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Preface

Exploring brain proteins and peptides—past, present, and future*

Proteins carry out a multitude of functions in the biological system. Commensurate with their structural

and functional complexities, the exploration of proteins in any organ has never been a simple task, let alone

those in the nervous system, where cytoarchitectonic and hierarchical organizations reign supreme. For

those who have witnessed the growth in this area over the past few decades, one cannot help but be amazed

by the progress made, bringing the field from stone‐age chemistry to present‐day sophistication of gene

technology. Looking back, the study of brain proteins can be roughly divided into three eras.

I. The pre‐biotech era or era of brute‐force fractionation. This period covers the time from the early 20th

century to the 1970s. The earliest methods for protein isolation were crude, consisting mainly of extraction

and precipitation, yielding information on groups of proteins rather than individual ones. Unfortunately,

no meaningful information could be gathered until pure proteins could be isolated and individually

studied. But since biologically active proteins are often present in miniscule amounts, purifying individual

proteins was analogous to looking for a needle in a haystack. One way to mitigate the difficulty was to start

with a source material that could be procured in large quantities, such as pig or bovine brains from a

slaughter house, although there was no guarantee that the protein in question would remain intact by the

time the brains arrived in the laboratory. It was also advantageous to do a preliminary separation (neurons

from glia) or dissection (white from gray matter) or a subcellular fractionation (e.g., obtaining the

synaptosomes) before protein purification, although such procedures inevitably reduced the amount of

tissue available. Purification of enzymes could be monitored by test‐tube assay; other biologically active

proteins must be followed by tedious bioassay procedures, severely hindering the progress of the work.

Some investigators aimed at obtaining proteins found only in the nervous system, with the assumption that

brain‐specific proteins must have brain‐specific functions. This assumption was only partially true as

proteins in common with other organs may have unique roles in the brain, while proteins unique to the

brain often turn out to be also present in other organs in smaller amounts. The use of monoclonal

antibodies, obtained from a protein mixture, to monitor the final steps of purification, provided yet

another strategy. The advent of high‐performance liquid chromatography (HPLC) in the 1980s provided

a powerful addition to the existing methods of ion‐exchange and size‐exclusion fractionation techniques.

Despite these advances, obtaining a pure protein was laborious and quite often a matter of serendipity and

luck. Even so, the purity and identity of the isolated proteins were difficult to ascertain because of the

minute quantity of the final product.

II. Era of biotechnology. Progress in molecular biology revolutionized the approach to the study of brain

proteins. Since DNA is much easier to analyze and manipulate than proteins, the major obstacles in protein

chemistry were circumvented by dealing with DNA. Once a protein was partially sequenced, the comple-

mentary DNA (cDNA) could be cloned from a cDNA library and the pure, recombinant protein

*Dedicated to Blake W. Moore, who dared to tread in murky waters in the early days of brain proteins.



subsequently expressed in vitro in quantities sufficient for chemical and biological analyses. Even without a

partial sequence, cloning could be achieved by monitoring the gene product with antibody or function

analysis, such as receptor binding. Sequencing the entire protein became unnecessary as the information

could be deduced from the cDNA. Once a protein is identified, the entire family of related members could

be found by homology search in the cDNA library. Site‐directed mutagenesis and deletions/additions could

be made on the DNA and conveniently expressed as modified proteins. Through DNA technology, proteins

could be dissected at will to reveal the contribution of each constituting domain. The intracellular function

of a protein could be determined by overexpression or underexpression, the former through transgenes

(using plasmid or virus carriers) while the latter through gene knockout or RNA interference. Thanks to

molecular biology, an entirely new era of protein chemistry has dawned. Brain proteins can now be

explored through myriads of approaches never dreamed of before.

III. The postgenomic era or era of neuroproteomics. The complete sequencing of the human genome in

2001 propelled the study of brain proteins to a new height. Proteins can now be discovered, complete with

amino acid sequences, by scanning the genomic map alone, even before knowing their functions, which can

frequently be deduced by homology comparisons from the database. Through microarray technology, high

throughput studies are feasible. DNA microarrays are available to determine which genes are activated by a

given protein. Protein and antibody microarrays can be purchased to study protein–protein and protein–

DNA interactions. With bioinformatics, one can hope to make sense of the intricate relationships of

proteins in the nervous system. Today, the classical approach to explore brain proteins has been reversed

and turned upside down. What used to be the mainstay of protein chemistry—fractionation, amino acid

sequencing, and cumbersome bioassays—are now relegated to a secondary, confirmatory role. For those of

us whose research careers span the length of the three eras, one cannot look back without being over-

whelmed by a sense of awe and humiliation.

The current volume is a collection of a variety of brain proteins and peptides whose structure and

functions are relatively well known. It is meant to provide a glimpse of the field rather than an exhaustive

treatise. In a rapidly expanding area such as this, not only that new members are constantly being identified,

but also that new functions are quickly being added to the known proteins and peptides. It can be said that

bringing a new protein into light is analogous to giving birth to a child, each having a life of its own,

growing in its own way frequently with outcomes unexpected to the parents.

Every author and coauthor in this volume is an established expert in the field. Each provides a succinct

and up‐to‐date summary of a protein or peptide as well as their own contributions to the field. In putting

this volume together, they have sacrificed their precious time that could have been used for other important

activities such as research, teaching, publishing original papers, and grant applications. The editor is deeply

appreciative of their dedication. It is a pleasure to see their labor coming to fruition, even though one is

cognizant of the fact that a large portion of the content will be outdated within a few years. Hopefully, like

the regenerating nerve, this volume will renew itself as time goes by.

Ramon Lim, M.D., Ph.D.

Iowa City, IA, 52242, USA

December 2005
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Academy at Göteborg University, Box 440, SE-405 30
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Related Proteins
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2 1 Nerve growth factor and related proteins
Abstract: The purification of the nerve growth factor (NGF) protein to homogeneity allowed for the

subsequent characterization of the remainder of the neurotrophin (NT) family of growth factors and their

cognate receptors. The juxtaposition of elegant protein biochemistry and insightful tissue culture

approaches to the elucidation of the developmental sequelae responsible for selective innervation and

neuronal number regulation led to an understanding of cell death processes and neuronal plasticity in

response to growth factor cues and later to trauma to the peripheral nervous system (PNS) and the central

nervous system (CNS). An understanding of the key evolution of these concepts is rooted in large measure

in the character of the early pioneering investigators in the neurotrophin (NT) field.

List of Abbreviations: BDNF, brain‐derived neurotrophic factor; DRG, dorsal root ganglia; NGF, nerve

growth factor; NT, neurotrophin

1 Introduction: Discovery of NGF

While the concept of growth factors as proteins responsible for the survival and proliferation of cells is

common to the cancer and immunology fields, its analog in the neurosciences can easily be traced to the

discovery and early characterization of the nerve growth factor (NGF) protein, the founding member of the

neurotrophin (NT) family of proteins. The NGF and related NTs not only play roles in the cell survival of

neurons but also in their migration, neurite elongation, neurotransmitter expression, and synaptic matu-

ration both in the developmental process and in the maintenance of phenotypes specific to well‐defined
areas of the peripheral nervous system (PNS) and the central nervous system (CNS). Also, while NGF

activity was originally described as neuronal‐specific, the presence of NGF receptors on nonneuronal glial

and immune‐like cells and the subsequent demonstration of effects on these nonneuronal cells is consistent

with similarities among the NTand cytokine gene families most likely reflecting evolutionary events (Perez‐
Polo, 1990; Aloe, 2004). It would be hard to exaggerate the importance of NGF to our understanding of

those processes that balance the need for homeostasis with the growth requirements of development. In

addition, the particular cast of scientists involved in the early years of the discovery, purification, and

characterization of the NGF protein sometimes reads like an Indiana Jones script, inclusive of experiments

in cellars away from the persecution of Gestapo agents in Turin, Italy, during World War II followed by trips

to South America smuggling tumor‐bearing mice (Cowan, 2001; Aloe, 2004).

At the heart of the NGF story there are three individuals: Rita Levi‐Montalcini and Viktor Hamburger

on the biology side and Stanley Cohen on the biochemistry side. They brought together the skills and

insights of developmental science tradition, explant culture techniques, and a then newly ascendant protein

biochemistry armoire in a way that only serendipity and historical accidents could have accomplished.

Deprived of a position at the University of Torino during the early years of the World War II, Rita Levi‐
Montalcini was forced to rely on the chicken embryo as a tool to determine the forces that made innervation

of tissues a well‐choreographed event. After the war, this student of Professor Giuseppe Levi, and Viktor

Hamburger, the student of Professor Hans Spemann, were united when as a result of the publication of the

work carried out by Rita Levi‐Montalcini in a cellar, where eggs not used in research provided more direct

sustenance, he invited her in 1947 to St. Louis to work in his department. Over the next decade the careful

analyses of experiments with chicken embryos and later explanted dorsal root ganglia (DRG) exposed to

tumor explant extracts led to the discovery of a protein that could elicit neuronal outgrowth. At the time the

absence of pure reagents led to the use of snake venom to abolish phosphodiestarase activities as a way of

eliminating nucleic acids as contributors to the neurite‐extending activity and establishing proteins as likely
agents of neurite‐promoting activity. The salivary origin of the mouse sarcoma tumors 37 and 180, rich in

this biological activity, led to the choice by Stanley Cohen of the mouse submaxillary gland as a potential

source of the factor. Retired male breeders were used as a measure of economy, given their low cost. These

sexually mature male random‐bred mice would yield as much as 1% of their protein content as NGF

protein. Had females, containing less than 0.01% of the protein when compared with sexually mature male

mice, been used, the history of the Nobel Prize might be different. Nevertheless, the key event was the

establishment of the DRG in vitro assay, which provided a semiquantitative assay useful in the screening of

tissues and fractionation that made purification of isolated NT proteins possible.
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2 The NGF Bioassay

The ability to isolate and culture chick DRG for days at a time led to the development of a semiquantitative

assay based on the extension of neurites from cultured explants of DRG from 8‐day‐old chicken embryos in

response to the application of extracts containing ‘‘nerve growth promoting activity.’’ This fairly easy assay

allowed for the purification of the NGF protein from mouse sarcoma (Levi‐Montalcini and Hamburger,

1953), as well as from submaxillary gland of adult male mouse (Varon et al., 1967; Bochini and Angeletti,

1969), snake venom (Angeletti, 1970; Perez‐Polo et al., 1978), guinea pig prostrate (Harper et al., 1979), and

human placenta (Goldstein et al., 1978; Walker et al., 1980). In time, two different forms of NGF were

isolated: a highly basic protein of 26,500 Da and a subunit‐containing complex made up of three different

protein dimers in a hexamer configuration stabilized by zinc, reminiscent of other zinc‐containing
hexamers with important signaling properties such as insulin and b‐amyloid protein.
3 The Neurotrophic Hypothesis

Interestingly, early studies suggested that part of the growth promoting activity present in NGF, in addition

to its neurotropic activity, was a stimulation of neuronal proliferation, now confirmed for CNS (Barnabe‐
Heider and Miller, 2003). In time, elegant experiments showed that the differences in the sizes of the well‐
contained explants and the numbers of cells present in the presence of NGF or in rats or mice injected with

NGF was due to effects of NGF on developmental cell death. The ability to control neuronal cell survival in

developing PNS by the application of NGF or antibodies to NGF led to the elucidation and direct testing of

the neurotrophic hypothesis (Levi‐Montalcini and Angeletti, 1966; Hamburger and Oppenheim, 1982).

That is, careful counting of neurons present in well‐defined sensory, sympathetic, and enteric ganglia as first

NGF and then other members of the NGF family of factors were either added or withdrawn via treatment

with antibodies showed that in all cases there was a considerable decrease in the number of neurons

associated with innervation of target organs that could be circumvented via the application of appropriate

cognate growth factors or exaggerated by treatment with antibodies to these same growth factors

(Hamburger et al., 1981; Oppenheim, 1981).

The neurotrophic hypothesis states that competition for target‐derived trophic factors by neurons

during well‐defined windows of development characterized by the rapid growth provides a mechanism for

the accurate innervation of target tissues during the development of the nervous system and the elimination

of those neurons that are not necessary. This developmental plasticity is a response to variations in

phenotype and the vagaries of events during development that allow for a very high level of circuit pattern

formation without the necessity to ‘‘hard wire’’ nervous system via the transfer, storage, and expression of

precise genetic information. The properties of neurons that perish apoptotically during development, the

transient or permanent nature of their dependence on those trophic growth factors at the termination of the

developmental sequelae, or the role of these growth factors in adult neuronal function or responses to

injury can vary greatly. However, in spite of these variations, there are certain common features that are now

accepted.

The strategy for establishing the final neural net that allows a nervous system to process sensory signals,

establish memory engrams, and generate responses ranging from the endocrine and motor to the sensation

of self‐awareness depends in some fashion on the principle of the neurotrophic hypothesis, perhaps best

illustrated during the early neuronal development of the sympathetic nervous system. Early in development

there is an overproduction of precursor sympathetic neurons, sympathicoblasts, that when exposed to the

NGF, in the absence of glucocorticoids, extend neurites oriented to the NGF source. Over time there is a

decrease in the ambient levels of NGF even as the extended growth cones contact target tissues that

synthesize and release the reduced amounts of NGF. Synaptic contact between the neuronal growth cones

that display NGF receptors takes place, and there is binding of nearby NGF molecules to these receptors

followed by internalization and the eventual retrograde transport to the neuronal soma of both

encapsulated NGF–receptor complexes and activated NGF receptors (Miller and Kaplan, 2002). Those

sympathicoblasts whose axons fail to reach a target become growth factor deprived, experience neurite
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pruning, and perish via apoptosis, the fate of half of all sympathetic neurons during development. This is

not a unique event as the fate of neuronal apoptosis during development is common to almost all neuronal

populations (Oppenheim, 1991).

Experiments that support the neurotrophic hypothesis have shown that an overproduction of neurons

early in development is followed by a significant decrease in their number as maturity is reached, that

the synthesis of neurotrophic substances takes place at tissues that are targets of innervation, but not at the

neurons that innervate them, and that cognate high‐affinity neurotrophic receptors are present in

the innervating neurons but not in their target tissues. Furthermore, reducing the levels of the neurotrophic

factors and their cognate receptors, or interrupting the retrograde transport of NTresults in the death of the

innervating neurons, an event that can be abrogated by the external application of the appropriate

growth factors to the innervating neurons (Johnson, 1978; Johnson et al., 1980; Oppenheim et al., 1982;

Levi‐Montalcini, 1987; Smeyne et al., 1994).
4 NGF Protein Structure

The biological activity of NGF is associated exclusively with the highly basic protein subunit, 2.5S or b‐NGF,
here called NGF, which stimulates the differentiation and survival of both sensory and sympathetic neurons

(Levi‐Montalcini and Hamburger, 1951; Greene and Shooter, 1980; Thoenen and Barde, 1980) and affects

certain populations of cholinergic neurons in the CNS. In several animal models, intraventricular infusion

of NGF has been shown to prevent the loss of cholinergic neurons in the septohippocampal lesions (Hefti,

1986; Williams et al., 1986; Kromer, 1987) and to restore cognitive function in aged rats when brain levels of

NGF were reduced (Fischer et al., 1987). NGF is part of a family of related growth factors known as the NTs

(> Figure 1-1 ). There are four members of the NT family : NGF, brain ‐derived neurotrophic factor (BDNF),
. Figure 1-1

Sequence alignment of the neurotrophins. Numbering refers to NGF. Conserved residues are marked with an

asterisk. Regions of low sequence homology are shaded. Adapted from Wiesmann and Vos (2001)
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NT‐3, and NT‐4/5 (Levi‐Montalcini and Hamburger, 1953; Cohen, 1959; Bochini and Angeletti, 1969;

Angeletti and Bradshaw, 1971; Perez‐Polo et al., 1972; Barde et al., 1982; Ernsfors et al., 1990; Hon et al.,

1990; Kaisho et al., 1990; Maisonpierre et al., 1990; Rosenthal et al., 1990; Berkemeier et al., 1991; Hallbook

et al., 1991; Ip et al., 1992; Ibanez, 1995; Shooter, 2001) that share a 50–60% sequence homology (Shooter,

2001) and 25% sequence homology to proinsulin (Barde and Thoenen, 1982). The NTs in turn belong to

the cysteine knot superfamily (Chao and Bothwell, 2002), so called because of ring structures made up of

intracellular disulfide bridges that form a tightly packed ‘‘cysteine knot’’ that allows for homodimers with

extensive surfaces in contact between antiparallel disposed monomers and a strong noncovalent bond

between dimer members (Kd� 10�13 M for NGF). Neurotrophins are typically very basic small proteins (pI

� 9–10; mol. wt.� 12–14). For one such NT, NGF, the biologically active dimer (b‐NGF) can be isolated as

part of a heterohexamer made up of the b‐NGF dimer and two other protein dimer kallikreins, one active,

g‐NGF, and one inactive, a‐NGF, which together with two zinc atoms form a stable equilibrium complex

(a2b2g2Zn2) called 7S NGF based on its equilibrium sedimentation constant (Shooter, 2001).

Murine 7S NGF is a stable multimer within a pH range of 5–9 and at concentrations consistent with its

dissociation equilibrium constant (Kd¼10�9 M) (Shooter, 2001). Dissociation and association of the 7S

complex serves regulatory functions given that (whereas cross‐linked b‐NGF is biologically active) the

cross‐linked 7S multimer is not active and the equilibrium dissociation constant for 7S NGF is in the same

range as the binding equilibrium constant of NTs for the p75NTR receptor (Chao and Bothwell, 2002). The

a‐NGF subunit stabilizes the 7S NGF complex but has no other known biological function (Thomas et al.,

1981a), and the g‐NGF subunits are arginine‐specific esteropeptidases of the serine family that process the

pro‐b‐NGF precursor yielding the mature NGF form (Thomas et al., 1981b). The significant levels of NT

precursor forms present throughout adulthood may serve a complex regulatory function given the reported

widespread presence of pro‐NTs and the selective cleavage of pro‐NGF by g‐NGF and of pro‐BDNF by the

matrix metalloproteinase MMP‐7 but not by MMP‐2 or MMP‐3 (Lee et al., 2001). The nature and

processing of NT‐3 and NT‐4/5 are not known.

There appear to be elevated ambient levels of pro‐NTs, as compared with the mature forms, consistent

with there being a regulatory role for pro‐NTspecies (Lee et al., 2001). This is based in part on evidence that

pro‐NGF has a higher affinity for NGF p75NTR receptor when compared with NGF (Lee et al., 2001). This

could have proapoptotic consequences. Given that p75NTR enhances the affinity of the other NGF receptor,

tropomyosin‐related tyrosine kinase (TrkA), for NGF while decreasing the affinity of TrkA for NT‐3, it may

be that a role of pro‐NTs is to selectively affect developmental sequelae in individuals in response to

environmental cues, providing a more flexible developmental program based on the binding of pro‐NTs to
p75–sortilin complexes (Kalb, 2005). A precise elaboration of the role of the different states of processing of

the NTs or of the high‐molecular‐weight forms of NTs—characterized for NGF in mouse submaxillary

gland and snake venom—is lacking.
5 The NT Receptors

The first obligatory action of a neurotrophin (NGF, BDNF, NT‐3, NT4/5) in the regulation of neuronal cell

death is binding to its cognate receptors (Bibel et al., 1999). There are two kinds of NT receptors: p75NTR

and Trk (Meakin and Shooter, 1992; Bibel et al., 1999). The p75NTR receptor belongs to the tumor necrosis

factor (TNF), fas antigen receptor (Fas) family of receptors, all of which contain an intracellular death

domain and are able to trigger ceramide signaling and NF‐kB activation (Dobrowsky et al., 1994; Carter

et al., 1996; Taglialatela et al., 1997, 1998). The ability of p75NTR to mediate both cell survival and cell death

of neurons and glia depends on its interaction with Trk receptors (p140TrkA, p145TrkB, and p145TrkC)

(Radeke et al., 1987; Rodriguez‐Tebar, 1990; Middlemas et al., 1991; McDonald et al., 1995; Taglialatela

et al., 1996; Dechant, 2001; Hirata et al., 2001; Miller and Kaplan, 2001; Chao and Bothwell, 2002). The

p75NTR receptor has an equilibrium dissociation constant of �10�9 M and when both p75NTR and Trk are

present on cells, the p75NTR receptors are present in much larger numbers compared with Trk. Also, when

both are present the combined equilibrium dissociation constant typically measured is in the �10�11 M

range. The Trk receptors belong to the tyrosine kinase family of receptors that share amino acid sequence
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homology with the tropomyosin‐related tyrosine kinase. They are commonly called TrkA, TrkB, and TrkC

(> Figure 1-2). The Trk receptors display differential binding to the different NTs (McDonald et al., 1995;

Chao and Bothwell, 2002). While the p75NTR receptors appear to bind equally to any of the NTs, the Trk

receptors do show some specificity with TrkA preferentially binding to NGF, TrkB preferentially binding to

BDNF and NT‐4/5, and TrkC preferentially binding to NT‐3. There are also nonfunctional truncated TrkB

and TrkC receptors, likely to quench NTaction (Middlemas et al., 1991) and mediate separate intracellular

signaling cascades (Kalb, 2005). Although p75NTR binds all of the NTs, there may also be selective activation

of ceramide signaling by NGF but not the other NTs. BDNF and NT‐3 Trk receptors are widely distributed
in the nervous system as compared with the more restricted distribution of TrkA receptors. In addition, the

intracellular fates of internalized NT receptors, which may be controlled via regulated receptor proteolysis,

could have regulatory importance (Kalb, 2005). It is clear that both p75NTR and the different Trks activate

intracellular cascades that share elements and thus engage in crosstalk. While a detailed analysis of these is

beyond the scope of this chapter, it is likely that some of the apparent difficulty in reconciling observations

as to the role of these elements in cell death and phenotypic expression may be due to the lack of acuity of

the studies to date. For example, while both p75NTR and TrkA activate the transcription factor NF‐kB,
which NF‐kB dimers are involved in the activities stimulated by the two receptors has not been established.

In addition to the cleavage of receptors into inactive truncated forms, which may have different or

unknown biological activities, there is also evidence for secretase cleavage of p75NTR, which may also

play a role in development (Zampieri et al., 2005).
. Figure 1-2

The neurotrophin receptors
6 Biological Activity of NTs: Specificity and Plasticity

In the CNS, NT action is very specific. NGF is synthesized by glutaminergic hippocampal neurons in the

proximity of nerve terminals belonging to basal forebrain cholinergic neurons expressing p75NTR receptors

(Radeke et al., 1987; Gu et al., 1988; Rodriguez‐Tebar et al., 1990; Middlemas et al., 1991; McDonald et al.,

1995; Rossner et al., 1995, 1997a, b; Yu et al., 1995, 1996; Taglialatela et al., 1996; Dechant, 2001; Hirata

et al., 2001; Miller and Kaplan, 2001; Chao and Bothwell, 2002; Naumann et al., 2002). The p75NTR

receptors present on the synaptic terminals of projecting basal forebrain cholinergic neurons in turn bind

and internalize NGF, providing trophic support to basal forebrain cholinergic neurons. Interruption of this

retrograde transport selectively kills the cholinergic neurons and impairs cognitive function. Exogenous

NGF can overcome the effects of hippocampus‐derived NGF.

Studies using NT and NT‐receptor‐null mice would suggest that abolition of the TrkA gene disturbs

sensory neurons in the periphery to a greater extent than the TrkA‐bearing neurons in the CNS (basal
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forebrain cholinergic neurons and striatal cholinergic interneurons) that appear to express both TrkB

receptors (Crowley et al., 1994; Koliatsos et al., 1994; Smeyne et al., 1994). Given that both TrkB and TrkC

are widely distributed in both the CNS and the PNS, it is not surprising that in null mice lacking individual

NTor NTreceptor genes the absence of a growth factor, or its receptor, is compensated by the expression of

others (Ernfors et al., 1994a, b; Jones et al., 1994; Conover et al., 1995). Thus, although there are specific

developmental stages for the maximal expression of the different NTs, null mice studies would suggest that

there is also a great deal of plasticity present during development.
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ct: Neurotrophins are a family of growth factors critical for the development and functioning of the

s system. Members of the neurotrophin family initiate downstream signaling via two types of
Abstra

nervou

neurotrophin receptors: Trks (TrkA, TrkB, and TrkC) and p75. This chapter reviews what is known about

the structures and functions of Trk and p75: from ligand specificity and binding, initiation and regulation

of intracellular signaling cascades, and crosstalks with other signaling pathways to the biological responses

in the nervous system.

List of Abbreviations: A2A, adenosine A2A receptor; AMPA, alpha‐amino‐5‐methyl isoxazole‐4‐propio-
nate; ARMS, ankyrin repeat‐rich membrane spanning protein; Bad, Bcl2 antagonist of cell death; BDNF,

brain‐derived neurotrophic factor; CaM kinase, calcium/calmodulin‐dependent protein kinase; Cdc42, cell

division cycle 42; CHK, Csk homologous kinase; CIPA, congenital insensitivity to pain and anhidrosis;

CNS, central nervous system; CNTF, ciliary neurotrophic factor; CREB, cAMP response element binding

protein; DAG, diacylglycerol; DRG, dorsal root ganglion; Egr‐1, early growth response‐1; ERK, extracellular
signal‐regulated kinases; FADD, Fas‐associated death domain; Frs2, fibroblast growth factor receptor

substrate 2; Gab, Grb2‐associated binder‐1; GPCR, G‐protein‐coupled receptor; Grb2, growth factor

receptor‐binding protein‐2; GRK2, G‐protein‐coupled receptor kinase 2; GSK3b, glycogen synthase kinase

3‐b; Ig domain, immunoglobulin‐like domain; IkB, inhibitor of kappa‐B; IL‐6, interleukin‐6; IP3, inositol
1,4,5‐trisphosphate; JNK, Jun N‐terminal kinase; LIF, leukemia inhibitory factor; LINGO‐1, LRR‐ and
Ig‐domain‐containing Nogo receptor interacting protein; LTP, long‐term potentiation; MAG, myelin‐
associated glycoprotein; MAPK, mitogen‐activated protein kinase; MEF2, myocyte enhancer factor‐2;
MEK, MAPK/ERK kinase; MKP‐1, mitogen‐activated protein kinase phosphatase 1; NADE, p75NTR‐
associated cell death executor; Nav1.9, voltage‐gated sodium channel 1.9; NF‐kB, nuclear factor kappa‐B;
NGF, nerve growth factor; Ngr, Nogo‐66 receptor; NMDA, N‐methyl‐D‐aspartate; NRAGE, neurotrophin
receptor interacting MAGE homolog; NRIF, neurotrophin receptor interacting factor; NT, neurotrophin;

OMgp, oligodendrocyte–myelin glycoprotein; PAC1, PACAP‐preferring; PACAP, pituitary adenylate

cyclase‐activating polypeptide; PDK‐1, phosphoinositide‐dependent protein kinase; PI3K, phosphati-

dylinositol‐3 kinase; PKC, protein kinase C; PLC‐g1, phospholipase C‐gamma 1; PNS, peripheral nervous

system; PP1, Src kinase inhibitor; PTB, phosphotyrosine binding; PTEN, phosphatase and tensin

homolog deleted on chromosome 10; RhoGDI, RhoGDP dissociation inhibitor; RIP‐2, receptor inter-

acting protein‐2; RT‐PCR, reverse transcriptase‐polymerase chain reaction ; S1P, sphingosine‐1‐phosphate;
SCG, superior cervical ganglion; SH2, Src‐homology 2; Shc, SH2‐containing collagen‐related proteins;

SHP‐1, SH2‐containing phosphatase 1; SOS, son of sevenless; SphK1, sphingosine kinase type 1; STAT3,

signal transducer and activator of transcription 3; TNF, tumor necrosis receptor; TRADD, tumor necrosis

factor receptor 1‐associated death domain protein; TRAF6, TNF‐receptor‐associated factor 6; Trk,

tropomyosin‐related kinase; TRPC3, transient receptor potential cation channel 3; VR1, vanilloid

receptor 1
1 Introduction

Discovery of the family of neurotrophic factors known as the neurotrophins represents one of the

major steps in understanding how neurons develop and differentiate to acquire their unique function

and morphology. Since the identification of the first neurotrophin nerve growth factor (NGF) in

1953, much of the research efforts have focused on understanding the downstream signaling events

and the biological effects of these proteins. Neurotrophins are a family of neurotrophic factors implicated

as key players in regulating neuronal survival and development. To date, several neurotrophins have

been identified including NGF, brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT‐3),
and neurotrophin‐4/5 (NT4/5) (Ip et al., 1992; Ip and Yancopoulos, 1994). Neurotrophin‐6/7 (NT‐6/7)
is a recent addition to the neurotrophin family isolated in lower vertebrates (Götz et al., 1994; Lai et al.,

1998).
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2 Discovery of the Neurotrophin Receptors

For a long period, characterization of the neurotrophin receptors presented a formidable, albeit urgent,

task. Given that neurotrophins are factors that may utilize cell surface receptors for signal transduction,

initial studies aimed to characterize the binding characteristics of NGF receptors using 125I‐NGF in kinetics

studies (Sutter et al., 1979; Landreth and Shooter, 1980). Back in the early 1980s, it had already been

demonstrated that neurons exhibit two saturable binding sites for NGF, thereby prompting the idea that

there exist two populations of NGF receptors, namely the high‐affinity and the low‐affinity receptors (Sutter
et al., 1979; Landreth and Shooter, 1980).

The first NGF receptor, known as the p75 low‐affinity NGF receptor, was identified and sequenced in

1986 (Chao et al., 1986; Johnson et al., 1986; Radeke et al., 1987). Nonetheless, p75 was later found to

display no intrinsic kinase activity, which is in contrast to a previous observation showing that NGF

treatment induces rapid tyrosine kinase activation in PC12 cells (Maher, 1988; Kaplan et al., 1991b).

In addition, NGF‐mediated induction of c‐fos transcription was shown to depend upon binding to the

high‐affinity site (Kd�10�11M). p75, on the other hand, only associates with NGFs with low affinity (Kd�
10�9M) (Hempstead et al., 1989). These observations collectively suggest that the biological responsiveness

to NGF was mediated by other NGF receptors.

The continued quest was rewarded by the isolation of Trk in 1989, also known as gp140proto‐trk or

gp140TrkA. Trk, the founding member of the Trk family of receptor tyrosine kinase, is now referred to as

TrkA to distinguish it from the other members of the family, namely TrkB and TrkC. Trk was serendipi-

tously identified during a search for transforming genes in human colon cancer in 1986 (Martin‐Zanca
et al., 1986). The isolated oncogene trk was named tropomyosin‐related kinase for bearing a stretch of a

nonmuscle tropomyosin sequence after somatic rearrangement. The presence of a tyrosine kinase domain

in the trk oncogene indicates that the trk protooncogene may code for a novel member of tyrosine kinase.

Determination of the sequence for the trk protooncogence in 1989 revealed that it encodes a receptor

tyrosine kinase (Martin‐Zanca et al., 1989), therefore suggesting that it may serve as a trophic factor

receptor.

Soon after the characterization of the trk protooncogene, TrkA was found to serve as a transducing

receptor for NGF in the total absence of p75 (Kaplan et al., 1991a; Klein et al., 1991a; Squinto et al., 1991).

TrkA‐mediated induction of downstream signaling such as PLCg phosphorylation strongly suggests that

TrkA is the cognate receptor for NGF. This observation was corroborated by the findings that TrkB and

TrkC, members of the same family, were identified as cognate receptors for other neurotrophins including

BDNF and NT‐3, respectively (Glass et al., 1991; Klein et al., 1991b).

In this chapter we describe in detail the subtypes of neurotrophin receptors, the cascades of signaling

events initiated following neurotrophin receptor activation, and the functional significance of neurotrophin

receptor signaling.
3 The Neurotrophin Receptors

3.1 Structure of Trks

Although TrkA, TrkB, and TrkC were transcribed from separate loci, they share high degree of sequence

homology and are similar structurally. Congruent with other receptor tyrosine kinases, Trks comprise an

extracellular ligand‐binding region, a single transmembrane region, and a cytosolic region containing a

tyrosine kinase domain. The extracellular domain is crucial for ligand recognition, ligand binding, and

receptor dimerization. It is characterized by the presence of two cysteine‐rich domains (domains 1 and 3),

which sandwich three tandem leucine‐rich motifs (domain 2), followed by two C2‐type immunoglobulin‐
like (Ig) domains (domains 4 and 5) (Schneider and Schweiger, 1991). Among these domains, the C2‐type
immunoglobulin‐like domain proximal to the membrane (domain 5) has been shown to mediate ligand

binding ( > Figure 2-1; Wiesmann et al., 1999; Naylor et al., 2002).



. Figure 2-1

Isoforms of Trk family receptors. TrkA isoforms have identical intracellular region, but different extracellular

region. Three of them contain either three (L3I), one (L1I), or no (L0I) leucine‐rich motif. Another TrkA isoform

with three leucine‐richmotifs is characterized by an insertion between the second immunoglobulin‐like domain

(Ig2) and the transmembrane region (L3II). TrkB isoforms with three leucine‐rich motifs include TrkB‐FL (L3FL),
T1 (L3T1), and T2 (L3T2). TrkB‐FL contains an intracellular tyrosine kinase domain, but Trk‐T1 and T2 only have a

short protein sequence of 11 and 9 amino acids, respectively. Isoforms with one (L1FL and L1T1) or no (L0FL and

L0T1) leucine richmotifs are also found for TrkB‐FL and T1. All TrkC isoforms identified contain three leucine rich

motifs. TrkC‐FL (L3FL) contains a cytosolic kinase domain, but T1 (L3T1) and T2 (L3T2) do not contain a kinase

domain, which is replaced by a short amino acid sequence. Also, isoforms of TrkCwith various amino acids insert

(14, 25, and 39; denoted as L314, L325, and L339) in the kinase domain are also identified. For p75, one isoform

(s‐p75NTR) characterized by the deletion of three of the four cysteine repeats has been identified
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In addition to the five domains described above, the extracellular region of Trk also contains consensus

sites for N‐glycosylation. TrkA, for example, contains 13 of these sites (Martin‐Zanca et al., 1989).

Inhibition of glycosylation was shown to prevent the localization of Trks to the membrane surface and

induce constitutive activation of the Trk tyrosine kinase in the absence of ligand binding (Watson et al.,

1999; Mutoh, 2000). These studies suggest that in addition to engaging in ligand binding, modulation in the

extracellular domain may also play an important regulatory role in receptor function.

Adjacent to the extracellular domain is the hydrophobic transmembrane domain, which serves as an

anchorage for the receptor to the plasma membrane. The intracellular region, on the other hand, comprises

a juxtamembrane region, a tyrosine kinase domain followed by a short carboxy‐terminal tail. The tyrosine

kinase domain is indispensable for signal initiation and propagation. Tyrosine residues located in the

intracellular region are autophosphorylated upon ligand binding, which serves as crucial docking sites for

downstream signaling components (reviewed in Ip and Yancopoulos, 1994; Segal, 2003). The signaling

cascades will be discussed in more detail later in the chapter.
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3.2 Expression Profiles and Isoforms of Trks

3.2.1 TrkA

trkA encodes a 140‐kDa glycoprotein (gp140trkA), which can be found in the central nervous system (CNS),

the peripheral nervous system (PNS) and the immune system. TrkA receptors are expressed in the

cholinergic neurons of the basal forebrain and several subtypes of ganglia including the sensory cranial

and spinal ganglia, the sympathetic ganglia, the dorsal root ganglia (DRGs), and the retinal ganglion cells

(Martin‐Zanca et al., 1990; Holtzman et al., 1992; Carroll et al., 1992; Schecterson and Bothwell ,1992; Mu

et al., 1993; Zanellato et al., 1993).

Four splicing variants of TrkA exhibiting distinctive extracellular and intracellular regions were previ-

ously found in rat pheochromocytoma PC12 cells and thymus. Two TrkA isoforms were found in PC12

cells, the first one being the original TrkA found by Martin‐Zanca’s group in 1989 and a second isoform

containing a six‐amino‐acid insertion between the Ig2 domain and the transmembrane region. To classify

these receptors, the original TrkA (without the insertion) is designated as TrkAI and the isoform (with the

insertion) as TrkAII (Barker et al., 1993). Functional studies showed that the two isoforms display no

significant differences in ligand binding or NGF‐induced signaling transduction in fibroblast cells. Howev-

er, NT‐3 elicits a higher activation response compared with NGF in TrkAII‐overexpressing PC12 cells, in

contrast to the usual preference for NGF observed in TrkAI isoform (Clary and Reichardt, 1994). This

suggests that the insertion in the extracellular domain may modulate ligand selectivity. Expression profiles

of these two isoforms are also nonoverlapping in vivo, with TrkAI expressed mainly in nonneuronal tissues

and TrkAII expressed predominantly in neuronal tissue.

The other two TrkA isoforms were identified in the thymus. They are distinguished from the original

TrkAI by the presence of various leucine‐rich region truncations. The original TrkAI contains three

leucine‐rich regions and is therefore also referred to as TrkAL3. The other two isoforms are referred to as

TrkAL0 and TrkAL1 for containing either none or only one of the leucine‐rich motifs. These isoforms

are expressed almost exclusively in the thymus, with their functional significance not fully understood at

this stage. Nonetheless, the lack of a leucine‐rich region may participate in regulate the ligand specificity

of these two isoforms (Dubus et al., 2000). Please refer to > Figure 2-1 for a complete list of the TrkA

isoforms.
3.2.2 TrkB

In 1989, Klein et al. identified trkB complementary DNA (cDNA) by screening a mouse brain cDNA library

using a probe that encodes human trk tyrosine kinase. The function of TrkB, nonetheless, remained unclear

until the identification of TrkB as a receptor for the neurotrophins in 1991 (Klein et al., 1991b; Squinto

et al., 1991). trkB encodes a 145‐kDa glycoprotein (gp145trkB), which exhibits differential spatial and

temporal expression profiles during development (Klein et al., 1989). trkB transcripts are detected most

abundantly in the nervous system, and to a lesser extent, in the lung, muscle, and ovaries. In situ

hybridization analysis and immunostaining showed that TrkB is widely expressed in the brain including

the cerebral cortex, hippocampus, dentate gyrus, striatum, brainstem, spinal cord, as well as the spinal and

cranial ganglia, paravertebral trunk of the sympathetic nervous system, and various innervation pathways.

During development, both the transcripts and proteins of TrkB are detected from embryonic to adult stages

(Fryer et al., 1996; Yan et al., 1997). In early embryogenesis, trkB is also expressed in neuroepithelium and

neural crest cells (Klein et al., 1990).

To date, seven truncated isoforms of trkB have been identified. Two receptors without cytoplasmic

kinase domain were screened from adult rat cerebellar cDNA library and were named TrkB‐T1 and TrkB‐T2.
Compared with full‐length TrkB (TrkB‐FL), they have the same extracellular domain and transmembrane

region, but the intracellular domain is replaced with an unidentical short C‐terminal sequence (Middlemas

et al., 1991). Various isoforms of TrkB receptors are widely and abundantly expressed in the nervous system,

but the localization varies for each isoform. Within the nervous system, TrkB‐FL is expressed ubiquitously
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in neuronal cells, but is absent in nonneuronal cells. TrkB‐T1 can be found in both neuronal and

nonneuronal tissues such as astrocytes, oligodendrocytes, and Schwann cells, whereas TrkB‐T2 is mainly

expressed in the neuronal region, overlapping with that of TrkB‐FL (Armanini et al., 1995). Expression

of various TrkB isoforms also changes during development, with TrkB‐FL proteins initially detected in

the embryonic stages and truncated TrkB predominates in late postnatal and adult stages (Fryer et al.,

1996).

Like TrkA isoforms, TrkB isoforms may also differ by having only one (TrkBL1) or complete absence

(TrkBL0) of leucine‐rich regions in the extracellular domain. Reverse transcriptase‐polymerase chain

reaction (RT‐PCR) study demonstrated that both TrkB‐FL and TrkB‐T1, but not TrkB‐T2, can encode

isoforms bearing three (L3), one (L1), or no leucine‐rich motif (L0) in extracellular domains (> Figure 2-1 ).

The L1 and L0 variants do not bind to TrkB ligands including BDNF, NT‐3, and NT‐4, and cannot maintain

survival and morphological transformation in fibroblasts (Ninkina et al., 1997).
3.2.3 TrkC

Another member was added to the Trk family when Lamballe et al. (1991) isolated trkC by screening an

adult porcine brain cDNA library with a catalytic domain of the human trk DNA sequence in 1991. Like

trkA and trkB, trkC encodes a glycoprotein of about 145 kDa (gp145trkC), which is preferentially expressed

in the brain, particularly in the hippocampus, cerebral cortex, the granular cell layer of the cerebellum,

spinal cord motorneurons (Lamballe et al., 1991; Merlio et al., 1992), and various neural crest and ganglia

(Tessarollo et al., 1993).

A total of six isoforms with truncation or insertion in the intracellular domain have been identified for

TrkC (> Figure 2-1 ). Like TrkB, two TrkC isoforms exhibit truncated kinase domain (TrkC‐T1 and

TrkC‐T2), which is replaced by a short C‐terminal sequence. Three other isoforms are characterized by

different lengths of insertions (TrkC‐14, TrkC‐25, and TrkC‐39) in the intracellular domain. These inser-

tions interfere with the major autophosphorylation site of the kinase domain of these receptors (Lamballe

et al., 1993; Tsoulfas et al., 1993; Valenzuela et al., 1993). This interruption may underlie the observed failure

of these isoforms to mediate proliferation in fibroblasts or neuronal differentiation in PC12 cells, despite

induction of rapid phosphorylation of the tyrosine residues upon ligand binding. Expression of TrkC

isoforms remained concentrated in the nervous system. Interestingly, only the truncation isoforms are

expressed in astrocytes, peripheral nerve, and nonneural tissues (Lamballe et al., 1993; Valenzuela et al.,

1993; Guiton et al., 1995).
3.3 Structure and Expression Profile of p75

p75, although not a member of the Trk family receptors, also binds to neurotrophins and functions as an

indispensable component of neurotrophin signaling. The structure and biological functions of p75 are quite

dissimilar compared with Trks. p75 belongs to the tumor necrosis factor (TNF) family receptors and was

first identified as an NGF receptor in 1986 (Chao et al., 1986; Johnson et al., 1986). It encodes a 75‐kDa
glycoprotein, which can form homodimers or heterodimers with Trk receptor in vivo. The nomenclature of

p75 has been revised to low‐affinity NGF receptor, p75NTR, because it was found to associate with NGF via

low‐affinity binding (Sutter et al., 1979; Johnson et al., 1986; Radeke et al., 1987). Being a member of the

TNF family, it is structurally similar to other TNF members, consisting of four cysteine‐rich domains in the

extracellular region, a transmembrane domain, and an internal death domain lacking any kinase domain

(Johnson et al., 1986). Within the internal death domain, the intracellular juxtamembrane domain is also

called the Chopper domain for its ability to initiate cell death in DRG cells (Barrett and Barlett, 1994). The

cysteine‐rich domains in the extracellular region are essential for binding to the neurotrophins, and the

cytoplasmic region is implicated in the activation of nuclear factor kappa‐B (NF‐kB) and triggering of

apoptosis (Liepinsh et al., 1997).
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The expression of p75 is developmentally regulated. During development, it is highly expressed during

embryonic and postnatal stages, with reduced expression in the adult stage. p75 is expressed abundantly in

various neuronal populations, including the striatal neurons and spinal cord motor neuron, as well as in the

sympathetic and sensory ganglia. Interestingly, expression of p75 was found to partially overlap with that of

Trk, correlating with its ability to form heterodimers with Trks. For example, abundant levels of p75 were

found in basal forebrain where TrkA is also highly expressed (Buck et al., 1987; Ernfors et al., 1988, 1989;

Cohen‐Cory et al., 1989; Gibbs et al., 1989; Lu et al., 1989; Mobley et al., 1989; Friedman et al., 1991;

Liepinsh et al., 1997).

For a long time it was believed that the p75 locus expresses only a single, full‐length receptor. Recently, it
was demonstrated that there exists a truncated isoform of p75, named s‐p75NTR, characterized by the

absence of three of the four cysteine‐rich repeats in the extracellular domain (> Figure 2-1 ; von Schack

et al., 2001). Like p75, s‐p75NTR is expressed in the brain and spinal cord, although the expression levels are

much reduced compared with that of full‐length p75. Deletion of the cysteine‐rich repeats renders s‐p75NTR

unable to bind NGF. Nonetheless, both full‐length p75 and s‐p75NTR‐null mice display neuronal loss in

sensory neurons and Schwann cells, therefore suggesting that both isoforms are associated with maintaining

neuronal survival (von Schack et al., 2001).
4 Neurotrophin Receptor Signaling

4.1 Neurotrophins and Their Receptors

Despite the structural similarity of TrkA, TrkB, and TrkC, they display rather remarkable selectivity for their

ligands. TrkA serves as the cognate receptor for NGF, although it also associates with NT‐3 with low affinity

(Kaplan et al., 1991a; Klein et al., 1991a; Clary and Reichardt, 1994). In addition, NT‐6/7 has also been

shown to utilize TrkA for signal transduction (Lai et al., 1998; Nilsson et al., 1998). TrkB, on the other hand,

serves as a cognate receptor for BDNF and NT4/5. NT‐3 again interacts weakly with TrkB (Berkemeier et al.,

1991; Klein et al., 1991b, 1992; Soppet et al., 1991; Squinto et al., 1991; Lai et al., 1996). TrkC interacts

selectively with NT‐3 (Cordon‐Cardo et al., 1991; Lamballe et al., 1991). Finally, all neurotrophins interact

with p75, a low‐affinity NGF receptor (Barbacid, 1995; Bothwell, 1995; Lewin and Barde, 1996; Huang and

Reichardt, 2003). The ligand selectivity for the Trks and p75 is summarized in > Figure 2-2.
4.2 Ligand Binding

4.2.1 Ligand Selectivity and Ligand Binding for Trks

To understand how Trk receptors interact selectively with their cognate ligands, the extracellular region of

Trk has been extensively examined. In a series of domain swapping and chimeric receptor studies, the two

C2‐type Immunoglobuline‐like domains of TrkAwere shown to be essential for the binding of NGF (Perez

et al., 1995). The Ig2 (domain 5) of TrkB and TrkC can also regulate the specificity and binding of the

ligands (Urfer et al., 1995). Furthermore, determination of the 3D structure of the TrkA–NGF complex

consolidated the role of TrkA domain 5 in neurotrophin binding (Ultsch et al., 1999; Wiesmann et al.,

1999). Binding of NGF to TrkA induces TrkA dimerization, with NGF–TrkA complex existing as a

symmetric structure in a 2:2 stoichiometric ratio (Wiesmann et al., 1999).

In addition to domain 5, other modification in the extracellular domain has also been shown to affect

receptor activation. Mutation of proline residue 203 of TrkA, situated between the leucine‐rich regions and

the Ig1 domain of Trk, to alanine enhances receptor dimerization, and triggers the autophosphorylation of

the tyrosine residues on the receptors in the absence of ligand binding (Arevalo et al., 2001). This

observation suggests that this proline residue may take part in modulating receptor activation subsequent

to ligand binding.



. Figure 2-2

Ligand specificities of Trk family receptors. Neurotrophins bind to specific Trk receptors. NGF and NT‐6/7
interact with TrkA whereas BDNF and NT415 interact with TrkB with high affinity (thick arrow). NT‐3 binds

strongly to TrkC, but also interacts with TrkA and B with lower affinity (thin arrow). Most neurotrophins (NTs)

bind to p75 with low affinity
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4.2.2 Ligand Binding for p75

p75 receptor, in contrast to Trks, interacts with all neurotrophins. Recent evidence suggests that whereas all

neurotrophins bind to p75, they associate with p75 with different affinities. BDNF was found to associate

and dissociate from p75 at a much slower rate compared with NGF and NT‐3 (Rodriguez‐Tebar et al.,
1992). In addition, although all neurotrophins bind to p75 via a cluster of positively charged residues on the

neurotrophins, the residues involved in the association are different for the different neurotrophins (Ryden

et al., 1995; Ryden and Ibanez, 1996). A recent study characterizing the crystal structure of NGF complexed

with p75 revealed that the cysteine‐rich domain of p75 forms an asymmetric complex with NGF in a 1:2

stoichiometric ratio (He and Garcia, 2004). This is in contrast to the dimerization of TrkA observed

following association with NGF. Trk dimerization has been shown to play a crucial role in initiating the

downstream signaling cascade. It is therefore rather surprising to observe that the binding of NGF to p75

allosterically distorts the conformation of the NGF homodimers, thereby preventing association with a

second p75. Nonetheless, this conformational change opens up a potential interaction site for other

receptor components. Thus making the physical interaction between Trk and p75 possible (He and Garcia,

2004; Zampieri and Chao, 2004).

Recently, Lee et al. (2001) have proposed that the pro‐forms of neurotrophins show a higher affinity to

p75 than the mature neurotrophins, suggesting that proneurotrophin may be the primary ligand for p75.

However, instead of promoting trophic support, these pro‐neurotrophins induce p75‐dependent apoptosis
in sympathetic neurons (Lee et al., 2001) and oligodendrocytes (Beattie et al., 2002; Lu, 2003). The relative

importance of pro‐neurotrophins and neurotrophins in mediating p75 signaling will remain an interesting

area for further investigation.
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4.3 Signaling Cascades Downstream of Trk Activation

What happen to the Trk receptors after their cognate ligands come into contact with the extracellular

domains of the receptors? Like other receptor tyrosine kinases, Trk receptors dimerize in response to ligand

binding (Jing et al., 1992). This dimerization triggers the transactivation of the tyrosine kinase domain, and

initiates a massive cascade of signaling events. Some of these signaling pathways have been shown to

mediate crucial functions of Trk signaling, while for some the mechanism of activation and functional

importance are just beginning to be understood. In the following section, we briefly summarize the myriad

of molecules recruited to propagate and diversify Trk signaling following ligand binding and receptor

activation.

Immediately following transactivation of the tyrosine kinase domain of the Trk receptor, several

tyrosine residues present in the cytoplasmic domains of the receptors become phosphorylated. In the

case of TrkA, NGF binding induces phosphorylation of Y490, Y670, Y674, Y675, and Y785 (Ip and

Yancopoulos, 1994; Segal, 2003). Tyrosine residues present in TrkB and TrkC at equivalent positions are

also phosphorylated upon ligand binding. For simplicity, we will adopt the nomenclature for the TrkA

tyrosines in the following description.

Among the five tyrosines, Y670, Y674, and Y675 are in the activation loop of the kinase domain. Y490

and Y785, on the other hand, are located outside the kinase domain (Ip and Yancopoulos, 1994; Segal,

2003). The phosphorylation of these residues is required not only for the full transactivation of the Trk

receptors, but also for serving as crucial docking sites for adaptor proteins indispensable for the initiation of

Trk downstream signaling. Association between the activated Trk receptor and the adaptor proteins occur

mostly via the phosphotyrosine‐binding (PTB) or src‐homology 2 (SH2) domain of the adaptor proteins.

Upon association, these adaptor proteins are usually phosphorylated by Trk itself, which then triggers

several intracellular signaling pathways including the Ras‐MAPK, phosphatidylinositol‐3 kinase (PI3‐
kinase), and PLC‐g pathways (Stephens et al., 1994).
4.3.1 Ras‐MAPK Signaling

Among these signaling pathways, activation of the Ras‐MAPK pathway involves the most complex network

of adaptor proteins and signaling molecules, with multiple converging and diverging points within the

signaling cascade. All pathways eventually converge on the activation of small GTPase Ras, which then

stimulates the three‐tiered activation of the MAPK pathways. Upon Trk activation, Ras activation is

accomplished by the recruitment of SH2‐containing collagen‐related proteins (Shc) to phospho‐Y490 via

the PTB domain of Shc. The bound Shc is then phosphorylated by Trk, which prompts its association with

growth factor receptor‐binding protein‐2 (Grb2) and (son of sevenless (SOS); see > Figure 2-3 ). Recruit-

ment of SOS, an exchange factor for Ras, results in Ras activation (Atwal et al., 2000). It should be noted,

however, that in addition to associating with the activated Trk receptor by binding to phosphorylated Shc,

Grb2 can also bind directly to activated Trk (> Figure 2-3 ).

Alternatively, Ras activation is achieved by interaction with the SH2 domain of SH2‐B or rAPS, or via

the PTB domain of fibroblast growth factor receptor substrate 2 (Frs2; also known as SNT); (also known

as SNT). Both SH2B and rAPS interact with the phosphotyrosines in the activation loop of the activated

Trks (Qian et al., 1998; Qian and Ginty, 2001). Frs2, on the other hand, associates with Y490 of activated

Trk. All three adaptor proteins are then phosphorylated upon their association with activated Trk, and each

can recruit Grb2 to initiate Ras activation via the Grb2–SOS complex (Qian et al., 1998; Meakin et al.,

1999). Activation of Ras results in the sequential activation of the MAPK superfamily, the MAPK kinase

kinase Raf, MAPK/ERK kinase (MEK), and MAPK extracellular signal‐regulated kinase (ERK). Indeed,

following Trk activation, Ras induces the phosphorylation and activation of MAPKKK Raf‐1 and B‐Raf
(Lange‐Carter et al., 1993; Vaillancourt et al., 1994). Both Raf‐1 and B‐Raf then trigger the activation of the

MAPK kinase MEK1/2, followed by activation of the MAP kinase ERK1/2. The activated ERK1/2 then

translocates to the nucleus to activate several transcription factors including early growth response‐1



. Figure 2-3

Schematic diagram of neurotrophin‐induced Trk signaling pathways. After binding of the neurotrophin,

dimerization of two Trk receptors triggers the activation of the kinase domain, thereby resulting in trans‐
phosphorylation of tyrosine residues on the neighboring receptor. Positional information for the tyrosine

residues listed in the figure corresponds to the tyrosines phosphorylated in activated TrkA. The phosphotyr-

osines then provide docking sites for various adaptor proteins or signaling molecules including Shc, PLCg‐1,
Frs2, SH2B, rAPS, and CHK to activate MAPK, PI3K, and PLCg signaling pathways. Please refer to Sections 4.4 for

detail description of the pathways
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(Egr‐1) and Elk‐1 (Marais and Marshall, 1996; Harada et al., 2001; Levkovitz and Baraban, 2002). Activa-

tion of Egr‐1, for example, induces the transcription of cyclin‐dependent kinase 5 (Cdk5) activator p35 to
facilitate neurite outgrowth in PC12 cells (Harada et al., 2001). In addition, ERK activation was also shown

to be required for NGF‐induced STAT3 phosphorylation at serine727 in PC12 cells (Ng and Ip, manuscript

submitted). NGF‐induced activation of ERK hence takes part in regulating a myriad of transcription factors

crucial for mediating NGF‐stimulated differentiation and neurite outgrowth.

It should be noted that NGF can also induce ERK activation independently of Ras activation.

Phosphorylation of Frs2 following association with Y490 of activated TrkA activates the formation of the

Crk–C3G complex. It then induces the activation of ERK via another small GTPase Rap1 ( > Figure 2-4 ;

York et al., 1998; Kao et al., 2001). Remarkably, activation of ERK via Ras and Rap1 represents distinctive

phases of ERK activation. A recent paper showed that the sustained activation of ERK induced by NGF can

actually be deciphered as two phases: the initial rapid or transient phase, followed by a sustained phase of

ERK activation (York et al., 1998). The use of dominant‐negative Ras demonstrated that the two phases are

mediated by distinct signaling pathways. The initial transient phase is mediated by Ras signaling, while the

sustained activation of ERK1/2 occurs through Rap1/B‐Raf/MEK (Kao et al., 2001). Furthermore, it was

recently shown that Rap1 activation following NGF treatment is localized to endosomes and requires TrkA

internalization (> Figure 2-4; York et al., 2000; Wu et al., 2001). These observations suggest that endocytosis

may also play a key role in the activation of Trk signaling.



. Figure 2-4

Rapid and sustained activation of ERK by Trk. NGF‐induced sustained and rapid activation of ERK occur by

distinct signaling cascade downstream of TrkA activation. NGF‐induced TrkA phosphorylation at the plasma

membrane activates rapid phosphorylation of ERK1/2 through Ras and B‐Raf/MEK pathway. Sustained activa-

tion of ERK1/2, on the other hand, is activated when TrkA associates with Frs2, resulting in activation of Rap‐1
via the C3C/Crk complex. Alternatively, NGF induces the formation of clathrin‐coated vesicles (CCV) and induces

activation of Rap1 at the endosomal vesicles during endocytosis. The activated Rap1 then triggers the

sustained activation of ERK1/2
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Finally, NGF treatment also activates other MAPK signaling such as p38 MAPK and Jun N‐terminal

kinase (JNK), although the mechanisms of activation remain unclear. NGF‐induced activation of p38

MAPK is implicated in the regulation of neurite outgrowth (Morooka and Nishida, 1998; Xing et al., 1998).

Inhibition of p38 MAPK by a specific inhibitor SB203580 or by expression of dominant‐negative constructs
of the p38 MAPK pathway blocks neurite outgrowth in PC12 cells (Morooka and Nishida, 1998). In

addition, p38 MAPK‐mediated phosphorylation of paxillin, a focal adhesion adaptor protein, is important

in NGF‐induced neurite outgrowth in PC12 cells. Inhibition of this phosphorylation attenuates neurite

outgrowth in NGF‐stimulated PC12 cells (Huang et al., 2004). These observations collectively suggest that

p38 may also play a crucial role in neurite outgrowth. On the other hand, JNK activation downstream of Trk

activation in PC12 cells has also been implicated in stress‐induced apoptosis as well as in NGF‐induced
neurite formation (Maroney et al., 1999; Takeda et al., 2000).

4.3.2 PI3‐Kinase Signaling

Another pathway activated following Trk activation is the PI3‐kinase pathway. Activation of the PI3‐
kinase signaling functions as a crucial pathway in relaying pro‐survival signaling from Trk activation

(Rodriguez‐Viciana et al., 1994; Vaillant et al., 1999; Vanhaesebroeck and Waterfield, 1999). There are at

least two pathways by which Trks initiate PI3‐kinase activation. The first pathway involves the recruitment
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of Grb2‐associated binder‐1 (Gab1) and Grb2‐associated binder‐2 (Gab2) by phosphorylated Grb2

(Holgado‐Madruga et al., 1997; Vaillant et al., 1999; Liu and Rohrschneider, 2002). Gab1 and Gab2 are

then phosphorylated, which triggers their association with the regulatory subunit of PI3‐kinase, p85, and
activation of the kinase. Alternatively, the catalytic subunit of PI3‐kinase can interact directly with Ras to

initiate PI3‐kinase activation. Phosphatidylinositides generated by PI3‐kinase then activate phosphoinosi-

tide‐dependent protein kinase (PDK‐1), which acts together with the phosphatidylinositides to stimulate

the downstream protein kinase Akt ( > Figure 2-3).

Akt activation downstream of PI3‐kinase stimulation represents a key mechanism through which cell

survival is promoted by the PI3‐kinase pathway. Upon activation, Akt phosphorylates and modulates the

activity of several proteins to promote survival (Datta et al., 1999). For example, Akt‐mediated phosphory-

lation of Bcl2 antagonist of cell death (Bad) inhibits its ability to promote cytochrome c release and

subsequent caspase activation (Datta et al., 1997). In addition, Akt was shown to phosphorylate procaspase‐
9 to inhibit its activation (Cardone et al., 1998; Datta et al., 1999). Akt also regulates the expression of

several antiapoptotic genes through phosphorylating transcriptional factors of the Forkhead family (Biggs

et al., 1999; Brunet et al., 1999; Kops et al., 1999). Furthermore, Akt increases NF‐kB‐promoted gene

transcription by phosphorylating the NF‐kB inhibitory binding partner, IkB. Finally, Akt‐induced phos-

phorylation of glycogen synthase kinase 3‐b (GSK3b) inactivates it, thereby preventing GSK3b‐promoted

apoptosis (Pap and Cooper, 1998; van Weeren et al., 1998).

Accumulating evidence indicates that PI3‐kinase may also take part in modulating neuronal architec-

ture. PI3‐kinase was shown to mediate the activation of small GTPases Cdc42/Rac/Rho family, which

regulates actin polymerization (Kjoller and Hall, 1999; Bishop and Hall, 2000). In addition, activation of

Akt appears to affect axon diameter and branching (Markus et al., 2002). Localized Trk‐promoted activa-

tion of Ras and PI‐3 kinase also promotes cell motility (Sachdev et al., 2002; Weiner et al., 2002) and growth

cone steering (Song and Poo, 1999; Ming et al., 2002). These observations suggest that PI3‐kinase signaling
may mediate more diverse functions of Trks other than promoting neuronal survival.
4.3.3 PLC‐g1 Signaling

Activation of phospholipase C‐gamma 1 (PLC‐g1) signaling occurs after direct association of PLC‐g1 with
the phosphorylated Y785 of activated TrkA ( > Figure 2-3 ; Kaplan and Miller, 2000). When activated,

PLC‐g1 provokes the hydrolysis of phosphatidylinositol 4,5‐bisphosphate to produce two secondary

messenger molecules: inositol 1,4,5‐trisphosphate (IP3) and diacylglycerol (DAG). IP3 triggers Ca2þ release

from intracellular stores, resulting in the activation of Ca2þ‐regulated enzymes such as calcium/calmodulin‐
dependent protein kinases (CaM kinases) and Ca2þ‐regulated isoform of protein kinase C (PKC). DAG, on

the other hand, stimulates DAG‐regulated PKC isoforms. For example, PKCd is activated in PC12 cells after

NGF treatment (Corbit et al., 1999), which was shown to be required for NGF‐induced neurite outgrowth

and ERK1/2 activation. In addition, PLC‐g1 activity is required for NGF‐regulated MAPK signaling

pathway (Rong et al., 2003).

Recent studies suggest that activation of PLC‐g downstream of Trk activation may also take part in

modulating electrical activity in neuronal cells. Stimulation of TrkB subsequent to a pulse of BDNF

treatment triggers PLC‐g activation, which in turn increases intracellular Ca2þ level, followed by activation

of CaM kinases and stimulated glutamate release (Lessmann, 1998). Moreover, mice homozygous for the

mutation at the PLC‐g docking site display significant deficiencies in the induction of both the early and late
phases of hippocampal CA1 long‐term potentiation (LTP) (Minichiello et al., 2002). It therefore appears

that Trk‐mediated PLC‐g signaling pathway may serve a critical role in neurotrophin‐evoked electrical

activity and neural plasticity.
4.3.4 Other Adaptor Molecules

In addition to the relatively well‐characterized pathways discussed in previous sections, several adaptor

molecules have also been shown to associate with Trk receptor but the significance of downstream signaling



Signaling through the neurotrophin receptors 2 23
remains obscure. Csk homologous kinase (CHK) associates via its SH2 domain with Y785 of TrkA upon

NGF stimulation. While the downstream signaling initiated has not been fully characterized, overexpression

of CHK in PC12 cells was shown to enhance the ERK1/2 activity. Furthermore, blocking the action of CHK

by CHK‐specific antibodies suppresses NGF‐induced differentiation, suggesting that CHK may also take

part in mediating NGF‐induced neurite outgrowth in PC12 cells (Yamashita et al., 1999). SHP‐2, on the

other hand, associates with TrkA, although the binding site for SHP‐2 on Trks has not been determined

(Goldsmith and Koizumi, 1997). Overexpression of SHP‐2 enhances survival of dopaminergic neurons in

the presence of BDNF (Takai et al., 2002), implicating a role of SHP‐2 in regulating Trk‐induced survival

signaling. Finally, c‐Abl was recently found to interact with the juxtamembrane region of TrkA, although

the binding does not require TrkA phosphorylation (Yano et al., 2000). The functional significance of this

interaction remains unknown.
4.4 Transport and Signaling via Internalized Neurotrophin–Trk Complex

Subsequent to ligand binding and activation of downstream signaling, neurotrophin–receptor complex is

internalized via the formation of clathrin‐coated pits, followed by dynamin‐mediated endosytosis. In PC12

cells, TrkA activation by NGF causes rapidly internalization of the receptor (Beattie et al., 2000). In addition

to the requirement of clathrin and dynamin, a novel protein named Pincher (pinocytic chaperone) may also

be involved in mediating NGF and TrkA endocytosis in vitro (Shao et al., 2002). Internalized Trk receptors

can then either be transported, recycled to the membrane surface for a second round of activation (Grimes

et al., 1996; Zapf‐Colby and Olefsky, 1998), or degraded in lysosomal and/or proteosomal degradation

system (Sorkin and Waters, 1993; Sommerfeld et al., 2000).

The importance of internalized neurotrophin–receptor complex signaling in mediating Trk function is

barely beginning to be unraveled. Certain aspects of Trk signaling require internalization of Trk. As

mentioned previously, sustained activation of ERK1/2 subsequent to Trk activation, for example, may

require endocytosis of the neurotrophin–Trk complex (York et al., 2000). On the other hand, transport of

endocytosed neurotrophin–receptor complex is required for the initiation of responses of the cell body to

target‐derived neurotrophins. All of the endocytosed neurotrophin receptors, TrkA (Ehlers et al., 1995),

TrkB (von Bartheld et al., 1996; Pease et al., 2000), TrkC (Helke et al., 1998), and the p75 receptor (Curtis

et al., 1995), are retrogradely transported in vivo. Activation of Trks at the axon terminals initiates

neurotrophin–Trk complex endocytosis and formation of clathrin‐coated vesicles (CCV). Internalized

vesicles are then transported to the cell body based on a dynein‐dependent mechanism (Bhattacharyya

et al., 2002). This transport process has been demonstrated to be important for mediating the retrograde

survival signal from the axon terminals in the PNS. When distal axons of sensory or sympathetic neurons

are stimulated by neurotrophins, transported neurotrophin–receptor complex was shown to induce

ERK5 and PI3‐kinase signaling in the cell body (Kuruvilla et al., 2000; Watson et al., 2001). Activated

ERK5 is then translocated to the nucleus, followed by phosphorylation of cAMP response element binding

protein (CREB) and myocyte enhancer factor‐2 (MEF2), thereby enhancing neuronal survival (Watson

et al., 2001). Finally, PI‐3 kinase appears to also play an important role in retrograde transport because

inhibition of PI3‐kinase at the nerve terminal inhibits neurotrophin retrograde transport (Bartlett et al.,

1997, 2002).
4.5 Negative Regulators of Trk Signaling

In addition to the stimulation of signaling cascade for signal propagation, Trk activation was also found to

initiate several feedback mechanisms to limit Trk activation. This is important for the maintenance of

responsiveness to the next wave of stimulation, and to prevent overamplification of downstream signals. Of

the several feedback machineries initiated, Trk‐activation‐induced internalization of Trk serves as one of the

mechanisms to temporally shut down response to excess ligands. In addition, tyrosine dephosphorylation

of the receptors may also contribute to preventing further Trk activation. Transient association of
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SH2‐containing phosphatase 1 (SHP‐1) with the phospho‐Y490 of TrkA is reported after NGF treatment in

PC12 cells and sympathetic neurons (Goldsmith and Koizumi, 1997; Marsh et al., 2003). SHP‐1 was

observed to directly dephosphorylate TrkA to regulate its activity (Marsh et al., 2003). Furthermore,

overexpression of another phosphatase, phosphatase and tensin homolog deleted on chromosome 10

(PTEN), in PC12 cells attenuates TrkA activation upon NGF treatment, resulting in a marked inhibition

of neurite outgrowth (Musatov et al., 2004). This finding suggests that PTEN has a negative regulatory effect

on TrkA signaling.

The third mechanism for negative regulation of Trk signaling is mediated by deactivation of Trk‐
induced downstream signaling molecules through dephosphorylation. For example, upregulation of

mitogen‐activated protein kinase phosphatase 1 (MKP‐1) by NGF has been reported in dissociated

embryonic sympathetic neurons or fibroblasts transfected with TrkA (Peinado‐Ramon et al., 1998; Rosini

et al., 2004). MKP‐1 then inactivates ERK1/2 by dephosphorylation, thereby attenuating Trk‐induced
MAPK signaling.

Finally, ligand‐induced downregulation of Trk expression serves as another mechanism for limiting

Trk signaling. Downregulation of TrkB protein and messenger RNA (mRNA) was observed after a

long period (ranging from 30 min to 24 h) of BDNF treatment in primary neuronal cultures, within

the midbrain and retina in vivo (Frank et al., 1996, 1997; Chen and Weber, 2004). The cytoplasmic

domain and a short sequence in the intracellular juxtamembrane domain of TrkB are essential for down-

regulation of TrkB (Sommerfeld et al., 2000). However, prolonged exposure of NGF does not lead to

downregulation of TrkA. On the contrary, treatment of NGF‐responsive basal forebrain cultures with NGF

was found to increase TrkA mRNA levels (Kojima et al., 1994). This observation suggests that even though

TrkA and B are structurally similar, their expression and downregulation are regulated by distinctive

mechanisms.
4.6 Signaling Cascade Downstream of p75

Unlike Trk receptors, p75 does not contain a kinase domain. As such, transmission of extracellular signal by

p75 upon ligand binding depends on its association with other cell surface receptors (e.g., Trk receptors and

Nogo receptor) or adaptor proteins in the cytoplasm (e.g., TRAF, RhoA, ankyrin repeat‐rich membrane

spanning protein (ARMS)). To date, a wide range of molecules of dissimilar structure and properties have

been identified to interact with p75, but the signaling cascade initiated is far from clear. Identification of the

downstream signaling and functions of p75 therefore remains a continued challenge in the field of

neurotrophin receptor research.

Most p75‐interacting proteins were identified only within the past 5 years. Current knowledge is

focused mostly on the structural aspect of the interacting proteins, with the functional significance and

signaling components not fully characterized. Neurotrophin receptor interacting factor (NRIF) was among

the first to be identified. It is characterized by the presence of five zinc finger domains, two Kruppel boxes,

and a nuclear localization signal. NRIF was shown to associate with p75 via the juxtamembrane and death

domain of p75 (Casademunt et al., 1999). Another p75‐interacting protein, p75NTR‐associated cell death

executor (NADE), was first identified as a p75‐interacting protein using yeast two‐hybrid screening. It

exhibits a nuclear export signal and two ubiquitination sites and was observed to interact with p75 via the

death domain of p75 (Mukai et al., 2000). Neurotrophin receptor interacting MAGE homolog (NRAGE) is

yet another protein observed to interact with p75 via its juxtamembrane domain (Salehi et al., 2000).

Furthermore, p75 was shown to interact with small GTPase RhoA, which binds to the intracellular domain

of p75. It is suggested that the association between RhoA and p75 plays an important role in p75‐mediated

neurite outgrowth (Yamashita et al., 1999).

A member of the TNF family, p75 was observed to associate with TNF‐receptor‐associated factor

(TRAF6), which apparently has important functions in a number of TNF‐receptor‐mediated signalings

(Bradley and Pober, 2001). NGF induces the association of p75 with TRAF6, which in turns regulates NF‐k
B activation (Khursigara et al., 1999). In addition, it has recently been shown that p75 associates with a

number of kinases. Receptor interacting protein‐2 (RIP‐2) is a serine/threonine kinase that binds to p75
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upon NGF treatment, leading to NF‐kB activation (Khursigara et al., 2001). On the other hand, p75

associates with the b catalytic subunit of cAMP‐dependent protein kinase (PKACb) (Higuchi et al., 2003).

NGF activation of p75 results in a transient increase in intracellular cAMP levels (Knipper et al., 1993;

Higuchi et al., 2003), which is associated with the activation of this PKA variant, resulting in phosphoryla-

tion of p75 itself at Ser 304.

It should be noted that in addition to the full‐length form, p75 can also exist as truncated forms by

proteolytic processing. On the surface of Schwann cells, full‐length p75 can be cleaved by unknown

membrane metalloproteinase(s) that release a free‐floating extracellular domain, and an intracellular

domain linked to the membrane via the transmembrane region (Zupan et al., 1989; DiStefano et al.,

1993). The function of this soluble extracellular domain remains unclear, but it has been suggested that the

production of this cleavage form of p75 increases after peripheral nerve injury and is developmentally

regulated (DiStefano et al., 1991). Moreover, intracellular proteolysis of p75 can also occur within or near

the transmembrane region, resulting in the generation of a soluble cytoplasmic domain of p75. The

proteolytic cytoplasmic release of intracellular domain of p75 is mediated by a‐ and g‐secretases, and is

modulated by TrkA and TrkB signaling (Kanning et al., 2003). The cleaved C‐terminal fragment of p75,

although lacking its extracellular domain for ligand binding, can still interact with TrkA and TrkB,

suggesting an important role of this truncated p75 in Trk signaling. The truncated and intracellular

forms of p75 alone may also mediate neuronal cell death in the absence of Trk (Coulson et al., 2004).

Finally, p75 activation was observed to induce the hydrolysis of sphingomyelin to ceramide (Dobrowsky

et al., 1994). The biological effect of p75‐induced ceramide production, nonetheless, remains controversial.

While some studies suggest that ceramide promotes differentiation and survival, others report that it is

correlated with JNK activation and apoptosis. The precise function of p75‐mediated ceramide production

therefore remained to be elucidated (Roux and Barker, 2002).
4.7 Crosstalks Between Trk and p75 Signaling

Although Trks and p75 are structurally unrelated and appear to initiate different subsets of downstream

signaling, increasing evidence suggests that crosstalks between Trk and p75 signaling are common, and may

serve important functions. Their reciprocal modulations occur either via direct association with each other,

or through other adaptor proteins that interact with both Trks and p75. In this section, we briefly review the

mechanisms of crosstalks between Trk and p75 signaling.
4.7.1 Trk/p75 Dimerization

Since the identification of the high‐affinity binding site for NGF, it was observed that association of NGF

with neither TrkA nor p75 pertains to the affinity described for the high‐affinity site (Kaplan et al., 1991a).

Rather, expression of both TrkA and p75 is required for the formation of the high‐affinity NGF binding site
(Hempstead et al., 1989, 1991). A recent study showed that the number of high‐affinity sites formed is

regulated by the relative ratio of TrkA and p75 receptors. When TrkA and p75 are expressed at an almost

equimolar ratio, the highest number of high‐affinity sites is formed (Hempstead et al., 1992; Esposito et al.,

2001). The affinity of TrkA for NGF is therefore significantly enhanced in the presence of p75. Interestingly,

the association of p75 with Trks is not limited to TrkA. In fact, p75 was found to associate with all members

of Trks (Bibel et al., 1999). Interaction of Trks and p75 was found to occur via the transmembrane and

cytoplasmic domain of both receptors, although the detailed mechanisms remain enigmatic (Esposito et al.,

2001). In addition to enhancing the affinity of Trks for their cognate ligands, the association of p75 with

Trks also regulates their ligand specificity. For example, TrkB exhibits a much stronger selectivity for BDNF

over NT‐3 in the presence of p75 (Bibel et al., 1999). On the other hand, association of TrkA with p75 was

shown to lower the affinity p75 exhibits for NGF (Ross et al., 1998). These observations collectively suggest

that in addition to mediating separate downstream signaling, Trks and p75 may reciprocally regulate the

function and signaling of each other through direct interaction.



26 2 Signaling through the neurotrophin receptors
4.7.2 Interaction Through Other Adaptor Proteins

Besides directly associating with each other, crosstalks of p75 and Trk can occur via other proteins. ARMS

and p62 are two recently identified proteins that may serve as the link between the two pathways.

ARMS was first identified as a p75‐interacting protein using yeast two‐hybrid screening (Kong et al.,

2001). Interestingly, ARMS was later found to interact also with Trks (Arevalo et al., 2004). ARMS is

coexpressed frequently with Trk and p75 and it is suggested that it interacts with TrkA, TrkB, and TrkC

directly through their transmembrane domains (Arevalo et al., 2004), while ARMS interacts with the

Chopper domain of p75 (Kong et al., 2001). A ternary complex can be formed between Trk, p75, and ARMS

(Chang et al., 2004). Interestingly, increasing ARMS expression results in decreased association of TrkAwith

p75, suggesting that ARMS might play an important role in regulating interactions between p75 and Trk

receptors.

In PC12 cells, treatment with NGF induces tyrosine phosphorylation of ARMS, whereas in primary

cultures of cortical neurons, treatment with BDNF also causes ARMS phosphorylation (Kong et al., 2001;

Arevalo et al., 2004). Phosphorylated ARMS then recruits the Crk–C3G complex, which stimulates Rap‐1‐
dependent sustained ERK activation. In addition to functioning as a neurotrophin receptor interacting

protein, ARMS is also a substrate of protein kinase D (Iglesias et al., 2000). Moreover, ARMS is also

identified as a downstream target of ephrin receptors (Kong et al., 2001), which implies that ARMSmay also

facilitate ephrin receptor signaling and neurotrophin receptor signaling crosstalks in neurons.

A recent report showed that atypical PKC‐interacting protein, p62, also interacts with TrkA. p62

typically interacts with atyptical PKC to phosphorylate IkB kinase and leads to the activation of transcrip-

tion factor NF‐kB. Geetha and Wooten (2003) found that p62 interacts with TrkA at the juxtamembrane

region. NGF‐dependent localization of p62 is observed in the endosomal compartment, suggesting that p62

may act as a shuttling protein for routing activated atypical PKC to endosomes (Samuels et al., 2001). p62

also binds TRAF6 to interact with p75. TRAF6–p62 complex may therefore serve as a link to facilitate p75

and TrkA interaction (Wooten et al., 2001).
5 Crosstalks with Other Signaling Pathways

5.1 G Protein Signaling

In addition to the crosstalks observed between Trk and p75 signaling, neurotrophin signaling was also

shown to cooperate with other signaling pathways. The G‐protein‐coupled receptor (GPCR) pathway, for

instance, was found to initiate Trk activation in the absence of neurotrophin binding (Lee et al., 2002a).

Activation of Trk via the GPCR pathway involves adenosine and the neuropeptide, pituitary adenylate

cyclase‐activating polypeptide (PACAP), which leads to Trk activation via A2A receptor and PACAP‐
preferring (PAC1) receptor, respectively (Lee and Chao, 2001; Lee et al., 2002b). In contrast to neurotro-

phin‐mediated activation, transactivation of Trk by GPCR signaling is slower. For example, at least 1 h of

PACAP treatment is required to activate TrkA in PC12 cells (Lee et al., 2002b). In addition, similar to Trk

activation downstream of neurotrophin binding, adenosine treatment of PC12 cells promotes the phos-

phorylation of Shc and PLC‐g1. Activation of PI3‐kinase also occurs via transactivation by adenosine and

PACAP. Trk transactivation via this pathway results in a long‐lasting Akt activation and thereby promotes

neuronal cell survival after trophic factor withdrawal (Lee et al., 2002b). These observations demonstrate

that activation of Trk via neurotrophins and GPCR pathways initiates similar downstream signaling, albeit

with different kinetics. Neurotrophins and GPCR pathways may hence serve as parallel pathways for

activation of Trk signaling.

The mechanism by which GPCR activates Trk in the absence of neurotrophin remains unclear. For

Trk transactivation by adenosine, Src kinase is implicated because Src kinase inhibitor, PP1, markedly

attenuates adenosine‐elicited tyrosine phosphorylation of TrkA (Lee et al., 2002b). In addition, Trk

transactivation may also involve new protein synthesis or gene activation (Lee et al., 2002a). Transactivation

of TrkA receptors by PACAP, on the other hand, can be inhibited with an intracellular calcium chelator,
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BAPTA/AM, implicating a calcium‐dependent pathway in its activation mechanism (Lee et al., 2002b).

Rajagopal et al. (2004) demonstrated that transactivation of Trk receptor by adenosine, adenosine agonists,

and PACAP occurs exclusively in an intracellular location and partly involves the Golgi apparatus.

It should be noted that crosstalks between Trk and GPCRs can also occur in the presence of NGF.

Activation of TrkA by NGF stimulates sphingosine kinase type 1 (SphK1, Edsall et al., 1977), which then

phosphorylates sphingosine to form sphingosine‐1‐phosphate (S1P). S1P, an important lipid mediator

(Spiegel and Milstien, 2002), is the ligand for five GPCRs, designated S1P1–S1P5. Transactivation of S1P1 by

NGF in S1P1‐overexpressing PC12 cells markedly enhances neurite extension, suggesting that S1P receptors

may function downstream of NGF/Trk receptor signaling to modulate neuronal differentiation (Toman

et al., 2004).

Finally, NGF‐induced activation of ERK1/2 in PC12 cells may also involve a classical G protein signaling

pathway as ERK1/2 activation by NGF can be partially blocked by pertussis toxin (which inactivates the

G proteins G(i/o); Rakhit et al., 2001). This is further supported by the finding that overexpression of

G‐protein‐coupled receptor kinase 2 (GRK2) potentiates NGF‐induced ERK1/2 activation in PC12 cells.

Moreover, GRK2 is constitutively associated with the TrkA receptor. These observations suggest that

G protein may also take part in regulating NGF‐induced activation of ERK1/2.
5.2 Neuropoietic Cytokine Signaling

Another pathway that was demonstrated to exhibit a certain extent of crosstalk with neurotrophin receptor

signaling is the neuropoietic cytokine‐initiated signaling. Differentiation of neuronal progenitors into

postmitotic neurons or regulation of developmental apoptosis often requires collaboration between

different classes of neurotrophic factors (Ip and Yancopoulos, 1996). Induction of apoptosis in cultured

sympathetic neurons by leukemia inhibitory factor (LIF), for example, is dependent on concurrent p75

signaling (Savitz and Kessler, 2000). For the precursor cells of sensory neurons a combination of LIF and

NGF is needed for the differentiation (Murphy et al., 1993). Furthermore, ciliary neurotrophic factor

(CNTF) can cooperate with NGF to enhance production of postmitotic NGF‐dependent neurons in trk‐
transfected MAH cells (Ip et al., 1994). Aside from promoting neuronal differentiation, neurotrophins and

neuropoietic cytokines have also been shown to regulate neuronal phenotypes. For example, NGF, LIF, and

CNTF were demonstrated to regulate the cholinergic phenotype such as ChAT and VAChTexpression in a

coordinated fashion under a variety of physiological and pathological conditions (Berse et al., 1999). Taken

together, these findings suggest that neurotrophins and interleukin‐6 (IL‐6)‐family cytokines synergistically

affect the differentiation program of the neuronal progenitors.

In addition to their synergistic property in modulating neuronal differentiation, the two families of

neurotrophic factors may also regulate their own expression pattern and downstream signaling in a

reciprocal manner. Expression of LIFR, one of the receptor component shared by IL‐6‐family cytokines,

is specifically induced by NGF in PC12 cells, which was shown to exert a negative regulatory effect on

neurite extension and branching (Ng et al., 2003). On the other hand, IL‐6‐family cytokines treatment can

also regulate the expression of neurotrophins. For example, exposure of rat cortical astrocytes to human

recombinant CNTF was found to increase the level of mRNA for NGF (Semkova and Krieglstein, 1999).
6 Functions of Neurotrophin Receptors

6.1 Functions of Trk Receptors

6.1.1 Maintenance of Neuronal Survival

It has long been established that the neurotrophins are key survival factors for neurons during develop-

ment. In addition, neurotrophins influence the differentiation and proliferation of neural crest‐derived
neuronal precursors. Nonetheless, different subpopulations of neurons respond to different members of the
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neurotrophin family, possibly due to the expression of different neurotrophin receptors at the time of

development. In particular, both sympathetic and sensory neurons undergo developmental changes in

response to NGF. Subpopulations of sensory neurons, on the other hand, respond instead to BDNF or NT3

for maintenance of neuronal survival. The dependence of different neuronal subpopulations on different

neurotrophins and the corresponding Trk signaling is revealed by the strikingly similar phenotypes

exhibited by neurotrophin and Trk knockout mice. Both trkA and NGF mutant mice exhibit complete

loss of sympathetic and sensory neurons (Crowley et al., 1994; Smeyne et al., 1994). Mice lacking NT4/5,

another cognate ligand for TrkA, also exhibit a loss of sensory neurons in the nodose–petrosal and

geniculate ganglia (Conover et al., 1995; Liu et al., 1995). BDNF‐ and trkB‐deficient mice, on the other

hand, show malfunctions in the vestibular system and neuron loss in trigeminal, nodose ganglia and DRGs.

Motor neuron loss is also observed in trkB knockout mice (Klein et al., 1993; Jones et al., 1994). Finally,

NT‐3‐ and trkC‐deficient mice have an extraordinary phenotype of abnormal movements and postures with

a deficiency in proprioceptive neurons (Ernfors et al., 1994; Klein et al., 1994).

In addition to findings from biochemical studies or targeted gene disruption analysis, naturally

occurring mutation in TrkA also indicates a crucial requirement of TrkA in the maintenance of neuronal

survival. TrkA mutations have been identified as the cause of a human syndrome, congenital insensitivity to

pain and anhidrosis (CIPA), or hereditary sensory and autonomic neuropathy type IV (Indo et al., 1996;

Mardy et al., 1999; Indo, 2002). Because of the lack of sympathetic neurons and small unmyelinated

nociceptive sensory neurons, CIPA patients exhibit defects in thermoregulation and insensitivity to pain,

which often result in injuries, self‐mutilation, and death‐causing episodes of hyperpyrexia (Indo et al., 1996;
Shatzky et al., 2000).
6.1.2 Synaptic Transmission and Neural Plasticity

In addition to their classical effects on neuronal survival, neurotrophins have also been shown recently to

take part in regulating neuronal morphology and synaptic plasticity. Trk signaling is implicated in inducing

morphological changes through the regulation of both dendritic and axonal arborizations in vivo to

regulate precise network formation (Gallo and Letourneau, 1998; Schinder and Poo, 2000; Yacoubian

and Lo, 2000). Neurotrophins have chemotrophic effects on growth cones and can also function to protect

them from inhibitory guidance cues (Gundersen and Barrett, 1979, 1980; Cai and Reed, 1999). Local

activation of Trk signaling maintains the advance of sympathetic neuron growth cones (Campenot, 1977).

In addition, Song and Poo (1999) demonstrated that gradient of NGF is necessary for growth cone turning.

These observations collectively suggest that Trk signaling can have regulatory roles on the formation of

neuronal network.

Neurotrophins also exert effects on the modulation of neuronal excitability and synaptic transmission

(Rudy et al., 1987; Lohof et al., 1993; Kang and Schuman, 1995; Lesser et al., 1997; Lai and Ip, 2003). TrkB

activation potentiates N‐methyl‐D‐aspartate (NMDA) responsiveness by increasing the channel open

probability (Levine and Kolb, 2000). Conversely, electrical activity has also been shown to modestly increase

the expression of TrkB (Castren et al., 1992). Furthermore, the surface expression of TrkB is elevated by

depolarization in superior cervical ganglion (SCG) and nodose ganglion neurons (Meyer‐Franke et al.,

1998). Trk receptors may also modulate neuronal excitability and signal transduction through interaction

with other ion channels. For example, capsaicin (vanilloid receptor 1, VR1) receptor, a heat‐activated ion

channel, is activated through NGF binding to TrkA (Chuang et al., 2001). Coimmunoprecipitation studies

revealed that VR1 associates with TrkA and PLCg to form a complex. In addition, BDNF binding to TrkB

was shown to produce a rapid influx of cations through transient receptor potential cation channel 3

(TRPC3) that is dependent on activation of PLCg. An interaction between TrkB and TRPC3 ion channels

was also observed (Li et al., 1999). Furthermore, both voltage‐gated sodium channel 1.9 (Nav1.9) and alpha‐
amino‐5‐methyl isoxazole‐4‐propionate (AMPA) receptor activities can also be modified by activated TrkB

(Blum et al., 2002; Itami et al., 2003; Du and Poo, 2004). While the significance for the interaction between

Trks and these ion channels may not have been completely characterized, these observations suggest that

Trk signaling may also regulate signal transduction across the synapse.
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Finally, emerging evidence indicates that neurotrophins are also involved in the induction of hippo-

campal LTP, which is important for learning and memory (Figurov et al., 1996; Korte et al., 1996; Chen

et al., 1999). Conditional knockout of TrkB in postnatal forebrain results in mice exhibiting a severe

impairment in stressful spatial learning (Minichiello et al., 1999). Hippocampal LTP is also inhibited by

target disruption of the PLCg docking site on TrkB (Minichiello et al., 2002).
6.1.3 Neural and Glial Migration During Development

Increasing evidence indicates that Trk signaling also mediates the ability of neurotrophins to regulate neural

and glial migration during development. Medina et al. (2004) recently reported that removal of TrkB in

developing cortex delays neuronal migration, in addition to reducing the number of myelinated axons in

the corpus callosum. Furthermore, BDNF and NT‐3 were shown to function coherently to facilitate

Schwann cell migration and myelination. Activation of TrkC by NT‐3 results in activation of the JNK

pathway via the Rho GTPases Rac1 and Cdc42 to enhance Schwann cell migration. BDNF‐mediated

activation of p75, on the other hand, results in activation of RhoA via Src kinase to limit Schwann cell

migration. Interestingly, upon the completion of Schwann cell migration, NT‐3‐mediated activation of

TrkC inhibits myelination, while activation of p75 by BDNF enhances myelination (Cosgaya et al., 2002;

Yamauchi et al., 2003, 2004). A second report also demonstrated that BDNF overexpression enhances

myelin sheath thickness, further confirming an important role of BDNF signaling in myelin formation

(Tolwani et al., 2004). Schwann cell migration and myelination is therefore tightly regulated by the relative

abundance of neurotrophins and neurotrophin receptor subtypes. In fact, it was observed that when

myelination is initiated, the inhibitory action of NT‐3 is removed by a reduction in its expression. Once

active myelination is initiated, the action of BDNF is removed by increased levels of TrkB‐T1 (Cosgaya et al.,
2002). In addition to regulating Schwann cell migration and myelination, NT‐3‐induced activation of TrkC

was also shown to be required for oligodendrocyte differentiation (Hu et al., 2004). Taken together, these

observations suggest a major role of neurotrophin signaling in regulating migration and differentiation of

both neuron and glia during development.
6.1.4 Higher Cognitive Function

Recent evidence reveals that Trk signaling may also be implicated in higher cognitive function. CIPA

patients with TrkA mutations exhibit mental retardation in addition to other symptoms, reflecting a higher

cognitive function of TrkA signaling (Indo et al., 1996; Shatzky et al., 2000). In addition, psychosocial stress

has been shown to markedly alter NGF and BDNF levels, both in plasma and in selected brain areas,

including the hypothalamus and hippocampus. NGF levels are also enhanced by emotional stress induced

by parachute jumping in human volunteers (Alleva and Santucci, 2001). A recent study suggests that BDNF

may also be involved in psychiatric disorders such as the pathophysiology of depression (Neves‐Pereira
et al., 2002; Sklar et al., 2002), implying a functional role of Trk signaling in neuropsychiatric function.

Furthermore, BDNF‐mediated activation of TrkB in the amygdale was found to be required for fear

conditioning (Rattiner et al., 2004). Together, these findings suggest a role of neurotrophins in mediating

both short‐ and long‐term effects of experience on brain structure and function.
6.1.5 Other Functions

Trk signaling may also take part in regulating functions as diverse as energy balance regulation and tumor

malignancy. Xu et al. (2003) found that BDNF–TrkB serves as downstream components in the melano-

cortin‐4 receptor‐mediated control of energy balance. Hence, mouse mutants expressing decreased

amounts of TrkB showed hyperphagia and maturity‐onset obesity (Xu et al., 2003). TrkC expression,

on the other hand, was found to correlate with overall survival among patients suffering from
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medulloblastomas. Patients with tumors expressing high levels of TrkC mRNA had significantly longer

intervals without disease progression and a more favorable overall survival (Segal et al., 1994). The

biological action of TrkC activation was interestingly found to induce apoptosis in medulloblastoma,

thereby accounting for the observed clinical outcome (Kim et al., 1999).
6.2 Functions of p75

Contrary to the function of Trk receptors, the function of p75 has remained a little obscure. The lack of an

intracellular kinase domain makes the identification of signaling downstream of p75 more difficult, thereby

limiting data on its potential function. Nonetheless, generation of knockout mice lacking p75 provided

some important clues on the potential function of p75, especially during development. The first p75

knockout mice generated was constructed by targeted disruption of exon 3 of p75 (Lee et al., 1992). Mutant

mice are viable and fertile but developed skin defects and ulcers. Immunohistochemistry revealed a lack of

calcitonin gene‐related peptide and substance‐P‐expressing peripheral sensory nerve fibers. p75 expression
is upregulated in different parts of Müller glial cells but not in photoreceptors after retinal degeneration

(Harada et al., 2000). In p75‐deficient mice, phototoxicity‐induced photoreceptor apoptosis is reduced

compared with that in wild‐type mice, suggesting that p75 may take part in initiating photoreceptor

apoptosis in multiple forms of retinitis pigmentosa.

Soon after the generation of the first p75 knockout mice, another isoform of p75 lacking exons 1–3 was

identified. To fully understand the significance of p75 signaling, von Schack et al. (2001) constructed

another p75 mutant mice by completely deleting exon 4 of p75, thereby preventing expression of both

isoforms. There are significant phenotypic differences between the exon 3 and the exon 4 p75 knockout

mice. Mice with deletion of p75 exon 4 are smaller in size compared with the exon 3‐deleted counterpart.

They also show serious loss of peripheral sensory neurons and peripheral innervation. Besides, unlike p75

exon 3 knockout mice that are viable, mice with p75 exon 4 deletion show partial perinatal death probably

due to abnormal blood vessel formation (von Schack et al., 2001). It therefore appears that similar to Trk,

p75 may also take part in regulating neuronal death, in addition to modulating other biological functions

such as vessel formation and target innervation.
6.2.1 Neuronal Death/Survival

With p75 being a member of the TNF family and bearing a death domain, it was predicted that p75 may

function as a death receptor. Indeed, p75 exon 3 knockout mice exhibit reduced apoptosis in the retina (Lee

et al., 1992). In addition, expression of p75 was elevated in multiple cell types following injury (reviewed in

Roux and Barker, 2002). Consistent with this observation, injury‐induced neuronal death is alleviated in

p75 exon 3 knockout mice or when p75 expression is reduced by antisense oligonucleotides (Cheema et al.,

1996; Ferri and Bisby, 1999). Furthermore, overexpression of p75 in primary cortical neurons, PC12 cells, or

glioma cells leads to activation of JNK and caspase activation (Gu et al., 1999; Wang et al., 2001; Harrington

et al., 2002; Bhakar et al., 2003). While increasing evidence linked p75 with the initiation of apoptosis, the

mechanisms implicated remained obscure. Another member of the TNF family, Fas, activates the apoptotic

machinery in response to external apoptotic stimuli by recruitment of Fas‐associated death domain

(FADD) and tumor necrosis factor receptor 1‐associated death domain protein (TRADD) via its death

domain, thereby activating caspase‐8. p75‐induced apoptosis, nonetheless, was found to involve no caspase‐
8, nor does it require association with FADD or TRADD. Instead, activation of caspase‐9 was observed

(Wang et al., 2001). This observation argues against the importance of the death domain in p75‐mediated

cell death. In corroboration with this hypothesis, a 29‐amino‐acid sequence in the intracellular juxtamem-

brane domain of p75 named Chopper was found to be required and sufficient for p75‐initiated cell death

(Coulson et al., 2000).

The death domain of p75 is crucial for the association of p75 with some of its interacting proteins

including NRIF and NADE, which has been suggested to take part in mediating the pro‐apoptotic property
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of p75. NRIF, for example, has been suggested to function in p75‐mediated apoptosis (Casademunt et al.,

1999) and serves as a transcription factor in p75 signaling (Gentry et al., 2004). In NRIF knockout mice,

p75‐dependent cell death of retinal cells is reduced during early development. Furthermore, activation of

p75 by neurotrophins fails to induce apoptosis in sympathetic neuron cultures taken from NRIF knockout

mice (Casademunt et al., 1999; Gentry et al., 2004). These observations suggest that NRIF is required for

p75‐induced apoptosis. The relative importance of the death domain and the Chopper domain in the pro‐
apoptotic property of p75 therefore requires further clarification.

NADE, on the other hand, was found to initiate apoptosis and caspase activation when overexpressed

together with p75 in 293T cells (Mukai et al., 2000). Another p75‐interacting protein NRAGE induces

robust JNK activation and caspase activation in PC12 cells (Salehi et al., 2002). These observations

collectively indicate that one of the mechanisms through which p75 initiates apoptosis is by recruitment

of proapoptotic interacting partners. The circumstances under which p75 prefers one interacting protein

over the other will provide essential information on how the function of p75 is regulated.

It should be noted that in addition to promoting apoptosis, p75 has also been suggested to favor

neuronal survival. While this may seem rather surprising, this hypothesis is consistent with the absence

of peripheral sensory neurons in the p75 exon 4 knockout mice, suggesting that p75 is crucial for

maintaining neuronal survival for this subpopulation of neurons. The ability of p75 to enhance neuronal

survival is associated with the increase in NF‐kB activation observed downstream of p75. In the absence

of TrkA, NGF binds to p75 and activates NF‐kB in rat Schwann cells (Dobrowsky and Carter, 1998). In

both embryonic neurons and sympathetic neurons, neurotrophins have been shown to trigger p75‐
dependent NF‐kB activation. How p75 activation results in NF‐kB induction has not been completely

elucidated, but recent evidence indicates that it may involve association with some of its interacting

proteins. Association of p75 with TRAF6, for example, was shown to mediate the downstream NF‐kB
activation (Khursigara et al., 1999). On the other hand, binding of RIP‐2 similarly leads to NF‐kB activation

(Khursigara et al., 2001). It therefore appears that p75 may promote both apoptosis and survival, depending

on the cellular context.
6.2.2 Nerve Regeneration and Neurite Outgrowth

In addition to modulating neuronal survival and death, p75 has also been implicated in modulating neurite

elongation via its interaction with the Nogo receptor. The proteins Nogo‐A, oligodendrocyte–myelin

glycoprotein (OMgp), and myelin‐associated glycoprotein (MAG) have all been identified as inhibitory

components present in CNS myelin, acting through the same Nogo receptor (Ngr). The glycosyl phospha-

tidylinositol (GPI) linkage of Ngr suggests the requirement for additional transmembrance proteins as

transducer for the inhibitory signal inside the cells. Recently, p75 was identified as a potential coreceptor

for Ngr (Wang et al., 2002; Wong et al., 2002). Both Ngr and p75 are coexpressed extensively in the

developing rat nervous system. Ngr was also found to physically interact with p75 via their extracellular

domain upon ligand binding. Activation of the p75–Ngr complex increases RhoA activity, which is crucial

for the ability of the p75–Ngr complex to inhibit axonal elongation (Yamashita and Tohyama, 2003). p75

interacts with the RhoGDP dissociation inhibitor (RhoGDI) to enable RhoA activation (Yamashita and

Tohyama, 2003). This interaction is further enhanced by MAG and Nogo. Using a blocking peptide to

inhibit the interaction between RhoGDI and p75, the inhibitory cues of CNS regeneration can be blocked,

suggesting that RhoA activity is indispensable for the inhibitory cues elicited by p75/Ngr signaling.

Recently, a novel protein LINGO‐1, was also shown to be required for p75/Ngr‐mediated activation of

RhoA (Mi et al., 2004).

Since activated p75 can modulate RhoA activity, it is highly possible that functional p75 may also

regulate the dynamic actin polymerization at the growth cones, thereby controlling growth cone advance.

Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament

dynamics and growth cone behaviors. Activation of Trks mediates local accumulation of actin filaments via

increase in Rac1 activity, whereas p75 activation causes local reduction of RhoA signaling that promotes

lengthening of filopodia (Gallo and Letourneau, 2004).
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7 Future Perspectives

It has been almost 20 years since the identification of the first neurotrophin receptor. With the advances in

our research techniques, some of our previous understanding on neurotrophin receptor signaling has been

consolidated, while at the same time novel aspects of the receptor functions have been unraveled. The three‐
dimensional structures of TrkA and p75 in association with NGF, for example, have revealed the structural

bases underlying the specificity in neurotrophin recognition and receptor binding (He and Garcia, 2004).

However, new insights from recent studies also point to a new direction in neurotrophin research. Whereas

most of our present knowledge on neurotrophin receptor signaling is based on studies using bath‐applied
neurotrophin, recent studies indicate that localized administration of neurotrophin to the axonal terminals

and cell bodies leads to distinct signaling mechanisms (Watson et al., 2001). Thus, it will be interesting

to apply the present findings from bath cultures, such as downstream signaling mechanisms, Trk‐ and
p75‐binding partners, to delineate the neurotrophin receptor functions in different subcellular microenvir-

onments, such as pre‐ or postsynaptic regions. In addition, considerable evidence has drawn our attention

to the functional roles of Trk receptors in synaptic formation, transmission, and plasticity. Future investiga-

tions will provide a better understanding on the involvement of neurotrophin receptor signaling in higher

cognitive functions.
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Abstract: Ciliary neurotrophic factor (CNTF) is a member of the neurokine family of cytokines with

actions on multiple cell types of the nervous system. CNTF shares a common gp130 receptor subunit

with the other neurokines, leukemia inhibitory factor (LIF), interleukin‐6 (IL‐6), interleukin‐11 (IL‐11),
cardiotrophin‐1 (CT‐1), oncostatin‐M (OSM), cardiotrophin‐like cytokine (CLC), and neuropoietin.

Neurokine signaling is mediated principally through the Janus tyrosine kinase‐signal transducer and

activator of transcription (Jak/STAT) pathway. The biological actions of the various neurokines are over-

lapping in many instances, but can also be unique. While none of the neurokines appear to be essential

individually, they are critical for life. Gene knockout studies reveal that loss of each of the individual

receptor subunits results in embryonic or neonatal death. The actions of the neurokines vary depending

on cell type and developmental stage. They may enhance the differentiation of glia while inhibiting

differentiation of some neurons, promote neuronal survival while also inducing apoptosis of other neurons,

promote neuronal repair while also promoting inflammatory responses, or induce early adrenergic

differentiation in sympathetic neurons while later inducing adrenergic to cholinergic switching of pheno-

type. The basis for these varied effects is still not well understood. This chapter will highlight the actions of

the neurokines and the current state of our understanding of the signaling pathway, with emphasis on

activation and inactivation processes, and discuss some potential roles in neurodegenerative diseases and

their treatment.

List of Abbreviations: ALS, amyotrophic lateral sclerosis; apoE, apolipoprotein E; ChAT, choline acetyl-

transferase; CLC, cardiotrophin‐like cytokine; CNTF, ciliary neurotrophic factor; CT‐1, cardiotrophin‐1;
CyRE, cytokine response element; EGFP, enhanced green fluorescent protein; FGF, fibroblast growth factor;

GFAP, glia fibrillary acidic protein; HD, Huntington’s disease; HGF, hepatocyte growth factor; IL‐6,
interleukin‐6; IL‐11, interleukin‐11; Jak, Janus kinase; LIF, leukemia inhibitory factor; MAPK, mitogen‐
activated protein kinase; NGF, nerve growth factor; OSM, oncostatin‐M; PIAS, protein inhibitor of

activated STATs; SHP‐1/2, src homology‐2‐domain‐containing protein tyrosine phosphatase‐1/2; SOCS,

suppressor of cytokine signaling; STAT, signal transducer and activator of transcription; VIP, vasoactive

intestinal peptide
1 Introduction

Ciliary neurotrophic factor (CNTF) is a member of the neuropoietic cytokine family of proteins, also

referred to as neurokines. This family includes avian and mammalian CNTF, interleukin‐6 (IL‐6), interleu-
kin‐11 (IL‐11), leukemia inhibitory factor (LIF), oncostatin‐M (OSM), cardiotrophin‐1 (CT‐1), cardio-
trophin‐like cytokine (CLC), and neuropoietin. These proteins share a common structural motif and

a receptor‐signal transduction system (Bazan, 1991). Their biological actions are diverse but very promi-

nent in the hematopoietic system as cytokines and in the nervous system as neurotrophic factors. In this

chapter we treat CNTF as a prototype neurokine and highlight key aspects of the other neurokines,

reviewing their physiological actions, distribution, regulation, and mechanisms of action in nerve cells

and muscle.
2 The Discovery and Characterization of CNTF

CNTF was originally described as a ciliary ganglion trophic activity isolated from the embryonic chick eye

(Adler et al., 1979; Manthorpe et al., 1980; Nishi and Berg, 1981). It was hypothesized that it functions as a

target‐derived factor to support neuronal survival during the period of programmed cell death that

coincides with cholinergic innervation of the eye by parasympathetic neurons of the chick ciliary ganglion

(Landmesser and Pilar, 1974; Adler et al., 1979). CNTF was the second neuronal growth factor discovered

after the nerve growth factor (NGF) (Levi‐Montalcini and Hamburger, 1951). The term ciliary neuro-

notrophic factor describing the survival activity first appeared in a 1984 paper by the Varon group (Barbin
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et al., 1984). Nishi and Berg (1981) initially used the term ‘‘growth promoting activity,’’ to describe this

eye‐derived component(s) that stimulated the growth of nerve cells. The activity was prominent in the

ciliary neuronal target tissues of the embryonic eye, including the iris, choroid, ciliary body, and pigmented

epithelium (Manthorpe et al., 1980; Barbin et al., 1984). Eventually the term was shortened to the term now

used: CNTF (Hughes et al., 1988).

The CNTFmoiety isolated from the chick eye has three distinguishing biological actions on chick ciliary

ganglion neurons. It supports the in vitro survival of chick ciliary ganglion neurons in cell culture (Adler

et al., 1979). It stimulates the growth of cell size, without increasing cell numbers (Nishi and Berg, 1981;

Halvorsen and Berg, 1989). And finally, it downregulates the levels of alpha‐7‐subunit‐containing acetylcho-
line receptors on peripheral neurons (Halvorsen and Berg, 1989). While the factor in chick eye resisted

molecular purification and identity, all of these activities were shared with a mammalian CNTF‐like activity
isolated from rat sciatic nerve. The sciatic nerve proved to be a particularly rich source of CNTF activity and

permitted its purification and molecular characterization (Manthorpe et al., 1986; Stöckli et al., 1989).

However, as we will describe later, other key differences between the factors have emerged and it is likely

that this rat CNTF may not be the true mammalian homolog for the original avian CNTF (Finn and

Nishi, 1996b).
3 The Family of Neurokines

3.1 Chemical and Structural Aspects

The first CNTF genes cloned were from rabbit (Lin et al., 1989) and rat (Stöckli et al., 1989), and helped

define a new class of neurotrophic factors that was distinct from the NGF and fibroblast growth factor

(FGF) families. The human CNTF gene was found to be about 85% identical with rat and rabbit CNTF at

the amino acid level (Lam et al., 1991). A puzzling finding from these first CNTF cloning and expression

studies was the lack of predominant expression during embryonic development and the lack of a discernible

secretory mechanism. It was questioned how this factor could be a significant developmental neurotrophic

factor if it was not significantly expressed or secreted during embryogenesis. Later, when avian CNTF

was cloned, it was found to be highly expressed during development and released from cells (Leung et al.,

1992). Avian CNTF is secreted by a nonclassical pathway that is not used by mammalian CNTF (Reiness

et al., 2001). These represent two key differences between mammalian and avian CNTFs (Finn and Nishi,

1996b).

The CNTFs fall into the greater family of proteins containing a four‐alpha‐helical core structure (Bazan,
1991). These cytokines are all composed of exchangeable functional modules and the crystal structures of

LIF, CNTF, IL‐6, growth hormone, and leptin all share this common design, as recently reviewed (Kallen

et al., 1999; Auernhammer and Melmed, 2000). Several neurokines were first identified as factors active in

the immune or hematopoietic systems. LIF and OSM were cloned and found to be glycoproteins active as

tumor growth inhibitory factors (Gearing et al., 1987; Rose and Bruce, 1991). LIF was identified as a

cholinergic differentiation factor, a glycoprotein from target tissues that induces a switch from adrenergic to

cholinergic phenotype in some developing sympathetic neurons (Weber, 1981; Fukada, 1985). LIF is

expressed in early embryos and along with CNTF induces stem cells to maintain pluripoteniality (Conover

et al., 1993; Cheng et al., 1994; Kiger et al., 2001; Metcalf, 2003). IL‐6 and IL‐11 were first identified as

cytokines important in the hematopoietic system as proinflammatory factors and were later found to be

expressed in and functioning in the nervous system (Kishimoto et al., 1992; Yang, 1993; Marz et al., 1999).

CT‐1 was first described as a neurokine that induces cardiac myocyte hypertrophy and also as a motor

neuron survival factor that binds to the LIF receptor complex (Pennica et al., 1995a, 1996). The newest

members of the CNTF family are CLC and neuropoietin. CLC is a 22‐kDa protein most homologous

with CT‐1 (Shi et al., 1999). Neuropoietin is a 22‐kDa protein exhibiting a 16% identity with CNTF and an

11–27% identity with the other CNTF family members (Derouet et al., 2004). Two properties distinguish

neuropoietin most from CNTF: it is expressed at early developmental stages and it possesses a potential

hydrophobic signal peptide. These are properties previously associated with avian CNTF.
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3.2 Distribution in Developing and Mature Nervous Systems

The distribution patterns of the neurokines in the nervous system are varied and too diverse to be

adequately described here. Some key sites of expression are described in the following sections, but the

reader is referred to other sources for more details (e.g., Leung et al., 1992; Murphy et al., 1997; Qiu et al.,

1997; Mufson et al., 1999). Briefly though, the distribution of rat CNTF messenger RNA (mRNA) and

protein is highest in optic nerve and olfactory bulb, but is also prominent in postnatal type I astrocytes and

Schwann cells (Stöckli et al., 1991). Whereas CNTF is not heavily expressed in the embryo, both CLC

and neuropoietin are expressed in embryonic tissues (Uemura et al., 2002; Derouet et al., 2004).
3.3 Receptors and Signaling Pathways in Brief

The responses of the neurokines are pleiotropic due to the utilization of receptors with a common set

of subunits and signaling pathways (Boulanger et al., 2003a). The first CNTF receptor a subunit was

cloned from human SH‐SY5Y neuroblastoma cells and found to be an extracellular protein attached to

the cell membrane through a glycosylphosphatidyl inositide linkage (Davis et al., 1991). The a subunit

binds selectively with CNTF and combines with the transmembrane subunits gp130 and LIF receptor b
for signaling (Ip et al., 1992b; Stahl et al., 1993). The known neurokine–receptor combinations with

ligand‐binding subunits are summarized in > Figure 3-1. LIF does not require the a subunit for activity
. Figure 3-1

Receptor subunit composition for neurokines. The receptor subunits for the indicated neurokines are shown.

The vertical lines indicate the interaction of the alpha subunits with the plasmamembrane, either as an integral

membrane protein or as a glycophosphatidyl inositol linkage. CLC cardiotrophin-like cytokine, CNTF ciliary

neurotrophic factor, CT-1 cardiotrophin-1, IL-6 interleukin-6, IL-11 interleukin-11, LIF leukemia inhibitory factor,

OSM oncostatin-M, NP neuropoietin, CNTFR CNTF receptor α subunit, CT-1R CT-1 receptor subunit, IL-6R IL-6

receptor α subunit, IL-11R IL-11 receptor α subunit, LIFR LIF receptor β subunit, OSMR OSM β receptor subunit
but competes with CNTF for binding, perhaps through competition between the CNTF‐receptor a
complex and LIF with the gp130–LIF receptor b complex (Robledo et al., 1996). Structural models derived

from studies of the IL‐6 and IL‐11 receptor complexes suggest that the overall complex is hexameric with

two copies each of the ligand, binding subunits, and gp130 (Ward et al., 1994; Barton et al., 2000; Boulanger

et al., 2003b). Evidence suggests that CNTF may also form a hexameric receptor complex (De Serio et al.,

1995).

The CNTF receptor complex is used by a subclass of neurokines: CNTF, CLC, and neuropoietin

(Derouet et al., 2004). CLC is indistinguishable in action from CNTF (Senaldi et al., 1999). It is likely

that CNTF receptor a is used by different neurokines during development, for differentiation, and for
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maintenance/repair functions. This mechanism for varied function contrasts with that of neurotransmitter

receptors. Whereas an individual transmitter uses a variety of different receptors to achieve selectivity in

responses, the CNTF receptor has several different ligands to regulate its activity.

Although the signaling pathway for these neurokines is often referred to as the Janus tyrosine kinase‐
signal transducer and activator of transcription or the ‘‘Jak/STAT’’ pathway, various downstream mediators

other than STATs can also be activated. STAT, or signal transducer and activator of transcription, is the

principal signaling molecule for all neurokines. gp130 and LIF receptor b each have an associated Jak‐
binding site (usually Jak1 or Jak2) located near the plasma membrane (Stahl et al., 1994). Upon ligand

binding, receptor conformational changes result in the transphosphorylation and activation of these Jaks.

Substrates for the Jaks include several docking sites on the gp130 and LIF receptor b (Davis et al., 1993) that

when phosphorylated can bind to src homology 2 (SH2) domains of STATs, usually STAT1 and/or STAT3

(Baumann et al., 1994). The STATs are then phosphorylated and activated by Jak, resulting in their release,

dimerization, and translocation into the nucleus to regulate gene expression. STAT regulatory elements are

present on a number of different genes. The final transcriptional complexes can vary but are likely to

include components in addition to the STATs. Although much is known about the specific structural

requirements for these events on the Jaks, STATs, and receptors, the mechanisms and other protein

participants are still only broadly defined (Pellegrini and Dusanter‐Fourt, 1997; Horvath, 2000; Rane and

Reddy, 2000; Kisseleva et al., 2002).

Activation of signaling pathways other than STATs can also be initiated by Jak kinases. Jak can activate

an SH2‐binding site on the receptor and stimulate SHP‐1 or SHP‐2 tyrosine phosphatase and mitogen‐
activated protein kinase (MAPK) activity through Ras binding, and Akt can be activated through phospha-

tidyl inositol‐3 kinase. There is evidence from selected systems that MAPK and STAT activation have

opposing actions (Wu and Bradshaw, 1996). These alternative Jak signaling pathways have been discussed

in a number of recent reviews (Stahl and Yancopoulos, 1994; Inoue et al., 1996; Auernhammer andMelmed,

2000; Decker and Kovarik, 2000).
3.4 Gene Knockout Studies

The importance of the CNTF receptor signaling system in development is clearly illuminated by the mouse

phenotype of the a subunit knockout, which is lethal perinatally and displays severe motor deficiencies

(DeChiara et al., 1995). Null mutants of LIF receptor b subunit also die shortly after birth with multiple

problems including reduced astrocyte numbers in the spinal cord and brain stem (Li et al., 1995; Ware et al.,

1995). In both cases the receptor mutants result in much more dramatic phenotypes than do null mutants

of the factors themselves. CNTF or LIF gene knockouts result in a relatively small amount of motor

neuron defects (Masu et al., 1993; Kwon et al., 1995). LIF or CNTF gene knockout, though, does reveal

deficits in maintenance of motor neurons and in response following neural trauma. Mice with a LIF/CNTF

double gene knockout or LIF/CNTF/CT‐1 triple gene knockout show potentiated motor neuron losses

(Sendtner et al., 1996; Holtmann et al., 2005). These results strongly discount an absolute requirement

for these individual growth factors in nervous system development. Further, the human phenotype for

null CNTF appears to have little or no impact on occurrence of several neurodegenerative diseases (Orrell

et al., 1995).
4 Actions in the Peripheral Nervous System

4.1 Autonomic Nervous System

4.1.1 Parasympathetic Nervous System

The importance of avian CNTF in the development of chick ciliary ganglion neurons supports the role of

CNTF as a target‐derived neurotrophic factor. CNTF supports the complete survival of ciliary ganglion
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neurons in culture and promotes their growth in size and regulates the expression of a subclass of

acetylcholine receptors on the cells (Nishi and Berg, 1981; Halvorsen and Berg, 1989). Ciliary neurons in

culture bind to 125I‐CNTF with high affinity and CNTF induces a persistent activation of Jak/STATsignaling
(Koshlukova et al., 1996; Wishingrad et al., 1997). Cloning of the chick CNTF gene indicates that the avian

form of CNTF differs in significant ways from mammalian CNTF in being expressed during early

development and in being secreted as a functional protein from target cells (Leung et al., 1992). Further,

CNTF is expressed in eye targets of ciliary ganglion neuron during development where it is the only trophic

activity present (Finn and Nishi, 1996a). Retroviral overexpression of CNTF in ovo results in rescue of

about 30%, on average, of ciliary neurons that normally die during programmed cell death, and under-

expression results in increased cell death (Finn et al., 1998). Any role for other CNTF family members in

parasympathetic neuron activity has yet to be identified.
4.1.2 Sympathetic Nervous System

CNTF and LIF have significant effects on sympathetic neuron development, both in vivo and in culture.

CNTF binds to chick sympathetic neurons in culture and in freshly isolated cells with high affinity (Huber

et al., 1993), and in rat cells both LIF and CNTF induce the activation of Jak/STAT signaling (Guo et al.,

1999; Kaur et al., 2003). Sympathetic neurons also make and respond to IL‐6 (März et al., 1998). CNTF

increases vasoactive intestinal peptide (VIP), somatostatin, and substance P expression in sympathetic

neurons (Ernsberger et al., 1989; Rao et al., 1992) and decreases neuropeptide Y and muscarinic and

nicotinic acetylcholine receptors (Halvorsen and Berg, 1989; Ludlam and Kessler, 1993); LIF‐receptor‐null
mutations result in decreased numbers of VIP‐positive neurons (Duong et al., 2002). CNTF promotes the

terminal differentiation of cultured progenitor MAH cells into sympathetic neurons (Ip et al., 1994). Chick

sympathetic neurons change their sensitivity to CNTF during development. At embryonic day 7, CNTF

does not affect the relative expression of choline acetyltransferase (ChAT) and tyrosine hydroxylase but

does increase VIP, while at day 12 it increases both VIP and ChAT and decreases tyrosine hydroxylase

(Ernsberger et al., 1997). In the rat, gp130 neurokines act as cholinergic differentiation factors for

sympathetic neurons. LIF was the first factor identified from heart with the ability to convert sympathetic

neurons from an adrenergic to a cholinergic phenotype (Yamamori et al., 1989). The role of gp130

neurokines in the sympathetic cholinergic phenotype has been previously reviewed (Landis, 1996). At

higher concentrations, LIF and CNTF cause cell death in a subpopulation of neonatal rat sympathetic

neurons in culture (Kessler et al., 1993; Savitz and Kessler, 2000) while later in development CNTF acts as a

survival factor for these same neurons (Kotzbauer et al., 1994). Both LIF and CNTF block bone morpho-

genetic protein‐induced dendritic outgrowth in rat sympathetic neurons in culture (Guo et al., 1997, 1999).

Neurokines have varied effects on sympathetic neurons, and the regulatory mechanisms for this variability

are not yet clear.
4.1.3 Sensory Neurons

Subpopulations of sensory neurons respond to neurokines similarly to that of sympathetic neurons.

In chick dorsal root ganglion there is early expression of CNTF receptor followed by a survival response

protecting cells from programmed cell death (Tolosano et al., 1996; von Holst et al., 1997). Transfection of

sensory neurons with antisense gp130 leads to a decreased number of VIP‐positive cells (Geissen et al.,

1998). CNTF in vivo increases substance P and calcitonin‐gene‐related peptide (CGRP) expression in

sensory neurons (Apfel et al., 1993). Cranial nodose and trigeminal ganglion neurons develop sensitivity

to the survival effects of neurokines differently, and sensory neuron populations display different

developmental patterns of neurokine responsiveness to CNTF, LIF, OSM, CT‐1, and IL‐6 (Horton

et al., 1998).
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5 Actions in the Central Nervous System

5.1 Motor Neurons

5.1.1 Survival

Motor neurons are an especially neurokine‐sensitive population of cells. Survival of chick motor neurons

was enhanced in ovo by CNTF while sympathetic and sensory neurons were not enhanced (Oppenheim

et al., 1991). In other studies, a role for CNTF‐related neurokines is implicated during developmental

programmed cell death as LIF‐receptor‐null mutant mice show a 35–50% decline of motor neuron numbers

at birth (Li et al., 1995). Both IL‐6 and LIF promote survival of cholinesterase‐positive rat spinal cord

neurons in culture (Kushima and Hatanaka, 1992). Data supporting the possible role for CNTF and LIF as

trauma‐related survival factors come from axotomy studies where LIF, CNTF, and IL‐6 are each able to

protect spinal cord motor neurons from cell death after axotomy (Sendtner et al., 1990; Helgren et al., 1994;

Li et al., 1994; Ikeda et al., 1996). The mechanism of CNTF‐mediated motor neuron survival may be

through stimulation of PAP‐1 and Reg‐2 activity (Liou et al., 1997; Nishimune et al., 2000).
5.1.2 Motor Neuron Diseases

Several animal models of motor neuron diseases are responsive to exogenous neurokines. The Wobbler

mouse shows delayed onset and less severe symptoms following treatment with CNTF (Mitsumoto et al.,

1994). In the pmn mouse model of progressive motor neuronopathy, endogenous CNTF released upon

axotomy results in enhanced motor neuron survival (Sendtner et al., 1992, 1997). These and other results

have provided an impetus for pursuing this class of neurokines as potential therapeutic agents in neurode-

generative motor neuron disease such as amyotrophic lateral sclerosis (ALS).
5.2 Brain Neurons

5.2.1 Differentiation and Development

CNTF and LIF each show early effects in the central nervous system (CNS) by maintaining neural stem

cells as pluripotent (Conover et al., 1993; Niwa et al., 1998; Moon et al., 2002). Neurokines also have

later developmental effects on CNS neurons, especially in the retina. CNTF is expressed in pigmented

epithelium and macroglia of retina (Finn and Nishi, 1996a; Walsh et al., 2001). CNTF treatment of rat

retinal explants redirects rod photoreceptors to other cell types including bipolar, amacrine, and Müller glia

cells (Ezzeddine et al., 1997). In culture, CNTF and LIF delay rod photoreceptor cell development in rats

(Kirsch et al., 1998b), and CNTF inhibits the development of photoreceptor‐like cells in the postnatal pineal
gland (Hata et al., 2003). In the chick, CNTF increases ChAT levels in cultured retina (Hofmann, 1988). In

the olfactory system, LIF inhibits olfactory receptor neurons’ maturation by activating the STAT3 signaling

pathway, maintaining a population of olfactory receptor neurons in an immature state (Pain et al., 1996).

To generalize, the neurokines appear to delay progression of neurons early in development but often

promote to specific phenotypes later.
5.2.2 Cell Survival and Regeneration

Survival effects of neurokines are widespread in the CNS. CNTF exhibits survival effects on a variety of CNS

neurons including rat hippocampal GABAergic and cholinergic neurons (Ip et al., 1991). CNTF protects

against lesioning‐induced cell death in thalamic nuclei (Clatterbuck et al., 1993) and lateral geniculate
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nuclei (Agarwala and Kalil, 1998) and promotes neurite outgrowth in acoustic neurons (Hartnick et al.,

1996). IL‐6 also acts as a survival factor for postnatal and fetal tyrosine‐hydroxylase‐positive cells in the rat

midbrain (Kushima et al., 1992).
5.3 Glia

5.3.1 Development

One of the earliest descriptions of CNTF action in the CNS is that of induction of differentiation of

oligodendrocytes O‐2A into type 2 astrocytes (Hughes et al., 1988). CNTF and LIF each promote the

differentiation of oligodendroglial progenitors (Marmur et al., 1998) and CNTF‐null mice exhibit defects in

glial maturation (Martin et al., 2003). The CNTF stimulation of cortical precursor cells to differentiate to a

glial rather than a neuronal lineage is via the Jak/STAT pathway as opposed to the MAPK signaling pathway

(Bonni et al., 1997). LIF receptor and gp130 subunits are critical for glia development, as knockouts of

either decrease astrocytic glia fibrillary acidic protein (GFAP) expression (Ware et al., 1995; Nakashima

et al., 1999).
5.3.2 Expression

Using immunocytochemistry and in situ hybridization, CNTF and its receptor were shown to be constitu-

tively expressed in different astrocyte populations in the mouse brain (Dallner et al., 2002). There have been

few details reported of regulation of CNTF expression in glia of the CNS (however, see below for effects of

trauma), but expression of CNTF in Schwann cells is decreased by retinoic acid and by inhibition of the ras‐
Erk pathway (Abe et al., 2001; Johann et al., 2003). Determining the cellular and molecular mechanisms of

regulating neurokine expression during glia development is an important ongoing endeavor.
5.3.3 Role in Response to Injury and Trauma

Neural injury and trauma are interrelated with neurokines in different ways. An injury may induce

neurokine expression, or these neurokines may promote an injury response, or they may help the injured

cells survive the insult. In the hippocampus, lesioning and ischemia each lead to increased expression of

CNTF by astrocytes (Ip et al., 1992a; Park et al., 2000). There is also an increase in glial CNTF and receptor

expression after entorrhinal cortical lesion (Lee et al., 1997b). In adult rat neocortex, CNTF injection or

overexpression causes glial cell hypertrophy or a reactive gliosis (Winter et al., 1995; Hudgins and Levison,

1998) and induces astrocytes to increase FGF‐2 during remyelination in the spinal cord (Albrecht et al.,

2002, 2003). CNTF knockout mice show impaired recovery from sciatic nerve crush (Yao et al., 1999) while

IL‐6 mRNA production increases in Schwann cells following sciatic nerve injury (distal to the crush),

indicative of an inflammatory reaction (Bolin et al., 1995). Effects on the CNS may be different from those

in the periphery as optic nerve lesioning results in increased CNTF receptor mRNA in remaining astrocytes

at the site as compared with a decrease in receptor mRNA seen in Schwann cells of sciatic nerve (Kirsch

et al., 1998a).
6 Neurokines in Nonnerve Tissues

6.1 Skeletal Muscle

Skeletal muscle is a major nonnerve target and source of neurokines (Jordan, 1996a). Denervation of rat

skeletal muscle leads to increased CNTF receptor expression and treatment with CNTF attenuates the
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denervation‐induced atrophy and increases twitch tension (Helgren et al., 1994). Even without axonal

sprouting denervation CNTF treatment maintains twitch tension with age and thus may function as a

regulator of muscle strength (Guillet et al., 1999). CNTF induces motor neuron at termini and increases the

number of nerve–muscle contacts (Jordan, 1996b; Oyesiku and Wigston, 1996; Siegel et al., 2000). CNTF

treatment during neuromuscular junction formation causes muscle to maintain a polyneural innervation

(English and Schwartz, 1995). Neurotransmitter release from Xenopus motor neurons in culture is en-

hanced by CNTF, suggesting a role in enhancing or maintaining synaptic strength (Stoop and Poo, 1995). In

immature muscle these neurokines may have a different role as LIF activation of STAT3 inhibits MyoD

activity, promoting cell cycle progression and inhibiting differentiation of myoblasts (Kataoka et al., 2003).
6.2 Cardiac Muscle

The cloning and expression of CT‐1 provided evidence for possible pathological effects of neurokines in

cardiac muscle (Pennica et al., 1995b). CT‐1, LIF, and other neurokines induce muscle hypertrophy in vitro

and in vivo (Kodama et al., 1997; Wang and Halvorsen, 1998b). Both CT‐1 and LIF were found to promote

neonatal mouse cardiac myocyte proliferation and survival (Sheng et al., 1996). Evidence for a develop-

mental role of CNTF is found in chick heart as well, where treatment of cultured cardiomyocytes with the

differentiation factor retinoic acid results in increased expression of CNTF receptor amRNA and enhanced

CNTF responses (Wang and Halvorsen, 1998a). CNTF and its receptor are expressed in embryonic chick

heart at their highest levels during parasympathetic synapse formation in the atria. CNTF receptor mRNA

levels are increased by stimulating muscarinic acetylcholine receptors in ovo by carbamylcholine and are

inhibited by blocking cholinergic receptors with atropine. Further, CNTF treatment of cultured atrial

myocytes increased levels of muscarinic receptors. Thus, CNTF enhances cholinergic development and

cholinergic activity increases CNTF responsiveness of chick atrium, suggesting a postsynaptic role for

CNTF in the ontogenesis of parasympathetic function in the heart (Wang and Halvorsen, 1998b).
6.3 Other Tissues

Examination of LIF receptor b subunit knockout mice reveals malfunctions in placental, skeletal, neural,

and metabolic systems, suggesting important effects of CNTF‐related neurokines in many different organ

systems (Ware et al., 1995; Aubert et al., 1999). CNTF and IL‐6 induce an acute phase response in liver and

inhibit IL‐1‐beta‐mediated insulin release in rat pancreatic islets (Nesbitt et al., 1993; Wadt et al., 1998) and

LIF has effects on hepatic lipid metabolism (Nonogaki et al., 1996; Auernhammer and Melmed, 2000).

A number of studies have implicated roles of IL‐6, IL‐11, OSM, LIF, and CNTF in osteoblasts, either in bone

metabolism, in development of osteoblasts, or in osteogenesis (Allan et al., 1990; Ishimi et al., 1992; Bellido

et al., 1996; Grimaud et al., 2002). LIF has been proposed as an important neuroimmune modulator of

endocrine function (Auernhammer and Melmed, 2000). The widespread systemic effects of neurokines are

important factors when considering their use as therapeutic agents.
7 The gp130 Receptor Family

7.1 The Receptor Complex

7.1.1 Structure–Function Relationships

The common structure of the CNTF neurokine receptors is responsible for both the pluripotent nature of

the neurokines and their redundancy in function. The receptor complexes present in two fundamental

groups: either with two copies of gp130 signaling subunits or as one copy each of a gp130 and a LIF receptor

b subunit (> Figure 3-1). The LIF receptor b structure is related to gp130, the signal transducer of IL‐6
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(Gearing et al., 1991). The exception to these groupings is a type of OSM receptor that uses an OSM

receptor b component in lieu of the LIF receptor b subunit (Mosley et al., 1996). The only clearly

demonstrated function of the a receptor components is to specify ligand binding.

The redundant biological activities observed for the neurokines is a result of the shared gp130 receptor

signaling component, whereas the unique actions are a result, at least in part, of the varied b receptor

components. Since there is little difference in the overall types of signaling possible by the neurokines, the

molecular bases for these differences in signaling of the receptor subunits is an area of intense interest. The

relative roles of receptor signaling subunits in signal transduction have been studied using chimeric

receptors composed of a homodimer of extracellular domains of non‐CNTF family cytokine receptors

coupled with the transmembrane and cytoplasmic regions of either OSM receptor, LIF receptor, or gp130 as

intracellular signaling domains (Baumann et al., 1994). Examination of specific responses reveals some cell‐
type‐specific effects. Thus cell proliferation, induction of differentiation, and inhibited differentiation are

seen only in selected cell types (Starr et al., 1997; Hermanns et al., 1999). The receptor composition, as well as

the environment of the targeted cell, therefore dictates the final cellular response from a specific neurokine.

To determine the roles of the signaling domains within LIF and OSM receptors, OSM receptor and LIF

receptor progressive c‐terminal truncations were generated. After reconstitution of receptor function in

receptor‐negative Hep3B hepatoma cells it was found that the distal sequence motif of the OSM receptor

was required for signal transduction by the OSM‐specific receptor but that LIF signaling was not strictly

dependent on the same elements (Kuropatwinski et al., 1997). Further, Hermanns et al. (2000) found that

OSM is better than LIF or IL‐6 at activating extracellular signal‐regulated kinase 1/2 because of Tyr861 on

the OSM receptor. Examination of the six carboxy‐terminal tyrosine motifs implicated in recruiting STATs

to gp130 of the IL‐6 receptor reveals they are not equivalent in their capacity for activating STAT factors and

genes (Baumann et al., 1994; Schmitz et al., 2000b; Boulanger et al., 2003a).
7.1.2 Expression

Although all neurokines share receptor subunits, it is the CNTF receptor a subunit that provides selectivity

for CNTF, neuropoietin, and CLC action. Yancopoulos and coworkers first cloned mammalian CNTF

receptor a genes and reported their expression in rats and humans (Ip et al., 1993). Several groups have

reported in depth on the distribution and variability of the expression of the various receptor subunits in the

nervous system; here we will provide just a brief overview. The distribution of CNTF receptor a is widely

expressed in embryonic and neonatal rat brain (Kirsch and Hofmann, 1994; Seniuk‐Tatton et al., 1995;

Maclennan et al., 1996; Lee et al., 1997a). The chick CNTF receptor a is 70% identical to the human CNTF

receptor a protein (Heller et al., 1995; Ip et al., 1995). In the chick, expression of the CNTF receptor a
subunit is principally localized to the nervous system (Fuhrmann et al., 2003), including the neurons of the

peripheral nervous system (PNS); parasympathetic, sympathetic, and sensory neurons; and CNS neurons

includingmotor neurons, retinal ganglion cells, and amacrine cells, all neurons that are known to respond to

CNTF by increased survival or differentiation. It is also expressed in cardiac and skeletal muscle (Jordan,

1996b; Wang and Halvorsen, 1998b). Expression of IL‐11 receptor a subunit in mouse brain has also been

described (Hilton et al., 1994). gp130 expression in rat brain by using immunocytochemistry shows a

distribution more widespread than that of the CNTF receptor a or the LIF receptor (Watanabe et al., 1996).

LIF‐binding sites in rat cranial motor neurons remain mostly steady between embryonic day 18 and

postnatal day 21 while levels in other CNS locations begin low and rise between postnatal day 7 and 21

and in the rat PNS, levels start higher and then decline over this period (Qiu et al., 1997). The results support

varied roles for these neurokines in different neural populations and at different times in development.
7.1.3 Regulation

The ability of a cell to respond selectively to a specific neurokine depends on the appropriate expression of

receptor components. A thorough understanding of the mechanisms that regulate the expression during
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development and after injury will be key to understanding tissue responsiveness. Agents that promote

neural differentiation also affect CNTF responsiveness. Activation of protein kinase C in SH‐SY5Y neuro-

blastoma cells via exposure to phorbol ester causes adrenergic differentiation and a downregulation of

CNTF receptor a subunit mRNA and CNTF sensitivity. Treatment of cells with the cholinergic differentia-

tion agent retinoic acid causes an upregulation of CNTF receptor a and gp130 mRNA and an increase in

sensitivity to CNTF (Malek and Halvorsen, 1997). In the CNS, axotomy induces an increase in CNTF

receptor a in rat medial septal neurons (Lee et al., 1997c). While CNTF receptor a expression was not

expressed in regions of the medial septal nucleus of control animals, upregulation was observed in neurons

after fimbria–fornix transection. Studies of the LIF receptor b subunit using protein kinase inhibitors and

point mutations indicate that downregulation depends on activation of extracellular signal‐regulated kinase
1/2 and serine phosphorylation of the cytoplasmic domain of the LIF receptor (Blanchard et al., 2000).

Young et al. (1997, 1998) identified a conserved hormone response element in the a component of the

CNTF receptor gene for human TR4 and TR2 orphan steroid receptors. They further showed that CNTF

could increase TR4 expression and enhance the DNA‐binding capacity of TR4. In situ hybridization results

showed TR4 transcripts expressed in a pattern similar to that of CNTF receptor a in the developing and

postnatal nervous systems. Their data suggest an interaction between TR2/TR4 and the CNTF signaling

pathway during neurogenesis. There is also evidence for an interaction between CNTF receptor expression

and androgens in skeletal muscle. Androgen expression in mice lacking a functional CNTF receptor a
results in fewer than half as many spinal bulbocavernosus motoneurons than did wild‐type male mice,

suggesting that the expression of CNTF receptor is androgen‐regulated in rat spinal motoneurons (Forger

et al., 1997, 1998). So CNTF sensitivity of cells is modulated by a variety of regulatory agents.
7.2 The Jak/STAT Signaling Pathway

7.2.1 The Activation Cascade: from Plasma Membrane to the Nucleus

CNTF binds to the CNTF receptor a subunit, which is coupled to a heterodimer consisting of gp130 and the

LIF receptor beta subunit (Davis et al., 1991; Stahl et al., 1993, 1994). LIF receptor beta and gp130 are

associated with a cytosolic tyrosine kinase, either Jak1 or Jak2, that can induce tyrosine phosphorylation of

STAT1 and STAT3 docking sites on the receptor. Once associated with the activated receptor, tyrosine

phosphorylation of STAT results in its dimerization and subsequent binding to specific DNA sequences in

the nucleus to regulate gene transcription (> Figure 3-2) (Bonni et al., 1993; Boulton et al., 1994; Taga,

1996; Darnell, 1997; Malek and Halvorsen, 1997; Wishingrad et al., 1997). CNTF induces the phosphoryla-

tion by Jak on tyrosine residues and by another kinase(s) on serine/threonine residues, preferentially of

STAT3, and to a lesser extent, STAT1. There have been a number of recent reviews of the Jak/STAT pathway

dealing with their biological roles (Leonard and O’Shea, 1998; Rane and Reddy, 2000), the structure–

function relationships of Jaks and STATs (Pellegrini and Dusanter‐Fourt, 1997; Grotzinger, 2002), serine
phosphorylation of STAT (Decker and Kovarik, 2000), and results from knockout mice (Akira, 1999;

Kisseleva et al., 2002). Evidence for an inhibitory tyrosine phosphorylation site on Jak2 has also been

presented (Feener et al., 2004). Treatment of cells with a protein phosphatase inhibitor prevents subsequent

neurokine‐mediated activation of Jak and terminates nuclear signaling by STATs (Jiao et al., 2003). The

identity of this hypothesized phosphatase and whether its site of action is on an inhibitory Jak phosphotyr-

osine is still unknown.

It appears that both Jak1 and Jak2 are utilized in gp130‐containing receptors. Jak1 knockout mice are

small at birth, die perinatally, and fail to respond to gp130 neurokines while Jak2 knockout mice exhibit

only partial LIF and IL‐6 signaling (Neubauer et al., 1998; Parganas et al., 1998; Rodig et al., 1998). These

results suggest that Jak1 is absolutely required for neurokine signaling while Jak2 is not an absolute

requirement. However, it remains to be determined whether these requirements vary among cell types.

CNTF‐related factors that act as target‐derived neurotrophic factors have an important barrier to

overcome in transmitting their signal to the cell nucleus from the nerve terminal. An unresolved question

is whether STATs are activated at the nerve terminal or site of axonal injury and then transported to the



. Figure 3-2

Nuclear translocation of STATs following CNTF treatment. BE(2)‐C neuroblastoma cells were transfected with

either STAT1‐EGFP (STAT1) or STAT3‐EGFP (STAT3) DNA. Cells were treated with CNTF 1 nM for 30 min or left

untreated (control) as indicated and then fixed and observed by confocal microscopy as previously described

(Kaur et al., 2005)
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nucleus in order to affect gene expression or if an activated receptor–Jak complex is transported to the cell

body where STATs are activated near the nucleus. The nature of this transported signaling complex has not

yet been defined. In two studies, radiolabeled CNTF was not shown to undergo detectable retrograde

transport in peripheral nerves (Smet et al., 1991; Gupta et al., 1992). However, in other studies there was

evidence for retrograde LIF transport (Hendry et al., 1992; Curtis et al., 1994; Ure and Campenot, 1994).

Biotinylated LIF was also shown to be retrogradely transported in a subpopulation of sensory neurons

in vivo (Thompson et al., 1997). In one study, retrograde transport of CNTF from nerve terminals in

sensory neurons was shown to increase after neural injury (Curtis et al., 1993). Whether retrogradely

transported LIF or CNTF detected in these studies functions as part of a signaling complex or is simply part

of a protein degradation process has not been clarified.

The pathways and genes that are regulated to produce the physiological effects of CNTF neurokines are

still being defined. For example, in a rat oligodendroglial progenitor cell line, CNTF activates the GFAP
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gene and several putative CNTF‐response elements were identified in regions of the GFAP gene promoter

(Kahn et al., 1997). CNTF stimulates differentiation of cerebral cortical precursor cells into astrocytes in

preference to a neuronal phenotype. Even though CNTF stimulates both the Jak/STAT and the Ras‐MAPK

signaling pathways in these cells, it is the Jak/STAT pathway that enhances gliogenesis (Bonni et al., 1997).

CNTF, LIF, IL‐6, and CT‐1 mediate survival in developing rat sensory neurons by STAT‐mediated activation

of NF‐kB (Middleton et al., 2000).

Some DNA elements that bind to the STAT transcription complexes have been described and these are

of intense interest in order to identify the genes regulated by the neurokines (Decker et al., 1997). In the

nonbreakable filament length (NBFL) neuroblastoma cell line and in sympathetic neurons, CNTF, LIF, and

OSM each activate VIP gene transcription through a 180‐bp cytokine response element (CyRE). Deletion

analysis of the VIP CyRE reveals multiple regions are important for CNTF‐mediated transcriptional activity

but that the STATelement is absolutely required for VIP gene activation (Symes et al., 1994). CNTF causes a

rapid and transient increase in expression of the immediate early gene, c‐fos, in human SH‐SY5Y
neuroblastoma cells and in NBFL cells; CNTF increases c‐fos, JunB, and JunD levels leading to AP‐1 site

activity within the CyRE of the VIP promoter in addition to its STAT‐binding activity (Halvorsen et al.,

1996; Symes et al., 1997a). In embryonic rat striatal neurons, LIF and CNTF lead to increased expression of

the gene encoding the opioid‐like neuropeptide, nociceptin/orphanin FQ, which binds to ORL‐1 (Buzas

et al., 1999). Nociceptin/orphanin FQ mRNA levels were increased severalfold by CNTF in striatal and

cortical neurons and in primary astrocytes consistent with a mechanism requiring activation of the Jak/

STAT pathway. Activation of STAT signaling is clearly an important mediator of neurokine action in the

nervous system. As such, it is clear that activation of STAT signaling represents an important mediator of

neurokine action in the nervous system.

The persistence of the neurokine activation signal varies among cell types. In most cell lines, neurokine

activation is transient, even in the continued presence of the cytokine (Symes et al., 1994; Halvorsen et al.,

1996). For example, CNTF or LIF stimulation of phospho‐STAT in neuroblastoma cells is maximal after

15–30 min and then decays to near‐background levels by 2 h (Kaur et al., 2002). This time course appears

inconsistent with the observation that the survival effects of neurokines on primary neurons require

continuous exposure; thus withdrawal of CNTF from ciliary ganglion neuron cultures results in cell

death within 24 h (Wishingrad et al., 1997). However, the signal is much longer‐lived in primary neurons,

as continuous CNTF stimulation of cultured ciliary ganglion neurons causes persistent phospho‐STAT3
activation for at least 5 days (Wishingrad et al., 1997; Kaur et al., 2002), and similar long‐term activation of

STAT signaling is seen in neurokine‐stimulated sympathetic neurons (Symes et al., 1994; Guo et al., 1999;

Kaur et al., 2003). A full understanding of the regulatory mechanisms controlling inactivation of neurokine

signaling in nerve cells is clearly needed.
7.2.2 Mechanisms of Inactivation

Inactivation of neurokine signaling can be realized at multiple points in the signaling pathway. Some

processes may be stimulated by the neurokine while others may be constitutively active. In order to reset the

receptor signaling pathway a series of dephosphorylation events must ensue, requiring a set of tyrosine

phosphatases that have not yet been fully identified. A few tyrosine phosphatases have been implicated in

negative regulation of gp130 receptor signaling. The SH2‐domain‐containing protein tyrosine phosphatase

SHP‐1 and SHP‐2 are tyrosine‐phosphorylated and recruited to gp130 upon neurokine stimulation and

decrease Jak activity and inhibit STAT pathways (Symes et al., 1997b; Neel et al., 2003). Inhibition of SHP‐2
either by mutating the binding site on gp130 or by expression of dominant‐negative SHP‐2 results in an

increased STAT‐dependent VIP gene expression in NBFL and sympathetic neurons (Servidei et al., 1998).

However, other results demonstrate that neurokines acting through LIF receptor and gp130 interact with

SHP‐2 as a linker protein to stimulate MAPK activity (Schiemann et al., 1997). Thus the effects mediated

through inhibition of SHP‐2 could be from lack of phosphatase activity or by inhibition of the MAPK

pathway. Ultimately though, termination of the effects of neurokines require removal of activated, phos-

phorylated STATs from the nucleus (McBride et al., 2000). The nuclear tyrosine phosphatases, PTP1b, and
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the nuclear isoform of TC‐PTP have been implicated in the dephosphorylation of phospho‐STATs in the

nucleus (Myers et al., 2001; ten Hoeve et al., 2002).

The suppressors of cytokine signaling 1 and 3 (SOCS1 and SOCS3, respectively) are neurokine‐induced
genes that can function in a negative feedback loop to antagonize STATactivity. The current thinking is that

SOCS1 binds to Jak and inhibits the kinase activity whereas SOCS3 binds to gp130 at the SHP‐2 site and

inhibits STAT phosphorylation (Yasukawa et al., 1999; Schmitz et al., 2000a; Inagaki‐Ohara et al., 2003;

Wormald and Hilton, 2004). Protein inhibitors of activated STATs (PIAS) are proteins that bind to activated

STAT dimers and prevent DNA binding (Hilton, 1999; Kisseleva et al., 2002; Wormald and Hilton, 2004).

Thus neurons have several mechanisms to regulate this important signaling pathway available to them.
7.3 Interactions with Other Cytokines and Growth Factors

Cells are constantly exposed to an array of different signaling molecules in their environment; therefore

there is a great deal of interest in understanding the results and mechanisms of these potential interactions.

Just a few of such interactions will be explored here. For example, neurokines and interferons signal through

independent receptor systems but all activate Jak/STAT signaling. Nerve cells typically respond to inter-

feron‐g by activating STAT1, with little or no activation of STAT3, but following pretreatment of neurons

with CNTF, LIF, or IL‐6, interferon‐g elicits a pronounced STAT3 response, providing an additional

component to the final cellular response to interferon‐g (Kaur et al., 2003). In the CNS, expression of

both apolipoprotein E (apoE) and CNTF can increase in response to injury. CNTF survival activity on

cultured hippocampal neurons is potentiated by apoE, supporting the idea that apoE secreted at sites of

injury can interact with growth factors such as CNTF to facilitate neural repair (Gutman et al., 1997).

Hepatocyte growth factor (HGF) also acts synergistically with CNTF. Both are survival factors for motor

neurons but neither HGF nor CNTF is effective against vincristine‐induced motor neuron toxicity alone,

while together they are neuroprotective against this neurotoxicity (Wong et al., 1997). HGF itself is not a

survival factor for parasympathetic ciliary ganglion neurons or trigeminal mesencephalic sensory neurons,

but it does enhance survival when combined with CNTF and also increases the length and branching of

neurite arbors in both types of neurons (Davey et al., 2000). TGF‐b isoforms, while not directly supportive

of ciliary ganglion neuronal survival, enhance CNTF‐mediated survival of these neurons (Krieglstein et al.,

1998). Further, blocking the action of TGF‐bs released in response to CNTF inhibits the survival response of
CNTF in ciliary neurons. CNTF and activin (a TGF‐b‐type factor) each use the CyRE to increase VIP in

NBFL cells, but when added together they promote a synergistic increase in VIP expression (Symes et al.,

2000). While CNTF uses STATand AP‐1 proteins at the VIP CyRE, TGF‐b uses Smad3 and Smad4 proteins

to increase VIP expression (Pitts et al., 2001).
8 Clinical Implications

8.1 Neurodegenerative Disorders

The finding that CNTF and related factors promote survival of motor neurons has led to intense interest in

development of CNTF as a potential treatment for neurodegenerative diseases, especially those associated

with a loss of motor function. One of the first reports of a possible therapeutic role for these neurokines was

the finding that CNTF treatment in vivo reduced the neuron loss in the progressive motor neuron disorder

expressed in pmnmice (Sendtner et al., 1992). In another model of motor neuron disease, CNTF and brain‐
derived neurotrophic factor given together attenuated disease progression as tested by grip strength, motor

neuron numbers, myelinated fibers, and muscle atrophy in the Wobbler mouse (Mitsumoto et al., 1994).

Although CNTF is a potent agent for motor neuron survival, there is little evidence for the lack of either

CNTF or CNTF receptor in the etiology of motor neuron disease. There are reports of decreased CNTF

expression in spinal cord motor neurons of patients suffering from ALS (Duberley et al., 1995; Lee et al.,

1996; Ono et al., 1999), but overall CNTF expression appears maintained in spinal cords of those with ALS
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(Schorr et al., 1996; Takahashi et al., 1996). Further, the CNTF genotype does not appear to affect the

clinical phenotype since ALS subjects show no difference in age of onset, disease severity, or duration

among patients lacking functional genes for CNTF (Al‐Chalabi et al., 2003), although further studies in ALS
patients may yet show regional differences in CNTF receptor amRNA expression. In phase II and III clinical

trials of ALS, CNTF was not found to be of benefit (ALS CNTF Treatment Study Group, 1996) and LIF

treatment was found to be of only limited benefit in the SOD mutant mouse model of ALS (Azari et al.,

2003; Feeney et al., 2003).

Huntington’s disease (HD) is a neurodegenerative condition where CNTF has shown promise as a

therapeutic agent. Both CNTF and brain‐derived neurotrophic factor completely protect striatal neurons

against mutant huntingtin‐induced apoptosis in a cell model (Saudou et al., 1998). In a primate model of

HD, CNTF provided via transfected macroencapsulated baby hamster kidney (BHK) cells prevented

neuronal death and restored neostriatal function (Emerich et al., 1997; Mittoux et al., 2000). There are

several mutations causing photoreceptor degeneration in retina. The rds/rds mouse expresses a null

mutation in the rds/peripherin gene that may be linked with retinal degeneration in humans. Intraocular

adenovirus‐mediated gene transfer of CNTF prevents photoreceptor degeneration in rds/perpherin mice,

reducing photoreceptor loss and significantly improving the electroretinogram (Cayouette et al., 1998).

Oxidative stress has been associated with stimulation of Jak/STAT signaling and inflammatory

responses in nonnerve cells and also with the pathophysiology of neurons in several neurodegenerative

diseases (Ames et al., 1993; Beal, 2002). Since neurokines promote neuronal survival through Jak/STAT

signaling this raises an apparent contradiction. An explanation for this discrepancy may be that mediators

of oxidative stress have different effects in nerve and nonnerve cells. Thus, in nerve cells, unlike that in

nonnerve cells, agents that increase oxidative stress block CNTF and other cytokine activation of Jak/STAT

signaling (Kaur et al., 2005). These findings suggest that disruption of neurokine signaling is a possible

mechanism of oxidative stress‐induced cell death and neural disease.
8.2 Neural Trauma

The early discovery that in mammals CNTF is predominantly expressed in the adult and without a

detectable secretory mechanism led to the hypothesis that it may function as an injury response factor.

For example, axotomy of sensory neurons induces IL‐6 and the receptor subunits for neurokines, sympa-

thetic axotomy leads to increase LIF release, and there is increased expression of CNTF and a receptor

subunit mRNA after spinal cord hemisection (Murphy et al., 1995; Rajan et al., 1995; Oyesiku et al., 1997;

Sugiura et al., 2000; Gardiner et al., 2002). Following spinal cord injury CNTF increases the regeneration of

neurons (Ye and Houle, 1997). The induction of both the proinflammatory IL‐6 and the pro‐survival LIF
and CNTF neurokines suggests that an injury response may both promote normal inflammatory responses

and provide survival and regeneration. The sciatic nerve is a prominent source of CNTF where it is

expressed in Schwann cells. Following sciatic nerve transection, CNTF is released and LIF and IL‐6
production is stimulated (Kurek et al., 1996). Providing additional CNTF after sciatic transection, using

CNTF‐linked collagen tubules, improves recovery (Ho et al., 1998). Infiltration of inflammatory cells into

crushed sciatic nerve is retarded in LIF knockout mice compared with wild‐type mice (Sugiura et al., 2000).

It appears that a positive role for neurokines following nerve trauma may require a precise temporal and

spatial regulation of neurokine expression.

A number of studies suggest that neurokines may provide protective or regenerative functions after

CNS trauma. Brain injury models lead to increased expression of CNTF factors and their receptor subunits.

