erg/cm3, whereas aT4

0 � 4 � 10�13

erg/cm3; thus currently, �m;0c2 > aT4
0 by several orders

of magnitude, proving that matter is now in firm control
(gravitationally) of cosmic changes, despite the Universe
still being flooded today with long-wavelength radiation.
However, given that �mc2 scales as R�3 and aT4 scales as
R�4, there must have been a time in the past when �mc2 =
aT4, and an even earlier time when �mc2 < aT4. Manipu-
lation of the above equations shows that these two energy
densities crossed at t� 104 y, well less than a million years
after the big bang. Figure 4 is a graphical representation of
this paragraph.

This crossover represents a preeminent change in all of
cosmic history. The event, �mc2 = aT4, separates the Ra-
diation Era from the Matter Era, and designates the time
(�104 y) when the Universe gradually began to become
transparent. Thermal equilibriumwas destroyed and sym-
metry broken, causing the radiative fireball and disorga-
nized matter to decouple; it was as though a fog had lifted.
Photons, previously scattered aimlessly and destructively

Exobiology and Complexity, Figure 4
The temporal behavior of both matter energy density (�mc2)
and radiation energy density (aT4) illustrates perhaps the great-
est change in all of natural history. Where the two curves inter-
sect, neutral atoms began to form; by t � 105 y after the big
bang the Radiation Era had changed into the Matter Era. A uni-
form, featureless state describing the early Universe was thus
naturally transformed into one in which order and complexity
were thereafter possible

by subatomic material particles (especially free electrons)
in the expanding, hot, opaque plasma of the Radiation Era,
were no longer so affected once the electrons were bound
into atoms of the Matter Era. This crucial and dramatic
change was over by �4 � 105 y, when the last remnants
of the early ionized plasma state had finally transformed
into neutral matter. The 2.7-Kmicrowave radiation reach-
ing Earth today is a relic of this critical phase transition,
having streamed unimpeded (except for being greatly red-
shifted, z �103) across space and time for most of the age
of the Universe, granting a “view” of this grandest of all
evolutionary events that occurred long ago.

With the onset of theMatter Era, matter literally began
dominating radiation. Natural history became more inter-
esting, for then structures could begin to form. The results
of inevitable change, induced gradients, energy flows, and
evolved systems, over billions of years and minus the de-
tails, are galaxies, stars, planets, and life-forms, one by-
product of which is intelligence – at least on Earth. And
this, in turn, has anthropogenically changed nearly every-
thing on our planet.

Life

Now �14 billion years after the beginning of space and
time, the Life Era has begun, at least locally on Earth
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(and possibly at many other places in the Universe). Here,
the emergence of technologically intelligent life heralds
a whole new era wherein life has gradually begun to domi-
nate matter. This second of two great transformations was
not caused by the origin of life per se several billion years
ago; rather, it is technologically advanced life that differs
significantly from primitive life and from other types of
clustered inanimate matter scattered throughout the Uni-
verse. This is not an anthropocentric statement; we dif-
fer because we are the only species capable of knowing
our past and worrying about our future, the only one
able to control matter (albeit locally), much as matter
evolved to control radiation long ago. Intelligent life on
Earth is literally taking matter into its own hands – ma-
nipulating matter and energy, altering genes and terres-
trial environments, indeed potentially changing evolution
itself.

Some central questions before us are these: What
caused the changes amid a wide spectrum of ordered
structures throughout cosmic history and how has com-
plexity increased with time? Have humans actually be-
come the agents of change on Earth, able to tinker with
both matter and energy, including now modifying genes
and environments more than they affect us? How did the
neural network within our human brains acquire the so-
phistication needed to fashion societies, weapons, cathe-
drals, philosophies, etc? In short, what caused us to be-
come sentient enough to contemplate our complex selves?

Measuring Complexity

To appreciate the crux of the historical appearance of
structured matter and life, we return to the greater cosmic
environment and to some of the thermodynamic issues
raised earlier. In brief, when the Universe broke its sym-
metry a few thousand centuries after the big bang, equi-
librium was also destroyed. Temperature gradients were
thereafter established naturally owing to the expansion of
the cosmos. And that meant free energy began flowing, in
fact increasingly so as the temperatures of matter and ra-
diation diverged with time. These are the environmental
conditions that are favorable for the potential growth of
order, form, and complexity.

Cosmic Environment for the Growth of Complexity

When matter and radiation were still equilibrated in the
Radiation Era, only a single temperature is needed to de-
scribe the thermal history of the Universe; the absence
of any thermal gradients imply (virtually) zero informa-
tion content, or zero macroscopic order, in the early Uni-
verse. However, once the Matter Era began, the gas-en-

ergy equilibrium was destroyed and a single tempera-
ture is insufficient to specify the bulk evolution of the
cosmos. Since the random motions of the H and He
atoms failed to keep pace with the rate of general expan-
sion of the atoms away from one another [40], the mat-
ter cooled faster, Tm � 6 � 1016t�1, than the radiation,
Tr � 1010t�0:5. Figure 5a displays this thermal gradient,
which has grown wider since t � 105 y.

Such a thermal gradient is the clear signature of a heat
engine, and it is this ever-widening gradient that has en-
abled matter, in the main, to “build things” increasingly
complex. Theoretically at least, the environmental con-
ditions after 105 y naturally allowed a rise in “negen-
tropy” [60] or “information content” [61] – both factors

Exobiology and Complexity, Figure 5
a In the expanding Universe, the temperatures of matter and ra-
diation separated once these quantities became fully decoupled
at�105 y. Since that time, the Universe has been in a non-equi-
librium state. b S increases less rapidly than Smax, once the sym-
metry of equilibrium broke when matter and radiation decou-
pled at �105 y. By contrast, in the early, equilibrated Universe,
S = Smax for the prevailing conditions. c The potential for the
growth of order, Smax – S, has increased ever since the start of
the Matter Era. This potential rise of order compares well with
the subjectively drawn curves of Fig. 1b, thus providing a theo-
retical basis for the growth of system complexity
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qualitatively synonymous with the term “complexity” [42].
But, as noted below, in practice both such terms are overly
vague and subject to interpretation [5,73], so we resort
here to amore conventional use of entropy, as agreed upon
by most thermodynamicists. The important point – with-
out getting lost in dubious semantics or contentious defi-
nitions – is that such non-equilibrium states are suitable,
indeed apparently necessary, for the emergence of order,
thus it can be reasoned that cosmic expansion itself is the
prime mover for the gradual construction of a hierarchy of
structures throughout the Universe.

Figure 5b plots the run of entropy, S, for a thermal gra-
dient typical of a heat engine, but here graphed for the
whole Universe. This is a not a mechanical device run-
ning with idealized Newtonian precision, but a global en-
gine capable of potentially doing work as locally emerg-
ing systems interact with their environments – especially
those systems able to take advantage of increasing flows of
free energy resulting from cosmic expansion and its nat-
urally growing gradients. Although thermal and chemical
(but not gravitational) entropy must have beenmaximized
in the early Universe, hence complexity in the form of
any structures then nonexistent, after decoupling the en-
vironmental conditions became favorable for the potential
growth of order, taken here to mean a “lack of disorder.”
At issue was timing: As � decreased, the equilibrium reac-
tion rates (˛�) fell below the cosmic expansion rate (˛�1/2)
and non-equilibrium states froze in. Thus we have a para-
doxical yet significant result that, in an expanding Uni-
verse, both the disorder (i. e. net entropy) and the order
(maximum possible entropy minus actual entropy at any
given time) can increase simultaneously – the former glob-
ally and the latter locally. All the more interesting when
comparing the shape of this curve of potentially rising or-
der, Smax – S in Fig. 5c, with our earlier intuited sketch of
rising complexity in Fig. 1b [12,25,41].

Free Energy Rate Density

Theory aside, have the many diverse real structures known
to exist in the Universe displayed this sort of progressive
increase in order during the course of time? The answer
is generally yes. At issue again is how to best character-
ize complexity numerically, given the varied connotations
that this term presents for many researchers [46,47]. In bi-
ology alone, much as their inability to reach consensus on
a definition of life, biologists cannot agree on a complex-
ity metric. Some count non-junk genome size [66], oth-
ers employ structural morphology or behavioral flexibil-
ity [4], while still others chart numbers of cell types in or-
ganisms [36] or appeal to cellular specialization [49]. All

these attributes of life have qualitative usefulness, yet all
are hard to quantify in practical terms; nor do they apply
to non-living things. If progress is to be made assessing
a wide spectrum of complex systems in Nature, our analy-
sis must extend beyond mere words, indeed beyond biol-
ogy.

Putting aside as unhelpful (in the sense that it is too
ambiguous and controversial) the above-noted concept of
information content [32,34] as well as the concept of nega-
tive entropy (or negentropy, which Schroedinger [60] first
adopted but then quickly abandoned), we return to the
quantity with greatest appeal to physical intuition – en-
ergy. Given that energy – the ability to do work or to
cause change – is the most universal currency known in
the natural sciences, it might reasonably be expected to
have a central role in any attempted unification of phys-
ical, biological, and cultural evolution.

Energy does act as an underlying, universal driver like
no other in all of modern science. Whether living or non-
living, dynamical systems need flows of energy to endure.
If stars don’t convert gravitational potential into heat and
light, they would collapse; if plants don’t photosynthesize
sunlight, they would shrivel and decay; if humans don’t
eat, we too would die. Likewise, society’s fuel is energy: Re-
sources come in and wastes go out, all the while civilization
goes about its daily business.

Not that energy has been ignored in previous studies
of systems’ origin and assembly. Physicists (e. g., Morri-
son [52] and Dyson [22]), biologists (Lotka [44]; Moro-
witz [51]; Fox [24]), and ecologists (Odum [53], Ulano-
witz [68], and Smil [63]), to cite only a few researchers,
have noted energy’s organizational abilities. But the quan-
tity of choice cannot be energy alone, for a star clearly has
more energy than an amoeba, a galaxy much more than
a single cell. Yet any living system is surely more complex
than any inanimate object. Thus, absolute energies are not
as suitable as normalized values, which depend on a sys-
tem’s size, composition, and efficiency. Nor are maximum
energy principles or minimum entropy states [43] likely
relevant; rather, organizational complexity is more likely
governed by the optimum use of energy – not too little as
to starve a system, yet not too much as to destroy it.

To characterize complexity objectively – that is, to nor-
malize all such ordered systems on the same, level page –
a kind of energy density is useful, much like the compet-
ing energy densities of radiation and matter that dictated
changing events in the earlier Universe (Fig. 4). In fact, for
a proper treatment of the thermodynamics of non-equilib-
rium open systems, it is the rate at which free energy flows
through such systems of given mass that is most practical.
Hence, free energy rate density, symbolized by ˚m, is an
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operational term whose meaning, measurement, and units
are clearly understood. In this way, neither new science
nor appeals to nonscience are needed to justify the impres-
sive hierarchy of the cosmic-evolutionary story, from stars
to plants to society.

Note that this complexity metric is not an original
term; free energy rate density is a mere revision of an old
one. Moreover, for years the same term has been labeled
differently by specialized researchers:˚m is familiar to as-
tronomers as the luminosity-to-mass ratio, to physicists
as the power density, to geologists as the specific radiant
flux, to biologists as the specific metabolic rate, and to en-
gineers as the power-to-mass ratio. Free energy rate den-
sity is central to many varied subjects; all the more reason
to use it to build a true interdisciplinary subject and to use
it in search of unity across the spectrum of all the natural
sciences [8,9,10,11].

Exobiology and Complexity, Figure 6
Increase in free energy rate density, ˚m, plotted as horizontal histograms when various open structures prospered in Nature, has
been especially rapid in the last few billion years, much as expected from subjective intuition (Fig. 1b) and objective thermodynam-
ics (Fig. 5c). The drawn curve approximates the increase in normalized energy flows characterizing order, form, and structure for
a range of systems throughout the history of the Universe. The circled insets show greater detail of further measurements or calcu-
lations of free energy rate density for three representative systems – stars, plants, and society – typifying physical, biological, and
cultural evolution, respectively. The data in those circled insets are discussed in Sect. “Complexity and Evolution, Broadly Considered”.
(Adapted from [9,10])

Exobiology and Complexity, Table 1
Free energy rate densities for several representative systems

System Duration (106 y) ˚m (erg/s/g)
Galaxy (Milky Way) 12,000 0.5
Star (main-sequence Sun) 10,000 2
Planet (Earth’s climasphere) 5000 75
Plant (Earth’s biosphere) 3000 900
Animal (hominid body) 10 20,000
Brain (human cranium) 1 150,000
Society (modern culture) 0 500,000

Table 1 lists values of ˚m, in units of erg/sec/g, for
seven representative systems (and their specific, computed
cases in parentheses). Also listed is the duration, in mil-
lions of years, for each type of structure, dating back
to their origins in the observational record. Clearly, ˚m
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has increased as more intricately ordered systems have
emerged throughout cosmic history, and dramatically so
in relatively recent times.

The modeled flow of energy through a wide variety
of open systems, alive or not, resembles the intuitive rise
in complexity implied by Fig. 1b; it also mimics the po-
tential rise of order in the above thermodynamic analysis
of Fig. 5c. Complexity (at least as treated here energeti-
cally for localized structures) has indeed quantitatively in-
creased over the course of natural history, and at a rate
faster than exponential in more recent times ([9,11,13];
for details of energy computations and modeling, con-
sult [10]).

Figure 6 plots the results listed in Table 1, where the
˚m values are graphed as horizontal histograms for vari-
ous systems’ evolutionary durations to date. As expected:

� Stars and planets have small energy rate densities,
˚m D 1–102 erg/s/g

� Plants and animals have larger energy rate densities,
103–105 erg/s/g

� Human societies have the largest known energy rate
densities,�106 erg/s/g.

Note that, although the total energy flowing through a star
or planet is much greater than that through our individual
bodies or brains, the specific rate (per unit mass) is larger
for the latter – in fact, roughly a million times greater ˚m
for the human body than for the Sun.

This is not to say, by any means, that galaxies evolved
into stars, or stars into planets, or planets into life. Rather,
this analysis contends that galaxies gave rise to environ-
ments suited to the birth of stars, that some stars spawned
environments conducive to the formation of planets, and
that countless planets likely fostered environments ripe for
the origin of life. Cosmic evolution, to repeat, incorporates
both developmental and generational change.

Nor do these evolutionary phases, or historical dura-
tions, have well-determined start and stop times – or stop
times necessarily at all. The horizontal histograms of Fig. 6
serve to stress that each of these phases once begun did
not end; stars and galaxies, for example, first emerged in
the earlier Universe, as also implied by the diagonal phases
atop the arrow of time in Fig. 1a, but both such system
types continue on presently originating, developing, and
evolving, as do plants and animals that emerged much
later. As depicted by those histograms yet unlike custom-
ary geological periods that do have set time intervals, cur-
rently all evolutionary phases noted in Figs. 1 and 6 oper-
ate simultaneously and indefinitely.

We thus arrive at a comprehensible reconciliation
of the evident destructiveness of thermodynamics with

the observed constructiveness of cosmic evolution. The
sources and sinks of such energy flows passing through
complex yet disparate entities such as stars, plants, and civ-
ilization all relate back to the time of thermal decoupling in
the early Universe, when the conditions naturally emerged
for the origin and evolution of order and organization.

Complexity and Evolution, Broadly Considered

Evolution should not be the sole province of biology, nor
should its utility be of value only to life scientists. Dar-
win [19] never used the word “evolution” as a noun, in fact
only once as a verb in the very last sentence of his classic
book, On the Origin of Species. Nor need the principle of
natural selection be the only mechanism of evolutionary
change, past or present.

Actually, the term “selection” is itself a misnomer, for
no known agent in Nature deliberately selects. Selection
is not an active force or promoter of change as much as
a passive mechanism that weeds out the unfit. As such, se-
lected systems are simply those that remain after all the
poorly adapted or less fortunate ones have been removed
from a population of such systems. A better term might
be “non-random elimination” [48]. What we really aim to
explain are the adverse circumstances responsible for the
deletion of some members of a group. Accordingly, selec-
tion can be generally taken to mean favorable interaction
of any system with its environment – a more liberal inter-
pretation that also helps widen the concept of evolution.

Selection works alongside the flow of resources into
and out of all open systems, not just life-forms. Ordered
systems are selected partly for their ability to utilize en-
ergy; and this energy is the “force”, if there is any at all,
in evolution. Broadly considered, selection occurs in the
inanimate world as well as among animate objects, often
providing a formative step in the production of order. It is
energy flow and natural selection that together, working in
tandem, underlie the “self” -assembly sketched in Fig. 2 –
the former driving initial systems beyond equilibrium, the
latter aiding the emergence of higher order in those sys-
tems that survive.

A handful of cases will suffice, among many others so
documented [14], to illustrate the action of this energy-
selection duo among a spectrum of increasingly ordered
systems in successive phases of cosmic evolution:

� Red-giant stars are more complex than main-sequence
stars

� Eukaryotes are more complex than prokaryotes
� Plants are more complex than protists
� Animals are more complex than plants
� Mammals are more complex than reptiles
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� Brains are more complex than bodies
� Industrial society is more complex than hunter-gather-

ers.

Whether physical evolution of galaxies, stars and planets,
or biological evolution of plants and animals on Earth,
or cultural evolution of our technological civilization,
a rather remarkable ranking order is apparent among all
known organized structures. Stars, life, and society, all
share a significant, common conclusion: Basic differences,
both within and among these categories, are in degree, not
in kind – namely, in degree of complexity arising from on-
going cosmic evolution. To justify this, consider below in
greater detail each of the three major subsets of cosmic
evolution noted in Sect. “Introduction”.

Physical Evolution

Stars are good examples of physical evolution. Growing
complexity can serve as an indicator of stellar aging –
a developmental process – allowing stars to be judged as
their interiors undergo cycles of nuclear fusion that result
in greater thermal and chemical gradients. More data are
needed to describe the increasingly differentiated, onion-
like layers of fused heavy elements within highly evolved
stars; more energy also flows per unit mass. Stellar size,
color, brightness, and composition all change while pass-
ing on up the hierarchy of complexity for all stars, each
stage using more free energy rate density:

� From protostars at “birth” (˚m � 0.5 erg/s/g)
� To main-sequence stars at “mid-life” (�2)
� To red-giant stars in “old age” (�102),
� To pre-supernovae near “death” (�5 � 102).