Kainic‐acid‐induced seizures cause increased IL‐6, LIF, IL‐6 a receptor, LIF receptor, and gp130 mRNA as

detected by Northern blotting and in situ hybridization (Lehtimaki et al., 2003), and lipopolysaccharide‐
induced brain reactions result in increased IL‐6, its a receptor subunit, and gp130 (Vallieres and Rivest,

1997). In the auditory system CNTF infused via osmotic pump enhances the survival of spiral ganglion

neurons and enhances auditory responses after cochlear implants (Shinohara et al., 2002). During transient

focal ischemia CNTF enhances CNS neuron survival (Hermann et al., 2001). Thus targeted application of

neurokines may be of benefit in CNS injuries.
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8.3 Appetite Control

One of the side effects noted after systemic administration of CNTF in rats and humans is a decrease of

appetite and weight loss (Henderson et al., 1994, 1996; ALS CNTF Treatment Study Group, 1996). CNTF

corrects the obesity and the diabetes associated with the leptin‐receptor‐deficient ob/ob mouse (Gloaguen

et al., 1997). The mechanism of action for CNTF appears to be a decrease in the hypothalamic peptide

neuropeptide Y, leading to a decrease in appetite (Kalra et al., 1998; Xu et al., 1998). This has led to studies

on the utility of CNTF as a long‐term appetite suppressant drug (Lambert et al., 2001).
9 Concluding Remarks

We have tried to summarize the extent of our understanding of the actions and mechanisms of the

neurokines. It should be apparent that we are still in need of a fuller molecular description of the

neurokine–receptor–Jak signaling complex. This will provide a better basis for discerning the dynamics

of the mechanisms controlling signal activation and inactivation. Revealing these regulatory mechanisms

will help our understanding of the physiological roles of the different neurokine signaling pathways, which

is key to uncovering the breadth and nature of interactions among neurokines and between these

neurokines and other classes of factors and cytokines. Ultimately, identification of the genes regulated by

the neurokine signaling pathways and their roles in the final physiological outcomes will be needed in

determining the roles neurokines may have as potential therapeutic agents in treatment of degenerative

neuropathologies.
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Abstract: Members of the glial‐cell‐line‐derived neurotrophic factor (GDNF) family serve important

functions in development and maintenance of distinct sets of central and peripheral neurons. All four

GDNF family ligands (GFLS), GDNF, neurturin (NRTN), artemin (ARTN), and persephin (PSPN), interact

with a multi‐subunit receptor complex formed by the c‐Ret tyrosine kinase, Ret, and a cysteine‐rich glycosyl
phosphatidylinositol‐anchored receptor (GDNF receptor alpha 1‐4). Since their discovery, GFLS have

received particular attention because of their therapeutic potential in numerous neurological diseases,

such as Parkinson’s disease (PD), motor neuron diseases, or sensory regeneration and neuropathic pain.

Targeted mutagenesis in transgenic mice has shown that Ret and GFL are required for multiple develop-

mental events including the development of the enteric nervous system (ENS), which is affected in

Hirschsprung’s disease (HD). This chapter focuses on the molecular mechanisms of the initiation and

the contextual dependence of signal transduction by GFL, their neuroprotective and neuroregenerative

potential, and their involvement in developmental processes.

List of Abbreviations: aa, amino acid; ARTN, artemin; CG, ciliary ganglion; DRG, dorsal root ganglion;

ENS, enteric nervous system; ERK, extracellular signal‐regulated kinase; EST, expressed sequence tag; FAK,

focal adhesion kinase; FMTC, familial medullary thyroid carcinoma; GABA, gamma‐aminobutyric acid;

GDNF, glial‐cell‐line‐derived neurotrophic factor; GFL, GDNF family ligands; GFRa, GDNF receptor alpha;
GPI, glycosyl phosphatidylinositol; HD, Hirschsprung’s disease; JNK, Jun N‐terminal kinase; MAPK,

mitogen‐activated protein kinase; MEN2, multiple endocrine neoplasia type 2; NCAM, neuronal cell

adhesion molecule; NGF, nerve growth factor; NRTN, neurturin; PC12, pheochromocytoma cell line;

PCR, polymerase chain reaction; PD, Parkinson’s disease; PI3K, phosphatidylinositol‐3 kinase; PLCg,
phospholipase C gamma; PSPN, persephin; Ret, rearranged in transformation; Ret/PTC, rearranged in

transformation/papillary thyroid carcinomas; RTK, receptor protein tyrosine kinase; SCG, superior cervical

ganglion; TGFb, transforming growth factor beta
1 Introduction

In multicellular organisms, soluble peptide growth factors play important roles in intercellular commu-

nications. They accomplish their functions by signaling through cell surface membrane receptors, which in

turn interact with a multitude of intracellular second messenger systems.

There is one group of growth factors, termed neurotrophins, that profoundly affects survival, develop-

ment, function, and plasticity of cells in the nervous system (Korsching, 1993; Lewin and Barde, 1996). The

importance of these factors is underlined by the fact that at least half of the original cell population of the

nervous system is eliminated as a result of apoptosis. This ontogenetic cell death includes nerve cells, glial

cells, and neural progenitors (Oppenheim, 1989; Nijhawan et al., 2000).

One hypothesis to explain the mechanism of this massive loss of neurons during development is the

neurotrophic factor concept. This concept is based on the observation that distinct target tissues produce

trophic factors in limited amounts for their afferent neurons, which compete for these messengers. The

factors are bound by selective receptors on the afferent terminals of restricted neuronal types, retrogradely

transported to the neuronal cell body, thus selectively limiting neuronal death occurring during develop-

ment (Purves et al., 1986; Oppenheim, 1989). This is thought to be a means to match neuron and target cell

populations. Today, the term neurotrophic is mostly used for substances that enhance neuronal differenti-

ation as well as neuronal survival. Consequently, target‐derived neurotrophic factors play a crucial role in

the regulation of multiple aspects of development and maintenance of the central nervous system (CNS)

and the peripheral nervous system (PNS) (Nijhawan et al., 2000).

The first description of a soluble factor with neurotrophic activity, later named nerve growth factor

(NGF), dates back as far as 1948, when Elmer Bueker observed that implanted tissue from mouse sarcoma

promoted outgrowth of sensory neurons from dorsal root ganglia (DRGs) in chick embryos (Bueker,

1948).

Four decades later the first member of a novel family of growth factors, namely the glial‐cell‐line‐
derived neurotrophic factor (GDNF), appeared on the neurotrophic factor scene. GDNF was isolated from
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a rat glial tumor cell line culture in a search for secreted factors that promoted neuronal survival in primary

culture. It was identified by virtue of its ability to induce dopamine uptake and cell survival in cultures of

embryonic ventral midbrain dopaminergic neurons (Lin et al., 1993). The factor was classified as a distantly

related member of the transforming growth factor beta (TGFb) superfamily of peptidic growth factors as it

contains seven highly conserved cysteine residues in the same relative spacing as other members of this

family. Although the primary structure of GDNF has only 20% sequence similarity to TGFb2, the location
of cysteine residues, forming the characteristic cysteine knot motif, is highly homologous to that of TGFb2
(Lin et al., 1993; Haniu et al., 1996). Two groups simultaneously reported the identification of the tyrosine

kinase Ret (rearranged in transformation) as a functional GDNF receptor, one group showed that Ret

mediated the neurotrophic effects of GDNF on motoneurons and dopaminergic neurons (Trupp et al.,

1996) and the other group showed that normal Ret function was necessary for GDNF‐mediated signaling,

by using explant cultures from Ret‐deficient mouse embryos (Durbec et al., 1996). However, shortly

thereafter, Jing et al. (1996) reported that GDNF does not or only weakly bind to Ret directly, but uses a

receptor complex composed of Ret and a glycosyl phosphatidylinositol (GPI)‐linked cell surface protein,

which binds GDNF with high affinity and was named GDNF receptor alpha (GDNFRa or GFRa1; Jing
et al., 1996; Treanor et al., 1996).

Three other members of the GDNF family have been found so far, termed neurturin (NRTN), artemin

(ARTN), and persephin (PSPN). NRTN was isolated from Chinese hamster ovary cell‐conditioned media.

Like GDNF, it was identified based on its survival‐promoting effect on primary, in this case sympathetic,

neurons in culture (Kotzbauer et al., 1996). The preferred receptor for NRTN was shown by several groups

to be another GPI‐linked receptor of the same family and is now termed GFRa2 (Baloh et al., 1997;

Buj‐Bello et al., 1997; Jing et al., 1997; Klein et al., 1997; Suvanto et al., 1997).

PSPN was cloned by using polymerase chain reaction (PCR) with degenerate primers derived from the

known sequences of GDNF and NRTN (Milbrandt et al., 1998), while the last member, ARTN, was

identified by searching databases for a potential novel GDNF family ligand (GFL) with the sequence of

the mature NRTN as a query (Baloh et al., 1998a). ARTN was characterized by its ability to activate

Ret‐mediated signaling in the presence of GFRa3, which had been identified as an expressed sequence

tag (EST), homologous to GFRa1 and GFRa2, and had been an orphan GFL receptor before (Jing et al.,

1997; Baloh et al., 1998b; Naveilhan et al., 1998; Widenfalk et al., 1998; Worby et al., 1998). The high‐
affinity GPI‐linked receptor for PSPN was shown to be GFRa4, which was first identified in the

chick (Enokido et al., 1998; Thompson et al., 1998). The mammalian GFRa4 has some peculiarities

compared with the other GFRa family members. First, it is structurally divergent due to a lack of the

aminoterminal cysteine‐rich domain; second, besides the GPI‐linked form, a putative secreted and a

transmembrane GFRa4 protein may be synthesized from differentially spliced transcripts; and third, it

differs in its ability to interact with Ret (Lindahl et al., 2000; Masure et al., 2000; Zhou et al., 2001; Yang

et al., 2004).

Thus, as depicted in > Figure 4-1, all GFLS favor binding to their cognate GFRa receptors, resulting in

recruitment and activation of the transmembrane Ret tyrosine kinase.
2 Protein Structures of GFLS and Their Receptors

2.1 GDNF Family Ligands

GFLS are heterogeneously glycosylated homodimers that are synthesized in various tissues as prepropro-

teins. These precursors contain signal sequences, which are released upon secretion by proteolytic cleavage,

resulting in an active form. Seven highly conserved cysteine residues form the characteristic cysteine

knot fold, in the same relative spacing as the other members of the TGFb superfamily. Each homodimer

consists of a polypeptide chain of about 110 residues. The atomic‐level resolution of GDNF has been

done by X‐ray crystallography (Eigenbrot and Gerber, 1997). Each GDNF monomer has two pairs of

antiparallel twisted beta strands tightly joined by three disulfide bonds. The two protomers interact via an

additional intermolecular disulfide linkage to form an antiparallel dimer with explicit left‐right symmetry.



. Figure 4-1

Interaction of GDNF family ligand (GFL) with receptors. GFL homodimers first bind to their cognate GFRa

receptors. Arrows show the preferred ligand–receptor specificity. Heterotetramerization induces Ret autopho-

sphorylation of distinct tyrosine residues in the intracellular catalytic domain
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This symmetry is due to the two ‘‘fingers’’ on each side of the paired ligands, corresponding to the

symmetric binding sites for the dimerized receptors (> Figure 4-2).

The specificity of binding of GDNF to its cognate receptor GFRa1 is mediated by residues along the two

fingers, while the center of the dimerized molecule, including the so‐called heel region, does not seem to be

important for receptor binding (Eketjäll et al., 1999; Baloh et al., 2000). Few amino acid exchanges are able

to alter the binding specificity of the ligands; however, the different GFLs have different requirements for

binding to their receptors. While insertion of specific amino acid residues from finger 2 of GDNF into the

appropriate part of PSPN allows the resultant mutant PSPN to bind and activate a GFRa1/Ret complex,

binding of NRTN to GFRa2 and ARTN to GFRa3 is additionally dependent on residues in the heel region



. Figure 4-2

Three‐dimensional glial‐cell‐line‐derived neurotrophic factor (GDNF) structure. Each GDNF molecule contains

two fingers and one helix. Disulfide bridges are forming the characteristic cysteine‐knot motif. The amino acids

determining the specificity of binding to GFRa1 are predominantly located on the two fingers. The center of the

dimer, the so‐called heel region, seems to be less important
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(Baloh et al., 2000). These differential structural requirements could contribute to the different degrees of

promiscuity of the ligand–receptor interactions: at least in vitro NRTN and ARTN can also bind to GFRa1
and GDNF to GFRa2 and GFRa3, but none of these three ligands has been shown to bind to GFRa4, nor
does PSPN bind to any other receptor. However, for each GFL the affinity to a receptor other than the

cognate receptor is much lower and the effect of this crosstalk is probably much less important than the

favored binding to the specific receptors in vivo.
2.2 GDNF Receptors alpha

The GFRas are cell surface receptors that are bound to the plasma membrane by a GPI anchor. Because of a

conserved cysteine pattern GFRa1, 2, and 3 proteins are predicted to have three homologous globular

cysteine‐rich domains (for a review see Airaksinen et al., 1999), whereas the mammalian GFRa4 has only

two, corresponding to the second and the third domain of the other receptors (Masure et al., 2000). These

globular subdomains are joined by less conserved adaptor regions (Airaksinen et al., 1999). Domains

2 and 3 form a core, which is connected to the GPI anchor via a C‐terminal extension, while the N‐terminal

domain 1, which is lacking in GFRa4, is separated by a hinge region from this core. Scott and Ibanez (2001)

have shown, by creating a panel of chimeric GFRa receptor constructs, that the N terminus is not required

for specific ligand binding, while the central domain (equivalent to the core above) contains the major

determinants of ligand binding. Specificity of ligand binding is, according to their model, further deter-

mined by subcentral domains (Scott and Ibanez, 2001). While these authors proposed a single large central

domain, recent crystallization of domain 3 of GFRa1 indicates that domains 2 and 3 are independent

structures. Each is made up of a novel protein fold, consisting of a bundle of five alpha helices with five

disulfide bridges consistent with the conserved cysteine pattern present in all GFRas (Leppanen et al.,

2004).
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2.3 Ret Tyrosine Kinase

Ret is a receptor protein tyrosine kinase (RTK) initially identified as an oncogenic product with transfor-

mation capability (Takahashi and Cooper, 1987; Takahashi et al., 1988). Ret, like other receptor tyrosine

kinases, is activated by dimerization induced by ligand binding. The active receptor dimer exists in a

conformation compatible with trans‐autophosphorylation on tyrosine residues and stimulation of protein

tyrosine kinase activity (for a review see Schlessinger, 2000). In addition to stimulation of tyrosine kinase

activation, protein phosphorylation is crucial for recruitment and activation of different downstream

effectors (for a review see Pawson, 2002).

The cytoplasmic kinase domain of Ret is highly conserved between all vertebrate and invertebrate

species where it has been identified so far. It shares the typical protein tyrosine kinase structure, namely a

conserved catalytic core with a smaller amino‐terminal subdomain comprising a five‐stranded b‐sheet and
one a‐helix, and a larger carboxy‐terminal subdomain that is mainly a‐helical. ATP binds in the deep cleft

between the two lobes, while a tyrosine of the peptide substrate binds to the carboxy‐terminal lobe. There

are several universally conserved residues in this core domain. Activation is usually by relief of autoinhibi-

tion, which is mediated by phosphorylation of key residues leading to distinct conformational changes.

Crystal structures of the tyrosine kinase domain of RTKS, with and without bound ligands, have shed

remarkable light on how phosphorylation tightly controls the catalytic activity. In unstimulated RTKS the

activation loop is in autoinhibitory conformation, either occluding substrate tyrosine binding or ATP

binding to the active site. As a result of ligand stimulation, which is the case of Ret is by interaction with the

GFL/GFRa complex, one of the tyrosine residues in the activation loop is phosphorylated in trans by the

dimeric receptor partner, which is brought closer sterically due to dimerization. This leads to a change in

the conformational structure of the activation loop away from the active site, allowing access of substrate

and ATP to the active site (for a review see Huse and Kuriyan, 2002).

Unlike other known receptor tyrosine kinases, the extracellular domain of the Ret molecule lacks

immunoglobulin‐ or fibronectin‐like domains or leucine repeats. It is formed by a highly conserved pattern

of 14 cysteine residues in a 120‐amino‐acid (aa) stretch in the ‘‘hinge region’’ adjacent to the transmem-

brane segment, followed by four N‐terminal modules, each with a length of about 110 residues. These folds

show high similarity to the extracellular domains of the cadherin family of Ca2þ‐dependent cell adhesion
molecules (Iwamoto et al., 1993; Kuma et al., 1993; Anders et al., 2001). Indeed, Ret is able to bind Ca2þ

directly and the presence of calcium ions is a prerequisite for binding of Ret to the GDNF/GFRa1 complex.

Ligand binding, together with the GFRa coreceptors, is mediated by specific residues located in the

N‐terminal first cadherin‐like domain. Mutagenesis studies showed that loss of these residues results in a

complete loss of ligand binding (Kjaer and Ibanez, 2003a).

Ret exists in at least two isoforms, differing in their C‐terminal amino acid (aa) sequence (9 aa in the

short (Ret9), 150‐kDa form; 51 aa in the long (Ret51), 170‐kDa form), which are generated by differential 30

polyadenylation and splicing of a single transcript. Interestingly, they are not able to interact with each

other, indicating that the interaction of the Ret monomers in the dimer is mediated by these C‐terminal

stretches. Furthermore, the two isoforms are functionally different in that they interact in part with

different adaptor molecules to mediate intracellular signaling or the ubiquitin system, leading to different

turnovers of Ret9 and Ret51 (Borrello et al., 2002; Tsui‐Pierchalla et al., 2002). The in vivo importance of

these differences is reflected by the fact that a lack of Ret9 leads to kidney agenesis and loss of enteric

innervation in mice, whereas Ret51‐deficient mice do not show any defects during development (de Graaff

et al., 2001). Moreover, the kidney defect in Ret9 knockout mice cannot be rescued by substitution with

Ret51. However, Ret51‐mediated signaling might be related to differentiation events in later kidney

organogenesis and/or in the adult kidney (Lee et al., 2002).

The most likely stoichiometry of the multimeric GDNF/GFRa/Ret complex is presumed to be

(GDNF)1(GFR a)2(Ret)2 (Jing et al., 1996). So far there are two models that try to explain the receptor

complex formed by Ret and GFRas. The first one hypothesizes that the dimeric ligand binds to a

monomeric or dimeric GFRa and this complex then interacts with Ret and induces its dimerization

(Jing et al., 1996). Alternatively, Ret might be preassociated with GFRa before binding to the ligand

(Ibanez, 1998; Trupp et al., 1998; Eketjäll et al., 1999).
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3 Expression of GFLS and Their Receptors: Knockout Phenotypes

3.1 GDNF and GFRa1

A detailed analysis of GDNF expression in the developing mouse brain has been performed by Hellmich

et al. (1996). GDNF messenger RNA (mRNA) was detectable in the anterior neuroectoderm during early

stages of neurogenesis. In organs outside the nervous system that develop through inductive epithelial–

mesenchymal interactions, GDNF expression is strictly confined to mesenchymal tissues. A similar expres-

sion pattern has been described in rats (Choi‐Lundberg and Bohn, 1995; Suvanto et al., 1996). Studies on

GDNF expression in later stages of development and in early postnatal stages revealed a region‐specific
temporally defined expression pattern in neuronal and nonneuronal cells in the CNS (Nosrat et al., 1996).

Clearly, neuronal expression is present in Clarke’s column of the spinal cord, and in the Purkinje cell layer of

the cerebellum. All brain areas that are innervated by dopaminergic neurons and the noradrenergic locus

coeruleus are positive for GDNF; however, expression in the striatum appears to be rather low. In the adult

rat brain, GDNF levels generally seem to decrease; by in situ hybridization neuronal expression can be

detected in the striatum and the substantia nigra, where it is mainly found in dopaminergic neurons.

Moreover, GDNF has been found in cortex, hippocampus, thalamus, cerebellum, olfactory bulb, and spinal

cord (Pochon et al., 1997; Trupp et al., 1997, for review see Unsicker et al., 1999).

In humans, GDNF expression shifts from a mostly superficial glial and ependymal expression in early

stages of development (10–15 weeks) to deeper localized neuronal and glial structures of the brain in later

development (25–35 weeks), most prominently in cerebellar Purkinje cells (Koo and Choi, 2001). More

recently, Serra et al. (2002) reported that GDNF‐expressing neurons were also found in neonate and adult

human hippocampus, suggesting a role for GDNF in the development and maintenance of neuronal

function in human archicortex. Investigations of the dopaminergic system of the adult human brain

showed GDNF expression in the striatum, with highest levels in the caudate nucleus, relatively low levels

in the putamen, but no detectable expression in the neurons of the substantia nigra, consistent with the role

of GDNF as a target‐derived factor essential for the survival of the nigral dopaminergic neurons (Schaar

et al., 1994). Accordingly, the cell surface GDNF receptor GFRa1 and GDNF are mostly found in segregated

regions in the basal ganglia; however, the coexpression of GDNF and GFRa1 in other brain regions like

cerebellum, hippocampus, and olfactory bulb indicates that GDNF also exerts a paracrine mode of action

(Trupp et al., 1997). A thorough analysis of the transmitter phenotype of GFRa1‐positive neurons was

performed by Sarabi et al. (2003). They found GFRa1 expressed in gamma‐aminobutyric acid (GABA)‐
containing neurons, i.e., in cortex and thalamus, in cholinergic motoneurons in the spinal cord and few

septal cholinergic neurons, in catecholaminergic neurons in the periventricular hypothalamic nucleus,

dorsal raphe nucleus, and locus coeruleus, in many serotonergic neurons within the raphe, and in few

neurons containing nitric oxide synthase. As expected from the survival‐promoting effect of GDNF on

dopamine neurons, GFRa1 mRNA is strongly expressed in developing and adult dopamine neurons.

Outside the CNS, GDNF mRNA is found in many mesenchyme and mesenchyme‐derived tissues, most

prominently in the developing kidney and the smooth muscle layer of the gastrointestinal tract, as well as in

developing skin, whisker pad, and testis (Trupp et al., 1995; Nosrat et al., 1996). The superior cervical

ganglion (SCG) and DRG of the PNS also express, albeit, low levels of GDNF mRNA. Consistent with the

survival‐promoting role of GDNF, its expression increases dramatically in lesion paradigms, i.e., after sciatic

nerve transection (Trupp et al., 1995). GDNF supports the survival of motoneurons and a subpopulation of

sensory neurons in vivo and in vitro; consequently, GDNF is also found in embryonic mouse in limb bud at

the time when axons enter the limb (Wright and Snider, 1996). Recently, it has been shown that GDNF acts

as a peripheral signal to induce PEA3 expression in specific motor neuron pools, thereby regulating both

cell body position and muscle innervation by promoting axon arborization (Haase et al., 2002).

In the testis, GDNF is normally expressed in Sertoli cells, while GFRa1 and Ret are found on

undifferentiated spermatogenic stem cells (Meng et al., 2000). Interestingly, both reduction and over-

expression of GDNF lead to abnormal spermatogenesis in mice, the first by depletion of spermatogenic

stem cells due to increased differentiation, the second exactly by the opposite effect, namely by inhibiting
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differentiation and maturation of these stem cells (Meng et al., 2000, 2001). These observations indicate

that the regulation of the amount of GDNF in Sertoli cells of the testis is essential for proper spermatogen-

esis. Expression has also been demonstrated in the penis of adult rats from where it is retrogradely

transported in penile parasympathetic and sensory nerves (Laurikainen et al., 2000).

In the kidney and the gastrointestinal tract, GFRa1 mRNA and Ret mRNA distributions overlap. DRGs,

cranial ganglia, and developing peripheral nerves are also positive. GFRa1 was additionally found in

sensory areas (inner ear, eye, olfactory epithelium, and vomeronasal organ) and in developing teeth (Nosrat

et al., 1997).

Although GDNF is expressed in dopaminergic and noradrenergic neurons and efficiently promotes the

survival of these neuron populations in vitro and in vivo, none of the three groups that independently

generated GDNF knockout mice in 1996 (Moore et al., 1996; Pichel et al., 1996; Sanchez et al., 1996)

reported any changes in hindbrain noradrenergic or midbrain dopaminergic neurons. These findings

indicated that at least during embryonic development GDNF is not essential for the development of

catecholaminergic neurons. As GDNF‐deficient mice die shortly after birth the effect of GDNF ablation

on later stages of dopaminergic neuron development cannot be investigated directly. To have a means to,

nevertheless, study the continued fate of the dopaminergic neuron population in the absence of GDNF,

Granholm et al. (2000) transplanted fetal neural tissues of GDNF knockout mice into the midbrain region

of adult wild‐type mice. The resulting reduction of dopaminergic neuron number and fiber outgrowth

indicate that postnatal survival and/or phenotypic maintenance of ventral mesencephalic dopaminergic

neurons is dependent on GDNF.

In the PNS, GDNF‐deficient mice have deficits in DRG, sympathetic, and nodose neurons. The most

severe defects are the complete lack of the enteric nervous system (ENS) distal to the stomach and, hence,

proper innervation of the gastrointestinal tract, and renal agenesis or dysgenesis, due to the lack of ureteric

bud formation and branching. GFRa1‐deficient mice also demonstrate absence of enteric neurons and

agenesis of the kidney, and no change in midbrain dopaminergic and motor neurons, characteristics that

are reminiscent of both GDNF‐ and Ret‐deficient mice (Cacalano et al., 1998; Enomoto et al., 1998).

Unexpectedly, the peripheral ganglia that are severely affected in GDNF knockout mice show only minor or

no changes. These observations indicate that although in renal and ENS development, GDNF effects are

solely mediated via the GDNF/GFRa1 system, there might be some promiscuity or compensation between

GFLS and receptors in the development of the peripheral ganglia.

GDNF‐ and GFRa1‐deficient mice show a 25% loss of motoneurons in the lumbar spinal cord (Moore

et al., 1996; Sanchez et al., 1996; Cacalano et al., 1998). Specific subpopulations of motoneurons in the

spinal cord are strongly positive for GFRa1 expression. These cells are lost during ontogenetic cell death as a
result of increased apoptosis in the absence of GDNF signaling and hence proper neurotrophic support

(Garces et al., 2000). > Figure 4-3 shows an in situ hybridization for GFRa1 and Ret in motoneurons of the

cervical spinal cord of the mouse on embryonic day 18.5.
3.2 Neurturin and GFRa2

The second GFL, NRTN, had been discovered on the basis of its survival‐promoting effect on sympathetic,

nodose, and DRG neurons in culture (Kotzbauer et al., 1996). In the CNS, NRTN is expressed in postnatal

cerebral cortex, striatum, several brainstem areas, and the pineal gland. Its cognate receptor GFRa2 is more

widely expressed in the developing and adult CNS, including cerebral cortex, cerebellum, thalamus, zona

incerta, hypothalamus, brainstem, and spinal cord (Widenfalk et al., 1997). Cholinergic neurons carry

GFRa2 on their terminals and somata and respond to NRTN support (Wanigasekara et al., 2004).

GFRa2 and Ret are expressed in neurons of the SCG, in subpopulations of sensory neurons, in

developing peripheral nerves, and in the myenteric intestinal plexuses (Baloh et al., 1997). In developing

salivary glands NRTN has an epithelial expression, whereas GFRa2 is expressed in the surrounding tissue.

In the gonads, NRTN is detectable in Sertoli cells in males and in the epithelium of the oviduct in females,

while GFRa2 is expressed by the germ cell line, again confirming the complementary expression of ligand

and receptor in accordance with the neurotrophic factor concept (Widenfalk et al., 1997). In the adult rat,



. Figure 4-3

Motoneurons in the cervical spinal cord expressGFRa1 andRet. In situ hybridization for GFRa1 (a, b) andRet (c, d)

on kryosections of mouse E 18.5 cervical spinal cord. Motoneurons expressing GFRa1 and Ret in the

ventral horn are shown in higher magnification in b and d, respectively. Bars in a and c ¼ 100 mm, in b

and d ¼ 50 mm. (Photographs from K. Huber)
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GFRa2 expression resembles the distribution of GFRa1, with highest levels in lung, spleen, and brain and

lower amounts in kidney and heart, but in contrast to GFRa1, GFRa2 is lacking in the liver (Jing et al.,

1997). A detailed review of the expression of GDNF, NRTN, and their receptor systems in neuronal and

nonneuronal tissues can be found in Unsicker et al. (1999).

NRTN‐deficient mice are viable and fertile. They show moderate defects in the ENS, including reduced

myenteric plexus innervation density leading to a reduction in gastrointestinal motility. NRTN seems to be

mandatory for proper development of parasympathetic neurons, as a lack of NRTN leads to a major

reduction in the innervation of the lacrimal and submandibular salivary glands. Consistent with the

expression pattern of GFRa2, neurons in the trigeminal ganglia and DRGs are depleted (Heuckeroth

et al., 1999). Studies on mice lacking a functional GFRa2 receptor indicate its responsibility for most

NRTN effects, as they also show absence of parasympathetic cholinergic innervation in the lacrimal and

salivary glands and a severe reduction in the small bowel, whereas the sympathetic innervation appears

normal (Rossi et al., 1999). However, a distinct cholinergic minority of sympathetic neurons, expressing

GFRa2 in wild‐type mice, fails to properly innervate their target tissues, i.e., sweat glands in the footpads

and periosteum, in GFRa2‐deficient mice, whereas the noradrenergic sympathetic innervation is not

affected. These results indicate that NRTN, acting via GFRa2, functions as a general target‐derived
innervation factor for cholinergic neurons in the autonomic nervous system (Hiltunen and Airaksinen,

2004).
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3.3 Artemin and GFRa3

ARTN expression is detectable in various fetal and adult peripheral tissues in humans, in adults with highest

levels in pituitary gland, trachea, prostate, placenta, pancreas, heart, and kidney, and in embryos in kidney

and lung (Baloh et al., 1998a; Masure et al., 1999). The factor is only marginally expressed in fetal and adult

brain, with detectable but low levels in basal ganglia and thalamus. In embryonic rats (E14) ARTN has not

been found in the CNS, but it is detectable in immature Schwann cell precursors of developing peripheral

nerve roots (Baloh et al., 1998a). The expression of ARTN is in most cases complementary to the expression

of its cognate receptor GFRa3, indicating that ARTN acts as a typical target‐derived factor (Naveilhan et al.,

1998). Compared with GFRa1 and GFRa2, which are widely distributed in the CNS and peripheral

organs, the expression of GFRa3 is much more selective and seems to be absent in the CNS, consistent

with the lack of ARTN (Baloh et al., 1998b; Yu et al., 1998). High GFRa3 expression is found in nociceptive

subpopulations of developing sensory DRGs, in trigeminal and in glossopharyngeal ganglia (Baloh et al.,

1998a; Naveilhan et al., 1998; Widenfalk et al., 1998). Additionally, GFRa3 is expressed in the SCGs, and in

nonneuronal tissue predominantly in regions in the lower urogenital and digestive tracts (Widenfalk et al.,

1998; Worby et al., 1998). Nonneuronal expression is also found in olfactory ensheathing cells, in

chromaffin cells in the adrenal gland, and in small clusters of cells in the intestinal epithelium (Widenfalk

et al., 1998).

The rostral migration of cells to form the SCG and the extension of axons along blood vessels involve

ARTN signaling through Ret and GFRa3 (Honma et al., 2002; Young et al., 2004). Consistently, both

ARTN‐ and GFRa3‐deficient mice show abnormalities in the migration and the axonal projection pattern

of the entire sympathetic nervous system. ARTN is acting as a guidance factor, as GFRa3‐expressing
sympathetic fibers grow toward the ARTN source, which is released from vascular smooth muscle cells.

A lack of either the factor or its receptor results in abnormal innervation of target tissues. Subsequent cell

death is not due to a missing proliferation or survival‐promoting effect of ARTN itself, but due to the loss of

its chemoattractive property and the resulting deficit in proper innervation (Honma et al., 2002). Although

GFRa3 is highly expressed in sensory ganglia, lack of the ARTN/GFRa3 system affects neither their

development and phenotypic appearance nor their innervation pattern. This might be due to the complex

neurotrophic dependency of sensory neurons, including effects of other GFL, as GFRa3‐positive neuron
populations also express GFRa1 and/or GFRa2 (Naveilhan et al., 1998; Baudet et al., 2000).
3.4 PSPN and GFRa4

The PSPN/GFRa4 system is the most recently discovered of the GFL/receptor complexes in mammals and

least is known about its functions. In neonatal rats, PSPN is synthesized throughout the nervous system,

i.e., in cortex, hippocampus, striatum, mesencephalon, cerebellum, and spinal cord, as well as in the

sympathetic SCG and sensory DRG neurons. Expression can also be detected in peripheral nerves, in

purified cortical, striatal, and mesencephalic astroglial cell cultures of newborn rats, but not in oligoden-

docytes or their precursors (Jaszai et al., 1998, Strelau and Unsicker, 1999). PSPN promotes the survival of

midbrain dopaminergic neurons and spinal cord motor neurons in vitro and in vivo (Milbrandt et al., 1998;

Bilak et al., 1999; Soler et al., 1999), but, in contrast to the other GFL, does not support any peripheral

neurons (Milbrandt et al., 1998). Consistent with the neurotrophic effect on dopaminergic neurons in

culture, the ventral mesencephalon and the striatum express high levels of PSPN, whereas GFRa4 is present
on dopaminergic neurons (Akerud et al., 2002). However, deficiency in PSPN does not affect the number of

mesencephalic dopaminergic neurons or locus coeruleus neurons in vivo, nor do the PSPN knockout mice

show any other developmental or behavioral deficits, indicating that PSPN might not act as a typical

neurotrophic factor. Moreover, GFRa4 in the brain seem to be spliced predominantly to a putative

intracellular or secreted form, whether this splice form is functional, and if so, what effects this form

promotes, remains enigmatic so far (Lindahl et al., 2000). The only indication of an important function of

PSPN in the brain is the hypersensitivity of PSPN‐deficient mice to cerebral ischemia and the potent

neuroprotective effect of recombinant PSPN protein in this disease (Tomac et al., 2002).



GDNF and related proteins 4 79
Organs outside the nervous system, where the GPI‐linked splice variant is expressed, include the

juvenile thyroid and parathyroid glands. Consistently, GFRa4‐positive thyroid C cells are lost in Ret‐
deficient mice, indicating the importance of a functional GFRa4/Ret complex for proper development of

these cells. Moreover, GFRa4 expression in the thyroid gland might explain the occurrence of tumors upon

Ret rearrangement in this organ (Lindahl et al., 2000). Outside the nervous system, PSPN is also expressed

in the developing kidney, and promotes ureteric branching in vitro (Sariola and Saarma, 1999).
3.5 Ret Tyrosine Kinase

In the mouse, Ret expression in neural crest lineages starts as early as day 8.5, in the rat at day 11.5 of

embryogenesis. Consistent with the function of Ret as the common transmembrane tyrosine kinase

receptor component for all four GFLs, Ret transcripts can be found in virtually all central and peripheral

neuron populations that coexpress one of the GFRas. These include all cranial ganglia, autonomic ganglia

and subsets of DRGs, enteric neuroblasts, and myenteric ganglia of the gut (Pachnis et al., 1993; Schuchardt

et al., 1994; Tsuzuki et al., 1995). Additionally, Ret is found in spinal cord motoneurons, basal ganglia,

cerebellum, hippocampus, the subthalamic nucleus, and the olfactory bulb (Trupp et al., 1997).

Outside the nervous system Ret is expressed in the excretory system, i.e., the ureteric bud of the

developing kidney and the Wolffian duct. Furthermore, Ret expression can be found in the acinar cells of

the salivary gland (Tsuzuki et al., 1995).

Analysis of mice lacking the Ret gene revealed the major requirement of this kinase for most of the GFL

actions. Ret is obligatory for normal renal organogenesis and enteric neurogenesis; mice homozygous for a

targeted mutation in Ret die soon after birth, showing renal agenesis or severe dysgenesis, and lacking

enteric neurons throughout the digestive tract (Schuchardt et al., 1994), as is the case for GDNF or GFRa1
knockout mice and partially for lack of NRTN or GFRa2. Both Ret and GFRa2 mutant mice exhibit a

reduction in cardiac ganglia and cholinergic innervation of the ventricular conduction system (Hiltunen

et al., 2000). It was first described that Ret‐deficient mice lack SCGs (Durbec et al., 1996), but later it turned

out, that, as in ARTN‐ or GFRa3‐deficient mice, neuronal precursors throughout the entire sympathetic

nervous system fail to migrate and project axons properly, leading, among other abnormalities, to a

mislocation of the SCG (Enomoto et al., 2001). Furthermore, Ret has been shown to be indispensable for

maturation of cholinergic sympathetic neurons (Burau et al., 2004).

However, the temporospatial pattern of expression of GFRamRNAs does not always match that of Ret

mRNA. For instance, GFRa1 mRNA is also found in the developing ventral striatum, the olfactory tubercle,

and the hippocampus. These areas seem to be devoid of Ret mRNA, suggesting that GFRa1 might also have

functions unrelated to Ret (Nosrat et al., 1997). This lead to the postulation of other coreceptors for

the GFRas, which should be able to mediate intracellular signaling after binding to the ligand‐bound
GPI‐linked receptors. One such alternative coreceptor, the neuronal cell adhesion molecule (NCAM), has

recently been described, as will be discussed later.
4 Ret‐Related Diseases

Ret mutations are responsible for at least five human diseases: Hirschsprung’s disease (HD); papillary

thyroid carcinoma; and three types of inherited cancer syndromes called multiple endocrine neoplasia

type 2 A (MEN2A) and type 2 B (MEN2B), and familial medullary thyroid carcinoma (FMTC). Interestingly,

both gain of function and loss of function of Ret lead to pathologic syndromes, highlighting the particular

importance of tight regulation of Ret function in vivo (for a review see Pasini et al., 1996; Edery et al., 1997).

Loss of function leads to a defect in the development of the ENS, a congenital malformation known as

HD, resulting in the absence of the enteric plexuses in the hindgut and, subsequently, in partial to complete

intestinal obstruction during the first years of life. Ret mutations are scattered along the entire coding

region of the gene in patients suffering from Hirschsprung’s disease (reviewed in Eng and Mulligan, 1997;

Martucciello et al., 2000). In many cases, frame shift or missense mutations in the region encoding the
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intracellular domain of Ret result in total disruption or a partial change of the structure of the tyrosine

kinase domain (Romeo et al., 1994), including mutations that interfere with the docking of adaptor

molecules that mediate Ret downstream signaling (Geneste et al., 1999, for a review see Manie et al.,

2001). Mutations in the extracellular domain mostly affect processing in the endoplasmic reticulum and

result in a reduction of Ret expression at the cell surface (Kjaer and Ibanez, 2003b). Interestingly, although

mutations in the genes for GDNF and NRTN have been detected in patients suffering from Hirschsprung’s

disease, rather than being causative, they might modulate the pathogenesis of the disease (Angrist et al.,

1996; Salomon et al., 1996; Doray et al., 1998; Eketjäll and Ibanez, 2002).

Gain‐of‐function mutations have been found in all four types of Ret‐related neoplastic diseases. The

most frequent genetic alteration that has been identified in thyroid papillary carcinomas is a rearrangement

of the Ret gene, called Ret/PTC (rearranged in transformation/papillary thyroid carcinomas). At least 15

types of Ret/PTC rearrangements have been described, where the tyrosine kinase domain of Ret is fused to

the N‐terminal encoding region of ten different genes, the most common types being Ret/PTC‐1, followed
by Ret/PTC‐3 (for review see Nikiforov, 2002; Ichihara et al., 2004). In these fusion proteins, Ret tyrosine

kinase is constitutively active, which has been attributed to the fact that the fused proteins contain coiled

coil domains that mediate protein oligomerization, which is essential for its oncogenic properties.

The multiple endocrine neoplasia type 2 syndromes MEN2A/B and FMTC are attributed to point

mutations in Ret resulting in its constitutive activation, yet by different molecular mechanisms. Most

MEN2A and FMTC mutations induce disulfide‐linked Ret dimerization on the cell surface due to muta-

tions in the cysteine‐rich region in the extracellular domain. MEN2B is caused by a methionine to a

threonine exchange at position 918 in the tyrosine kinase domain, resulting in Ret activation without

dimerization, due to a conformational change in the catalytic core region. The detection of Ret mutations

are used in the clinics for diagnosis of medullary thyroid carcinoma and are important parameters included

in the decision for the most promising therapeutic approach in this neoplastic diseases (for review see

Massoll and Mazzaferri, 2004).

Analyses of the molecular mechanisms activated by these naturally occurring constitutively active Ret

mutants have significantly contributed to the characterization of the cellular pathways activated by GFL.
5 GFL Signaling

5.1 Intracellular Signal Transduction Pathways Activated by GFL

All four GFLs bind preferentially to their cognate GPI‐linked alpha receptors GFRa1–4. Because of the lipid
anchor the receptors are targeted to detergent‐resistant apical membrane microdomains, the so‐called lipid

rafts, which are characterized by the abundance of sphingolipids and cholesterol. Upon ligand binding, the

transmembrane receptor tyrosine kinase Ret, which cannot bind GFLs by itself, is recruited to the site of

the GFRas in the lipid raft microdomain triggering the activation of various intracellular pathways

(> Figure 4-4; Tansey et al., 2000).

Downstream signaling of Ret had been intensely studied even before the connection between GFLs and

the activation of Ret had been discovered. Mass spectrometric analysis of recombinant Ret protein revealed

that Tyr806, Tyr809, Tyr900, Tyr905, Tyr981, Tyr1062, Tyr1090, and Tyr1096 are the autophosphorylation sites of

this kinase (Kawamoto et al., 2004). The specific tyrosine residues in Ret are associated with docking sites

for adaptor proteins like Grb2 (Besset et al., 2000), phospholipase C gamma (PLCg; Borrello et al., 1996),

Frs2 (Kurokawa et al., 2001; Melillo et al., 2001a), and Shc (Asai et al., 1996). The splicing site of Ret is

located just downstream of tyrosine 1062. Interestingly, tyrosine residue 1062 represents a binding site for

several signaling molecules including Shc, Enigma, SNT/FRS2, the catalytic phosphatidylinositol‐3 kinase

(PI3K) subunit p85 (Segouffin‐Cariou and Billaud, 2000), Dok proteins (Grimm et al., 2001; Murakami

et al., 2002), and Irs1 (Melillo et al., 2001b). Binding to this residue initiates the activation of different

signaling pathways (Hayashi et al., 2001) and has been the subject of several studies in the last decade. Ret

phosphorylation leads, depending on the cell type studied, to the activation of different mitogen‐activated
protein kinase (MAPK) pathways. The major MAPK pathways that are activated are the extracellular



. Figure 4-4

GDNF family ligand (GFL) signaling pathways. 1. GFL bind to their cognate GPI‐anchored GFRa receptors.

Subsequently Ret is recruited to lipid rafts, resulting in the phosphorylation of several tyrosine residues and

intracellular activation of specific signaling pathways. 2. GFL can also bind to soluble GFRa receptors and

activate Ret in trans
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signal‐regulated kinases 1/2/5 (ERK1/2/5; Worby et al., 1996) or Jun N‐terminal kinase (JNK, Chiariello

et al., 1998). Additionally, PI3K and PLCg have been shown to be closely associated with Ret signaling (for

review see Airaksinen and Saarma, 2002).

The effects of activation of the different signaling pathways byGFLS are dependent on the cellular context;

in most instances activation of PI3K has been associated with neuron survival, whereas ERK seems to be

mostly important for differentiation and neurite outgrowth, but there are also indications that ERKs are

involved in GFL‐mediated survival of specific neuron populations and that PI3K activation triggers neurite

outgrowth (Kaplan andMiller, 2000; Airaksinen and Saarma, 2002; Peterziel et al., 2002). Activation of PLCg
increases the level of inositol‐1,4,5‐trisphosphate and thereby regulates the level of intracellular calcium ions.

Integrity of the PLCg docking site has been linked to the full oncogenic potential of the constitutively active

Ret/PTC2 mutation (Borrello et al., 1996; Xing et al., 1998) but the cellular effects of GFL‐mediated PLCg
activation have not been clarified up to now. However, it has been shown that GDNF potentiates spontane-

ous and evoked transmitter release at neuromuscular synapses and facilitates Ca2þ influx into the nerve

terminals by enhancing Ca2þ currents through a mechanism involving N‐type Ca2þ channels (Wang et al.,

2001). Whether this might be an effect of PLCg activation or a downstream event of Akt phosphorylation

has not been investigated so far. Activation of the JNK pathway by GDNF in the rat pheochromocytoma cell

line (PC12) is mediated by Cdc42 and Rac1, members of the family of Rho/Rac‐related small GTPases, and

does not require tyrosine 1062 of Ret (Chiariello et al., 1998). It has been shown that activation of these
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small GTPases either affects cytoskeleton organization (lamellipodia formation), which could influence

neuritogenesis (Kozma et al., 1997, Brown et al., 2000), or, depending on the cellular context, might be

involved in control of cell proliferation as has been demonstrated for NGF (Seo et al., 2003).

Another signaling molecule, ERK5, has originally been connected to brain‐derived neurotrophic factor

(BDNF)‐promoted survival of developing cerebellar granule neurons (Liu et al., 2003; Shalizi et al., 2003),

and it seems to be important for the retrograde survival signal of endocytosed neurotrophin receptors

(Trks) at the nerve terminals (Watson et al., 2001). GFL can be retrogradely transported in several neuronal

populations (Leitner et al., 1999; Laurikainen et al., 2000). In motoneurons this transport depends on the

expression of the appropriate GFRa at the neuronal cell body (Leitner et al., 1999). Recently, Coulpier and

Ibáñez (2004) have used compartmentalized cultures of sympathetic neurons to investigate the effect of

GDNF addition to either the distal axon or the cell body. They have shown that GDNF and GFRa1 are

retrogradely transported from distal axon terminals to the cell body, resulting in both neuronal survival and

neurite outgrowth. Interestingly, while in the distal axon compartment both Akt and ERK1/2 phosphoryla-

tion were observed, only Akt phosphorylation was triggered in the cell body after GDNF application to the

axon compartment. However, further studies will be needed to clarify whether activated Ret is also

retrogradely transported or whether the differential activation of signaling components in the axon and

the cell body might be due to sequential activation of downstream Ret targets. In this context it will be

interesting to find out whether ERK5 activation at the nerve terminal might be connected to signal

propagation to the nucleus as has been shown for NGF (Watson et al., 2001).
5.2 Impact of Lipid Raft Localization of the Receptor System on Downstream
GFL Signaling

Recruitment of Ret to the lipid raft microdomain determines the intracellular effects of GFL action. Tansey

et al. (2000) have demonstrated that localization of Ret to lipid rafts is essential for effective GDNF‐induced
downstream signaling and subsequent differentiation/neurite outgrowth, or neuronal survival. Interaction

of Ret with members of the Src family leads to a fast activation of PI3K and MAPK only when it is localized

to these microdomains. Recent observations indicate that Ret tyrosine 981 constitutes the major binding

site of Src, and mutation of this tyrosine interferes with the survival‐promoting effect of GDNF‐induced Ret
downstream signaling in transfected cerebellar granule neurons (Encinas et al., 2004). Other laboratories

have studied the interaction of Frs2 with Ret, which results in MAPK activation (Kurokawa et al., 2001;

Melillo et al., 2001a). This effect has also been described to depend on the lipid raft localization of Ret, while

outside the raft, phosphorylated Ret predominantly interacts with Shc.

Because its constitutive activity is independent of GFRa‐interaction, Ret/PTC too does not reside in

lipid rafts. Phosphorylation of Tyr 1015 has been shown to be essential for confering full oncogenic

potential for Ret/PTC (Durick et al., 1998), indicating that activation of PLCg activation by Ret might

also differ depending on Ret localization inside or outside lipid rafts. Analyses of the cellular and tissue‐
context‐specific determinants of these differential activation properties of Ret in different membrane

microdomains will help in elucidating the details and functions of the signaling events that occur upon

GFL binding to the variety of responsive cell populations.
5.3 Ret‐Independent Signaling of GFLS

The incomplete overlap of GFRa and Ret expression in various tissues has evoked discussions about the

possibility of GFL signaling in trans for a long time (Trupp et al., 1997; Yu et al., 1998; Golden et al., 1999).

Several models have been proposed regarding how GFRas and Ret expressed on different cells could

interact, including the possibility of a secreted form of GFRa that could affect cells at some distance

from the cells where it is produced. A schematic representation of the possible mechanisms of these trans‐
signaling events is included in > Figure 4-3. Studies where a soluble GFRa1/immunoglobulin G fusion
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protein was added to cells expressing Ret but not the endogenous GPI‐anchored GFRa1 demonstrated that

this soluble receptor recruits Ret to lipid rafts and enables the activation of Ret downstream signaling in the

presence of GDNF (Paratcha et al., 2001). However, the kinetics of this mechanism varies depending on the

cell types used (Tansey et al., 2000). The assumption that processes involving the release of soluble GFRa1
are of physiological relevance is confirmed by the finding that GFRa1 release is increased after sciatic nerve

lesion, which might mediate axonal regeneration (Paratcha et al., 2001). Another putative role for secreted

GFRa1 as a chemoattractant cue for developing peripheral neurons is also possible (Ledda et al., 2002). So

far, little is known about the secretion of the other GFRas. However, it has been proposed that the PSPN

receptor GFRa4 can be spliced to three isoforms, i.e., transmembrane, secreted, and GPI‐anchored forms,

which are distributed in a tissue‐specific manner (Lindahl et al., 2000), indicating distinct functions of the

different GFRa4 protein isoforms.

While signaling in trans requires the presence of both Ret and GFRas, although on separate cells, it has

become evident in the past few years that not all actions of GFL are mediated through activation of Ret (for

a review see Sariola and Saarma, 2003). Efficient Src phosphorylation and subsequent Src downstream

signaling has been shown in cell lines lacking Ret tyrosine kinase, in primary DRG neurons isolated from

Ret‐deficient mice (Poteryaev et al., 1999), as well as in neuronal precursor cells lacking Ret expression

(Trupp et al., 1999). One obvious explanation for Ret‐independent effects is that GFL–GFRa complexes

may interact with other transmembrane receptors. Indeed, it has been shown that GDNF–GFRa1 can

activate the Met receptor tyrosine kinase in several Ret‐deficient/GFRa1‐positive or GFRa1/Ret‐coexpres-
sing cell lines. However, the described Met activation was not mediated directly by GDNF–GFRa1; rather, it
was activated indirectly via an Src‐dependent mechanism (Popsueva et al., 2003). In two Ret‐negative cell
lines, a glial cell line expressing GFRa1 and a neuronal cell line expressing GFRa1 and GFRa2, GDNF
stimulated rapid phosphorylation of cAMP response element‐binding protein (CREB). Interestingly,

NRTN was not able to evoke CREB phosphorylation in the presence of GFRa2, indicating that the two

receptors might differ in their ability to interact with receptors other than Ret (Pezeshki et al., 2001). Most

notably, in a recent work, Paratcha et al. (2003) found that in the absence of Ret, GDNF‐bound GFRa1
could interact directly with the 140‐kDa isoform of NCAM (p140NCAM) in an immortalized neuronal

precursor cell line and in primary Schwann cells. This interaction leads to a disruption of homophilic

p140NCAM–interactions and to the activation of intracellular NCAM signaling via the Src‐kinase Fyn and

focal adhesion kinase (FAK). These processes result in a loss of cell adhesion and subsequent migration of

the Schwann cells, and in Ret‐independent axon growth in primary neuron cultures. In this context, as

shown by coimmunoprecipitation experiments, GFRa2 does not differ from GFRa1 in its ability to interact

with NCAM in vitro, but whether this interaction results in a similar loss of adhesion is not known. Further

experiments will be needed to clarify whether interaction of GFRa1 and p140NCAM is disrupted upon

addition of Ret, or whether signaling via both receptors, Ret and p140NCAM, could occur in one cell.

Recently, Pozas and Ibáñez (2005) have shown that differentiation and tangential migration of cortical

GABAergic neurons, mediated by the GDNF/GFRa1 complex, depends neither on Ret nor on NCAM,

indicating that there may exist other alternative receptors interacting with GFRas.
However, the in vivo significance of these Ret‐independent GDNF‐signaling pathways has not been

clarified so far. To address this question, Enomoto et al. (2004) have reintroduced GFRa1 into the Ret locus
of GFRa1 knockout mice, thereby generating mice lacking Ret‐independent GFRa1 expression. These mice

do not exhibit any obvious phenotype, especially they do not show any defect in migration of the rostral

migratory stream and in the size of the olfactory bulb, where the GFRa1/NCAM interaction has been shown

to occur. These results may argue against a physiological role of alternative partners interacting with

GFRa1. However, as GFRas can also be secreted from cells and act as soluble factors in trans, further

experiments have to be designed to incontrovertibly answer this question.
5.4 Modulation of GFL‐Mediated Signaling

Recent data indicate that modulation of GFL signaling might be still more complex than originally thought

(for review see Sariola and Saarma, 2003). Heparan sulfate glycosaminoglycans are able to modulate GDNF
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downstream signaling, resulting in elevated phosphorylation of intracellular targets like ERK1/2 or increased

expression of immediate early genes in neuroblastoma cells (Tanaka et al., 2002). In the absence of

glycosaminoglycans, GDNF‐induced Ret phosphorylation is inhibited and GDNF‐mediated effects like

scattering of epithelial cells or axonal outgrowth of neuronal cells are disturbed (Barnett et al., 2002).

Mechanistically, extracellular matrix heparan sulfate proteoglycans might modulate GFL functions by

decreasing their diffusion and thus increasing their local concentration at the receptor site on the cell surface.

Integration of different signal transduction pathways may be an important general cellular strategy to

tightly regulate GFL‐mediated effects. Results from our group indicate that the presence of TGFb is

mandatory for GDNF‐mediated survival of various neuronal populations of the CNS and PNS in vitro

and in vivo (Krieglstein et al., 1998, 2002; Schober et al., 1999). In serum‐free low‐density ciliary ganglion
(CG) neuron cultures GDNF promotes survival and downstream signaling only if TGFb is present. In these

cells TGFb induces responsiveness to GDNF by recruiting GFRa1 to its active site at the cell surface by a

mechanism involving TGFb signaling via its specific receptor complex (> Figure 4-5; Peterziel et al., 2002).

Similar cooperative effects have been described on the protection of inner ear hair cells against ototoxicity

by adenovirus‐mediated overexpression of GDNF and TGFb1 (Kawamoto et al., 2003). These observations

indicate that context‐dependent interactions between GFL and other signaling pathways may be important

for fine‐tuning the response to these neurotrophic factors in vivo.
. Figure 4-5

Synergistic effect of TGFb and GDNF. (a) TGFb induces the recruitment of GFRa1 to the plasmamembrane via a

mechanism involving TGFb‐specific receptor types 1 and 2 (TbRI, TbRII). (b) Immunocytochemical staining for

GFRa1 on chicken ciliary ganglion (CG) neurons in culture. Treatment with TGFb results in a higher GFRa1

immunoreactivity on the cell surface



GDNF and related proteins 4 85
6 Potential Therapeutic Applications of GFLS in Neurodegenerative Diseases

All GFL are able to support the survival of dopaminergic midbrain neurons and spinal and facial motor

neurons in vitro, as well as in different lesion models in vivo. GDNF was considered a potential therapeutic

agent in the treatment of neurodegenerative diseases from the moment of its discovery. As dopaminergic

neurons are the type of cells that typically degenerate in brains of Parkinson’s disease (PD) patients,

molecules that might exert trophic influences on midbrain dopamine neurons could potentially be of

therapeutic value in the treatment of PD. Indeed, in several rodent and nonhuman primate models of PD,

GDNF promotes recovery of the injured nigrostriatal dopamine system and exerts both neuroprotective

and, more importantly with regard to the human disease, neuroregenerative effects on dopamine neurons

resulting in amelioration of motor deficits and reduction of brain damage (Gash et al., 1996; Kordower

et al., 2000; Grondin et al., 2002; for reviews see Grondin and Gash, 1998; Bjorklund et al., 2000). As in these

preclinical studies GDNF proved to be a powerful trophic factor, clinical trials were started to test the effect

of GDNF delivery in PD patients. Initial studies with intermittent intraventricular applications were

disappointing, as there was no evidence pointing to a reduction in symptoms of PD, but even in contrast,

the occurrence of severe side effects was observed (Kordower et al., 1999; Nutt et al., 2003). However,

recently Gill et al. (2003) reported that the chronic delivery of GDNF directly into the putamen of

Parkinson’s patients markedly reduced the PD symptoms according to the Unified Parkinson’s Disease

Rating Scale and increased putamen dopamine storage, without any severe side effects. These promising

results indicate that GDNF could be successfully used for the treatment of PD if the right strategies for

administration are applied.

In addition to PD, the neuroprotective effect of GDNF on spinal cord motoneurons indicates a possible

use of the factor for the treatment of motoneuron diseases, i.e., amyotrophic lateral sclerosis (Acsadi et al.,

2002; Manabe et al., 2002; Wang et al., 2002). These possible therapeutic applications are boosting the basic

research focusing on functions and mechanisms of action of GFL. Vice versa, detailed characterization of

GFL‐mediated events, especially the interactions with signal transduction pathways induced by other

cytokines, or the formation of alternative receptor complexes, i.e., GFRa/NCAM, might have important

implications in the development of successful strategies to treat neurogenerative diseases.
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94 5 Fibroblast growth factors in brain functions
Abstract: Fibroblast growth factors (FGFs) constitute a family of growth factors with multiple roles in

development, differentiation, maintenance, and repair of many different types of cells and in virtually all

tissues and organs. The family comprises 23 members, of which ten have been identified in the nervous

system. FGF receptors (FGFRs) are receptor tyrosine kinases and are encoded by four different genes, all of

which are expressed in the nervous system. Extracellular domains of the receptor proteins exhibit a large

number of variants due to alternative splicing creating a significant diversity with regard to ligand binding

and signaling properties. In addition, ligand binding is modified by heparan sulfate proteoglycans, which

act as low‐affinity receptors. Activation of FGFRs triggers several intracellular signaling cascades. These

include phosphorylation of src and phospholipase C g (PLC g), leading finally to activation of protein

kinase C (PKC), as well as activation of Crk and Shc. SNT/FRS2 serves as an alternative link of FGFRs for

the activation of PKC and, in addition, activates the Ras signaling cascade. In the central nervous system

(CNS), FGFs are widely expressed; FGF‐1, ‐2, ‐4, ‐5, ‐8, ‐9, ‐10, and ‐15 seem to be the most important ones

in relation to neural functions. FGF‐2 is predominantly synthesized by astrocytes, whereas other FGF family

members, e.g., FGF‐1, ‐5, ‐8, ‐9, ‐10, ‐15, and ‐18, are primarily synthesized by neurons. FGFs play

important roles in neurogenesis, axon growth, and differentiation. Furthermore, FGFs are major determi-

nants of neuronal survival both in development and in adulthood. FGF‐2 is an important factor for

neurogenesis in the adult brain. Increasing evidence suggests that FGF‐1 and ‐2 may be involved in the

regulation of synaptic plasticity and processes attributed to learning and memory.

List of Abbreviations: BDNF, brain‐derived neurotrophic factor; CNS, central nervous system; CNTF,

ciliary neurotrophic factor; DAG, diacylglycerol; DRG, dorsal root ganglia; EGF, epidermal growth factor;

EGL, external granular layer; FGF, fibroblast growth factor; FGFR, FGF receptor; GABA, gamma amino

butyric acid; GDNF, glial‐cell‐line‐derived neurotrophic factor; IGF, insulin‐like growth factor; IGL,

internal granular layer; IP3, inositol trisphosphate; LTP, long‐term potentiation; MAP, mitogen‐activated
protein; MCAO, middle cerebral artery occlusion; MPTP, 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine;
NMDA, N‐methyl‐D‐aspartate; NT‐4, neurotrophin 4; PDGFR, platelet‐derived growth factor receptor;

PKC, protein kinase C; PLC g, phospholipase C g; SH2, src homology 2
1 Introduction

Development, functions, plasticity, and repair processes of the central nervous system (CNS) require

permanent adaptation of neurons and glial cells to changing demands. To a large extent, such changes

depend on cytokine signaling networks, whose complexities are still largely enigmatic. Evidence assembled

during the last 20 years suggests that members of the fibroblast growth factor (FGF) family serve as

important signals in the developing, adult, and lesioned nervous system. This chapter takes into account

the fact that the field has frequently been the subject of excellent reviews. We therefore focus on progress

achieved during the past decade (cf. Bieger and Unsicker, 1996).

Basic FGF (FGF‐2) was the first FGF discovered and cloned (Abraham et al., 1986a, b). By now the FGF

family comprises 23 family members that signal via four receptors, whose gene and protein structures and

intracellular signaling cascades have been extensively investigated (Powers et al., 2000; Ornitz and Itoh,

2001). Not all FGF family members are found throughout all vertebrate species. FGF‐15 has not been

identified in the human genome, and FGF‐19 has not been detected in mice, resulting in a total of only 22

FGF family members in each of these species. FGF and FGF receptor (FGFR) knockout animals have

significantly contributed to expanding our knowledge of the biological significance of ligand and receptor

molecules (Ornitz and Itoh, 2001). Even so, analysis of FGF and FGFR mutant mice with respect to their

CNS and peripheral nervous system (PNS) phenotypes progresses slowly, and many assumed functions of

FGFs in the nervous system are extrapolations from pharmacological experiments and applications of

exogenous FGFs. Important roles of FGFs in neurogenesis, differentiation, axonal branching, neuron

survival, neurodegenerative disorders, and cognitive processes have mostly been suggested based on

pharmacological experiments and await confirmation from the analysis of FGF mutant mice (Haynes,

1988; Calamandrei and Alleva, 1995; Mocchetti and Wrathall, 1995).
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2 FGF Signaling

2.1 Gene Structure of FGFs

Coding Regions. All known FGF genes consist of three coding exons, with exon 1 containing the start

codon. However, some FGF genes, e.g., FGF‐2 and FGF‐3, contain additional 50 untranscribed regions

initiating from upstream CUG codons (Kiefer et al., 1994; Arnaud et al., 1999). The size of the coding region

of FGF genes ranges from under 5 kb (FGF‐3 and FGF‐4) to over 100 kb (FGF‐12). In certain FGF

subfamilies, exon 1 is subdivided into two or four alternatively spliced subexons (1A–1D for FGF‐8) with
a single initiation codon residing in exon 1A. Other family members (e.g., FGF‐11 to ‐14) have alternatively
spliced amino‐terminal regions resulting from the use of alternative 50 exons.

Chromosomal Localization. The chromosomal localization for all human FGF genes, with the excep-

tion of FGF‐16, is known. Several human FGF genes are clustered on distinct chromosomal regions. For

example, genes encoding FGF‐3, ‐4, and ‐19 are located on chromosome 11q13 and separated by only 40

and 10 kb, respectively. The FGF‐6 and ‐23 genes are located within a small 55‐kb fragment of chromosome

12p13. Similarly, the FGF‐17 and ‐20 genes also reside together on chromosome 8p21–8p22 (Kelley et al.,

1992). For the mouse, localization of 16 FGF genes has been determined, revealing some similarities with

respect to their arrangement on human chromosomes (Ornitz and Itoh, 2001).

Evolution. FGFs are relatively old molecules that arose during invertebrate evolution. Although

FGF‐like genes have been identified in several viral genomes (Li et al., 2002), genomes of unicellular

organisms (Escherichia coli, Saccharomyces cerevisiae) contain no FGF‐like genes. One FGF‐like sequence
(branchless) has been discovered in Drosophila (Sutherland et al., 1996), and two (egl‐17 and let‐756)
have been discovered in Caenorhabditis elegans (Burdine et al., 1997; Coulier et al., 1997). FGF proteins

are highly conserved throughout vertebrate species and share greater than 90% amino acid sequence

homology. Four FGFs have been identified in zebrafish (FGF‐3, ‐8, ‐17, and ‐18), six in the clawed toad

Xenopus (FGF‐3, Fgfi, Fgfii, FGF‐8, FGF‐9, and FGF‐20), and seven in chicken (FGF‐2, ‐4, ‐8, ‐12, ‐14, ‐18,
and ‐19).

Subfamilies of Human FGFs.Human FGFs can be grouped into subfamilies based on different degrees

of sequence and functional homologies. One such subfamily includes FGF‐8, ‐17, and ‐18, which share

70–80% of their amino acid sequences, resemble each other in receptor binding specificity, and share

partially overlapping expression sites, e.g., the midbrain–hindbrain boundary.
2.2 FGF Protein Structure

Vertebrate FGF proteins range in molecular weight from 17 to 34 kDa, in contrast to the Drosophila FGF

homolog branchless, which is an 84‐kDa protein. All FGFs have an internal core region that consists of 28

highly conserved and 6 identical amino acid residues (> Figure 5-1; Ornitz, 2000). Ten of these conserved

residues are responsible for interactions with the FGF receptors (Plotnikov et al., 2000). In FGF‐1 and ‐2 the
core domain of the protein consists of twelve antiparallel beta strands (> Figure 5-2; Eriksson et al., 1991;

Zhu et al., 1991). Two of these beta strands (> Figure 5-2: b10 and b11) contain basic amino acid residues

forming the heparin‐binding site on FGF‐2 (Li et al., 1994; Moy et al., 1996).
2.3 Subcellular Localization and Secretion of FGFs

Most FGFs (FGF‐3, ‐4, ‐5, ‐6, ‐7, ‐8, ‐10, ‐15, ‐17, ‐18, ‐19, ‐21, ‐22, ‐23) possess amino‐terminal signal

peptides and may be readily secreted from cells. In contrast, FGF‐1, ‐2, ‐9, ‐16, and ‐20 lack conventional

signal peptides, and their modes of secretion are largely enigmatic. Even so, they all seem to be secretable

(Miyamoto et al., 1993; Miyake et al., 1998; Ohmachi et al., 2000). One mode of secretion may be related to

cell damage (Mignatti et al., 1992; Friesel and Maciag, 1999). FGF‐9 possesses a noncleaved amino‐terminal



. Figure 5-2

Three‐dimensional structure of the FGF‐2 protein (modified from Zhu et al., 1991)

. Figure 5-1

Schematic domain alignment of different members of the fibroblast growth factor (FGF) family of protein

growth factors. All FGFs consist of two highly conserved core domains (black), separated by a central spacer

region of variable length. Also C‐ and N‐terminal regions differ in their length, with some FGFs (FGF‐2, ‐3, and
‐9) bearing alternative splice sites for their N‐terminal regions (modified from Bieger and Unsicker, 1996)
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hydrophobic sequence responsible for secretion (Miyakawa et al., 1999; Revest et al., 2000). FGF‐2 and ‐3
also come as high‐molecular‐weight forms with predominant nuclear localization (Antoine et al., 1997;

Coulier et al., 1997; Arnaud et al., 1999; Claus et al., 2004a, b). The discovery that FGF‐2(23) forms a

complex with the survival of motoneuron (SMN) protein, an important component of the splicing

machinery, has opened an avenue for understanding the role of FGFs with a nuclear localization (Claus

et al., 2004a, b). Distinct functions of the 18‐kDa and 21/23‐kDa FGF‐2 have been suggested based on

distinct roles in PC12 cells overexpressing the respective isoforms (Grothe et al., 1998).
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2.4 The FGF Receptors

FGFs elicit their diverse effects through activation of cell‐surface‐bound tyrosine kinase receptors (Coughlin
et al., 1988). Binding occurs with an affinity of KD¼20 pmol/L (Moscatelli, 1987); receptor proteins range

from 125 to 160 kDa in molecular weight (Neufeld and Gospodarowicz, 1985, 1986; Friesel et al., 1986;

Moenner et al., 1986; Blanquet et al., 1989).

Lee et al. (1989) were the first to clone a complementary DNA (cDNA) coding for an FGFR with high

affinity for FGF‐1 from chicken tissue. Structural characterization of this molecule allowed the identification

of the prototypic structural hallmarks of all FGFRs, which are transmembrane proteins with three extracel-

lular Ig‐like domains (IgI, IgII, and IgIII), an acidic domain between IgI and IgII, a hydrophobic transmem-

brane domain, and an intracellular tyrosine kinase domain, respectively (> Figure 5-3; Johnson et al., 1990).
. Figure 5-3

Structure of the fibroblast growth factor receptors (FGFRs). Receptors consist of three extracellular Ig‐like
domains, a transmembrane domain, and two intracellular tyrosine kinase domains. An acidic domain of four

amino acids is important for heparin binding and thus for receptor dimerization (modified from Bieger and

Unsicker, 1996)
Cloning of FGFR‐1 and ‐2 (Dionne et al., 1990) revealed their identity with the previously isolated tyrosine

kinase proteins flg and bek, respectively (Kornbluth et al., 1988; Ruta et al., 1989). By now, four different

subtypes of FGFRs have been identified (Johnson andWilliams, 1993). Affinity of FGFRs for their ligands is

highly diverse, with different affinities for each member of the FGF family of growth factors (> Table 5-1).



. Table 5-1

Receptor binding of FGF family members to the four FGFR subtypes

FGFR‐1 FGFR‐2 FGFR‐3 FGFR‐4

FGF‐1 þ þ þ þ
FGF‐2 þ þ þ þ
FGF‐3 þ þ � �
FGF‐4 þ þ þ þ
FGF‐5 þ þ � �
FGF‐6 þ þ � þ
FGF‐7 � þ � �
FGF‐8 þ þ þ þ
FGF‐9 � þ þ þ
FGF‐10 � þ � �
FGF‐11 to ‐16 ? ? ? ?

FGF‐17 � þ þ þ
FGF‐18 � þ þ þ
FGF‐19 to ‐23 ? ? ? ?

(þ) receptor binding, (�) no receptor binding, (?) not investigated

Modified from Ornitz et al. (1996)
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The diverse effects elicited by different FGF family members depends, in part, on a significant structural

and functional diversity of FGFRs (> Figure 5-4). Diversity of FGFRs beyond the four receptor subtypes

is achieved by the generation of alternative splice variants of a given FGFR gene (Ornitz et al., 1996).

The protein region with the highest impact on FGFR binding specificity is a portion of the IgIII domain

for which three different splice variants, termed IgIIIa, IgIIIb, and IgIIIc, have been identified so far (for

relative binding affinities of different FGFs to the different IgIII splice variants, see >Table 5-2). All

three splice variants exist for FGFR‐1 and FGFR‐2 (Johnson et al., 1991; Chellaiah et al., 1994); for

FGFR‐3 only the IgIIIb and IgIIIc variants occur. FGFR‐4 exists exclusively as the IgIIIc variant (Vainikka

et al., 1992).
. Figure 5-4

Structure of the fibroblast growth factor receptor (FGFR) gene. Four possible splice sites exist leading either to

molecules with a truncated C‐terminal region or to molecules with different variants of the third Ig‐like domain

(IgIIIa, IgIIIb, and IgIIIc) (modified from Johnson et al., 1991)
2.5 The FGF/FGFR Complex and Intracellular Signaling

Ligand binding to FGFRs initiates a receptor complex consisting of two FGF molecules bound to a receptor

and to a heparan sulfate proteoglycan molecule, e.g., heparin (> Figure 5-5). The consensus mechanism is



. Table 5-2

Activation of different FGFR splice variants by different FGF family members

FGFR FGF‐1 FGF‐2 FGF‐3 FGF‐4 FGF‐5 FGF‐6 FGF‐7 FGF‐8 FGF‐9

1, IIIb 100 60 34 16 4 5 6 4 4

1, IIIc 100 104 0 102 59 55 0 1 21

2, IIIb 100 9 45 15 5 5 81 4 7

2, IIIc 100 64 4 94 25 61 2.5 16 89

3, IIIb 100 1 2 1 1 1 1 1 42

3, IIIc 100 107 1 69 12 9 1 41 96

4 100 113 6 108 7 79 2 76 75

Each value represents the percentage of activation caused by FGF‐1 with a given splice variant

Modified from Ornitz et al. (1996)

. Figure 5-5

Three‐dimensional structure of the extracellular portion of a complex consisting of two FGF‐1/FGFR‐2 hetero-

dimers, linked together by heparin (modified from Pellegrini et al., 2000)
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thought to consist of the formation of two independent FGF/FGFR complexes that are subsequently

connected by a heparin‐like glycosaminoglycan (Venkataraman et al., 1999; Stauber et al., 2000). Formation

of the receptor complex triggers receptor activation by phosphorylation, leading to recruitment and

phosphorylation of intracellular signaling molecules.

Important signaling proteins known to bind to the activated FGFR complex include the group of src

homology 2 (SH2) domain proteins. The SH2 domain shared by these proteins serves the intracellular

interaction with the receptor complex. SH2 proteins may themselves serve as substrates for receptor‐
mediated phosphorylation, or may function as adaptor proteins to recruit other target proteins.

Because of the high degree of homology at the amino acid level between different FGFRs, their signaling

pathways are probably quite similar (Johnson and Williams, 1993). Studies using chimeric receptors

(Raffioni et al., 1999) with the cytosolic domain of FGFRs and the extracellular portion of the platelet‐
derived growth factor receptor (PDGFR) have shown that the principal difference between FGFRs is the

strength of tyrosine kinase activity, suggesting that all FGFR subtypes drive the same signaling cascades, but

with different strengths.

Structure of the FGFR Intracellular Domain. Seven tyrosine residues in the cytoplasmic tail of FGFR‐1
can serve as substrates for phosphorylation (Tyr463, Tyr583, Tyr585, Tyr653, Tyr654, Tyr730, and Tyr766).

Tyr653 and Tyr654 are important for the catalytic activity of the activated FGFR and essential for

signaling (Mohammadi et al., 1996). Tyr766 binds the SH2 domain of PLC g (Mohammadi et al., 1991).

The significance of the other tyrosines is unknown; they can be mutated to phenylalanine residues
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without loss of mitogen‐activated protein (MAP) kinase activity and mitogenic signaling (Mohammadi

et al., 1996).

The PLC g Signaling Pathway. PLC ga 150‐kDa phosphoprotein that cleaves phosphatidyl‐inositol‐
4,5‐bisphosphate to inositol trisphosphate (IP3) and diacylglycerol (DAG) associates with the ligand‐
activated FGFR through Tyr766 (Burgess et al., 1990; Mohammadi et al., 1991). Tyr766 is essential for

phosphatidylinositol hydrolysis (Mohammadi et al., 1992; Peters et al., 1992), but is apparently not involved

in FGFR‐mediated mitogenesis, neuronal differentiation (Spivak‐Kroizman et al., 1994b), or mesoderm

induction in a Xenopus animal cap model (Muslin et al., 1994).

The src Signaling Pathway. Src is a nonreceptor tyrosine kinase that constitutes a putative link from

the FGFR to cortactin (Zhan et al., 1994), a focal adhesion‐associated protein that binds filamentous actin

(Wu et al., 1991).

Crk‐Mediated Signaling. Crk, a SH2‐/SH3‐containing adaptor protein, probably links FGFR to the

downstream signaling molecules Shc, C3G, and Cas. Signaling through Crk has no effect on cell motility, yet

endothelial cells expressing FGFR‐1 with a phenylalanine substitution at Tyr463 do not proliferate.

However, the impact of Tyr463 for mitogenesis is controversial (Mohammadi et al., 1996) and may differ

depending on the type of cell analyzed.

The SNT‐1/FRS2 Signaling Pathway. An alternative tyrosine‐phosphorylation‐independent signaling
pathway of FGFRs that involves a novel 90‐kDa phosphoprotein, SNT‐1 (Wang et al., 1996), or FRS2

(Kouhara et al., 1997), has been shown to exist. SNT‐1/FRS2 links the FGFR signaling to the Ras/MAPK

signaling pathway, which is important for growth‐factor‐induced cell cycle progression. Activation of

SNT‐1/FRS2 recruits Ras to the FGFR complex through the adaptor protein Grb‐2/Sos (Kouhara et al.,

1997). In addition to associating with Grb‐2, activated FRS2 also binds the protein tyrosine phosphatase

Shp2 (Ong et al., 2000). SNT‐1/FRS2 is localized to the inner leaflet of the cell membrane by myristoylation

and interacts with FGFR‐1 at amino acid residues 407–433 of the juxtamembrane region (Xu et al., 1998).

Interestingly, Yan et al. (2002) have reported that Trk neurotrophin receptors also employ SNT‐1/FRS2 in

their signaling pathways, but in this case association of FRS2 with Trk receptors depends on receptor

activation. As a consequence, FGFR‐1 may regulate Trk signaling by sequestering FRS2 from ligand‐bound
Trk receptors.

Thus, FGFRs mediate signal transduction by at least two independent pathways. First, FGFRs utilize

the canonical SH2‐linked pathway joining FGFR directly to PLC g and Crk, and probably indirectly to

Src. Second, activation of FGFR is linked to SNT1/FRS2 through an interaction at the juxtamembrane

domain. The precise role of the second pathway, which seems to be independent of receptor phosphor-

ylation, is still largely enigmatic, despite its similarity to insulin receptor signaling (Yenush and White,

1997).
2.6 FGF Knockout Mice and Transgenic Mouse Models

Mutant mice with disruptions of FGF and FGFR genes constitute important model systems for providing

more insights into the biological functions of FGFs (> Table 5-3). Several FGF knockout mice have

relatively mild phenotypes, possibly due to functional redundancy of different members of the FGF family.

For example, FGF‐8 and ‐17 seem to be able to substitute each other with respect to the formation of the

midbrain–hindbrain boundary (Xu et al., 2000).
3 Neural Functions of FGFs

Since we wrote our last review on FGFs in the CNS (Bieger and Unsicker, 1996), significant progress has

been made in the field. Most of the work has been done on neural functions of FGF‐1 and ‐2 (cf. > Figure

5-6), implying that understanding the roles of the other members of the FGF family expressed in the brain

is still relatively fragmentary.



. Table 5-3

Viability and phenotypes of available FGF‐gene‐deficient mice

Gene

Null

mutant Phenotype References

FGF‐1 Viable No detectable changes Miller et al. (2000)

FGF‐2 Viable Mild cardiovascular and skeletal disturbances, disturbed layering

of the cerebral cortex, disturbed healing of skin wounds

Dono et al. (1998), Zhou

et al. (1998)

FGF‐3 Viable Disturbed inner ear and tail development Mansour et al. (1993)

FGF‐4 Lethal

(E4–5)

Disturbed inner cell mass proliferation, defects in limb

development

Feldman et al. (1995),

Sun et al. (2002)

FGF‐5 Viable Increased hair growth Hebert et al. (1994)

FGF‐6 Viable Mild disturbances in muscle regeneration Fiore et al. (1997, 2000),

Floss et al. (1997)

FGF‐7 Viable Disturbed growth of hair follicles, disturbed growth of ureteric

bud

Guo et al. (1996), Qiao

et al. (1999)

For those FGF knockouts that are not available (N.A.), their predominant expression loci are listed

. Figure 5-6

In the central nervous system (CNS) various positive effects of fibroblast growth factors (FGFs) on neuronal

structures have been demonstrated. In this figure, a schematic overview for effects of FGF‐1 and FGF‐2 on

hippocampal neurons is given (adapted from Reuss and von Bohlen und Halbach, 2003)

Neuronal 
progenitors 
(proliferation, 
differentiation)

Neuron 
morphology

(axonal branching 
sprouting)

Neuroprotection 
 (epilepsy, ischemia)

Learning and memory 
(facilitates LTP)

FGF-2

Neuroprotection
(ischemia)

Learning and memory 
(facilitates LTP)

FGF-1Anticonvulsive

Lesion repair 
(ischemia, tissue lesion)

Fibroblast growth factors in brain functions 5 101



102 5 Fibroblast growth factors in brain functions
3.1 FGF Expression Patterns

Numerous studies support the notion that FGFs affect a large variety of developmental processes in the

nervous system (Molteni et al., 2001; Vaccarino et al., 2001). These include, among others, cell fate

determination (Anderson, 1993; Grothe et al., 2004), migration, differentiation (Kalcheim, 1996), cell

survival (Grothe and Wewetzer, 1996; Mufson et al., 1999; Perrone‐Capano and Di Porzio, 2000), and

regeneration (Timmer et al., 2003, 2004; Jungnickel et al., 2004). FGF‐1 and ‐2 are expressed from the

earliest stages of nervous system development through into adulthood in distinct expression patterns

(Eckenstein, 1994; Vaccarino et al., 1999; Gremo and Presta, 2000). The most prominent difference between

FGF‐1 and ‐2 is related to their cellular localization. FGF‐2 is expressed by neurons and nonneuronal cells,

while FGF‐1 is localized predominantly in neurons.

In the adult CNS, FGF‐1 is found throughout the brainstem in neurons of the oculomotor nucleus,

the pons, the lateral geniculate nucleus, the reticular formation, the ventral tegmental area, and the

substantia nigra. In the diencephalon both thalamus and hypothalamus (e.g., the magnocellular preoptic

area) harbor FGF‐1‐positive neuron populations. In the telencephalon, neurons in the medial septum,

diagonal bands of Broca, nucleus basalis of Meynert, striatum, cerebral cortex, and hippocampus express

FGF‐1 (Bean et al., 1991; Stock et al., 1992; Bizon et al., 1996). Spinal cord motoneurons and sensory

ganglia also stain for FGF‐1 (Elde et al., 1991). In situ hybridization studies have revealed FGF‐1 messenger

RNA (mRNA) in the cerebellum, locus coeruleus, hippocampus, and neocortex (Wilcox and Unnerstall,

1991).

Like FGF‐1, FGF‐2 is widely distributed throughout the CNS and the PNS (Eckenstein et al., 1991).

FGF‐2 is prominently expressed in the brainstem, midbrain including substantia nigra, thalamus, olfactory

bulb, striatum, hippocampus, and cerebral cortex (Ernfors et al., 1990; Bean et al., 1991; Gomez‐Pinilla
et al., 1994; Grothe and Janet, 1995). FGF‐2 also occurs in motor and sensory nuclei (Grothe et al., 1991) as

well as in the neural and anterior lobes of the pituitary (Gonzalez et al., 1994).

FGF‐3 mRNA is expressed in distinct locations of the embryonic mouse brain, including forebrain,

midbrain–hindbrain junction, rhombomere boundaries, and in the otic placode. The initially high levels of

FGF‐3 transcripts in the otic placode are downregulated as the placode invaginates to form the otic pit

(Mahmood et al., 1996). Expression of FGF‐4 in CNS neurons and glia is controversial and needs to be

investigated in more detail (Ozawa et al., 1996). However, its expression in tissues relevant to inner

ear development (periplacodal and placodal ectoderm) has been reported repeatedly (Wright et al.,

2003). FGF‐5 mRNA has been reported to be more abundant in the postnatal than in the embryonic

mouse brain (Ozawa et al., 1998). Although FGF‐5 mRNA expression levels are low, compared with FGF‐1
and ‐2 mRNAs, the FGF‐5 mRNA is widely distributed, including in portions of the cerebral cortex,

hippocampus, and thalamus. In general, FGF‐5 mRNA can be detected in many limbic areas (olfactory

bulb, hippocampal formation, entorhinal cortex), where expression levels are higher than in the neocortex

(Gomez‐Pinilla and Cotman, 1993), suggesting roles in limbic functions or dysfunctions. FGF‐6 has been

reported to be CNS‐ and skeletal‐muscle‐specific in mice at the time of birth (Ozawa et al., 1996). FGF‐7
mRNA is localized in the ventricular layer of the embryonic mouse forebrain (Mason et al., 1994); it seems

to be absent from the adult rat brain (Hattori et al., 1997), but can be detected in rat dorsal root ganglia

(DRG) (Li et al., 2002). Although FGF‐8 is widely expressed in adult tissues (e.g., brain, heart, lung, kidney,

testis, ovary, prostate; Schmitt et al., 1996), the CNS location, in which it has been most intensely studied,

seems to be the isthmic organizer of the midbrain–hindbrain junction (cf. Mason et al., 2000; Holzschuh

et al., 2003). FGF‐9 is moderately or weakly expressed, mostly in neurons, in widespread regions of the CNS

including the olfactory bulb, caudate putamen, cerebral cortex, hippocampus, thalamus hypothalamus, and

nuclei of the midbrain, brainstem, cerebellum, and ventral spinal cord (Tagashira et al., 1995). In the PNS,

DRG neurons can be immunostained for FGF‐9 (Nakamura et al., 1999). High levels of FGF‐10 mRNA have

been reported to be expressed by brainstem motor nuclei, while low levels are found in the hippocampus

and thalamus (Hattori et al., 1997). FGF‐12 and ‐13 mRNAs both occur in the developing mouse CNS in

cells outside the proliferating ependymal layer (Hartung et al., 1997). FGF‐13 is additionally expressed

throughout the PNS (Hartung et al., 1997; Li et al., 2002). FGF‐14 has been shown to be widely expressed in

brain and spinal cord. A detailed study on its cerebellar expression has revealed that it is first observed in
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postmitotic granule cells and that its developmental expression pattern is complementary to Math1 (Wang

et al., 2000). A study that addressed FGF‐15 reported a regionally restricted pattern of expression in the

developing CNS (McWhirter et al., 1997). Like FGF‐4, FGF‐16 is expressed in tissues related to inner ear

development (posterior otic cup and vesicle; Wright et al., 2003). FGF‐17 mRNA is preferentially expressed

in the neuroepithelium of the isthmus and septum in the embryonic rat brain (Hoshikawa et al., 1998).

FGF‐18, a predominantly neuronal FGF, has been reported to be transiently expressed at early postnatal

stages in various CNS regions, including cortex and hippocampus (Hoshikawa et al., 2002). FGF‐20 is

preferentially expressed in the substantia nigra pars compacta (Ohmachi et al., 2000), while FGF‐23 mRNA

is predominant in the thalamic ventrolateral nucleus (Yamashita et al., 2000). Together, the available data

support the notion of both discrete and broad expression patterns of FGFs in the nervous system, with

distinct temporal and spatial regulations during development.

3.2 FGFR Expression Patterns

The different subtypes of FGFRs are widely expressed in the CNS. FGFR‐1, ‐2, and ‐3 mRNAs are highly

expressed in the diencephalon and telencephalon. Lower levels of expression have been reported for the

mesencephalon, metencephalon, and myelencephalon (Belluardo et al., 1997). FGFR‐1 is expressed in

specific neuronal populations in the adult CNS (Asai et al., 1993; Yazaki et al., 1994), but has also been

detected in astrocytes of white matter tracts (Takami et al., 1998). In contrast to FGFR‐1, which is

predominantly expressed on neurons, FGFR‐2 and ‐3 are primarily on glial cells (Asai et al., 1993; Yazaki

et al., 1994; Miyake et al., 1996). The fourth member of the FGFRs, FGFR‐4, seems to be predominant

during early development and is not detectable in the adult CNS with the exception of the lateral habenular

nucleus (Fuhrmann et al., 1999).

3.3 Neurogenesis and Differentiation

While many neuronal differentiation genes have been identified, little is known about what determines

where and when neurons are formed. Onset of neuronal differentiation first occurs in the spinal cord in a

rostral to caudal sequence. A key regulatory event in this paradigm is the ability of somatic mesoderm to

repress FGF‐8 transcription in the prospective spinal cord (Diez et al., 2000). At a cellular level, differentia-

tion of neuroepithelial precursor cells into neurons has been shown to be potently inhibited by FGF‐1 and
‐2 (Faux et al., 2001). The underlying mechanism involves upregulation of notch and downregulation of

Delta1.

Generally, the actual developmental status of a cell crucially determines the type of effect elicited by a

given FGF family member. Thus, it has been shown that at an early developmental time point FGF‐2 is able
to expand the period of dopamine precursor division in vitro well beyond the period of cell division

occurring in vivo. Temporal expansion of cell division was accompanied by a delay in differentiation

(Bouvier and Mytilineou, 1995). The role of FGF‐8 for the specification of early developing CNS dopami-

nergic neurons has recently been elaborated in zebrafish mutants by Holzschuh et al. (2003). Interestingly

and contrary to expectations based on previous studies, FGF‐8, neither alone nor in combination with

hedgehog signaling, is required for specification of early developing dopaminergic neurons. On neural stem

cells overexpressing the nuclear orphan receptor Nurr1, FGF‐8 has been shown to induce midbrain

dopaminergic phenotypes in cooperation with sonic hedgehog (Kim et al., 2003). In addition, FGF‐20
has been shown to promote the differentiation of Nurr1‐overexpressing neural stem cells into tyrosine‐
hydroxylase‐positive neurons (Grothe et al., 2004).

Restrictions in neuronal fate occur during the transition from a multipotential to a postmitotic cell and

are determined by cell‐intrinsic and ‐extrinsic signals. In this context, FGF‐2 has been shown to be

mitogenic for those embryonic spinal cord cells that are already committed to a neuronal pathway (Ray

and Gage, 1994). FGF‐2 also regulates the proliferative fate of neural progenitor cells in the striatum. This is

done in cooperation with insulin‐like growth factor (IGF), which is a key factor in the regulation of

neuronal stem cell activation, and epidermal growth factor (EGF; Arsenijevic et al., 2001). EGF induces the
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proliferation of putative stem cells, which give rise to spheres of undifferentiated cells that can generate

neurons and astrocytes. These spheres of undifferentiated cells contain FGFR‐1 mRNA and protein (Vescovi

et al., 1993). Exogenously applied FGF‐2 regulates the proliferative fate of unipotent (neuronal) and

bipotent (neuronal/astroglial) EGF‐generated CNS progenitor cells, indicating that sequential actions of

growth factors play a role in regulating the generation of neurons and astrocytes in the developing CNS

(Vescovi et al., 1993). In the hippocampus, FGF‐2 is mitogenic for stem cells (Vicario‐Abejon et al., 1995)

and regulates the size of the hippocampal granule neuron population that is generated from progenitor cells

(Cheng et al., 2002). Many other neuron populations, e.g., GABAergic neurons, are generated by FGF‐2
(Deloulme et al., 1991).

In postmitotic hippocampal neurons, FGF‐2 promotes survival (e.g., Walicke et al., 1986) and differ-

entiation, e.g., of calbindin‐expressing cells (Vicario‐Abejon et al., 1995). Substantial evidence suggests that

FGF‐2 affects neurogenesis in the hippocampus (Nakagami et al., 1997; Palmer et al., 1999; Yoshimura et al.,

2001). In primary cultures of hippocampal cells, FGF‐2 not only triggers phenotypic differentiation, but

also drives the formation of neurons of various developmental stages. These different phenotypes include,

on the one hand, neurons with precursor and juvenile neuron morphologies that are unable to fire action

potentials, and on the other, age‐matched polarized neurons firing multiple action potentials (Eubanks

et al., 1996).

An increasing number of studies tried to exploit neural stem cells for the repair of CNS lesions, e.g., in

the spinal cord (cf. Enomoto et al., 2003). In this context, FGF‐2 has been shown to crucially control both

proliferation and differentiation phenotypes of neural stem cells from hippocampus and spinal cord after

grafting into the neonatal spinal cord (Enomoto et al., 2003). A specific novel role of nuclear FGF and

nuclear FGFR‐1 has been reported for human neuronal progenitor cells (Stachowiak et al., 2003). In these

cells, FGFR‐1 mediates cAMP‐induced neuronal differentiation by regulating CREB and CREB‐binding
protein. FGF‐2 signaling onto FGFR‐1‐positive neural stem cells from the embryonic rat telencephalon,

in conjunction with EGF, has also been shown to permit both self‐renewal and differentiation into

neuronal, astroglial, and oligodendroglial phenotypes. FGF‐2 triggering self‐renewal, but not EGF, induced
cytosolic calcium responses, whereas in FGF‐2 and EGF‐containing medium both FGF‐2 and EGF

evoked calcium signals only in the differentiating progeny of these cells. These results suggest that FGF‐2,
but not EGF, sustains calcium‐dependent self‐renewal of neural stem cells, whereas together the two growth

factors permit the initial commitment of neural stem cells into neuronal and glial phenotypes (Maric et al.,

2003).
3.4 Effects on Adult Neuronal Precursor Cells

Proliferation of neural stem cells and differentiation into mature neurons do not occur only during

development, but can also be detected in the adult brain (Altman and Das, 1965). Proliferation of adult

neuron precursor cells has been demonstrated for the forebrain in vitro (Alvarez‐Buylla and Lois, 1995), as

well as for the hippocampus and the subventricular zone of the forebrain in vivo (Goldman et al., 1997).

FGF‐2 is an important regulator of pre‐, peri‐ and postnatal neurogenesis. FGF‐2 induces proliferation of

neural progenitor cells in the hippocampus and in the subventricular zone (Wagner et al., 1999). Subcuta-

neous injection of FGF‐2 at P1 increases [3H]thymidine incorporation by 70% in hippocampal and

subventricular zone homogenates and elicits a twofold increase in mitotic nuclei in the dentate gyrus and

the dorsolateral subventricular zone, suggesting that FGF‐2 penetrates the blood–brain barrier to regulate

adult neurogenesis (Wagner et al., 1999).

Neurogenesis in the Hippocampus. Hippocampal cells from adult rats are capable of proliferating and

generating neurons in culture containing FGF‐2. These cells express a variety of neuronal and glial markers,

including O4, NSE, MAP2, NF150, GAD, and calretinin. Two months after labeling and grafting these cells

to the adult rat hippocampus, their descendents can be found in the dentate gyrus, where they differentiate

into neurons exclusively in the granule cell layer (Gage et al., 1995). Electrophysiological properties of

hippocampal progenitor cells passaged in the presence of FGF‐2 are distinctly different from cells grown in

the absence of FGF‐2. Thus, FGF‐2 elicited low levels of sodium, calcium, N‐methyl‐D‐aspartate (NMDA),
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and kainate currents as compared with other growth conditions. After multiple passages in the continued

presence of FGF‐2, sodium, calcium, and NMDA, responses declined further, whereas kainate and gamma

amino butyric acid (GABA) responses remained substantial (Sah et al., 1997).

Neurogenesis in the Striatum. The striatum is another prominent brain structure containing substan-

tial numbers of neuronal progenitor cells (Reynolds et al., 1992; Vescovi et al., 1993). Multipotential

progenitors isolated from the adult mouse striatum proliferate and differentiate into astrocytes, oligoden-

drocytes, and neuron‐like cells when exposed to FGF‐2 (Vescovi et al., 1993; Gritti et al., 1996). The neuron‐
like cells exhibit neuronal electrophysiological properties, and are immunoreactive for GABA, substance P,

choline acetyltransferase, and glutamate (Gritti et al., 1996).

Neurogenesis in the Cortex of the Adult Human Brain.Multipotent neural precursors residing in the

adult human cortex have recently been isolated. Precursors have also been found in the hippocampus and

amygdala and can reside far from ventricles (Arsenijevic et al., 2001).

Neurogenesis in the Cerebellum. The cerebellum is a long‐known brain region with postnatal

neurogenesis. A single injection of FGF‐2 into the neonatal cerebellum stimulates cell division of neuronal

precursors in the external granular layer (EGL; Cheng et al., 2001). As a result of increased proliferation in

the EGL, numbers of neuronal cells in the internal granular layer (IGL), the final destination of the EGL

precursors, is significantly increased (Cheng et al., 2001).

Neurogenesis in the Peripheral Nervous System.With regard to peripheral neurons, FGF‐2 can induce
proliferation of cells cultured from postnatal mouse DRG (Namaka et al., 2001). Dissociated neurons

die under the culture conditions employed. Following FGF‐2 withdrawal and addition of trophic factors,

new DRG neurons develop and differentiate (Namaka et al., 2001). DRG neurons require FGF‐2 during

distinct developmental time windows. For a subpopulation of DRG neurons (termed P‐neurons for their
‘‘pear‐like’’ shape), for example, it was shown that they sequentially required first NGF and subsequently

FGF‐2 for their survival (Acosta et al., 2001).

Neurogenesis in FGF‐Deficient Mouse Mutants. On the basis of evidence that exogenous FGF‐2
prominently interferes with the generation and differentiation of neuronal precursor cells, respective

phenotypes were expected in FGF‐2‐deficient mice. FGF‐2‐deficient mice are viable, and display distinct

neuronal defects, e.g., a numerical deficit in cortical neurons (Dono et al., 1998). Despite a 40% decrease in

frontal and parietal cortical gluatmatergic pyramidal neurons and reductions in neuronal soma size, no

change in pyramidal or granule cell number has been detected in the hippocampus and occipital cortex

of Fgf2(�/�) mice (Korada et al., 2002). This suggests that FGF‐2 is necessary to regulate cell number and

size in the anterior cerebral cortex. In contrast to pyramidal neurons, cortical GABA interneurons are

unaffected by the lack of FGF‐2. Raballo et al. (2000) have reported that the volume of the dorsal cerebral

cortical anlage of Fgf2(�/�) mice is substantially smaller, whereas the volume of the basal cerebral cortical

anlage is unchanged. Furthermore, the dorsal cerebral cortical anlage of FGF‐2 knockout mice seems

to have less founder cells and a reduced expansion of the progenitor pool over the first portion of

neurogenesis.
3.5 Axon Growth and Branching

FGFs can have profound effects on neuronal morphologies, including axon and dendritic length and

arborization. In this capacity, FGFs resembles other growth factors, e.g., the neurotrophins brain‐derived
neurotrophic factor (BDNF) and neurotrophin 4 (NT‐4), and ciliary neurotrophic factor (CNTF; Patel and

McNamara, 1995; Kalil et al., 2000). FGF‐2 significantly increases axon branching of dissociated cortical

neurons (Kalil et al., 2000). Within the hippocampus, multiple factors have been identified that enhance

axonal branching of pyramidal axons (but not dendrites). FGF‐2 appears to be the most effective factor

stimulating axonal branching (Patel and McNamara, 1995). FGF‐2 seems to specifically affect bifurcation

and growth of axonal branches, without affecting the elongation rate of primary axons. The effect of FGF‐2
is reversible, indicating that the continuous presence of the factor is required (Aoyagi et al., 1994). Several

lines of evidence suggest that FGFR signaling can collaborate with signaling through extracellular matrix

components, e.g., fibronectin (Choung et al., 2002).
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Studies on cultured cortical neurons have revealed that growth cones pause and enlarge in regions, from

which at later time points axon branches develop (Szebenyi et al., 1998). Application of FGF‐2 to cultured

cortical neurons increases the size of growth cones and inhibits advancement of growth cones, thereby

causing a threefold increase in axon branching. FGF‐2 also affects growth cone morphology and promotes

rapid extension of filopodia within minutes (Szebenyi et al., 2001). Furthermore, FGF‐2 administered to the

growth cone increases the probability for axonal branching, suggesting that distal regions of the axon are

more responsive to FGF‐2 than other regions of the axon shaft (Szebenyi et al., 2001). The observation that

FGF‐2 is a potent trigger of axonal branching of cultured neurons has recently been carried to the in vivo

situation. In an injury model of the entorhinal cortex–hippocampal connection, denervation of the

hippocampal formation induces axonal sprouting. This results in an increase in the expression of several

growth factors, including FGF‐2 (Ramirez et al., 1999). Infusion of FGF‐2 into rats with unilateral entorhinal
lesions increased sprouting of axon terminals of the cholinergic septodentate pathway (Ramirez et al., 1999),

suggesting a role of FGF‐2 in the regulation of injury‐related axonal remodeling of this cholinergic pathway.
3.6 Neuroprotection and Lesion Repair

Effects and Underlying Mechanisms. Among the earliest discoveries concerning putative roles of FGFs in

the nervous system was the neurotrophic survival‐promoting effect of FGF‐2 on many different neuron

populations in vitro (Morrison et al., 1986; Walicke et al., 1986; Unsicker et al., 1987) and following brain

lesions (cf. Bieger and Unsicker, 1995). Many subsequent studies have addressed putative mechanisms

underlying these effects of FGF‐2. Thus, Mattson et al. (1989, 1993) showed that FGF‐2 decreases gluta-

mate‐induced neuronal cell death by regulating glutamate receptor subunits, leading to a suppression of

the 71‐kDa NMDA receptor protein (NMDARP‐71) but not of the alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐
isoxazolepropionic acid (AMPA)/kainate receptor GluR1. Moreover, FGF‐2 potentiates quisqualate‐
induced inositol phosphate formation in hippocampal neurons. This effect is blocked by addition of the

AMPA/kainate receptor antagonist 6,7‐dinitro‐quinoline‐2,3‐dione (DNQX), suggesting an involvement

of an AMPA/kainate receptor subtype distinct from GluR1 (Blanc et al., 1999). Recent evidence

suggests that the neuroprotective effect of FGF‐2 may require the presence of additional growth factors,

e.g., glial‐cell‐line‐derived neurotrophic factor (GDNF; Lenhard et al., 2002). Signaling of FGF‐1‐mediated

protection against glutamate toxicity has been shown to imply inactivation of glycogen synthase kinase‐3b
by phosphorylation at serine 9, which requires PI3K‐Akt (Hashimoto et al., 2002).

Similarly, cerebellar granule neurons are also protected by Fgf‐1 against excitotoxictiy in a PI3‐kinase/
Akt‐dependent and MAP‐kinase/CREB‐independent manner (Hossain et al., 2002).

It has been speculated that the neuroprotective effects of FGF‐2 results, in part, from a prevention or

attenuation of oxidative damage (Zhang et al., 1993). It has also been found that FGF‐2, as well as some

other factors, is effective in suppressing oxidative impairment of synaptic transporter functions, and that

FGF‐2 suppresses oxidative stress and mitochondrial dysfunction induced by amyloid beta peptide and

Fe2þ in synaptosomes (Guo and Mattson, 2000).

Forebrain Septal and Midbrain Dopaminergic Neurons. In addition to hippocampal neurons,

forebrain septal and midbrain dopaminergic neurons are supported by FGF. FGF‐2 promotes survival of

both cholinergic (Otto et al., 1989) and noncholinergic septal neurons (Cummings et al., 1992) following

fimbria–fornix transection. The effect on the cholinergic population, which projects to the hippocampus,

may be indirect and mediated by glial cells, as indicated by an in vitro study (Perkins and Cain, 1995).

Mesencephalic dopaminergic neurons are immunoreactive for FGF‐2 in vivo and in vitro (Tooyama et al.,

1992; Casper et al., 1994) and respond to exogenous FGF‐2 with increased survival both in vitro and in vivo.
FGF‐2 also significantly augments their survival (Otto and Unsicker, 1993a) following exposure to the

dopaminotoxic substance 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) or to its active form, the

methyl pyridinium ion (MPPþ). Importantly, FGF‐2 also partially protects in vivo against the deleterious

chemical and morphological consequences of an MPTP lesion (Otto and Unsicker, 1990, 1993b). Similarly,

resistance of dopaminergic neurons to L‐glutamate‐mediated toxicity was greatly enhanced in the presence

of FGF‐2 (Casper and Blum, 1995). Together, these data identify FGF‐2 as a potent neuroprotective agent
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for dopaminergic nigral neurons. Interestingly, both the low‐ (18 kDa) and the high‐molecular weight

FGF‐2 isoforms (21 and 23 kDa) seem to carry survival and neurite‐promoting activities for dopaminergic

neurons (Claus et al., 2000, 2004a, b). This is consistent with the expression of all three isoforms as well as

FGFR‐1, ‐2, and ‐3 in the intact and toxin‐lesioned rat dopaminergic nigrostriatal system (Claus et al.,

2004b). As far as underlying mechanisms of the protective effects of FGF‐2 for midbrain dopaminergic

neurons are concerned, two possibilities have been discussed and experimentally tested. One important

mechanism is the FGF‐2‐mediated induction of other growth factors, such as TGF‐b and others (Krieglstein

et al., 1998). Interestingly, regulation of gap junctions may be implicated in the mediation of the

neuroprotective effects of FGF‐2 (Leung et al., 2001): In mixed cultures of midbrain neurons and

nonneuronal cells, blockade of gap junction communication by oleamide causes a significant reduction

of survival rates of dopaminergic midbrain neurons in the presence of FGF‐2.
FGF‐8, which plays a well‐documented role in early pattern formation of the midbrain/hindbrain, can

also promote survival of postmitotic neurons as efficiently as FGF‐2. For example, FGF‐8 protects rat

hippocampal neurons from oxidative stress (Mark et al., 1999). In a time course study, it has been reported

that FGF‐8 is neuroprotective when added as a pretreatment, cotreatment, and even at 2‐h postinsult (Mark

et al., 1999). This may indicate that FGF‐8 might be useful in treatment of oxidative insults, such as stroke.

FGF‐Mediated Neuroprotection In Vivo. As summarized above, neuroprotective effects are a promi-

nent feature of FGF functions. The in vivo capacity of exogenous FGFs for protecting lesioned neurons and

orchestrating responses to lesions has been substantially documented. Protection of retinal ganglion cells

following transection of the optic nerve has been the first paradigm, in which the neurotrophic potential of

FGF‐1 and ‐2 has been demonstrated in vivo (Sievers et al., 1987). Axotomized cholinergic neurons of the

septo‐hippocampal pathway and toxin‐lesioned nigrostriatal dopaminergic neurons were the next popula-

tions, for which a protective effect of FGF‐2 was reported (Anderson et al., 1988; Otto et al., 1989; Otto and

Unsicker, 1990). A putative physiological relevance of FGF‐2 has been suggested by the finding that

endogenous FGF is significantly upregulated after lesioning. Cortical lesions induce a rise in FGF‐2
mRNA and protein for up to 2 weeks, with microglia and reactive astrocytes being the principal sources

of FGF‐2 (Frautschy et al., 1991). Similarly, entorhinal cortex lesions have been shown to elicit an increase of

FGF‐2 in the outer molecular layer of the dentate gyrus ipsilateral to the lesion (Gomez‐Pinilla et al., 1992).
Importantly, FGF‐2‐mediated repair processes can improve behavioral scores of mice after lesioning

(Ishihara et al., 1992), suggesting an important capacity of FGF‐2 for restoring brain functions.
3.7 Ischemia

Stroke resulting from brain ischemia is a major cause of death and long‐term disability, annually affecting

more than 700,000 people in the USA. Depending on the site of vascular occlusion, distinct brain regions

may be affected. Several members of the FGF family, in particular FGF‐2, are intimately involved in

neuronal protection and repair after ischemic, excitotoxic, and metabolic injury (cf. Alzheimer and Werner,

2002 for review).

Hippocampal ischemia elicits rapid neuronal cell death (Kirino, 2000; Martone et al., 2000), which can

be overcome by neuroprotective growth factors, including FGF‐1, ‐2, and ‐7 (Nakata et al., 1993; Cuevas

et al., 1998; Sadohara et al., 2001). As with other CNS lesion paradigms, FGF‐2 has been shown to be

upregulated following brain ischemia (Masumara et al., 1996; Martinez et al., 2001). In animal models of

brain ischemia, FGF‐1 and ‐2 have been widely documented to prevent cell death resulting from ischemic

damage. Thus, application of FGF‐1 into the lateral cerebral ventricles before or even shortly after an

ischemic insult prevents the death of hippocampal pyramidal cells (Sasaki et al., 1992). Similarly, applica-

tion of FGF‐2 also prevented CA1 neuronal damage in a dose‐dependent manner (Nakata et al., 1993).

Unexpectedly, even systemic administration of FGF‐2 can ameliorate acute focal ischemic injury in the

cerebral cortex without increasing blood flow following middle cerebral artery occlusion (MCAO; Bethel

et al., 1997). Two hours after MCAO and a 24‐h reperfusion interval, FGF‐2‐like immunoreactivity was

upregulated in the striatum and the frontoparietal cortex. In the core of the infarct and in the surrounding

region, the so‐called penumbra, astroglial cells were the predominant source of FGF‐2; only few neurons in
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the penumbra were FGF‐2‐immunoreactive (Wei et al., 2000). Together, these data suggest that FGF‐2 is

upregulated and may possibly act as a protective factor in cerebral ischemia. Consistent with this assump-

tion, postischemic administration of FGF‐2 improves sensorimotor function and reduces infarct size (Li

and Stephenson, 2002). Beneficial effects have also been reported following adenovirus‐mediated gene

transfer (Matsuoka et al., 2003) and conjugation to a blood–brain barrier delivery vector (Song et al., 2002).

Synergistic protective effects of caspase inhibitors and FGF‐2 against brain injury induced by transient focal

ischemia argue in favor of putative combinatorial therapeutic strategies (Ma et al., 2001). Despite the well‐
documented benefits of FGF‐2 in animal models of stroke, there is currently no clinical development in

stroke, after a phase II/III trial with FGF‐2 in acute stroke patients was discontinued because of an

unfavorable risk‐to‐benefit ratio (Alzheimer and Werner, 2002).

With regard to other FGFs, application of FGF‐18 shortly after MCAO produces a dose‐dependent
reduction in infarct volume and amelorites behavioral deficits (Ellsworth et al., 2003, 2004).

FGF‐2 Knockout Mice. Mice deficient for FGF‐2 have greatly added to our understanding of FGF‐2
functions in the normal and lesioned brain. An impact of FGF‐2 for the generation and differentiation of

neural stem cells has been consolidated by the observation that endogenously synthesized FGF‐2 is

necessary and sufficient to stimulate proliferation and differentiation of neural progenitor cells in the

adult hippocampus following a brain insult (Yoshimura et al., 2001). FGF‐2‐deficient mice exhibit a

significant decline in BrdU‐labeling kainic acid treatment or MCAO in the hippocampal formation as

compared with wild‐type littermates. This phenotype could be rescued by an intraventricular injection of

a herpes simplex virus‐1 amplicon vector carrying the FGF‐2 gene into FGF‐2(�/�) mice. Mice lacking

FGF‐2 display a significant increase in infarct volume after MCAO and lack the ischemia‐mediated

induction of BDNF and its cognate receptor trkB in the hippocampal formation (Kiprianova et al.,

2004), suggesting BDNF and trkB as potential targets of FGF‐2 actions.
3.8 Seizures and Seizure‐Induced Brain Damage

Glutamate is a major factor in ischemia‐mediated neuronal degeneration in the CNS (Rothman and Olney,

1986; Kiessling and Gass, 1994; Ikonomidou and Turski, 1995). Its excessive release and extracellular

accumulation causes persistent activation of glutamate receptors, followed by acute neurotoxic degenera-

tion of the hyperstimulated neuron (Ikonomidou and Turski, 1996). Glutamate‐mediated neurotoxicity is

also a major cause of neuron death in epilepsy (Olney et al., 1986). A model system for eliciting brain

seizures is the application of kainic acid (kainate) or bicuculline (Olney et al., 1986). Bicuculline is a GABA

receptor antagonist, whereas kainic acid acts as an agonist of a specific set of glutamate receptor (kainate

receptors; von Bohlen und Halbach and Dermietzel, 2002).

Depending on the experimental paradigm and the FGF isoform, FGFs may have anticonvulsant or

proconvulsant properties. FGF‐2 does not induce major anticonvulsive effects when administered before or

after kainic‐acid‐induced seizures (Liu et al., 1993; Liu and Holmes, 1997a), but can induce seizures on its

own (Liu and Holmes, 1997b). In contrast, FGF‐1 may decrease convulsions in the kainate model (Cuevas

and Gimenez‐Gallego, 1996). In addition, both FGF‐1 (Cuevas et al., 1994) and FGF‐2 (Liu et al., 1993)

prevent hippocampal cell losses in the kainate model. Kainate induces a robust increase in FGF‐2 gene

expression in the hippocampus, with a peak at 24 h (Riva et al., 1994). Similarly, bicuculline increases FGF‐2
mRNA (Riva et al., 1992). This increase in FGF‐2 expression is supposed to be due to an upregulation in

astroglial rather than neuronal cells. Upregulation of astroglial FGF‐2 may result from released excessive

glutamate acting on astroglial glutamate receptors (Humpel et al., 1993).

Kindling is a widely studied animal model for temporal lobe epilepsy in which daily electrical stimula-

tion of certain brain regions results in the gradual progression and intensification of limbic motor seizures

(Kalynchuk, 2000). After a single kindling stimulation, FGF‐2 mRNA levels, but not FGF‐1 mRNA levels,

have been found to be increased in the hippocampus. Fully kindled animals left unstimulated for 1 week,

however, did not exhibit any alteration in the mRNA levels for FGF‐1 or ‐2 (Simonato et al., 1998; Bregola

et al., 2000). These data, in combination with the data obtained by using the other epilepsy models, indicate

that the observed changes in FGF‐2 mRNA may represent short‐term effects.
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Studies addressing time‐dependent regulation of FGF‐2 protein in limbic regions following electro-

shock seizures have revealed that chronic, but not acute, treatments cause a significant rise in frontal and

rhinal cortices (Gwinn et al., 2002).
3.9 Glial Cells as an Important Source of FGFs

Glial cells are an important source for the synthesis of FGFs in the CNS. In particular, astrocytes synthesize

and release FGF‐2 (cf. Bieger and Unsicker, 1996; Reuss and von Bohlen und Halbach, 2003, for reviews).

Regulation of astroglial FGF‐2 expression is regulated by numerous stimuli and cytokines. For example,

oxygen deprivation causes amassive increase in FGF‐2 protein expression in cultured astrocytes, which peaks
at 24 h (Liu and Zhu, 1999). Similarly, serum and glucose deprivations induce astroglial FGF‐2 immunore-

activity and moderately increase FGFR‐1 expression (Liu and Zhu, 1999). In the PNS, Schwann cells are an

important source of FGF‐2. Reverse transcriptase‐polymerase chain reaction (RT‐PCR) and in situ hybridi-

zation have revealed expression of the mRNAs for FGF‐2 and the FGFR‐1, ‐2, and ‐3 in Schwann cells and

macrophages. FGF‐2 and all four FGFRs were expressed in neurons of the spinal ganglia. A crush lesion

resulted in no upregulation of FGFR transcripts in the nerve (Grothe et al., 2001). Schwann cells over-

expressing high‐molecular‐weight isoforms have been reported to enhance axonal regeneration through

peripheral nerve gaps (Timmer et al., 2003) as well as reinnervation and functional recovery of intrastriatal

dopamine grafts following their transplantation to the respective elsion sites (Timmer et al., 2004).

Paracrine Actions of FGF on Neurons. FGF‐2 released from astroglial cells acts in both paracrine and

autocrine fashions. Signaling toward neurons can significantly increase the length of axons and dendrites of

loate embryonic cortical neurons, as shown by treatment of cultures with astroglial‐conditioned medium

(Le and Esquenazi, 2002). Antibody‐mediated blocking of FGF‐2 signaling significantly reduces astroglial‐
dependent neurite growth (Le and Esquenazi, 2002). Astroglial FGF‐2 also plays an important role in

neuron survival. In mixed cultures of embryonic midbrain dopaminergic neurons and astroglial cells,

dopamine stimulates release of FGF‐2, which then promotes survival and neurite growth. Antibodies to

FGF‐2 specifically block this effect (Reuss and Unsicker, 2000).

FGF‐9 Is Expressed by Both Astroglial Cells and Oligodendrocytes. Using double immunofluores-

cence and in situ hybridization, Nakamura et al. (1999) have detected FGF‐9‐specific signals in glia fibrillary

acidic protein (GFAP)‐positive white matter astrocytes of adult rat spinal cord and brainstem. FGF‐9 is also
expressed by CNPase‐positive cerebellar and callosal oligodendrocytes (Nakamura et al., 1999).

In contrast to the FGFs mentioned above, FGF‐18 is preferentially expressed in neurons but not in glial

cells in the brain. FGF‐18 was found to have mitogenic activity for both astrocytes and microglia, but seems

to lack neurotrophic activity. These findings suggest that FGF‐18 is a unique FGF having a role as a neuron‐
derived glial cell growth factor (Hoshikawa et al., 2002).

At early stages during development FgfR1–3 expression overlaps with that of Olig2 (an oligodendrocyte

progenitor marker) in the embryonic ventricular zone of the lateral and medial ganglionic eminences

(Bansal et al., 2003), suggesting a role of respective ligands in oligodendroglial differentiation. With regard

to myelination, transient exposure of cultured brain cells to FGF‐2 has been reported to increase myelina-

tion (Magy et al., 2003). In vivo, FGF‐2 has been shown to inhibit oligodendrocyte lineage differentiation

and myelin production by oligodendrocytes (Goddard et al., 2001; Armstrong et al., 2002).

Autocrine/Paracrine Effects of FGF on Astroglia and Oligodendrocytes. Glial cells are also a promi-

nent target for different FGF family members. Autocrine or paracrine actions of FGF‐2 on astrocytes

include regulation of gap junction (connexin43) expression and function, neurotransmitter sensitivity, and

intermediate filament density (Reuss et al., 1998, 2000a, b; Gomes et al., 1999).

In an in vitro study about the effects of FGF‐2 and TGF‐b1 on astrocytes, these factors have been

claimed to act antagonistically on astrocyte differentiation as monitored by GFAP expression (Reilly et al.,

1998). In this study, treatment with TGF‐b1 leads to a significant increase in GFAP mRNA and protein,

whereas FGF‐2 changed astrocytes from a polygonal to a stellate morphology and suppressed GFAP

expression. In addition, both factors seemed to interfere with each other since FGF‐2 inhibited the

TGF‐b1‐mediated increase in GFAP mRNA and protein. However, suppression of GFAP expression
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reported by Reilly et al. (1998) was contradictory to earlier reports about FGF‐2‐dependent induction of

GFAP in astrocytes (Eclancher et al., 1990; Perraud et al., 1990).

A special feature of FGF‐2 in astrocytes is its subcellular localization during regulation of astrocyte

proliferation. As proposed by Stachowiak et al. (1997), astroglial activation leads to nuclear translocation

and accumulation of FGF‐2 and its receptor. This finding has been confirmed by Joy et al. (1997).

Besides their effects on astrocyte differentiation, FGFs have also been shown to regulate other astroglial

cell functions, including gap junction coupling and neurotransmitter sensitivity (Reuss et al., 1998,

2000a, b). Cultured cortical and striatal, but not mesencephalic, astrocytes respond to FGF‐2 with a

reduction of connexin43 protein, connexin43 mRNA, and intercellular communication as revealed by

dye spreading (Reuss et al., 1998). Interestingly, FGF‐5 and ‐9 can perform identical functions, but with

different brain region specificity, in that FGF‐5 exclusively addresses midbrain astroglial cells, and FGF‐9,
cortical, striatal, and midbrain astroglia (Reuss et al., 2000a). Identical region specificity is seen with

regard to the astroglial phenotype of FGF‐2, ‐5, and FGF‐2/FGF‐5 double‐deficient mice (Reuss et al.,

2003). FGF‐2(�/�) mice displayed a dramatic reduction in GFAP expression of gray matter, but not white

matter astrocytes in cortex and striatum, and not in midbrain. FGF‐5(�/�) mice show an identical

phenotype for midbrain, but not cortical and striatal astroglia, while FGF2/FGF‐5 double deficiency

affects astroglial GFAP in all three regions. Brain region specificity is not matched by a respective distribu-

tional pattern of the ligands, or FGFR‐2 and ‐3; both receptors can be mapped to astroglial cells in a brain‐
region‐independent fashion (Reuss et al., 1998). Possibly, differential splice forms of the receptors or

regional specificity of coligands/coreceptors may account for the observed region specificity. Another

prominent effect of FGF‐2 on astroglial functions is its influence on astroglial sensitivity to dopamine.

Treatment of astrocytes with FGF‐2 leads to an increase in numbers of dopamine‐sensitive astrocytes and to
an induction of the D1 dopamine receptor (Reuss et al., 2000b).

In addition to astrocytes, oligodendrocytes are important target cells for FGF actions. Responsiveness of

astrocytes and oligodendroglial cells to FGFs is further supported by the fact that both cell types express the

IgIIIc splice variant of FGFR‐2 and ‐3 (Miyake et al., 1996; Reuss et al., 2000). Another glial cell type that is

affected by FGFs is microglia (Goddard et al., 2002). Activation of all three glial subpopulations, astrocytes,

oligodendrocytes, and microglia, can be observed after injection of FGF‐2 in the cerebrospinal fluid

(Goddard et al., 2002), resulting in increased GFAP expression, swelling of the cell bodies, and enhanced

formation of processes in astrocytes. The same study demonstrates a significant increase in the number of

ED1‐labeled microglia and a change in microglial morphology toward a multipolar and granular appear-

ance after FGF‐2 injections. Finally, in oligodendrocytes a loss of myelin sheaths was observed after

injections of FGF‐2 (Goddard et al., 2002). As demonstrated by Cohen and Chandross (2000), FGF‐2 is

not the only FGF family member to influence oligodendrocyte performances, as FGF‐9 is able to modulate

the expression of myelin related proteins and multiple FGFRs in developing oligodendrocytes.
3.10 Learning and Memory

Increasing evidence suggests that FGFs may be important modulators of processes attributed to learning

and memory. Continuous superfusion of in vitro brain slices with FGF‐1 has been shown to decrease the

basal amplitude of spikes and significantly increase paired‐pulse facilitation in the hippocampus (Sasaki

et al., 1994). Tetanic stimulation can induce long‐term potentiation (LTP). When FGF‐1 is continuously

applied, tetanic stimulation leads to an enhancement of the magnitude of short‐term potentiation after the

tetanus and facilitates the generation of LTP. Furthermore, FGF‐1 also enhances dose‐dependent posttetanic
potentiation directly after the tetanus (Sasaki et al., 1994). This suggests that FGF‐1 may be involved in

mechanisms related to the generation of LTP. Since LTP is thought to be linked to mechanisms involved in

memory formation and learning (Bliss and Collingridge, 1993), FGF‐1 might have a role in such mechan-

isms. Evidence supporting this view came from a study, using i.c.v. injections of FGF‐1. LTP can be induced

using a subthreshold stimulation in combination with administration of FGF‐1; however, LTP cannot be

induced using the subthreshold stimulation alone (Hisajima et al., 1992). Further evidence came from a

study using an FGF‐1 fragment analog (amino acid residues 1 through 29 of FGF‐1 with an alanine
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substituted at position 16) on accelerated senescence‐prone mice. Subcutaneous injection of this FGF‐1
fragment analog was found to prolong the mean retention latency and to shorten the latency in a passive

avoidance test. In addition, improved performance was also obtained in several other behavioral tests,

indicating a beneficial effect of the FGF‐1 fragment analog on learning and memory in accelerated

senescence‐prone mice (Sasaki et al., 1999).

In addition to FGF‐1, FGF‐2 seems to be involved in neuronal signaling. In the dentate gyrus,

subthreshold stimulation (20 pulses at 60 Hz) normally fails to induce LTP; however, after administration

of FGF‐2, LTP can be induced using this protocol (Ishiyama et al., 1991). A similar model system

demonstrating growth factor effects on LTP is provided by the following example: Transection of the

fimbria–fornix pathway decreases the frequency of LTP generation. Intracerebroventricular injection of

EGF or FGF‐2 facilitated LTP generation in the fimbria–fornix lesioned rats, suggesting that EGF and FGF‐2
can improve hippocampal LTP impairment after loss of subcortical afferents (Abe et al., 1992).
4 Conclusions and Perspectives

The great diversity of effects generated by FGFs and reviewed in this chapter results from a great diversity of

ligands, receptors, receptor splice variants, and intracellular messenger cascades that eventually lead to

alterations in gene expression. In the CNS at least ten FGF family members are present. Surprisingly, the

past decade (cf. review by Bieger and Unsicker, 1996) has added relatively little, with the exception of FGF‐1
and ‐2, to the neural functions of the other FGFs in the nervous system. It seems that the analysis of

established FGF mouse mutants and the generation of conditional FGF and FGFR mutants is gaining speed

now, triggering expectations that in a decade from now we shall have a more detailed understanding of FGF

signaling to neurons and glial cells. Hopefully, this also applies to a more thorough understanding of the

roles FGFs play in concert with other cytokines, e.g., TGF‐bs. Finally, there has been relatively modest

progress in the past decade regarding therapeutic applications of FGFs, acting agonistically or antagonisti-

cally as small peptides and drugs, raising hopes that problems such as targeting of factors to specific

cells, transport through the blood–brain barrier, and long‐term deliverance, for example, through growth‐
factor‐secreting cells, may eventually be overcome.
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Abstract: Transforming growth factors‐b (TGF‐bs) regulate numerous cell functions in the developmental

and adult brain. TGF‐bs are secreted dimeric proteins that signal via heteromeric transmembrane serine–

threonine kinase receptors. Phosphorylation of R‐Smads leads to the formation of complexes with the

common Smad4, which translocates to the nucleus to regulate, as a larger transcriptional complex,

immediate early gene and target gene expression. In the nervous system, TGF‐bs have roles in neurons

and glia and are involved in the regulation of proliferation, differentiation, and neuron survival and death,

as well as in orchestrating its response to lesion.

List of Abbreviations: Ab, amyloid b; AD, Alzheimer’s disease; Alk, activin‐receptor‐like kinase; BMP,

bone morphogenetic protein; CNS, central nervous system; DRG, dorsal root ganglion; E, embryonic day;

ECM, extracellular matrix; EGF, epidermal growth factor; FGF, fibroblast growth factor; GDF, growth/

differentiation factor; GDNF, glial cell line‐derived neurotrophic factor; GFAP, glial fibrillary acidic protein;
IEG, immediate early gene; IL, interleukin; JNK, c‐Jun NH(2)‐terminal kinase; ir, immunoreactivity/

immunoreactive; LAP, latency‐associated protein; LLC, large latent protein complex; LTBP, latent‐TGF‐b‐
binding protein; MAPK, mitogen‐activated protein kinase; MEKK, MAPK/ERK kinase kinase; MIS,

müllerian inhibiting substance; MMP, matrix metalloprotease; NGF, nerve growth factor; PAI, plasminogen

activator inhibitor; PD, Parkinson’s disease; PDGF, platelet‐derived growth factor; PNS, peripheral nervous

system; Shh, sonic hedgehog; TAK, TGF‐b‐activated kinase; TGF‐b, transforming growth factor‐b; TbR,
TGF‐b receptor; t‐PA, tissue plasminogen activator

1 Introduction

Transforming growth factors‐b (TGF‐bs) are multifunctional cytokines with widespread distribution and

contextual activity. There are three unique TGF‐b isoforms expressed in mammals encoded by three

different genes regulated by unique promoters. TGF‐bs are synthesized as preproproteins containing a

signal peptide and a C‐terminally located mature part. TGF‐bs form disulfide‐bridged homodimers and are

folded in a cystine‐knot‐like motif. During processing the mature protein stays noncovalently bound to its

proprotein, building a latent biologically inactive form. TGF‐bs signal via a heteromeric transmembrane

serine–threonine kinase receptor, whereby the signal may be intracellularly mediated via Smad proteins that

translocate into the nucleus to form, in combination with other components, the transcriptional complex.

The biological effects of TGF‐bs in the nervous system cover regulation of proliferation, migration,

differentiation, survival, and death.

2 TGF‐b and Receptors

TGF‐b was initially isolated from human platelets and resulted in the purification of a 25‐kDa homodimeric

protein, now called TGF‐b1 (Assoian et al., 1983). In due course, a second protein, TGF‐b2, was purified
(Seyedin et al., 1985, 1987; Cheifetz et al., 1987; and others). The cloning of these proteins revealed that the

precursors are encoded as preproproteins consisting of 390 aa for TGF‐b1 and 412 aa for TGF‐b2, each
carrying a 20–30 aa signal peptide on its N terminus and resulting in a 112 aa processed mature form

(Derynck et al., 1985; De Martin et al., 1987; Madison et al., 1988). Screening of cDNA libraries revealed a

third form, TGF‐b3 (Derynck et al., 1988; Jakowlew et al., 1988a; ten Dijke et al., 1988a), as well as TGF‐b4
from chicken (Jakowlew et al., 1988b; now considered as the TGF‐b1 homolog from chicken) and TGF‐b5
fromXenopus (Kondaiah et al., 1990). Each TGF‐b isoform is encoded by a distinct gene located on different

chromosomes: TGF‐b1 on human chromosome arm 19q13, TGF‐b2 on 1q41, and TGF‐b3 on 14q24 and on
mouse chromosomes 7, 1, and 12, respectively (Fujii et al., 1986; Barton et al., 1988; ten Dijke et al., 1988b).

2.1 TGF‐b Superfamily

The TGF‐b superfamily of proteins includes about 30 members in mammals. They are divided into two

major subgroups, the first one comprising, inter alia, TGF‐bs, activins, nodal and myostatin/GDF8,
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müllerian inhibiting substance (MIS), and a second group including the bone morphogenetic proteins

(BMP) and growth/differentiation factors (GDF) (Chang et al., 2002; Miyazono et al., 2002). TGF‐ b/BMP‐
like proteins are found in vertebrates and invertebrates, including Caenorhabditis elegans and Drosophila

melanogaster (Newfeld et al., 1999; Patterson and Padgett, 2000). Many of these signaling proteins harbor

important functions during early embryogenesis, organogenesis, after birth, and in the adult, as well as for

tissue repair and homeostasis (Kingsley, 1994; Hogan, 1996; Chang et al., 2002; Reddi, 2005). Dysregulated

functions of TGF‐b superfamily members have been attributed to the pathogenesis of diseases such as

cancer (Mummery and van den Eijnden‐van Raaij, 1999; Blobe et al., 2000; Miyazono et al., 2003; Siegel

and Massague, 2003), immune tolerance and inflammation (Wahl and Chen, 2003; Schmidt‐Weber and

Blaser, 2004), skeletal dysplasias (Thomas et al., 1997; Stelzer et al., 2003), cachexia (Lee and McPherron,

2001; Zimmers et al., 2002), osteoporosis (Turgeman et al., 2002, Wu et al., 2003), infertility (Dong

et al., 1996; Galloway et al., 2000), abnormal vascularization (Paques et al., 1997; Blobe et al., 2000; He

et al., 2003), atherosclerosis (Grainger, 2004), psoriasis (Blessing et al., 1996), fibrotic disease (Bartram

and Speer, 2004; Bataller and Brenner, 2005), and renal disease (Böttinger and Bitzer, 2002; Schena and

Gesualdo, 2005).
2.2 TGF‐b Structure

TGF‐b2 was the first protein of the TGF‐b superfamily for which the protein structure was solved upon

crystallographic determination (Daopin et al., 1992; Schlunegger and Grutter, 1992). The monomer

represents an elongated structure consisting of two pairs of double‐stranded b‐sheets, tied together by

four disulfide bonds in the core region of the protein homomer. This cystine cluster may replace the

hydrophobic core of globular proteins. TGF‐b dimers are formed via two identical hydrophobic interfaces

and stabilized by the ninth cystine on each side building an interchain disulfide bond. Although the

structure seemed unusual at first, the structural motif, coined the cystine knot motif (McDonald and

Hendrickson, 1993), could be extended to describe a structural superfamily of growth factors, including

nerve growth factor (NGF) and platelet‐derived growth factor (PDGF) (although NGF and PDGF differ

from TGF‐bs in their dimer structure; Daopin et al., 1992; Swindells, 1992; McDonald and Hendrickson,

1993; Sebald et al., 2004). By following the resolution of the crystal structures of TGF‐ b3 (Mittl et al., 1996),

BMP7 (Griffith et al., 1996), and BMP2 (Scheufler et al., 1999), it can be concluded that despite the

sequence similarity of as little as 30%, the TGF‐b superfamily is characterized by a typical tertiary structure

of two fingertip loops and a third helical structure including a specific mode of dimerization resulting in a

similar three‐dimensional structure (for a review see Sebald et al., 2004).
2.3 TGF‐b Activation

TGF‐bs are secreted as large latent protein complexes (LLC; for a review see Annes et al., 2003) and targeted

to the extracellular matrix (ECM). TGF‐b1, ‐b2, and ‐b3 are synthesized as homodimeric proproteins (pro‐
TGF‐b; 75 kDa). In the trans‐Golgi network, the precursors are cleaved by furin into the N‐terminal

propeptides, also referred to as latency‐associated proteins (LAPs), which still strongly bind the C‐terminal

mature TGF‐b dimer in a noncovalent manner. This small latency complex is released; however, within this

complex TGF‐b cannot bind its extracellular receptor. LAP, on the other hand, forms a specific disulfide

bridge with another gene product, the latent‐TGF‐b‐binding protein (LTBP/fibrillin protein family; for

reviews see Ramirez and Pereira, 1999; Hyytiäinen et al., 2004). Thus LLC includes mature TGF‐b
noncovalently bound to an LAP–LTBP complex. TGF‐b activity may therefore not be regulated via

synthesis or release from the cell but rather by release from the LLC. Mechanisms known to activate

TGF‐b include proteoloytic activation of LAP, for example by plasmin, matrix metalloproteinase‐2
(MPP‐2) or MPP‐9, by activation by thrombospondin, integrins, reactive oxygen species, and by pH

(reviewed in and references therein: Annes et al., 2003). Therefore, orchestration of TGF‐b availability is

the crucial step in TGF‐b biology (Rifkin, 2005).
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3 TGF‐b Receptors and Signaling

Signaling by TGF‐b family members occurs through a heteromeric transmembrane serine–threonine

kinase receptor complex, consisting of type II and type I receptors. There are five type II receptors and

seven type I receptors (activin‐receptor‐like kinases, Alk) known in vertebrates (Miyazono et al., 2000; Shi

and Massague, 2003); different combinations of type II and type I receptors may be responsible for ligand‐
specific signaling. TGF‐bs signal via TGF‐b receptors type II (TbR‐II) and ALK5, and in endothelial cells via

TbR‐II/ALK1 (> Figures 6-1 and > 6-2; DaCosta Byfield and Roberts, 2004; Lebrin et al., 2005). Ligand
. Figure 6-1

TGF‐b signal transduction. TGF‐b ligands bind to TbR‐II, which then recruits a type I receptor, which may be

either Alk‐5 or Alk‐1. Recruitment of Alk‐1 could be shown for TGF‐b signaling in endothelial cells as well as in

the lesion impaired neurons. TbR‐II/Alk‐5 signaling is further mediated via R‐Smads Smad2 and 3, whereas

TbR‐II/Alk‐1 signaling is mediated via Smad1,5. Modified from Waite and Eng, 2003
binding to the TbR‐II induces recruitment of TbR‐I into the complex. Next, the type II receptor phosphor-

ylates the type I receptor at its GS domain, thereby further propagating the signal via phosphorylation of

receptor‐regulated Smads (R‐Smads: Smad2, Smad3; ten Dijke and Hill, 2004). R‐Smad phosphorylation is

facilitated by presentation of SARA, i.e., Smad anchor for receptor activation (Tsukazaki et al., 1998). Upon

activation, R‐Smads form heteromeric complexes with Smad4 in the cytoplasm and translocate to the

nucleus, where they control gene expression. Inhibitory Smads (I‐Smads, e.g., Smad7) act in an opposing

manner to R‐Smads by binding to the activated type I receptor, thereby inhibiting phosphorylation of

R‐Smads. Signaling is terminated either by I‐Smad or by recruitment of E3‐ubiquitin ligase (Smurf1) to the

activated type I receptor, resulting in receptor ubiquitination and degradation. Alternatively, signaling may

be terminated through protein phosphatase‐1‐dependent dephosphorylation (Shi and Massague, 2003).

For further reading regarding numerous molecular details in TGF‐b signaling, please refer to current

reviews and references therein (Waite and Eng, 2003; de Caestecker, 2004; Feng and Derynck, 2005;

Le Roy and Wrana, 2005).

Other proteins have been characterized that can associate with the TbR complex and regulate TGF‐b‐
dependent signaling independent from Smad activation. These include TGF‐b‐activated kinase 1 (TAK1)/



. Figure 6-2

Smad and non‐Smad signaling. The active heterotetrameric receptor complex phosphorylate SARA‐presented
R‐Smads. Phosphorylated R‐Smads associate with Smad4 in the cytoplasm and translocate into the nucleus. The

R‐Smad/Smad4 complex binds to a Smad‐binding DNA element (SBE) and cooperates with other transcription

factors (X), coactivators like CBF/p300, or repressors like c‐ski/SnoN, Tgif of Tieg, to regulate gene transcription.

Independent of Smad, other signaling pathways like RhoA, Ras, and TAK1/MEKK1 have been shown to be

activated via the TGF‐b receptor complex. Modified from Derynck and Zhang, 2003
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MEKK1‐dependent JNK or mitogen‐activated protein kinase (MAPK) activation, rapid ras activation, and

RhoA activation (> Figure 6-2; for further review see Mulder, 2000; Derynck and Zhang, 2003; Moustakas

and Heldin, 2005).
4 TGF‐b Target Genes

TGF‐b‐dependent transcriptional regulation is mediated via interaction of DNA‐binding Smads with

sequence‐specific transcription factors in combination with the coactivators CBP and p300 (Jonk et al.,

1998; Massague, 2000; Derynck and Zhang, 2003). Sequence‐specific transcription factors that cooperate

with the R‐Smad–Smad4 complex include AP‐17bZIP, and members of the transcription factor families

AML/Runx, bHLH, homeodomain, SP1, and winged helix. Besides the essential coactivator CBP or p300,

other coactivators (e.g., SMIF, MDG1, ARC105) and corepressors (e.g., s‐Ski/SnoN, cMyc, TGIF, SNIP1,

SIP1) that interact with Smads define the level of transcriptional activation (Itoh et al., 2000; Massague,

2000; Moustakas et al., 2001; Derynck and Zhang, 2003). The multitude of possible transcriptional

complexes strongly supports the earlier assumption of a context‐dependent TGF‐b activity, now envision-

able at the level of transcriptional regulation.
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With the advent of genomic expression profiling using microarray techniques, TGF‐b target gene

expression has been widely studied using epithelial, mesenchymal, and endothelial cells (Verrecchia et al.,

2001; Zavadil et al., 2001; Ota et al., 2002; Kang et al., 2003; Xie et al., 2003; Yang et al., 2003; Zhao et al.,

2004; please see also the corresponding supporting material). In several screens, gene expression has been

analyzed in the context of immediate early gene (IEG) expression, i.e., within 30 min, and further distal

target gene expression possibly mediated via transcriptional targets of TGF‐b. It also turned out that all

IEGs seem to be under the control of Smad3, whereas Smad2 may be involved in the modulation of target

gene expression. Furthermore, all IEGs seem to be Smad3 induced rather than suppressed (Xie et al., 2003;

Yang et al., 2003). Comparing the gene expression results derived from several cellular systems, it is obvious

that TGF‐b‐dependent transcription is strongly cell type dependent (Zavadil et al., 2001; Yang et al., 2003).

In any case, the screens support the identification of already well established direct target genes of TGF‐b,
including Smad7, Myc, JunB, Pai‐1, p21/Cip1, p15/INK4B, collagen type 4, fibronectin, Smac1, Smurf1,

Snail, Tieg, and Tgif.

The array of TGF‐b target genes (> Table 6-1) gives a good overview on potential signaling crosstalks of

TGF‐b function in development, maintenance, and repair of the nervous system, including Wnt, notch, and

hedgehog pathways.

5 Biological Activity and Physiological Relevance of TGF‐b

5.1 Distribution of TGF‐b in Developing and Adult Brain

Localization of TGF‐b isoforms in mice and rats has been performed using immunohistochemistry and in

situ hybridization studies, demonstrating a widespread distribution of TGF‐b2 and TGF‐b3 during devel-

opment (Flanders et al., 1991; Pelton et al., 1991a, b; Unsicker et al., 1991). TGF‐b1 is confined to meninges

and choroid plexuses. During mouse development TGF‐b2 and ‐b3 immunoreactivities (ir) first become

detectable along peripheral nerves, in radial glial cells, and along central nervous system (CNS) axon tracts

at E12. Neuronal cell bodies become ir from E15 onward. Most notably, TGF‐b ir is not detectable in the

ventricular zone throughout the neural tube, suggesting that TGF‐b may not be involved in the regulation

of cell division of neural stem cells during development (Flanders et al., 1991). In contrast, cells in the

subventricular zone, subplate, and lamina I of the E16 cortex stain positive for TGF‐b. As they develop,

astrocytes are ir for TGF‐b2 and ‐b3. In the adult nervous system, both neurons and astroglia are ir for

TGF‐b and ‐b3. Ir neuron populations include cortical layers 2, 3, and 5, hippocampus, piriform cortex,

retinal ganglionic cells, hindbrain aminergic neurons, as well as spinal and hindbrain motoneurons

(Unsicker et al., 1991). TGF‐b1 is most prominent within the choroid plexus and meninges; it may,

however, be expressed in other cells below levels of detectability. Upon lesioning, TGF‐b1 may by upregu-

lated in astrocytes as well as in neurons in vivo. TGF‐b1 also becomes detectable in tissue culture, possibly

mimicking a lesion‐like situation. In primary neural tissue culture, treatment with all three TGF‐b isoforms

usually results in identical responses, suggesting that the recombinant proteins used have similar affinities

for their shared receptor complex (Krieglstein and Unsicker, 1994).

In addition to the distribution of TGF‐b within the peripheral nervous system (PNS) and the CNS, its

subcellular localization and mode of secretion is of importance in order to elaborate on its possible

functions. Taking PC12 cells as a model to study sorting in the trans‐Golgi network, Specht et al. (2003)
could show that TGF‐b2 may be sorted and released to a large proportion via the regulated path of

secretion. Secretory vesicles provide a milieu of pH 5, which is suitable for TGF‐b activation within the

vesicle, enabling release of active TGF‐b (Specht et al., 2003). This activity‐dependent release may suggest

that TGF‐b2 functions as a modulator of synaptic plasticity.

5.2 TGF‐b May Act as a Morphogen

Early in development, when the neural tube is still devoid of any TGF‐b expression, TGF‐b3 expression can

be detected in the notochord, the wall of the dorsal aorta, and in the dermomyotome (chick stage 18/E3;



. Table 6-1

Genes upregulated or downregulated (d) by TGF‐b in epithelial cells with potential interest in nervous system

development, adulthood, and repair

Cell–matrix interaction Cell–cell interaction Signaling molecules and effectors

Decorin a‐Catenin Activin A

HSPG/perlecan b‐Catenin BMP4 d

IGFBP5 Connexion 37 BMPRII

IGFBP3 Deltex1 (DTX1) c‐myc d

Integrin a3 Disheveled CTGF

Integrin a5 Disheveled homolog FGFR1

Integrin a4 Ephrin type A receptor 2 Follistatin‐like 3

Integrin b3 Ephrin type B receptor 2 FZD1

Integrin b5 Ephrin type B receptor 4 FZD7

Laminin 37 kDa receptor EphB2 GATA2

Laminin B1 EPH3 Hes1

MMP‐2 Ephrin‐B1 HGF d

MMP‐3 Notch 2 Id1 d

MMP‐11 Notch group protein Id2 d

MMP‐14 Smoothened Id3 d

MMP‐16 TLE3 IGF II receptor

Neogenin Wnt‐8B IGF‐2R
Semaphorin I Wnt‐13 Jagged 1

Semaphorin V Nedd9

Tenascin‐C Neuregulin

TIMP‐1 p15Ink4b

TIMP‐3 p21Cip1

PDGF

rhoB

Slug

Snail

Sortilin d

Sox4

Sox9

Sprouty homolog 2 d

Tgif

Tieg

TNF receptor 1

TNFR

Taken from Verrecchia et al. (2001), Ota et al. (2002), Kang et al. (2003), Zavadil et al. (2001), and Zhao et al. (2004)
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Unsicker et al., 1996). Furthermore, TGF‐b2 and ‐b3 are expressed in floor plate cells (Unsicker et al., 1996).

TGF‐b3 may therefore have the capacity to act as a ventralizing factor on patterning and phenotype

determination along the neural tube. TGF‐b has been shown to specify development of mesencephalic

dopaminergic neurons in vivo (Farkas et al., 2003) and promote dopaminergic differentiation from

mesencephalic neural precursor cells in vitro (Roussa et al., 2005). Data also suggest that TGF‐b may

cooperate with sonic hedgehog (Shh) in dopaminergic neuron development (Farkas et al., 2003). Migrating

neural crest cells express TGF‐b1 and may be influenced by TGF‐b along their migratory route. A

promoting role of TGF‐b for the development of a catecholaminergic phenotype is suggested by in vitro

experiments (Howard and Gershon, 1993).
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5.3 TGF‐b Controls Proliferation

TGF‐bs are well known for their capacity to regulate cell proliferation in a context‐dependent manner.

There are at least four scenarios in which regulation of cell proliferation is an important issue in nervous

system development and maintenance: (1) neurogenesis, (2) proliferation of neuroblasts (neural crest cells),

(3) proliferation of glial cells during development or upon lesioning, and (4) upon transformation in

tumors.

Neurogenesis in the neural tube requires definite exit of progenitor cells of the cell cycle to generate

postmitotic neurons. Although TGF‐b is known for inhibiting cell proliferation by inducing G1 arrest, there

is so far no evidence for a role of TGF‐b in developmental neurogenesis. However, there is some indirect

evidence that neural stem cells in the neuroepithelium need to be protected from TGF‐b action, in order to

prevent premature growth retardation (Hanashima et al., 2002; Seoane et al., 2004). Seoane and coworkers

have demonstrated on the basis of protein interaction analysis in HaCaT cells that p21Cip1 expression is

regulated by TGF‐b‐dependent Smad in combination with the forkhead box (Fox) family member FoxO.

This FoxO–Smad complex is inhibited by FoxG1, which has been shown to be essential for proliferation of

telencephalic progenitor cells (Xuan et al., 1995). Indeed, FoxG1 mutants, which display reduced prolifera-

tion of telencephalic progenitor cells, premature differentiation, and early depletion of progenitor popula-

tion (Xuan et al., 1995), show high levels of p21Cip1 in TGF‐b‐sensitive progenitor cells (Seoane et al.,

2004). Exit from the cell cycle during terminal differentiation, as required for neurogenesis, has been

described to be regulated by Ink4d and Kip1 inhibitors of cyclin‐dependent kinases (Zindy et al., 1999;

Cunningham and Roussel, 2001). p27Kip1 has been identified as a TGF‐b‐dependent target gene; however,
there is no evidence for a TGF‐b‐dependent regulation of p19Ink4d. This suggests that TGF‐bmay serve as

an extracellular regulator to induce cell cycle G1 arrest, but may probably not regulate cell cycle exit

required for terminal differentiation.

By affecting the cell cycle before terminal differentiation, TGF‐bmay, of course, regulate proliferation of

neuroepithelial cells, including neuroblasts, neural crest cells, and glial progenitors (Anchan and Reh, 1995;

Zhang et al., 1997b). Furthermore, TGF‐b2 has been shown to regulate cell proliferation in neural crest‐
derived chromaffin cells (Rahhal et al., 2004) with the capacity of lifelong proliferation.
5.4 TGF‐b in Neuronal Survival and Death

TGF‐b has been shown to promote neuron survival of several neuron populations in vitro (Martinou et al.,

1990; Poulson et al., 1994; Krieglstein et al., 1995). However, it is now well established that TGF‐b may

modulate the neurotrophic capacities of numerous growth factors including neurotrophins (Krieglstein

and Unsicker, 1996) and, most importantly, glial cell line‐derived neurotrophic factor (GDNF; Krieglstein

et al., 1998b). GDNF was shown to crucially depend on TGF‐b to exert its neurotrophic activities on

peripheral as well as mesencephalic dopaminergic neurons in vitro. In vivo, its neuroprotective effect on

target‐deprived preganglionic sympathetic neurons also depends on the presence of TGF‐b (Schober et al.,

1999). GDNF/TGF‐b cooperativity on chick ciliary ganglionic neurons has now been characterized in detail

(Peterziel et al., 2002), whereby TGF‐b is required for appropriate GDNF receptor recruitment to the

plasma membrane (see also Peterziel and Strelau, this volume).

Depending on the cellular context, TGF‐b has also been shown to regulate ontogenetic neuron death.

Upon immunoneutralization of all TGF‐b isoforms in ovo (E6–E10), ontogenetic cell death of chick

parasympathetic ciliary ganglionic neurons, sensory dorsal root ganglionic (DRG) neurons as well as

lumbar spinal motoneurons could be prevented (Krieglstein et al., 2000). Similarly, TGF‐b regulates

ontogenetic, morphogenetic cell death in the developing retina of chick and mouse embryos (Dünker

et al., 2001; Dünker and Krieglstein, 2003). Another classical model for morphogenetic cell death during

embryogenesis represents the removal of interdigital tissue to form individual fingers. Similarly, double

deletion of TGF‐b2 and ‐b3 in the mouse resulted in lack of cell death (Dünker et al., 2002). Furthermore,

induced neuron death following embryonic limb bud ablation in chick embryos resulted in significant

neuroprotection upon immunoneutralization of TGF‐b (Krieglstein et al., 2000). Together, these data
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suggest TGF‐b as a key regulator of ontogenetic cell death in vivo. Although TGF‐ b‐induced apoptosis and

underlying signaling pathways have been well characterized in many cells types, little is known about

TGF‐b‐induced apoptosis in neurons (Schuster and Krieglstein, 2002; Bender et al., 2004; Sanchez‐Capelo,
2005).
5.5 TGF‐b in Neuronal Differentiation and Synaptogenesis

TGF‐bs have been implicated in the regulation of neurite outgrowth, transmitter synthesis, and synapse

formation. TGF‐b has been reported to cause neurite sprouting and elongation of hippocampal axons as

well as to promote reelongation of injured axons of hippocampal neurons in vitro (Ishihara et al., 1994; Abe

et al., 1996). On DRG explants, TGF‐b was shown to increase number of neurites, as well as neurite length

(Unsicker et al., 1996). Extracellular signaling factors such as Wnt and TGF‐bs are recognized as target‐
derived signals in synaptogenesis (Packard et al., 2003; Salinas, 2005). In the past years all components of

the TGF‐b signaling system have been localized in the presynaptic terminal of the neuromuscular junction,

whereby TGF‐b ligands are synthesized and localized on the postsynaptic side (Toepfer et al., 1999;

McLennan and Koishi, 2002). In chick ciliary ganglionic neurons, developmental expression of KCa

channels coincides with synaptogenesis. Dryer and coworkers have shown that target‐derived TGF‐b1
regulates the developmental expression of Ca2þ‐activated Kþ currents in vitro and in vivo (Cameron

et al., 1999). The acute effect of TGF‐b1 relies on the translocation of KCa channels from intracellular

stores to the plasma membrane involving signaling via Ras, Erk, and PI4 kinase (for review see Dryer et al.,

2003). TGF‐b is also known to have a prominent role in long‐term synaptic facilitation in isolated Aplysia

ganglia (Zhang et al., 1997a). Within minutes, TGF‐b1 stimulated MAPK‐dependent phosphorylation of

synapsin, which appeared to modulate synapsin distribution and resulted in a reduced magnitude of

synaptic depression (Chin et al., 2002).
5.6 TGF‐b in Glial Cell Function

Astroglial cells express TGF‐b and are responsive to it. Culturing or in vivo lesioning elicits expression of

TGF‐b1 in addition to expression of TGF‐b2 and ‐b3 (Flanders et al., 1993a). Astroglial expression of TGF‐b
may be regulated by a large number of cytokines, including FGFs and interleukins (ILs) (see Eddlestone and

Mucke, 1993; Krieglstein et al., 1998b). TGF‐b has been profoundly investigated for its role in orchestrating

the response to brain lesions (for a review see Flanders et al., 1998). With regard to astrocytes, this includes

regulation of astrocytic growth, astroglial scar formation, and antiinflammatory responses. In most

contexts studied, TGF‐b inhibits growth of astrocytes (Flanders et al., 1993a; Hunter et al., 1993). Most

importantly, TGF‐b counteracts mitogenic signals by astroglial mitogens such as fibroblast growth factor‐2
(FGF‐2) or PDGF. However, effects may vary depending on astrocyte culture conditions in vitro or may be

brain region dependent in vivo (Labourdette et al., 1990; Johns et al., 1992). TGF‐b may also affect cell

adhesion, migration, and ECM production of astrocytes, being important in the cascade of shaping the

reactive astrocyte phenotype. TGF‐b‐treated astrocytes show a slight increase in actin content, the appear-

ance of actin stress fibers, a slight increase in the glial fibrillary acidic protein (GFAP), and an increased

production of laminin and fibronectin (cf. Baghdassarian et al., 1993). Thus, treatment of cerebral wounds

with anti‐TGF‐b2 antibodies was shown to lead to a marked reduction of glial scarring (Logan et al., 1999).

Many effects of TGF‐b on astroglia are antiinflammatory and immunosuppressive, as TGF‐bmodulates the

expression of important cytokines involved in CNS immune reactions. These include upregulation of

interleukin‐6 (IL‐6) and NGF (Aderka et al., 1989; Lindholm et al., 1992), blocking interferon‐g‐mediated

upregulation of major histocompatibility complex (MHC) class II (Dong et al., 2001), and the TNF‐a‐ and
IL‐1b‐mediated upregulation of intracellular adhesion molecule‐1 (Shrikant et al., 1996).

Oligodendrocytes arise from a bipotential progenitor cell, the O2A progenitor. TGF‐b restricts their

PDGF‐driven proliferation and induces oligodendroglial differentiation (McKinnon et al., 1993) but may

also induce apoptosis (Schuster et al., 2002). In the PNS, TGF‐b mediates developmental cell death of
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Schwann cells (Parkinson et al., 2001) and blocks Schwann cell myelination and expression of myelin‐
related proteins (Awatramani et al., 2002; and references therein). However, in adult mice, TGF‐b seems to

stabilize compact myelin, as TGF‐b1‐null mice have grossly abnormal myelin (Day et al., 2003). Ski, a

repressor of Smad‐mediated TGF‐ b signaling, controls Schwann cell proliferation and myelination,

whereas absence of Ski abolished the formation of peripheral myelin, and myelinating Schwann cells

upregulate Ski in development as well as during remyelination upon injury (Atanasoski et al., 2004).

Microglia constitutes the resident immune cell in the CNS (Block and Hong, 2005). It has been

suggested that activation of microglia leads to the production of toxic factors that propagate neuronal

injury. TGF‐b may act as a suppressor of functions of activated microglia, thereby fulfilling an antiin-

flammatory role in the CNS (Brionne et al., 2003). Specifically, TGF‐b1 blocks microglial proliferation

(Jones et al., 1998) and free radical induction (Herrera‐Molina and von Bernhardi, 2005), and induces

microglial apoptosis (Xiao et al., 1997; Jung et al., 2003).
6 TGF‐ b‐Dependent Pathologies and Clinical Relevance

6.1 Tumors of the CNS

The role of TGF‐b in cancer biology is complex and involves aspects of both tumor suppression and tumor

promotion (Roberts and Wakefield, 2003). Tumors of the CNS include primitive neuroectodermal

tumors, such as medulloblastomas and gliomas (Nieder et al., 2003; Fogarty et al., 2005). CNS tumors

are characterized by rapid and infiltrative growth, angiogenesis, and immune suppression. TGF‐bs are well
characterized for their antiproliferative effects on many cell types, including astrocytes. However, there are

many possibilities to circumvent this effect. First, as TGF‐b actions are context dependent, the presence of

certain mitogens, such as TGF‐a/EGF or PDGF, may turn TGF‐b into a growth stimulating factor (Roberts

et al., 1981; Leof et al., 1986). Second, transformed cells may become insensitive to TGF‐b due to

overproduction of TGF‐b or due to mutations of TGF‐b receptors, their signaling components, or even

their target genes responsible for G1 arrest (see Lyons et al., 1990; Markowitz et al., 1995; Hahn et al., 1996;

Rich et al., 1999; Rich, 2003; Seoane et al., 2004 for review).

TGF‐b’s ability to regulate ECM composition implicated TGF‐b in the regulation of tumor invasion and

metastasis. In this context, TGF‐b has been shown to regulate integrin expression, e.g., integrin aVb3
expression, which has been shown to play a role in glioma propagation (Uhm et al., 1999). TGF‐b has also

been shown to upregulate MMP‐2 and MMP‐9 at the cell surface (Rooprai et al., 2000) that may interact

with aVb3 integrin (for review see Platten et al., 2001).

TGF‐b is a potent immunosuppressive cytokine. Secretion of TGF‐b by tumor cells may generate an

environment encapsulating the tumor and protecting it against antitumor immune responses resulting in

tumor promotion (Gorelik and Flavell, 2001). This immunosuppressive role has been attributed to TGF‐b2,
which is also the preferentially expressed isoform by many glioblastomas (Bodmer et al., 1989). On this

basis, TGF‐b2‐specific antisense gene therapy strategies have been established to make tumor cells accessible

to an effective antitumor immune response and counteract TGF‐b dependent‐tumor metastasis

(Jachimczak et al., 1993; Lou, 2004; Schlingensiepen et al., 2005). Along this line, there is extensive research

going on to identify TGF‐b signaling inhibitors for cancer therapy (DaCosta Byfield et al., 2004; Yingling

et al., 2004; Lahn et al., 2005).
6.2 Ischemia

TGF‐b1 expressed at low levels in adult brain is rapidly upregulated following insults such as ischemia,

excitatory injury, or traumatic brain injury (Klempt et al., 1992; Knuckey et al., 1996; Morganti‐Kossmann

et al., 1999; Yamashita et al., 1999; Zhu et al., 2000; Boche et al., 2003). As TGF‐b is a good candidate in

organizing the response to degeneration of neurons as well as in mediating antiinflammatory reactions, its

neuroprotective potential has been widely analyzed (for review see Pratt and McPherson, 1997; Flanders
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et al., 1998). TGF‐b1 has been shown to reduce infarct size after focal cerebral ischemia and to prevent

hippocampal neuronal damage after transient global ischemia (Gross et al., 1993; Prehn et al., 1993;

Heinrich‐Noack et al., 1996; for review see Buisson et al., 2003). Furthermore, TGF‐b may also mediate

tolerance of ischemic preconditioning toward subsequent ischemic insult (Boche et al., 2003). The

molecular mechanism(s) by which TGF‐b protects neurons from ischemic cell death relies on a signaling

crosstalk between neurons and astrocytes (Prehn et al., 1994; Docagne et al., 1999), and involves the

maintenance of Ca2þ homeostasis, modulation of the t‐plasminogen activator (t‐PA)/plasminogen activa-

tor inhibitor (PAI‐1) axis, as well as inhibition of proapoptotic pathways, such as Bad and caspase‐3 (Zhu

et al., 2001, 2002) and upregulation of antiapoptotic proteins such as Bcl‐2 (Prehn et al., 1994). Most

recently, an additional TGF‐b‐dependent antiapoptotic pathway involving NF‐kB activation has been

described (Zhu et al., 2004). This pathway seems to be downstream of Alk1, which has been shown to be

upregulated in neurons in an injury‐dependent manner (König et al., 2005). Injury‐dependent upregulation
of Alk1, an alternative type I receptor first described on endothelial cells with signaling preference toward

Smad1, may also explain numerous opposing effects of TGF‐b in brain development and lesions.
6.3 Alzheimer’s Disease

There are several lines of evidence suggesting that TGF‐b1 may contribute to the pathology of Alzheimer’s

disease (AD), particularly in promoting amyloid b (Ab) precursor expression and Ab deposition (van der

Wal et al., 1993; Flanders et al., 1995; Wyss‐Coray et al., 1997a, b; Burton et al., 2002). Mice expressing

TGF‐b1 under the control of GFAP develop AD‐like vascular and meningeal abnormalities with age

(Gaertner et al., 2005). These chronic alterations could be correlated with reduced brain tissue perfusion,

leading to an increased amount of fibrillar and soluble Ab peptides. However, in brain parenchyma,

astroglial TGF‐b1 expression leads to a reduction of overall Ab as well as decreased numbers of dystrophic

neurites (Wyss‐Coray et al., 2001). The reduced plaque burden in brain parenchyma is thought to depend

on TGF‐b‐dependent microglial activation and microglial Ab clearance. Furthermore, an associated study

of three polymorphisms of the human TGF‐b1 gene with AD suggests that there is no correlation of TGF‐b1
with AD on the basis of TGF‐b1 gene variability (Araria‐Goumidi et al., 2002).
6.4 Parkinson’s Disease

Parkinson’s disease (PD) is associated with a marked reduction of striatal dopamine as a consequence of loss

of nigostriatal dopaminergic neurons (for review see Braak et al., 2004). TGF‐b2 and ‐b3 are expressed in

adult nigral dopaminergic neurons (Unsicker et al., 1991) and TGF‐b1 and ‐b2 were elevated in biopsies of

PD patients (Nagatsu et al., 2000). TGF‐bs have been shown to promote midbrain dopaminergic neuron

survival in vitro and in vivo (Krieglstein and Unsicker, 1994; Poulsen et al., 1994; Roussa et al., 2004), as well

as protection against MPPþ intoxication (Krieglstein et al., 1995). Most importantly, TGF‐b cooperates

with GDNF to promote dopaminergic neuron survival (Krieglstein et al., 1998b). GDNF is well known as a

potential therapeutic agent for PD (for review see Björklung and Lindvall, 2000). However, in vivo GDNF‐
dependent neuroprotective effects are based on the cooperativity with TGF‐b, as shown in the animal

model of PD (Schober et al., 2005). This neuroprotective strategy has also already been used by grafting

chromaffin cells obtained from Zuckerkandl’s organ, releasing both GDNF and TGF‐b1 (Fernandez‐Espejo
et al., 2005).
7 Conclusions

TGF‐bs are multifunctional cytokines acting in a contextual manner. Individual isoforms may become

specifically important in distinct situations during nervous system development, maturation, and adult

maintenance as well as in acute and chronic brain lesions. TGF‐bs signal via a distinct heteromeric receptor

system, which again, may chance upon lesioning. Many aspects of TGF‐b function are beginning to be
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understood. Others, however, such as regulation of neural stem cell and progenitor regulation, would have

to be addressed in the future. Lateral signaling and crosstalk with other signaling pathways as well as

modulation of other signaling pathways are the open issues in the future. The results to be obtained will

shed light on many of the scenarios with presumable opposing effects of TGF‐b. TGF‐b has been and

continues to be a fascinating regulator of development, adulthood, and aging.
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Hyytiäinen M, Penttinen C, Keski‐Oja J. 2004. Latent TGF‐

beta binding proteins: extracellular matrix association and

roles in TGF‐beta activation. Crit Rev Clin Lab Sci 41,

233-264.

Ishihara A, Saito H, Abe K. 1994. Transforming growth factor‐

beta 1 and ‐beta 2 promote neurite sprouting and elonga-

tion of cultured rat hippocampal neurons. Brain Res 639:

21-25.

Itoh S, Itoh F, Goumans MJ, ten Dijke P. 2000. Signaling of

transforming growth factor‐beta family members through

Smad proteins. Eur J Biochem 267: 6954-6967.

Jachimczak P, Bogdahn U, Schneider J, Behl C, Meixensberger

J, et al. 1993. The effect of transforming growth factor‐beta

2‐specific phosphorothioate‐anti‐sense oligodeoxynucleo-

tides in reversing cellular immunosuppression in malignant

glioma. J Neurosurg 78: 944-951.

Jakowlew SB, Dillard PJ, Kondaiah P, Sporn MB, Roberts AB.

1988a. Complementary DNA cloning of a novel transform-

ing growth factor‐b mRNA from chick embryo chondro-

cytes. Mol Endocrinol 2: 747-755.

Jakowlew SB, Dillard PJ, Sporn MB, Roberts AB. 1988b.

Complementary DNA cloning of an mRNA encoding

transforming growth factor‐beta 4 from chick embryo

chondrocytes. Mol Endocrinol 2: 1186-1195.

Johns LD, Babcock G, Green D, Freedman M, Sriram S, et al.

1992. Transforming growth factor‐beta 1 differentially reg-

ulates proliferation and MHC class‐II antigen expression in

forebrain and brainstem astrocyte primary cultures. Brain

Res 585: 229-236.



Transforming growth factor‐bs in the brain 6 137
Jones LL, Kreutzberg GW, Raivich G. 1998. Transforming

growth factor beta’s 1, 2 and 3 inhibit proliferation of

ramified microglia on an astrocyte monolayer. Brain Res

795: 301-306.

Jonk LJ, Itoh S, Heldin CH, ten Dijke P, Kruijer W. 1998.

Identification and functional characterization of a Smad

binding element (SBE) in the JunB promoter that acts as a

transforming growth factor‐beta, activin, and bone mor-

phogenetic protein‐inducible enhancer. J Biol Chem 273:

21145-21152.

Jung B, Kim MO, Yun SJ, Lee EH. 2003. Down‐regulation of

the expression of rat inhibitor‐of‐apoptosis protein‐1 and

‐3 during transforming growth factor‐beta1‐mediated apo-

ptosis in rat brain microglia. Neuroreport 14: 857-860.

Kang Y, Chen C‐R, Massague J. 2003. A self‐enabling TGF‐b

response coupled to stress signalling: Smad engages stress

response factor ATF3 for Id1 repression in epithelial cells.

Mol Cell 11: 915-926.

Kingsley DM. 1994. The TGF‐b superfamily: new members,

new receptors, and new genetic tests of function in different

organisms. Genes Dev 8: 133-146.

Klempt ND, Sirimanne E, Gunn AJ, Klempt M, Singh K, et al.

1992. Hypoxia–ischemia induces transforming growth fac-

tor beta 1 mRNA in the infant rat brain. Mol Brain Res 13:

93-101.

Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE,

et al. 1996. Differential neuronal and astrocytic expression

of transforming growth factor beta isoforms in rat hippo-

campus following transient forebrain ischemia. Mol Brain

Res 40: 1-14.

Kondaiah P, Sands MJ, Smith JM, Fields A, Roberts AB, et al.

1990. Identification of a novel transforming growth

factor‐b mRNA in Xenopus laevis. J Biol Chem 265: 1089-

1093.

Konig HG, Kogel D, Rami A, Prehn JH. 2005. TGF‐b1

activates two distinct type I receptors in neurons: implica-

tions for neuronal NF‐kB signaling. J Cell Biol 168: 1077-

1086.

Krieglstein K, Farkas L, Unsicker K. 1998a. TGF‐beta regulates

the survival of ciliary ganglionic neurons synergistically

with ciliary neurotrophic factor and neurotrophins. J Neu-

robiol 37: 563-572.

Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, et al.

1998b. Glial cell line‐derived neurotrophic factor requires

transforming growth factor‐beta for exerting its full neuro-

trophic potential on peripheral and CNS neurons. J Neu-

rosci 18: 9822-9834.

Krieglstein K, Reuss B, Maysinger D, Unsicker K. 1998c. Short

communication: transforming growth factor‐beta mediates

the neurotrophic effect of fibroblast growth factor‐2 on

midbrain dopaminergic neurons. Eur J Neurosci 10:

2746-2750.
Krieglstein K, Richter S, Farkas L, Schuster N, Dünker N, et al.

2000. Reduction of endogenous transforming growth fac-

tors beta prevents ontogenetic neuron death. Nat Neurosci

3: 1085-1090.

Krieglstein K, Suter‐Crazzolara C, Fischer WH, Unsicker K.

1995. TGF‐beta superfamily members promote survival of

midbrain dopaminergic neurons and protect them against

MPPþ toxicity. EMBO J 14: 736-742.

Krieglstein K, Unsicker K. 1994. Transforming growth factor‐

beta promotes survival of midbrain dopaminergic neurons

and protects them against N‐methyl‐4‐phenylpyridinium

ion toxicity. Neuroscience 63: 1189-1196.

Krieglstein K, Unsicker K. 1996. Distinct modulatory actions

of TGF‐beta and LIF on neurotrophin‐mediated survival of

developing sensory neurons. Neurochem Res 21: 843-850.

Labourdette G, Janet T, Laeng P, Perraud F, Lawrence D, et al.

1990. Transforming growth factor type beta 1 modulates

the effects of basic fibroblast growth factor on growth and

phenotypic expression of rat astroblasts in vitro. J Cell

Physiol 144: 473-484.

Lahn M, Kloeker S, Berry BS. 2005. TGF‐beta inhibitors for

the treatment of cancer. Expert Opin Investig Drugs 14:

629-643.

Lebrin F, Deckers M, Bertolino P, ten Dijke P. 2005. TGF‐beta

receptor function in the endothelium. Cardiovasc Res 65:

599-608.

Lee SJ, McPherron AC. 2001. Regulation of myostatin activity

and muscle growth. Proc Natl Acad Sci USA 98: 9306-9311.

Le Roy C, Wrana JL. 2005. Signaling and endocytosis: a team

effort for cell migration. Dev Cell 9: 167-168.

Leof EB, Proper JA, Goustin AS, Shipley GD, Di Corleto PE,

et al. 1986. Induction of c‐sis mRNA and activity similar to

platelet‐derived growth factor by transforming growth factor

beta: a proposed model for indirect mitogenesis involving

autocrine activity. Proc Natl Acad Sci USA 83: 2453-2457.

Lindholm D, Castren D, Kiefer R, Zafra F, Thoenen H. 1992.

Transforming growth factor‐b1 in the rat brain: increase

after injury and inhibition of astrocyte proliferation. J Cell

Biol 117: 395-400.

Logan A, Green J, Hunter A, Jackson R, Berry M. 1999.

Inhibition of glial scarring in the injured rat brain by a

recombinant human monoclonal antibody to transforming

growth factor‐beta2. Eur J Neurosci 11: 2367-2374.

Lou E. 2004. Oncolytic viral therapy and immunotherapy of

malignant brain tumors: two potential new approaches of

translational research. Ann Med 36: 2-8.

Lyons RM, Gentry LE, Purchio AF, Moses HL. 1990. Mecha-

nism of activation of latent recombinant transforming

growth factor beta 1 by plasmin. J Cell Biol 110: 1361-1367.

Madison L, Webb NR, Rose TM, Marquardt H, Ikeda T, et al.

1988. Transforming growth factor‐b2: cDNA cloning and

sequence analysis. DNA 7: 1-8.



138 6 Transforming growth factor‐bs in the brain
Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, et al. 1995.

Inactivation of the type II TGF‐beta receptor in colon

cancer cells with microsatellite instability. Science 268:

1336-1338.

Martinou JC, Le Van Thai A, Valette A, Weber MJ. 1990.

Transforming growth factor beta 1 is a potent survival

factor for rat embryo motoneurons in culture. Dev Brain

Res 52: 175-181.

Massague J. 2000. How cells read TGF‐beta signals. Nat Rev

Mol Cell Biol 1: 169-178.

McDonald NQ, Hendrickson WA. 1993. A structural super-

family of growth factors containing a cystine knot motif.

Cell 73: 421-424.

McKinnon RD, Piras G, Ida JA Jr, Dubois‐Dalcq M. 1993. A

role for TGF‐beta in oligodendrocyte differentiation. J Cell

Biol 121: 1397-1407.

McLennan IS, Koishi K. 2002. The transforming growth fac-

tor‐betas: multifaceted regulators of the development and

maintenance of skeletal muscles, motoneurons and

Schwann cells. Int J Dev Biol 46: 559-567.

Mittl PR, Priestle JP, Cox DA, McMaster G, Cerletti N, et al.

1996. The crystal structure of TGF‐beta 3 and comparison

to TGF‐beta 2: implications for receptor binding. Protein

Sci 5: 1261-1271.

Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K.

2002. Two major Smad pathways in TGF‐beta superfamily

signalling. Genes Cells 7: 1191-1204.

Miyazono K, Suzuki H, Imamura T. 2003. Regulation of TGF‐

beta signaling and its roles in progression of tumors. Can-

cer Sci 94: 230-234.

Miyazono K, ten Dijke P, Heldin CH. 2000. TGF‐beta signal-

ing by Smad proteins. Adv Immunol 75: 115-157.

Morganti‐Kossmann MC, Hans VH, Lenzlinger PM, Dubs R,

Ludwig E, et al. 1999. TGF‐beta is elevated in the CSF of

patients with severe traumatic brain injuries and parallels

blood–brain barrier function. J Neurotrauma 16: 617-628.

Moustakas A, Heldin CH. 2005. Non‐Smad TGF‐b signals.

J Cell Sci 118: 3573-3584.

Moustakas A, Souchelnytskyi S, Heldin CH. 2001. Smad reg-

ulation in TGF‐beta signal transduction. J Cell Sci 114:

4359-4369.

Mulder KM. 2000. Role of Ras and Mapks in TGFbeta signal-

ing. Cytokine Growth Factor Rev 11: 23-35.

Mummery CL, van den Eijnden‐van Raaij AJ. 1999. Develop-

mental tumours, early differentiation and the trans-

forming growth factor beta superfamily. Int J Dev Biol 43:

693-709.

Nagatsu T, Mogi M, Ichinose H, Togari A. 2000. Changes in

cytokines and neurotrophins in Parkinson’s disease. J Neu-

ral Transm Suppl 60: 277-290.

Newfeld SJ, Wisotzkey RG, Kumar S. 1999. Molecular evolu-

tion of a developmental pathway: phylogenetic analyses of
transforming growth factor‐beta family ligands, receptors

and Smad signal transducers. Genetics 152: 783-795.

Nieder C, Schlegel J, Andratschke N, Thamm R, Grosu AL,

et al. 2003. The role of growth factors in central nervous

system tumours. Anticancer Res 23: 1681-1686.

Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, et al. 2002.

Targets of transcriptional regulation by two distinct type I

receptors for transforming growth factor‐b in human

umbilical vein endothelial cells. J Cell Physiol 193: 299-318.

PackardM, Mathew D, Budnik V. 2003. Wnts and TGF beta in

synaptogenesis: old friends signalling at new places. Nat

Rev Neurosci 4: 113-120.

Paques M, Massin P, Gaudric A. 1997. Growth factors and

diabetic retinopathy. Diabetes Metab 23: 125-130.

Parkinson DB, Dong Z, Bunting H, Whitfield J, Meier C, et al.

2001. Transforming growth factor beta (TGFbeta) mediates

Schwann cell death in vitro and in vivo: examination of c‐

Jun activation, interactions with survival signals, and the

relationship of TGFbeta‐mediated death to Schwann cell

differentiation. J Neurosci 21: 8572-8585.

Patterson GI, Padgett RW. 2000. TGF beta‐related pathways.

Roles in Caenorhabditis elegans development. Trends Genet

16: 27-33.

Pelton RW, Johnson MD, Perkett EA, Gold LI, Moses HL.

1991. Expression of transforming growth factor‐beta 1, ‐

beta 2, and ‐beta 3 mRNA and protein in the murine lung.

Am J Respir Cell Mol Biol 5: 522-530.

Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. 1991.

Immunohistochemical localization of TGF beta 1, TGF

beta 2, and TGF beta 3 in the mouse embryo: expression

patterns suggest multiple roles during embryonic develop-

ment. J Cell Biol 115: 1091-1105.

Peterziel H, Unsicker K, Krieglstein K. 2002. TGFbeta induces

GDNF responsiveness in neurons by recruitment of GFRal-

pha1 to the plasma membrane. J Cell Biol 159: 157-167.

Platten M, Wick W, Weller M. 2001. Malignant glioma biolo-

gy: role for TGF‐beta in growth, motility, angiogenesis, and

immune escape. Microsc Res Tech 52: 401-410.

Poulsen KT, Armanini MP, Klein RD, Hynes MA, Phillips HS,

et al. 1994. TGF beta 2 and TGF beta 3 are potent survival

factors for midbrain dopaminergic neurons. Neuron 13:

1245-1252.

Prehn JH, Backhauss C, Krieglstein J. 1993. Transforming

growth factor‐beta 1 prevents glutamate neurotoxicity in

rat neocortical cultures and protects mouse neocortex from

ischemic injury in vivo. J Cereb Blood Flow Metab 13:

521-525.

Prehn JH, Bindokas VP, Marcuccilli CJ, Krajewski S, Reed JC,

et al. 1994. Regulation of neuronal Bcl2 protein expression

and calcium homeostasis by transforming growth factor

type beta confers wide‐ranging protection on rat hippo-

campal neurons. Proc Natl Acad Sci USA 91: 12599-12603.



Transforming growth factor‐bs in the brain 6 139
Rahhal B, Dünker N, Combs S, Krieglstein K. 2004. Isoform‐

specific role of transforming growth factor‐beta2 in the

regulation of proliferation and differentiation of murine

adrenal chromaffin cells in vivo. J Neurosci Res 78: 493-498.

Ramirez F, Pereira L. 1999. The fibrillins. Int J Biochem Cell

Biol 31: 255-259.

Reddi AH. 2005. BMPs: from bone morphogenetic proteins to

bone morphogenetic proteins. Cytokine Growth Factor

Rev 16: 249-250.

Rich JN. 2003. The role of transforming growth factor‐beta in

primary brain tumors. Front Biosci 8: e245-e260.

Rich JN, Zhang M, Datto MB, Bigner DD, Wang XF. 1999.

Transforming growth factor‐beta‐mediated p15(INK4B)

induction and growth inhibition in astrocytes is SMAD3‐

dependent and a pathway prominently altered in human

glioma cell lines. J Biol Chem 274: 35053-35058.

Rifkin DB. 2005. Latent transforming growth factor‐beta

(TGF‐beta) binding proteins: orchestrators of TGF‐beta

availability. J Biol Chem 280: 7409-7412.

Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB.

1981. New class of transforming growth factors potentiated

by epidermal growth factor: isolation from non‐neoplastic

tissues. Proc Natl Acad Sci USA 78: 5339-5343.

Roberts AB, Sporn MB. 1990. The transforming growth

factor‐bs. Handbook of Experimental Pharmacology,

Vol. 95. Sporn MB, Roberts AB, editors. Heidelberg:

Springer‐Verlag; pp. 419-472.

Roberts AB, Wakefield LM. 2003. The two faces of transform-

ing growth factor beta in carcinogenesis. Proc Natl Acad Sci

USA 100: 8621-8623.

Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ. 2000. The

effects of exogenous growth factors on matrix metallopro-

teinase secretion by human brain tumour cells. Br J Cancer

82: 52-55.

Roussa E, Farkas LM, Krieglstein K. 2004. TGF‐beta promotes

survival on mesencephalic dopaminergic neurons in

cooperation with Shh and FGF‐8. Neurobiol Dis 16:

300-310.

Roussa E, Wiehle M, Dünker N, Becker‐Katins S, Oehlke O,

Krieglstein K. 2006. TGF‐b isoforms (TGF‐b2, TGF‐b3) are

required for differentiation of mouse mesencephalic pro-

genitors into dopaminergic neurons in vitro and in vivo.

Stem cells (in revision).

Salinas PC. 2005. Signaling at the vertebrate synapse: new

roles for embryonic morphogens? J Neurobiol 64: 435-445.

Sanchez‐Capelo A. 2005. Dual role for TGF‐beta1 in apopto-

sis. Cytokine Growth Factor Rev 16: 15-34.

Schena FP, Gesualdo L. 2005. Pathogenetic mechanisms of

diabetic nephropathy. J Am Soc Nephrol 16: S30-S33.

Scheufler C, Sebald W, Hulsmeyer M. 1999. Crystal structure

of human bone morphogenetic protein‐2 at 2.7 Å resolu-
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Abstract: This chapter addresses the role of insulin‐like growth factor 1 (IGF‐1) and the IGF‐1 receptor

(IGF1R) in brain development, injury response, and aging. We concentrate mainly on recent information

from murine model systems, with consideration of interesting and relevant data from invertebrates and

humans. IGF‐1 and its cognate receptor are both highly expressed in the developing brain, supporting both

autocrine and paracrine activity for this anabolic peptide. IGF‐1 deletion or inhibition during brain

development attenuates brain growth, with reductions in both cell number and cell size. Cell numbers

are notably reduced in the olfactory system, the dentate gyrus of the hippocampus, and the striatum. Brain

volume is globally decreased due to a loss of neuropil, with significant reductions in neuronal soma volume,

dendritic length and complexity, and synapse number. Myelination is reduced in proportion to the

decreases in neuron number and nerve processes in the IGF‐1‐null brain. Conversely, transgenic IGF‐1
overexpression results in increased brain size with increases in cell number, cell size, and dendrite growth

with proportionate increases in myelination. Metabolic activity as measured by glucose utilization is

significantly decreased in the IGF‐1‐null brain and increased in the transgenic IGF‐1‐overexpressing
brain. IGF‐1 deletion in humans is associated with mental retardation and sensorineural deafness. IGF‐1
deletion is also associated with deafness in mice, but no other obvious neurological or behavioral

phenotypes have been identified.

IGF‐1 prevents neuronal death in response to a variety of insults in vitro, but cell death appears to be a

minor effect in the IGF‐1‐null brain. IGF‐1’s physiological effects in brain depend on when and where the

peptide is expressed. For example, IGF‐1 is expressed in an olfactory neuron germinal zone early in

development, enhancing proliferation of these neurons, which are correspondingly reduced in number in

the IGF‐1‐null mouse. IGF‐1 is expressed in long‐axon projection neurons at a later, postmitotic stage,

promoting somatic and dendritic growth for these neurons, which are normal in number but small with

hypotrophic dendritic arbors in the IGF‐1‐null brain. Increased circulating or brain IGF‐1 is associated with
increased hippocampal neurogenesis in adult rodents, and treatment with exogenous IGF‐1 may protect

against neurodegeneration in response to brain injury. IGF‐1’s anabolic effects in brain are executed via the

IRS2‐PI3K‐Akt signaling system. The multifunctional enzyme glycogen synthase kinase 3 (GSK3) is a major

target of this pathway. Inhibitory phosphorylation of GSK3 by IGF‐1 enhances glucose utilization and

protein synthesis, promoting somatic growth and dendritogenesis in IGF‐1‐expressing projection neurons.

Brain IGF‐1 also inhibits the phosphorylation of tau, a microtubule‐associated protein, via the PI3K‐
Akt‐GSK3 pathway. This neurofibrillary tangle (NFT) protein is hyperphosphorylated in both IGF‐1‐ and
IRS2‐null brains. IGF‐1’s role in brain aging is unclear at present. Data obtained from worms to primates

suggest that suppression of the IGF system slows the aging process, but it is not yet known if brain aging is

altered in IGF‐1‐null or ‐deficient mice.

List of Abbreviations: AD, Alzheimer’s disease; Akt, serine/threonine protein kinase; BAD, bcl‐associated
death promoter; BBB, blood–brain barrier; BRDU, bromodeoxyuridine; CNPase, 20,30‐cyclic nucleotide,

30‐phosphodiesterase; EGF, epidermal growth factor; eIF2B, eukaryotic initiation factor 2B; FOXO, fork-

head transcription factors; GH, growth hormone; GLUT, glucose transporter; GSK3, glycogen synthase

kinase 3; IGF, insulin‐like growth factor; IGFBP, IGF‐binding protein; IGF1R, IGF‐1 receptor; IRS, insulin

receptor substrate; MAG, myelin‐associated protein; MAPK, mitogen‐activated protein kinase; MBP,

myelin basic protein; mTOR, mammalian target of rapamycin; NF‐kB, nuclear factor kappa B; NFT,

neurofibrillary tangle; NO, nitric oxide; PCR, polymerase chain reaction; PDK1, 2, 3‐phosphoinositide‐
dependent protein kinase 1, 2; PI3K, phosphoinositide‐3 kinase; PIP3, phosphatidylinositol‐3,4,5‐trispho-
sphate; PLP, myelin proteolipid protein; PTEN, phosphatase and tensin homolog; S6K, ribosomal protein

S6 kinase
1 Introduction

Members of the insulin‐like growth factor (IGF) family, including insulin, IGF‐1, and IGF‐2, promote

carbohydrate, lipid, and protein metabolism in support of cell growth and survival. Insulin has a specialized

role in peripheral glucose homeostasis, and a neuroendocrine role at the hypothalamic level, promoting the



IGF‐1 in brain growth and repair processes 7 145
integration of nutrient acquisition, storage, and expenditure. IGF‐1 promotes postnatal somatic growth

while IGF‐2 promotes similar, proportionate growth in utero. Insulin deficiency leads to the metabolic

derangements of diabetes mellitus, while IGF deficiency is associated with proportionate dwarfism. The

fundamental importance of this insulin/IGF system is reflected by the fact that insulin and IGF peptides and

receptor homologs are found in evolutionarily distant and diverse organisms such as Caenorhabditis elegans

and Drosophila melanogaster. Recent genetic studies have shown that the insulin:IGF‐1 receptor/PI3K/Akt

signaling pathway is largely conserved down to the metazoan level and plays an essential role in regulating

life span as well as body, organ, and cell size (Finch and Ruvkun, 2001).

An interesting feature observed in Drosophila is that insulin‐like peptides are expressed in neural cells in
the brain. Ablation of these ‘‘neurons’’ causes developmental delay and growth retardation (Rulifson et al.,

2002). In fact, single‐gene mutations targeting the insulin/IGF receptor or downstream signaling compo-

nents result in significant extension of the life span in yeast, nematodes, fruit fly, and rodents (reviewed in

Richardson et al., 2004; Katic and Kahn, 2005). In many cases, these animals are healthier than normal, like

animals on food‐restricted diets, although fecundity may be impaired. Thus it seems that the insulin/IGF

system promotes anabolic effects that increase growth rate and fertility, but also accelerates the aging

process through impaired responses to oxidative and other types of stress. Suppressed insulin/IGF signaling

impairs somatic growth, but minimizes damage to and increases repair of cell macromolecules. The

question is how these anabolic growth‐promoting and age‐accelerating peptides function in the brain.

IGF‐1 is clearly important in brain development and function, as individuals homozygous for mutations/

deletions in IGF1 are profoundly mentally retarded (Woods et al., 1997; Bonapace et al., 2003; Walenkamp

et al., 2005).
2 IGF/Insulin Peptides and Binding Proteins

IGF‐1, IGF‐2, and insulin (> Figure 7-1) belong to an ancient family of peptides sharing a common

evolutionary origin (LeRoith et al., 1986; LeRoith et al., 1993; Reinecke and Collet, 1998; Navarro et al.,

1999). An ancestral gene encoding an insulin‐like peptide gave rise to multiple genes encoding more

specialized peptides about the time gastroenteric and central nervous systems (CNS) differentiated

(Reinecke and Collet, 1998). From that time insulin became progressively more specialized in terms of

secondary processing (proteolytic excision of the ‘‘C’’ peptide and joining of the A and B peptides by

disulfide bonds), packaging in acidic secretory granules, and association with the gastrointestinal tract.

Insulin expression is largely restricted to pancreatic beta cells, where its synthesis and secretion are tightly

coupled to ingested substrates (Tager et al., 1981). IGF‐1 and IGF‐2, in contrast, did not acquire such

extensive posttranslational processing, and have continued to be widely expressed in many cell types

demonstrating constitutive secretion (Clemmons, 1989; Sussenbach, 1989). IGF‐1 and IGF‐2 are single‐
chain polypeptides of 70 amino acids with three intramolecular disulfide bridges. The IGFs share about

50% homology with insulin in amino acid sequences in addition to very similar tertiary structures and

functional binding sites (> Figure 7-1).

In mammals, insulin production is centrally localized in the beta cells of the pancreas, from which

insulin is released in bolus fashion in response to nutrient stimuli. Insulin serves in classic endocrine

hormone fashion to regulate glucose, lipid, and protein metabolism in many peripheral tissues, but

excluding the brain. IGF‐1 is produced in great abundance by the liver where its synthesis is regulated by

pituitary growth hormone (GH) (Laron, 2001). IGF‐1 is also synthesized locally in many tissues

(Daughaday and Rotwein, 1989; Le Roith et al., 2001), including the brain (Rotwein et al., 1988; Bartlett

et al., 1991; Bondy, 1991), where GH does not regulate its synthesis (Wang et al., 1999; Lupu et al., 2001; Sun

et al., 2005). Circulating insulin levels peak after meals but are very low most other times, while circulating

IGF‐1 levels are severalfold higher than insulin, and stable around the clock. Also, in contrast to insulin,

IGFs in the circulation and interstitial fluids are bound to high‐affinity IGF‐binding proteins (IGFBPs) that
prolong IGF half‐life by impeding proteolysis and renal clearance (Clemmons, 1998; Duan, 2002). Insulin

levels are relatively stable throughout the life span in normal individuals, while IGF‐1 levels peak during

childhood and decline steadily as people age (Laron, 2001).



. Figure 7-1

Comparison of amino acid sequence and predicted tertiary structure of the IGF‐1, IGF‐2, and insulin peptides.

This figure was reproduced from article ‘‘Insulin‐like growth factor ligands, receptors, and binding proteins in

cancer’’ by Foulstone et al. 2005. J Pathol 205: 148. Copyright of the Pathological Society of Great Britain and

Ireland. Reproduced with permission from John Wiley and Sons
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IGFs serve as endocrine and paracrine/autocrine regulators of somatic growth both in utero (IGF‐2)
and during postnatal growth (IGF‐1) (Sara and Carlsson‐Skwirut, 1986; Daughaday and Rotwein, 1989;

Baker et al., 1993). IGF‐2 is important for somatic growth during embryonic development, but its role, if

any, during postnatal life is unknown. Targeted gene deletion showed that IGF‐2 expression is imprinted,

that is, preferentially expressed from the paternal allele in most tissues, with deletion of the paternal allele

producing a 30–40% reduction in somatic size (DeChiara et al., 1990), but even homozygous IGF‐2 deletion
produces no discernible effect on the CNS or peripheral nervous system (PNS) (C.A. Bondy and R.R.

Reinhardt, unpublished data). Indeed, IGF‐2 overexpression in brain appears to have no effect on brain size

or structure or mouse behavior (Reijnders et al., 2004). IGF‐2’s lack of any apparent effect in brain

development may be explained by the brain’s high‐level expression of the IGF‐2‐mannose‐6‐phosphate
receptor, which sequesters IGF‐2 into lysosomes (Hawkes and Kar, 2004).

IGF‐1 and IGF‐2 bind with high affinity to a number of IGFBPs, which protect the IGFs from

proteolysis and modulate their interaction with their receptor (Clemmons, 1998). IGFBPs are expressed

in the brain in addition to being expressed in diverse peripheral tissues (Bondy and Lee, 1993a; Brar and

Chernausek, 1993; Lee and Bondy, 1993; Lee et al., 1993; Logan et al., 1994; Sullivan and Feldman, 1994; Ye

and D’Ercole, 1998). IGFBP2 and 5 are most abundant in the brain, and are expressed in spatiotemporal

coordination with IGF‐1 (Lee et al., 1992b; Lee et al., 1993). Early in development IGFBP5 messenger RNA

(mRNA) is concentrated in germinal zones and is colocalized with IGF‐1 in developing sensory and

cerebellar relay neurons (Bondy and Lee, 1993a), and IGF‐1 appears to induce IGFBP5 expression

(Ye and D’Ercole, 1998). IGFBP2 mRNA is concentrated in astroglia adjacent to IGF‐1‐expressing neurons
(Lee et al., 1993) and colocalizes with IGF‐2 in the meninges and choroid plexi (Logan et al., 1994). IGFBP2

is also highly abundant in capillary endothelium, median eminence, and other circumventricular sites

(Lee et al., 1993), suggesting a potential role in carrier‐mediated transcytosis of circulating IGFs into the

brain. Thus, each IGFBP may play a specific role in modulating IGF‐1’s bioactivity in brain development.

These theoretical modulatory roles appear nonessential, however, since targeted deletion of IGFBPs, singly

or in combination, produces no apparent neurological phenotype (J. Pintar, personal communication).
3 IGF‐1/Insulin Receptors and Signaling Pathways

Like the cognate peptides, the insulin and IGF‐1 receptors (IGF1Rs) demonstrate close structural homology

and sequence identity (reviewed in Clemmons, 1989; LeRoith, 1996), having evolved from a common

ancestor, in parallel with the ligands’ evolution (LeRoith et al., 1993; Reinecke and Collet, 1998; Navarro

et al., 1999). The type 1 IGF receptor, or the IGF1R, actually binds and transduces both IGF‐1 and IGF‐2 with
high affinity. There is a so‐called IGF‐2‐mannose‐6‐phosphate receptor unrelated to the insulin/IGF receptor
family (Kiess et al., 1988) that binds and clears IGF‐2 by sequestration into lysosomes (Wylie et al., 2003).

Insulin and IGFs bind their cognate receptors with highest affinity, but cross‐reactivity occurs at higher

hormone concentrations (Clemmons, 1989). The insulin and IGF1Rs aremembrane‐bound tyrosine kinases
that are covalent dimers in the absence of ligand. One molecule of insulin or IGF binds to the extracellular

alpha‐chains, triggering transautophosphorylation of the intracellular beta‐chains (Luo et al., 1999). The

tyrosine kinase domains of the insulin and IGF1Rs are highly conserved, with �85% amino acid sequence

identity (Hubbard, 1999) and very similar tertiary structures (Favelyukis et al., 2001). Not unexpectedly,

the two receptors engage the same signaling pathways (> Figure 7-2). Receptor activation triggers phos-

phorylation of IRS proteins, which serve as binding sites for proteins containing src homology 2 domains,

including the p85 regulatory subunit of phosphoinositide‐3 kinase (PI3K). Activation of PI3K leads to the

generation of phosphatidylinositol‐3,4,5‐trisphosphate (PIP3), which triggers phosphoinositide‐dependent
kinases to activate the ser/thr kinase Akt (also known as protein kinase B), upon recruitment to the plasma

membrane (Summers and Birnbaum, 1997). The lipid phosphatase, PTEN, negatively impacts this pathway

by dephosphorylating PIP3. Activated Akt, through subsequent phosphorylation of several downstream

targets, is primarily responsible for the ability of this family of growth factors to stimulate glucose uptake

and protein synthesis culminating in cell growth (reviewed in Saltiel and Kahn, 2001). The ras/MAPK

pathway has also been associated with insulin/IGF receptor activation (> Figure 7-2) in studies on cultured



. Figure 7-2

Schematic diagram of signaling pathways involved in IGF‐1’s activity in brain. Ligand binding to insulin/IGF‐1
receptors (IGF1Rs) triggers receptor autophsophorylation and association with IRS‐docking proteins. Activation

of phosphoinositide‐3 kinase (PI3K) generates phospholipids that activate Akt. Akt may then interact with

multiple downstream substrates, including GSK‐3b, FOXO, eIF2B, mTOR, bcl‐associated death promoter (BAD),

and S6K. For example, Akt serine phosphorylates GSK3‐b, causing its inhibition. Since GSK‐3b normally inhibits

glycogen synthase and eIF2B, inactivation of GSK‐3b promotes both glycogen and protein synthesis. The

microtubule‐associated protein tau is also a target for GSK‐3b and is hyperphosphorylated in the IGF‐1‐null
brain, providing further evidence that IGF‐1 normally inhibits brain GSK‐3b activity. The MAPK pathway has

been implicated in insulin/IGF action by in vitro studies and some in vivo observations on peripheral tissues,

but its relevance to IGF action in brain is unknown
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cells. The in vivo significance of this association remains unclear, since most of the known physiological

effects of insulin/IGF‐1 involve the PI3K‐Akt pathway (Katic and Kahn, 2005). This review focuses on the

latter pathway, which has been specifically implicated in IGF signaling in the brain.
3.1 IGF‐1 Signaling in Brain

Activation of PI3K and Akt kinase is central to insulin/IGF‐1‐induced anabolic effects. For example, Akt

activation results in translocation of glucose transporters (GLUTs), from intracellular pools to the plasma

membrane, promoting glucose entry into cells (Kohn et al., 1996; Summers and Birnbaum, 1997). In the

periphery, glucose transport is promoted by insulin at the insulin receptor, activating the IRS/PI3K/Akt

system, but in the brain, IGF‐1 is responsible for local glucose transport and utilization by the same pathway

(Cheng et al., 2000). IGF‐1‐induced Akt phosphorylation appears linked to translocation of neuronal
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GLUT4 from intracellular pools to membranes of nerve processes in the normal developing brain. Another

target of insulin/IGF signaling via Akt kinase is glycogen synthase kinase 3 (GSK3). Insulin and IGF‐1 both
stimulate the inhibitory serine phosphorylation of this multifunctional enzyme in neurons (Hong and Lee,

1997). Insulin/IGF‐induced inhibitory phosphorylation of GSK3 (Summers et al., 1999) relieves GSK3’s

inhibition of glycogen synthase and of the eukaryotic translation initiation factor 2B (eIF2B), thus

promoting glycogen and protein synthesis. The convergence of IGF1R, phospho‐Akt, membranous

GLUT4, phospho‐GSK3, and abundant glycogen stores specifically in large IGF‐1‐expressing neurons

(Cheng et al., 2000) suggests that IGF‐1 acts in a cell‐autonomous or in an autocrine manner, via the

PI3K‐Akt‐GSK3 pathway, to promote nutrient acquisition, protein, and lipid synthesis supporting the

growth of maturing projection neurons.
3.2 IGF‐1 and Brain Glucose Utilization

Reflecting IGF‐1’s role in brain glucose utilization, IGF‐1 and IGF1R expression closely parallel regional

glucose utilization (see > Figure 7-3, Cheng et al., 2000). High‐level IGF‐1 expression is seen in concert with
. Figure 7-3

Autoradiography comparing gene expression patterns for the IGF‐1 receptor (IGF1R), the insulin receptor, and

2‐deoxyglucose uptake in the early postnatal rat brain
intense glucose uptake in maturing cerebellar, somatosensory, auditory–vestibular, olfactory, and visual

system neurons. Glucose utilization is reduced by 30–60% in the IGF‐1‐null brain, with the greatest

decrease in structures where IGF‐1 expression is normally highest (Cheng et al., 2000). The defect in

glucose utilization is demonstrable at the nerve terminal level in synaptosomes prepared from IGF‐1‐null
brains, and is completely reversed by IGF‐1, showing that the defect in glucose utilization is not due to

reduced neural activity or reduced brain blood flow, neither of which affects the synaptosome preparation.

Furthermore, the finding of reduced glucose uptake in isolated nerve terminals shows that IGF‐1 normally
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promotes glucose uptake by nerve terminals independent of glial effects, since glial cells are not present in

the synaptosome preparation.

Conversely, brain glucose utilization is globally increased in IGF‐1‐overexpressing adult mice

(Gutierrez‐Ospina et al., 1997). It is not certain which cell types are responsible for the ectopic IGF‐1
expression in these mice, but apparently IGF‐1 is in excess through most of the brain for much of

development. Thus, the generalized increase in glucose use likely reflects local field potentials originating

from more highly ramified dendritic arbors with greater synaptic density in IGF‐1‐overexpressing brains,

along with direct IGF‐1‐enhanced glucose transport and utilization. The fact that pentobarbital anesthesia

suppressed glucose uptake in both transgenic and wild‐type (WT) mice in that study was thought to suggest

that IGF‐1 does not promote brain glucose utilization (Gutierrez‐Ospina et al., 1997). However, pentobar-

bital interferes with GLUT function per se (Haspel et al., 1999) and so suppresses any stimulus of glucose

transport.
4 IGF‐1 Versus Insulin in the Brain

A theory that neurodegeneration in the aging human brain may be linked to loss of insulin trophic effects

has recently been put forward (Hoyer, 2004). Despite the fact that there is very little insulin within the brain,

both the insulin and IGF1Rs are widely expressed in the developing and mature brain (> Figure 7-3) (Hill

et al., 1986; Bohannon et al., 1988; Bondy et al., 1992a, b). IGF‐1 and insulin receptors are coexpressed in

many brain regions, such as the granule cell layers of the olfactory bulb, dentate gyrus, and cerebellar cortex

(Bondy et al., 1992a). The insulin receptor is most highly expressed in anterior thalamic and hypothalamic

nuclei, including the periventricular, reticular, and anterior thalamic nuclear complex and the paraven-

tricular and supraoptic nuclei (> Figure 7-3) (Bondy et al., 1992a, b), consistent with insulin’s neuroendo-

crine role in connecting peripheral metabolic signals to central control of appetite and metabolic activity

(reviewed in Porte et al., 2005). The significance of insulin receptor expression throughout the brain is

unclear, given that little insulin is found in brain outside the hypothalamus. One explanation is that the

ancestral insulin/IGF receptor was heavily expressed in the nervous system, and that regulation of ‘‘off-

spring’’ receptor gene expression continued this pattern, despite the evolutionary specialization of the

ligand insulin as regulator of peripheral metabolism.

Circulating insulin and IGF‐1 may influence hypothalamic and other periventricular regions by

interacting with receptors localized in the median eminence and circumventricular structures outside the

blood–brain barrier (BBB). Both insulin and IGF1Rs are expressed on brain capillaries, but IGF‐1 crosses

the BBB with greater efficiency than insulin (Reinhardt and Bondy, 1994). A number of factors may explain

IGF‐1’s relative facility in crossing the BBB. The coexpression of insulin and IGF1Rs in brain capillary

endothelium may result in formation of hybrid receptors, which bind IGF‐1 with substantially greater

affinity than insulin (Soos et al., 1993). In addition, IGFBP2 is abundant in capillary endothelium, median

eminence, and other circumventricular sites (Lee et al., 1993), suggesting possible carrier‐mediated IGF

transport across the BBB. While IGF‐1 is abundant, very little insulin is detected within the murine brain

(Coker et al., 1990), although small foci of insulin mRNA have been detected in the anterior hypothalamus

(Young, 1986). A very recent study reported detection of insulin, IGF‐1, and IGF‐2 mRNA in postmortem

human brain tissue using quantitative polymerase chain reaction (PCR) (Steen et al., 2005), but this novel

report awaits confirmation.

Given IGF‐1’s abundant expression within the brain, and its apparent facility in crossing the BBB, both

in contrast to insulin, it seems unlikely that insulin is required as an additional trophic factor for brain. The

brain requires trophic support for developmental needs and responses to new learning or injury, but insulin

secretion is tightly coupled to the timing and composition of meals. It seems unlikely that a gastrointestinal

peptide, for which synthesis and secretion are tightly coupled to the contents of the duodenum, should be

critically involved in brain development, function, or protection from degeneration. If this notion were

true, then lean vegetarian individuals with very low levels of insulin secretion would be mentally deficient

and at risk for premature neurodegeneration, while consumers of refined carbohydrates, which is associated

with a high level of insulin secretion, would be intellectually superior and spared from senility. Further
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evidence that insulin is not involved in brain development or function is the finding that brain‐specific
insulin receptor knockouts have normal brains and brain function, although neuroendocrine regulation of

appetite is disturbed (Bruning et al., 2000).
5 Regulation of Brain IGF System

While it has been known for many years that IGF‐1 produced in the liver is closely regulated by GH, there is

limited understanding of factors that regulate brain IGF‐1 gene expression. Certainly, expression of brain

IGF‐1 and IGF1R are developmentally controlled (Bondy et al., 1990; Bondy, 1991). Expression of IGF‐1 is
also elevated dramatically after hypoxia, ischemia, and other brain injury (see Section 8 for details). Thus,

high‐level expression of IGF‐1 appears in situations where extraordinary energy needs for brain cell growth

or repair processes are engaged. However, the molecular mechanisms underlying IGF‐1’s developmental

stage and cell‐specific expression in brain are still unclear. Recent evidence shows that modest caloric

restriction significantly reduces brain IGF‐1 and IGF1R mRNA levels in rats on a carbohydrate‐dominant

diet. A diet with the same calorie content composed primarily of lipid, however, ‘‘increased’’ brain IGF1R

expression (Cheng et al., 2003a). Additional studies in rats (Chowen et al., 2002) and Drosophila (Ikeya

et al., 2002) support the view that nutrient supply has important and complex effects on brain IGF system

gene expression. Further study is required to elucidate the specific mechanisms regulating brain IGF system

expression and the functional consequences of these changes.
6 IGF‐1 and Normal Brain Growth

IGF‐1 deletion or inhibition during brain development attenuates brain growth, with reductions in both

cell number and cell size (Beck et al., 1995; Cheng et al., 2000). This effect is more profound in the

nullizygous state, but even partial IGF‐1 deficiency, as in IGF‐1(þ/�) mice, results in significantly

diminished brain growth (Cheng et al., 2000). Cell numbers are notably reduced in the olfactory system,

the dentate gyrus of the hippocampus, and the striatum. Brain volume is globally decreased due to a loss of

neuropil, with significant reductions in neuronal soma volume, dendritic length and complexity, and

synapse number. A fundamental requirement for cell, organ, and organism growth is nutrient acquisition

and utilization. This most basic of functions is a prerequisite for cell division as well as somatic and process

growth. IGF‐1’s fundamental role in the brain, as in peripheral tissues, is to promote nutrient acquisition and

thus enhance cell proliferation, growth of the cell soma and processes, and more differentiated functions at

later stages of development. Depending onwhere andwhen IGF‐1 and its receptor are expressed during brain
development, it may predominantly impact cell proliferation, or postmitotic growth processes.

IGF‐1’s anabolic functions on brain growth involve IRS2, PI3K, and Akt, as demonstrated by the growth

phenotypes in genetic models with altered expression of each of these signaling molecules. Overexpression

of PI3K/Akt or deletion of PTEN leads to increased brain size (Backman et al., 2001; Kwon et al., 2001).

Activation of this pathway early in brain development is associated with augmented proliferation of neural

stem cells (Groszer et al., 2001), while activation later, when more cells are in a more differentiated,

postmitotic state, results in increased soma size (Kwon et al., 2003). Deletion of Akt3 results in a major

brain growth deficit, due to both decreased cell numbers and decreased cell size, suggesting that this specific

Akt isoform mediates IGF‐1 effects on brain growth (Easton et al., 2005). Deletion of IRS2 results in

significant reduction in brain growth, largely due to reduced cell proliferation (Schubert et al., 2003), thus

implicating IGF‐1 as the driver of this pathway in brain development.
6.1 Neurogenesis

The IGF1R is expressed at high levels in the developing nervous system, with highest expression concen-

trated in the germinal and subventricular zones that give rise to new neurons (Bondy, 1991; Bondy et al.,

1992b). IGF‐1 is coexpressed with the IGF1R in the subventricular zone of the anterior lateral ventricles that
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give rise to olfactory system neurons (Bartlett et al., 1991) where it most likely acts as an autocrine factor to

stimulate, alone or together with other neurotrophic factors, the proliferation of neural stem and precursor

cells. For example, epidermal growth factors (EGFs) or fibroblast growth factor‐2 (FGF‐2) is known to

stimulate neural stem cells to renew, expand, and differentiate into neural precursors, but they are effective

only in the presence of IGF‐1 (Arsenijevic et al., 2001). Given what is known about IGF‐1’s anabolic

signaling in neural cells, it seems likely that IGF‐1 supports proliferation triggered by the other growth

factors by providing essential anabolic support through nutrient acquisition and protein synthesis.

IGF‐1 normally has a very selective, cell‐specific, and developmentally timed pattern of expression in

normal brain maturation. Elucidation of the phenotype of these IGF‐1‐expressing and neighboring cells in

the IGF‐1‐null mouse provides insight into IGF‐1’s role in normal brain development. The study of

transgenic mice that overexpress IGF‐1 ectopically under transgene control reveals what may happen

when IGF‐1 is expressed at abnormally high levels in various different cell types at various developmental

stages. Depending on the cellular pattern and developmental timing of IGF‐1 transgene expression, neuron
numbers are increased in the cerebral cortex (Gutierrez‐Ospina et al., 1996), cerebellar cortex (Ye et al.,

1996), hippocampus (O’Kusky et al., 2000), and brainstem (Dentremont et al., 1999). This increase in

neuron numbers is due to, at least partially, increased neurogenesis (Ye et al., 1996; O’Kusky et al., 2000).

These observations reveal what happens as a result of abnormal IGF‐1 expression in brain, but do not reveal

the nature of IGF‐1’s role in normal brain development. In fact, the high‐level IGF‐1 expression under

transgene control may suppress normal IGF‐1 production, and alter IGF1R and IGFBP expression as well,

thus distorting normal developmental patterns.
6.2 Neuronal Somatic Growth and Dendritogenesis

The 30–40% reduction in brain size in adult IGF‐1‐null mice is due to a reduction in cell size and neuropil,

or neuronal processes. Cell density is significantly increased throughout the IGF‐1‐null brain (> Figure 7-4)
. Figure 7-4

Cortical neurons are smaller with hypotrophic dendritic trees in the IGF‐1‐null brain. Panels a (wild type, WT)

and b (IGF‐1‐null) are micrographs of Nissl‐stained cortical sections. The soma size is distinctly smaller and the

cell density increased in IGF‐1‐null brains. Camera lucida drawings of Golgi‐stained cortical pyramids (layers

II–III) reveal dramatically reduced dendritic profiles of the IGF‐null neurons (c and d). Adapted from Cheng et al.

2003. J Neurosci Res 73: 3
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(Beck et al., 1995; Cheng et al., 1998; Cheng et al., 2003b). This observation is explained by reduced process

growth, since the space between neurons is normally occupied by extensively branched neuronal processes.

Soma size of projection neurons in the IGF‐1‐null brain is reduced by �25%, and dendritic length,

branching, and synapses are reduced by a similar amount (> Figure 7-4). IGF‐1 mRNA is most abundant

in growing projection neurons in sensory and cerebellar relay systems (Bondy, 1991). Interestingly, very

high‐level IGF‐1 expression is concentrated in all the auditory system nuclei: the medial geniculate, inferior

colliculus, inferior olives, and cochlear nuclei (Bondy, 1991). These auditory system way stations are known

to exhibit extremely high levels of glucose utilization. Humans with IGF‐1 deficiency suffer sensory‐neural
hearing loss, in addition to mental retardation (Woods et al., 1997; Bonapace et al., 2003; Walenkamp et al.,

2005). A recent study using auditory brainstem response testing in IGF‐1‐null mice has shown that the

hearing loss is composed of both peripheral and central defects, consistent with IGF‐1’s extensive expression
throughout the auditory neural system (Cediel et al., 2006). The IGF‐1‐expressing neurons attain excep-

tionally large soma size and develop extraordinarily extensive and complex dendritic formations. For

example, the Purkinje cell expresses the highest level of IGF‐1 mRNA of any cell type in the brain and at

maturity has the largest soma and most elaborate dendritic arbor of any brain cell (> Figure 7-5).

Thus it appears that impaired neuronal somatic growth and process formation accounts in large part

for the reduction in IGF‐1‐null brain size. In the transgenic IGF‐1‐overexpressing brain, neuropil and

synapses are significantly increased (O’Kusky et al., 2000). IGF‐1 treatment significantly increased dendritic

growth in cortical slices, which supports these in vivo findings (Niblock et al., 2000). In addition, IGF‐1 has
been shown to stimulate neuritic outgrowth in rat embryonic day 16–17 cortical neurons, rat hypothalamic
. Figure 7-5

Coexpression of IGF1 receptor (IGF1R) (a and b) and IGF‐1 (c and d) mRNAs by Purkinje cells of the cerebellar

cortex in the early postnatal mouse brain. Bright and dark‐field photomicrographs of in situ hybridization are

shown in pairs (a and b, c and d). In the dark field, white sliver grains are hybridized mRNA signals. Arrowheads

point to Purkinje cells (PC). GC granule cells
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neurons (Torres‐Aleman et al., 1990), chicken sympathetic neurons (Zackenfels et al., 1995), and mouse

Purkinje cells (Fukudome et al., 2003).
6.3 Neuronal Survival

The dentate gyrus is selectively reduced in size and cell number in the adult IGF‐1 knockout mouse

(Beck et al., 1995; Cheng et al., 2001). IGF‐1, however, is not expressed in the germinal zone supplying

progenitors for the dentate gyrus, though it is expressed by unidentified cells scattered throughout the

hippocampal formation. Unexpectedly, bromodeoxyuridine (BRDU) incorporation was actually increased

in the IGF‐1‐null subventricular zone (Cheng et al., 2001). Apoptotic cells were also increased throughout

the dentate gyrus in the IGF‐1‐null brain, however, indicating that IGF‐1 normally promotes neuronal

survival in this structure. There is abundant evidence from in vitro models supporting IGF‐1’s role in

promoting neuronal survival.

IGF‐1 promotes the in vitro survival of many different types of cultured neurons derived from many

regions of the nervous system, including cortical neurons (Aizenman and de Vellis, 1987; Harper et al.,

1996) and hippocampal neurons (Zheng and Quirion, 2004) in situations of serum or glucose deprivation.

IGF‐1 also protects hippocampal neurons from toxic effects of corticosterone (Nitta et al., 2004), nitric

oxide, hypoxia (Tamatani et al., 1998; Yamaguchi et al., 2001), and amyloid (Dore et al., 1997). In primary

cerebellar neuronal cultures, IGF‐1 increased the survival of Purkinje cells (Torres‐Aleman et al., 1992) and

granule neurons in situations of serum, potassium (D’Mello et al., 1993), or glucose deprivation (Harper

et al., 1996). IGF‐1 also protects granule neurons against toxicity induced by dopamine (Offen et al., 2001)

and polyQ‐huntingtin (Humbert et al., 2002), which is involved in the pathogenesis of Huntington’s disease.

Moreover, IGF‐1 partially prevents apoptosis of granule neurons isolated fromWeaver mutant mice (Zhong

et al., 2002), a mouse model of hereditary cerebellar ataxia. Finally, IGF‐1 also enhances the survival

of spinal cord motoneurons (Ang et al., 1992), parasympathetic neurons (Crouch and Hendry, 1991),

hypothalamic neurons (Torres‐Aleman et al., 1990), and striatal neurons (Nakao et al., 1996) in culture.

The neuronal survival signaling of IGF‐1 has been investigated in primary cerebellar granule neuron

cultures (D’Mello et al., 1993). Upon IGF‐1’s binding to its cognate receptor, both MAPK and PI3K are

normally activated (> Figure 7-2). Under serum and potassium deprivation, most cerebellar granule

neurons die unless IGF‐1 is added in culture media. IGF‐1’s survival effect on cerebellar granule neurons

is mediated by the PI3 kinase/Akt signaling pathway, since specific PI3 kinase inhibitors block IGF‐1’s
survival‐promoting activity, while the MAP kinase specific inhibitor PD98059 had no effect (D’Mello et al.,

1997; Miller et al., 1997). The involvement of PI3K/Akt in this pathway has been confirmed by expressing

WTor dominant‐negative forms of Akt (Dudek et al., 1997). In fact, activation of PI3 kinase/Akt cascade is

a common mechanism that mediates IGF‐1’s actions not only on cerebellar granule neurons, but also on

other neuronal culture models (Matsuzaki et al., 1999; Yamaguchi et al., 2001; Zhong et al., 2002; Rangone

et al., 2005). Downstream from Akt, different substrates are required to mediate IGF‐1’s survival effects
depending on the type of neurons and the kind of adverse stimuli, e.g., potentiation of L calcium channels

(Blair et al., 1999), NF‐kB activation (Koulich et al., 2001), and Bim induction (Linseman et al., 2002). In

hippocampal neurons, Akt mediates IGF‐1’s survival action against hypoxia or NO by inhibiting p53

transcriptional activity (Yamaguchi et al., 2001), but mediates IGF‐1’s rescue action from dehydroepian-

drosterone‐induced apoptosis by inactivation of GSK3 (Lin et al., 2004). Overall, IGF‐1 promotes the in

vitro survival of many types of differentiated neurons through the PI3/Akt pathway and multiple down-

stream signaling molecules that are specific for particular neuronal types.

Given all these data from in vitro studies, one might expect to see massive, widespread apoptosis in the

IGF‐1‐null mouse brain. However, cell numbers are normal in the cerebellar and cerebral cortices and other

brain regions, except for the dentate gyrus, olfactory bulb, and striatum, as documented in two independent

targeted deletions in different outbred mouse lines (Beck et al., 1995; Cheng et al., 1998). While there were

increased apoptotic figures in the dentate gyrus, there were few apoptotic cells in other regions (Cheng

et al., 2001). Moreover, the IRS2 deletion model does not demonstrate increased brain cell death, despite a

30–40% reduction in brain size (Schubert et al., 2003). Thus, it seems likely that IGF‐1 is essential for cell
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survival under the stress of in vitro conditions and in response to brain insult, more than in normal brain

development.

6.4 Myelination

IGF‐1 promotes the survival and production of myelin by cultured oligodenrdocytes (Mozell andMcMorris,

1991; McMorris and McKinnon, 1996). These in vitro observations led to the view that IGF‐1 has a role

in oligodendrocyte generation or differentiation and myelin synthesis. However, IGF‐1 and IGF1R

expression are lowest in white matter (Bondy and Lee, 1993b) and there is no apparent sign of central

or peripheral myelinopathy in IGF‐1‐null mice (Cheng et al., 1998; Gao et al., 1999). Myelin concentra-

tion, normalized to brain weight or protein, is equal in IGF‐1‐null and WT littermate mice. Likewise,

concentrations of myelin‐specific proteins (MBP, PLP, MAG, and CNPase) are equal in IGF‐1 null and

WT littermate mice. Oligodendrocyte numbers and myelin are reduced in the IGF‐1‐null olfactory

system, which is profoundly reduced in size and depleted of neurons, with efferent tracts correspond-

ingly diminished, associated with decreased myelin in anterior white matter tracts that include a large

olfactory component (Beck et al., 1995).

In brain structures where neurons are preserved, however, such as the cerebellum, myelination appears

normal. This observation suggests that if the system projection neurons survive despite the lack of IGF‐1, as
in the cerebellum, oligodendrocytes prosper and appropriate myelination occurs. The PNS of IGF‐1‐null
mice demonstrates reduced axonal diameter and proportionately reduced myelin sheath thickness, with no

evidence of peripheral myelinopathy (Gao et al., 1999). The IGF‐1‐null mice show no neurological signs of

myelinopathy, with normal motor function, coordination, and gait (Cheng et al., 1998), all functions

normally impaired by myelin defects. Finally, the mentally retarded individual with IGF‐1 gene deletions

shows no evidence of dysmyelination or myelinopathy (Woods et al., 1996, 1997).

Observations of increased myelin content in the brains of transgenic mice overexpressing IGF‐1 have

been invoked to support a primary role for IGF‐1 in myelination (Carson et al., 1993). The study reported

that both brain size and myelin content, but not DNA content and oligodendrocyte numbers, are increased

in the transgenic mice, suggesting that the increased brain mass is primarily due to increased cell size and/or

process growth. Further investigation showed that myelin sheath thickness was increased in proportion to

increased axonal diameter in this transgenic model (Ye et al., 1995). These findings in IGF‐1‐null and
overexpressing brains are consistent with the current view (Barres and Raff, 1999) that myelination is

induced by neuronal fiber growth and/or activity. IGF‐1 overexpression stimulates excessive growth in size

and number of neuronal processes and possibly also the survival of additional neurons, which, in turn,

stimulates additional oligodendrocyte biosynthetic activity and myelination. The findings that myelination

in IGF‐1‐null and IGF‐1‐overexpressing mice is essentially matched to neuroaxonal mass is best explained

by the simple hypothesis that IGF‐1 stimulates neuronal process growth, which in turn stimulates myelin

formation.

The fact that IGF‐1 does not seem to have an essential role in developmental myelination does not mean

that it is not important in repair processes after nervous system injury. IGF‐1 expression is induced in

reactive astrocytes responding to demyelinating insults and IGF1R expression is enhanced in injured

oligodendrocytes (Komoly et al., 1992). When cuprizone induced demyelination in the CNS of mice

whose IGF1R was selectively mutated, oligodendrocyte progenitors did not accumulate, proliferate, or

survive, indicating that signaling through IGF1R plays a critical role in remyelination (Mason et al., 2003).

Administration of exogenous IGF‐1 improves remyelination after injury, which supports the significance of

these expression patterns (Yao et al., 1995). IGF‐1’s prominent effects on oligodendrocytes in vitro may

actually reflect the fact that cell culture is essentially an injury model system.

7 IGF‐1 and Neurogenesis in the Mature Brain

Adulthood neurogenesis occurs continuously within the subventricular zone of the hippocampal dentate

gyrus and is important in learning and memory (Nilsson et al., 1999; Shors et al., 2001). This neurogenesis
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can be enhanced by exercise (Neeper et al., 1995; Trejo et al., 2001), an enriched environment (Nilsson et al.,

1999; Shors et al., 2001), and by IGF‐1 (Aberg et al., 2000). Subcutaneous infusion of IGF‐1 significantly

increased the proliferation of neural progenitors in the hippocampal dentate gyrus in adult hypophysec-

tomized rats (Aberg et al., 2000) or in rats after cerebral ischemia insults (Dempsey et al., 2003). Interest-

ingly, exercise‐induced neurogenesis in the adult hippocampus appears to be mediated by uptake of IGF‐1
into the brain. This is because exercise‐induced increases in the number of new neurons in the hippocam-

pus were blocked by the administration of an antibody that prevents passage of systemic IGF‐1 into the

brain (Trejo et al., 2001). On the other hand, neurogenesis was significantly increased in the dentate of

dwarf mice that have virtually no circulating IGF‐1, although IGF‐1 production is normal in the brain (Sun

et al., 2005).

Interestingly, cerebral ischemia appears to increase the proliferation of progenitor cells in the cortex and

subventricular zone of adult rats (Zhang et al., 2001). Since ischemia also activates astrocytic IGF‐1
expression at a late stage, it may be that this ischemia‐induced neurogenesis is partially mediated by

IGF‐1 released from astrocytes. This hypothesis is supported by the increase in neuron numbers in

astrocyte‐specific IGF‐1 transgenic mice upon induction (Ye et al., 2004).
8 IGF‐1 and Brain Injury

There has been a great deal of interest in the idea of treating brain injury with trophic agents including

IGF‐1. This was prompted in part by the finding that many components of the IGF system are induced in

response to diverse types of brain injury. In contrast to the predominantly neuronal pattern of IGF‐1
expression during normal brain development, this injury‐invoked IGF‐1 expression is generally observed in

astrocytes (Komoly et al., 1992; Lee et al., 1992a; Gehrmann et al., 1994; Li et al., 1998). Interestingly, local

IGF‐1 expression at brain injury sites is also strongly correlated with local [14C]‐2‐deoxyglucose uptake

(Cheng et al., 2000). Potential roles for IGF‐1 in response to brain injury have been studied in animal

models, such as hypoxia and/or ischemia (Tagami et al., 1997a, b; Guan et al., 2003) and various models of

traumatic brain injury (Saatman et al., 1997; Walter et al., 1997; Li et al., 1998; Kazanis et al., 2004).

Regardless of primary insult, IGF‐1 expression decreases in the early phases of the injury (Lee et al., 1992a,

1996; Clawson et al., 1999). This immediate suppression of neuronal IGF‐1 gene expression is best

characterized in an animal model of hypoxic–ischemic encephalopathy, where neuronal IGF‐1 expression

decreased within the hypoxic–ischemic hemisphere as early as 1 h (the earliest time studied) following the

insult. IGF‐1 mRNA levels are inversely correlated with the length of the hypoxia and the number of

apoptotic cells (Clawson et al., 1999). IGF‐1 mRNA levels continued to decrease with a nadir at 24

h of recovery (Lee et al., 1996), when the number of apoptotic cells was also at the maximum (Clawson

et al., 1999). This correlation would indicate that the early decrease in neuronal IGF‐1 expression

likely contributes to hypoxia–ischemia‐induced neuronal death. At a delayed phase of the recovery,

endogenous IGF‐1 genes become activated in astrocytes as they react to the injury (Lee et al., 1992a,

1996; Clawson et al., 1999). These observations provide a rationale for restoring IGF‐1 during the early

phase of hypoxia–ischemia.

Encouraging results have been obtained in adult rats (Guan et al., 1993) and fetal sheep (Johnston et al.,

1996; Guan et al., 2000a). In these animal models, supplying IGF‐1 to the injured brain intraventricularly

within 2 h of hypoxia–ischemia promoted neuronal survival (Guan et al., 2000b). In both these models,

IGF‐1 treatment reduced infarct size and, more impressively, improved somatosensory function as eval-

uated by bilateral tactile test (Guan et al., 2001). In another injury model, IGF‐1’s effect on long‐term
recovery can be attributed to specific effects on oligodendrocytes. During myelinogenesis, younger rats are

more sensitive to hypoxic–ischemic insult, manifested as ipsilateral necrosis originating in and spreading

from myelinogenic foci (Rice et al., 1981). This hypoxia–ischemia‐induced injury to immature oligoden-

drocytes may be alleviated by IGF‐1. In fact, infusion of IGF‐1 (3 mg over 1 h) into the cerebroventricles of

fetal sheep at 90 min after recovery from hypoxia–ischemia prevented the delayed oligodendrocyte loss and

associated demyelination (Guan et al., 2001).
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9 IGF‐1, Brain Aging, and Neurodegeneration

Normal aging is often accompanied by cognitive decline associated with reduced glucose utilization, altered

synaptic plasticity, decreased hippocampal neurogenesis, impaired brain angiogenesis, and in more severe

cases, accumulation of amyloid plaques and neurofibrillary tau‐containing tangles as well as neuronal cell
death (Hof and Mobb, 2001). Both circulating and endogenous brain IGF‐1 are reduced with aging (Breese

et al., 1991). IGF‐1 mRNA is significantly decreased in hippocampal neurons (Lai et al., 2000) and IGF‐1
and IGF1R levels are decreased in the cerebral cortex of aged rats (Sonntag et al., 1999). In addition, IGF‐1
and IGFBPs are altered in many types of neural disease, including Alzheimer’s disease (AD), amyo-

trophic lateral sclerosis, and inherited neurodegenerative conditions (Torres‐Aleman et al., 1996, 1998;

Busiguina et al., 2000). Serum IGF‐1 is positively correlated with cognitive performance in older men

(Aleman et al., 1999). It is unknown, however, if reduced circulating or brain IGF‐1 is a cause or effect of

brain disease.

Although IGF‐1’s effects on synaptogenesis and dendritic growth are most profound during brain

development, recent findings indicate that IGF‐1 and other neurotrophic factors may continually modulate

neuronal circuits where the reshaping of the synapse contacts continues throughout life (Caroni, 1993;

Schuman, 1999). For example, IGF‐1 infusion increases synaptic density and number in the hippocampus

in aged rats (Shi et al., 2005). Moreover, IGF‐1 infusion improves memory and some age‐related behavioral

deficits in aged rats (Markowska et al., 1998). In summary, IGF‐1 treatment seems to enhance neurogenesis

and synaptogenesis and possible cognitive function in rodents, suggesting a role of IGF‐1 in ameliorating

age‐related cognitive impairment. This view contrasts with the finding that IGF‐1‐deficient and IGF‐1‐
receptor‐deficient mice have longer life spans (Katic and Kahn, 2005) and maintain physiological functions,

including cognitive function, at youthful levels into old age (Kinney et al., 2001).
9.1 IGF‐1 and Alzheimer’s disease

Alzheimer’s disease (AD) has two pathological hallmarks, the accumulation of neurofibrillary tan-

gles (NFTs) and deposition of b‐amyloid plaques (Dani, 1997). Recent evidence suggests that IGF‐1
deficiency may contribute to the development of both these pathological features. First, IGF‐1 regulates

the phosphorylation of tau (Hong and Lee, 1997; Bondy and Cheng, 2004; Cheng et al., 2005), a

microtubule‐associated protein involved in microtubule assembly and stabilization (Barghorn et al.,

2000). Hyperphosphorylated tau disrupts normal microtubule‐dependent processes (Lee et al., 2001) and
is resistant to degradation and prone to aggregation, culminating in the formation of NFT (Spillantini and

Goedert, 1998; Lee et al., 2001). Hyperphosphorylated tau is associated with cognitive dysfunction in

normal aged and disease brains. Tau is hyperphosphorylated in the IGF‐1‐null mouse brain (> Figure 7-6)

(Bondy and Cheng, 2004; Cheng et al., 2005). In addition, inhibition of IGF‐1 signaling in IRS2 knockout

mice increased tau phosphorylation and led to NFT accumulation (Schubert et al., 2003). Tau hyperpho-

sphorylation in IGF‐1‐null mice appears due to overactivity of GSK3. In addition to regulating glycogen

synthesis, GSK3 is also involved in tau phosphorylation in brain (Ishiguro et al., 1993; Jope and Johnson,

2004); thus reduced inhibition of GSK3 in IGF‐1‐deficient brains (Cheng et al., 2000) is associated with tau

hyperphosphorylation (Bondy and Cheng, 2004; Cheng et al., 2005). In AD, NFTs consistently contain tau

phosphorylated on GSK3 target residues, and GSK3 is physically associated with pretangle and tangle‐
bearing neurons in human brains (Pei et al., 1999).

IGF‐1 protects neurons from b‐amyloid toxicity (Dore et al., 1997) and appears to promote clearance of

brain b amyloid (Gasparini et al., 2001; Carro et al., 2002). Increased serum IGF‐1 levels are associated with

reduced brain b‐amyloid burden (Carro et al., 2002). Insulin, while its structure and function are closely

related to IGF‐1, may have distinct mechanisms in modulating brain amyloid levels (for a review see Carro

and Torres‐Aleman, 2004). It can directly stimulate the release of b amyloid from neurons and also increase

extraneuronal accumulation of b amyloid by competing with b amyloid for insulin‐degrading enzyme

(Gasparini et al., 2001; Watson and Craft, 2003). Therefore, insulin seems to increase brain b‐amyloid
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Hyperphosphorylated tau in the IGF‐1‐null brain. Total and phospho‐tau were examined in IGF‐1‐null (Igf1(�/�)

and wild‐type (WT) brains by immunoblots. (a) Total tau was detected by anti‐Tau 5, which recognizes tau

protein irrespective of its phosphorylation status. This blot was striped and reprobed with antibody AT‐8 that

recognizes PHT‐tau with phosphorylated ser202 residue. (b) Phospho‐tau was detected by antibody p‐Tau 396,

which specifically recognizes tau phosphorylation on serine 396, a site prominently phosphorylated in PHF‐tau.
The same blot was then stripped and reprobed with tau‐1 antibody, which detects dephosphorylated tau.

These blots show that total tau protein is preserved in Igf1(�/�) brain, while tau phosphorylation is dramati-

cally increased in specific epitope in aged Igf1(�/�) brains as compared with wild types (WTs). Adapted from

Cheng et al. 2005. Endocrinology
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release. Taken together, dysfunction of insulin/IGF‐1 signaling contributes to the major pathological events

occurring in the brains of patients with AD.
10 Summary

The brain requires enormous supplies of fuel and substrate to support neuroglial growth and process

formation during early postnatal development. Murine and human brains consume over half the energy

available to the organism as a whole during this critical period that is characterized more by synapse

formation than by synaptic activity. Purkinje cells grow into giant cells with surface areas exceeding all other

cells in the body. How this remarkable anabolic feat is achieved when all brain cells are exposed to the same

extracellular nutrient supply is unclear. Evidence from in vivo studies of murine brain development suggests

that IGF‐1’s role in normal brain development is to promote these extraordinary growth processes via PI3K/

Akt/GSK3b pathways that are similar to insulin signaling pathways in peripheral tissues. IGF‐1 promotes

hypertrophy of muscle cells using these same molecular signals, including GSK3 (Rommel et al., 2001).

These observations in the mouse are supported by data from Drososphila, in which inactivation of paralogs

of the insulin/IGF receptor, IRS, PI3K, and Akt all result in globally reduced cell size, which results in

proportionate dwarfism, while overexpression of any of these molecules results in increased cell size and

gigantism (Potter and Xu, 2001). As a further comment on IGF‐1 action in general, all of these studies in

mice and in Drosophila suggest that IGF‐1 effects are neutral with respect to cellular differentiation.

This is not to suggest that IGF‐1’s only role in brain is to promote neuronal growth. Reduced cell

numbers in specific brain regions of the IGF‐1‐null mouse support an IGF‐1 role in developmental

neurogenesis, through either increased proliferation or increased survival of nascent neurons. However,



IGF‐1 in brain growth and repair processes 7 159
further investigation is required to elucidate whether IGF‐1 mainly promotes faster rates of mitosis or

increases the number of cells entering the mitotic cycle, what signaling pathways are involved, and whether

IGF‐1 acts in an autocrine, paracrine, or even endocrine fashion to promote neurogenesis. In addition,

further work is necessary to identify cell populations where IGF‐1 promotes survival, and to discover the

cellular interactions and signaling molecules active in this function. A major area for future investigation is

the role of IGF‐1 in brain aging. As we have described, there are opposing views as to potential positive

versus negative effects of insulin/IGF action on aging. Evidence from diverse organisms shows that these

growth peptides are important for somatic growth and reproduction, but at a cost of accelerated aging.

Suppression of insulin/IGF signaling results in smaller size and reduced fecundity, but prolongation of life

span. The natural reduction in IGF‐1 levels with aging could be protective, allowing cells to devote more

resources to repair processes, thus preventing cell death from oxidative damage, and retarding abnormal

growths. However, since IGF‐1 signaling clearly represses tau phosphorylation, a major feature of degener-

ative aging in brain, the story could be different in this unique organ. This should be a very productive area

for future research.
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Abstract: Erythropoietin (EPO) is the principal regulator of red blood cell production and is synthesized

by the adult kidney. Insulin‐like growth factor‐I (IGF‐I) is a neuroprotective cytokine that supports

neuronal development and survival. As neuroprotectants, EPO and IGF‐I have synergistic effects when

combined. Both EPO and IGF‐I and their receptor are expressed in the mammalian central nervous

system (CNS) where they have been shown to play a neuroprotective role. The aim of this chapter is to

identify and discuss the key signaling molecules and events published in numerous reports that are involved

in EPO‐ and IGF‐I‐mediated neuroprotection. Better understanding of the intricacies of EPO signaling

and EPO/IGF‐I synergy in the central and peripheral nervous system provide new strategies for novel

therapies.

List of Abbreviations: BAD, Bcl2‐antagonist of cell death; c‐myc, myc protooncogene protein; casp‐3,
caspain‐3; CNS, central nervous system; EPO, erythropoietin; EPO‐R, erythropoietin receptor; GSK‐3b,
glycogen synthase kinase‐3b; IAP, inhibitors of apoptosis; IGF‐I, insulin‐like growth factor‐I; IGF‐IR, IGF‐I
receptor; IKK, inhibitor of nuclear factor kappa‐B kinase; JAK2, janus family of protein tyrosine kinase‐2;
MnSOD, Mn‐superoxide dismutase; NF‐kB, nuclear factor kappa‐B; PI‐3 kinase, phosphatidylinositol‐3
kinase; PI‐3,4‐P2, phosphatidylinositol‐3,4,‐diphosphate; PI‐3,4,5‐P3, phosphatidylinositol‐3,4,5‐trispho-
sphate; STAT5, nuclear translocation of the signal transducer and activator of transcription‐5; XIAP,
X‐linked IAP
1 Introduction

Erythropoietin (EPO) is the principal regulator of red blood cell production and is synthesized by the adult

kidney (Koury and Bondurant, 1990; Jelkmann, 1992; Koury, 1992). EPO synthesis is upregulated under

hypoxic conditions. The EPO receptor (EPO‐R) is expressed in the bone marrow and prevents apoptosis in

immature erythrocytes (D’Andrea et al., 1989; Wilson and Jolliffe, 1999). As we and others have shown,

both EPO and EPO‐R are expressed in the mammalian central nervous system (CNS) (Masuda, 1993;

Digicaylioglu et al., 1995; Marti et al., 1996; Morishita et al., 1997; Chin et al., 2000; Weishaupt et al., 2004).

In recent years, it has been reported in numerous publications that EPO and its receptor have a neuropro-

tective role within the CNS. Exogenous EPO has been shown to be neuroprotective in animal models of

cerebral hypoxia/ischemia (stroke), neurodegenerative diseases, retinal degeneration, experimental spinal

cord injuries, and gp120/HIV dementia. (Sakanaka et al., 1998; Brines et al., 2000; Sinor and Greenberg,

2000; Siren et al., 2001; Celik et al., 2002; Gorio et al., 2002; Grimm et al., 2002; Junk et al., 2002; Kumral

et al., 2003; Prass, 2003; Solaroglu et al., 2003; Villa et al., 2003; Digicaylioglu et al., 2004a, b; Weishaupt

et al., 2004). The focus of the present chapter is to introduce the intracellular signaling pathways involved in

EPO neuroprotection in the CNS.
2 Intracellular Signaling Pathways

2.1 JAK2 and STAT

In nonneuronal cells, ligand binding to the EPO‐R is known to induce activation of the Janus family of

protein tyrosine kinase‐2 (JAK2) and nuclear translocation of the signal transducer and activator of

transcription‐5 (STAT5) (Yousouffian et al., 1993; Ihle et al., 1995; Kirito et al., 1997; Oda et al., 1998;

Verdier et al., 1998; Uddin et al., 2000; Gorio et al., 2002; Yu et al., 2002). JAK2 phosphorylates intracellular

tyrosine residues on the EPO‐R, which are thought to provide docking sites for intracellular signaling

molecules (Ihle and Kerr, 1995).

Previously we reported the association of JAK2 with the EPO‐R complex in cortical neurons

(Digicaylioglu and Lipton, 2001). Although direct functional evidence is lacking, ligand binding to the

neuronal EPO‐R promoted the association of p85 and JAK2 with the EPO‐R and activation of phospha-

tidylinositol‐3 kinases (Digicaylioglu et al., 2004a, b).
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STAT5 is also required in nonneuronal EPO/EPO‐R signaling. JAK phosphorylation of STAT results in

their dimerization and translocation into the nucleus, where they bind to specific sequences in the promoter

of STAT‐regulated genes (Ihle and Kerr, 1995). In embryonic STAT�/�mice, severe anemia is caused by the

disruption of the EPO/JAK2/STAT5 signaling pathway (Socolovsky et al., 1999).

STAT proteins are constitutively expressed, present in the cytosol of neuronal cells, and recruited to the

phosphorylated tyrosine residues Y343 and Y401 of the activated EPO‐R complex (Damen et al., 1995a, b;

Quelle et al., 1996). Although disruption of STAT 5a/b function in EPO‐dependent cells results in higher

levels of apoptosis (Socolovsky et al., 1999), the participation of STAT5 in EPO signaling in neurons is

disputed. In our experiments we have not observed any loss in EPO‐mediated protection in neurons

expressing the dominant negative nonphosphorylatable form of STAT5a/b (Digicaylioglu and Lipton,

2001). Supporting our results, Ruscher et al. also could not detect any functional role for STAT in

hippocampal neurons under ischemic conditions (Ruscher et al., 2002). However, other groups have

reported activation of neural STAT5 by JAK2 (De‐Fraja et al., 1998; Chong et al., 2002). Moreover, Bittorf

et al. showed that in presence of EPO, cell lines expressing the truncated form of STAT5 with sustained

binding to specific DNA sequences underwent less apoptosis than cells expressing the wild‐type STAT5

(Bittorf et al., 2001). Interestingly, one report indicates that STAT5 is activated in axotomized neurons in

the peripheral nervous system but not in the CNS (Schwaiger et al., 2000; Liu and Snider, 2001). At present,

there is some evidence that STAT5 might be a downstream target of JAK2 in regeneration but not in

development of peripheral sensory neurons. It is conceivable that different signaling molecules are involved

in EPO‐mediated neuroprotection and in development or regeneration. Furthermore, downstream targets

of EPO‐activated JAK2 might be cell‐specific and may not always utilize STAT5.
2.2 PI‐3 Kinase, Akt, and GSK‐3b

Phosphatidylinositol‐3 kinases (PI‐3 kinases) are members of a lipid kinase family (Fry and Waterfield,

1993). PI‐3 kinases consist of the catalytic subunit p110 and the regulatory subunit p85 and are activated by
receptor tyrosine kinases. PI‐3 kinases phosphorylate and activate the inositol 30‐OH group in inositol

phospholipids, resulting in the second messengers phosphatidylinositol‐3,4,5‐trisphosphate (PI‐3,4,5‐P3)
and ‐diphosphate (PI‐3,4‐P2). Interaction with these phospholipids results in activation of Akt.

In nonneuronal cells EPO‐mediated phosphorylation and activation of the PI‐3 kinases has been

reported extensively (LeRoith and Roberts, 1993; Mayeux et al., 1993; Pleiman et al., 1994; Klingmuller

et al., 1997; Park et al., 2001). As in nonneuronal cells, activated EPO‐R in neurons provides binding sites for

the regulatory subunit of PI‐3 kinases, p85 (Nguyen et al., 2001; Digicaylioglu et al., 2004a, b). Phosphory-

lation and activation of p85 results in association of its Src2 homology domains with the EPO‐R and

generation of second messengers (Damen et al., 1993). Subsequent activation of Akt by PI‐3 kinases is

required for neuroprotection (Ruscher et al., 2002; Chong and Maiese, 2003; Weishaupt et al., 2004).

In neurons, Akt plays a crucial role in mediating EPO/JAK2/PI‐3 kinase signaling (Digicaylioglu et al.,

2004a, b). As a serine‐threonine kinase, activated Akt phosphorylates its downstream targets, which also

include Bcl2‐antagonist of cell death (BAD) (Datta et al., 1997), caspase‐9 (Zhou et al., 2000), and GSK‐3b
(Noshita et al., 2002), thereby decreasing or blocking neuronal apoptosis. Under apoptotic conditions,

caspase‐9 activates caspase‐3, which directly induces DNA fragmentation by activating DNases (Krajewski

et al., 1999; Okamoto et al., 2002; Bossy‐Wetzel et al., 2004). Akt blocks caspase‐3 activation by phosphor-

ylating the proapoptotic molecule BAD, which suppresses expression and activation of the antiapoptotic

factor Bcl‐XL.

Glycogen synthase kinase‐3b (GSK‐3b), another downstream target of Akt, promotes apoptosis in

neurons possibly through hyperphosphorylation of tau and beta‐catenin (Crowder and Freeman, 2000;

Hetman et al., 2000; Higuchi et al., 2003; Jones et al., 2003; Lucas et al., 2001; Mora et al., 2001; Schubert

et al., 2004). Overexpression of GSK‐3b results in increased neuronal apoptosis (Bhat et al., 2000). Similarly,

expression of noninducible form of Akt, which lacks serine phosphorylation ability, results in activation of

GSK‐3b by dephophorylation and by higher neuronal apoptosis (Fujio and Walsh, 1999; Crowder and

Freeman, 2000; Noshita et al., 2002; Stoica et al., 2003).
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2.3 NF‐kB and XIAP

Nuclear factor kappa‐Bs (NF‐kB) are a family of transcription factors that have been implicated to play a

role in survival and apoptotic signaling pathways. These factors are sequestered in the cytoplasm by IkBs,
which lose their ability to bind NF‐kB when their ubiquitin‐dependent degradation is initiated via

phosphorylation, usually by inhibitor of nuclear factor kappa‐B kinase (IKK). NF‐kB is then free to

translocate to the nucleus and bind to DNA (Karin and Ben‐Neriah, 2000). NF‐kB targets a number of

genes that are both proapoptotic and antiapoptotic, including p53, c‐myc, Fas, Bcl‐x, Bcl‐2, XIAP, cIAP2,
and MnSOD.

Classically, NF‐kB is known to operate in immune cells, mediating the inflammatory response, but was

later found to be expressed continuously in both neurons and glia (Kaltschmidt et al., 1994a, b). Activation

of NF‐kB in glial cells leads to expression of inflammatory proteins that cause apoptosis of neurons in

mixed cultures. The role of NF‐kB in neurons is complex; both pro‐and antiapoptotic functions have been

described in a number of varied treatments and models. Several lines of evidence support the hypothesis

that acute increases in NF‐kB activate an apoptotic signaling pathway, whereas stimuli that lead to large

increases in steady‐state NF‐kB activity provide neuroprotection (Lin et al., 1998; Shen et al., 2002; Aleyasin

et al., 2004).

Proapoptotic roles for NF‐kB in neuronal cells in vivo have been described in several animal models.

Excitotoxicity resulted in increased nuclear translocation of NF‐kB and consequent upregulation of

apoptotic genes and cell death, but these effects were abrogated by interfering with translocation of NF‐k
B to the nucleus (Qin et al., 1999). Ischemia in a transgenic model provided additional support for the

proapoptotic role of NF‐kB in acute cellular trauma (Schneider et al., 1999). However, similar methods

have discerned protective roles for the protein in neurons (Botchkina et al., 1999). In vitro studies have also

found both protective and degenerative roles for NF‐kB in the nervous system. A basal rate of activity is

critical for the survival of primary cortical neurons in culture but numerous in vitro insults lead to acute

activation and subsequent apoptosis (Barkett and Gilmore, 1999). Pharmacologic, functional, and genetic

inhibitors of NF‐kB can increase neuronal death upon prolonged exposure (Natarajan et al., 1998; Aleyasin

et al., 2004). However, these same methods of inhibition can provide protection to cultured neurons against

death from acute insults, such as excitotoxicity and DNA damage (Rothman and Olney, 1986; Grilli et al.,

1996; Aleyasin et al., 2004).

We investigated whether EPO was able to act through NF‐kB to protect neurons from excitotoxic and

nitrosative stress (Digicaylioglu and Lipton, 2001). Treatment of cerebrocortical cultures with EPO resulted

in nuclear translocation, and a large, sustained increase in DNA‐binding activity of NF‐kB in neurons (but

not astrocytes). Expression of a reporter gene confirmed the transcriptional activity of NF‐kB in this model.

EPO treatment caused JAK2 to become phosphorylated, and, in turn, to directly phosphorylate IkB.
Inhibition of this pathway, either by pharmacological inhibition of JAK2, or expression of a dominant

interfering form of JAK2, or an IkB super‐repressor construct, significantly attenuated NF‐kB DNA‐
binding and reporter gene transcription in response to EPO and abrogated EPO‐mediated neuroprotection.

The inhibitors of apoptosis (IAP) molecules are factors known to prevent neuronal cell death under a

variety of conditions (Deveraux and Reed, 1999). Among these factors is X‐linked IAP (XIAP), which

prevents neurodegeneration (Holcik and Korneluk, 2001). In transgenic mice, overexpression of XIAP in

neurons resulted in significant neuroprotection from transient cerebral ischemia (Trapp et al., 2003). We

have shown that EPO causes XIAP upregulation and facilitates its binding to activated caspase‐3, resulting
in reduced neuronal death (Digicaylioglu and Lipton, 2001).
3 EPO þ IGF‐I Affords Acute Neuroprotection

The potential for EPO to be used as an acute neuroprotective agent is limited as preincubation for 3–8 h

before the onset of a neurotoxic insult is required (Digicaylioglu and Lipton, 2001; Morishita et al., 1997).

Interestingly, we have shown that EPO’s efficacy is increased when combined with insulin‐like growth

factor‐I (IGF‐I) in an in vitro model (Digicaylioglu et al., 2004a, b). When EPO and IGF‐I are given
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together, they provide acute and prolonged neuroprotection by synergistically activating antiapoptotic

pathways. Using a pharmacological inhibitor, we found that PI‐3 kinase is required for the cooperative

and acute neuroprotective effects of EPOþIGF‐I. Our results suggest that concurrent activation of PI‐3
kinase by IGF‐I enables EPO to act as an acute neuroprotectant, independently of the more prolonged

effects of gene expression mediated by the JAK2/NF‐kB pathway that we have previously demonstrated

(Digicaylioglu and Lipton, 2001). We also demonstrated that Akt is required for the cooperative and acute

neuroprotective effects of EPOþIGF‐I by using a dominant interfering mutant of Akt. Moreover, our

preliminary results indicate that EPOþIGF‐I combination greatly reduces Akt dephosphorylation, thereby

enabling a prolonged signaling event. Our results indicate that EPOþIGF‐I induces binding of XIAP to

active caspase‐3 and inhibits the proteolytic activity of the ‘‘executioner’’ caspases, downstream of caspase‐3
activation. In addition, EPOþIGF‐I increases XIAP and cIAP‐2 expression and affords sustained neuro-

protection because of the increased association of IAPs with active caspase‐3, and subsequent blocking of

‘‘executioner’’ caspases downstream.

NF‐kB signaling seems to be uninvolved in the initial phase of EPOþIGF‐I neuroprotection. However,

Akt is known to phosphorylate and activate IKKa, resulting in enhanced NF‐kB function in nonneuronal

cells (Ozes et al., 1999; Burow et al., 2000). Akt can also influence NF‐kB directly, through activation of

MAP3K (Li et al., 1998). The effect of PI‐3 kinase on NF‐kB activity seems to be mediated primarily by

IKKa, and inhibitors of PI‐3 kinase block NF‐kB DNA binding in IKKa�/� but not IKKb�/� cells (Gustin

et al., 2004). However, in neuronal cells there is only little evidence for the participation of PI3K/Akt

pathway in NF‐kB activation (Min et al., 2003). In a different experimental model, Bittorf et al confirmed

the requirement of NF‐kB activation for EPO‐mediated neuroprotection, although this signaling pathway

was independent of JAK2, but required activation of Src‐kinases (Bittorf et al., 2001). Further investigation
is required in order to determine NF‐kB’s role in EPOþIGF‐I mediated acute neuroprotection.

The interaction between EPO and IGF‐I receptors is depicted in > Figure 8-1.
. Figure 8-1

Signaling pathways of erythropoietin (EPO) and erythropoietin þ insulin‐like growth factor‐I (EPOþIGF‐I) in
neurons
4 Conclusion and Future Directions

As evidenced by the number of publications and the resulting insights, EPO emerges as a novel neuropro-

tectant with significant clinical potential. However, detailed knowledge about EPO signaling in neurons is

still scarce and more studies about the neuronal signaling pathways involved in EPO‐mediated protection

are required. EPO is an extremely well studied and tolerated compound in humans, and its use in stroke
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patients is promising. Results from a first clinical phase II study showed that intravenous high‐dose EPO
given to 53 stroke patients was associated with an improved clinical outcome after one month (Ehrenreich

et al., 2002). EPO should also be considered for the chronic therapy and the management of neurodegen-

erative diseases, such as autism, ALS, Alzheimer’s disease, Parkinson’s disease, and AIDS dementia.

We have described a novel cooperative neuroprotective effect of EPO and IGF‐I that is mediated by a

signal transduction pathway involving PI‐3 kinase and Akt. In addition, our findings suggest that the

coadministration of synergistic neuroprotective agents rather than single agents may provide greater benefit

to patients suffering from acute brain injury. The combined use of EPO and IGF‐I could provide a powerful
tool for patients suffering from acute NMDA‐receptor‐mediated insults such as cerebral ischemia (stroke),

head or spinal cord trauma, and epilepsy, stroke and CNS trauma.
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Abstract: Tumor necrosis factor‐alpha (TNF‐a) is a pleuripotent cytokine credited with diverse functions

ranging from neuromodulatory roles in a normal brain to immune‐responsive Janus‐faced involvement in a

diseased brain where studies have exposed its neuroprotective as well as its neurodegenerative influences.

This chapter aims at illuminating these functions and establishing TNF‐a and its receptors (TNF system) as

a major proctor of central nervous system (CNS) function.

List of Abbreviations: ACTH, adrenocorticotropic hormone; AD, Alzheimer’s disease; AP‐1, activator
protein‐1; BBB, blood–brain barrier; c‐IAP, cellular inhibitor of apoptosis protein; CNS, central nervous
system; COX‐2, cyclooxygenase‐2; DED, death effector domain; DISC, death‐inducing signal complex;

FADD, Fas‐associated death domain; HAD, HIV‐associated dementia; IKK, IkB kinase; iNOS,

inducible nitric oxide synthase; JNK, c‐Jun N terminal kinase; LPSs, lipopolysaccharides; LTD, long‐term
depression; LTP, long‐term potentiation; MS, multiple sclerosis; mTNF‐a, membrane‐bound TNF‐a;
NEMO, NF‐kB essential modifier; NF‐kB, nuclear factor‐kappaB; NGF, nerve growth factor; NIK, NF‐k
B‐inducing kinase; NREM, nonrapid eye movement; PD, Parkinson’s disease; PI3K, phosphatidylinositol‐
3‐kinase; RIP1, receptor‐interacting protein 1; SDF‐1, stromal‐derived factor‐1; SODD, silencer of

death domain; sTNF‐a, soluble TNF‐a; TNF‐a, tumor necrosis factor‐alpha; TNF‐R, TNF‐a receptor;

TACE, TNF‐a converting enzyme; TRADD, TNF‐R‐associated death domain; TRAF2, TNF‐R‐associated
factor 2
1 Historical Perspective

To the credit of physician William Bradley Coley, the antitumor property of the immune response was

identified and clinically utilized more than 100 years ago (Coley, 1891). Coley, the third surgeon‐in‐chief
in New York hospital for special surgeries, reported back in 1893 that cancer patients who developed

bacterial infections showed necrosis of tumors. He himself attempted to treat such patients with filtrates

of cultured Gram‐negative bacteria, which he later marketed under the brand name ‘‘Coley Mixed Toxin.’’

Even after Coley’s death in 1936, the product was available in USA until the 1960s as a cancer vaccine.

However, the vaccine lost its way in history mainly due to extensive side effects generated by its

administration. Subsequent to the Coley episode, it took more than three quarters of a century after

the surgeon’s pioneering report to identify the active principle behind the tumor killing aspect of immune

response. In 1975, the active element was identified as a serum constituent of bacillus Calmette–Guérin‐
treated mice that mimicked lipopolysaccharide (LPS)‐induced dramatic hemorrhagic necrosis of solid

tumors overnight (Carswell et al., 1975). Owing to this property, the century‐old antitumor immune

component finally derived the name tumor necrosis factor (TNF). Identified later as a glycoprotein

released from host macrophages (Oettgen et al., 1980), TNF‐a was found to be the same molecular moiety

that was otherwise identified as hormone cachectin secreted from macrophages (Beutler et al., 1985a, b)

and had structural and functional relationships with human lymphotoxin‐a (later renamed as TNF‐b)
(Pennica et al., 1984). Subsequently, the cloning of complementary DNA (cDNA) and amino acid

sequencing of this cytokine was simultaneously undertaken by several laboratories in the 1980s (Pennica

et al., 1985; Haranaka et al., 1986; Aggarwal et al., 1987). The following years saw a rush of information

about this protein and by the end of a decade, the therapeutic potential of this acclaimed wonder drug for

cancer was also being estimated in other fields as it became clear that, contrary to its name, TNF‐a did

not induce necrosis or apoptosis in most cell types, including many tumor cells. This paved the pathway

for anticytokine therapy, where antibodies generated against TNF‐a were shown to prevent bacterial

sepsis (Beutler et al., 1985a, b; Tracey et al., 1987), rheumatoid arthritis (RA) (Elliott et al., 1993), and

other inflammatory diseases like Crohn’s disease (van Dullemen et al., 1995). Involvement of TNF‐a in

brain function was proposed in the late 1980s and since then a plethora of information has accumulated

about the biology and functions of this molecule in the brain. Before discussing its role in the central

nervous system (CNS), a brief summary of properties of this cytokine, its receptors, and its signal

transduction pathways is presented in the following sections.
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2 Biology of TNF‐a

2.1 The Molecule

TNF‐a is the prototypical cytokine member of a family of structurally related biomolecules (TNF ligand

superfamily) with conserved bioactivity among vertebrates (Goetz et al., 2004). Human TNF‐a is

translated as a 233‐amino‐acid, 26‐kDa proprotein that is displayed on the plasma membrane as a type

II transmembrane moiety (Kriegler et al., 1988). Membrane‐bound form of TNF‐a (mTNF‐a) is then

cleaved by a nonspecific metalloproteinase called TNF‐a converting enzyme (TACE) in the extracellular

domain to release the 157‐amino‐acid, 17.3‐kDa soluble (sTNF‐a) monomer (> Figure 9-1) (Moss et al.,
. Figure 9-1

TNF receptor–ligand interplay. TNF‐a is displayed on the membrane as biologically active homotrimers

(membrane‐bound TNF‐a, mTNF) that may be cleaved by metalloproteinase TNF‐a converting enzyme

(TACE) to release soluble homotrimers (sTNF), which are also active biologically. Two TNF receptors (TNFR1

and TNFR2) have various binding affinity for the ligand. While mTNF has equal affinity for both the receptors,

sTNF displays greater affinity for TNFR1
1997). This 17‐kDa monomer is composed of two antiparallel b‐pleated sheets with antiparallel b‐strands
forming a ‘‘jelly roll’’ structure typical of few viral capsid proteins and the TNF ligand family. Both

the membrane‐bound and secreted forms retain biological activity of the molecule. However, such

biological activity is contingent on oligomerization of the molecule into conical homotrimers such

that each monomer contacts the remaining two. Adducing the soluble form, this cleaved product exists

in solution as a homotrimer of total molecular mass of 52 kDa. Trimers are assembled intracellularly before

their membrane display or TACE‐mediated cleavage (Tang et al., 1996). Mutational analyses have identified

three receptor interaction domains in monomer–monomer interface near the base of the trimer structure

(Idriss and Naismith, 2000). We will discuss more about TNF‐a ligand–receptor interaction in the next

section.

Normal and tumor cells of both hematopoietic and nonhematopoietic origin express TNF‐a. This
includes immune cells like T cells, B cells, dendritic cells, natural killer (NK) cells, neutrophils, eosinophils,

and mast cells. In brain, neurons and glial cells express TNF‐a under normal conditions, while in diseased

state TNF‐a production is greatly enhanced in activated astroglia and microglia.
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2.2 TNF Receptors

Biological responses of TNF‐a are mediated by binding of the cytokine in any of its forms to either of its two

structurally distinct receptors: TNF‐R1 (CD120a or p55) or TNF‐R2 (CD120b or p75) (> Figure 9-1). Both

receptors are transmembrane glycoproteins with multiple cysteine‐rich repeats in the extracellular N‐
terminal domain and are susceptible to metalloproteinase‐interceded cleavage. TNF‐R2 is cleaved by

TACE (Solomon et al., 1999), while the exact proteinase responsible for TNF‐R1 has not been identified

till date. However, a TNF‐R1‐interacting protein, called aminopeptidase regulator of TNF‐R1 shedding

(ARTS‐1), has been reported recently whose expression directly correlates with TNF‐R1 cleavage (Cui et al.,
2002). Significant biological functions of cleaved TNF‐R1 are illuminated by cleavage‐resistant mutant of

TNF‐R1 that has been linked to TNF‐R1‐associated periodic syndrome (TRAPS), a dominant inheritable

form of autoimmune disorder (McDermott et al., 1999). However, cell surface proteolytic activity does not

eradicate the ligand binding activity of TNF‐Rs; thus they may act as decoy receptors and dampen TNF‐a
bioactivity naturally (Engelmann et al., 1990). However, the affinity of ligand binding is depreciated in

soluble receptors form, probably due to lack of cooperativity in ligand binding, which is demonstrated

significantly by membrane‐bound receptors.

TNF‐Rs are present on almost all known cell types with a few exceptions such as erythrocytes and

unstimulated T cells. The expression of genes encoding these two receptors is differentially regulated in

most cells, thereby generating a cell‐specific bias in the TNF‐R1:TNF‐R2 ratio; this ratio is known to

preordain cells to a particular set of responses to the cytokine signal (Vandenabeele et al., 1995). While

TNF‐R1 gene is controlled by an almost noninducible housekeeping promoter, the TNF‐R2 gene is widely
regulated in many cell types by external stimuli such as LPS and various mitogens (Erikstein et al., 1991;

Tannenbaum et al., 1993).

To understand the interaction of the TNF trimer with its receptor, we will briefly illuminate the

structural features of TNF‐b and TNF‐R1 (Banner et al., 1993). Here, we may mention that both TNF‐a
and TNF‐b mediate their cellular response via TNF‐Rs (Wallach et al., 1999). TNF, upon binding to the

receptors, aggregates them, leading to formation of TNF‐R homotrimers and never heterotrimers (Moos-

mayer et al., 1994). The receptors remain as elongated structures, with each relating to the others parallel

along their long axis. They align themselves along the ‘‘groove’’ present on the monomer–monomer

interface of the TNF molecule. The TNF‐b and receptor interface involves residues from two adjacent

TNF monomers and second and third subdomains of the receptor. Once bound to its ligand, the TNF–

TNF‐R complex is rapidly internalized by clathrin‐coated pits and is degraded in the lysosomes (Mosselmans

et al., 1988; Porteu and Hieblot, 1994). Such internalization is specific for TNF‐R1, while downregulation of

TNF‐R2 is mediated mainly by its shedding into the cell medium (Higuchi and Aggarwal, 1994).

The two TNF receptors differ greatly in their binding affinity for TNF‐a (> Figure 9-1). While the

binding kinetics for sTNF‐a to both the receptors was found to be approximately the same, the dissociation

kinetics was far greater in the case of TNF‐R2. This renders the sTNF‐a:TNF‐R1 binding almost irreversible,

whereas the ligand:TNF‐R2 complex is transient. This leads to an overall greater affinity of sTNF‐a for TNF‐
R1. However, both receptors have similar affinity for mTNF‐a, thereby allotting relevant significance to the

form of available TNF‐a to carry out any particular biological activity. In addition to the form of accessible

TNF ligand, as already stated, the ratio of TNF‐R1 to TNF‐R2 also determines the cellular response.

All biological activities attributed to TNF‐R2 can also be exerted by TNF‐R1 engagement, usually at a

lower density. However, in the presence of both receptors, TNF‐R1 monopolizes TNF‐induced signaling.

Taken together, it is apparent that TNF‐R2 plays second fiddle to TNF‐R1. Why should cells then carry the

burden of expressing TNF‐R2 at all? The answer lies in understanding the proposed roles played by TNF‐
R2. The main among them is augmenting ligand–TNF‐R1 interaction by a mechanism called ‘‘ligand

passing’’ (Tartaglia and Goeddel, 1992; Tartaglia et al., 1993). Owing to its far greater dissociation rate

with TNF ligand, TNF‐R1 physically conveys the ligand molecule to the adjoining TNF‐R1 cluster, thereby
facilitating ligand binding of TNF‐R1. This ‘‘ligand passing’’ helping hand model also explains

the appositeness of the TNF‐R1:TNF‐R2 ratio. In this respect it must be understood that ligand passing

is more relevant in case of sTNF than in case of mTNF. Moreover, TNF‐R2 may have a singular

role in conveying signals of mTNF‐a. This is suggested by studies in TNF‐R2‐null murine cells that,
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like wild‐type cells, are sensitive to a high dose of mTNF‐a shock. However, TNF‐R1‐null cells are

resistant to similar insults (Vandenabeele et al., 1995).

It has been proposed recently that TNF‐Rs are assembled in preligand binding homomultimer state

owing to extracellular pre‐ligand‐binding assembly domain (PLAD)‐mediated homophilic interaction of

receptor molecules (Chan et al., 2000). Such receptor arrangements, however, remain silent and attain

competence only upon ligand binding. Furthermore, engagement of TNF‐R1 and TNF‐R2 by

lymphotoxin‐a� (TNF‐b) in addition to TNF‐a itself (Wallach et al., 1999) further complicates the overall

regulatory mechanism of the mediated signaling of the TNF–TNF‐R complex.
2.3 Signaling via TNF‐Rs

While TNF‐Rs share structural similarities in their extracellular domains, they differ in their intracellular

domain, and consequently in signal transduction. However, both receptors demonstrate trimerization upon

binding of noncovalent TNF‐a trimers and subsequent recruitment of specific adaptor proteins to their

cytoplasmic domain. These adaptor proteins then decide the course of the signal and transduce it further

downstream (> Figure 9-2a and b).
2.3.1 Signaling via TNF‐R1: Endorsing a Double‐Edged Sword

Once activated by ligand binding, TNF‐R1may either summon the apoptotic machinery into play or trigger

a diametric survival signal for the cell. Origin of such conflicting signals from the same receptor is indeed

superficially paradoxical. The key to understand this paradox lies in the composition of the assembled

protein complex near the cytoplasmic tail of the receptor, which essentially houses the characteristic

protein–protein interaction domain called death domain (DD). During resting condition, TNF‐R1 DD is

masked by silencer of death domain (SODD) protein in order to override the intrinsic property of DD to

self‐trigger a signal, thus keeping the receptor faithful to ligand‐mediated activation (Jiang et al., 1999).

After binding of a ligand, SODD protein is exchanged for a DD‐containing adaptor protein, TNF‐R‐
associated death domain (TRADD) protein, which attaches to TNF‐R1 by interaction with its respective

DD (Hsu et al., 1995). Thus the TNF‐R1–TRADD complex forms the platform on which further adaptor

proteins are recruited to generate either a death‐inducing or a survival‐encouraging conglomerate of

signaling proteins.

2.3.1.1 Survival Signals from TNFR1 Origin of survival signals from TNFR1 is contingent on binding of

either receptor interacting protein 1 (RIP1) or TNF receptor‐associated factor 2 (TRAF2) to TNF‐R1. RIP1,
a serine/threonine protein kinase, interacts with the TNF‐R1–TRADD complex via its C‐terminus DD, while

TRAF2 interacts with the complex via its C‐terminus TRAF domain. Once assembled, the signalosome

mediates survival signals via either NF‐kB‐independent or ‐dependent pathway (> Figure 9-2a).

TRAF2, characterized by the presence of N‐terminus ring finger and zinc finger motifs, interacts with a

variety of survival proteins such as cellular inhibitors of apoptosis proteins (c‐IAPs), A‐20, and NIK

(Aggarwal, 2000). A‐20 has been shown to disrupt apoptosis in IkB kinase (IKK) g‐deficient cells from
TNF‐induced apoptosis by disrupting association of TRADD to TNF‐R (He and Ting, 2002). c‐IAPs, upon
recruitment to TNF‐R1, may act to block apoptosis by binding and degrading caspases, as they are

otherwise known to do so by interacting with caspases via their N‐terminal baculovirus IAP repeat (BIR)

domain (Roy et al., 1997). Furthermore, recruitment of NF‐kB‐inducing kinase (NIK) triggers a kinase

cascade, finally activating NF‐kB. This transcription factor, as a general rule, mediates transcription and

expression of antiapoptotic genes. TRAF2 also engages IKK, member of the kinase cascade leading to NF‐kB
activation that acts immediately downstream of NIK.

In addition to TRAF2, RIP1 also plays a definite role in NF‐kB activation by binding to NF‐kB essential

modifier (NEMO) (IKKg), the regulatory subunit of IKK (Zhang et al., 2000). Activation of the NF‐kB
pathway from TNF‐R1 has been proposed to be dependent on the synchronous interplay of TRAF2 and
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Signaling from TNFR1. (a) Survival signal. TNFR1 remains inactive under normal circumstances by interacting

with the silencer of death domain (SODD) protein. However, upon ligand binding, TNFR1 binds to TNF‐
receptor‐associated death domain protein (TRADD) and employs TNF receptor‐associated factor‐2 (TRAF2)

and receptor interacting protein‐1 (RIP). These proteins then engage subunits of inhibitory kappaB kinase (IKK)

and trigger the NF‐kB pathway, which essentially involves nuclear translocation of p65‐p50 NF‐kB heterodimer

after signal‐induced proteosomal degradation of inhibitory kappaB (IkB). p65‐p50 then mediates transcription

of various survival genes (> see Table 1). Additionally, RIP may trigger NF‐kB via association with MEKK3, a

MAP kinase kinase kinase. (b) Death signal. Similar to survival signals, death signal is also induced by exchange

of TRADD with SODD at the death domain of TNF‐R1 cytoplasmic death domain region. Interaction of TRADD

with Fas‐associated death domain (FADD) protein facilitates the latter’s binding with pro‐caspase‐8 and its

subsequent cleavage. This triggers the caspase cascade, which then leads to apoptosis. On the other hand,

apoptotic signals from TNFR1 may also be mediated via c‐Jun N terminus kinase (JNK) pathway, where a

TRAF‐2:MKK‐7 interaction recruits SEK, stress‐activated protein (SAP) kinase kinase, leading to the activation of

JNK. This cascade is conveyed further by phosphorylation of c‐Jun by JNK, which then nuclear‐translocates and
dimerizes with nuclear‐resident Fos to form the AP1 transcription factor. AP1 can transactivate inflammatory as

well as apoptotic genes
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RIP1 (> Figure 9-2a). While TRAF2 recruits catalytic IKK alpha and beta subunits to TNF‐R1, RIP binds to

NEMO (Devin et al., 2000, 2001), thereby generating an active IKK trimer complex that ultimately

mobilizes active NF‐kB to the nucleus via IkB degradation. Although proposed to be the basis of NF‐kB
activation from TNF‐R1, this complex does not involve the kinase activity of RIP. It is the intermediate

domain lying between the DD and the kinase domain of the molecule that contributes to NF‐kB activation

(Hsu et al., 1996). Additionally, RIP may activate IKKs indirectly via mitogen‐activated protein kinase
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kinase kinase (MEKK3), as MEKK3 interacts with RIP and its deficiency compromises NF‐kB activation by

TNF‐a (Yang et al., 2001) (> Figure 9-2a).

Synchronized association of these proteins juxtaposing the cytoplasmic tail of TNF‐R1 is facilitated by

the presence of certain scaffolding proteins. Heat shock protein 90 (Hsp90) and Cdc37 are recruited to

TNF‐R1 upon ligand binding and are involved in IKK complex formation (Chen et al., 2002). Additionally,

a recently described protein called TNF‐R‐associated ubiquitous scaffolding and signaling (TRUSS) protein

interacts with TRADD, TRAF2, and IKK members, thus suggesting its probable role as a scaffolding protein

in activating NF‐kB activation (Soond et al., 2003).

2.3.1.2 Apoptotic Signals from TNFR1 Apoptotic signals from TNF‐R1 are predominantly generated by

recruitment of protein Fas‐associated death domain (FADD). As reported for Fas and TNF‐related
apoptosis inducing ligand (TRAIL) death receptors (members of the TNF receptor superfamily), bound

FADD recruits procaspase 8 by death effector domain (DED)‐mediated protein–protein interaction. This

forms the death‐inducing signal complex (DISC) where autolytic cleavage of procaspase 8 renders it active

for eliciting the caspase cascade of apoptosis (Fotin‐Mleczek et al., 2002). A similar model of caspase

activation by TNF‐R1 is also proposed (Wajant et al., 2003) (> Figure 9-2b). However, although FADD

directly binds to TNF‐R1 DD, the report of successful immunoprecipitation of the DISC complex from

TNF‐R1 signalosome does not yet exist in current literature. This may hint at absence or instability of such a

complex, but it must not be neglected that the default pathway for TNF‐R1 is proposed to mediate NF‐kB‐
mediated cell survival in most cell types, where TNF‐a is a conditional death ligand whose in vivo death‐
inducing capability is masked by NF‐kB. This is revealed by increased viability of Rel A(�/�) (a NF‐kB
monomer involved in most of its activities), fibroblasts, and macrophages in response to TNF‐a challenge.

In this context, it is quite appropriate to suggest that systemic toxicity caused by TNF is related more to its

ability to activate the inflammatory response than to induce the apoptotic one.

Such inflammatory responses are mediated in part via activation of NF‐kB and c‐Jun N terminal kinase

(JNK) pathways. In addition to upregulating antiapoptotic genes, NF‐kB also upregulates the expression of

inflammatory molecules like inducible nitric oxide synthase (iNOS) and TNF‐a itself. JNK pathway leads to

the activation of the activator protein‐1 (AP‐1) transcription factor (c‐Jun‐associated nuclear c‐Fos), which
has a vivid role in mediating cellular immune response. Synergism between NF‐kB and AP‐1 factors in

upregulating inflammatory responses is well addressed in literature. TRAF2 can elicit both the pathways.

Indeed, JNK pathway is known to be triggered by a TRAF2–MKK7‐dependent mechanism (Natoli et al.,

1997; Reinhard et al., 1997). Is activation of JNK also related to the apoptosis‐inducing property of TNF? In
mammals, there is evidence for both pro‐ and antiapoptotic role of JNK (Lin, 2003). Therefore, JNK has

been proposed to act as a contextual modulator of TNF‐induced apoptosis (Varfolomeev and Ashkenazi,

2004) (> Figure 9-2b).

In addition to mediation of death signal by recruiting several proteins, TNF‐a is also known to employ

cellular lipids to dictate such verdicts. TNF‐R1 induces activation of neutral and acidic sphingomyelinases

via FADD‐dependent but caspase‐independent mechanisms, which leads to degradation of sphingomyelin

to phosphocholine and ceramide (Fontaine et al., 2002). The latter product, ceramide, an important lipid

second messenger, may activate caspases to induce apoptosis or stimulate lysosomes, thus directing the cell

toward necrotic cell death (Wajant et al., 2003).

2.3.2 Signaling via TNF‐R2: Another Double‐Edged Sword

TNF‐R2 distinctly differs from TNF‐R1 in lacking the DD. However, it has a TRAF‐binding domain and

may, therefore, directly employ TRAF2 without mediation of TRADD. This makes the receptor complex

devoid of DD, instantly suggesting a prosurvival role for this receptor. Indeed, TNF‐R2 plays a prominent

role in mediating prosurvival signals by activating the PI3K–AKT pathway in neuronal cells (Fontaine et al.,

2002). Additionally, owing to the presence of TRAF2 that may interact with RIP, it may be presumed that

downstream events of TNF‐R2 activation resemble that of TNF‐R1 in NF‐kB activation and subsequent cell

survival (> Figure 9-3).
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Signaling from TNFR2. Most of the signals from TNFR2 are initiated by membrane‐bound TNF‐a owing to lesser

affinity of the receptor for the soluble form. The cytoplasmic tail of TNFR2, which lacks death domain (DD),

interacts with TRAF2, and mediates NF‐kB‐dependent survival signal like TNFR1 (left side cascade in the

diagram). However, NF‐kB also transactivates the TNF gene, which is then processed and displayed on the

membrane. This may engage TNFR1 and initiate signaling for apoptosis by an autocrine/paracrine loop. This

theory appears feasible as the presence of TNFR2 depletes TRAF2 and RIP, thereby facilitating interaction of

caspase‐activating Fas‐associated death domain (FADD) protein with TNFR1
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Is the role of TNF‐R2 restricted to eliciting survival signals? By utilizing TNF‐R2‐specific agonistic

antibodies, it has been shown that this receptor by itself may be sufficient to prompt death signals (Grell

et al., 1993; Medvedev et al., 1994). How can a DD‐lacking receptor perform such a feat? The answer lies in

strong induction of NF‐kB‐dependent TNF‐a gene induced by general TNF‐R2 signaling. This TNF‐a
expresses itself as mTNF that subsequently activates TNF‐R1 via autocrine/paracrine loops to initiate an

apoptotic signal (Grell et al., 1999) (> Figure 9-3). Additionally, it has also been proposed that TNF‐R2 may

aid in TNF‐R1‐induced apoptotic signaling by depleting TRAF2 and c‐IAP proteins, thereby accelerating

caspase 8 activation by the TNF‐R1–TRADD–FADD complex (Fotin‐Mleczek et al., 2002).

The above discussion has been presented in a noncomplex linear mode of signal transduction. In reality,

TNF signaling ismultifarious and almost confusing. As demonstrated by a recent connectivitymapofTNF‐a‐
induced NF‐kB signal transduction pathways, a total of 221 interactors, including 80 previously unknown

molecules, have been reported to undergo activation due to TNF ligand binding (Bouwmeester et al., 2004).

Thus, use of the phrase ‘‘signal transductionmesh’’ appears more appropriate for representing this myriad of

activated pathways.
3 TNF‐a in Brain

3.1 General Introduction

Despite the dogmatic belief about the brain being an immune‐privileged organ, numerous cytokines

play diverse functions in the brain. Among them, TNF‐a is the most prominent one that is now known

to play many roles in the normal and the compromised brain. In addition to being secreted by in‐house
brain cells (like astroglia and microglia), circulating peripheral TNF‐a can diffuse through the blood–brain

barrier (BBB) and access brain cells. Most of the customary functions of the cytokine in normal

brain are accommodated by TNF‐a secreted by brain cells at a low level in certain brain regions. However,

as a maxim, the level of brain TNF‐a increases dramatically during neuropathological and neurode-

generative conditions, suggesting a greater involvement of the cytokine in these processes (> Figure 9-4).

In subsequent sections, we examine the diverse obligations of TNF‐a in conducting various brain functions.
3.2 Role of TNF‐a in Physiologic Brain Functions

3.2.1 A Thespian Involved in Brain Development

Is TNF‐a involved in the development of brain? Studies in sheep neocortex have detected TNF‐a at

embryonic day 30 as a faint band of immunoreactivity between the ventricular zone and the primordial

plexiform layer that decreased in intensity along with progress in ontogeny (Dziegielewska et al., 2000). In

developing rodent brain, TNF‐a is transiently expressed in immature astrocytes and neurons (Munoz‐
Fernandez and Fresno, 1998). Is such languid presence significant? The answer is deemed to be affirmative

as per the proposal suggesting that at lower concentrations TNF‐amay be involved in normal development

of the nervous system (Merrill, 1992). This hypothesis was tested in a recent study with TNF‐a knockout

mice. When exposed to a reference teratogen, cyclophosphamide, excessive apoptosis and suppression of

cell proliferation was reported in the brain of TNF‐a(�/�) animals compared with wild‐type littermates

(Torchinsky et al., 2003).

Despite its proposed constructive role in the adult brain system, the cytokine may play the devil during

brain development. When overexpressed, TNF‐a reduces the weights of whole brain and all brain regions

examined during the developmental process (Ye et al., 2003). Additionally, TNF‐a has been shown to

significantly reduce dendrite development and complexity of developing cortical neurons, consistent with

the neuropathology of schizophrenia. Accordingly, it is hypothesized that TNF‐a generated from maternal

or placental immune machinery in response to infection plays a role in altering brain development, which

may subsequently lead to diseases such as schizophrenia (Gilmore et al., 2004).



. Figure 9-4

TNF‐a in CNS; a brief summary. Involvement of TNF‐a in various physiologic and pathophysiologic processes
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3.2.2 Regulating Brain Physiology

TNF‐a is known to conduct several nonimmunological homeostatic functions in the adult normal brain.

This is supported by the constitutive presence of TNF‐a and its receptors in discrete brain regions in a

fashion consistent with their role in endogenous brain physiology. In normal brain, TNF‐amessenger RNA

(mRNA) as well as protein demonstrates multifocal expression pattern in areas including the cortex,

thalamus, striatum, hypothalamus, caudal raphe nuclei, hippocampus, cerebellum, pons, and brainstem

(Breder et al., 1993; see review by Torchinsky et al., 2003 for greater details). However, since the investigators

used a soluble fraction of the brain regions, it is difficult to assert whether the expressed TNF‐a was in

membrane‐bound form or was available in brain fluids. In addition to the cytokine, both its receptors are

also expressed in all areas displaying the cytokine protein or mRNA (Torchinsky et al., 2003). In contrast to

TNF‐a expression, which remains confined to neurons under physiologic conditions, both receptors are

expressed by all brain cell types, except astrocytes, which predominantly display TNF‐R1 (Dopp et al., 1997;
Torchinsky et al., 2003). In light of such expression orderliness, it is hardly surprising that TNF‐a indeed

acts as a neuromodulator performing an array of physiologic assignments in brain, which are described in

the following sections.

3.2.3 Role in Synaptic Plasticity

Long‐term alterations in synaptic strength and transmission (synaptic plasticity) manifested as long‐term
potentiation (LTP) or long‐term depression (LTD) forms the basis of learning and memory. Involvement of

TNF‐a in synaptic plasticity was reported back in the early 1990s when studies with rat hippocampal slices

revealed a slight but prompt increase in basal neurotransmission upon exposure to exogenous TNF‐a in a

dose‐dependent manner (Tancredi et al., 1992). Further examination of LTP in CA1 areas from the slice
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suggested an inhibitory role for TNF‐a in modulating LTP. Similar observations were also reported in the

dentate gyrus (Cunningham et al., 1996). Subsequently, investigations in TNF‐R knockout (TNF‐R‐KO)

mice showed that animals lacking TNF‐Rs showed impaired LTD response in CA1 neurons (Albensi and

Mattson, 2000). As revealed further by the same study, LTP was not affected due to lack of TNF signaling.

Thus, despite its suggestive role in LTD, the presence of TNF‐a is not essential for LTP, where it probably

plays a hindering role. However, lack of TNF signaling does not alter the basal transmission in examined

TNF‐R‐KO mice.

How can TNF‐a induce such an effect? Although the definitive answer is still illusive, a few probable

avenues to explain this role have been forwarded. LTP and LDP are regulated by potassium influx; thus

enhancing action of TNF‐a on potassium channel (Houzen et al., 1997) influx may manipulate them.

Moreover, regulation of Ca2þ homeostasis by TNF‐a may mediate its effect on LTP and LTD as calcium

influx is a prerequisite for both the processes (Bear and Malenka, 1994). Manipulation of LTP and LTDmay

also be regulated by altering synaptic strength. TNF‐a has been credited with rapid control of synaptic

strength at excitatory synapse. Glial‐derived constitutive level of TNF‐a enhances synaptic efficiency by

increasing surface expression of a‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptors

in neurons (Beattie et al., 2002). Preventing activity of endogenous effects of TNF‐a retards AMPA

trafficking and compromises synaptic efficacy. Thus continual presence of TNF‐a is mandatory for

preservation of synaptic strength at excitatory synapses.

Regulation of LTP by TNF‐a appears to be a biphasic responsibility in which independent signal

transduction pathways are recruited in each phase. In a recent report, it has been shown that early‐phase
LTP is contingent on p38mitogen‐activated protein kinase (MAPK) activity while late‐phase LTP is indepen-
dent of it (Butler et al., 2004).Whether the late phase involves a different TNF signaling pathwayor is the result

of any autocrine feedback loop of a certain TNF‐induced early‐phase product has not yet been illuminated.
3.2.4 Feeling Sleepy? TNF‐a is at Work

The reader is not to be blamed if the boredom of reading a dull review such as this induces sleep symptoms.

If so, then the reader is hereby informed that TNF‐a is in concert in his or her brain right now. TNF‐a, in
conjunction with IL‐1b, is strongly implicated in regulation of physiologic nonrapid eye movement

(NREM) sleep (dreamless sleep) in addition to NREM responses induced by pathological agents (Krueger

et al., 2001). Evidences are forwarded by experiments conducted in mice lacking TNF‐R1, which are

sleepless in comparison with control animals and do not show NREM responses even after exogenous

administration of TNF‐a (Fang et al., 1997; Deboer et al., 2002). Moreover, inhibition of TNF‐a by TNF‐
soluble receptors inhibits spontaneous sleep and the sleep rebound that occurs after sleep deprivation

(Krueger et al., 2001). On the flip side, intracerebroventricular injection of TNF‐a promotes sleep

(Dickstein et al., 1999).

All these point to a definite role of TNF‐a in modulating cycles of sleep and wakefulness. Both

peripheral and central sources of TNF‐a could contribute to sleep. TNF‐a exerts its sleep‐inducing effects

via TNF‐R1 rather than TNF‐R2 (Fantino and Wieteska, 1993; Pan et al., 2002). Such somnogenic effects

are mediated via well‐characterized NREM‐regulatory areas of hypothalamic preoptic and basal forebrain

area (Obal and Krueger, 2003). How does TNF‐a regulate sleep? The answer is yet in its formative stage.

However, a generalized proposal includes NF‐kB activation, augmented nitric oxide (NO) production by

regulating NO synthase, adenosine release, and enhanced prostaglandin (PGD2) synthesis via cyclooxygen-

ase‐2 (COX‐2) upregulation (Krueger and Majde, 2003).
3.2.5 Diurnal Rhythmicity of TNF: Marker of Circadian Rhythm

Sleep is a well‐regulated phenomenon showing in‐phase rhythmicity among normal subjects. Because TNF

is involved in regulating sleep, similar rhythmicity in TNF levels appears to be a valid expectation. Indeed,

diurnal light–dark‐cycle‐oriented variation of TNF‐a mRNA concentration in brain is well documented.
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Concentration of TNF‐amRNA is highest in hypothalamus, hippocampus, and cerebral cortex of rats at the

onset of light phase (rats sleep in the light phase) (Floyd and Krueger, 1997). Moreover, the cytokine level

remains high throughout the light rather than the dark phase (Bredow et al., 1997). Conceptually, both

peripheral and brain‐generated TNF‐a may be responsible for such an effect. However, limited circadian

variation of circulating TNF‐a uptake has been reported (Wichers and Maes, 2002), thus suggesting

exclusive involvement of brain‐indigenous TNF‐a in maintaining the cytokine level variation.

Diurnal rhythm of TNF‐a expression has been investigated in great detail and is now the easily

understood temporal variation of all neuropeptides in the brain. Such variation may therefore be related

to the circadian clock, the 24‐h periodic oscillation of biological processes. Any impairment in the rhythmic-

ity of the cytokine oscillation is therefore considered a strong indicator of disease state. The circadian

variation of TNF‐a has been reported to be significantly impaired in diseases related to sleep disorder,

such as obstructive sleep apnea syndrome (Alberti et al., 2003) and chronic insomnia (Vgontzas et al., 2002).

One wonders whether such temporal control of TNF‐a gene synthesis is a manifestation of circadian

rhythm or does it in some way contribute to sustaining the process. In the light of available evidence, it

appears that TNF‐a is both the inciter and the consequence of circadian oscillation. As we will see in the

next section, on the one hand, TNF‐a affects the hypothalamus, the site of circadian clock (suprachiasmatic

nucleus) (Besedovsky and del Roy, 1991). On the other hand, TNF‐a production is significantly contingent

on circadian firing of certain hormones like glucocorticoids (De Rijk et al., 1997).
3.2.6 Regulating Neuroendocrinal Circuits

In response to the modulation of the immune system by glucocorticoids, TNF‐a and other cytokines

activate the hypothalamic–pituitary–adrenal (HPA) axis in a feedback loop in the bidirectional cytokine–

HPA axis circuit (Besedovsky and del‐Rey, 1991). Where does TNF‐a act in this feedback circuit? Adminis-

tration of subnanomolar concentration of TNF‐a in brain induces release of corticotrophin release factor

(CRF) from hypothalamus within minutes (Bernardini et al., 1990). Such rapid release of hypothalamic

CRF by TNF‐a suggests that CNS is the primary site of cytokine action in HPA axis stimulation.

How does TNF‐a activate HPA? TNF‐a activates HPA axis via CRF release. Pretreatment with the

antiserum to CRF completely blocked TNF‐a‐induced adrenocorticotropic hormone (ACTH) response

from pituitary, which is dependent on CRF release from the hypothalamus (Bernardini et al., 1990). The

cytokine has been shown to activate neurosecretory CRF‐containing neurons in the paraventricular nucleus

(PVN) within the hypothalamus (Zhang et al., 2003). However, the effect is not considered to be direct by

workers who believe that circulating cytokine molecules are too large to penetrate BBB in a regular fashion.

Although more information is needed to understand the cytokine’s ability to cross BBB, recent evidence

supports the involvement of PGE2 as a likely mediator of the central effects of blood‐borne TNF‐a (Rivest,

2001).

Is the action of TNF‐a limited to its effect on the hypothalamus? TNF‐a has been shown to regulate

anterior pituitary hormone release in a cell‐type‐specific way (Harel et al., 1995). Treatment of in vitro

pituitary cells by TNF‐a rapidly and transiently releases gonadotropins, prolactin, and ACTH (Yamaguchi

et al., 1990). This cytokine also influences releases from the adrenal gland, but elaborate discussion on the

topic is beyond the scope of this chapter.

Under certain challenging conditions, such as stress, TNF‐a expression is significantly enhanced

(Holden et al., 1998), which may lead to hyperactivation of HPA. Such dysregulation of HPA leads to

depressive behavioral conditions (Wichers and Maes, 2002). In addition to depression, TNF‐a influences

several other behavioral patterns, which are discussed in the following section.
3.2.7 Subjugating Psychophysiology; Brain TNF‐a Priming Your Behavior

Administration of exogenous TNF‐a in animals prompts sickness behavior (Johnson, 2002), alters noci-

ceptive threshold (Bianchi et al., 1992; Watkins et al., 1995), induces anorectic effects (Bernstein et al., 1991;
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Fantino and Wieteska, 1993), perturbs learned taste aversions (Bernstein et al., 1991), incites nausea

(Hermann and Rogers, 1995), and manipulates social exploration behavior (Fiore et al., 1998) and

spontaneous locomotor action (Bianchi et al., 1992). In humans, a positive relation has been established

between anger, verbophysical aggression, and hostility with blood monocyte‐generated TNF‐a (Suarez

et al., 2002).

It is supposed that most of the above actions are mediated by brain TNF‐a. For instance, peripheral
injections of the cytokine failed to induce anorectic effects generated by injections in the CNS (Fantino and

Wieteska, 1993). Despite adequate observations to convincingly corelate TNF‐a expression with altered

behavior pattern, the responsible mechanisms remain largely elusive. However, it has been proposed that

TNF‐a elucidates the effects by upregulating certain neuromodulators. For example, altered exploratory

and displacement behavior may be mediated by nerve growth factors (NGFs) (Fiore et al., 1998). Similarly,

TNF‐a sensitizes nociceptors and produces local hyperalgesia via PGD2‐mediated pathways (Hori et al.,

1998). Regulation of neuroendocrinal parameters by TNF‐a may serve as one more avenue of indirect

regulation of stress and depression behavior by the cytokine.

However, all behavioral manifestations of TNF‐a are not achieved by employing intermediary moieties.

This is especially true for regions of brain that lack BBB and are thus doubtlessly accessible to central and

peripheral cytokines. For example, medullary dorsal vagus complex (DVC), the loci of gastric motility

controlling vagovagal reflex circuits, is essentially devoid of BBB and serves as the site of endogenous TNF‐a
activity in mediating gastric stasis (nausea) (Hermann et al., 2001). TNF‐a is capable of accessing and

activating neurons in DVC directly and induces nausea even at subfemtomolar doses (Hermann et al.,

2003a, b).

While discussing all the above functions, we have restricted our focus to TNF‐a to comply with the title

of this chapter. However, it must be emphasized that TNF‐a, in most of the above roles, functions in

synchrony with other cytokines like IL‐1b. Despite such diverse functional utility in the normal brain, the

scientific community has all along wondered more about its involvement in the compromised brain

of neurodegenerative diseases. In the following sections, we attempt to present an abridged record of

observations and opinions about association of TNF‐a in the diseased brain.
3.3 Role of TNF‐a under Pathophysiologic Conditions

3.3.1 Involvement of TNF‐a in Neurodegenerative Diseases

Enthusiastic research in the past decade has strongly indicated the involvement of TNF‐a in inflammatory

neurodegenerative disorders like Alzheimer’s disease (AD) (Perry et al., 2001), Parkinson’s disease (PD)

(Nagatsu et al., 2000), human immunodeficiency virus type‐1 (HIV)‐associated dementia (HAD) (Saha

and Pahan, 2003), multiple sclerosis (MS) (Selmaj, 2000), amyotrophic lateral sclerosis (ALS) (Ghezzi and

Mennini, 2001) neurotrauma, and stroke (Barone and Parsons, 2000). Let us discuss the evidence pointing

strongly at the involvement of TNF‐a with these diseases.

TNF‐a mRNA level was found to be elevated in autopsy‐collected brain tissue of HAD patients

(Wesselingh et al., 1993). Subsequently it was found that the increase in severity of dementia in HAD

was proportional to the increase in level of TNF‐amRNA (Griffin, 1997). TNF‐a protein level, measured by

enzyme‐linked immunosorbent assay (ELISA) as intrathecal pattern of release in the cerebrospinal fluid

(CSF) of AD patients, was found to be 25 times greater in demented patients than in healthy controls

(Tarkowski et al., 2003). Similar increase of TNF‐a accumulation in CSF of chronic progressive MS patients

has also been reported (Sharief and Hentges, 1991). In addition to these studies with soluble forms of

TNF‐a and its receptors, other studies have revealed the elevated status of membrane‐bound form of the

cytokine and its receptors. TNF‐a immunoreactive glial cells and TNF‐R (both) immunoreactive neurons

were found in PD brains but not in normal ones (Boka et al., 1994). Similar elevated levels of TNF‐R1 in

substantia nigra of parkinsonian brains were found by another group (Mogi et al., 2000). However, no

difference in levels of TNF‐R1 and TNF‐R2 in CSF of AD patients was observed, negating any disease‐
specific tendency of generating sTNF‐Rs by cleavage of mTNF‐Rs (Tarkowski et al., 2003).
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Are elevated TNF components brain cell‐derived? Immunohistochemical detection studies suggest that

disease‐responsive elevated TNF‐a and its receptors are products of brain cells and did not originate from

systemic compartments. This notion is further supported by the fact that serum TNF‐a level was found to

be comparatively lower than the CSF level in AD and MS patients (Sharief and Hentges, 1991; Tarkowski

et al., 2003).

In addition to variation in protein level, several polymorphisms in genes of TNF‐a and its receptors

have been related to various neurodegenerative diseases. While looking for any genetic predisposition for

development of HAD among HIV‐infected patients, it was discovered that TNF‐a‐308A allele was present

in HAD‐affected individuals with distinction (Quasney et al., 2001). Similar polymorphism of TNF‐a‐376A
allele marks susceptibility of a segment of Spanish population to MS (Martinez et al., 2004). In addition to

polymorphism of the TNF‐a gene, several genetic variations have also been reported for TNF‐R2. Poly-
morphism in TNF‐R2 exon 6 has been correlated with late‐onset AD (Perry et al., 2001). Similarly,

polymorphism in exon 10 of the same gene is reported to enhance susceptibility to MS (Ehling et al., 2004).

These demarcating differences in genomic background and altered TNF‐a and its receptors’ expression

level strongly indicate that the TNF system is a major proctor of neurodegenerating diseases. What does

the altered level of TNF‐a expression signify? The answer lies in knowing the precise role of the cytokine in

neurodegenerative diseases. However, opinions about the exact role of TNF‐a are a cauldron of

contradiction.
3.3.2 Apocryphal Role of TNF‐a in the Neurodegenerative Brain

Presence of two receptors with their variation in binding affinity for sTNF‐a and mTNF‐a complicates the

TNF system. This complexity is enhanced by the fact that TNF‐a ligand binding to its receptors can activate

apoptotic as well as survival pathways. Not surprisingly therefore, the cytokine has been implicated both in

neurodegeneration and in neuroprotection. On the one hand there is compelling evidence to insinuate a

neuroprotective role for the cytokine during disease condition while on the other hand several evidences

suggest a neurotoxic role. In the following sections, we discuss evidences that propose mechanisms of TNF

action in either role.

3.3.2.1 Neurocidal Role of TNF‐a Involvement of TNF system in PD neuropathy was illustrated while

investigating effects of 1‐methyl‐4‐phenyl‐1,2,3,4‐tetrahydropyridine (MPTP), a dopaminergic neurotoxin

that mimics some of the key features associated with PD, in mice lacking TNF receptors. Transgenic

homozygous mutants for both receptors (but not either one) were protected against MPTP‐induced loss

of dopaminergic neurons (Sriram et al., 2002). It has also been reported separately that genetic ablation of

TNF‐a and TNF synthesis inhibitors attenuates MPTP toxicity in mouse striatum (Ferger et al., 2004),

suggesting that this cytokine may play a vital role in PD disease development.

It has been postulated that TNF‐a kills neurons directly by recruiting apoptotic cascades in them after

binding to TNF‐R1 (Garden, 2002; Garden et al., 2002), which is similar to its tumor killing property. This

theory has been forwarded on the basis of two observations. In the HAD model of neuronal killing, it

was observed that blocking TNF‐a activity attenuated the neurotoxic effect of the HIV coat protein gp120

(Bezzi et al., 2001). Moreover, inhibition of caspase‐8 prevented TNF‐a‐induced neurotoxicity in mixed

cerebellar cultures (Garden et al., 2002). Therefore it is suggested that TNF‐a, produced by nonneuronal

cells due to gp120 action, activates the caspase cascade by binding to its receptor. Recently, it has been

shown that TNF‐R1 cytoplasmic DD‐associated complex is compulsory for b‐amyloid‐induced neurotox-

icity (Li et al., 2004).

TNF‐a may also induce neuronal death by several other indirect methods. Under disease conditions,

TNF‐a triggers release of several neurotoxins by acting on nonneuronal brain cells. For example, it mediates

release of excitotoxic amino acids (EAA) L‐cysteine and glutamate from activated microglia and astrocytes,

respectively (Yeh et al., 2000; Bezzi et al., 2001). Excessive EAA accumulation in neuronal vicinity exorbi-

tantly activates N‐methyl‐D‐aspartate (NMDA)‐receptor‐operated ion channels leading to unwarranted

Ca2þ influx (Lipton, 1998) and loss of cellular homeostasis culminating in lysis or apoptosis of the cell
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(Foos andWu, 2002). In addition to release of EAA, TNF‐a upregulates several proinflammatory genes in

activated glial cells where it stimulates expression and shedding of a plethora of cytokines and cytokine

receptors (Rose‐John and Heinrich, 1994). Moreover, it also costimulates iNOS production in astrocytes

in conjunction with other cytokines (Pahan et al., 2000), leading to NO‐mediated enhanced neuronal

toxicity.

In addition to its role in the production of many neurotoxins from glial cells, TNF‐a has been shown

to act synergistically with many toxic elements to augment neuronal dysfunction. TNF‐a enhances

glutamate‐releasing action of stromal‐derived factor‐1 (SDF‐1, an a chemokine) from astrocytes cocul-

tured with microglia (Bezzi et al., 2001). In addition to aiding its release, TNF‐a intensifies neurotoxic

effect of glutamate in cerebral cortex neurons (Chaparro‐Huerta et al., 2002). In HAD, HIV neurotoxins

are aided by the cytokine to promote neuronal damage (Saha and Pahan, 2003). Moreover, it has been

reported that TNF‐a boosts neuronal impairment induced by other cytokines, like IL‐1 and IFN‐g, in cell

cultures representing the inflammatory milieu of neurodegenerative foci (Chao et al., 1995; Downen

et al., 1999).
3.3.2.2 Neuroprotective Role of TNF‐a The neuroprotective role of the cytokine was initially demonstrated

by rescuing hippocampal, septal, and cortical neurons from glucose‐deprivation‐induced death by

pretreatment with TNF‐a (Cheng et al., 1994). It was shown that TNF‐a attenuated elevation of

intracellular Ca2þ level due to glucose deprivation by upregulating a calcium‐binding protein Calbindin‐
D28K. Furthermore, TNF‐a pretreatment of pure neuronal cultures also protected the latter from toxicity of

b‐amyloid, the etiological reagent of AD (Barger et al., 1995). Additionally, in vivo neuroprotective role of

TNF‐a is well demonstrated by studies in TNF‐R knockout mice, which showed greater susceptibility than

normal animals (Bruce et al., 1996; Gary et al., 1998). In yet another study it has been shown that TNF‐a
had a insignificant effect on hippocampal neurons of TNF‐R1(�/�) animals, whereas TNF‐R2‐negative
neurons were vulnerable to TNF‐a, even at low doses (Yang et al., 2002).

Most of the neuroprotective roles of TNF‐a are mediated via recruitment of NF‐kB. As already

discussed, both TNF‐R1 and TNF‐R2 may lead to the activation of NF‐kB. In addition to direct IKK‐
mediated activation, NF‐kB can also be activated via pro‐survival kinase, Akt (protein kinase B) (Diem

et al., 2001). Activated NF‐kB dimers enter the nucleus and influence the expression/repression of a

complex array of genes constituting the neuronal response to various neurodegenerative insults (Diem

et al., 2001). Neuronal NF‐kB is proposed to be neuroprotective in nature (Mattson et al., 2000). Several

studies have revealed the utility of NF‐kB p50 subunit in mediating neuroprotection. Lack of p50 subunit

increases vulnerability of hippocampal neurons to excitotoxic injury (Mattson and Camandola, 2001) and

striatal neurons in Huntington’s disease model (Yu et al., 1999).

How does recruiting NF‐kB underwrite TNF‐a‐induced neuroprotection? A probable mechanism to do

so is by upregulating genes encouraging survival. TNF‐a upregulates antiapoptotic proteins like Bcl‐2 and

Bcl‐XL in primary hippocampal neurons (Tamatani et al., 1999). NF‐kB‐mediated upregulation of these

survival proteins has been shown to be at least partially responsible for cell survival in a hypoxia model of

neurodegeneration suggesting that TNF‐a–NF‐kB pathway may trigger more pro‐survival genes than these

two (> Table 9-1).

In addition to its direct effect in ensuring survival via recruitment of NF‐kB, TNF‐a also facilitates

survival by manipulating other secondary messengers. It downregulates a‐chemokine receptor CXCR4

expression in astrocytes (Han et al., 2001). a‐chemokines, like SDF, induce excessive EAA production from

activated astrocytes, which makes local neurons more vulnerable to excitotoxicity. In addition to negation

of such threats, downregulation of the chemokine receptor in astrocytes may also shield neurons against

HIV protein gp120‐induced toxicity in HAD (CXCR4 is also a coreceptor for gp120). Additionally, TNF‐a
induces the production of b‐chemokines in activated glial cell (Guo et al., 1998). Greater concentration of

b‐chemokines helps in preservation of cognitive functions (Letendre et al., 1999). Moreover, TNF‐a induces

the expression of fractalkine (a d‐chemokine otherwise referred to as CX3CL1) in astrocytes (Yoshida et al.,

2001). This d‐chemokine protects neurons from gp120‐mediated toxicity and inhibits HIV entry into

microglial cells exhibiting its receptor (CX3CR1) (Cotter et al., 2002).



. Table 9-1

Upregulation of various NF‐kB‐dependent genes by TNF‐a in brain cells

Upregulated

gene Cell type Effect Reference

Bcl‐2 Neuron Antagonizes apoptosis Tamatani et al. (1999)

Bcl‐X Neuron Antagonizes apoptosis Tamatani et al. (1999)

MnSOD Neuron/

astrocytes

ROS scavenger; promotes survival Bruce‐Keller et al.
(1999)

Cu/Zn‐SOD PC‐12 neurons ROS scavenger; promotes survival Rojo et al. (2004)

Calbindin Neuron Maintains Ca2þ homeostasis; promotes

survival

Cheng et al. (1994)

c‐IAP‐2 Spinal cord Relays survival signal from TNFRs; promotes

survival

Kim et al. (2001)

Fractalkine

(CX3CL1)

Astrocytes Inhibits gp120‐mediated neurotoxicity Yoshida et al. (2001)

All these genes have been shown to encourage cell survival in the CNS
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3.3.3 Current Outlook on the Role of TNF‐a in Neurodegenerative Conditions

We have evidence suggesting a dual role (neuroprotective as well as neurodegenerative) of TNF‐a. Deriving
a conclusive role for the cytokine under these circumstances is a matter of ongoing debate. We believe

extreme outlooks (neurotoxic or neurotropic) must be interpreted with caution in the context of experi-

mental limitations. The overall effect of the activation of the TNF system in any cell is decided by a range of

several mitigating factors and their interplay. Neuronal type and location, timing and dose of TNF‐a
expression, soluble or membrane‐bound form of available TNF components, and presence or absence of

any receptor pretreatment are just a few of them. In the following section we describe a few therapeutically

approachable factors that are believed by most neuroimmunologists to be major policymakers of TNF

action in brain.

3.3.3.1 Receptor Specificity Among Cell Types and Their Crosstalk Different neuronal subtypes may endure

TNF‐a signal differently depending on the TNF‐R1:TNF‐R2 ratio. The importance of receptor ratio is well

demonstrated in MS patients who show an unbalanced receptor shedding. Spontaneous shedding of TNF‐
R1 was lower in MS patients than in healthy volunteers, whereas spontaneous generation of sTNF‐R2 was

significantly higher in MS patients (Selmaj, 2000). Such disparity in receptor ratio at the membrane or

soluble form may be responsible for MS etiology. Opposing roles have been allotted to these two receptors

in a retinal ischemia study in TNFR‐lacking mice. Absence of TNF‐R1 significantly attenuated neuronal

death whereas augmented neurodegeneration was observed in TNF‐R2 knockout mice (Fontaine et al.,

2002). Although the role of TNF‐R2 in neuroprotection appears well substantiated by other studies as well

(Bruce et al., 1996; Yang et al., 2002), the exact role of TNF‐R1 remains elusive. In the MPTP model of PD,

receptor knockout studies offer contrasting observations. Sriram et al. (2002) (Ferger et al., 2004) showed

that mice deficient in TNF‐R are protected against dopaminergic neurotoxicity, while Rousselet et al. (2002)

reported absence of any influence of TNF‐R obliteration in the knockout mice. Such contrasting

observations prohibit us from opining conclusively about the exact role of TNF‐a system in the MPTP

model of PD.

TNF‐Rs, apart from utilizing similar downstream messengers, engage in intraneural crosstalk that may

also play a pivotal role in framing of the ultimate outcome. We have previously discussed the ‘‘ligand

passing’’ role of TNF‐R2 and competition between these two receptors for downstream modulators

like TRAF2. Such interactions can indeed control differing effects of TNF system. Moreover, such

crosstalk could also exist between TNF‐Rs and other signaling receptors such as nerve growth factor
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receptor (NGF‐R) (Haviv and Stein, 1999) and insulin growth factor receptor (IGF‐R) (Venters, 2001).
Cointeraction of NGF‐R and TNF‐R has been proposed in mediating b‐amyloid‐induced neurotoxicity

(Perini et al., 2002). Similarly, it has been shown that simultaneous stimulation of IGF‐I receptor and

TNF‐R leads to different outcomes distinct from results of their individual stimulation (Venters, 2001).

In addition to receptor crosstalk, neuronal fate may be decided by ligand crosstalk as well. TNF‐Rs are
not specific only for TNF‐a but are also activated by TNF‐b (lymphotoxin‐a), which is generally considered
to play a lesser role in brain immunology. However, locally upregulated TNF‐b is considered to be the

principal mediator of murine cerebral malaria (Engwerda et al., 2002). Moreover, in a study with MS

patients, serum TNF‐b level was found to be more in them than in controls (Kraus et al., 2002). Thus one

has to consider the probable interaction of TNF‐b with TNF‐Rs, which may either compliment or hamper

the outcome of receptor interaction with TNF‐a.

3.3.3.2 Timing and Duration of TNF‐a Exposure Most in vitro studies suggesting neuroprotective role of

TNF‐a involve preconditioning of neurons by TNF‐a for 24–48 h. Long‐term preconditioning offers

neuroprotection by decreasing currents induced by glutamate, NMDA, and AMPA excitotoxic challenges

in a NF‐kB‐dependent fashion (Furukawa and Mattson, 1998). Thus temporal magnitude of TNF‐a
challenge certainly influences the ultimate cell fate.

The temporal aspect of TNF‐a activity is well illuminated by another study with hippocampal

organotypic slices. When applied before ischemic stress, TNF‐a induces neuroprotection. However, ad-

ministration of the cytokine after ischemic insult proved to be neurotoxic (Wilde et al., 2000). Other studies

involving acute and chronic responses of TNF‐a‐deficient mice to experimental brain injury suggest that

TNF‐a could be deleterious during posttraumatic period but facilitates long‐term histological repair and

behavioral recovery (Scherbel et al., 1999). These studies underline the importance of timing and duration

of TNF‐a exposure.