Those parenthetical values are the stars’ increased energy
rate densities, plotted among other values in the lower cir-
cled inset of Fig. 6. At least as regards energy flow, mate-
rial resources, and structural integrity while experiencing
change, stars have much in common with life. This is not
to say that stars are alive, which is an occasional misinter-
pretation of such a broad statement. Nor do stars evolve
in the strict and limited biological sense; most researchers
would agree that stars develop. Yet close parallels are ap-
parent among stars, including selection, adaptation, and
perhaps even a kind of stellar reproduction – a genera-
tional process – reminiscent of the following Malthusian-
inspired scenario:

Galactic clouds spawn clusters of stars, only a few
of which (the more massive ones unlike the Sun) en-
able other, subsequent populations of stars to emerge in
turn, with each generation’s offspring showing slight vari-
ations, especially among the heavy elements contained

within. Waves of “sequential star formation” [23] propa-
gate through many such clouds like slow-motion chain re-
actions over eons of time – shock waves from the death of
old stars triggering the birth of new ones – neither any one
kind of star displaying a dramatic increase in number nor
the process of regeneration ever being perfect. Those mas-
sive stars selected by Nature to endure the fusion needed
to produce heavy elements are in fact the very same stars
that often produce shocks to create new populations of
stars, thereby both episodically and gradually enriching
the interstellar medium with greater elemental complex-
ity on timescales measured in millions of millennia. As
always, the necessary though perhaps not sufficient con-
ditions for the growth of complexity depend on the envi-
ronmental circumstances and on the availability of energy
flows in such (here, galactic) environments. All of which
is reminiscent of stellar “evolution”, minus any genes, in-
heritance, or overt function, for these are the value-added
qualities of biological evolution that go well beyond phys-
ical evolution.

Continuing on and throughout the physical evolution-
ary subset of cosmic evolution, a general trend prevails, at
least as pertains to Earth’s environment that set the stage
for life:

� Young rocky planets have greater ˚m (�10 erg/s/g)
than normal stars and galaxies (�1)

� Hydrothermal vents on at least one of those planets
have more (�50)

� Planetary climaspheres, such as Earth’s ocean-air inter-
face, have even more (�100).

Note that some physical systems seem to be exceptions
to the above findings, but upon closer inspection they are
not exceptional at all. For example, that supernovae have
very high values of ˚m (	 106 erg/s/g) does not violate
our complexity metric. The reason is that supernovae are
not organized systems, in fact just the opposite; as excel-
lent examples of totally disorganized explosions of mas-
sive stars, they have too much energy flow that is well out-
side the optimal range for stars, and thus we should not
expect to properly plot chaotic supernovae among other
clearly ordered systems in Fig. 6. Pre-supernovae are noted
there, representing an advanced stage of stellar evolution
and growing complexity prior to explosion, but super-
novae themselves are destructive eventsmore typical of re-
treat from complexity toward simplicity. Likewise, bombs,
flames, andmany other damaging events do have large en-
ergy throughput yet do not belong on this curve, thus do
not partake of a general trend toward rising complexity in
Nature.
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Biological Evolution

Plants are good examples of biological evolution. Here,
we trace increasing complexity among plant life on Earth
where neo-Darwinism is clearly at work, making use of
free energy rate densities well higher than those for galax-
ies, stars, and planets. As shown in the middle circled in-
set of Fig. 6, energy-flow diagnostics display a definite in-
crease in complexity among various plants that locally and
temporarily decrease entropy. Themost dominant process
in Earth’s biosphere – photosynthesis – well illustrates that
complexity hierarchy [29]:

� From simple hay or grass (˚m � 5 � 102 erg/s/g)
� To inefficient pinewood (�3 � 103)
� To more efficient corn (�6 � 103)
� To well cultivated sugarcane (�104).

System functionality and genetic inheritance are two fac-
tors, above and beyond mere system structure, which help
to enhance order among animate systems that are clearly
living compared to inanimate systems that are clearly not.
Unsurprisingly, more complex life-forms require the ac-
quisition of more energy per unit mass per unit time for
their well being.

Energy flows through plants as captured solar en-
ergy during the act of photosynthesis converts H2O and
CO2 into nourishing carbohydrates; the previous low-
grade disordering sunlight becomes, in a relative sense,
a higher-grade ordering form of energy compared to the
even lower-grade (infrared) energy re-emitted by Earth.
Likewise, as regards previously discussed physical evolu-
tion, energy flows through stars as gravitational potential
energy during the act of star formation converts into radia-
tion released by mature stars; high-grade energy produced
by gravitational and nuclear events yield greater (thermal
and elemental) organization, yet only at the expense of
their environments into which stars emit low-grade light
abundant in entropy. Either way, energy is a fuel for evo-
lution, fostering some systems to utilize increased power
densities while driving others to destruction and extinc-
tion.

Onward across the bush of life (or the arrow of time) –
cells, tissues, organs, organisms – much the same metric
holds for animals (all in units of erg/s/g):

� Cold-blooded reptiles have greater ˚m (�104) than
globally averaged plants (�103)

� Warm-blooded mammals typically have more
(�5 � 104)

� Some birds, during complex flight, can achieve even
more (�7 � 104).

Human life itself can also be examined on finer scale to
show how energy usage continues upward (per unit mass)
for more complex tasks [30,63]:

� Laboring humans have greater ˚m (�6 � 104) than
sedentary humans (�2 � 104)

� Vigorously bicycling and intricately sewing humans
have more (�105)

� Thinking human brains themselves have even more
(�2 � 105).

Starting with life’s precursor molecules (the realm of
chemical evolution) and all the way to human brains ex-
emplifying the most complex clump of animate matter
known (neurological evolution), the same general trend
characterizes the complexity of plants and animals as for
stars and planets: The greater the perceived complexity
of the system, the greater the flow of free energy density
through that system – either to build it, or to maintain it,
or both.

No strong distinctions are made here among ˚m val-
ues for members of the animal kingdom, except to note
that they are nearly all within a factor of ten of one another,
confined between those for photosynthesizing plants on
the one hand and central nervous systems on the other.
The results are broadly consistent with measured specific
metabolic rates scaling inversely with body mass, M�1/4,
among a wide variety of animal species [37,70]. Suffice it
to say that animals in the main and in accord with Fig. 6 fit
well within the complexity trends for the major evolution-
ary stages of life and for the intermediate phases of cosmic
evolution.

Note, however, as for some non-living systems above,
a minority of living systems seem exceptional, their values
of ˚m somewhat out of bounds among other equally ad-
vanced biological systems. Occasional life-forms also dis-
play retreat from complexity, such as some bats that move
deeper into caves over generations and thus gradually lose
their eyesight, or snakes and whales that eventually lost
legs over time. Exceptions, real and apparent, to any rule
will likely occur in a biosphere so rich in numbers and di-
versity as ours on Earth. For example, respiring bacteria
are problematic at face value, having ˚m values as much
as 106 erg/s/g [45], thus comparable to higher forms of life.
But microbes are so highly metabolic only when environ-
mental resources warrant; none of them respire continu-
ously. Measured rates are often quoted for peak periods of
high reproductivity. By contrast, more than three-quarters
of all soil bacteria are virtually dormant and thus have˚m
values orders of magnitude less while eking out a living
in nutrient-poor environments. When all microbial rates
are time-weighted, microbes’ average values range in the
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thousands of erg/s/g, as expected for systems of intermedi-
ate complexity. Likewise and to note just one other seem-
ingly exceptional animal, the Komodo Dragon can con-
sume 80% of its body weight at one meal, yet not need
another meal for a month – however, its time-averaged
metabolic rate is much less than its maximum rate while
eating.

Birds are another case in point, as they are well known
to have high specific metabolic rates (�3 � 104 erg/s/g)
during periods of peak activity, such as when earnestly for-
aging for food for their nestlings. But, once again, upon
closer inspection, they are recognized not to be excep-
tions at all. That the smallest animals have the highest such
rates is often taken [70] as an explanation of their fre-
quent eating habits (hummingbirds ingest up to half of
their body mass daily), extreme levels of activity (bum-
blebees flap their wings up to 160 times per second), and
relatively short lifespans (few years typically, given the
heavy toll on their metabolic functions); those are oper-
ational tasks, namely, function, not structure. Given that
birds and bees normally function in a three-dimensional
aerial environment while solving advanced tasks in spa-
tial geometry, materials science, aeronautical engineering,
molecular biochemistry, and social stratification, then per-
haps they ought to have large values of ˚m. That birds,
while airborne, have higher values than for resting hu-
mans should not surprise us since we ourselves have not
solved the art of flying, an admittedly complex task. By
contrast, when bicycling vigorously or sewing intricately,
our specific metabolic rates do exceed even those of birds
in flight as noted above. Moreover, when humans do fly,
aided by built aircraft, machine values of ˚m are indeed
higher (�107 erg/s/g) than for even the most impressively
ingesting hummingbirds, as discussed in the next section
on cultural evolution.

Cultural Evolution

Society is a good example of cultural evolution. Here, the
cosmic-evolutionary chronicle continues, yet with greater
normalized energy flows to power our obviously complex
civilization. As plotted in the upper circled inset of Fig. 6,
social progress can be tracked, again in terms of energy
consumption, for a variety of human-related cultural ad-
vances among our hominid ancestors. Quantitatively, that
same energy rate density increases:

� From hunter-gatherers of a few million years ago
(˚m � 104 erg/s/g)

� To agriculturists of several thousand years ago (�105)
� To industrialists of two hundred years ago (�5 � 105)
� To western society today, on average (�106).

That a cluster of brainy organisms working collectively in
a social group is more energy intensive per capita (and
thus more complex) than each of its individual human
members – at least as regards the present criterion for or-
der of free energy rate usage per capita – is a good exam-
ple of a “whole greater than the sum of its parts”, in this
case for the open, non-equilibrated society that constitutes
modern civilization [15].

The road to today’s technological society was unques-
tionably built with increased energy use, as has been earlier
recognized by many cultural historians (e. g., White [71];
Cook [18]; Brown [6]; Jervis [35]; McNeill and McNeill
[50]), who noted the importance of rising energy expen-
diture per capita, a factor also more recently emphasized
by practitioners of “big history” (Christian [17]; Spier [65];
Aunger [1]), a newly emerging subject that treats conven-
tional history more deeply, indeed parallels the scenario of
cosmic evolution.

Machines, too, and not just computer chips, but also
ordinary motors and engines that typified the fast-paced
economy of the 20th century, can be cast in evolutionary
terms – though here themechanism is less Darwinian than
Lamarckian [39], with the latter’s emphasis on accumula-
tion of acquired traits. Either way, energy remains a driver,
and with rapidly accelerating pace. Aircraft engines, for
example, display clear evolutionary trends as engineering
improvement and customer selection over generations of
products have made engines more intricate, complex, and
efficient, all the while utilizing enriched flows of energy
density [63]:

� Gas-guzzling SUVs have greater ˚m (�106erg/s/g)
than model-T automobiles (�105)

� Boeing-747 jumbo jets of the last few decades have
more (�107)

� Military F-117 stealth aircraft of the present have even
more (�108).

Finer-scale evolutionary analysis of many technological
advancements display evident progress toward greater
complexity, such as for the typical American passenger
car over the past two decades that can be cast in terms of
growing horsepower-to-weight ratios provided by the US
Highway Traffic Safety Administration: ˚m D 5:9 � 105

erg/s/g in 1978, 6.8 × 105 in 1988, and 8.3 × 105 in 1998.
Not surprisingly, silicon chips – a cultural icon of today’s
vibrant, digitized 21st-century economy – have immense
flows of energy density, currently reaching values of�1010

erg/s/g mostly caused by chip miniaturization despite re-
duced power consumption.

Rare exceptions in cultural evolution’s apparent drive
toward greater complexity sometimes cause regression to-
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ward simpler systems, much as for minor aspects of the
physical and biological subsets of cosmic evolution. Col-
lapse of civilizations, either internally (because of societal
conflict) or externally (owing to environmental change),
that then resort to social chaos is are examples of infre-
quent retreat from society’s overall drive toward greater
complexity [20,67].

Occasional exceptions aside, increasingly sophisti-
cated technological gadgets, under the Lamarckian pres-
sure of dealer competition and customer selection, do in
fact show increases in ˚m values with product improve-
ment over the years. Not only can the cultural evolution
of machines be traced and their ˚m values computed as
noted above for engines, but similar advances can also be
tracked for a whole array of silicon-based devices now in-
undating our global economy. In keeping with the upper
part of the curve in Fig. 6, many of these cultural devices
do have complexity measures comparable to, and often
greater than, biological systems, including brains. Tech-
nology clearly allows individual humans to accomplish
things that cannot be done by us alone, and usually faster
too, which partly explains why most of society continues
to embrace technology, despite its pitfalls, to aid our senses
and improve our increasingly complex lives.

Conclusions and Future Directions

This article has taken the liberty of extrapolating the
word “evolution” in an intentionally broad way to analyze
change on all spatial and temporal scales.Within the grand
context of cosmic evolution, common threads have been
identified linking a wide spectrum of ordered structures
during an extremely long period of natural history, from
big bang to humankind. More than any other single factor,
energy flow seems to be a principal means whereby Na-
ture’s diverse systems naturally became increasingly com-
plex in an expanding Universe, including not only galax-
ies, stars and planets, but also lives, brains and civilization.

The scenario of cosmic evolution accords well with
observations demonstrating an entire hierarchy of struc-
tures to have emerged, in turn, throughout the history
of the Universe: particles, galaxies, stars, planets, life, in-
telligence, and culture. As a general trend, an overall in-
crease in complexity is apparent with the relentless march
of time, without any progress, purpose or design implied.
With cosmic evolution as our guide, we can begin to un-
derstand the environmental conditions needed for matter
to have become increasingly ordered, organized, and com-
plex. This rise in order, form, and structure violates no
laws of physics, and certainly not those of modern ther-
modynamics. Nor is the idea of ubiquitous change novel to

modern worldviews. What is new and exciting is the way
that frontier, non-equilibrium science now helps us unify
a holistic cosmology wherein complex life plays an inte-
gral role – namely, to address the origin and evolution of
all things by means of logic, rationality, and the methods
of natural science.

When studying complexity in Nature, some re-
searchers prefer the concept of information rather than
energy, often becoming displeased when the former is
put aside as done in this article. But information con-
tent has had a muddled history full of assorted interpre-
tations – meaningful information, the value of informa-
tion, Shannon information, algorithmic information, raw
information. Furthermore, no one has yet shown quantita-
tively and unambiguously, that information content rises
throughout the ages for physical, biological, and cultural
systems. A useful future research direction would clarify
the role of the information sciences in complexity studies
and cosmic evolution, including the possibility that infor-
mation is merely other forms of energy – energy acquired,
energy stored, and energy expressed.

By contrast, it is encouraging that a single quantity
such as free energy rate density, defined here clearly and
with units well understood, affects all ordered systems,
given that some systems are regulated by gravity and oth-
ers practically not. Thermodynamics does pertain to all
such systems universally, whether massive enough like
stars subject to gravity or less so as for life-forms gov-
erned mostly by electromagnetism. Energy flow is a com-
mon feature of every open, non-equilibrium system, and it
is insightful not only that one such quantity is uniformly
applicable but also that it seems to map reasonably well
the rise of complexity among many known systems. Grav-
itational force in physics, natural selection in biology, and
technological innovation in culture are all examples of di-
versified actions that can give rise to accelerated rates of
change at locales much smaller than the Universe per se –
such as the islands of order that are stars, life, and civiliza-
tion itself. Indeed, our use of energy wisely and optimally
will likely guide our fate along the future arrow of time, for
we humans are also part of the cosmic-evolutionary sce-
nario.

Humankind is now moving toward a time, possibly as
soon as within a few generations, when we shall no longer
be able to expect Nature to easily provide for our own
survival. Rather, civilization on Earth will either have to
adapt to the natural environment with ever-accelerating
speed, or to generate artificially controlled environments
(either on or beyond Earth) needed for our ecological exis-
tence. From two of Nature’s most advanced yet locally or-
dered systems – society and machines – will likely emerge
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a symbiotic technoculture, the epitome (thus far as best we
know) of complexity in the Universe – a new technology-
based system that will likely require even greater values of
energy rate density, as the curve in Fig. 6 continues racing
upward. Can humanity endure despite its own increasing
complexity? Or will our species transform into some other
intricate entity as complexity continues to rise?

I thank la FondationWright de Geneve for support and
encouragement of this research, which comprises the in-
tellectual theme of the Wright Center for Science Edu-
cation at Tufts University. The author is also associated
with the Harvard College Observatory, where he teaches
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Glossary

Chiral, achiral and racemic A molecule is chiral if its
three-dimensional structure is different from its mir-
ror image. Such molecules tend to be optically active
and turn the polarization plane of linearly polarized
light in the right- or left-handed sense. Correspond-
ingly, they are referred to as D- and L-forms, which
stand for dextrorotatory and levorotatory molecules.
An achiral molecule is mirror-symmetric and does not
have this property. A substance is racemic if it con-
sists of equally many left- and right-handedmolecules.
A polymer is said to be isotactic if all its elements have
the same chirality.

Enantiomers and enantiomeric excess Enantiomers are
a pair of chiral molecules that have opposite handed-
ness, but are otherwise identical. Enantiomeric excess,
usually abbreviated as e.e., is a normalized measure of
the degree by which one handedness dominates over
the other one. It is defined as the ratio of the differ-
ence to the sum of the two concentrations, so e.e. al-
ways falls between�1 and +1.

Epimerization and racemization Epimerization is a
spontaneous change of handedness of one sub-unit in
a polymer. Racemization indicates the loss of a pre-
ferred handedness in a substance.

Catalysis and auto-catalysis Catalysts are agents that
lower the reaction barrier. A molecule reacts with the
catalyst, but at the end of the reaction, the catalyst
emerges unchanged. This is called catalysis. In auto-
catalysis the catalyst is a target molecule itself, so this
process leads to exponential amplification of the con-
centration of this molecule by using some substrate.
Biological catalysts are referred to as enzymes.