3.3.3.3 Synergistic Modulation TNF‐a does not act alone in vivo. In most of the neurodegenerative

immune responses, a plethora of cytokine and chemokines are generated in the diseased milieu. Thus,

the extent of neurotoxicity or neuroprotection mediated by this cytokine is often manipulated by other

cytokines, chemokines, EAA, or several other toxins like gp120 and NO. This may be illustrated with iNOS

gene expression. TNF‐a, by itself, is a poor inducer of iNOS in astrocytes. However, it provokes a significant

induction when applied in combination with IL‐1b or IFN‐g (Pahan et al., 2000). While considering

therapeutic approaches to attenuate the toxicity due to enhanced expression of immune components in

brain, one must consider the combinatorial mode of activity for the targeted molecules.
4 Clinical Perspective of Active TNF System in Brain Diseases

In view of their widespread participation in various diseases, a substantial amount of research has focused

on therapies concerning TNF‐a and its receptors. Despite the initial hype about its tumoricidal properties,

therapies revolving around this cytokine did not prove satisfactory in cancer treatment due to its inclination

toward inducing systemic toxicity. The systemic toxicity is generated strictly by sTNF‐a as suggested by the

cleavage‐resistant TNF‐amutant existing only in membrane‐bound form that resulted only in cytotoxicity

mediated by cell‐to‐cell contact (Perez et al., 1990). Similarly, some studies involving TNF‐R1 and TNF‐R2
have suggested a systemic role for TNF‐R1 while TNF‐R2 has been found to exhibit cytotoxicity only (Van

Ostade et al., 1993). This corroborates well with the fact that while TNF‐R1 is inducible by sTNF‐a, TNF‐R2
has greater affinity for mTNF‐a and thus depends on cell‐to‐cell contact for its activation.

Therapeutic strategies involving TNF‐a mainly include neutralization of the cytokine via anti‐TNF‐a
antibodies, its soluble receptors, or TNF‐R fusion proteins. Glucocorticoids and cyclosporine have also been

used as drugs to suppress TNF‐a production. One more indirect approach has been to inhibit the action of

the cytokine by blocking its secondary signal mediators such as IL‐1, IL‐6, or NO. In many instances,

applications of these therapies have been highly successful. For example, utilization of a chimeric
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monoclonal Ig anti‐TNF‐a antibody (Remicade) to treat intestinal inflammation in Crohn’s disease has

been clinically successful. Significant success has also been obtained in treatment of RA by utilizing several

TNF antagonists (Olsen and Stein, 2004).

Since most of the neurodegenerative diseases have an inflammatory parameter involving TNF‐a, anti‐
TNF‐a therapeutic approaches have also been attempted in such diseases. In experimental allergic enceph-

alomyelitis (EAE), animal models of MS, invalidation of TNF‐a by soluble TNF‐Rs (Lenercept) or with
TNF‐a neutralizing antibodies showed a positive effect on pathogenesis and demyelination (Klinkert et al.,

1997; Korner et al., 1997). However, the administration of Lenercept in 168 patients with relapsing–

remitting MS had a detrimental effect, where number of clinical exacerbations was found strikingly higher

among patients on Lenercept (the Lenercept Multiple Sclerosis Study Group and the University of British

Columbia MS/MRI Analysis Group, 1999). These patients had longer durations of relapses with earlier

exacerbations and more serious neurological deficits compared with the placebo group. Such negative

outcomes have led to premature termination of further studies in MS. Furthermore, unsuspected anti‐
TNF‐a therapy for juvenile RA led to the development of MS in a Los Angeles patient (Sicotte and Voskuhl,

2001). Thus, the failed clinical study for anti‐TNF‐a therapy in MS may serve as a severe warning against

exaggeration of positive results in animal studies until significantly extrapolated clinically.

Despite the forced abortion of anti‐TNF‐a clinical trial in phase II for MS, we have learned important

lessons from the enterprise. Therapeutic options are still being forwarded for treatment of various brain

diseases. Arresting TNF‐a activity by blocking its downstream signal transducer p38 MAPK has

been forwarded to treat focal stroke (Barone and Parsons, 2000). Utilization of phosphodiesterase inhibitor

ibudilast has been proposed to intercept TNF‐a production by activated microglia, which if clinically

successful may turn out to be a promising antineurodegenerative drug applicable as primary or adjunct

therapy (Mizuno et al., 2004). In addition to curing diseases leading to dementia, excess TNF‐a‐induced
obstruction in gastric motility (nausea) has been relieved by utilizing a TNF‐R:Fc construct (Hermann

et al., 2003a, b).

Despite its obvious limitations, anti‐TNF‐a therapy holds promise in curing disorders related to brain

malfunction. However, it must be appreciated that TNF‐a is by far not the only cytokine associated with

disease conditions. For instance, neutralization of TNF‐Rs alone does not protect dopaminergic neurons

against degeneration in experimental models of PD (Hirsch et al., 2003), suggesting that manipulation of a

single signaling pathway may not be sufficient to ensure therapeutic success.
5 Conclusion

In addition to several housekeeping functions performed by the cytokine in the normal brain, TNF‐a also

plays an integral part in the diseased brain. While major research focus is on the latter aspect, the former

role of TNF‐a must be appreciated as well. The discussion in this chapter is by no means a complete

summary of every role performed by the cytokine. We have left out certain proposed roles of TNF‐a in the

brain to maintain the trimness of the article. For example, TNF‐a plays a prominent role in thermoregula-

tion and febrile response where both pyretic and antipyretic roles of the cytokine have been proposed

(Leon, 2002). The cytokine is now being widely studied for more than a quarter of a century. However, a

paucity of information regarding its role in the brain cannot be denied. Further scope for research includes

delineating greater housekeeping roles of TNF‐a in brain functioning and pinpointing its precise mode of

action during neurodegenerative conditions to open therapeutic avenues.
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Abstract: Glia maturation factor (GMF) is a 141 amino acid, multifunctional, brain‐predominant protein.

The protein is highly conserved, being identical between humans and cattle, and shows 99% homology

between humans and rodents. The gene for GMF has been localized to the long arm of human chromosome

14. GMF is an intracellular protein localized mainly in astrocytes but is also found in some neuronal

populations. GMF possesses consensus phosphorylation sites and is rapidly phosphorylated in astrocytes

upon phorbol ester stimulation. In in vitro studies, protein kinase A (PKA)‐phosphorylated GMF enhances

the activity of p38 mitogen‐activated protein (MAP) kinase. Overexpression of GMF in C6 glioma cells

leads to decreased tumorigenicity and increased differentiation. In C6 cells, as well as in normal astrocytes,

GMF overexpression stimulates p38 MAP kinase activity and activates the redox enzyme CuZn superoxide

dismutase (CuZnSOD) and the transcription factors nuclear factor‐kB (NF‐kB) and cAMP response

element binding protein (CREB), with downstream induction and secretion of the neurotrophins nerve

growth factor (NGF) and brain‐derived neurotrophic factor (BDNF). Furthermore, overexpression of GMF

in astrocytes promotes the production of the cytokine granulocyte–macrophage colony‐stimulating factor

(GM‐CSF), which in turn activates the microglia, the antigen‐presenting cells in the nervous system.

Overexpression of GMF in PC12 pheochromocytoma cells leads to the sequential activation of p38,

MAPKAP kinase‐2, and tyrosine hydroxylase (TH), the rate‐limiting enzyme for the synthesis of the

neurotransmitter norepinephrine. Many of these effects are blocked by the p38 inhibitor, SB203580.

Thus, GMF appears to be an intracellular regulator of the stress‐related signal transduction, playing a

role in neuronal survival and immune activation. GMF‐knockout mice are deficient in motor performance

and procedural learning. Along with the behavioral deficits, there is neuronal cell loss in the inferior olive,

suggesting a role for GMF in the development of the nervous system.

List of abbreviations: ATF, activating transcription factor; BDNF, brain‐derived neurotrophic factor; CKII,
casein kinase II; CMV, cytomegalovirus; CREB, cAMP response element binding protein; ELISA, enzyme‐
linked immunosorbent assay; EMSA, electrophoreticmobility shift assay; ERK, extracellular signal‐regulated
kinase; GM‐CSF, granulocyte–macrophage colony‐stimulating factor; GMF, glia maturation factor; Hsp,

heatshock protein; IL, interleukin; JNK, c‐Jun N‐terminal kinase; MAP kinase, mitogen‐activated protein

kinase; MAPKAK, MAP kinase‐activated protein kinase; MHC, major histocompatibility complex; MKK,

MAP kinase kinase; NF‐kB, nuclear factor‐kB; NGF, nerve growth factor; PKA, protein kinase A; PKC,

protein kinase C; PMA, phorbol 12‐myristate 13‐acetate; RPA, ribonuclease protection assay; RSK, p90

ribosomal S6 kinase; RT‐PCR, reverse transcription‐polymerase chain reaction; SOD, superoxide dismutase.
1 Introduction

Proteins are universal effectors in the biological world. Because of the complexity of the nervous system, it

has been speculated that a greater variety of proteins are expressed in the brain than in any other organ. The

brain shares with other organs those proteins that are essential for cell survival, energy utilization,

replication, and apoptosis. In addition, the brain can utilize some common proteins to carry out functions

unique to the nervous system. Still, a smaller number of proteins are exclusively expressed in neural tissue.

These proteins presumably play a role in the specific functions of the nervous system. Over the years, our

laboratory has focused on the study of novel brain proteins, using biological clues as a guide to their

purification and isolation. The subject of this chapter is a brain‐predominant, highly conserved protein

called ‘‘glia maturation factor’’ (GMF). Although initially considered to be a growth/differentiation factor,

as knowledge on this protein unfolds and a multitude of functions uncovered, the term no longer

adequately reflects its biological role. Nonetheless, we retain the original name as a matter of convention,

with the understanding that, as is true with many proteins, the name should not be narrowly interpreted.
2 Isolation and Sequencing of GMF Protein

The isolation of GMF was the outcome of a protracted attempt to study biologically active proteins in the

brain. At a time when DNA technology was not yet available as a tool to identify proteins, we had to rely on
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bioassays and brute force conventional fractionation methodology. We also had to start with slaughterhouse

materials (bovine brains) in order to compensate for the loss during the tedious purification steps. We were,

however, able to utilize two newly available technical aids in our isolation efforts. One was high‐pressure
liquid chromatography (HPLC). The other was monoclonal antibody technology, for we were able to

produce an antibody that appeared to inhibit the cell‐stimulating activity of the brain extract. Using these

methods, in 1989 our laboratory isolated a unique protein from the bovine brain extract (Lim et al., 1989).

The procedure consisted of homogenization, ammonium sulfate precipitation, DEAE–Sephacel chroma-

tography, Sephadex G‐75 chromatography, hydroxylapatite chromatography, heparin–Sepharose treat-

ment, and finally reverse‐phase HPLC. The protein has an apparent molecular weight of 17 kDa and an

isoelectric point at pH 4.9. The primary structure was determined on the digested peptides by micro-

sequencing with automated Edman degradation and by tandem mass spectrometry (Lim et al., 1990). The

protein has 141 amino acid residues and possesses no potential N‐glycosylation sites. It contains three

cysteines, three methionines, and one tryptophan. The amino terminus is an N‐acetylated serine, whereas

the carboxy terminus is a histidine. The protein sequence, shown in (> Figure 10-1), reveals that this
. Figure 10-1

Amino acid sequence of bovine and human glia maturation factor (GMF). Bovine sequence was determined on

the isolated natural protein (Lim et al., 1990). Human sequence was deduced from the cloned complementary

DNA (cDNA) (Kaplan et al., 1991). The two sequences are identical. The one‐letter abbreviations are: A, Ala;

C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr;

V, Val; W, Trp; Y, Tyr

        10         20         30         40         50
SESLVVCDVA EDLVEKLRKF RFRKETNNAA IIMKIDKDKR LVVLDEELEG

        60         70         80         90        100
ISPDELKDEL PERQPRFIVY SYKYQHDDGR VSYPLCFIFS SPVGCKPEQQ

       110        120        130        140
MMYAGSKNKL VQTAELTKVF EIRNTEDLTE EWLREKLGFF H
protein has never been described before. We initially called it GMF‐b, implying the existence of GMF‐a.
Later experiments, however, did not bear out the presence of GMF‐a. Therefore, we subsequently dropped
the ‘‘b’’ designation. (Note: In this chapter, the term ‘‘GMF’’ is used interchangeably with ‘‘GMF‐b,’’ unless
specified.)
3 cDNA and Deduced Amino Acid Sequence

Recombinant GMF was cloned soon after the protein was isolated (Kaplan et al., 1991). Using oligonucleo-

tide probes based on the sequences of three tryptic peptides derived from the bovine GMF, we screened a

human brain stem complementary DNA (cDNA) library in lgt11. A 0.7‐kb clone was isolated and

sequenced in its entirety. The nucleotide sequence encodes a polypeptide of 142 amino acids (including

the methionine initiation codon). The deduced amino acid sequence from the human cDNA is identical to

the empirically determined sequence from the bovine protein. Both contain no potential N‐linked glyco-

sylation site. Further, there was no secretory leader sequence observed in the GMF cDNA. Recombinant

human GMF (rhGMF) was expressed in Escherichia coli, using the plasmid pET‐3b translation vector.

Recombinant human GMF is identical to natural bovine GMF in all respects, including amino acid

composition, partial N‐terminal and C‐terminal sequences, and behavior in sodium dodecyl sulfate‐
polyacrylamide gel electrophoresis (SDS‐PAGE), Western immunoblotting, enzyme‐linked immunosorbent

assay (ELISA), and HPLC chromatography of the tryptic peptides. We subsequently cloned recombinant
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GMF from the rat brain (Zaheer et al., 1993). The rat GMF cDNA was obtained by reverse transcription

of rat brain total RNA and amplified by polymerase chain reaction (PCR) using 50 and 30 primers

flanking the entire GMF coding region, based on the known sequence of the human cDNA. The

sequence of the rat cDNA, in comparison with that of human cDNA, is shown in > Figure 10-2.

The coding region of the rat cDNA differs from that of the human by a total of 44 nucleotides. However,
. Figure 10-2

Nucleotide and deduced amino acid sequence of rat glia maturation factor (GMF). The rat complementary DNA

(cDNA) was obtained by RT‐PCR of rat total RNA, using primers (underlined) from human sequence. For

comparison, human nucleotides and amino acid residues that are different from the rat are indicated below

the rat sequence. Note only three amino acids are different. (From Zaheer et al., 1993)

1 10

CCGCTGACGGCCGGAAGGAAA ATG AGT GAG TCC TTG GTG GTT TGT GAT GTT GCT

SER GLU SER LEU VAL VAL CYS ASP VAL ALA

T T C

20 30

GAA GAT TTA GTG GAA AAG CTG AGA AAG TTT CGT TTT CGA AAA GAA ACC CAC AAT GCT GCT

GLU ASP LEU VAL GLU LYS LEU ARG LYS PHE ARG PHE ARG LYS GLU THR HIS ASN ALA ALA

C G A C

ASN

40 50

ATT ATT ATG AAG ATT GAC AAG GAT AAA CGC TTG GTG GTG CTG GAT GAG GAG CTC GAG GGT

ILE ILE MET LYS ILE ASP LYS ASP LYS ARG LEU VAL VAL LEU ASP GLU GLU LEU GLU GLY

A C    A T C  C

60 70

GTC TCT CCA GAT GAA CTT AAA GAT GAA CTA CCT GAA CGG CAA CCT CGC TTC ATT GTG TAT

VAL SER PRO ASP GLU LEU LYS ASP GLU LEU PRO GLU ARG GLN PRO ARG PHE ILE VAL TYR

A T A A

ILE

80 90

AGT TAT AAA TAC CAG CAC GAC GAT GGC CGG GTC TCC TAC CCT CTG TGC TTT ATC TTC TCC

SER TYR LYS TYR GLN HIS ASP ASP GLY ARG VAL SER TYR PRO LEU CYS PHE ILE PHE SER

T A T T A A   A T A T T 

100 110

AGT CCT CTG GGG TGC AAA CCT GAG CAG CAG ATG ATG TAC GCT GGG AGT AAG AAC AAG CTG

SER PRO LEU GLY CYS LYS PRO GLU GLN GLN MET MET TYR ALA GLY SER LYS ASN LYS LEU

G  T A T G A A T A T A

VAL

120 130

GTC CAG ACC GCC GAA CTA ACC AAG GTA TTT GAA ATA AGA AAC ACC GAA GAC CTG ACT GAA

VAL GLN THR ALA GLU LEU THR LYS VAL PHE GLU ILE ARG ASN THR GLU ASP LEU THR GLU

A T T A 

141

GAA TGG TTA CGT GAG AAA CTT GGA TTT TTC CAC TAA TGTGAACTTCTGTGTTTCTTAAGTATTTATGTA

GLU TRP LEU ARG GLU LYS LEU GLY PHE PHE HIS ***     A

T

TTAACCTGACCATACTGGATCCAGACATAA
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when translated into amino acid sequence, there are only three altered residues. The deduced rat sequence

contains His27 instead of Asn, Val51 instead of Ile, and Leu93 instead of Val. The high degree of conservation

of GMF over the course of evolution is impressive.
4 GMF Isoforms and Homologs

An isoform of GMF‐b, called GMF‐g, has been identified in humans (Asai et al., 1998). It is highly

homologous to human GMF‐b, with 82% amino acid identity. Unlike the GMF‐b gene, which is present

in human chromosome 14 (International Human Genome Sequence Consortium, 2001), the GMF‐g gene

is mapped to human chromosome 19 (Kawai et al., 2003). The human GMF‐g gene and its promoter

activity have been characterized (Kawai et al., 2003). The 50‐flanking region of the first exon contains

putative elements for binding transcription factors Sp‐1, GATA‐1, AML‐1a, Lyf‐1, and Ets‐1, but there are
no TATA or CAAT boxes within a 226‐bp sequence upstream from the initiation codon. There are multiple

transcription initiation sites within the region �84 to �70 nucleotides from the first ATG codon. A 226‐bp
region exhibits promoter activity. GMF‐g cDNA has also been isolated from rat, showing 79% homology

with rat GMF‐b (Tsuiki et al., 2000). Down the evolution scale, GMF homologs have been found in

nonvertebrates. It was reported that the filarial nematode Brugia malayi possesses a GMF‐like gene, which
encodes a predicted protein of 138 amino acids with 52% identity and 75% similarity to the mammalian

GMF‐b (Liu et al., 1997). The gene has six predicted exons, with the first encoding only the initiation

methionine, as in GMF‐b gene. The filarial GMF is trans‐spliced with the nematode spliced leader sequence

SL1 and is expressed in microfilariae but not in the adult worms. A homolog of GMF is also present in

the genome of Drosophila melanogaster (Ashburner et al., 1999). Thus, the GMF superfamily spans a wide

range of species and implies an essential role in cellular function. On the other hand, GMF is found to be

remotely related to a group of proteins called actin‐depolymerizing factors (ADF). But unlike the ADFs,

GMF does not bind actin or calcium, nor does it contain the consensus actin‐depolymerizing motif

(Liu et al., 1997).
5 Distribution and Localization

The expression of GMF mRNA in the rat was studied using Northern blotting with a rat complementary

RNA (cRNA) probe corresponding to the entire coding region (Zaheer et al., 1993). GMF mRNA is

predominantly expressed in the brain and spinal cord, although trace levels are found in other organs,

including testis and ovary (> Figure 10-3). Western blot shows similar organ distribution for GMF protein.

In the brain, GMF mRNA is detectable at as early as embryonic day 10 and persists through postnatal

month 14, the oldest age tested, with minor variations in between. On the other hand, GMF protein exhibits

more obvious developmental changes in the brain, with its level increasing slowly prenatally and plateauing

at 1 week after birth. Thereafter, GMF protein remains high throughout life. In cultured cells, GMF is high

in cells of neural origin, including astrocytes, astrocytomas, oligodendrogliomas, and neuroblastomas, and

is lower in cells of other origin, such as fibroblasts, fibrosarcomas, hepatomas, and intestinal epithelial cells.

It is low in normal Schwann cells but high in schwannomas. Using immunohistochemistry, GMF is

localized to astrocytes and Bergmann glia, but not oligodendroglia (Wang et al., 1992). However, it is

present in some neurons, including Purkinje cells, deep cerebellar nuclei, midbrain nuclei (oculomotor

nucleus, red nucleus, and substantia nigra pars compacta), spinal cord motor neurons, lateral vestibular

(Deiters) nucleus, basal ganglia (mainly globus pallidus), and spinal ganglion cells. In the sciatic nerve,

GMF is normally absent in myelin, but is intensely but transiently expressed by Schwann cells distal to the

site of axotomy following transection or crush injury, suggesting a role in nerve regeneration (Bosch et al.,

1989). The intracellular location of GMF has been determined with immunofluorescence on cultured

astrocytes (Lim et al., 1987) and cultured Schwann cells (Bosch et al., 1989). In both instances GMF exists

mainly as a cytoplasmic protein with no specific correlation with the organelles. > Figure 10-4 shows

some of the localizations described above.



. Figure 10-3

Distribution of glia maturation factor (GMF) in rat organs. (a) Northern blot for mRNA; (b) Western immunoblot

for protein; (c) in situ hybridization for mRNA. Figure 10-3(a) and (b) are of adult rats (Zaheer et al., 1993); (c) is

of newborn rat (adopted from Nishiwaki et al., 2001). Note ‘‘A’’ and ‘‘B’’ strongly localize GMF in cerebrum, brain

stem, spinal cord and cerebellum; ‘‘C’’ identifies GMF in the central nervous system, retina, and thymus

208 10 Glia maturation factor in brain function
The distribution of GMF was also studied by Asai et al. (1998), Tsuiki et al. (2000), Nishiwaki et al.

(2001), and Inagaki et al. (2004). These authors confirmed the brain predominance of GMF localization,

although minor differences were detected. The Northern blot study of Asai et al. (1998) showed a very

strong expression of GMF in the human brain, with a weaker expression in the heart, placenta, kidney, and

pancreas. Likewise, Tsuiki et al. (2000) detected using Northern blotting the major expression of GMF in

the rat brain, with lower levels in thymus, heart, and lung. Using in situ hybridization, Nishiwaki et al.

(2001) found GMF to be intensely expressed in the brain, spinal cord, thymus, and retina in the newborn rat

(> Figure 10-3). In the adult rat retina, GMF is localized to the Muller cells. Using a sensitive two‐site
enzyme immunoassay (EIA), Inagaki et al. (2004) found, among the rat organs, high levels of GMF in the

cerebral cortex, cerebellum, and midbrain, but a lower level in the spinal cord. The level in the colon is

comparable with that in the brain, and the thymus also expresses a lower but significant amount of the

protein. GMF is also detectable in human serum (Inagaki et al., 2004).

In contrast to GMF‐b, GMF‐g is not a brain‐predominant protein. Using Northern blot analysis on

human organs, Asai et al. (1998) found that GMF‐gmRNA is primarily expressed in the lung, with a lower

expression in the placenta and heart. The expression in the brain is nil. Unlike GMF‐b, GMF‐g is not

detectable in the nervous system of newborn rats using in situ hybridization, although it is detectable in the

thymus (Nishiwaki et al., 2001). Enzyme immunoassay study showed low levels of GMF‐g in the brain,

lung, and liver, and high levels in the spleen, colon, and thymus, among human organs (Inagaki et al.,

2004). In rats, Northern blot analysis revealed the expression of GMF‐g in thymus and testis (Tsuiki et al.,

2000). In newborn rats, in situ hybridization detected the presence of GMF‐g in the thymus but not in the

nervous system (Nishiwaki et al., 2001).



. Figure 10-4

Morphological localization of glia maturation factor (GMF) in rat. (a–c) Immunostaining showing positive

Purkinje cell bodies and Bergmann glial processes in (a), positive deep cerebellar neurons in (b), and positive

astrocytes in (c). (d–f) Immunofluorescence showing positive cultured astrocytes in (d), positive teased periph-

eral myelin sheaths following crush injury in (e), and positive cultured Schwann cells in (f). Note that GMF

disappears frommyelin after regeneration (not shown). (Collated from Lim et al., 1987; Bosch et al., 1989; Wang

et al., 1992) (Photos not to scale)
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A developmental study was carried out by Bourgeois et al. (2001). Using a differential display paradigm

to select genes expressed in proliferating neuroblasts, they cloned a GMF‐b cDNA, which is preferentially

expressed in mouse telencephalon and peaks at E15 embryonic age. That GMF may be developmentally

regulated is further strengthened by the presence of both GMF‐b and GMF‐g in mouse embryonic stem

(ES) cells. Mao et al. (1998) and Zhang et al. (2000) also reported the presence of GMF‐g in umbilical cord

blood CD34þ cells.
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6 In Vitro Studies

The GMF protein contains several consensus phosphorylation sites (Pearson and Kemp, 1991). Serine 71

(SYK) is a putative substrate for protein kinase C (PKC), which fits the most canonical sequence of S/T‐X‐
K/R; serine 82 (RVS) is a putative substrate for protein kinase A (PKA), which fits the most canonical

sequence of RXS; serine 52 (SPDEL) is a putative substrate for casein kinase II (CKII), which fits the most

canonical sequence of S/T‐X‐X‐E‐X; threonine 26 (RFRKET) is a putative substrate for p90 ribosomal S6

kinase (RSK), which is in agreement with the consensus sequence of R‐X‐R‐X‐X‐S/T. To test if GMF can be

phosphorylated in the test tube, we incubated rhGMF with various protein kinases (Lim and Zaheer, 1995)

and found that GMF is indeed phosphorylated by PKC, PKA, CKII, and RSK (> Figure 10-5), but not by
. Figure 10-5

Phosphorylation of glia maturation factor (GMF). (a) In vitro phosphorylation of GMF by protein kinase C (PKC),

protein kinase A (PKA), casein kinase II (CKII), and p90 ribosomal S6 kinase (RSK). Arrow indicates phosphory-

lated GMF on autoradiogram of Western blot. (b and c) Phosphorylation of cultured astrocytes after phorbol

ester stimulation. (b), Western blot; (c), autoradiogram. Timescale refers to the length of exposure to phorbol

ester. Po, nonphosphorylated GMF; P1, lightly phosphorylated GMF; P2, heavily phosphorylated GMF. Note

strong phosphorylation of GMF after 15 min of phorbol ester stimulation. (From Lim and Zaheer, 1995)
other kinases such as extracellular signal‐regulated kinase (ERK), mitogen‐activated protein (MAP) kinase,

MEK, or cdc‐2‐like kinase. Phosphoamino acid analysis confirmed that GMF is phosphorylated by PKC,

PKA, and CKII at the serine residue, and by RSK at the threonine residue. We subsequently synthesized

peptide fragments of GMF containing the above putative phosphorylation sites and confirmed the

phosphorylation of serine 71 by PKC, serine 82 by PKA, serine 52 by CKII, and threonine 26 by RSK. In

addition, PKA also phosphorylates threonine 26 when the synthetic peptide was used as the substrate

(Zaheer and Lim, 1997). >Table 10-1 shows the results of peptide phosphorylation.



. Table 10-1

Phosphorylation of GMF peptides containing putative targets of protein kinases

Phosphorylation detected (cpm)b

GMF peptide testeda PKA PKC RSK CKII

26

I. 21RFRKE(T)NNAA30 34,140±671 0 5,470±705 0

52

II. 47ELEGV(S)PDEL56 0 0 0 51,420±145

71

III. 66RFIVY(S)YKYQ75 0 25,380±929 0 0

82

IV. 77DDGRV(S)YPLC86 7,630c±374 0 0 0

Four peptides were synthesized according to the human sequence of GMF. Each peptide contained a single serine or

threonine residue (in parentheses) that by consensus was a probable phosphorylation site of one or more of the kinases

known to phosphorylate GMF. Each peptide was tested as a substrate for the kinases and the results of phosphorylation are

expressed in terms of 32P radioactivity. (From Zaheer and Lim, 1997)
aSynthetic peptides were N-acetyl blocked and C-amido blocked. Numbers correspond to locations in the intact GMF

protein
bValues are mean±SD of triplicate reaction tubes from one set of experiment. A second experiment yielded similar results
cA 15-mer version of peptide IV stretching from amino acid position 75(Gln) to 89(Phe) gave the same phosphorylation

value.

Glia maturation factor in brain function 10 211
To verify that endogenous, intracellular GMF undergoes phosphorylation, we stimulated cultured

astrocytes with the phorbol ester, phorbol 12‐myristate 13‐acetate (PMA) (Lim and Zaheer, 1995). PMA

causes a rapid and transient phosphorylation of GMF, detectable within 15 min, and gradually subsides over

the next 24 h (> Figure 10-5). The phosphorylated residues are primarily serine and secondarily threonine.

The process is not blocked by protein synthesis inhibitors, and there is no change in the mRNA level of

GMF, suggesting that it is strictly a posttranslational phenomenon and not one of protein or mRNA

turnover.

The function of phosphorylated GMF was studied in test tube and in intact cells (Lim and Zaheer,

1996). It was demonstrated with immune complex kinase assay that when PKA‐phosphorylated GMF is

incubated with the three major isoforms of the MAP kinase superfamily, it enhances the activity of p38 but

inhibits that of ERK, with little effect on c‐Jun N‐terminal kinase (JNK) (> Figure 10-6). Nonphosphory-

lated GMF has no effect, nor has GMF phosphorylated by PKC, RSK, or CKII. In the intact cells, forskolin,

an activator of PKA, enhances phosphorylation of endogenous GMF. The interaction between GMF and

p38 in the cell can be demonstrated by their co‐immunoprecipitation. Thus, one of the major functions of

GMF could be the regulation of signal transduction at the level of p38 MAP kinase.

It is of interest to note that both PKA‐phosphorylated GMF and PKC‐phosphorylated GMF stimulate

the catalytic activity of PKA. This activity is not shared by CKII‐phosphorylated GMF or RSK‐phosphory-
lated GMF (Zaheer and Lim, 1997). The mutual augmentation of GMF and PKA implies a positive feedback

loop between the two, which could be important in the regulation of signal transduction.
7 Overexpression Studies

A powerful tool to study protein function is to express the protein in question in excessive amounts and to

observe the outcome of the perturbation in the cell. To this end we prepared a transfection agent by

attaching the full‐length coding sequence of rat GMF cDNA to the replication‐defective human adenovirus

vector (serotype 5) using the cytomegalovirus (CMV) promoter. The construct, called Ad5CMVGMF, was



. Figure 10-6

Effects of protein kinase A (PKA)‐phosphorylated glia maturation factor (GMF) on the three pathways of

mitogen‐activated protein (MAP) kinase (extracellular signal‐related kinase (ERK), c‐Jun N‐terminal kinase

(JNK), and p38) using their respective substrates of phosphorylation, MBP, c‐jun, and activating transcription

factor (ATF‐2). Minus and plus signs refer to the absence and presence of GMF in the immune complex kinase

assay. Note that GMF enhances kinase activity of p38, inhibits that of ERK, and has no effect on JNK.

Autoradiogram for p38 was purposely underexposed in order to bring out the difference. (From Lim and

Zaheer, 1996)

212 10 Glia maturation factor in brain function
used to infect cultured cells, both normal and tumor‐derived. We also prepared stable transfectants from the

C6 cell line using the pcDNA3 plasmid. GMF‐transfected cells overexpress GMF but do not secrete the

protein into the conditioned medium (> Figure 10-7).
7.1 C6 Rat Glioma Cells

Stable C6 transfectants overexpressing GMF grow with a lower saturation density and show a more

differentiated morphology (process outgrowth), compared to the original C6 cells (Lim et al., 1998).

There is a 3.5‐fold increase in the activity of the redox enzyme CuZn‐dependent superoxide dismutase

(CuZnSOD), but not that of the Mn‐dependent isoform (MnSOD). The increase in CuZnSOD activity is

accompanied by an increase in the enzyme protein, suggesting enzyme induction. When inoculated into the

nude mice, these stable transfectants show a lower tumorigenicity and express the mature astrocytic marker

glial fibrillary acidic protein (Lim et al., 1998).

C6 cells infected with the GMF–adenovirus construct show a robust expression of GMF and a slower

growth curve compared with the control (Lim et al., 1998). GMF/virus infection of C6 leads to the

activation of the transcription factor nuclear factor‐kB (NF‐kB), as evident in electrophoretic mobility

shift assay (EMSA) of the nuclear extract, using a double‐stranded oligonucleotide probe containing the

consensus binding sequence for NF‐kB (Lim et al., 2000). The specificity of binding is demonstrated by

competition with an unlabeled probe and by the nonbinding of the mutant probe. Binding is detectable as



. Figure 10-7

Overexpression of glia maturation factor (GMF) in cultured astrocytes showing absence of GMF secretion but

enhanced secretion of nerve growth factor (NGF) and brain‐derived neurotrophic factor (BDNF). (a) Western

blot of astrocyte cell lysate following transfection of GMF using adenovirus/GMF construct with cytomegalovi-

rus (CMV) promoter. M, mock transfection; C, transfected with empty adenovirus vector containing CMV

promoter; Z, transfected with adenovirus/lacZ construct; G, transfected with adenovirus/GMF construct.

(b) Western blot of standard proteins (1–5) and conditionedmedium concentrates (Z and G) of GMF‐transfected
astrocytes. The amounts of standard proteins applied are (1–5): 50, 25, 12.5, 6.25, and 3.1 ng per lane. The

conditioned media were concentrated 200‐fold and applied at 20 ml per lane. Note enhanced secretion of NGF

and BDNF and absence of secretion of GMF by the transfected cells. The amount of GMF in the conditioned

medium was calculated to be less than 1 ng/ml. Similar results were obtained with C6 cells (not shown). (From

Zaheer et al., 2001, 2002)
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early as 3 h after transfection, peaks at 6 and 12 h, and gradually declines thereafter. The observed NF‐kB
activation is reduced by cotransfection with catalase and by the presence of high concentrations of pyruvate

in the medium, suggesting the involvement of H2O2. The p38 MAP kinase inhibitor SB‐203580 also

suppresses the GMF‐activated NF‐kB, suggesting the involvement of the p38 signal transduction cascade.

Along with NF‐kB activation is an enhanced expression of CuZnSOD, which is suppressed if NF‐kB nuclear

translocation is blocked by its specific decoy DNA, implicating NF‐kB as an upstream mediator of this

redox enzyme. The p38 inhibitor SB203580 also blocks the GMF‐activated SOD.

GMF/virus ‐infected C6 cells show an increased expression of the neurotropic factors, including nerve

growth factor (NGF) and brain‐derived neurotrophic factor (BDNF), detected by reverse‐transcription
polymerase chain reaction (RT‐PCR) (> Figure 10-8) (Zaheer et al., 1999; Pantazis et al., 2000). There is

also an increase in the NGF and BDNF proteins in the conditioned medium (> Figure 10-7) (Pantazis et al.,

2000). That the neurotrophins in the conditioned medium are biologically active is demonstrable by the

ability of the medium to promote neurite outgrowth and neurite resprouting in PC12 rat pheochromocy-

toma cells (Zaheer et al., 1999) and to exert trophic effect on primary cultures of cerebellar granule neurons

while protecting these cells against ethanol toxicity (Pantazis et al., 2000). A soluble TrkB–IgG fusion

protein, which selectively binds BDNF and prevents its binding to the neuronal TrkB receptor, eliminates

the trophic effect of the conditioned medium on granule cells, whereas anti‐NGF antibody is ineffective in

preventing this effect, suggesting that the neurotrophic effect on cerebellar granule cells is due to BDNF. On

the other hand, both the TrkB–IgG fusion protein and anti‐NGF reduce protection against ethanol,

suggesting that both BDNF and NGF contribute to the neuroprotection of the granule cells provided by

the conditioned medium (Pantazis et al., 2000). Thus, GMF upregulates the expression of BDNF and NGF

in C6 cells, and these factors exert neurotrophic and neuroprotective functions on primary neurons.



. Figure 10-8

Overexpression of glia maturation factor (GMF) leads to activation of p38 and cAMP response element binding

protein (CREB) and increase in nerve growth factor (NGF) and brain‐derived neurotrophic factors (BDNF)

mRNAs. (a) RT‐PCR of GMF‐overexpressed C6 cells showing increase in NGF and BDNF mRNAs (from Pantazis

et al., 2000). PCR was carried out to 35 cycles for NGF and to 32 cycles for BDNF. Astrocytes gave similar results

(not shown). (b and c) Western blot for phosphorylated p38 and cAMP response element binding protein (CREB)

on GMF‐overexpressed astrocytes using phosphospecific antibodies. PP, phosphorylated protein; TP, total

protein (nonphosphorylated plus phosphorylated). Note increased phosphorylaion of p38 and CREB in GMF‐
transfected cells. In contrast, there is no increase in the phosphorylation of MAP kinase kinase (MKK), the kinase

upstream of p38 (not shown). For meanings of M, Z, and G, see > Figure 10-7. (From Zaheer et al., 2001)
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7.2 PC12 Rat Pheochromocytoma Cells

In order to study the intracellular regulatory function of GMF in neuronal cells, we achieved a tenfold

overexpression of GMF in PC12 cells by infection with the GMF/virus construct (Zaheer and Lim, 1998).

These cells showed a 3.6‐fold increase in the activity of p38 MAP kinase, a 3.8‐fold increase in the activity of

MAP kinase‐activated protein kinase 2 (MAPKAP‐K2), and a 4.2‐fold increase in the activity of tyrosine

hydroxylase (TH). There is also an increase in the phosphorylation of TH and the 25‐kDa heatshock protein
(Hsp25) without a concomitant increase in the corresponding protein levels, suggesting a posttranslational

phenomenon. It was previously established that in PC12 cells, MAPKAP‐K2 is an immediate downstream

target of p38, and both TH and Hsp25 are immediate downstream targets of MAPKAP‐K2. The current
in vivo results are in concordance with our earlier in vitro finding that GMF promotes the activity of p38,

and implicate the participation of GMF in stress‐induced catecholamine synthesis through the p38 signal

pathway. The fact that PC12 possesses endogenous GMF suggests that the observed effects of GMF

transfection reflect an enhanced physiologic function.
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7.3 Primary Astrocytes

7.3.1 Signal Transduction, Transcription Activation, and Neurotrophin Secretion

In primary astrocyte cultures derived from near‐term embryonic rat brains, GMF overexpression from

GMF/virus infection results in a number of changes (> Figure 10-8) (Zaheer et al., 2001). Among the three

isoforms of MAP kinase, p38 shows a big increase in phosphorylation, as detected byWestern blotting using

a phosphospecific antibody. Likewise, there is a substantial increase in the phosphorylation of the tran-

scription factor cAMP response element binding protein (CREB). Using EMSA, we found stimulation of

the transcription factor NF‐kB. The activation of CREB and NF‐kB is blocked by the inhibitor of p38 MAP

kinase (SB‐203580). There is an increased secretion of BDNF and NGF into the conditioned medium

(> Figure 10-7), along with an increase in their messenger RNA (> Figure 10-8). The induction of BDNF

and NGF is also blocked by inhibiting p38 with SB‐203580, and by inhibiting NF‐kB with a decoy DNA

sequence. Taken together, the results suggest that GMF functions intracellularly in astrocytes as a modulator

of MAP kinase signal transduction, leading to a series of downstream events including CREB and NF‐kB
activation, resulting in the induction and secretion of the neurotrophins. That the probable site of GMF

action is at the p38 level and not anywhere upstream is supported by the lack of increased MAP kinase

kinase (MKK3/6) phosphorylation, the kinase immediately above p38 (Zaheer et al., 2001).

7.3.2 Cytokine Secretion and Immune Activation

Overexpression of GMF in astrocytes also leads to the enhanced production and secretion of the cytokine

granulocyte–macrophage colony‐stimulating factor (GM‐CSF) (> Figure 10-9) (Zaheer et al., 2002). Other
. Figure 10-9

Ribonuclease protection assay showing induction of granulocyte–macrophage colony‐stimulating factor (GM‐
CSF) in glia maturation factor (GMF)‐overexpressed astrocytes (a) and response of microglia to the astrocyte‐
conditioned medium by production of MHC class II protein and IL‐1b (b). For comparison, (c) shows a similar

response of microglia to recombinant GM‐CSF. The 18S ribosomal RNA was used as sample control. For

meanings of M, C, Z, and G, see > Figure 10-7. Minus and plus signs indicate absence and presence of

recombinant GM‐CSF. (From Zaheer et al., 2002)
cytokines such as interleukin‐3 (IL‐3) and interleukin‐5 (IL‐5) are not affected. Although the GMF/virus

does not directly transfect microglia, coculture of GMF‐transfected astrocytes with microglia leads to the

activation of the latter as evidenced by the microglial expression of interleukin‐1b (IL‐1b) and the major
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histocompatibility complex class II (MHC II) protein, detected by the Affymetrix DNA microarray system.

That the astrocyte‐secreted agent responsible for microglial activation is indeed GM‐CSF is verified by the

following: increased GM‐CSF mRNA in astrocytes detectable by RT‐PCR and ribonuclease protection assay

(RPA); ability of the astrocyte‐conditioned medium to activate microglia as shown by the latter’s produc-

tion of MHC II and IL‐1b (detected by RT‐PCR and RPA); mimicry of the conditioned medium effects on

microglia by recombinant GM‐CSF; and lastly, the direct demonstration of a 40‐fold increase in GM‐CSF in
the conditioned medium of GMF‐transfected astrocytes by ELISA (Zaheer et al., 2002). MHC class II

proteins are unique to antigen‐presenting cells such as microglia and monocytes. Antigens are presented to

T lymphocytes during the initial phase of the immune cascade. Thus, our finding suggests that GMF in

astrocytes can initiate a series of events leading to immune activation in the nervous system. The

enhancement of GM‐CSF production in astrocytes following the overexpression of GMF is blocked by

MAP kinase inhibitors.

The downstream effects of GMF are summarized in >Table 10-2.
. Table 10-2

Cellular effects following overexpression of GMF

Activation/increase Inhibition/decrease

p38 MAP kinase ERK MAP kinase

CREB Catalase

NGF Glutathione peroxidase

BDNF

GM-CSF

CuZnSOD

NF-κB

MAPKAP-kinase 2

Hsp 25

Tyrosine hydroxylase
8 Gene Knockout Studies

8.1 Production of GMF‐Null Mice

Powerful as it is, overexpression conveys only one aspect of a protein’s function. The alternative approach of

total deletion can provide complementary information not otherwise obtainable. To this end, we have

produced GMF‐knockout (KO) mice by homologous recombination (Zaheer et al., 2004).

A 14‐kb DNA fragment containing the entire mouse GMF gene was identified and cloned from the

mouse 129/SVJ BAC library. All seven exons of GMF were identified. A targeting construct was prepared by

using a 2.1‐kb region containing exon 1 as the upstream homology and a 3.1‐kb region containing exon 7 as

the downstream homology. After homologous recombination, a region of 7 kb containing exon 2 to 6 was

deleted and replaced with the bacterial neomycin gene. With this deletion, more than 80% of the amino

acid residues are removed from the GMF protein. After electroporation of the targeting construct into ES

cells, the drug‐resistant colonies were screened by PCR, using primers designed to amplify across the

upstream homology region of the targeting construct. Eight colonies were selected that contained both wild

type and knockout alleles, with a targeting frequency of 4.3%. Three ES cell lines were used to generate

chimeras. Germline transmission was obtained from a line designated BQ50. The knockout mice showed no

trace of GMF protein and mRNA (> Figure 10-10) (Zaheer et al., 2004). Knockout mice were maintained by

backcross breeding to C57BL/6 mice.

Absence of GMF gene is nonlethal to the mice, which develop to maturity showing no difference in

weight and no gross morphological abnormality. Routine observation, handling, and checking failed to



. Figure 10-10

Analysis of glia maturation factor (GMF)‐knockout mice. (a) Western blot showing absence of GMF protein in

brain (Br) and spinal cord (SC). (b) Absence of GMF protein and mRNA in cultured astrocytes derived from

knockout mice. (þ/þ), wild type; (–/–), homozygous knockout. (From Zaheer et al., 2004)
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detect gross behavioral differences like free locomotion and exploration, tail movement, body posture, paw

grip, muscle strength, muscle tone, spontaneous urination, and defecation between the knockout and the

wild‐type animals.

For housekeeping proteins that are necessary for maintenance of life, the deletion results in fetal death

or shortened life span. Regulatory proteins, on the other hand, are not lethal when deleted, but the animal

may react abnormally when challenged. The fact that GMF is a highly conserved protein yet nonlethal when

knocked out is consistent with the concept of a regulatory protein that performs important adaptive

functions.
8.2 Defective Motor Performance and Learning

When tested with an elevated ‘‘plus’’ maze, both GMF‐knockout and wild‐type mice crossed the intersec-

tion the same number of times and spent the same fraction of time in the enclosed area, indicating no

difference in activity level and anxiety. Again, there was no difference when tested for simple position

discrimination with a T‐maze, using positive reinforcement. Still, no difference was noted when tested for

spatial memory in a Morris water maze, suggesting no difference in hippocampus‐dependent spatial

learning. The last point was corroborated by our failure to detect a difference in long‐term potentiation

(LTP) elicited in hippocampal slices (Lim et al., 2004).

However, when the mice were forced to walk on a narrow beam, the knockout mice performed poorly

and failed to improve upon repeated training (> Figure 10-11a). Since poor motor performance can mask

motor learning, we subjected the animals to eyeblink conditioning, a test designed for motor learning

involving specific cerebellar circuitry, with very little, if any, performance component. Again, GMF‐
knockout mice were deficient in eyeblink‐conditioned response (> Figure 10-11b). Thus, the absence of

GMF affects both motor performance and motor learning, but not the hippocampus‐dependent declarative
learning (Lim et al., 2004).

Histological examination of the GMF‐null brains revealed neuronal loss in the inferior olive (> Figure

10-12), a defect that explains both poor beam‐walking (inability to balance) and poor eyeblink conditioning
(inability to learn), since inferior olive is part of the circuitry for both responses (Freeman and Nicholson,

2000; Nicholson and Freeman, 2000).



. Figure 10-11

Behavioral deficit in glia maturation factor (GMF)‐null mice. (a) Beam walking. (b) Eyeblink conditioning using

sound as conditioned stimulus and electric shock as unconditioned stimulus. Note deficit of knockout mice in

both tasks. (From Lim et al., 2004)
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8.3 Alterations of Redox Enzymes

Astrocyte cultures derived from GMF‐knockout mice become more resistant to H2O2. This is accompanied

by a decrease in the activity of the redox enzyme CuZnSOD and an increase in the activities of catalase and

glutathione peroxidase (Zaheer et al., 2004). CuZnSOD converts the toxic mitochondrial by‐product
superoxide to H2O2, also a potentially harmful agent, which in turn is reduced to water by catalase and

glutathione peroxidase. CuZnSOD therefore is a double‐edged sword, capable of imparting benefit or harm

to the cell, depending on whether or not the accumulated H2O2 is cleared by the two downstream enzymes.

An increase in the activity of these enzymes results in a lower intracellular level of H2O2 and explains why



. Figure 10-12

Anatomical deficit in glia maturation factor (GMF)‐null mice. (a) Wild‐type mice showing intact inferior olives;

(b) knockout mice showing neuronal loss in the same structure. DAO, dorsal accessory nucleus of inferior olive;

PO, primary nucleus of inferior olive. (From Lim et al., 2004)
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the GMF‐null cells are more resistant to exogenous H2O2. The decrease in CuZnSOD is in agreement with

our earlier finding that GMF overexpression induces CuZnSOD (Lim et al., 1998, 2000).

Unlike the life‐sustaining proteins, adaptive proteins are more flexible, and could be involved in both

physiologic and pathologic processes. A case in point is glutamate, which is essential in neural function and

memory but whose aberration contributes to neuronal death. Or one can recall cytochrome c, which is both

a life‐supporting and a terminating agent. GMF may be one of these multifunctional proteins whose

ultimate effect depends on the environmental context, both inside and outside the cell. Although H2O2 is

traditionally considered a toxic by‐product of biological oxidation, recent data suggest that it is also

essential for certain signal transduction steps (Keyes and Emslie 1992; Abe et al., 1996; Lo et al., 1996)

and transcription activation (Sun and Oberley, 1996). There is evidence that H2O2 is produced as a normal

response to some growth factors and cytokines (Thannickal and Fanburg, 2000), and it has been suggested

that oxidation of cysteine and histidine residues by H2O2 can activate a protein by conformational changes

in a manner akin to protein phosphorylation (Finkel, 1998). Therefore, by affecting the steady‐state level of
H2O2 through SOD and other enzymes, GMF could be one of the redox regulators that determine cell

survival, proliferation, differentiation, or death.
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9 GMF in Extraneural Functions

9.1 Oxidative Stress in Renal Cells

Although GMF is normally low in kidney, Kaimori et al. (2003) reported that GMF is induced in renal

proximal tubular (PT) cells in experimental proteinuria produced by albumin overloading in mice. When

PT cell lines are permanently transfected to overexpress GMF, the cells are more susceptible to cell death

upon stimulation with tumor necrosis factor‐a (TNF‐a) and angiotensin II, both of which have been found

to produce oxidative stress. Moreover, when GMF‐overexpressing PT cells are exposed to H2O2, the cells

are more likely to undergo apoptosis. There is a sustained increase in intracellular H2O2 when these cells are

stimulated by tumor necrosis factor, angiotensin II, or H2O2. The increase in intracellular H2O2 is due to an

increase in the activity of CuZnSOD, which produces H2O2, and a decrease in the activities of catalase and

glutathione peroxidase, which destroy H2O2. The downstream effects of GMF are blocked by the p38 MAP

kinase inhibitor SB203580. These results are consistent with our data from brain cells with respect to the

GMF stimulation of SOD and accumulation of H2O2.
9.2 T Cell Differentiation

The thymus, apart from the nervous system, expresses GMF in large amounts (Nishiwaki, 2001). Utsuyama

et al. (2003) identified GMF as a protein in the thymic epithelial cells essential for the differentiation of

T cells. They arrived at this conclusion by producing a monoclonal antibody that inhibits T cell develop-

ment in an in vitro culture system of the embryonic thymus. cDNA of the protein recognized by the

antibody carries a sequence identical to that of GMF. Both Northen blot and immunoblot analyses confirm

the presence of GMF in the thymus. Finally, recombinant GMF influences T cell development in favor of an

increase in CD4þ T cells.
10 Concluding Remarks and Prospects

It appears that GMF is an intracellular regulatory protein. Although not necessary for basic survival, it plays a

role in many adaptive functions, including reaction to stress, immune regulation, and maintenance of redox

homeostasis. In the brain, the downstream effects of GMF include the production of neurotrophins and

cytokines. Evidence has accumulated thatGMFprobably acts on the signal transduction cascade at the level of

p38 MAP kinase. Future research will focus on the detailed mechanism of this action, along with the

regulation of GMF gene expression. The immune modulation role of GMF suggests new avenues of investi-

gation thatmay be relevant to autoimmune disorders in the central nervous system, such asmultiple sclerosis.
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Abstract: The nitric oxide synthase (NOS) enzymes, three gene products that are highly homologous, are

variously expressed in the nervous system. Gene regulation is complex, and they are the only flavoheme

enzymes that require tetrahydrobiopterin (BH4) as a redox cofactor. The nNOS and eNOS isoforms are

constitutive enzymes found typically in some neurons and in the endothelium, respectively, while iNOS is

transcriptionally activated in response to injury and infection. Distinct N‐ and C‐terminal motifs in the

NOS proteins target these enzymes to discrete cellular compartments where they associate with specific

scaffold and cytoskeletal proteins. Further oxidation of nitric oxide (NO) generates a wide variety of

products that can react with DNA and proteins, resulting in a short‐term change and also long‐lived effects

on gene expression, cell cycle, and differentiation. On the basis of the phenotype of gene‐deficient mice, and

the use of enzyme inhibitors with only partial selectivity, roles for reactive nitrogen species (RNS) have been

invoked in almost every aspect of nervous system function and in the pathology that accompanies acute

injury and degeneration. This chapter focuses on the NOS enzymes, generation of RNS and their molecular

targets, and involvement in neurodegeneration, acute injury, and the host response to infection.

List of Abbreviations: AD, Alzheimer’s disease; ALS, amyotropic lateral sclerosis; BBB, blood–brain

barrier; BH4, tetrahydrobiopterin; CSF, colony stimulating factor; COX, cyclooxygenase; EAE, experimental

allergic encephalomyelitis; IFN, interferon; IL, interleukin; LTP, long‐term potentiation; MS, multiple

sclerosis; NO, nitric oxide; NOS, nitric oxide synthase; NT, nitrotyrosine; ONOO�, peroxynitrite; PD,
Parkinson’s disease; PDZ, PSD‐95/discs large/zona occludens‐1; PSD, postsynaptic density; RNS, reactive
nitrogen species; sGC, soluble guanylyl cyclase; SNO, S‐nitrosothiol; SOD, superoxide dismutase; TBI,

traumatic brain injury; TNF, tumor necrosis factor
1 Introduction

The excretion of nitrate, an oxidation product of nitric oxide (NO), was rediscovered in human subjects

(Green et al., 1981). Production was observed to be independent of bacterial involvement, and was seen to

increase during inflammation. Subsequently, mouse macrophages were shown to produce nitrite and

nitrate as part of the host response to bacterial challenge (Stuehr and Marletta, 1985). There followed a

flurry of activity resulting in some classic publications, and by the end of that decade it had been established

that the smooth muscle relaxing factor released by vascular endothelium (Furchgott and Zawadski, 1980)

was NO (Ignarro et al., 1987; Palmer et al., 1987), that neurons also produced NO (Garthwaite et al., 1988),

and that in both cases the attendant rise in cGMP was due to NO binding to the heme moiety of soluble

guanylyl cyclase (sGC). With almost unseemly haste Sciencemagazine named NO as molecule of the year in

1992, and three of those intimately involved in the early work (Robert Furchgott, Louis Ignarro, and Ferid

Murad) shared the Nobel Prize for Physiology andMedicine in 1998; from discovery to universal acclaim in

a mere 20 years!

The source of NO is arginine. The first crude separation and purification of the nitric oxide synthase

(NOS) enzyme involved in NO synthesis was reported simultaneously by a number of groups (Schmidt

et al., 1989; Bredt and Snyder, 1990). The brain enzyme was found to be dependent upon calcium/

calmodulin, active as a dimer with monomeric mass 150 kDa, and to require a number of cofactors. The

gene was cloned from rat brain (Bredt et al., 1991) and named nNOS (later type I or NOS‐1). A second gene

was cloned from activated macrophages by a number of groups within the year (Lowenstein et al., 1992;

Lyons et al., 1992; Xie et al., 1992) and named macNOS or inducible NOS (type II, NOS‐2). That same year

a third gene was cloned from human and bovine endothelium (Janssens et al., 1992; Lamas et al., 1992;

Marsden et al., 1992; Nishida et al., 1992; Sessa et al., 1992) and named eNOS (type III, NOS‐3).
These three gene products are highly homologous and display splice variants to a greater or lesser

degree. They are active as homodimers, with each monomer displaying a catalytic oxygenase domain and a

reductase domain. Bacterial genomes also code for a NOS oxygenase domain precursor, similar in sequence

and biochemistry to the mammalian NOS oxygenase domain. To function, the bacterial domain requires an

electron‐donating partner. Study of the snail Helix pomatia implied the existence of a new type of NOS

without obvious homology to the three previously described. More recently, theAribidopsis AtNOS1 protein
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was identified as having homology similar to that of the snail, and this protein also has NOS activity. Using

database search strategies Zemojtel et al. (2004) have recently described close homologs in the genomes of

all metazoans. These proteins have a GTPase and an NOS domain, an integration point of two fundamental

signaling mechanisms. We are waiting to see what functional roles these proteins have in mammals.

Following the discovery that various NOS isoforms are expressed in the nervous system, interest has

been on identifying the products and molecular targets, and their roles in development, normal central

nervous system (CNS) function, and pathology. First, we describe the NOS proteins and how their

expression is regulated in specific cells and cellular compartments within the CNS.
2 Structure and Activity

2.1 Protein Structure

There are three isoforms of the classical mammalian NOS, namely NOS‐1 (nNOS, neuronal NOS); NOS‐
2 (iNOS, inducible, immunologic NOS); and NOS‐3 (eNOS, endothelial NOS). All three NOS isoforms are

characterized by an N‐terminal oxygenase domain and a C‐terminal reductase domain, which generate NO

via the combination of L‐arginine and molecular oxygen, and reduction of NADPH, to form citrulline and

NADP as by‐products (Alderton et al., 2001; Stuehr et al., 2004). The three classical NOS are products of

different single‐copy genes and share roughly 50% amino acid homology (> Figure 11-1). Common
. Figure 11-1

Structure of human nNOS, eNOS, and iNOS. The amino acid residue numbers that define the major domains are

shown. The cysteine residues that ligate the heme and CaM‐binding site, and zinc, are indicated. Reproduced

with permission from Alderton et al. 2001. Biochem J, 357: 593–615. Copyright of the Biochemical Society
features include binding domains for the substrates arginine and NADPH, and for the cofactors heme,

tetrahydrobiopterin (BH4), CaM, FMN, FAD, and Zn2þ. There is an N‐terminal PDZ domain in nNOS, a

C‐terminal PDZ‐binding ligand motif in iNOS, and myristoylation and palmitoylation sites on eNOS, all of

which are involved in protein targeting. The flavin cofactors bound to the reductase domain act as electron

transporters, accepting electrons from NADPH and donating them to the heme domain. The electron flow

is intermonomeric rather than within the same molecule, which may account for the inactive state of the

monomer. The essential requirement of CaM for NOS function may be due to the reduced speed of the

electron transfer in the absence of CaM‐Ca2þ. The diverse proposed roles for BH4 in NO activity include

potentiation of NOS active state, promotion of dimer formation, and promotion of coupling of NADPH

oxidation to NO synthesis.
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A comparison of human eNOS and iNOS oxygenase structure shows they are similar in overall shape

and cofactor, stereochemical relationships (Fischmann et al., 1999). Human iNOS residues 82–508 of the

oxygenase domain form an elongated curved shape, with a novel nonmodular, single‐domain a–b fold. A

30 å deep, funnel‐shaped channel is formed by dimerization, creating an active center whose entrance is

wide enough to permit diffusion of both arginine and citrulline. Arginine binds with its side‐chain terminus

in the narrow part of the cavity and with the guanidino group coplanar to the heme. In mouse iNOS, the

guanidinium group of arginine forms two hydrogen bonds with the two carboxy oxygens of Glu371, and

this localizes the substrate over the heme. The BH4 cavity is located near the dimer interface, buried within

the protein and inaccessible to the solvent. Indole aromatic rings of human iNOS Trp463 and the BH4

pterin are stacked in parallel, with hydrogen bonding between heteroatoms of the pterin and Arg365,

His461, and Ala446. The identity of these residues is, however, not critical for BH4 binding and activity

(Ghosh et al., 1999). A Zn tetrathiolate center is located at the bottom of the dimer interface, which is

tetrahedrally coordinated with two cysteines (Cys 110 and 115) from each subunit. The Cys115 has been

shown to be essential for dimer stability (Chen et al., 1995). The Zn is located between the two hemes where

Cys115 is in proximity to Ser119, which hydrogen‐bonds to BH4. This suggests that Zn aids structural

integrity of the BH4‐binding site. Previous studies show Zn is important in dimer stability of nNOS, but not

in activity (Hemmens et al., 2000).
2.2 Dimerization

Studies utilizing protein dissociation and limited proteolysis have revealed that dimerization is essential for

NOS activity, facilitating correct structure of the active site for heme and arginine binding (Ghosh and

Stuehr, 1995). Dimers of iNOS consist of subunits aligned head to head, with the oxygenase domains

forming the dimer, while the reductase domains are monomeric extensions. This indicates that it is the

heme, BH4, and the arginine‐binding domain alone that maintain the dimeric structure. In fact, these

cofactors not only participate in catalytic activity but help form and maintain dimeric structure in all three

NOS isoforms (Baek et al., 1993). In the case of nNOS and eNOS, however, there are additional interac-

tions, both between the two reductase domains and between the oxygenase and reductase domains of each

monomer. For these two molecules, BH4 is not essential for dimerization (as it is for iNOS), though,

together with arginine, it stabilizes the heme‐containing dimers. The nNOS has an extra 250‐amino‐acid
N‐terminal leader sequence, which is not required for dimerization. The two dissociated fragments of

iNOS, consisting of dimerized oxygenase domains complete with bound heme and isolated reductase

domains, function independently but cannot generate NO. However, the subunits can reassociate and

regain substantial NOS activity upon incubation with arginine and BH4. The reductase domain of the

enzyme first binds FAD, FMN, and CaM in the case of iNOS. The reductase‐active monomers then

dimerize, requiring sufficient heme and involving arginine and BH4. A heme‐containing monomer may

be an intermediate. The presence of stably incorporated BH4, along with arginine, alters the heme

environment and enables electron transfer in the active dimer.
2.3 Catalytic Function

Catalytic activity of the NOS enzymes is novel and involves a unique role for BH4. Although the precise

mechanisms and products of NOS catalytic activity remain controversial, one simple explanation invokes a

two‐step process whereby arginine is initially hydroxylated to form NG‐hydroxy‐L‐arginine, followed by

oxidation of this intermediate using an electron from NADPH to form citrulline and NO (Stuehr et al.,

2004). The enzyme can also catalyze the production of other products including superoxide (O2
�),

depending on the reaction environment. Electron flow is from the NADPH to FAD, then FMN, and finally

to heme iron. Flow from FMN to heme is gated by bound CaM (site of the Ca2þ dependency of nNOS and

eNOS) while, in iNOS, the electron flow occurs constantly. The oxygenase and reductase domains of NOS

have been shown to be independently catalytically active (Sheta et al., 1994), such that the isolated reductase
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domain is capable of transferring electrons from NADPH via FAD and FMN to cytochrome c, and the

oxygenase domain can catalyze the second step of NO synthesis (Ghosh and Stuehr, 1995). However, NOS

function cannot occur for the two domains without their correct association as a homodimer. Like all

enzymes, the availability of substrate and cofactors affects the function of NOS. For example, regulated

cellular arginine uptake and availability is essential for iNOS activity and, just like heme and BH4 cofactors,

availability is affected by involvement in other cellular processes (reviewed in Aktan, 2004). The proposed

alternative reaction pathways and products of NOS activity are discussed in Section 4.1.
2.4 Role of Calcium

The two constitutively expressed NOS isoforms, eNOS and nNOS, are activated by transient changes in

intracellular Ca2þ concentrations, which lead to noncovalent (reversible) Ca2þ/CaM binding to the

enzyme. However, iNOS is insensitive to changes in intracellular [Ca2þ], because calcium is tightly

bound to CaM following protein synthesis. NO and cGMP might also attenuate Ca2þ influx and initiate

a removal mechanism, decreasing Ca2þ in a negative feedback fashion (Yao and Huang, 2003).
2.5 NO Feedback Inhibition

As a key signaling molecule, NO can alter redox‐sensitive signaling processes, as well as regulate multiple

gene families, either directly or indirectly via protein modification or upregulation of cGMP. Alderton

et al. (2001) discuss the possibility that NO can inhibit the activity of enzymes, including NOS, that

form reduced ferrous heme intermediates by reacting with, and forming, a stable Fe2þ–NO complex. It is

now well established that iNOS itself can be autoregulated by NO. Inhibition of NO formation causes an

increase in iNOS transcription and, conversely, inhibition of iNOS transcription occurs upon prolonged

exposure of cells to NO (Luss et al., 1994; Park et al., 1994). Perez‐Sala et al. (2001) demonstrated that

NO can modulate iNOS expression by a posttranscriptional mechanism involving a cGMP‐mediated

decrease in messenger RNA (mRNA) stability. Several studies have revealed that NO can reduce transcrip-

tion from NF‐kB‐induced promoters, which include other genes as well as iNOS (Peng et al., 1995; Park

et al., 1997).

Some studies report NO feedback inhibition of eNOS function. This can be via dissociation of

caveolin‐1 platforms and subsequent reversible silencing of signal transduction in caveolae (Li et al.,

2001), or by means of a superoxide‐mediated decrease in enzyme activity (Sheehy et al., 1998). The NO

generated from nNOS can likewise inhibit nNOS activity via suppression ofN‐methyl‐D‐aspartate (NMDA)

receptor signaling (Kim et al., 1999).
2.6 Phosphorylation

All three isoforms of NOS can be phosphorylated. Garcı́a‐Cardeña et al. (1996) demonstrated that eNOS

becomes tyrosine‐phosphorylated in endothelial cells, causing a reduction in enzyme activity and an

associated increase in interaction with caveolin‐1. Phosphorylation also occurs at multiple sites, including

Ser 116, Thr 497, and Ser 1179 (Shaul, 2002). Phosphorylation can increase as well as decrease eNOS

activity, and phosphorylation at the different sites has been shown to be differentially regulated by

membrane targeting (Gonzalez et al., 2002), and may alter subcellular localization of eNOS (Rizzo et al.,

1998). Matsubara et al. (2003) have further shown that phosphorylation of eNOS Thr 497 (in the CaM‐
binding site) results in reduced affinity of eNOS for CaM. Phosphorylation of eNOS can be increased upon

stimulation by agonists such as flow‐induced shear stress, estradiol, and VEGF in a Ca2þ/CaM‐independent
manner. Several protein kinases are implicated in the process. Phosphorylation of nNOS Ser847 leads to a

decrease in enzyme activity and is mediated by CaM‐K IIa (Hayashi et al., 1999). This process has been

shown to be directly promoted by PSD‐95 (Watanabe et al., 2003). The phosphorylation of nNOS has also
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been shown to be mediated by protein kinase A (PKA) and protein kinase C (PKC) (Brune and Lapetina,

1991). The relevance of iNOS phosphorylation by tyrosine kinases immediately following translation (Pan

et al., 1996), resulting in an increase in enzyme activity, is less clear. This may be important in cellular

localization and functioning of iNOS.
3 Regulation and Expression of the NOS Enzymes

3.1 Transcription

The major transcriptional start site in human nNOS is 28 nucleotides downstream of a TATA box, with two

inverted CAAT boxes also being present. Several potential control element recognition sites, including

NF‐1, AP‐2, CREB/ATF, Ets, NRF‐1, and NF‐kB, exist in the 50 flanking region. Human nNOS has

(CA/TG)n polymorphic alleles in the promoter, which may affect activity (Förstermann et al., 1998).

There is a similar microsatellite repeat in the 30 UTR of nNOS, which has polymorphic alleles and may

do the same. The transcription of nNOS is regulated in neurons in response to stress induced physically,

chemically, or electrically, which can occur in the normal brain and is associated with neuropathology.

The human eNOS promoter lacks a TATA box, but a CCAAT box is present at�286. The Sp1 and GATA

sites are consistent with the constitutive, endothelial cell type expression pattern of eNOS. Putative

sequence motifs for AP‐1, AP‐2, NF‐1, IL‐6, NF‐kB, and PEA3, heavy metal, and shear‐stress response
elements, among others, are also present. Posttranscriptional regulation of eNOS can occur via TNF‐a‐
mediated increase in mRNA degradation (Yoshizumi et al., 1993). Transcription can be affected by shear

stress, hypoxia, cell proliferation, steroids, and cytokines (Cirino et al., 2003).

The human iNOS promoter contains binding sites for NF‐kB, Jun/Fos heterodimers, C/EBT, CREB,

STAT, AP‐1, AP‐2, Sp‐1, as well as TNF‐RE, NF‐IL6, and a number of g‐IRE response elements (Aktan,

2004). The 30 UTR of iNOS mRNA contains AU‐rich motifs, which have been demonstrated to destabilize

the transcript (Rodriguez‐Pascual et al., 2000). Transcription of iNOS in vitro can be regulated by an array

of factors (> Figure 11-2).
3.2 Splice Variants

Alternative splicing affects the processing, localization, translational efficiency, and protein half‐life, and is a
method of regulation of the NOS enzymes, both spatially and temporally. nNOS is the only isoform to exist

as catalytically active truncated forms that can differ subtly in function (Panda et al., 2003). A variety of

splice variants of nNOS have been identified to date, with this gene being among the most complex

described in humans. A combination of three mechanisms of alternative splicing account for the increasing

number of observed variants, namely alternative promoters, exon deletions, or insertions, and the use of

alternative polyadenylation signals (Förstermann et al., 1998).

Four conserved peptide isoforms of nNOS (a, b, m, and g) have been identified. Splice variants from

which peptides could be translated exist but there is no current evidence for their products. nNOSa
originates from the full‐length transcript, and this 150‐kDa protein accounts for most nNOS activity in

the mouse brain. nNOSb and g lack exon 2, and possess alternative first exons (1a and 1b). The protein

products have no membrane‐localizing PDZ domain, which results in their localization to the cytoplasmic

rather than membrane fraction. nNOSb is a 136‐kDa protein with six unique N‐terminal amino acids, while

nNOSg is translated from a start site in exon 5, resulting in a truncated 125‐kDa protein. nNOSm is

expressed mainly in skeletal muscle and is absent from brain. It is fully functional and possesses an in‐frame

insertion of 34 amino acids between the oxygenase and reductase domains. In vitro studies have revealed

that nNOSb activity compares with that of nNOSa, while nNOSg displays no significant catalytic ability

(Brenman et al., 1996). Low level of expression of a human nNOS transcript with an in‐frame deletion of

exons 9 and 10 was observed in brain (Wang et al., 1995), which may correspond to the inactive NOS1‐
(144) peptide found to be expressed during synaptogenesis (Ogilvie et al., 1995). Mitochondrial NOS is in
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Transcriptional activation of the iNOS gene. Reproduced from Murphy and Pearce (2005)
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fact nNOSa, but with novel posttranslational modifications including acylation with myristic acid and

phosphorylation at the C‐terminus (Elfering et al., 2002).

There are at least four alternatively spliced iNOS transcripts, resulting from deletions in either exon 5,

exons 8 and 9, exons 9–11, or exons 15 and 16 (Eissa et al., 1996, 1998). These exhibit tissue‐specific
regulation, although only the exon 5‐deleted form is significantly expressed in brain. This form predicts a

truncated protein resulting from a frame‐shift and premature stop codon, and is not predicted to generate

NO (Eissa et al., 1996). The authors speculate that such transcripts may posttranscriptionally regulate NO

production simply via the generation of excess prematurely terminated transcripts, and there is similar

evidence in eNOS (Lee et al., 1995). Reduction in iNOS may be important in terminally differentiated brain

tissue. The only iNOS splice variant known to be translated into protein is that lacking exons 8 and 9, which

results in a protein with only a reductase domain. This protein may differ in function from full‐length
iNOS, and may use an alternative electron acceptor (Eissa et al., 1998). There are two transcription start

sites in eNOS, though both generate the same 133‐kDa protein.
3.3 Translation

There are many co‐ and posttranslational modifications of the NOS enzymes, some of which having

already been mentioned. Heat shock protein hsp90 has emerged as an important modulator of the NOS

enzymes, being a ubiquitous cellular molecular chaperone. It functions to ensure correct folding of proteins

but is also associated with newly synthesized proteins, including eNOS (Venema et al., 1996). Stimulation

of NO production in endothelial cells results in an enhancement of hsp90‐eNOS binding, concomitant

with NO production. Dynamin‐2 is a large GTPase family member involved in trafficking, and has
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been shown to colocalize and bind eNOS in the Golgi complex, resulting in the upregulation of

eNOS activity. Protein inhibitor of NOS (PIN) is an 89‐amino‐acid protein that has been found to bind

to the N terminus of nNOS, and may inhibit activity or transport by mechanisms unknown (Fan et al.,

1998).

There is evidence that iNOS can be regulated at the posttranslational level, and corticosteroids and

sodium salicylate are examples (Rao, 2000; Bogdan, 2001). Two novel iNOS‐binding proteins, kalirin and

NAP110 (NOS‐associated protein 110kDa), have been shown to bind iNOS monomers. Thus, they could

inhibit iNOS protein function by forming inactive heterodimers. In addition, members of the Rho‐like
GTPase family, Rac1 and 2, can interact with iNOS to potentiate activity and alter subcellular distribution

(Kuncewicz et al., 2001).
3.4 Targeting and Trafficking

The regulation of nNOS and eNOS is primarily via intracellular Ca2þ. The NOS enzymes are localized to

particular subcellular domains, and this facilitates selective responses to Ca2þ mobilization from specific

sources (Bredt, 2003). Discrete localization also positions NOS close to specific downstream targets. All

three NOS isoforms possess motifs that enable their targeting to appropriate subcellular sites.

The catalytic function of nNOS in neurons can be activated by Ca2þ influx through the NMDA

receptor, and these proteins are physically associated via PSD protein scaffolds (Brenman et al., 1996).

PSD‐95 possesses three PDZ domains that mediate binding of the C‐terminal tail of the NMDA receptor

subunits and a region in nNOS just C‐terminal to its own PDZ domain. The ternary complex so formed

is essential for the coupling of Ca2þ influx to the generation of NO. The complex also tethers nNOS

to the postsynaptic density, thus determining downstream signaling specificity. The nNOS can also

bind CAPON, an adaptor protein, by means of the PDZ domain, and this targets nNOS to the nerve

terminal where nNOS‐bound CAPON interacts with synapsin I (Jaffrey et al., 2002). Saitoh et al. (2004)

have recently identified a novel nNOS‐interacting DHHC domain‐containing protein (NIDD) that

targets nNOS to the synaptic membrane. The interaction is via C‐terminal binding to the nNOS PDZ

domain. The phosphoprotein CtBP (carboxyl‐terminal binding protein) has also been demonstrated to

bind the nNOS PDZ domain, resulting in a more cytoplasmic localization of nNOS (Riefler and Firestein,

2001).

In a similar manner the human iNOS protein has been shown to interact with the PDZ domains of

EBP50 (ezrin–radixin–moesin (ERM)‐binding phosphoprotein 50) via a C‐terminal S‐A‐L motif (Glynne

et al., 2002). This association promotes NOS‐2 targeting to the apical domain of epithelial cells, within a

submembranous protein complex tightly bound to cortical actin. This localization of iNOS is believed to

direct the production of NO in an appropriate ‘‘vectorial’’ fashion. In addition, iNOS is palmitoylated at

Cys‐3, and this is required both for activity and for appropriate intracellular localization (Navarro‐Lerida
et al., 2004).

The N‐terminal myristoylation and palmitoylation of eNOS subcellularly targets the protein to

membranes. Myristoylation is essential for membrane targeting and maintaining membrane association,

whereas palmitoylation appears to direct trafficking of eNOS from the Golgi complex to the plasma

membrane of endothelial cells, where it is localized within specialized caveolae (Shaul, 2002). In these

lipid‐rich domains, Caveolin‐1, the scaffolding protein of caveolae (cav‐1 in brain), holds eNOS in a

tonically inhibited state via binding to an eNOS consensus site (Garcı́a‐Cardeña et al., 1996). Following

agonist stimulation of receptors, eNOS dissociates and translocates to the cytosol in a Ca2þ‐dependent
process, which may be mediated via enzymatic depalmitoylation of eNOS. Prolonged incubation with

agonists causes subsequent relocation of eNOS to the cell membrane, invoking the involvement of some

eNOS recycling mechanism. Two novel proteins that interact with eNOS and affect subcellular localization

have been identified: NOSIP (eNOS interacting protein) binds to the eNOS oxygenase domain and lowers

activity, possibly by relocating eNOS away from caveolae; NOSTRIN (eNOS traffic inducer) binds eNOS via

a C‐terminal SH3 domain, translocates eNOS away from the plasma membrane, and reduces activity

(Dedio et al., 2001).
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3.5 Ubiquitination

Selective proteolytic degradation is a complex regulatory mechanism by which proteins are targeted for

destruction within the cell. This can involve covalent modification of the target protein, via conjugation of

one or more ubiquitin molecules, to be degraded by the large multi‐subunit cellular protease, 26 S

proteasome. The degradation of NOS is regulated by many factors, including corticosteroids and neuro-

toxins, which may involve the proteasomal pathway, or alternatively an upregulation of calpain can cause

proteolytic cleavage (Osawa et al., 2003). The proteasomal degradation of nNOS can be induced either by

inactivation via the active process of ubiquitination or by inhibition of the hsp90 chaperone system that is

necessary for correct cellular localization. It appears to be the heme‐deficient nNOS monomer that is

preferentially ubiquitinated. Dunbar et al. (2004) further demonstrated that metabolism‐based inactivation
of nNOS can lead to targeting for ubiquitination and proteasomal degradation. Inactivating substances can

cause covalent alteration of nNOS leading to accelerated degradation, and one example is the loss of the

heme group leading to the formation of the ‘‘apo‐nNOS’’ monomer. The key prerequisite for the ubiqui-

tination proteasome pathway is in fact destabilization of the nNOS dimers, rather than inactivation per se.

BH4 modification, as well as heme alteration, has been implicated as a possible mechanism for proteasomal

targeting of NOS. It is envisaged that any event resulting in inhibition of dimerization, such as the depletion

of cofactors, could lead to enhanced proteasomal degradation (Osawa et al., 2003).

The iNOS protein can also be proteasomally degraded (Musial and Eissa, 2001), and in fact the

proteasome can additionally upregulate iNOS at the transcriptional level via degradation of the consti-

tutive inhibitor of NF‐kB, IkB (Griscavage et al., 1996). Ubiquitination does not only serve the function

of marking a protein for degradation, and nor are all proteasomally degraded proteins first ubiquiti-

nated. However, Kolodziejski et al. (2002) demonstrated that iNOS is indeed ubiquitinated, and that

ubiquitination is necessary for degradation.
4 Products of NOS Catalysis and Their Molecular Targets

4.1 Reactive Nitrogen Species

Reactive nitrogen species (RNS) are oxidation states and adducts of the products of NOS that form in

physiological environments. These include NO, nitrogen dioxide (NO2), nitrite (NO2
�), trioxide and

tetroxide (N2O3, N2O4), S‐nitrothiols, peroxynitrite anion (ONOO�), and dinitrosyl‐iron complexes

(> Figure 11-3). At low pH, accumulating NO2
� can be protonated to nitrous acid, which can dismutate
. Figure 11-3

Production of reactive oxygen and nitrogen species. Reproduced from Murphy (2005)
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to NO. The NO can react with thiols to yield storage forms that can return an electron‐deficient
nitrosonium (NOþ). Reactive oxygen species are intermediate reduction products of molecular O2 en

route to water, namely, O2
� (superoxide), H2O2 (hydrogen peroxide), and OH� (hydroxyl anion). There

are three major classes of pro‐oxidant enzymes: NOS, cyclooxygenase (COX) and NADPH oxidase, and

myeloperoxidase (MPO). It is estimated that between 2% and 5% of electron flow in brain mitochondria

produces O2
� and this is scavenged by superoxide dismutases (SODs), glutathione peroxidase, and catalase.

Cellular antioxidants include glutathione, ascorbate, and a‐tocopherol. As a radical, NO reacts rapidly with

other species that contain unpaired electrons. In reaction with O2, NO can form an intermediate species

(N2O3) that efficiently nitrosates thiols and amines. Outcompeting SOD, NO reacts with O2
� to produce

ONOO�, which if protonated decomposes almost instantly to a hydroxyl radical. This ONOO� reacts

rapidly with CO2 (acting as a catalyst) in a complex manner that produces several short‐lived reaction

intermediates, such as NO2 and CO3
�. These intermediates are probably responsible for many of the

reported toxic effects of NO.
4.2 The Arginine Supply

The intracellular availability of arginine is rate‐limiting for the production of NO, and nitrite formation is

only detected in neurons in vitro if astrocytes are also present, suggesting that these cells form the source of

substrate. Immunocytochemical evidence in vivo suggests that arginine is stored in glia and that the NOS

coproduct (citrulline) is in neurons (Pow, 1994). This observation has led to the idea that arginine is

transferred to the nerve terminal via the yþ cationic amino acid carrier system to replenish the neuronal

precursor pool. The localization of aspartate in glia indicates that citrulline is transferred back to these cells

and recycled, and citrulline is found only in neurons that express NOS (Arnt‐Ramos et al., 1992). Therefore,

the supply of substrate appears to regulate NO production. The important question is what prompts

arginine transfer from glia (for a review, see Wiesinger, 2001).

The concentration of arginine within cells far exceeds the Km for NOS, and yet adding arginine to cells

can drive enzyme activity (the so‐called arginine paradox). There are endogenous NOS inhibitors, such as

No, No‐dimethyl‐L‐arginine, and No‐methyl‐L‐arginine, and it could be that there is an exchange of

intracellular inhibitors with circulating arginine. Alternatively, compartmentation of NOS and the arginine

transporter may be responsible. For example, the enzymes involved in the regeneration of arginine

cofractionate with caveolae. There may be two pools of arginine, with one being independent of changes

in extracellular arginine. A resolution to this paradox has been proposed by Lee et al. (2003), who found

that when activated iNOS is transcribed the uptake of arginine leads to derepression of a translational

control mechanism and enhanced levels of iNOS protein. Deprivation of extracellular arginine, or over-

expression of intracellular arginase, results in lower intracellular arginine and a decrease in iNOS translation

(> Figure 11-4).
4.3 Nitration and S‐Nitrosylation

The fastest reaction in biology is that between NO and O2
� (to form ONOO�), such that it cannot be

measured directly. In the presence of CO2, this ONOO� readily modifies proteins to form nitrotyrosine

(NT). In addition, NT can be formed by peroxidation of nitrite and H2O2 (Hurst, 2002). This posttransla-

tional modification can alter protein function (Ischiropoulos and Beckman, 2003; Radi, 2004). Peroxyni-

trite does not react directly with tyrosine but oxidizes and nitrates through its radical products. Any

significant biological participation of ONOO� in nitration has been questioned, as the yield of NT is very

low in vitro (1–5 residues per 1000), and the reaction is only efficient when fluxes of the precursor radicals

NO and O2
� are equal, which is unlikely.

S‐nitrosothiols (SNOs) are produced posttranslationally by the S‐nitrosylation of cysteine thiol by NO

(Foster et al., 2003). There is a high degree of specificity for a single thiol within each protein target, the

identity of which is revealed by consensus motifs (‘‘acid/base’’ or ‘‘hydrophobic’’). These SNOs are not
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A model for translational regulation of iNOS by arginine. Translation is governed by transport of arginine into

the cell that charges tRNAs. Reproduced with permission from Lee et al. 2003. Proc Natl Acad Sci USA, 100:

4843–4848. Copyright (2003) National Academy of Sciences, USA
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produced by the direct reaction between NO and thiol but require dioxygen, transition metals, or other

relevant electron acceptors. The SNO can also be formed by the reaction of a thiol group with alternative

physiological nitrosants. The formation of SNO requires higher concentrations of NO than does the

activation of sGC, and has slower kinetics. A variety of readily S‐nitrosylated proteins have been identified

in brain lysates (Ahern et al., 2002), including ion channels such as the calcium‐activated K channel

(activity increased), the ryanodine receptor (increased), and the sodium channel (decreased).
4.4 Molecular Targets for RNS

NO signaling is crucial for effecting long‐lasting changes in cells, including gene expression, cell cycle arrest,

apoptosis, and differentiation.
4.4.1 DNA

The chemical alteration of DNA underlies a variety of pathological states. NO can potentially damage DNA

either through RNS (ONOO�, N2O3), the inhibition of DNA repair processes, or by increased production

of genotoxic (alkylating) agents. A species such as N2O3 causes mutations in cells, chemically altering DNA.

Deamination of cytosine, adenine, and guanine results in conversion to uracil, hypoxanthine, and xanthine,

respectively. As well as modification, NO can form or modulate the activity of carcinogens. Nitrosamines

are metabolized to alkylating species which lesion DNA.
4.4.2 Transcription

The ability to nitrosate and to nitrate key amino acids in proteins (transcriptional regulators, enzymes,

receptors) explains many of the actions of RNS, in terms of gene regulation and alterations in cell signaling
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pathways. Transcription factors, the regulatory proteins that bind to gene promoters and recruit RNA

polymerase, display sequences specific for DNA binding and also a transactivation domain. A number of

transcriptional activators have been shown to be regulated by NO, either posttranslationally through direct

modification of the protein, or indirect regulation via alteration in the rate of their own transcription. In so

doing, NO can turn off constitutively expressed genes, activate transcriptionally regulated genes, or prevent

their activation. The best examples to date are the transcription factors NF‐kB and AP‐1. Their activation
can be blocked by NO and the proteins can also be directly nitrosated, with a reduction in promoter

association. These two transcription factors are involved in the regulation of expression of a very large

number of genes. Initially NO mediates potentiation of NF‐kB activity and then, as the concentration of

NO increases, it inhibits activity (Connelly et al., 2001). Serine substitution of a cysteine residue at the N‐
terminal region of the p50 NF‐kB subunit reduces DNA binding. Specific binding of NF‐kB is also inhibited

reversibly by NO, and these effects appear to be mediated by nitrosation of the same cysteine residue. There

is also good evidence that NO stabilizes the NF‐kB inhibitory protein IkBb and activates transcription, thus
inhibiting NF‐kB translocation from the cytoplasm to the nucleus. AP‐1 is a dimeric complex of Jun‐Jun or

Jun‐Fos proteins. The key to dimer formation resides in two cysteine residues in the leucine zipper and basic

regions of Fos and Jun, and nitrosation of cys 252 in the DNA‐binding domain decreases AP‐1 binding to

DNA. HIF 1a, ERK, and p53 are all regulated by distinct threshold concentrations of NO (Thomas et al.,

2004). Hemish et al. (2003) have determined the temporal order of gene activation induced by NO in

mammalian cells using microarray technology, and describe three distinct waves. The first group of genes

are induced within 30 min and represent the primary targets of NO, including the immediate early genes

and those for transcription factors. The second wave includes direct targets of such transcription factors.

The third wave starts 12 h later and represents the targets of the second group of genes and also reflects

changes inherent in the cell cycle arrest status that are induced by NO.
4.4.3 Enzymes

Critical signaling proteins can be influenced by NO, functioning at the transcriptional and/or posttran-

scriptional level either as an activator (poly ADP‐ribose synthetase, p21ras, sGC) or as an inhibitor

(adenylyl cyclase type I, PKC, cytochrome P450, NOS, lipoxygenase). The mitochondrial respiratory

chain is susceptible. For example, NO inhibits cytochrome c oxidase (complex IV) in a reaction that is

reversible and competitive with oxygen, while ONOO� irreversibly inhibits respiratory complex I–III as

glutathione levels decrease. NO can have diverse effects on cell death, initiating or protecting against

apoptosis depending on the cell type, NO concentration, and redox environment. The family of protein‐
cleaving enzymes known as caspases are targets for NO, which inhibits their activity in a reversible manner.

The antiapoptotic effects of NO are also mediated by reversibly inhibiting the permeability transition pore

in mitochondria (Beltran et al., 2000; Brookes et al., 2000). NO activates sGC, which contains a prosthetic

iron heme group, accelerating the production of cGMP many 100‐fold and stimulating PKG activity.

Virtually all ion channels have PKG consensus phosphorylation sites. Low levels of NO enhance and high

levels block MPO activity through the formation of a nitrosyl complex (Abu‐Soud and Hazen, 2000).

The COX enzymes catalyze the conversion of arachidonic acid to biologically active prostanoids. Like

NOS, COX exists in both constitutive (COX‐1) and inducible (COX‐2) isoforms, and their products play

roles in both physiological and pathological conditions (O’Banion, 1999). The stimuli and intracellular

signaling pathways responsible for promoting COX‐2 expression are remarkably similar to those known to

upregulate NOS‐2 expression, and coinduction has been demonstrated in a number of peripheral cell types

and animal models of inflammation (Salvemini, 1997). These studies have pointed to a functional

relationship between these enzymes in the initiation, progression, and resolution of the inflammatory

response and have prompted investigators to determine whether NO and the prostanoids are involved

in the reciprocal regulation of enzyme expression and/or activity. To date, the weight of evidence favors

the idea that NO produced by NOS‐2 activates COX‐2 and thus amplifies the inflammatory response

(Salvemini, 1997). The precise mechanism by which NO potentiates COX‐2 activity remains to be

elucidated. Alone, NO is incapable of increasing the catalytic capacity of COX‐2, and certain interactions
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should result in enzyme inhibition rather than activation (Goodwin et al., 1999). The most convincing

evidence for COX‐2 activation by NO involves the generation of ONOO�. Goodwin et al. (1999) suggest

that the increased O2
� levels are provided by enhanced NADPH oxidase activity in inflammatory cells,

and that ONOO� then acts as a peroxidase substrate to oxidize the iron heme moiety in COX‐2, thus
releasing the tyrosyl radical required for the oxygenation of arachidonic acid.
4.4.4 Cytokines

Exposing cells to NO, coupled with the use of NOS inhibitors, has revealed complex effects on

the production of cytokines. Some members of the caspase family participate in the maturation of

cytokines. The precursors of IL‐1b and IL‐18 are cleaved by caspase‐1, and NO can block this process

reversibly, thereby acting as an antiinflammatory agent. However, NO can be proinflammatory, increasing

release of other cytokines such as TNFa and IL‐6. Chemokines, small chemoattractant cytokines, can be

quite specific in determining the immigration patterns of lymphocytes and macrophages to certain

inflammatory regions. There appears to be an interesting crosstalk between NO and chemokines in that

the expression of IL‐8 and MCP‐1 are inhibited by NO, whereas MCP‐1 can prevent the expression of

NOS‐2.
4.4.5 Membrane Receptors

Excessive activation by glutamate of the NMDA receptor in mature neurons mediates cell death through

calcium entry and downstream events, which may or may not involve the activation of NOS‐1. In addition,

NO in its various redox states is reported to downregulate NMDA receptor activity at modulatory sites

consisting of critical cysteine sulfhydryl or thiol groups. The induction of MHC class II by IFNg is blocked
by NO donors, and NO inhibits the induction of adhesion molecules such as ICAM and VCAM‐1 via effects
on NF‐kB.
4.4.6 Structural Proteins

The nitration of tyrosine residues in proteins is a convenient marker of reactive nitrogen‐centered oxidants

being produced. Whether it is ONOO� or another oxidation product that is responsible for this nitration

in vivo is the subject of debate. If these tyrosine residues are sites for regulation via PTK‐mediated

phosphorylation, then functional activity of the target protein can be affected. Important structural

proteins such as neurofilament L show evidence of nitration in diseases of the nervous system. Nitration

converts a negatively charged hydrophilic residue and so disrupts assembly into polymers, so important for

axonal integrity.
5 Role of NOS in CNS Development

While NO is strongly linked to neurodegenerative and protective actions (see below) it has an important

role in cell survival and differentiation (Contestabile and Ciani, 2004). The nNOS protein has also been

implicated in postnatal development of cerebellar granule cells (Ogilvie et al., 1995), and in regulating the

growth and differentiation effects of nerve growth factor and brain‐derived neurotrophic factor (Peunova

and Enikolopov, 1995). During migration, granule cells display periodic fluctuations of cytoplasmic

calcium. At comparable stages of cerebellar development, a similar permissive role toward migration

from the external to the internal granular layer is played by NO. Using in vitro slice cultures, it was

demonstrated that a NOS inhibitor significantly decreased the migratory index of granule cells (Tanaka

et al., 1994). NO can stimulate the growth and branching of dendrites and neurite extension in PC12 cells



Nitric oxide synthases in brain function 11 237
(Poluha et al., 1997). Through an ability to nitrosylate, and thus modify proteins such as synaptotagmin

and SNAP‐25 involved in exocytosis, NO can induce the release of transmitters from vesicular stores

(Meffert et al., 1994). Inhibition of NOS‐1 activity during postnatal development also results in disturbance

of layer formation in the cerebellum (Wang et al., 1998). NO is a negative regulator of neuronal precursor

cell proliferation. For example, in mature dorsal root ganglia only 5% of the cells express nNOS, but this

increases to 100% after peripheral nerve lesion. Neurons die following axotomy if nNOS is inhibited, or in

nNOS(�/�) mice. Inhibition of NO production in cerebellar granule cells or spinal cord motor neurons for

3–4 days results in progressive apoptotic death, which can be rescued by cGMP analogs or NO donors. NO

is important in terminal synaptogenesis and neural map formation, and in the earlier stages of neurogen-

esis. Packer et al. (2003) have observed nNOS‐positive cells in brain areas that retain proliferative activity,

such as the subventricular zone. If nNOS is blocked then there is an increase of 60–70%. However, NO

donors and arginine can also increase precursor populations. Zhang et al. (2001) found that administration

of a NO donor to rats increased neurogenesis after cerebral ischemia, and recipients exhibited significant

improvements in neurological outcome. Zhu et al. (2003) found that NOS‐2(�/�) mice do not display the

predicted neurogenic response following ischemia. There is a dominant role for eNOS in both angiogenesis

and vasculogenesis (Duda et al., 2004).
6 NOS and Homeostatic Functions

6.1 Cerebral Circulation

NO is a potent vasodilator of cerebral blood vessels both in vitro and in vivo, either via sGC in vascular

muscle or by the activation of potassium channels (Faraci and Heistad, 1998). Although peroxynitrite can

also cause relaxation of blood vessels, the concentrations needed are 50‐ to 1000‐fold higher than with NO.

Constitutive levels of expression of NOS in endothelium are sufficient to influence tone in cerebral blood

vessels under basal conditions. Inhibitors of NOS decrease basal levels of cGMP, cause contraction of

cerebral arteries, and decrease cerebral blood flow. These effects are absent in mice deficient in the

expression of eNOS, suggesting that endothelium is the primary source of NO that influences vascular

tone. Basal activity of eNOS can be further stimulated by acetylcholine to produce endothelium‐dependent
relaxation, as do a variety of substances (bradykinin, arginine vasopressin, oxytocin, substance P, histamine,

endothelin, ADP, ATP, UTP, and prostaglandin F2a). Basic fibroblast growth factor and some opioids also

produce NO‐dependent dilatation of cerebral vessels in vivo that is presumably endothelium‐dependent.
The promoter of the iNOS gene contains shear‐stress and hypoxia response elements, suggesting that

expression is modulated by blood flow and oxygen tension. Although expression of iNOS is generally

associated with inflammatory or pathophysiological conditions, it appears that the gene may be active

during development. For example, mRNA and protein for inducible NOS have been detected in parenchy-

mal microvessels in brain during normal embryonic development and in the newborn. The significance is

not clear, but may relate to vascular remodeling.
6.2 Neuronal Excitability

Through cGMP and S‐nitrosylation, NO can expand and enrich neuronal excitability. Modulation

of voltage‐gated channels allows NO and cGMP to alter the firing behavior of a neuron. Modulation of

ligand‐gated channels can alter postsynaptic responses, and modulation of voltage‐gated channels alters

neurosecretion (Ahern et al., 2002). NO acts as a neurotransmitter for nonadrenergic, noncholinergic

(NANC) synapses found in peripheral tissues. Activity of the NANC innervation of the respiratory tract is

a component of ventilation/perfusion matching. The NO generated by nitrergic innervation and the

respiratory epithelium mediates the relaxation of the bronchiolar and vascular smooth muscle. In humans,

while stimulation of NOS‐containing neurons of the pelvic plexus results in the vasodilation of cavemosum

vessels and penile erection, modulation by NANC neurons results in the relaxation of uterine smooth
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muscle during pregnancy. Gastrointestinal peristalsis is regulated in part by NO release from neurons

located in the submucosa and myenteric plexus that stimulates smooth muscle relaxation. Intestinal

absorption and secretion of fluid and electrolytes may be mediated in a similar NANC–NO‐dependent
fashion.

The neurotransmitter activity of NO may be involved in long‐term potentiation (LTP), a model of

learning and memory in the hippocampus. The process of LTP is initiated by the activation of postsynaptic

NMDA receptors with the subsequent production of NO.NO produced by the postsynaptic neuron acts as a

retrograde messenger activating sGC in the presynaptic neuron and effecting changes in the amount, or ease

of release of, neurotransmitter during a future depolarization. This NO signaling from post‐ to presynaptic

neuron results in an increase in the synaptic strength or efficiency. Glutamate, AMPA receptor activation,

and NO are components of long‐term depression (LTD), a similar model of learning and memory in the

cerebellum. In the model of LTD, however, NO acts as an anterograde messenger and synaptic strength and

efficiency are reduced.
7 NOS in CNS Pathology/Recovery of Function

Roles for the NOS enzymes have been invoked in a variety of neuropathologies. Here we focus on a few as

examples of degeneration, acute injury, and infection.
7.1 Degeneration

7.1.1 Multiple Sclerosis

Inflammation is associated with demyelinating disease, and the generation of RNS is increased dramatically

in conditions involving inflammation. Oligodendrocytes are particularly sensitive to nitrative stress and

reactive species can damage the myelin sheath directly, promoting the attention of macrophages. In active

multiple sclerosis (MS) lesions, numerous cell types express NOS‐2, and elevated levels of CSF NO3
�

correlate with clinical relapse. Calabrese et al. (2002) report iNOS and NOS activity in the CSF from

patients with MS, and detect NT immunostaining of CSF proteins. There is also evidence for nitrosylation

(Boullerne et al., 2002).

Associated with increased proinflammatory gene expression in an experimental model of MS (experi-

mental autoimmune encephalomyelitis, EAE) is expression of iNOS mRNA, protein, and evidence for the

generation of RNS. There is also evidence for the formation of NT and nitroso‐S‐cysteine (Boullerne et al.,
2002), indicating interaction of RNS with proteins. Antiinflammatory steroids block cytokine‐mediated

NO production and reduce EAE symptoms, NOS inhibitors reduce passively transferred EAE, encephalito-

genic T cells cause macrophages to produce NO, and NOS‐2 expression correlates with disease severity.

However, a study of the therapeutic effects of different NOS inhibitors in both adoptive transfer and actively

induced EAE revealed no protection, and some exacerbation of disease (Zielasek et al., 1995). With one of

the first iNOS‐selective inhibitors (L‐NIL), Gold et al. (1997) found protection in adoptive EAE and

exacerbation of actively induced disease. However, the emergence of iNOS knockout mice and the

observation that NO is important in recovery and refractoriness to active reinduction point to the potential

protective role of NO in actively induced EAE. There is now abundant evidence that NO is beneficial, or

that NOS‐2 is not necessarily harmful (for a review, see Murphy, 2005).

It is well known that NO has a number of effects on immune responses that would prevent T cell

expansion. This appears to be a specific impairment of Th1, while sparing Th2 cells. Since EAE is a function

of Th1 cells, the increase in NO may selectively limit proliferation of the encephalitogenic effector

population. In addition, expression of VCAM and ICAM‐1 are downregulated by NO, significantly altering

lymphocyte migration. In target tissue, NO can induce both apoptosis and necrosis in T effector cells and

protect oligodendrocytes against destruction by lipid peroxidation. There is a destructive role for ONOO�

in MS and EAE, based on the observation that a natural antioxidant scavenger, uric acid (UA), ameliorates
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disease. The normal level of UA in humans confers enhanced protection against free radical‐mediated cell

injury, and low UA may predispose toward the development of CNS diseases involving ONOO�, which
include amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Some

of the novel ONOO� scavengers, mercaptoethylguanidines, readily cross the blood–brain barrier (BBB)

(Scott et al., 2001) and delay the onset and reduce the incidence of MBP‐induced EAE. Surprisingly, these

scavengers do not alter the severity of disease or overall mortality, but this could be due to the lower

efficiency with which these compounds inactivate ONOO� as compared with UA. Alternatively, it could be

because these scavengers also inhibit NOS‐2 activity, removing the protective influence of NO.
7.1.2 Amyotropic Lateral Sclerosis

This results from the progressive death of motor neurons, leading to rapid muscle degeneration and

progressive paralysis. Nearly a hundred different mutations have been identified in the SOD1 locus

encoding cytosolic Cu/Zn superoxide dismutase. Transgenic mice and rats expressing mutant SOD1

develop motor neuron disease, and there is lipid peroxidation and nitrotyrosine in transgenic mice and

in humans. Although those mutant Cu/Zn SODs causing the most rapid forms of ALS form functional

proteins with normal SOD activity, they are clearly less stable, rapidly oxidize many intracellular antiox-

idants like ascorbate and thiols, and operate in reverse to generate ONOO�. However, knocking out the

gene for the copper chaperone for Cu/Zn SOD (CCS) was found to not affect disease development in

transgenic mice overexpressing mutant Cu/Zn SODs (Subramaniam et al., 2002). While the zinc‐deficiency
hypothesis can explain the role of Cu/Zn SOD in promoting the death of motor neurons, the disease is

progressive and causes the death of the few hundred thousand neurons that control all voluntary muscle

contraction. Recently, ONOO� has been shown to provoke a long‐lasting reactive phenotype in spinal

cord astrocytes, and astrocytes can cause motor neurons in coculture to undergo apoptosis (Cassina et al.,

2002). A consistent finding in ALS spinal cord, and in transgenic mice, is an extremely strong immunore-

activity for NT associated with reactive astrocytes. By provoking surrounding astrocytes, a cluster of dying

motor neurons may initiate the progressive death of neighbor motor neurons (Ischiropoulos and Beckman,

2003).
7.1.3 Parkinson’s Disease

The degenerative condition illustrates how RNS can be central to but not an initiating event of (Hirsch and

Hunot, 2000). The initiating event may include mutations of a‐synuclein or parkin, responsible for familial

PD. Using of antibodies directed against nitrated a‐synuclein reveals that most Lewy bodies and protein

inclusions contain nitrated a‐synuclein, making these resistant to proteolysis and promoting insoluble

aggregates (Giasson et al., 2000). The loss of dopamine‐containing neurones in the substantia nigra is

associated with astrogliosis and activated microglia. Liberatore et al. (1999) suggest that NO produced by

glial cells participates in the cascade of events that leads to the degeneration of neurones in mice that are

rendered parkinsonian, as this was reduced by 50% when the production of NO by glial cells was abolished.

Data obtained from several post‐mortem studies of patients are compatible with the hypothesis that NO,

secreted by glia, participates in pathophysiology. It is possible that a primary neuronal injury induces

activation of glial NO, which plays a deleterious role in dopamine‐containing neurones. A time‐limited

insult to the nigrostriatal system can set in motion a self‐perpetuating process of neurodegeneration that

involves glial cells. The mechanism by which NO could be involved in the degeneration of dopamine‐
containing neurones is not known but there are several possible explanations. NO alters iron homeostasis,

releasing iron from ferritin and leading to the accumulation of free iron, which can induce oxidative

damage to cells. In addition, NO interferes with the regulation of transferrin receptor mRNA and ferritin

mRNA, which prevents a further rise in the concentration of iron. Thus, an increase in the concentration of

NO in the parkinsonian substantia nigra might result in the higher concentrations of iron that are observed

in this disease (for review see Hirsch and Faucheux, 1998).
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7.2 Acute Injury

7.2.1 Cerebral Ischemia

This invokes excitotoxicity, inflammation, cell death, and neurogenesis (Danton and Dietrich, 2003), and

there is an increase in the generation of NO from activation of NOS in both resident and infiltrating cells.

Experimental cerebral ischemia leads to the upregulation of all three isoforms of NOS, although the

patterns of expression differ both temporally and spatially post injury. The classic gene knockout studies

in acute experimental stroke indicate that the activation of nNOS is detrimental, while the NO derived from

eNOS is beneficial (Chan, 2001).

The expression of iNOS is induced in both resident and infiltrating cells in response to experimental

cerebral ischemia (Gibson et al., 2005) and in stroke in humans (Forster et al., 1999). This induction occurs

at a later time point than that of either nNOS or eNOS, suggesting that iNOS does not contribute to the

early stages of pathology. Indeed, mice lacking a functional iNOS gene do not show alterations in infarct

volume compared with wild‐type mice when measured 24 h after permanent occlusion of a middle cerebral

artery (Iadecola et al., 1997; Loihl et al., 1999). At later time points, iNOS‐deficient male mice do show a

significant reduction in infarct volume, and there is a gene‐dosing effect (Zhao et al., 2000). Furthermore,

the infusion of arginine increases ischemic injury in wild‐type but not in iNOS‐deficient mice (Zhao et al.,

2003). An increase in iNOS protein is also found in glia following ischemic proliferative retinopathy, a

major cause of blindness, and the NO induces local apoptosis and protein nitration (Sennlaub et al., 2001,

2002).

There are significant increases in IL‐1b and TNFa mRNA expression within a few hours of ischemia

(Schroeter et al., 2003). On the basis of in vitro observations it is assumed that these cytokines trigger

transcriptional activation of the iNOS gene, and direct injection of IL‐1b into the cerebral ventricles in

the absence of injury does indeed lead to upregulation of iNOS expression along the injection tract

(Lopez‐Figueroa et al., 2000). The iNOS promoter contains a hypoxia response element and Matrone

et al. (2004) provide compelling evidence that HIF‐1a can also activate the gene following ischemia.

However, transcriptional activation following ischemia may not account for the very rapid appearance of

iNOS‐positive cells infiltrating the infarct, and a more likely explanation is that these cells express iNOS

mRNA constitutively.

While the gene knockout studies in experimental stroke suggest that NO produced by nNOS and iNOS

is detrimental and that derived from eNOS is beneficial, studies employing various NOS inhibitors have

given conflicting results for effects on lesion size and cerebral blood flow (Willmot and Bath, 2003).

Collectively, NOS inhibitors caused a significant reduction in total, cortical, and subcortical infarct volume.

Treatment before stroke onset was effective at reducing infarct volume in transient models, while early

administration of NOS inhibitors (<1 h of onset) was effective in permanent stroke. Later treatment (<1 h

of onset) had a beneficial effect on infarct volume in both types of stroke model. Nonselective inhibitors did

not alter infarct volume in permanent ischemia, whereas the ‘‘selective’’ nNOS and iNOS inhibitors reduced

lesion size regardless of experimental model. It is likely that the beneficial effects of nonselective inhibitors

were limited because they inhibit NOS‐3 to a similar degree. Consequently, they may aggravate brain

ischemia by increasing platelet aggregation and white cell activity, raising blood pressure, and by restricting

penumbral blood supply. Evidence of reduced cerebral blood flow after administration of nonselective

inhibitors to permanent stroke models is consistent with this hypothesis. Hence, nonselective inhibitors are

not agents of first choice for testing in clinical stroke.

Exogenously applied arginine appears to increase levels of NO partly by the NOS pathway, but also via

the release of other vasoactive and arginase enzymes (Kaposzta et al., 2001). However, there are conflicting

results as arginine has been shown to decrease, have no effect, or even increase infarct volume. Similar

conflicting results have occurred when investigating the effect of arginine on cerebral blood flow which, if

enhanced, may rescue salvageable tissue from the spreading ischemic core. This conflicting evidence may be

due to the ability of arginine to enhance NO from all three isoforms of NOS. Many NO donors have

beneficial effects following experimental ischemia, albeit within a relatively short therapeutic time window.

Unopposed high doses of NO donors might be detrimental due to their profound vasodepressant effect, as
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seen in a recent study where low doses of sodium nitroprusside were neuroprotective while high doses were

neurotoxic (Bath et al., 2002).

There is an increase in the rate of neurogenesis following ischemic brain injury. These new cells arise in

the dentate gyrus and subventricular zone, and populate subcortical and to a lesser extent cortical

structures. While NO has been reported to be cytostatic, or to promote terminal differentiation of neural

stem cells in the uninjured brain (Packer et al., 2003), it appears to be antiapoptotic in the ischemic brain.

Zhang et al. (2001) have shown that administration of a NO donor to rats increased neurogenesis after

middle cerebral artery occlusion (MCAO), and recipients exhibited significant improvements in neuro-

logical outcome. Furthermore, administration of a NO donor in combination with marrow stromal

cells significantly enhanced angiogenesis and neurogenesis following cerebral ischemia compared with

either treatment alone, and significantly improved functional outcome (Chen et al., 2004). Finally, Zhu

et al. (2003) have observed that iNOS(�/�) mice do not display the predicted neurogenic response in

the dentate gyrus following ischemia. The mechanism is unknown, but it could be that the resultant

inflammatory reaction proceeds unchecked in the absence of iNOS‐derived NO.
7.2.2 Traumatic Brain Injury

Traumatic injury initiates multiple processes involving resident and infiltrating cells. After traumatic insult,

proinflammatory cytokines such as TNFa and IL‐1b are rapidly activated. Among other things, these

promote expression of iNOS in infiltrating cells and in resident glia, leading to the local production of NO.

Disruption of the BBB and subsequent infiltration of circulating immunocompetent cells into the brain

parenchyma contribute to inflammation and edematous swelling. Secondary damage occurs through

necrotic and apoptotic cell death, leading to neuronal degeneration and loss of brain function, and

ultimately physical disability. Interfering with the secondary damage cascade, over which NO has a large

influence, could lead to reduced tissue loss and limited disruption of neurological function. Expression of

iNOS is reported both in human casualties and in animal models of traumatic brain or spinal cord injury.

The detrimental effect of NO produced by iNOS could result from the production of ONOO�. Edema

formation is a common trait of traumatic brain injury (TBI) contributing to brain damage, and can be

visualized and measured by various techniques such as magnetic resonance imaging (MRI). The extent of

edema formation is dependent on the severity of injury, but not on the ability of mice to express iNOS, since

no difference in the volume of edema exists between iNOS(�/�) and wild‐type mice (Jones et al., 2004).

Following TBI, wild‐type mice showed a decreased learning ability to locate a hidden platform in the Morris

water maze. The iNOS(�/�) mice retained their ability to learn to locate a hidden platform after repeated

trials in the Morris water maze task, suggesting functional preservation of cortical/hippocampal neurons

after injury. Protection also correlates with a decrease in contralateral limb errors when compared with

wild‐type animals.
7.3 Infection

A common host response to the presence of virulence factors is the transcriptional activation of iNOS,

resulting in persistent production of high levels of NO (Nathan, 1997).
7.3.1 Meningitis

Meningitis causedby thehumanpathogenNeisseria meningitidis is associated with a relatively high (5–15 %)

mortality among children and adults, and a further 10% of those who survive suffer from long‐lasting
neurological sequelae. In a small percentage of people who harbor meningococcus in the nasopharyngeal

mucosa, the bacteria enter the bloodstream to cause a transient bacteremia. This can result in septicemia, or

the bacteria may cross the blood–brain and blood–CSF barriers. The disease is rapid at onset, has a
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fulminant course in some individuals, and requires rapid antibiotic treatment. The intense host response

(edema, increased intracranial pressure, altered cerebral flow) reflects functional alterations in BBB,

implying changes in the properties of their constituent cell types (Nau and Bruck, 2002).

There is evidence to support a role for NO in the pathophysiology of meningitis. Patients, and also

experimental animals with meningitis, have elevated levels of nitrite in cerebrospinal fluid, and the changes

in cerebral blood flow seen early in pathogenesis appear to be mediated by NO (Faraci and Heistad, 1998).

This NOS‐2 response in the host, while antimicrobial, may also contribute to the ensuing pathophysiology

via a bystander effect. The sites and mechanisms by which meningococcus gains entry to the blood, and

then the CNS, are starting to become clear (Nassif et al., 2002). Adhesion is an essential step in meningo-

coccal infection. Bacteria first adhere through pili to CD46, an ERM‐binding protein, and overexpressing

CD46 in mice makes them highly susceptible to meningococcal disease (Johansson et al., 2003). Adhesion

of meningococcus is associated with the formation of cortical plaques, which result from the polymeriza-

tion of actin and recruitment of ezrin and other proteins. This is then followed by elongation of host

cell microvilli toward the bacteria, leading to their engulfment and internalization. The human NOS‐2
protein has been shown to interact with the PDZ domains of EBP50 (EBP‐binding phosphoprotein 50)

via a C‐terminal S‐A‐L motif (Glynne et al., 2002). This association promotes NOS‐2 targeting to the

apical domain of epithelial cells, within a submembranous protein complex tightly bound to cortical

actin. This localization of iNOS is believed to direct the production of NO in an appropriate ‘‘vectorial’’

fashion. While meningococcus clearly elicits NO production from cells of host epithelium and endotheli-

um, the bacterium must, in some way, be able to evade the potentially toxic effects of NO. Anjum et al.

(2002) have suggested that meningococcus can express NO and nitrite reductases, which would confer

protection against nitrosative stress. Another possibility is that through direct interaction of meningo-

coccus with barrier cells, the bacterium modifies the iNOS response and reduces exposure to toxic levels

of NO.
Acknowledgments

SM receives grant support from USPHS‐NIH, The Wellcome Trust, BBSRC, and MRC (UK). We are

grateful to Drs. Keren Bielby‐Clarke, Despina Constantin, Claire Gibson, and Nigel Jones for valuable

discussions.
References
Abu‐Soud HM, Hazen SL. 2000. Nitric oxide modulates the

catalytic activity of myeloperoxidase. J Biol Chem 275:

5425-5430.

Ahern GP, Klyachko VA, Jackson MB. 2002. cGMP and

S‐nitrosylation. Trends Neurosci 25: 510-517.

Aktan F. 2004. iNOS‐mediated nitric oxide production and its

regulation. Life Sci 75: 639-653.

Alderton WK, Cooper CE, Knowles RG. 2001. NO synthase:

structure, function and inhibition. Biochem J 357: 593-615.

Anjum MF, Stevanin TM, Read RC, Moir JWB. 2002. Nitric

oxide metabolism in Neisseria meningitidis. J Bacteriol 184:

2987-2993.

Arnt‐Ramos LR, O’Brien WE, Vincent SR. 1992. Immunohis-

tochemical localization of arginosuccinate synthetase in the

rat brain in relation to NOS‐containing neurons. Neurosci-

ence 51: 773-789.
Baek KJ, Thiel BA, Lucas S, Stuehr DJ. 1993. Macrophage

nitric oxide synthase subunits. Purification, characteriza-

tion, and role of prosthetic groups and substrate in regulat-

ing their association into a dimeric enzyme. J Biol Chem

268: 21120-21129.

Bath PMW, Beech J, Williams S, Meldrum B. 2002. Dose‐

dependent neuroprotection and toxicity with the nitric

oxide donor sodium nitroprusside in a model of transient

ischaemic stroke in the rat. Cerebrovasc Dis 13: 15-30.

Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada

S. 2000. The effect of nitric oxide on cell respiration. Proc

Natl Acad Sci USA 97: 14602-14607.

Bogdan C. 2001. Nitric oxide and the immune response. Nat

Immunol 2: 907-916.

Boullerne AI, Rodriguez JJ, Touil T, Brochet B, Schmidt S,

et al. 2002. Anti‐S‐nitrosocysteine antibodies are a



Nitric oxide synthases in brain function 11 243
predictive marker for demyelination in experimental auto-

immune encephalomyelitis: implications for multiple

sclerosis. J Neurosci 22: 123-132.

Bredt DS. 2003. Nitric oxide signaling specificity. J Cell Sci

116: 9-15.

Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, et al.

1991. Cloned and expressed nitric oxide synthase structur-

ally resembles cytochrome P‐450 reductase. Nature 351:

714-718.

Bredt DS, Snyder SH. 1990. Isolation of nitric oxide synthe-

tase, a calmodulin‐requiring enzyme. Proc Natl Acad Sci

USA 87: 682-685.

Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, et al.

1996. Interaction of nitric oxide synthase with the postsyn-

aptic density protein PSD‐95 and alpha1‐syntrophin

mediated by PDZ domains. Cell 84: 757-767.

Brookes PS, Salkinas EP, Darley‐Usmar K, Eiserich JP, Free-

man BA, et al. 2000. Concentration‐dependent effects of

NO on mitochondrial permeability transition and cyto-

chrome c release. J Biol Chem 275: 20474-20479.

Brune B, Lapetina EG. 1991. Phosphorylation of nitric oxide

synthase by PKA. Biochem Biophys Res Commun 181:

921-926.

Calabrese V, Scapagnini G, Ravagna A, Bella R, Foresti R, et al.

2002. NO synthase is present in the CSF of patients with

active MS and is associated with increases in CSF protein

nitrotyrosine and S‐nitrosothiols with changes in glutathi-

one levels. J Neurosci Res 70: 580-587.

Cassina T, Peluffo H, Pehar M, Martinez‐Palma L, Ressia A,

et al. 2002. Peroxynitrite triggers a phenotypic transforma-

tion in spinal cord astrocytes that induces motor neuron

apoptosis. J Neurosci Res 67: 21-29.

Chan PH. 2001. Reactive oxygen radicals in signaling and

damage in the ischemic brain. J Cereb Blood Flow Metab

21: 2-14.

Chen J, Li Y, Zhang R, Katakowski M, Gautam SC, et al.

2004. Combination therapy of stroke in rats with a nitric

oxide donor and human bone marrow stromal cells

enhances angiogenesis and neurogenesis. Brain Res 1005:

21-28.

Chen PF, Tsai AL, Wu KK. 1995. Cysteine 99 of endothelial

nitric oxide synthase (NOS‐III) is critical for tetrahydro-

biopterin‐dependent NOS‐III stability and activity. Bio-

chem Biophys Res Commun 215: 1119-1129.

Cirino G, Fiorucci S, Sessa WC. 2003. Endothelial nitric oxide

synthase: the Cinderella of inflammation? Trends Pharma-

col Sci 24: 91-95.

Connelly L, Palacios‐Callender M, Ameixa C, Moncada S,

Hobbs AJ. 2001. Biphasic regulation of NF‐kB activity

underlies the pro‐ and anti‐inflammatory actions of NO.

J Immunol 166: 3873-3881.
Contestabile A, Ciani E. 2004. Role of nitric oxide in the

regulation of neuronal proliferation, survival and differen-

tiation. Neurochem Int 45: 903-914.

Danton GH, Dietrich WD. 2003. Inflammatory mechanisms

after ischemia and stroke. J Neuropathol Exp Neurol 62:

127-136.

Dedio J, Konig P, Wohlfart P, Schroeder C, Kummer W, et al.

2001. NOSIP, a novel modulator of endothelial nitric oxide

synthase activity. FASEB J 15: 79-89.

Duda DG, Fukumura D, Jain RK. 2004. Role of eNOS in

neovascularization. Trends Mol Med 10: 143-145.

Dunbar AY, Kamada Y, Jenkins GJ, Lowe ER, Billecke SS, et al.

2004. Ubiquitination and degradation of neuronal nitric‐

oxide synthase in vitro. Mol Pharmacol 66: 964-969.

Eissa NT, Strauss AJ, Haggerty CM, Choo EK, Chu SC, et al.

1996. Alternative splicing of human inducible nitric‐oxide

synthase mRNA. J Biol Chem 43: 27184-27187.

Eissa NT, Yuan JW, Haggerty CM, Choo EK, Palmer CD, et al.

1998. Cloning and characterisation of human inducible

nitric oxide synthase splice variants. Proc Natl Acad Sci

USA 95: 7625-7630.

Elfering SL, Sarkela TM, Giulivi C. 2002. Biochemistry of

mitochondrial nitric‐oxide synthase. J Biol Chem 277:

38079-38086.

Fan J‐S, Zhang Q, Li M, Tochio H, Yamazaki T, et al. 1998.

Protein inhibitor of neuronal nitric oxide synthase, PIN,

binds to a 17 amino acid residue fragment of the enzyme.

J Biol Chem 273: 33472-33481.

Faraci FM, Heistad DD. 1998. Regulation of the cerebral

circulation. Physiol Rev 78: 53-97.

Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, et al.

1999. Structural characterization of nitric oxide synthase

isoforms reveals striking active site conservation. Nat Struct

Biol 6: 233-242.

Forster C, Clark HB, Ross ME, Iadecola C. 1999. Inducible

nitric oxide synthase expression in human cerebral infarcts.

Acta Neuropathol 97: 215-220.

Förstermann U, Boissel J‐P, Kleinert H. 1998. Expressional

control of the constitutive isoforms of nitric oxide synthase.

FASEB J 12: 773-790.

Foster MW, McMahon TJ, Stamler JS. 2003. S‐nitrosylation in

health and disease. Trends Mol Med 9: 160-168.

Furchgott RF, Zawadski JV. 1980. The obligatory role of

endothelial cells in the relaxation of arterial smooth muscle

by acetylcholine. Nature 288: 373-376.

Garcı́a‐Cardeña G, Fan R, Stern DF, Liu J, Sessa WC. 1996.

Endothelial nitric oxide synthase is regulated by tyrosine

phosphorylation and interacts with caveolin‐1. J Biol Chem

271: 27237-27240.

Garthwaite J, Charles SL, Chess‐Williams R. 1988. Endotheli-

um‐derived relaxing factor release on activation of NMDA



244 11 Nitric oxide synthases in brain function
receptors suggests role as intercellular messenger in the

brain. Nature 336: 385-388.

Ghosh DK, Stuehr DJ. 1995. Macrophage NO synthase: char-

acterization of isolated oxygenase and reductase domains

reveals a head‐to‐head subunit interaction. Biochemistry

34: 801-807.

Ghosh S, Wolan D, Adak S, Crane BR, Kwon NS, et al. 1999.

Mutational analysis of the tetrahydrobiopterin‐binding site

in inducible nitric‐oxide synthase. J Biol Chem 274: 24100-

24112.

Giasson BI, Duda JE, Murray IVJ, Chen Q, Souza JM, et al.

2000. Oxidative damage linked to neurodegeneration by

selective alpha‐synuclein nitration in synucleinopathy

lesions. Science 290: 985-989.

Gibson CL, Coughlan TC, Murphy S. 2005. Glial nitric oxide

and ischemia. Glia 15: 417-426.

Glynne PA, Darling KE, Picot J, Evans TJ. 2002. Epithelial

inducible nitric‐oxide synthase is an apical EBP50‐binding

protein that directs vectorial nitric oxide output. J Biol

Chem 277: 33132-33138.

Gold DP, Schroder K, Powell HC, Kelly CJ. 1997. Nitric oxide

and the immunomodulation of EAE. Eur J Immunol 27:

2863-2869.

Gonzalez E, Kou R, Lin AJ, Golan DE, Michel T. 2002. Sub-

cellular targeting and agonist‐induced site‐specific phos-

phorylation of endothelial nitric‐oxide synthase. J Biol

Chem 277: 39554-39560.

Goodwin DC, Landino LM, Marnett LJ. 1999. Effects of nitric

oxide and nitric oxide‐derived species on prostaglandin

endoperoxide synthase and prostaglandin biosynthesis.

FASEB J 13: 1121-1136.

Green LC, Tannenbaum SR, Goldman P. 1981. Nitrate synthe-

sis in the germfree and conventional rat. Science 212: 56-58.

Griscavage JM, Wilk S, Ignarro LJ. 1996. Inhibitors of the

proteosome pathway interfere with induction of nitric

oxide synthase in macrophages by blocking activation of

NF‐kB. Proc Natl Acad Sci USA 93: 3308-3312.

Hayashi Y, Nishio M, Naito Y, Yokokura H, Nimura Y, et al.

1999. Regulation of neuronal nitric oxide synthase by cal-

modulin kinases. J Biol Chem 274: 20597-20602.

Hemish J, Nakaya N, Mittal V, Enikolopov G. 2003. Nitric

oxide activated diverse signalling pathways to regulate gene

expression. J Biol Chem 278: 42321-42329.

Hemmens B, Goessler W, Schmidt K, Mayer B. 2000. Role

of bound zinc in dimer stabilization but not enzyme activ-

ity of neuronal nitric‐oxide synthase. J Biol Chem 275:

35786-35791.

Hirsch EC, Faucheux BA. 1998. Iron metabolism and Parkin-

son’s disease. Mov Disord 13 (Suppl. 1): 39-45.

Hirsch EC, Hunot S. 2000. Nitric oxide, glial cells and neuro-

nal degeneration in parkinsonism. Trends Pharmacol Sci

21: 163-165.
Hurst JK. 2002. Whence nitrotyrosine? J Clin Invest 109:

1287-1289.

Iadecola C, Zhang F, Casey R, Nagayama M, Ross ER. 1997.

Delayed reduction of ischemic brain injury and neurologi-

cal deficits in mice lacking the inducible nitric oxide

synthase gene. J Neurosci 17: 9157-9164.

Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G.

1987. Endothelium‐derived relaxing factor produced and

released from artery and vein is nitric oxide. Proc Natl Acad

Sci USA 84: 9265-9269.

Ischiropoulos H, Beckman JS. 2003. Oxidative stress

and nitration in neurodegneration. J Clin Invest 111:

163-169.

Jaffrey SR, Benfenati F, Snowman AM, Czernik AJ, Snyder SH.

2002. Neuronal nitric oxide synthase localized by a ternary

complex with synapsin and CAPON. Proc Natl Acad Sci

USA 99: 3199-3204.

Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Bloch

KD. 1992. Cloning and expression of a cDNA encoding

human endothelium‐derived relaxing factor/nitric oxide

synthase. J Biol Chem 267: 14519-14522.

Johansson L, Rytkonen A, Bergman P, Albiger B, Kallstrom H,

et al. 2003. CD46 in meningococcal disease. Science 301:

373-375.

Jones NC, Constantin D, Gibson CL, Prior MJW, Morris PG,

et al. 2004. A detrimental role for NOS‐2 in the pathology

resulting from acute cerebral injury. J Neuropathol Exp

Neurol 63: 708-720.

Kaposzta Z, Baskerville PA, Madge D, Fraser S, Martin JF,

et al. 2001. L‐Arginine and S‐nitrosoglutathione reduce

embolization in humans. Circulation 103: 2371-2375.

Kim YM, Ko CB, Park YP, Kim YJ, Paik SG. 1999. Octamer

motif is required for the NF‐kB‐mediated induction of the

inducible nitric oxide synthase gene expression in RAW

264.7 macrophages. Mol Cell 28: 99-109.

Kolodziejski PJ, Musial A, Koo J‐S, Eissa NT. 2002.

Ubi-quitination of inducible nitric oxide synthase is re-

quired for its degradation. Proc Natl Acad Sci USA 99:

12315-12320.

Kuncewicz T, Balakrishnan P, Snuggs MB, Kone BC. 2001.

Specific association of nitric oxide synthase‐2 with Rac

isoforms in activated murine macrophages. Am J Physiol

Renal Physiol 28: F326-F336.

Lamas S, Marsden PA, Li GK, Tempst P, Michel T. 1992.

Endothelial nitric oxide synthase. Proc Natl Acad Sci USA

89: 6348-6352.

Lee CM, Robinson LJ, Michel T. 1995. Oligomerization of

endothelial nitric oxide synthase. Evidence for a dominant

negative effect of truncation mutants. J Biol Chem 270:

27403-27406.

Lee J, Ryu H, Ferrante RJ, Morris Jr, SM Ratan RR. 2003.

Translational control of inducible nitric oxide synthase



Nitric oxide synthases in brain function 11 245
expression by arginine can explain the arginine paradox.

Proc Natl Acad Sci USA 100: 4843-4848.

Li H, Brodsky S, Basco M, Romanov V, De Angelis DA, et al.

2001. Nitric oxide attenuates signal transduction: possible

role in dissociating caveolin‐1 scaffold. Circ Res 88: 229-236.

Liberatore GT. 1999. Inducible nitric oxide synthase stimu-

lates dopaminergic neurodegeneration in the MPTP model

of Parkinson’s disease. Nat Med 5: 1403-1409.

Loihl AK, Asensio V, Campbell IL, Murphy SP. 1999. Expres-

sion of nitric oxide synthase (NOS)‐2 following permanent

focal ischemia and the role of nitric oxide in infarct gener-

ation in male, female and NOS‐2 gene‐deficient mice. Brain

Res 830: 155-164.

Lopez‐Figueroa MO, Day HEW, Lee S, Rivier C, Akil H, et al.

2000. Temporal and anatomical distribution of NOS

mRNA expression and NO production during CNS inflam-

mation. Brain Res 852: 239-246.

Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH. 1992. Cloned

and expressed macrophage nitric oxide synthase contrasts

with the brain enzyme. Proc Natl Acad Sci USA 89:

6711-6715.

Luss H, Disilvio M, Litton AL, Vedia LMY, Nussler AK, et al.

1994. Inhibition of nitric oxide synthesis enhances the

expression of inducible nitric oxide synthase mRNA and

protein in a model of chronic liver inflammation. Biochem

Biophys Res Commun 204 (2): 635-640.

Lyons CR, Orloff GJ, Cunningham JM. 1992. Molecular clon-

ing and functional expression of an inducible nitric oxide

synthase from a murine macrophage cell line. J Biol Chem

267: 6370-6374.

Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL,

et al. 1992. Molecular cloning and characterization of

human endothelial nitric oxide synthase. FEBS Lett 307:

287-293.

Matrone C, Pignataro G, Molinaro P, Irace C, Scorziello A,

et al. 2004. HIF‐1a reveals a binding activity to the pro-

moter of iNOS gene after permanent MCAO. J Neurochem

90: 368-378.

MatsubaraM, Hayashi N, Jing T, Titani K. 2003. Regulation of

endothelial nitric oxide synthase by protein kinase C.

J Biochem 133: 773-781.

Meffert MK, Premack BA, Schulman H. 1994. Nitric oxide

stimulates Ca2þ independent synaptic vesicle release. Neu-

ron 12: 1235-1244.

Murphy S. 2005. Free radicals and EAE. Experimental models

of multiple sclerosis. Lavi E, Constantinescu CS, editors.

New York: Springer.

Murphy S, Pearce BR. 2005. Second messenger systems.

Neuroglia. Kettenmann H, Ransom BR, editors. New

York: Oxford University Press: pp. 216-228.

Musial A, Eissa NT. 2001. iNOS is regulated by the proteo-

some degradation pathway. J Biol Chem 276: 24268-24273.
Nassif X, Bourdoulous S, Eugene E, Couraud PO. 2002. How

do extracellular pathogens cross the blood–brain barrier?

Trends Microbiol 10: 227-232.

Nathan C. 1997. Inducible nitric oxide synthase: what differ-

ence does it make? J Clin Invest 100: 2417-2423.

Nau R, Bruck W. 2002. Neuronal injury in bacterial meningi-

tis. Trends Neurosci 25: 38-44.

Navarro‐Lerida I, Corvi MM, Barrientos AA, Gavilanes F,

Berthiaume LG, et al. 2004. Palmitoylation of inducible

nitric oxide synthase at cys‐3 is required for proper intra-

cellular traffic and nitric oxide synthesis. J Biol Chem 279

(53): 55682-55689.

Nishida K, Harrison D, Navas JP, Fisher AA, Dockery SP, et al.

1992. Molecular cloning and characterization of the consti-

tutive bovine aortic endothelial cell nitric oxide synthase.

J Clin Invest 90: 2092-2096.

O’Banion MK. 1999. Cyclooxygenase‐2: molecular biology,

pharmacology and neurobiology. Crit Rev Neurobiol 13:

45-82.

Ogilvie P, Schilling K, Billingsley ML, Schmidt HHHW. 1995.

Induction and variants of neuronal nitric oxide synthase

type I during synaptogenesis. FASEB J 9: 799-806.

Osawa Y, Lowe E. R. Everett AC, Dunbar AY, Billecke SS. 2003.

Proteolytic degradation of nitric oxide synthase: effect of

inhibitors and role of hsp90‐based chaperones. J Pharmacol

Exp Therap 304: 493-497.

Packer MA, Stasiv Y, Benraiss A, Chmielnicki E, Grinberg A,

et al. 2003. Nitric oxide negatively regulates mammalian

adult neurogenesis. Proc Natl Acad Sci USA 100:

9566-9571.

Palmer RMJ, Ferrige AG, Moncada S. 1987. Nitric oxide

release accounts for the biological activity of endotheli-

um‐derived relaxing factor. Nature 327: 524-526.

Pan J, Burgher KL, Szczepanik AM, Ringheim GE. 1996.

Tyrosine phosphorylation of inducible nitric oxide

synthase: implications for potential post‐translational reg-

ulation. Biochem J 314: 889-894.

Panda K, Adak S, Aulak KS, Santolini J, McDonald JF, et al.

2003. Distinct influence of N‐terminal elements on neuro-

nal nitric oxide synthase structures and catalysis. J Biol

Chem 278: 37122-37131.

Park SK, Lin HL, Murphy S. 1994. Nitric oxide limits tran-

scriptional induction of nitric oxide synthase in CNS glial

cells. Biochem Biophys Res Commun 201: 762-768.

Park SK, Lin HL, Murphy S. 1997. Nitric oxide regulates nitric

oxide synthase‐2 gene expression by inhibiting NF‐kB

binding to DNA. Biochem J 322: 609-613.

Peng HB, Libby P, Liao JK. 1995. Induction and stabilization

of IkBa by NO mediates inhibition of NF‐kB. J Biol Chem

270: 14214-14219.

Perez‐Sala D, Cernuda‐Morollon E, Diaz‐Cazorla M,

Rodriguez‐Pascual F, Lamas S. 2001. Posttranscriptional



246 11 Nitric oxide synthases in brain function
regulation of human iNOS by the NO/cGMP pathway. Am

J Physiol Renal Physiol 280: F466-F473.

Peunova N, Enikolopov G. 1995. Nitric oxide triggers a switch

to growth arrest during differentiation of neuronal cells.

Nature 375: 68-73.

Poluha W, Schonhoff CM, Harrington KS, Lachyankar MB,

Crosbie NE, et al. 1997. A novel, nerve growth factor‐

activated pathway involving nitric oxide, p53, and

p21WAF1 regulates neuronal differentiation of PC12 cells.

J Biol Chem 272: 24002-24007.

Pow DV. 1994. Immunocytochemical evidence for a glial

localization of arginine, and a neuronal localization of

citrulline in the rat neurohypophysis. Neurosci Lett 181:

141-144.

Radi R. 2004. Nitric oxide, oxidants, and protein tyrosine

nitration. Proc Natl Acad Sci USA 101: 4003-4008.

Rao KM. 2000. Molecular mechanisms regulating iNOS

expression in various cell types. J Toxicol Environ Health

B: Crit Rev 3: 27-58.

Riefler GM, Firestein BL. 2001. Binding of nNOS to CtBP

changes the localization of CtBP from the nucleus to the

cytosol. J Biol Chem 276: 48262-48268.

Rizzo V, McIntosh DP, Oh P, Schnitzer JE. 1998. In situ flow

activates endothelial nitric oxide synthase in luminal caveo-

lae of endothelium with rapid caveolin dissociation and

calmodulin association. J Biol Chem 273: 34724-34729.

Rodriguez‐Pascual F, Hausding M, Ihrig‐Biedert I, Furneaux

H, Levy AP, et al. 2000. Complex contribution of the

30‐untranslated region to the expressional regulation of

the human inducible nitric‐oxide synthase gene. J Biol

Chem 275: 26040-26049.

Saitoh F, Tian QB, Okano A, Sakagami H, Kondo H, et al.

2004. NIDD, a novel DHHC‐containing protein, targets

neuronal nitric‐oxide synthase (nNOS) to the synaptic

membrane through a PDZ‐dependent interaction and reg-

ulates nNOS activity. J Biol Chem 279: 29461-29468.

Salvemini D. 1997. Regulation of cyclooxygenase enzymes by

nitric oxide. Cell Mol Life Sci 53: 576-582.

Schmidt HHHW, Wilke P, Evers B, Bohme E. 1989. Enzymatic

formationof nitrogenoxides fromL‐arginine in bovine brain

cytosol. Biochem Biophys Res Commun 165: 284-291.

Schroeter M, Kury P, Jander S. 2003. Inflammatory gene

expression in focal cortical brain ischemia: differences be-

tween rats and mice. Mol Brain Res 117: 1-7.

Scott GS, Kean RB, Southan GJ, Szabo C, Hooper DC. 2001.

Effect of mercaptoethylguanidine scavengers of peroxyni-

trite on the development of experimental allergic encepha-

lomyelitis in PLSJL mice. Neurosci Lett 311: 125-128.

Sennlaub F, Coutois Y, Goureau O. 2001. Inducible nitric

oxide synthase mediates the change from retinal to vitreal

neovascularization in ischemic retinopathy. J Clin Invest

107: 717-725.
Sennlaub F, Coutois Y, Goureau O. 2002. Inducible nitric

oxide synthase mediates retinal apoptosis in ischemic pro-

liferative retinopathy. J Neurosci 10: 3987-3993.

Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME.

1992. Molecular cloning and expression of a cDNA encod-

ing endothelial cell nitric oxide synthase. J Biol Chem 267:

15274-15276.

Shaul PW. 2002. Regulation of eNOS. Annu Rev Physiol 64:

749-774.

Sheehy AM, Burson MA, Black SM. 1998. Nitric oxide expo-

sure inhibits endothelial NOS activity but not gene expres-

sion: a role for superoxide. Am J Physiol 274: L833-L841.

Sheta EA, McMillan K, Masters BS. 1994. Evidence for a

bidomain structure of constitutive cerebellar nitric oxide

synthase. J Biol Chem 269: 15147-15153.

Stuehr DJ, Marletta MA. 1985. Mammalian nitrate biosynthe-

sis. Proc Natl Acad Sci USA 82: 7738-7742.

Stuehr DJ, Santolini J, Wang Z‐Q, Wei C‐C, Adak S. 2004.

Update on mechanism and catalytic regulation in the NO

synthases. J Biol Chem 279: 36167-36170.

Subramaniam JR. 2002. Mutant SOD1 causes motor neuron

disease independent of copper chaperone‐mediated copper

loading. Nat Neurosci 5: 301-307.

Tanaka M, Yoshida S, Yano M, Hanaoka F. 1994. Roles of

endogenous nitric oxide in cerebellar cortical development

in slice cultures. Neuroreport 5: 2049-2052.

Thomas DD, Espey MG, Ridnour LA, Hofseth LJ, Mancardi

D, et al. 2004. HIF1a, extracellular signal‐regulated kinase,

and p53 are regulated by distinct threshold concentrations

of NO. Proc Natl Acad Sci USA 101: 8894-8899.

Venema VJ, Marrero MB, Venema RC. 1996. Bradykinin‐

stimulated protein tyrosine phosphorylation promotes

endothelial nitric oxide synthase translocation to the cyto-

skeleton. Biochem Biophys Res Commun 226: 703-710.

Wang W, Nakayama T, Inoue N, Kato T. 1998. Quantitative

analysis of nitric oxide synthase expressed in developing

and differentiating rat cerebellum. Dev Brain Res 111:

65-75.

Wang J, Stuehr DJ, Rousseau DL. 1995. Tetrahydrobiopterin‐

deficient nitric oxide synthase has a modified heme

environment and forms a cytochrome P‐420 analogue.

Biochemistry 34: 7080-7087.

Watanabe Y, Song T, Sugimoto K, Horii M, Araki N, et al.

2003. Post‐synaptic density‐95 promotes calcium/calmod-

ulin‐dependent protein kinase II‐mediated Ser847 phos-

phorylation of neuronal nitric oxide synthase. Biochem

J 372: 465-471.

Wiesinger H. 2001. Arginine metabolism and the synthesis of

NO in the nervous system. Prog Neurobiol 64: 365-391.

Willmot MR, Bath PMW. 2003. The potential of nitric oxide

therapeutics in stroke. Expert Opin Investig Drugs 12:

455-470.



Nitric oxide synthases in brain function 11 247
Xie Q, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, et al.

1992. Cloning and characterization of inducible nitric

oxide synthase from mouse macrophages. Science 256:

225-228.

Yao X, Huang Y. 2003. From NO to endothelial cytosolic

calcium. Trends Pharmacol Sci 24: 263-266.

Yoshizumi M, Perrella MA, Burnett Jr, JC Lee ME. 1993.

Tumor necrosis factor downregulates an endothelial nitric

oxide synthase mRNA by shortening its half‐life. Circ Res

73: 205-209.

Zemojtel T, Penzkofer T, Dandekar T, Schultz J. 2004. A novel

conserved family of nitric oxide synthase? Trends Biochem

Sci 29: 224-226.

Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, et al. 2001.

A nitric oxide donor induces neurogenesis and reduces
functional deficits after stroke in rats. Ann Neurol 50:

602-611.

Zhao X, Haensel C, Araki E, Ross ME, Iadecola C. 2000. Gene‐

dosing effect and persistence of reduction in ischemic brain

injury in mice lacking iNOS. Brain Res 872: 215-218.

Zhao X, Ross ME, Iadecola C. 2003. L‐Arginine increases

ischemic injury in wild‐type mice but not in iNOS‐deficient

mice. Brain Res 966: 308-311.

Zhu D‐Y, Liu SH, Dun HS, Lu YM. 2003. Expression of

inducible nitric oxide synthase after focal cerebral ischemia

stimulates neurogenesis in the adult rodent dentate gyrus.

J Neurosci 23: 223-229.

Zielasek J, Jung S, Gols R, Liew FY, Toyka KV, et al. 1995.

Administration of nitric oxide inhibitors in experimental

autoimmune neuritis and EAE. J Neuroimmunol 58: 81-88.





12 14‐3‐3 Proteins in Brain Function
Y. Takahashi
1

# Sprin
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
2
 Isolation and Cloning of 14‐3‐3 Protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
3
 cDNA and Amino Acid Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4
 Three‐Dimensional Structure of 14‐3‐3 Protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
5
 Localization and Detection of the 14‐3‐3 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.1
 In Situ Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.2
 Immunohistochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
5.3
 Northern Blot Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6
 Gene and Gene Expression of 14‐3‐3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
7
 Target Protein Binding of 14‐3‐3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
8
 14‐3‐3 Modes of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9
 Regulation of 14‐3‐3 in the Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
9.1
 Isoform‐Specific Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
9.2
 Regulation by Phosphorylation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
9.3
 Regulation by Subcellular Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
10
 14‐3‐3 Proteins in Neuropsychiatric Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
10.1
 Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.2
 Creutzfeldt–Jakob Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.3
 Alzheimer’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.4
 Neurodegenerative Disorders with Lewy Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
10.5
 Polyglutamine Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
10.6
 ALS and Motor Neuron Injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
10.7
 Neuronal Migration Defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11
 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
ger-Verlag Berlin Heidelberg 2006



250 12 14‐3‐3 Proteins in brain function
Abstract: 14‐3‐3 proteins were discovered by Moore and Perez in the soluble extract of bovine brain in

1967. These proteins are highly abundant in the brain. In this chapter, the discovery of 14‐3‐3 protein, the
structure of 14‐3‐3, the cloning of 14‐3‐3 complementary DNA (cDNA), the nucleotide sequence of 14‐3‐3
cDNA, the structure of the 14‐3‐3 gene, the occurrence of 14‐3‐3 messenger RNA (mRNA) in the brain,

the function and regulation of 14‐3‐3 protein, the binding of 14‐3‐3 protein to other proteins, the effects of

14‐3‐3 on the binding of one protein to another, the effects of 14‐3‐3 on protein kinase, and the

neuropathology of 14‐3‐3 are described concisely.

List of Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; ASK, apoptosis signal‐
regulating kinase; BAD, Bel‐xL/Bel‐2‐associated death promoter; cAMP, cyclic adenosine monophosphate;

CBP, CREB‐binding protein; Cdc, cell division cycle; C. elegans, Caenorhabditis elegans; CRE, cAMP

response element; CJD, Creutzfeldt–Jakob disease; CSF, cerebrospinal fluid; cTAK, Cdc25c‐associated
kinase; DEAE cellulose, diethylaminoethyl cellulose; DLBD, diffuse Lewy body disorder; FISH, fluorescence

in situ hybridization; FKALR1, forkhead transcription factor; GSK3b, glycogen synthase kinase‐3b; HPLC,

high‐performance liquid chromatography; JNK, C‐JunNH(2) terminal kinase; KLC, kinesin light chain;

KSR, kinase suppressor of ras; LTP, long‐term potentiation; MS/MS, tandem mass spectrometry; mRNA,

messenger ribonucleic acid; NFTs, neurofibrillary tangles; PCR, polymerase chain reaction; PC12, pheo-

chromocytoma cell 12; Poly(A), polyadenylic acid; PD, Parkinson’s disease; PKC, protein kinase C; SCA1,

spinocerebellar ataxia type 1; SDK1, sphingosine‐dependent protein kinase 1; SDS‐PAGE, sodium dode-

cylsulfate‐polyacrylamide gel electrophoresis; TAB, TATA‐binding protein; TAFII, TAB‐associated factor II
1 Introduction

Moore and Perez (1968) reported attempts to fractionate and purify the acidic proteins from the bovine

brain. This was subsequently discussed in Advances in Neurochemistry (Moore, 1975), and summarized in

the second edition of the Handbook of Neurochemistry (Moore, 1983). The topic of brain proteins was also

reviewed by Bogoch (1969). In 1982, Boston et al. (1982a) reported the axonal flow of these proteins into

nerve endings and their separation into two fractions. In 1987, research into these proteins was started in

our laboratory. Ichimura et al. (1988) found that 14‐3‐3 proteins are the regulatory factors of tyrosine and
tryptophan hydroxylases, whose activities are dependent on Ca2þ/calmodulin‐dependent protein kinases.

They reported that these proteins comprise a family of seven subtypes. The nucleotide sequences of the

precursor nucleic acids were analyzed and the amino acid sequences were deduced. Following these results,

the structure of 14‐3‐3 proteins, the immunohistochemistry of 14‐3‐3 proteins, the interaction of 14‐3‐3
with other proteins, and their functions were examined (Morrison, 1994; Aitken, 1996, 2002; Ferl, 1996;

Pawson and Scott, 1997; Skoulakis and Davis, 1998; Finnie et al., 1999; Fu et al., 2000; Tzivion and Avruch,

2002; Berg et al., 2003a; Klein et al., 2003; Dougherty and Morrison, 2004). In view of the recent advances

on 14‐3‐3, it is time to include this protein in the new edition ofHandbook of Neurochemistry and Molecular

Neurobiology.
2 Isolation and Cloning of 14‐3‐3 Protein

In 1968, Moore and Perez attempted to fractionate soluble proteins of bovine brain and liver using

chromatography and electrophoresis and succeeded in purifying S‐100 protein using ammonium sulfate

precipitation, diethylaminoethyl (DEAE) cellulose chromatography, Sephadex G‐100 gel filtration and

DEAE Sephadex chromatography (Moore and Perez, 1968). They also partially purified 14‐3‐3 proteins

from the soluble fraction of bovine brain using DEAE cellulose chromatography and starch gel electropho-

resis. In Chapter 4 of Advances of Neurochemistry, Vol. 1, Moore summarized the fractionation and

purification methods for S‐100, 14‐3‐2 protein, and glial fibrillary protein (Moore, 1975). In his preparation

chart, 14‐3‐3 protein was almost separated in the final step of the preparation of 14‐3‐2. In this step, Moore

et al. could separate the protein fraction into 14‐3‐2 and 14‐3‐3 using DEAE Sephadex A50 chromatography
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(Grasso et al., 1977) and subsequently they were able to separate 14‐3‐2 protein and 14‐3‐3 protein using

Sephadex G‐150 gel filtration and DEAE Sephadex chromatography (Erickson and Moore, 1980). In 1982,

Boston et al. described the axonal flow of these proteins into nerve endings and their resolution into two

fractions (Boston et al., 1982a, b). Finally, Ichimura et al. (1987, 1988) in our laboratory found that 14‐3‐3
proteins are the regulatory factors of tyrosine and tryptophan hydroxylases that depend on Ca2þ/calmodu-

lin‐dependent protein kinases. Further, they reported that these proteins are a family composed of seven

subtypes (a, b, g, d, e, z, and Z) by analysis using reverse‐phase high‐performance liquid chromatography

(HPLC) (Ichimura et al., 1988; Isobe et al., 1991). Later the y type of 14‐3‐3 was reported. Complementary

DNA (cDNA) cloning was carried out for each subtype (> Figure 12-1). Nucleotide and amino acid

sequences of each protein were examined and clarified (> Figure 12-2). The methodology for molecular
. Figure 12-1

cDNA cloning of the gene for human brain 14‐3‐3 protein h
cloning is described in detail in a monograph (Sambrook and Russell, 2001). Following these results, the

structure of 14‐3‐3 proteins, the immunohistochemistry, and the interaction between the 14‐3‐3 and other

proteins and other functions were examined. The structure of the gene for 14‐3‐3 and gene expression were

also studied (Muratake et al., 1995, 1996). Recently, a number of reviews and many papers about 14‐3‐3
protein were published. In February 2004, a Gordon Research Conference on ‘‘Biology of 14‐3‐3 proteins in
the brain’’ took place in Ventura, California, USA (Gordon Research Conference, 2004) during one week.

About 20 speakers gave a lecture about 14‐3‐3 proteins.
3 cDNA and Amino Acid Sequence

As early as 1975, Moore described the separation of 14‐3‐2 and 14‐3‐3 using DEAE Sephadex chromatog-

raphy. Erickson and Moore (1980) reported the isolation of 14‐3‐3 using sodium dodecyl sulfate‐polyacryl-
amide gel electrophoresis (SDS‐PAGE). They reported a half‐life of 10 days based on the incorporation of
3H‐leucine into the protein. Boston et al. (1982a, b) described the axonal flow of these proteins into nerve

endings and the resolution of human brain 14‐3‐3 proteins into two fractions. In 1987, we succeeded in

fractionating 14‐3‐3 proteins into seven subtypes and in cloning cDNA for each 14‐3‐3 protein (Ichimura

et al., 1988) (> Figure 12-1). We then determined the amino acid sequences of each 14‐3‐3 protein by

determining the nucleotide sequences of each cloned cDNA (> Figure 12-2). Since another 14‐3‐3 subtype
was discovered, we felt that there was evidence for the existence of eight subtypes. However, according to

other reports, a and d may be the phosphorylated species of b and z (Aitken, 2002).



. Figure 12-2

Nucleotide sequence and the deduced amino acid sequence of human 14‐3‐3 protein h
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In plants, five subtypes of 14‐3‐3 were found in Arabidopsis saliana. Roberts (2000) found 12 tomato

14‐3‐3 genes. In Saccharomyces cerevisiae and Schizosaccharomyces ponte, two subtypes (BMHI and BMHII

and rad 24 and rad 25, respectively) were found (Ferl, 1996; Finnie et al., 1999). After 1987, we cloned

cDNA of the b, g, z, and y isoforms of 14‐3‐3 but not of the Z isoforms and determined their nucleotide

sequences and amino acid sequences (Isobe et al., 1991; Watanabe et al., 1991, 1993a, b, 1994). These 14‐3‐3
cDNAs were classified into several groups and the nucleotide homology for each subtype was calculated,

with evidence of high homology (about 70–90%) among them. cDNA of 14‐3‐3 from plants and yeast also

showed nucleotide sequences similar to those of the subtypes from the animal source, which in turn showed

high homology (about 70%) to those of human e subtype.
The 14‐3‐3 subtypes have about 250 amino acid residues: the b chain is composed of 246 amino acids,

and the g chain of 247 amino acids. The Z chain consists of 246 amino acids, z of 245 amino acids, and y of
245 amino acids. These residues do not contain a hydrophobic amino acid region such as is found in

transmembrane proteins. Further, there is no modification by carbohydrate and fatty acids in this 14‐3‐3
protein. These findings suggest that 14‐3‐3 protein is a cytoplasmic protein. There are some conserved,

invariant domains in all subtypes and some specific unique regions in each subtype. These domains and

regions are mosaically distributed in the 14‐3‐3 sequence. Each subtype has a specific acidic carboxy‐
terminal region, which contains the box1 for binding to tryptophan hydroxylase. Each polypeptide is

organized into nine a‐helices in an antiparallel array and contains a region including Ser for cyclic

adenosine monophosphate (cAMP)‐ and Ca2þ‐dependent phosphorylation. It was reported that 14‐3‐3
sequences from plants contain EF hand type Ca‐binding sequences such as the sequences in calmodulin and

S‐100.
The above amino acid sequence was largely deduced from the nucleotide sequence of 14‐3‐3 cDNA

(> Figure 12-2). 14‐3‐3 Z cDNA from our cloning was the first 14‐3‐3 cDNA to be reported. This cDNA is

composed of 1,793 bases that contain an open reading frame from the translation start site, the ATG codon

at 166 bases to the TGA stop codon at 904 bases. Further, all nucleotide sequences contain 165 noncoding

bases at the 5‐end and 793 noncoding hands at the 3‐end. The 30‐noncoding region contains a polyadenyla-

tion signal (AATAAA) and a part of the poly(A) tail. Similar cDNA cloning of rat 14‐3‐3 b, g, z, and y
subtypes was carried out and their nucleotide sequences and amino acid sequences were determined.
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In addition to cloning 14‐3‐3 Z in mice, rats, and bovines, the cloning of human 14‐3‐3 Z cDNA was

also performed (Ichimura‐Ohshima et al., 1992). The amino acid sequence of the human 14‐3‐3 Z was

almost similar to those of rat and bovine proteins. By using the human cDNA as a probe, the expression of

14‐3‐3 Zmessenger RNA (mRNA) was detected in the human cultured nervous cell lines such as the U‐251
astroglioma cell line and KG‐1‐C oligodendroglioma cell line (Ichimura‐Ohshima et al., 1992) (> Figure
. Figure 12-3

Northern blot analysis. Total RNA (10mg) for human cerebral cortex and cell lines were hybridized with the Dra I

(1478)–EcoR1 (1705) fragment. The lanes contain RNAs from human cerebral cortex; astroglioma cells, U‐251;
oligodendroglioma cells, KG‐1‐C; neuroblastoma cells, GOTO; melanoma cells, Mewo; cervical carcinoma cells,

HeLa; and leukemia cells, K‐562. Ori. indicates origin
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12-3). Further, the influence of the added methamphetamine on these cells was examined. We found the

stimulating effect of methamphetamine on the 14‐3‐3 mRNA level at 10�6 M in the U‐251 cells. Next, we

had to clarify the structure of the 14‐3‐3 gene. In 1996, we succeeded in cloning the human 14‐3‐3 Z gene

(Muratake et al., 1995, 1996). Furthermore, in 2002, we isolated the mouse 14‐3‐3 Z gene and clarified the

structure and sequence of this gene (Toyooka et al., 2002).
4 Three‐Dimensional Structure of 14‐3‐3 Protein

In 1995, the crystal structures of 14‐3‐3 t and 14‐3‐3 z revealed markedly similar dimeric structures by X‐ray
analysis (Liu et al., 1995; Xiao et al., 1995). Views of the 14‐3‐3 dimer are shown by Liu et al. (> Figure 12-

4). The following summary is mainly based on the findings of Skoulakis and Davis. All 14‐3‐3 isoforms

form dimers, in the form of both homodimers and heterodimers. Dimerization appears to involve primarily

hydrophobic interactions mediated by highly conserved residues within the amino‐terminal part (Liu et al.,

1995; Xiao et al., 1995). This suggests that all 14‐3‐3 isoforms may be able to heterodimerize. Each subunit

of the dimer is composed of nine a‐helices in an antiparallel array, each separated by a short loop as

described previously. a‐Helices are perpendicular to the axis of dyad symmetry, and form a palisade

around a central negatively charged groove composed mostly of invariant amino acids. This gives a binding

surface conserved during evolution and suggests recognition of common features in target proteins. The

amino terminal helix mediates dimerization and the conserved residues in this interface may support the



. Figure 12-4

Views of the 14‐3‐3 dimer. a, View down the molecular twofold axis, with belices as cylinders, and the two

monomers in green and red. b, As a, but rotated by 90�. These figures were used with the permission of the

Nature Editorial Office
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heterodimer formation. The remainder of this unusual structural arrangement can be subdivided into two

domains of three‐helix bundles each, both contributing to the formation of the acidic pocket (Liu et al.,

1995; Xiao et al., 1995).

The width of the groove corresponds to the length (about 55 Å) of a3 and a4, the longest helices. Each
subunit of the dimer is arranged in a symmetric position and forms a groove‐like structure with a

characteristic groove within the inside of the whole molecule. About 100 amino acid residues in the N

terminal regions containing a1–a4 in each subunit participate in forming of the dimer. Thus, the dimer

structure is stabilized mainly by ionic binding of a1 and a2 to a3 and a4. As a whole molecule, dimer

subunits bind by contacting at two points holding a central hole (diameter: 6–8 Å) rich in ionic amino acid

side chain. A mutual contacting area of each subunit (620 Å) has a size in which 14‐3‐3 could be in existence
as a stable dimer in the cell. The inside of the most characteristic groove‐like structure for 14‐3‐3 molecule

has a size suitable for holding one typical a‐helix.
In the inside wall, the hydrophobic side chain (Leu 172, Leu 216, Leu 220, Leu 227) from a7 and a9, the

basic side chain (Lys 49, Arg 56, Arg 60) from a3, and the polic side chain (Lys 120, Asp 124, Arg 127, Tyr

128) from a5 are exposed, and Arg 56, Arg 60, Lys 120, and Arg 127 from the above chains form the basic

cluster in the groove. This cluster is stabilized by interaction between this and a part of the acidic loop

composed of C‐terminal 15 amino acids (231–245). These polar/inpolar partial structures become inde-

pendent and are localized in the inner wall of the groove, and as a whole body may constitute bipolar

binding sites against the helix originating from the target protein.

An annexin‐like sequence, as described previously (Lys 122 to Asp 136 in the z chain), is localized in the

latter half of a, which constitutes a part of the groove. Furthermore, Ser 58 and Ser 65, which are expected to
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be phosphorylated by cAMP‐ and Ca2þ‐dependent reactions, are localized in the linker part, which

combines a7 and a8 in a form that can be buried in the hydrophobic binding site in order to form the

dimer. Ser 184, which is expected to be phosphorylated at proline, is localized in the same part, exposing the

molecular surface.

On the other hand, amino acid sequences of 14‐3‐3 protein in various organisms contain conserved,

invariant domains and some specific unique regions in relation to the crystal structure of 14‐3‐3 protein.

The amino acids in the conserved domains are localized on the inside of the groove that 14‐3‐3 proteins

form, whereas the amino acids in the specific regions are localized on the outside of the groove. These data

suggest that the inside structure of the groove is essential for its function and that this function is conserved

from yeast to mammals.
5 Localization and Detection of the 14‐3‐3 Proteins

5.1 In Situ Hybridization

14‐3‐3 proteins were fractionated into eight polypeptide subtypes by using reverse‐phase HPLC (Ichimura

et al., 1988, 1991; Isobe et al., 1991). The polypeptides were named a, b, g, d, e, z, and Z, respectively. Later,
the t isoform was found, which occurs only in glia‐like cells of white matter. The other seven subtypes are

found in rat brain gray matter. The e isoform is highly enriched in the pineal gland. The b, g, and Z
isoforms are enriched in the Purkinje cells of the cerebellum. An oligonucleotide probe (45 mer),

corresponding to part of the 30‐noncoding region of 14‐3‐3 Z mRNA, was synthesized using a DNA

synthesizer (ABI, USA). Another probe (350b) was synthesized by polymerase chain reaction (PCR) with

mouse genomic DNA as the template. These probes were labeled with [a‐35S]dATP and used for in situ

hybridization and developmental research (Watanabe et al., 1991; Toyooka et al., 2002).

The in situ hybridization studies of 14‐3‐3 in rat brain tissue with a cDNA probe were carried out by

Watanabe et al. (1991, 1993a, b, 1994) (> Figure 12-5). Recently, the in situ hybridization of 14‐3‐3 in

mouse brain tissue was also examined by Toyooka et al. (2002).

In humans, bovines, rats, and mice, abundant 14‐3‐3 proteins were found in most areas of the central

nervous system. Particularly, it is very important that isoforms of 14‐3‐3 are highly expressed in the

pyramidal cells of the hippocampus, the neurons of the cerebral cortex, olfactory bulb neurons, and

Purkinje cells of the cerebellum as described above (> Figure 12-5). These results were confirmed by

Northern blot hybridization (> Figure 12-3). Apart from being abundant in the nervous system, 14‐3‐3 is

relatively abundant in the suprarenal gland, intestines, and liver. Furthermore, as already described, 14‐3‐3
proteins are composed of at least eight subtypes. It is important that each subtype shows different

distributions and localizations. The z isoform is present at high levels in the gray matter of the rat brain

and b, g, Z, and t are also localized in similar brain areas. The g isoform is specifically expressed in the

nervous system. Variation is also observed among brain areas. The b, g, and Z isoforms are enriched in the

Purkinje cells of the cerebellum (> Figure 12-5). The e isoform is highly enriched in the pineal gland and in

significant amounts in the retina. The t isoform is only found in glia‐like cells of the white matter

(Watanabe et al., 1993a, b). The variations in distribution and amount of the 14‐3‐3 subtypes may reflect

functional differences or participation of distinct signal transduction pathways by different cell groups.

Further, in a particular cell, homodimers and heterodimers of these isoforms might be involved in specific

neuronal function. In Drosophila, Skoulakis and Davis (1998) described in detail the 14‐3‐3 isoform

expression in the nervous system. The Drosophila z isoform, Leonardo, shows preferential expression in

the nervous system. In fact, the gene was isolated because of its preferential expression in a specific area of

the brain, the mushroom body, a center for learning and memory in insects. Leonardo is also expressed

ubiquitously at low levels. Although the expression pattern of Drosophila 14‐3‐3 e is not known, it is likely
that it is expressed in the retina in a manner similar to its mammalian counterpart. 14‐3‐3 e may be

important in the function of the retina, because mutation in the gene disturbs development of retinal cells.

Finally, the preferential expression of mammalian and Drosophila 14‐3‐3 isoforms in the nervous system is

consistent with their roles in signal transduction pathways, processes essential for nervous system function.



. Figure 12-5

In situ hybridization histochemistry of 14‐3‐3h mRNA in the rat cerebellum. Bar ¼ 1 mm
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5.2 Immunohistochemistry

The specific antibody against each subtype of the 14‐3‐3 family was used for the immunohistological study

(Martin et al., 1994; Baxter et al., 2002). There was significant staining of the cytoplasm, including neuronal

axons and dendrites. This result was confirmed by the ultracentrifugal cellular fractionation method,

indicating that 14‐3‐3 is mainly localized in the neuronal cytoplasm and that a portion of 14‐3‐3 may be

bound to the plasma membrane, endoplasmic reticulum, and Golgi membrane. More extensive studies

about the function of membrane‐bound 14‐3‐3 are required. The identification of the receptor on the

membrane would be of particular importance. 14‐3‐3 is expressed in animals such as mammals, Xenopus,

Drosophila, Caenorhabditis elegans, and amoeba, and in plants such as barley, Arabidopsis saliana, and yeast.

These cells are all eukaryotes. However, 14‐3‐3 is not present in prokaryotes, such as Escherichia coli. In

plants such as barley, 14‐3‐3 expression increases as a result of virus infection. Therefore 14‐3‐3 may share

the signal transduction system in the plant (Tzivion et al., 2001; Tzivion and Avruch, 2002). Immunohisto-

chemical studies of protein kinase C (PKCg) in mouse brain were also carried out, and it was discovered

that the areas with high activity of PKCg almost correspond to those containing 14‐3‐3 Z. This result is
very important, considering the functional relation between 14‐3‐3 and PKC. In the first stage of a study of

14‐3‐3, Aitken et al. showed that 14‐3‐3 could regulate PKC activity (Aitken, 1996; Fu et al., 2000).
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5.3 Northern Blot Analysis

During development of the mammalian central nervous system, the expression of 14‐3‐3 proteins was also
observed (Takahashi, 1992, 2003). Although there are considerable variations in each area, some neurons

exhibit high levels of mRNA between embryonic day 13 and postnatal day 1, with a subsequent rapid

increase during development. In some cases a high level is maintained and in other cases rapid decrease is

observed. After 1987, we studied the biosynthesis of 14‐3‐3 in the brain tissue in vivo and in vitro

(Ichimura‐Ohshima et al., 1992; Muratake et al., 1995). Ichimura‐Ohshima et al. (1992) extracted total

RNA from an astroglioma cell line, U‐251, an oligodendroglioma cell line, KG‐1‐C, a neuroblastoma cell

line, GOTO, and a melanoma cell, MEMO, and purified poly(A)RNA from the total RNA. They found 14‐3‐
3 mRNA in this poly(A)RNAusing Northern blot analysis (Ichimura‐Ohshima et al., 1992) (> Figure 12-3).

Muratake et al. (1995) also found the expression of 14‐3‐3 mRNA in human cultured cells U‐251 and KG‐1‐
C. From these experiments it is concluded that 14‐3‐3 proteins except the t isoform are localized in gray

matter neurons and are highly concentrated in cultured glioma cells. Furthermore, if normal cells become

malignant, the cells may be able to express the 14‐3‐3 gene.
6 Gene and Gene Expression of 14‐3‐3

As previously described, in 1988 Ichimura et al. (1988) succeeded in cloning cDNA for the bovine 14‐3‐3
protein. Then using this cDNA as a probe, Watanabe et al. examined the distribution of 14‐3‐3 proteins in
rat and bovine brains by in situ hybridization. The results show that 14‐3‐3 proteins are localized in almost

all areas of the central nervous system. Particularly, 14‐3‐3 proteins are highly expressed in the pyramidal

cells of the hippocampus, the neurons of the cerebral cortex, olfactory bulb neurons, and the Purkinje

cells of the cerebellum (> Figure 12-5). These results were confirmed by Northern blot hybridization and

immunohistochemistry (> Figure 12-3).

However, there were very few studies about the gene of 14‐3‐3 protein. In 1996, Muratake et al. (1996)

succeeded in cloning the human 14‐3‐3 gene. Furthermore, in 2002, Toyooka et al. isolated the mouse 14‐3‐3
Z gene and clarified the structure and nucleotide sequence of this gene (Toyooka et al., 2002) (> Figures 6
. Figure 12-6

Schematic representation of the mouse 14‐3‐3 h gene. a, Structure of the mouse 14‐3‐3 h gene. Open boxes

show the noncoding regions of the exons. Solid boxes show the coding region of the exons. Thick bars show the

intron and the flanking regions. b, Structure of mouse 14‐3‐3 h cDNA
and > 7). The human 14‐3‐3 Z gene is about 10 kb long and is composed of two exons separated by an 8 kb‐
long intron. The translation start site was identified in exon 1, and the stop codon was found in exon 2 of

the human gene. Further, in the 50‐upstream sequence, Toyooka et al. found several cis‐elements, including a

cAMP response element (CRE) sequence, a TATA‐like sequence, and a GC box. Fluorescence in situ



. Figure 12-7

Nucleotide sequence of the mouse 14‐3‐3 h gene. Exon sequences are shown in uppercase letters. Intron and

flanking sequences are in lower case letters
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hybridization (FISH) with DNA probes of the human 14‐3‐3 Z gene mapped the 14‐3‐3 gene to chromo-

some 22q12.1–q13.1 (> Figure 12-8). In the noncoding region of exon 1 of the 14‐3‐3 Z gene, a 7‐bp repeat

sequence was found. Using this repeat sequence as a probe, Toyooka et al. (1999) examined the relation

between the 14‐3‐3 Z gene and schizophrenia and found evidence for genetic association of the 14‐3‐3 Z
gene with schizophrenia. Recently, Toyooka et al. (2002) isolated the mouse 14‐3‐3 Z gene and clarified its

structure, showing similarity between the human and mouse 14‐3‐3 Z genes. Further studies are planned to

construct a knockout mouse using the mouse 14‐3‐3 gene. If a 14‐3‐3 Z gene knockout mouse can be

constructed, the function of 14‐3‐3 Z in the central nervous system could be clarified. However, recently

Skoulakis and Davis (1998) expressed doubt about the effectiveness of the knockout experiment of the 14‐3‐
3 gene. In 1999, Chan et al. carried out a knockout experiment of the human 14‐3‐3 gene (Chan et al.,

1999). This report is very important. After DNA knockout damage, human colorectal cells were unable to

maintain cell cycle arrest. In these cells, both 14‐3‐3 d alleles are inactivated. Recently, Ichimura et al. (2004)

reported transcriptomic and proteomic analysis of a 14‐3‐3 gene‐deficient yeast. They compared the

transcriptomic and proteomic profiles of the wild type and a BMH 1/2‐deficient S. cerevisiae mutant

(bmh D) using DNA microarrays and two‐dimensional polyacrylamide gel electrophoresis. A subset of



. Figure 12-8

Localization of the human 14‐3‐3 h (YWHAH) to chromosome 22q12.1–q13.1 by fluorescence in situ hybridiza-

tion. Two pairs of YWHAH signals were localized on the two Q‐banded chromosome 22 (arrows)
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genes and proteins (a total of 220 genes) is significantly induced or reduced in the absence of Bmh 1/2p. The

presence of the CRE sequence in the 50‐noncoding region of the mouse 14‐3‐3 Z gene may be related to the

effect of methamphetamine. Further, the presence of the CRE sequence and cAMP response element‐
binding protein (CREB) protein may be related to inducing and maintaining of long‐term potentiation

(LTP) into the animal (Nestler et al., 2001). According to some recent papers, 14‐3‐3 proteins regulate

potassium channel activity (O’Kelly et al., 2002; Rajan et al., 2002; Rishi et al., 2003; Zhou et al., 2003).
7 Target Protein Binding of 14‐3‐3

In this section we are going to describe the target protein binding of 14‐3‐3, a study being carried out

currently. Recently, rapid progress has occurred in the research methods of protein, and proteome analysis

(proteomics; 2DLC–MS/MS) is widely being used (Itagaki et al., 1999; Beranova‐Giorgianni et al., 2002;
Ichimura et al., 2002) (> Figure 12-9). This procedure may not only be very useful for purification of 14‐3‐3
itself, but also be widely applicable for analysis of many target proteins bound to 14‐3‐3 proteins, as

described later. Recently Powell et al. (2003) reported proteomic identification of 14‐3‐3 z as a mitogen‐
activated protein kinase (MAPK)‐activated protein kinase 2 substrate. Many proteins (more than 100–200)

were discovered as target proteins (Yaffe, 2004). Several reports indicate that these are at least 100 and

possibly more than 200 target proteins for 14‐3‐3 (Aitken, 2002; Pozuelo Rubio et al., 2004; Yaffe, 2004). It is
likely that additional target proteins with very important functions will be found in the future. Two recent



. Figure 12-9

Target protein assay. The research method of targeting protein for 14‐3‐3 in PC12 cells is concisely summarized

in the figure. Protein technology was used
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monographs discuss the methodology used in protein and proteomics research (Simpson, 2003, 2004).

Ichimura et al. (2002) applied this protein analysis using a myc‐tagged 14‐3‐3 Z isoform to the proteins in

PC12 cells and found that kinesin heavy chain and kinesin light chain‐2 (KLC2) were important target

proteins of 14‐3‐3. In particular, KLC2 is very important. Recently, yeast species that survived after

knocking out the 14‐3‐3 gene were isolated.

Target proteins such as tyrosine and tryptophan hydroxylases (Ichimura et al., 1988, 1995; Furukawa

et al., 1993), Raf, Bcr (Michaud et al., 1995), Bel‐xL/Bel‐2‐associated death promoter (BAD) (Zah et al.,

1996), and keratin K18 (Lias and Omary, 1996) must generally be phosphorylated for binding of 14‐3‐3.
Using synthetic phosphopeptides, Muslin et al. (1996), Yaffe et al. (1997), and Rittingers et al. (1999)

provided evidence for two distinct 14‐3‐3 binding motifs: RSXpSXP (mode 1) and RXXXpSXP (mode 2).

The binding of 14‐3‐3 to the mode 1 motif is favored by an aromatic or positively charged amino acid at

position�1. The 14‐3‐3 binding to the mode 2 motif exhibits a preference for aromatic residues at position

�2, positive residues at position�1, and Leu, Glu, Ala, or Met at positionþ1. It was found that most target

proteins contain either a mode 1 motif or a mode 2 motif. However, some proteins that bind to 14‐3‐3
depending on phosphorylation do not contain either of these motifs. Further, the stable association of most

cellular partner proteins with 14‐3‐3 requires a 14‐3‐3 dimer, but proteins such as C‐Raf‐1 that contain a

high‐affinity 14‐3‐3 binding site can bind monomeric 14‐3‐3 in a stable manner. 14‐3‐3 can bind well to a

variety of nonphosphorylated proteins such as exoenzyme S and Cdc25B, in addition to nonphosphory-

lated synthetic or recombinant peptides.
8 14‐3‐3 Modes of Action

The modes of action of 14‐3‐3 were summarized by Fu et al. (2000), Tzivion et al. (2001), Tzivion and

Avruch (2002), and Aitken (2002). Fu et al. (2000) reported in detail recent investigations involving three

14‐3‐3 ligands: Raf‐1, Bad, and Cdc25. >Table 12-1 simply shows different roles of 14‐3‐3 proteins. We
. Table 12-1

Functions of 14‐3‐3 proteins

Types of function Target proteins

Signal transduction regulation PKC

Cell cycle regulation KSR 1

Differentiation regulation Raf‐1
Apoptosis regulation BAD, ASK1

Ion channel regulation K channel
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will describe these modes mainly according to Tzivion et al. The mechanisms by which 14‐3‐3 binding

participates in the regulation of target protein function can be grouped into six major types.

1. Binding of 14‐3‐3 may change the ability of the target protein to interact with other partner proteins.

For example, the binding of 14‐3‐3 to BAD competes with Bcl2 binding and causes an inhibition of

apoptosis and the promotion of cell survival. BAD is the target for both antiapoptotic and proapoptotic

signals (Hsu et al., 1997; Datta et al., 2000). Protein kinase A, Akt/protein kinase B, PKC, and Raf‐1 are
capable of phosphorylating BAD in vitro. A proline‐rich Akt substrate was recently identified as a

14‐3‐3 binding partner (Kovacinn et al., 2003).

2. Binding to 14‐3‐3 can modify the localization (cytoplasmic/nuclear partition) of the target protein by

increasing the nuclear export rate, decreasing the nuclear import rate, or both (Muslin and Xing, 2000).

Proteins shown to be subject to this mode are the cell cycle protein phosphatase Cdc25c (Dalal et al.,

1999; Kumagai and Durphy, 1999; Lopez‐Girona et al., 1999), telomerase (Seimiya et al., 2000), the

insulin‐regulated transcription factors FKALR1 (forkhead transcription factor) and DAF‐16 (Cahill

et al., 2001), etc. In particular, Cdc25c is a major cell cycle regulator that dephosphorylates and activates

PKCdc2 to trigger entry into mitosis. Recent papers reported that 14‐3‐3 regulates mitosis by interac-

tion with Cdc25b and Cdc25c (Bialkowska et al., 2003; Giles et al., 2003). Further, Müller et al. (2003)

reported that Cdc25c‐associated kinase (c‐TAK1) has been implicated in cell cycle regulation and Ras

signaling through its interactions with two putative substrates, Cdc25c phosphatase and MAPK

scaffold kinase suppressor of ras‐1 (KSR1). They concluded that c‐TAK1 is a regulator of 14‐3‐3
binding. Uchida et al. (2004) reported that binding of 14‐3‐3 beta but not 14‐3‐3 sigma controls the

cytoplasmic localization of Cdc25b. Recent findings demonstrated that FKALR1 and DAF‐16 are

phosphorylated by PKB (Aitken, 2002; Woods and Rena, 2002).

3. 14‐3‐3 can serve to bridge two target proteins as a phosphorylation‐dependent adaptor/scaffold.

Ligation between Raf‐Bcr (Brasselman and McCormick, 1995), Raf‐A20 (Vincenz and Dixit, 1996),

and Raf‐PKC (Van Der Hoeven et al., 2000) is 14‐3‐3‐dependent. Further, the identification of 14‐3‐3 as
a Raf‐1‐binding protein added a new component to the regulatory machinery of Raf‐1.

4. Binding of 14‐3‐3 can either increase or inhibit the intrinsic catalytic activity of the target protein. As an
example of the former, after phosphorylation of tryptophan and tyrosine hydroxylases by calmodulin

kinase II, the subsequent binding of 14‐3‐3 increases their activity. In the latter example, apoptosis

signal‐regulating kinase 1 (ASK‐1) kinase activity is inhibited by binding of 14‐3‐3 (Zhang et al., 1999;
Liu et al., 2001). Recently Subramanian et al. (2004) reported the interaction of ASK‐1 with various

isoforms of 14‐3‐3 proteins. 14‐3‐3 proteins also interact with the C‐terminal end of exoenzyme S

(Hallberg, 2002).

5. The binding of 14‐3‐3 can protect the target protein from proteolysis and dephosphorylation. The

protection by 14‐3‐3 of Raf (Dent et al., 1995; Thorson et al., 1998), histone (Chen and Wagner, 1994),

and BAD from dephosphorylation and plant nitrate reductase (Weiner and Kaiser, 1999) and several

proteins in Arabidopsis (Cotelle et al., 2000) from proteolysis are examples.

6. Sometimes 14‐3‐3 exhibits more than one function in the regulation of a target. For example, 14‐3‐3
regulates both transcription factor DAF‐16 localization and its intrinsic DNA‐binding activity (Cahill
et al., 2001).
9 Regulation of 14‐3‐3 in the Cell

The objective of many studies on the role of 14‐3‐3 in cellular regulation were the changes in target protein

phosphorylation as the first regulatory event. The 14‐3‐3 protein was considered to be the passive element

(Tzivion and Avruch, 2002). However, several potential types of 14‐3‐3 regulation such as isoform‐specific
expression, subcellular localization, phosphorylation regulation, and differential target protein‐binding
specificity may also be important (Hsu et al., 1997; Aitken, 2002). The 14‐3‐3 proteins are abundant, but it
is doubtful whether there are adequate amounts of total 14‐3‐3 protein in vivo.

A recent idea about a mechanism for 14‐3‐3 regulation suggests that association of 14‐3‐3 with

intermediate filaments such as vimentin may take place and may serve to isolate 14‐3‐3 proteins and to
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modulate their function by limiting their availability to other target proteins. This raises the possibility that

the 14‐3‐3 proteins may be limited despite their high level of expression in the cell, and that the changing

distribution of its association with different target proteins may serve as one regulatory mechanism for

modulating 14‐3‐3 availability.

Here we describe 14‐3‐3 regulation, laying stress on isoform‐specific expression, phosphorylation, and
subcellular localization.
9.1 Isoform‐Specific Regulation

The functions of 14‐3‐3 isoforms were discussed by Skoulakis and Davis (1998), Fu et al. (2000), Tzivion

and Avruch (2002), and Aitken (2002) in their reviews. According to their findings, the various 14‐3‐3
isoforms exhibit similar binding specificities. Since the residues lining the phosphopeptide‐binding groove
of the various 14‐3‐3 isoforms are markedly conserved, considerable overlap specificity would be predicted

from the structure. However, differences in the abilities of the 14‐3‐3 isoforms to bind peptides and proteins

have been described (Martin et al., 1994; Vincenz and Dixit, 1996; Tang et al., 1998; Van Der Hoeven et al.,

2000; Muslin and Xing, 2000). There are also several examples of isoform‐specific biological effects. For

example, as Fu et al. described, overexpression of 14‐3‐3 s caused a G2 cell cycle arrest in colorectal

carcinoma cells, whereas 14‐3‐3 b overexpression did not. This result may be a consequence of preferential

interaction of 14‐3‐3 with the Cdc2/cyclin B/complex, and may be due to differences in binding specificity

and subcellular localization. However, the selective increase in the expression of the 14‐3‐3 s isoform in the

response to DNA damage highlights the physiological significance of this difference with respect to 14‐3‐3 s
and 14‐3‐3 b (Hermeking et al., 1997; Chan et al., 1999; Ferguson et al., 2000; Laronga et al., 2000; Suzuki

et al., 2000). Most isoforms, except 14‐3‐3 s, are almost equally expressed; however, 14‐3‐3 y expression is

different and under stimulus‐dependent regulation (Perego and Berruti, 1997; Rosenquist et al., 2000).

Considering the existence of seven independently regulated 14‐3‐3 genes, the differential expression of

14‐3‐3 isoforms during development, the isoform‐specific 14‐3‐3 levels in various subcellular localizations,

and the moderate tendency toward heterodimerization in addition to homodimerization, one may suggest

that small differences in binding specificity among isoforms can combine and generate a potentially active

regulatory machine, when combined with heterodimerization and differential regulation of the level of

expression of individual 14‐3‐3 isoforms (Dubois et al., 1997a, b).
9.2 Regulation by Phosphorylation

Aitken (2002) reported that phosphorylation of specific 14‐3‐3 isoforms can also regulate the interactions.

Phosphorylation of 14‐3‐3 may be another regulatory mechanism (Dubois et al., 1997a, b), and 14‐3‐3
proteins were reported to be phosphorylated by several kinases (sphingosine‐dependent protein kinase 1

(SDK 1) (Megidish et al., 1995, 1998), casein kinase 1 (Dubois et al., 1997a, b), and PKCs). As described

previously, 14‐3‐3 a and d are the phosphorylated forms of b and z, respectively. According to Aitken (2002)
casein kinase 1 phosphorylates 14‐3‐3 z and t isoforms. In 14‐3‐3 z, three phosphorylation sites have been

determined. Recently Tsuruta et al. (2004) demonstrated that activated C‐JunNH(2)‐terminal kinase (JNK)

promotes Bax translocation to mitochondria through phosphorylation of 14‐3‐3, a cytoplasmic anchor of

Bax. However, the role of these phosphorylations in the physiologic regulation of 14‐3‐3 function is not yet

clear.
9.3 Regulation by Subcellular Localization

Localization of 14‐3‐3 in the cytoplasm, nucleus, various membranes, and centrosome structures has been

described (Ferl, 1996). However, except for the cytoplasmic/nuclear partition, the significance of such

differential localization for 14‐3‐3 functions remains unclear (vanZeijl et al., 2002). Recently, Muslin and
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Xing reported in a review that 14‐3‐3 proteins promote the cytoplasmic localization of many binding

partner proteins (Muslin and Xing, 2000). Skoulakis and Davis (1998) described the role of 14‐3‐3 proteins
in exocytosis in their review.
10 14‐3‐3 Proteins in Neuropsychiatric Diseases

Recently two reviews about 14‐3‐3 proteins were published (Berg et al., 2003a; Klein et al., 2003). These

reviews summarized the studies on the relation between 14‐3‐3 proteins and some neurological diseases.
>Table 12-2 in the review of Berg et al. (2003a, b) is very useful for examining the isotypes of 14‐3‐3
. Table 12-2

Known isotypes of 14‐3‐3 and results of isotype‐specific investigations

14‐3‐3 isotype

Gene

symbol

Genomic

localization

Isotype‐
specific CSF

disorders

Isotype‐specific
histology

Animal models and

experimental

results

b and its

phosphorylated

isotype a

YWHAB 20q13.1 CJD (b) Present in tangles in AD

and associated with tau

proteins (b)�
G YWHAG 7q11.23 CJD Elevated in AD, no

association with tau,

reduction in Down’s

syndrome and present in

LBs in PD

Increased in rat

carotid arteries after

injury

E YWHAE 17p13.3 CJD Elevated in AD, no

association with tau and

present in LBs in PD

Z and its

phosphorylated

isotype d

YWHAZ 8q23.1 Present in tangles in AD,

associated with tau and

present in LBs in PD (z)

Upregulated in rat

hypoglossal motor

neurons after injury

(z)
Z YWHAH 22q12.3 CJD, AD,

other

dementias,

and herpes

encephalitis

s SFN 1p35.3 Only expressed in T cells

and epithelial cells

Expression induced

in response to DNA

damage, might

function as main

tumor suppressor

T/y YWHAQ 2p25.1 Present in LBs in PD Upregulated in rat

hypoglossal motor

neurons after injury

AD Alzheimer’s disease

CJD Creutzfeldt–Jakob disease

CSF cerebrospinal fluid

LBs Lewy bodies

PD Parkinson’s disease

> Table 2 was used with the permission of Dr. D. Berg.
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proteins and the results of isotype‐specific investigation (> Table 12-2). Berg et al. described detection of

14‐3‐3 proteins in the cerebrospinal fluid (CSF) of patients with the following disorders: meningoencepha-

litis, aseptic meningitis, central nervous system vasculitis, multiple sclerosis, stroke, subarachinoid hemor-

rhage, cerebral amyloid angiopathy, vascular dementia, frontotemporal dementia, amyotrophic lateral

sclerosis (ALS) with dementia, brain tumors, paraneoplastic disorders, central intravascular lymphoma,

carcinomatous meningitis, anoxic encephalopathy, Hashimoto’s encephalopathy, mitochondrial encepha-

lomyopathy. Furthermore, schizophrenia, Creutzfeldt–Jakob disease (CJD), Alzheimer’s disease (AD), and

neurodegenerative disorders with Lewy bodies, polyglutamine disorders, ALS, and motor neuron injury

were shown to have some relation to 14‐3‐3 proteins as described below.
10.1 Schizophrenia

Two genomic clones that cover 15 kb of the 14‐3‐3 Z chain gene were mixed and used as a probe. The

hybridization signal appeared on band q12.1–q13.1 of chromosome 22. It was suggested that schizophrenia

is related to chromosome 22; thus we examined the relation between the 14‐3‐3 Z gene and schizophrenia

using a 7‐bp repeat sequence in the noncoding region of exon 1 of the 14‐3‐3 gene as a probe. We

found evidence for a genetic association of the 14‐3‐3 Z gene with schizophrenia (Toyooka et al., 1999).

However, Bell et al. (2000) and Hayakawa et al. (1998) could not obtain evidence for polymorphism of the

coding region in the 14‐3‐3 gene of schizophrenic patients. Thus, no definite conclusion has been obtained

to date.
10.2 Creutzfeldt–Jakob Disease

The clinical symptoms of CJD are a rapidly progressive dementia and a combination of neurological

symptoms, but the definite diagnosis can only be made using histopathological methods. Two proteins in

the CSF of CJD patients were found to be potential markers. This result suggested that the presence of 14‐3‐3
proteins in the CSF may be due to destruction of brain tissue and leakage of cellular protein like 14‐3‐3 into
CSF (Zerr et al., 1998).

The b, g, e, and Z isotypes are present in the CSF of patients of CJD; however, the z isotype does

not seem to be elevated. The z isotype is unequivocally immunostained in amyloid plaque of sporadic

and variant CJD. Subcellularly, the b, g, e, Z, and z isotypes have been found in synaptic vesicle membranes

and some isotypes (g, e, and Z) might be located at the synaptic junction and bind to the synaptic

membrane.
10.3 Alzheimer’s Disease

AD is neuropathologically characterized by cortical and perivascular amyloid plaques and neurofibrillary

tangles (NFTs). The tangles are composed of paired helical filaments and microtubule‐associated protein

tau, which regulates normal assembly and disassembly of microtubules. One mechanism controlling

microtubule structure and function is the phosphorylation of tau, which reduces its affinity for micro-

tubules. In AD, abnormally phosphorylated tau associates with paired helical filaments, thus preventing

normal microtubule‐related functions.

14‐3‐3 g and e are increased in several regions of patient brains with AD. Further, according to Layfield

et al. (1996), all cases of AD that they examined by immunohistochemistry showed positive 14‐3‐3 staining
of NFTs. However, there was almost no staining with anti‐14‐3‐3 in amyloid plaques. Recently, a ‘‘tau‐
phosphorylation complex’’ has been described. In bovine brain, tau, glycogen synthase kinase‐3b (GSK3b),
and 14‐3‐3 z are integral parts of this complex.
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10.4 Neurodegenerative Disorders with Lewy Bodies

Lewy bodies are a pathological hallmark of Parkinson’s disease (PD) and diffuse Lewy body disorder

(DLBD) (Kawamoto et al., 2002; Ubl et al., 2002). Lewy bodies of PD are found in the brainstem

(particularly in substantia nigra). Lewy bodies of DLBD are present in cortical and subcortical regions.

Immunohistochemical investigation of Lewy bodies showed positive 14‐3‐3 staining in PD and DLBD.

Recently, colocalization of the e, g, z, and y isotypes with Lewy bodies in PD was found.

One of the main features of PD is neuronal death of dopaminergic neuronal cells accompanied by a

reduction of brain dopamine. The rate‐limiting enzyme in dopamine synthesis is tyrosine hydroxylase

(Ichimura et al., 1988), an enzyme reported to bind 14‐3‐3 proteins. Binding of 14‐3‐3 proteins to tyrosine

hydroxylase is required for its optimal activation by phosphorylation. Recently, a‐synuclein, one of the main

components of Lewy bodies, was shown to bind to 14‐3‐3 proteins. Normally, a‐synuclein reduces the activity
of tyrosine hydroxylase by binding to dephosphorylated tyrosine hydroxylase.However, the binding of 14‐3‐3
proteins to phosphorylated tyrosine hydroxylase enhances dopamine synthesis, as described above. Xu et al.

(2002) showed a selective increase of the 14‐3‐3/a–synuclein complex in the substantia nigra of PD patients.
10.5 Polyglutamine Disease

Recently an involvement of 14‐3‐3 proteins in neurodegenerative diseases caused by the expansion of

polyglutamine stretches was shown in spinocerebellar ataxia type 1 (SCA1) (Chen et al., 2003). In the case

of SCA1, ataxin 1 is stabilized by 14‐3‐3 proteins. Probably, ataxin 1 and 14‐3‐3 form soluble complexes

in vivo. Binding of 14‐3‐3 to ataxin 1 needs ataxin 1 phosphorylation (Paulson et al., 1997).

A second connection between neurodegeneration and 14‐3‐3 proteins in polyglutamine disease comes

from the following result (McCampbell et al., 2000). Transcription factors like CREB‐binding protein

(CBP), TATA‐binding protein (TAB), and TAB‐associated factor II‐130 (TAFII130) are recruited into

the nuclear aggregates. Some of these molecules are known to have histone acetyltransferese activity, an

activity that is reversed by histone deacetylases. 14‐3‐3 proteins bind to histone deacetylases, sequestering

them in the cytoplasm. Histone deacetylase inhibitors, such as valproate, might be effective in treating

polyglutamine diseases.
10.6 ALS and Motor Neuron Injury

Pathological changes after motor neuron injury are obscure in many respects. However, 14‐3‐3 proteins

seem to be involved in these processes. For example, a substantial increase of the mRNAs of 14‐3‐3 z and y
after hypoglossal nerve injury in rats could be shown in the injured motor neurons. Since one of the

functions of 14‐3‐3 proteins is the regulation of Raf 1, the stimulation of genes involved in cell division

through Raf 1 activation might be the result of 14‐3‐3 upregulation (Namikawa et al., 1998).

ALS is a fatal disorder that is characterized by the progressive selective death of upper and lower motor

neurons. An upregulation of 14‐3‐3 isoforms was found in the spinal cord of ALS patients.
10.7 Neuronal Migration Defect

The importance of 14‐3‐3 proteins in the development of neuronal photoreceptors has been established in

Drosophila. Disruption of neuronal differentiation and synaptic plasticity came from mutations in some

14‐3‐3 Drosophila gene. In humans, decreased levels of 14‐3‐3 g in the cortex of an embryo with Down’s

syndrome were detected, indicating a possible impairment of neuronal differentiation, synaptic plasticity,

and signal pathways. In some patients with severe lissencephaly, deletion of 17p13.3, the chromosomal

segment containing 14‐3‐3 e, has been observed.
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Another review of neuropathological studies of the pineal body has been published by Klein et al.

(2003). They reported the photoreception, neurotransmission, signal transduction, and the biosynthesis of

melatonin from tryptophan as the function of the pineal body. Then they described in detail the regulatory

effect of 14‐3‐3 on these pineal functions and the pathological changes of these functions.
11 Conclusions

This review summarizes the results of our research on 14‐3‐3 over the last 10 years, along with studies from

other laboratories. Our work was mainly confined to cDNA cloning and nucleotide sequencing, the

structure and expression of 14‐3‐3 genes, and in situ distribution of 14‐3‐3 mRNA in the brain. Work

from other laboratories cited here include work on the binding of 14‐3‐3 to other proteins, the influence of

14‐3‐3 on the binding among other proteins, and the effects of 14‐3‐3 on protein kinase activities. At

present, more than 100–200 target proteins of 14‐3‐3 are known. As a result of the recent rapid development

of proteomic technology, many more target proteins of 14‐3‐3 will likely be discovered. In this review, I also

describe some pathological conditions in which 14‐3‐3 proteins are implicated.
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Abstract: Heat shock proteins are ubiquitous, highly conserved proteins helping the formation and repair

of the correct conformation of other protein molecules. Cellular stress leads to heat shock protein (stress

protein, molecular chaperone) induction, reflecting their protective role in cell survival. Heat shock

proteins have a key importance in neuronal repair after brain damage, like trauma or stroke and in

neurodegenerative diseases, such as in Alzheimer’s, Parkinson’s, and Huntington’s type diseases. Because

of the increasing amount of damaged proteins, heat shock proteins become overloaded during the aging

process. This may lead to the release of heat shock protein‐buffered, silent mutations, leading to the

phenotypic exposure of previously hidden features and contributing to the onset of polygenic diseases

such as neurodegenerative diseases. Heat shock protein induction and inhibition are promising pharmaco-

logical tools to protect neurons or to fight against brain tumors, respectively.

List of Abbreviations: ALS, amyotrophic lateral sclerosis; DnaJ, a co‐chaperone of the 70‐kDa heat shock
protein, Hsp70; ER, endoplasmic reticulum; G‐protein, small GTP‐binding protein; Grp, glucose regu-

lated protein; Hsc70, the constitutively expressed form of the 70‐kDa heat shock protein, Hsp70; Hsp, heat

shock protein; PU3, a purine‐based inhibitor of the 90‐kDa heat shock protein, Hsp90
1 Introduction

Protein folding has numerous steps, which need assistance in vivo. Heat shock proteins are required for

many proteins to fold, or refold into native structures, for their oligomeric assembly and transport to their

final destination inside the cell. This function is called chaperone function and, therefore, most heat shock

proteins are also molecular chaperones. Heat shock proteins and their counterparts in the endoplasmic

reticulum (and in mitochondria), glucose‐regulated proteins form an ancient, primary system for ‘‘intra-

cellular self‐defense.’’ Heat shock proteins have a profound importance in medical practice (Latchman,

1991; Welch, 1992; Hartl, 1996; Thirumalai and Lorimer, 2001). Their function is necessary for the

homeostasis of the living cell, and becomes especially important in disease when our cells have to cope

with a stressful environment. In damaged cells (such as in cells after heat shock), heat shock proteins will be

up‐regulated, which is an adaptive response of the cell to repair the increased amount of damaged proteins.

This chapter will briefly summarize and explain the role of heat shock proteins in cell survival, list a few

of their recently uncovered specific functions, describe their role in neuroprotection, in the aging brain, in

neurodegenerative diseases, and highlight some novel advances of heat shock protein‐related medical

therapies.
2 Heat Shock Proteins

2.1 Definition and General Functions

Heat shock proteins help protein folding. In > Figure 13-1 the two major steps of a usual folding process

is shown. First, a fast collapse of the nascent or misfolded protein structure occurs, which leads to the

development of the hydrophobic core. Here the hydrophobic amino acids become buried and thus their

disturbing effect on the hydrogen‐bonded water structure is prevented. However, this process is often

incomplete and results in a molten globule, having hydrophobic amino acids on its surface, which make it

prone to aggregation. When aggregation occurs, the hydrophobic amino acids on the surface of the partially

folded protein are forced to bind to each other since this is the only way by which their energetically costly

interaction with the water structure can be avoided. The second step of protein folding is usually slow. Here

the hydrophobic core is rearranged, which results in the formation of the native protein structure.

However, protein folding is not a straightforward process. Dead‐end pathways, reverse reactions, futile

cycles are all characteristic of protein folding. A minor amount of fully folded, native protein always coexists

with various forms of molten globules and with traces of remaining unfolded molecules. This unordered

flow of events needs a lot of help. Aggregation of unfolded proteins and of molten globules is a great danger



. Figure 13-1

Major steps of protein folding in vitro. First, a fast collapse of the protein structure occurs, which leads to the

development of the hydrophobic core. However, this process is often incomplete and results in a molten

globule, which is prone to aggregation. The second step is usually slow. Here the hydrophobic core is rear-

ranged
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that would drive the majority of folding intermediates to a nonproductive side‐reaction, much before

reaching their fully folded, competent state. Heat shock proteins serve to prevent this. They recognize and

cover hydrophobic surfaces, successfully competing with the aggregation process. However, there is an

important difference here. Unlike aggregating partners, heat shock proteins can leave their complex with

misfolded proteins, utilizing the energy of ATP‐hydrolysis‐driven conformational changes. This function is

called as chaperone function; therefore most of heat shock proteins are often called molecular chaperones.

Heat shock proteins (1) protect other proteins against aggregation, (2) solubilize initial, loose protein

aggregates, (3) assist in folding of nascent proteins or in refolding of damaged proteins, (4) target severely

damaged proteins to degradation, and (5) in case of excessive damage, sequester damaged proteins to larger

aggregates. Heat shock proteins are ubiquitous, highly conserved proteins, which utilize a cycle of ATP‐
driven conformational changes to re‐fold their targets and which probably played a major role in the

molecular evolution ofmodern enzymes (Hartl, 1996; Csermely, 1997, 1999; Thirumalai and Lorimer, 2001).

Cellular stress leads to the expression of heat shock proteins. Stress can be any sudden change in the

cellular environment to which the cell is not prepared to respond, such as heat shock. However, almost all

types of cellular stress induce heat shock proteins. Because of the generality of this phenomenon, heat shock

proteins are often called stress proteins. The rationale behind this phenomenon is that after stress, there is

an increased need for the chaperone function of heat shock proteins, which triggers their induction

(Morimoto, 1998).

Heat shock proteins are best classified by their molecular weights, as there is significant overlap in their

functions. Besides the major classes of heat shock proteins listed in >Table 13-1, which generally target all



. Table 13-1

Major classes of Hsp‐s

Most important representativesa Recent reviews

Hsp25b, Hsp27, crystallins, small

heat shock proteins

Arrigo, 1998; Haslbeck, 2002; Ganea, 2001

Hsp60, chaperonins Bukau and Horwich, 1998 Hartl, 1996; Thirumalai and Lorimer, 2001

Hsp70, Hsc70, Grp78 Bukau and Horwich, 1998 Hartl, 1996; Ohtsuka and Suzuki, 2000

Hsp90, Grp94 Csermely et al., 1998; Picard, 2002; Pratt and Toft, 2003; Richter and Buchner,

2001; Sreedhar et al., 2004a; Young et al., 2001

Hsp104 Porankiewicz et al., 1999

aNeither the co‐chaperones (chaperones which help the function of other chaperones listed), nor the so‐called folding

catalysts, the peptidyl‐prolyl isomerases (immunophilins) and protein disulfide isomerases were included in this table, albeit

almost all of these proteins also possess a ‘‘traditional’’ chaperone activity in their own right. Several chaperones of the

endoplasmic reticulum (e.g. calreticulin, calnexin, etc.), which do not belong to any of the major chaperone families, as well

as some heat shock proteins (e.g. ubiquitin), which do not possess chaperone activity were also not mentioned
bThe abbreviation ‘‘Hsp’’ and ‘‘Grp’’ refer to heat shock proteins, and glucose‐regulated proteins, chaperones induced by

heat shock or glucose deprivation, respectively. Numbers refer to their molecular weight in kDa
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misfolded proteins with hydrophobic surfaces, there are also specialized heat shock proteins, like Hsp47,

which is the procollagen‐chaperone (Nagata, 1998). Heat shock proteins usually increase only the yield but

not the speed of protein folding. However, special chaperones, called ‘‘folding catalysts,’’ may accelerate

certain steps of protein folding, such as the isomerization of peptide bonds besides prolyl residues

(peptidyl–prolyl cis/trans isomerases, or immunophilins) or the formation of disulfide bridges (protein

disulfide isomerases) (Hartl, 1996; Bukau and Horwich, 1998).

Heat shock proteins never work alone. They always form a complex with each other and recruit various

smaller proteins, called co‐chaperones, which regulate their ATP‐ase cycle, therefore increase the rate of heat
shock protein‐assisted refolding. A central chaperone complex of the cytoplasm is assembled around the 90‐
kDa heat shock protein, Hsp90, and is called as the foldosome.

Nascent proteins have to fold when they are not even ready yet. The first protein segment, which leaves

the ribosome, has a different energy minimum than the whole protein. In many cases, in vivo protein

folding has to be delayed. Heat shock proteins are attached to the ribosomes ‘‘waiting’’ for the nascent

protein chain. When it appears, the chaperones ‘‘sit on it,’’ preventing premature protein folding before the

rest of the protein is synthesized (Kim and Baldwin, 1990; Matthews, 1993).

Heat shock proteins also direct proteins inside the cell. Pores of the mitochondria or of the endoplasmic

reticulum are too small to accommodate fully folded, globular proteins. Proteins have to unfold to get

through and refold in the lumen of the organelle (Chirico et al., 1988).

Heat shock proteins help both the folding and degradation of damaged proteins. After a few futile

refolding attempts—most probably due to the extension of the transit time of the unfolded target protein

with the heat shock protein molecule—heat shock proteins (such as Hsp90 or Hsp70) recruit novel co‐
chaperones (like CHIP or the neuronal DnaJ proteins, HSJ1a and HSJ1b) and present their target to the

proteasome (Chapple et al., 2004; Urushitani et al., 2004; Whittier et al., 2004). The proteasomal system, in

fact, degrades a large amount of newly folded proteins in eukaryotic cells, accomplishing a very tight quality

control during the translational process (Turner and Varshavsky, 2000). The proteasome itself is also

behaving as a molecular chaperone, since its ‘‘cap’’ has to unfold damaged proteins to be able to insert

them to the tight cavity of the protease domain (Braun et al., 1999). Heat shock proteins are also involved in

lysosome‐related protein degradation, such as autophagocytosis (Chiang et al., 1989). In case of massive

protein damage, when the amount of degradable proteins exceeds the capacity of the intracellular

proteolytic systems, chaperones help to form inclusion bodies to segregate damaged proteins (Mayer

et al., 1991).
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2.2 Nonconventional Roles: Dustmen of the Cells

Heat shock proteins are regarded as molecular chaperones and their major cellular function is thought to be

associated with their role in protein folding. However, most protein folding experiments are conducted in

an in vitro environment. When protein folding is studied in vitro, the experimenter has to use rather diluted

conditions to prevent unwanted aggregation. Dilution also helps to make the kinetic analysis easier and

spares precious research materials. On the contrary to these usual experimental conditions, the cellular

environment is crowded (Zimmerman and Minton, 1993). Molecular crowding promotes protein aggrega-

tion and thus calls for an enhanced need for chaperone action. On the other hand, bona fide chaperones are

not the only cellular solutions for aggregation‐protection. Several ‘‘innocent bystanders,’’ such as tubulin

(Guha et al., 1998) or even small molecules (lipids, other amphiphyles, sugars, a class of compounds called

as chemical chaperones; Welch and Brown, 1996) may assist folding and prevent aggregation albeit at much

higher concentrations than the efficient concentration of heat shock proteins. Though we have several

important lines of evidence, which undoubtedly show the necessity of chaperones in folding of numerous

protein kinases, receptors, actin, tubulin, etc. (Hartl, 1996) we do not really know to what an extent heat

shock proteins are really used for protein folding in the eukaryotic cell, which is mostly settled to degrade

and not to repair its cellular proteins due to the energy surplus obtained from the acquired mitochondria

(Frydman et al., 1994).

With the above statements I do not want to question the importance of heat shock proteins in assisting

protein folding. Nevertheless, I would like to stress that there is enough room to think about other

important functions of heat shock proteins related to, but not equal to their participation in protein

folding. One of these possibilities lies in the peptide‐binding properties of heat shock proteins. Heat shock

proteins may behave as the ‘‘dustmen’’ of our cells. The proteasomal apparatus is most probably linked with

oligo‐ and dipeptidases and therefore the peptide‐endproducts of proteasomal degradation (Kisselev et al.,

1998) are usually cleaved further into single amino acids. However, the coupled protein–peptide degrada-

tion can leak, which may especially happen under stressed conditions like in oxidative stress. Released

peptide segments may often contain elements of important binding sites and thus may efficiently interfere

with signaling and metabolic processes. If this happened at a massive scale, this would be a disaster for the

cell. Peptides need to be eliminated, and safeguarding mechanisms must exist to correct the occasional

‘‘sloppiness’’ of degradative processes. Heat shock proteins are excellent candidates for this purpose and

their role in the collection of ‘‘peptide‐rubbish’’ must be considered besides their well‐established function

in peptide presentation for the immune system (Srivastava et al., 1998). Heat shock protein‐mediated

sequestration of bioactive molecules can be especially important in the brain where neuropeptides play a

prominent role in interneuronal signaling.
2.3 Nonconventional Roles: Organization of the Cytoarchitechture

As another important and nonconventional aspect of heat shock proteins lies in their incredibly high

affinity for complex formation. Chaperones often form dimers and tend to associate to tetramers,

hexamers, octamers, and to even higher oligomers (Benaroudj et al., 1996; Trent et al., 1997; Csermely

et al., 1998). Oligomerization usually affects only a few percent of the total protein; but by addition of

divalent cations and certain nucleotides, heat treatment enhances oligomer formation. It is important to

note that oligomerization studies were usually performed under ‘‘normal’’ in vitro experimental conditions

using a few mg/ml of purified chaperone. The in vivo concentration of chaperones is estimated to be around

a 100‐ or 1000‐fold higher. This may significantly enhance the in vivo oligomerization tendencies of these

proteins. Oligomer formation of chaperones might be further promoted by the large excluded volume effect

of the ‘‘molecularly crowded’’ cytoplasm (Zimmerman and Minton, 1993).

Different chaperones also associate with each other. The Hsp90‐organized foldosome may contain

almost a dozen independent chaperones, or co‐chaperones. The stoichiometry and affinity of these

associations dynamically varies, and the variations are affected by the folding state of the actual target (or

targets), which associate with the extensive folding machinery (Kamal et al., 2003).
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Besides binding to themselves, to their sibling‐chaperones, and to their targets, many chaperones bind

to actin filaments, tubulin, and other cellular filamentous structures such as intermediate filaments. There is

a chaperone complex associated with the centrosome (Wigley et al., 1999) and several chaperones,

especially Hsp90, were considered to be involved in the direction of cytoplasmic traffic (Pratt and Toft,

2003).

The above model describing chaperones as a highly dynamic ‘‘appendix’’ of various, and often quite

poorly identifiable, cytoplasmic filamentous structures is reminiscent of the early view (Wolosewick and

Porter, 1979; Schliwa et al., 1981) about the microtrabecular lattice of the cytoplasm. Although later studies

efficiently questioned the validity of the original electronmicroscopic evidence of the microtrabeculae,

pointing out many possibilities for artefact formation during sample preparation, several indirect evi-

dence, such as diffusion anomalies support the existence of a cytoplasmic mesh‐like structure (Clegg, 1984;
Jacobson and Wojcieszyn, 1984; Luby‐Phelps et al., 1988). The major cytoplasmic chaperones (Hsp90,

TCP1/Hsp60 and their associated proteins) may well form a part of this network in cells (Csermely, 2001a).

Our experiments showing the acceleration of the efflux of cytoplasmic constituents after the inhibition

of the major cytoplasmic heat shock protein, Hsp90, both in case of numerous cell lines (Pato et al., 2001;

Csermely et al., 2003; Sreedhar et al., 2003, 2004b) suggest the involvement of the 90‐kDa molecular

chaperone, Hsp90, in the maintenance of the cytoarchitecture. Interestingly, we did not see an acceleration

of cytoplasmic release in Escherichia coli, which is in agreement with the lower level of cytoplasmic

organization of prokaryotes compared with eukaryotes. We cannot ascertain at the moment that the faster

release of cytoplasmic proteins after the disruption of Hsp90 complexes by Hsp90 inhibitors or anti‐Hsp90

ribozyme treatment is a consequence of a disrupted cytoplasmic meshwork or shows the involvement of

Hsp90 in the stabilization of the ‘‘traditional’’ cytoskeleton. However, future experiments analyzing the

distribution of Hsp90 in the cytoplasm after these treatments as well as changes in the intracellular diffusion

rates might answer this question.

The possible involvement of heat shock proteins in the organization of the cytoplasmwere interesting in

neural cells all the more since these cells utilize the cytoarchitecture in all important aspects of their

signaling, contacts, and memory formation.
2.4 Nonconventional Roles: Buffering of Silent Mutations

In the last few years, several experiments were published, which suggested that chaperones behave as

‘‘buffers of evolutionary changes.’’ Chaperones seem to correct the conformational changes caused by

various mutations and make the genetic changes phenotypically silent in various organisms studied

(Rutherford and Lindquist, 1998; Roberts and Feder, 1999; Fares et al., 2002; Queitsch et al., 2002).

However, if a large stress occurs, the suddenly increased amount of damaged proteins may cause a

‘‘chaperone‐overload,’’ and may prevent the conformational repair of misfolded mutants. Therefore many

previously hidden genotypical changes may appear in the phenotype, resulting in a ‘‘boom’’ of genetical

variations in the whole population. This may help the selection of a beneficial change, which, in turn, may

help the adaptation of the population to changed environmental conditions. Nevertheless, most of the

exposed mutations are disadvantageous and tend to disappear from the population by natural selection.

Changes in living conditions and the significantly better medical care throughout life in the last 150

years have significantly reduced the occurrence of large physiological stresses that would normally result in

significant intracellular proteotoxicity. There is little ‘‘chaperone overload’’ during reproductive years in the

present times. Even major stressful events such as critical infections and extreme and unexpected changes in

the environment that do cause a massive ‘‘chaperone overload’’ can be mitigated by improved medical care,

thus saving lives that would otherwise have been lost. More people harboring deleterious mutations survive

today and transmit their genes to later generations. Thus improved medical care may have led to a rise in

phenotypically silent mutations in the human genome. As a consequence we may be carrying more and

more chaperone‐buffered, silent mutations from generation to generation (Csermely, 2001b).

The chance of the phenotypic manifestation of these mutations becomes especially large in aged

subjects, where protein damage is abundant, and both chaperone induction and chaperone function are
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impaired (Sőti and Csermely, 2000, 2002). Here the background of misfolded proteins increases and by

competition prevents the chaperone‐mediated buffering of silent mutations. Phenotypically exposed

mutations may contribute to a more abundant manifestation of multigene diseases, such as atherosclerosis,

autoimmune‐type diseases, cancer, diabetes, hypertensive cardiovascular disease, and several psychiatric

illnesses (Alzheimer disease, schizophrenia, etc.). Chaperone overload might be even more pronounced in

neuronal cells, where selective apoptosis and clonal expansion cannot play a kind of natural selection as it is

the case with other somatic cells. Aging neurons may begin to display more and more unexpected features.

For quite a while the robust behavior of the neural system covers these deleterious changes; however system

resistance is gradually lost and dysfunction occurs (Csermely, 2001b, 2004).

Recently, several other proteins, such as yeast prions, p53, and many others were shown to buffer

genetic changes (Scharloo, 1991; True and Lindquist, 2000; Aranda‐Anzaldo and Dent, 2003). On basis of

theoretical studies it was proposed that the number of buffering proteins is even larger (Bergman and

Siegal, 2003). However, these proteins are not all chaperones. What can be common property? Comparing

the known examples with other information on complex systems, it was suggested that the formation of low‐
affinity, weak links is the most important common feature of these proteins. Indeed, weak links were shown

to stabilize many systems from single macromolecules up to the human society (Csermely, 2004; 2006).
3 Heat Shock Proteins and Brain Function

Heat shock proteins have a complex role in most cellular functions. To have a comprehensive survey on

their involvement in brain function needs further investigations. However, a few elements of their putative

brain function have been already uncovered. Hsc70, together with the synaptic vesicle cysteine string

protein, a DnaJ homologue, forms a chaperone complex of synaptic vesicles and is involved in neurotrans-

mitter release. Targets for this chaperone machine include the vesicle protein VAMP/synaptobrevin and the

plasma membrane protein syntaxin 1 (Chamberlain and Burgoyne, 2000; Tobaben et al., 2001). Another

major chaperone, Hsp90, is necessary for the efficient neurotransmitter release at the presynaptic terminal.

Moreover, Hsp90 is a critical component of the cellular machinery that constitutively delivers glutamate

receptors into the postsynaptic membrane (Gerges et al., 2004).
4 Heat Shock Proteins in Neuroprotection

If heat shock proteins are generally cytoprotective, their beneficial effects should be observed in various

cases of neuronal damage. Indeed, overexpression of the 70‐kDa heat shock protein protected neuronal cells

from ischemic damage in an experimental stroke model (Hoehn et al., 2001), which was also observed in

epileptic models (Yenari et al., 1998). A heat shock protein coinducer molecule protected both motor and

sensory neurons after damage, where the beneficial effect was most probably due to the enhanced

expression of heat shock proteins (Kalmar et al., 2002, 2003).
5 Heat Shock Proteins and the Aging Brain

5.1 Protein Damage During Aging

During the lifespan of a stable protein, various posttranslational modifications occur (Harding et al., 1989).

These include deamidation of asparaginyl and glutaminyl residues and the subsequent formation of

isopeptide bonds (Wright, 1991), protein glycation, methionine oxidation (Sun et al., 1999), etc. In several

cases, age‐related posttranslational modifications induce conformational changes and impair protein

function: aging‐induced inactivation of isocitrate‐lyase (Reiss and Rothstein, 1974) or phosphoglycerate

kinase (Yuh and Gafni, 1987) could be associated with the accumulation of a nonnative, heat labile

conformation of the enzymes. In a refolding study, the increased helical content of ‘‘old’’ aldolase was
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preserved after refolding of the enzyme, which suggested that the conformational changes were mostly

induced by the various posttranslational modifications during the life of the protein (Demchenko et al.,

1983).
5.2 Protein Degradation in Aging

Accumulating misfolded proteins due to their vulnerability for aggregation pose a great danger to the aging

cell. Since the reason for the folding anomaly is mostly a posttranslational modification, the change

becomes irreversible and cannot be reversed by molecular chaperones. Chaperones may only accompany

these proteins, and by a stable association with their hydrophobic surfaces, prevent their aggregation. Thus

the only solution to protect the cell from these misfolded proteins is their elimination and not their repair.

Protein degradation is mostly accomplished by the proteasome and helped by various chaperones. Aging

leads to a decrease in the activity of the major cytoplasmic proteolytic apparatus, the proteasome (Conconi

et al., 1996; Heydari et al., 1994). Besides the decline in the activation of protease systems, some oxidized,

glycated, and aggregated proteins are much poorer substrates, but highly effective inhibitors of the

proteasome (Friguet et al., 1994; Bence et al., 2001; Bulteau et al., 2001). Autophagic lysosomal protein

degradation is also impaired in aged rats (Cuervo and Dice, 2000), probably due to the lipofuscin‐mediated

inhibition of autophagy (Terman et al., 1999). All these events cause a massive accumulation of post-

translationally modified, misfolded proteins. In most tissues, cells die after a large proteotoxic damage and

other cells start to proliferate to take over their functions (Sőti et al., 2003). However, in the brain, it is much

more difficult than in other tissues and due to the increased cell loss, malfunction develops.
5.3 Heat Shock Proteins in Aging Brain

Accumulation of misfolded proteins in aged organisms requires an increased amount of heat shock proteins

to prevent protein aggregation. This may be the reason why some aged species develop a constitutively

increased level of several chaperones, such as small heat shock proteins or Hsc70. On the other hand, a large

number of reports demonstrate that the induction of various chaperones is impaired in aged organisms

(Sőti and Csermely, 2000, 2002). Interestingly, while heat‐induced synthesis of Hsp70 is impaired in aged

rats, exercise in the same animal is able to induce a significant amount of Hsp70 (Kregel andMoseley, 1996).

The above general statements can be applied to chaperone levels and chaperone inducibility in the brain

of aged organisms. Level of several chaperones, such as small heat shock proteins and Hsc70 is elevated,

while the inducibility of Hsp70 is impaired (> Table 13-2). In contrast to ad libitum fed rats, Hsc70

elevation could not be observed in food‐restricted rats (Unno et al., 2000). Moreover, the brain of aged,

food‐restricted rats did not display a loss of capacity to accumulate Hsp70 in response to heat stress

(Walters et al., 2001). This shows that calorie restriction, a well‐known method to increase longevity
. Table 13-2

Chaperone expression in aging brain

Chaperone Change References

Chaperone levels

ubiquitin, Hsp27, aB‐crystallin Elevated in pallido‐nigral spheroid bodies Schultz et al., 2001

Hsc70a Elevated in pons, medulla, striatum, and thalamus Unno et al., 2000

Chaperone induction

Hsp70 Heat induction is impaired Rogue et al., 1993

Hsp70 Heat induction is maintained in food‐restricted rats Walters et al., 2001

aHsc70 denotes the noninducible (cognate) form of Hsp70
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(Hall et al., 2000; Ramsey et al., 2000), maintains the brain chaperone system in a ‘‘young state’’. On the

other hand, rats maintained on a dietary restriction schedule exhibited increased resistance of hippocampal

neurons and striatal neurons to excitotoxic and metabolic stress (Bruce‐Keller et al., 1999). Calorie

restriction also attenuated the degeneration of dopaminergic neurons in mouse Parkinson models (Duan

and Mattson, 1999).
6 Heat Shock Proteins and Neurodegenerative Diseases

Accumulation of misfolded proteins in aged organisms is especially pronounced in postmitotic cells, such

as in neurons. The threat of damaged proteins becomes even greater if the protein is protease‐resistant. The
difficulties of protein degradation, together with an impaired protease activity and chaperone action in

aging neurons, lead to a massive accumulation of these proteins and cause neurodegeneration (Macario and

Conway de Macario, 2001).

Oxidative damage and inflammatory processes are more prevalent during aging, accompany, and

aggravate neurodegeneration (Goodman and Mattson, 1994; Gibson et al., 2000; Hemmer et al., 2001).

Several molecular chaperones are involved in the maintenance of cellular redox status (Arrigo, 1998) and

protect neurons against oxidative stress (Lee et al., 1999; Yu et al., 1999). However, a direct effect of

chaperones on aging‐ or neurodegeneration‐induced redox changes has not been demonstrated yet.
6.1 Alzheimer’s Disease

The best‐known example of folding‐related neurodegenerative diseases is Alzheimer’s disease. Several

studies showed the induction of small heat shock proteins (Hsp27, crystallin), Hsp70 and ubiquitin (a

6‐kDa heat shock protein, which labels damaged proteins and directs them for proteolytic degradation), in

neurons affected by Alzheimer’s disease and in surrounding astrocytes. The accumulation of Hsp90 and (to

a smaller extent) Hsp60 was shown in the choroids plexus of brains affected with Alzheimer’s disease.

Neuronal chaperones were localized in neuritic plaques and neurofibrillary tangles (Hamos et al., 1991;

Perez et al., 1991; Cisse et al., 1993; Renkawek et al., 1993; Shinohara et al., 1993; Anthony et al., 2003;

Lukiw, 2004).

Accumulated chaperones participate in the heroic attempts of the affected neuron to sequester the

b‐amyloid and other damaged proteins in Alzheimer’s disease (Hamos et al., 1991; Kouchi et al., 1999).

However, the small heat shock protein, aB‐crystallin, enhanced the neurotoxicity of the b‐amyloid 1–40

peptide probably by keeping it in a nonfibrillar, highly toxic form (Stege et al., 1999). Cytoplasmic Hsp60,

a specific chaperone for actin and tubulin, is decreased in Alzheimer’s disease‐affected neurons, leaving

the cytoskeletal proteins deficient and aggregated (Schuller et al., 2001). Nonaffected nerve cells of

Alzheimer victims, such as olfactory neurons (Getchell et al., 1995), also showed a decreased expression

of Hsp70.

The pathologically hyperphosphorylated tau protein is often associated with b‐amyloid fibers. Hsp27

has been shown to bind the hyperphosphorylated tau protein preferentially. The formation of this complex

altered the conformation of pathological, hyperphosphorylated tau and reduced its concentration by

facilitating its degradation and dephosphorylation. Hsp27 also prevented pathological hyperphosphory-

lated tau‐mediated cell death (Shimura et al., 2004).

Since the amyloid precursor is an integral protein of the plasma membrane, which is usually processed

in the endoplasmic reticulum (ER), the ER might be an especially important site for the fight for cell

survival. Indeed, calreticulin, an abundant ER chaperone was shown to participate in the quality control of

the amyloid precursor protein (Johnson et al., 2001) and the ER‐homologue of Hsp70, Grp78, had an

increased expression in successfully surviving neurons (Hamos et al., 1991). There are reports to show that

mutant presenilin‐1, an ER transmembrane protein being the most prevalent cause of early‐onset familial

Alzheimer’s disease, impairs the ER chaperone response and thus sensitizes the affected neuron to apoptosis.

However, this latter finding could not be confirmed in other systems (Lee, 2001).
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6.2 Parkinson’s Disease

Parkinson’s disease is an age‐related disorder characterized by a progressive degeneration of dopaminergic

neurons in the substantia nigra and shows a corresponding motor deficit. An increasing number of evidence

shows that besides oxidative stress and mitochondrial dysfunction, protein folding defects are also key

elements of Parkinson’s disease etiology. Glial and astroglial cells of Parkinson’s disease victims showed the

expression of aB‐crystallin, as seen in Alzheimer’s disease, and aggregated proteins in Lewy bodies had a

large content of various heat shock proteins, as observed in neurofibrillary tangles (Jellinger, 2000). Dietary

restriction induced an expression of Hsp70 and Grp78 parallel with a protection in a Parkinson’s disease

model (Duan and Mattson, 1999). Interestingly, parkin, the protein whose mutations cause the autosomal

recessive juvenile parkinsonism was identified as an ubiquitin‐ligase, playing a key role in the degradation

of ER‐misfolded proteins, such as a G‐protein‐coupled membrane receptor, called Pael, and synphilin, an

a‐synuclein interacting protein (Chung et al., 2001; Imai et al., 2001). This gives us one more example for

the similarities of the protein‐folding homeostasis in Parkinson’s and Alzheimer’s diseases.
6.3 Huntington’s Disease

Polyglutamine repeats make proteins vulnerable for aggregation. Diseases such as Huntington’s disease,

Kennedy spinal bulbar muscular atrophy, spinocerebral ataxia, Machado‐Joseph disease all develop due to

an expansion of polyglutamine segments in the respective proteins. Chaperones colocalize with the

aggregates of these polyglutamine‐containing proteins and increased chaperone levels such as that of

Hsp40, Hsp60, Hsp70, Hsc70, Hsp100 inhibit polyglutamine‐containing protein aggregation and slow

down the progress of the disease (Cummings et al., 1998; Krobitsch and Lindquist, 2000; Carmichael et al.,

2000; Hughes and Olson, 2001).
7 Heat Shock Protein‐Related Therapeutic Approaches

The beneficial role of heat shock proteins in neuronal survival and their protection against various insults

including ischemia, excitatory damage as well as as various forms of neurodegeneration make them

prominent therapeutic targets. However, heat shock proteins are not only protecting damaged neurons,

but they also protect malignantly transformed neural cells. Here the inhibition of neural heat shock proteins

might be a good approach to fight against brain tumors.
7.1 Heat Shock Protein Inhibition: Brain Tumors

When heat shock proteins protect our malignant cells, they are not really beneficial. Still the inhibition of

proteins, which have a profound role in the survival of all cells, seems to be a wild idea. However, if we

consider that heat shock proteins are necessary for the folding of cyclin‐dependent kinases and numerous

other proteins which are upregulated in cancer (Neckers, 2003; Workman, 2004) and some of the heat

shock protein inhibitors are selectively enriched in tumor cells (Chiosis et al., 2003) as well as selectively

interact with tumor‐specific forms of heat shock proteins (Kamal et al., 2003), we begin to believe that heat

shock protein inhibition might be a valid pharmacological intervention against tumors. Indeed, heat shock

protein inhibitors are currently in clinical trials against various forms of cancer (Neckers, 2003; Workman,

2004).

Since the 90‐kDa molecular chaperone (Hsp90) has the most specific and most cell‐permeable inhibi-

tors and since this chaperone is the center of the kinase‐related chaperone machinery, in most cases

chaperone‐based inhibition is achieved by using Hsp90 inhibitors. The first Hsp90 inhibitor drug was

geldanamycin, a natural product isolated from Streptomyces hygroscopicus. Though the antitumor effects

of geldanamycin were initially thought to be due to specific tyrosine kinase inhibition, later studies revealed
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that the antitumor potential relies on depletion of oncogenic protein kinases via the proteasome (Whitesell

et al., 1994). The major regulatory signaling proteins, which are affected by geldanamycin, include the

protooncogene kinases ErbB2, EGF, v‐Src, Raf‐1, and Cdk4 (Neckers, 2003; Workman, 2004). Radicicol,

another Hsp90 inhibitor (Soga et al., 1998), is a macrocyclic antibiotic isolated from Monosporium

bonorden. As a recent development, PU3, a purine‐based Hsp90 inhibitor was designed using X‐ray
crystallographic data. PU3 behaves like geldanamycin in inhibiting Hsp90 client protein degradation, and

possesses a robust antitumor potential (Chiosis et al., 2002). Recently it was shown that Hsp90 contains a

second nucleotide‐binding site at the C‐terminal domain (Marcu et al., 2000; Garnier et al., 2002; Sőti et al.,

2002), which opens up new possibilities to develop Hsp90 inhibitors.

In agreement with the above considerations, the overexpression of Hsp27 and other small heat

shock proteins has been found in gliomas and in other types of brain tumors (Hitotsumatsu et al., 1996;

Zhang et al., 2003). Geldanamycin was shown to be effective in the treatment of medulloblastomas

(Calabrese et al., 2003), gliomas, and glioblastomas (Yang et al., 2001; Zagzag et al., 2003).

7.2 Heat Shock Protein Induction: Brain Damage and Neurodegenerative
Diseases

Induction of heat shock proteins is a part of cellular self‐defense, which is mobilized in most disease states,

e.g. by fever. However, heat shock protein induction may not be enough or the chronic disease may

attenuate the level of induction. Heat shock protein induction becomes especially aggravated in aged

organisms as described before. Because of these reasons, it was highly beneficial to help the expression of

heat shock proteins. Several common drugs, such as aspirin (Jurivich et al., 1992), promote the induction

of heat shock proteins; however, recently a specific heat shock protein coinducer drug family (Vı́gh et al.,
. Figure 13-2

Competition for chaperone occupancy and its changes in the ageing process. Clockwise from bottom: a,

Cytoplasmic chaperones of eukaryotic cells participate in the maintenance of the conformation of some

selected protein substrates. Most of these unstable proteins are parts of various signaling cascades (Csermely

et al., 1998; Pratt et al., 1999). b, Chaperones form low‐affinity and highly dynamic extensions of the cytoskele-

ton participating in cellular traffic and in the organization of the cytoarchitecture (Csermely, 2001a; Pratt et al.,

1999). c, phenotypically buffered, silent mutations require the assistance of chaperones to rescue them from

folding traps (Rutherford and Lindquist, 1998; Csermely, 2001b). d, During the aging process, chaperones

become more and more occupied by damaged proteins. As a consequence of this (a) signaling is impaired

silent, (b) cell architecture becomes disorganized, and (c) mutations escape and contribute to the onset of

polygenic diseases. The verification of these – presently largely hypothetical – changes requires further

experimentation
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1997; Török et al., 2003) extending the duration of DNA binding by the specific transcription factor

inducing heat shock proteins (Hargitai et al., 2003) has also been described. These drug candidates work

only in stressed cells, which already started the induction of heat shock proteins themselves. They protected

both motor and sensory neurons after damage where the beneficial effect was most probably due to the

enhanced expression of heat shock proteins (Kalmar et al., 2002, 2003). Moreover, heat shock protein

coinducer drugs were shown to improve the conditions of superoxide dismutase mutant mice, which

develop the symptoms of amyotrophic lateral sclerosis (ALS) or Lou Gehrig’s disease (Kieran et al., 2004).
8 Closing Remarks

Numerous key elements of cellular life are competing with each other for the maintenance and repair

function of heat shock proteins (damaged proteins, signaling proteins, silent mutations, and cytoarchitec-

ture, see > Figure 13-2). Therefore, heat shock proteins emerge as a central switchboard of the integration

of cellular homeostasis. Their induction is highly beneficial to protect neurons against oxidative or

neuroexcitatory damage. On the contrary, heat shock protein inhibition may be a promising tool to fight

against brain tumors. I hope that with this short review I may increase the courage of some fellow scientists

to enter this difficult, but very promising path of multidisciplinary research.
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Sőti C, Csermely P. 2000. Molecular chaperones and the aging

process. Biogerontology 1: 225-233.
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Abstract: This chapter focuses on the role of glial fibrillary acidic protein (GFAP) and other intermediate

filament (IF) proteins expressed in astroglial cells under physiological situations and it also discusses their

functions in the context of selected central nervous system (CNS) pathologies. We have paid particular

attention to mouse genetic models, which in the last decade have significantly advanced our understanding

of the function of IF proteins in many cell types including astroglial cells.

List of Abbreviations: CNS, central nervous system; ENU, ethylnitrosourea; GFAP, glial fibrillary acidic

protein; IF, intermediate filament
1 Introduction

Glial fibrillary acidic protein (GFAP) is a well‐known astrocyte marker, even though it can also be found in

several cell types outside the central nervous system (CNS). In the CNS, GFAP is the major component of

astrocyte intermediate filaments (IFs). IFs are cytosketetal structures that are composed of GFAP and

vimentin in mature nonreactive astrocytes, and of GFAP, vimentin, and nestin in reactive astrocytes.

Upregulation of IF proteins in reactive astrocytes is a well‐known hallmark of so‐called reactive gliosis

(known also as astrogliosis) that accompanies many pathological situations in the CNS, such as trauma and

hypoxia.
2 Intermediate Filament Proteins Expressed in Astrocytes

2.1 Glial Fibrillary Acidic Protein

GFAP (432 amino acids) was first identified in 1971 when it was isolated from the CNS of patients suffering

from multiple sclerosis (Eng et al., 1971). During the last 30 years, GFAP has been used as the primary

marker of mature astrocytes in the CNS (Eng et al., 2000). The human GFAP gene is located on

chromosome 17 (Reeves et al., 1989), while the mouse gene lies on chromosome 11 (Bernier et al.,

1988). Like other genes coding for IF proteins, the GFAP gene is highly conserved among species (Balcarek

and Cowan, 1985; Nielsen and Jorgensen, 2003). Transcription of GFAP is controlled through several

different regulatory elements, which were described in both humans and rodents (Miura et al., 1990;

Besnard et al., 1991; Sarid, 1991; Sarkar and Cowan, 1991; Kaneko and Sueoka, 1993; Brenner, 1994). About

2 kb of both the human and rodent GFAP promoter was shown to be sufficient to direct the expression of

reporter genes to astrocytes (Brenner et al., 1994; Johnson et al., 1995; Brenner and Messing, 1996).

Constructs containing variable length of the GFAP promoter have been used to direct gene expression to

astroglial cells as well as to GFAP‐positive cells outside the CNS (for review see Su et al., 2004). Regulatory

elements of the GFAP gene were mapped to a distal and to a proximal region within this 2‐kb‐long sequence
(Miura et al., 1990; Sarkar and Cowan, 1991; Masood et al., 1993) and include the consensus AP‐1
sequence, a binding site for the Fos and Jun families of transcription factors (Sarid, 1991; Masood et al.,

1993; Yu et al., 1995).

The GFAP gene contains several methylation sites, which were suggested to control cell differentiation,

and the extent of methylation is lower in neural than in nonneural tissues (Condorelli et al., 1994, 1997;

Teter et al., 1994; Barresi et al., 1999). It was suggested that GFAP promoter region at position �1176 is

demethylated during development in cells of neuroectodermal origin in the CNS and later remethylated in

the mature cells (Teter et al., 1996; Barresi et al., 1999). The demethylation and remethylation of a binding

element for transcription factors such as STAT3 might induce differentiation toward a glial lineage

(Takizawa et al., 2001). Song and Ghosh (2004) reported that FGF‐2 facilitates the access for transcription
factor STAT to the promoter binding site by inducing chromatin remodeling at the GFAP promoter

through altered methylation of histone H3.
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2.2 Vimentin

Apart from being found in astroglial cells, vimentin is found mainly in cells of mesenchymal origin (Bernal

and Stahel, 1985). The human vimentin gene encodes a 466‐amino‐acid‐long protein and is located on

chromosome 10 (Ferrari et al., 1986). Several regulatory elements in the vimentin promoter region have been

described (Pieper et al., 1987; Paulin et al., 1990; Kryszke and Vicart, 1998; Izmailova et al., 1999); however,

their involvement in astrocytic expression of vimentin remains incompletely understood. Like the GFAP

gene, the vimentin promoter region contains the AP‐1 sequence that activates vimentin expression through

the Jun and Fos pathways (Sommers et al., 1994; Moura‐Neto et al., 1996). Silencer elements with binding

sites for regulatory factors Sp1 and ZBP‐89 (Pieper et al., 1992; van de Klundert et al., 1992; Wieczorek et al.,

2000; Zhang et al., 2003) as well as anNF‐kB binding site have been identified (Lilienbaum and Paulin, 1993).
2.3 Nestin

Nestin is an unusually long IF protein (1618 amino acids) andmost of the amino acids belong to the long tail

domain (Dahlstrand et al., 1992). The human nestin gene is located on chromosome 1 (Dahlstrand et al.,

1992). Nestin is widely expressed during development in the nervous system, in the developing muscle

(Sejersen and Lendahl, 1993; Kachinsky et al., 1994), and in the adult CNS, e.g. in neural stem cells, reactive

astrocytes, and endothelial cells (Hockfield and McKay, 1985; Lendahl et al., 1990; Dahlstrand et al., 1995;

Frisen et al., 1995; Sugawara et al., 2002). Important enhancer elements for the expression of nestin in the

embryonic CNS were identified in the second intron of the gene (Zimmerman et al., 1994; Lothian and

Lendahl, 1997; Josephson et al., 1998; Lothian et al., 1999; Yaworsky and Kappen, 1999). In the adult CNS, a

636‐bp region of the second intron in the rat nestin gene is sufficient for nestin expression in the neurogenic

zones, but not for a maximal response in nestin expression in reactive astrocytes upon injury (Johansson

et al., 2002).
3 IFs and Their Formation in Astroglial Cells

The IFs can be considered the least understood part of the cytoskeleton. The family of IF proteins expressed

in vertebrates is large (in humans 65 different IF proteins have been identified (Herrmann et al., 2003;

Herrmann and Aebi, 2004) (> Table 14-1), and there is a complex expression pattern of IF proteins unique

for each cell type as well as for different developmental stages. In contrast to the globular subunits of

microtubules and actin filaments, the subunits of IFs are highly elongated molecules with a central a‐helical
rod domain flanked by globular N‐terminal head and C‐terminal tail domains. The head and tail domains

are highly variable in size and sequence (Steinert and Parry, 1985), while the a‐helical rod of approximately

300 amino acids has a strictly conserved substructure of heptad repeats (abcdefg)n, where the positions a

and d are generally apolar residues, which favors the formation of coiled coils between two a‐helices
(Steinert and Roop, 1988). The monomers assemble into dimers, which assemble into antiparallel tetramers

or larger subunits of polymers that are then incorporated into the IF network (Herrmann et al., 2003).

The dynamic feature of the IF network depends both on the equilibrium between filaments and

unassembled subunits and on the regulation of filament assembly/disassembly by phosphorylation of the

head domain of the IF proteins.

IFs were at first considered to be static structures primarily responsible for maintaining the cell shape

(Rueger et al., 1979; Renner et al., 1981). However, later studies, both in vitro (Angelides et al., 1989;

Nakamura et al., 1991) and in vivo (Miller et al., 1991; Wiegers et al., 1991; Vikstrom et al., 1992; Yoon et al.,

1998), revealed the rather dynamic nature of IFs and the existence of a dynamic equilibrium between the

assembled filaments and the pool of soluble subunits (reviewed in Goldman et al., 1999). Vikström and

coworkers assessed the turnover of vimentin subunits in IF fibers in vitro by using rhodamine‐labeled
vimentin that was injected into fibroblasts and readily incorporated into the endogenous IF network. After



. Table 14-1

The main IF proteins and the cell-types expressing them (examples)

IF protein type Molecular weight kDa Cell-type

I

Acidic keratins 40-64 Epithelial cells

II

Basic keratins 52-68 Epithelial cells

III

Vimentin 55 Mesenchyme, Astrocytes

Desmin 53 Muscle

GFAP 50-52 Astrocytes

Peripherin 54 Neurons

IV

Neurofilament-L, -M and -H 68-130 Neurons

Internexin 56 Developing CNS

V

Lamin A, B and C 62-68 Nuclear envelope

VI

Nestin 240 Neural stem cells, Astrocytes
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bleaching the fluorescent IF fibers with a laser beam, fluorescence returned to the IF fibers throughout their

length within only a few minutes, proving the existence of a pool of subunits and unpolymerized IF proteins

that are in a dynamic equilibrium with the IF network (Vikstrom et al., 1992). Nonfilamentous IF protein

can be rapidly transported along the microtubule tracks (Prahlad et al., 1998; Helfand et al., 2003), implying

a complex crosstalk between different cytoskeletal systems (Chou et al., 2001).

Various kinases, such as cdc2 kinase, protein kinase A, protein kinase C, Ca2þ/calmodulin‐dependent
protein kinase II and Rho kinase, all phosphorylate GFAP and thereby both increase the disassembly of IFs

and inhibit the filament assembly (Matsuoka et al., 1992; Tsujimura et al., 1994; Nakamura et al., 1996;

Kosako et al., 1997). These events increase the pool of free, phosphorylated monomers that can readily be

reassembled after dephosphorylation by phosphatases. Phosphorylation of several serine and threonine

residues, predominantly on the N‐terminal head domain of the GFAP molecule, is important for the

rearrangements of the IF network in situations such as cell motility (Inagaki et al., 1990; Nishizawa et al.,

1991; Nakamura et al., 1992; Inagaki et al., 1994). Even though phosphorylation is a general mechanism

that regulates the equilibrium and turnover rate of different pools of IFs, the specificity seems to be achieved

by the existence of distinct phosphorylation sites and kinases (Nakamura et al., 1992; Takemura et al.,

2002a), e.g., Rho kinase phosphorylating GFAP in cytokinesis (Yasui et al., 1998). Different subpopulations

of astrocytes in vivo seem to contain different levels of phosphorylated GFAP, suggesting a role for

phosphorylation in the nondividing astroglial cells (Takemura et al., 2002b).

In vivo, IFs are often, if not always, heteropolymeric (Herrmann and Aebi, 2000). Transgenic mice

deficient in individual IF proteins were instrumental in determining the partnership in the formation of IF

heteropolymers in astrocytes. In nonreactive astrocytes, IFs are formed of GFAP and vimentin, while in

reactive astrocytes, nestin can be found as the additional partner in the IF network (Pekny et al., 1998a)

(> Table 14-2). The studies of astrocytes lacking GFAP and/or vimentin revealed that GFAP can form IFs on

its own in vimentin‐deficient (Vim(�/�)) astrocytes, but such filaments form more compact bundles than

in wild‐type astrocytes (> Figure 14-1a–d), (> Table 14-3), suggesting that at least a low level of vimentin is

needed for normal IF formation in the astrocytes (Eliasson et al., 1999; Lepekhin et al., 2001; Menet et al.,

2001). Studies on mice deficient in GFAP (GFAP(�/�)) showed that vimentin does not seem to form IF

on its own, or it does so only with a very low efficiency (Pekny et al., 1995; McCall et al., 1996) (> Figure

14-1e–f ). In contrast, the reactive GFAP(�/�) astrocytes contain IFs since vimentin can polymerize with

nestin, which is expressed in reactive astrocytes (Eliasson et al., 1999). GFAP does not polymerize



. Figure 14-1

Cytoplasmic details of wild‐type astrocytes and astrocytes lacking vimentin (Vim(�/�)) or GFAP (GFAP(�/�)) in

the dorsal funiculus of the cervical spinal cord of healthy adult mice. Compared with wild‐type astrocytes (a, c),
in Vim(�/�) astrocytes (b, d), intermediate filaments (IFs) are composed of GFAP but not nestin and form

more densely packed bundles with the distance between the adjacent IFs being reduced. The IF bundles

were sectioned transversally (a, b) and longitudinally (c, d). (Reproduced with permission from Eliasson et al.,

1999.) While wild‐type astrocytes in the intact central nervous system (CNS) contain abundant IFs (asterisk, e),

GFAP(�/�) astrocytes are devoid of IFs (f). (Reproduced with permission from Pekny et al., 1995.)

. Table 14-2

Composition of IFs in nonreactive and reactive astrocytes of wild-type mice and mice deficient in GFAP and/

or vimentin

Composition of IFs
Reactive astrocytes: IF amount/

bundlingGenotype Nonreactive astrocytes Reactive astrocytes

Wild-type GFAP, vimentin GFAP, vimentin, nestin Normal/normal

GFAP–/– No IFs (nonfilamentous

vimentin)

Vimentin, nestin Decreased/normal

Vim–/– GFAP GFAP (nonfilamentous

nestin)

Decreased/tight

GFAP–/–

Vim–/–

No IFs No IFs (nonfilamentous

nestin)

–
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. Figure 14-2

Reactive astrocytes in vitro from wild‐type mice and mice deficient for GFAP and/or vimentin. Reactive

astrocytes in a primary culture prepared from wild‐type (WT), GFAP(�/�) (G), Vim(�/�) (V), and GFAP(�/�)

Vim(�/�) (GV) mice. Nestin antibodies facilitate visualization of bundles of intermediate filaments (IFs) in wild‐
type and GFAP(�/�) astrocytes but fail to do so in Vim(�/�) or GFAP(�/�)Vim(�/�) astrocytes, indicating that

nestin can neither copolymerize nor coassemble with GFAP. This was also confirmed at a biochemical level

(Eliasson et al., 1999). Vim(�/�) reactive astrocytes contain IF bundles that can be visualized by antibodies

against GFAP, albeit with a reduced distance between individual IFs (see > Figure 14-1 and > Table 14-3). Bar,

10 mm. (Reproduced with permission from Eliasson et al., 1999.)

. Table 14-3

Quantitative comparison of the density of IFs within IF bundles in wild-type and Vim–/– astrocytes in the

intact CNS

Mice Mean ± SEM Significance

Number of IFs/0.1 μm2 (cross-section) Wild-type 215 ± 8 p < 0.0001

Vim–/– 334 ± 7

Distance between IFs within a bundle (nm) Wild-type 11.8 ± 0.5

Vim–/– 4.9 ± 0.3 p < 0.0001

294 14 GFAP and astrocyte intermediate filaments
with nestin in reactive Vim(�/�) astrocytes and consequently, the IFs contain only GFAP and they exhibit

the characteristic tight bundling similar to Vim(�/�) nonreactive astrocytes. In reactive astrocytes lacking

both GFAP and vimentin (GFAP(�/�)Vim(�/�)) no IFs are formed, and the nestin protein that is

produced stays in a nonfilamentous form (Eliasson et al., 1999) (> Figure 14-2 and >Table 14-2). Nestin

was proposed to facilitate phosphorylation‐dependent disassembly of vimentin IFs during mitosis and to

play a role in the distribution of IF protein to daughter cells (Chou et al., 2003). The IF protein synemin was

detected in some astroglial cell populations that express both GFAP and vimentin, suggesting that in

astroglial cells, GFAP and vimentin may be necessary for synemin polymerization (Hirako et al., 2003).



GFAP and astrocyte intermediate filaments 14 295
4 During Differentiation of Astroglial Cells, Nestin and Vimentin Appear
Before GFAP

The first astroglial cells that are derived from neuroectoderm during CNS development are the radial glia.

Radial glia are proliferating precursor cells that later on differentiate into neurons and more mature glial

cells. The radial processes of these cells span the entire thickness of the neural tube and they function as

migratory paths for the immature neurons (reviewed in Gotz et al., 2002). In lower vertebrates the radial

glia persist into adulthood (Chanas‐Sacre et al., 2000). In mammals, most of radial glia are transformed into

astrocytes around the time of birth (Alves et al., 2002; deAzevedo et al., 2003). In some regions of the CNS

though, the radial glia persist into adulthood: in the cerebellum as Bergmann glia (Choi and Lapham, 1980)

and in the retina as Müller cells (Edwards et al., 1990) (> Figure 14-3a). During early development, the IFs

in the radial glia are composed of nestin (Dahlstrand et al., 1995) and vimentin (Pixley and de Vellis, 1984;

Kalman et al., 1998). In primates, the IF network in radial glia also contain GFAP, which is predominantly

localized in the main cellular processes (Levitt and Rakic, 1980).

Around the time of birth, the radial glia of the mammalian CNS transform into astrocytes and the

expression of vimentin decreases while the expression of GFAP gradually increases (Sancho‐Tello et al.,

1995). In mice, the amount of GFAPmessenger RNA (mRNA) in the brain increases postnatally and reaches

the peak at postnatal day 15 when cell proliferation declines (Tardy et al., 1989; Riol et al., 1992). The levels

of nestin do not seem to be altered until the transition from radial glia into adult astrocytes is completed

and then it is downregulated (Kalman and Ajtai, 2001). The IF protein synemin was reported to be

transiently expressed in some immature astrocytes (Sultana et al., 2000).

Thus, the IF network of mature astrocytes is composed of GFAP as the major IF protein and

vimentin ranging from very low to intermediate levels depending on the subpopulation of astrocytes

(Shaw et al., 1981; Pixley et al., 1984). Mature astrocytes have fine processes extending from the main

cellular processes and they give each cell a characteristic bushy appearance (> Figure 14-3b). The IF

network, however, is restricted to the main processes and the soma of astrocytes (Bushong et al., 2002,

2004) (> Figure 14-3d–f ).

It was proposed that GFAP‐positive astroglial cells are involved in the baseline neurogenesis in the

adult mammalian CNS. Recent data suggest that astrocytes positively control neurogenesis in the two

regions of the adult CNS, specifically in the dentate gyrus of the hippocampus and in the subventricular

zone, i.e., the only two CNS regions in which new neurons are generated in relatively high numbers even

in the adult (Song et al., 2002). Most recently, it was suggested that the majority of neural stem cells in

the adult CNS are at some point GFAP‐positive, i.e., could be defined as astroglial cells (Doetsch et al.,

1999; Laywell et al., 2000; Imura et al., 2003; Morshead et al., 2003). Thus, astroglial cells might be

both the cell type that controls adult neurogenesis and the precursors to all neurons that are added in

adult life.
5 Mouse Genetic Models to Study the Function of GFAP and Astrocyte IFs

Astrocytes are the most numerous cells in the CNS and they were assumed to be involved in many CNS

pathologies, such as trauma, ischemia, or neurodegenerative diseases. In response to any kind of injury in

the CNS, astrocytes change their appearance and undergo a characteristic hypertrophy of their cellular

processes. This phenomenon is known as reactive gliosis or astrogliosis with its hallmark being upregula-

tion of GFAP and vimentin, reexpression of nestin as well as altered expression profiles of many proteins

(Eddleston and Mucke, 1993; Hernandez et al., 2002). Genetic depletion of astrocyte IF proteins in mouse

genetic models has shed substantial light on the physiological and pathological function of astrocytes in

health and disease (Pekny, 2001). Experiments that subjected the mice with partial or complete depletion of

astrocyte IFs to various disease paradigms showed the importance of this part of the cytoskeleton in a

number of pathological situations affecting the CNS.

While experiments with mice deficient in GFAP and/or vimentin did not show major CNS phenotypes

(Colucci‐Guyon et al., 1994; Gomi et al., 1995; Pekny et al., 1995; McCall et al., 1996), they suggested that



. Figure 14-3

Visualization of astroglial cell morphology in vivo. a, mouse retina with GFAP‐positive Müller cells and

astrocytes (intermingled with blood vessels in the upper part of the figure). During development of the central

nervous system (CNS), radial glia guide neurons into their final destinations. Later on, most radial glia

differentiate into various astroglial cell types; however, in the retina and cerebellum, they persist into

adulthood as Müller cells and Bergmann glia, respectively. Parallel arrays of Müller cells and a network of

astrocytes are both visualized by antibodies against GFAP, vessels are visualized by isolectin. The picture is the

courtesy of Lundkvist and Pekny (reproduced from the cover of J Cell Sci, 117:16, 2004); b, three‐dimensional

reconstruction of astrocytes. Astrocytes in the adult mouse hippocampus filled with two different dyes (Alexa

568, gray, and Lucifer yellow, white). The CNS is divided into domains and each of them is accessed by fine

cellular processes of an astrocyte. (Courtesy of Wilhelmsson, Bushong, Ellisman, and Pekny.); c, astrocytes in

the brain cortex visualized by antibodies against GFAP; d–f, reactive astrocytes after dye filling and three‐
dimensional reconstruction. Note the typical bushy appearance of astrocytes with fine cellular processes, which

cannot be visualized by antibodies against GFAP (compare the central astrocyte in d, e, and f ). Scale bar, 20mm.

(Reproduced with permission from Wilhelmsson et al., 2004.)
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astrocytes influence neuronal physiology in the hippocampus (McCall et al., 1996; Tanaka et al., 2002) and

in the cerebellum (Shibuki et al., 1996; Colucci‐Guyon et al., 1999). The absence of IF proteins in astroglial

cells seems to alter communication between Bergmann glia and Purkinje cells, and this results in impaired

eyeblink conditioning and long‐term depression in the cerebellum of GFAP(�/�) mice (Shibuki et al.,

1996) and impaired motor coordination in Vim(�/�) mice (Colucci‐Guyon et al., 1999). One of the four

groups that independently generated GFAP(�/�) mice reported white matter pathologies and dysmyelina-

tion in their unchallenged GFAP(�/�) mice (Liedtke et al., 1996), while the other three groups did not see

such changes in their respective GFAP(�/�) mice (Gomi et al., 1995; Pekny et al., 1995; McCall et al., 1996).

This discrepancy still remains to be solved. Interestingly, the same group reported increased susceptibility of

GFAP(�/�) mice to experimental autoimmune encephalomyelitis, a model of multiple sclerosis (Liedtke

et al., 1998).
5.1 GFAP and Blood–Brain Barrier Reconstruction

Astrocytes are known to induce blood–brain barrier properties in endothelial cells. These include tight

junctions between individual endothelial cells and the presence of active transport mechanisms, the features

that limit fluctuations in many biochemical parameters in the brain, spinal cord, or retina (in the latter case,

the term blood–retina barrier is often used) (Smith, 2003). Even though the molecular mechanisms behind

this induction remain incompletely understood, physical contact or close proximity between astrocytes and

endothelial cells seem to be important. In fact, capillaries in the CNS are extensively covered by astrocytic

processes that contain abundant IFs (> Figure 14-4a–b).

In the absence of any injury, the GFAP(�/�) mice show normal blood–brain barrier, at least for large

molecular complexes, such as albumin–Evans blue (Pekny et al., 1995) or horse radish peroxidase (Shibuki

et al., 1996), which readily enter all the other tissues through fenestrations in the capillary wall but not the

CNS, in which capillaries lack such fenestrations. These experiments were recently extended to GFAP(�/�)

Vim(�/�) mice, which also showed intact blood–brain barrier for large molecular complexes (> Figure

14-4c). Reconstruction of blood–brain barrier after CNS trauma or brain ischemia is considered to limit the

extent of damage in the CNS. By utilizing the in vitro model of blood–brain barrier, Janigro’s and Pekny’s

groups compared the ability of wild‐type and GFAP(�/�) reactive astrocytes to induce blood–barrier

properties in aortic endothelial cells. GFAP(�/�) reactive astrocytes failed to induce a significant barrier for

potassium, while the barrier against albumin–Evan blue complexes developed normally (Pekny et al.,

1998b) (> Figure 14-4d).
. Figure 14-4

Intermediate filament (IF) proteins and the blood–brain barrier. a, astrocytic processes (in gray, visualized by

using antibodies against GFAP)make extensive contacts with capillaries throughout the central nervous system

(CNS); capillaries are visualized by antibodies against smooth‐muscle‐specific alpha‐actin (ASMA), a marker of

pericytes (in white), which are, together with endothelial cells, the main structural components of capillaries

(courtesy of Lundkvist and Pekny); b, astrocyte processes forming a tube‐like structure (arrow) around a

capillary are shown after three‐dimensional reconstruction of a dye‐filled astrocyte in the dentate gyrus of

the mouse hippocampus (the capillary itself is invisible, courtesy of Wilhelmsson, Bushong, Ellisman, and

Pekny); c, Evans blue, following intravenous administration, does not leak out from the vascular system of

wild‐type (WT), GFAP(�/�) (G), and GFAP(�/�)Vim(�/�) (GV) mice, indicating a functional blood–brain barrier

for large molecular complexes in mice deficient for astrocyte IF proteins (GFAP(�/�)Vim(�/�) mice, Eliasson

and Pekny, unpublished data); d, the blood–brain barrier in vitro model. In contrast to wild‐type astrocytes,

which over time induce increasing resistance of endothelial cells to potassium extravasation, GFAP(�/�)

astrocytes fail to induce blood–brain barrier to intraluminally applied potassium after 1, 3, or 4 weeks of

coculturing with endothelial cells. (Reproduced with permission from Pekny et al., 1998b.)

Figure 14-4 (overleaf)
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5.2 Brain and Spinal Cord Trauma in Mice Deficient in GFAP and/or Vimentin

To assess the role of IF upregulation in reactive astrocytes in CNS injury, several trauma models were

applied to mice deficient in GFAP and/or vimentin. Fine needle injury of the brain cortex and transection

of the dorsal funiculus in the upper thoracic spinal cord were two of the models used. The responses of
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wild‐type, GFAP(�/�), and Vim(�/�) mice were indistinguishable. In GFAP(�/�)Vim(�/�) mice,

however, the posttraumatic glial scarring was looser and less organized, suggesting that upregulation of

IFs is an important step in astrocyte activation. These data also imply that reactive astrocytes play a role in

posttraumatic healing (Pekny et al., 1999b) (> Figure 14-5).
. Figure 14-5

Glial scarring in the absence of astrocyte intermediate filament (IF) proteins. Wound healing after transection of

the dorsal funiculus in the upper thoracic spinal cord takes longer in GFAP(�/�)Vim(�/�) than in wild‐type
mice, and the resulting glial scarring is reduced. H&E staining. Bar, 300 mm in a–d and 100 mm in e–f.

(Reproduced with permission from Pekny et al., 1999b.)
Similarly, extended healing period following CNS injury was reported in mice in which dividing

astrocytes had been ablated by GFAP‐driven expression of herpes simplex virus thymidine kinase and

administration of ganciclovir (Bush et al., 1999; Faulkner et al., 2004).

Another study used hemisections of the lower thoracic spinal cord and reported increased axonal

sprouting and better functional recovery in GFAP(�/�)Vim(�/�) mice than in wild‐type controls (Menet

et al., 2003). Two groups addressed the role of astrocyte IFs in neurite outgrowth in vitro (Xu et al., 1999;

Menet et al., 2000, 2001). One group reported that GFAP(�/�)Vim(�/�) and GFAP(�/�) astrocytes were

a better substrate for the outgrowth of neurites in vitro than wild‐type astrocytes (Menet et al., 2000, 2001).

The other group found comparable neurite outgrowth when neurons were cultured on wild‐type and GFAP
(�/�) astrocytes (Xu et al., 1999). The latter finding is in agreement with the normal axonal sprouting and

regeneration assessed after dorsal hemisection of the spinal cord in GFAP(�/�) mice (Wang et al., 1997).

Most recently, extensive axonal regeneration was reported in the severed optic nerve of young GFAP

(�/�) Vim(�/�) mice which also carried a transgene overexpressing Bcl2 in neurons (Cho et al., 2005).
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5.3 Astrocyte IFs and Cell Motility

Lepekhin and coworkers assessed the role of astrocyte IFs in cell motility by comparing the motility of

primary cultures of astrocytes from GFAP(�/�), Vim(�/�), and GFAP(�/�)Vim(�/�) mice. They

showed that the fast‐moving subpopulation was depleted partially among GFAP(�/�) and Vim(�/�)

astrocytes and more profoundly among GFAP(�/�)Vim(�/�) astrocytes (Lepekhin et al., 2001)

(> Figure 14-6). Astrocytes are known to migrate over considerable distances to sites of injury (Johansson

et al., 1999) and therefore the slower migration of IF‐deficient astrocytes could contribute to the more

discrete development of posttraumatic glial scars seen in GFAP(�/�)Vim(�/�) mice (Pekny et al., 1999b),

even though the in vivo relevance of these in vitro data and the molecular mechanisms involved remain to

be established. Interestingly, the IFs were also implicated in cell motility in cells other than astrocytes. In

vitro studies focusing on the motility of Vim(�/�) fibroblasts (Colucci‐Guyon et al., 1994) showed reduced

resistance to mechanical stress and reduced migration of these cells in the scrape wound assay and in

Boyden chambers compared with wild‐type fibroblasts (Eckes et al., 1998), even though another study that

used monolayer wounding experiments showed comparable mobility of polarized wild‐type and Vim(�/�)

fibroblasts at the edge of the wound (Holwell et al., 1997).
5.4 Entorhinal Cortex Lesions Reveal the Yin and Yang of Reactive Gliosis

Entorhinal cortex lesioning interrupts axonal connections (known as the perforant path) between

the entorhinal cortex and the projection area in the outer molecular layer of the dentate gyrus of the

hippocampus (Turner et al., 1998) where degenerating neurons trigger extensive reactive gliosis. The

distance between these two regions allows assessment of astrocyte response, degeneration, and subsequent

regeneration in the hippocampus, i.e., the region that is not directly affected by the surgery.

By utilizing this model, we recently showed that reactive astrocytes devoid of IFs (GFAP(�/�)

Vim(�/�)) exhibited only limited hypertrophy of cell processes. Many processes of GFAP(�/�)

Vim(�/�) astrocytes were shorter and less straight than those of wild‐type astrocytes, albeit the volume

of the CNS tissue reached by a single astrocyte was comparable with that reached in wild‐type mice

(Wilhelmsson et al., 2004) (> Figure 14-7). These results, along with in vitro data on the morphology of

IF‐depleted astrocytes in primary cultures (Lepekhin et al., 2001), show a novel role for IFs in determining

astrocyte morphology.

In GFAP(�/�)Vim(�/�) mice, loss of neuronal synapses in the outer molecular layer of the hippo-

campal dentate gyrus was prominent 4 days after lesioning (> Figure 14-8a, b, e). Most interestingly, there

was remarkable synaptic regeneration 10 days later (at 14 days after lesions) (> Figure 14-8c–e). In contrast

to wild‐type mice, GFAP(�/�)Vim(�/�) reactive astrocytes did not upregulate the expression of endothe-

lin B receptors, suggesting that the upregulation of this novel marker of reactive astrocytes (Ishikawa et al.,

1997; Baba, 1998; Koyama et al., 1999; Peters et al., 2003) is IF‐dependent (Wilhelmsson et al., 2004). Thus,

the effect of reactive astrocytes after CNS trauma seems to be twofold: reactive astrocytes play a beneficial

role in the acute stage after CNS injury; however, later on they act as inhibitors of CNS regeneration. Much

less is known about the role of astrocyte IFs and reactive astrocytes in general in neurodegenerative diseases.

GFAP(�/�) mice showed normal response to prion infection, which leads to neurodegeneration accom-

panied by massive reactive gliosis (Shibuki et al., 1996; Tatzelt et al., 1996). Thus, it is possible that different

pathological insults trigger qualitatively different astrocyte responses.

The studies of IF‐null mutants described above provided insights into how reactive astrocytes might

influence the clinical outcome of various CNS pathologies. It is feasible that by affecting the abundance or

the composition of IFs, it might be possible to control the state of cellular differentiation and thus many

cellular functions, which ultimately allow control of complex processes such as the permissiveness of the

CNS for regeneration (Pekny et al., 2004; Quinlan and Nilsson, 2004).



. Figure 14-6

The impact of GFAP and vimentin on astrocyte motility. Compared with wild type, the migration of GFAP(�/�)

Vim(�/�) reactive astrocytes in vitro is reduced, with the single mutants migrating more slowly than wild‐type
but faster than GFAP(�/�)Vim(�/�) astrocytes (a). Fast‐moving subpopulations of GFAP(�/�)Vim(�/�) (GV)

astrocytes are smaller than in wild type (WT), with GFAP(�/�) (G) astrocytes and Vim(�/�) (V) astrocytes

exhibiting a dose effect (b). (Reproduced with permission from Lepekhin et al., 2001.)
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. Figure 14-7

The importance of astrocyte intermediate filament (IF) proteins for astrocyte morphology. GFAP(�/�)Vim(�/�)

(GV) reactive astrocytes have fewer long and straight cellular processes than wild type (WT), as shown by the

three‐dimensional reconstruction of dye‐filled reactive astrocytes in the dentate gyrus of the hippocampus

after entorhinal cortex lesions (a, c, d). Wild‐type and IF‐free GFAP(�/�)Vim(�/�) reactive astrocytes reach

comparable volumes of brain tissue (b). ****p<0.0001. Bar, 20 mm. (Reproduced with permission from

Wilhelmsson et al., 2004.)
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5.5 GFAP(�/�)Vim(�/�) Mice as Recipients of the CNS Transplants

Because of their morphology and abundance in the adult CNS (> Figure 14-3b), astrocytes have direct

physical contact with any cell that moves from one place to another. To assess the impact of astrocyte IFs on

the fate of cells migrating from neural transplants, the Chen and Pekny groups transplanted dissociated

retinal cells from 0‐ to 3‐week‐old donor mice that ubiquitously express enhanced green fluorescent protein

(Okabe et al., 1997) into the retinas of adult wild‐type and GFAP(�/�)Vim(�/�) recipients and compared

the efficiency of long‐term integration of such grafts in the retina (Kinouchi et al., 2003). In wild‐type hosts,
few transplanted cells migrated from the transplantation site, and few integrated into the retina. In GFAP

(�/�)Vim(�/�) hosts, however, the transplanted cells effectively moved through the retina, differentiated

into neurons, integrated into the ganglion cell layer, and some of them even extended neurites about 1 mm



. Figure 14-8

The consequences of lesioning of the entorhinal cortex assessed in its projection area in the dentate gyrus of

the hippocampus in GFAP(�/�)Vim(�/�) (GV) and wild‐type (WT) mice. At day 4 after lesioning, the synaptic

loss and the signs of neurodegeneration were more prominent in GFAP(�/�)Vim(�/�) than in wild‐type mice

(a–b, e). At day 14 after lesioning, the number of synapses in GFAP(�/�)Vim(�/�), but not wild‐type mice,

recovered, reaching the levels comparable with the uninjured hemisphere (c–e). Asterisks, degenerated axons;

arrows, synaptic complexes; D, dendritic profile; B, synaptic bouton; *p<0.05. (Reproduced with permission

from Wilhelmsson et al., 2004.)

GFAP and astrocyte intermediate filaments 14 303
into the optic nerve (> Figure 14-9a–d). The single mutants exhibited a dose effect (> Figure 14-9e–i). Six

months after transplantation, the cells remained alive and well integrated in GFAP(�/�)Vim(�/�) hosts

(Kinouchi et al., 2003).

These results show that the absence of IFs in astroglial cells (astrocytes and Müller cells) of the retina

increases the permissiveness of the retinal environment for integration of neural transplants through yet

unknown mechanism. The extent to which this reflects increased permissiveness for the migration of

transplanted cells remains to be established. However, it is possible to speculate that IF depletion in

astroglial cells alters their differentiation state, turning them into cells functionally similar to more

immature astrocytes, and thereby also more supportive of CNS regeneration (Emsley et al., 2004; Pekny

et al., 2004; Quinlan and Nilsson, 2004). It might be possible that the approaches that would control the

expression of IFs and consequently affect cellular differentiation might also be applicable outside the CNS.
5.6 GFAP, Vimentin, and Resistance to Severe Mechanical Stress

While in other tissues, in particular the epidermis, the connection between keratin IFs and resistance to

mechanical stress is well established (for review see Fuchs and Cleveland, 1998), the function of astrocyte IFs

in maintaining the mechanical integrity of the CNS is unclear. In GFAP(�/�) mice, nonreactive astrocytes,

which account for the overwhelming majority of astrocytes in a healthy brain, are essentially devoid of IFs

(Pekny et al., 1995; McCall et al., 1996). Nevertheless, in three independent studies, GFAP(�/�) mice lived

normal lives and, if not challenged, had normal CNS morphology (Gomi et al., 1995; Pekny et al., 1995;

McCall et al., 1996).

Since the CNS is mechanically well protected, the importance of astrocyte IFs for stabilizing the CNS

tissue might become manifest only in situations of severe mechanical stress. Two series of experiments using



. Figure 14-9

Integration of retinal transplants in GFAP(�/�)Vim(�/�) mice. Retinal transplants from mice ubiquitously

expressing enhanced green fluorescent protein integrated much better in GFAP(�/�)Vim(�/�) (GV) than in

wild‐type (WT) recipients (a–d). In GFAP(�/�)Vim(�/�)recipients, transplanted cells migrated more efficiently

from the transplantation site and integrated into the ganglion cell layer (d), exhibiting typical morphology of

ganglion cells with axon‐like process parallel to the retinal surface (arrowhead) and branched dendritic tree‐like
structures (arrow, b). Some of these neurons even extended axons into the optic nerve (c). In single mutant

recipients (G or V), the transplanted cells spread out more extensively than in wild‐type but less efficiently than
in GFAP(�/�)Vim(�/�) recipients (e–i). *p<0.05; ***p<0.001. Bar, 5 mm in a–b, 50 mm in c, 100 mm in e–h. Data

represent mean�SD. (Reproduced with permission from Kinouchi et al., 2003.)
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the head percussion model and the severe mechanical stress applied on the retina, respectively, suggested

that this indeed is the case.

In the first of them, GFAP(�/�) mice were subjected to head injury from a dropped weight. When

placed on a wooden board to prevent head movement at impact, GFAP(�/�) mice survived as did wild‐
type controls. However, when placed on a foam bed that allowed head movement at impact, most of the

GFAP(�/�) mice, but none of the wild‐type controls, died after the injury. The GFAP(�/�) mice showed

prominent subpial and white matter bleeding in the region of the cervical spinal cord, possibly resulting

from a vein rupture (Nawashiro et al., 1998).

Another experimental approach addressed the effect of the absence of IFs in astroglial cells on the

mechanical stability of the retina under severe mechanical stress. Being an accessible part of the CNS, retina

is well suited for such experiments. In this case, the experiment was performed in mice immediately after

death while the retinal tissue was still alive. Application of a severe mechanical stress left the retinas of wild‐
type controls intact. However, in GFAP(�/�)Vim(�/�) mice and, to a lesser extent, in Vim(�/�)– mice,

the inner limiting membrane and adjacent tissue separated from the rest of the retina (> Figure 14-10a–h).

Electron microscopy showed that this retinal ‘‘crack’’ occurred within the end‐feet of Müller cells, radial

glia‐like astroglial cells in the retina that normally contain IFs composed of GFAP and vimentin (Lundkvist

et al., 2004). Thus, at least in two specific regions of the CNS, astrocyte IFs seem to be important

for resistance to severe mechanical stress, albeit the exact molecular mechanism remains incompletely

understood.
5.7 GFAP, Vimentin, Osmotic Stress, and CNS Ischemia

In culture, astrocytes respond to a hypoosmotic environment by transient swelling and within minutes

show a tendency to return to their original cell volume (Hoffman, 1991; Kimelberg, 1991). This phenome-

non, known as regulatory volume decrease, involves an efflux of osmotically active molecules from

astrocytes, such as the amino acid taurine (Pasantes‐Morales et al., 1990; Hoffman, 1991; Moran et al.,

1994; Vitarella et al., 1994). It was proposed that regulatory volume decrease by astrocytes might be the key

mechanism in counteracting the development of brain edema in response to brain ischemia or trauma

and that cytoskeleton‐linked stretch‐activated plasma membrane channels serve as cell‐volume sensors

(Sanchez‐Olea et al., 1991; Cantiello et al., 1993; Moran et al., 1996; Cantiello, 1997).

To address the role of astrocyte IFs in volume regulation, Ding and coworkers subjected primary

astrocyte cultures from wild‐type, GFAP(�/�), Vim(�/�), and GFAP(�/�)Vim(�/�) mice to hypoos-

motic stress (corresponding to a 25 mM reduction in NaCl) in perfusion chambers and assessed the efflux

of 3H‐taurine. Taurine release was up to 50% lower in GFAP(�/�)Vim(�/�) than in wild‐type astrocytes,
but tended to be only slightly decreased in the single mutants (Ding et al., 1998) (> Figure 14-10i).

Anderova and coworkers perfused spinal slices with an isoosmotic solution with an increased concentration

of potassium (50 mM) or a hypoosmotic solution with a reduced sodium concentration and found smaller

increases in the potassium concentration around astrocytes in slices from GFAP(�/�) mice than in those

from wild‐type controls (Anderova et al., 2001). Thus, genetic ablation of astrocytic IFs seems to diminish

the ability of astrocytes to respond to hypoosmotic stress.

Are these findings relevant for brain pathologies, in particular those connected with prominent osmotic

stress, such as brain ischemia? Nawashiro and coworkers exposed GFAP(�/�) and wild‐type mice to brain

ischemia induced by middle cerebral artery occlusion for 2 days and reported comparable infarct volumes

in the two groups. However, when middle cerebral artery occlusion was combined with transient occlusion

of the carotid artery, GFAP(�/�) mice had larger infarcts than did controls (Nawashiro et al., 1998). This

raises the interesting and unresolved question of whether reactive astrocytes protect ischemically compro-

mised brain tissue around the infarct in stroke patients. In this respect, GFAP(�/�) astrocytes in culture

showed increased intracellular glutamine levels (Pekny et al., 1999a) and decreased glutamate transport

(Hughes et al., 2004), but normal levels of other amino acids and normal glucose and ascorbate uptake

(Pekny et al., 1999a). Studies of GFAP(�/�)Vim(�/�) mice, whose reactive astrocytes are devoid of IFs

(Eliasson et al., 1999), in various brain ischemia paradigms should shed more light on this issue.



. Figure 14-10

Astrocyte intermediate filaments (IFs), severe mechanical stress, astrocyte volume regulation, and retinal

hypoxia. GFAP(�/�)Vim(�/�) and wild‐type retinas are indistinguishable in the absence of a major mechanical

challenge (a–b). Severe mechanical stress on the retina leads to the complete separation of the inner limiting

membrane and adjacent tissue from the rest of the retina (asterisk) in GFAP(�/�)Vim(�/�) (GV) mice (f, h) and

partial separation (asterisk) in Vim(�/�) (V) mice (e). The retinas of wild‐type (WT; c, g) or GFAP(�/�) (G) mice (d)

remain intact. a–f, H&E staining; g–h, visualization of Müller cells and astrocytes by antibodies against S‐100.
GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; arrow, the inner limiting membrane.

(Reproduced with permission from Lundkvist et al., 2004.); i, taurine release following hypoosmostic stress as a

measure of the ability of astrocytes to regulate cell volume. In hypoosmotic environment, GFAP(�/�)Vim(�/�)

astrocytes released only about half the amount of 3H‐taurine compared with wild‐type (p<0.01). The data are

presented as mean�SEM. (Reproduced with permission from Ding et al., 1998.); j, the oxygen‐induced
retinopathy model. The number of neovascular nuclei in the vitreous body, a measure of the extent

of hypoxia‐induced pathological vascularization at postnatal day 17 (P17), is substantially reduced in GFAP

(�/�)Vim(�/�) (GV) retinas and modestly reduced in Vim(�/�) (V) retinas. No difference was found between

GFAP(�/�) (G) and wild‐type (WT) retinas. In the absence of hypoxia, blood vessels do not enter the vitreous

body, and the normal vascularization of the retina does not depend on the presence of GFAP and vimentin.

*p<0.05; ***p<0.005. (Reproduced with permission from Lundkvist et al., 2004.)
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5.8 Decreased Pathological Vascularization in GFAP(�/�)Vim(�/�)
Hypoxic Retinas

In order to assess the pathophysiological implications of the ‘‘retinal crack’’ phenotype found inGFAP(�/�)

Vim(�/�) mice described above, we have turned to a hypoxia model. We exposed GFAP(�/�)Vim(�/�)

mice and single mutants to retinal hypoxia. This leads to oxygen‐induced retinopathy, a widely used model

of retinopathy of immaturity that also exhibits some features of diabetic retinopathy (Smith et al., 1994).

On postnatal day 7, mice are placed into an environment with decreased oxygen concentration, which

delays the development of the vascular system. Five days later, the mice are transferred to normooxygenic

environment, which leads to massive neovascularization triggered by relative hypoxia (> Figure 14-10j).

The vessels grow from the retina into the vitreous body (as they do in premature babies or patients

with diabetes), and their presence there can easily be quantified (Smith et al., 1994). Hypoxia‐induced
vascularization was decreased substantially in GFAP(�/�)Vim(�/�) and partially in Vim(�/�) mice

(> Figure 14-10j). Thus the absence of IFs in Müller cells of the retina decreases the resistance of their

end‐feet and consequently of the corresponding layer of the retina to mechanical stress, and it also reduces

the extent of ischemia‐triggered pathological vascularization (Lundkvist et al., 2004).
6 GFAP, Cell Proliferation, and Tumorigenesis

High‐grade astrocytomas are the most frequent brain tumors, and they are ranked among the most

malignant tumors (Bigner et al., 1998). In many high‐grade astrocytomas, the tumor cells lose their

GFAP expression, and this often inversely correlates with tumor malignancy (Jacque et al., 1978, 1979;

van der Meulen et al., 1978; Velasco et al., 1980; Tascos et al., 1982). Within the same tumor, the cells

negative for GFAP were shown to grow faster than the GFAP‐positive cells in their vicinity (Hara et al.,

1991; Kajiwara et al., 1992).

These data are compatible with a number of in vitro studies. The inhibition of GFAP expression by

antisense cDNA in human astrocytoma cell lines results in increased cell proliferation, transformability, and

the loss of the tumor cells to extend processes in response to neurons (Weinstein et al., 1991; Rutka et al.,

1994). Restoration of GFAP expression reinduces process extension in the tumor cells (Chen and Liem,

1994). GFAP overexpression by previously GFAP‐negative astrocytoma cell lines results in a decreased

proliferation and cell transformability (Rutka and Smith, 1993; Toda et al., 1994). We reported that primary

astrocytes from GFAP(�/�) mice grew more quickly in culture and reached higher saturation cell densities

than those from wild‐type cells (Pekny et al., 1998a). To address a possible role of GFAP in tumor

development, astrocytomas were induced in GFAP(�/�) and GFAP(þ/þ) mice that had been backcrossed

on the p53(�/�) genetic background by prenatal exposure to the mutagen ethylnitrosourea (ENU; for the

ENU induction of astrocytomas on the p53(�/�) background check Oda et al., 1997; Leonard et al., 2001).

No difference in tumor incidence, age at tumor detection, tumor size, location, or histology was found

between GFAP(�/�) and GFAP(þ/þ) mice (Wilhelmsson et al., 2003). This suggests that the loss of GFAP

expression does not constitute a step in the development of high‐grade astrocytomas. Most likely, it reflects

the undifferentiated state of these cells (Wilhelmsson et al., 2003).
7 GFAP Mutations Cause Alexander’s Disease, a Fatal Neurodegeneration

To study the role of GFAP in astrocyte hypertrophy, Messing, Brenner, and coworkers generated mice

overexpressing human GFAP. The astrocytes of these transgenic mice formed complex intracytoplasmic

aggregates of GFAP and small stress proteins that were identical to structures known as Rosenthal fibers

(Messing et al., 1998). Rosenthal fibers, which accompany chronic reactive astrogliosis, are eosinophilic,

elongated structures that when examined ultrastructurally appear as electron‐dense, amorphous masses

surrounded by and merging with dense bundles of IFs (Messing et al., 1998). Rosenthal fibers are also a

hallmark of Alexander’s disease, a rare and fatal leukoencephalopathy that most commonly affects infants
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and young children, who typically present with feeding problems, paraparesis, seizures, and mental and

physical retardation. Juvenile forms of Alexander’s disease cause predominantly pseudobulbar and bulbar

signs, while adult forms are more variable and often resemble multiple sclerosis. The GFAP‐overexpressing
mice died at an early age, and although the cause of death remains unknown, these results pointed to an

interesting possibility of GFAP as a candidate gene for Alexander’s disease.

Subsequent investigations determined that the majority of cases of infantile Alexander’s disease, and at

least some cases of the late‐onset juvenile and adult forms, are due to heterozygous missense mutations in

the GFAP gene. The heterozygosity of the mutations suggests that they are dominant. In the majority of

cases, the mutations seemed to occur de novo and were not found in either parent (Brenner et al., 2001; Li

et al., 2002). However, familial adult cases have been described, raising the interesting issue of reduced

penetrance or germline mosaicism (Namekawa et al., 2002; Okamoto et al., 2002). Although these results

identify mutated GFAP as at least one of the culprits responsible for a fatal neurological disorder in humans,

the mechanism remains unclear. How the mutant GFAP protein causes brain damage and the role of

Rosenthal fibers in this process are unknown (Messing and Brenner, 2003a,b). However, Alexander’s disease

became the first monogenic disease caused by a primary defect in astrocytes and it can be expected that

the understanding of its molecular pathogenesis will provide data relevant for other neurodegenerative

diseases.
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and Torsten och Ragnar Söderbergs.
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Abstract: The growth‐associated protein‐43 (GAP‐43) is known to participate in mechanisms of synaptic

plasticity during neuronal development, nerve regeneration, and learning and memory. Despite the large

number of studies using GAP‐43 as a marker of neural plasticity, the precise molecular function of GAP‐43
in these processes remains to be elucidated. The goal of this chapter is to highlight some of the roles of GAP‐
43 in brain function by focusing on a few well‐documented findings ranging from the control of gene

expression to its role in membrane–cytoskeleton dynamics and cell signaling. GAP‐43 expression is

controlled at the transcriptional and posttranscriptional levels, allowing for more flexibility and diversity

in the amounts of GAP‐43 protein present in different neuronal populations. Once translated, this protein

becomes phosphorylated and displays distinct interactions with different signaling molecules. These

interactions participate in modulating growth cone function during neuronal development and synaptic

release during adult synaptic plasticity. Finally, the levels and distribution GAP‐43 are altered both during

normal brain processes like learning and memory and in disease states such as schizophrenia, temporal lobe

epilepsy, and Alzheimer’s disease. These studies support the notion that tightly regulated control of GAP‐43
expression is important for maintaining normal brain function.

List of Abbreviations: AA, arachidonic acid; bHLH, basic helix–loop–helix; CaM, calmodulin; CaMKII,

calcium/calmodulin‐dependent kinase II; CFC, contextual fear conditioning; CNS, central nervous system;

DRG, dorsal root ganglion; ELAV, embryonic lethal abnormal vision; f‐actin, filamentous actin; GAP,

growth‐associated protein; GAP‐43, growth‐associated protein‐43; kb, kilobase; LTP, long‐term
potentiation; mRNA, messenger ribonucleic acid; N‐CAM, neuronal cell adhesion molecule; NMDA,

N‐methyl‐D‐aspartate; PC12, pheochromocytoma cell line; PFC, prefrontal cortex; PI(4,5)P2, phosphatidyl

inositol‐4,5‐bis‐phosphate; PKC, protein kinase C; PNS, peripheral nervous system; 30 UTR, 30 untranslated
region; (�/�), homozygous null; (þ/�), heterozygous
1 GAP‐43: from Gene to Protein

1.1 Mechanisms of Gene Regulation

The neuronal growth‐associated protein‐43 (GAP‐43) was independently identified as a protein associated

with axonal outgrowth during development and regeneration (Benowitz et al., 1981; Skene and Willard,

1981a, b), a protein regulated by Ca2þ and several peptides (Ehrlich and Routtenberg, 1974; Zwiers et al.,

1978), and a major substrate of protein kinase C (PKC) (Aloyo et al., 1983; Akers and Routtenberg, 1985).

GAP‐43 is encoded in a 50‐kb gene that is found on chromosome 3 in humans (Kosik et al., 1988). The

resulting messenger RNA (mRNA) is 1.5 kb and is generated from three widely spaced exons (Grabczyk

et al., 1990). GAP‐43 expression is regulated through both transcriptional and posttranscriptional mechan-

isms (> Figure 15-1). Sequences in the promoter region of the GAP‐43 gene regulate its expression in the

nervous system (Nedivi et al., 1992; Eggen et al., 1994; Reinhard et al., 1994; Weber and Skene, 1997, 1998).

Although two promoters were described for the gene, 95% of the transcripts are derived from the second

promoter that lies closer to the transcription start site (Eggen et al., 1994). GAP‐43 transcription is directed

by the activity of basic helix–loop–helix (bHLH) proteins that, depending on the protein–protein interac-

tions, can act as transcriptional activators or repressors (Chiaramello et al., 1996; Kinney et al., 1996).

Among these, the NeuroD/MATH family member Nex1 was shown to mediate increases in GAP‐43
expression during neuronal differentiation of PC12 cells (Uittenbogaard et al., 2003). In transgenic mice,

elements in the promoter and part of the first intron were sufficient to direct the neural‐specific expression
of a reporter construct in a similar temporal and spatial pattern as endogenous GAP‐43 (Vanselow et al.,

1994; Namgung et al., 1997). GAP‐43 gene expression is also regulated through posttranscriptional

mechanisms as shown in cell culture (Federoff et al., 1988; Perrone‐Bizzozero et al., 1993; Anderson

et al., 2000; Mobarak et al., 2000) and in living animals (Perrone‐Bizzozero et al., 1991; Cantallops and

Routtenberg, 1999; Namgung and Routtenberg, 2000). In cultured PC12 cells, GAP‐43 expression is

controlled by changes in the stability of the GAP‐43 mRNA, which depends on the activation of PKC



. Figure 15-1

Control of GAP‐43 gene expression. GAP‐43 transcription is regulated by transcription factors from the basic

helix–loop–helix (bHLH) family. GAP‐43 primary transcript is processed in the nucleus and exported to the

cytoplasm where it is stabilized by HuD. In the absence of HuD, GAP‐43 messenger RNA (mRNA) is quickly

degraded. GAP‐43 mRNA is translated in the soma and the protein is phosphorylated by protein kinase C (PKC)

and transported to the nerve terminal. In developing neurons, the GAP‐43 mRNA is also transported to the

growth cone
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and is independent of translation (Perrone‐Bizzozero et al., 1993). Furthermore, several RNA‐binding
proteins were shown to bind instability‐conferring elements in the 30 untranslated region (30 UTR) of this
mRNA (Kohn et al., 1996; Chung et al., 1997; Irwin et al., 1997, 2002; DeFranco et al., 1998). One of these,

the neuronal‐specific RNA‐binding protein HuD, is one of the Hu proteins identified for the association

with paraneoplastic neurological syndromes (Szabo et al., 1991). This protein is highly conserved in

evolution and related to ELAV (embryonic lethal abnormal vision), an RNA‐binding protein identified in

Drosophila, where the gene is required for normal development and maintenance of the nervous system

(Campos et al., 1985). HuD was shown to increase the stability of the GAP‐43 mRNA both in cell culture

and in vivo, leading to increase GAP‐43 protein expression and process outgrowth (Anderson et al., 2000;

Mobarak et al., 2000; Tanner et al., 2004a; Bolognani et al., 2006). HuD binds to a highly conserved U‐rich
element in the 30 UTR (Kohn et al., 1996; Chung et al., 1997; Tsai et al., 1997) and stabilizes mRNAs that

contain a long poly(A) tail (Beckel‐Mitchener et al., 2002), suggesting that only translationally competent

GAP‐43 mRNA is stabilized by HuD.

GAP‐43 translation occurs primarily in the soma and the protein is transported by fast axonal transport

to the nerve terminal (> Figure 15-1). In developing neurons, GAP‐43 mRNA is also transported to growth
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cones where it colocalizes with both HuD and ribosomes, suggesting that it may be used for local protein

synthesis (Smith et al., 2004).
1.2 Structural Domains in GAP‐43

The GAP‐43 mRNA is translated into a different‐sized protein ranging from 194 to 238 amino acids

depending on the species. This protein contains an unusually high proportion of acidic amino acids and

only few hydrophobic residues (reviewed in Benowitz and Routtenberg, 1997). The N terminus is highly

conserved between vertebrate species and the first ten amino acids contain two cysteines that direct the

protein to the nerve terminal membrane via protein palmitoylation mechanisms (Skene and Virag, 1989;

Zuber et al., 1989; Liu et al., 1991; Palacios et al., 1994). GAP‐43 also contains a highly conserved

calmodulin (CaM)‐binding domain, also known as the isoleucine–glutamine (IQ) domain for the presence

of these amino acids (Alexander et al., 1987; Chapman et al., 1991). This site is adjacent to the serine residue

at position 41, which is the phosphorylation site of PKC in the rat protein (Coggins and Zwiers, 1989).

Unlike other CaM‐binding proteins, GAP‐43 binds this protein at low concentrations of calcium. When

calcium levels rise in the cell or when GAP‐43 is phosphorylated by PKC the affinity of this protein for CaM

decreases dramatically (Alexander et al., 1987). Because of these properties, it was postulated that GAP‐43
acts as a ‘‘calmodulin sponge,’’ bringing CaM down to the growth cone or nerve terminal and then releasing

it upon depolarization or PKC activation (Skene, 1990; see > Figure 15-2).
2 GAP‐43 Function: from Growth Cones to Mature Synapses

2.1 GAP‐43 and Growth Cone Motility

GAP‐43 binds filamentous actin (f‐actin) directly and its phosphorylation by PKC stabilizes actin filaments.

Conversely, binding of unphosphorylated GAP‐43 to f‐actin inhibits filament phosphorylation (He et al.,

1997). In growth cones, phosphorylated GAP‐43 is found in regions where growth cones are advancing

while regions that are retracting contain the unphosphorylated form (Dent and Meiri, 1998). Neurite

outgrowth stimulated by neural cell adhesion molecule (N‐CAM) is dependent on GAP‐43, and IgCAMs

can directly stimulate GAP‐43 phosphorylation via a phospholipase C (PLC)‐mediated signaling cascade

(Hille, 1992; Meiri et al., 1998; see > Figure 15-2a). Phosphorylated GAP‐43 also activates Go a subunits

(Strittmatter and Fishman, 1991), which enhance neurite outgrowth (Strittmatter et al., 1994). GAP‐43 also
interacts with PI(4,5)P2 in specific plasmalemmal microdomains (rafts), which cluster pools of signaling

molecules controlling reorganization of the actin cytoskeleton (Laux et al., 2000). Finally, the association of

GAP‐43 with NCAM in multiple raft populations is required to stimulate neurite outgrowth (He and Meiri,

2002; Niethammer et al., 2002).
2.2 GAP‐43 and Synaptic Release

In the mature synapse, GAP‐43 performs similar functions in membrane dynamics and cytoskeletal

reorganization but the precise mechanism by which GAP‐43 performs these functions is less understood

(> Figure 15-2b). Phosphorylated GAP‐43 is involved in exocytosis and neurotransmitter release (Dekker

et al., 1989; Ivins et al., 1993; Hens et al., 1998). Although GAP‐43 is not part of the basic vesicular release
machinery, this protein was shown to bind to the synaptic core complex and synaptotagmin in a Ca2þ‐
dependent manner (Haruta et al., 1997). Phosphorylated GAP‐43 is also involved in vesicle recycling, as

shown by its interactions with rabaptin‐5, an effector of the guanine nucleotide triphosphatase Rab5 (Neve

et al., 1998). GAP‐43 interacts with PI(4,5)P2 in the mature synapse, as described above (Laux et al., 2000),

potentiates cytoskeletal reorganization in membrane rafts (Aarts et al., 1999), and binds to the presynaptic

form of brain spectrin (Riederer and Routtenberg, 1999). Both N‐methyl‐D‐aspartate (NMDA) receptor



. Figure 15-2

Functions of GAP‐43 in growth cones and mature synapses. (a) GAP‐43 has a high affinity for calmodulin (CaM)

and is thought to be a CaM sponge (1; see text for specific references) but is readily phosphorylated by protein

kinase C (PKC) (2). PKC phosphorylation displaces CaM, which is an activator of CaMKII (3). Phosphorylated GAP‐
43 has a number of roles in membrane–cytoskeletal dynamics and cell signaling, such as mediating the

polymerization of f‐actin (4), activating the Ga subunit of Go (5), and clustering PIP2 in plasmalemmal micro-

domains (6). (b) In the mature synapse, GAP‐43 performs a number of the same functions. In addition, the

phosphorylation of GAP‐43 is thought to be activated by the retrograde messenger arachidonic acid (AA; 7).

Phosphorylated GAP‐43 is involved in neurotransmitter exocytosis through binding the synaptic core complex

and synaptotagmin (8), and its required presence for normal transmitter release (9). Phospho‐GAP‐43 also

regulates vesicle endocytosis via rabaptin‐5 (10). Finally, PKC‐induced phosphorylation of GAP‐43 facilitates

long‐term potentiation (LTP) and contextual fear conditioning (CFC), a learning and memory paradigm

GAP‐43 in neural development and plasticity 15 319
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activation and arachidonic acid (AA) have been identified as stimulating PKC and thereby inducing the

phosphorylation of GAP‐43 in the maintenance phase of long‐term potentiation (LTP) (Luo andWeinstein,

1993; McNamara and Routtenberg, 1995), further implicating GAP‐43 in neurotransmitter release and in

synaptic strengthening.
3 The Role of GAP‐43 in Nervous System Development

3.1 Expression of GAP‐43 in Developing Neurons

GAP‐43 is first expressed in multipotent neuroectodermal precursors before they start differentiating into

neurons (Esdar et al., 1999; Mani et al., 2001; Shen et al., 2004). In cultured neurons and PC12 cells, GAP‐43
expression is low before process outgrowth but as cells differentiate and extend, the neurite levels of this

protein increase severalfold (Perrone‐Bizzozero et al., 1986; Meiri et al., 1988; Goslin and Banker, 1989; Van

Hooff et al., 1989).

The expression pattern of GAP‐43 shifts throughout the course of development. Initially, GAP‐43
is expressed in virtually all neuronal populations, and protein expression sharply declines after birth

(Benowitz and Perrone‐Bizzozero, 1991). For instance, GAP‐43 protein levels in the neocortex drop

about tenfold between neonatal and mature rat brains (Skene et al., 1986). GAP‐43 expression proceeds

in a caudal to rostral manner and follows a similar pattern in both the peripheral nervous system (PNS) and

the central nervous system (CNS) although CNS expression persists in some neurons throughout life (De la

Monte et al., 1989; Dani et al., 1991; Meberg and Routtenberg, 1991). In the rat neocortex and hippocampal

formation, GAP‐43 expression becomes maximal during the first 2 postnatal weeks, which corresponds to

axon‐terminal branching and synapse formation. During this period, dentate granule cells express GAP‐43
in an outside‐in pattern corresponding to their time course of maturation. This pattern of expression is

controlled at the posttranscriptional level and requires NMDA receptor activation (Catallops and Routten-

berg, 1999). In the striate cortex of the cat, the highest levels of GAP‐43 coincide with the critical period for

activity‐dependent plasticity in synaptic organization (Dani et al., 1991). Furthermore, GAP‐43 mRNA

levels are higher in dark‐reared kittens than in light‐reared controls but upon exposure to light, the mRNA

falls to near‐normal levels within 12 h (Neve and Bear, 1989). Altogether, these findings suggest that a

developmental drop in GAP‐43 gene expression is involved in the irreversible transformation of soft‐wired
connections to hard‐wired circuits in the brain.
3.2 Involvement of GAP‐43 in Neural Circuitry

The significance of GAP‐43 in the establishment of neural circuitry during development and in adulthood

was further demonstrated in GAP‐43 knockout mice. The absence of GAP‐43 in null mice (�/�) results in a

lethal phenotype as the great majority of the animals die within the first postnatal week (Strittmatter et al.,

1995). Furthermore, these animals exhibited abnormal axonal pathfinding as demonstrated by the inability

of optic nerve axons to cross the chiasm (Strittmatter et al., 1995). In addition, GAP‐43(�/�) show

malformed retinogeniculate and retinotectal connections as well as abnormal hypothalamic projections

(Zhu and Julien, 1999). The most severe defects in GAP‐43‐null mice are seen in the telencephalon where

synaptic organization is severely disrupted. Pathfinding deficits in thalamocortical axons result in the

absence of somatotopic maps in the cortex (Maier et al., 1999). In the rat, the barrel fields of the

somatosensory cortex, which represent the facial vibrissae, show peak GAP‐43 immunostaining at postnatal

days 4 and 5 and almost no staining at postnatal day 8; however, in GAP‐43(�/�) mice, barrel fields are not

formed, while in GAP‐43(þ/�) mice the barrel fields are abnormally enlarged (Maier et al., 1999; McIlvain

et al., 2003). In addition, midbrain serotonergic neurons fail to innervate the cortex (Donovan et al., 2002)

and none of the telencephalic commissures (anterior commissure, corpus callosum, and hippocampal

commissure) form in GAP‐43(�/�) mice (Shen et al., 2002). An opposite phenotype was observed in
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transgenic mice overexpressing this protein. These animals display excessive axonal sprouting and increased

propensity to spontaneous seizures (Aigner et al., 1995; Holtmaat et al., 1995).
4 Function of GAP‐43 in the Mature Nervous System

4.1 Patterns of GAP‐43 Expression in the Adult Brain

After the critical period, GAP‐43 expression decreases in the visual system and most motor/sensory

pathways; however, some regions of the adult neocortex express constitutive high levels of GAP‐43
mRNA and protein. It has been suggested that the distribution pattern of GAP‐43 allows structural and

functional changes in some neurons for information storage (Benowitz et al., 1988, 1989; Neve et al., 1988).

In limbic and associative brain regions where mRNA and protein are abundant, GAP‐43 has been shown to

influence the release of monoamines (Dekker et al., 1989; Ivins et al., 1993) and glutamate (Hens et al.,

1998) and the establishment of synaptic plasticity mechanisms (Akers and Routtenberg, 1985; Routtenberg

et al., 2000). There may be a correlation between the neurons that possess GAP‐43 mRNA and their

neurotransmitters. Neurons that contain biogenic amines, such as substantia nigra pars compacta (dopa-

mine), the locus coeruleus (norepinephrine), and dorsal raphe (serotonin) possess high levels of GAP‐43
whereas cholinergic neurons in the basal forebrain and medial habenula express little or no mRNA (Meberg

and Routtenberg, 1991). In vivo, GAP‐43 is primarily localized to glutamatergic neurons with little or no

expression in GABAergic interneurons (Benowitz and Routtenberg, 1997). While GAP‐43 is not found in

mature glia, its expression by glial progenitors appears to be critical in early brain development. For

example, failure of GAP‐43(�/�) callosal axons to cross the midline is due in part to aberrant differentiation

of the glia wedge (Shen et al., 2004).
4.2 Role of GAP‐43 in Synaptic Plasticity

Multiple lines of evidence confirm that GAP‐43 plays an important role in synaptic plasticity mechanisms

underlying learning and memory. PKC phosphorylation of GAP‐43 changes as a function of LTP (Lovinger

et al., 1986; Linden et al., 1988; Ramakers et al., 1999a), long‐term depression (Ramakers et al., 1999b),

contextual fear conditioning (CFC) (Young et al., 2002), and fetal alcohol exposure (Tanner et al., 2004b).

Using a CFC task, we have recently shown that GAP‐43 phosphorylation and levels of expression change

during the establishment of both short‐ and long‐term memory (Young et al., 2002; see > Figure 15-3).

After rats are trained using a CFC paradigm, the levels of GAP‐43 phosphorylation decrease within 15–30

min of training, are back to normal levels after 60 min, and increase after 90 min. Both GAP‐43
phosphorylation and GAP‐43 protein levels remain elevated in the hippocampus of CFC‐trained animals

for at least 72 h. There is a correlation between GAP‐43 phosphorylation, gene expression, and learning and
alterations in GAP‐43 protein level and phosphorylation in transgenic mice result in corresponding changes

in synaptic plasticity. Specifically, increased expression and phosphorylation of GAP‐43 in transgenic mice

was found to increase both spatial learning in animals overexpressing normal GAP‐43 (Routtenberg et al.,

2000) and LTP in mice overexpressing a constitutively phosphorylated form of this protein (Routtenberg

et al., 2000; Hulo et al., 2002). Furthermore, animals with impaired learning have altered GAP‐43
expression and phosphorylation in the hippocampus (Di Luca et al., 1993; Young et al., 2000; Tanner

et al., 2004b).
4.3 GAP‐43 and Nerve Regeneration

Expression of genes encoding GAP‐43 and other growth‐associated proteins (GAPs), are normally upre-

gulated following PNS injury and lesions of selective regions of the adult rat brain such as the hippocampus.

Also, GAP‐43 expression is known to increase after injury of the optic nerve of lower vertebrates, which



. Figure 15-3

Contextual fear conditioning (CFC) alters GAP‐43 phosphorylation and protein levels in the hippocampus. Rats

were trained using a single‐trial CFC and hippocampi were dissected at different time points after training. The

levels of phosphorylated GAP‐43 (GAP‐P) (A) and total GAP‐43 protein (GAP‐T) (B) were measured by Western

blotting. Values in naive (untrained) rats (N) are shown for comparison. Reproduced from Young et al., 2000

with permission from John Wiley and Sons
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leads to successful regeneration (Skene and Willard, 1981a, b; Benowitz and Lewis, 1983). In contrast, in

mammals most regions of the adult CNS, including the optic nerve and spinal cord, fail to regenerate. In

these neurons, there is a transient increase in the expression of GAP‐43 and other GAPs but the levels of

mRNA and protein decline shortly after axonal damage (Teztlaff et al., 1991; Doster et al., 1991). It is now

apparent that multiple positive and negative factors, both intrinsic and extrinsic to the injured neurons,

influence the regenerative capacity of CNS nerves. With regard to the intrinsic factors, overexpression of

GAP‐43 was sufficient to sustain regeneration of adult Purkinje cells (Gianola and Rossi, 2004) but not of

thalamic cortical connections (Mason et al., 2000). Also, a combination of GAP‐43 and CAP‐23, another
GAP, was shown to foster regeneration of mature dorsal root ganglion (DRG) neurons into the spinal cord

(Bomze et al., 2001). Still, successful regeneration of spinal tracts poses a tremendous challenge, requiring

the coordinated actions of a multiplicity of factors from neurotrophins to blockage of NogoA and other

growth inhibitory factors (for reviews see Plunet et al. (2002), Filbin (2003), and Schwab (2004)).
5 GAP‐43 in Disease States

5.1 GAP‐43 and Schizophrenia

Abnormal GAP‐43 expression has also been associated with neurodevelopmental disorders such as schizo-

phrenia (Perrone‐Bizzozero et al., 1996; Eastwood and Harrison, 1998), fetal alcohol exposure (Perrone‐
Bizzozero et al., 1998; Tanner et al., 2004b), and temporal lobe epilepsy (Proper et al., 2000), suggesting a

role of this protein in the pathophysiology of these disorders.

As shown in > Figure 15-4, GAP‐43 levels are increased in Brodmann’s areas 9 and 10 in the prefrontal

cortex (PFC) of patients with schizophrenia relative to matched controls. A similar increase was observed in

the visual association cortex (area 20) but not in the primary visual cortex (area 17) (Perrone‐Bizzozero et al.,
1996). Furthermore, we found an inverse correlation betweenGAP‐43 protein levels and the levels of synaptic
vesicle protein synaptophysin in the PFC of patients with schizophrenia. While the pathophysiological



. Figure 15-4

Increased GAP‐43 levels in the prefrontal cortex (PFC) of patients with schizophrenia. Synaptic protein levels

were measured in Brodmann’s areas 9 and 10 from patients with schizophrenia (S), age‐, sex‐, and postmortem

interval‐matched normal controls (C) and subjects with other psychiatric conditions receiving similar medica-

tion (O). Panels show representative Western blots of GAP‐43 and synaptophysin in PFC samples. Coomassie

blue staining was used to verify that equal amounts of protein were loaded in each lane. Arrow (bottom panel)

indicates the migration of GAP‐43. Reproduced from Perrone‐Bizzozero et al., 1996 with permission of the

Proceedings of the National Academy of Sciences, USA
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consequences of altered GAP‐43/synaptophysin ratios in these brain regions remain to be elucidated, one

possible explanation is that, given the association of GAP‐43 with neuronal plasticity, synapses in

associative areas of the brain may be more plastic or less mature in patients with schizophrenia than

in age‐matched control subjects.

In contrast to PFC, GAP‐43 levels in the hippocampus were found to be decreased in patients with

schizophrenia (Eastwood and Harrison, 1998; Perrone‐Bizzozero et al., 1999). These changes were more

prominent in the hilus region of the dentate gyrus (Chambers et al., 2005). As patients with schizophrenia

perform poorly on several PFC‐ and hippocampal‐dependent tasks (Heckers et al., 1998; Bertolino et al.,

2000; Kuperberg and Heckers, 2000), the observed changes in GAP‐43 levels may be related to cognitive

deficits seen in these patients.
5.2 GAP‐43 and Other Neuropsychiatric Disorders

There are other neuropsychiatric conditions with selective alterations in GAP‐43 expression in the hippo-

campus, such as Alzheimer’s disease and temporal lobe epilepsy (Masliah et al., 1991; Proper et al., 2000;

Rekart et al., 2004). In contrast to patients with schizophrenia, Alzheimer’s disease patients have increased

deposition of GAP‐43 protein surrounding plaques (Masliah et al., 1991) and significant increases along the

stratum lacunosum moleculare (Rekart et al., 2004). GAP‐43 protein levels were also found to increase in

animal models and human brain tissues in response to traumatic (Hulsebosch et al., 1998) or ischemic

brain injury (Ng et al., 1988), suggesting a role for GAP‐43 in the repair of mature CNS neurons.

Patients with temporal lobe epilepsy have decreased levels of GAP‐43 in the hilus but increased levels in

the inner molecular layer of the dentate gyrus (Proper et al., 2000). Likewise, in the rat hippocampal

formation, seizures induced through electrical stimulation (Meberg et al., 1993) or kainic acid injections

(Bendotti et al., 1994; McNamara and Routtenberg, 1995; Cantallops and Routtenberg, 1996) show similar

increases in GAP‐43 mRNA expression. Kainic acid‐induced seizures also elicit mossy fiber sprouting in the

inner molecular layer of the dentate gyrus, the effects of which can be greatly reduced with treatment of the

noncompetitive NMDA receptor inhibitor MK‐801 (Bendotti et al., 1994; McNamara and Routtenberg,

1995; Cantallops and Routtenberg, 1996; Bendotti et al., 1997). In mouse models the picture is less clear.

Kainate administration to mice produces seizures without induction of GAP‐43 mRNA or mossy fiber
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sprouting (McNamara and Routtenberg, 1995; Schauwecker and Steward, 1997; Schauwecker et al., 2000).

It has been demonstrated that C57BL/6 mice are not sensitive to excitotoxic cell death induced by kainate

(Schauwecker and Steward, 1997). This insensitivity is thought to underlie the fact that mice that do not

show an induction of GAP‐43 mRNA or mossy fiber sprouting (McNamara and Routtenberg, 1995;

Schauwecker et al., 2000). Despite a lack of GAP‐43 induction, transcription of the GAP‐43 promoter

remains high in adult dentate granule cells suggesting that the failure in induction is due to a posttran-

scriptional mechanism (Namgung and Routtenberg, 2000). Supporting this idea, expression of the RNA‐
binding protein HuD in dentate granule cells was found to rescue GAP‐43 mRNA and protein expression in

transgenic mice (Tanner et al., 2004a; Bolognani et al., 2006). While ongoing work is examining the impact

of GAP‐43 reexpression in these cells, it is interesting to note that GAP‐43 is normally expressed at high

levels in human and monkey dentate granule cells, suggesting that synaptic plasticity in these cells increased

with evolution.
6 Concluding Remarks

The work reviewed in the previous sections highlights the functional significance of GAP‐43 in the initial

establishment and remodeling of neural connections. In growth cones, GAP‐43 is involved in membrane–

cytoskeletal dynamics and signaling mechanisms. While most neurons suppress the expression of GAP‐43
after the critical period, expression of this protein persists in highly plastic brain regions such as the

association cortices and the hippocampus. The significance of this protein in the mature nervous system is

highlighted not only by the association of GAP‐43 with normal brain functions such as learning and

memory but also by its alterations in neuropsychiatric conditions affecting these regions. While abnormally

high levels of GAP‐43 are associated with aberrant or compensatory sprouting, failure to express GAP‐43
leads to abnormal pathfinding or abortive regeneration. These conditions underscore the need for tight

regulation of GAP‐43 expression in neurons. Consistent with this idea, neurons control GAP‐43 expression
at multiple levels from transcription, mRNA stability, transport, and localized synthesis. This combination

of regulatory mechanisms provides not only for distinct patterns of expression in different neuronal

populations but also for additional safeguards against unregulated expression.
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332 16 Protein attractants and repellants in axonal guidance
Abstract: The function of the nervous system depends on the complex network of neurons that forms

during embryonic development. The precision and complexity of nervous system wiring are achieved

through the action of a large number of axon guidance molecules that specify the directional information

for axonal growth cones to navigate within the developing embryos. This chapter covers the basic

information about major classes of axonal attractants and repellents important for nervous system wiring.

Midline axon pathfinding and retinotopic mapping are described as examples to illustrate how these

molecules function during nervous system development. Finally, some of the axonal inhibitors that prevent

axonal regeneration in adult central nervous system (CNS) are discussed.