Nucleotides and nucleic acids Nucleotides are mono-
mers of nucleic acids, e. g., of RNA (ribonucleic acid)
or DNA (deoxyribonucleic acid). They contain one of
four nucleobases (often just called bases) that can pair
in a specific way. Nucleotides can form polymers, and
their sequence carries genetic information. One speaks
about a polycondensation reaction instead of polymer-
ization because one water molecule is removed in this
step. Other nucleotides of interest include peptide
nucleic acid or PNA. Here the backbone is made of
peptides instead of sugar phosphate.
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Peptides and amino acids Amino acids are molecules of
the general form NH3-CHR-COOH, where R stands
for the rest, which makes the difference between dif-
ferent amino acids. For glycine, the simplest amino
acid, we have R=H, so two of the bonds on the cen-
tral C atom are the same and the molecule is, therefore,
chiral. For alanine, R=CH3, so all four bonds on the
central C atom are different, therefore this molecule
is chiral. A peptide is a polymer generated through
a polycondensation reaction of amino acids. Peptides
are also referred to as proteins.

Solar constant and albedo The solar constant is the total
flux of energy from the Sun above the Earth’s atmo-
sphere. Its current value is S D 1:37 kWm�2, but it
was about 30% lower when the solar system was young
(108 yr ago, say), so S is not a constant. The albedo A
is the fraction of the Sun’s energy that is reflected from
the surface of the Earth, e. g., by clouds and snow and,
to a lesser extent, by land masses and oceans.

Photosynthesis and carbon fixation Photosynthesis uses
light to reduce CO2 and to produce oxygen either as
free molecular oxygen or in some other chemical form.
This process removes CO2 from the atmosphere and
produces biomass, which is written in simplistic form
as (CH2O)n. This process is referred to as carbon fixa-
tion.

Life A preliminary definition of life involves replication
and death, coupled to a metabolism that utilizes any
sort of available energy. Life is characterized further
by natural selection to adapt to environmental changes
and to utilize available niches. A proper definition of
life is difficult given that all life on Earth can be traced
back to a single common ancestor. Any definition of
life may need to be adjusted if extraterrestrial or artifi-
cial life is discovered.

Definition of the Subject

Astrobiology is concerned with questions regarding pos-
sible origins of life on Earth and elsewhere in the Uni-
verse. Although to date there has been no detection of ex-
traterrestrial life, it is generally assumed that life could be
widespread, provided certain conditions of habitability are
met. A common implicit hypothesis in astrobiology is that
life can emerge spontaneously once certain environmen-
tal conditions are met. This implies that there may well
have been multiple geneses, separated only by global ex-
tinction events, such as major impacts by other celestial
bodies [11].

Four important discoveries can be named that have
provided impetus to the field of astrobiology.

1. More than 300 extrasolar planets have been discovered
since 1995, providing explicit targets for detecting life
outside the solar system.

2. Recent Mars missions have provided evidence for liq-
uid water on the surface ofMars in the past and possibly
even in the present time. This has fostered the search
for techniques to detect microbial life on Mars.

3. On earth the carbon in very old sedimentary rocks dat-
ing back 3.8 Gyr ago shows a consistently lower 13C to
12C abundance ratio, which is normally indicative of
life. This lends support to the notion that life may have
been present as soon as the Earth’s surface became hos-
pitable.

4. The discovery of extremophiles on Earth has consider-
ably extended the definition of habitability to include
extreme temperatures, pressures and pH values, high
salinity as well as high radiation levels. This has raised
hopes of finding life elsewhere in our solar system.

Astrobiology thus comprises several scientific disciplines:
astronomy, geology, chemistry, and biology. Therefore,
much of the original literature tends to appear in journals
in these various fields. We should also mention that there
are technological attempts beingmade to produce artificial
life [35]. While this approach is not aimed at reproducing
the origin of life on Earth, it may still be useful for prompt-
ing our imaginations in understanding the transition from
nonliving to living matter.

Introduction

Since the early days of nonlinear dynamics and non-equi-
librium thermodynamics, it has been clear that one of the
ultimate applications of this theory might be to facilitate
an understanding of the transition from non-living to liv-
ing matter. The main reason is obviously that living sys-
tems are very far from equilibrium – as indicated by the
high degree of order, and hence the low entropy, of living
systems relative to their environment.

As early as 1952, Turing [44] proposed the idea that
chemical reaction-diffusion systems might provide a tool
for studying biochemical pattern formation, which has in-
creased our understanding of the laws of nature far from
equilibrium, where life occurs. This idea was followed up
in the late 1960s by Prigogine [33,34] who suggested that
dissipative structures have great importance in establish-
ing a physical description of living matter. A general the-
ory of autocatalytic molecular evolution was developed in
1971 by Eigen [15], who argued that in a single micro-en-
vironment, only a single handedness can result from a sin-
gle event. In particular, the famous chicken and egg prob-
lem that occurs in biology at different levels was identi-
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fied as a Hopf bifurcation. A Hopf bifurcation describes
the spontaneous emergence of an oscillating solution once
some stability threshold has been crossed. The mathemat-
ics of this is familiar to any physicist, but it requires that
the equations describing the relevant physics are known.
In biology, it is not even clear that the various phenom-
ena can be described by equations. A first detailed attempt
in this direction was, indeed, that of Eigen. However, the
equations governing the emergence of life are only phe-
nomenological ones. Nevertheless, these approaches are
invaluable in that they help give the origin of life question
a mathematical basis.

One of the earliest anticipated forms of life that is still
similar to present life is the RNA world [21], whereby
simple RNA molecules with functional behavior self-re-
produce using genetic information encoded either in the
same or in other participating RNAmolecules. Obviously,
there are tremendous difficulties, given that RNA is too
complicated a molecule to be synthesized abiologically.
A significantly simpler molecule is peptide nucleic acid
or PNA [30], in which the backbone consists of peptide
instead of sugar phosphate. Nevertheless, the difficulty of
producing RNA remains.

There is no firm idea where on Earth such molec-
ular replication may have originally taken place. Fre-
quently discussed scenarios include hydrothermal vent
systems [37], and also beach scenarios that are subject to
tides leading to cyclic changes in concentration [24] as well
as to repeated wetting and drying [7].

An early experiment that contributed significantly to
the research into the origins of life was the Urey–Miller ex-
periment [26], which demonstrated the spontaneous pro-
duction of amino acids in a reducing atmosphere consist-
ing of H2O vapor, CH4, NH3, and H2 with an energy sup-
ply in the form of sparks. More recent experiments also
allow for the presence of CO2, which now seems unavoid-
able on the early Earth, given that it is continuously re-
plenished through outgassing by volcanoes.

In the following, we review some areas in which there
has been considerable cross-fertilization between astrobi-
ology and nonlinear dynamics. We begin by discussing
a phenomenon that is believed to have taken place around
the time of the origin of life, namely the establishment of
a definitive handedness of biomolecules that is inherent
in DNA and RNA (D-form) and in amino acids (L-form).
Next, we discuss constraints on the evolution of heredi-
tary information and, finally, we review some models that
characterize the alteration of the terrestrial environment
by early life. In addition to any of these physical effects,
random fluctuations lead inevitably to local imbalances
between the concentrations of molecules of D- and L-form.

In the following, we discuss mechanisms that can lead to
an exponential amplification of enantiomeric excess. For
a recent review of these ideas see [32].

Homochirality

Theories of a chemical origin of life involve polymeriza-
tion of nucleotides that carry and utilize genetic informa-
tion. Ribonucleotides possess chirality, i. e., they are dif-
ferent from their mirror images. All known life forms use
ribonucleotides of the so-called D-form (right-handed), as
opposed to the L-form (left-handed). These two molecules
are referred to as opposite enantiomers. Inmost cases these
different enantiomers are optically active, i. e., they turn
the polarization plane of linearly polarized light in a right-
handed or left-handed sense.

Any non-enzymatic synthesis of ribonucleotides
would have produced amixture of equallymany right- and
left-handed building blocks. Technically this is referred
to as a racemic mixture of these molecules. However, it
is known experimentally that, in a racemic mixture of
mononucleotides, polymerization is quickly terminated
after the first or second polymerization step [23]. This
is generally referred to as enantiomeric cross-inhibition,
which was long thought to be a serious obstacle to a chem-
ical origin of life. It was therefore thought to be necessary
that life evolved only in a homochiral environment. More-
over, it would then be necessary that the degree of enan-
tiomeric purity must have been very high. This is impor-
tant because it rules out a number of physical mechanisms
based on the enantioselective effects of circularly polarized
radiation, magnetic fields, and the parity-breaking prop-
erty of the electroweak force.

The Frank-Mechanism

A general mechanism for producing complete homochi-
rality was proposed in 1953 by Frank [19] based on the
assumed effects of auto-catalysis and what he called mu-
tual antagonism. In fact, the enantiomeric cross-inhibition
mentioned above can be thought of as a possible example
of mutual antagonism. Frank’s model is characterized by
the following set of three reactions:

DC S
kC
�! DC D ; (1)

LC S
kC
�! LC L ; (2)

DC L
kI
�! DL ; (3)

where D and L denote monomers of the two enantiomers,
S is a substrate from which monomers could be formed
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via auto-catalysis, and DL are inactive dimers that are lost
from the system. (At this level of simplification no distinc-
tion is made between DL and LD. This simplification will
later be relaxed.) The parameters kC and kI characterize
the reaction speeds. These reactions translate to the fol-
lowing set of equations for the concentrations of D, L, S,
and DL,

d
dt

[D] D CkC[S][D] � kI[D][L] ; (4)

d
dt

[L] D CkC[S][L] � kI[D][L] ; (5)

d
dt

[S] D �kC[S]


[D]C [L]

�
; (6)

d
dt

[DL] D C2kI[D][L] : (7)

These equations imply that the total mass of all build-
ing blocks (including the substrate), is constant, i. e.
[D]C [L]C [S]C [DL] D const � M.

This system of equations describes the continued au-
tocatalytic production of DL, D and L until the substrate S
is exhausted, i. e., [S] D 0. However, as long as [S] is still
finite, the asymmetry,A D [D]� [L], grows quasi-expo-
nentially, proportional to exp(

R
[S] dt). A numerical ex-

ample of this is shown in Fig. 1.

Exobiology (theoretical), Complexity in, Figure 1
Solution of Eqs. (4)–(6) for kI D kC. Both D and L grow exponen-
tially until [D]C [L] becomes comparable to the constantly de-
clining substrate concentration [S]. At the same time the pro-
duction of DL removes an equal amount of D and L, but this ef-
fect primarily affects those enantiomers that are already in the
minority. In this calculation an initial asymmetry (here 10%) of
[D]� [L] growsuntil saturation. At theend, [D] has reached100%
enantiomeric excess, but this happened at the expense of pro-
ducing a large number of inactive heterochiral dimers DL

In the numerical example above, we started with very
small initial concentrations. Another possibility is to start
with a perturbed racemic solution. The racemic solution
is given by [D] D [L] D /kI , where  D kC[S] is the in-
stantaneous growth rate due to auto-catalysis. Under the
assumption that  can be treated as a constant (i. e., when
the system is still nearly racemic), a linear stability analysis
shows that the enantiomeric excess,

e.e. D
[D]� [L]
[D]C [L]

(8)

grows exponentially. This means that the racemic solu-
tion is unstable and that the mechanism for achieving ho-
mochirality is based on a linear instability.

Continued Polymerization

There is a priori no good reason to permit the production
of heterochiral dimersDL, but not homochiral dimersDD
and LL, i. e.,

DC D
kS
�! DD ; (9)

LC L
kS
�! LL : (10)

The importance of such reactions was stressed in a re-
view by Blackmond [1], who also introduced an addi-
tional modification that consists in the assumption that,
rather than monomers, the homochiral dimersDD and LL
catalyze the production of monomers, i. e., reactions (1)
and (2) are replaced by

DDC S
kC
�! DDC D ; (11)

LLC S
kC
�! LLC L : (12)

This model is similar to the original Frankmodel provided
there is a way of getting rid of those homochiral dimers
that are in the minority. This requires enantiomeric cross-
inhibition for dimers to form heterochiral trimers, i. e., we
need the additional reactions

DDC L
kI
�! DDL ; (13)

LLC D
kI
�! LLD : (14)

A solution to the corresponding reaction equations is
given in Fig. 2. Reaction calorimetry supports the assump-
tion that dimers and not monomers are the relevant cata-
lysts [1]. This seems to apply, in particular, to the first au-
tocatalytic reaction ever found that enhances enantiomeric
excess [42]. In this reaction (sometimes referred to as the
Soai reaction), the substrate is pyridine-3-carbaldehyde
and the chiral molecule of either D- or L-form is 3-pyridyl
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Solution of Eqs. (4), (6) supplemented by kinetic equations corre-
sponding to the reactions Eqs. (9), (14), for kS D kI D kC. Again,
an initial 10% asymmetry of [D]� [L] grows until [D]C [L] be-
comes comparable to the constantly declining substrate concen-
tration [S]. Themonomers polymerize into dimersDD and LL. To-
ward the end, [DD] reaches 100% enantiomeric excess

alkanol, which thus acts as an asymmetric autocatalyst to
produce more of itself. In this reaction, however, dialkylz-
inc acts as an additional achiral catalyst. While the Soai
reaction is important as a first explicit example of an auto-
catalytic reaction that enhances the enantiomeric excess, it
is not normally regarded as directly important for astrobi-
ology.

The polymerization model was developed by San-
dars [39], who included arbitrarily many polymerization
steps of the form

Dn C D
kS
�! DnC1 ; (15)

Ln C L
kS
�! LnC1 ; (16)

Dn C L
kS
�! DnL ; (17)

Ln C D
kS
�! LnD : (18)

The basic outcome of this and similar models is always the
same as in the original Frank model, except that the poly-
merization model is also capable of displaying interesting
wave-like dynamics in time-dependent histograms of dif-
ferent polymers [5].

Spatially Extended Models

In reality, there are limits as to the degree to which a sys-
tem can be considered fully mixed. In general, [D] and [L]

should be functions of time and space, i. e. [D] D [D](t; x)
and [L] D [L](t; x). Assuming that there is only molecular
diffusion, the relevant reaction equations are to be supple-
mented by additional diffusion terms,

d
dt

[Dn] D R(D)
n C �r

2[Dn] ; (19)

d
dt

[Ln] D R(L)
n C �r

2[Ln] ; (20)

where R(D)
n and R(L)

n L are the right hand sides of the reac-
tion equations.

If there were only one type of handedness, the resulting
equation would be reminiscent of the Fisher equation [29],

d f
dt
D (1 � f ) f C �r2 f ; (21)

which admits propagating front solutions with front speed
vfront D 2

p
�. Here, f could represent the local concen-

tration of some disease in models of the spread of epi-
demics, for example.

In the present case, there are two fields, one of each
handedness. It is instructive to refer to these fields as popu-
lations, which is suggestive of their ability to replicate, mi-
grate, become extinct, and to compete against a population
of opposite handedness. Each population is able to expand
into unpopulated space at a speed given approximately
by vfront, but once two opposing handednesses come into
contact, there is an impasse and the propagation comes to
a halt. A snapshot of a one-dimensional model illustrat-
ing polymer length as a function of position is shown in
Fig. 3 for populations of opposite handedness that have
come into contact.

The overall dynamics of symmetry breaking are well
characterized by a low order truncation, where the model
is truncated at n D 2 and the evolution of the n D 1modes
is assumed to be enslaved by the evolution of the n D 2
modes [5]. An example of such a solution is shown in
Fig. 4, which shows the evolution in a space-time dia-
gram, where two populations of opposite handedness ex-
pand into unpopulated space until two opposite popula-
tions come into contact.

In two and three dimensions, a front between two op-
posing enantiomers is (in general) curved, in which case
it can propagate diffusively in the direction of curvature.
This is caused by the fact that the inner front between two
populations is slightly shorter than the outer one. (Only
the immediate proximity of a front matters; what lies be-
hind it is irrelevant if it is of the same handedness.) Indeed,
on a two-dimensional surface the inner front is shorter
than the outer one by 2�d – independent of radius. Here, d
is the front thickness, which is of the order of d � (�/)1/2.
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Color/gray scale plots of [Dn] and [Ln] for t/�diff D 0:8 as
a function of x and n, and the corresponding dependen-
cies of

PN
nD1 n[Dn] and

PN
nD1 n[Ln] (solid line), compared with

1
2N

PN
nD1[Dn] and 1

2N
PN

nD1[Ln] (dashed line), and 1
4N

2[D1] and
1
4N

2[L1] (dotted line), all in units of (Q/kS)1/2. The normalized dif-
fusivity is�/(L2�0) D 10�2 and N D 20. Adapted from [4]

It turns out that in two dimensions the rate of change
of the integrated asymmetry, A D

R
([D]� [L]) d2x, de-

pends only on the number of topologically distinct rings
or islands. Once an island is wiped out, the rate of change
of A changes abruptly and then stays constant until the
next island gets wiped out. So the enantiomeric excess,

e.e. D
R
([D] � [L]) d2x

R
([D]C [L]) d2x

; (22)

increases with time in a piecewise linear fashion.
Even if at each point homochirality could be reached

rapidly (time scale �1), global homochirality requires
that one population wipes out the other one completely.
Diffusion is usually too slow to lead to any significant mix-
ing and hence to global homochirality. However, there
could be circumstances where such mixing is sped up by
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Profile of [D](x; t�) and space-time diagram of [D](x; t) for
the one-dimensional problem without advection and an ini-
tial perturbation corresponding to a weak (amplitude 0.01)
right-handed excess at x/L D 0:1 (marked in white or yellow)
and a somewhat stronger (amplitude 0.3) left-handed excess
at x/L D �0:1 (marked in dark or blue). Note the propagation
of fronts with constant speed if the exterior is racemic (i. e.
[D] D [L] D 1/2, shown in medium shades or red) and a non-
propagating frontwhen the chirality is opposite on the two sides
of the front. The normalized diffusivity is �/(L2�0) D 10�2, i. e.
the same as in Fig. 3. Adapted from [4]

something like “turbulent” transport. In the case of the
Earth, the slowest relevant transport is in the Earth’s man-
tle, part of which is now associated with what is called the
deep biosphere. Assuming that multiple geneses of life is
possible, this would raise the question of whether a simul-
taneous co-existence of different handednesses on differ-
ent parts of the early Earth would have been possible. It is,
however, unclear whether this possibility could have left
any traces that would still be detectable today.

Another approach to solving the problem of spatially
extended chemistry is by means of cellular automata. In
this approach, points on a mesh can take different states
corresponding to molecules of right or left handedness,
achiral substrate molecules, or even empty states. An ex-
ample of such a calculation by Shibata et al. [41] is shown
in Fig. 5. Again, there are patches of populations of oppo-
site handedness that grow and wipe each other out, such
that in the end only one handedness survives.
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The evolution of molecules of D- and L-forms is shown in the upper and lower panels, respectively. Note the tendency toward com-
plete homochiralization by gradually filling up isolated islands with the chirality of the surrounding molecules. The dimensionless
times are 50, 250, and 1750 from left to right. Adapted from [41]

Epimerization

An interesting alternative to the Frank-type mechanism is
a set of reactions based primarily on a phenomenon called
epimerization, i. e., the spontaneous change of handedness
in one part of the polymer. This mechanism is important
in the chemistry of amino acids. Plasson et al. [31] identi-
fied four reactions: activation, polymerization, epimeriza-
tion, and depolymerization as necessary ingredients that
can, under certain conditions, lead to an instability of the
racemic state with a bifurcation toward full homochirality.
They called this the APED model, whose reactions can be
summarized as follows:
A: activation:

L
a
�! L� ; D

a
�! D� ; (23)

P: polymerization:

L� C L
p
�! LL ; D� C D

p
�! DD ; (24)

L� C D
˛p
�! LD ; D� C L

˛p
�! DL ; (25)

E: epimerization:

LD
e
�! DD ; DL

e
�! LL ; (26)

D: depolymerization:

LL
h
�! LC L; DD

h
�! DC D: (27)

This minimal subset of reactions is shown in Fig. 6.
Compared with the Frank model, a major advantage

of the APED model is that no hypothetical auto-cataly-
sis is required. Indeed, all these reactions exist in princi-
ple, although it is as yet unclear what kind of manipula-
tion of the environment is required to make all these re-
actions happen. Another advantage is that the system is
closed, so no inflow or outflow of matter is required. The
system is maintained away from equilibrium by energy in-
put though the activation of amino acids.

Given that there is neither auto-catalysis nor enan-
tiomeric cross-inhibition, one wonders whether the APED
model still shares some similarities with Frank’s original
model. Some degree of similarity is immediately seen by
writing the APED reactions in sequential form in one line,
i. e.,

D� C L
˛p
�! DL

e
�! LL

h
�! LC L ; (28)

L� C D
˛p
�! LD

e
�! DD

h
�! DC D : (29)

This shows that, as long as the reaction rates for epimer-
ization and depolymerization are not limiting factors, we
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Representation of the minimal set of reactions necessary for
allowing a spontaneous transition to homochirality. Adapted
from [6]

have essentially the reactions

D�
˛pL
�! L and L�

˛pD
�! D : (30)

This way of writing these reactions emphasizes the roles
of L and D in catalyzing the conversion of D� into L and
L� into D, respectively. Just like the mechanism of mu-
tual antagonism, these reactions disfavor a racemic state,
but instead of producing unreactive waste, these reactions
produce directly one of two possible homochiral states.

In addition, there are reactions of the form

L� C L
p
�! LL

h
�! LC L ; (31)

D� C D
p
�! DD

h
�! DC D : (32)

These reactions simulate the autocatalytic conversion of
L� into L by L and of D� into D by D. Again, linear analy-
sis establishes that the racemic state is unstable provided ˛
is in the range 0 < ˛ < 1; see [6,31].

In conclusion we can say that the homochirality of
life-bearing molecules might well have originated from
the chemical reactions that led to their formation. Thus,
the hypothetical RNA world may have been born into
an environment surrounded by homochiral peptides (as
described in Sect. “Epimerization”), or, alternatively, ho-
mochirality may have emerged as a consequence of enan-
tiomeric cross-inhibition during the first stages of the
RNA world (as discussed in Sect. “Continued Polymeriza-
tion”).

In the next section we discuss some issues regarding
possible strategies for establishing a primitive informa-
tion-carrying system. This is also based on catalysis, but
catalysis in the production of molecules other than itself.

Establishing Hereditary Information

So far, we have ignored the fact that polymers can consist
of different amino acid or nucleotide units, even though
they would all have the same handedness. Therefore, such
molecules could, in principle, carry information. Once
such polymers can replicate, the question arises as to how
to prevent them from becoming extinct due to errors in
the copying process, and, instead, how to allow them to
compete against parasites. It is generally believed that early
self-replicating systems had a substantial error rate associ-
ated with each replication event. A certain error rate is ob-
viously necessary for facilitating Darwinian evolution by
natural selection, but it must be small enough to prevent
extinction.

Assuming that with each generation a species pro-
duces � offspring where the length of the genome isN bits,
and that the probability for a copying error at any position
in the genome is p, the necessary condition for long-term
survival is given by [15,16]

pN < ln � : (33)

The significance of this formula is illustrated in Fig. 7 with
the help of a numerical example where the selective advan-
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Number of survivors as a function of the number of generations
in a numerical example with an error rate of pD 0:01. This initial
number of survivors is 1000. Note that for a genome length of
N D 70 and 71, the population dies out after 1800 and 400 gen-
erations, respectively. For N D 69 and less the number of sur-
vivors increases exponentially. This is compatible with the sur-
vival criterion N . (ln 2)/0:01D 69:3, derived from Eq. (33)
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tage (i. e., the multiplication factor) is chosen to be � D 2,
the error rate is p D 0:01, and four different values of N
between 68 and 71 are used. In this numerical experiment,
� new offspring are produced, but with a probability p that
an error is introduced at each of the N positions. Follow-
ing an error, only the intact copies can produce further off-
spring.

According to Eq. (33) the maximum genome length
is, with the parameters of our example, (ln 2)/0:01 D 69:3.
This is compatible with Fig. 7, which shows that the di-
viding line between extinction and long-term survival is
between N D 69 and 70. For contemporary genomes N
is of the order of 108, and p is of the order of 10�8 [14],
or below, depending on the efficiency of error-correcting
mechanisms available in contemporary organisms.

The first replicating systems are likely to have rather
high error rates and no correction mechanism, making
it virtually impossible to carry sufficient information for
building more complex replicators. This difficulty can be
removed by invoking the concept of hypercycles [17],
whereby the full genetic information is carried collectively
by several smaller systems (smaller N), each one small
enough to obey Eq. (33). Mathematically, such a system
can be described by the following set of reactions [2]:

Ii
r i
�! 2Ii ; (34)

Ii C Ii�1
ki
�! 2Ii C Ii�1 : (35)

Assuming, furthermore, that resources are limited, the to-
tal number of molecules, M D

P
i [Ii], is taken to be con-

stant, i. e., Ii is assumed to be siphoned off from the system
at a rate � that is independent of i. Mathematically, such
a system can be described by the following set of ordinary
differential equations:

d
dt

[Ii ] D ri[Ii ]C ki[Ii ][Ii�1]� �[Ii] ; (36)

where

� D
X

i



ri[Ii ]C ki[Ii ][Ii�1]

�.X

i

[Ii] (37)

is the factor that keeps the total number of molecules con-
stant. The kinetic coefficient ri models the residual effects
of birth and death, while ki is the kinetic coefficient for the
catalytic production of Ii , where Ii�1 acts as a catalyst. The
evolution of number densities in a model of five hypercy-
cles is shown in Fig. 8 for a case in which all ki D k and
ri D r are chosen to be the same for all values of i.

An interesting situation arises when the effects of par-
asites are included. Boerlijst & Hogeweg [2] considered an

Exobiology (theoretical), Complexity in, Figure 8
Evolution of the number densities of five hypercycles with equal
parameters. Note that peaks of I1 (solid line) are followed by
peaks of I2 (dotted line) and I3 (dashed line), and so forth. Time
is measured in units of r�1 and concentrations are measured in
units of r/k

Exobiology (theoretical), Complexity in, Figure 9
Sketch showing the coupling of several hypercycles together
with a parasite coupled to species I2. Adapted from [2]

example in which a parasite was coupled to I2; see Fig. 9.
The effect on the above model is shown in Fig. 10 where
kpara D 2k and rpara D r have been chosen. One sees that
not much happens for a long time when the parasite is
turned on. This is because the parasite has to grow to
a level at which it can affect the entire system. When this
point is reached, all components of the system decay expo-
nentially – including the parasite itself. Unfortunately, the
system can never recover from this disaster, so the hyper-
cycle theory seems to have a problem.

Again, spatial extent can significantly alter the situ-
ation. Using a cellular automata approach, Boerlijst &
Hogeweg [2] and Boerlijst [3] showed that the nonlinear
spatial dynamics of spiral waves gives the system stabil-
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Exobiology (theoretical), Complexity in, Figure 10
Evolution of the number densities of five hypercycles with equal
parameters and a parasite where kpara D 2ki and rpara D r. Time
is measured in units of r�1 and concentrations are measured in
units of r/k

Exobiology (theoretical), Complexity in, Figure 11
Spatial patterns in the cellular automata approach of Boerlijst
and Hogeweg [2]. Courtesy of Boerlijst MC

ity against otherwise deadly parasitic species. Interestingly
enough, this approach tends to produce spiraling inter-
faces between different species; see Fig. 11

These equations are, by nature, similar to other chem-
ical reaction-diffusion equations where several different
substances catalyze each other’s reactions. A particularly
exciting example is the famous Belousov–Zhabotinsky re-
action, where malonic acid, CH2(COOH)2 is oxidized in
the presence of bromate ions, BrO�3 . To initiate the reac-
tion, cerium is used as a catalyst to donate ions, although
other metal ions may also be used. The color depends on
the state of the cerium as it changes from Ce3C to Ce4C or,
if iron is used, from Fe2C to Fe3C. The resulting reactions
are of the form [28]

AC Y
k1
�! X ; (38)

X C Y
k2
�! P ; (39)

BC X
k3
�! 2X C Z ; (40)

2X
k4
�! Q ; (41)

Z
k5
�! Y ; (42)

where X D HBrO2, Y D Br�, Z D Ce4C, A D B D
BrO�3 , P and Q are reaction products that do not con-
tribute further to the reactions, and k1; : : : ; k5 are known
rate constants. The reactions above lead to kinetic equa-
tions of the form

@[X]
@t
D k1[A][Y]�k2[X][Y]Ck3[A][X]�k4[X]2 ; (43)

@[Y]
@t
D �k1[A][Y] � k2[X][Y]C k5[Z] ; (44)

@[Z]
@t
D 2k3[A][X] � k5[Z] : (45)

This model of reaction equations is called the Oregonator,
which refers to the affiliation of the authors at the time of
publication [18].

If spatial extent is included via diffusion terms, this re-
action exhibits, in certain cases, spiral patterns similar to
those in the model of Boerlijst & Hogeweg [2]. In Fig. 12
we reproduce the pattern obtained by Zhang et al. [48] for
a slightly modified model consisting of only two partial
differential equations. Depending on the value of a certain
control parameter in their model, spiral patterns of differ-
ent size are produced. An extensive review of the physics
of pattern formation in different settings is given by Cross
and Hohenberg [10].

The connection between pattern formation and the
origin of life may seem rather remote. However, the
equations governing chemical pattern formation illustrate
some of the critical steps that are thought to have played
a role in the origins of life. In particular, the fact that differ-
ent chemical compounds catalyze each other in a produc-
tive manner is an essential property behind the model pro-
posed by Eigen. The Belousov–Zhabotinsky reaction also
illustrates the phenomenon of auto-catalysis where, in the
presence of A, the molecule X catalyzes the production of
more X by using A as a substrate and producing Z as an
additional side product.

The possibility of self-replication was demonstrated
for simple RNA molecules by Spiegelman [27] back in
the late 1960s. Now, there are examples of simple peptide
chains that can catalyze the production of each other [38].
However, a serious shortcoming of any of the above exam-
ples is the fact that there is no possibility of natural selec-



3294 E Exobiology (theoretical), Complexity in

Exobiology (theoretical), Complexity in, Figure 12
Spiral and ring-like patterns for the modified reaction equations
by Zhang et al. [48]. On the boundaries a no-flux condition has
been adopted, i. e., the normal components of all gradients van-
ish. Adapted from [48]

tion and hence Darwinian evolution. So, as far as the ques-
tion of the origin of life is concerned, this pathwaymust be
considered a dead end.

In summary, one can say that there are similarities in
the mathematics of producing homochirality and in estab-
lishing hereditary information in the composition of the
first replicating polymers. However, in the latter case, even
less is known about the detailed nature of such polymers
and their catalytic properties. A particularly important as-
pect is the possibility of spatial extent, which can substan-
tially modify the behavior of any chemical system. In the
present case, as shown in Ref. [2], the possibility of spatial
extent is critical for stabilizing the system against destruc-
tion by parasites. The model also exhibits spiral pattern
formation that has been at the heart of early work by Pri-
gogine and others in connection with early ideas on bio-
genesis.

Alteration of the Environment by Early Life

In this last section, we discuss some physics problems
within astrobiology that illustrate how life, once it has
formed, might affect the environment of the early Earth
and how it led to a planet so markedly different from
a planet that does not harbour life.

Global Energy Balance of the Earth

The young Sun was about 30% fainter than today, and yet
the young Earth was covered with liquid water and had
temperatures higher than nowadays. This was caused by
the presence of greenhouse gases such as water vapor, car-
bon dioxide, and probably methane. Life is responsible for
reducing CO2 to compounds of the form (CH2O)n and
similar, and for oxidizing various minerals to produce O2.
The resulting decrease of CO2 weakens the greenhouse ef-
fect, so in this sense the emergence of life has an essentially
cooling effect on the Earth’s overall climate.

Without atmosphere, the planet would cool like
a black body at a rate proportional to the local flux �SBT4,
where �SB is the Stefan–Boltzmann constant. Integrated
over the entire surface of the planet, this corresponds to
a loss of 4�R2

E�SBT
4, which would need to be balanced

against the rate of energy received by solar radiation. The
solar “constant” is S D 1:37 kWm�2 and the total en-
ergy projected onto the disk of the Earth is (1� A)�R2

ES,
where A is the albedo, i. e., the fraction of energy re-
flected from the Earth. The resulting blackbody tempe-
rature would be

T0 D
�
(1 � A)

S
4�SB

�1/4
: (46)

Using AD 0:3 and �SB D 5:67 � 10�8 Wm�2 K�1), the
temperature of the Earth would be 255K or about �18°C.

In the presence of an atmosphere, the rate of cooling is
modified to �SBT4

eff, where Teff is the effective temperature
equivalent to that of a black body. A positive greenhouse
effect corresponds to Teff < T , so the cooling is reduced
and the atmosphere heats up according to the vertically
integrated energy equation

C
dT0
dt
D (1 � A)

S
4
� �SBT4

eff ; (47)

where C is the vertically integrated specific heat.
The value of the effective temperature can be obtained

from a radiative transfer calculation. A simplified model
calculation1 yields

T4
eff D

`

`crit
T4
0 ; (48)

1Under the assumption of local isotropy (Eddington approxima-
tion) radiative equilibrium implies that the flux is proportional to the
negative gradient of the radiative energy density aT4, where a is the
radiation-density constant, so

F D �
1
3
c`r(aT4) :

Here, c is the speed of light and ` is the mean free path of photons.
The latter can be expressed in terms of the opacity � and the density �
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where T0 is the surface temperature, ` is an averagedmean
free path of photons and `crit is the critical value above
which there is a positive greenhouse effect. Again, a sim-
plified calculation suggests `crit D 3H/16 � 0:19H, where
H D RT/(�g) � 8 km is the pressure scale height of the
atmosphere. So, an increase in opacity leads to a decrease
of the cooling and hence to an increase in the surface tem-
perature.

Another interpretation is that the greenhouse gases
shift the radiating surface by a certain amount, `g, up-
ward. The value of `g is related to `. Ditlevsen [13] uses
`g D 3 km. He also noted that a more accurate lapse
rate of the temperature is dT/dz D 10K km�1 instead of
T0/H D 40K km�1, so that the temperature gain caused
by greenhouse gases is `g � dT/dz D 30K. The reason for
a shallower temperature gradient is the presence of con-
vection that causes the specific entropy s to be nearly con-
stant with height. In that case the temperature gradient is
just the adiabatic one, (dT/dz)ad D g/cp, where cp is the
specific heat at fixed pressure, which in turn is related
to the universal gas constant and the specific weight via
R/� D cp � cv, where cv is the specific heat at fixed vol-
ume and cp/cv D � is the ratio of specific heats.With these
formulae one does indeed get 2

�
dT
dz

�

ad
D

�
1 �

1
�

�
�g
R � 10K km�1 ; (49)

where we have used � D 7/5 for air molecules with 5 de-
grees of freedom (3 for translation and 2 for rotation).

At certain times over the history of the Earth, other
greenhouse gases such as methane may have played an
important role in keeping the Earth above freezing tem-
peratures. Indeed, the burial of oxides in the crust al-
lowed methane to build up in the atmosphere, which may
have led to concentrations of a few thousand times greater
thanmodern levels. UV radiation in the upper atmosphere

as `D (��)�1. Hydrostatic equilibrium can be written in the form

g D �
R
�
rT ;

where g is the gravitational acceleration, R is the universal gas con-
stant, and � is the mean molecular weight. These equations can be
solved by a polytrope, i. e., T D T0(1� z/H) and � D �0(1� z/H)3,
where z is the distance from the surface and H is the vertical pres-
sure scale height. This leads to a condition of the form Eq. (48) where
`crit D 3H/16	 0:19H is the critical mean free path of photons

2Hydrostatic equilibrium can be written as ���1r p � r� D
0, where p is the pressure and � D gz C const is the gravitational
potential. Using the thermodynamic relation ���1r p D �rh C
Trs D 0, where h D cpT is the specific enthalpy and rs D 0 for
adiabatic stratification, we have d(cpT)/dz D g

breaks up methane into its components, letting H2 escape
into space, leading to a net gain of oxygen, that comes ul-
timately from H2O.

According to a model of Catling et al. [8] methane
(CH4) may have been important 2:7 : : : 2:3Gyr ago, just
before the famous Snowball Earth deep freeze of the
planet [22]. As discussed above, the associated loss of hy-
drogen may have led to a gradual accumulation of oxygen
in the atmosphere, which then terminated themethane era
and led to the Snowball Earth event. This event lasted un-
til the continuous CO2 production from volcanoes accu-
mulated to large amounts so that the resulting greenhouse
effect became sufficient to initiate partial melting of the ice
cover.

Response to Changes in Greenhouse Gases

As we knew first from global climate models [20] and later
from simplified models [9] using Eq. (47), with a relatively
simple piecewise linear temperature dependence of A(T),
there can be three different equilibrium temperatures. This
is illustrated in Fig. 13, where we compare the graph of
�SBT4

eff versus surface temperature T0 with the net radi-
ation (1 � A)S/4. Here, A(T) has been arranged such that
AD Ahot for T � Tmax (corresponding to no ice coverage)
AD Acold for T � Tmin (corresponding to full ice cover-
age).