List of Abbreviations: BMP‐7, bone morphogenetic protein‐7; CALEB, chicken acidic leucine‐rich EGF‐
like‐domain‐containing brain protein; CDs, cadherin domains; CSPG, chondroitin sulfate proteoglycans;

DCC, deleted in colorectal cancer; ECMs, extracellular matrix molecules; EGF, epidermal growth factor;

FGFR, fibroblast growth factor receptor; Fn, fibronectin; GAG, glycosaminoglycan; GDF‐7, growth/differ-
entiation factor 7; GPI, glycosylphosphatidylinositol; HSPG, heparin sulfate proteoglycans; Ig‐CAMs,

immunoglobulin superfamily cell adhesion molecules; KAL1, Kallmann’s syndrome gene 1; LRR, leucine‐
rich repeats; MAG, myelin‐associated glycoprotein; MAM, meprin/A5‐protein/PTPmu; NgR, nogo recep-

tor; OMgp, oligodendrocyte–myelin glycoprotein; PDZ, PSD‐95, discs‐large, Z0‐1; RGD, arginine–glycine–
aspartate; Shh, sonic hedgehog; TGF‐b, transforming growth factor‐b
1 Introduction

A key step in building the functional nervous system is to establish the precise neuronal connections during

the development of the nervous system (Tessier‐Lavigne and Goodman, 1996). To make connections with

their synaptic partners, neurons send out axons over complicated embryonic and fetal structures through a

process called axon guidance. There are over 100 billion neurons in our nervous system, and each neuron

makes multiple connections with other targets. Nervous system wiring is a very complex process, which is

controlled by a genetic program encoding a large number of axon guidance molecules (Tessier‐Lavigne and
Goodman, 1996; Dickson, 2002).

In recent years, studies utilizing biochemical and genetic approaches led to the discovery of a large

collection of axon guidance molecules (Tessier‐Lavigne and Goodman, 1996; Dickson, 2002). The structure

and function of axon guidance molecules and their signaling receptors are highly conserved throughout the

animal kingdom, from nematodes to mammals. Axon guidance molecules can be categorized into four

classes (Tessier‐Lavigne and Goodman, 1996; Dickson, 2002). They are long‐range attractants, long‐range
repellents, contact‐mediated attractants, and contact‐mediated repellents. Each class is composed of

multiple protein families. Many axon guidance proteins are bifunctional and can either be attractive or

repulsive. For the convenience of discussion, we will group axon guidance cues into diffusible and

nondiffusible cues to avoid repetitive mentioning of the same molecules in the attractant and repellent

categories.

This chapter covers proteins that have been demonstrated to have axon guidance functions, conveying

directional information. Proteins that influence the growth of axons, such as neurotrophins, are covered in

previous chapters. Molecules that have growth‐inhibiting effects in adult central nervous system (CNS),

such as Nogo, myelin‐associated glycoprotein (MAG), oligodendrocyte–myelin glycoprotein (OMgp), have

important implications in nervous system regeneration and are discussed, although their functions in

embryonic development and directional growth are not addressed in this chapter. The list of axon guidance

molecules will likely grow in the future, which will be reflected by periodical updating of this chapter.

Receptors mediating these guidance molecules will be mentioned, but their signaling mechanisms will not

be discussed in detail.
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2 Axon Guidance Molecules in Development

2.1 Diffusible Cues

2.1.1 Netrins

Netrins are a family of secreted proteins of �600 amino acids with regions homologous to domains VI and

V of laminin chains. The vertebrate and invertebrate netrins are most closely related to laminin B2 chain,

and domain V contains three epidermal growth factor (EGF) repeats (Kennedy et al., 1994; Serafini et al.,

1994). The C‐terminal domain, sometimes referred to as ‘‘netrin‐like domain’’, is highly basic and contains

an RGD (arginine–glycine–aspartate) motif, a recognition sequence for integrins. The root of the word

netrin, ‘‘netr,’’ is derived from Sanskrit, meaning ‘‘one who guides’’ (Serafini et al., 1994).

Each vertebrate genome has several members of the netrin family. Two netrin genes, netrin 1 and

netrin 3 were first found in mice (Wang et al., 1999a). A remote relative, netrin 4, was later found in

mammals (Yin et al., 2000). Two netrins, netrin 1 and netrin 2, were found in the chick. Only one netrin

homolog, unc‐6, is present in Caenorhabditis elegans. Drosophila has two netrin genes, netrin A and netrin

B. Two molecules remotely related to netrins, define a family of glycosylphosphatidylinositol (GPI)‐linked
proteins called laminets (Nakashiba et al., 2000; Yin et al., 2002). The laminets are not diffusible and are

structurally more related to laminins than to netrins.

The netrin family cues are bifunctional (either attractive or repulsive), regulating the growth of a

variety of axons. Attraction is mediated by a transmembrane receptor, DCC (deleted in colorectal cancer)

(Keino‐Masu et al., 1996; Fazeli et al., 1997; Stein et al., 2001). The signaling mechanisms are highly

conserved from C. elegans to vertebrates (Chan et al., 1996; Kolodziej et al., 1996. Repulsion is mediated

by the DCC and Unc5 receptor complexes (Hedgecock et al., 1990; Hong et al., 1999; Keleman and

Dickson, 2001).
2.1.2 Secreted Semaphorins

Secreted semaphorins are highly diffusible glycoproteins. They are characterized by a �500‐amino‐acid
semaphorin domain that contains �15 conserved cysteine residues and many other blocks of conserved

residues and no obvious repeats. C‐terminal to the semaphorin domain are a single C2 type immunoglob-

ulin‐like (Ig) domain and a 70–120 amino acid C‐terminal domain. The vertebrate secreted semaphorins

contain a stretch of highly basic amino acids in this C‐terminal region. The name ‘‘semaphorin’’ is derived

from ‘‘semaphore,’’ which means to send visual signals using signaling apparatus like flags, lights, or

mechanically moving arms, as ones used on a railroad.

There are six vertebrate members in class 3 semaphorin (diffusible vertebrate semaphorins) family and

one diffusible Drosophila semaphorin, D‐semaII, which belongs to class 2 semaphorin (diffusible inverte-

brate semaphorins) family (Semaphorin Nomenclature Committee, 1999).

The function of secreted semaphorins is primarily repulsive, mediated by the neuropilin–plexin

complexes (Kolodkin et al., 1993; He and Tessier‐Lavigne, 1997; Winberg et al., 1998; Takahashi et al.,

1999; Tamagnone et al., 1999; Chen et al., 2000a; Giger et al., 2000; Cheng et al., 2001; Grunwald and Klein,

2002; Swiercz et al., 2002). The structure and function of semaphorins and the plexins are also highly

conserved. Some secreted semaphorins have been reported to be attractive (Bagnard et al., 1998; de Castro

et al., 1999). It is currently unclear which receptor mediates attraction by secreted semaphorins.
2.1.3 Slits

Slits are a family of extracellular matrix molecules (ECMs) with four tandem arrays of leucine‐rich repeats

(LRR) (flanked by conserved amino‐ and carboxy‐terminal sequences), a long stretch of EGF repeats, an

agrin–laminin–perlecan–slit (ALPS) conserved spacer motif, and a cysteine knot (a dimerization motif
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found in several secreted growth factors) (Rothberg et al., 1990; Brose et al., 1999; Kidd et al., 1999; Brose

and Tessier‐Lavigne, 2000). On the basis of vertebrate studies, the slits were found to be proteolytically

cleaved into two fragments (Slit‐N and Slit‐C; 120–130 kDa and 55–60 kDa, respectively). Slit‐C undergoes

further cleavage or degradation, and Slit‐N has potent repulsive activity (Brose et al., 1999).

Three Slit genes are found in vertebrates, Slits 1–3, whereas only one is found in Drosophila and in

C. elegans. Vertebrate slit proteins differ from the invertebrate slits with one extra leucine‐rich repeat in the

third leucine‐rich array and two more EGF repeats (Brose et al., 1999).

Slits are repulsive axon guidance cues, and the repulsion is mediated by their receptors, robos, members

of immunoglobulin superfamily cell adhesion molecules (Ig‐CAMs) (Brose and Tessier‐Lavigne, 2000). The
repulsive function of the slits and their signaling pathways are conserved from worms, flies to mammals

(Zallen et al., 1998; Kidd et al., 1999; Hao et al., 2001; Plump et al., 2002; Long et al., 2004). The slits have

been shown to stimulate axonal branching in vitro (Wang et al., 1999b).
2.1.4 TGF‐b Family Proteins

Transforming growth factor‐b (TGF‐b) family proteins are secreted growth factors. TGF‐b superfamily is a

large one, with more than 30 members and having multiple functions (Miyazono et al., 2001; Nusse, 2003).

Bone morphogenetic protein‐7 (BMP‐7) and growth/differentiation factor 7 (GDF‐7) have been implicated

in axonal repulsion (Augsburger et al., 1999). A C. elegans TGF‐b family member, Unc129, has been

implicated in motor axon guidance (Colavita et al., 1998). TGF‐b proteins were the first morphogens

implicated in axon guidance.

TGF‐b family members are mediated by type I and II receptors. A type I receptor has been implicated in

mediating axon guidance (Liu et al., 2003).
2.1.5 Sonic Hedgehog (Shh)

Sonic hedgehog is a secreted protein and belongs to the hedgehog family, which are highly conserved

signaling proteins (Nusse, 2003). The Shh protein is first made as a precursor, consisting of a C‐terminal

protease domain (26–27 kDa) and an N‐terminal signaling unit (19 kDa). The C‐terminal protease of Shh

cleaves the precursor in an autocatalytic manner to release the active signaling domain, HhNp. Sonic

hedgehog protein has two lipid modifications. The N‐terminal becomes modified by the fatty acid

palmitate, on a conserved cysteine residue that is exposed at the very N‐terminal end of the protein after

its signal sequence has been removed. During this cleavage, the C terminus of HhNp becomes covalently

modified by a cholesterol molecule. Sonic hedgehog protein binds to a membrane receptor Patched and in

doing so derepresses the inhibition on the Smoothened by Patched, allowing activation of signaling

downstream of Smoothened, a seven transmembrane domain protein.

Sonic hedgehog has been shown to be an axonal attractant mediated by Smoothened (Charron et al.,

2003) and a repellent for retinal ganglion cell axons (Trousse et al., 2001). The receptor mediating repulsion

has not been identified.
2.1.6 Wnts

The Wnt proteins are a large family of secreted, cysteine‐rich proteins, which are both lipid modified and

glycosylated (Nusse, 2003). The first conserved cysteine, which is essential for Wnt function, is palmitoy-

lated, making Wnts very hydrophobic and hard to purify. Glycosylation takes place on conserved N‐linked
glycosylation sites. Wnts were the first guidance cues to be implicated in axon guidance along the rostral–

caudal axis of the neuraxis (Lyuksyutova et al., 2003).

In mammals, 19 members of the Wnt family of proteins have been reported. So far multiple Wnts have

been shown to have the ability to regulate CNS axon growth (Lyuksyutova et al., 2003).
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Wnts are key players in several aspects of development, including axis formation, patterning, cell fate

determination, proliferation, tissue polarity, morphogenesis, cell motility, and synaptogenesis (Wodarz and

Nusse, 1998; Adler and Lee, 2001; Zorn, 2001; Tada et al., 2002; Keller, 2002). Wnt functions are mediated

by frizzled family of receptors. More recently, evidence began to emerge that Wnt proteins may also regulate

axon development (Lucas and Salinas, 1997; Salinas, 1999; Krylova et al., 2002; Lyuksyutova et al., 2003;

Yoshikawa et al., 2003). A member of the frizzled family proteins, the cell surface receptors of Wnts, has also

been shown to be involved in axon growth in vivo (Wang et al., 2002c). Attractive function of Wnts is

mediated by frizzled‐3 (Lyuksyutova et al., 2003). A receptor tyrosine kinase like protein, Ryk, mediates

repulsion by Wnts (Yoshikawa et al., 2003).
2.2 Nondiffusible Cues

2.2.1 Immunoglobulin Superfamily Cell Adhesion Molecules (Ig‐CAMs)

Immunoglobulin superfamily cell adhesion molecules are either transmembrane proteins or GPI‐linked cell
surface proteins, which contain one or multiple immunoglobulin repeats (Ig repeats) (Brummendorf and

Rathjen, 1993, 1995). The Ig superfamily also includes secreted members, which have similar domain

arrangements except that they are not tethered to cell membranes (Rougon and Hobert, 2003). Some

secreted Ig superfamily molecules do regulate axon guidance, but they belong to the class of diffusible axon

guidance molecules. The Ig repeats are approximately 100‐amino‐acids long, with several b‐strands
distributed in two b‐sheets forming a sandwich stabilized by a conserved disulfide bond (Williams and

Barclay, 1988; Halaby et al., 1999). Many Ig superfamily axon guidance molecules include fibronectin (Fn)

type‐III repeats following the Ig repeats. Sometimes, the Ig domains are followed by other protein

interaction domains, such as the MAM (meprin/A5‐protein/PTPmu) domain (Litwack et al., 2004). The

Ig domains are sometimes present in the classes of axon guidance molecules that are usually not referred to

as Ig‐CAMs, as seen in several classes of semaphorin family (1999).

Ig superfamily includes a large number of members. The number of Ig repeats and Fn repeats and their

combinations can vary. Some members contain large numbers of splice variants (Schmucker et al., 2000).

Cell adhesion molecules of the Ig superfamily can act as both ligands and receptors to mediate contact‐
mediated attraction or repulsion. They have been shown to play important roles in many axonal pathfind-

ing events (Tessier‐Lavigne and Goodman, 1996). They can act as receptors to mediate axon repulsion as in

the case of F11/contactin (Pesheva et al., 1993). Some Ig superfamily molecules have signaling capacity, with

protein tyrosine kinase or protein tyrosine phosphatase domains, and can act as receptors through

homophilic or heterophilic interactions (Tessier‐Lavigne and Goodman, 1996).
2.2.2 Cadherins

Classical cadherins are single transmembrane domain glycoproteins, containing five cadherin domains

(CDs), which mediate calcium‐dependent homophilic interaction (Ranscht, 2000). Calcium binds to the

interface of neighboring CDs and stabilizes the conformation. Homophilic interactions among same types

of cadherins are generally stronger than heterophilic interactions among different types of cadherins.

Cadherins also mediate heterophilic interactions with integrins and fibroblast growth factor receptor

(FGFR). A conserved intracellular domain of cadherins binds to a‐ and b‐catenins.
The cadherins family is large, with about 80 members in vertebrates. In addition to the classical N‐, E‐,

and R‐cadherins, some cadherins have different structural organization. The T‐cadherin has the same

ectodomain structure but is tethered to the membrane by GPI linkage. Many new members belong to

protocadherin family as their ectodomains contain more than five CDs, and the cytoplasmic domains are

divergent from the classical cadherins.

N‐ and R‐cadherins have been shown to promote growth and pathfinding of retinal ganglion cell axons.

Homophilic interaction of T‐cadherin triggers repulsive effects on motor axon projection (Ranscht, 2000).
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2.2.3 Extracellular Matrix Molecules (ECMs)

Several classes of extracellular matrix molecules play important roles in axon growth, although it is not clear

whether they play a role in axon guidance or simply growth regulation. These molecules include laminin,

fibronectin, vitronectin, collagen, tenascin, thrombospondin families, and proteoglycans such as chondroi-

tin sulfate proteoglycans (CSPGs) and heparin sulfate proteoglycans (HSPG). Some extracellular matrix

molecules, such as reelin and anosmin (Kallmann’s syndrome gene 1 (KAL1) product), are probably not as

abundant as the other ECM molecules but have been shown to regulate axon growth. The slits are

sometimes referred to as extracellular matrix molecules as well. Some of the ECMs, such as CSPGs and

tenascins, have been implicated to be the major inhibitory cues in glial scars that prevent axon regeneration

in adult CNS. The receptors that mediate growth control of axons are integrins, Ig superfamily, and

proteoglycans (Tessier‐Lavigne and Goodman, 1996). Many of the receptors for ECM molecules have not

been identified.
2.2.4 Ephrins

The Ephrins are a large family of contact‐mediated repellents, mediated by the ephrin (Eph) receptors,

which are receptor tyrosine kinases and are among the more recently identified contact‐mediated cues

(Grunwald and Klein, 2002). There are two major classes, the A‐class and B‐class. The A‐class ephrins are
tethered to the cell membrane by GPI linkage. The B‐class ephrins are transmembrane proteins. All ephrins

contain unique conserved, extracellular receptor‐binding domain with homology to photocyanins and

plant nodulins (Himanen and Nikolov, 2003). B‐class ephrins possess a short but highly conserved

cytoplasmic domain and a C‐terminal PSD‐95, discs‐large, Z0‐1 (PDZ)‐binding motif involved in protein

interactions in reverse signaling. There are five A class ephrins and three B class ephrins in mammals.

Ephrins play important roles in guiding axon wiring, particularly in the formation of topographic maps

and midline crossing by repulsive as well as attractive mechanisms (Cheng and Flanagan, 1994; Cheng et al.,

1995; Drescher et al., 1995; Nakamoto et al., 1996; Feldheim et al., 1998, 2000; Flanagan and Vanderhae-

ghen, 1998; Frisen et al., 1998; Hindges et al., 2002; Kullander and Klein, 2002; Mann et al., 2002; Pittman

and Chien, 2002; Williams et al., 2003). Bidirectional signaling has been demonstrated in B ephrins as well

as A ephrins (Davy and Robbins, 2000). There are 14 Eph receptors, 8 EphAs and 6 EphBs. A‐class ephrins
bind to EphA promiscuously and B‐class ephrins bind to EphB promiscuously. There are two exceptions to

that rule: B ephrins bind to EphA4 and ephrinA5 binds to EphB2 (Himanen et al., 2004).
2.2.5 Membrane‐Bound Semaphorins

Membrane‐bound semaphorins contain the conserved �500‐amino‐acid sema domain in the extracellular

region but are bound to the cell membrane by one transmembrane domain (Classes 1, 4, 5, and 6) or by GPI

linkage (Class 7) (Semaphorin Nomenclature Committee, 1999).

The first semaphorin discovered was a transmembrane semaphorin that regulates axon fasciculation

(Kolodkin et al., 1992, 1993) Both repulsive and attractive functions have been shown in membrane‐bound
semaphorins. Plexins have been implicated in mediating repulsive response/growth cone collapse (Swiercz

et al., 2002), whereas integrins were implicated in attractive response (Pasterkamp et al., 2003). Bidirec-

tional signaling has also been suggested in a transmembrane semaphorin with intracellular domain

(sema4D) (Elhabazi et al., 2003). Much is still to be learned about membrane‐bound semaphorins, which

comprise the majority of the semaphorin family of axon guidance molecules.
3 Axon Guidance at the Midline of Central Nervous System

The midline is an important source of guidance information and therefore a key organizer of nervous

system wiring. Along the anterior–posterior (rostral–caudal) axis, the ventral midline plays an essential role
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in guiding many classes of axons. At the forebrain, corpus callosum, which connects the left and right

cerebral cortices, and optic nerves, which connect the eyes to forebrain and midbrain targets, have been

extensively studied. In the spinal cord, commissural neurons have been a model system for axon guidance

studies and the floor plate is one of the best‐known intermediate targets for axon wiring (> Figure 16-1).
. Figure 16-1

Multiple guidance cues control the pathfinding of spinal cord commissural axons. In a transverse view,

precrossing commissural axons are shown projecting to the ventral midline in response to the midline

chemoattractants netrin‐1 and sonic hedgehog. Chemorepellants, such as the bone morphogenetic proteins

(BMPs), also play a role in directing the ventral growth. After midline crossing as shown in ‘‘open‐book’’ view,

postcrossing commissural axons turn anteriorly. Postcrossing commissural axons lose responsiveness to che-

moattractants, netrin‐1 and sonic Hedgehog, but gain responsiveness to chemorepellents such as slits and

semaphorins, which turn their trajectory from the dorsal–ventral axis to the anterior–posterior axis. Commis-

sural axons also gain responsiveness to Wnt proteins, which direct them to turn anteriorly to project to

the brain
Axon trajectories are often very long and complex. To establish such complex connections is not a trivial

task. The trajectory is often broken down into smaller segments so that pathfinding is much simplified at a

given segment. At the end of these segments, growth cones usually pause and change responsiveness to

guidance cues and then move on to the next segment, often in a new direction. The floor plate at the ventral

midline is one such intermediate target.

Commissural neuron cell bodies are located in the dorsal half of the spinal cord and send axons toward

the ventral midline, a process guided by netrin‐1, a diffusible attractant (Kennedy et al., 1994; Serafini et al.,
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1994, 1996), mediated by its receptor DCC (Keino‐Masu et al., 1996; Fazeli et al., 1997), a member of

Ig‐CAM. Sonic hedgehog, a morphogen, which patterns the nervous system during earlier development,

collaborates with netrin‐1 in guiding commissural axons to grow to the ventral midline (Charron et al.,

2003). While commissural axons are projecting ventrally, they are also repelled by BMP‐7, a TGF‐b family

member, emanating from the roof plate (Augsburger et al., 1999). Therefore, precrossing commissural axon

growth cones respond to netrin‐1, Shh, and BMP‐7 simultaneously.

After reaching the ventral midline, commissural axons cross to the contralateral side and turn rostrally

immediately after reaching the contralateral border of the floor plate. During midline crossing, commis-

sural axons lose responsiveness to netrin‐1 (Shirasaki et al., 1998). Interestingly, before reaching the

midline, commissural axons do not respond to slits and secreted semaphorins; once they cross the midline,

postcrossing commissural axons gain responsiveness to both slits and a subset of secreted semaphorins,

sema3B and sema3F (Zou et al., 2000) (> Figure 16-1). The repulsion by these chemorepellents from the

midline and ventral spinal cord turns commissural axons from the dorsal–ventral axis into their longitudi-

nal trajectory.

Recent work showed that commissural axons ignore Wnt proteins before midline crossing but become

attracted by Wnt proteins after midline crossing (Lyuksyutova et al., 2003). An anterior–posterior gradient

of Wnt function is required for normal anterior turning of commissural axons after midline crossing.

Therefore, commissural axon growth cones respond sequentially first to netrin‐1, BMPs, and Shh, and then

to slits, secreted semaphorins, and the Wnt proteins.
4 Axon Target Selection in Retinotopic Mapping

Topographic mapping of axonal connection is a fundamental feature of nervous system wiring. In several

sensory systems, such as visual, auditory, and somatosensory systems, the spatial order of the sensory

receptors is precisely mapped to brain targets. This is achieved largely by patterning axonal connections

between the sensory receptors and their targets in a topographically organized manner. In the visual system,

retinotectal projections are organized along the anterior–posterior and dorsal–ventral axes. Temporal axons

project to anterior tectum (superior colliculus in rodents), and nasal axons project to posterior tectum

(superior colliculus in rodents). Ventral retinal axons terminate in medial (dorsal) tectum, and dorsal

retinal axons terminate at lateral (ventral) tectum (> Figure 16-2).

Studies have implicated A‐class ephrins in retinal ganglion cell axon target selection along the anterior–

posterior axis via a repulsive mechanism through EphA (Feldheim et al., 1998, 2000; Flanagan and

Vanderhaeghen, 1998; Frisen et al., 1998) and that an attractive interaction involving ephrinB–EphB

controls dorsal–ventral patterning of axon branch termination (Hindges et al., 2002; Mann et al., 2002).

Interestingly, in ephB2‐/ephB3‐ double mutant, interstitial branches always shifted laterally, suggesting the

presence of another activity apposing the attractive ephrinB1–EphB interaction, which directs axon

branches medially (Hindges et al., 2002).
5 Inhibitors of Axon Regeneration in Adult Central Nervous System

During adult life, axons in the CNS lose regenerative capability so that injuries to axons in the spinal

cord and brain are permanent, causing long‐term functional loss. The CNS contains inhibitory molecules

that are either present or induced after injury that only affect the growth of adult CNS axons. The adult

CNS axons can grow if they are present with peripheral nervous system (PNS) tissues, such as sciatic

nerves (Richardson et al., 1980), suggesting that adult CNS axons will regenerate if the inhibitors in the

CNS are blocked. Therefore, much effort has been dedicated to the identification of these inhibitory factors

and how they act to prevent axon regeneration. In general, two sources of inhibitors are present in the

CNS: the myelin‐derived inhibitors and the glial‐scar‐derived inhibitors. The myelin sheath, which wraps

around adult axons, contains a number of potent inhibitors that prevent axon growth. Upon injury, glial



. Figure 16-2

Retinotopic mapping in vertebrate visual system. Type‐A ephrins (top left) form an anterior–posterior low‐to‐
high gradient in the tectal (superior colliculus in rodents) membrane. Their receptors (EphAs) are expressed in a

high‐to‐low gradient along the temporal nasal axis in the retina. As ephrinAs repel retinal ganglion cell axons,

temporal axons preferably project to anterior tectum (superior colliculus in rodents) and nasal axons project to

the posterior tectum (superior colliculus in rodents), forming a topographic map. EphrinB1 (top right), in a

medial to lateral decreasing gradient, attracts RGC axons via EphB receptors, which are expressed in a ventral to

dorsal decreasing gradient in the retina. Therefore, the ventral axons preferably target to medial tectum

(superior colliculus in rodents) and dorsal axons target to lateral tectum (superior colliculus in rodents), forming

the topographic map along the medial lateral axis
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scars form to fill the injured CNS tissue, which creates a physical barrier and also contains inhibitory

molecules.
5.1 Myelin‐Derived Inhibitors

5.1.1 Nogo

Nogo proteins have potent inhibitory activity and are made up of three isoforms (Nogo‐A, Nogo‐B, and
Nogo‐C) (Chen et al., 2000b; GrandPre et al., 2000; Prinjha et al., 2000). The Nogo proteins belong to the

reticulon family. The three isoforms are generated in the oligodendrocytes through alternative splicing

(Nogo‐A and Nogo‐B) and alternative promoters (Nogo‐C). The C‐terminal domain (188 amino acids) is

common to all isoforms and contains a 66‐amino‐acid subdomain, which is present on the cell surface. The

Nogo‐66 domain binds to Nogo receptor, NgR, which together with a coreceptor P75, causes axon growth

inhibition (Fournier et al., 2001; Wang et al., 2002a; Wong et al., 2002). Nogo‐A has a long N‐terminal

region, which can inhibit axon regeneration, although the membrane topology of Nogo‐A N‐terminal

region is still not clear (whether it is exposed extracellularly). An antibody against the N‐terminal region of

Nogo‐A, IN‐1, promotes regeneration in vivo.
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5.1.2 MAG

Myelin‐associated glycoprotein (MAG) is a member of Ig‐superfamily molecules with five C2‐type Ig

repeats (Salzer et al., 1987), and inhibits adult CNS axon growth (McKerracher et al., 1994; Mukhopadhyay

et al., 1994). MAG is found in the myelin sheaths of both oligodendrocytes and Schwann cells (Filbin, 1995).

Interestingly, MAG can promote neurite extension in neonatal and postnatal day 1 DRG neurons. MAG

shares a common receptor complex with Nogo‐66, i.e., NgR‐P75 (Domeniconi et al., 2002).
5.1.3 OMgp

The oligodendrocyte–myelin glycoprotein (OMgp) is a GPI‐anchored protein expressed in both neurons

and oligodendrocytes in the CNS (Vourc’h and Andres, 2004). It is a 120 kDa, highly glycosylated protein.

The polypeptide backbone is 46 kDa. The 440‐amino‐acid peptide sequence contains several domains: a

32‐amino‐acid cysteine‐rich region (with four cysteines, likely forming two disulfide bonds), a 197‐amino‐
acid serine–threonine rich (S/TR) domain with putative N‐ and O‐glycosylation sites, and a 172‐amino‐acid
LRR domain (eight tandem LRRs). OMgp inhibits axon growth and shares a common receptor complex

with Nogo and MAG, i.e., NgR‐P75 (Wang et al., 2002a, b).
5.2 Glial‐Scar‐Derived Inhibitors

Following injury, a strong inhibitory scar tissue forms, which prevents CNS axons to grow across. Even PNS

axons cannot grow across this inhibitory environment. Scar tissue contains astrocytes, precursors of

oligodendrocytes, microglia, and meningeal cells. Two major classes of extracellular matrix molecules are

known to contribute to axon growth inhibition:CSPGs and tenascins.
5.2.1 CSPGs

CSPGs are a class of proteoglycans with a protein core and long, unbranched polysaccharides (glycosami-

noglycans or GAGs) containing chondroitin sulfate (CS) disaccharide unit repeats (Properzi et al., 2003).

The core proteins are hyalectans (brevican, neurocan, versican, aggrecan), NG2, phosphacan, appican,

decorin, biglycan, and neuroglycan. The GAGs can be formed from six different CS disaccharide units, each

of which carries one or two sulfate groups. The GAGs are generally thought to be mainly responsible for the

inhibitory activity, although in some cases domains in the protein core are also implicated and may appear

more important (Chen et al., 2002; Ughrin et al., 2003). Multiple CSPG core proteins are upregulated in the

glial scar and are highly expressed during development. The relative contributions of individual CSPGs in

axon growth inhibition are not yet determined.
5.2.2 Tenascins

The tenascins are a family of extracellular molecules that form dimers, trimers, and tetramers (Faissner,

1997). The amino‐termini of tenascins contain several (3 to 17.5) cysteine‐rich EGF‐like repeats, followed
by several (usually 8) fibronectin type III repeats and a carboxyl fibronectin‐b‐ and fibronectin‐g‐like
domain. Between the fifth and sixth FNIII domains are various numbers of alternatively spliced FNIII

domains. There are four known tenascins: C, R, X, and Y. Tenascin‐X and ‐Y are not expressed in the

nervous system. Tenascin‐C is expressed mainly in astroctyes and tenascin‐R is expressed in oligodendro-

cytes and their precursors as well as Schwann cells. Tenascins play important roles in axon growth and

guidance in development. Identified receptors for tenascin‐C are F11/contactin and CALEB (chicken acidic

leucine‐rich EGF‐like‐domain‐containing brain protein). During injury, both tenascin‐C and ‐R are

induced and have inhibitory effects on regenerating axons.
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346 17 Opioid receptor genes and their regulation
Abstract: Each opioid receptor (OR) is encoded by a single gene, namely MOR for the m , DOR for the d
and KOR for the k receptors. The three OR genes share a highly conserved genomic structure, with three

major exons spanning most of the protein‐coding region of each gene. Regulation of OR gene expression

involves transcriptional and posttranscriptional events. Transcriptional regulation of these three OR genes

employs both common and unique pathways and involves both positive and negative regulatory elements.

Posttranscriptionally, multiple processes regulate the maturation of OR messenger RNAs (mRNAs), and

therefore the production of their proteins. These include the generation of multiple RNA variants that

produce, primarily, the same receptor protein for each gene, as well as regulation during RNA stability,

splicing, translation, polyadenylation, and transport in neurons. The pharmacological implication of OR

gene regulation at these transcriptional or posttranscriptional levels remains to be explored.

List of Abbreviations: DOR, d opioid receptor; DP, distal promoter; GFP, green fluorescent protein;

GPCR, G‐protein‐coupled receptor; Ik, Ikaros; KOR, k opioid receptor; lacZ, b‐galactosidase gene; MOR,

m opioid receptor; NO, nitric oxide; NRSE, neurorestrictive silencer element; OR, opioid receptor; PP,

proximal promoter; Pr1, promoter 1; Pr2, promoter 2; RA, retinoic acid; UTR, untranslated region
1 Introduction

Three types of opioid receptors (ORs), i.e., m (MOR), d (DOR), and k (KOR), were found on the cell

membranes; each was named according to its selectivity toward specific ligands (Chang and Cuatrecasas,

1979; Chang et al., 1979) and cross‐tolerance of its ligands (Schultz et al., 1980; Porreca et al., 1982). While

subtypes were documented for each OR, complementary DNA (cDNA) and genomic DNA cloning revealed

a single gene for each receptor. According to the DNA and protein sequences, it was concluded that all

three ORs belong to the superfamily of G‐protein‐coupled receptors (GPCRs) (Law et al., 2000) that are

characterized by the presence of seven transmembrane domains. The predicted seven transmembrane

domains and intracellular loops are highly conserved (73–100%) whereas the N and C termini diverge

significantly (9–20%) (Neer, 1995; Offermans and Simon, 1996).

Alignment of the messenger RNA (mRNA) sequences to their genomic sequences indicated that each

OR gene produced multiple mature mRNA isoforms, or variants (for review see Wei and Loh, 2002; Wei

et al., 2004). While pharmacological subtypes of ORs were detected in animals, attempts to correlate these

mRNA‐splicing‐variant protein products with receptor subtypes were largely unsuccessful. As such, the

biological implication of these multiple mRNA variants required further investigation, and the molecular

identity of OR subtypes remained to be determined. Interestingly, the untranslated sequences of KOR

mRNA variants, in both the 50‐ and the 30‐ends, were found to play important roles in regulating the

production of KOR (Wei et al., 2000; Hu et al., 2002; Bi et al., 2003). Although their genomic structures and

promoters share some common features, the three OR genes are subjected to distinct transcriptional

controls (for review, see Wei and Loh, 2002). This chapter is devoted to the three ORs with respect to

their gene structures and regulatory mechanisms underlying the production of OR proteins, including both

transcriptional and posttranscriptional events.
2 Genomic Structures of the Three OR Genes

The three OR genes share a very similar genomic structure where three similarly positioned exons encode

the major portion of the amino acid‐coding region of each gene. The sequence of the seven transmembrane

domains is most highly conserved, whereas both the amino‐ and the carboxy‐terminal regions are signifi-

cantly different. The common features of the mouse MOR (Min et al., 1994), DOR (Simon et al., 1994;

Augustin et al., 1995), and KOR (Liu et al., 1995) genes are shown in > Figure 17-1. Splicing junctions, i.e.,

the positions of introns, within the coding region of each gene are located at similar positions on each

cDNA, suggesting a common ancestral origin for the three genes. Further, their promoters share several

common features: TATA‐less, a high G/C content, and the presence of common transcription factors like



. Figure 17-1

Genomic alignment of the mouse MOR (mMOR), the mouse DOR (mDOR), and the mouse KOR (mKOR) genes.

The transcribed region is aligned according to the translation initiation codon (number 1 above each gene).

Exons are numbered above each gene map with the approximate sizes of introns indicated at the amino acid

residues where splicing events occur. In the coding region, numbers represent the amino acid positions. The

dotted broken bars represent the 50‐ and 30‐UTR of each gene. (Wei and Loh, 2002)
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SP‐1, Ikaros (Ik), E‐box factors, and AP1/AP2 (Wei and Loh, 2002). However, each gene is also differentially

regulated by some unique transcription factors. Apparently, the three OR genes have evolved to employ

both common and unique pathways for transcriptional regulation of their expression. In agreement with

the features of their promoters, the distribution of the three ORs also exhibit both common (or over-

lapping) and unique patterns as revealed by various detection methods, such as ligand binding (Folwer and

Fraser, 1994), immunohistochemistry (Elde et al., 1995), in situ hybridization (Mansour et al., 1995), and

transgenic reporters (Hu et al., 1999).
3 Transcriptional Regulation

3.1 MOR Gene

Two functional promoters have been identified for the mouse MOR (mMOR) gene (Ko et al., 1997), one

initiating at �784 position (relative to translation initiation codon, denoted as DP (distal promoter) and

the second initiating from a cluster of four sites between �291 and �268 positions, denoted as PP

(proximal promoter). In terms of tissue specificities, PP is preferentially used in most animal tissues.

Multiple regulatory elements for MOR promoters have been identified, including an inverted GA motif

between �340 and �300 positions that contains several Sp1‐binding sites (Ko et al., 1998), a single‐
stranded DNA‐binding protein binding site between �340 and �400 positions (Ko et al., 2001), an AP2/

Sp1 site between �400 and �450 positions (Ko et al., 2003, 2004), an Oct‐1‐binding site (Liang and Carr,

1996), an IL‐4‐binding site (Kraus et al., 2001), a binding site for Sox18 or Sox21 (Im et al., 2001; Hwang

et al., 2003), and a 34‐bp silencing region for Pu.1‐binding (Choe et al., 1998; Hwang et al., 2004).

Regulatory sequences were also found in its 50‐untranslated region (50‐UTR), such as an NF‐kB site

(originally identified from the human gene) (Kraus et al., 2003), a cAMP response element binding

(CREB) site (Lee and Lee, 2003), and a suppressive sequence homologous to the neurorestrictive silencer

element (NRSE) (Andria and Simon, 2001; Kim et al., 2004). The known regulatory DNA elements of the

mMOR gene are depicted in > Figure 17-2.



. Figure 17-2

Regulatory DNA elements and their corresponding transcription factors of the mouse MOR (mDOR) gene. DP

distal promoter, PP proximal promoter

Regulatory Sequences of mMOR Promoter

DP PP
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proximal transcription initiation sitesdistal transcription initiation site
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34-bp
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The functional activity of a 4‐kb DNA fragment from the MOR promoter has been demonstrated in a

transgenic mouse model in this laboratory (L. N. Wei and H. H. Loh, unpublished data) where the pattern

of a MOR–lacZ reporter recapitulates most of the endogenous MOR expression pattern as assessed by in

situ hybridization and immunohistochemistry. It remains to be confirmed if and how these transcription

factors are involved in transcriptional regulation of MOR gene in a physiological context such as in different

tissues and under various conditions.
3.2 DOR Gene

Two major transcription initiation sites have been identified for the single promoter of the mouse DOR

(mDOR) gene, which is located between –324 and�142 positions with respect to the ATG initiation codon

(Augustin et al., 1995). A C/G‐rich region of this promoter, i.e., between�141 and�262 positions, is highly

methylated and bound by transcription factors Sp3 and methylated DNA‐binding protein MBD2 (Smirnov

et al., 2001; Wang et al., 2003). Multiple regulatory elements for the DOR promoter include an AP‐2‐
binding site (Woltje et al., 2000), an USF‐binding E box (Liu et al., 1995), an Ets‐binding site (Sun and Loh,

2001), an AP‐1 site (Woltje et al., 2000), and an Ik‐2‐binding site (Sun and Loh, 2002, 2003). The known

regulatory DNA elements of the mDOR gene are depicted in > Figure 17-3. Likewise, their physiological

relevance remains to be established.
. Figure 17-3

Regulatory DNA elements and their corresponding transcription factors of the mouse DOR (mDOR) gene

Regulatory Sequences of mMOR Promoter

ATG

+1

transcription initiation site

IK-2 
(−385/−380)

AP-1 
(−355/−349)

Spl/Sp3 
(−228/−221)

USF 
(−185/−180)

AP2 
(−157/−150)

−675
−141
3.3 KOR Gene

Two functional KOR promoters have been identified, separated by a noncoding exon near the 50‐end of the

cDNA, and are denoted as promoter 1 (Pr1) and promoter 2 (Pr2) (Lu et al., 1997). Pr1 initiates

transcription from a cluster of residues located between �1098 and �719 positions with respect to the

ATG codon. Pr2 initiates transcription from a single site at the �93 position (Lu et al., 1997) and is located

within the first intron. This intron is immediately upstream from the first protein‐coding exon where
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alternative splicing can occur to generate at least two mRNA variants initiated from Pr1 (Wei et al., 2000).

Multiple positive and negative regulatory regions are known for KOR promoters, such as binding sites for

Sp1 (Li et al., 2002), c‐Myc (Park and Wei, 2003), and Ik (Hu et al., 2001). The known regulatory DNA

elements of the mouse KOR (mKOR) gene are depicted in > Figure 17-4. As in the case of MOR promoters,
. Figure 17-4

Regulatory DNA elements and their corresponding transcription factors of the mouse KOR (mKOR) gene

Regulatory Sequences of mMOR Promoter

−1326 −1098 −725 −719 −93

Promoter 1

C-Myc Spl Exon I Exon IIIK

CREB +1
ATG

Promoter 2

Promoter 2 initiation sitePromoter 1 initiation site
the functional significance of KOR promoters has been confirmed in a KOR–lacZ transgenic mouse model

(Hu et al., 1999). By using this animal model, we first identified vitamin A, or its active ingredient retinoic

acid (RA), in KOR transcriptional regulation (Bi et al., 2001). Regulation of KOR gene by RA was further

validated in a cell culture model where the pathway mediating the action of RA can be delineated (see the

following).

In the P19 embryonal carcinoma cell differentiation model, RA activates transcription factor Ik, whose

expression in turn suppresses KOR gene transcription by recruiting histone deacetylases to condense the

chromatin of KOR promoters (Bi et al., 2001; Hu et al., 2001). In the P19 embryonic stem cell line that

constitutively expresses a low level of KOR, RA serves as a negative signal for KOR gene in the initial phase

of cell differentiation. Recently, we have determined the chromatin structure of the mKOR gene promoter,

and found multiple regularly spaced nucleosomes in both promoters of this gene in RA‐induced, differ-
entiating P19 cells (Park et al., 2005). This is in line with the suppressive effects of RA on KOR transcription

in the initial phase of RA‐induced P19 differentiation. Without RA, the KOR gene promoter, in particular

Pr1, exists in an open configuration, consistent with the constitutive activity of this promoter in P19 stem

cells. However, a high concentration of RA (10�6 M) also transiently activates KOR gene, mediated by rapid

dephosphorylation of Sp1 due to the blockage of the ERK pathway by a transient surge in RA concentration

(Li et al., 2002). It is tempting to speculate that RA, at physiological concentrations, can act as a silencing

factor for KOR transcription in differentiating stem cells by inducing chromatin remodeling that results in

the formation of tightly organized nucleosomes in the promoter region. The transient RA surge, as caused

by pharmacological manipulations, may contribute to a rapid upregulation of KOR transcription in more

mature, committed cells where KOR gene promoters are in an open configuration and ready to be further

induced. A model is proposed in > Figure 17-5 to describe how KOR gene transcription may be regulated

by both chromatin remodeling factors and general transcription factors elicited by RA.

In addition to RA, a second signal input for KOR transcriptional control is the gas molecule, nitric oxide

(NO). This gas suppresses KOR transcription by inactivating NF‐kB (Park et al., 2002), which is an activator

of c‐Myc (Park et al., 2003). By inactivating c‐Myc, an activator for KOR transcription, NO ultimately

suppresses KOR gene transcription. As c‐Myc has been shown to recruit histone‐modifying enzymes such as

histone acetyl transferases, it is highly possible that NO signal is also capable of triggering chromatin

remodeling on this gene promoter. It remains to be determined in what context this gas molecule exerts its

physiological function toward the control of KOR gene transcription.

The extensive documentation of some common transcription factors for all three OR genes suggests a

fundamentally similar mechanism of transcriptional regulation for these genes. This is in line with the fact

that these three genes share a common genomic structure and a very similar promoter feature, and appear

to have evolved from the same ancestral gene. The known DNA regulatory sequences and their



. Figure 17-5

Retinoic acid (RA)‐induced chromatin remodeling of mouse KOR (mKOR) gene promoter 1. In P19 stem cells (top

panel), the chromatin structure of promoter 1 of the KOR gene is arranged in an open configuration, with a

loose nucleosome (gray oval shape) covering the E box for c‐Myc/Max binding and an open (no nucleosome)

region spanning the GC boxes for Sp1 binding and the transcription initiation site (dashed oval shape). The

promoter is actively transcribed in these cells (indicated by thick arrow). In cells that are induced by RA (middle

and bottom panels), c‐Myc/Max is replaced with Mad/Max on the E box, which recruits histone deacetylase

(HDAC) and other repressive remodeling complexes such as BRG and BAF155. Chromatin is modified and a tight

nucleosome is formed on the E box, with a new nucleosome beginning to form on the GC boxes where Sp1

binds (middle panel ). Transcription of this promoter is slowed down (indicated by a thin arrow). Ultimately, a

second tight nucleosome is formed on the GC boxes after full remodeling of this promoter in the differentiated

cells (bottom panel ). Transcription from this promoter is stopped (indicated by a dashed arrow)
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corresponding transcription factors mMOR, mDOR, and mKOR are summarized in >Table 17-1. These

common regulatory controls might be responsible for their somewhat overlapping expression patterns,

such as neuron or immune cell specificity. However, each gene has also evolved to employ certain unique

transcription factors, which might contribute to the difference in their cell type specificity in the nervous

system. Despite the efforts to search for the so‐called cell‐specific transcription factors of these genes, it

remains unknown as to whether these OR genes can be regulated by ‘‘cell‐specific’’ transcription factors. To

this end, it is tempting to speculate that a mechanism involving the combination of multiple transcription

regulators and chromatin remodeling factors regulates the control of a specific OR gene transcription in

particular cell types.

4 Posttranscriptional Regulation of OR Expression

4.1 mRNA Variants of OR Genes

All three OR genes exhibit extensive alternative splicing patterns, and all three genes can utilize alternative

polyadenylation signals (Hu et al., 2002). A total of 14 RNA variants have been reported for the MOR gene

(Pan et al., 2000, 2001; Pan, 2003). However, our recent Northern blot analyses revealed only one mature



. Table 17-1

Summary of transcription factors acting on opioid receptor genes

MOR DOR KOR References

AP2 AP‐1/AP‐2 Ko et al. (2003), Ko and Loh (2004)

c‐Myc Park et al. (2003)

CREB Lee and Lee (2003)

Ets Sun and Loh (2001)

Ikaros Ikaros Hu et al. (2001), Sun and Loh (2002, 2003)

IL‐4 Kraus et al. (2001)

MBD2 Wang et al. (2003)

NF‐kB Kraus et al. (2003)

NRSE Andria and Simon (2001), Kim et al. (2004)

Oct‐1 Liang and Carr (1996)

PU.1 Choe et al. (1998), Hwang et al. (2004)

SS DBP Ko and Loh (2001)

Sox Hwang et al. (2003, 2004); Im et al. (2001)

Sp1 Sp1/Sp3 Sp1 Ko et al. (1998), Li et al. (2002); Smirnov et al. (2001)

USF Liu et al. (1995)
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mouse MORmRNA species, approximately 12 kb in size, which could be detected by both exon 1 (encoding

the extracellular domain required for ligand binding) and exon 3 (encoding the transmembrane domain)

probes. A functional poly(A) was also confirmed for this mature mouse MOR (L. N. Wei, unpublished

data). Further, this MOR mRNA species could not be detected with probes prepared from the putative

exons of reported MOR variants as predicted from polymerase chain reaction studies. This result confirmed

that only one type of mature mouse mRNA that had the capacity to encode a functional mouse MOR

protein was produced.

For the KOR gene, six mature mRNAvariants have been identified (Wei et al., 2000; Hu et al., 2002). For

the DOR gene, at least one splicing variant has been found (Gaveriauxruff et al., 1997) that generates an in‐
frame stop codon and, potentially, a truncated receptor. However, most of these splicing variants are

predicted to generate the same receptor for the same gene. Experimental data suggest that the production of

these mRNA variants probably serves to modulate the expression of these proteins after the gene is

transcribed. This is best exemplified by the six KOR mRNA variants, each generating the same protein

but with a distinct profile in terms of mRNA stability, translation efficiency, and transport in neurons.

The three KOR mRNA 50‐variants A, B, and C are differentially expressed in different brain areas

(Bi et al., 2001), suggesting a regulatory role for the variable sequences of these KOR RNA variants. For

instance, variant A is most widely expressed, whereas variant C is detected primarily in the central nervous

system (CNS) and only after birth. RA regulates not only the transcription of KOR gene (see earlier), but

also the splicing of this gene (Bi et al., 2001). In addition to RA treatment, using a mechanical allodynia

animal pain model, we have found differential responses of these KORmRNAvariants in animals exhibiting

different pain behaviors (Sung et al., 2000), i.e., variant A is better correlated with nerve‐injury‐induced
pain. It remains to be examined whether a causal relationship exists between KOR RNA variant A and pain

sensation. Recently, it was also found that immunoreactivity of DOR in rat spinal cord was influenced by

peripheral nerve injury (Stone et al., 2004). It is plausible that the association of altered OR expression with

specific forms of pain could be a common phenomenon.
4.2 RNA Stability, Translation Efficiency, and Polyadenylation

The half‐life of KOR mRNA variants has been examined in the P19 culture model (Wei et al., 2000). It is

estimated that variant A has a half‐life of approximately 12 h and variant B’s half‐life is approximately 8 h. It
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is amazing that the difference between variants A and B lies merely at an insertion of 30 nucleotides in the

50‐UTR for variant B. Apparently, RNA structure must be altered significantly as a result of this short

insertion.

To address the translation efficiency of these KOR 50‐variants, in vitro translation and in vivo reporter

systems have been used. Variants B and C, which share an extensive 50‐UTR for translation control, are

comparable in terms of translation efficiency. On the other hand, variant A, which contains a 30‐nucleotide
insertion in the region for translational control, is least efficient in terms of translation (Wei et al., 2000).

Two functional PA signals, PA1 and PA2, have been identified for KOR, separated by approximately 2 kb

(Hu et al., 2002). The two PAs are differentially regulated by RA in the P19 system, where PA2 is preferred.

Extensive studies are needed to identify molecules or sequences that regulate the selection of a particular PA

site in specific cell types, and how that may contribute to the property of each KOR mRNA variant.

Despite the documentation of these posttranscriptional events that contribute to differential expression

of KOR RNA variants, none of these events have been directly linked to any pharmacological properties of

the k receptor. Therefore, it remains a major challenge to establish a pharmacological or physiological

relevance in terms of the generation of these KOR mRNA variants in the context of whole animals.

4.3 RNA transport

Discrepancy between the localization of receptor proteins and their mRNA distribution has been noticed

for all three ORs. While this could be attributed to technical factors, recent observation of posttranscrip-

tional regulation of KOR suggests a potentially important biological basis for this discrepancy. The initial

observation of KOR mRNA variants being detected at different levels in neuronal cell bodies and their

dissected fibers suggested that KOR mRNAs might be differentially transported in neurons (Bi et al., 2003).

To demonstrate and locate potential signals for transporting KOR mRNAs, a nuclear green fluorescent

protein (GFP)‐tagged phage RNA‐binding protein motif MS2 (GFP–MS2) was used as a tracer to follow

KOR mRNA that was fused to the MS2‐recognizing RNA sequence (MS2–KOR). By tagging each KOR

mRNA variant with the same MS2‐binding sequence, different MS2–KOR variants, i.e., MS2–KORa, MS2–

KORb, and MS2–KORc, were generated. Neurons, both in vitro differentiated P19 neurons and primary

neurons, were cotransfected with GFP–MS2 and one of the MS2–KOR constructs, and the distribution of

GFP was monitored. In this series of experiments, GFP–MS2 alone was restricted to the nuclei because of its

nuclear localization signal. However, when MS2–KOR was coexpressed, GFP–MS2 would bind to MS2–

KOR and exhibit a pattern reflecting the distribution of that particular MS2–KOR, i.e., the particular KOR

mRNA variant used in the construct. With this reporter system, we have found that, first, the three

KOR mRNA 50‐variants are differentially transported out of cell bodies into the fibers, suggesting a role

of KOR mRNA sequence in the mobilization of these mRNAs. Second, the three variants are transported at

different rates, suggesting differential regulation mediated by the three KOR mRNA variable regions

(Bi et al., 2003). Third, KOR mRNA transport can also occur in primary neurons, such as axons of primary

dorsal root ganglia, suggesting a potentially novel mRNA‐based transport mechanism in the axons of

certain sensory neurons (L. N. Wei and J. Bi, unpublished data). Thus, this would implicate a role of mRNA

variants in the control of KOR protein production in different parts of neurons.

While it is generally thought that nonstructural proteins in the axonal compartment rely only on cargo

transport of preformed cytosolic protein complexes, our results would suggest that mRNA transport in

axons can occur in sensory nerves for certain nonstructural components such as KOR. Further, the fact that

different KOR mRNAs are differentially transported suggests that local KOR protein expression in the

remote parts of neuronal compartments may also be subjected to differential regulation by signals received

at the nerve terminals. It remains an enormous challenge to address this issue in a pharmacological context.

5 Conclusion and Perspectives

Each OR is encoded by a different gene, but the three OR genes share a highly conserved structure, extensive

homologous sequences, and some common regulatory mechanisms; however, each of them can also be
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subjected to distinct transcriptional controls. For each gene, numerous mRNA variants have been found,

but there were few predicted OR protein variants. Therefore, the biological significance of these OR RNA

variants is probably more relevant to the regulation of these genes during RNA stability, splicing, transla-

tion, polyadenylation, and transport in neurons. Despite extensive demonstration of transcriptional

regulation of these genes by specific DNA elements and transcription factors, the pharmacological implica-

tion of these transcriptional events remains to be explored. A particularly interesting issue is the demon-

stration of KOR RNA regulation and its axonal or dendritic transport in neurons. This could potentially

determine receptor expression levels at these sites. It has been demonstrated that regulation of receptor

activities varies at different axonal or dendritic spines, such as the differential regulation of MOR by

morphine at different neuronal locations (Haberstock‐Debic et al., 2003). This would suggest that receptor

activity can be associated with its cellular localization. Differential receptor RNA transport would provide

the basis for regulation of receptor production in different locations, and thus for different local activities of

the same type of receptor.

Attempts to identify receptor ‘‘subtypes,’’ as defined pharmacologically, from mRNA variants of each

gene have not been rewarding. It appears to be a challenging task to identify these OR subtypes at the

molecular level. Finally, it remains to be substantiated whether the demonstrated gene regulatory events,

either transcriptional or posttranscriptional, using cell culture models, are physiologically significant in the

context of whole animals and bear any pharmacological relevance.
Acknowledgments

This work was supported by NIH grants DA00564, DA01583, DA11806, and K05‐DA70554 to H. H. Loh,

DA11190, DA11806, DK54733, DK60521, K02‐DA13926 to L. ‐N. Wei, and the F. and A. Stark Fund of the

Minnesota Medical Foundation (H. H. Loh).
References
Andria ML, Simon EJ. 2001. Identification of a neurorestric-

tive suppressor element (NRSE) in the human m opioid

receptor gene. Mol Brain Res 91: 73-80.

Augustin LB, Felsheim RF, Min BH, Fuchs SM, Loh HH. 1995.

Genomic structure of the mouse delta opioid receptor gene.

Biochem Biophys Res Commun 207: 111-119.

Bi J, Hu X, Loh HH, Wei L‐N. 2001. Regulation of mouse

kappa opioid receptor gene expression by retinoids. J Neu-

rosci 21: 1590-1599.

Bi J, Hu X, Loh HH, Wei L‐N. 2003. Mouse k‐opioid receptor

mRNA differential transport in neurons. Mol Pharmacol

64: 594-599.

Chang KJ, Cooper BR, Hazum E, Cuatrecasas P. 1979. Multi-

ple opiate receptors: differential regional distribution in the

brain and differential binding of opiates and opioid pep-

tides. Mol Pharmacol 16: 91-104.

Chang KJ, Cuatrecasas P. 1979. Multiple opiate receptors:

enkephalins and morphine bind to receptors of different

specificity. J Biol Chem 254: 2610-2618.

Choe CY, Im HJ, Ko JL, Loh HH. 1998. Mouse m OR gene

expression. J Biol Chem 273: 34926-34932.

Elde R, Arvidsson U, Riedl M, Vulchanova L, Lee JH, et al.

1995. Distribution of neuropeptide receptors. New
views of peptidergic neurotransmission made possible by

antibodies to opioid receptors. Ann N Y Acad Sci 757:

390-404.

Fowler CJ, Fraser GL. 1994. Mu‐, delta‐, kappa‐opioid recep-

tors and their subtypes. A critical review with emphasis

on radioligand binding experiments. Neurochem Int 24:

401-426.

Gaveriauxruff C, Peluso J, Befort K, Simonin F, Zilliox C, et al.

1997. Detection of opioid receptor mRNA by RT‐PCR

reveals alternative splicing for the delta‐ and kappa‐opioid

receptors. Mol Brain Res 48: 298-304.

Haberstock‐Debic H, Wein M, Barrot M, Colago EE, Rahman

Z, et al. 2003. Morphine acutely regulates opioid receptor

trafficking selectively in dendrites of nucleus accumbens

neurons. J Neurosci 23: 4324-4332.

Hu X, Bi J, Loh HH, Wei L‐N. 2001. An intronic Ikaros

binding element mediates retinoic acid suppression of

kappa opioid receptor gene, accompanied by histone dea-

cetylation on the promoters. J Biol Chem 276: 4597-4603.

Hu X, Bi J, Loh HH, Wei L‐N. 2002. Regulation of mouse

kappa opioid receptor gene expression by different 30‐un-
translated regions and the effect of retinoic acid. Mol

Pharmacol 62: 881-887.



354 17 Opioid receptor genes and their regulation
Hu X, Cao S, Loh HH, Wei L‐N. 1999. Promoter activity of

mouse k opioid receptor gene in transgenic mouse. Mol

Brain Res 69: 35-43.

Hwang CK, Kim CS, Choi HS, McKercher SR, Loh HH. 2004.

Transcriptional regulation of mouse m opioid receptor gene

by PU‐1. J Biol Chem 279: 19764-19774.

Hwang CK, Wu X, Wang G, Kim CS, Loh HH. 2003. Mouse m

opioid receptor distal promoter transcriptional regulation

by SOX proteins. J Biol Chem 278: 3742-3750.

Im HJ, Smirnov D, Yuhi T, Raghavan S, Olsson JE, et al. 2001.

Transcriptional modulation of mouse m‐opioid receptor

distal promoter activity by Sox 18. Mol Pharmacol 59:

1486-1496.

Kim CS, Hwang CK, Choi HS, Song KY, Law PY, et al. 2004.

Neuron‐restrictive silencer factor (NRSF) functions as a

repressor in neuronal cells to regulate the m opioid receptor

gene. J Biol Chem 279: 46464-46473.

Ko JL, Loh HH. 2001. Single‐stranded DNA binding complex

involved in transcriptional regulation of mouse m‐opioid

receptor gene. J Biol Chem 276: 788-795.

Ko JL, Loh HH. 2004. Identification and characterization of

poly C binding protein, a single‐stranded DNA binding

protein, as a transcriptional regulator of mouse m opioid

receptor gene. J Neurochem In press.

Ko JL, Liu HC, Loh HH. 2003. Role of an AP‐2 like element in

transcriptional regulation of mouse m opioid receptor gene.

Mol Brain Res 112: 153-162.

Ko JL, Liu HC, Minnerath S, Loh HH. 1998. Transcriptional

regulation of mouse m‐opioid receptor gene. J Biol Chem

273: 27678-27685.

Ko JL, Minnerath SR, Loh HH. 1997. Dual promoters of

mouse mu‐opioid receptor gene. Biochem Biophys Res

Commun 234: 351-357.

Kraus J, Borner C, Giannini E, Hickfang K, Braun H, et al.

2001. Regulation of m opioid receptor gene transcription by

interleukin‐4 and influence of an allelic variation within a

STAT6 transcription factor binding site. J Biol Chem 276:

43901-43908.

Kraus J, Borner C, Giannini E, Hollt V. 2003. The role of

nuclear factor kB in tumor necrosis factor‐regulated tran-

scription of the human m opioid receptor gene. Mol Phar-

macol 64: 876-884.

Law PY, Wong YH, Loh HH. 2000. Molecular mechanisms

and regulation of opioid receptor signaling. Annu Rev

Pharmacol Toxicol 40: 389-430.

Lee PW, Lee YM. 2003. Transcriptional regulation of m opioid

receptor gene by cAMP pathway. Mol Pharmacol 64:

1410-1418.

Li J, Park SW, Loh HH, Wei L‐N. 2002. Induction of the

mouse kappa opioid receptor gene by retinoic acid in P19

cells. J Biol Chem 277: 39967-39972.
Liang Y, Carr LG. 1996. Identification of an octamer‐tran-

scription factor binding site in the promoter of the mouse

m‐opioid receptor gene. J Neurochem 67: 1352-1359.

Liu HC, Lu S, Augustin LB, Felsheim RF, Chen HC, et al. 1995.

Cloning and promoter mapping of mouse kappa opioid re-

ceptor gene. Biochem Biophys Res Commun 209: 639-647.

Lu S, Loh HH, Wei L‐N. 1997. Studies of dual promoters

of mouse kappa opioid receptor gene. Mol Pharmacol 52:

415-420.

Mansour A, Cox CA, Akil H, Watson SJ. 1995. Opioid recep-

tor mRNA expression in the rat CNS: anatomical and

functional implications. Trends Neurosci 18: 22-29.

Min BH, Augustin LB, Felsheim RF, Fuchs JA, Loh HH. 1994.

Genomic structure and analysis of promoter sequence of a

mouse m opioid receptor gene. Proc Natl Acad Sci USA 91:

9081-9085.

Neer EJ. 1995. Heterotrimeric G proteins: organizers of trans-

membrane signals. Cell 80: 249-257.

Offermans SA, Simon MJ. 1996. Organization of transmem-

brane signaling by heterotrimeric G proteins. Cancer Surv

27: 177-198.

Pan YX. 2003. Identification and characterization of a novel

promoter of the mouse mu opioid receptor gene (Oprm)

that generates eight splice variants. Gene 295: 97-108.

Pan YX, Xu J, Bolan E, Chang A, Mahurter L, et al. 2000.

Isolation and expression of a novel alternatively spliced mu

opioid receptor isoform, MOR‐1F. FEBS Lett 466: 337-340.

Pan YX, Xu J, Majirter L, Bolan E, Xu M, et al. 2001. Genera-

tion of the mu opioid receptor (MOR‐1) protein by three

new splice variants of the Oprm gene. Proc Natl Acad Sci

USA 98: 14084-14089.

Park SW, Huq MDM, Loh HH, Wei L‐N. 2005. Retinoic acid‐

induced chromatin remodeling of mouse kappa opioid

receptor gene promoter. J Neurosci 25: 3350-3357.

Park SW, Li J, Loh HH, Wei L‐N. 2002. A novel signaling

pathway of nitric oxide on transcriptional regulation

of mouse kappa opioid receptor gene. J Neurosci 22:

7941-7947.

Park SW, Wei L‐N. 2003. Regulation of c‐myc gene by nitric

oxide via inactivating NF‐kB complex in P19 mouse

embryonal carcinoma cells. J Biol Chem 278: 29776-29782.

Porreca F, Cowan A, Raffa RB, Tallarida RJ. 1982. Tolerance

and cross‐tolerance studies with morphine and ethylketo-

cyclazocine. J Pharm Pharmacol 34: 666-667.

Schultz R, Wuster M, Kreness H, Herz H. 1980. Selective

development of tolerance without dependence in multiple

opiate receptors of mouse vas deferens. Nature 285:

242-243.

Simon F, Befort K, Gaveriaus‐Ruff C, Matthes H, Nappey V,

et al. 1994. The human delta‐opioid receptor: genomic

organization, cDNA cloning, functional expression and



Opioid receptor genes and their regulation 17 355
distribution in human brain. Mol Pharmacol 46: 1015-

1021.

Smirnov D, Im HJ, Loh HH. 2001. d‐opioid receptor gene:

effect of Sp1 factor on transcriptional regulation in vivo.

Mol Pharmacol 60: 331-340.

Stone LS, Vulchanova L, Riedl MS, Williams FG, Wilcox GL,

et al. 2004. Effects of peripheral nerve injury on delta

opioid receptor (DOR) immunoreactivity in the rat spinal

cord. Neurosci Lett 361: 208-211.

Sun P, Loh HH. 2001. Transcriptional regulation of mouse

d‐opioid receptor gene: role of Ets‐1 in the transcription

of mouse d‐opioid receptor gene. J Biol Chem 276:

45462-45469.

Sun P, Loh HH. 2002. Transcriptional regulation of mouse

d‐opioid receptor gene: role of Ikaros in the stimulation of

mouse d‐opioid receptor gene in activated T cells. J Biol

Chem 277: 12854-12860.

Sun P, Loh HH. 2003. Transcriptional regulation of mouse

d‐opioid receptor gene: Ikaros‐1 and upstream stimulatory

factor synergize in trans‐activating mouse d‐opioid recep-

tor gene in T cells. J Biol Chem 278: 2304-2308.
Sung B, Loh HH, Wei L‐N. 2000. Association of kappa opioid

receptor mRNA upregulation in dorsal root ganglia with

mechanical allodynia mice following nerve injury. Neurosci

Lett 291: 163-166.

Wang G, Wei L‐N, Loh HH. 2003. Transcriptional regulation

of mouse d‐opioid receptor gene DpG methylation. J Biol

Chem 278: 40650-40656.

Wei L‐N, Hu X, Bi J, Loh HH. 2000. Post‐transcriptional

regulation of mouse kappa opioid receptor expression.

Mol Pharmacol 57: 401-408.

Wei L‐N, Law PY, Loh HH. 2004. Post‐transcriptional regula-

tion of opioid receptors in the nervous system. Front Biosci

9: 1665-1679.

Wei L‐N, Loh HH. 2002. Regulation of opioid receptor ex-

pression. Curr Opin Pharmacol 2: 69-75.

Woltje M, Kraus J, Hollt V. 2000. Regulation of mouse delta‐

opioid receptor gene transcription: involvement of the

transcription factors AP‐1 and AP‐2. J Neurochem 74:

1355-1362.





18 Opioid Receptor Signaling
and Regulation

P.‐Y. Law . H. H. Loh
1

# Sprin
Historical Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
2
 The Evolution of the Multiple Opioid Receptor Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
3
 The Signaling of the Multiple Opioid Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
3.1
 The G Proteins Involved in Opioid Receptor Signal Transduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
3.2
 Opioid Receptor Regulation of Adenylyl Cyclase Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
3.3
 Regulation of Ion Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
3.4
 Activation of MAPkinase Cascades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
3.5
 Activation of Phospholipases and Intracellular Ca2þ Homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
4
 Regulation of Receptor Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
4.1
 Receptor Phosphorylation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
4.2
 Receptor Desensitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
4.3
 Receptor Trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
4.4
 Consequences for Receptor Endocytosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
4.5
 Control of Receptor Activities by Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
4.5.1
 Ubiquitination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
4.5.2
 Receptor–Receptor Oligomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
4.5.3
 Receptor–Cellular Protein Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
5
 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
ger-Verlag Berlin Heidelberg 2006



358 18 Opioid receptor signaling and regulation
Abstract: Opioid receptors are transmembrane proteins that have been shown to be the targets of

alkaloids isolated from the opium poppy, Papaver somniferum. The identification of the opioid receptor

by ligand–receptor‐binding assays has led to the discovery of the first class of endogenous drug molecules:

enkephalin and endorphins. From the discovery of these endogenous gene products and the varied

pharmacological responses, multiple opioid receptors were defined and characterized. Since the identi-

fication of the receptor by binding assay, opioid receptor has been considered to belong to the

membrane receptor superfamily, the G‐protein‐coupled receptor (GPCR). Until the successful cloning of

one of the receptor types, d‐opioid receptor (DOR), by Evans and Kieffer in 1992 (Evans et al., 1992; Kieffer

et al., 1992), the eventual properties of the receptor remained elusive. Since then, much is now known

about the receptor structure involved in ligand binding, signaling, and cellular control of the receptor.

Several recent reviews have summarized the receptor structures/activities relationship and the ligands’

selectivity studies (Law et al., 1999; Quock et al., 1999; Chaturvedi et al., 2000; Janecka et al., 2004),

and others have described in detail the regulation of receptor signaling (Law et al., 2000e; Waldhoer et al.,

2004). Thus, in this review, we will first briefly examine the historical perspectives in the evolution

of the concepts of multiple opioid receptor types, and follow with a review on the studies of receptor

signaling, with an emphasis on how chronic opioid treatment could alter the potency and efficacy of

agonists.

List of Abbreviations: ARF, ADP‐ribosylation factor; DAMGO, [D‐Ala2, N‐Me‐Phe4, Gly5‐ol]‐enkephalin;
DOR, d‐opioid receptor; ERK, extracellular signal‐regulated kinase; GFP, green fluorescence protein; GPCR,
G‐protein‐coupled receptor; GRK, G‐protein‐coupled receptor kinase; Kir, G‐protein‐dependent inward
rectifying potassium channels; KOR, k‐opioid receptor; MOR, m‐opioid receptor; PDZ, PSD‐95, discs‐large,
ZO‐1; PKC, Protein kinase C; PLC, phospholipase C; PTX, pertussis toxin; RGS, regulator of G protein

signaling
1 Historical Perspectives

Since Freidrich W. Serturner isolated morphine in 1805 from Papaver somniferum and named the alkaloid

after Morpheus, the Greek god of dreams, many have hypothesized that the action of morphine is mediated

by the drug binding to a receptor. Their conclusions were based on the relatively low concentration of

morphine needed to relieve pain (10 mg/kg body weight) and on the stereoselective requirement for the

analgesic action of the drug. Demonstration of the existence of such a receptor was not achieved until 1973.

Following the guidelines established by Avram Goldstein (Goldstein et al., 1971) in determining the

stereoselective high‐affinity opiate‐binding sites, Lars Terenius, Solomon Snyder, Eric Simon, and their

coworkers simultaneously reported the identification of opiate‐binding sites in synaptic membrane pre-

parations of the rodent brain (Pert and Snyder, 1973; Simon et al., 1973; Terenius, 1973). The affinities of

various opiate ligands for these binding sites and the location of these binding sites by autoradiography

studies correlated well with the in vivo potencies and sites of action for opiate drugs (Creese and Snyder,

1975; Pert et al., 1975; Mansour et al., 1988). Immediately, it is apparent that these mammalian binding sites

could not be evolved to be the targets of plant alkaloids. This dichotomy was resolved by the isolation of

endogenous opioid peptides, enkephalins, by Hughes and Kosterlitz in 1975 (Hughes et al., 1975).

Enkephalins are pentapeptides with sequences of YGGFM (Met5‐enkephalin) or YGGFL (Leu5‐enkephalin)
and are products of a single gene, proenkephalin A, that contains four copies of YGGFM and one copy of

YGGFL. Subsequently, b‐endorphin, the 32‐amino‐ acid peptide derived from the b‐lipotropin fragment of

the proopiomelanocortin gene, and dynorphin derived from the prodynorphin or proenkephalin B gene,

were reported by Li and Goldstein, respectively, to exhibit potent in vivo opiate properties (Loh et al., 1976;

Li et al., 1977; Ghazarossian et al., 1980; Goldstein and Ghazarossian, 1980). The regional distribution of

these endogenous opioid peptides in the brain parallels that of opioid receptor and neuropeptides that are

known to be involved in pain transmission, such as substance P (Akil et al., 1984). Thus, it is apparent that

the in vivo action of morphine and its congeners must be a reflection of these endogenous opioid peptide



Opioid receptor signaling and regulation 18 359
actions. The presence of these multiple opioid peptide genes also implicates the probable existence of

multiple opioid receptors.
2 The Evolution of the Multiple Opioid Receptor Concept

The concept of multiple opioid receptors was initially introduced by Bill Martin and his colleagues in 1976.

Concluding from physiological responses to various opioid drugs in chronic spinal dog model, Martin and

coworkers coined the multiple opioid receptor terminology based on the prototypic ligands that elicited

responses, with morphine being the mu (m) agonist, ketocyclazocine being the kappa (k) agonist, and

SKF10.047 being the sigma (s) agonist (Martin et al., 1976). Differences in the responses to the opioid

peptides in in vitro preparations of guinea pig ileum andmouse vas deferens led Kosterlitz and his coworkers

to theorize the probable existence of another opioid receptor type, the delta (d) opioid receptor (Lord et al.,

1977). Initial biochemical demonstrations in the differences of peptides and alkaloid binding, and thus, the

existence of multiple opioid binding sites, were originally reported by our laboratory and by K.J. Chang and

his coworkers (Law and Loh, 1978; Chang et al., 1979, 1981). The biochemical characterization of the

multiple opioid receptors was assisted later by the development of receptor‐selective antagonists, such as

naltrindole and TIPP for d‐opioid receptor, norbinaltorphimine for k‐opioid receptor, and b‐funaltrex-
amine and CTOP for m‐opioid receptor (Takemori et al., 1981, 1988; Ward et al., 1982; Portoghese et al.,

1988; Bonner et al., 1997; Schiller et al., 1999). The conclusions from binding studies in establishing the

existence of multiple opioid receptors were substantiated by pharmacological cross‐tolerance studies in

which the loss of response after chronic treatment with a selective agonist to an opioid receptor type was not

observed after treatment with a selective agonist to another receptor type (Schulz et al., 1980). The existence

of multiple opioid receptors was also demonstrated by differences in their regional distribution in the brain

with the original autoradiographic studies (Mansour et al., 1988). However, the unequivocal demonstration

for the existence of multiple opioid receptors was not achieved until the molecular cloning of these receptor

types. The cloning of the mouse d‐opioid receptor by Evans, Kieffer, and their coworkers (Evans et al., 1992;
Kieffer et al., 1992), and the subsequent cloning of m‐ and k‐opioid receptors based on reported sequence of

d‐opioid receptor (Chen et al., 1993a, b; Meng et al., 1993; Minami and Satoh, 1995) have led to the

unequivocal classification of the opioid receptors as the GPCR superfamily of receptors. The m‐, d‐ and k‐
opioid receptors (henceforth abbreviated as MOR, DOR, and KOR, respectively) all have the putative

structure of seven transmembrane domains for GPCRs, with an extracellular N terminus containing

multiple glycosylation sites, intracellular loops with multiple amphiphatic a‐helixes, and the fourth intra-

cellular loop formed by the putative palmitoylation sites at the carboxyl tails (Minami and Satoh, 1995). On

the whole, these receptors are about 60% identical to each other, with the greatest identity found in the

transmembrane domains (73–76%) and intracellular loops (86–100%). The greatest divergent areas were

found in the N terminus (9–10%), extracellular loops (14–72%), and the C terminus (14–20%) (Minami

and Satoh, 1995). The MOR, DOR, and KOR are products of distinctive genes, located in the murine

chromosomes 1, 4, and 10, respectively (Kaufman et al., 1994; Kozak et al., 1994). From subsequent cloning

of the s‐1 receptor (Hanner, 1996), it was apparent that the s‐opioid receptor originally defined by Martin

et al. (Martin et al., 1976) does not belong to opioid receptor types. The only other GPCR with similar high

sequence homology as the opioid receptors is the orphanin/FQ receptor (Bunzow et al., 1994; Chen et al.,

1994; Wang et al., 1994; Wick et al., 1994). However, this orphanin receptor does not have high affinity for

the opioid ligands, and only exhibits high affinity for the opiate alkaloids if a series of amino acids were

mutated, especially Ala213 to Lys in the EL2/TM5 interface, and if the Val276‐Gln277‐Val278 residues were
mutated to the IHI sequence (Meng et al., 1998). Thus, the various opioid receptor subtypes reported with

pharmacological and biochemical studies do not have the equivalent species in molecular cloning experi-

ments. Some have suggested that the putative opioid receptor subtypes are products of splice variants of

these opioid receptor genes (Pan et al., 1999, 2001) or a reflection of the heterodimerization of these

receptors (Jordan and Devi, 1999; Gomes et al., 2004). However, none of these spliced variants or the

heterodimers reflect the reported pharmacological properties of the opioid receptor subtypes. Hence, it is

likely that the opioid receptors are represented by the MOR, DOR, and KOR only.
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3 The Signaling of the Multiple Opioid Receptors

Prior to the cloning of multiple receptors, opioid receptors were classified as prototypical ‘‘Gi/Go‐coupled’’
receptors because their signals could be blunted by pertussis toxin (PTX)‐catalyzed ADP‐ribosylation and

subsequent inactivation of the a‐subunits of these heterotrimeric G proteins. Similar to other GPCRs that

signal through Gi/Go, opioid receptors have been known to inhibit the activities of adenylyl cyclase

(Sharma et al., 1975; Blume et al., 1979) and Ca2þ channels (Hescheler et al., 1987; Jin et al., 1993b; Kim

et al., 1997) and also to stimulate the Kþ channels (North et al., 1987) and to increase the intracellular Ca2þ

level (Jin et al., 1993a; Connor and Henderson, 1996). In addition, these receptors have been reported to

regulate the mitogen‐activated protein (MAP) kinase cascade (Fukuda et al., 1996; Li and Chang, 1996;

Wilson et al., 1997) and the activation of phospholipase D (Mangoura and Dawson, 1993). Similar

regulation of these signaling pathways and others has been reported also with the cloned opioid receptors.

Details of the receptor regulation of the various signaling systems has been described in a recent review

(Law et al., 2000d). Hence, we will briefly summarize the overall opioid receptor signal transduction

processes.
3.1 The G Proteins Involved in Opioid Receptor Signal Transduction

The promiscuity of opioid receptors in coupling to various heterotrimeric G proteins is well documented.

Using either 32P‐azidoanilido GTP to label or cholera‐toxin‐mediated ADP‐ribosylation to mark the

agonist‐induced dissociation of the G a‐subunits, we have shown that MOR, DOR, and KOR could activate

all the Gi/Go proteins with equal potency (Offermann et al., 1991; Roerig et al., 1992; Prather et al., 1994a,

b, 1995; Chakrabarti et al., 1995b). These G proteins could be coimmunoprecipitated with MOR from brain

membrane (Chalecka‐Franaszek et al., 2000). However, in cells where Gz was overexpressed, opioid receptor

was shown to activate PTX‐insensitive heterotrimeric G proteins (Wong et al., 1992). The opioid receptors

have also been shown to activate G12‐ and G16‐proteins in their signal transduction processes (Lee et al.,

1998; Belcheva et al., 2000; Ho et al., 2001, 2002). Even with such promiscuity, there appears to be selectivity

in the G proteins involved in the activation of specific second messenger system. Studies with Ga‐specific
antibodies suggest that Gi2 mediates DOR inhibition of adenylyl cyclase in NG108‐15 cells (McKenzie and

Milligan, 1990), whereas Go mediates MOR inhibition of the enzyme activity in SHSY5Y cells and in brain

membrane (Carter and Nedzihradsky, 1993). Similar antibody studies indicated Go‐mediated MOR or

DOR inhibition of the voltage‐dependent Ca2þ channels (Hescheler et al., 1987; Moises et al., 1994). The

ability of opioids to inhibit the Ca2þ channels in DRG neurons from Goa‐subunit knockout mice was

impaired (Jiang et al., 1998). Although some studies suggested opioid receptor, such as DOR, could activate

one specific G protein (Gia1) more efficiently than the other (Goa) (Moon et al., 2001), these studies and

others appear to support specific G protein in specific regulation of effectors. However, it appears that more

than one type of G protein is mediating the same opioid receptor signal. For example, when Gz was

coexpressed with either of the opioid receptors, the agonist‐induced inhibition of adenylyl cyclase activity

was PTX‐resistant (Chan et al., 1995; Lai et al., 1995; Tsu et al., 1995b), and physical interaction between

receptor and Gz was demonstrated by coimmunoprecipitation (Law and Reisine, 1997). These studies

suggested that Gz, the PTX‐insensitive G proteins primarily expressed in neuronal tissues, could mediate

opioid receptor inhibition of the adenylyl cyclase activity in addition to the Gi/Go proteins.

Another example of more than one G protein being involved in mediating the same opioid receptor

signal is the agonist‐mediated activation of phospholipase C (PLCb). Using antisense oligodeoxynucleo-

tides, it was shown that opioid‐induced intracellular Ca2þ mobilization in ND8‐47 neuroblastoma x DRG

hybrid cells is mediated by Gi2 (Tang et al., 1995). However, coinjection of Ga and receptor RNAs into

Xenopus oocytes suggested that Gia1 was required for opioid‐induced Ca2þ‐dependent chloride current

(Ueda et al., 1995). Additionally, coexpression of MOR with Ga16 in Cos‐7 cells resulted in opioid agonist‐
induced Ca2þ mobilization via PLCb activation that was PTX‐insensitive (Offermann and Simon, 1995).

Again, these studies and others point to the possibility that multiple G proteins are involved in transducing

the same receptor signal.
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One of the reasons for the involvement of multiple G proteins in transducing the same signal is in

effector divergence and in the ability of both Ga and bg subunits of the heterotrimeric G protein to regulate

the effectors. DOR‐mobilized intracellular Ca2þ via the PLCb pathway in NG108‐15 cells is mediated by the

bg subunits (Yoon et al., 1999). Gbg rather than Goa is responsible for the inhibition of Ca2þ channels

(Ikeda, 1996; Herlitze et al., 1997). The stimulation of the MAPKinase cascade by opioid receptor is also

mediated by the Gbg subunits (Belcheva et al., 1998). Since different Gb subunits determine coupling of

GPCRs to the same effector (Kleuss et al., 1992), multiple G proteins could participate in the opioid

receptor regulation of the same effector depending on the Gbg composition.

Another explanation of the involvement of multiple G proteins in the same opioid receptor signal could

be the compartmentalization of the receptor‐signaling complexes. The partition of GPCRs into micro-

domains has dramatic effects on their signalings (Ostrom, 2002). In addition, cellular proteins recruited to

the receptor vicinity or which function as protein scaffold could also regulate the GPCR activities (Brady

and Limbird, 2002; Hall and Lefkowitz, 2002). An excellent example is the Drosophila InaD gene that codes

for a protein with 5 PDZ (PSD‐95, Discs‐large, ZO‐1) domains (Tsunoda et al., 1997). InaD associates

through these PDZ domains with a light‐activated Ca2þ channel (TRP), PLCb, and protein kinase C (PKC).

The organization of these effectors by InaD allows for the efficient activation of TRP by PLCb in response to

the stimulation of rhodopsin and Gqa, and the inactivation by the phosphorylation of TRP by PKC. The

scaffoldings of signaling proteins and GPCRs via the interaction of PDZ domains have been well docu-

mented. For example, b1‐adrenergic receptor associates via its carboxyl tail with the postsynaptic density

protein 95 (PSD‐95) and membrane‐associated guanylate kinase‐like protein inverted‐2 (MAGI‐2) (Hu

et al., 2000; Xu et al., 2001). b2‐adrenergic receptor associates with a PDZ‐domain‐containing protein,

NHERF/EBP50 (Naþ/Hþ exchanger regulatory factor/ezrin binding protein 50), that could control the

recycling of the receptor to the cell surface in addition to controlling agonist‐induced intracellular Naþ/Hþ

exchange (Hall et al., 1998; Cao et al., 1999). Similar interaction and function of NHERF/EBP50 have been

reported with KOR (Li et al., 2002; Huang et al., 2004). In addition to static interaction with domains on

scaffolding proteins to form initial signaling complexes, activation of GPCRs could recruit cellular proteins

that would alter the signaling amplitude and duration. An excellent example is the recruitment of b‐arrestin
molecule after agonist‐induced phosphorylation of GPCR. Initially, b‐arrestin molecules were considered to

be proteins involved in receptor desensitization (Lohse et al., 1990; Attramadal et al., 1992). Since then,

b‐arrestin has been demonstrated to associate with proteins involved in receptor endocytosis (Goodman

et al., 1996), such as AP2 (Laporte et al., 2000, 2002), ARF6 (Claing et al., 2001),N‐ethylmaleimide‐sensitive
factor (NSF) (McDonald et al. 1999), ARNO (Claing et al., 2001), Mdm2 (Shenoy et al., 2001), Src (Luttrell

et al., 1999; Miller et al., 2000), c‐Jun N‐terminal kinase 3 (JNK3) apoptosis stimulating kinase 1 (ASK1)

(McDonald et al., 2000; Miller et al., 2001), and Erk1/2 (DeFea et al., 2000; Luttrell et al., 2001). Since some

of these proteins, such as Src and Erk1/2, have been reported to regulate opioid receptor phosphorylation

and trafficking (Schmidt et al., 2000; Eisinger and Schultz, 2004), the organization of opioid receptor,

G proteins, and other cellular proteins in microdomains could be the determinants in the G proteins used in

receptor signaling (Elenko et al., 2003).
3.2 Opioid Receptor Regulation of Adenylyl Cyclase Activity

The ability of opioid agonist to regulate the intracellular cAMP level was initially reported by Collier and his

coworkers with brain homogenates (Collier and Roy, 1974; Collier and Francis, 1975) and later substan-

tiated by Sharma et al. with the cell line model using NG108‐15 cells (Sharma et al., 1975, 1977). Acute

activation of opioid receptor resulted in a PTX‐sensitive decrease in the intracellular cAMP level, while

chronic activation of receptor resulted in an increase of cAMP level when the agonist was removed. As

discussed in Sect. 3.1, the inhibition of adenylyl cyclase activity by opioid receptor can be mediated by Gi,

Go, or Gz. With at least nine isoforms of mammalian adenylyl cyclase being cloned and exhibiting diverse

sensitivities to regulators like G protein a‐ or bg‐subunits, Ca2þ, and kinases (Tang and Hurley, 1998), it is

not surprising that observations on opioid stimulation of adenylyl cyclase have been reported. Opioid

agonists stimulated adenylyl cyclase in brain membranes (Puri et al., 1975), F‐11 neuroblastoma–sensory
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neuron hybrid cells (Cruciani et al., 1993), olfactory bulb (Olianas and Onali, 1995), and spinal cord‐
ganglion explants (Makman et al., 1988). These opioid stimulatory effects could be the result of the

G protein bg subunits (Gbg) to stimulate type‐2, ‐4, and ‐7 adenylyl cyclases. Many classical inhibitory

receptors (e.g. a2‐adrenergic, D2 (dopamine), A1 (adenosine), and chemoattractant receptors) stimulate

the type‐2 adenylyl cyclase via the released Gbg (Federman et al., 1992; Tsu et al., 1995a). The stimulation of

type‐2 adenylyl cyclase requires the presence of GTP‐bound Gas (Federman et al., 1992; Taussig et al.,

1994). Provision of activated Gas can indeed permit all three forms of opioid receptors to stimulate cAMP

accumulation in transfected cells coexpressing the type‐2 adenylyl cyclase which was PTX‐sensitive (Chan
et al., 1995; Lai et al., 1995; Tsu et al., 1995b). This stimulatory mechanism could account for the observed

increase in adenylyl cyclase activity after chronic agonist treatment.

Originally, the increase in adenylyl cyclase activity was postulated to be the biochemical correlate to

morphine tolerance (Sharma et al., 1977). We have since demonstrated that the loss of response and

increase in adenylyl cyclase activity are two different cellular adaptational processes (Law et al., 1982b).

Crain and his colleagues suggested that such increase in adenylyl cyclase activity was from the result of a

direct coupling between opioid receptor and the Gs proteins that could be regulated by GM1 gangliosides

(Cruciani et al., 1993; Crain and Shen, 1996, 1998a, b). Other studies did not support such a mechanism.

Using the Gbg‐stimulated type‐2 adenylyl cyclase activity as an index of G protein activation, MOR could

be shown to couple to six members of the Gi/Go subfamily, but not to Gs (Chan et al., 1995). However, due

to the complexity in the adenylyl cyclase types, the increase in adenylyl cyclase activity or superactivation of

adenylyl cyclase after chronic agonist treatment as a direct result of Gbg effect cannot be demonstrated

unequivocally. Superactivation of adenylyl cyclase has been shown to be isozyme‐specific, with the ability of

chronic opioid treatment to superactivate the type‐1, ‐5, ‐6, and ‐8 enzymes but not the type‐2, ‐3, ‐4, and ‐7
enzymes (Avidor‐Reiss et al., 1996, 1997; Ammer and Christ, 2002). The complexity and versatility of the

mammalian adenylyl cyclase system allows opioid agonists to modulate the enzyme activity via various

routes. For example, type‐1 and ‐8 adenylyl cyclases are activated by Ca2þ/calmodulin (Tang and Hurley,

1998). Studies indicated that the third intracellular loop of the opioid receptor contains a consensus

calmodulin‐binding motif and that agonist binding released the bound calmodulin (Wang et al., 1999,

2000). Thus, it is not surprising that opioid‐induced elevation of intracellular cAMP level in SK‐N‐SH cells

involves Ca2þ entry and calmodulin activation (Sarne et al., 1998). Though such Ca2þ/calmodulin

mechanism could be the basis for type‐1 and ‐8 activation by opioids, other factors such as covalent

modification of the enzyme molecules or the G protein itself during chronic agonist treatment could also

account for the superactivation. Phosphorylation of the Gbg, adenylyl cyclase, and other molecules

involved in receptor desensitization, such as b‐arrestin and GRK2/3, during chronic morphine treatment

appeared to augment the association of these molecules and activation of the adenylyl cyclase (Chakrabarti

et al., 1998b, c, 2001). Depalmitoylation of Gsa was observed during chronic opioid treatment resulting in

the direct association of Gsa with adenylyl cyclase molecules preceding receptor activation (Ammer and

Shultz, 1997). All of these observations and others provide alternative pathways in place of the bg effect in

the superactivation of adenylyl cyclase during chronic agonist treatment.
3.3 Regulation of Ion Channels

The overall action of opioid drugs is to inhibit neurotransmitter release by inhibiting the voltage‐gated
Ca2þ channels and activating the G‐protein‐coupled inward rectifying voltage‐gated potassium channels

(Kir). All three opioid receptors have been shown to inhibit different types of Ca2þ channels in various

brain regions. For example, MOR and KOR inhibit N‐ and P/Q‐type Ca2þ channels in the nucleus tractus

solitarius of the rat (Rhim and Miller, 1994; Rhim et al., 1996), while only MOR, but not DOR or KOR, is

responsible for the modulation of Ca2þ channel currents in mouse periaqueductal grey neurons (Connor

et al., 1999). The cloned MOR, when expressed in NG108‐15 cells, is functionally coupled to the

o‐contoxin‐sensitive N‐type Ca2þ channels (Morikawa et al., 1995, 1999). On the other hand, the cloned

MOR and DOR inhibit voltage‐activated L‐type Ca2þ channels via Gi/Go proteins in GH3 pituitary cells

(Piros et al., 1995, 1996). The differences in the Ca2þ types being regulated by the opioid receptors could
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stem from the multiple Ca2þ channel subunits that constitute the variety of voltage‐gated Ca2þ channels, i.

e., L‐, N‐, P/Q‐, R‐, and T‐type. Thus far, it was shown that Ca2þ channels that consisted of a1A, a1B, a1D, or
a1E subunits were inhibited by MOR (Bourinet et al., 1996; Ottolia et al., 1998; Safa et al., 2001). Whether

Ca2þ with other a‐subunits could be similarly regulated by opioid receptor or the composition of the

channels’ subunits predetermined the receptor coupling has not been fully addressed yet.

The involvement of Go proteins as the transducer of opioid receptor inhibition of Ca2þ channels was

demonstrated initially by Hescheler et al. (Hescheler et al., 1987) and later confirmed with Gao‐specific
antiserum (Moises et al., 1994). Now, it is accepted that the Ca2þ channel is inhibited by the Gbg rather

than the Gao subunit. Expression of Gbg in rat sympathetic neurons mimicked GPCR‐induced inhibition

of Ca2þ currents (Ikeda, 1996), and similar results were observed when Gbg was coexpressed with Ca2þ

channel subunits in a heterologous expression system (Herlitze et al., 1996). The Gbg‐binding domain on

the Ca2þ channel has been mapped to the intracellular loop connecting domains I and II of the a1 subunit
(Herlitze et al., 1997). This site contains the Q‐X‐X‐E‐R motif that is believed to form part of the Gbg
docking site. Intranuclear injections of DNA of different Gb subunits into rat superior cervical ganglion

neurons suggest that Gb1 and/or Gb2 subunits account for most of the voltage‐dependent inhibition of

N‐type Ca2þ channels, while Gb5 produces weak inhibition, and both Gb3 and Gb4 are ineffective (Garcia
et al., 1998). These data and others suggest that the exact composition of G‐protein‐heterotrimers is

important in determining the specificity of GPCR‐induced inhibition of Ca2þ channels (Kleuss et al.,

1991). Although the Gbg subunits are responsible for mediating the inhibition of Ca2þ channels, the Gao
subunit is indispensable for coupling the opioid receptors to the channels. This conclusion is supported by

Gao knockout mice studies, in which the ability of opioid agonists to inhibit Ca2þ channels in the DRG

neurons was significantly impaired (Jiang et al., 1998).

In addition to inhibiting various voltage‐dependent Ca2þ channels, opioid agonists prevent neuronal

excitation or propagation of the action potentials by hyperpolarizing the postsynaptic membrane via the

activation of Kþ channels. Electrophysiological studies in the rat locus coeruleus have shown that both

MOR and DOR can activate Kir channels via PTX‐sensitive G proteins (North et al., 1987). Activation of

KOR in the same preparation did not produce Kir currents. However, KOR can be shown to activate the

same Kir channels as seen in the intracellular recordings of substantia gelatinosa neurons. In this prepara-

tion, all three opioid receptor types activate Kir currents (Grudt andWilliams, 1993; Schneider et al., 1998).

The ability of KOR to regulate the inward rectifying Kir channels was demonstrated by the coexpression of

KOR and Kir3.1 in Xenopus oocytes. The KOR agonists activate this inward rectifying Kþ channel via PTX‐
sensitive G proteins (Henry et al., 1995; Ma et al., 1995). These channels that are located in the periaque-

ductal gray neurons can be activated by m‐opioid agonists and are shown to be involved in acute opioid

analgesia (Han et al., 1999; Ikeda et al., 2000). The cardioprotective effects of some of the opioid agonists,

such as TAN‐67 for d1‐opioid receptor, were shown to be mediated by the activation of Kir channels via Gi

proteins (Schultz et al., 1998). The gating properties of these Kþ channels were altered after chronic

morphine treatment (Chen et al., 2000). The identities of the Kir subunits involved in opioid functions

were demonstrated clearly with Kir knockout mice. The acute inhibitory effects of opioids at locus

coeruleus neurons were mediated by Kir3.2 and Kir3.3 (Torrecilla et al., 2002). The antinociceptive effects

of morphine are likely to be mediated by Kir3.1 and Kir3.2 (Marker et al., 2002, 2004).

Similar to the inhibition of various Ca2þ channels, activation of Kir3 channels appears to be mediated

via the Gbg subunits (Wickman et al., 1994). For a review on Gbg regulation of Kir channels, please refer to

Yamada et al. (Yamada et al., 1998). At least 12 distinct channel subunits are responsible for the complexity

and diversity of inward rectifying Kþ channels, with Kir3.1 being a major subunit. Using fusion proteins

containing glutathione S‐transferase and different N‐ and C‐terminal deletion mutants of Kir3.1, two Gbg
binding sites have been identified (Huang et al., 1995, 1997). At the C terminus of Kir3.1, the Gbg binding

domain is composed of two segments (Huang et al., 1995), one of which contains the N‐X‐X‐E‐R motif

observed in type‐2 adenylyl cyclase shown to be critical for Gbg interaction (Chen et al., 1995). Interaction

of the C‐terminal domains with a small segment on the N terminus of Kir3.1 resulted in a synergistic

binding of Gbg. There is evidence to suggest that different Gb subunits have distinct efficacy in interacting

with the N‐terminal domain of Kir3.1 (Yan and Gautam, 1996). Since the Kir3 subunits have similar Gbg
interaction domains, any differences in opioid receptors in activating the Kir3 channels could be the result
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of different Gb subunits associating with the G proteins activated by these receptors. However, this is

unlikely since the specificity of Gb subunit interaction with Kir disappeared as demonstrated by different

combination of Gbg to activate the Kir3.1 expressed in Xenopus oocytes (Lim et al., 1995). Hence, other

mechanisms such as the PIP2 regulation of Gbg‐induced activation of Kir channels (Huang et al., 1998)

could participate in the opioid receptor regulation of these channels.
3.4 Activation of MAPkinase Cascades

Similar to the large number of GPCRs that regulate cell growth, survival and death, opioid receptor

activation results in the stimulation of MAPkinase cascades. The MAPkinase pathways are comprised of

three protein kinase cascades, i.e., the extracellular‐signal regulated kinases (ERKs), Jun N‐terminal kinases

(JNKs), and p38 kinases (reviewed by Garrington and Johnson (Garrington and Johnson, 1999)). As

expected, activation of endogenous or heterologous expressed MOR, DOR, or KOR in various cell models

has resulted in the activation of Erk1 and 2 (Burt et al., 1996; Fukuda et al., 1996; Li and Chang, 1996;

Wilson et al., 1997; Hawes et al., 1998; Bohn et al., 2000a; Tso et al., 2000; Shoda et al., 2001). The opioid

activation of Erk1/2 occurs through the Gbg subunit and in a Ras‐dependent manner (Belcheva et al.,

1998). In jurkat cells stably expressing DOR, the opioid activation of Erk1/2 was Ras independent (Shahabi

et al., 1999). The G protein most likely involved is the Go protein (Zhang et al., 2003). However, there

appears to be multiple mechanisms in the opioid receptor activation of Erk1/2. Coscia and coworkers have

suggested that, similar to b2‐adrenergic receptor, opioid receptor internalization is a prerequisite for Erk1/2

activation (Ignatova et al., 1999; Bohn et al., 2000b). However, several laboratories reported that opioid

activation of these kinases did not require agonist‐induced receptor internalization (Li et al., 1999; Whistler

and von Zastrow, 1999; Kramer and Simon, 2000; Trapaidze et al., 2000b). Coscia and coworkers also

suggested that opioid activation of Erk1/2 is mediated by a calmodulin‐dependent transactivation of the

epidermal growth factor receptor (Belcheva et al., 2001, 2002, 2003). Such transactivation as reflected in

phosphorylation of the tyrosine receptor kinases was not observed by others (Kramer et al., 2002).

Nevertheless, opioid receptor has been reported to regulate Erk1/2 activity in the brain as observed from

the opioid activation of Erk1/2 in preparations of ventral tegmental area in vitro (Lesscher et al., 2003) or

from distinct brain regions in vivo (Schultz and Hollt, 1998; Narita et al., 2002a; Eitan et al., 2003). The in

vivo studies suggested that Erk1/2 activity was diminished with chronic morphine treatment, but was

dramatically increased during morphine withdrawal. The Erk1/2 activation also appears to participate in

morphine rewarding effect in mice (Ozaki et al., 2004). These studies implicated the role of Erk1/2 in the

expression of chronic opioid effects. This was demonstrated by the ability of Erk1/2 inhibitor, PD98059, to

attenuate opioid receptor desensitization, receptor phosphorylation, and internalization in cell model

(Polakiewicz et al., 1998b; Schmidt et al., 2000). However, persistent activation of Erk1/2 with glutamate

and paclitaxel resulted in the blockade of agonist‐induced DOR internalization (Eisinger and Schultz,

2004). There does not appear to be a correlation between Erk1/2 activation and the superactivation of

adenylyl cyclase activity after chronic agonist treatment (Tso and Wong, 2001). Therefore, the exact role of

Erk1/2 in chronic opioid effect remains to be determined.

The activation of Erk1/2 has been linked to cell survival and proliferation. Opioid receptors have been

shown to be involved in both apoptosis and cell survival (Law et al., 1997; Yin et al., 1997; Hauser and

Mangoura, 1998; Chatzaki et al., 2001; Singhal et al., 2002; Zagon et al., 2002; Iglesias et al., 2003; Persson

et al., 2003a, b). Thus, it should follow that opioid receptor activation should alter the activities of Erk1/2

cascades. Among the multiple kinases activated in the Erk1/2 signaling cascades, opioid agonists have been

reported to activate the phosphoinositide‐3‐phosphate (PI3)‐dependent kinase, Akt (PKB), and the p70

and p85 S6 kinases (Wilson et al., 1997; Polakiewicz et al., 1998a; Goswami et al., 2000; Narita et al., 2002b;

Tan et al., 2003). In addition, the adapter protein p52 Shc was tyrosine phosphorylated upon DOR

activation in Rat‐1 fibroblast cells (Mullaney et al., 1997). Collectively, the activation of Erk1/2, S6 kinase,

PI3kinase, and Shc proteins provides a strong mitogenic signal for opioids to regulate cell growth.

Activation of Erk1/2 and subsequent kinases could also be the basis for the observed cardioprotection

effect of opioid pretreatment (Fryer et al., 2001a–c).
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3.5 Activation of Phospholipases and Intracellular Ca2þ Homeostasis

The inability of PTX‐sensitive Ga subunit to directly activate phospholipase PLCb is well documented

(Rhee, 2001). Thus, the initial observation on DOR activation in NG108‐15 cells to mobilize intracellular

Ca2þ via the activation of PLCb was totally unexpected (Jin et al., 1993a). Since then, the ability of opioid

agonists to stimulate IP3 production and mobilize intracellular Ca2þ was demonstrated in human neuro-

blastoma SHSY5Y cells (Smart et al., 1994; Connor and Henderson, 1996; Smart and Lambert, 1996), in

human epithelial tumor cells (Diao et al., 2000), smooth muscle (Murthy and Makhlouf, 1996), and spinal

cord (Sanchez‐Blazquez et al., 1999). Similar activation of phospholipase C, and thus an increase in

intracellular Ca2þ transient was observed with the heterologous expression of cloned opioid receptors in

neuroblastoma cells (Spencer et al., 1997), in CHO cells (Smart et al., 1997), Ltk� cells (Tsu et al., 1995b),

and HEK293 cells (Quillan et al., 2002). All of these opioid responses were sensitive to PTX pretreatment,

suggesting the involvement of Gi/Go in the regulation of PLC activities. The G proteins involved were

identified as Gi2 in the ND8‐47 neuroblastoma x DRG hybrid cells with antisense studies (Tang et al., 1995),

or as Gi1 when receptor and Ga subunits mRNAs were coinjected into Xenopus oocytes and chloride

current was measured (Ueda et al., 1995), or by reconstitution studies with guinea pig cerebellum (Misawa

et al., 1995). Since relatively high EC50 values of opioid agonists were needed to activate PLC in these

systems, and Gi/Go a‐subunits have a low affinity for the PLCb, it has been accepted that this PTX‐sensitive
opioid receptor response is mediated by the Gbg subunits. The involvement of Gbg subunits was demon-

strated both in the opioid‐activated PLCb activity in intestinal smooth muscle (Murthy and Makhlouf,

1996) and by blockade of the opioid response after injection of Gbg‐binding peptide (QEHA), but not

Gq‐binding peptide (QLKK) into NG108‐15 cells (Yoon et al., 1999).

Opioid‐induced intracellular Ca2þ increase might involve mechanisms other than Gbg‐activated PLC.

In single‐cell fluorescence measurements using Ca2þ sensitive dye, a majority of the cells do not respond to

the agonist addition. Only when chimeric G proteins such as Gq/Gi or promiscuous G proteins such as

Ga16 are used, robust responses to opioid agonists were observed (Offermann and Simon, 1995; Lee et al.,

1998; Joshi et al., 1999; Ho et al., 2001). Such opioid activation of the PLC activities was PTX‐insensitive.
Recent reports suggested that Gi/Go‐coupled receptors, such as the opioid receptors, increase intracellular

Ca2þ release only in the presence or after preactivation of Gq‐coupled receptors (Chan et al., 2000; Yeo et al.,
2001). Since Gbg subunits have been implicated in opioid receptor action, the coincident signaling between

Gq‐coupled receptor and opioid receptor suggests that the binding of Gbg subunits at the N‐terminal PH

domain affects the interaction of Gq a‐subunit with the C2 domain of the PLCb3, thus potentiating Gq

a‐subunit activity. However, an increase in IP3 production in SHSY5Y cells did not parallel intracellular

Ca2þ increase (Yeo et al., 2001). Hence, a mechanism other than coactivation of PLC could be involved in

opioid‐induced Ca2þ increase. Ca2þ influx via the L‐type Ca2þ channels was suggested to be the mechanism

for MOR‐mediated PLC activation in SHSY5Y cells (Smart et al., 1995). DOR regulation of intracellular

Ca2þ transient in human neuroblastoma SK‐N‐BE cells appears to be mediated by the ryanodine receptor

and was PTX‐insensitive (Allouche et al., 1996). These are the probable pathways involved. However, a

more plausible explanation for the coincident signaling between Gi/Go‐coupled receptors and Gq‐coupled
receptors lies in the regulation of IP3‐receptor activity. Phosphorylation of IP3 receptor by PKC resulted in

the ability of Gb to activate Ca2þ release from the IP3‐sensitive Ca2þ stores (Patterson et al., 2004). Thus,

opioid agonist could regulate the intracellular Ca2þ pools without directly activating PLC. Whether this is

the mechanism remains to be demonstrated.

The physiological relevance of opioid‐induced stimulation of PLC is not immediately apparent. There

appears to be cross‐talk between the PLC pathway and other opioid receptor regulated pathways, such as

adenylyl cyclase (Fan et al., 1998; Wu et al., 1998). PLCb has been implicated in the antinociceptive effects of

opioids by antisense oligonucleotide studies (Sanchez‐Blazquez and Garzon, 1998; Narita et al., 2000) or

with PLCb knockout mice studies (Xie et al., 1999a). A PTX‐sensitive PLC pathway appears to mediate the

arrhythmogenic effect of k‐agonists in isolated rat heart (Bian et al., 1998). In T cells, activation of DOR

stimulates Ca2þ mobilization (Sharp et al., 1998) and enhances IL‐2 secretion (Hedin et al., 1997). Since an

increase in activities of both PKC and Ca2þ‐dependent protein kinases usually follows an increase in

intracellular Ca2þ, stimulation of the activities of these kinases has been suggested to be involved in chronic
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opioid drug action. The activity of Ca2þ/calmodulin‐dependent protein kinase II (CaMK II) in the rat

hippocampus is stimulated by morphine (Lou et al., 1999), and CaMK II was implicated in the phosphor-

ylation and subsequent desensitization of MOR (Koch et al., 1997, 2000) and DOR (Fan et al., 1997). PKC

was shown to translocate and participate in MOR downregulation during chronic agonist treatment

(Kramer and Simon, 1999a, b). Phosphorylation and endocytosis of DOR can be mediated by PKC

(Xiang et al., 2001). The increase in the adenylyl cyclase activity during chronic agonist treatment is related

to PKC activities (Rubovitch et al., 2003). However, whether such PKC‐mediated events have functional

roles in chronic agonist responses is debatable, due to a feedback mechanism regulating PLC activities.

PKC‐mediated phosphorylation of PLCb3 has been demonstrated to rapidly attenuate opioid‐induced IP3

turnover in NG108‐15 cells (Strassheim et al., 1998). This feedback mechansim may limit the increase in

PKC activities and subsequent involvement of PLCb in the chronic actions of opioids.
4 Regulation of Receptor Signaling

Opioid receptors belong to the same subfamily of the GPCR superfamily of receptors as b2‐adrenergic
receptors, the rhodopsin subfamily. Thus, many of the studies on the cellular control of opioid receptor

signaling are modeled after the b2‐adrenergic receptor. According to the model for b2‐adrenergic receptor
desensitization as proposed by Lefkowitz and his coworkers (Lefkowitz, 1998), agonist binding results in the

rapid phosphorylation of the receptor by protein kinases including the G‐protein‐coupled receptor kinases

(GRKs), thereby promoting the association of the cellular protein b‐arrestin. Association of b‐arrestin with

the receptor uncouples the receptor from the respective G protein that transduces the signal, thus blunting

the receptor signaling (receptor desensitization). b‐arrestin is also involved in the agonist‐induced, clathrin‐
coated vesicles mediated receptor internalization. Internalized receptor could be trafficked to other subcel-

lular compartments, such as lyzosomes for degradation, or could be recycled to the cell surface where

receptor signaling is continued. Eventually, with prolonged exposure to agonist, there is a decrease or

downregulation of the overall cellular receptor content. b‐arrestin itself also serves as an adapter molecule in

b2‐adrenergic receptor signaling such that a receptor–src kinase complex is formed through which activa-

tion of the MAP kinases, Erk1/2, by the b2‐adrenergic receptor is accomplished (Luttrell et al., 1999). Thus,

the cellular regulation of opioid receptor signaling could follow the model for b2‐adrenergic receptor

desensitization, i.e., there is an agonist‐induced receptor phosphorylation leading to recruitment of

b‐arrestin and subsequent receptor endocytosis and desensitization. We will examine these cellular events

individually.
4.1 Receptor Phosphorylation

Concrete demonstration of opioid receptor phosphorylation was first reported by Pei et al. in DOR (Pei

et al., 1995). Subsequently, phosphorylation of MOR and KOR was demonstrated by others (Arden et al.,

1995; Appleyard et al., 1997). Studies with DOR (Pei et al., 1995) or MOR (Zhang et al., 1996; El Kouhen

et al., 1999) suggested the phosphorylation of the opioid receptor is mediated via GRKs and not by PKC.

Predictably, the ability of opioid ligand to induce receptor phosphorylation correlated to its efficacy (Yu

et al., 1997). With the exception of morphine, agonists such as DAMGO or etorphine were reported to

induce MOR phosphorylation. Yu et al. reported that morphine could induce MOR phosphorylation in

CHO cells (Yu et al., 1997), while Arden et al. and Zhang et al. reported that morphine could not induce

MOR phosphorylation in HEK293 cells (Arden et al., 1995; Zhang et al., 1998). The morphine–receptor

complex is a poor GRK substrate as demonstrated by the ability of overexpressed GRK‐2 to phosphorylate

MOR in HEK293 cells during morphine treatment (Zhang et al., 1998). The differences between morphine–

MOR and DAMGO–MOR complexes are best illustrated by our studies in which cAMP‐dependent protein
kinase (PKA) could phosphorylate MOR in the presence of morphine, but not in the presence of DAMGO

(Chakrabarti et al., 1998a). Thus, whether morphine could induce MOR phosphorylation in neurons or in

cell models will depend on the levels of specific protein kinases present in the system.
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The amino acid residues within opioid receptors that are phosphorylated in the presence of agonist

have been identified. Initial experiments with deletion analyses have suggested that the carboxyl tail of the

opioid receptor is the site for agonist‐induced receptor phosphorylation (Zhao et al., 1997; Murray et al.,

1998). Subsequent systematic mutations of the Ser/Thr residues within the carboxyl tail sequences identi-

fied Thr358 and Ser363 residues in DOR that were phosphorylated in the presence of agonist (Guo et al.,

2000; Maestri‐El Kouhen et al., 2000). Further, the agonist‐induced phosphorylation was hierarchical.

Phosphorylation of Ser363 and DOR must occur prior to the phosphorylation of Thr358 residue (Maestri‐
El Kouhen et al., 2000). For KOR, Ser369 residue within the carboxyl tail domain was the site for agonist‐
induced phosphorylation (McLaughlin et al., 2003).

In contrast, the identities of the amino acid residues that are phosphorylated in MOR have been

controversial. There are reports suggesting phosphorylation of Tyr residues in addition to Ser/Thr residues

(Pak et al., 1999; Kramer et al., 2000; McLaughlin and Chavkin, 2001). Pak et al. reported the mutation of

Thr394 to Ala in the rat MOR resulted in the blunting of the agonist‐induced receptor desensitization (Pak

et al., 1997). Subsequently, Deng et al. reported that Thr394 was indeed phosphorylated in the presence of

agonist by GRKs (Deng et al., 2000). However, using similar mutational analyses, we could not demonstrate

the phosphorylation of Thr394 in HEK293 cells. Instead, agonist induced the phosphorylation of two

residues within the carboxyl tail motif of MOR: Thr370 and Ser375 (El Kouhen et al., 2001). Comparison

of the amino acid residues of MOR and DOR being phosphorylated in the presence of agonist suggests the

presence of a consensus motif. In both MOR and DOR, the Ser residue immediately downstream from a Pro

residue is phosphorylated. The phosphorylated Thr residue is five‐amino‐acid residues upstream from the

Ser residue, or �two a‐helical turns. Thus, the consensus agonist‐induced phosphorylation motif for

the opioid receptor is defined by the sequence T‐X‐X‐X‐P‐S, where X is any amino acid. Thr394 located at

the carboxyl terminal of MOR lies outside of the consensus motif.

The protein kinases that most likely participate in agonist‐induced receptor phosphorylation are

members of GRKs. Expression of the dominant negative mutant of GRK or overexpression of GRK5

resulted in the attenuation or potentiation of agonist‐dependent phosphorylation of DOR (Pei et al.,

1995). Using purified GRK2, we could demonstrate phosphorylation of the Ser375 but not the Thr370

residue of MOR (unpublished observations). Further, purified GRK5 could not phosphorylate the carboxyl

tail domain of the receptor. These studies and others support the involvement of GRK2 in opioid receptor

phosphorylation. However, other protein kinases might be involved in agonist‐induced receptor phosphor-

ylation. Our data suggest that overexpression of the GRK2 has a minimal effect on DAMGO‐induced MOR

phosphorylation, but could potentiate both etorphine‐ or morphine‐induced receptor phosphorylation

(Zhang et al., 1998; El Kouhen et al., 1999). Mutation of Ser261 and Ser266, two putative CaM kinase II sites

in the third intracellular loop of MOR, could block the agonist‐induced receptor desensitization with a

parallel decrease in receptor phosphorylation (Koch et al., 1997). However, whether these two sites are being

phosphorylated by PKC is debatable. Both truncation and cyanogen bromide cleavage studies indicate that

agonist‐induced phosphorylation sites were located at the carboxyl tail domain of the receptor (Murray

et al., 1998; El Kouhen et al., 2001). Although opioid receptor could be phosphorylated in the absence of

agonist, such basal phosphorylation sites are also located at the carboxyl tail domain. Basal phosphorylation

site of DOR by PKC has been demonstrated to be a Ser344 residue (Xiang et al., 2001). Thus, the significance

of PKC phosphorylation of opioid receptor is not obvious.
4.2 Receptor Desensitization

From the b2‐adrenergic model discussed earlier, it can be seen that receptor phosphorylation leads to

receptor desensitization. A causal relationship between opioid receptor phosphorylation and desensitiza-

tion appears to exist. Desensitization of DOR was reported to correlate with the phosphorylation of the

receptor protein in the SK‐N‐BE cells (Hasbi et al., 1998). Overexpression of GRK or its dominant negative

mutant, or the mutation of the putative phosphorylation sites, could modulate DOR and MOR desensiti-

zation (Pei et al., 1995; Kovoor et al., 1997). Mutation of Ser369 to Ala in KOR also resulted in blunting of the

agonist‐induced desensitization process (McLaughlin et al., 2003). Zhang et al. reported a direct correlation
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between MOR phosphorylation and desensitization (Zhang et al., 1996), while overexpression of b‐arrestin
resulted in rapid morphine‐induced MOR desensitization and internalization (Whistler and von Zastrow,

1998; Zhang et al., 1998). The direct involvement of b‐arrestin in chronic opioid action was demonstrated

by the blunting of in vivo tolerance to morphine antinociceptive response in b‐arrestin2 knockout mice

(Bohn et al., 1999, 2000c, 2002). At the same time, there was a lack of in vitro receptor desensitization in

fibroblasts isolated from these animals (Bohn et al., 2002). Interestingly, the opioid efficacy appears to be

related to the ability of the opioid to recruit b‐arrestin to the cell surface (Bohn et al., 2004). The use of

GRK3 knockout mice also suggests that tolerance development to the k‐opioid agonist appeared to be

related to receptor phosphorylation (McLaughlin et al., 2004). All these data and others support the

observation that the opioid receptor desensitization fits the model of b2‐adrenergic receptor desensitization.
However, opioid receptor phosphorylation does not appear to be a prerequisite for receptor desensiti-

zation. For one, the time course for receptor phosphorylation is rapid, while the receptor desensitization, as

measured by adenylyl cyclase inhibition, was slow (Law et al., 2000a). Overexpression of GRK increased the

level of phosphorylated receptor but did not increase the rate of receptor desensitization (El Kouhen et al.,

1999). Deletion of the last 31 amino acids of DOR resulted in the abolition of both GRK‐ or PKC‐mediated

agonist‐dependent phosphorylation of the receptor, but did not block the agonist‐induced receptor

desensitization (Murray et al., 1998; Wang et al., 1998). The mutation of all Ser/Thr residues within the

third intracellular loop and the C terminus of MOR did not prevent DAMGO‐induced receptor desensiti-

zation (Capeyrou et al., 1997). Though prolonged morphine treatment could produce receptor desen-

sitization (Chakrabarti et al., 1995a), morphine normally does not induce receptor phosphorylation. These

data and others suggest that blunting of the opioid signals by b‐arrestin does not require opioid receptor

phosphorylation. This is not too surprising since the agonist‐induced phosphorylation of other GPCRs

results in increase in receptor affinities for b‐arrestin. Without phosphorylation, b‐arrestin could interact

with the agonist–receptor complexes. The recruitment of b‐arrestin by the nonphosphorylated receptor

was illustrated by studies in which the putative agonist‐induced phosphorylation sites i.e., after Ser344

residue in DOR or after Ser363 residue in MOR were removed. Agonist could induce endocytosis, which is a

b‐arrestin‐dependent process (Murray et al., 1998; Qui et al., 2003). Opioid agonist could induce the

translocation of the b‐arrestin–GFP fusion protein from the cytosol to plasma membrane in the truncated

carboxyl mutants of MOR or the Ser/Thr phosphorylation mutants of DOR (Law et al., 2000b; Qui et al.,

2003). Similar arrestin–receptor interaction was reported by BIACORE studies (Cen et al., 2001b). It is

important to note that the rate of receptor desensitization will depend on its ability to internalize and

recycle. Mutation of Thr394 in MOR that was suggested to affect the recycling of the receptor, altered the rate

of receptor desensitization (Koch et al., 1998b, 2001b). Blockade of MOR recycling with monensin or

receptor truncation also increases agonist‐induced receptor desensitization (Law et al., 2000a; Qui et al.,

2003). Thus, the process of b‐arrestin‐dependent receptor endocytosis has great impact in the rate of opioid

receptor desensitization.
4.3 Receptor Trafficking

The trafficking of GPCR is a dynamic process. The recruitment of b‐arrestin after receptor phosphorylation

results in receptor endocytosis via a dynamin‐dependent process in clathrin‐coated pits that delivers the

receptor containing vesicles to the early endosomes (Krupnick and Benovic, 1998; Roth et al., 1998). The

receptors are further trafficked to the late endosomes where the decision for recycling or degradation takes

place (Moore et al., 1999). Since receptor endocytosis is basically a process to remove active receptors from

the cell surface, such a loss of receptor generally equates to signal termination. However, many studies have

suggested that receptor endocytosis has other functions. The dephosphorylation and resensitization of the

b2‐adrenergic and A2‐adenosine receptors require receptor internalization and trafficking to the endosomes

(Zhang et al., 1997; Mundell and Kelly, 1998). As discussed earlier, activation of the MAPkinases by

b2‐adrenergic receptor was dependent on receptor endocytosis (Daaka et al., 1998). a2‐Adrenergic recep-
tor‐mediated MAPkinases activation was also dependent on receptor endocytosis, but appears to be cell

line‐specific (DeGraff et al., 1999; Schramm and Limbird, 1999; Pierce et al., 2000). The internalized
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receptor could also determine the fate of the activated MAP kinases as demonstrated by the translocation of

nonendocytosed mutant of PAR2‐receptor‐activated MAP kinases to the nucleus, whereas the endocytosed

PAR2‐ receptor‐activated MAP kinases remained in the cytosol (DeFea et al., 2000). Thus, the GPCR

signaling and the consequence of the signals are influenced by the receptor trafficking.

It is clear from earlier studies that opioid receptor would internalize in the presence of agonist. Such a

receptor endocytosis process was observed with endogenously expressed DOR and MOR in neuroblastoma

cell lines (Chang et al., 1982; Law et al., 1982a; Zadina et al., 1993). Trafficking of the internalized receptor

to endosomes, and eventually to lysosomes, was first demonstrated with an accumulation of radioactive

agonist (Law et al., 1984), and subsequently with the epitope‐tagged cloned opioid receptor (Ko et al.,

1999). Interestingly, the internalization of the opioid receptor such as MOR is a ligand‐dependent event,
with etorphine inducing receptor endocytosis, while morphine could not (Keith et al., 1996). Although

there are reports suggesting that DOR could recycle and resensitize after endocytosis (Trapaidze et al.,

2000a), it is accepted that DOR does not recycle but is trafficked directly to lysosomes after initial

endocytosis (Whistler et al., 1999). Similar to other GPCRs opioid receptor endocytosis involves the

b‐arrestin‐ and dynamin‐dependent clathrin‐coated pits pathway (Murray et al., 1998; Whistler and von

Zastrow, 1998; Zhang et al., 1998, 1999; Li et al., 1999).

In addition to observation of opioid receptor endocytosis in in vitro cell models, in vivo opioid receptor

endocytosis could be observed in organo cultures or primary neuronal cultures and also in neurons.

DAMGO treatment of the longitudinal muscle‐myenteric plexus preparation or the primary hippocampal

neuron cultures resulted in MOR endocytosis (Sternini et al., 2000; Bushell et al., 2002). Within 15 min of

an intraperitoneal injection of etorphine, MOR immunoreactivity was observed in the endosomal struc-

tures of the myenteric neurons of guinea pig ileum (Sternini et al., 1996). Rapid clustering of a MOR spliced

variant, MOR‐1C, was observed in the lateral septum of the mouse after intracerebroventricular injection of

DAMGO (Abbadie and Pastnernak, 2001). Such studies and others extended the earlier studies in which

either in vivo administration of receptor‐selective ligands such as morphiceptin, endormorphin‐1, or
DADLE, resulted in the selective downregulation of MOR and DOR (Tao et al., 1990, 1998; Harrison

et al., 2000). Thus, agonist treatment will affect the in vivo trafficking of opioid receptors.

Since opioid receptor endocytosis is dependent on receptor phosphorylation and arrestin binding, it is

logical to suggest that intracellular domains will participate in the cellular trafficking of the receptors.

Earlier experiments by truncating DOR after Ser344 or mutation of Thr353 to Ala blocked the agonist‐
induced receptor downregulation (Cvejic et al., 1996), while mutating the Ser/Thr residues between Ser344

and Ser363 retarded the rate of receptor internalization (Trapaidze et al., 1996; Maestri‐El Kouhen et al.,

2000). These studies supported the notion that receptor phosphorylation is a critical step for opioid

receptor internalization. However, with the identification of DOR phosphorylation sites by mutational

analyses (Guo et al., 2000; Maestri‐El Kouhen et al., 2000), the amino acid residues previously reported to

participate in receptor trafficking are not phosphorylated in the presence of agonist. These amino acids

most likely participate in the receptor interaction with b‐arrestin as suggested by the pull‐down assay and

BIACORE studies (Cen et al., 2001b, a). However, the exact amino acid sequence involved remains to be

determined. Since the level of b‐arrestin is critical in agonist‐induced receptor internalization (Whistler and

von Zastrow, 1998), it is not surprising to observe cell line dependency in agonist‐induced receptor

internalization. For example, the same Ser344 truncated DOR that eliminated agonist‐induced receptor

phosphorylation could be internalized in HEK293 cells but not in CHO cells (Trapaidze et al., 1996; Murray

et al.,1998). Overexpression of b‐arrestin in HEK293 cells resulted in morphine‐induced MOR internaliza-

tion (Whistler and von Zastrow, 1998). The ability of morphine‐activated MOR to recruit b‐arrestin
without receptor phosphorylation was clearly demonstrated with the fibroblasts isolated from the

b‐arrestin2 knockout mice (Bohn et al., 2004). These and other results indicate that receptor interaction

with b‐arrestin is the key for agonist‐induced receptor internalization.

The importance of carboxyl tail in the regulation of opioid receptor trafficking has been implicated. The

role of the carboxyl tail domain was clearly established by observations that the internalized DOR was

trafficked to the lysosomal compartments in the absence of agonist (Tsao and von Zastrow, 2000), there

were distinct differences between MOR and its carboxyl tail spliced variants to recycle and resensitize (Koch

et al., 1998a, 2001a; Wolf et al., 1999), the MOR/DOR chimeras could be downregulated more rapidly than
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the wild type (Afify et al., 1998) and that the chimeras could be internalized by morphine while wild type

could not (Whistler et al., 1999). Comparison of the agonist‐induced internalization of the wild‐type
receptors with that of MOR/DOR receptor chimeras in which respective carboxyl tail sequences were

exchanged indicated that the DOR carboxyl tail carried the signals for lysosomal targeting, while MOR

carboxyl tail sequence contained the recycling signals (Afify et al., 1998; Whistler et al., 1999; Wang et al.,

2003). Unlike other GPCRs, such as b2‐adrenergic receptor that contain consensus PDZ‐interacting
domains that affect trafficking, the opioid receptors do not contain such motifs in their carboxyl tail

sequence. With the exception of KOR, overexpression of EPB50, a PDZ‐domain protein involved in the

recycling of b2‐adrenergic receptor, could not affect the agonist‐induced endocytosis of opioid receptor

(Li et al., 2002). Additional receptor sequences, such as the di‐leucine motif within the third intracellular

loop of DOR, appear to be involved in receptor intracellular trafficking (Wang et al., 2003). Recent evidence

has indicated that a unique recycling signal exists at the MOR carboxyl tail consisting of Leu387 and Leu390

(Tanowitz and von Zastrow, 2003). Our studies indicate that there are receptor sequences in addition to

those involved in the recycling of MOR. Interestingly, all of these recycling signals do not participate in the

binding of EPB50 or vacuolar protein‐sorting proteins such as Tsg101 (Hislop et al., 2004). Whether such

receptor sequences participate in the interaction with proteins, such as GASP, in controlling the receptor

sorting after endocytosis remains to be demonstrated (Whistler et al., 2002).
4.4 Consequences for Receptor Endocytosis

The ability of an internalized receptor, such as the b2‐adrenergic receptor, to signal has been demonstrated.

However, whether the opioid receptor could signal after endocytosis has not been established clearly. As

discussed previously, there are conflicting data on the requirement of opioid receptor endocytosis in MAP

kinase activation. Ignatova et al. (Ignatova et al., 1999) and Bohn et al. (Bohn et al., 2000a) have suggested

that opioid receptor mediated modulation of MAP kinase activity requires the endocytosis of the receptor,

while Whistler and von Zastrow (Whistler and von Zastrow, 1999), Li et al. (Li et al., 1999), Kramer et al.

(Kramer and Simon, 2000), and Trapaidze et al. (Trapaidze et al., 2000b) presented data that did not

support the requirement of receptor internalization for MAP kinase activation. Since MAP kinases have

been implicated in chronic opioid responses (see > Sect. 3.4), the question whether internalized receptor

could activate MAPkinase might have significant implication in studying opioid tolerance and dependence

development. The internalization and subsequent downregulation of the receptor probably has a minimal

role in the development of in vivo tolerance. This is best exemplified by the ability of both chronic etorphine

and morphine treatment to elicit tolerance development, while only etorphine could downregulate,

morphine alone upregulates MOR (Tao et al., 1987). The noncorrelation between degree of receptor

downregulation and tolerance was also observed with chronic fentanyl or clocinnamox treatment (Chan

et al., 1997). Similarly, morphine and etorphine could desensitize DOR, while only etorphine could induce

the downregulation of the receptor (Law et al., 1983).

It is clear that opioid receptor endocytosis is critical for the receptor to resensitize. Wolf et al. (Wolf

et al., 1999) reported that the mutation of Thr394 in MOR to Ala results in the rapid internalization and

resensitization of receptor. Similar observations were reported with various spliced variants of MOR, in

which the rate of desensitization appears to correlate inversely with the resensitization properties of the

receptor (Koch et al., 1998b, 2001b). Such observations and others have led to a hypothesis proposed by

Whistler and von Zastrow that the ability of various opioid agonists to produce tolerance is dependent on

their ‘‘RAVE’’ values (Whistler et al., 1999; Finn and Whistler, 2001; He et al., 2002). In their hypothesis,

agonist that induces rapid receptor internalization, e.g., etorphine, would develop less tolerance in animals

than agonist such as morphine, which does not produce receptor internalization. Their hypothesis is based

on the observation that in the chimeric receptor construct in which MOR carboxyl tail domain was replaced

by the similar sequence from DOR, morphine could produce receptor internalization, and that the drug

would now induce receptor desensitization (Finn and Whistler, 2001; He et al., 2002). It has also been

proposed by this same group that the ability of agonist to internalize the receptor may be related to opioid

dependence. Agonist, such as morphine, that does not induce receptor internalization has a greater degree
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of ‘‘dependence’’ as measured by the increase in adenylyl cyclase activities. Meanwhile, agonist, such as

etorphine, that induces rapid receptor internalization and subsequent resensitization, has a lower degree of

‘‘dependence’’ (Finn and Whistler, 2001). Thus, the action of opioid agonist that normally does not induce

receptor internalization, such as morphine, could be affected by agonist that induces receptor internaliza-

tion, such as DAMGO. Though this is an attractive model, recent and past data do not completely support

such a hypothesis. For example, the magnitude of the adenylyl cyclase activities increases, a ‘‘hallmark’’ of

dependence, in cells expressing DOR, and does not depend on the agonist used to treat the system

chronically but rather on the initial receptor density (Law et al., 1994). Morphine and other partial agonists,

e.g. levallorphan in the NG108‐15 cells expressing DOR, could elicit similar level of increase in adenylyl

cyclase activity as that of agonists such as DADLE (Law et al., 1983). Low doses of DAMGO did not

potentiate the morphine‐induced receptor desensitization in the locus coeruleus neurons as predicted by

the ‘‘RAVE’’ theory (Bailey et al., 2003). Hence, whether agonist‐induced receptor endocytosis and

trafficking has any role in the opioid tolerance and dependence remains to be demonstrated.
4.5 Control of Receptor Activities by Other Methods

4.5.1 Ubiquitination

In addition to agonist‐induced phosphorylation that could recruit cellular proteins, such as b‐arrestin, and
alter the receptor signaling process, covalent modification of the GPCR by conjugating polypeptides, such

as ubiquitin, has been shown to control the receptor activities. Normally, multiubiquitin chains, i.e., the

carboxy‐termini glycine of ubiquitin, are linked to the Lys48 of the preceding ubiquitin, to the e‐amino

group of the lysine residue of the target protein, resulting in the trafficking of the modified proteins by

proteasomes. However, there is accumulating evidence to suggest a role for monoubiquitination in the

endocytosis of plasma membrane proteins and their trafficking to the lysosomes (Hicke, 2001a, b). In

the case of growth hormone receptors, GHRs, polyubiquitination occurs prior to their recruitment to the

clathrin‐coated pit (van Kerkhof et al., 2001, 2002). Agonist‐induced ubiquitination has been reported

with the opioid receptor (Chaturvedi et al., 2001), CXCR4 receptor (Marchese and Benovic, 2001), and

b2‐adrenergic receptor (Shenoy et al., 2001). Inclusion of proteasome inhibitors during chronic agonist

treatment could prevent the downregulation of these receptors. In most of the receptors studied, the

monoubiquitination process appears to participate in the endosomal sorting of the receptor, preventing the

recycling of the proteins and shuttling of the molecules to the multivesicular bodies of the late endosomes

and subsequent degradation in the lysosome. This is supported by the observations that the ubiquitination

of GHR regulates the lysosomal degradation (van Kerkhof et al., 2001, 2002) but not its internalization

(Govers et al., 1999). The mutation of the lysine residues within the degradative motif of CXCR4 (Marchese

and Benovic, 2001) or the mutation of all 16 cytosolic lysine residues in the b2‐adrenergic receptor (Shenoy
et al., 2001) did not affect the agonist‐induced internalization of the receptor, but instead inhibited the

degradation of these receptors.

A similar situation exists for the opioid receptor. Ubiquitination of the opioid receptor has been

reported to be involved in the proteasome‐mediated degradation of the incorrectly folded, deglycosylated

receptor (Petaja‐Repo et al., 2000, 2001). These receptors could be rescued with lipophilic opioid ligands

that serve as chaperones for the receptor trafficking to the plasma membrane (Petaja‐Repo et al., 2002).

Although confocal microscopic studies suggested the colocalization of internalized receptors with the

lysosomal markers (Ko et al., 1999; Gage et al., 2001), Chaturvedi et al. (Chaturvedi et al., 2001) reported

that agonist‐induced MOR and DOR downregulation were not affected by lysosomal inhibitors but were

attenuated by the inhibitors of proteasome inhibitors. On the other hand, mutation of all the intracellular

lysine residues did not prevent the lysosomal trafficking of DOR (Tanowitz and von Zastrow, 2002).

Whether the ubiquitination of opioid receptor participates in the agonist‐induced or newly synthesized

receptor intracellular trafficking remains to be investigated.

In addition to direct ubiquitination of the receptor, ubiquitination of trans‐acting endocytic protein

(s) could also affect the agonist‐induced receptor activity. In the case of b2‐adrenergic receptor, the
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ubiquitination of b‐arrestin, which also serves as the adapter molecule for the E3 ligase, is essential for the

endocytosis and the recycling of the receptor (Shenoy and Lefkowitz, 2003). Our initial studies suggested

that activation of opioid receptor also results in the ubiquitination of the b‐arrestin molecules. Further, the

duration of b‐arrestin also depends on whether the receptor was recycled after endocytosis. Thus, the

ubiquitination of trans‐acting endocytic proteins could affect the opioid receptor activity.
4.5.2 Receptor–Receptor Oligomers

The ability of GPCRs to homo‐ or heterodimerize has implications in the functions of the receptors.

Dimerization of the receptors has been reported for the class A GPCRs such as the adenosine (Ciruela

et al., 1995), adrenergic (Hebert et al., 1996; Angers et al., 2000), angiotensin (Monnot et al., 1996), dopamine

(Ng et al., 1996), muscarinic (Zheng and Wess, 1999), vasopressin (Hebert and Bouvier, 1998), and opioid

(Cvejic and Devi, 1997; Jordan and Devi, 1999; George et al., 2000; McVey et al., 2001a; Gomes et al., 2002)

receptors and the class C GPCRs such as the calcium‐sensing (Bai et al., 1998), metabotropic glutamate

receptors (Kunishima et al., 2000), and g‐amino‐n‐butyric acid type B (GABAB) receptors (Jones et al., 1998;

Kaupmann et al., 1998). The homo‐ and heterodimerization of these receptors have been demonstrated by

coimmunoprecipitation experiments (Cvejic and Devi, 1997; Salim et al., 2002), and recently by fluores-

cence resonance energy transfer (FRET) or bioluminescence resonance energy transfer (BRET) techniques

(Angers et al., 2000; McVey et al., 2001b; Ramsay et al., 2002). The heterodimerization of the GPCRs was

shown to be selective, with formation of heterodimers with some but not all subtypes of the receptors

(Jordan and Devi, 1999; Rocheville et al., 2000b). Most importantly, there are functional differences

between the monomers and the homo‐ and heterodimers of the GPCRs. The classic example is the inability

of individual GABAB1 and GABAB2 subunit to form a functional receptor (Jones et al., 1998; Kaupmann

et al., 1998). Alteration in the GPCR function or expression was also observed with the heterodimerization

of 5HT1B and 5HT1D (Xie et al., 1999b), dopamine D1 and adenosine A1 (Gines et al., 2000), muscarinic

M2 and M3 (Sawyer and Ehlert, 1999), dopamine, and somatostatin (Rocheville et al., 2000a) receptors.

Heterooligomerization of the GPCRs with other receptor types, such as the ionotropic GABAA receptor, has

been observed, resulting in the alteration in the ion‐gating properties of the channels (Liu et al., 2000).

There is accumulating evidence to support the homo‐ and heterodimerization of the opioid receptors.

Oligomerization of the opioid receptors appears to alter or control receptor function. Homodimerization of

DOR was reported with immunoprecipitation, and agonist‐induced receptor internalization appears to be

related to the formation of dimers (Cvejic and Devi, 1997). The agonist‐induced change in DOR oligomer-

ization was not observed with BRET experiments (McVey et al., 2001a). KOR is reported to exist as

homodimers and could heterodimerize with DOR but not with MOR (Jordan and Devi, 1999). The

heterodimerization of DOR and KOR has resulted in a decrease in the affinities of receptor‐selective ligands
(Jordan and Devi, 1999). The DOR and KOR could also heterodimerize with the b2‐adrenergic receptor,
resulting in an alteration of b2‐adrenergic receptor functionality (Jordan et al., 2001). The most interesting

of the heterodimers is the reported heterodimerization of the MOR and DOR receptors. Using different

epitope‐tagged receptors, both George et al. and Gomes et al. reported the ability of MOR and DOR to

heterodimerize (George et al., 2000; Gomes et al., 2000). Both groups reported a change in functionality of

the receptor, with George et al. reporting the heterodimers’ function appearing to be insensitive to pertussis

toxin pretreatment, implying coupling to G proteins other than Gi/Go (George et al., 2000). Using the DOR

knockout mice, the putative heterodimerization of MOR and DOR appears to influence in vivo morphine

analgesic activity (Gomes et al., 2004). All these data and others suggest that the opioid receptor activities

could be influenced by the oligomerization of the receptors.
4.5.3 Receptor–Cellular Protein Complexes

Target inactivation analyses of the agonist receptor size suggests an interaction between opioid receptor

and cellular proteins other than G proteins or RGS (Ott et al., 1988). The apparent mol.wt. of the
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receptor complex, �200, could not be accounted for by the size of receptor monomer and the hetero-

trimeric G protein. There is evidence to suggest the physical association of a �25kDa protein labeled by
125I‐b‐endorphin (Law et al., 2000c). These opioid receptor–cellular proteins interactions could involve

consensus motifs found in the receptor sequences. Within the seventh transmembrane domain of the

opioid receptor, a highly conserved NP(X)2–3Y motif is present that has been identified as the consensus

binding sequence for ARF (Michell et al., 1998). The interaction of rhodopsin with Rho and ARF via this

sequence could be the basis for phospholipase D activation (Pronin et al., 1997). Activation of phospholi-

pase D by opioid agonists has been reported (Mangoura and Dawson, 1993) and is ARF dependent (Koch

et al., 2003). The direct interaction of phospholipase PLD2 with the receptor appears to participate in this

enzyme activation, since association with phospholipase is demonstrated with yeast two‐hybrid assays using
carboxyl tail domain as the bait (Koch et al., 2003). A consensus sequence for calmodulin binding was also

reported to be located at the third intracellular loop. The agonist activation of the receptor resulted in the

dissociation of calmodulin–receptor complex (Wang et al., 1999, 2000). The functional significance of the

receptor–calmodulin interaction is magnified by the presence of a single nucleotide polymorphism at this

interaction domain that could alter basal G protein coupling and calmodulin binding (Wang et al., 2001).

In addition to cellular proteins associating with consensus motifs found in opioid receptor, interaction

with cellular proteins that could alter the function of the receptor has been reported. The probable

association of the phosphatidylethanolamine binding protein (PBP) with receptor is demonstrated by

the isolation of PBP from a morphine affinity column, and the ability of heterologous expression of PBP to

enhance opioid receptor and G protein coupling (Kroslak et al., 2001). Other proteins associating with the

receptor are those that have roles in receptor trafficking. Using the yeast two‐hybrid system, Whistler et al.

reported specific interaction between the protein GASP (G‐protein‐coupled receptor‐associated sorting

protein) and DOR in its lysosomal trafficking (Whistler et al., 2002). Similar yeast two‐hybrid approaches

using MOR carboxyl tail domain have identified filamin A (Onoprishvili et al., 2003) or PKC interacting

protein (PKCI) (Guang et al., 2004) that modulates the endocytosis and desensitization of the receptor.

Thus, by associating with these cellular proteins and other yet to be identified proteins, the function of

opioid receptor could be modulated.
5 Perspective

Since the successful cloning of the opioid receptors, many of the questions on opioid receptor signaling

have been resolved. It is unequivocal that activation of the receptor results in the generation of two separate

messengers from the heterotrimeric G proteins, the Ga and Gbg subunits. With these two messengers, a

myriad of effectors activated by the agonists has expanded continuously. The possibilities of coincident

signaling and modulation of the signals activities are limitless. In addition to the modulation of the signals

by proteins such as RGS, neuron‐composition‐dependent signaling has also added to the complexity of

opioid receptor signaling. An excellent example for this is the differential regulation of adenylyl cyclase

subtypes by the opioid receptors. Furthermore, there is accumulating evidence supporting the recruitment

of cellular proteins upon opioid receptor activation. The scaffolding of cellular proteins will create

microdomains within the proximity of the receptors, thus modulating the signals. An excellent example

for protein scaffolding is the ability of two proteins that are known to interact with the receptor, b‐arrestin
and Gbg, to recruit cellular proteins. b‐arrestin has been reported to serve as adapter molecule for the

various kinases, such as c‐Src (Luttrell et al., 1999), and the Gbg subunits have been shown to interact with

the PH domain of the PLCb among other proteins (Rhee, 2001). The recruitment of molecules, such as

PLCb3, and protein kinases to the receptor vicinity would provide a rapid control mechanism for the

opioid receptor signaling. Hence, it is critical to identify cellular proteins that participate in opioid receptor

signaling, other than the heterotrimeric G proteins. The use of specific receptor domains such as the

carboxyl tail domains in the yeast two‐hybrid approaches has identified some candidates such as GASP,

PLD2, or PKCI that modulate receptor function. However, the yeast two‐hybrid approach used thus far is

limited to the interaction between the bait (receptor carboxyl tail domain) and the target in the yeast

nucleus. The hydrophobic nature of the opioid receptor has prevented such interaction. Thus, the
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secondary and tertiary structure of the receptor involved in cellular protein interaction cannot be consid-

ered in such assays. Further, the proteins that are recruited to the receptor vicinity after agonist activation

could not be addressed. Thus, a better method, such as the proteomic approach, should be used to identify

the cellular proteins involved in opioid receptor signaling. With the identification of such proteins, the

question of whether they are the basis for receptor oligomerization or the receptor–protein scaffold is the

basis for receptor subtypes can then be addressed.

The complexity in the opioid receptor signaling also obstructs the eventual understanding of cellular

control and adaptation to the receptor activation. The current model of receptor phosphorylation and b‐
arrestin recruitment in turning off the signals appears to be applicable to opioid receptor regulation. This

model is supported by the b‐arrestin‐2 knockout mice studies, in which morphine tolerance was blunted.

However, it is increasingly clear that factors other than b‐arrestin participate in the development of

morphine tolerance. An excellent example is that the coadministration of NMDA antagonists with

morphine could block tolerance development to the drug (Trujillo and Akil, 1991). In addition, morphine

tolerance also was blocked in mice in which either their DOR gene or proenkephalin gene had been

knocked out (Zhu et al., 1999; Nitsche et al., 2002). These genetic studies support the earlier observation in

which the blockade of DOR activity with receptor‐selective antagonist could prevent morphine tolerance

(Abdelhamid et al., 1991). If b‐arrestin is the only factor involved in morphine tolerance, as suggested with

the b‐arrestin knockout mice studies, then chronic morphine treatment in the presence of NMDA antago-

nist or DOR antagonist should result in tolerance development. Thus, regulation of opioid receptor activity

during chronic agonist treatment could involve other cellular components, and the regulation of receptor

trafficking could have an important role in the chronic action of the drug.

Receptor endocytosis not only serves as a means to reduce the amount of active receptor from the cell

surface and as a mechanism for the resensitization of the internalized receptor, but also that the internalized

receptor could continue their signaling processes inside the cells. Though contrasting data have been

reported on the dependency of receptor internalization and activation of the MAP kinases by opioid

agonist, the possibility that the internalized receptor could continue to signal is supported by the intriguing

observation on the localization of the receptor with the nuclei fraction (Belcheva et al., 1996). Thus, it is

reasonable to hypothesize that the internalized receptor could contribute to the subsequent chronic

responses to the drug. Regardless, the proposed RAVE theory based on the ability of agonist to induce

receptor internalization could not be the basis for tolerance development (Whistler et al., 1999), because

chronic morphine and etorphine treatment could produce tolerance and dependence in rodents, while

chronic morphine treatment would upregulate and chronic etorphine treatment downregulate the opioid

receptor content in various brain areas (Tao et al., 1987).

In conclusion, activation of opioid receptor has resulted in the generation of two immediate second

messengers, Ga and Gbg. These second messengers form the basis for the ability of opioid receptor to

regulate multiple effector systems within a single cell. Further, the ability to regulate multiple effectors

provides the opportunity for coincident signaling, amplification of the signals, and the basis for drug

efficacy variations among individual effector systems as reported in the literature. Control of opioid

receptor signaling is further complicated by the existence of protein scaffolds via adapter proteins such as

b‐arrestin. The protein scaffolds modulate the receptor signaling and could be the reason for the multiple

opioid receptor subtypes reported with pharmacological studies, but not with receptor gene cloning

studies. In addition to the possible existence of protein scaffolds, trafficking of the receptor complexes

also could determine the amplitude, frequency, and content of the signals. Thus, in order to better

understand the mechanism of opioid receptor signaling and its regulation, the composition of the

receptor‐signaling complex must be delineated. With the advance in proteomic technology, the identity

of the complex can now be more easily addressed.
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Abstract: It has been just over 20 years since the neuropeptide calcitonin gene‐related peptide (CGRP) was

unexpectedly discovered embedded within the calcitonin gene. Since then CGRP has emerged as a key

regulator of multiple physiological and pathological functions. CGRP is expressed in a subset of neurons in

the central and peripheral nervous system that innervate every major organ system. Within this context,

CGRP is a multifunctional peptide that is a major modulator of the cardiovascular system and a key player

in neurogenic inflammatory pain. Since the discovery of CGRP, a repertoire of related peptides have been

identified. The expression patterns and activities of these family members are discussed briefly. We will

focus on how CGRP gene transcription is controlled by extracellular signals that target the cell‐specific and
cAMP‐regulated enhancers. An emphasis of the chapter will be the unusual mechanism by which the CGRP

receptor requires the G‐protein‐coupled calcitonin‐like receptor (CLR), receptor activity modifying pro-

tein‐1 (RAMP1), and receptor component protein (RCP). We will then address the physiological activities

of CGRP in the cardiovascular and smooth muscle, skeletal muscle, and cochlear systems. Finally, we will

discuss two pathologies that involve CGRP in the trigeminovascular system: migraine and subarachnoid

hemorrhage (SAH). The efficacy of a CGRP receptor antagonist has now established the importance of

elevated CGRP in migraine. In contrast, the lack of CGRPmay contribute to fatal vasospasms in SAH. Thus,

the continuing development of pharmacological and genetic approaches for modulating CGRP expression

and activity holds exciting promise for future therapeutic strategies.

List of Abbreviations: ABR, auditory brainstem response; ACh, acetylcholine; AChE, acetylcholinesterase;

AChR, acetylcholine receptor; AM, adrenomedullin; bHLH‐Zip, basic HLH‐leucine zipper; cAMP, cyclic

adenosine monophosphate; CGRP, calcitonin gene‐related peptide; CLR, calcitonin‐like receptor; CRSP,

calcitonin receptor‐stimulating peptide; CRE, cAMP response element; CREB, cAMP response element

binding protein; CT, calcitonin; CTR, calcitonin receptor; DAG, diacylglycerol; DPOAE, distortion product

otoacoustic emissions; DRG, dorsal root ganglia; Fox, forkhead; HLH, helix–loop–helix; 5‐HT1, 5‐hydroxy-
tryptamine 1; IP3, inositol‐1,4,5‐trisphosphate; MAPK, mitogen‐activated protein kinase; MASH‐1, mam-

malian achaete‐scute homolog‐1; MKP‐1, MAP kinase phosphatase‐1; PDGF, platelet‐derived growth

factor; PIP2, phosphatidylinositol‐4,5‐bisphosphate; PKA, protein kinase A; PKC, protein kinase C;

RAMP, receptor activity modifying protein; RCP, receptor component protein; SAH, subarachnoid hem-

orrhage; USF, upstream stimulatory factor; VSMC, vascular smooth muscle cell
1 Introduction

The topic of this chapter is the neuropeptide calcitonin gene‐related peptide (CGRP). CGRP was discovered

over 20 years ago as an alternative RNA splicing product from the calcitonin (CT) gene (Amara et al., 1982;

Rosenfeld et al., 1983). At the time it was one of the first examples of an alternatively spliced cellular

transcript. The rapid development of a specific antiserum revealed CGRP expression in discrete regions of

the central and peripheral nervous system. On the basis of its distribution, CGRP was suggested to have

multifunctional activities in the cardiovascular, integrative, and gastrointestinal systems (Rosenfeld et al.,

1983). In fact, there are CGRP‐containing nerve fibers in every major organ system of the body and CGRP

has now been shown to have a number of biological activities (Preibisz, 1993; Wimalawansa, 1996; van

Rossum et al., 1997; Brain and Grant, 2004). There is a growing CGRP family of structurally and

functionally related peptides. The expression patterns and functional repertoire of these peptides will be

briefly compared with CGRP.

CGRP is almost exclusively expressed in neurons and is controlled solely at the transcriptional level. We

will describe the mechanisms controlling CGRP gene transcription, with particular emphasis on regulation

by MAP kinases. We will then discuss in depth several of the physiological functions of CGRP. In particular,

we will cover the actions of CGRP in the cardiovascular, smooth muscle, skeletal muscle, and cochlear

systems.

A major advance in the CGRP field has been the cloning of the proteins responsible for mediating

CGRP actions. An orphan G‐protein‐coupled receptor (GPCR) was identified in 1993 (Chang et al., 1993),

which has been renamed as the calcitonin‐like receptor (CLR) (Poyner et al., 2002). CLR remained an
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orphan for 5 years because it was initially nonfunctional when transfected into mammalian cells (Fluhmann

et al., 1995; Han et al., 1997). This paradox was resolved by the identification of receptor activity modifying

proteins (RAMPs) that confer pharmacological specificity to CLR, and receptor component protein (RCP)

that enables signaling (Luebke et al., 1996; McLatchie et al., 1998; Evans et al., 2000). The CGRP receptor is a

complex of CLR with these two requisite accessory proteins: RCP and RAMP1. We will discuss the CGRP

receptor and how our concept of a GPCR must now include a complex of proteins that are required for

correct intracellular sorting, organization in the plasma membrane, and coupling to signal transduction

proteins.

Finally, we will address the role of CGRP in migraine and subarachnoid hemorrhage (SAH). As

predicted by its cardiovascular and nociceptive activities, CGRP has been implicated not only in these

diseases, but also in aspects of hypertension and myocardial infarction (van Rossum et al., 1997; Brain and

Grant, 2004). The ability of injected CGRP to induce migraine‐like headache (Lassen et al., 2002), and of a

CGRP receptor antagonist to provide relief in migraine clinical trials (Olesen et al., 2004), has established

the involvement of CGRP in migraine (Arulmani et al., 2004; Durham, 2004a; Edvinsson, 2004). Elevated

CGRP levels can also be beneficial. In the case of SAH, the lack of CGRP may account for fatal vasospasms

(Juul et al., 1994; Imaizumi et al., 1996; Inoue et al., 1996; Toyoda et al., 2000b; Arulmani et al., 2004). In

addition, following myocardial infarction it is believed that elevated CGRP plays a protective role during

ischemia (Mair et al., 1990; Lechleitner et al., 1992; Franco‐Cereceda and Liska, 2000; Roudenok et al., 2001;
Kato et al., 2003). These observations support the possibility that modulation of CGRP synthesis and action

will be increasingly effective therapeutic strategies in the future.
2 Members of the CGRP Gene Family

The parental namesake of the CGRP gene family is the hormone calcitonin (CT). CGRP was initially

identified as an alternative splice product of the CT gene (CALCA or CT/CGRP) (Amara et al., 1982). In

fact, the original name of CGRP was pseudo‐Cal since the alternative RNA did not encode CT. Subse-

quently, other peptides have been discovered that have similar amino acid sequences and overlapping yet

distinct biological activities and expression patterns. All the peptides share a similar predicted structure of a

disulfide bridge and an amidated C‐terminus.
2.1 Calcitonin

CTwas identified in the early 1960s by Copp as a hypocalcemic hormone (Copp et al., 1962). CT is a 32‐
amino‐acid hormone that acts to lower serum calcium levels by inhibiting bone resorption and by

increasing renal calcium excretion (McDermott and Kidd, 1987; Inzerillo et al., 2002). CT acts on the

G‐protein‐coupled CT receptor (CTR) (Goldring et al., 1987). The importance of CT in calcium homeo-

stasis has been questioned since an absence of CT can be compensated for by parathyroid hormone and

vitamin D3 in the normal adult. However, animal studies have suggested that it may play important roles

under times of calcium stress and it is an effective therapeutic for Paget’s disease of the bone and certain

types of osteoporosis and hypercalcemia (McDermott and Kidd, 1987; Copp, 1992; Inzerillo et al., 2002).

Furthermore, the unexpected finding that CT/CGRP knockout mice have increased bone mass suggests

additional roles for CT in bone formation, possibly during embryogenesis (Hoff et al., 2002).

CT is produced almost exclusively by the parafollicular or C cells of the thyroid. There are reports of CT

in other cell types. In particular, there are low levels of CTmessenger RNA (mRNA) and peptide in the liver

and adipose tissue (Bracq et al., 1997; Russwurm et al., 2001; Linscheid et al., 2003). There is also a report of

relatively high levels of CT in the human prostate (Davis et al., 1989). In addition, CT‐like peptides have
been observed in the brain and pituitary for a number of years and this remains an enigma (Hilton et al.,

1998; Pondel, 2000). Interestingly, there is massive expression of the unprocessed pro‐CT in a wide range of

tissues during septic shock, and pro‐CT has been implicated in the pathology of sepsis (Muller et al., 2001;

Becker et al., 2003; Christ‐Crain et al., 2004).
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2.2 Production of Calcitonin and a‐CGRP from the Same Gene

The primary RNA transcript of the CT/CGRP gene is processed to produce CTmRNA by splicing of exons

1–4 and polyadenylation after exon 4 (> Figure 19-1). In the thyroid C cell,�95% of the primary transcript
. Figure 19-1

Schematic of the calcitonin/a‐CGRP gene. (a) Alternative processing of the primary transcript in thyroid C cells

yields primarily calcitonin mRNA, while CGRP mRNA is the primary product in neurons. The alternative

polyadenylation sites following exons 4 and 6 are indicated. (b) Primary sequence of the human a‐CGRP
peptide. The disulfide bond is indicated
is processed to CTmRNA. In contrast to the CT splicing pattern in thyroid C cells, �99% of the CT/CGRP

transcript is processed to a‐CGRP in neurons (Rosenfeld et al., 1983). This processing pathway removes

exon 4 and uses a downstream polyadenylation site after exon 6 to generate an mRNA containing exons 1, 2,

3, 5, and 6 (> Figure 19-1).