Ditlevsen [13] used Eq. (47) to study the response of
the system to variable greenhouse gas concentrations. As
the amount of CO2 increases, the equilibrium temperature
increases. Obviously, when the system is on the lower fixed
point initially, there must be a critical CO2 concentration
above which the solution will jump discontinuously to the
upper branch; see Fig. 14.

It is generally accepted that the rate of weathering in-
creases with increasing temperature. This provides a sta-
bilizing effect on the climate. As T increases, the rate of
weathering increases, removing more CO2 from the at-
mosphere, reducing the greenhouse effect, and thus lead-
ing to cooling. Ditlevsen [13] introduced the assumption
that there is a continuous source of CO2 through out-
gassing from volcanoes and a temperature-dependent sink
of CO2 from weathering when T exceeds a critical temper-
ature Tw, but no weathering for T < Tw [46]. This leads to
a self-regulating effect for T < Tw, which Ditlevsen calls
a greenhouse thermostat. Whenever T < Tw, since there
is then no weathering and hence no sink of CO2, green-
house gases will build up until the Earth’s temperature
has reached the value Tw; see Fig. 15. This is the mech-
anism that is believed to have caused the early Earth to
be above freezing through most of its history – with the
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Plot of �SBT4eff versus surface temperature T0 for three different greenhouse temperature shifts, Tg, compared with the net radiation
1
4 (1� A) for a simple piecewise linear function A(T). Courtesy of P. Ditlevsen [13]

Exobiology (theoretical), Complexity in, Figure 14
Equilibrium temperature as a function of CO2 concentration. Courtesy of P. Ditlevsen [13]

exception of intermediate Snowball Earth-like events that
are caused by the emergence of other sinks of greenhouse
gases, such as the onset of aerobic photosynthesis or the
enhanced formation of mountain topography that leads
to an increase in the erosion rate and, hence, weather-
ing.

The Daisyworld Model

Life can also affect the planet’s albedo, as has been demon-
strated by Lovelock [47] in his Daisyworldmodel. For a tu-
torial on the Daisyworld model see [45]. This model also
makes use of Eq. (47), but now the planet’s albedo A is af-
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Exobiology (theoretical), Complexity in, Figure 15
Dependence of surface temperature on time under the assumption of a continuous source of outgassing of CO2 and the onset of
a CO2 sink for T > Tw. Courtesy of P. Ditlevsen [13]

fected by the plant population which is simplistically rep-
resented by black and white plants or flowers (daisies) with
local albedos A1 and A2, respectively. So the total albedo is
a weighted average of the form

AD
3X

iD1

˛i Ai ; (50)

where A3 is the albedo of the unpopulated surface. The
weights ˛i depend on the surface coverage of the respec-
tive regions and obey evolution equations that are, in
turn, governed by a temperature-dependent growth term,
ˇ(Ti ), and a fixed death rate, � . The resulting equations
for the rate of change of the albedo are

d˛i
dt
D [ˇ(Ti )� � ]˛i ; (51)

where i D 1 for black and i D 2 for white plant pop-
ulations, ˇ(T) is assumed to be different from zero in
the range Tmin < T < Tmax with a maximum at Taver D
1
2 (Tmin C Tmax). The weight for the unpopulated surface
follows from the normalization

P
˛i D 1, so ˛3 D 1 �

˛1 � ˛2.
The temperatures are higher in the regions of black

plants and lower in regions of white plants according to
the formula

T4
i D (A� Ai )qC T4

0 ; (52)

where q is a parameter that must be smaller than a critical
value,

q < qcrit D S/(4�SB) ; (53)

in order that heat flows against the temperature gradi-
ent [40]. For q D qcrit the temperature is uniform for dif-
ferent values of Ai, while for q < qcrit the regions of high
albedo are cooler and those of low albedo warmer. Note
also that Eq. (52) preserves heat balance, i. e.,

P
˛i T4

i D

T4
0 .
The important point in the Daisyworld model is the

fact that, for a certain range of S, the surface temperature of
the planet, T0, is stabilized in a certain temperature range
around the optimal value close to Taver; see Fig. 16.

Saunders makes another remarkable point. He showed
that by changing the model to allow for Darwinian evolu-
tion such that each plant species works with an optimized
temperature dependence, so ˇ(Ti)! ˇi(Ti ) is modified
to become dependent on i, the overall result changes only
very little. More importantly, the range over which the
model can stabilize the planet’s temperature shrinks, mak-
ing the planet as a whole more vulnerable. Although the
amount of shrinkage is small, it emphasizes the dangers
associated with adopting changes that lead only to short-
term benefits. Saunders emphasizes in his work that the
ability of life to regulate the surface temperature of a planet
is not associated with natural selection as in the concept of
Darwinian evolution. More generally he warns, therefore,



3298 E Exobiology (theoretical), Complexity in

Exobiology (theoretical), Complexity in, Figure 16
Temperature (in Celsius) versus relative irradiation (normalized
to the average temperature). Note that the temperature is sta-
bilized around the value Taver, provided the energy input S is
within a certain range. Adapted from [40]

that not everything that is to an advantage needs to be the
result of natural selection [40].

Oxidation of the Earth’s Crust

It has recently been proposed that, in addition to the ef-
fects discussed above, life may also have profound effects
on the Earth’s crust. A possible scenario has recently been
discussed by Rosing et al. [36]. The idea is that photo-
synthetic life may tap large amounts of solar energy that
were used to reduce carbon from CO2 to compounds of
the form (CH2O)n and similar, via reactions of the form

CO2 CH2OC h� ! CH2OC O2 ; (54)

where h� denotes the energy taken from solar radiation.
Furthermore, and evenmore surprisingly, the oxygen pro-
duced by photosynthesis may have been critical in oxidiz-
ing iron in the continental crust. Although other factors
also played a substantial role, it is clear that biological pro-
cesses can speed up the oxidation process substantially.
Comparing the oceanic crust with the continental crust,
a major difference is the enhanced fraction of SiO2 (57%
in the continental crust compared to 50% in the oceanic
crust).

Granite, being one of the lightest rock types, was even-
tually able to escape subduction and to produce stable con-
tinents about 3:8Gyr ago. This is also the time of the oldest

rock findings on Earth. Given that the rise of continents
on the early Earth is associated with granite formation, the
presence of granite on silicon-bearing rocky planets might
thus be a possible biomarker for photosynthesis [36].

Although this idea is speculative, it may be supported
quantitatively as follows. Firstly, the present day produc-
tion rate of organically fixated carbon is estimated to be
9 � 1015 molC yr�1 [12,25]. The amount of energy re-
quired for this can be calculated by using the fact that
it costs 477 kJ to transfer one mole of carbon to hexose.
The energy required for this is then 300mWm�2. Ros-
ing et al. [36] argue that this amount could be supplied
by only 0.1% of the effective solar energy flux, S/4. Assum-
ing that the amount of carbon burial, relevant to estimat-
ing the usable fraction of oxygen for iron oxidation, is also
about 0:1%, this corresponds to about 1013 mol C yr�1.
This would yield a comparable iron oxidation rate. Rosing
et al. [36] argue further that annual basalt production con-
tributes about 1014mol Fe yr�1, so a fraction of the mag-
matic iron flux could be used for building up the mantle
reservoir of ferric iron.

In conclusion, the presence of life can lead to signif-
icant alterations of the planet in a number of different
ways, as is quite clearly demonstrated by some of the dif-
ferences between Earth and its neighboring planets Venus
and Mars. Only the Earth has extensive reservoirs of oxy-
gen and of granite. Within limits, the presence of life on
a planet can also have a stabilizing effect on its climate.
The relevantmathematical modeling of some of these pro-
cesses resembles, in many ways, those encountered earlier
in studies of homochirality and of the spread of hereditary
information on the early Earth.

Conclusions

Astrobiology has developed into a rapidly growing re-
search field involving expertise from a number of neigh-
boring disciplines. Nonlinear dynamics and nonequilib-
rium thermodynamics find applications in all these sub-
fields. Here, we have elaborated on a few such aspects.
Closest to the onset of life is, perhaps, the emergence of
homochirality of biomolecules. Given that RNA has been
proven to form longer polymers only in a homochiral en-
vironment, one would expect that homochirality must be
a prerequisite to the emergence of life at the level of a repli-
cating RNA world. On the other hand, the very mech-
anism causing the polymerization to terminate, namely
enantiomeric cross-inhibition, can also be the mechanism
responsible for causing 100% homochirality by destroying
RNA molecules whose chirality is already in the minor-
ity. This would, however, require the possibility of auto-
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catalysis, which can be avoided in another scenario where
a closed peptide system is kept away from equilibrium by
continuous activation of amino acids.

Chemically speaking, the stabilization of a definite chi-
rality is in some models similar to the subsequent estab-
lishment of hereditary information, in that catalysis plays
a crucial role. Furthermore, in both cases, the possibility
of chemistry in an extended system is crucial. On the one
hand, spatial extent gives rise to the possibility of coex-
istence of life forms of opposite handedness on the early
Earth. On the other hand, spatial extent can be critical
in allowing the system to find unpopulated locations fast
enough to avoid being overwhelmed by the effects of par-
asites that tap the same resources that are required for the
maintenance and development of hereditary information.

Finally, life is invariably coupled to some kind of
metabolism that is ultimately powered by solar energy.
This clearly affects the environment by reducing carbon
and oxidizing the crust of the Earth and, over the last two
billion years, the atmosphere. How much these alterations
of the environment are due to biological processes is less
obvious. However, it is clear that biological factors greatly
speed up weathering on the Earth. The extent of biologi-
cally induced alterations of the continental crust, for ex-
ample, may therefore best be tested using quantitatively
accurate model calculations. The outcome may ultimately
hinge on energetic considerations and on the efficiency of
photosynthesis as a solar energy collector.

With the scope of being able to explore, in the near
future, not only the planets and other celestial bodies in
the solar system in much more detail, but also planets of
other planetary systems, research in astrobiology quickly
develops into a field that will be driven more and more by
new data, making this field less susceptible to speculation.
Therefore, it is important to be prepared for upcoming dis-
coveries in this field. Finally, it should be emphasized that
astrobiology is efficient in communicating science to the
general public, which may provide an additional boost to
the field.
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Glossary

Complexity A definitive feature of nonlinear systems of
interacting elements. It comprises high instability with
respect to initial and boundary conditions, and com-
plex but non-random behavior patterns (“order in
chaos”).

Extreme events Rare events having a large impact. Such
events are also known as critical phenomena, disas-
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ters, catastrophes, and crises. They persistently reoccur
in hierarchical complex systems created, separately or
jointly, by nature and society.

Fast acceleration of unemployment (FAU) The start of
a strong and lasting increase of the unemployment
rate.

Pattern recognition of rare events The methodology of
artificial intelligence’ kind aimed at studying distinc-
tive features of complex phenomena, in particular – at
formulating and testing hypotheses on these features.

Premonitory patterns Patterns of a complex system’s be-
havior that emerge most frequently as an extreme
event approaches.

Recession The American National Bureau of Economic
Research defines recession as “a significant decline in
economic activity spread across the economy, lasting
more than a few months”. A recession may involve si-
multaneous decline in coincident measures of overall
economic activity such as industrial production, em-
ployment, investment, and corporate profits.

Start of the homicide surge (SHS) The start of a strong
and lasting increase in the smoothed homicide rate.

Definition of the Subject

At stake in the development of accurate and reliable meth-
ods of prediction for social systems is the capacity of scien-
tific reason to improve the human condition. Today’s civi-
lization is highly vulnerable to crises arising from extreme
events generated by complex and poorly understood sys-
tems. Examples include external and civil wars, terrorist
attacks, crime waves, economic downturns, and famines,
to name just a few. Yet more subtle effects threaten mod-
ern society, such as the inability of democratic systems
to produce policies responsive to challenges like climate
change, global poverty, and resource depletion.

Our capacity to predict the course of events in com-
plex social systems is inherently limited. However, there is
a new and promising approach to predicting and under-
standing complex systems that has emerged through the
integration of studies in the social sciences and the math-
ematics of prediction. This entry describes and analyzes
that approach and its real-world applications. These in-
clude algorithmic prediction of electoral fortunes of in-
cumbent parties, economic recessions, surges of unem-
ployment, and outbursts of crimes. This leads to impor-
tant inferences for averting and responding to impending
crises and for improving the functioning of modern demo-
cratic societies.

That approach was successfully applied also to natural
disasters such as earthquakes. Ultimately, improved pre-

diction methods enhance our capacity for understanding
the world and for protecting and sustaining our civiliza-
tion.

Extreme events. Hierarchical complex systems persis-
tently generate extreme events – the rare fast changes that
have a strong impact on the system. Depending on conno-
tation they are also known as critical phenomena, disas-
ters, catastrophes, and crises. This article examines the de-
velopment and application of the algorithmic prediction
of extreme socio-economic and political events.

The prediction problem is formulated as follows:
given are time series that describe dynamics of the sys-

tem up to the current moment of time t and contain po-
tential precursors of an extreme event;

to predict whether an extreme event will or will not oc-
cur during the subsequent time period (t, t + �); if the an-
swer is “yes”, this will be the “period of alarm”.

As the time goes by, predictions form a discrete se-
quence of alarms. The possible outcomes of such a predic-
tion are shown in Fig. 1. The actual outcome is determined
unambiguously, since the extreme events are identified in-
dependently of the prediction either by the actual happen-
ing (e. g. by an election result) or by a separate algorithm
(e. g. homicide surge) after they occur.

Such “yes or no” prediction is aimed not at analyzing
the whole dynamics of the system, but only at identify-
ing the occurrence of rare extreme events. In a broad field
of prediction studies this prediction is different from and
complementary to the classical Kolmogoroff–Wiener pre-
diction of continuous functions, and to traditional cause-
and-effect analysis.

The problem includes estimating the predictions’ ac-
curacy: the rates of false alarms and failures to predict, and
the total duration of alarms in relation to the total time
considered. These characteristics represent the inevitable

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 1
Possible outcomes of prediction
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probabilistic component of prediction; they provide for sta-
tistical validation of a prediction algorithm and for opti-
mizing preparedness to predicted events (e. g. recessions
or crime surges).

Twofold importance. The prediction problem is piv-
otal in two areas:

� Fundamental understanding of complex systems. Pre-
diction algorithms quantitatively define phenomena
that anticipate extreme events. Such quantitative def-
inition is pivotal for fundamental understanding of
a complex system where these events occur, including
the intertwined mechanisms of system’s development
and its basic features, e. g. multiple scaling, correlation
range, clustering, fragmentation etc. (see Sects. “Com-
mon Elements of Data Analyzes”, “Elections”, “US
Economic Recessions”, “Unemployment”). The under-
standing of complex systems remains a major unsolved
problem of modern science, tantamount to transform-
ing our understanding of the natural and humanworld.

� Disaster preparedness. On the practical side prediction
is pivotal for coping with a variety of disasters, com-
monly recognized as major threats to the survival and
sustainability of our civilization (e. g. [22]; see also ma-
terials of G8-UNESCO World Forum on “Education,
Innovation and Research: New Partnership for Sus-
tainable Development”, http://g8forum.ictp.it). The re-
liable advance prediction of extreme events can save
lives, contribute to social and economic stability, and
to improving the governing of modern societies.

Introduction

Predictability vs. Complexity: The Need
for Holistic Approach [7,12,13,15,17,27,32]

Natural science had for many centuries regarded the Uni-
verse as a completely predictable machine. As Pierre Si-
mon de Laplace wrote in 1776, “. . . if we knew exactly the
laws of nature and the situation of the universe at the ini-
tial moment, we could predict exactly the situation of the
same universe at a succeeding moment.” However, at the
turn of the 20th century (1905) Jules Henry Poincare dis-
covered, that “. . . this is not always so. It may happen that
small differences in the initial conditions will produce very
great ones in the final phenomena. Prediction becomes
impossible”.

This instability to initial conditions is indeed a defini-
tive attribute of complex systems. Nonetheless, through
the robust integral description of such systems, it is possi-
ble to discover regular behavior patterns that transcend the

inherent complexity. For that reason studying complex-
ity requires the holistic approach that proceeds from the
whole to details, as opposed to the reductionism approach
that proceeds from details to the whole. It is in principle
not possible “to understand a complex system by breaking
it apart” [13].

Among the regular behavior patterns of complex sys-
tems are “premonitory” ones that emerge more frequently
as an extreme event approaches. These premonitory pat-
terns make complex systems predictable. The accuracy of
predictions, however, is inevitably limited due to the sys-
tems’ complexity and observational errors.

Premonitory patterns and extreme events are consec-
utive manifestations of a system’s dynamics. These pat-
terns may not trigger extreme events but merely signal the
growth of instability, making the system ripe for the emer-
gence of extreme events.

Methodology

The prediction algorithms described here are based on
discovering premonitory patterns. The development of
the algorithms requires the integration of complementary
methods:

� Theoretical and numerical modeling of complex sys-
tems; this includes “universal”models considered in
statistical physics and non-linear dynamics (e. g. [1,3,5,
8,12,15,20,42]), and system-specific models, if avail-
able.

� Exploratory data analysis.
� Statistical analysis of limited samples, which is relevant

since the prediction targets are by definition rare.
� Practical expertise, even if it is intuitive.
� Risk analysis and theory of optimal control for optimiz-

ing prediction strategy along with disaster prepared-
ness.

Pattern Recognition of Rare Events This methodol-
ogy provides an efficient framework for integrating di-
verse information into prediction algorithms [4,11,19].
This methodology has been developed by the artificial in-
telligence school of I. Gelfand for the study of rare phe-
nomena of a highly complex origin. In terminology of pat-
tern recognition, the “object of recognition” is the time
moment t. The problem is to recognize whether it belongs
to the period of alarm, i. e. to a time interval � preceding
an extreme event. An alarm starts when certain combina-
tions of premonitory patterns emerges.