While the alternative splice mechanism is not yet fully understood, a working model has emerged (Lou

and Gagel, 1998). Studies in transgenic mice that ubiquitously expressed the CT/CGRP gene suggested that

CTmRNA is the default choice in all tissues except for the brain and heart (Crenshaw et al., 1987). Mapping

studies in cell lines subsequently identified several regulatory elements that are required for retention of exon

4 to yield CTmRNA (Adema et al., 1988; Emeson et al., 1989; Cote et al., 1992; Yeakley et al., 1993; Lou et al.,

1994; van Oers et al., 1994). Among these, the best characterized is an intron enhancer located approxi-

mately 250 nucleotides downstream of CTexon 4. This novel element is similar to a 50‐splice donor site and
binds a complex of splicing proteins that help direct polyadenylation of CTexon 4 (Lou et al., 1995, 1996).

Thus, this element is apparently responsible for the preferential expression of CTmRNA in thyroid C cells.
2.3 a‐CGRP

The focus of this chapter is the 37‐amino‐acid a‐CGRP peptide. As mentioned above, it is produced by

alternative processing of the CT/CGRP transcript in neurons of the peripheral nervous system and the

central nervous system (CNS) (Rosenfeld et al., 1983; van Rossum et al., 1997). CGRP produced from the

CT/CGRP gene is referred to as a‐CGRP (or CGRP‐I), although for the purposes of this review, we will refer
to a‐CGRP simply as CGRP unless otherwise indicated.
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Within the periphery, CGRP is particularly abundant in sensory nerves of the dorsal root and

trigeminal ganglia. Perhaps the most prominent pattern of CGRP expression is in perivascular nerve fibers

surrounding peripheral and cerebral blood vessels (Brain et al., 1985). Physiological studies have demon-

strated that CGRP is one of the most potent vasoactive neuropeptides known (Brain et al., 1985; McCulloch

et al., 1986; Preibisz, 1993). It appears that a major function of CGRP released in cerebral vessels is a

compensatory response to vasoconstriction (Brain et al., 1985; Goadsby and Edvinsson, 1993; Edvinsson

and Goadsby, 1994). The vasodilatory activity of CGRP has been supported by findings with two of the

three pedigrees of CGRP knockout mice (Lu et al., 1999; Gangula et al., 2000; Oh‐hashi et al., 2001). CGRP
triggers mast cell release of pro‐inflammatory cytokines and compounds that contribute to neurogenic

inflammation, which is coincident with vasodilation (Preibisz, 1993; Ottosson and Edvinsson, 1997).

Furthermore, CGRP also modulates nociceptive input via central pathways (Cumberbatch et al., 1999).

Injection of CGRP into the trigeminal nucleus of the brainstem elicits a cardiovascular response that is

similar to painful stimuli (Bereiter and Benetti, 1991; Allen et al., 1996). Importantly, CGRP knockout mice

have altered neurogenic inflammatory nociception in response to somatic and visceral pain (Salmon et al.,

2001). Thus, CGRP acts as a potent neuromediator of vascular tone and nociception. These and other

functions of a‐CGRP will be discussed in greater detail in the following sections.

A focus of this review is the trigeminal ganglion, which is the major source of both CGRP and sensory

nerves that connect the CNS with craniofacial structures and the cerebrovasculature (McCulloch et al.,

1986; O’Connor and van der Kooy, 1986). CGRP is present primarily in unmyelinated nociceptive fibers

(O’Connor and van der Kooy, 1988). The importance of trigeminovascular CGRP is highlighted by a report

that human cerebral arteries are ten times more sensitive than coronary arteries to CGRP (Edvinsson et al.,

2002). Notably, there are several CGRP pathologies that involve the trigeminal ganglion, which will be

discussed later.
2.4 b‐CGRP

A second gene encodes the highly homologous b‐CGRP neuropeptide (CALCB, also called CGRP II) that

differs by only 1–3 residues in different species (Amara et al., 1985; Steenbergh et al., 1985). As noted above,

the CGRP produced from the CT/CGRP gene is a‐CGRP. In contrast to the CT/CGRP gene, the b‐CGRP
gene does not encode a CT peptide. As expected by their similar sequences, the a and b isoforms have

almost identical activities (Holman et al., 1986; Jansen‐Olesen et al., 1996). The a and b isoforms of CGRP

are expressed in distinct but overlapping regions of the nervous system and appear to be differentially

regulated (Amara et al., 1985; Russo et al., 1988). In general b‐CGRP is more predominantly expressed in

motor neurons, while a‐CGRP is expressed in sensory neurons (Amara et al., 1985; Mulderry et al., 1988).

For example, there is ten times more a‐CGRP than b‐CGRP mRNA in the trigeminal ganglia, and

relaxation of human cerebral arteries following trigeminal activation is apparently mediated by a‐CGRP
(Amara et al., 1985; Jansen‐Olesen et al., 1996).
2.5 Adrenomedullin

About 10 years ago, the multifunctional peptide adrenomedullin (AM, also called ADM) was identified

from pheochromocytomas of the adrenal medulla (Kitamura, 1993). Most of the biological activity of AM

resides in the terminal 40 residues (AM13–52), which has 25% sequence similarity with human CGRP.

There are several excellent reviews on AM (Hinson et al., 2000; Eto et al., 2003; Brain and Grant, 2004).

AM and CGRP have overlapping activities in the vasculature and kidney (Eto and Kitamura, 2001;

Nishikimi et al., 2002; Eto et al., 2003). Like CGRP, AM causes vasodilation of blood vessels. In contrast

to the neuronal expression of CGRP, AM is produced by a wide variety of cell types, including vascular

endothelial and smooth muscle cells, neurons, cardiomyocytes, fibroblasts, and macrophages. In the kidney,

AM is a natriuretic peptide and it is believed to play a generally protective autocrine and paracrine

function (Eto and Kitamura, 2001; Mukoyama et al., 2001; Nishikimi et al., 2002). AM levels are elevated
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in several pathologies, including hypertension, renal failure, heart failure, and sepsis (Eto and Kitamura,

2001).
2.6 Amylin

Amylin is a 37‐amino‐acid pancreatic peptide that has 43% identity with human CGRP. Amylin was initially

found when analyzing pancreatic amyloid deposits in diabetic patients (Cooper et al., 1987; Westermark

et al., 1987). It is cosecreted with insulin from islet beta cells. The expression and function of amylin has

been recently reviewed (Hoppener et al., 2000). While amylin has some osteoclastic and vasodilatory

activity, its major function appears to be the regulation of glucose metabolism. Evidence that amylin can

also decrease food intake in animals has raised interest in its potential therapeutic applications, especially

for controlling obesity.
2.7 Other Family Members

A more distant member of the CGRP gene family is the intermedin peptide, which has been recently

reviewed (Chang et al., 2004; Roh et al., 2004). There is only 15% identity between intermedin and CGRP,

but up to 30% identity with AM. Intermedin acts via CLR and RAMPs 1 and 3, and shares biological

activities with CGRP.

Most recently, a calcitonin receptor‐stimulating peptide (termed CRSP) gene family has been

identified (Katafuchi et al., 2003). Several CRSP peptides have been found in the pig, cow, dog, and

horse, but the equivalent genes have not been found in humans and rodents (reviewed in Katafuchi and

Minamino, 2004). The CRSP members appear to act via the CT receptor and help control calcium levels.

The significance of the CRSP peptides remains to be established. Likewise, the molecular identity and

biological roles of novel CT‐like peptides found in the brain remains to be determined (Hilton et al., 1998;

Pondel, 2000).
3 Control of CGRP Gene Expression

Regulation of CGRP expression in response to extracellular stimuli is controlled exclusively at the tran-

scriptional level. While CGRP earned its early notoriety as an alternative RNA splicing product of the CT

gene, splicing does not change once the cellular phenotype is established.
3.1 Regulated Neuronal Expression

The CT/CGRP gene is predominantly expressed in neurons and neuroendocrine cells. Transcription of the

gene is enhanced by protein kinases A and C (de Bustros et al., 1986, 1990; Monla et al., 1995; Supowit et al.,

1995a), and agents that act via MAP kinases (Nakagawa et al., 1987; Watson and Latchman, 1995; Durham

and Russo, 1998). Transcription is inhibited by vitamin D (Peleg et al., 1993), retinoic acid (Lanigan et al.,

1993), and 5‐hydroxytryptamine 1 (5‐HT1) agonists that are commonly used as antimigraine drugs

(Durham et al., 1997, 2004; Durham and Russo, 2003). Glucocorticoids can either activate or repress

CT/CGRP transcription in a cell‐specific manner (Russo et al., 1988; Collignon et al., 1992; Tverberg and

Russo, 1992).

All agents that increase or decrease CT/CGRP transcription act through two elements (> Figure 19-2).

The elements are almost identical in the rat and human CT/CGRP promoters. A distal element is the

neuroendocrine cell‐specific enhancer located approximately 1,000 nucleotides upstream of the transcrip-

tion start site. A proximal element is responsible for cAMP‐ and Ras‐mediated enhancement and is located

approximately 250 nucleotides upstream of the start site.
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CGRP gene regulatory regions. The HLH/Fox cell‐specific enhancer and cAMP and Ras responsive elements

(CRE/RRE) and non‐cell‐specific enhancer sites (hatched boxes) that flank the HLH/Fox element are also shown.

The coordinates are for the rat CGRP gene. The USF and Foxa2 proteins bind independently to overlapping

motifs indicated by the solid bars (open bar indicates a partial role). An identical motif is in the human gene
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3.2 Proximal cAMP‐Responsive Element

The proximal element of the CT/CGRP gene contains an overlapping set of motifs that are responsive to

signal transduction pathways induced by cAMP (de Bustros et al., 1986; Monia et al., 1995), nerve growth

factor (NGF) (Watson and Latchman, 1995), and the activated Ras protein (Nakagawa et al., 1987;

Thiagalingam et al., 1996). It contains a canonical cAMP response element (CRE) that functions as a

binding site for cAMP response element binding protein (CREB) and related family members. Fine

mapping revealed an additional nearby cAMP‐responsive element that contains overlapping motifs: a

CRE‐like motif flanked by a downstream octamer homeodomain‐like binding site.
It appears that the CRE‐like/octamer site can function without the CREB element since mutation of the

CRE reduced cAMP‐induced transcription in thyroid C cell lines, but did not abolish it. Conversely,

mutation of the CRE‐like/octamer motif diminished the activity of the CRE site (Monia et al., 1995).

The function of these cAMP‐responsive elements is cell specific to some extent. Most notably, the CRE‐like/
octamer motif is functional only in CT/CGRP‐positive thyroid C cell lines.
3.3 Distal Cell‐Specific HLH Enhancer

CT/CGRP gene expression is restricted almost exclusively to thyroid C cells and a subset of peripheral and

central neurons, along with a scattered population of neuroendocrine cells in the lung, prostate, and

pituitary. A distal enhancer in the rat and human genes has been identified that is active in thyroid C cell

lines (Tverberg and Russo, 1993; Lanigan and Russo, 1997), trigeminal and dorsal root ganglia (DRG) in

transgenic mice (Stolarsky‐Fredman et al., 1990; Baetscher et al., 1991), and neurons of trigeminal ganglia

primary cultures (Durham and Russo, 2003; Durham et al., 2004). It is a complex enhancer. There are three

functional CANNTG motifs that bind helix–loop–helix (HLH) proteins (Peleg et al., 1990; Stolarsky‐
Fredman et al., 1990; Ball et al., 1992; Tverberg and Russo, 1992, 1993). The HLH motifs are flanked by

elements that bind cell‐specific and non‐cell‐specific transcription factors. A 1.25‐kb promoter fragment is

able to direct reporter gene expression predominantly to neurons. Approximately 90% of the cells that

express the reporter were neurons (Durham et al., 2004). These data document that the CGRP promoter is

preferentially active in neurons and neuroendocrine cells.

Mapping studies have identified a key 18‐bp element within the distal cell‐specific enhancer. The 18‐bp
enhancer retains cell specificity in thyroid C cells and sensory neurons (Tverberg and Russo, 1993; Lanigan

and Russo, 1997; Durham and Russo, 2003; Durham et al., 2004). This enhancer has overlapping HLH and

forkhead (Fox) motifs that are required for synergistic activation of transcription (> Figure 19-2) (Tverberg
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and Russo, 1993; Lanigan and Russo, 1997; Viney et al., 2004). Mutation of a single HLH site within the

enhancer greatly reduces promoter activity even in the context of the remaining HLH sites (Tverberg and

Russo, 1993; Lanigan and Russo, 1997). In the neuronal‐like thyroid C cell lines, a heterodimer of the basic

HLH‐leucine zipper (bHLH‐Zip) proteins upstream stimulatory factor (USF)‐1 and ‐2 and the cell‐specific
protein Foxa2 bind the HLH site in the 18‐bp enhancer. USFs are ubiquitous proteins, yet paradoxically

they can contribute to cell‐specific gene expression (Massari and Murre, 2000). The cell‐specific HLH

transcription factor mammalian achaete‐scute homolog (MASH‐1) was initially considered as a candidate

cell‐specific transcription factor since it is expressed in normal C cells and C cell lines (Ball, 1992; Lanigan

et al., 1998). However, it is now clear that MASH‐1 is not required for expression of the CT/CGRP gene

(Guillemot, 1995; Lanigan et al., 1998). We have proposed that the suboptimal USF binding site in the

18‐bp enhancer is needed to allow optimal binding of Foxa2 to the overlapping site (Lanigan and Russo,

1997; Viney et al., 2004). A similar paradigm has been reported for USF control of an islet‐specific gene
(Martin et al., 2003). Whether USF synergizes with a Fox protein in neurons remains an open question.

While we can rule out a role for Foxa2 since it is not expressed in trigeminal ganglia, there are other

neuronal Fox proteins, which raises the possible involvement of another Fox family member (Viney et al.,

2004) in CT/CGRP transcription.
3.4 MAP Kinase Control of CGRP Transcription

CGRP gene expression is activated by MAP kinases. The major MAP kinase families, extracellular signal‐
regulated kinase (ERK), c‐Jun N‐terminal kinase (JNK), and p38, are at the convergence of signaling

cascades that transduce extracellular signals to the nucleus (Seger and Krebs, 1995). The first evidence that

MAP kinases control CGRP gene expression was from studies by Nelkin and coworkers using Ras, an

upstream activator of MAP kinases (Nakagawa et al., 1987). Ras was shown to act through an element near

the CRE that binds a novel zinc‐fingered protein (Thiagalingam et al., 1996). Later studies found that the

cell‐specific 18‐bp enhancer is also activated by MAP kinases and chemical depolarization (Durham and

Russo, 1998, 2000, 2003). Physiological stimuli that activate MAP kinases, such as NGF and depolarization,

have been shown to stimulate CGRP enhancer activity. NGF treatment also increases CGRP gene expression

in postnatal trigeminal and DRG (Lindsay and Harmar, 1989; Durham and Russo, 2003). In cell lines, NGF

acts in a cell‐specific manner through the CRE and flanking elements and upstream sequences that include

the distal enhancer (Lindsay and Harmar, 1989; Watson and Latchman, 1995; Durham and Russo, 1998,

2003). The possibility that signals from these factors may target USF at the enhancer is supported by reports

that USF is involved in Ca2þ activation of other promoters (Tabuchi et al., 2002; Chen et al., 2003) and that

USF can be phosphorylated by p38 MAP kinase (Galibert et al., 2001).

5‐HT1 receptor agonists that are currently used as antimigraine drugs can inhibit CGRP promoter

activity (Durham and Russo, 2003; Durham et al., 2004). In patients, these drugs lower CGRP levels and

relieve migraine pain (Ferrari, 1998). Both ERK MAP kinase stimulation and repression by 5‐HT1 agonists

were mapped to the 18‐bp cell‐specific enhancer (Durham and Russo, 1998, 2003). We therefore reasoned

that 5‐HT1 agonists might act by inhibiting MAP kinases. Indeed, a 5‐HT1 agonist can induce MAP kinase

phosphatase‐1 (MKP‐1) expression in a neuronal‐like thyroid C cell line (Durham and Russo, 2000), and

MKP‐1 is sufficient to repress enhancer activity in neurons (Russo, unpublished data). MKP‐1 is a dual‐
specific phosphatase that can inactivate multiple MAP kinases (Keyse, 1995). The angiotensin type 2 and

possibly insulin receptors have also been shown to repress MAP kinase activity by elevating MKPs

(Horiuchi et al., 1997; Kusari et al., 1997).

An unexpected finding was that activation of 5‐HT1 receptors caused a sustained increase in intracellu-

lar Ca2þ in neurons that was sufficient to repress the CGRP promoter (Durham and Russo, 2000, 2003).

The effect of intracellular Ca2þ on gene expression is determined by many parameters, including signal

amplitude and duration (Berridge et al., 2003). A transient increase in intracellular Ca2þ, such as following

depolarization, stimulates MAP kinase activation of the CGRP enhancer. Such activation has been widely

seen with other MAP kinase‐responsive genes (Rosen et al., 1994; Ghosh and Greenberg, 1995; MacArthur

and Eiden, 1996). What is less appreciated is that a prolonged elevation of Ca2þ can have the opposite effect
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and decrease MAP kinase activity. Meloche and coworkers demonstrated that increased intracellular Ca2þ

was necessary and sufficient for induction of MKP‐1 expression in a fibroblast cell line (Scimeca et al.,

1997). In trigeminal neurons and thyroid C cell lines, we propose that this prolonged elevation of Ca2þ

induces a negative feedback loop due to MKP‐1 induction, which leads to repression of the CT/CGRP gene.

Importantly, we were able to use ionomycin treatment to demonstrate that the prolonged Ca2þ elevation is

sufficient to induce MKP‐1 expression and repress CGRP gene expression (Durham and Russo, 2000, 2003).

Thus, there appears to be a dynamic balance between MAP kinases and phosphatases that control the CGRP

gene (> Figure 19-3).
. Figure 19-3

Model of CGRP gene regulation by differential calcium signals. Transient calcium signals, such as following

depolarization, can activate ERK MAP kinase to stimulate CGRP transcription. Conversely, a prolonged calcium

signal, such as following 5‐HT1 agonist treatment, can elevate MKP‐1, which inhibits MAP kinases. This leads to

decreased CGRP transcription
4 CGRP Receptor

The receptor for CGRP has proven an elusive quarry. This has been in part due to its unusual subunit

requirements, which is discussed below (> Figure 19-4). CGRP receptors have been reported in many

tissues, including brain, heart, lung, kidney, spleen, and skeletal muscle (Poyner, 1992; van Rossum et al.,

1997). Two original ligands were used to distinguish subtypes of CGRP receptors. An agonist, [acetoami-

domethylcysteine2,7]CGRP ([Cys(ACM)2,7]CGRP), is a linear analog of CGRP in which the two cysteine

residues at positions 2 and 7 have been covalently reduced. An antagonist, CGRP (8–37), represents the

carboxyl 30 amino acids of mature CGRP, including the carboxylamide group. Two types of CGRP

receptors were initially described using these CGRP analogs. Type I receptors were relatively insensitive

to [Cys(ACM)2,7]CGRP until micromolar concentrations were used, but are sensitive to the antagonist

CGRP (8–37) at nanomolar concentrations (Dennis et al., 1989, 1990; Longmore et al., 1994). Type I CGRP

receptors were reported in atria, spleen, and in the SK‐N‐MC neuroblastoma cell line (Van Valen et al.,

1990; van Rossum et al., 1997). In contrast, [Cys(ACM)2,7]CGRP was reported to be a potent agonist at

type II CGRP receptors, with an EC50 of approximately 70 nM (Dennis et al., 1989). CGRP (8–37) was not

reported to be as effective at type II receptors, requiring micromolar concentrations to be effective (Chiba

et al., 1989; Dennis et al., 1990). Type II CGRP receptors were described in vas deferens, liver, and kidney

(Chiba et al., 1989; Dennis et al., 1990). A distinction between CGRP receptors was also reported in the
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CGRP receptor. Three proteins are required for CGRP receptor function: Calcitonin‐like receptor (CLR) contains

seven hydrophobic domains predicted to be transmembrane domains associated with the topology of a

stereotypic G‐protein‐coupled receptor (GPCR). Receptor activity modifying protein (RAMP1) contains a single

transmembrane domain and determines pharmacologic specificity of CLR for CGRP, acting as a chaperone for

routing CLR to the cell surface. RAMP1 is also dependent on CLR for trafficking to the cell surface. The CGRP

receptor component protein (RCP) is an intracellular peripheral membrane protein that is required for CLR/

RAMP1 signal transduction
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vasculature, where CGRP was found to be a more potent agonist on small‐caliber vessels than on large‐
caliber vessels (Foulkes et al., 1991). Furthermore, the antagonist CGRP (8–37) was less effective in the

large‐caliber vessels. Similarly, the cerebral arteries have been reported to be ten times more sensitive to

CGRP than coronary arteries (Edvinsson et al., 2002), suggesting distinct CGRP receptor populations.

However, despite data suggesting two classes of receptor for CGRP, as described below, the molecular

identity has only been defined for the type I CGRP receptor pharmacology. Thus, there are either additional

undiscovered CGRP receptors or the pharmacology of the known receptor can be modified by its expression

itself or by the expression of accessory proteins.
4.1 Calcitonin‐like Receptor

Application of CGRP to target tissues and cells often results in elevated levels of intracellular cAMP

(Edvinsson et al., 1985; Hirata et al., 1988; Chiba et al., 1989; Van Valen et al., 1990; Crook and Yabu,

1992), suggesting the presence of a GPCR. Consistent with this GPCR hypothesis it was discovered that

CGRP binding to receptors in cerebellum and cardiac myocytes was inhibited by GTPgS (Chatterjee et al.,
1991, 1993; Chatterjee and Fisher, 1995). However, while straightforward tissue‐culture‐based expression

cloning strategies identified a complementary DNA (cDNA) for the calcitonin receptor (CTR) (Lin et al.,

1991), similar efforts targeting the CGRP receptor were unsuccessful. A polymerase chain reaction (PCR)

cloning strategy did identify a candidate CGRP receptor cDNA from rat cerebellum using PCR primers

based on conserved regions in the CTR (Chang et al., 1993). However, this receptor, called the calcitonin

receptor‐like receptor (CRLR), did not recognize CGRP; it and a subsequently identified human homolog

(Fluhmann et al., 1995) were therefore described initially as orphan receptors without known ligands. An

additional GPCR named RDC1 was described at one time as a CGRP receptor (Kapas and Clark, 1995), but



CGRP: a multifunctional neuropeptide 19 401
subsequent studies have been unable to confirm the initial finding, and RDC1 is currently classified as an

orphan GPCR.

In 1996 Aiyar et al. used expressed sequence tag analysis to identify a cDNA named CGRP1 from a

human synovial cDNA library (Aiyar et al., 1996). CGRP1 had a sequence identical to the previously

identified CRLR, and when transfected into human embryonic kidney (HEK293) cells, CGRP1 resulted in

expression of high‐affinity type I CGRP receptors, which responded with an increase in intracellular cAMP

to incubation with CGRP, consistent with the earlier pharmacologic studies. In contrast, CGRP1 was not

effective when transfected into COS cells, a finding confirmed by Han et al. (1997). These transfection

studies suggested that CGRP1/CRLR required additional protein factors for function, and that these

proteins were not expressed in COS cells. The CGRP receptor nomenclature has subsequently been

condensed, and CRLR (CGRP1) is now referred to as the calcitonin‐like receptor (CLR) (> Figure 19-4)

(Poyner et al., 2002). CLR is a member of the family B (class II) GPCRs, having most homology to the

receptors for vasoactive intestinal peptide, growth hormone releasing hormone, pituitary adenylate cyclase

activating peptide, glucagon, glucagon‐like peptide, secretin, and calcitonin (Harmar, 2001).
4.2 Receptor Activity Modifying Protein

One protein required for CLR function is RAMP1. RAMP1 was discovered in a Xenopus laevis oocyte‐based
expression cloning strategy (McLatchie et al., 1998), and the RAMP1 cDNA encodes a small (148‐amino‐
acid) single transmembrane protein with a large extracellular amino terminus and a short intracellular

carboxyl tail. RAMP1 cDNA confers CGRP responsiveness when expressed alone in oocytes, but not when

transfected alone into tissue culture cells. However, when the RAMP1 cDNA was cotransfected with the

CLR cDNA in cell culture, a high‐affinity CGRP receptor was observed. Interestingly, fluorescence activated

cell sorter (FACS) analysis in these studies indicated that CLR was not efficiently transported to the cell

surface when expressed alone; nor was RAMP1. These data suggest that RAMP1 and CLR require each other

for correct folding and export to the cell surface. Two additional RAMPs were identified (RAMP2 and

RAMP3), which, while sharing only 30% identity with RAMP1, were found to also interact with CLR and

resulted in expression of AM receptors when cotransfected with CLR in cell culture (McLatchie et al., 1998;

Muff et al., 1998; Buhlmann et al., 1999; Kamitani et al., 1999). RAMPs can also work in conjunction with

CTR, where they result in an amylin receptor (Christopoulos et al., 1999; Muff et al., 1999; Tilakaratne et al.,

2000; Zumpe et al., 2000). Interestingly, the combination of CTR/RAMP1 can also bind CGRP, with an IC50

approximately tenfold less sensitive than for amylin (Christopoulos et al., 1999). This cross‐reactivity
between CGRP and CTR/RAMP1 may explain earlier findings that CGRP could compete with labeled

amylin for binding in the nucleus accumbens (Beaumont et al., 1993; van Rossum et al., 1994).

How the RAMPs dictate pharmacologic specificity of CLR is still unclear. Initial studies indicated that

the glycosylation state of CLR could affect ligand specificity (McLatchie et al., 1998). Expression of CLR and

RAMP1 resulted in detection of CLR with an apparent molecular weight of 66 kDa with CGRP binding,

while expression of CLR and RAMP2 resulted in expression of a 58‐kDa form of CLR with AM binding.

Both these forms of CLR could be reduced to 48 kDa by treatment with endoglycosidase F, although only

the 58‐kDa form of CLR was sensitive to treatment with endoglycosidase H. These results suggested

differential glycosylation that was RAMP‐dependent. This led to early thoughts that the glycosylation

state of CLR could regulate ligand specificity. However, cotransfection of CLR and either RAMP1 or

RAMP2 into Drosophila Schneider 2 cells resulted in expression of a 58‐kDa endoglycosidase‐sensitive
form of CLR with both RAMP1 and RAMP2, while maintaining the CGRP and AM specificity of the CLR/

RAMP1 and CLR/RAMP2 dimers (Aldecoa et al., 2000). These data suggested that it was expression of the

RAMP that guided CLR specificity, and not the glycosylation state of the receptor. Interestingly, a

subsequent study (Hilairet et al., 2001b) found that while the major CLR species identified upon cotrans-

fection with RAMP2 was the 58‐kDa form observed previously by McLatchie et al. (McLatchie et al., 1998),

the 66‐kDa form was faintly observed in total extract, and, importantly, was the predominant species at the

cell surface. This suggested that the glycosylation state of the cell surface form of CLR in a CLR/RAMP2

dimer was fully glycosylated, as observed for the CLR/RAMP1 dimer. In the later studies, coexpression of
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CLR and RAMP3 resulted in approximately equal expression of the 66‐ and 58‐kDa form of CLR in both

total extract and surface membrane populations, while coexpression of CLR/RAMP1 resulted in the 66‐kDa
form of CLR in both total and membrane fractions. In these studies, cells were transfected with CLR and

either RAMP1 or RAMP2, incubated with either 125I‐CGRP or 125I‐AM, cross‐linked, and CLR was

immunoprecipitated. The immunoprecipitate was analyzed by sodium dodecyl sulfate‐polyacrylamide gel

electrophoresis (SDS‐PAGE) and autoradiography, and labeled CGRP coimmunoprecipitated primarily

with cells transfected with CLR/RAMP1, and AM coimmunoprecipitated from cells transfected with CLR/

RAMP2. Importantly, only the 66‐kDa form of CLR was identified by autoradiography in these studies, and

therefore postulated to interact with the labeled ligand.

RAMP1 can be divided into the extracellular amino‐terminal domain, the transmembrane domain, and

the cytoplasmic carboxyl domain. The requirement for each of these domains has been tested by several

investigators. The extracellular domain of RAMP1 contains six cysteine residues, and RAMP1 dimers are

observed that are susceptible to reducing agents such as dithiothreitol (Hilairet et al., 2001a). Interestingly,

when transfected into cell culture RAMP1 is observed primarily as intracellular dimers, but coexpression

with CLR results in a shift from primarily RAMP1 dimers to monomers, and a concomitant translocation

to the cell surface (Hilairet et al., 2001a). There are six conserved cysteine residues in the 90‐residue
extracellular domain of RAMP1 and, of these, four are required for trafficking to the cell surface and

formation of a signaling‐ and binding‐competent CGRP receptor (Steiner et al., 2003). These data suggest

that RAMP1 requires disulfide bond formation for creation of a functional extracellular domain.

The extracellular amino terminus of the RAMP molecule governs the pharmacologic specificity of the

RAMP/CLR dimers. Chimeric RAMP molecules were made that contained the extracellular amino termi-

nus of RAMP2 fused with the transmembrane and intracellular domain of RAMP1 (RAMP2/RAMP1) or

the extracellular amino terminus of RAMP1 fused with the transmembrane and cytoplasmic domain of

RAMP2 (RAMP1/RAMP2). Upon cotransfection with CLR the chimeric RAMP2/RAMP1 molecules

conferred AM receptor in cell culture, and RAMP1/RAMP2 conferred CGRP receptors (Fraser et al.,

1999; Zumpe et al., 2000; Hilairet et al., 2001b).

Expression of the extracellular domain of RAMP1 as a soluble protein or as a fusion protein with the

membrane‐spanning and cytoplasmic domains of the PDGF receptor resulted in interaction with CLR, and

facilitated CLR trafficking to the cell surface, CGRP‐mediated signaling, and CGRP binding (Fitzsimmons

et al., 2003). In these experiments the soluble form of the RAMP1 extracellular domain was significantly less

effective than the membrane‐delimited forms, possibly due to the fact that the soluble form was secreted,

thereby decreasing the probability of the twomolecules (RAMP1 extracellular domain and CLR) interacting

at the cell membrane. These results agree with earlier experiments that identified residues 91–103 of the

RAMP1 extracellular domain as important for generating the CGRP receptor phenotype when coexpressed

with CLR (Kuwasako et al., 2003a). However, these results disagree with a previous study that found the

transmembrane domain to be required for CLR signaling and trafficking (Steiner et al., 2002). In the

previous study, progressive deletions were made from the carboxyl end of the human RAMP1 cDNA

extending into the transmembrane domain, and the carboxyl‐shortened mutants were cotransfected with

CLR into cell culture for analysis. The carboxyl tail of RAMP1 could be deleted without affecting the EC50

for CGRP‐stimulated cAMP production, but once deletions extended into the transmembrane domain,

signaling was significantly inhibited. Interestingly, addition of a consensus endoplasmic reticulum (ER)‐
retention signal to a transmembrane deletion could restore signaling to control levels, suggesting that

increased time in the ER may enhance association of RAMP1 with CLR. When RAMP1 trafficking was

analyzed by microscopy, it was noted that most of the carboxyl‐deletion mutants had lost the dependence

on CLR for cell surface expression. In particular, deleting the first four residues from the carboxyl end of

RAMP1 maintained CLR dependence, but deletions that included an additional four residues from the

carboxyl end of RAMP1 were expressed on the cell surface, as were further deletions into the transmem-

brane domain. This suggests the presence of an ER‐retention signal in the four residues immediately

adjacent to the cell membrane, which when deleted allow rapid export of RAMP1 from the ER to the cell

surface. The basis for the difference in the role of the RAMP1 transmembrane domain in these two studies is

not clear, although expression of additional proteins required for receptor function (such as RCP, see

below) may vary between the cell lines used by the two research groups.
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Recently, a nonpeptide antagonist named BIBN4096BS has been developed to the CGRP receptor

(Doods et al., 2000). Interestingly, BIBN4096BS exhibits species selectivity, binding to the human CGRP

receptor with 100‐fold higher affinity than the CGRP receptor in other species (Doods et al., 2000;

Edvinsson et al., 2001). The species selectivity appears to be due to BIBN4096BS interactions with the

RAMP1 molecule. When combinations of rat or human CLR were cotransfected into cell culture with rat or

human RAMP1, high‐affinity binding was associated with the human RAMP1, whether cotransfected with

rat or human CLR (Mallee et al., 2002; Hershey et al., 2005). Furthermore, in an elegant series of

experiments, two chimeric RAMP1 cDNAs were constructed, which replaced either the first 66 amino

acids of the extracellular domain of rat RAMP1 with the corresponding human sequence, or the first 112

amino acids of human sequence with rat. When cotransfected with CLR into cell culture, only the chimeric

RAMP1 containing the 112‐amino‐acid human substitution had a high affinity for BIBN4096BS similar to

human RAMP1, suggesting that the interacting domain resided between residues 66 and 112. An alignment

of RAMP1 from multiple species identified a variable amino acid at position 74, which was a tryptophan

in humans and marmosets (high‐affinity BIBN4096BS binding) and a basic residue in rats, mice, or pigs

(low‐affinity BIBN4096BS binding). When the rat RAMP1 cDNA was mutated to change lysine74 to

tryptophan74, high‐affinity BIBN4096BS binding was revealed upon cotransfection with CLR. Thus, the

species specificity of BIBN4096BS was largely dependent on a single amino acid residue in the extracellular

domain of RAMP1, irregardless of which species of receptor was cotransfected with the chimeric RAMP.

The CLR/RAMP1 protein complex is internalized following exposure to ligand. A chimeric CLR was

constructed with a carboxyl fusion to the green fluorescent protein (GFP). When transfected alone into cell

culture the CLR–GFP was found primarily in a cytoplasmic pool presumed to be ER (Kuwasako et al.,

2000). However, when cotransfected with RAMP1, the fraction of CLR–GFP found on the cell surface

increased, suggesting that RAMP1 facilitated the trafficking of CLR–GFP to the cell surface. CLR–GFP was

removed from the cell surface following exposure to CGRP, and this loss was inhibited by pretreatment with

hypertonic medium, suggesting that CLR was internalized by clathrin‐coated pits (Daukas and Zigmond,

1985; Zigmond et al., 1985). A second study found that addition of CGRP to cells transfected with RAMP1

and CLR resulted in a time‐dependent loss of surface CLR and RAMP1, as expected for receptors under-

going internalization (Hilairet et al., 2001a). Interestingly, in these studies the kinetics of loss of cell surface

CLR and RAMP1 were quite similar, yet the level of CLR and RAMP1 coimmunoprecipitation from cell

lysate did not change after exposure to CGRP, suggesting that the internalized CLR was still in association

with RAMP1. Internalization of the CLR/RAMP1 complex was inhibited by coexpression of dominant‐
negative mutants of b‐arrestin, suggesting that internalization occurred via clathrin‐coated pits.
4.3 Regulation of CLR Function by RAMP1

Increased RAMP1 and RAMP3 expression has been detected by reverse transcriptase‐polymerase chain

reaction (RT‐PCR) and Western blotting in rat atria and ventricle in failing hearts following aortic banding

(Cueille et al., 2002). In these studies no change in CLR expression was detected, suggesting the possibility

of increased CGRP receptor function if the upregulated RAMP was working with existing CLR.

RAMP1 mRNA may also be upregulated in the rat uterus during pregnancy. Messenger RNA was

isolated from the uterus of pregnant and control rats, and CLR and RAMP1 expression was monitored by

RT‐PCR (Thota et al., 2003). In these studies expression of both RAMP1 and CLR increased in the pregnant

state.
4.4 Receptor Component Protein

A second protein required for CLR function is the CGRP‐RCP. RCP is a small (148‐amino‐acid) hydrophilic
intracellular peripheral membrane protein that was cloned using a Xenopus oocyte‐based expression

cloning assay (Luebke et al., 1996; Evans et al., 2000; Prado et al., 2001). RCP is highly conserved between

humans, mice, rabbits, and guinea pigs (Prado et al., 2002), yet contains no obvious protein motifs that
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suggest function. RCP is expressed in most immortalized cell lines, although it is not yet known if this is a

cause or a result of the immortalization process. RCP expression was inhibited in cell culture using an

antisense strategy, and in the RCP‐depleted cells CGRP and AM maximal signal transduction was signifi-

cantly diminished with minimal effect on EC50, while signalings at other GPCRs endogenous to the host cell

line were unchanged (Evans et al., 2000; Prado et al., 2001). No change in either affinity for CGRP or

receptor density was observed in these studies using 125I‐CGRP binding, suggesting that RCP was coupling

the CLR/RAMP1 complex to the cellular signaling pathway. RCP coimmunoprecipitated with CLR and

RAMP1 from cell culture and from cerebellar extracts in these studies, suggesting that the CGRP receptor

was a complex of the three proteins. RCP can be removed from cell membranes by incubation with salt,

suggesting an ionic interaction between RCP and the CLR/RAMP1 complex (Evans et al., 2000; Prado et al.,

2001).

In contrast to cell culture, RCP is expressed in defined cell types in vivo. Using in situ hybridization,

RCP was found in discrete cell types in the guinea pig brain, with highest expression in the anterior

olfactory nucleus, the granular layer of the cerebellum, and the gyrus, CA1, CA2, and CA3 regions of

hippocampus (Oliver et al., 1999). Similar in situ expression patterns have been reported for rat brain

(Oliver et al., 2001). Using immunohistochemistry, expression of RCP was investigated in rat brain, where it

was found juxtaposed with CGRP immunoreactivity (Ma et al., 2003). The protein expression of RCP in

these immunohistochemistry studies agreed with the previous in situ data on RCP mRNA expression

(Oliver et al., 1999, 2001). Interestingly, approximately 40% of the CGRP‐immunoreactive neurons in the

DRG were also RCP‐immunoreactive, as were the majority of motoneurons of the lumbar spinal cord and

the hypoglossal nucleus, suggesting a presynaptic CGRP receptor (Ma et al., 2000). A correlation between

CGRP‐immunoreactive cells and RCP‐immunoreactive cells has also been observed in the dorsal horn of

the rat spinal cord (Pokabla et al., 2002). CGRP‐immunoreactive cells were detected primarily in laminae I

and II of the dorsal horn, while RCP immunoreactivity was detected primarily in laminae II but also in

laminae III, with nerve terminals juxtaposed primarily in laminae II. Double immunostaining of DRG

neurons in these studies also detected cells that exhibited cytoplasmic CGRP immunoreactivity with a

membrane‐associated RCP immunoreactivty, suggesting a population of DRG neurons that expressed

presynaptic CGRP receptors.

CGRP is expressed in trigeminal nerve fibers that innervate the anterior eye, and CGRP‐binding sites

have been reported in the ciliary process and iris of the eye (Malminiemi and Malminiemi, 1992; Heino

et al., 1995). CGRP can mediate the increased intraocular pressure, breakdown of the blood–aqueous

barrier, and increased levels of cAMP in the aqueous humor associated with the ocular neurogenic

inflammatory response (Unger et al., 1985; Unger, 1989, 1990; Krootila et al., 1992). These data suggest

that CGRP and its receptors can mediate the inflammatory response in the eye. RCP expression was

detected in rabbit eye by immunohistochemistry in the epithelial cells and the blood vessels of the ciliary

processes and the iris (Rosenblatt et al., 2000). The vascular localization is consistent with the increased

blood flow attributed to CGRP in the neurogenic inflammatory response (Krootila et al., 1988; Oksala,

1988; Almegard and Andersson, 1993). Nerve fibers that release CGRP are in close proximity to the ciliary

epithelial cells (Terenghi et al., 1985, 1986; Uusitalo et al., 1989), and RCP immunoreactivity suggests the

presence of CGRP receptors in the ciliary epithelial cells. This anatomic colocalization of CGRP‐containing
neurons and RCP‐immunoreactive ciliary epithelial cells is consistent with actions of intraocular CGRP,

which causes increased secretion of aqueous humor from the ciliary epithelium and a concomitant rise in

intraocular pressure (Unger, 1989, 1992). As the tight junctions of the ciliary epithelial cells are the

anatomic site of the blood–aqueous barrier, CGRP may be acting directly on these cells to disrupt the

blood–aqueous barrier. RCP was also observed in the lens in these studies, although a role for CGRP in

the lens is not currently understood.
4.5 Regulation of CGRP Receptor Function by RCP

Expression of CGRP‐RCP is regulated in vivo, and as such has the potential to regulate CLR function.

During pregnancy, the myometrial smooth muscle of the uterus undergoes a dramatic change, from weak
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contractions during gestation to strong synchronized contractions at parturition. CGRP has been char-

acterized as an inhibitor of smooth muscle contraction (Samuelson et al., 1985; Shew et al., 1990; Tritthart

et al., 1992), and CGRP neurons innervate the uterus, where CGRP inhibits evoked and spontaneous

contractions (Samuelson et al., 1985; Haase et al., 1997). The ability of CGRP to inhibit myometrial

contractions was shown to vary during gestation in mice in direct proportion to RCP expression. By

using dissected myometrial strips that were assayed for contractile ability and then analyzed for RCP mRNA

and protein expression, it was shown that the ability of CGRP to inhibit acetylcholine (ACh)‐induced
contractions correlated with expression of RCP protein, suggesting that RCP could regulate myometrial

CGRP receptor function (Naghashpour et al., 1997).

A similar correlation between RCP expression and myometrial function was observed during the estrus

cycle. In these experiments, myometrial strips were isolated frommice during the estrus cycle, and analyzed

for ability of CGRP to inhibit KCl‐induced contraction, and the strips were then assayed for RCP mRNA

and protein expression (Naghashpour and Dahl, 2000). The inhibitory ability of CGRP was found to again

correlate with RCP protein expression, with a maximal inhibition at metestrus, followed by diestrus,

proestrus, and estrus. Dose–response curves comparing CGRP inhibition of contraction at estrus and

metestrus showed an inhibition of maximal effect in metestrus, with minimal effect on EC50, similar to the

inhibition of maximal signal transduction observed in the RCP antisense cell lines described earlier (Evans

et al., 2000; Prado et al., 2001). No correlation was observed between RAMP1 and CGRP efficacy in these

experiments. To determine the role of estrogen and progesterone on CGRP responsiveness, myometrial

strips were analyzed from either ovarectomized mice or ovarectomized mice supplemented with estrogen

or progesterone. Ovarectomized mice had a diminished myometrial response to CGRP (less inhibition of

KCl‐induced contraction), and the myometrial response was regained after treatment with progesterone

(Naghashpour and Dahl, 2000). RCP expression was diminished in the ovarectomized mice, and was

enhanced in the progesterone‐treated animals in proportion to CGRP responsiveness. Interestingly, RCP

protein expression can be uncoupled from mRNA expression, as the observed changes in RCP protein were

not reflected in RCP mRNA during either pregnancy or estrus (Naghashpour et al., 1997; Naghashpour and

Dahl, 2000). Thus, RCP may be regulated at a posttranscriptional level, and should be analyzed at the

protein level to quantify bioactivity.

RCP also affects CGRP systems in the nervous system. Following intrathecal infusion of the CGRP

receptor antagonist CGRP (8–37), RCP immunoreactivity was increased in rat DRG and dorsal horn

neurons (Ma et al., 2003). It had been previously shown that administration of CGRP (8–37) did not

increase CGRP immunoreactivity or CGRP‐binding sites in the dorsal horn (Menard et al., 1996).

Combined with the enabling role for RCP in CGRP‐mediated signal transduction (Evans et al., 2000;

Prado et al., 2001) these data suggest that the function of a relatively constant number of CGRP receptors

in the dorsal horn were upregulated by increased levels of RCP expression following treatment with

antagonist. RCP expressionwas also increased in rat dorsal horn following treatment with the inflammatory

agent carrageenan (Ma et al., 2003). Peripheral inflammation increases CGRP content in DRG and dorsal

horn (Kar et al., 1994; Seybold et al., 1995), and upregulation of the CGRP receptor system by RCP may

augment the neurogenic inflammatory effect of CGRP. Similarly, partial sciatic nerve ligation resulted in a

significant decrease in RCP‐immunoreactive neurons in ipsilateral dorsal horn compared with contralateral

control.

Regulation of vascular CGRP receptors has recently been reported. In the rat subtotal nephrectomy

(SN) model for hypertension, the vasculature was hyperresponsive to CGRP while CGRP synthesis was

unchanged from normotensive control (Supowit et al., 1998, 2001). This suggested that CGRP was acting as

a compensatory depressor to the hypertensive effects, via an enhanced receptor system. When the CGRP

receptor proteins were examined by Western blotting in SN‐salt rats, RCP expression was twofold higher

than in normotensive control animals, while CLR and RAMP1 expression was unchanged (Katki et al.,

2003). Thus, the mechanism of the increased vascular sensitivity to CGRP is likely due to upregulation of

RCP, and hence more efficient coupling of the CLR/RAMP1 complex to the cellular signaling pathway. This

is in contrast to the deoxycorticosterone‐salt model for hypertension, where CGRP mRNA and CGRP

immunoreactivity increased in DRG neurons, suggesting that increased expression of CGRP was a com-

pensatory mechanism for hypertension (Supowit et al., 1995b, 1997).
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A similar hyperresponsiveness to CGRP has been reported in human hypertension (Lind and Edvinsson,

2002). In these studies, small vascular segments from control and hypertensive patients were mounted

on a force transducer, and contractile responses to noraderenaline and Kþwere recorded. No difference

between hypertensive and control patients was detected with regard to the ability of noraderenaline or Kþ

to contract either arteries or veins. However, when subcutaneous arteries were tested for their ability to

dilate in response to CGRP, the maximal effect of CGRP was almost twofold higher in the hypertensive

samples than in the control, while EC50 remained unchanged. In these experiments, no change was

observed in the vasodilatory response to substance P, and no difference was detected between hypertensive

and control patients with regard to CGRP‐induced dilation in the veins, or with regard to the vasodilatory

effect of substance P. These data suggest that while the affinity of the CGRP receptors was unchanged in the

arteries of the hypertensive patients, the signaling capacity of CGRP was significantly increased. This could

have been due to an increase in membrane CGRP receptors, which could reflect increased expression of

CLR or RAMP1, or to an increased coupling of the existing receptors due to increased expression of RCP, as

described in the rat model above.
4.6 Additional Receptors

It remains an open question whether all of the receptors for CGRP can be accounted for by the combination

of CLR/RAMP1/RCP. In the brain, autoradiography studies with 125I‐CGRP have identified high levels of

CGRP‐binding sites in nucleus accumbens, ventral striatum, amygdala, superior and inferior colliculi, and

cerebellum (Henke et al., 1985; Tschopp et al., 1985; Inagaki et al., 1986; Kruger et al., 1988, reviewed in van

Rossum et al., 1997). However, by in situ hybridization, expression of CLR has been detected primarily in

the caudate putamen and amygdala (Oliver et al., 1998; Stachniak and Krukoff, 2003). In situ analysis

revealed that RAMP1 expression is highest in the caudate putamen and amygdala (Oliver et al., 2001). RCP

expression in the brain has been detected using in situ hybridization and immunohistochemistry, and RCP

expression is highest in caudate putamen, amygdala, and cerebellum, with a broad distribution of moderate

or low expression throughout the brain (Oliver et al., 1999, 2001; Ma et al., 2003). Expression of the

receptor proteins does not account for all the regions of CGRP binding, suggesting that there are additional

receptors for CGRP. However, as CLR and RAMP1 analysis has been carried out at the level of mRNA, there

remains the possibility that their protein expressionmay not match mRNA expression, as has been observed

for RCP (Naghashpour et al., 1997). This debate will require immunohistochemical analysis of CLR and

RAMP1.

Recently, functional CGRP receptors have recently been identified when the CTR2 isotype of the

calcitonin receptor (CTR2) was coexpressed with the RAMPs (Christopoulos et al., 1999; Kuwasako

et al., 2003b, 2004). These data suggest that an additional combination of known proteins (CTR2,

RAMP) can contribute to CGRP receptor pharmacology. Additionally, it has recently been demonstrated

that RAMPs can interact with additional GPCRs other than CLR and CTR (Christopoulos et al., 2003). In

these studies, the authors took advantage of the observation that RAMPs require expression of CLR to get to

the cell surface. They tagged the extracellular amino terminus of the three RAMP cDNAs, and cotransfected

them with selected class II GPCRs into cell culture. The vasoactive intestinal polypeptide/pituitary adeny-

late cyclase‐activating peptide VPAC1 receptor interacted with all three RAMPs, the parathyroid hormone

PTH1 receptor and the glucagon receptor interacted with RAMP2, and the parathyroid hormone PTH2

receptor interacted with RAMP3. No differences in ligand binding were detected, but phosphoinositol

signaling at the VPAC1 receptor was enhanced upon coexpression with RAMP2, while no change was

observed for cAMP signal transduction. Thus, additional CGRP receptors may be elucidated from combi-

nations of RAMPs with known and novel receptors. One candidate, novel CGRP receptor has been reported

in cerebellum (Chauhan et al., 2003), but no sequence data have yet been published so this report is difficult

to evaluate.

Recently, evidence for a peptide hormone system analogous to CGRP/CLR has been reported in the

fruit fly Drosophila melanogaster. A diuretic neuropeptide hormone named DH31 has been identified in

Drosophila that has homology to CGRP (Furuya et al., 2000). DH31 increases fluid secretion in the
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drosophila malpighian tubule, and DH31 binding results in elevated levels of intracellular cAMP,

suggesting a Drosophila GPCR. A candidate GPCR named CG17415 has been identified that has

homology to CLR (Johnson et al., 2005), and when transfected into NIH3T3 cells results in cAMP

production upon addition of DH31. Interestingly, no response was observed when it was transfected into

COS‐7 or HEK293 cells, suggesting the requirement for additional proteins, such as RCP or RAMP1, that

are expressed in NIH3T3 cells. A Drosophila homolog of RCP (dRCP) named CG4875 was identified,

and coexpression of Drosophila CLR homolog CG17415 in HEK293 cells with either human or Drosophila

RCP resulted in high‐affinity DH31 receptors. While EC50 was similar when CG17415 was coexpressed

with either drosophila or human RCP, the maximal stimulation was significantly higher when CG17415

was coexpressed with the human RCP, possibly because the human RCP could interact more efficiently

with the downstream signaling proteins in the HEK293 cells. No homolog of RAMP was discovered,

although human RAMP1 or RAMP2 could facilitate receptor signaling in mammalian cotransfection

experiments.
4.7 CGRP Receptor Signaling

The amino terminus of family B GPCRs can interact with peptide ligands, and an aspartate residue present

in the sequence CNRTWDGWLCW (residues 69–74 of the extracellular amino terminus) of CLR is thought

to be important for peptide binding (Dautzenberg et al., 1999; Harmar, 2001). When this residue was

mutated to alanine, glutamate, or asparagine in CLR, the mutant receptor was correctly routed to the cell

surface, but interaction with RAMP1 and CGRP‐induced signal transduction were greatly impaired (Ittner

et al., 2004). Interestingly, when residues 14–20 of CLR (TRNKIMT) were deleted, the mutant receptor

could still signal in response to CGRP but not AM, suggesting a pharmacologic discriminatory site in CLR

(Koller et al., 2004).

Proline residues in transmembrane domains (TM) are often conserved structural features of integral

membrane proteins that can affect transmembrane helix interactions (Hulme et al., 1999; Gether, 2000;

Cordes et al., 2002). Family B GPCRs contain conserved proline residues corresponding to pro241 (TM4),

pro275 (TM5), pro321 (TM6) in CLR, and additionally CLR and the CTR share conserved pro244 (TM4) and

pro331 (TM6) residues. When alanine mutants were constructed for these conserved proline residues in

CLR, only mutation of pro321 or pro331 in TM6 inhibited CGRP‐mediated signaling (Conner et al., 2005).

Of the two residues, pro321 had the most severe phenotype, yet did not appear to alter cell surface expression

of the mutant CLR. These data suggest that TM6 of CLR is important for signal transduction, and the

ability of proline residues to act as molecular hinges suggests the possibility that pro321 and pro331 could be

involved in ligand‐induced conformational changes that facilitate coupling CLR to the cellular signaling

pathway.

The majority of reports support the notion that the CGRP receptor couples to Gas, activating adenylate
cyclase to increase intracellular cAMP and subsequently activating protein kinase A (PKA) (Laufer and

Changeux, 1987; Van Valen et al., 1990; Fiscus et al., 1991; Zhang et al., 1994; Asahina et al., 1995). However,

there are sufficient examples of Gaq coupling that prove CGRP signaling is probably more a function of the

type of G protein expressed in the target cell rather than an inherent preference of the CGRP receptor.

Activation of Gaq results in activation of phospholipase C, and subsequent hydrolysis of phosphatidylino-

sitol‐4,5‐bisphosphate (PIP2) into diacylglycerol (DAG) and inositol‐1,4,5‐trisphosphate (IP3). IP3 can

further bind to receptors on the ER to release Ca2þ stores, resulting in elevated intracellular Ca2þ levels, and

DAG can activate protein kinase C (PKC). CGRP has been observed to cause a dose‐dependent increase in
IP3 in cultured chick myocytes (Laufer and Changeux, 1989), although increased cAMP levels have also

been reported in cultured myocytes in response to CGRP (Fontaine et al., 1987; Laufer and Changeux, 1987,

1989; Rossi et al., 2003), suggesting that both signaling pathways can operate in these cells. Activation of

multiple signaling pathways has been observed in HEK293 cells transfected with CLR, where both cAMP

and intracellular Ca2þ were stimulated in a dose‐dependent manner by CGRP (Aiyar et al., 1999). In

contrast, in the human osteosarcoma cell line, OHS‐4 CGRP caused elevated levels of intracellular calcium

while having no effect on cAMP production, and in these cells it was directly shown that the CGRP receptor
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was coupling through Gaq, which subsequently activated PLC‐b1 (Drissi et al., 1998, 1999). CGRP receptor

desensitization was also shown to be inhibited by PKC inhibitors in HEK293 cells transfected with CLR

(Aiyar et al., 2000).

CGRP can also activate the mitogen‐activated protein kinase (MAPK) signaling pathway. MAPKs are

serine/threonine kinases, represented by ERK, p38 mitogen‐activated protein kinase (p38 MAPK), JNK,

that are activated by a kinase cascade, often initiated by activation of a small GTP‐binding protein such

as Ras or Rho in response to activation of receptor kinases (Denhardt, 1996). Ras or Rho can activate a

MAPK kinase kinase (MAPKKK), which in turn phosphorylates and activates a MAPK kinase (MAPKK),

which phosphorylates MAPK. MAPK signaling can also be activated by Ga and Gbg subunits, leading to

crosstalk between GPCR and MAPK signaling pathways. Several examples have been reported of CGRP

affecting MAPK signaling pathways. In HEK293 cells transfected with CLR, CGRP caused a concentration‐
dependent increase in ERK and p38 MAPK activity, with no change in JNK activity (Parameswaran et al.,

2000). Activation of ERK and p38 was inhibited by the antagonist CGRP (8–37), suggesting the involve-

ment of CLR. Activation of adenylate cyclase with forskolin resulted in a similar ERK and p38 activation,

suggesting that the effect of CGRP was mediated by cAMP, and activation of ERK and p38 was inhibited by

treatment with the PKA inhibitor H89. Furthermore, incubation with the PI3 kinase inhibitor wortmannin

decreased ERK but not p38 activity, suggesting two distinct CGRP‐induced pathways for MAPK activation.

In cultured rat DRG neurons, CGRP activated MAPK/extracellular receptor kinase kinase (MEK) in a PKA‐
mediated pathway (Anderson and Seybold, 2004), indicating that MAPKs can be activated by GPCR

effector molecules.

Vascular smooth muscle cell (VSMC) proliferation is promoted by multiple pathways, including a

MAPK named ERK1/2 (Touyz and Schiffrin, 2000). CGRP can inhibit smooth muscle proliferation and the

resulting excessive thickening of the vasculature associated with hypertension and arteriosclerosis (Ross,

1993). One proliferative agent for VSMC is angiotensin‐II, which activates ERK1/2. In cultured VSMC,

angiotensin‐II increased the viability of the smooth muscle cells and increased ERK1/2 activation (Qin et al.,

2004). CGRP inhibited the angiotensin‐II‐induced ERK activity, suggesting a model for CGRP control of

smooth muscle proliferation. CGRP can also spare VSMC from damage from reactive oxygen species

(ROS). VSMCs were isolated from rat thoracic aorta and cultured in the presence of ROS, and cell viability

was decreased by an apoptotic mechanism (Schaeffer et al., 2003). In ROS‐treated VSMC, phosphorylation

(activation) of ERK1/2 was increased, and pretreatment of VSMCwith CGRP before ROS exposure resulted

in a significant sparing of VSMC, and a concomitant increase in phosphorylated ERK1/2. The sparing effect

of CGRP was inhibited by incubation of VSMC with kinase inhibitors of ERK1/2, indicating that the

effect of CGRP was mediated through the MAPK pathway in VSMC.
5 Physiological Functions of CGRP

One of the hallmarks of CGRP physiology is vasodilation, where CGRP‐immunoreactive neurons innervate

the smooth muscle of the vasculature (for review see Brain and Grant, 2004). Other features of CGRP‐
immunoreactive neurons include their innervation of skeletal muscle at the neuromuscular junction and

hair cells in the cochlea.
5.1 CGRP Innervation of Smooth Muscle

CGRP‐immunoreactive neurons with their cell bodies in the DRG project centrally to the dorsal horn of the

spinal cord and peripherally to the vasculature, where CGRP is a potent vasodilator (Gibson et al., 1984;

Gulbenkian et al., 1986; Uddman et al., 1986; Bell and McDermott, 1996; Lundberg, 1996). Two primary

mechanisms have been proposed for CGRP‐induced vasodilation of the vasculature, either directly by

acting on the smooth muscle or indirectly by acting on the endothelial cells juxtaposed to the smooth

muscle layer. CGRP binding elicits a rise in intracellular cAMP, suggesting it is working through a GPCR

such as CLR in both smooth muscle and endothelial cells (Hirata et al., 1988; Crossman et al., 1990).
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In vascular smooth muscle, the increase in cAMP can result in activation of PKA and subsequent activation

of Kþ channels, leading to hyperpolarization and subsequent relaxation of muscle tone. The effect of CGRP

on arterial dilation was investigated in pig coronary arterial smooth muscle, where application of CGRP

resulted in activation of inward Kþ currents (Wellman et al., 1998). These currents were blocked by

incubation with glibenclamide, an inhibitor of ATP‐sensitive potassium channels (KATP) channels. Further-

more, application of forskolin, a nonspecific activator of adenylate cyclase, also resulted in a glibenclamide‐
sensitive Kþ current, suggesting the involvement of the cAMP/PKA signaling pathway. CGRP‐induced
currents were reduced upon coapplication of PKA inhibitors, suggesting that the mechanism of CGRP

action in these coronary arteriole smooth muscles is by a PKA‐mediated activation of KATP channels.

A similar glibenclamide‐sensitive relaxation was first observed in rabbit mesenteric arteries (Nelson et al.,

1990). It is interesting to note that one study found a tenfold difference in the ability of CGRP to relax

small‐ versus large‐diameter rings from porcine coronary artery in an endothelium‐independent manner

(Foulkes et al., 1991). This may be due to a novel subset of CGRP receptors present in the small‐caliber
vessels, or to increased expression of an accessory protein for CLR such as RCP, which can enhance CLR

signaling, and therefore a vasodilatory effect.

CGRP can also induce smooth muscle relaxation by an endothelial cell‐mediated mechanism

(Brain et al., 1985; Gray and Marshall, 1992a, b). In this paradigm, binding of CGRP to the endothelial

CGRP receptor will activate Gas, resulting in a rise in intracellular cAMP and activation of PKA in the

endothelial cell. PKA activation can enhance endothelial nitric oxide synthetase (eNOS) (Butt et al., 2000;

Liu et al., 2004). An alternative model could involve coupling of the endothelial CGRP receptor to Gaq, as
has been described for the CGRP receptor in osteoblastic OHS‐4 cells (Drissi et al., 1998). Gaq activation
results in IP3 production and subsequent elevated Ca2þ levels, which could activate eNOS in a calmodulin‐
dependent manner (Nathan and Xie, 1994; Feron et al., 1998). Nitric oxide could then diffuse from

the endothelial cell into the smooth muscle cell and cause cGMP‐dependent relaxation (Moncada et al.,

1991).

CLR and RAMP expression is detected in the endothelial cells and smooth muscle that are a part of the

vasculature (Nikitenko et al., 2001, 2003; Hagner et al., 2002; Oliver et al., 2002; Cueille et al., 2005). In

accordance with this vascular localization, CLR expression has been observed to be upregulated by hypoxic

conditions. The promoter for the CLR gene was cloned, and it contains regulatory elements for the

transcription factor hypoxia‐inducible factor‐1 (HIF‐1) (Nikitenko et al., 2003). Luciferase reporter con-

structs were made with the CLR promoter and transfected into primary human dermal microvascular

endothelial cells, and a twofold induction in luciferase activity was observed following a 16‐h hypoxic

exposure. Microvascular endothelial cells were also subjected to a time course of hypoxia for 16 h, and

RT‐PCR analysis determined that CLR mRNA expression was maximally induced after 4 h of hypoxia and

then declined. Interestingly, RAMP2 expression was unchanged, and RAMP1 expression was undetected in

these endothelial cells. The effects of hypoxia on CLR have also been studied in human coronary artery

smooth muscle cells (CASMC) (Cueille et al., 2005). In these studies CASMC were exposed to hypoxic

conditions for 1, 3, or 4 h, and CLR mRNA was increased maximally twofold at 4 h when analyzed by

RT‐PCR. RAMP1 mRNA did not increase, and RAMP2 mRNA increased slightly. Interestingly, when

analyzed by Western blotting, CLR expression increased maximally after 1 h of hypoxia, increasing

3.5‐fold over control, suggesting that CLR expression can be uncoupled from mRNA expression, as has

been observed for RCP expression (Naghashpour et al., 1997). The effects of chronic hypoxia were also

tested by keeping rats in a hypobaric chamber, and isolating the left and right ventricles of the heart

for RT‐PCR analysis. CLR mRNA peaked at day 14 in the right ventricle and day 18 in the left ventricle,

while RAMP1 mRNA peaked at day 4 in the right ventricle and day 15 in the left ventricle (Cueille et al.,

2005).

The lack of RAMP1 expression in hypoxic endothelial cells is in agreement with immunohistochemical

data that found little RAMP1 in vascular endothelial cells but did find RAMP1‐immunoreactive material

expressed in the underlying smooth muscle (Oliver et al., 2002). These studies found RAMP2 expressed

in endothelial cells and RAMP1 expressed in smooth muscle, suggesting the presence of an AM receptor in

endothelial cells, with CGRP receptors in smooth muscle. Given the ability of CGRP to cross‐react with
AM receptors, this lack of RAMP1 in endothelial cells suggests the possibility that some or all of the
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endothelial‐dependent effects described for CGRP on the vasculature may be due to cross‐reactivity
between CGRP and endothelial AM receptors.
5.2 CGRP Innervation of Skeletal Muscle

CGRP is present inmotoneurons innervating skeletal muscles, where it is present in dense‐core vesicles at the
neuromuscular junction (Matteoli et al., 1988; Peng et al., 1989; Uchida et al., 1990; Sakaguchi et al., 1991).

These vesicles are distinct from the clear‐core vesicles containing ACh, and their triggering mechanism for

release is not well understood. CGRPaffects ACh bymodulating expression of the postsynaptic acetylcholine

receptor (AChR) and acetylcholinesterase (AChE). Release of ACh results in activation of postsynaptic

nicotinic AChRs, which are ligand‐gated cation channels that cause postsynaptic depolarization (Changeux

and Edelstein, 1998; Itier and Bertrand, 2001). Prolonged exposure to ACh or the agonist nicotine results in

cAMP‐mediated phosphorylation and internalization of the AChR and concomitant loss of postsynaptic

ACh‐binding sites, followed by a subsequent induction of receptor synthesis (Huganir and Greengard, 1983,

1990; Boyd, 1987; Hoffman et al., 1994; Fenster et al., 1999; Harkness andMillar, 2002). CGRP released at the

neuromuscular junction can likewise cause phosphorylation and desensitization of the postsynaptic AChR

(Mulle et al., 1988;Miles et al., 1989; Huganir and Greengard, 1990). CGRP can also increase AChR synthesis

and cell surface expression in a cAMP‐dependent mechanism (Fontaine et al., 1986, 1987; New and

Mudge, 1986; Laufer and Changeux, 1987; Jennings and Mudge, 1989). CGRP can also potentiate the

effect of ACh by causing an increase in the channel open time of the nicotinic AChR (Lu et al., 1993).

This potentiation can be mimicked by application of dibutyryl‐cAMP and inhibited by inhibitors of PKA.

AChE is the enzyme that hydrolyzes ACh and is the primary mechanism for terminating transmission at

the neuromuscular synapse. CGRP can profoundly affect the expression of AChE. Incubation of rat

myotubes with CGRP for 2 h resulted in a 42% increase in catalytically active AChE expression, an effect

that was mimicked by incubation with forskolin (da Costa et al., 2001), suggesting the effect of CGRP was

mediated through a GPCR. In contrast, after 20 h of incubation with CGRP, AChE expression was decreased

by 37%. A similar loss of AChE activity (60% after a 48‐h treatment with CGRP) was observed in cultured

mouse myotubes (Boudreau‐Lariviere and Jasmin, 1999). These data are in contrast to experiments with

chick myotubes, where 48‐h exposure to CGRP resulted in an increase in AChE mRNA (Choi et al., 2001),

although in these experiments AChE activity did not increase. Incubation of quail myotubes with CGRP

resulted in a dose‐dependent increase in intracellular cAMP, and overnight incubation with CGRP or

factors that increased intracellular cAMP levels resulted in decreased AChE activity, especially of the

collagen‐tailed form of AChE (Rossi et al., 2003), which is the catalytic form of AChE that is targeted to

the neuromuscular synapse (Hall, 1973).

CGRP receptors have been identified on tissue‐cultured myotubes by binding with 125I‐CGRP (Jennings

and Mudge, 1989; Popper and Micevych, 1989; Roa and Changeux, 1991). Biochemical evidence (increased

cAMP, PKA dependence) suggests that CGRP works through a GPCR at the neuromuscular junction, and

evidence for expression of CLR, RAMP1, and RCP at the neuromuscular junction has recently been

obtained. ACh receptors in neuromuscular junctions were identified in quail muscle sections with fluores-

cent a‐bungarotoxin, and AChE, RCP, CLR, and RAMP1 were shown to colocalize with the ACh receptors

at the neuromuscular junction (Rossi et al., 2003). Similar results were obtained from rat gracilis muscle,

where RCP and RAMP1 colocalized with a‐bungarotoxin at motor endplates (Fernandez et al., 2003). In

these studies 125I‐CGRP binding was shown to be enriched in dissected motor endplates, as was protein

expression of RCP.

A broad effect of CGRP at the neuromuscular junction appears to be strengthening of the cholinergic

synapse, based on the upregulation of AChR, potentiation of AChR channel conductance, and inhibition of

AChE. However, CGRP can have diametric effects depending on experimental conditions, perhaps reflect-

ing the modulatory role of CGRP. It has been reported that neuromuscular junction development and

morphology are not altered in a‐CGRP knockout mice (Lu et al., 1999; Salmon et al., 1999), as might be

predicted for loss of a modulatory rather than causative factor. However, compensation in these knockout

mice, perhaps by b‐CGRP, cannot yet be ruled out.
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5.3 CGRP in Cochlea

All hair cell systems, including lateral‐line organs, vestibular organs, and the cochlea, contain an efferent

innervation originating in the brainstem and projecting to the hair cells and/or neural elements in the sensory

epithelium. CGRP is almost universally found in the efferent innervation of hair cell systems, including the

lateral‐line organs in fish and amphibians, as well as cochlea and vestibular organs in mammals, where it is

typically colocalized with cholinergic markers (Fex and Altschuler, 1986; Eybalin, 1993; Maison et al.,

2003a). In the lateral line of the frog, cholinergic‐mediated efferent stimulation suppresses spontaneous

discharge (Russell, 1968; Sewell and Starr, 1991) whereas application of either a‐CGRP or b‐CGRP
increases spontaneous discharge in primary afferent neurons (Bailey and Sewell, 2000a, b). CGRP

application increases spontaneous discharge by acting through a type I CGRP receptor (Bailey and

Sewell, 2000a, JARO), and a Xenopus laevis CLR has been identified (Prado et al., 2001; Klein et al., 2002).

In the mammalian cochlea, CGRP immunoreactivity is predominantly present in the unmyelinated

component of the cochlear efferent innervation, the lateral olivocochlear system (Vetter et al., 1991; Eybalin,

1993; Cabanillas and Luebke, 2002; Maison et al., 2003a). The peripheral targets of these lateral olivoco-

chlear fibers, which colocalize with cholinergic markers, are the dendrites of cochlear afferent neurons, in

the region near the afferent synapses with inner hair cells (Liberman, 1980).

Until recently, the function of CGRP function in the mammalian ear was unknown. However, when the

auditory function of a‐CGRP knockout mice was compared with age‐matched, strain‐matched wild‐type
controls, a‐CGRP depletion reduced suprathreshold sound‐evoked activity of the cochlear nerve by 20% at

all sound pressures and frequencies, as assessed by the amplitude of the auditory brainstem response (ABR)

wave I (Maison et al., 2003b). There was no difference detected in the distortion product otoacoustic

emissions (DPOAE), cochlear blood flow (Nuttall, unpublished observation), or auditory thresholds

between the wild type and a‐CGRP knockout mice. Thus, loss of CGRP reduced the detection threshold

for hearing in the a‐CGRP knockoutmice. Conversely, endogenous release of CGRPwould cause an increase

in sound‐evoked activity of the cochlear nerve. Such an increase in the cochlear nerve activity due to CGRP

signaling would cause an increase in the dynamic range of sound perception and allow for an increased

signal‐to‐noise ratio. This increase in the dynamic range is needed, since in normal cochleae, the two efferent

pathways, medial (predominately cholinergic) and lateral (CGRP‐containing efferents), are working in

concert. Activation of the medial cholinergic efferents is inhibitory to outer hair cells, and reduces the

amplification on the inner hair response. However, activation of the CGRP‐containing lateral efferents acting
later in the feedback pathway (the primary afferents receiving their signals from inner hair cells) could serve

to boost the cochlear nerve signal after the medial efferent system has effectively filtered the noise from the

signal. Approximately 30 million Americans suffer from some form of hearing loss that causes them to have

difficulty understanding speech in the presence of background noises. The role of CGRP in the efferent neural

feedback system hypothesized to influence a human’s ability to amplify sound in the presence of background

noises attests to the significance of understanding the complete CGRP receptor signaling cascade in the

mammalian cochlea. However, little is known about the cochlear CGRP receptor signaling complex

except that all components of the CGRP receptor (RCP, RAMP1, and CLR) are present and can be

immunoprecipitated as a complex from the mammalian cochlea (Dickerson and Luebke, 2002).

6 Therapeutic Potential of CGRP for Trigeminovascular Pathologies

There is a growing body of evidence that abnormal regulation of CGRP levels or activity contributes to

vascular disorders. In this section we focus on the role of CGRP in two such disorders involving the

trigeminovascular system: migraine and subarachnoid hemorrhage (SAH).

6.1 Increased CGRP Levels in Migraine

Migraine is a chronic disease that affects about 12% of the population (Lipton et al., 2001). It is generally

characterized as a severe pulsating headache affecting only one side of the head, although the symptoms can
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be bilateral and vary considerably (Ferrari et al., 1991; Goadsby et al., 2002). The attacks often occur several

times a week and generally last from 4 to 72 h. Migraine is usually associated with nausea, photophobia,

phonophobia, and vomiting. In about 20% of the cases, the headache phase of migraine is preceded by an

aura that is marked by acute visual or other sensory disturbances. During the headache, CGRP levels are

elevated in the jugular venous outflow (Goadsby et al., 1990; Goadsby and Edvinsson, 1993). The CGRP

levels return to normal upon treatment with triptan antimigraine drugs, coincident with pain relief

(Goadsby et al., 1991; Goadsby and Edvinsson, 1993). The release of CGRP from afferent terminals is

believed to cause vasodilation and neurogenic inflammation and efferent release is believed to be part of the

nociceptive relay to the CNS (Arulmani et al., 2004; Edvinsson, 2004).

Migraine has traditionally been viewed as a vascular headache that involves blood flow changes.

However, there is clearly a neurogenic involvement and it seems most likely that migraine involves both

neuronal and vascular components (Goadsby et al., 2002; Parsons and Strijbos, 2003; Pietrobon and

Striessnig, 2003). Current migraine models involve an initial CNS dysfunction that causes meningeal

blood vessel dilation and activation of perivascular trigeminal nerves. Hence, migraine can be considered

to be a neurovascular headache of the trigeminovascular system (Arulmani et al., 2004; Edvinsson, 2004).

While the initial triggering steps that lead to activation of the trigeminal ganglia and release of CGRP

have remained elusive, recent studies have provided some insight. Mutations in the P/Q calcium channel

and a Naþ, Kþ‐ATPase have been identified in patients with a rare form of inherited migraine, familial

hemiplegic migraine (Miller, 1997; Goadsby et al., 2002; Parsons and Strijbos, 2003; Estevez et al., 2004).

Interestingly, the P/Q channel mutant knock‐in mouse is more susceptible to cortical spreading depression,

which is associated with the migraine aura (van den Maagdenberg et al., 2004). Cortical spreading

depression has been reported to release CGRP from trigeminal sensory afferents in an animal model

(Bolay et al., 2002). Hence, this connection may tie the initial phase of migraine with trigeminal CGRP

release.
6.2 Migraine Treatments that Lower or Prevent CGRP Activity

The role of CGRP in migraine is driven home by the effectiveness of at least two antimigraine drugs, the

triptans and olcegepant (BIBN4096). The triptans lower CGRP levels. It has been shown in cell culture

systems that the triptans can act directly on 5‐HT1 receptors on trigeminal ganglion nerves to repress CGRP

secretion (Durham and Russo, 1999) and repress MAP kinase activation of the 18‐bp distal CGRP enhancer

(Durham and Russo, 2000, 2003). The inhibition of secretion is consistent with the time course of drug

action in patients and agrees with a number of animal and in vitro studies (Durham and Russo, 2002). The

promising international clinical trial with the CGRP receptor antagonist olecegepant is proof of principal

evidence that CGRP plays a causal role in migraine pain (Olesen et al., 2004). The pharmacological

properties of olecegepant suggest that this drug may sidestep some of the side effects of the triptans

involving coronary vasoconstriction (Moreno et al., 2002; Durham, 2004b; Olesen et al., 2004).

How might regulation of CGRP gene transcription fit into migraine therapy? First, it seems likely that

there is increased CGRP synthesis since migraine episodes can last for up to 72 h. While speculative, there

might also be higher basal levels in individuals who are susceptible to migraine. Stimulation of CGRP gene

expression by MAP kinases may underlie the elevation of CGRP levels. This could occur in response to

neuronal activity alone, which can activate MAP kinases (Rosen et al., 1994; MacArthur and Eiden, 1996),

and many of the inflammatory compounds that are released during migraines are known activators of MAP

kinases (Buzzi et al., 1995). Indeed, it has been reported that inflammation of peripheral joints leads to

increased CGRP peptide and mRNA levels in the DRG (Donaldson et al., 1992). The role of CGRP in

arthritis is supported by decreased nociception in a CT/CGRP knockout mouse (Zhang et al., 2001).

A decrease in CGRP production would thus potentially limit neurogenic pain.

In this regard, the time course of triptan action on CGRP synthesis is relevant. Transcriptional

repression was seen after 2–4 h (Durham and Russo, 2003), which is close to the estimated half‐life of

sumatriptan and within the 12 h required for clearance from the body, especially with the newer triptans

(Fowler et al., 1991). However, there is headache relief within 30 min, which indicates that transcriptional
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repression of the CGRP gene is not involved in the initial drug action. While it is risky to extrapolate from

cells to people, we speculate that transcriptional repression might lower CGRP levels over long‐term drug

use. This may be relevant in triptan overuse syndromes, possibly during the withdrawal headache (Limm-

roth et al., 1999, 2002).
6.3 Decreased CGRP Levels and Risk of Vasospasm in
Subarachnoid Hemorrhage

SAH can be defined as bleeding into the subarachnoid space between the brain and the skull. This is the

space between the spider web‐like arachnoid membrane and the surface of the brain. It is normally filled

with cerebrospinal fluid that acts as a cushion to protect the brain from trauma. SAH is most commonly

caused by trauma or rupture of a vessel by an aneurysm.

Immediately following SAH, CGRP is released from sensory afferent nerve endings of the trigeminal

ganglion in a reflex‐like response similar to that believed to occur during migraine (Tran Dinh et al., 1994).

Indeed, the initial presentation of SAH involves an excruciating headache. Over the next 1–2 days there is a

depletion of CGRP from perivascular nerve endings in animal models and postmortem human tissue

(Nozaki et al., 1989; Edvinsson et al., 1991). For example, in the middle cerebral arteries, there is a 90%

reduction of CGRP following SAH in postmortem patients. This decrease correlates with the risk period of

vasospasm. Cerebral vasospasm is a major complication of SAH. Delayed and prolonged arterial constric-

tion can lead to brain ischemia (stroke) and death. Vasospasm with ischemia occurs in 30–40% of patients,

with peak incidence 4–12 days after SAH (Juul et al., 1994; Macdonald and Weir, 1994). Thus, vasospasm

following SAH is a serious risk factor.

Could the depletion of CGRP contribute to the spasms? It seems likely given the importance of

trigeminal nerves and CGRP in controlling cerebral blood flow (McCulloch et al., 1986). The importance

of trigeminovascular CGRP is further highlighted by reports from Edvinsson et al. (2002) that human

cerebral arteries are ten times more sensitive than coronary arteries to CGRP. Pharmacologically, the

cerebral and peripheral CGRP receptors are indistinguishable (Juaneda et al., 2000). The basis of this

increased sensitivity of the cerebrovasculature to CGRP is not known, but may be due to increased receptor

number, more efficient coupling to downstream signaling pathways, or unidentified compensatory

mechanisms. The sensitivity of the cerebrovasculature to CGRP, and its absence following SAH, suggests

that the absence of CGRP could be a contributing factor to SAH vasospasms. This has spurred studies on

treatments to restore CGRP levels.
6.4 CGRP Treatment and Gene Transfer for SAH

The activity of CGRP as a compensatory vasodilator has led to efforts to use CGRP as a post‐SAH treatment.

Importantly, the vasodilator responses to CGRPare preserved or enhanced after SAH (Edvinsson et al., 1991;

Ahmad et al., 1996; Imaizumi et al., 1996; Inoue et al., 1996; Sobey et al., 1996). As predicted, restoration of

CGRP by intrathecal administration (Imaizumi et al., 1996; Inoue et al., 1996) can prevent vasospasm in

animal models following SAH. A new step in CGRP therapy will be to alter vasomotor function by gene

transfer in patients. Toward this goal, an adenoviral vector has been used to direct overexpression of CGRP in

the perivascular adventia (Toyoda et al., 2000a). Injection of this vector into the cerebrospinal fluid was able

to inhibit vasospasm after SAH in a rabbit model (Toyoda et al., 2000b). Whether therapeutic CGRP

gene transfer for SAH will be applicable to human patients remains to be determined. There are clear

limitations, but the possibility of CGRP gene transfer remains an exciting prospect (Toyoda et al., 2003).
7 Summary

The major goal of this chapter has been to provide an appreciation of the physiological and pathological

significance of the neuropeptide CGRP. An understanding of the mechanisms by which CGRP levels are
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regulated and how CGRP acts on target cells will allow the development of new therapeutic strategies. For

example, the elevation of CGRP in painful disorders, such as migraine, has already led to drugs that lower

CGRP levels and block its action at the receptor. The role of CGRP is of particular significance due to the

prevalence of migraine alone. It is estimated that 18 million Americans, including almost one in five

women, suffer an estimated 4 million attacks every week (Goadsby et al., 2002). The chronic pain often

precipitates other serious conditions such as depression (Merikangas et al., 1990; Juang et al., 2000) and

there is an enormous financial burden in the billions per year (Hu et al., 1999; Goadsby et al., 2002;

Pietrobon and Striessnig, 2003; Elston Lafata et al., 2004). A large number of people also suffer from other

craniofacial pains that may involve CGRP, with estimates ranging from 5% to 12% of the population

(Lipton et al., 1993). Likewise, the serious risk of debilitating vasospasm following SAH supports the need

for understanding how to maintain CGRP expression. Because of the high incidence and generally poor

efficacy of current treatments for these disorders, there is a need for improved therapeutic and preventative

measures. Future studies on the CGRP gene and its receptor should provide important insights into

potential therapeutic strategies.
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Abstract: The tachykinins are part of an important neurotransmitter pathway involving several neuro-

peptides and receptors, all of which are discussed in this chapter. The major pathway analyzed has been

that of substance P (SP) and its high‐affinity receptor, NK1. Tachykinins are widely distributed through-

out the mammalian body in both the central nervous system (CNS) and the peripheral nervous system

(PNS) with numerous functions being attributed to them in each of these systems. Tachykinins are

predominantly synthesized in neurons of the CNS and the PNS and stored in large dense vesicles. Upon

excitation of these neurons, tachykinins are released and act on their appropriate receptors on the target

cells to evoke various responses. Although SP is predominantly thought of as a neurotransmitter, there is a

growing appreciation of it as an inflammatory molecule acting analogous to a cytokine; its expression has

been found in a variety of nonneuronal cells. We have also summarized this role, as expression of the

tachykinins in the CNS in cells other than neurons may be important for its function in both normal

physiology and pathological conditions. SP is implicated in a range of disorders ranging from itch and

migraine through epilepsy, Parkinson’s disease and psychiatric and cognitive disorders. In many of these

disorders not only the level but also the duration and tissue specificity of expression contributes to overall

function.

List of Abbreviations: AHR, airway hyperactivity; AMPA, alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐
propionic acid; AP1, activator protein one; AVP, arginine vasopressin; BDNF, brain‐derived neurotrophic

factor; bHLH, basic helix–loop–helix; Ca2þ, calcium ion; cAMP, cyclic adenosine monophosphate; cGMP,

cyclic guanosine monophosphate; CNS, central nervous system; CRE, cAMP responsive element; CREB,

cAMP response element binding; CGRP, calcitonin gene‐related peptide; CVLM, caudal ventrolateral

medulla; DAG, diacylglycerol; DRG, dorsal root ganglia; EC, extracellular region; EEG, electroencephalo-

gram; EKA,B,C,D, endokininA, B, C, D; EL, extracellular loop; EPSP, excitatory postsynaptic potential;

GABA, gamma‐aminobutyric acid; GFR, growth factor receptor; GPCRs, G‐protein‐coupled receptors;

HK1, hemokinin‐1; 5‐HT, serotonin; 5‐HTT, serotonin transporter; IB‐4, isolectin B‐4; IL, interleukin; IC,
intracellular region; IP3, inositol 1,4,5‐triphosphate; Kþ, potassium ion; kb, kilobase; K/O, knockout;

Mg2þ, magnesium ion; mM, micromolar; MPTP, 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine; mRNA,

messenger RNA; Naþ, sodium ion; NF‐H, neurofilament H; NGF, nerve growth factor; NK1, neurokinin1;

NKA, neurokinin A; NKB, neurokinin B; NMDA, N‐methyl‐D‐aspartate; NMR, nuclear magnetic reso-

nance; NO, nitric oxide; NOS, nitric oxide synthase; NPK, neuropeptide K; NPg, neuropeptide g; NRSE,
neuronal restrictive silencer element; NRSF/REST, neuronal restrictive silencer factor; NT‐3, neurotrophic
factor; PAG, periaqueductal gray matter; PKG, protein kinase gamma; PLC, phospholipase C; PNS,

peripheral nervous system; POU, octamer binding protein of the Pit/Oct/Unc family; PPS, perforant

path stimulation; QPCR, quantitative polymerase chain reaction; RT‐PCR, reverse transcriptase‐polymer-

ase chain reaction; sGC, soluble guanylyl cyclase; SP, substance P; SSSE, self‐sustaining status epilepticus;

TAC1/PPT‐A, tachykinin1/preprotachykinin‐A; TAC3/PPT‐B, tachykinin3/preprotachykinin‐B; TAC4/

PPT‐C, tachykinin4/preprotachykinin‐C; TACR1,2,3, tachykinin receptor1,2,3; TF, transcription factor;

TLE, temporal lobe epilepsy; TNF, tumor necrosis factor; Trk, tyrosine kinase
1 Introduction

Ulf von Euler initially observed substance P (SP) while analyzing the distribution of acetylcholine in the

rabbit gastrointestinal tract. A crude extract from horse brain and gut caused transient hypotension and

contraction of the intestine. However, upon addition of atropine contractile activity was still observed,

demonstrating that acetylcholine was not responsible. A paper soon followed describing an atropine‐
resistant ‘‘unidentified depressor substance’’ found in both brain and gut that stimulated smooth muscle

and lowered blood pressure (von Euler and Gaddum, 1931). The term SP did not appear until Gaddum and

Schild (1934) described the purification of a stable active proteinaceous powder previously termed

‘‘preparation P.’’ In the 1950s, Bengt Pernow working with von Euler and Fred Lembeck made significant

progress in determining the distribution of so‐called preparation P in the brain and in the periphery, and

subsequently, its association with Hirschsprung’s disease (Ehrenpreis and Pernow, 1953; Pernow, 1953),
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which led to the first suggestion that ‘‘preparation P’’ is indeed SP (see below) and could be a neurotrans-

mitter (Lembeck, 1953).

Thirty years after the initial observation, Susan Leeman and Michael Chang purified a sialogogic

peptide, which demonstrated properties and composition similar to that of the partially purified SP by

Lembeck (Lembeck and Starke, 1968). Chang and Leeman called the unknown protein ‘‘substance P’’ and

went on to sequence and synthesize the 11‐amino‐acid peptide as Arg‐Pro‐Lys‐Pro‐Gln‐Gln‐Phe‐Phe‐Gly‐
Leu‐Met from bovine hypothalamus (Chang et al., 1971; Tregear et al., 1971). The pharmacological

properties of SP suggested it was part of a larger family of peptides. The amino acid sequence revealed

homology with a group of nonmammalian molecules that were sequenced in the 1960s. Subsequently, in

1966 Erspamer coined the term ‘‘tachykinins’’ for the group of peptides that shared similar structural

characteristics and exhibited activities such as rapid and potent smooth muscle contraction (Bernardi et al.,

1966). The prefix ‘‘tachy’’ is from the Greek ‘‘Tachys’’ meaning quick, and kinin was defined as a ‘‘general

name indicating a hypotensive polypeptide’’ that contracts most isolated smooth muscles, but relaxes

duodenum. In addition, the name may be applied to any polypeptide that is related to bradykinin (quoted

from Khawaja and Rogers, 1996). However, it is worthy to note that the tachykinins do not conform to the

definition of kinin as they display little structural similarities to bradykinin and do not relax the duodenal

smooth muscles.

The discovery of SP and its putative role as a neurotransmitter sparked the explosion of tachykinin

research resulting in the discovery, albeit much later on, of other tachykinin family members, neurokinin A

(NKA) (Kangawa et al., 1983; Nawa et al., 1984; Krause et al., 1987), neurokinin B (NKB) (Kanazawa et al.,

1984; Kimura et al., 1984), neuropeptide g (Kage et al., 1988), neuropeptide K (Tatemoto et al., 1985), and

more recently hemokinin‐1 (HK1) (Zhang et al., 2000).

Tachykinins are widely distributed throughout the mammalian body in both the central nervous

system (CNS) and the peripheral nervous system (PNS), with numerous functions being attributed to

them in each of these systems. Tachykinins are predominantly synthesized in neurons of the CNS and

the PNS and stored in large dense vesicles. Upon excitation of these neurons, tachykinins are released and

act on their appropriate receptors on the target cells to evoke various responses. In addition, tachykinins

have been found to be expressed in a variety of nonneuronal cells (Quinn et al., 1995; Pennefather et al.,

2004).
1.1 Gene Structure of Tachykinins and Their Receptors

1.1.1 Preprotachykinin‐A

Mammalian SP is derived from the preprotachykinin‐A (PPT‐A) gene. The more recent discovery of the

presence of two other related genes, preprotachykinin‐B (PPT‐B) and preprotachykinin‐C (PPT‐C),
suggests that they along with PPT‐A appear to originate from a common ancestral gene (Carter and

Krause, 1990; Zhang et al., 2000). The human PPT‐A gene is 8 kb long and consists of seven exons, which

give rise to four alternatively spliced messenger (mRNA) transcripts termed a, b, g, and d (> Figure 20-1).

Each isoform differs only in its exon usage, the b isoform utilizing all seven exons of the PPT‐A gene,

a lacking the sixth exon, g lacking the fourth, and the most recently discovered d isoform lacking both the

fourth and the sixth exon. Polypeptides produced from these splice variants confer cells with the ability to

generate SP, being encoded by exon 3; however, NKA can only be produced by b and g PPT‐A mRNAs since

they contain exon six that encodes NKA. Neuropeptide K (NPK) and neuropeptide g (NPg) are N‐terminal

extended forms of NKA produced from b and g PPT‐A mRNA, respectively (> Figure 20-1). Nuclear

magnetic resonance (NMR) analysis of SP suggests an a‐helical core from Pro4 to Phe8 stabilized by two

hydrogen bonds, one between Phe7‐NH and Lys3‐CO, and the other between Phe8‐NH and Pro4‐CO; an

extended highly flexible NH2 terminal Arg1‐Pro2‐Lys3; and a central turn on Gly9, thus bringing the

COOH‐terminal amide in contact with the g‐carbonyl oxygen atom of both glutamines (Lavielle et al.,

1988; Regoli et al., 1994). SP is synthesized in the ribosomes as part of a larger protein and then

enzymatically converted into an active peptide. SP is widely distributed in the CNS and the PNS of



. Figure 20-1

Schematic representation of the biosynthesis of the tachykinin genes. Genes TAC1, TAC3, and TAC4 are shown

along with the transcription and translation products and relevant associated information, which can be

accessed at http://www.ncbi.nlm.nih.gov/
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vertebrates. In the PNS, SP is expressed predominantly in the primary sensory neurons and the postgangli-

onic neurons of the gut.
1.1.2 Preprotachykinin‐B

NKB is the only tachykinin derived from the PPT‐B gene. The human gene consists of seven exons and the

sequence that encodes NKB is located on exon 5 (> Figure 20-1). Human NKB mRNA expressed in the

placenta appears to be encoded by seven exons interrupted by six introns spanning a region of 5.4 kb. Exons

2 to 6 encode the precursor, while exons 1 and 7 are untranslated regions. The human PPT‐B gene generates

only one mRNA that produces NKB, while in the bovine, PPT‐B generates two mRNA transcripts, the

difference being at the 50 extremity of their untranslated regions (Kotani et al., 1986; Page et al., 2001).

Human placenta contains higher levels of the NKB mRNA transcript than those found individually in

the human whole brain and spinal cord. However, it is undetectable in peripheral tissues from nonpregnant

animals even though its endogenous receptor, NK3, has been found in a number of locations throughout

the human body (Donaldson et al., 1996; Krause et al., 1997). Page et al. (2000, 2001) suggest that NKB has

a possible role in placental physiology and preeclampsia. Most recently, NKB and NK3 mRNA have been

found to be expressed in human airways and pulmonary arteries and veins, suggesting the involvement of

NKB in lung physiopathology (Pinto et al., 2004).
1.1.3 Preprotachykinin‐C (Hemokinin)

During the study of mouse B cell development an mRNA differential display screen revealed a predicted

peptide sequence that contained the tachykinin signature motif (FXGLM) (Zhang et al., 2000). Subsequent

characterization led to the discovery of a third PPT gene called PPT‐C or TAC4; mouse TAC4 contains four

exons while the rat homolog contains five, with both giving rise to a peptide called HK1 that displays a

preference for the NK1 receptor in an SP‐like manner. HK1 is expressed in mouse hematopoietic cells and

so far has not been observed in neuronal tissue (Zhang et al., 2000; Pennefather et al., 2004). However, HK1

does display characteristics similar to SP in terms of its receptor binding, being an NK1, NK2, and NK3

agonist with the highest selectivity for NK1 (Kurtz et al., 2002). Furthermore, in humans, at least four other

tachykinins have been found to be expressed (Page, 2004). Four alternatively spliced mRNAs, a, b, g, and d,
give rise to four proteins named endokinin A (EKA), B, C, and D, respectively (Page, 2004; Patacchini et al.,

2004). aTAC4 encodes both EKA and EKC; bTAC4 encodes EKC and EKD; both gTAC4 and dTAC4 encode
EKB only (> Figure 20-1). There is tissue‐specific regulation of these transcripts; aTAC4 is expressed in the

adrenal gland, liver, and spleen and bTAC4 in the heart, liver, bone marrow, prostate, adrenal gland, and

testis. Both g and d isoforms showed similar expression patterns in the adrenal gland and the placenta

(Page, 2004; Patacchini et al., 2004).
1.1.4 Tachykinin Receptors

In parallel with the identification of a number of endogenous tachykinins, several classes of tachykinin

receptors have been discovered. From an evolutionary perspective the vertebrate tachykinin receptors are

highly conserved and have evolved from one common gene or one ancestral receptor (Pennefather et al.,

2004). The tachykinin receptors belong to a family of G‐protein‐coupled receptors (GPCRs) and show a

high incidence of homology between mammalian species (Gerard et al., 1993). Like all GPCRs they are

composed of seven transmembrane domains (TMI–VII), three extracellular loops (EC1–3), three intracel-

lular loops (IC1–3), an extracellular amino terminus, and an intracellular carboxy terminus (> Figure 20-2)

(Maggi, 1995).

Ligand binding and receptor chimera studies have identified three tachykinin receptors. These

tachykinin receptors have also been designated as NK1, NK2, and NK3 and display preferential selectivity



. Figure 20-2

Schematic representation of the human NK1 receptor protein and the gene structure of NK1, NK2, and NK3. SP

binds to extracellular (EC) regions 1 and 2, G proteins bind at transmembrane region (TM) 5, 6, and intracellular

region (EC3). The human NK1, NK2, and NK3 genes contain five exons and four introns. The regions within

exons encoding TMs are shown as black boxes. The thin black lines show the start and stop codons and highlight

the difference in both 50 and 30 untranslated regions between the genes. Access numbers for each can be

utilized for further information at http://www.ncbi.nlm.nih.gov/

432 20 Substance P and the tachykinins
to SP, NKA, and NKB, respectively. The term ‘‘neurokinin’’ is used to denote tachykinins expressed in the

nervous system (Buck et al., 1984; Lee et al., 1986; Harada et al., 1987; Maggi, 1995). NK1 is also the

preferred receptor for the recently identified tachykinins HK1, EKA, and EKB (Zhang et al., 2000). It has
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been demonstrated that all tachykinins exhibit a limited selectivity for a particular receptor and

that there is crosstalk between tachykinin ligands and the receptors (Mussap et al., 1993). NK1 function

has been addressed not only by the interactions with SP and other tachykinins but also by specific

receptor antagonists such as WIN‐51, 708, L‐733, 060, RPR100893 and GR205171, MK‐0869 (L‐754,030),
L‐758, 298, and MEN 11467 and MEN 11149 (Cirillo et al., 1998; Tattersall et al., 2000; Santarelli et al.,

2002). The NK1 receptor is also the preferred target for HK1 and endokinins in the periphery, where

the ligand binding produces effects analogous to SP binding (Morteau et al., 2001; Kurtz et al., 2002;

Page et al., 2003). Although the receptor‐binding model eloquently highlights the preferential affinities

of the tachykinin ligands to their receptor species, tissue anomalies in this relationship have raised

questions about the existence of more tachykinin receptors for SP, NKA, and NKB (reviewed in Maggi,

2000).

Tachykinin GPCRs may be regulated in a conformational manner and ligand binding, membrane

lipid composition, and extracellular medium may all act to stabilize the receptor favoring one ligand

binding/effector conformation over the other (Berthold and Bartfai, 1997). Ligand binding to the tachy-

kinin receptors initiates internalization of the ligand–receptor complex, resulting in phospholipase

Cb (PLCb) activation. PLC utilizes membrane lipids increasing the intracellular inositol‐1,4,5‐triphosphate
(IP3) and diacylglycerol (DAG). IP3 induces intracellular calcium release from the endoplasmic reticulum,

leading to the activation of a number of signal transduction cascades. DAG activates protein kinase C

(PKC), nitric oxide synthase (NOS), and arachidonic acid production, thus stimulating further regulatory

pathways resulting in upregulation of cyclic nucleotides (cyclic guanosine monophosphate, cGMP;

cyclic adenosine monophosphate, cAMP) (Krause et al., 1992; Garcia et al., 1994; Radhakrishnan et al.,

1995).

SP binding to NK1 receptor initiates signal transduction upon NK1‐SP internalization. GPCR redistri-

bution induced by agonist binding determines the subsequent responsiveness of the cell to particular

agonists and plays a major role in the regulation of signal transduction pathways (Quartara and Maggi,

1997). Receptor endocytosis/internalization is responsible for both desensitization by reducing the number

of cell surface receptors available to interact with agonists, and resensitization following receptor processing

(i.e., dissociation of ligand, dephosphorylation) and recycling to the plasma membrane.

NK1‐GPCR endocytosis pathway involves the formation of clathrin‐coated pits and is mediated by a

family of cytosolic proteins termed arrestins (McConalogue et al., 1998). Binding of SP to the NK1 receptor

causes a rapid translocation of b‐arrestins from the cytosol to the plasma membrane, followed by the

redistribution of both NK1 and b‐arrestins to endosomes, where they remain associated until gradually

(after 4–6 h) NK1 is recycled to the plasma membrane and b‐arrestins return to the cytosol (McConalogue

et al., 1999).

The NK1 receptor has been studied more extensively than NK2 and NK3. NK1 has two isoforms,

one with a shorter C‐terminal tail denoted as the short isoform and the other, the long isoform. The

longer isoform is found predominantly in the brain, while the shorter isoform is associated with

peripheral tissues (Caberlotto et al., 2003). The existence of these isoforms may account for discrepancies

arising in the potency and preferential binding of tachykinins to their receptors in different tissues.

Additionally, the recent discovery of human NK2 receptor isoforms may also account for the differences

reported in the tissue specificity of NKB (Naline et al., 1989; Croci et al., 1998; Candenas et al., 2002). The

existence of multiple induced conformations of NK1 and NK2 has been confirmed, with each study

showing distinct binding affinities for antagonists and agonists and in some cases the ability to activate

different effector systems (Maggi and Schwartz, 1997; Palanche et al., 2001; Patacchini and Maggi, 2001;

Lecat et al., 2002). With the discovery of additional tachykinins and tachykinin‐related peptides such as

hemokinins and endokinins, the debate on whether additional tachykinin receptors exist has been read-

dressed (Pennefather et al., 2004). NK1 is the most abundantly distributed neurokinin receptor in the CNS,

and it is also present in a number of target organs that are innervated by SP‐expressing small‐diameter

primary afferent neurons. Clinical and experimental animal model studies have suggested the involvement

of NK1 in a number of functions such as nociception, cognition, and basal ganglia functions as well as

psychiatric and neurological disorders (Quartara and Maggi, 1997; Kramer et al., 1998; Quartara and

Maggi, 1998).
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1.2 Tissue‐Specific and Stimulus‐Inducible Tachykinin Gene Expression

The expression of neuropeptide genes is extremely plastic in that the PPT‐A gene can be induced by a

number of different stimuli and this induction is dependent, in part, upon transcription factors binding to

regulatory consensus sequence in the promoter of the gene. Induction of the PPT‐A gene not only is crucial

for normal physiological signaling but also accounts for modulation of gene expression in pathological

states. A fragment of the PPT‐A gene promoter spanning base pairs �865 to þ445 has been extensively

studied and contains a number of regulatory DNA elements upstream and downstream of the transcrip-

tional start site and is capable of supporting marker/reporter gene expression in a number of cell types

including dorsal root ganglion (DRG) and hippocampal neurons in culture (Harmar et al., 1993; Morrison

et al., 1994; Mendelson and Quinn, 1995; Mendelson et al., 1995; Paterson et al., 1995a–c; Walker et al.,

2000). Nerve growth factor (NGF) is a known endogenous inducer of the PPT‐A gene in states of chronic

pain and inflammation (Ma and Bisby, 1998). This promoter fragment also supports NGF regulation of

marker gene, determining in part that the region could mediate differential PPT‐A expression to this

stimulus (Harrison et al., 1999). The PPT‐A promoter contains many transcription factors that have been

defined as mediating a response to NGF including binding sites for activator protein one (AP1), cAMP

responsive element (CRE), basic helix–loop–helix (bHLH) proteins, and members of the POU domain

family of proteins (Fiskerstrand and Quinn, 1996). Both AP1 and CRE can mediate inducible PPT‐A
expression in response to NGF. Members of the cAMP response element binding (CREB) TF family are

activated via phosphorylation by a Ras‐dependent protein kinase and are capable of upregulating gene

expression following NGF stimulation (Hawley et al., 1992; Ginty et al., 1994). In addition, the cellular

composition of AP1‐binding transcription factors (TF such as fos and jun) is modulated in response to

NGF stimulation (Quinn et al., 1989; Gizang‐Ginsberg and Ziff, 1990) and may vary in a tissue‐specific
manner (Andrews et al., 1993). Octamer binding sites show functional inducibility to NGF with increases in

the concentration of N‐oct‐2 binding protein in DRG following treatment with NGF (Wood et al., 1992;

Mendelson et al., 1998).

In nonneuronal cells, neuronal genes are in part dominantly repressed by the binding of neuronal

restrictive silencer factor (NRSF) at the neuronal restrictive silencer element (NRSE) located in the gene

(Palm et al., 1998). NRSF binding at the transcriptional start site of the PPT‐A gene results in dominant

repression of transcription supported by the proximal promoter fragment and accounts for the lack of

gene expression from this fragment in PC12 and HeLa cells (Mendelson et al., 1995). However, more

recently it has been suggested that PPT‐A expression could be enhanced by expression and function of

REST isoforms (Quinn et al., 2002) as observed for other neuropeptide genes such as arginine vasopressin

(AVP) (Coulson et al., 1999; Quinn et al., 2002). A role has also been demonstrated for the regulation of the

PPT‐A promoter by members of the bHLH family of transcription factors (Paterson et al., 1995a–c;

MacKenzie et al., 2000). bHLH and REST isoforms are differentially regulated during a CNS challenge

such as epilepsy (Palm et al., 1998). It will be interesting to directly correlate whether the modulation of

specific transcription factors will affect PPT‐A plasticity at the level of transcription in the CNS. It is likely

that synergistic action of these TFs at a number of regulatory DNA sites mediate the modulation of the

PPT‐A promoter, in neurons, e.g., in response to NGF during states of chronic pain and inflammation and

in CNS neurons.
2 Distribution of Tachykinins and Their Receptors

Tachykinins are widely distributed in both the nervous system and the other peripheral tissues, and

numerous functions have been attributed to tachykinins in each of these tissues. A number of methods

have been used to study the distribution of the tachykinin‐encoding genes and their receptors in the CNS

and peripheral tissues, including:

1. in situ hybridization, using probes directed against the mRNA for the receptor;

2. immunocytochemistry with antibodies raised against synthetic peptide sequences corresponding

to different parts of the receptor. Initial studies of SP localization were described using antibodies
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raised against the carboxyl terminus, which has now been shown to be common among all tachykinins;

and

3. reverse transcriptase‐polymerase chain reaction (RT‐PCR) and quantitative PCR (QPCR).

SP and NKA are mostly synthesized and stored in large dense‐core vesicles of primary afferents of PNS

(McCarthy and Lawson, 1989) and CNS neurons (Pickel et al., 1983; Maley, 1996). In addition, the majority

of SP‐containing neurons also contain NKA, particularly the capsaicin‐sensitive afferent neurons (Carter
and Krause, 1990). Both peptides have been implicated centrally in numerous and diverse processes such as

neurotransmission (Otsuka and Yoshioka, 1993; Patacchini et al., 1998), inflammation (Barnes, 1991, 1992;

Donaldson et al., 1992; Leslie et al., 1995), neurological pain/neuralgia (Noguchi et al., 1988; Cao et al.,

1998; Basbaum, 1999a, b; Honor et al., 1999), memory and learning, depression and anxiety (Kramer

et al., 1998; Rupniak and Kramer, 1999), and epilepsy (Liu et al., 1999a, b; Liu et al., 2000; Fetissov et al.,

2003). Peripheral SP functions are diverse and are involved in immune system stimulation (Iwamoto

et al., 1993; Maggi, 1997), fibroblast and smooth muscle growth (Nilsson et al., 1985; Katayama and

Nishioka, 1997), hypotension, smooth muscle contraction, and cellular proliferation (Lecci et al., 2000).

NKB is present in the brain and the spinal cord (Patacchini et al., 2000) and has recently been detected in

the reproductive system of both humans and rodents (Page et al., 2000; Pinto et al., 2001; Patak et al., 2003).

The newly discovered PPT‐C/TAC4 gene that encodes HK1 is widely expressed in nonneuronal tissue in

humans and mice (Page et al., 2003). The function of HK1 and its isoforms are not yet clear but they are

believed to function in a manner similar to SP via the activation of the NK1 receptor (Kurtz et al., 2002;

Page et al., 2003; Patacchini et al., 2004).
2.1 Distribution of PPT‐A and Tachykinin Receptors in the Primary
Sensory Afferents

The bulk of the SP present in the PNS is synthesized in the primary sensory neurons, which are located

within the DRG (Hokfelt et al., 1975a, b). SP along with other neuropeptides such as NKA is stored in

dense‐core vesicles within the DRG neurons (McCarthy and Lawson, 1989). Not all sensory afferent

neurons express PPT‐A mRNA. There are different subpopulations of DRG neurons and only a small

proportion of these neurons support PPT‐A expression and SP synthesis. DRG neurons consist of two main

populations; the first group (15–20%) are large‐diameter (>30 mm), light, nonpeptidergic neurons giving

rise to myelinated Ad fibers, and the second group (75–80%) are small‐diameter (<30 mm), dark, mostly

peptidergic neurons giving rise to unmyelinated C‐fibers (Lawson et al., 1993, 1997).

The large‐diameter DRG neurons can also be distinguished on the basis of protein expression profile

such as the expression of high‐molecular‐weight neurofilament protein, NF‐H (Averill et al., 1995; Molliver

et al., 1995), neurotrophin receptors, and tyrosine kinase C (trkC) (Wright and Snider, 1995). These neurons

are largely glutamatergic and do not express PPT‐A under basal conditions. Upon low‐frequency stimula-

tion they release glutamate from their central terminals that bind to postsynaptic N‐methyl‐D‐aspartate
(NMDA) receptors on the second‐order projection neurons and islet cell excitatory interneurons in lamina

II of the dorsal horn and to a lesser extent in lamina V of the spinal cord. Under normal physiological

conditions, myelinated Ad fibers transmit impulses generated by nonnoxious stimuli such as pressure

(mechanoceptors) and heat (proprioceptors) from the periphery.

The peptidergic small‐diameter DRG neurons can be further subdivided into two groups: the capsaicin‐
sensitive peptidergic (majority) and the nonpeptidergic neurons. Peptidergic neurons can also be distin-

guished immunohistochemically based on the expression of the high‐affinity NGF receptor, trkA (Basbaum

and Woolf, 1999). The capsaicin‐sensitive peptidergic neurons support PPT‐A mRNA expression and thus

express SP and NKA. Under normal physiological conditions, C‐fibers transmit impulses generated by

noxious (peptidergic neurons) and thermal stimuli (nonpeptidergic neurons) (Basbaum, 1999a, b). The

C‐fibers also release glutamate‐like Ad fibers in the dorsal horn of the spinal cord and, in addition, they

release SP, calcitonin gene‐related peptide (CGRP), brain‐derived neurotrophic factor (BDNF), and other

neuromodulators that bind to their appropriate receptors pre‐ and postsynaptically, thus potentiating
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further glutamate release. The majority of C‐fibers terminate in lamina I and the outer region of lamina II

(substantia gelatinosa) of the dorsal horn and to a lesser extent in laminae III, VI, and X of the spinal cord

and also as projection fibers in the trigeminal ganglion of the CNS, suggesting the role of SP in trigeminal

neuralgia (Basbaum and Woolf, 1999).

The nonpeptidergic small‐diameter neurons do not support PPT‐A expression under basal conditions.

These neurons can be distinguished from the peptidergic neurons as they do not express CGRP, and they

exhibit surface proteins not found in the peptidergic population such as isolectin B‐4 (IB‐4) and the

purinergic P2X3 receptor. In addition, these neurons express c‐Ret growth factor receptor (GFR‐a) for

GDNF (Basbaum and Woolf, 1999; Caterina and Julius, 1999).

The three types of DRG neurons described above broadly define the DRG populations although some

crossover in marker molecule expression is evident between them. This is particularly apparent in

neurotrophin receptor expression; some populations express only one trk receptor (Mu et al., 1993; Kashiba

et al., 1995; Wright and Snider, 1995), whereas the others express more than one trk receptor (McMahon

et al., 1994; Karchewski et al., 1999), suggesting complex neurotrophin‐dependent plasticity in DRG.

Differential expression of growth factor receptors on sensory neurons has major implications for regulatory

control and modulation of gene expression during pathological states.

Whether or not sensory fibers express functional NK1 receptors is a topic for debate. A number of

studies propose the presence of the NK1 receptor on DRG neurons and their fibers (McCarson, 1999), while

others do not (Andoh et al., 1996; von Banchet and Schaible, 1999). These studies suggest that the putative

NK1 receptors present in DRG may be involved in a negative/positive feedback mechanism(s) in which SP

acts in an autocrine or paracrine manner to modulate its own release. The controversies with respect to

NK1 receptors’ expression in DRG is due to the methods used for detection, with some showing more

sensitivity than others, which could be due to, for example, the source of antibodies in case of immunocy-

tochemistry and Western blotting. The expression of PPT‐A/SP and its functions in DRG, described in this

chapter, conform to the observations determined under basal conditions. It should be noted that PPT‐A/SP
expression, like the expression of all other neuropeptides, is highly dynamic and under certain physiological

and pathological conditions the expression profiles can be modulated (discussed in Section 1.2). However,

under pathological conditions SP has been demonstrated to increase its own release via presynaptic IP3‐
mediated release of calcium from the internal stores leading to depolarization and increased neuronal

excitability (Xie et al., 1995).
2.2 Distribution of SP and NK1 in the Spinal Cord

The axons of primary afferents from the DRG terminate in the lamina of the dorsal horn of the spinal cord.

These sensory neurons synthesize, store, and release a variety of neurotransmitters (mostly glutamate) and

neuropeptides (SP, NKA, and CGRP) from their terminals. The anatomical location of the presynaptic

release sites in relation to the postsynaptic receptor sites in the dorsal horn of the spinal cord is discussed in

this section.

The NK1 receptor is highly expressed in lamina I (the marginal), lamina III, and to a lesser extent in

laminae II, IV, and Vof the dorsal horn of the spinal cord (Brown et al., 1995; Marvizon et al., 1999). SP is

found in laminae I and II (Hokfelt et al., 1975a, b; Cuello and Kanazawa, 1978) and to a lesser extent in

lamina V (Ruda et al., 1986).

NK1 is expressed by 80% of lamina I neurons that project to the thalamus, periaqueductal gray matter

(PAG), parabrachial area, and caudal ventrolateral medulla (CVLM), as demonstrated by retrograde tracing

combined with immunocytochemistry (Marshall et al., 1996; Todd et al., 2000). NK1 immunoreactivity has

also been detected in lamina II, albeit at lower levels than in lamina I and also in moderate levels in laminae

III–VI. This immunoreactivity is associated with the surface membranes of cell bodies and dendritic

processes. The majority of NK1‐expressing neurons in the dorsal horn do not contain either gamma‐
aminobutyric acid (GABA) or glycine. It is therefore likely that SP released in the superficial laminae of the

dorsal horn acts almost exclusively on NK1 receptors of the excitatory neurons (Littlewood et al., 1995).

Acute noxious peripheral stimulation causes excitation of dorsal horn neurons that express the NK1
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receptor. In the rat, it has been observed that following acute noxious stimulation, the majority of NK1‐
immunoreactive neurons in lamina I show internalization of the NK1 receptor (upon SP binding) and

upregulation of c‐fos expression (Mantyh et al., 1995; Doyle and Hunt, 1999).

As mentioned previously, NK1 is the preferential target for SP released from primary afferents. The

distribution of the NK1 receptor in relation to the release sites for SP is crucial for modulating impulse

summation and filtering. This suggests the juxtaposition of SP‐releasing sensory afferents and NK1

receptors in the dorsal horn of the spinal cord under normal physiological conditions. However, under

certain pathological conditions such as nociception and inflammation, the SP/NK1 organization alters. In

contrast to the PNS, SP‐containing sensory afferent terminals in the CNS are mostly located in close

proximity to NK1‐expressing postsynaptic neurons (Ribeiro‐Da‐Silva and Hokfelt, 2000). However, mis-

matches can be seen in lamina III of the dorsal horn where NK1 expression is detected although SP release

sites are absent. This suggests that SP released in the lamina I might diffuse to the deeper lamina of the

dorsal horn to exert its action on NK1 receptors. This further highlights the importance of other signaling

pathways in which the response of central neurons in the brain region to SP release at the level of the spinal

cord would be both delayed and sustained, the mechanism of which is shown to be of particular importance

in the modulation of pain signaling. In addition to the SP released from sensory afferents of the DRG, the

intrinsic neurons of the dorsal horn of the spinal cord express SP and the terminals of the descending

serotonergic pathways from higher centers in the brain also release SP (Hokfelt et al., 1978; Gilbert et al.,

1982). Of the DRG neuron‐derived SP, only 25% is released centrally and the rest is released from peripheral

terminals to modulate the excitability of the contractile tissues and control endocrine function and the

response to inflammatory agents (Harrison and Geppetti, 2001)

Immunostaining for c‐fos and NK1 receptor was carried out to examine whether the nociceptive signals

from specific peripheral tissues (e.g., skin, muscle, and knee joint) or activity generated by a particular

insult (nerve injury or formalin‐induced inflammation) was preferentially modulated by SP in the spinal

cord (Doyle and Hunt, 1999). Although the number of c‐fos/NK1‐positive neurons was correlated with

the intensity of the noxious stimulus in lamina I, no such correlation was observed in the deeper laminae

(V–X). It was also noted that c‐fos/NK1 immunoreactivity in the superficial laminae was unrelated to any

particular peripheral target, which was not the case for deeper laminae. In the deeper layers of the dorsal

horn, the greatest colocalization of c‐fos/NK1 immunoreactivity was observed following stimulation of

knee joint nociceptors and formalin‐induced inflammation, suggesting the direct role for SP in the

regulation of joint pain and inflammatory hyperalgesia (Doyle and Hunt, 1999). Therefore, NK1‐expressing
neurons in lamina I may be involved in discrimination of the intensity of pain‐inducing stimuli, whereas

NK1 receptors in deeper laminae are concerned with special localization or the detection of particular

nociceptive stimuli.

In addition to being involved in the response of NK1 neurons in the dorsal horn to noxious stimulation,

NK1 receptors may also be involved in the maintenance of hyperalgesia (Mantyh et al., 1997). The

intrathecal administration of SP conjugated to cytotoxin saporin resulted in the ablation of NK1‐
immunoreactive neurons and was accompanied by reduction in the capsaicin‐induced hyperalgesia in

rats. Studies from NK1 K/O mice have also revealed that the mice were resistant to inflammatory

hyperalgesia induced by injection of complete Freund’s adjuvant in the ipsilateral paw (De Felipe et al.,

1998a, b). Overall, these observations suggest that lamina I projection neurons expressing NK1 may control

dorsal horn excitability via reciprocal projections with the brainstem. Ablation of lamina I NK1‐expressing
neurons disrupts the ascending pathway to the brainstem and the descending pathways that control spinal

cord excitability, thus reducing behavioral hypersensitivity due to peripheral injury.

The blocking effect of analgesics such as opioids on SP release from primary afferents has been

demonstrated both in vivo and in vitro (Trafton et al., 1999). To investigate the functional implications

of opioid regulation of the tachykinin pathway, Trafton et al. (1999) used NK1 receptor internalization as a

measure of the postsynaptic response to morphine administration. They reported a slight reduction in NK1

receptor signaling following morphine administration at a dosage that was sufficient to produce opioid

analgesia in awake animals. However, a combination of morphine with a low (ineffective) dose of the NK1

antagonist (GR205171) was able to decrease NK1 receptor internalization to a degree that was greater than

that of either drug on its own. The possible explanation for this is that the SP released from primary



438 20 Substance P and the tachykinins
afferents may either diffuse into the extracellular space (extracellular pool) or bind to NK1 receptors and

become internalized (intracellular pool). Only the intracellular pool is directly measurable because it

depends on the saturation of NK1 receptor binding. The extracellular SP is unable to mediate postsynaptic

signaling due to lack of NK1 binding sites on the plasma membrane. Opioids may be able to reduce the total

amount of SP released by primary afferents; however, this reduction has no effect on the already saturated

NK1 binding sites. It is evident that a high proportion of tachykinin signaling remains intact following

opioid administration.

Many NK1 neurons in lamina I receive high‐density contacts from serotonergic fibers from the raphe

nuclei of the medulla. Serotonergic function has been found to increase following pharmacological

blockade or genetic disruption of the NK1 receptors in mice, suggesting crosstalk between tachykinin

and 5‐HT (Gross et al., 2000). This might also suggest the role of tachykinins and 5‐HT in anxiety‐related
behaviors (Ranga and Krishnan, 2002; Adell, 2004; Blier et al., 2004) (see Section 4.2).
2.3 Distribution of SP and NK1 in the Brain

Many techniques have been utilized by numerous groups to determine the NK1 and SP content in

mammalian brains, including the brains of humans and rats. These techniques include QPCR, immuno-

histochemistry, in situ hybridization, and radioimmunoassay. Most of these studies agree with each other

concerning the distribution and density of SP or NK1 in specific regions of the brain, although slight

variations in the intensity are reported between studies, which are most likely due to the sensitivity of the

techniques used and the source of antibodies (> Table 20-1).

In both humans and rats, increased SP content is observed in the caudate putamen of the forebrain, the

nucleus accumbens, the globus pallidus, the medial amygdaloid nucleus, the medial habenular nucleus, the

lateral habenular nucleus, the substantia nigra, the superior colliculus, the periaqueductal gray, the para-

brachial nuclei, the locus coeruleus, the medullary raphe nuclei (project to the spinal cord), the lamina I and

outer lamina II of the trigeminal subnucleus caudalis, and the dorsal motor nucleus of the vagus as compared

with the content in the spinal cord) (Warden and Young, 1988; Ribeiro‐Da‐Silva and Hokfelt, 2000; Ribeiro‐
Da‐Silva et al., 2000, for extensive review). In the rodent, moderate levels of SP are detected in the

hypothalamus and low levels in the thalamic nuclei, the cortex, the hippocampal areas, and the cerebellum.

In contrast, these areas showhigh levels of SPexpression in humans (Mai et al., 1986; Pioro andCuello, 1990).

In rodents (guinea pigs and rats), intense NK1 expression is detected in the caudate putamen and

superior colliculus, while there is moderate to low concentration in the inferior colliculus, the olfactory

bulb, the hypothalamus, the hippocampus, the substantia nigra, the cerebral cortex, the septum, the

striatum, and in various regions of the mesencephalon (Shults et al., 1984; Dam and Quirion, 1986; Mantyh

et al., 1989). In humans, NK1 expression is intense in the caudate putamen, the nucleus accumbens (ventral

striatum), the superior colliculus, the cortex, the amygdala, and the locus coeruleus (very high level

expression). Moderate NK1 expression is detected in the human superficial cortical regions, the visual

cortex, the hippocampus (CA regions including dentate gyrus), and the hypothalamus, while low NK1

mRNA expression is detected in the thalamus (central medial, mammillary body), the globus pallidus, the

cerebellum, and the dorsal raphe nucleus (Caberlotto et al., 2003).

The collective data from the above studies suggest that there is a mismatch between the concentration/

innervation of SP and the density of NK1 receptors in a number of regions within the brain. This mismatch

is particularly evident in the rodent hippocampus. NK1 occurs throughout the hippocampal formation and

is strong in the hilus of the dentate gyrus, while there is little SP or NKA immunoreactivity in this region

(Mantyh et al., 1989; Ribeiro‐Da‐Silva and Hokfelt, 2000). The mismatch between SP/NKA and NK1 in

these areas may indicate that NKB or NK3 may play a major role in these regions; however, one should

consider that the levels of mRNA are not static and that SP can also diffuse from other areas. It is interesting

to note that the human hippocampus does not show the mismatch between SP and NK1. However, the

above studies do not distinguish between SP and NKA. Overall, this may also indicate that despite the high

sequence homology of the rat and human PPT‐A and NK1 genes, the mechanisms involved in modulation

of neurotransmission via tachykinergic signaling may differ considerably between humans and rats.
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SP/PPT‐A and the NK1 receptor distribution in rat and human brain

Brain Regions
Rats Humans

SP NK1 SP NK1

Cerebral cortex

Neocortex þ þþ/þþþ þþ/þþþ
Cingulate cortex þþ þþ/þþþ

Hippocampal formation

CA layers

CA1 þ
CA2 þ
CA3 þ þþþ þþþ þþ

Dentate gyrus þ þþþ þþþ þþ
Basal ganglia

Caudate putamen þþþ þ/þþþ þþþ þþþ
Nucleus accumbens þþþ þþ/þþþ þþþ þþþ
Globus pallidus þþþ þþþ þþ

Amygdala

Medial amygdaloid nucleus þþþ — þþ
Basolateral amygdaloid nucleus þþ þþ

Diencephelon

Hypothalamus þ/þþ þ/þþþ þþ
Thalamus þ þ/þþþ þ
Habenular nucleus þþþ þ/þþ þþþ

Mesencephelon

Substantia nigra þþþ þ þþþ þ
Interpeduncular nucleus þþþ þþ
Superior colliculus þþ/þþþ þþþ þþþ
Inferior colliculus þþ þ/þþ
Periaquaductal gray þþþ þþ
Raphe nuclei þ þ

Pons

Parabrachial nucleus þþþ þþ/þþþ
Locus coeruleus þþþ þþþ þþþ
Dorsal raphe nucleus þþþ þþþ þþþ þ
Trigeminal sensory neurones þ

Data are based on a range of studies and represent the SP or PPT‐A mRNA and NK1 or NK1 mRNA expression based on in

situ hybridization (Warden and Young, 1988; Hurd et al., 1999; Caberlotto et al., 2003), receptor‐binding studies (Mantyh

et al., 1989), and immunohistochemical studies. Intensity ranges from none (�) to high (þþþ). In some cases, detailed

information is not available for NK1 in the rat brain or for SP/NK1 in the human brain. The detection methods used in the

above studies did not distinguish between SP or NKA. There are some striking differences between rats and humans, and

mismatches between SP concentration and NK1 receptor content in specific brain regions, for example, the rat hippocam-

pus and basal amygdaloid nucleus. The type of staining observed for each region is not always disclosed and for this reason

the table represents areas of the brain in which SP and NK1 can be seen, rather than their precise structural locations. Note

that the NK1‐ or SP‐expressing cells represent the complexity of tachykinergic signaling and the role of the tachykinins in a

plethora of neuronal pathways
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2.4 Peripheral Tachykinins

Although local nerves have been believed to be the major source of tachykinins in the peripheral tissues,

recently PPT‐A has been shown to be induced and expressed in other cell types such as monocytes,

macrophages, pancreatic islet cells, and various tumors (McGregor et al., 1995; Ho et al., 1997; Germonpre

et al., 1999; Lambrecht et al., 1999; Singh et al., 2000). This has led to the hypothesis that SP not only acts as

a mediator of the neuroimmune system but is also involved in direct interaction between immune cells

either in a paracrine or in an autocrine fashion independent of sensory nerves, i.e., ‘‘neurogenic inflamma-

tion’’ (Ho et al., 1997; Lai et al., 1998). Expression of NK1 receptors in nonneuronal tissues and cells, such as

in osteoclasts and human mucosal mononuclear cells, is increasingly recognized (Ho et al., 1997; Lambrecht

et al., 1999). Through these receptors, SP has been shown to regulate production of a number of cytokines

including IL‐1, IL‐6, IL‐8, and TNF‐a to mediate inflammatory and cell proliferative responses (Lotz et al.,

1988; Palma and Manzini, 1998). It has been suggested that SP is a key molecule in the neuroimmune axis.

In addition to the classical peptides SP and NKA, the recently discovered HK1 and the EKs have been found

in nonneuronal cells/tissues such as pulmonary, cardiovascular, and articular cartilages, and cells of the

immune system. The role of tachykinins in respiration, joint function, and gut mobility is briefly discussed

in this section when expressed both in neuronal and in nonneuronal cells. The interaction of PPT‐A
expression in the periphery may mimic regulation in the CNS under various stresses.
2.4.1 Respiration

TKs are synthesized and released in a subset of sensory neurons innervating the mammalian respiratory

tract; the neuroeffector role of these neurons is attributed to the release of TKs from their peripheral nerve

terminals. TKs induce smooth muscle contraction, glandular secretion, plasma protein extravasation,

cough, and other effects.

NK1 receptors located on the endothelial cells lining the microvessels play a role in plasma protein

extravasation elicited by a variety of irritant stimuli and by antigen challenge in the mammalian airways

(Lagente and Advenier, 1998). The inhalation of irritants or hyperpneic conditions in normal animals or

antigen administration in sensitized animals also induces acute episodes of bronchoconstriction leading

to respiratory distress that are at least in part mediated by TKs (Yasumitsu et al., 1996; Yoshihara et al.,

1996a, b; Tramontana et al., 1998; Lai and Lee, 1999; Lai et al., 1999). A similar mechanism of broncho-

constriction operates in asthmatic patients. Both NK1 and NK2 receptors located on smooth muscle cells

lining the bronchioles are involved in the bronchoconstriction response that is predominantly induced by

endogenous NK2 released from the DRG neurons (Lai and Lee, 1999). This also results in atropine‐resistant
bronchoconstriction‐mediated (Yuan et al., 1996) acetylcholine release (Hey et al., 1996). Capsaicin, a

derivative of capsicum, causes respiratory distress and lethality at a very high dose. Pretreatment of guinea

pigs with NK1 and NK2 receptor antagonists offered complete protection against the lethal dose of

capsaicin, whereas NK2 receptor antagonists alone protect �80% of animals (Patacchini et al., 1999).

An acute inflammatory challenge, either allergic or nonallergic, induces both the early and the delayed

airway hyperactivity (AHR) to bronchoconstrictor agents such as acetylcholine or histamine accompanied

by infiltration of immune cells. The vagal stimulation releases acetylcholine and in turn leads to plasma

protein extravasation in small bronchi and distal airways (Savoie et al., 1995). NK2 receptor antagonists

block the AHR and reduce the infiltration of neutrophils and lymphocytes (Schuiling et al., 1999). The latter

effect could be due to NK2 receptor antagonists binding on to the TK receptors, which reduces or prevents

endogenous TK binding to NK1 receptor, thus blocking both the early and the delayed hyperresponsiveness

to histamine induced by antigen in sensitized guinea pigs. NK1 K/O mice failed to recruit neutrophils upon

challenge with allergens (Bozic et al., 1996). The proinflammatory effect induced by IL‐17 or IL‐1b in the rat

airways is mediated by endogenous TKs acting through NK1 receptors (Hoshino et al., 1999).

It could be hypothesized that the inhibition of plasma protein extravasation by TK receptor antagonists

accounts in part for a reduced infiltration of immune cells. However, if we take into account the profiles of

the effects induced by NK1 or NK2 receptor antagonists on immune cell infiltration, it is clear that the
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blockade of plasma extravasation cannot solely explain the reduction of inflammatory response by these

antagonists. For example, NK2 receptor blockade does not affect eosinophil infiltration. In this respect, it is

worth noting that TKs can activate resident immune cells such as alveolar macrophages (Brunelleschi et al.,

1990) and that these cells can release chemokines that attract other immune cells (Newton and Vaddi,

1997). The clinical testing of NK2 antagonists in asthma and obstructive pulmonary diseases is of particular

interest in view of the fact that the expression of NK2 receptor mRNA is greatly increased in these

pathologies compared with that in controls (Bai et al., 1995). Saredutant (SR 48968), a nonpeptide NK2

receptor antagonist, has been found to reduce the bronchoconstriction induced by inhaled NKA in

asthmatic subjects (Van Schoor et al., 1998), thus making this drug a likely candidate for clinical trials in

asthma.

Another possible clinical application of TK receptor antagonists is as antitussive agents. Inhalation of

NKA and SP induces cough in guinea pigs (Takahama et al., 1993). Both the NK1 and the NK2 receptor

antagonists reduce capsaicin‐ and citric‐acid‐induced cough although in the latter case the role of NK2

predominates (Yasumitsu et al., 1996). Cough is a reflex due to the direct activation of sensory neurons by

irritants; therefore it is difficult to explain an antitussive activity via the blockade of NK1 or NK2 receptors

on endothelial, smooth muscle, or immune cells. This indicates the possibility of a central action for the

antitussive effect of TK receptor antagonists (Bolser et al., 1997). However, peripheral NK2 receptors or

central NK2 receptors located in areas where access via the blood–brain barrier is facilitated are also likely to

be involved since peptide NK2 receptor antagonists also display antitussive activity (Yasumitsu et al., 1996).
2.4.2 Chondrocyte Mechanotransduction

SP has an osteogenic stimulating effect that is probably caused by stimulating stem cell mitosis, osteopro-

genitor cell differentiation, or osteoblastic activity (Shih and Bernard, 1997) possibly via regulation of

intracellular calcium levels (Mori et al., 1999). SP regulation of chondrocyte behavior is complex. It has been

suggested that autocrine/paracrine signaling via SP and NK1 is important in the signaling pathway through

which the chondrocytes respond to mechanical stimulation. Mechanical stimulation of human articular

chondrocytes in monolayer culture results in the activation of an integrin‐dependent IL‐4 signaling loop

(Millward‐Sadler et al., 2000). This signaling is associated with cell membrane hyperpolarization and

alteration in the relative levels of aggrecan and matrix metalloproteinase (Millward‐Sadler et al., 2000).
Further, PPT‐A K/O mice and specific receptor antagonist studies confirmed that SP is necessary for both

hyperpolarization and gene expression plasticity following mechanical stimulation (Millward‐Sadler et al.,
2003). Interestingly, the NK1 receptor antagonist had no effect on IL‐4‐induced hyperpolarization, whereas

IL‐4 receptor antibodies inhibited the hyperpolarization response of chondrocytes to SP. This suggests that

SP activity is upstream of IL‐4 release in the mechanotransduction pathway (Millward‐Sadler et al., 2003).
Blockade of the hyperpolarization response to SP but not IL‐4 by inhibiting adenylate cyclase activity implies

cAMP in NK1‐mediated signaling and cytokine release (Laniyonu et al., 1988; Lacour et al., 1994).

Increased SP levels have been reported in synovial fluid and cerebrospinal fluid from patients with

rheumatoid arthritis and osteoarthritis (Lindh et al., 1997). Immunohistochemical analysis of the joint

capsules from patients with anterior knee pain syndrome revealed increased SP‐immunoreactive nerve

fibers (Witonski and Wagrowska‐Danielewicz, 1999). Release of SP from chondrocytes, either by mechani-

cal stimulation or by other means, influences the activity of a wide range of cell types in the joint and

periarticular structures, including macrophages, osteocytes, and nociceptive fibers. These observations

suggest that PPT‐A gene expression plasticity plays a vital role in the pathophysiology of remodeling and

regeneration of bone and cartilage in joint diseases.
2.4.3 Gut

In the gastrointestinal tract, SP‐containing nerve fibers and their cell bodies are present along the entire

length; they are least prominent in the esophagus and upper part of the stomach (Polak and Bloom, 1981).
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According to Nilsson et al. (1975) the highest concentration of SP occurs in the duodenum. SP‐positive
postganglionic parasympathetic neurons are located in the myenteric plexuses, and the postganglionic

nerve terminals of these neurons innervate chiefly the inner circular muscles, although the outer longitudi-

nal muscles contain few SP‐positive fibers. SP‐containing nerve fibers are also in close contact with the

blood vessels (Polak and Bloom, 1981).

In the human gastric mucosa, Ferri et al. (l984) have demonstrated SP immunoreactivity in the oxyntic

(parietal) zone of the gastric glands. Fibers containing this peptide are numerous and interconnecting in the

‘‘antrum’’ 3 cm above the pyloric aperture, suggesting the role of SP in pyloric sphincter regulation. In the

duodenum, SP‐positive fibers were present in large numbers in the base and core of the villi as well as in

the muscularis mucosae and around blood vessels, suggesting the role for SP in absorption of nutrients and

peristalsis. SP was also present in nerve fibers in the submucosa, neuronal perikarya between the lobules of

Brunner’s glands, and in Meissner’s plexus.
3 SP Function in Pain

3.1 Role of SP in the Perception and Transmission of Pain and Inflammation

Nociception is the detection of pain and can be divided into two distinct categories depending on the

duration: acute and chronic pain. Acute pain is severe/sharp short‐term and provides an important

‘‘warning system’’ that all is not well within the body/environment, e.g., pain felt when treading on a

track. Chronic pain is pain persisting for the long term that may be associated with nonnoxious (non-

painful) stimuli (allodynia) or may be due to increased sensitivity to noxious (painful) stimuli (hyper-

algesia). Unlike acute pain, chronic pain serves no useful physiological function and is therefore the target

of much pharmaceutical research.

Pain can be further subdivided into three more categories depending on its location or point of

origin:

1. Viscerosomatic pain, or pain detected internally, e.g., abdominal pains. Viscerosomatic pains share

many pathways, with spreadout of receptors leading to poor definition of the point of origin of the

pain.

2. Inflammatory pain due to irritants or nonspecific stimuli, mediated by the immune system and usually

associated with the release of chemical mediators, including histamine and SP.

3. Neurological pain or pain induced following prolonged peripheral nerve activation or peripheral/

central nerve lesion (axotomy/nerve crush). Inflammatory and neurological pains are often chronic

pain with associated allodynia (nonnoxious stimuli results in nociception) or hyperalgesia (noxious

stimuli are perceived with a greater intensity). SP is thought to be a major modulator of the

neurotransmission of pain, being in part, along with the glutamatergic activation of NMDA receptors,

the major cause of allodynia and hyperalgesia.

Tachykinergic signaling, in particular NK1‐SP‐mediated, has been previously implicated as the neuro-

transmitter for pain. Thermal (Duggan et al., 1987), mechanical (Duggan et al., 1988), and chemical

(capsaicin) (Duggan et al., 1988; Takano et al., 1993) stimulation of the skin all elicit SP release from sensory

afferents, increasing the SP concentration in the dorsal horn. Furthermore, direct electrical stimulation of

C‐fibers (Brodin et al., 1987; Klein et al., 1992) also increases SP concentration in the dorsal horn. In

addition, intrathecal injection of SP induces pain‐like behavior in rodents (Piercey et al., 1981; Hylden and

Wilcox, 1983; Matsumura et al., 1985). Most strikingly, NK1 antagonists block the response of dorsal horn

neurons to noxious stimuli (Radhakrishnan and Henry, 1991; Snider et al., 1991), suggesting that NK1

receptors mediate the pain perception. Collectively, these data provide a strong argument for SP as a

candidate neurotransmitter for pain signaling; however, more recent data suggest SP is not the neurotrans-

mitter of noxious stimuli, rather it is the neuromodulator of painful stimuli as outlined below.

SP is synthesized by small‐diameter nociceptive neurons whose central terminals release the peptide in

the dorsal horn of the spinal cord following intense peripheral stimulation. This is thought to promote
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central hyperexcitability and increased pain sensitivity (Fitzgerald and Gibson, 1984; De Felipe et al., 1998).

However, the function of SP in pain and nociception remains unclear. Human clinical trials with NK1

antagonists have proved to be largely ineffective but there remains the possibility that the wrong pain

conditions or time of administration could have been targeted. This possibility was raised again by the

analysis of NK1 K/O mice where a marked reduction in various types of visceral nociception as well as a

reduced response to noxious chemical stimulation from somatic tissues was recorded (Bester et al., 2001).

Recent data suggest that many of the peripheral inflammations release SP within the spinal cord (Bueno and

Fioramonti, 1999). The ‘‘silent’’ nociceptors are recruited into action following inflammatory lesions of the

skin or deep tissues or following partial nerve ligation. The development of pain behaviors was unaffected,

initially by NK1 receptor or PPT‐A deletion (Cao et al., 1998; Basbaum, 1999a, b; Dery et al., 2001). This

suggests a possible role for SP in chronic inflammatory diseases. This role for SP as a neuromodulator of

painful stimuli is supported by the demonstration that short‐duration noxious thermal stimuli do not cause

SP release in the dorsal horn. Only intense and prolonged thermal stimuli result in SP release (Duggan et al.,

1987, 1988, 1992). Iontophoretical application of SP to dorsal horn neurons produces a slow response

characterized by delayed onset (20–40 s) but sustained (30–90 s) response was observed as a slow excitatory

postsynaptic potential (EPSP) (Nowak and Macdonald, 1982; Urban and Randic, 1984). Further,

SP‐mediated slow EPSP in response to noxious stimuli is the generation of an initially fast response

(glutamate‐mediated) followed by a slow and delayed afterdischarge that lasts for the duration of the

stimulus. This initial fast response is not abolished by application of NK1 antagonists, while the slow

prolonged response is abolished either by NK1 receptor antagonists (Radhakrishnan and Henry, 1991) or

by depletion of SP by capsaicin treatment (Hey et al., 1996).
3.2 Generation of the Pain Signal by Primary Sensory Afferents or
‘‘First‐Order Neurons’’

Primary sensory afferent receptors detect noxious and nonnoxious stimuli and relay impulses from the

point of origin in the periphery to the thalamus via lamina I and interneurons in the dorsal horn of the

spinal cord. As mentioned previously, primary sensory afferents consist of two fiber types, myelinated,

nonpeptidergic Ad fibers and unmyelinated, mostly peptidergic C‐fibers, whose cell bodies are found in the

DRG of the PNS and whose central axons terminate in the dorsal horn of the spinal cord and trigeminal

ganglion of the CNS.

The majority of Ad afferents (proprioceptive) terminate in the inner region of lamina II of the dorsal

horn and to a lesser extent in lamina V. Conversely, the majority of C‐fibers (nociceptors) terminate in

lamina I and the outer region of lamina II (substantia gelatinosa) of the dorsal horn and to a lesser extent in

laminae III, VI, and X and also in the trigeminal ganglion of the CNS (Basbaum, 1999a, b). Under normal

physiological conditions, Ad fibers transmit impulses generated by nonnoxious stimuli such as pressure and

heat, while C‐fibers transmit impulses generated by both noxious and thermal stimuli (peptidergic and

nonpeptidergic, respectively) (Basbaum and Woolf, 1999).
3.3 Relaying the Pain Message from Sensory Neurons to the Dorsal Horn

Wide‐dynamic‐range neurons respond to nonnoxious stimuli of differing intensity (mediated initially

mostly via Ad fibers), while the nociceptive neurons respond to noxious stimuli (mediated initially mostly

by C‐fibers) (Guirimand and Le Bars, 1996). The Ad fibers synapse directly with interneurons (islet cells) in

lamina II of the dorsal horn. However, those of C‐fibers not juxtaposed to the interneurons in lamina II

form close connections with the projection neurons of lamina I (Marshall et al., 1996). On low‐threshold
mechanical or thermal (nonnoxious) stimulation of sensory afferents, glutamate is released from Ad
terminals where it binds to postsynaptic alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid

(AMPA) and NMDA receptors in the dorsal horn interneurons or projection neurons. Glutamate binding

to AMPA receptors facilitates influx of Naþ ions into the postsynaptic terminal, resulting in depolarization.
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The NMDA receptor is a ligand‐dependent voltage‐gated Ca2þ ion channel. On initial AMPA‐mediated

depolarization and binding of glutamate, Mg2þ blockade of the NMDA channel pore is removed, allowing

influx of Ca2þ into the second‐order neurons resulting in depolarization and propagation of the impulse.

Upon high‐intensity noxious stimulation, both glutamate and SP are released from C‐fibers. As
mentioned above, the binding of glutamate to its receptors elicits a fast EPSP; however, the concomitant

release of SP also elicits a second‐phase slow EPSP. SP binding preferentially to the NK1 receptor on the

postsynaptic membrane of projection neurons results in the activation of PLCg, which in turn generates

DAG and IP3, initiating calcium release from internal stores leading to further depolarization and

propagation of impulse to the higher centers of the brain.

DAG activates PKC that indirectly modulates the response of the postsynaptic neuron to glutamate

via phosphorylation of the NMDA receptor. Phosphorylation of the NMDA receptor increases the

opening time of the channel leading to prolonged influx of Ca2þ and Naþ, thereby prolonging depolariza-
tion of second‐order neurons. DAG also contributes to the formation of arachidonic acid, an event in

the formation of prostagladins, PGE2 and PI2 that sensitize the cell membrane to further depolarization.

IP3 triggers intracellular calcium release from the internal stores (endoplasmic reticulum) resulting in a

further increase in intracellular calcium levels, thus further prolonging depolarization of the second‐order
neurons.

In summary, the release of glutamate from Ad fibers following mechanical or thermal stimulation

results in depolarization of the second‐order interneurons in lamina II of the dorsal horn. However, the

intensity of a noxious stimulus could result in the corelease of glutamate and SP from C‐fiber terminals. SP

diffuses from its release site into the interneurons (islet cells) of lamina II and projection neurons of laminae

I and III, thus propagating the nociception. Following high‐potency noxious stimulation or during

inflammation, SP release is increased and NK1 receptor binding is extended beyond laminae I and III to

the deeper layers of laminae IV and VI (Brown et al., 1995). This plasticity of SP release results in

recruitment and prolonged activation of second‐order neurons. It is this action of SP that may be

responsible for the development of allodynia and hyperalgesia. The depolarization of second‐order neurons
is prolonged in response to the lower‐intensity noxious stimuli (hyperalgesia) or mechanical and thermal

stimuli (allodynia), resulting in the perception of intense pain (chronic pain) since the neuronal pathways

have become hypersensitive. NK1 receptor internalization studies have supported the role of SP in

hyperalgesia/allodynia. Ablation of the NK1 neurons of the dorsal horn using SP conjugated to a potent

neurotoxin (saporin) results in the augmentation of hyperalgesia/allodynia in rodents. However, the

behavior of NK1‐ablated mice and control mice was unaltered in response to mild noxious stimuli,

suggesting that SP plays a role in modulating the response to chronic intense pain and in supplementing

persistent pain states, while acute pain is mediated by the NMDA cascade (Liu et al., 1997).

Both glutamate and SP mediate excitatory responses to sensory stimuli; however, it is also possible that

both SP and glutamate can function as positive feedback loops directly or indirectly to modulate their own

release. Increased intracellular Ca2þ following NMDA receptor or NK1 receptor binding can activate the

enzyme NOS in postsynaptic neurons. NOS catalyzes the production of a gaseous free radical NO from the

substrate L‐arginine. NO diffuses from the postsynaptic neuron and activates soluble guanylyl cyclase (sGC)

in the presynaptic neuron to increase intracellular cyclic GMP (cGMP). Downstream of cGMP, PKG is

activated, which may lead to modification of gene expression and modulation of transmitter release or may

modulate ion channels. Furthermore, glutamate binding to presynaptic NMDA receptors (Liu et al., 1996)

and kainate receptors (Chizh et al., 1997) on the central terminals of DRG neurons may enhance depolari-

zation resulting in further release of both glutamate and SP. The existence of presynaptic NK1 receptors

indicates that SP itself may directly enhance its own release by increasing depolarization of primary sensory

afferents.
3.4 Neuronal Pathways of Pain Processing: Delivering the Message

The detection of painful stimuli, pressure, and temperature are coordinated by three main pain pathways:

the spinoreticular, the spinothalamic, and the parabrachial pathways (Gauriau and Bernard, 2002).
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This section describes these pathways in brief. The spinoreticular pathway, as its name suggests, is

centered on the deep lamina of the dorsal horn of the spinal cord and the reticular system in the

brainstem. The spinoreticular system is implicated in mediating somatic motor responses and the

emotional behaviors associated with pain. Furthermore, this pathway offers a feedback regulation of

nociception through a descending pathway, the reticulospinal loop. The second pathway, the spinothalamic

pathway, originates in the superficial layers of lamina I of the dorsal horn and projects to thalamic

areas and is most likely responsible for pain sensation of tactile origin. The spinobrachial pathway

also originates in the superficial layer of lamina I of the dorsal horn but the axons terminate in the

parabrachial area among others. This pathway is concerned with emotional, autonomic, and neuroendo-

crine aspects of the pain experience. In fact, the majority of nociceptive messages converge on the

parabrachial area and are then connected to higher brain regions responsible for emotions (amygdala),

emotional behavior (periaqueductal gray), and autonomic homeostatic adaptation (hypothalamus and

ventrolateral medulla) in response to pain (Gauriau and Bernard, 2002). It is likely that neuromodulation

of pain pathways by SP occurs not only at the levels of the spinal cord but also in the brain region. For

example, NK1‐expressing projection neurons of the dorsal horn relay nociceptive information, directly or

indirectly, to brain areas such as the amygdala, the ventromedial nucleus of the hypothalamus, and PAG.

These brain areas have been implicated in the mediation of antinociception caused by opioids, electrical

brain stimulation, or stress‐induced analgesia (Fields, 2000). It is possible that SP and the NK1 receptor play
an important role in regulating the endogenous antinociception mediated by release of opioids at the

synapses.
4 Neurodegenerative Diseases and Other CNS Disorders

PPT‐A mRNA has been identified in the normal and the pathological state in various regions of the CNS in

rats (Warden and Young, 1988; Harlan et al., 1989; Brene et al., 1990) and in humans (Hurd et al., 1999),

suggesting a role for tachykinins in the pathophysiology of a variety of etiologies or diseases (Kramer et al.,

1998; Maubach et al., 1998; Liu et al., 1999a, b). For example, SP can enhance neural or neurite growth

in vitro (Iwasaki et al., 1989) and counteract the effects of neurotoxins administered to animals, and has

mnemogenic and anxiolytic properties in vivo (Hasenohrl et al., 1989). SP/PPT‐A expression has also been

studied in several neurodegenerative disorders, including Parkinson’s disease (Gresch and Walker, 1999),

Alzheimer’s disease (Bouras et al., 1990), and Huntington’s disease (Richfield et al., 2002). All of these

conditions are associated with a progressive loss of SP and PPT‐A expression in the brain. Additionally,

SP/NK1 antagonist MK‐869 had antidepressant effects in patients with moderate to severe major depres-

sion, suggesting that SP may play an important role in psychiatric disorders (Kramer et al., 1998; Maubach

et al., 1999). It is likely that inappropriate expression of the PPT‐A gene is correlated with the disease

profiles in which tachykinin gene products are implicated.
4.1 Epilepsy

Recent studies have shown a strong correlation between the incidence of epilepsy, SP, and the integrity of the

dentate gyrus in a rodent model (Liu et al., 1999a, b). Epilepsy is a chronic medical condition produced by

temporary and maladaptive alterations in the electrical function of the brain, causing seizures that affect

awareness, movement, and/or sensation. Epilepsy affects more than 50 million people worldwide. Epilepsy

is a biphasic disorder in which an initial seizure may lead to the generation of spontaneous, continuous, and

long‐lasting seizure activity. The process by which an initial seizure can lead to the development of epilepsy

is termed epileptogenesis. The process of epileptogenesis itself is poorly understood, but it is believed that

the initial imbalances in inhibitory and excitatory inputs during seizure lead to long‐term plastic changes in

glutamatergic and GABAergic signaling pathways, novel expression of neuropeptides in brain regions, and

at a later stage synaptic reorganization and mossy fibers sprouting. Although many new antiepileptic drugs

have been invented and tested in the last decade, about one‐third of epileptic patients still suffer from
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inadequately controlled seizures or significant side effects. Novel PPT‐A expression has been widely

implicated in both the initiation and maintenance phases of epilepsy.
4.1.1 Neuronal Cell Excitability Is Regulated via the Interplay Between Excitatory
Glutamatergic and Inhibitory GABAergic Neurotransmission

There are many types of seizure showing a variety of symptoms and severity, whose presence can be

determined by the pattern of burst firing activity as seen on an electroencephalogram (EEG). There are a

number of animal models that show similarity to etiology and symptoms of human temporal lobe epilepsy

(TLE), one of the most extensively studied forms of epilepsy. All seizures, however, have common features,

including spontaneous, increased frequency and sustained, irregular neuronal firing patterns, i.e., all show

signs of excessive excitability.

The control of cell excitability is important in maintaining normal physiological control of any

neuronal cell. This control is manifested by the interplay between the excitatory and inhibitory inputs

into this system. If oversimplified, it could be said that the balance between the glutamatergic signaling

pathway (excitatory) and the GABAergic signaling pathway (inhibitory) controls neuronal excitability.

Seizure‐like activity and associated cell death has been attributed to increased excitability of neurons due to

increased glutamate‐mediated NMDA receptor activation (Wasterlain et al., 2000). In addition, the

excessive release of presynaptic glutamate in vivo in kainic acid‐induced seizures further confirms

NMDA‐receptor‐mediated excitability during seizures (Bruhn et al., 1997).
4.1.2 The Biphasic Nature of Epilepsy: Initiation and Maintenance of Seizure

Epilepsy can be divided into two stages: the initiation phase, in which a single seizure may increase the

propensity of a cell toward developing and maintaining continuous seizures, and the maintenance phase, in

which a cell can be said to be epileptic due to the presence of spontaneous and continuous long‐lasting
firing activity.

Experimental initiation of epilepsy via perforant path stimulation (PPS) can be blocked by the

application of agonists of inhibitory pathways (GABAA agonists) or antagonists of excitatory pathways

(NMDA/AMPA/kainate), electrical stimulation of GABAergic pathways, NK1 receptor antagonists, galanin

(an inhibitory neuropeptide) and its receptor agonists, opiate receptor agonists (delta) and antagonists

(kappa), and finally by ionic imbalances across the neuronal membrane (elevated intracellular Na2þ with

low extracellular Kþ, or high extracellular Mg2þ). Conversely, experimental initiation of epilepsy can be

elicited by GABAA antagonists, glutamate receptor agonists (NMDA/AMPA/kainate), electrical stimulation

of glutamatergic pathways, NK1 receptor agonists, SP or NKB (excitatory neuropeptides), galanin receptor

antagonists, opiate receptor antagonists (delta), and agonists (kappa), and finally by ionic imbalances

across the neuronal membrane (elevated extracellular Kþ with low extracellular Na2þ or low extracellular

Mg2þ) (Liu et al., 1999a, b; Wasterlain et al., 2002). So it would seem that the initiation of seizure has many

entry points and is responsive to drug treatments, e.g., benzodiazepines are currently used in the treatment

of seizure as agents that stimulate GABAergic pathways.

Experimental inhibition of the maintenance phase of self‐sustaining status epilepticus (SSSE) is difficult
to manage. Many of the above inhibitors of the initiation phase are ineffective in halting or preventing the

sustained seizures associated with the maintenance phase. Pharmacological treatment with benzodiazepines

is ineffective as are other drugs such as sodium channel blockers and non‐NMDA receptor blockers

(Wasterlain et al., 2002). Glutamatergic antagonists, NK1 antagonists, and inhibitory neuropeptides such

as galanin, however, are effective in ameliorating SSSE, suggesting that the maintenance phase of epilepsy is

strongly dependent on NMDA and tachykinin receptor activation. This implies that SP may play a

modulatory role in sensitizing neuronal cells in glutamatergic pathways that is similar to that proposed

for its role in modulating cell excitability in models of pain and inflammation.
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4.1.3 Epileptic Pathways: the Hippocampus in the Limbic System Is a Major Brain Region
Associated with Seizure

Metabolic studies using 2‐deoxyglucose autoradiography have shown a number of regions of the brain with

high metabolic activity during SSSE produced via perforant path stimulation (Wasterlain et al., 2002).