Several features of that methodology are important for
predicting extreme events in the absence of a complete

http://g8forum.ictp.it
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closed theory that would unambiguously define a predic-
tion algorithm. First, this kind of pattern recognition re-
lies on simple, robust parameters that overcome the bane
of complexity analysis – incomplete knowledge of the sys-
tem’s causal mechanisms and chronic imperfections in the
available data. In its efficient robustness, pattern recogni-
tion of rare events is akin to exploratory data analysis as
developed by J. Tukey [50]. Second, unlike other statistical
methods, e. g. regression analysis, that methodology can
be used for small samples such as presidential elections or
economic recessions. Also, it integrates quantitative and
judgmental parameters and thereby more fully captures
the full dimensions of the prediction problem than pro-
cedures that rely strictly on quantitative variables.

Summing up, the methodology described here can
help in prediction when there are (1) many causal vari-
ables, (2) qualitative knowledge about which variables are
important, and (3) limited amounts of data [2].

Besides societal predictions, pattern recognition of
rare events has been successfully applied in seismology
and earthquake prediction (e. g. [11,19,20,44,46]), geolog-
ical prospecting (e. g. [45]) and in many other fields. Re-
view can be found in [21,47]. Tutorial materials are avail-
able at the web site of the Abdus Salam International Cen-
tre for Theoretical Physics (http://cdsagenda5.ictp.it/full_
display.php?da=a06219).

Validation of Prediction Algorithms The algorithms
include many adjustable elements, from selecting the data
and defining the prediction targets, to specifying numeri-
cal parameters involved. In lieu of theory that would un-
ambiguously determine these elements they have to be
developed retrospectively, by “predicting” past extreme
events. The application of the methodology to known
events creates the danger of self-deceptive data-fitting: As
J. von Neumann put it “with four exponents I can fit an ele-
phant”. The proper validation of the prediction algorithms
requires three consecutive tests.

� Sensitivity analysis: testing whether predictions are sen-
sitive to variations of adjustable elements.

� Out of sample analysis: application of an algorithm to
past data that has not been used in the algorithm’s de-
velopment. The test is considered successful if algo-
rithm retains its accuracy.

� Predicting future events – the only decisive test of a pre-
diction algorithm (see for example Sect. “Elections” be-
low).

A highly efficient tool for such tests is the error Diagram,
showing major characteristics of prediction accuracy [33,

34,35,36,37,38,39]. Its example is given in Fig. 10. Exhaus-
tive sets of these tests are described in [10,11,24,52].

Common Elements of Data Analyzes

The methodology discussed above was used for predicting
various kinds of extreme events, as illustrated in the next
four Sections. Naturally, from case to case this methodol-
ogy was used in different ways, according to specifics of
phenomena considered. However in all cases data analysis
has essential common elements described below.

Sequence of analysis comprises four stages: (i) Defin-
ing prediction targets. (ii) Choosing the data (time series),
where premonitory patterns will be looked for and sum-
ming up a priori constrains on these patterns. (iii) For-
mulating hypothetical definition of these patterns and de-
veloping prediction algorithm; determining the error dia-
gram. (iv) Validating and optimizing that algorithm.

Preliminary transformation of raw data. In predict-
ing recessions (Sect. “US Economic Recessions”), fast ac-
celeration of unemployment (Sect. “Unemployment”) and
crime surges (Sect. “Homicide Surges”) raw data were time
series of relevant monthly indicators, hypothetically con-
taining premonitory patterns. Let f (m) be such an indica-
tor, with integer m showing time in months. Premonitory
behavior of some indicators is better captured by their lin-
ear trends.

Let W f (l/q; p) be the local linear least-squares regres-
sion of a function f (m) within the sliding time window
(q; p):

W f (l/q; p) D K f (q; p)l C B f (q; p); q � l � p ; (1)

where integers l, q, and p stand for time in months.
Premonitory behavior of most indicators was captured

by the following two functions:

� The trend of f (m) in the s months long window,
(m � s;m). For brevity we denote

K f (m/s) D K f (m � s;m) (2)

� The deviation of f (m) from extrapolation of its long-
term regression (i. e. regression on a long time window
(q;m � 1):

R f (m/q) D f (m) �W f (m/q;m � 1) : (3)

Both functions can be used for prediction since their val-
ues do not depend on the information about the future (af-
ter the monthm) which would be anathema in prediction.

Discretization. The prediction algorithms use one or
several premonitory patterns. Each pattern is defined at

http://cdsagenda5.ictp.it/full_display.php?da=a06219
http://cdsagenda5.ictp.it/full_display.php?da=a06219
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the lowest – binary – level of resolution, as 0 or 1, distin-
guishing only the presence of absence of a pattern at each
moment of time. Then the objects of recognition are de-
scribed by binary vectors of the same length. This ensures
the robustness of the prediction algorithms.

Simple algorithm called Hamming distance is used
for classification of binary vectors in applications consid-
ered here, [14,20,28]. Each vector is either premonitory or
not. Analyzing the samples of vectors of each class (“the
learning material”), the algorithm determines a reference
binary vector (“kernel”) with components typical for the
premonitory vector. Let D be the Hamming distance of
a vector from the kernel (the number of non-coinciding
binary components). The given vector is recognized as
premonitory class, if D is below a certain threshold D*.
This criterion takes advantage of the clustering of precur-
sors in time.

Summing up, these elements of the pattern recognition
approach are common for its numerous applications, their
diversity notwithstanding. Experience in the specific ap-
plications is described in Sects. “Elections”, “US Economic
Recessions”, “Unemployment”, “Homicide Surges”. The
conceptual summary of the accumulated experience is
given in the final Sect. “Summary: Findings and Emerging
Possibilities”.

Elections

This Section describes algorithms for predicting the out-
come of the US Presidential and mid-term Senatorial elec-
tions [28,29,30,31]. Elections’ time is set by the law as fol-
lows.

� National elections are held every even-numbered year,
on the first Tuesday after the first Monday in Novem-
ber (i. e., between November 2 and November 8, inclu-
sively).

� Presidential elections are held once every 4 years, i. e.
on every other election day. People in each of the 50
states andDistrict of Columbia are voting separately for
“electors” pledged to one or another of the Presiden-
tial candidates. These electors make up the “Electoral
College” which directly elects the President. Since 1860,
when the present two-party system was basically estab-
lished, the Electoral College reversed the decision of the
popular vote only three times, in 1888, 1912, and 2000.
Algorithmic prediction of such reversals is not devel-
oped so far.

� A third of Senators are elected for a 6-year term every
election day; “mid-term” elections held in the middle
of a Presidential term are considered here.

Methodology

The prediction target is an electoral defeat of an “incum-
bent” party, i. e. the party holding the contested seat.
Accordingly, the prediction problem is formulated as
whether the incumbent party will retain this seat or lose
it to the challenging party (and not whether Republican or
Democrat will win). As is shown below, that formulation
is crucial for predicting the outcomes of elections consid-
ered.

Data. The pre-election situation is described by robust
common sense parameters defined at the lowest (binary)
level of resolution, as the yes or no answers to the ques-
tionnaires given below (Tables 1, 2). The questions are for-
mulated in such a way that the answer no favors the vic-
tory of the challenging party. According to the Hamming
distance analysis (Sect. “Common Elements of Data An-
alyzes”) the victory of the challenging party is predicted
when the number of answers no exceeds a threshold D*.

Mid-term Senatorial Elections

The prediction algorithm was developed by a retrospective
analysis of the data on three elections, 1974, 1978, and
1982. The questionnaire is shown in Table 1. Victory of
the challenger is predicted if the number of answers no is
5 or more [28,29,30].

The meaning of these questions may be broader than
their literal interpretation. For example, financial contri-
butions (key 5 in Table 2) not only provide the resources
required for an effective campaign, but may also constitute
a poll in which the preferences are weighed by the money
attached.

Predicting future elections. This algorithm (without
any changes from year to year and from state to state)
was applied in advance to the five subsequent elections,
1986–2002. Predictions are shown in Fig. 2. Altogether,
150 seats were put up for election. For each seat a sep-
arate prediction was made, 128 predictions were correct,
and 22 – wrong.

Statistical significance of this score is 99.9%. In other
words the probability to get such a score by chance is be-
low 0.1% [28,29,30]. For some elections these predictions
might be considered as trivial, since they coincide with
prevailing expectation of experts. Such elections are iden-
tified by Congressional Review. Eliminating them from the
score still results in 99% significance.

Presidential Elections

The prediction algorithm was developed by a retrospective
analysis of the data on the past 31 elections, 1860–1980;
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Table 1
Questionnaire for mid-term Senatorial Elections [28]

1. (Incumbency): The incumbent -party candidate is the sitting senator.
2. (Stature): The incumbent -party candidate is a major national figure.
3. (Contest): There was no serious contest for the incumbent -party nomination.
4. (Party mandate): The incumbent party won the seat with 60% or more of the vote in the previous election.
5. (Support): The incumbent -party candidate outspends the challenger by 10% or more.
6. (Obscurity): The challenging -party candidate is not a major national figure or a past or present governor or member of Congress.
7. (Opposition): The incumbent party is not the party of the President.
8. (Contest): There is no serious contest for the challenging -party nomination (the nominee gains a majority of the votes cast in the

first primary and beats the second-place finisher at least two to one).

Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Table 2
Questionnaire for Presidential elections [29,30]

KEY 1 (Party Mandate): After the midterm elections, the incumbent party holds more seats in the US House of Representatives than
it did after the previous midterm elections.

KEY 2 (Contest): There is no serious contest for the incumbent -party nomination.
KEY 3 (Incumbency): The incumbent -party candidate is the sitting president.
KEY 4 (Third party): There is significant third-party or independent campaign.
KEY 5 (Short-term economy): The economy is not in recession during the election campaign.
KEY 6 (Long-term economy): Real per -capita economic growth during the term equals or exceeds mean growth during the

previous two terms.
KEY 7 (Policy change): The incumbent administration effects major changes in national policy.
KEY 8 (Social unrest): There is no sustained social unrest during the term.
KEY 9 (Scandal): The incumbent administration is unattained by a major scandal.
KEY 10 (Foreign/military failure): The incumbent administration suffers no major failure in foreign or military affairs.
KEY 11 (Foreign/military success): The incumbent administration achieves a major success in foreign or military affairs.
KEY 12 (Incumbent charisma): The incumbent -party candidate is charismatic or a national hero.
KEY 13 (Challenger charisma): The challenging -party candidate is not charismatic or a national hero.

that covers the period between victories of A. Lincoln and
R. Reagan inclusively. The questionnaire is shown in Ta-
ble 2. Victory for the challenger is predicted if the number
of answers no is 6 or more [29,30].

Predicting of future elections. This algorithm (without
any changes from year to year state) was applied in ad-
vance to the six subsequent elections, 1984–2004. Predic-
tions are shown in Fig. 3. All of them happened to be cor-
rect. In 2000 the decision of popular majority was reversed
by the Electoral College; such reversals are not targeted by
this algorithm [29,30].

Understanding Elections

Collective behavior. The finding that aggregate-level pa-
rameters can reliably anticipate the outcome of both pres-
idential and senatorial elections points to an electoral be-
havior highly integrated not only for the nation as a whole
but also within the diverse American states.

� A presidential election is determined by the collective,
integrated estimation of performance of incumbent ad-
ministration during the previous four years.

� In case of senatorial elections the electorate has more
diffused expectations of performance but puts more
importance on political experience and status than in
the case of presidential elections. Senate incumbents,
unlike presidential ones, do not suffer from a bad econ-
omy or benefit from a good one. (This suggests that
rather than punishing the party holding a Senate seat
for hard times, the voters may instead regard the in-
cumbent party as a safe port in a storm).

Similarity. For each election year in all states the outcomes
of elections follow the same pattern that transcends the
diversities of the situations in each of the individual elec-
tions.

The same pattern of the choice of the US President pre-
vails since 1860, i. e. since election of A Lincoln, despite
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 2
Made-in-advance predictions of the mid-term senatorial elections (1986–2002). Each election is represented by the two-letter state
abbreviation with the election year shown by two last digits. Each column shows elections with certain number D of answers “no” to
the questionnaire given in Table 1 (such answers are favorable to challenging party). Value ofD, indicated at the top, is the Hamming
distance from the kernel
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 3
Division of presidential elections (1860–2004) by the number D of answers “no” to the questionnaire given in Table 2 (such answers
are favorable to challenging party). D is the Hamming distance from the kernel

all the overwhelming changes in the electorate, the econ-
omy, the social order and the technology of politics dur-
ing these 130 years. (For example, the electorate of 1860
did not include the groups, which constitute 3/4 of present
electorate, such as women, African Americans, or most of
the citizens of the Latin American, South European, East-
ern European, and Jewish descent [30].

An alternative (andmore traditional) concept of Amer-
ican elections focuses on the division of voters into in-
terest and attitudinal groups. By this concept the goal of
the contestants is to attract the maximum number of vot-
ing blocks with minimal antagonism from other blocks.
Electoral choice depends strongly on the factors irrelevant
to the essence of the electoral dilemma (e. g. on the cam-
paign tactics). The drawbacks of this concept are discussed
in [18,30]. In sum, the work on presidential and senatorial
elections described above suggests the following new ways
of understanding American politics and perhaps the poli-
tics of other societies as well.

1. Fundamental shifts in the composition of the elec-
torate, the technology of campaigning, the prevailing
economic and social conditions, and the key issues of
campaigns do not necessarily change the pragmatic ba-
sis on which voters choose their leaders.

2. It is governing not campaigning that counts in the out-
comes of presidential elections.

3. Different factors may decide the outcome of executive
as compared to legislative elections.

4. Conventional campaigning will not improve the
prospects for candidates faced with an unfavorable

combination of fundamental historical factors. Disad-
vantaged candidates have an incentive to adopt inno-
vative campaigns that break the pattern of conventional
politics.

5. All candidates would benefit from using campaigns to
build a foundation for governing in the future.

US Economic Recessions

US National Bureau of Economic Research (NBER) has
identified the seven recessions that occurred in the US
since 1960 (Table 3). The starting points of a recession and
of the recovery from it follow themonthsmarked by a peak
and a trough of economic activity, respectively.

A peak indicates the last month before a recession, and
a trough – the last month of a recession.

Prediction targets considered are the first month after
the peak and after the trough (“the turns to the worst and
to the best”, respectively). The start of the first recession, in
1960, is not among the targets, since the data do not cover
a sufficient period of time preceding the recession.

The data used for prediction comprise the following
six monthly leading economic indicators obtained from
the CITIBASE data base, Jan. 1960–June 2000 (abbrevia-
tions are the same, as in [49]).

G10FF = FYGT10 � FEDFUN Difference between the
annual interest rate on 10 year US Treasury bonds, and
federal fund annual interest rate.

IP Industrial Production, total: index of real (constant
dollars, dimensionless) output in the entire economy.
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Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Table 3
American Economic Recessions since 1960

# Peaks Troughs
1 1960:04 1961:02
2 1969:12 1970:11
3 1973:11 1975:03
4 1980:01 1980:07
5 1981:07 1982:11
6 1990:07 1991:03
7 2001:03 2001:11

This represents mainly the manufacturing industry,
because of the difficulties in measuring the quantity of
the output in services (such as travel agents, banking,
etc.).

LHELL Index of “help wanted” advertising. This is put
together by a private publishing company that mea-
sures the amount of job advertising (column-inches)
in a number of major newspapers.

LUINC Average weekly number of people claiming un-
employment insurance.

INVMTQ Total inventories in manufacturing and trade,
in real dollars. Includes intermediate inventories (for
example held by manufacturers, ready to be sent to
retailers) and final goods inventories (goods on the
shelves in stores).

FYGM3 Interest rate on 90 day US treasury bills at an an-
nual rate (in percent).

These indicators were already known [48,49], as those that
correlate with a recession’s approach.

Prediction of a Recession Start

Single indicators exhibit the following premonitory pat-
terns:

G10FF: small value
IP and INVMTQ: small deviation from the long-term

trend Rf (3)
FYGM3: large deviation from the long-term trend Rf

LHELL: small trend Kf (2)
LUINC: large trend Kf

Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 4
Alarms (black bars) and recessions (gray bars)

The prediction algorithm triggers an alarm after a month
when most of the patterns emerge simultaneously. It
lasts � months and can be extended by the same rule, if
premonitory patterns keep emerging. Formal quantitative
definition of the algorithm can be found in [23] along with
its validation by sensitivity and out-of-sample analyzes.

Alarms and recessions are juxtaposed in Fig. 4. We see
that five recessions occurring between 1961 and 2000 were
predicted by an alarm. The sixth recession started in April
2001, one month before the corresponding alarm. (Reces-
sion of 1960 was not considered for prediction, since data
analyzed start just before it.)

Only the first six recessions listed in Table 1 were con-
sidered in the developing of the algorithm [23]. Duration
of each alarm was between 1 and 14 months. Total dura-
tion of all alarms was 38 months, or 13.6% of the time in-
terval considered. There were no false alarms. No alarms
were yielded so far by subsequent prediction in advance
and no recession was identified during that time.

Prediction of a Recession End

Prediction targets are the starting points of recovery from
recessions; these points are indicated in the last column of
Table 3.

The data comprise the same six indicators that indi-
cate the approach of a recession (see Subsect. “Prediction
of a Recession Start”); they are analyzed only within the
recessions’ periods.

Data analysis shows intriguing regularity illustrated in
Fig. 5:

� Financial indicators change in opposite directions be-
fore the recession and before the recovery.

� Economic indicators change in the same direction be-
fore the recession and the recovery; but the change is
stronger before the recovery, i. e., the economic situa-
tion worsens.

Prediction algorithm is formulated in the same terms as in
the previous case but an alarm is triggered after three con-
secutive months when most of the patterns emerge simul-
taneously. The alarms predict when the recovery will start.
Alarms and prediction targets are juxtaposed in Fig. 6. Du-
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Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 5
Premonitory changes of indicators before the start of a recession
and before its end. See explanations in the text

ration of a single alarm is one to five months. Total dura-
tion of alarms is 16 months, which is 22% of time covered
by all recessions. There are neither false alarms nor failures
to predict.

Unemployment

Here we describe uniform prediction of the sharp and last-
ing unemployment surge in France, Germany, Italy, and
the USA [25].

Prediction Target

A prediction target is schematically illustrated in Fig. 7.
Thin curve shows monthly unemployment with seasonal

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 6
Prediction of recovery from a recession. Black bars – periods of
recessions. Gray bars – alarms preceding the end of a recession

variations. On the thick curve seasonal variations are
smoothed away. The arrow indicates a sharp upward bend
of the smoothed curve. The moment of that bend is the
prediction target. It is called by the acronym FAU, for
“Fast Acceleration of Unemployment”.
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Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 7
Fast acceleration of unemployment (FAU): schematic definition.
Thin line – monthly unemployment; with seasonal variations.
Thick line – monthly unemployment, with seasonal variations
smoothed away. The arrow indicates a FAU – the sharp bend of
the smoothed curve. The moment of a FAU is the target of pre-
diction

Smoothing was done as follows: Let u(m) be number
of unemployed in a month m D 1; 2; : : :. After smooth-
ing out the seasol variation we obtain time series U(m) D
Wu(m/m � 6;m C 6) ; this is the linear regression over
the year-long time interval (m � 6;m C 6). A natural ro-
bust measure of unemployment acceleration at the timem
is the bend of the linear trend of U; in notations used

Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 8
Unemployment in France. Top: Monthly unemployment, thousands of people. Thin line: u(m), data from the OECD database; note
the seasonal variations. Thick line: U(m), data smoothed over one year. Bottom: Determination of FAUs. F(m) shows the change in
the linear trend of unemployment U(m). FAUs are attributed to the local maxima of F(m) exceeding threshold FD 4:0 shown by
horizontal line. The thick vertical lines showmoments of the FAUs

in (1) this is the function F(m/s) D KU (m C s;m) �
KU (m;m � s). The FAUs are identified by the local max-
ima of F(m) exceeding a certain threshold F. The timem*
and the height F* of such a maximum are, respectively, the
time and the magnitude of a FAU. Subsequent local min-
imum of F(m) identifies the month me when acceleration
ends. Figure 8 shows thus defined FAUs for France.

The Data

The analysis has been initially made for France and three
groups of data have been analyzed.

� Composite macroeconomic indicators of national econ-
omy
1. IP: Industrial production indicator, composed of

weighted production levels in numerous sectors of
the economy, in % relative to the index for 1990.

2. L: Long-term interest rate on 10-year government
bonds, in %.

3. S: Short-term interest rate on 3-month bills, in %.
� Characteristics of more narrow areas of French economy

4. NC: The number of new passenger car registrations,
in thousands of units.
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5. EI: Expected prospects for the national industrial
sector.

6. EP: Expected prospects for manufacturers.
7. EO: Estimated volume of current orders.
Indicators 5–7 distinguish only “good” and “bad” ex-
pectations determined polling 2,500 manufacturers,
whose answers are by the size of their businesses.

� Indicators related to US economy.
8. FF/$: Value of US dollar in French francs.
9. AR: The state of the American economy: is it close

to a recession or not? This indicator shows the pres-
ence or absence of a current pre-recession alarm (see
Subsect. “Prediction of a Recession Start”).

The data baseswith above indicators for Europe are issued
by the Organization for Economic Cooperation and De-
velopment [43] and the InternationalMonetary Fund [16].

American analogues of indicators IP, L, and S are pro-
vided by CITIBASE; they are described in Sect. “US Eco-
nomic Recessions>” under abbreviations IP, FYGM3 and
FIGT10 respectively.

Prediction

Single indicators exhibit the following premonitory behav-
ior.

� Steep upward trends of composite indicators (#1–#3).
This behavior reflects “overheating” of the economy
and may sound counterintuitive for industrial produc-
tion (#1), since the rise of production is supposed to
createmore jobs. However, a particularly steep rise may
create oversupply.

� Steep downward trends of economic expectations by
general public (#4) and business community (#5–#8).

� Proximity of an American recession (#9). Before anal-
ysis was made such and opposite precursors might be
expected for equally plausible reasons, so that this find-
ing, if further confirmed, does provide a constraint on
understanding unemployment’s dynamics.

Among different combinations of indicators the macroe-
conomic ones (#1–#3) jointly give relatively better predic-
tions, with smallest rates of errors and highest stability in
sensitivity tests.

Retrospective prediction. Macroeconomic indicators
were used jointly in the Hamming distance prediction al-
gorithm (Sect. “Common Elements of Data Analyzes”).
Being robust and self-adjusting to regional conditions, this
algorithm was applied without any changes to the four
countries considered here.

Alarms and FAUs are juxtaposed in Fig. 9. Error di-
agram in Fig. 10 shows quality of prediction for different

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 9
Retrospective predictions for four countries: FAUs and alarms
obtained by the prediction algorithm. The thick vertical lines
show the moments of FAUs in a country. Bars – the alarms with
different outcome: 1 – alarms that predict FAUs, 2 – alarms
starting shortly after FAUs within the periods of unemployment
surge, 3 – false alarms. Shaded areas on both sides indicate the
times, for which data on economic indicators were unavailable

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 10
Error diagram for prediction of FAUs in different countries; � is
total duration of alarms in % to the time interval considered, f –
total number of false alarms

countries. For US the quality is lower than for European
countries, though still higher than in random predictions.

Prediction of the future FAUs was launched for USA.
The results are shown in Fig. 11. It shows that by Jan-
uary 2008 two correct predictions have been made, with-
out ether false alarms or failures to predict. In November
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 11
Experiment in predicting future FAUs, September (1999)–January (2008). Thin blue curve showsmonthly unemployment rate in USA,
according to data of Bureau of Labor Statistics, US Department of Labor (http://www.data.bls.gov). Thick curve shows this rate with
seasonal variation smoothed away. Vertical red lines show prediction targets – the moments of FAU, gray bar – the period of unem-
ployment’s growth; pink bars – periods of alarms

2006 the second prediction was filed on the web site of
the Anderson School of Management, University of Cal-
ifornia, Los Angeles (http://www.uclaforecast.com/). This
started the documented experiment in testing the algo-
rithm by predicting future FAUs on that website.

Homicide Surges

This section analyzes the prediction of homicide rates in
an American megacity – Los Angeles, CA [24].

Prediction Target

A prediction target is the start of a sharp and lasting acceler-
ation of the homicide rate; it is called by the acronym SHS,
for “Start of the Homicide Surge.” It is formally determined
by the analysis of monthly homicides rates, with seasonal
variations smoothed out, as described in Subsect. “Predic-
tion Target”. Prediction targets thus identified are shown
by vertical lines in Figs. 12 and 14 below.

The Data

The analyzed data include monthly rates of the homicides
and 11 types of lesser crimes, listed in Table 2. Definitions
of these crimes are given in [6].

The data are taken from two sources:

� The National Archive of Criminal Justice Data, placed
on the web site (NACJD), 1975–1993.

Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 12
Target of prediction – the Start of the Homicide Surge (“SHS”);
schematic definition. Gray bar marks the period of homicide
surge

� Data bank of the Los Angeles Police Department
(LAPD) Information TechnologyDivision), 1990–2003.

The algorithm does not use socio-economic determi-
nants of crime, or other data that might be also useful.
The objective was to develop a simple, efficient predic-
tion model; development of comprehensive causal model
would be a complementary objective.

http://www.data.bls.gov
http://www.uclaforecast.com/
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Extreme Events in Socio-economic and Political Complex Sys-
tems, Predictability of, Figure 13
Scheme of premonitory changes in crime statistics

Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Figure 14
Performance of prediction algorithm through 1975–2002. Thin curve – original time series, total monthly number of homicides in
Los Angeles city, per 3,000,000 inhabitants. Data from NACJD [6] have been used for 1975–1993 and from the Data Bank of the
Los Angeles Police Department (LAPD Information Technology Division) for subsequent 9 years. Thick curve – smoothed series, with
seasonal variations eliminated. Vertical lines show the targets of prediction – episodes of SHS (Subsect. “Prediction Target”). Gray
bars show the periods of homicide surge. Red bars show the alarms declared by the prediction algorithm [24]

Prediction

Premonitory behavior of indicators is illustrated in Fig. 13.
The first phase is characterized by an escalation of bur-
glaries and assaults, but not of robberies. Later on, closer
to a homicide surge, robberies also increase.

The Prediction algorithm based on Hamming distance
(see Sect. “Common Elements of Data Analyzes”) uses
seven indicators listed in Table 4. Other five indicators
marked by * are used in sensitivity tests; and the homicide
rate is used for identification of targets SHS.

Alarms and homicide surges are juxtaposed in Fig. 14.
The SHS episode in November 1994 has occurred simul-
taneously with the corresponding alarm. It is captured by
an alarm, which starts in the month of SHS without a lead
time. Prediction missed the October 1999 episode: it oc-
curred two months before the start of the corresponding
alarm. Such delays should be taken into account for vali-
dating the algorithm. Note, however, that the last predic-
tion did remain informative.

Altogether alarms occupy 15% of the time considered.
During phase 2 (as defined in Fig. 13) this rate might be
reduced [24].
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Extreme Events in Socio-economic and Political Complex Systems, Predictability of, Table 4
Types of crimes considered (after [6])

Homicide Robberies Assaults Burglaries
� All � All � All* � Unlawful not forcible entry

�With firearms �With firearms � Attempted forcible entry*
�With knife or cutting instrument �With knife or cutting instrument
�With other dangerous weapon �With other dangerous weapon*
� Strong -arm robberies* � Aggravated injury assaults*

*Analyzed in sensitivity tests only

Summary: Findings and Emerging Possibilities

The findings described above enhance predictive under-
standing of extreme events and indicate yet untapped pos-
sibilities for further R&D in that field.

Pattern Recognition Approach

Information extracted from the already available data is in-
deed increased by this approach. To each problem con-
sidered here one may apply the following conclusion of J.
Stock, a leading expert in the field: “Prediction/of reces-
sions/requires fitting non-linear, high-dimensional mod-
els to a handful of observations generated by a possibly
non-stationary economic environment. . . . The evidence
presented here suggests that these simple binary transfor-
mations of economic indicators have significant predictive
content for recessions. It is striking that these models, in
which the information in the data is reduced to binary
indicators, have predictive contents comparable to or, in
many cases, better than that of more conventional mod-
els.” Importantly, this is achieved by using not more de-
tailed data andmodels, but more robust aggregation (Sub-
sect. “Predictability vs. Complexity: The Need for Holistic
Approach”).

Partial “universality” of premonitory patterns is estab-
lished by broad research in modeling and data analysis.
This includes the common definition of the patterns, their
self-adjustment, scaling, and similarity [9,10,20,26,42]; see
also references in Sects. “Elections”, “US Economic Reces-
sions”, “Unemployment”, “Homicide Surges”).

Relation to “cause and effect” analysis (perpetrators or
witnesses?). Premonitory patterns might be either “per-
petrators” contributing to causing extreme events, or the
“witnesses” – parallel manifestations of the system’s devel-
opment. The cause that triggered a specific extreme event
is usually identified, at least in retrospect. It may be, for
example, a certain governmental decision, a change in the
international situation, a natural disaster, the depletion of
natural resources etc. However an actual extreme event

might materialize only if the system is destabilized and
“ripe” for it. Patterns of each kind signal such a ripe sit-
uation.

What premonitory patters to use for prediction? Exist-
ing theories and experience reduce the number of such
patterns, but too many of them remain hypothetically
promising and have to be chosen by a trial and error proce-
dure. Inevitably a prediction algorithm begins with a lim-
ited number of promising patterns. They should be suffi-
cient for prediction, but other patterns may be equally or
more useful and should be considered in further develop-
ment of the algorithm. Most relevant “perpetrators” might
not be included in the most useful patterns (e. g. due to
their sensitivity to too many factors).

Relation to policy-making: prediction and disaster pre-
paredness. Reliable predictions of future extreme events
in complex societal systems would allow policy-makers to
take remedial action before rather than after the onset of
such afflictions as economic disasters, crime surges, etc. As
in case of military intelligence predictions would be use-
ful if their accuracy is known, albeit not necessarily high.
Analysis of error diagrams allows to regulate the tradeoff
between the rates of failures to predict and false alarms ac-
cording to the needs of a decision-maker.

Relation to governing and campaigning. The findings
presented here for the USA elections show that top elected
officials would have better chances for reelection, if they
focus on effective governing, and not on rhetoric, packag-
ing and image-making. Candidates will benefit themselfes
and their parties if they run substantive campaigns that
build a foundation for governing during the next term.

Further Possibilities

A wealth of yet untapped data and models is readily avail-
able for the continuation of the kinds of studies described
and analyzed in this article. Following are some immediate
possibilities; specific examples can be found in the given
references.
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� Continuing experiments in advance prediction, for
which the above findings set up a base (Sect. “Elec-
tions”). Successes and errors are equally impor-
tant [37,38].

� Incorporating other available data into the analysis
(Sects. “US Economic Recessions”,“Unemployment”)

� Predicting the same kind of extreme events in different
contexts (Sect. “Unemployment”)

� Predicting the end of a crisis (Sect. “US Economic Re-
cessions”).

� Multistage prediction with several lead times (Sect.
“Homicide Surges”)
Less imminent, but within reach are:

� “Universal” scenarios of extreme development and low-
parametric definition of an ensemble of premonitory
patterns [9,51,52].

� Validation of an algorithm and joint optimization of
prediction and preparedness strategy [38].

� Developing prediction algorithms for other types of ex-
treme events.

The authors would be glad to provide specific information
upon request.

Generalizations

The problems considered here have the following common
features:

� The absence of a closed theory that would unambigu-
ously determine prediction methodology. This leads
to the need for intense intertwining of mathematics,
statistical physics and non-linear dynamics, a range
of societal sciences, and practical experience (Sub-
sect. “Methodology”). In reality this requires long-term
collaboration of respective experts. As can be seen from
the references to Sects. “Elections”, “US Economic Re-
cessions”, “Unemployment”, “Homicide Surges” previ-
ous applications inevitably involved the teams of such
experts.

� Predictions in advance is the only final validation of the
results obtained.

� The need for holistic analysis driven to extreme robust-
ness.

� Considerable, albeit limited, universalityof the premon-
itory phenomena.

Two classical quotations shed the light on these features:
A. N. Kolmogoroff . “It became clear for me that it is

unrealistic to have a hope for the creation of a pure theory
[of the turbulent flows of fluids and gases] closed in itself.
Due to the absence of such a theory we have to rely upon

the hypotheses obtained by processing of the experimental
data.”

M. Gell-Mann: “. . . if the parts of a complex system or
the various aspects of a complex situation, all defined in
advance, are studied carefully by experts on those parts or
aspects, and the results of their work are pooled, an ad-
equate description of the whole system or situation does
not usually emerge. . . . The reason, of course, is that these
parts or aspects are typically entangled with one another.
. . . We have to supplement the partial studies with a trans-
disciplinary crude look at the whole.”

In the general scheme of things the problem consid-
ered belongs to amuch wider field – the quest for a univer-
sal theory of complex systems extended to predicting ex-
treme events – the Holy Grail of complexity studies. This
quest encompasses the natural and human-made com-
plex systems that comprise what some analysts have called
“the global village”. It requires entirely new applications
of modern science, such as algebraic geometry, combina-
torics, and thermodynamics. As a means for anticipating,
preventing and responding to natural and manmade dis-
asters and for improving the outcomes of economic and
political systems, the methods described here may hold
one key for the survival and sustainability of our civiliza-
tion.
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Glossary

Random variable When a coin is tossed two random out-
comes are permitted: head or tail. These outcomes
can be mapped to numbers in a process which de-
fines a ‘random variable’: for instance, ‘head’ and ‘tail’
could be mapped respectively to +1 and�1. More gen-
erally, any function mapping the outcomes of a ran-
dom process to real numbers is defined a random vari-
able [15]. More technically, a random variable is any
function from a probability space to some measurable

space, i. e., the space of admitted values of the vari-
able, e. g., real numbers with the Borel �-algebra. The
amount of rainfall in a day or the daily price variation
of a stock are two more examples. It’s worth to stress
that, formally, the outcome of a given random exper-
iment is not a random variable: the random variable
is the function describing all the possible outcomes as
numbers. Finally, two random variables are said inde-
pendent when the outcome of either of them has no
influence on the other.

Probability distribution The probability of either out-
comes, ‘head’ and ‘tail’, in tossing a coin is 50%.
Similarly, a discrete random variable, X, with values
fx1; x2; : : : g has an associate discrete probability dis-
tribution of occurrence fp1; p2; : : : g. More generally,
for a random variable on real numbers, X, the corre-
sponding probability distribution [15] is the function
returning the probability to find a value of X within
a given interval [x1; x2] (where x1 and x2 are real
numbers): Pr[x1 � X � x2]. In particular, the random
variable, X, is fully characterized by its cumulative dis-
tribution function, F(x), which is: F(x) D Pr[X < x]
for any x in R. The probability distribution den-
sity, f (x), can be often defined as the derivative of
F(x) : f (x) D dF(x)/dx.
The probability distribution of two independent ran-
dom variables, X and Y , is the product of the distri-
butions, FX and FY , of X and Y : F(x; y) � Pr[X <

x;Y < y] D Pr[X < x] � Pr[Y < y] D FX(x) � FY (y).
Expected value The expected value [15] of a random vari-

able is its average outcome over many independent ex-
periments. Consider, for instance, a discrete random
variable, X, with values in the set fx1; x2; : : : g and
the corresponding probability for each of these val-
ues fp1; p2; : : : g. In probability theory, the expected,
or average, value of X (denoted E(X)) is just the sum:
E(X) D

P
xi pi . For instance, if you have an asset

which can give two returns fx1; x2g with probability
fp1; p2g, its expected return is x1p1 C x2p2.
In case we have a random variable defined on real
numbers and F(x) is its probability distribution func-
tion, the expected value of X is: E(X) D

R
XdF . As for

some F(x) the above integral may not exist, the ‘ex-
pected value’ of a random variable is not always de-
fined.

Variance and moments The variance [15] of a probabil-
ity distribution is a measure of the average deviations
from the mean of the related random variable. In prob-
ability theory, the variance is usually defined as the
mean squared deviation, E((X � E(X))2), i. e., the ex-
pected value of (X � E(X))2. The square root of the
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variance is named the standard deviation and is amore
sensible measure of fluctuations of X around E(X).
Alike E(X), for some distributions the variance may
not exist. In general, the expected value of the kth
power of X, E(Xk), is called the kth moment of the dis-
tribution.

The Central limit theorem The Central Limit Theo-
rem [15] is a very important result in probability
theory stating that the sum of N independent identi-
cally-distributed random variables, with finite average
and variance, has a Gaussian probability distribution
in the limit N !1, irrespective of the underlying
distributions of the random variables. The domain of
attraction of the Gaussian as a limit distribution is,
thus, very large and can explain why the Gaussian is so
frequently encountered. The theorem is, in practice,
very useful since many real random processes have
a finite average and variance and are approximately
independent.

Definition of the Subject

Extreme value theory is concerned with the statistical
properties of the extreme events related to a random vari-
able (see Fig. 1), and the understanding and applications
of their probability distributions. The methods and the
practical use of such a theory have been developed in the
last 60 years, though, many complex real-life problems
have only recently been tackled. Many disciplines use the
tools of extreme value theory including meteorology, hy-
drology, ocean wave modeling, and finance to name just
a few.

For example, in economics, extreme value theory is
currently used by actuaries to evaluate and price insurance
against the probability of rare but financially catastrophic
events. An other application is for the estimation of Value
at Risk. In hydrology, the theory is applied by environ-
mental risk agencies to calculate, for example, the height
of sea-walls to prevent flooding. Similarly, extreme value
theory is also used to set strength boundaries in engineer-
ing materials, as well as for material fatigue and reliability
in buildings (e. g., bridges, oil rigs), and estimating pollu-
tion levels.

This paper aims to give a simple, self contained, in-
troduction to the motivations and basic ideas behind the
development of extreme value theory, and briefly cov-
ers a few more technical topics such as extreme r order
statistics and the generalization of extreme value distribu-
tion theory. We refer to textbooks on probability theory,
such as [15] (or, for simplicity, to the Glossary), for the
definition of the basic notions of probability used here.

Extreme Value Statistics, Figure 1
We show three samples, 1 to 3, each with N realizations of
a random variable Xi(i 2 f1; : : : ;Ng). Extreme value theory is
concerned with the statistical properties of occurrence of the
extreme values in those samples, such as the maxima (circled
points)

The extensive research on extreme value statistics is re-
viewed in excellent books published over the past years,
e. g., [6,11,12,13,14,17,18,21,24]; we provide here only an
overview of the basic concepts and tools. To make this pa-
per as self contained as possible, the Glossary gives a be-
ginner introduction to all the elementary notions of prob-
ability theory encountered in the following sections.

Introduction

Extreme events, exceeding the typical expected value of
a random variable, can have substantial relevance to prob-
lems raising in disciplines as diverse as sciences, engineer-
ing and economics.

Extreme value theory is a sub-field of applied statistics,
early developed [13,14,17,18] by mathematician such as
Fisher, Tippett, Gnedenko, and, in particular, Emil Julius
Gumbel, dealing precisely with the problems related to
extreme events (see Fig. 1). One of its key point is the
so called ‘three types theorem’, relating the properties of
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the distribution of probability of the underlying stochastic
variable to its extreme value distributions, i. e., the limit-
ing distributions for the extreme (minimum ormaximum)
value of a large collection of random observations. Inter-
estingly, for a comparatively large class of random vari-
ables, the theory points out that only a few species of limit
extreme value distributions are found.

In some respect, the ‘three types theorem’ can be con-
sidered the analogous of the well known central limit the-
orem applying to ordinary sums, or averages, of random
variables. From a practical point of view it is as important,
since it opens a way to estimate the asymptotic distribu-
tion of extreme values without any a priori knowledge, or
guess assumption, on the parent distribution. In this way,
we have a solid ground to estimate the parameters of the
limit distributions along with their confidence intervals, an
issue crucial, for instance, to proper risk assessment.

In Finance, for example, market regulators and finan-
cial institutions face the important and complex task to es-
timate and manage risk. Assessing the probability of rare
and extreme events is, of course, a crucial issue and reli-
able measures of risk are needed to minimize undesirable
effects on portfolios from large fluctuations in market con-
ditions, e. g., exchange rates or prices of assets. Similar is-
sues about risk and reliability are faced in insurance and
banking, which are deeply concerned with unusually large
fluctuations. Extreme value theory provides the solid the-
oretical foundation needed for the statistical modeling of
such events and proper computation of risk and related
confidence intervals.

The study of natural and environmental hazards is
also strongly interested to extreme events; for instance,
reported hydrology and meteorology applications of ex-
treme event theory concern flood frequency analysis, esti-
mation of precipitation probabilities, or extreme tide lev-
els. Predictions of events such as strong heat waves, rain-
fall, occurrence of huge sea waves are deeply grounded on
such a theory as well. Analogous problems are found in
telecommunications and transport systems, such as traf-
fic data analysis, Internet traffic, queuing modeling; prob-
lems from material science, pollutants hazards on health
add examples from a very long list of related phenom-
ena.

It is impossible to summarize here the huge, often
technical, literature on all these topics and we refer to
the general books cited in the bibliography. Actually, to
give an idea of the variety of applications of the theory,
we only mention a few more example from still an other
class of disciplines, Physical Sciences. In Physics, for in-
stance, the equilibrium low-temperature properties of dis-
ordered systems are characterized by the statistics of ex-

tremely low-energy states. Several problems in this class,
including the Random Energy Model and models for de-
caying Burgers turbulence, have been connected to ex-
treme value distributions [3]. In GaAs films, extreme val-
ues in Gaussian 1/ f correlations of voltage fluctuations
were shown to follow one of the limit distributions of ex-
treme value theory, the Gumbel asymptote [1]. Hierarchi-
cally correlated random variables representing the ener-
gies of directed polymers [9] andmaximal heights of grow-
ing self-affine surfaces [20] exhibits extreme value statis-
tics as well. The Fisher–Tippett–Gumbel asymptote is in-
volved in distribution of extreme height fluctuations for
Edwards–Wilkinson relaxation of fluctuating interfaces on
small-world-coupled interacting systems [16]. A connec-
tion was also established between the energy level den-
sity of a gas of non-interacting bosons and the distribution
laws of extreme value statistics [7].

In case of systems with correlated variables, the ap-
plication of the extreme value theory is far from trivial.
A theorem states that the statistics of maxima of stationary
Gaussian sequences, with suitable correlations, asymptot-
ically converges to a Gumbel distribution [2]. Evidences
supporting similar results were derived from numerical
simulations and analysis of long-term correlated exponen-
tially distributed signals [10]. In general, however, the sce-
nario is non trivial. For instance, in Physics a variant of
Gumbel distribution was observed in turbulence [4] and
derived in the two-dimensional XY model [5], which are
systems where correlations play an important role. Sim-
ilarly, correlated extreme value statistics were discovered
in the Sneppen depinning model [8]. In models for fluc-
tuating correlated interfaces, such as Edwards–Wilkinson
and Kardar–Parisi–Zhang equations, an exact solution for
the distribution of maximal heights was recently derived
and it turns out to be an Airy function [19].

After the above brief picture of the field, we illustrate
next the general properties of extreme value distributions
of independent random variables.

The Extreme Value Distributions

Extreme value distributions are the limit distributions of
extremes (either maxima or minima) of a set of random
variables (see Fig. 1). For definiteness, we will deal here
with maxima, as minima can be seen as ‘maxima’ of a set
of variables with opposite signs.

Consider a set fX1; X2; : : : ; XNg of N independent
identically distributed random variables, Xi, with a cu-
mulative distribution function, F(x) � PrfXi � xg. The
maximum in the set, YN DMaxfX1; X2; : : : ; XNg, has
a distribution function, HN (x), which is simply related to
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Extreme Value Statistics, Figure 2
As an example, we plot in this figure the Gumbel density dis-
tribution, h(x) D dH(x)/dx, from Eq. (3), and the Fréchet and
Weibull density distributions from Eqs. (4) and (5), for ˛ D 2

F, since by definition of YN , we have:

HN(x) � PrfYN � xg
D PrfX1 � x; X2 � x; : : : XN � xg
D PrfX1 � xg � PrfX2 � xg � : : : � PrfXN � xg

D FN (x) : (1)

In the limit of large samples,N !1, it is possible to show
that, under some general hypotheses on F described below,
we can find a suitable sequence of scaling constants aN and
bN , such that the scaled variable yN D (YN � bN )/aN has
a non degenerate probability distribution function H(y).
Specifically, as N !1, the distribution PrfyN � yg has
a non trivial well defined limitH(y):

PrfyN � yg D Prf(YN � bN )/aN � yg
D PrfYN � aN y C bNg

D FN(aN y C bN ) �! H(y) for N !1 :

(2)

For a given underlying distribution, F, the individuation
of the precise sequence of scaling constants aN and bN re-
quired in Eq. (2) is a non trivial technical problem in the
mathematics of extreme values [18], which we briefly dis-
cuss in the next sections. Such an issue is overshadowed
by the simplicity of the result of the ‘three types theorem’,
which states that there are only three types (apart from
a scaling transformation of the variable) of limiting dis-
tribution H(y) (see Fig. 2):
I) Gumbel type:

H(y) D exp[� exp(�y)] (3)

with �1 < y <1;

II) Fréchet type:

H(y) D exp[�y�˛] (4)

where ˛ is a fixed exponent and 0 < y <1 (with
H(y) D 0 for y < 0);

III) Weibull type:

H(y) D exp[�(�y)˛] (5)

where ˛ is a fixed exponent and �1 < y < 0 (with
H(y) D 1 for y > 0).

The Generalized Extreme Value Distribution

In the extreme value statistics literature, the three types of
limiting distributions, Gumbel, Fréchet and Weibull, are
often represented as a single family including all of them,
the so called generalized extreme value distribution:

H(y;�; �; �) D exp
�
�


1C �

y � �
�

��1/��
(6)

with support in the interval where 1C �(y � �)/� > 0, as
otherwiseH is either zero or one. Out of the three parame-
ters �; �; � of Eq. (6), � is called the ‘shape’ parameter and
it is especially important as it selects the specific type of
asymptote:

I) The case � D 0 corresponds to the Gumbel asymp-
tote, since it is easy to show that

lim
�!0

H(y;�; �; �) D exp
h
� exp


�y � �
�

�i
; (7)

II) Similarly, the case � > 0 corresponds to the Fréchet
asymptote of Eq. (4), where the exponent is ˛ D 1/� ;

III) And, finally, the case � < 0 corresponds to the
Weibull asymptote of Eq. (5), where the exponent is
˛ D �1/� .

The parameters � and � of Eq. (6) are called the ‘lo-
cation’ and the ‘scale’ parameters, since they are related to
the moments of the generalized extreme value distribution
of Eq. (6). Figure 3 plots the effects of changes in � and
� on the form of H(y) from Eq. (6) in the Gumbel case,
� D 0. It is possible to show [18] that the kth moment is fi-
nite only if � < 1/k. The mean, which exists only if � < 1,
can be expressed in the following general form

E(y) D �C
�

�
[� (1 � �) � 1] ; (8)

where � (x) is the Gamma function. In the Gumbel limit,
� ! 0, the above result is simplified to: E(y) D �C �� ,
where � D 0:577 : : : is the Euler � constant.
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Extreme Value Statistics, Figure 3
In this figure we show the effects of the � and � parameters
on the appearance of the generalized extreme value density dis-
tribution, h(x) D dH(x)/dx, from Eq. (6), in the case � D 0, i. e.,
the Gumbel type. In the upper panel, we plot h(x) for � D 1
and � D 0;1;2. In the lower panel, we plot h(x) for � D 0 and
� D 1/4;1/2;1

Analogously, the variance, existing for � < 1/2, can be
written as:

E
�
[y � E(y)]2


D

�
�

�

�2
[� (1� 2�)�� 2(1� �)] ; (9)

which in the � ! 0 limit becomes E
�
[y � E(y)]2


D

�2�2/6.

The r Largest Order Statistics

The results on distributions of the maximum (or min-
imum) discussed above can be extended to the set of
the rth largest value of an ensemble. Consider a set
fX1; X2; : : : ; XNg of N identically distributed random
variables which, for simplicity of notation, are arranged
in order of magnitude: X1 < X2 < � � � < XN . As before,

F(x) � PrfXi � xg is their common cumulative distribu-
tion function. The statistics of XN and X1 are the distri-
bution of, respectively, the maximum and the minimum
seen before. Similarly, Xr (with r 2 f1;Ng) is called the r
(largest) order statistic.

The r order statistic has a distribution function, Hr(x),
simply related to F

Hr(x) � PrfXr � xg
D PrfX1 � x; X2 � x; : : : ; Xr � xg
� PrfXrC1 > x; : : : ; XN > xg

D

NX

iDr

N!
(N � i)!i!

Fi(x)[1 � F(x)]N�i : (10)

The theory of the generalized extreme value distribution
can be extended to the r order statistic. Actually, in the
limit N !1, if a suitable sequence of scaling constants,
aN and bN , can be found such that the scaled maxi-
mum variable yN D (XN � bN )/aN has a limit distribu-
tion function H(y) given in Eq. (6), then the r order statis-
tic has a limit distribution which can be easily expressed in
terms of H(y) [18].

In order to describe a broader panorama of the avail-
able results in extreme value theory, we give here some
details on the more general case of the limit probabil-
ity distribution density of the vector of the first r largest
values (y1; y2; : : : ; yr ) D ((XN � bN )/aN ; (XN�1 �

bN )/aN ; : : : ; (XN�rC1�bN )/aN ). Such a limit distribution
density can be shown to be [18]

h(y1; : : : ; yr) D
1
� r exp

�
�


1C �

yr � �
�

�� 1
�

�

�
1C

1
�

� rX

iD1

ln


1C �

yi � �
�

�#

:

(11)

Most of the other results of the previous sections can be
generalized to the r order statistics, as shown for instance
in [18].

Domains of Attraction and Examples

The problem of finding the domains of attraction of the
classes of limiting distribution is a complex, partially still
open, topic in extreme value theory [18]. Even in the case
of independent identically distributed random variables,
understanding which asymptote a given distribution, F,
converges to and which is the sequence of scaling con-
stants, aN and bN , can be a non trivial task. As the extreme
events of a random variable are characterized by the tail of



3322 E Extreme Value Statistics

F, a simple approximate approach to guess the domain of
attraction F falls into is to consider its behavior for large
x. We summarize below a few well known examples hav-
ing a broad validity which can guide practical applications
of the theory to the case where the random variables are
independent and identically distributed.

E I) Many common distributions, F(x), have exponen-
tial tails in x, very important examples being the
Gaussian and the exponential distributions. In this
case, their extreme value statistic is the Gumbel
asymptote.
A more formal condition for F to belong to the do-
main of attraction of the Gumbel limiting distribu-
tion was established by vonMises. Take a function F
and denote xmax the largest value in its support, i. e.,
where F(xmax) D 1 (the point xmax can be also infi-
nite). Consider the derivative f (x) D dF(x)/dx and
the rate of F(x) in approaching 1 as x ! xmax: when
x ! xmax, if

d
dx

�
1 � F(x)
f (x)

�
! 0 (12)

then PrfyN � yg tends to the Gumbel asymptote
given in Eq. (3).
The above criterion can be rephrased in a more col-
loquial way: the Gumbel type is the limiting distri-
bution when 1 � F(x) decays faster than a polyno-
mial for x ! xmax. Beyond the Gaussian and ex-
ponential distributions, the lognormal, the Gamma,
the Weibull, the Benktander-type I and II, and
many more common distributions, with xmax either
finite or infinite, belong to this class.

E II) Distributions such as the Pareto, Cauchy, Student,
Burr have the Fréchet asymptote. More generally,
when xmax is infinite and F has a power law tail for
x !1

1 � F(x) ' x�˛ (13)

with an exponent ˛ > 0, then the domain of attrac-
tion of the extreme value statistics is the Fréchet
type given in Eq. (4), with precisely the same expo-
nent ˛ of Eq. (13).

E III) Finally, when xmax is finite and F has a power law
behavior for x ! xmax

1 � F(x) ' (xmax � x)�˛ (14)

with an exponent ˛ > 0, then the domain of attrac-
tion of the extreme value statistics is the Weibull
type of Eq. (5), with the same exponent ˛ of

Eq. (14). The Uniform and Beta distributions have,
for instance, the Weibull asymptote.

Extremes of Correlated Random Variables

When the underlying random variables are not indepen-
dent, as in many cases of practical relevance ranging from
Meteorology to Finance, the problem to individuate the
form, or even the existence, of the limiting distribution is,
in general, open. The existing broad technical literature on
the topic [18] shows that the three types, Gumbel, Fréchet
andWeibull, summarized in the generalized extreme value
distribution of Eq. (6), often arise as well. For instance,
a recent theorem has shown that in the case of station-
ary Gaussian sequences with suitable correlations the dis-
tribution of maxima asymptotically follows the Gumbel
type [2]. Analysis of numerical simulations of long-term
correlated exponentially distributed signals has given ev-
idences supporting similar conclusions [10]. Sometimes,
when considering ‘time’ series of N correlated variables,
the approximate rule of thumb that N must be much big-
ger than the ‘correlation length’ of the sequence is used as
a guide to decide whether Eq. (6) is likely to be the right
asymptote.

Some of the example mentioned in the Introduction
can help, however, in delineating the strong limits of the
above approximate criteria and the lack of a general pic-
ture. For instance, in the XY model for magnetic sys-
tems used in Statistical Physics, in the Kosterliz–Thouless
low temperature phase the magnetization has a distribu-
tion which is a generalized Gumbel [5], but not the one
in Eq. (3), a result expected to hold in a broad class of
systems. In models for fluctuating interfaces, developing
correlations, described by Edwards–Wilkinson and Kar-
dar–Parisi–Zhang like equations, it has been derived that
the exact distribution of maximal heights is an Airy func-
tion [19]. These examples show the variety of situations
which can arise in practical cases and indicate that the
theorems derived for independent identically distributed
variables must be applied with caution.

Future Directions

In the sections above, we reviewed at an introductory level
the mathematics of extreme value theory, with a special fo-
cus on the ‘three types theorem’ on the limiting distribu-
tions. We also discussed their domains of attraction and
many examples on random extreme events. We have not
covered, instead, other important, though, more technical
and still evolving topics such as the theoretical approach
to the problem of ‘exceedances over thresholds’, and the
the methodology for estimating from real sample data the
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parameters of extreme distributions, such as maximum
likelihood and Bayesian methods. These are covered, for
instance, in the general references listed in the bibliogra-
phy. Actually, there is a number of excellent textbooks on
these topics, ranging from the original book by E.J. Gum-
bel [17], to more recent volumes illustrating in details ex-
treme value theory in the formal framework of the theory
of probability [11,13,14,18]. Volumes more focused on ap-
plications to Finance and Insurances are, e. g., [6,11,12,21],
as applications to climate, hydrology and meteorology re-
search are found in [6,12,21,24]. Finally, there is a num-
ber of more technical review papers on the topic, includ-
ing [10,22,23].
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