These areas include the hippocampus, amygdala, the caudate putamen, the substantia nigra, the nucleus

accumbens, and the medial thalamus. Interestingly, all of these areas express medium to high levels of SP.

Wasterlain et al. (2002) proposed a hippocampal model of initiation and maintenance of seizure/

epilepsy based on these metabolic studies and those involving pharmacological agonists and antagonists of

principal pathways. > Figure 20-3 depicts the excitatory and inhibitory pathways involved in the control of

hippocampal excitability in nonepileptic brain models and their modification in epileptic brain models.

PPS by electrodes generates SSSE by intense activation of GABAergic signaling in the dentate gyrus of the

hippocampus, resulting in excessive GABA release. On binding of GABA to its receptors, they are inter-

nalized, thus effectively removing the GABA inhibitory control from the hippocampus. Removing inhibi-

tion of the GABAergic pathway in this manner indirectly increases neuronal excitability, increasing the

likelihood of seizure. The pathological changes in neurotransmitter‐mediated excitability lead to decreased

anticonvulsant (galanin/dynorphin) and increased proconvulsant (SP/NKB) neuropeptide expression,

producing long‐lasting changes in excitability by further potentiating glutamate release. In particular,

decreased galanin or dynorphin and increased SP mediate removal of inhibition and increase excitability

on mossy fibers of the dentate gyrus, thus increasing glutamate release in the CA3 pyramidal layer. The CA3

neurons respond to glutamate release from the mossy fibers by increasing the firing activity. CA3 nerve

terminals synapse with the frontal cortex, which is concerned with the regulation of motor activity.

Additionally, excitatory connection to the cortex from the hippocampus usually results in negative feedback

to the dentate gyrus to inhibit further glutamate release but on depletion of inhibitory neuropeptides

(galanin/opioids), this negative feedback is lost; hence the glutamatergic input to cortical areas further

increases seizure activity.

Seizures may last from anywhere between a few minutes to a few hours and in some cases recurrent

episodic seizures may go on for days. Late synthesis and expression of galanin, depletion of excitatory

neurotransmitters, and neuronal death all contribute to the cessation of seizure without pharmacological

intervention. Unfortunately, massive cell death induced during seizure is not fully investigated and in some

cases epilepsy could be fatal. However, recent research on adult neurogenesis suggests that the dentate gyrus

granular zone is a promising source for the generation of new neurons as a replacement for dead neurons

(Alvarez‐Buylla and Lim, 2004).
4.1.4 SP is a Proconvulsant: the Modulation of the Transcriptional Regulation of PPT‐A
Gene Expression in Seizure and Epilepsy

Neuropeptide expression is modified during seizure, which in turn leads to increased excitability in the

hippocampus and other brain regions. SP has been widely implicated in modifying excitability and

mediating both the initiation and the maintenance phases of epilepsy (Liu et al., 1999a, b, 2000; Wasterlain

et al., 2000, 2002). SP is detected at low levels in the rodent hippocampus. However, production of neuronal

proteins is subject to ‘‘plasticity’’ at the level of gene regulation; thus the concentration of SP within tissues

can be altered in response to specific stimuli, e.g., growth factors, stress, and drugs.

SP demonstrates highly proconvulsive properties. High levels of SP in hippocampal neurons can induce

SSSE at electrical stimuli below the threshold stimulation normally required to induce such activity (Liu

et al., 1999a, b). Furthermore, elevated levels of SP and PPT‐A in the dentate gyrus subregions of the

hippocampus (CA1 and CA3) have been implicated in neuronal damage following SSSE induced by PPS, or

chemoconvulsant seizure induction with kainic acid, or lithium–pilocarpine induction (> Figure 20-4)

(Brene et al., 1992; Liu et al., 1999a, b, 2000). NK1 receptor antagonists applied before or during the

initiation and maintenance phases abolish SSSE (Liu et al., 1999a, b). Moreover, SP application to brain

slices induces glutamate release (Liu et al., 1999a, b). In studies employing an in vivo kainic acid epilepsy



. Figure 20-3

Excitatory and inhibitory pathways in the rodent hippocampus. (a) shows the excitatory glutamatergic path-

ways stimulated in normal brain; normally inhibitory input from GABAergic interneurons in the hilus and from

inhibitory neuropeptides (galanin, dynorphin, somatostatin, and NPg) controls excitability of glutamatergic

signaling, preventing the generation of seizure. However, in an epileptic model (b), excessive stimulation of

inhibitory systems depletes inhibitory neurotransmitters and neuropeptides, allowing unbridled activation of

glutamatergic pathways leading to the development of seizure. Additionally, novel excitatory neuropeptide

expression (SP) further reinforces seizure by sensitizing glutamatergic pathways and increasing glutamate

release. Late expression of galanin in the hilus restores some inhibitory control to dampen seizure
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. Figure 20-4

Schematic representation of the inducibility of SP/PPT‐A in the rodent hippocampus following experimental

seizure induction. SP/PPT‐A mRNA expression is very low in the normal unstimulated rodent hippocampus (a).

Low levels of expression are detected by immunostaining and in situ hybridization in the CA1, CA2, and CA3

pyramidal cell layers (Py), and a few SP‐positive cell bodies are found in the hilus (h) of the dentate gyrus (DG).

In the epileptic mouse (b) massive induction and de novo synthesis of SP is observed. Marked upregulation of

PPT‐A and SP expression is seen in all areas that express in the unstimulated mouse. In addition, novel

expression is seen in the granule cell layer (GrDG) of the dentate gyrus

Substance P and the tachykinins 20 449
model, PPT‐A gene K/O studies have correlated the lack of SP with the inability to induce seizures and

associated damage within the hippocampus in mice (Liu et al., 1999a, b). Additionally, these K/O mice do

not show induction of caspases and other genes associated with cell death that are normally expressed in

seizure. It is not surprising that PPT‐A mRNA is increased in the hippocampus during seizure, and de novo

synthesis of SP in the dentate gyrus, an area that does not express SP during normal physiological

functioning, is observed in a number of in vivo and in vitro epileptic models.

There are many unanswered questions as to how SP might be upregulated during seizure, e.g., which

classes of regulatory transcription factors are induced during seizure and how do they affect the transcrip-

tion of PPT‐A? Defining the pathways regulating the PPT‐A gene will help delineate general changes

associated with seizure induction. Recent research suggests that bHLH factors are differentially regulated
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following status epilepticus, with some increasing (Mash1, Id2), some decreasing (Hes5), and others

remaining mostly unchanged (NeuroD/BETA2, NeuroD2/NDRF, Id3, Rath2/Nex1) (Elliott et al., 2001).

The PPT‐A gene contains a number of regulatory elements termed E boxes that bind bHLH factors to

regulate transcription. It is possible that these bHLH factors are responsible, in part, for the modulation of

the PPT‐A gene expression during seizure and as such may provide a novel target for therapeutic

intervention. Similarly, a major repressor of the proximal rat PPT‐A promoter is the transcription factor

NRSF, often also called REST (Bubb et al., 2002), which demonstrates differential expression during rodent

epilepsy models (Palm, 1998). Interestingly, NRSF/REST has several isoforms, which have been suggested to

act as both repressors and activators of transcription (Bubb et al., 2002); these isoforms are also differen-

tially regulated during epilepsy (Palm, 1998).
4.2 Anxiety and Depression

Studies on the NK1 K/O mice and clinical studies suggest that SP is involved in emesis, stress responses,

aggression, anxiety, depression, and reward (Cao et al., 1998; De Felipe et al., 1998a, b; Kramer et al., 1998;

Rupniak and Kramer, 1999; Rupniak et al., 2000). These apparently diverse behavioral manifestations are

potentially interlinked and SP could modulate these pathways that are important to the animals in the face

of major environmental stressors (Culman and Unger, 1995; Culman et al., 1997; De Felipe et al., 1998a, b).

The NK1 receptor is widely distributed within subcortical and brainstem regions and within the spinal cord,

as described previously. The receptor is highly but heterogeneously expressed within the amygdala, and by

the cholinergic neurons of the striatum, nucleus accumbens, and nucleus basalis. These areas of the brain

have been linked to anxiety and reward behaviors. The NK1 receptor is also strongly expressed in the

hypothalamus, PAG, and the superficial laminae of the spinal cord. These areas control pain processing and

flight/fight responses (autonomic) following environmental challenges such as attack, injury, or invasion of

territory (Lumb and Lovick, 1993; Bandler and Shipley, 1994; Lovick, 1996; De Felipe et al., 1998a, b).

Selective deletion of the NK1 receptor gene using homologous recombination in embryonic stem cells

resulted in mice that bred and developed normally. However, close examination of these mice revealed a

number of remarkable behavioral changes compared with wild‐type litter mates; K/O mice were less

aggressive as measured by the resident–intruder assay (De Felipe et al., 1998a, b) and had reduced levels

of anxiety as judged by their response to brief maternal separation (Rupniak et al., 2000). These measures

anticipated the current clinical trials of NK1 antagonists in human subjects suffering from anxiety and

depression (Kramer et al., 1998).

The reduction in anxiety and aggressive behavior thought to be coupled with a number of other

behavioral changes in NK1 K/O mice suggested that the NK1 receptor might be involved in orchestrating

basic survival behaviors. For example, there was also a reduction in stress‐induced analgesia that may be due

to descending inhibitory control on the spinal processing of nociception. The behavioral monitoring

suggested that the unaltered behavior of mutant mice was due to lack of change in the hot‐plate threshold
following a brief cold‐water swim (De Felipe et al., 1998a, b). The behavioral changes were correlated with

morphological changes using immunohistochemistry. For example, there was no change in the number of

c‐fos‐positive neurons in the lumbar spinal cord following concurrent noxious stimulation of both fore‐ and
hindpaws (Bester et al., 2001).

Remarkably, there was a failure of the NK1 K/O mice to develop a conditioned place preference to

morphine (Murtra et al., 2000). The loss was specific to morphine as mice responded when cocaine or

food were used as rewards. Moreover, the analgesic response to opiates was largely intact (De Felipe et al.,

1998a, b). We conclude that SP plays an important and specific role in mediating the motivational aspects of

opiates. While this may represent a major new pharmacological route for the control of drug abuse, there is

also the possibility of dissecting away the analgesia from the euphoria‐producing properties of the opiates.
Morphine given exogenously binds to the m opiate receptor and by this route it is thought to ‘‘hijack’’ the

opiate reward pathways and other pathways that modulate nociception (Robbins and Everitt, 1999).

The data argue strongly that a key synapse in the opiate reward process lies within the area of ventral

forebrain and occurs between collaterals of SP‐releasing populations of striatal projection neurons and large
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cholinergic neurons of the nucleus accumbens and nucleus basalis that express the NK1 receptor. These

neurons have also been implicated in associative learning and respond to stimuli that serve to trigger a

‘‘learn and reward’’ task (Graybiel et al., 1994; Boix et al., 1995).
4.3 Parkinson’s Disease

Parkinson’s disease results in reduced levels of dopamine, which is due to loss of dopaminergic neurons

(�50%) in the substantia nigra whose fibers have extensive synapses within the striatum. The decrease in

levels of dopamine is reflected in the striatonigral neurons by lower levels of D1 receptors and SP, among

others. It was demonstrated that the loss of SP led to further loss of dopaminergic neurons (Barker, 1986).

SP striatal neurons also inhibit the neurons of the internal globus pallidus. In addition to dopamine

neurotransmission, serotonin neurotransmission regulates striatal PPT‐A mRNA levels. It has been sug-

gested that the activation of 5‐HT transmission could compensate for the loss of PPT‐A in striatal neurons

(Gresch and Walker, 1999a, b). Furthermore, it was demonstrated that serotonin 2A/2C receptors mediate

PPT‐A mRNA expression in the striatum after dopamine depletion produced with 6‐hydroxydopamine in

adult rats. However, higher levels of SP could be toxic. NK1 antagonists can block the toxic effects of

methamphetamine administered to the striatum (Yu et al., 2002). A major role for PPT‐A expression in

Parkinson’s disease was proposed from studies involving 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine
(MPTP) treatment of primates. MPTP induces Parkinson‐like symptoms, which is due to the destruction

of dopaminergic neurons in the substantia nigra. Animals with an acute or chronic parkinsonian

phenotype had decreased levels of PPT‐A in the striatum while in asymptomatic animals PPT‐A levels

were unaffected (Wade and Schneider, 2001). The authors suggest that PPT gene expression may be directly

related to expression of parkinsonian motor symptomatology regardless of duration of MPTP exposure,

duration of the parkinsonism, or extent of dopamine denervation. The plasticity of PPT‐A expression

in this CNS region is demonstrated in that ciproxifan, the histamine H3 receptor ligand, can reverse

the effect of methamphetamine on the PPT‐A gene (Pillot et al., 2003). Therefore intervention, which

targets genes on the same pathway as PPT‐A by increasing neuropeptide gene expression, could be useful

therapy.

In addition to NK1 receptor activation by SP, there are reports of NK3 receptor involvement in the rat

midbrain neurons in Parkinson’s disease. Modulation of NK3 activity in the rat nigrostriatal dopamine

neurons has been reported to affect dopamine levels and hence SP could be a potential therapeutic target for

Parkinson’s disease (Bannon and Whitty, 1995; Whitty et al., 1995).
5 Genetic Models Available for In Vivo Analysis

Gene disruption in order to study the role of a specific protein is commonly employed in the generation

of preclinical animal models. In the case of the tachykinins, the study of their function(s) has significantly

been enhanced by the generation of K/O mice with targeted disruptions of the PPT‐A and TACR1 genes,

which encode SP, NKA, and NK1, respectively (Cao et al., 1998; De Felipe et al., 1998a, b; Zimmer et al.,

1998).

PPT‐A K/O animals are deficient in SP and NKA but are able to develop normally, are fertile, and can

take care of their offspring (Bilkei‐Gorzo et al., 2002). Behavioral studies carried out in these animals have

demonstrated a reduction in sensitivity to nociceptive stimulation in acute and chronic pain models,

although the response to mildly painful stimuli is unaffected (Cao et al., 1998). Mutant animals do not

experience neurogenic inflammation, which normally follows SP release. This is indicative of a role of

SP/NKA in the production of moderate to intense pain.

The role of the tachykinins in stress‐related behaviors has also been addressed in the PPT‐A K/O

animals. It has been shown that PPT‐A(�/�) mice were more active in the forced‐swimming test and tail

suspension paradigm (both used as indicators of depression‐related behaviors) and were less fearful in

models of anxiety (such as the open‐field arena and the elevated zero maze). Their behavior was comparable
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with that of wild‐type animals treated with antidepressant drugs, including tricyclic and selective serotonin

re‐uptake inhibitors. These observations support the view that the tachykinin system mediates the

development of anxiety and depression disorders.

Mice lacking the PPT‐A gene have been resistant to kainic acid‐induced seizures that mimic hippo-

campal hyperexcitability seen in cases of status epilepticus. Neuronal cell death in the hippocampus caused

by repetitive epileptic seizure activity could be compromised in the absence of SP release (Liu et al.,

1999a, b).

Another approach to the study of the tachykinin pathway has been through the inactivation of the

tachykinin NK1 receptor. Genetic disruption of the NK1 receptor does not affect the general health or

fertility of the mutant mice but has a significant effect in the amplification (‘‘wind up’’) and intensity coding

of nociceptive reflexes, which appear to be absent in these animals (De Felipe et al., 1998a, b). The role of

the NK1 receptor in pain and hyperalgesia has also been investigated using the NK1(�/�) model. It has

been proposed that the response to noxious mechanical stimuli is modulated by NK1, which is also

implicated in hyperalgesia pathway (Laird et al., 2000). Endogenous pain‐control mechanisms, such as

stress‐induced analgesia, were found to be substantially impaired in the NK1(�/�) mice (Bester et al.,

2001). In behavioral experiments, mice lacking the NK1 receptor were observed to be less aggressive than

their wild‐type counterparts in the ‘‘resident–intruder’’ test.

To further explore the function of the human tachykinins and understand their potential role in a

variety of pathophysiological processes, the generation of genetic in vivo models of the human PPT‐A
and NK1 genes has been attempted. MacKenzie et al. (2000) have reported the production of a yeast

artificial chromosome (YAC) transgenic model that comprises the human PPT‐A gene (hPPT‐A) and can

drive appropriate expression of b‐galactosidase within the adult mouse brain (MacKenzie and Quinn,

2002). YAC constructs have a large cloning capacity (within the range of several hundreds of kilobases)

and may contain not only the coding region of a particular gene, but also the majority of regulatory

sequences that are required for correct transcription. It has been demonstrated that the hPPT‐A YAC

transgenic mouse is able to express SP/NKA in appropriate areas of the developing mouse brain, and

expression is observed in regions at significantly earlier time points than originally suggested from

conventional analysis such in situ hybridization. By crossing the hPPT‐A and hNK1 alleles onto the relevant

ablated genetic backgrounds, PPT‐A and NK1(�/�) are already available (De Felipe et al., 1998a, b;

Zimmer et al., 1998), and as such it should be possible to construct an animal that expresses only the

human genes. Such a ‘‘humanized’’ animal model would be a valuable tool for preclinical pharmacological

and behavioral studies.

The use of transgenic in vivo models to complement biochemical analyses has proven extremely

advantageous in the study of the role of the tachykinins in physiological conditions as well as in disease

states. Further, exploiting the possibilities that these models can offer will undoubtedly assist future

advances in our understanding of the function of the tachykinins. However, one should be careful to

extrapolate too much from experiments done on only one mouse strain as dramatic differences have been

observed in tachykinin function in the lung in the response to virus infection depending on the strain of

mouse used (Payne et al., 2001).
6 Summary

The tachykinins are central to normal physiology and disease, both acting individually or in synergy with

other neurotransmitters. They are involved in a plethora of disease states or conditions. The tachykinin

receptor antagonists have been tested or are currently being tested in clinical trials for a number of

conditions including depression, anxiety, pain, and cancer with limited success. Investigation of the

molecular and cellular regulation and function of these neuropeptides and their receptors will lead to

better strategies for clinical intervention. Further, analysis of emerging genomic information from clinical

analysis of polymorphisms associated with disease may dictate those populations at risk that would be

more amenable to therapeutic targeting of the tachykinins. We look forward to these research‐defining
mechanisms central to neural transmission in general and also for better therapeutic strategies.
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Abstract: Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide

(PACAP) are important members of the secretin superfamily, specialized to function in the central and

peripheral nervous systems. While the initial discovery of VIP as a vasoactive peptide revealed much if not

all about its physiological role as a slow transmitter neuropeptide, PACAP’s discovery as a putative

hypophysiotropic hormone was initially misleading in terms of its far more ubiquitous and more physio-

logically important role as a neuropeptide cotransmitter similar to VIP. VIP and PACAP also function at

‘‘neuroimmunological synapses’’ upon release from nerve terminals, and perhaps also upon production in

immunocytes. Thus, these two peptides have been implicated genetically, physiologically, and pharmaco-

logically, in endocrine regulation, pain modulation, spatial memory, glucohomeostasis, arthritic inflam-

mation, sepsis defense responses, respiratory control, circadian regulation, intermediary metabolism, and

coordination of hormonal and cardiovascular control. Finally, along with their cognate receptors PAC1,

VPAC1, and VPAC2, VIP and PACAP form an autoregulatory network that may function in cell differenti-

ation, proliferation, and transformation.

List of Abbreviations: AC, adenylate cyclase; ACh, acetylcholine; ACTH, adrenocorticotropic hormone;

BALT, bronchus‐associated lymphoid tissue; CPE/H, carboxypeptidase E/H; FSH, follicle‐stimulating

hormone; GALT, gut‐associated lymphoid tissue; GH, growth hormone; GIP, glucose‐dependent insulino-
tropic polypeptide; GLUC, glucagon; GLP‐1,‐2, glucagon‐like peptide‐1,‐2; GPCR, G‐protein‐coupled
receptor; GRF, growth hormone‐releasing factor; LDCVs, large dense core vesicles; LH, luteinizing hor-

mone; LH‐RH, luteinizing hormone‐releasing hormone; MALT, mucosa‐associated lymphoid tissue;

PACAP, pituitary adenylate cyclase activating polypeptide; PAM, peptide glycine alpha‐amidating mono-

oxygenase; PC, prohormone convertase; PHM/PHI, peptide histidine methionine/peptide histidine isoleu-

cine; PRL, prolactin; PRP, PACAP‐related peptide; SCN, suprachiasmatic nucleus; SEC, secretin; SOM,

somatostatin; SSVs, small synaptic vesicles; TSH, thyroid‐stimulating hormone; TRH, thyrotropin‐releas-
ing hormone; VIP, vasoactive intestinal polypeptide; VSCC, voltage‐sensitive calcium channel
1 Introduction

VIP and PACAP are two members of a neuropeptide superfamily that also includes secretin, growth

hormone releasing factor glucagon, and glucagon‐like peptides (Sherwood et al., 2000). Secretin was the

first member of this family to be isolated and characterized and in fact holds the distinction of being the first

hormone ever discovered, confirming Starling’s hypothesis that factors released from neuroendocrine cells

into the bloodstream might act at a distance (hence hormone) in organismic homeostasis (Henriksen and

de Muckadell, 2000). The structure of secretin was not established until 1960. In the thirty years following,

the other members of the family, their receptors, and functions were sequentially established. The discovery

of PACAP in 1989 by Akira Arimura and coworkers, was a key event (Arimura, 1992) in completing a

picture not only of the superfamily, but also of a special relationship, biochemical, anatomical, and

functional, between PACAP and VIP (Waschek, 1995; Arimura, 1998; Vaudry et al., 2000).

This chapter focuses on VIP and PACAP and their receptors, and the special challenges of discerning

neuropeptide function, when two ligands share overlapping specificity for three receptors, in the regulation

of cell proliferation, differentiation, endocrine function, and synaptic signaling. The roles of PACAP and

VIP highlight the features of neuropeptides as both neuroendocrine hormones and slow transmitters in the

central and peripheral nervous systems, and the special role of neuropeptides and their G‐protein‐coupled
receptors (GPCRs) in the metazoan genome, mediating paraphysiological homeostasis, and therefore

adaptation to new environmental opportunities for speciation. The functional diversity brought about by

alternatively spliced receptor variants and alternatively processed neuropeptide congeners contributes

critically to the evolutionary and organismic flexibility of these signaling dyads, as illustrated for VIP and

PACAP and their receptors.
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2 The Secretin Superfamily: Paradigm for Neuropeptide Expression and
Diversity; Processing, Secretion, and Receptor Signaling

2.1 Evolution and Divergence of the Secretin Superfamily

The secretin superfamily consists of nine functionally active peptides, encoded on six separate genes in

mammals (> Figure 21-1). PACAP, GRF, GIP, and SEC are singly encoded on four separate mammalian

genes. VIP and PHM/PHI (C‐terminal amino acid is methionine in humans; isoleucine in other mamma-

lian species) are encoded on separate exons of the same gene. In addition, an extended form of PHM (PHV‐
42; HADGVFTSDFSKLLGQLSAKKYLESLMGKRVSSNISEDPVPV) has been identified in human serum

and tissue (Yiangou et al., 1987a, b), and a putative PHI/PHV receptor characterized in the goldfish (Tse

et al., 2002). Glucagon (GLUC) and glucagon‐like peptide‐1, and ‐2 (GLP‐1 and GLP‐2) are encoded on

separate exons of a single gene (Sherwood et al., 2000). It is hypothesized that the entire family arose from

multiple duplications of a single primordial PACAP/GRF gene. The modern mammalian PACAP gene also

contains an exon encoding a peptide called PACAP‐related peptide (PRP) processed like other family

members, and with a homologous sequence, but PRP has no known biological activities or receptor

(> Figure 21-1). This peptide is found, mainly in fully processed form, at levels as high as that of

PACAP‐27 in PACAPergic hypothalamic neurons (Hannibal et al., 1995).

The nine secretin superfamily peptides vary in length from 27 to 44 amino acids. Receptor specificity

and affinity of all nine peptides is found within the N‐terminal 27 amino acids or so. This is illustrated

clearly for PACAP, existing in two forms differing only in an 11‐amino‐acid C‐terminal extension; there are

no critical bioactivities or receptor subspecificities that distinguish PACAP‐27 from PACAP‐38, though
there are some potency differences between them with PACAP‐38 generally being more potent at all PACAP

receptors than PACAP‐27.
2.2 Prohormone Processing in the Secretin Superfamily

As indicated in > Figure 21-2 for PACAP and VIP processing, neuropeptides are synthesized from

preprohormones. These in general have a structure that consists of an N‐terminal signal sequence cleaved

in the rough endoplasmic reticulum during translation, and the remaining prohormone, from which the

biologically active peptide is freed by proteolytic cleavage (processing) at single and paired basic amino acid

residues. Prohormone processing occurs through the sequential action of furin‐like endoproteases of the
prohormone convertase (PC) family, acting at C‐terminal peptide bonds at basic residues. Processing to

mature neuropeptides is completed by carboxypeptidase cleavage of single basic residues from the carboxy

terminus of the nascent protein (Eiden, 1987; Seidah et al., 1999). In most cases neuropeptide synthesis

concludes with the generation of a mature C‐terminal amidated peptide via cleavage of a C‐terminal

glycine, with donation of the glycyl peptide bond amine to the residue which becomes amidated and forms

the C‐terminal residue of the active peptide under the action of the enzyme complex peptide glycine alpha‐
amidating monooxygenase (PAM) (Eipper et al., 1983).

The importance of secretory peptidomics—accounting for the precise complement of posttranslation-

ally modified secretory products of a given cell type and their presence in the circulation at a given time—is

underscored by the array of cell‐specific processing products that exist for a given neuropeptide precursor,

as well as their differential biological activities. This is most dramatically illustrated for chromogranin A, the

most abundant secretory product of mammalian neuroendocrine cells, which exists in tissue and in the

circulation in myriad bioactive and precursor forms (Feldman and Eiden, 2003). VIP is likewise secreted

from pheochromocytomas, from which its cDNAwas originally cloned, in both processed and unprocessed

forms and at different secretory rates, which closely correlates with gastrointestinal symptomatology

(Bloom et al., 1983, 1988). Differential processing of PACAP also occurs; PACAP exists in neuronal tissue

in both a 27‐and 38‐amino‐acid processed form, with PACAP‐38 in about a tenfold greater abundance in

most but not all tissues (Arimura et al., 1991).



. Figure 21-1

Hypothesized evolution of the secretin superfamily from an ancestral gene
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2.3 Slow Transmission at VIPergic and PACAPergic Synapses

Neuropeptides are biologically active oligo‐ or polypeptides processed from larger prohormone precursors,

which are contained in and released from neurons and in some cases also from neuroendocrine cells.

Neuropeptides including VIP and PACAP are stored in and released from large dense core vesicles (LDCVs)

in neuronal and neuroendocrine cells. This is in contrast to release of classical neurotransmitters such as
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glutamate and acetylcholine (ACh) from small synaptic vesicles (SSVs). Secretion from LDCVs and SSVs

while having much in common, are regulated with distinctly different kinetics and using different types of

regulatory proteins (see Eiden, 2003). Postsynaptically, neuropeptides in general interact with type II

GPCRs (Gudermann et al., 1997) that are coupled to an array of downstream enzymes including adenylate

cyclase (AC) and phospolipases C and D, to produce so called metabotropic effects.

These pre‐ and postsynaptic features mean that neuropeptides do not mediate fast neurotransmission,

responsible for simple point‐to‐point information transfer across the synapse as typified by ionotropic

receptor signaling, but rather complex time‐delayed signaling affecting long‐term cellular programs and

encoding of cellular and synaptic experience—so‐called slow neurotransmission (Greengard, 2001). This

aspect of neuropeptide signaling accounts in large part for the ability of neuropeptides such as PACAP to

support sustained functioning of synapses whose primary functions are carried by fast neurotransmitters

such as ACh and glutamate. It should also be noted that even neuropeptide effects on ion channels,

described for PACAP in this chapter, are metabotropic in that they are carried out not by direct ligand

gating of calcium and general cation channels, but indirectly, presumably through G protein coupling and

protein phosphorylation (Neves et al., 2002), and possibly other mechanisms not yet elucidated.
3 VIP and PACAP: Closely Related Species Within the Secretin Superfamily

3.1 VIP‐28 and PACAP‐27 and ‐38: Discovery, Distribution, and Function

VIP and PACAP are the most closely related members of the secretin superfamily with respect to primary

amino acid sequence. By virtue of their complementary distributions in the central and peripheral nervous

systems and their sharing of at least two separate GPCRs, VIP and PACAP and their receptors represent a

unique ‘‘redundant network’’ for neuronal, neuroendocrine, and neuroimmune signaling.

VIP was isolated from intestinal extracts in 1970 (Said and Mutt, 1970), and as its name implies is a

potent vasodilator. VIP is found peripherally in the enteric nervous system, in postganglionic cholinergic

neurons of the parasympathetic nervous system and in the specialized cholinergic sympathetic innervation

of sweat glands (Tyrrell and Landis, 1994). VIP is also reported to be present in sympathetic innervation of

the periosteum (Asmus et al., 2000; Cherruau et al., 2003). The highest concentrations of VIP in the central

nervous system are found in cerebral cortex, hippocampus, amygdala, and hypothalamus (Loren et al.,

1979). Cortical VIPergic neurons are intrinsic and also express ACh (Eckenstein and Baughman, 1984).

Hippocampal VIPergic neurons are neither granule nor pyramidal cells—they are intrinsic neurons of

heterogeneous morphology (Loren et al., 1979). A major pepidergic pathway, which contains neurotensin

as well as VIP (Uhl and Snyder, 1979) projects from amygdala to hypothalamus via the stria terminalis

(Sims et al., 1980). The dorsal bed nucleus of the stria terminalis contains the highest levels of VIP found

anywhere in the brain and appears to integrate input from a long ascending pathway from the mesenceph-

alon, a ventral amygdalofugal pathway, and a central amygdalofugal pathway via the stria terminalis (Eiden

et al., 1985). Finally, the suprachiasmatic nucleus is richly and intrinsically innervated by VIPergic cells

(Sims et al., 1980), and VIP as well as PACAP release play a major role in circadian regulation at this site

(vide infra).

In a classic study, Lundberg and coworkers demonstrated that VIP costored with ACh in parasympa-

thetic nerves innervating the pancreas potentiates the effects of ACh on pancreatic zymogen secretion by

increasing vasodilation in conjunction with the primary secretory effects of ACh (Lundberg et al., 1980).

VIP was found to act on a GPCR to activate adenylate cyclase not only in liver and pancreas but also in the

brain (Deschodt‐Lanckman et al., 1977), to be present at high levels in both brain and gut (Bryant et al.,

1976; Said and Rosenberg, 1976) and to be released from brain synaptosomes upon depolarization

(Giachetti et al., 1977). These observations, along with isolation and demonstration of VIP action upon

release in intestine, peripheral nerves, and brain (see Fahrenkrug, 1979 and references therein), served to

illustrate vividly that VIP should be considered not only a gut hormone, as previously, but also a

neurotransmitter, i.e. a neuropeptide.
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VIP may be released from the hypothalamus into the portal circulation to affect prolactin (PRL)

secretion, but sufficient evidence for VIP to play a major role in pituitary hormone secretion and for its

concentration in nerve terminals of the median eminence for it to be classified as a hypophysiotropic

hormone such as LHRH, TRH, SOM, GRF, or CRH, is lacking in rodents (Samson et al., 1979). VIP may be

more prominent in hypothalamohypophyseal regulation in primates (Samson et al., 1978). VIP is present in

the pituitary as well, but once again is unlikely to play a hormonal role upon release into the general

circulation, as GH, LH, FSH, TSH, PRL and ACTH do, but rather has a paracrine regulatory role within the

pituitary itself (Rostene, 1984).

VIP is typical of a subset of neuropeptides, including PACAP, that appear to lack a true physiological

hormone function in addition to their roles as paracrine and autocrine factors and as neurotransmitters.

Even in the gut, VIP is released mainly from a widely distributed nerve terminal network rather than from

neuroendocrine cells and appears to act locally rather than being carried in the circulation to distant sites of

action, as are true gut hormones. Although VIP is expressed in at least one major endocrine organ, the

adrenal medulla (Hökfelt et al., 1981; Holzwarth, 1984; Waschek et al., 1987), and released from chromaffin

cells (Eiden et al., 1983), it appears to act locally on steroidogenesis in the adrenal cortex (Edwards and

Jones, 1993; Bornstein et al., 1996; Bodnar et al., 1997) rather than hormonally, like adrenomedullary

catecholamines. An exception is during the pathophysiological condition of watery diarrhea syndrome,

characterized by VIP release from pheochromocytoma tissue into the circulation to the gut, where

electrolyte, water, and bicarbonate secretion stimulated by VIP can cause electrolyte imbalance (Bloom

et al., 1983; Bloom et al., 1988).

Perhaps the most physiologically robust role of VIP in the nervous system is as a cotransmitter with

ACh in the postganglionic neurons of the parasympathetic nervous system, where VIP is an important

vasodilatory substance in cerebrovascular regulation (Duckles and Said, 1982) and at various target organs

including salivary glands (Uddman et al., 1980), male genitourinary tract (Willis et al., 1983), and exocrine

pancreas, at which ACh and VIP potentiate each other’s actions as primary secretagogue and local

vasodilator, respectively (Lundberg et al., 1980).

PACAP, as its name implies, was discovered as part of a comprehensive screen of hypothalamic

extracts for peptides capable of stimulating AC activity in anterior pituitary cells, and thus was likely

to be a hypophysiotropic hormone (Miyata et al., 1989). Indeed PACAP potently releases four of the

six pituitary hormones in perifused pituitary experiments, albeit its role in endocrine regulation at the level

of the pituitary is clearly less dominant than those of ACTH, LHRH, TRH, CRF, dopamine, or

SOM (Arimura, 1998; Sherwood et al., 2000). PACAP‐27 and PACAP‐38 do not appear to have unique

signaling properties apart from one another at the mamalian PAC1, VPAC1 and VPAC2 receptors

(see >Table 21-2, and references therein). Differences may be present in nonmammalian species,

including those in which PACAP‐27 rather than PACAP‐38 is the dominant transmitter (Somogyvari‐
Vigh et al., 2000).

The distribution of VIP and PACAP differ in important respects in both the central and peripheral

nervous systems, and in some cases are neuroanatomically and functionally complementary. Neither VIP

nor PACAP are prominent neuropeptides of the basal ganglia, with the exception that the substantia nigra

seems to be richly innervated by PACAPergic but not VIPergic terminals (Ghatei et al., 1993). PACAP levels

in cerebral cortex are relatively low compared with VIP, while PACAP levels (nerve terminals) are high in

cerebellar cortex, in which VIP is found only at very low concentrations (Arimura et al., 1991; Masuo et al.,

1994). PACAP levels are high in thalamus and nucleus accumbens, while VIP levels are not (Arimura et al.,

1991; Masuo et al., 1994). Common sites of VIP and PACAP expression include the suprachiasmatic

nucleus (SCN) of the hypothalamus (VIP in intrinsic neurons, PACAPergic fibers innervating the nucleus)

(Sims et al., 1980; Kim et al., 2000) and retina (VIP in amacrine and PACAP in retinal ganglion

cells) (Koves et al., 2000 and references therein). PACAP levels appear to be higher than VIP levels in

hypothalamus, except in SCN. However, caution about drawing conclusions about the roles of either

peptide, for example, as a hypophysiotropic hormone in hypothalamus based on immunochemical results

must be exercised for two reasons: first, earlier studies of VIP distribution may have inadvertently reported

PACAP‐cross‐reacting immunoreactivity and second, there are sharp species differences in the abundance
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and distribution of neuropeptides in general (Elde et al., 1980) and PACAP/VIP in particular (Samson et al.,

1978), in the median eminence of the hypothalamus.

In the autonomic nervous system, VIP and PACAP distributions are again complementary. There seems

to be a consensus that PACAP is contained in sensory neurons and preganglionic neurons of the sympa-

thetic and parasympathetic nervous systems (Moller et al., 1993; Mulder et al., 1994, 1999; Sundler et al.,

1996; Nielsen et al., 1997, 1998; Beaudet et al., 1998; Hamelink et al., 2002b), while VIP, but not PACAP, is

a neurotransmitter of both sympathetic (e.g. sudomotor) and parasympathetic postganglionic cholinergic

neurons (Fahrenkrug, 1979; Goyal et al., 1980; Holzwarth, 1984; Habecker et al., 1997; Klimaschewski,

1997). The fact that PACAP is strongly upregulated in postganglionic sympathetic neurons by denervation

and inflammation may explain discrepancies concerning its presence in, or absence from, postganglionic

sympathetic neurons in vivo (Moller et al., 1997; Beaudet et al., 1998, 2000; Mohney and Zigmond, 1998;

Zhang et al., 1998; Mulder et al., 1999; Zhou et al., 1999b; DiCicco‐Bloom et al., 2000; Zigmond, 2000;

Girard et al., 2002). Sentence on VIP in sensory neurons.

A mention of VIPergic and PACAPergic innervation of the gut is necessary, since VIP is the ‘‘index’’ gut

neuropeptide and exemplifies in this tissue the importance of species‐specific neuropeptide neuroanatomy.

First discovered as a gut paracrine factor (Said and Mutt, 1970), VIP is released from postganglionic

parasympathetics (also containing ACh) and from the so‐called NANC (nonadrenergic/noncholinergic)

innervation of the enteric nervous system (Burnstock et al., 1979; Goyal et al., 1980; Schemann et al., 1995;

Bennett, 1997). PACAP is likely contained only in efferent sensory neurons in gut. The extent of NANC

innervation in gut may differ among species. In human, it appears that very few VIPergic fibers are actually

noncholinergic (Anlauf et al., 2003), although in rodent the percentage of VIPergic NANC transmission

(i.e. VIPergic neurons lacking ACh as a transmitter) may be considerably higher. As far as neuropeptides

and NANC transmission are concerned, the emphasis on whether or not a classical neurotransmitter is

stored in some, most, or all of these neurons may be less important than the fact that VIP is a unique

inhibitory neurotransmitter/paracrine factor in the gut regardless of its corelease with ACh or other classical

neurotransmitters. VIP and ACh are released from LDCVs and SSVs, within the same neurons, preferen-

tially by high‐ and low‐frequency stimulation, respectively (Agoston et al., 1988). The differential regulation

of secretion of classical and neuropeptide transmitters underscores that whether released from the same or

different neurons in the gut and elsewhere, VIP and PACAP are unique slow neurotransmitters throughout

the nervous and neuroendocrine systems (see Sect. 1.4).
3.2 PAC1, VPAC1, and VPAC2: General Features of a VIP/PACAP
Receptor Family

The pharmacology, structure, and properties of the three receptors recognizing PACAP and VIP are

described in Sect. 4. We note some overall features of the receptors here. PAC1, VPAC1, and VPAC2 are a

family of type II (secretin‐type) GPCRs, which are thought to have arisen through a primordial gene

duplication followed by a second duplication yielding the PAC1 and VPAC1 genes, with VPAC2 arising

initially from the first duplication of the primordial gene (Chow et al., 2003). Since VIP and PACAP are

structurally very similar and have overlapping receptor specificities, it can be difficult to predict the

physiological or pharmacological effects of these peptides, without a detailed knowledge of their receptors

expressed in a given tissue. Macrophages, SCN, cerebellum, hippocampus, and other target nuclei and

tissues contain combinations of PAC1, VPAC1, and VPAC2 receptors, often in a species‐specific pattern,
as described in detail in other sections of this chapter (and see Vaudry et al., 2000 for general review of

PACAP/VIP receptor distributions and functions). Splice variants of the receptors, PAC1 in particular, can

alter both ligand specificity with respect to VIP and PACAP, and the second messenger systems to which the

receptor is coupled. Finally, receptor coupling to second messenger systems can be cell‐type specific

(Hamelink et al., 2002a) and altered by costimulation with other peptide neurotrophins (Lelievre et al.,

2002), and VIP and PACAP can modulate each other’s expression and the expression of their receptors

(Lelièvre et al., 1996; Waschek, 1996; Waschek et al., 1997).
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3.3 Overview of Functional Interrelationships of VIP and PACAP

VIP and PACAP are interdependent neuropeptides. Their distributions are unique, but highly overlapping.

In the SCN, adrenal medulla, sympathetic and parasympathetic nervous systems, PACAP is usually

‘‘presynaptic’’ to VIP, i.e. acts to regulate VIP expression and secretion in a postsynaptic neuron or

neuroendocrine cell. VIP and PACAP can also be coexpressed in cell types that generally express only one

or the other of the two peptides, under certain conditions. Thus, coexpression of VIP and PACAP occurs in

pineal innervation from the trigeminal ganglion (Moller and Baeres, 2003), although generally PACAP and

not VIP is expressed in subpopulations of sensory ganglia and nerve terminals (Moller et al., 1993; Mulder

et al., 1994; Sundler et al., 1996) unless after inflammation or nerve damage (Nielsch and Keen, 1989; Nahin

et al., 1994). PACAP and VIP are expressed in principal sympathetic ganglion cells after axotomy and during

development (Sun et al., 1994; Moller et al., 1997; Zigmond and Sun, 1997), although generally only VIP is

expressed in specific (cholinergic) subpopulations of principal ganglion cells and nerve terminals in adult

mammals (Morales et al., 1995). PACAP is expressed in motor neurons, but only after neuronal injury

(Zhou et al., 1999b). VIP but not PACAP is expressed in adrenomedullary chromaffin cells, although some

cells express PACAP following splanchnic denervation (Holgert et al., 1996).
3.4 PACAP‐like Peptides in Nonmammalian Species: Amnesiac and Maxadilan

An interesting feature of VIP/PACAP receptor recognition is the apparently independent evolution of

peptides in sand flies and fruit flies that, while having little homology to PACAP, recognize its receptor.

Maxadilan (CDATCQFRKAIDDCQKQAHHSNVLQTSVQTTATFTSMDTSQLPGNSVFKECMKQKKEF-

KAGK) is a potent vasodilator secreted by the sand fly. Although its primary amino acid sequence has

little homology to PACAP, it is a potent agonist at the mammalian PAC1 receptor (Tatsuno et al., 2001). The

Drosophila amnesiac mutant exhibits memory deficits and ras‐ and cAMP‐signaling deficits. Mammalian

PACAP can act on a GPCR on fly muscle cells at which the putative neuropeptide encoded at the amnesiac

locus is hypothesized to act (Zhong, 1995). The presumed amnesiac prohormone is deduced to

be MLWRCTAYYCFTLFFLLFRASALRRRVVSGSKGSAALALCRQFEQLSASRRERAEECRTTQLRYHYHR-

NGAQSRSLCAAVLCCKRSYIPRPNFSCFSLVFPVGQRFAAARTRFGPTLVASWPLCNDSETKVLTKWPSC-

SLIGRRSVPRGQPKFSRENPRALSPSLLGEMR, with the putative processed peptide E‐29‐C (underlined

above) the most homologous to PACAP (Feany and Quinn, 1995).
4 Physiology and Paraphysiology of PACAP and VIP

4.1 Overview of Determining Peptide Function from Knockouts and
Pharmacology: The Role of VIP and PACAP in Development and
Differentiation

Perhaps no neuropeptide functional studies are more fraught with conceptual and methodological diffi-

culties than those in which peptide involvement in organismic development and cellular differentiation are

concerned. Whether the endogenous peptide is implicated through pharmacological studies, including

passive immunization, or through loss‐of‐function in ligand or receptor knockout mice or other organisms,

it can be difficult to know what aspects of development cell culture models are actually addressing, whether

the peptide is acting as an autocrine or paracrine factor, hormone, or neurotransmitter, or whether its

action in an isolated system is predictive of a discrete loss‐of‐function in vivo, or merely an alteration in the

statistical probability that a particular developmental step will proceed successfully or go awry.

VIP was one of the first neuropeptides demonstrated to have neurotrophic, or neuron survival

enhancing properties on central nervous system neurons during development. Early suggestions that VIP

is important in development include the demonstration that there is an electrical activity‐dependent
influence of VIP on the survival of developing spinal cord neurons in culture (Brenneman and Eiden,
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1986). This culminated in the discovery of the glial‐derived activity‐dependent neurotrophic factor released
from glial cells by neuronally released VIP (Brenneman et al., 1987). Numerous subsequent experiments in

cultured central and peripheral neuronal preparations (see Waschek, 1995 and references therein) have lead

to the proposal that VIP may be a critical regulator of neuronal development, albeit definitive proof of this,

reflected in developmental impairments of VIP‐deficient mice, is lacking. One of the most dramatic

experiments implicating VIP in development was the observation by Gressens et al. that the growth of

postimplantation mouse embryos in culture is retarded by treatment with VIP antagonist and accelerated by

provision of VIP in culture medium (Gressens et al., 1993). However, it has proven difficult to find standard

conditions in which the effects of VIP in this assay can be easily observed and assessed (Sheward et al., 1998).

PACAP and VIP have been implicated in both central (cortical) and peripheral (sympathetic) neurogen-

esis, and in neuronal survival, based on pharmacological, physiological, and cell culture studies (DiCicco‐
Bloom et al., 1998, 2000). PACAP receptors are expressed early in development, consistent with involvement

in neural tube closure (Waschek et al., 1998; Zhou et al., 1999a). PACAP and PAC1 receptors are expressed in

the developing cerebellum and have a pronounced effect on neurogenesis in the inner granule layer of the

cerebellum (Basille et al., 1993; Gonzalez et al., 1996; Vaudry et al., 1999). There is strong circumstantial

evidence of a role for PACAP in the development of the nervous system. However, it remains problematic

that severe developmental impairment consistent with an important role in central and peripheral neuro-

genesis, survival, and differentiation has not been reported in either PACAP‐ or VIP‐deficient mice

(Hashimoto et al., 2001; Gray et al., 2002; Hamelink et al., 2002b; Colwell et al., 2003; Vaudry et al., 2005).
4.2 Adrenomedullary Transmission and Glucohomeostasis

The adrenomedullary synapse is a physiologically and conceptually importantmodel synapse for the study of

neuropeptide slow transmission in the nervous system. In particular, it illustrates several key caveats in

understanding the neuroanatomy, physiology, and neurochemistry of neuropeptide signaling carried out in

an interrelated way by neuropeptide ‘‘family members.’’ Assignment of synaptic function to individual

neuropeptides requires not only that they exert a postsynaptic effect when administered exogenously but also

that they are present neuroanatomically at the synapse of interest. This can be experimentally difficult, as it

requires identifying immunological reagents that reliably distinguish between closely related family mem-

bers. The evidence that PACAP is an adrenomedullary neurotransmitter has been recently reviewed

(Hamelink et al., 2003). Here, the coordinate roles of PACAP and VIP in adrenal regulation are emphasized.

It was initially reported that VIP caused the pharmacological stimulation of catecholamine release from

the adrenal medulla and that VIP was present in preganglionic nerve terminals of the adrenal medulla

(Holzwarth, 1984; Edwards and Jones, 1993). Later, the discovery of PACAP prompted the examination of

its effects on adrenomedullary secretion, and PACAP was found to be a more potent secretagogue than VIP

(Watanabe et al., 1992; Edwards and Jones, 1994; Hahm et al., 1998), consistent with the presence of PAC1

in greater abundance than VPAC1 or VPAC2 on chromaffin cells of most species (Shivers et al., 1991;

Babinski et al., 1996; Przywara et al., 1996; Tanaka et al., 1996b; Hahm et al., 1998; Mazzocchi et al., 2002).

Initial immunohistochemical evidence suggested that PACAP innervation of the adrenal medulla was

primarily sensory (Dun et al., 1996). However, antibodies against PACAP‐38 validated for specificity by

immunohistochemical analysis in wild‐type versus PACAP knockout mice have established that virtually all

of the PACAPergic innervation of the adrenal medulla is also cholinergic (Hamelink et al., 2002b), and thus

ACh and PACAP are cotransmitters at the adrenomedullary synapse. Although some details remain to be

filled in, the current neuroanatomical picture throughout the autonomic nervous systemwith respect to the

expression of PACAP and VIP is that VIP is expressed in postganglionic parasympathetic neurons as well as

the small population of postganglionic sympathetic neurons that are also cholinergic. VIP is absent,

contrary to initial reports, from autonomic preganglionic neurons under most circumstances. PACAP is

expressed in essentially all preganglionic autonomic neurons, in a subpopulation of sensory neurons, and

might also be expressed in some postganglionic parasympathetic neurons and, in more specialized

circumstances, in postganglionic sympathetic neurons as well, but these instances are likely to be dependent

on para‐ or pathophysiological events and may also be species dependent (Zigmond, 2000).
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The presence of a noncholinergic component to adrenomedullary transmission, the functional role of

PACAP in maintaining catecholamine stores in the adrenal medulla by activation of tyrosine hydroxylase,

and the lethal effect of insulin challenge on PACAP‐deficient mice, rescuable with glucose, PACAP, or

catecholamines, establishes that PACAP is a neuropeptide neurotransmitter at the adrenomedullary synapse

(Wakade, 1988; Hamelink et al., 2002b, 2003). A recent report suggests that PC12 rat pheochromocytoma

cells contain in addition to PAC1 receptors, receptors for secretin that can regulate chromogranin A gene

transcription (Mahapatra et al., 2003). Characterization of secretin receptors on chromaffin cells, or

visualization of endogenous secretin in splanchnic innervation of the adrenal medulla in any mammalian

species, however, has not yet been reported, although the secretion preferring VPAC1 is expressed in rat

adrenal medulla (Usdin et al., 1994).

The postsynaptic role of PACAP as an adrenomedullary slow transmitter appears to be threefold. First,

PACAP affects the secretion of both catecholamines and neuropeptides present in the adrenal medulla of

mouse, rat, and cow in culture and in vivo (Watanabe et al., 1992; Isobe et al., 1993; Edwards and Jones,

1994; Babinski et al., 1996; Geng et al., 1997; Hahm et al., 1998; Lamouche et al., 1999; Inoue et al., 2000;

Hamelink et al., 2002b). Second, PACAP upregulates catecholamine biosynthesis both in culture and in vivo

(Haycock, 1996; Hamelink et al., 2002b) by phosphorylation‐dependent activation of tyrosine hydroxylase,

the rate‐limiting enzyme for catecholamine biosynthesis, and upregulates neuropeptide biosynthesis both

in culture and in vivo (Babinski et al., 1996; Hahm et al., 1998; C Hamelink, personal communication). By

stimulating the biosynthesis of stored secretory materials that already exist in chromaffin cells, PACAP

signaling assures that secretion is not exhausted by long‐term secretory episodes during prolonged

metabolic, psychogenic, or environmental stress, thus contributing to so‐called stimulus‐secretion‐synthesis
coupling at this synapse (Eiden et al., 1984). Finally, PACAP transmission at the adrenomedullary synapse

stimulates the expression and release of neuropeptides that are present usually at only very low levels in

chromaffin cells, i.e., under ‘‘nonemergency’’ conditions. Two examples in the mouse adrenal gland are

galanin and VIP. Upregulation of mRNA encoding these neuropeptides, both very low under normal

physiological conditions, occurs during hypoglycemia induced by insulin administration which causes

prolonged splanchnic nerve firing and ACh and PACAP release, and is dependent on the presence of PACAP

at this synapse (C. Hamelink, personal communication). VIP biosynthesis is also controlled by PACAP in

bovine chromaffin cells in primary culture and depends on both calcium and cAMP (Hahm et al., 1998;

Hamelink et al., 2002a), as does PACAP‐induced catecholamine release from perfused rat adrenal medulla

(Przywara et al., 1996), also mediated through PAC1 receptors.

The regulation of VIP biosynthesis in the adrenal medulla by presynaptic PACAP release appears to

be physiologically specific. Thus, VIP is released as a hormone from chromaffin cells only during the

pathophysiological events of pheochromocytoma, when chromaffin cells are not under synaptic control.

Under normal physiological circumstances, the cellular plasticity driven by PACAP to control VIP biosyn-

thesis probably functions mainly to allow VIP to act as a neurotransmitter or paracrine regulator of

glucocorticoid biosynthesis in the adrenal cortex (Bornstein et al., 1996). Thus, glucohomeostasis is

regulated by both PACAP and VIP, in series, in this important endocrine gland.
4.3 Light Sensing and Circadian Regulation

Besides the cerebral cortex, the highest levels of VIP in the brain are contained in the SCN, the location of

the mammalian brain circadian pacemaker. Similar to their innervation in the adrenal gland, PACAPergic

terminals innervate VIP‐containing cells of the SCN. These terminals constitute a subpopulation of the

glutamate‐containing retinohypothalamic ganglion cells that are afferent to the SCN from the retina, and

contain the photopigment melanopsin (Hannibal et al., 2002). The role of PACAP in this circuit is to

enhance the ability of glutamate neurotransmission to relay a light‐induced phase delay in early night, and

block the ability of glutamate neurotransmission to relay a light‐induced phase advance in late night, to the

circadian clock of the SCN (Chen et al., 1999). These results imply that PACAP exists in this circuit to

provide a more highly adaptive coupling between environmental changes in light and circadian function.

VIP is contained within the SCN pacemaker cells themselves (Koves et al., 2000) and appears to coordinate
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communication between these cells to synchronize the SCN as a circadian pacemaker nucleus that responds

as a unit to altered input from the retinohypothalamic tract, and conveys output to the pineal and other

targets (Colwell et al., 2003; Aton et al., 2005).

The ability of VIP‐ and PACAP‐deficient mice, as well as those deficient in PAC1, VPAC1, or VPAC2

receptors, to phenocopy the effects of specific PAC1, VPAC1, and VPAC2 receptor blockade in circadian

rhythmicity, has been examined by several laboratories. VPAC2 knockoutmice are impaired inmaintenance of

SCN circadian rhythmicity and in response to exogenous VIP in slices of the SCN in culture (Harmar et al.,

2002; Cutler et al., 2003). The inability of VPAC2 knockout mice and VIP‐deficient mice (Colwell et al., 2003;

Itri et al., 2004; Aton et al., 2005) to exhibit circadian rhythmicity in the SCN is consistentwith a critical role for

VIP within the SCN, and its action on SCN cells, for maintenance of a coherent rhythmwithin this cell group.

There is likewise a relatively strong correspondence between PAC1‐ and PACAP‐deficient mice in failing

to exhibit the full scale of adaptive responses to changes in photic input through the retinohypothalamic tract

to the SCN (Colwell and Waschek, 2001; Hannibal et al., 2001; Colwell et al., 2004; Lindberg et al., 2004).
4.4 Inflammatory and Immune Function

Receptors for a variety of neuropeptides are present on lymphocytes and macrophages; and lymph nodes,

thymus, spleen, and lymphoid tissues are all richly endowed with neuropeptide‐positive nerve fibers (Weihe

et al., 1991). Pharmacologically, neuropeptides can affect adherence, mobility, activation, proliferation, and

apoptosis of immune cells ex vivo, and their roles in specific aspects of innate and acquired immunity

in vivo are still not completely clear (Jessop, 2002). One reason for this is the inherent complexity of the

cellular and humoral immune responses that occur in mobile rather than sessile cells and involve the rapid

formation and dissolution of ‘‘immune synapses’’, and that the actual neuroanatomical depots from which

neuropeptides are released to affect immune‐inflammatory function are still anatomically undefined. Some

neuropeptides may be elaborated within immunocytes themselves. Endogenous neuronal neuropeptide

secretion at discrete sites such as thymus, spleen, bronchus‐associated lymphoid tissue (BALT), gut‐
associated lymphoid tissue (GALT), bone marrow, and tissue sites of injury and inflammation to which

inflammatory and immune cells migrate, may also mediate VIP/PACAP signaling to macrophages and

lymphocytes during immune and inflammation responses.

VIP and PACAP are both functionally implicated in lymphocyte maturation, antiinflammatory action

in sepsis, and balance between proliferation of type 1 and type 2 helper T cells during infection (Voice et al.,

2002; Delgado et al., 2003). The relevance of VIP/PACAP immune signaling in these conditions is evident in

the protection from lethality afforded by treatment with either peptide during LPS‐induced septic shock in

both rats and mice; decreased erosion of bone and cartilage upon VIP/PACAP treatment in collagen‐
induced arthritis in rodents; protection against intestinal inflammation by VIP in early, acute, and chronic

TNBS‐induced colitis; and in boosting of TH2 memory cell survival in vivo (Delgado et al., 2003, 2004).

Complete characterization of the various effects of PACAP and VIP on distinct compartments within the

immune/inflammatory response system and on production of endogenous VIP/PACAP themselves at sites

of immune activation may ultimately lead to the development of receptor‐specific therapeutic VIP/

PACAPergic ligands as treatments for septic shock, rheumatoid arthritis, and Crohn’s disease. VIP has

been suggested as a treatment for bronchial asthma due to its beneficial effects on vasodilation via

stimulation of VPAC receptors in the lung (Berisha et al., 2002).

As depicted in >Table 21-2, VIP and PACAP act in an overlapping fashion at PAC1, VPAC1, and

VPAC2 receptors. They can in addition affect each other’s biosynthesis (Lelièvre et al., 1996; Waschek et al.,

1997; Armstrong et al., 2003). A clear picture of the site of release of these two neuropeptides from the

nervous system for communicating with immunoinflammatory cells in target tissues (i.e. the neuroim-

mune synapses at which VIP and PACAP act during early innate immune response leading to inflammation,

adaptive immunity in responses to bacterial and viral infection and stress, thymic development, and T‐cell
education), does not yet exist. Although primary and secondary lymphoid tissue is predominantly

innervated by the sympathetic nervous system (Elenkov et al., 2000), mucosal lymphoid tissue (MALT),

including BALT and GALT, is heavily innervated by the parasympathetic nervous system, which expresses
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VIP, and by sensory efferents which contain PACAP. Thus, according to current neuroanatomical informa-

tion, VIP and PACAP most likely exert their effects upon release from parasympathetic and sensory

neurons, respectively, in lymphoid organs and tissues. Rigorous reexamination of the peripheral neuro-

anatomy of VIP and PACAP in the mouse has not yet been carried out using antibodies validated for cross‐
reactivity in VIP‐ and PACAP‐deficient mice.

Delgado and Ganea have reported that VIP or PACAP treatment ameliorates LPS‐induced lethality

(septic shock) in rodents at nanomolar concentrations (Delgado et al., 1999a). VIP has similarly potent

effects on TH2 differentiation in vivo, as do VIP and PACAP on macrophage cytokine secretion in vitro. All

of these data suggest action through a VPAC1 or VPAC2 receptor, although there are no truly specific

antagonists to rule out the involvement of a PAC1 receptor variant with affinity for VIP in these processes.

Thus, it is unclear whether endogenous PACAP or VIP acts, and how, in any given immune response.

Recently, PAC1 receptor knockout mice have been employed to show that the PAC1 receptor is required for

some but not all of the effects of PACAP in protection from septic shock (Martinez et al., 2002; Martinez,

2005). Our own preliminary data involving LPS challenge of PACAP‐deficient mice (C. Hamelink and

Eiden, unpublished observations) suggest that endogenous PACAP is unlikely to act alone, i.e. in the

absence of VIP, to provide protection from sepsis, since the magnitude of exacerbation of lethality after LPS

challenge in PACAP‐deficient mice is less than the corresponding protection from LPS lethality provided by

treatment with either PACAP or VIP in vivo. Pharmacological analysis likewise suggests that the antiar-

thritic effects of VIP/PACAP are mediated through VPAC2 receptors (Delgado et al., 2001). VPAC2

receptors on T cells probably also mediate the shift toward TH2 activation during inflammation and

infection mediated by PACAP/VIP, since VPAC2‐deficient mice show defects in TH2 responses associated

with immediate‐type hypersensitivity (Goetzl et al., 2001), and specifically, impaired upregulation of the

TH2‐type transcription factors c‐Maf and JunB by VIP (Voice et al., 2004).
4.5 Neuroprotection in Stroke and other Ischemic Insult

PACAP was shown to have neuroprotective effects in stroke by Reglodi et al. in the rat middle cerebral artery

occlusion (MCAO) model (Reglodi et al., 2000). Chen et al. have extended this to the mouse, showing that

PACAP is active whether administered intracerebroventricularly or intravenously, and demonstrated using

PACAP‐deficient mice that neuroprotection is not only pharmacological but is a property of endogenous

PACAP as well (Chen et al., 2002). Neuroprotection by PACAP has also been documented after brain

injury, and circulatory impairment, and in reperfusion injury after brain and lung ischemia (Uchida et al.,

1996; Delgado et al., 1999b; Mizushima et al., 1999). PACAP prevents the ischemic death of rat CA1

neurons when given either intracerebroventricularly or intravenously in a model of transient global

ischemia, even if administration is delayed for 24 h after the ischemic event (Uchida et al., 1996).

Significantly, systemic administration of PACAP effectively reduced infarct volume in a rat model of focal

ischemia when administration was initiated 4 h after MCAO (Reglodi et al., 2000). The pharmacother-

apeutic potential of PACAP for treatment of so‐called ‘‘secondary neuronal injury’’ triggered by spreading

depression, glutamate excitotoxicity, and cytokine/inflammatory mediator‐induced neuronal injury in

stroke, brain trauma, and spinal cord injury is under consideration by several laboratories (Chen et al.,

2005). The neuroprotective effects of PACAP have been documented in several contexts including stroke

and ethanol toxicity (Vaudry et al., 2002a; Chen et al., 2004). Both BDNF and IL‐6 have been implicated as

mediators of PACAP‐induced neuroprotection in the central nervous system (Shioda et al., 1998; Frechilla

et al., 2001). PACAP has also been proposed to act indirectly through IL‐6 release from folliculostellate cells

in the pituitary to effect pituitary hormone synthesis and secretion (Tatsuno et al., 1991).
4.6 Learning, Memory, and Locomotion

As summarized in >Table 21-1, the involvement of PACAP and VIP in various centrally mediated

physiological responses and behaviors is suggested not only by anatomical, physiological, and



. Table 21-1

PACAP, VIP, PAC1, and VPAC receptor knockouts and their phenotypes

Gene Knockout phenotype

PACAP(−/−) Cardiovascular

Heart Failure (Cummings et al., 2003), ↓Catecholamine secretion (Hamelink et al., 2002)

Nociception

↓Inflammatory pain response (Mabuchi et al., 2004)

Behavior and Cognition

↑Psychomotor behavior, ↓ Anxiety and fear (Hashimoto et al., 2001)

↓ LTP (Matsuyama et al., 2003)

Reproduction ♀

↓ Fertility, ↓ Mating, ↓ Crouching (Shintani et al., 2002)

Circadian Function

↓ Sustaining of normal circadian rhythms (Colwell et al., 2003)

Feeding and Thermogenesis

↓ Carbohydrate intake and metabolism, ↓ Fat metabolism (Nakata et al., 2004, Gray et al., 2001)

↑Insulin induced hyperglycemia (Hamelink et al., 2002)

↑Body temperature loss (Gray et al., 2002)

PAC1(−/−) Cardiovascular

Heart failure, ↑Hypertension ↑Hypertrophy (Otto et al., 2004)

Nociception

↓ Visceral and Chronic pain response (Jongsma et al., 2001)

Behavior and Cognition

↓ Affiliative,↓ Social, ↓Psychomotor, ↓ Anxiety and fear (Nicot et al., 2004, Otto et al., 2001)

↓ LTP, ↓ Associative learning (Matsuyama et al., 2003, Otto et al., 2001)

Reproduction ♀

↓ Litter size (Jamen et al., 2000)

Circadian Function

↓ Sustaining of normal circadian rhythms, ↓ Clock gene expression (Hannibal et al., 2001)

Feeding

↓ Glucose stimulated insulin secretion (Jamen et al., 2002, Jamen et al., 2000)

Immunity

↑LPS shock and mortality, ↑ inflammation (Martinez et al., 2005, Martinez et al., 2002)

VIP(−/−) Circadian Function

↓ Sustaining of normal circadian rhythms, ↓ Clock gene expression

VPAC1(−/−) ?

VPAC2(−/−) Growth ↓ (Asnicar et al., 2002)

Reproduction ♂

↓Fertility and hypospermia (Asnicar et al., 2002)

Circadian Function

↓ Sustaining of normal circadian rhythms, ↓ Clock gene expression (Cutler et al., 2003, Harmar et al.,

2002)

Immunity

↓ TH2/TH1 cytokine ratio maintenance (Voice et al., 2004)

↓ T cell differentiation and function, ↑ Delayed type hypersensitivity (Goetzl et al., 2001)

Feeding

↑ Insulin sensitivity, ↑Metabolic rate, ↓ Fat mass (Asnicar et al., 2002)
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pharmacological experiments, but by phenotypes of PACAP‐ ,VIP‐, PAC1‐, and VPAC2‐deficient mice

(Goetzl et al., 2001; Martinez et al., 2002; Voice et al., 2004). Interestingly, both PACAP and PAC1 knockouts

have corresponding deficits in hippocampal long‐term potentiation (Otto et al., 2001a; Matsuyama et al.,

2003). This is consistent with a role for PACAP neurotransmission through the PAC1 receptor in hippo-

campus, but not for amygdala‐dependent associative learning (Otto et al., 2001a). Increased locomotor

activity in a novel environment in PACAP‐deficient mice (Hashimoto et al., 2001) and increased psycho-

motor activity with decreased anxiety and fear in PAC1‐deficient mice (Otto et al., 2001b) suggest that

deficiency in PACAP is phenocopied by the loss of the receptor that is specific for this ligand. Localizing

these phenotypes to deficiencies in PACAP neurotransmission in substantia nigra, hippocampus, cortex,

and hypothalamus will contribute greatly to delineating the anatomical fine structure of peptidergic

chemical coding in spatial, associative and emotional memory, and learning. Despite the role of PACAP

in modulating biogenic amine biosynthesis at the adrenomedullary synapse, Hashimoto et al. reported no

abnormalities in brain biogenic amines or metabolites in PACAP‐deficient mice, suggesting at least initially

that PACAP’s roles in psychomotor behavior and learning is not mediated through the biogenic amines

(Hashimoto et al., 2001). Thus at this time, effects of PACAP deficiency cannot be traced to a biogenic

amine loss, although PACAP seems to support catecholamine biosynthesis under stress in the peripheral

nervous system.
4.7 Pain

The presence of PACAP and VIP in small‐diameter sensory fibers (Moller et al., 1993), and their upregula-

tion in sensory neurons after nerve injury, or in neuropathic and inflammatory pain (Hokfelt et al., 1994;

Zhang et al., 1998) suggests that these two neuropeptides participate as neurotransmitters or local effectors

in sensory pain responses (Dickinson and Fleetwood‐Walker, 1999). PACAP‐deficient mice do not respond

to inflammatory pain, although nociceptive pathways are apparently intact (Mabuchi et al., 2004). Visceral

and chronic, but not acute, somatic pain perception is also decreased in PAC1‐deficient mice (Jongsma

et al., 2001; Martin et al., 2003), as well as mice deficient in PACAP (Mabuchi et al., 2004). These

observations support an important role for PACAP/VIP signaling in sensory pathways as potential targets

for the management of chronic pain (Dickinson and Fleetwood‐Walker, 1999).
4.8 Metabolic, Respiratory, and Cardiovascular Regulation

VIP is an important regulator of glucose metabolism in the brain through stimulation of glycogen

hydrolysis in astrocytes (Magistretti et al., 1983). PACAP exerts effects on metabolism in a variety of

ways, including stimulation of glucose‐induced insulin secretion in pancreas (Filipsson et al., 1999) via

PAC1 receptor stimulation (Jamen et al., 2000a), epinephrine release from adrenal medulla (Hamelink

et al., 2003), and stimulation of the thyroid axis (Arimura, 1998). It is not clear to what extent metabolic

effects of PACAP and VIP are mediated through the hypothalamo–pituitary axis. PACAP can release several

hormones from the superfused pituitary gland, including LH, ACTH, GH, and PRL (Miyata et al., 1989)

but not TSH, and is a candidate hypophysiotropic hormone in some species (Rawlings and Hezareh, 1996).

However, major alterations in pituitary function have not been reported in PACAP‐deficient or PAC1‐ or
VPAC2‐deficient mice in vivo (Brabet et al., 2003; Sherwood et al., 2003), despite the initial discovery of

PACAP as a modulator of pituitary secretion of multiple pituitary hormones (Miyata et al., 1989), with the

exception of possible dysregulation of gonadotropin secretion in female PAC1‐deficient mice (see Sect. 4.9).

Both VIP and PACAP exert lipolytic effects on adipocytes through VPAC2 receptor‐dependent cAMP

elevation, thus antagonizing insulin effects on these cells (Akesson et al., 2005), and VPAC2‐deficient mice

show retarded growth and increased basal metabolic rate (Asnicar et al., 2002). Behaviorally, PACAP‐
deficient mice show decreased preference for a high‐carbohydrate diet, and this may be due to lack of

activation of neuropeptide Y (NPY)‐containing arcuate neurons mediating feeding behavior (Nakata et al.,

2004). Thus, PACAP and VIP act at multiple behavioral, metabolic, and catabolic steps, in brain, pituitary,
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autonomic nervous system, and fuel‐handling organs such as liver and fat cells, to affect fuel consumption

in mammals.

Diving turtles have unusually high levels of PACAP in their brains (Reglodi et al., 2001), which is

consistent with a role for PACAP in maintenance of respiratory homeostasis and perhaps neuronal

protection under conditions of low oxygen availability (Rabl et al., 2002). PACAP is both thermoregulatory

and involved in lipid metabolism as evidenced from defects in both in PACAP‐deficient mice (Gray et al.,

2001, 2002). Sherwood and colleagues have drawn attention to a respiratory syndrome in PACAP‐deficient
mice that may be associated with respiratory responsiveness to hypoxia (Cummings et al., 2004a, b).

Related to a possible global neuroprotective function in hypoxic brain, PACAP reduces infarct size and is

functionally neuroprotective following middle cerebral artery occlusion in rodents (Reglodi et al., 2000;

Chen et al., 2002, 2005; Reglodi et al., 2002).

We have already alluded to PACAP’s indirect cardiovascular effects via control of adrenomedullary

catecholamine secretion (Hamelink et al., 2002b). It is also been reported that PAC1‐deficient C57Bl/6 mice

do not generally survive the second week of life due to pulmonary hypertension and right heart failure,

presumably secondary to autonomic regulation of pulmonary vascular tone (Otto et al., 2004). It is

noteworthy that such cardiovascular failure does not occur in PACAP‐deficient C57Bl/6 mice (C Hamelink

and R Damadzic, personal communication), suggesting the possibility that a ligand other than PACAP for

the PAC1 receptor exists in the lung.
4.9 Fertility and Reproductive Behavior

It has been noted that PACAP‐deficient mice are at risk for premature death during weaning (Arimura,

2002) and also that fertility is significantly decreased in both PAC1‐ and PACAP‐deficient female mice

(Jamen et al., 2000b; Shintani et al., 2002). PACAP may affect female fertility through regulation of estrus

cycling, possibly through disrupted circadian signaling, since PAC1‐deficient mice display disrupted estrus

cycling although ovulatory function is locally normal (Brabet et al., 2003). PACAP‐deficient female mice

may also be less fertile as a result of impaired affiliative behavior during male courtship (Shintani et al.,

2002). This decreased affiliative behavior could be related to defects in pheromone signal processing and

pheromone‐driven regulation of social interaction between female and male mice (Nicot et al., 2004). Male

fertility may also be regulated by PACAP and/or VIP, as demonstrated by seminiferous tubule degeneration

and decreased fertility, albeit only in older male mice, due to VPAC2 receptor knockout (Asnicar et al.,

2002).
5 The VIP/PACAP Receptor Family

5.1 PACAP and PACAP‐Preferring Receptors and Their Agonists/Antagonists

There are a total of three distinct receptors in mammals with physiological affinity for PACAP and VIP but

not for SEC, PHM/PHI, GLP1/2,GLUC, GRF, and GIP. Harmar et al. summarized the properties of the

three receptors, for which VIP and PACAP have overlapping specificity, and proposed a nomenclature for

them in 1998 (Harmar et al., 1998). PACAP binds all three receptors, PAC1, VPAC1, and VPAC2 with high

affinity, while VIP binds and activates only the VPAC1 and VPAC2 receptors at high affinity and can

activate only one PAC1 receptor variant at nanomolar concentrations. VPAC1 (Ishihara et al., 1992) and

VPAC2 (Lutz et al., 1993) were initially cloned and characterized as VIP receptors, distributed in brain and

peripheral tissues, that also recognize PACAP and have no known splice variants. PAC1 was molecularly

characterized independently by several groups in 1993 (Hashimoto et al., 1993; Hosoya et al., 1993; Pisegna

and Wank, 1993; Spengler et al., 1993; Svoboda et al., 1993). PAC1 exists as several splice variants with

differential second messenger coupling. VPAC1, VPAC2, and PAC1 receptors belong to the secretin family

of Group II GPCRs that includes receptors for SEC, GLUC, GLP‐1, GLP‐2, GRF, and GIP. It is hypothesized

that following a duplication of an ancestral gene into the PAC1/VPAC1 and VPAC2 ‘‘precursors,’’ the PAC1/
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VPAC1 gene duplicated again and diverged to yield the modern VPAC1 and PAC1 receptors (Chow et al.,

2003). Therefore in addition to PACAP, VPAC receptors are also capable of recognizing to some degree

other naturally occurring peptides that belong to the secretin family of peptides, which are structurally

related to VIP, including SEC, GRF, and PHI (see >Table 21-2).
. Table 21-2

PACAP and VIP receptor agonists and antagonists and their affinities

Receptor

subtype Ligand affinity Agonists Antagonist

PAC1 PACAP-38≥PACAP-27>>>VIP Maxadilan PACAP-6-27

PACAP-6-38

M65

VPAC1 General: VIP>PACAP-38=PHI>PACAP-

27>>GRF>Secretin

[Ala11,22,28]-VIP PG-97-269

Rat: VIP=PACAP-38=PACAP-

27>PHI>GRF>>Secretin

[K15R16L27]VIP(1-7)GRF(8-27)

Human: VIP=PACAP-27>

PACAP38>Helodermin>GRF=PHI>Secretin

VIP4-28
[A 22]-secretin

Ro 25-1392

VPAC2 Rat: VIP>PACAP38=PHI>PACAP27>>>GRF Ro 25-1553

[Ala11,22,28]-VIP VIP4-28

Human: VIP=PACAP-38=PACAP-27>PHI>>GRF Hexanoyl[A19, K27,28]VIP PG-99-465
As demonstrated in >Table 21-2, VPAC1 and VPAC2 receptors (rat) bind these natural ligands with

the same relative rank order of potency, except for SEC that displays higher affinity for the VPAC1 receptor.

The order of ligand potency for the human VPAC receptors is very similar to that of the rat receptors

with the major exception that rat VPAC1 binds both PHI and SEC with lower affinity than human VPAC1.

The PACAP selective receptor, PAC1, recognizes both PACAP‐38 and PACAP‐27 with high affinity (�0.5–1

nM). However it binds VIP at �1000‐fold lower affinity and does not recognize other VIP‐related peptides

at concentrations less than 1 mM. In some studies, PACAP‐38 has been shown to bind with least tenfold

higher affinity to the PAC1 receptor compared with PACAP‐27 (Vaudry et al., 2000). These minor

discrepancies in receptor specificities may be related to the different pharmacological assays employed

(radioligand‐binding assays vs generation of cAMP) or due to the different cell lines employed to express

the recombinant receptors. These can introduce variations in G protein expression, glycosylation,

trafficking, accessory protein expression, receptor desensitization, and plasma membrane microdomain

composition.

By using only natural ligands, it would be difficult to pharmacologically discriminate between VPAC1

and VPAC2 receptors, without the development of more selective analogs, both agonists and antagonists.

Ro 25‐1392 and Ro 25‐1553, cyclic analogues of VIP containing a lactam ring between positions 21 and 25,

were developed and shown to be selective VPAC2 receptor agonists (O’Donnell et al., 1994a, b; Gourlet

et al., 1997b; Xia et al., 1997). Large scale screening of mutated analogs led to the discovery of a VIP analog

containing three mutations, V19A, L27K, and N28K that conferred VPAC2 selectivity (Yung et al., 2003).

Langer and colleagues then combined hexanoylation of the N terminus of a VIP analog substituted at

positions 19, 27, 28, to develop Hexanoyl[A19, K27,28]VIP, an even more selective VPAC2 receptor agonist

(Langer et al., 2004). Total alanine scanning of the VIP peptide revealed that a combination of three

substitutions at positions 11, 22, and 38 results in a highly selective VPAC1 receptor agonist, [Ala11,22,28]‐
VIP (Nicole et al., 2000a, b). Introduction of an arginine residue on position 16 in chicken secretin also lead

to the development of a highly selective VPAC1 receptor agonist (Gourlet et al., 1997a). In these same

studies Gourlet and colleagues designed a chimeric VIP/GRF analogue, [K15,R16,L27]VIP(1‐7)/GRF(8‐27)
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that to date appears to be the most selective agonist at VPAC1 receptors. Manipulation of the chimeric VIP/

GRF analog later led to the discovery of the first highly selective VPAC1 receptor antagonist, PG 97‐269
(Gourlet et al., 1997a). Interestingly, lymphocytes are capable of breaking down VIP and generating

truncated VIP fragments. Of these fragments, VIP4–28 was also shown to act as a potent VPAC1 agonist

while acting as a potent antagonist at the VPAC2 receptor (Summers et al., 2003). An important issue in

future, in the context of drug development, will be the behavior and cross‐reactivity of these agonists and
antagonists tested in cell systems containing endogenously expressed human VPAC1 and VPAC2 receptors

and PAC1 receptors and their splice variants.

In addition to PACAP, maxadilan, a potent vasodilatory peptide isolated from the salivary glands of the

sand fly, Lutzomyia longipalpis (Lerner and Shoemaker, 1992), is also a potent agonist at the PAC1 receptor

with affinity similar to PACAP‐38 and PACAP‐27 (Moro and Lerner, 1997). Interestingly maxadilan shares

no sequence homology to PACAP and does not appear to be endogenously expressed in mammalian tissue.

Deletion of 17 amino acids (from 25 to 41) of maxadilan has been shown to result in the generation of a

potent PAC1 receptor antagonist known as M65 (Uchida et al., 1998). N‐terminal truncations of PACAP

also led to the discovery of the analogs, PACAP(6‐38) and PACAP(6‐27), which are specific PAC1 receptor

antagonists (Robberecht et al., 1992).
5.2 PAC1 Receptor Isoforms

In comparison to both VPAC1 and VPAC2 receptors and other receptors belonging to the secretin/glucagon

superfamily of seven transmembrane GPCRs, the PAC1 receptor is one of most the extensively spliced

GPCRs identified to date. Alternative splicing of both the N‐, and C‐ terminal domains gives rise to at least

eight receptor variants exhibiting alternative distributions, ligand‐binding properties, and the ability to

couple to different signal transduction pathways.

The first cloned PAC1 receptor (PAC1null), from a pancreatic acinar carcinoma cell line, encoded a 495‐
amino‐acid protein, with seven putative membrane spanning domains, sharing a high degree of sequence

identity with other secretin/glucagon superfamily GPCRs (Pisegna and Wank, 1993). Five different sub-

types of the PAC1 receptor were then identified and were shown to originate from alternative splicing of two

cassettes, hip or hop1(28)/hop2(27), within the third intracellular region, giving rise to PAC1hip, PAC1hop1,

PAC1hop2, PAC1hiphop1 and PAC1hiphop2 (Spengler et al., 1993; Journot et al., 1995). Of these receptors, the

PAC1hop1 appears to be the most abundant and commonly identified next to the PAC1null in a number of

species and tissues. It shares similar binding affinity for both PACAP‐38 and PACAP‐27 and has the ability

to potently activate AC and phospholipase C (PLC). The rat PAC1hip variant does not stimulate PLC, and

when expressed together with the hop cassettes (PAC1hiphop1 and PAC1hiphop2) reduces the signal transduc-

tion efficacy of the receptor. More recently it has also been shown that the PAC1hop1 variant specifically

activates phospholipase D (PLD), unlike the PAC1null (McCulloch et al., 2001; Ronaldson et al., 2002). This

signal transduction pathway is thought to be mediated by direct interaction of the GTP‐binding, ADP‐
ribosylation factor 6 with the hop cassette (Ronaldson et al., 2002). This is the first line of evidence to date

highlighting a functional significance of the cassette in the IC3 domain that enables the receptor to couple

to novel signal transduction pathways, in addition to maintaining its classical effector coupling.

N‐terminal domain splice variants of the PAC1 receptor have been identified that contain either 21‐
(PAC1s) or 57‐ (PAC1vs)‐amino‐acid deletions (Pantaloni et al., 1996; Dautzenberg et al., 1999). These

variants did not contain any hip or hop cassettes. As expected, deletion of 57 amino acids, containing three

of the seven conserved cysteine residues, reduced binding of both PACAP‐38 and PACAP‐27 (>100‐fold)
and their ability to activate AC. Unexpectedly, removal of 21 amino acids resulted in a receptor that was able

to recognize and bind VIP with similar affinity to PACAP. VIP was also capable of potently stimulating AC

through the PAC1 receptor (Dautzenberg et al., 1999). These findings suggest that the 21‐amino‐acid motif

induces structural changes to the extracellular domain of the PAC1 receptor that results in a PACAP specific

receptor, but prevents VIP binding. The fact that the PAC1s variant is expressed endogenously in the brain

raises a significant physiological issue concerning the actions of VIP through the PAC1 receptor, i.e. that

VIP would be physiologically active on cells expressing this PAC1 variant in the absence of either PACAP
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or VPAC1/2 receptors. Recently, Daniel and colleagues identified a PAC1 variant containing a 24‐amino‐
acid insert in the N‐terminal extracellular domain that was preferentially expressed in the seminiferous

tubules during spermatogenesis (Daniel et al., 2001). This variant (PAC13a) displays a sixfold higher affinity

for PACAP‐38 than PACAP‐27, while exhibiting a reduced potency of PACAP‐38 for AC stimulation and IP

turnover.

Another PAC1 receptor variant (PAC1TM4) was reported as a rat cerebellum‐derived cDNA clone that

failed to couple to AC or PLC yet conferred PACAP‐dependent calcium influx through putative voltage‐
sensitive calcium channels (VSCCs) in Chinese hamster ovary (CHO) cells. This variant is said to have three

separate substitutions that distinguish it from the PAC1null receptor reported previously (Hashimoto et al.,

1993; Hosoya et al., 1993; Pisegna and Wank, 1993; Spengler et al., 1993). These are positions 136 at the N

terminus (D to N), 190 in the second transmembrane domain (N to D), and 279–282 in the fourth

transmembrane domain (CVIV to SA). It seems remarkable that minor modifications in these transmem-

brane domain regions, which are not critical in ligand binding or involved in direct interaction with G

proteins, can significantly alter receptor coupling to AC, PLC, and dihydropyridine‐sensitive L‐type calcium
channels. Although the TM4 variant was originally reported to be present in the cerebral cortex, cerebellum,

and brainstem, Ajpura and colleagues could only detect an amplicon corresponding to PAC1TM4 in

rat pancreatic islet cells (Ajpru et al., 2002), and not anywhere in the brain. Another study failed to

confirm the expression of the TM4 transcript even in rat pancreatic islets cells (Jamen et al., 2002). The

TM4 variant, as described by Chatterjee et al., is furthermore difficult to be envisaged as a naturally

occuring mRNA transcript: all three of the presumptive sequence variations are centrally located within

nonduplicated exons in the rat gene, and thus cannot arise from alternative splicing. This cDNAwould thus

have to represent a transcript from a Rattus norvegicus multivariant allele, or else a transcript from the

normal rat allele, with extensively edited RNA. Caution should be exercised in considering TM4 to be a

naturally occuring allelic or RNA‐edited PAC1 receptor variant until further evidence of its existence is

adduced.

The VPAC1 was first identified and isolated from rat lung in 1992 (Ishihara et al., 1992), and the human

homolog was cloned soon after, from HT‐29 cells (Sreedharan et al., 1993) as well as from human small

intestinal epithelium (Couvineau et al., 1994). The rat VPAC2 receptor was then cloned from the pituitary

gland (Lutz et al., 1993), human SUP‐TI lymphocytes (Svoboda et al., 1994), and placenta (Adamou et al.,

1995). As mentioned previously, both VPAC1 and VPAC2 bind both VIP and PACAP with similar affinity,

belong to the class II family of G‐protein receptors, and share the common feature of strongly coupling to

adenylate cyclase. Until recently there was no evidence to support the existence of naturally occurring

VPAC1 or VPAC2 receptor variants, despite the prediction of possible truncated VPAC2 receptor variants

based on intron/exon boundary gene analysis. A variant of the VPAC2 receptor was recently characterized in

the mouse spleen and thymus which lacks 14 amino acids in the carboxyl terminal end of the seventh

transmembrane region of the receptor and binds VIP without subsequent activation of adenylate cyclase

(Grinninger et al., 2004).

Other as yet uncharacterized receptor variants with unique physiological and signaling profiles may

exist. For example PAC1 receptor variants have been identified with truncated N‐terminal domains

containing hip or hop cassettes within the third intracellular domain that are yet to be characterized

(Dautzenberg et al., 1999).
5.3 PACAP Receptor Signaling: G‐Protein Coupling and Downstream Signaling

The PAC1 receptor is capable of activating dual signal transduction pathways by coupling to different G

proteins and probably also by physical association with proteins or complexes involved in distinct signaling

cascades. The PAC1 receptor activates AC through its association with the heterotrimeric G protein, Gas.
All known PAC1 receptor variants are capable of potently stimulating AC. The presence of the hip cassette

(PAC1hip, PAC1hip1hop) does however perturb the ability of the rat receptor to stimulate AC compared with

PAC1null and PAC1hop1 receptor subtypes (Spengler et al., 1993). In contrast, all these human receptor

variants stimulated AC with similar potencies (Pisegna and Wank, 1996) (> Table 21-3). Generation of
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cAMP and activation of PKA appears to be one of the key downstream receptor signal transduction

pathways following PAC1 receptor activation and can be mimicked by the use of cAMP‐elevating agents

such as forskolin. Both VPAC1 and VPAC2 receptors also induce robust increases in AC activity and cAMP

production mediated by coupling to Gas (Couvineau et al., 1990; Kermode et al., 1992). As with PAC1

receptors, stimulation of AC by VPAC receptors also leads to subsequent activation of PKA, which serves as

a key downstream signaling molecule associated with VPAC1/2 receptor signaling.

The second classical signal transduction pathway associated with the PAC1 receptor is activation of PLC

through Gaq resulting in IP3‐mediated intracellular calcium mobilization and DAG‐mediated activation of

protein kinase C. The major PAC1 receptor isoforms, PAC1null and PAC1hop, have been shown to potently

stimulate PLC and IP turnover with similar efficacy, except in human tissues where PAC1hop stimulated IP

turnover more than the PAC1null variant (Pisegna and Wank, 1996). Additionally, rodent pancreatic islets

coexpressing PAC1null, PAC1hop, and PAC1vs, however show only stimulation of AC, and not PLC, with

PACAP (Jamen et al., 2002). In astrocytes the PAC1null receptor is also not coupled to PLC activation

(Grimaldi and Cavallaro, 1999). These discrepancies highlight tissue‐ and cell‐dependent differences. The
presence of the hip cassette in the IC3 region of the rat receptor completely abolishes PLC signaling

(Spengler et al., 1993), while the human form of the PAC1hip receptor is capable of stimulating IP with

similar efficacy as other variants (> Table 21-3). Additionally when expressed in combination with the hop

cassettes, e.g. the rat PAC1hiphop, the hip cassette reduces the ability of the receptor to activate PLC (Spengler

et al., 1993; Journot et al., 1995). Such discrepancies may be attributed to the use of different cell lines (NIH‐
3T3 vs LLC PK1) and possibly sequence differences between species that could ultimately change the

coupling patterns of the different variants to different signal transduction molecules.

The ability of VPAC1/2 receptors to activate PLC also appears to be variable in different tissues. The rat

VPAC1 receptor was shown to induce IP production through a pertussis toxin sensitive pathway suggesting

the involvement of G proteins, Gaq and Gai/o (Diehl et al., 1996; Van Rampelbergh et al., 1997), while in

rat alveolar macrophages, coupling occurs through both Gas and Gai (Shreeve et al., 2000). Interestingly
human VPAC1‐mediated PLC activation was shown to couple to Gas and not Gai or Gaq G proteins

(Shreeve et al., 2000), suggesting species dependent differences in G‐protein coupling for activating PLC.

VPAC2‐mediated IP3 production was only partially inhibited by pertussis toxin, suggesting that the VPAC2

receptor may also couple to PLC through Gai/o or Gaq in addition to activation of Gas (MacKenzie et al.,

2001).

Dual coupling of the PAC1 receptor to AC and PLC ultimately leads to the activation of a number of

downstream signaling cascades. One of these is the MAPK/ERK pathway that seems to be linked with the

neurotrophic role (neuroprotection and differentiation) of PACAP. PACAP has been shown to stimulate

ERK1/2 activation through MEK activity in a PKA‐dependent (Frödin et al., 1994; Tanaka et al., 1997b;

Villalaba et al., 1997; Le Pechon‐Vallee et al., 2000) and PKA‐independent manner that may involve PKC

and calcium (Barrie et al., 1997; Tanaka et al., 1997a; Lazarovici et al., 1998) or cAMP (Vaudry et al.,

2002a, b, 2003). Although ERK can be activated in a PKA‐dependent manner, studies have shown

PACAP‐mediated activation of some genes in bovine chromaffin cells to occur in a cAMP‐dependent,
ERK‐dependent but PKA‐independent manner (Hamelink et al., 2002a). Activation of Rap1 through

cAMP‐regulated guanine nucleotide exchange factor (Epac), may account for this observation, although

Bos and coworkers report that specific activation of Epac does not lead to ERK activation in PC12 cells

(Enserink et al., 2002; Bos, 2003). PACAP also activates p38 MAPK in PC12 cells, through activation of PLC,

mobilization of intracellular calcium stores, and calcium influx through L‐type VSCCs that seems to be

cAMP‐and PKA‐independent (Sakai et al., 2002).
The PAC1null and PAC1hop receptor variants were recently shown to activate PLD, in addition to AC and

PLC. The ability of the PAC1hop receptor to stimulate PLD activity was threefold greater than the PAC1null
variant. In these studies the PAC1hop receptor variant was sensitive to brefeldin A, an inhibitor of the GTP

exchange factor ARF, and was not affected by a PLC inhibitor, unlike the PACnull isoform (McCulloch

et al., 2001). This finding suggests that the PAC1null variant was most likely stimulating PLD through a

PLC–PKCmediated pathway, while PAC1hop operates through an ARF‐dependent pathway. This was clearly
demonstrated by the ability of ARF6 to specifically interact with the hop cassette of PAC1hop variant but not

the PAC1null variant that lacks the cassette (Ronaldson et al., 2002). VPAC1 and VPAC2 receptors expressed
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endogenously or exogenously in cell lines also activated PLD, which was sensitive to the ARF inhibitor,

brefeldin A (BFA) that is also consistent with the physical association between VPAC receptors and ARF

(McCulloch et al., 2000, 2001; Ronaldson et al., 2002).

It is well established that ARF6 can directly bind to and activate PLD that leads to the production of

phosphatidic acid (PA) and generation of phosphatidylinositol 4,5‐bisphosphate (PIP2) (Donaldson, 2003).
These findings open up new possibilities for PAC1 receptor signaling through ARF6 or potentially other

novel interacting proteins that may provide feedback to the existing pathways already associated with PAC1

signaling and also open up new pathways that can be directly attributed to PAC1–ARF6 signaling. For

example ARF6 may play a role in PAC1‐mediated secretion at the adrenomedullary synapse. It may also play

a role in receptor trafficking and desensitization. PACAP is also thought to activate PI3K/Akt through

transactivation of TrkA receptors, but the possibility now exists that the PAC1hop receptor can alone activate

this pathway in an ARF6–PLD‐dependent manner. This research provides the first line of clear evidence

documenting a functional significance of the hop cassette in the PAC1 receptor, which could ultimately

serve to couple the receptor to novel signal transduction pathways through interacting proteins.

As mentioned above, PACAP mediates intracellular calcium mobilization, triggered by activation of

PLC, which in turn triggers IP3 production, thereby leading to release of Ca2þ from IP3 receptor operated

endoplasmic reticulum (ER) intracellular calcium stores. It has also been suggested that PACAPmay be able

to regulate calcium release through caffeine/ryanodine operated ER calcium stores (Tanaka et al., 1998).

However the ability of PACAP to increase cytosolic calcium concentrations, in particular in secretory cells

such as chromaffin cells and pancreatic islet cells, largely depends on extracellular calcium influx through

VSCCs (Tanaka et al. 1996a, b; O’Farrell andMarley, 1997) that could also involve cAMP/PKA (Perrin et al.,

1995; Przywara et al., 1996), PKC (Chik et al., 1996), or PLC (Taupenot et al., 1999). Calcium influx via

PLC/IP3‐dependent nonselective conductance changes at Trp channels (Beaudet et al., 2000), receptor‐
operated calcium stores (Morita et al., 2002), or a combination of several of these mechanisms (Isobe et al.,

1993; Chik et al., 1996; Osipenko et al., 2000; Fukushima et al., 2001) may also occur. In chromaffin cells it

is clear that cAMP stimulation alone is insufficient to cause acute/short‐term secretion (1–30 min) (Eiden

et al., 1998). PACAP‐stimulated histamine release from ECL cells of the gut requires calcium influx mainly

through L‐type, and also receptor‐operated calcium channels (Lindstrom et al., 2001). Therefore, even

though the signaling networks involved in PACAP regulation of calcium influx leading to secretion are

complex, they ultimately seem to involve primarily VSCCs, at least in the well‐studied chromaffin and

pancreatic cell systems.

The mechanism by which PACAP can regulate VSCCs and the receptor isoform with which it interacts

to do so, remain to be elucidated. An important clue as to the PAC1 receptor isoform that couples to

voltage‐sensitive calcium channel opening can be found in bovine chromaffin cells, which are a primary site

of PACAP‐mediated calcium influx via VSCCs. Bovine chromaffin cells express the PAC1hop receptor

variant (Tanaka et al., 1998), and significantly, this is the only PAC1 splice variant expressed in these

primary neuroendocrine cells (Mustafa T, personal observation). Coupling of PAC1 to calcium influx may

also be indirect if PACAP causes opening or closure of membrane cation channels other than VSCCs, and

the subsequent depolarization leads to opening of the VSCCs. PACAP has been reported to cause

depolarization of chromaffin cells (Tanaka et al., 1996b), suprachiasmatic neurons (Dziema and Obrietan,

2002), pinealocytes (Darvish and Russell, 1998), and superior cervical ganglion neurons (May et al., 1998;

Beaudet et al., 2000) through mechanisms of depolarization that include inhibition of outwardly directed

Kþ currents, induction of sodium‐dependent membrane depolarization, and opening of nonselective

plasma membrane cation channels.

In concluding this section, it should be remarked that receptor splice variants coexpressed in the same

cell may couple to different signaling pathways or to the same pathway with different efficacy. Thus, future

research may well uncover segregation of PAC1 receptor variants, for example, in lipid rafts, caveolae, and

signaling vesicles where they are concentrated with different signaling molecules, defining the signaling

route taken by the receptor variant. In addition, RAMP (receptor activity‐modifying proteins) association,

glycosylation, trafficking, and endocytosis kinetics may all affect receptor‐signaling behavior. Recently,

RAMP2 interaction with VPAC1 leading to enhanced IP3 signaling has been reported (Christopoulos et al.,

2003), and similar interactions could occur with other members of the VIP/PACAP receptor family.
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6 Concluding Remarks

6.1 Neurotransmitter, Hormone, Neuromodulatory, and Paracrine Functions

VIP and PACAP are unique members of the secretin superfamily in that they appear to act primarily as

neurotransmitters and paracrine factors, and not as hormones. The question of whether neuropeptides are

neuromodulators, affecting the action of a primary transmitter, or are primary neurotransmitters on their

own, appears to be definitively answered in favor of the latter for PACAP at the adrenomedullary synapse,

although it should be pointed out that even here PACAP may also have neuromodulatory properties, at

least in some species (Inoue et al., 2000).
6.2 Importance of Mapping Ligand to Receptor In Vivo

Given the existence of overlapping receptors for VIP and PACAP and the affinity for VIP of some

newly discovered N‐terminal splice variants of the PAC1 receptor, the concerted study of PACAP‐, VIP‐,
VPAC1‐, VPAC2‐, and PAC1‐knockout mice, the precise chemical neuroanatomy of PACAPergic and

VIPergic synapses in vivo, and the deployment of increasingly specific ligands for VIP/PACAP receptors

will be required to unravel the role(s) of each neuropeptide in physiological regulation in the brain and

periphery.
. Figure 21-3

Schematic illustration of PAC1 receptor splice variants and their sequences
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6.3 Importance of Reconciling Knockout and Pharmacological Phenotypes

An unresolved conundrum is the seeming importance of VIP and PACAP in development, based on cell

culture and in vivo pharmacological studies, and the absence of evidence of developmental impairment in

VIP‐, PACAP‐, PAC1‐, or VPAC2‐knockout mice. Several possibilities exist. One is that VIP and PACAP act

not in sculpting normal development, but as neuroprotective and/or antitumorigenic factors during

development. In support of such a role, Vaudry et al. have observed enhanced neuronal damage upon

oxidative (ethanol‐induced) stress in neuron cultures from normal mice compared with PACAP‐deficient
mice (Vaudry et al., 2005). A second possibility is that, like the tyro receptor‐related factors, VIP and PACAP
act in concert, perhaps even with additional factors, to regulate cell differentiation (Lemke and Lu, 2003).

The reports of Muller and Waschek and others of the concerted action of VIP and PACAP on

cross‐modulation of receptor expression, and proliferation and differentiation of neuroblastoma cell

lines, support both possibilities (Waschek et al., 1995, 1997; Lelièvre et al., 1996; Waschek, 1996). Double

and triple knockouts will be required to address this question via phenotyping of mice with appropriately

engineered neuropeptide deficiencies.
6.4 Neuropeptides in the Evolutionary Vanguard?

One of the most daunting challenges of modern neuropeptide neurochemistry (indeed, of modern

neurochemistry) is integrating the cellular and molecular biology of neuropeptide (first messenger)

signaling with anatomically precise, chemically coded neurotransmission, and its linkage to specific

aspects of highly integrated brain functions such as cognition and circadian regulation, homeostatic

responses such as programmed cell death and neuroprotection, and events that involve hundreds of

other effectors such as development, injury response, inflammation, and innate and acquired immunity.

A general feature of the VIP/PACAP system seems to be that PACAP signals in a combinatorial fashion,

through calcium, cAMP, IP3, and phosphatidic acid, to activate a very broad range of third messenger

systems such as Akt, ERK, JNK and p38, PKC, PKA, and PI3K, with VIP signaling restricted mainly to

activation of AC and PLC.

That PACAP signaling, mainly through PAC1, is so much more diffuse than that of VIP is consistent

with its role in paraphysiological adaptation, i.e. its ‘‘emergency response’’ function in transducing, gating,

and disseminating sensory stimuli including light and pain, and metabolic, environmental, and psycho-

genic stressors. Consistent with its anatomical position downstream of PACAP at two major synaptic

systems, the retinohypothalamic and splanchnicoadrenomedullary systems, VIP plays an ‘‘effector’’ role as a

secretagogue and vasodilator peripherally, and in synchronizing circadian activity centrally. The physiolog-

ical role of VIP in the cerebral cortex remains somewhat mysterious and that of PACAP in complex centrally

mediated processes including memory and conditioned behavior even more so. Focusing on the roles of

neuropeptides and their receptors in stabilizing emergent adaptive homeostatic responses to altered

environmental conditions, to create new mechanisms for chronic adaptation to previously intolerable

stressors, may provide a way to discover species‐dependent as well as conserved functions for these peptides
in humans, other mammals, and other animals.
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Abstract: The hypocretins (also called the orexins) are two C-terminally amidated neuropeptides of related

sequence. They are produced from a common precursor whose expression is restricted to a few thousand

neurons of the rat dorsolateral hypothalamus. Two G‐protein‐coupled receptors (GPCRs) for the hypocre-

tins have been identified, and these have different distributions within the CNS and differential affinities for

the two hypocretins. The hypocretins have been detected in secretory vesicles at synapses of fibers that

project to areas within the posterior hypothalamus that are implicated in feeding behaviors and hormone

secretion. Hypocretin fibers also project to diverse targets in other brain regions and the spinal cord,

including several areas implicated in cardiovascular function and sleep–wake regulation. The peptides are

excitatory when applied directly in vivo and to cultured neurons and slices, although there is also evidence

for some inhibitory signaling. Administration of the hypocretins stimulates food intake, affects blood

pressure, hormone secretion, and locomotor activity, and increases wakefulness while suppressing rapid eye

movement (REM) sleep. Inactivating mutations in the hypocretin receptor 2 gene (hcrtr 2) in dogs result in

narcolepsy. Mice whose hypocretin gene has been inactivated exhibit a narcolepsy‐like phenotype. Most

human patients with narcolepsy have greatly reduced levels of hypocretin peptides in their cerebrospinal

fluid (CSF) and no or barely detectable hypocretin neurons in their hypothalami, suggestive of autoim-

mune attack. One aspect of hypocretin activity is the direct excitation of cholinergic forebrain neurons,

brainstem monoaminergic REM‐off neurons in the locus coeruleus and dorsal raphe nucleus, and hista-

minergic tuberomammillary nucleus (TMN), which together suppress slow‐wave sleep. The hypocretins

also modulate the activity of cholinergic REM‐on neurons in the brainstem, which gate REM entry. The

effects on wakefulness appear to be the dominant activities of the hypocretin system and are twofold:

maintenance of the waking state and suppression of REM entry.

List of Abbreviations: AgRP, agouti‐related peptide; CRF, corticotropin‐releasing factor; CSF, cerebrospi-
nal fluid; DMH, dorsomedial hypothalamus; EEG, electroencephalogram; GPCR, G‐protein‐coupled re-

ceptor; Hcrt, hypocretin; Hcrtr1, 2, hypocretin receptors 1, 2; ICV, intracerebroventricular administration;

LC, locus coeruleus; LDT, laterodorsal tegmentum; LH, lateral hypothalamus; LHSS, lateral hypothalamus

self‐stimulation; MCH, melanin‐concentrating hormone; PKC, protein kinase C; PPT, pedunculopontine

nucleus; PVN, paraventricular nucleus; REM, rapid eye movement sleep; SCN, suprachiasmatic nucleus;

TMN, tuberomammillary nucleus; VTA, ventral tegmental area
1 Historical Aspects of the Lateral Hypothalamus

Early notions about the role of the lateral hypothalamus (LH) were based on observations of humans and

experimental animals with localized hypothalamic lesions. von Economo (1930), studying patients with

encephalitis lethargica, proposed that the posterior hypothalamus (including the LH) was required for

maintaining the awake state. Ablations of the monkey LH led to coma and hypophagia, whereas ablations of

the medial hypothalamus led to hyperphagia (Ranson, 1939; Hetherington and Ranson, 1940; Anand and

Brobeck, 1951a, b). Thus, the LH was known to play a role in both arousal and energy balance, both

important aspects of motivated behavior. It had additionally been shown that animals lever‐press for

electrical stimulation when electrodes are placed within the LH (Olds, 1962), further implicating it as a

reward‐mediating structure. The signaling molecules and circuitry responsible for coordinating these

behaviors remained unknown until the advent of molecular biological techniques for studying the nervous

system and the discoveries of the hypocretin (Hcrt) and melanin‐concentrating hormone (MCH) systems.
2 Discovery and Biochemical Aspects of the Hypocretins

2.1 Isolation of cDNA Clones

The first glimpse of the hypocretins came in an open‐system search for undiscovered hypothalamic

regulatory peptides. Gautvik et al. (1996) conducted a systematic subtractive hybridization survey aimed
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at identifying messenger RNA (mRNA) species whose expression was restricted to discrete nuclei within the

rat hypothalamus. Among the novel hypothalamic mRNAs that were identified by that study was a species

whose expression, as detected by in situ hybridization analyses, was restricted to a few thousand neurons

that were bilaterally distributed within the dorsolateral hypothalamus (> Figure 22-1; Gautvik et al., 1996;
. Figure 22-1

The first glimpse of the hypocretin system. In situ hybridization of rat coronal section with cDNA isolated in

subtractive hybridization study detecting a few thousand neurons in the dorsal–lateral hypothalamus (From

Gautvik et al., 1996).
de Lecea et al., 1998). In Northern blots, the mRNA migrated at �700 nucleotides, detectable during brain

development at low concentrations as early as embryonic day 18, and increasing dramatically in concentra-

tion after the third postnatal week.

The peptides were discovered independently in a large collaborative study to identify endogenous

ligands for orphan G‐protein‐coupled receptors (GPCRs) (Sakurai et al., 1998). This group referred to the

peptides as orexins because they stimulated food intake when administered to rats during the daytime. In

this chapter, we will refer to the peptides by their first‐used name, the hypocretins, but the terms are

interchangeable and are both used extensively in the large literature that has grown up around the peptides.
2.2 Structure of mRNA/Protein

The sequences of the rat (569 nonpoly(A) nucleotides) and homologous mouse (582 nucleotides) mRNAs

each encoded a 130‐residue putative secretory protein with an apparent signal sequence and two additional

phylogenically conserved sites for potential proteolytic maturation followed by modification of the car-

boxy‐terminal glycines by peptidylglycine a‐amidating monooxygenase (de Lecea et al., 1998). These

features suggested that the product of this hypothalamic mRNA served as a preprohormone for two

C‐terminally amidated, secreted peptides (> Figure 22-2a). One of these, hypocretin 2 (Hcrt2 or OxB),



. Figure 22-2

a. Maturation of preprohypocretin. Only amino acid residues key to the processing of the prepropeptide are

shown. After removal of the secretion signal (1), the prohypocretin is cleaved at two pairs of tandem basic

amino acids (KR, RR) (2). The genetically encoded glutamine (Q) is derivatized to form pyroglutamate (*E) (3),

two intrachain disulfide bonds (C–C) are formed (4), and the C‐terminal glycines (G) are modified by peptidyl-

glycine alpha‐amidating monooxygenase (5), leaving C‐terminal amides on the resulting 33‐mer and 28‐mer

peptides, Hcrt1 and Hcrt2, respectively. b. The primary amino acid sequences of rat Hcrt1 and Hcrt2. The *E at

the N terminus represents the pyroglutamate residue; the asterisks between the sequences indicate the

positions of identity between the two peptides. The disulfide bonds are as in Figure 22-2a. Notice the

C‐terminal amide groups (‐NH2). (From Sutcliffe and de Lecea, 2002).
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on the basis of the putative preprohormone amino acid sequence, was predicted to contain precisely 28

residues. The other, hypocretin 1 (Hcrt1 or OxA), had a defined predicted amidated C terminus but,

because of uncertainties as to how the amino terminus might be proteolytically processed, an undefined

N‐terminal extent (de Lecea et al., 1998). The C‐terminal 19 residues of these two putative peptides shared

13‐amino‐acid identities (> Figure 22-2b), suggesting that the peptides had related structures and func-

tions. This region of hcrt2 contained a 7‐amino‐acid match with secretin.

Antisera generated against synthetic peptides corresponding to regions of the deduced prohypocretin

sequence and to bacterially expressed preprohypocretin have been generated (de Lecea et al., 1998; Date

et al., 1999; van den Pol, 1999). The antisera are specific for the hypocretin‐related peptides and have

been used extensively to characterize the protein in both anatomical and ELISA‐type studies, described

below.
2.3 Detection of Endogenous Peptides

The detection of the two hypocretin peptides within the brain allowed the exact structures of these

endogenous peptides to be determined by mass spectroscopy (> Figure 22-2; Sakurai et al., 1998). The

sequence of endogenous Hcrt2 was the same as that predicted from the cDNA sequence. The N terminus of

Hcrt1 was found to correspond to a genetically encoded glutamine that was derivatized as pyroglutamate.
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Hcrt1 (33 residues) contains two intrachain disulfide bonds. Human Hcrt1 is identical to the rodent

peptide, whereas human Hcrt2 differs from rodent Hcrt2 at two residues (Sakurai et al., 1998).
2.4 Phylogeny/Genomics

The mouse hypocretin gene, HCRT, is located on chromosome 11, and the human HCRT gene maps to

chromosome arm 17q21–q24. Phylogenic studies have detected genes that encode conserved preprohypo-

cretins in pufferfish and frog species, suggesting that the gene arose early in the chordate lineage (Alvarez

and Sutcliffe, 2002). Sequence similarities with various members of the incretin family, especially secretin,

suggest that the preprohypocretin gene was formed from the secretin gene by three genetic rearrangements:

first, a duplication of the secretin gene; second, deletions of the N‐terminal portion of the 50‐duplicate and
the C‐terminal portion of the 30‐duplicate to yield a secretin with its N‐ and C‐termini leapfrogged

(circularly permuted); and third, a further duplication of the permuted gene, followed by modifications,

to form a secretin derivative that encoded two related hypocretin peptides (Alvarez and Sutcliffe, 2002).
2.5 3D Structure

Consistent with the hypothesis that the hypocretins and secretin are phylogenically related, portions of their

three‐dimensional solution structures, as determined by nuclear magnetic resonance, are similar despite

their leapfrogged primary sequence, consisting of two adjacent a‐helices (6 to 7‐ and 9 to 14‐amino‐acids
long) separated by a short 2–3‐amino‐acid turn (Gronenborn et al., 1987; Lee et al., 1999). The longer helix

corresponds to the region of identity between the two peptides.
3 Hypocretin Receptors

3.1 Identification

Sakurai et al. (1998) prepared transfected cell lines stably expressing each of 50 orphan GPCRs and then

measured calcium fluxes in these cell lines in response to fractions from tissue extracts. One of these

transfected cell lines responded to a substance in a brain extract. Mass spectroscopy showed that this

substance was a peptide whose sequence was later identified as that of endogenous Hcrt1.
3.2 Binding Properties

The initial orphan GPCR, Hcrtr1 (also referred to as OX1R), bound Hcrt1 with high affinity but Hcrt2 with

100 to 1000‐fold lower affinity. A related GPCR, Hcrtr2 (OX2R), sharing 64% identity with Hcrtr1 was

identified by searching database entries with the Hcrtr1 sequence, had a high affinity for both Hcrt2 and

Hcrt1 (Sakurai et al., 1998). These two receptors are highly conserved (95%) across species. Radioligand‐
binding studies and calcium flux measurements have shown Hcrt1 to have equal affinity for Hcrtr1 and

Hcrtr2, whereas Hcrt2 has (tenfold greater affinity for Hcrtr2 than Hcrtr1 (Upton, 2005).
3.3 Agonists and Antagonists

Substitution of alanine for leucine at position 11 of human Hcrt2 ([A11]Hcrt2) produces a modified agonist

100‐fold more selective than native Hcrt2 for Hcrtr2 over Hcrtr1 (Asahi et al., 2000). Several Hcrt2

analogues with >1000‐fold selectivity for Hcrtr2 and a truncated form of Hcrt1 (residues 2–23) with

modest Hcrtr1 preference have also been produced (Lang et al., 2004).
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SB‐334867 (1‐(2‐methylbenzoxazol‐6‐yl)‐3‐[1,5]napthyridin‐4‐yl urea) is an antagonist that has an

affinity of 40 nM for Hcrtr1 and is more than 50‐fold selective over Hcrtr2 and other GPCRs and ion

channels (Duxon et al., 2001; Porter et al., 2001; Smart et al., 2001). SB‐408124 (1‐(6,8‐difluoro‐2‐methyl‐
quinolin‐4‐yl)‐3‐(4‐dimethylamino‐phenyl)‐urea) is slightly more potent and has greater Hcrtr1 selectivity

than SB‐334867 (Upton, 2005). Both compounds are systemically bioavailable and brain penetrant. N‐Acyl
6,7‐dimethoxy‐1,2,3,4‐tetrahydroisoquinoline is the first Hcrtr2‐selective antagonist (Hirose et al., 2003).
4 Anatomical Considerations

4.1 Where Peptides Are Made

In situ hybridization and immunohistochemistry using antisera to the hypocretins have revealed a few

thousand neurons highly positive for Hcrt seen between the rat fornix and the mammillothalamic tracts

and a prominent network of axons that project from these cells to other neurons in the perifornical and

posterior hypothalamus (Gautvik et al., 1996; Broberger et al., 1998; Elias et al., 1998; de Lecea et al., 1998;

Peyron et al., 1998). There are 50,000–80,000 hypocretin neurons in the human lateral hypothalamus

(Moore et al., 2001). With the exception of one report on Hcrt in the enteric nervous system (Kirchgessner

and Liu, 1999), there is no other place in the brain or periphery where Hcrt‐producing neuronal perikarya
have been found. Hcrt neurons are 20–30 mm in diameter and are multipolar or fusiform in shape, with 2–4

primary dendrites bearing few spines. In addition to rats, mice, and humans, Hcrt neurons with a similar

restricted hypothalamic distribution have been detected in monkeys, hamsters, cats, sheeps, pigs, chicken,

various amphibians, and zebrafishes.

The perifornical hypothalamus contains a collection of neurons that express MCH, a peptide that

has been implicated in feeding‐related behavior (Qu et al., 1996). Double‐label colocalization studies

(Broberger et al., 1998; Elias et al., 1998; Peyron et al., 1998; Hakansson et al., 1999) have shown that the

MCH and hypocretin neurons are distinct, but spatially intermingled, each set with a different topological

distribution. There is a nearly one‐to‐one correspondence between neurons in the lateral hypothalamus that

express the opioid receptor agonist dynorphin and the hypocretin neurons (Chou et al., 2001). Nearly all

Hcrt neurons express secretogranin II (Bayer et al., 2002b). Glutamate, the excitatory amino acid trans-

porter EAAT3, and the vesicular glutamate transporters VGLUT1 and VGLUT2 are expressed by Hcrt

neurons (Abrahamson et al., 2001; Li et al., 2002; Collin et al., 2003; Rosin et al., 2003; Torrealba et al.,

2003), and thus Hcrt neurons are likely to be glutamatergic. Other proteins detected in Hcrt neurons

include the GABAA receptor epsilon subunit, 5‐HT1A receptor, m‐opioid receptor, pancreatic polypeptide

Y4 receptor, adenosine A1 receptor, leptin receptor, precursor‐protein convertase, transcription factor

Stat‐3, and the neuronal pentraxin Narp implicated in clustering of ionotropic glutamate receptors

(Hakansson et al., 1999; Horvath et al., 1999b; Reti et al., 2002; Thakkar et al., 2002; Campbell et al.,

2003; Georgescu et al., 2003; Moragues et al., 2003; Nilaweera et al., 2003; Muraki et al., 2004).
4.2 Hcrt Projections

Hcrt‐immunoreactive axons can be observed emerging from the Hcrt cell bodies, and projecting through-

out the brain, with the highest density of terminal fields seen in the hypothalamus (Broberger et al., 1998;

Elias et al., 1998; de Lecea et al., 1998; Peyron et al., 1998). Hypothalamic regions receiving projections

include the LH and posterior hypothalamic areas (regions of Hcrt and MCH neuronal populations), the

dorsomedial hypothalamus (DMH), the paraventricular hypothalamic nucleus, and arcuate nucleus. Hcrt

is reciprocally connected with neuropeptide Y receptor (NPY)‐ and leptin receptor‐positive neurons in the

arcuate nucleus (Horvath et al., 1999a), an area important in feeding behaviors and endocrine regulation.

Hcrt neurons also make reciprocal synaptic contact with neighboring MCH neurons (Guan et al., 2002).

Prominent Hcrt fibers project from the LH to apparent terminal fields in many areas of the brain.

Peyron et al. (1998) referred to four Hcrt efferent pathways: dorsal and ventral ascending pathways and
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dorsal and ventral descending pathways. The dorsal ascending pathway projects through the zona incerta to

the paraventricular nucleus of the thalamus, central medial nucleus of the thalamus, lateral habenula,

substantia innominata, bed nucleus of the stria terminalis, septal nuclei, dorsal anterior nucleus of the

olfactory bulb, and cerebral cortex. The ventral ascending pathway projects to the ventral pallidum, vertical

and horizontal limb of the diagonal band of Broca, medial part of the accumbens nucleus, and olfactory

bulb. The dorsal descending pathway projects through the mesencephalic central gray to the superior

and inferior colliculi and the pontine central gray, locus coeruleus (LC), dorsal raphe nucleus, and

laterodorsal tegmental nucleus (LDT). A second bundle of fibers projects through the dorsal tegmental

area to the pedunculopontine nucleus (PPT), parabrachial nucleus, subcoeruleus area, nucleus of the

solitary tract, parvocellular reticular area, dorsal medullary region, and the caudal spinal trigeminal

nucleus. This tract continues to all levels of the spinal cord (van den Pol, 1999). The ventral descending

pathway runs through the interpeduncular nucleus, ventral tegmental area (VTA), substantia nigra pars

compacta, raphe nuclei and the reticular formation, gigantocellular reticular nuclei, ventral medullary area,

raphe magnus, lateral paragigantocellular nucleus, and ventral subcoeruleus. The cumulative set of projec-

tions is consistent with the combined patterns of expression of the two hypocretin GPCRs (discussed

below). The projection fields in humans are comparable to those in rodents (Moore et al., 2001). The diffuse

nature of Hcrt projections provided the first evidence of the potential for multiple physiological roles for

the peptides.
4.3 Detection at Synapses

Electron microscopic examination revealed that hypocretin immunoreactivity is associated with the rough

endoplasmic reticulum, the Golgi network, and cytoplasmic dense core vesicles (de Lecea et al., 1998;

Peyron et al., 1998; Horvath et al., 1999a). The latter have been observed along myelinated axons, at

presynaptic boutons apposed to dendritic shafts in both the periaqueductal gray and in the LC, where the

synapses are with tyrosine‐hydroxylase‐positive noradrenergic dendrites. The accumulation of the hypo-

cretins within dense core vesicles at axon terminals suggested that they might have intercellular signaling

activity.
4.4 Hcrt Afferents

In addition to reciprocal connections with the MCH neurons of the LH and with NPY/agouti‐related
peptide neurons of the arcuate, corticotropin‐releasing factor (CRF)‐positive inputs arising from the

paraventricular hypothalamic nucleus have been detected in close apposition to Hcrt perikarya (Winsky‐
Sommerer et al., 2004). Hypocretin neurons receive direct projections positive for arginine‐vasopressin and

vasoactive intestinal peptide from neurons in the suprachiasmatic nucleus (SCN) (Abrahamson et al.,

2001), which is responsible for generating the circadian rhythm, and also innervation from the DMH,

which itself responds to SCN input (Chou et al., 2003).

Hcrt neurons are predominantly controlled by local glutamatergic excitatory interneurons (Li et al.,

2002). Perikaryal GABA input onto the Hcrt neurons is very minimal, approximately 10% of the gluta-

matergic input. Other afferents include brain stem noradrenergic and dorsal raphe nucleus serotonergic

inputs, as well as cholinergic afferents (Li et al., 2002; Yamanaka et al., 2003).
4.5 Receptor Distributions

The mRNAs that encode the two hypocretin receptors and the receptor proteins themselves, detected by

immunohistochemistry, are both enriched in the brain and moderately abundant in the hypothalamus but

have different distributions within the brain (Trivedi et al., 1998; Marcus et al., 2001). Hcrtr1 mRNA is

prominent in the prefrontal and intralimbic cortex, hippocampus, paraventricular thalamic nucleus,
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ventromedial hypothalamic nucleus, dorsal raphe nucleus, LC, the laterodorsal and pedunculopontine

tegmental nuclei (at higher density than Hcrtr2), pontine raphe, raphe magnus, raphe obscurus, dorsal

motor vagal complex, and spinal cord. Additional forebrain regions expressing moderate to high levels of

Hcrtr1 mRNA are the tenia tecta, bed nucleus of the stria terminalis, horizontal limb of the diagonal band of

Broca, and medial amygdala. Immunoreactive terminals have been detected in the LH.

Hcrtr2 mRNA is detected in the cerebral cortex, septal nuclei, hippocampus, medial thalamic groups,

raphe nuclei, and various nuclei of the hypothalamus, including the tuberomammillary nucleus (TMN),

dorsomedial nucleus, paraventricular nucleus (PVN), ventral premammillary nucleus, ventral periaque-

ductal gray, midbrain reticular formation, dorsal interpeduncular nucleus, Barrington’s nucleus, sensory

trigeminal nucleus, ventrolateral medulla, and dorsal vagal nucleus. Hcrtr2 mRNA was prominent in the

medial septum, vertical and horizontal limbs of the diagonal band of Broca, substantia innominata, and

cortical amygdala.

Both receptors are detected in dorsal raphe, the ventral tegmental area, paraventricular thalamic

nucleus, and the intergeniculate leaflet, with lesser density in the rhomboid, reuniens, and other midline

nuclei. In the cerebral cortex, Hcrtr1 mRNA is expressed primarily in layers II, III, and V, whereas Hcrtr2

mRNA is found at higher density in layers II and VI and more diffusely in other layers. In the hippocampus,

Hcrtr1 is expressed mainly in the CA2 region and medial dentate gyrus, while Hcrtr2 was most abundant in

CA3 (Hervieu et al., 2001).

The distribution of Hcrt receptors is largely consistent with Hcrt axon innervation patterns. The

composite distribution of the two Hcrt receptors strongly resembles the distribution of the MCH receptor

(Kilduff and de Lecea, 2001). In the LC, amygdala, and other brainstem noradrenergic groups, MCH

receptor mRNA distribution is similar to that of the Hcrtr1. In regions such as the septum, hypothalamus,

and much of the brainstem, the distribution of MCH receptor mRNA resembles that of the Hcrtr2 (Kilduff

and de Lecea, 2001).

The Hcrt receptors are not restricted to the central nervous system: in the periphery, they are widely

expressed, especially in endocrine tissues. Hcrtr1 or Hcrtr2 have been detected in the pituitary, adrenal

gland, testis, gastrointestinal tract, pancreas, and pineal gland.
5 Neurotransmitter Properties

5.1 Electrophysiological Properties

The detection of Hcrt neurons in a specialized region of the hypothalamus, processing of the precursor

into two related peptides, and the detection of the peptides in vesicles at synapses suggested that the

peptides might possess neurotransmitter activities. Bath application of synthetic Hcrt2 to mature hypotha-

lamic neurons evoked increases in the frequency of postsynaptic currents (de Lecea et al., 1998). Hypocre-

tin‐mediated excitation has been found in a large number of brain regions; many of them involved in

arousal. Hypocretin increases activity in the hypothalamus (van den Pol et al., 1998, 2001; Shirasaka et al.,

2001), LC (Hagan et al., 1999; Horvath et al., 1999b; Bourgin et al., 2000), dorsal raphe (Brown et al., 2002;

Liu et al., 2002), dorsal horn of the spinal cord (Grudt et al., 2002), spinal motoneurons (Yamuy et al.,

2004), nucleus of the solitary tract (Smith et al., 2002), dorsal motor nucleus (Hwang et al., 2001),

dorsolateral tegmentum (Burlet et al., 2002), TMN (Eriksson et al., 2001), basal forebrain (Eggermann

et al., 2001; Wu et al., 2004), midline thalamus (Bayer et al., 2000), and trigeminal nucleus (Peever et al.,

2003).

Hcrt2 has a potent effect at both presynaptic and postsynaptic receptors (van den Pol et al., 1998): in the

presence of tetrodotoxin, the hypocretins increases the frequency, but not the amplitude, of miniature

postsynaptic currents (presynaptic effect) and evoke an increase in cytoplasmic calcium by opening plasma

membrane Ca2þ channels in arcuate postsynaptic neurons (postsynaptic effect). Most synaptic activity in

hypothalamic circuits is attributable to axonal release of GABA or glutamate. Hypocretin, acting directly at

axon terminals, can increase the release of each of these amino acid transmitters, as demonstrated by whole‐
cell patch‐clamp recording (van den Pol et al., 1998).
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5.2 Coupling

Both Hcrt1 and Hcrt2 evoke rises in Ca2þ, as measured by fura‐2 imaging, in about one‐third of

hypothalamic neurons, probably by opening a calcium channel (van den Pol et al., 1998; Kukkonen and

Akerman, 2001). Responses to hypocretin are completely blocked by the protein kinase C‐specific inhibitor
bisindolylmaleide and by phospholipase C inhibitors, suggesting that the hypocretins work through a

family of GTP‐binding proteins (Gq) that activate protein kinase C (PKC) and mobilization of intracellular

calcium. Gq‐activated signaling cascades result in phosphorylation of Ca2þ channels, which can increase

Ca2þ conductance and neuronal excitability (Smart et al., 1999; Uramura et al., 2001). The nonamidated

forms of the peptides are not electrophysiologically active (Smart et al., 1999). In the substantia nigra pars

reticulate, hypocretin stimulation was sensitive to an inhibitor of protein kinase A, which mediates effects of

cAMP, but insensitive to blockers of PKC (Korotkova et al., 2002), implicating a role of the Gs system.

The adrenal glands also express Hcrtr2 (Karteris et al., 2001; Randeva et al., 2001). Treatment of human

adrenal membranes from fetal or adult tissue with Hcrt1 increased the labeling of Gs and Gi in both

preparations and additionally Gq in the adult preparation. Thus, although the majority of hypocretin

signaling is excitatory, it may be inhibitory in some cases (Martin et al., 2002). Acting as excitatory peptides,

the hypocretins can enhance the activities of both excitatory and inhibitory neurons.
6 Administration of Peptides

Administration of the hypocretins to experimental animals stimulates food intake, affects autonomic and

endocrine parameters, and increases arousal. These are discussed below in that order, but because the

disease of the hypocretin system is the sleep disorder narcolepsy, the arousal aspects are the most important

and will be discussed in a later section of the chapter.
6.1 Feeding and Metabolism

Sakurai et al. (1998) found that intracerebroventricular (ICV) administration of either Hcrt1 or Hcrt2

increased short‐term food consumption in rats. Furthermore, rats that had been deprived of food for 48

h showed increased concentrations of hypocretin mRNA and peptides in the hypothalamus (Sakurai et al.,

1998; Mondal et al., 1999). Feeding responses can be elicited by local administration of Hcrt1 to the PVN,

the dorsomedial nucleus, the lateral hypothalamus, or the perifornical area (Dube et al., 1999). ICV

administration of Hcrt2 also increases food intake in sheep (Sartin et al., 2001).

Many observations leave little doubt that the hypocretin system influences and is influenced by primary

nutritional homeostasis circuits, but other findings suggest that the hypocretins are not critical players in

feeding activities but rather play roles in increasing arousal and motivation levels so that feeding can take

place. Hypocretin‐immunoreactive fibers form synapses with neurons in the arcuate nucleus that contain

NPY, an important orexigenic (appetite‐stimulating) peptide, and with POMC‐expressing neurons, which
produce a‐melanocyte‐stimulating hormone, a satiety factor (Broberger et al., 1998; Elias et al., 1998;

Horvath et al., 1999). Hypocretin neurons express leptin receptors (Hakansson et al., 1999; Horvath et al.,

1999), and preprohypocretin mRNA expression is reduced in obese (ob/ob) mice (Yamamoto et al., 1999),

which lack leptin. Hypocretin neurons receive inputs from NPY‐ and agouti‐related peptide (AgRP)‐
positive neurons in the arcuate nucleus, which themselves express leptin receptors, and NPY stimulates

c‐fos expression by hypocretin neurons, whereas NPY receptor antagonists block the feeding effect of

hypocretins (Jain et al., 2000; Yamanaka et al., 2000). Administration of an antiserum directed against

Hcrt1 attenuates the feeding response to ICV NPY, and pharmacological blockade of the NPY receptor

reduces the feeding stimulatory effect elicited by Hcrt1 (Jain et al., 2000; Lopez et al., 2000; Yamanaka et al.,

2000). Hcrt‐expressing cells respond to circulating leptin by reducing Hcrt1 concentrations and c‐fos
expression (Beck and Richy, 1999; Lopez et al., 2000; Niimi et al., 2001). Also supporting the idea that

the hypocretin neurons are involved in feeding is the observation that they express STAT3, a transcription
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factor that is induced by leptin (Hakansson et al., 1999). However, whereas NPY‐induced feeding is

completely inhibited by leptin, the Hcrt feeding response is only partially suppressed by leptin (Zhu

et al., 2002).

Hcrt cells are sensitive to glucose and food deprivation (Griffond et al., 1999; Moriguchi et al., 1999;

Bayer et al., 2000; Cai et al., 2001; Muroya et al., 2001): the activity of hypocretin neurons and their

expression of hypocretin mRNA and c‐fos increases during hypoglycemia; hypocretin mRNA decreases

during glucopenia; and c‐fos expression increases during fasting. Acute administration of the Hcrtr1‐
selective antagonist SB‐334867 suppresses food intake in rats. Interestingly, SB‐334867 also reduced weight

gain for 3 to 5 days posttreatment (Rodgers et al., 2001; Ishii et al., 2004), despite being no longer detectable

after 12 h, and repeated administration of the antagonist reduced the food intake and weight gain over 14

days in ob/ob mice (Haynes et al., 2002). These results are consistent with a complex circuitry of appetite‐
controlling signaling molecules in the arcuate and lateral hypothalamus in which hypocretin might play a

role.

Not all data support this notion, though, particularly when the other activities of the hypocretins are

considered (see below). Hcrt1‐induced increases in food intake were small relative to those induced by NPY

infusion (Edwards et al., 1999; Ida et al., 1999). No alteration in Hcrt1 peptide concentration or Hcrt

mRNA in the hypothalamus in response to either fasting or a high‐fat diet, and no effect on Hcrt mRNA

levels in experimentally induced diabetes, have been observed in rats (Taheri et al., 1999; Tritos et al., 2001;

Swart et al., 2001). However, Hcrt mRNA increases after leptin administration to fasted mice, and increases

in response to a high‐fat diet.
It is difficult to attribute physiological effects to ICVadministration of high doses of hypocretin, which

might activate circuits other than those that would be activated by local axonal release of the transmitter

(van den Pol et al., 1998). And, the Hcrts might be orexigenic only under some physiological states (perhaps

related to circadian rhythms or stress). In this regard, it might be significant that the hypocretins activate

dopamine‐mediated stereotypic behaviors. Hcrt1 peptide concentrations in the hypothalamus are under

circadian control and are highest during the awake, dark period in nocturnal rodents (Yoshida et al., 2001).

During fasting, Hcrt1 accumulation in the CSF does not exceed concentrations normal for the waking

period, suggesting that some of the food‐uptake effect may result from arousal rather than direct feeding

pressure (Fujiki et al., 2001). Continuous administration of Hcrt1 for 7 days in rats does not significantly

alter daily food intake, body weight, blood glucose, total cholesterol, or free fatty acid levels (Yamanaka

et al., 1999), suggesting that many of hypocretin’s effects may be limited to short‐term, immediate

stimulation of feeding behavior due to increased wakefulness. That is, animals eat more and are motivated

to eat when they are awake.
6.2 Autonomic and Endocrine Effects

Hypocretin neurons receive inputs from brainstem areas that are associated with cardiovascular function,

and project to the ventrolateral medulla, the locus coeruleus, the lateral paragigantocellular nucleus, the

nucleus of the solitary tract and other areas that have been implicated in the regulation of blood pressure

and heart rate (Dampney, 1994). Projections to the arcuate nucleus also suggested a role in the regulation of

hormone release. In the ovine hypothalamus, there are hypocretin terminals on the neurons that produce

gonadotropin‐releasing hormone, suggesting that hypocretin might particularly modulate reproductive

endocrinology (Iqbal et al., 2001). In addition, projections to the raphe magnus and subcoeruleus suggested

a role for hypocretins in the regulation of body temperature. The dense hypocretinergic projections to the

ventrolateral preoptic area, TMN, pontine reticular formation, PPT, LDT area, and LC, suggested their

involvement in states of arousal (Sherin et al., 1996; Peyron et al., 1998; Hagan et al., 1999). Very strong

hypocretin‐immunoreactive projections have been described in regions of the spinal cord that are related to

modulation of pain (van den Pol, 1999), and hypocretin‐like immunoreactivity has also been detected in

the intestinal epithelium (Kirchgessner and Liu, 1999).

In accordance with the wide distribution of hypocretin terminals, ICV administration of the hypocre-

tins affects not only feeding, but also several other functions. Both Hcrt1 and Hcrt2 elevate mean arterial
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blood pressure, heart rate (both suppressed by SB334867), and oxygen consumption (Samson et al., 1999;

Shirasaka et al., 1999; Chen et al., 2000; Wang et al., 2001). Hcrt1 increases body temperature independent

of peripheral thermogenesis (Yoshimichi et al., 2001), increases water consumption, and stimulates gastric

acid secretion in the gut (Kunii et al., 1999; Takahashi et al., 1999). Hcrt1 also increases locomotor activity

and wakefulness, while decreasing slow wave and depressing REM sleep (Hagan et al, 1999; Bourgin et al.,

2000; Piper et al., 2000; Espana et al., 2001; Thakkar et al., 2001).

The peptides also stimulate the secretion of luteinizing hormone in ovarectomized and proestrus female

rats (suppressed by central administration of SB334867) and in hypothalamic explants from male pitui-

taries (Pu et al., 1998; Russell et al., 2001b). Hcrt1 decreases the concentrations of circulating growth

hormone and prolactin, while increasing corticosterone, ACTH, and insulin levels (Hagan et al., 1999;

Malendowicz et al., 1999; Ida et al., 2000; Nowak et al., 2000; Russell et al., 2001a). Hcrt2, but not Hcrt1,

increases circulating thyroid‐stimulating hormone (Jones et al., 2001) and has direct effects on the pituitary,

adrenal, and pineal glands (Mikkelsen et al., 2001; Randeva et al., 2001; Samson and Taylor, 2001). Both

peptides depolarize CRF neurons in the paraventricular hypothalamic nucleus and increase CRF and

arginine‐vasopressin mRNA concentrations in the PVN, and thus have clear effects on the HPA axis and

stress‐related physiology (Kuru et al., 2000; Al Barazanji et al., 2001; Shirasaka et al., 2001; Follwell and

Ferguson, 2002; Samson et al., 2002). Hcrt2 is directly excitatory on superficial dorsal horn neurons of the

spinal cord (Grudt et al., 2002) and exhibits an analgesic effect in models of pain (Bingham et al., 2001).

There are several examples in which either Hcrt1 or Hcrt2, but not both peptides, effects a response,

suggesting that the two peptides are not redundant. In some cases, the effects can be explained by

differential involvement of Hcrtr1 or Hcrtr2; in others, differential resistance of the peptides to degradation

may provide the explanation.
6.3 Motivation/Addiction

Hcrt neurons are highly responsive to morphine and are activated by naltrexone‐precipitated with-

drawal. However, the response of these neurons is heterogeneous, suggesting that there might be different

populations of Hcrt cells (Fadel and Deutch, 2002). The expression of the Hcrt gene increases only

after precipitated withdrawal. The neurons express the m‐opioid receptor; hence their response may be

directly to morphine and naltrexone (Georgescu et al., 2003). These observations might explain why

animals self‐administer heroin to the LH (Corrigall, 1987). Hcrt knockout mice exhibit dramatically

attenuated morphine withdrawal symptoms (Georgescu et al., 2003). Hcrt neurons have extensive

projections to the mesolimbic dopamine and noradrenergic (LC) pathways, regions well studied for their

roles in drug addiction. These neurons also project to and inhibit nucleus accumbens neurons (Martin

et al., 2002).

Rats can be trained to turn a wheel to deliver electrical current to the LH: LH self‐stimulation (LHSS).

LHSS thresholds measure brain reward systems; lower thresholds represent increased reward. Most drugs of

abuse lower LHSS thresholds. LHSS is thought to be rewarding in part because it activates cholinergic

neurons in the LDT and the PPT nuclei that consequently activate dopaminergic neurons in the VTA

(Forster and Blaha, 2000). Hypocretins excite LDT cholinergic neurons both directly and indirectly, acting

synergistically with glutamatergic afferents (Burlet et al., 2002) to drive dopamine release in the nucleus

accumbens by exciting dopaminergic neurons in the VTA. Thus, the Hcrt system acts as a modulator of

brain reward function.
6.4 Effects of Anesthetics

Hcrt1 decreases barbiturate anesthesia time in rats by 15–40%, an action reversed by SB‐334867 (Kushikata
et al., 2003). In vitro, barbiturates inhibit Hcrt‐induced norepinephrine release although they do not

interact directly with Hcrt receptors. In isoflorane‐anesthetized animals, Hcrt1 elicits arousal without

cardiovascular activation, in contrast to its effect on awake animals (Yasuda et al., 2003).
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7 Narcolepsy Is a Disease of the Hypocretin System

7.1 Sleep, Arousal, and Narcolepsy

Sleep is characterized by complex patterns of neuronal activity in thalamocortical systems (Steriade et al.,

1993; Jones, 1994; McCormick and Bal, 1997). The fast, low‐amplitude electroencephalogram (EEG)

activity of the aroused state is replaced by synchronized high‐amplitude waves that characterize slow‐
wave sleep. This pattern develops further into high‐frequency waves that define paradoxical, or REM, sleep.

Switching among these states is controlled in part by the activities of neurons in the hypothalamic

ventrolateral preoptic nucleus and a series of areas referred to as the ascending reticular activating system,

which is distributed among the pedunculopontine and laterodorsal tegmental nuclei (PPT–LDT), LC,

dorsal raphe nucleus and TMN, and regulates cortical activity and arousal (Saper et al., 2001).

The first case of human narcolepsy was reported in 1877 by Westphal, and the sleep disorder acquired

its name from Gélineau in 1880. Narcolepsy affects around 1 in 2000 adults, appears between the ages of 15

to 30 years, and shows four characteristic symptoms: (1) excessive daytime sleepiness with irresistible sleep

attacks during the day; (2) cataplexy (brief episodes of muscle weakness or paralysis precipitated by strong

emotions such as laughter or surprise); (3) sleep paralysis, a symptom considered to be an abnormal

episode of REM sleep atonia, in which the patient suddenly finds himself unable to move for a few minutes,

most often upon falling asleep or waking up; and (4) hypnagogic hallucinations, or dream‐like images that

occur at sleep onset. These latter symptoms have been proposed as pathological equivalents of REM sleep.

The disorder is considered to represent a disturbed distribution of sleep states rather than an excessive

amount of sleep.

Studies with monozygotic twins have shown that narcolepsy is weakly penetrant i.e; in only 25% of

cases does the monozygotic twin of an affected individual also develop the disorder. Sporadic narcolepsy

(which accounts for 95% of human cases) is highly correlated with particular class II HLA‐DR and ‐DQ
histocompatibility haplotypes in about 90% of patients, but most people with these haplotypes are not

narcoleptic (Mignot et al., 2001). Because many autoimmune disorders are HLA‐linked and because of the

late and variable age of disease onset, narcolepsy has long been considered a likely autoimmune disorder,

but the targets of the immune attack are not known.
7.2 Canine Narcolepsy

Both sporadic and heritable narcolepsies are observed in dogs, and the symptoms resemble those exhibited

by humans suffering from narcolepsy. The first link between the hypocretins and narcolepsy came from

genetic linkage studies in a colony of Doberman pinschers in which narcolepsy was inherited as an

autosomal recessive, fully penetrant phenotype. Fine mapping and cloning of the defective canine narco-

lepsy gene showed it to be the gene that encodes the hypocretin receptor, Hcrtr2 (Lin et al., 1999). The

mutation in the Doberman lineage is an insertion of a short interspersed repeat element (SINE) into the

third intron ofHCRTR2 that causes aberrant splicing of the Hcrtr2 mRNA (exon 4 is skipped) and results in

a truncated receptor protein. In cells that have been transfected with the mutant gene, the truncated Hcrtr2

protein does not properly localize to the membrane and, therefore does not bind its ligands (Hungs et al.,

2001). Analysis of a colony of narcoleptic Labradors revealed that their HCRTR2 gene contained a distinct

mutation that resulted in the skipping of exon 6, also leading to a truncated receptor protein. A third family

of narcoleptic Dachshunds carries a point mutation in HCRTR2 that results in a receptor protein that

reaches the membrane but cannot bind the hypocretins.
7.3 Mouse Knockout Mutants

Continuous recording of the behavior of knockout mice in which the hypocretin gene was inactivated by

homologous recombination in embryonic stem cells revealed periods of ataxia, which were especially
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frequent during the dark period (Chemelli et al., 1999). EEG recordings showed that these episodes were

not related to epilepsy and that the mice suffered from cataplectic attacks, a hallmark of narcolepsy. In

addition, the mutant mice spent almost twice as much time in REM sleep during the dark period as did

their wild‐type littermates, and their EEGs showed episodes of direct transition from wakefulness to REM

sleep, another event that is unique to narcolepsy. Similar observations were made in rats in which the

hypocretin neurons of the lateral hypothalamus were inactivated by saporin targeting (Gerashchenko et al.,

2001), although in this model cataplexy was not observed. Mice with an inactivated HCRTR2 gene have a

milder narcoleptic phenotype than the HCRT knockouts; HCRTR1 knockouts exhibit only a sleep frag-

mentation phenotype, whereas double HCRTR1 and HCRTR2 mutants recapitulate the full HCRT knock-

out phenotype (Willie et al., 2003), suggesting that signaling through both receptors contributes to normal

arousal, although the role of HCRTR2 is greater than that of HCRTR1.
7.4 Human Narcolepsy

Nishino et al. (2000) studied hypocretin concentrations in the CSF of normal controls and patients

with narcolepsy by radioimmunoassay. In control CSF, hypocretin concentrations were highly clustered,

suggesting that tight regulation of the substance is important. However, of nine patients with narcolepsy,

only one had a hypocretin concentration within the normal range. One patient had a greatly elevated

concentration, while seven patients had no detectable circulating hypocretin. In an expanded study,

hypocretin was undetectable in 37 of 42 patients with narcolepsy and in a few patients with Guillain‐
Barré syndrome (Ripley et al., 2001). CSF hypocretin was in the normal range for most neurological

diseases, but was low, although detectable in some patients with CNS infections, brain trauma, and brain

tumors.

Peyron (2000), Thannickal (2000) and their teams of collaborators found that, in the brains of

narcolepsy patients, they could detect few or no hypocretin‐producing neurons. Whether the hypocretin

neurons are selectively depleted, as is most likely, or only no longer expressing hypocretin is not yet known,

although one report showed some indications of gliosis (Thannickal et al., 2000). The codistributed MCH

neurons were unaffected. Furthermore, a single patient with a nonHLA‐linked narcolepsy carried a

mutation within the hypocretin gene itself. The mutation results in a dominant negative amino acid

substitution in the secretion signal sequence that sequesters both the mutant and heterozygous wild‐type
hypocretin nonproductively to the smooth endoplasmic reticulum (Peyron et al., 2000).

These findings leave no doubt as to the central role of the hypocretin system in this sleep disorder.

Because most cases are sporadic, mutations in the hypocretin gene or those for its receptors can account for

no more than a small subset of the human narcolepsies. The HLA association, loss of neurons with signs of

gliosis, and age of disease onset are consistent with autoimmune destruction of the hypocretin neurons

accounting for the majority of narcolepsy (Lin et al., 2001), although a nonimmune‐mediated degenerative

process has not been ruled out. Whether hypocretin itself or some other protein that is selectively expressed

by the hypocretin neurons is the target antigen is yet to be determined. The precipitating factor for the

development of the autoimmunity is also unknown, but there must be one because only a small percentage

of individuals with the predisposing HLA haplotypes develop the disorder. The narcolepsies as a group

are probably a collection of disorders that are caused by defects in the production or secretion of

the hypocretins or in their signaling, and these could have numerous genetic, traumatic, viral, and/or

autoimmune causes.
8. Hypocretin and Arousal Circuitry

Because narcolepsy is the consequence of a defective hypocretin system, it follows that the dominant role of

the system is in maintenance of the waking state and suppression of REM entry, and data about the

hypocretins give insights as to how this is accomplished. The hypocretin neurons project to various

brainstem structures of the ascending reticular activating system that express one or both of the hypocretin
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receptors and have been implicated in regulating arousal. The noradrenergic neurons of the LC, the

serotonergic neurons of the dorsal raphe, and the histaminergic neurons of the TMN are all so‐called
REM‐off cells: each group fires rapidly during wakefulness, slowly during slow‐wave sleep, and hardly at all

during REM (Saper et al., 2001). Each of these structures sends projections to a diverse array of targets in the

forebrain, and their firing stimulates cortical arousal. The activity state of these groups of monoaminergic

neurons is one of the features that distinguishes wakefulness from REM. Additionally, and importantly,

the hypocretin neurons project to other brain areas that have been implicated in arousal. For instance, the

hypocretins, acting through Hcrtr2, excite cholinergic neurons of the basal forebrain, which produce the

cortical acetylcholine characteristic of the desynchronized EEG associated with wakefulness and REM (Xi

et al., 2001). Direct infusion of the hypocretins into the basal forebrain produces dramatic increases in

wakefulness (Espana et al., 2001; Thakkar et al., 2001).
8.1 LH Neurons

Among the neurons of the perifornical lateral hypothalamus, 53% increase their firing rates during both

wakefulness and REM but decrease their activities during slow‐wave sleep (Alam et al., 2002). An additional

38% of the neurons in this area are activated only during the awake phase. Hypocretin neurons express c‐fos
during the waking period (night time in rats), and c‐fos expression is increased by sleep deprivation and

methamphetamine (Estabrooke et al., 2001). The stimulant modafinil, which is commonly used to treat the

drowsiness associated with narcolepsy, greatly elevates c‐fos expression in hypocretin neurons (Chemelli

et al., 1999). Hypocretin levels fluctuate circadianly, being highest during waking, and peptide concentra-

tions increase as a consequence of forced sleep deprivation (Yoshida et al., 2001), suggesting that the

hypocretins and the activity of the hypocretin neurons serve as pressures that oppose sleep. Other

perturbations that increase c‐fos expression in Hcrt cells include treatment with NPY, leptin, ghrelin,

hypoglycemia, and food and sleep deprivation.
8.2 Noradrenergic Systems

The noradrenergic LC neurons fire constantly during wakefulness. In addition to their projections to the

forebrain, these neurons send inhibitory projections to cholinergic REM‐on (fire during wakefulness and

more rapidly during REM, but do not fire during slow‐wave sleep) generator neurons in the PPT–LDT that

project to the pontine reticular formation (Hobson et al., 1975; Aston‐Jones and Bloom, 1981). Hypocretin

axons form synapses on these LC neurons, which express Hcrtr1 postsynaptically (Horvath et al., 1999b;

Bourgin et al., 2000). Local administration of Hcrt1, but not Hcrt2, to the LC suppresses REM in a dose‐
dependent manner and increases wakefulness (Bourgin et al., 2000). These effects are neutralized by an

antibody that prevents binding of Hcrt1 to Hcrtr1. Administration of Hcrt1 increases the firing rate of

noradrenergic LC neurons and induces expression of c‐fos in these cells (Bourgin et al., 2000; Ivanov and

Aston‐Jones, 2000).
Hcrt terminals are also found on GABA interneurons in the LC (Zhu et al., 2003). GABA inhibits LC

neurons (Ennis and Aston‐Jones, 1989), suggesting that Hcrt has both direct excitatory effects on LC

noradrenergic neurons and inhibitory effects on these same neurons via a feedforward circuit involving

local GABA interneurons. Hcrt neurons are responsive to noradrenalin, thus providing a feedback loop

between LC and Hcrt neurons. Whether the noradrenalin effect is excitatory, inhibitory, or state‐dependent
is presently a matter of debate.
8.3 Serotonergic Systems

Serotonin neurons of the dorsal raphe in the brainstem are part of modulatory ascending and descending

pathways that gate sleep–wake states (Hobson and Pace‐Schott, 2002) These neurons express both Hcrtr1
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and Hcrtr2 (Brown et al., 2002) and receive input from Hcrt fibers. Hypocretins increase the activity of

serotonin cells in the dorsal raphe primarily by activation of nonselective cation currents (Brown et al.,

2002; Liu et al., 2002).
8.4 Histaminergic Systems

Histamine neurons are wake‐active neurons, located exclusively in the TMN of the hypothalamus. They

project to the hypothalamus, basal forebrain, thalamus, cortex, and brainstem. TMN neurons express

Hcrtr2 receptors and receive inputs from Hcrt‐containing axons. Both Hcrt1 and Hcrt2 depolarize

histaminergic TMN neurons by activation of an electrogenic sodium–calcium exchanger and a Ca2þ

current, associated with a small decrease in input resistance and increases in spontaneous firing (Eriksson

et al., 2001). Knockout mice deficient in histamine receptor 1 are impervious to hypocretin administration,

suggesting that at least some of the effects of the Hcrts are caused by release of histamine and activation of

postsynaptic H1 receptors (Bayer et al., 2001; Huang et al., 2001; Yamanaka et al., 2002).

One of the features of narcolepsy is cataplexy, which is a sudden loss of skeletal muscle tone, often

triggered by emotions or laughter. During cataplectic episodes, although narcoleptic individuals enter a

REM‐like state of muscle atonia, they are awake, aware of their environment, and otherwise conscious.

Thus, vigilance and the control of muscle tone are dissociated in this pathological state. Studies in Hcrtr2‐
deficient narcoleptic dogs (John et al., 2004) showed that histamine neurons, in contrast to noradrenergic

and serotonergic REM‐off cell groups, are active during cataplexy. Activity of histamine neurons is thus

linked to the maintenance of waking, whereas that of noradrenergic and serotonergic neurons is tightly

coupled to the maintenance of muscle tone in waking and its loss in REM sleep and cataplexy.
8.5 Dopaminergic Systems

The dopaminergic neurons of the VTA and ventral periaqueductal gray do not change their activity greatly

throughout the sleep–wake cycle. Dopaminergic and GABAergic neurons in the VTA receive inputs from

Hcrt neurons of the LH (Fadel and Deutch, 2002). The hypocretins excite these neurons via Ca2þ‐, PLC‐,
and PKC‐dependent pathways (Uramura et al., 2001), promoting arousal.
8.6 Cholinergic Systems

The hypocretin neurons project to cholinergic brainstem REM‐on neurons, including those in the LDTand

the PRF whose projections contribute to cholinergic tone in the forebrain. This tone is elevated during both

wakefulness and REM leading to desynchronization of the EEG. Cholinergic tone is low in slow‐wave sleep
and during which acetylcholine activity is further inhibited by the sleep‐promoting peptide of forebrain

interneurons, cortistatin (de Lecea et al., 1996), contributing to the slow‐wave synchrony of the EEG. Local
injection of Hcrt1 into the LDT of freely moving cats increases wakefulness and decreases the number of

REM episodes, but does not influence episode length (Xi et al., 2001), suggesting that the hypocretin system

influences the gate (or switch) to REM by reducing the firing rates of the brainstem REM‐on cells, but does

not itself operate during REM. This and the fact that deficiencies in the hypocretin system lead to increases

in REM make it more likely that action at REM‐on structures by hypocretin occurs only during waking

periods (Sutcliffe and de Lecea, 2002). The role of hypocretin in regulating the REM gate is a complex one in

that, paradoxically, the REM‐on structures receive both indirect hypocretin‐initiated inhibitory signals

from REM‐off cells and direct projections from the hypocretin neurons themselves, and therefore must

decide on how to respond to this push–pull pressure in different scenarios.

The midline and intralaminar thalamic neurons coordinate activity levels broadly across the cerebral

cortex and support attention and awareness. Hcrt1 and Hcrt2 selectively depolarize midline‐intralaminar

thalamic neurons and not sensory thalamic neurons (Bayer et al., 2002a). Midline‐intralaminar nuclei
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express hcrtr2 (Trivedi et al., 1998; Marcus et al., 2001). The hypocretins excite arousal‐related cholinergic

neurons in the basal forebrain (Eggermann et al., 2001).

Hcrt neurons project directly to the cerebral cortex in addition to projecting onto subcortical relay

neurons. In the cortex, Hcrt fibers are distributed through all layers, although most densely in the deeper

layers. In layers 1 through 6a, hypocretins have no direct effect upon cortical neurons, although there are

indirect effects through presynaptic terminals of inputs (Bayer et al., 2004). Hcrt has a direct postsynaptic

depolarizing action upon cortical neurons located exclusively in layer 6b that is mediated by Hcrtr2. Layer

6b neurons project diffusely to layer 1 of surrounding cortical areas (Clancy and Cauller, 1999), allowing

cortical activation to propagate widely.
9 Integrating What We Know

Hypocretin peptides excite LC and dorsal raphe neurons to elevate muscle tone and excite TMN neurons to

promote wakefulness. These components of the ascending reticular activating system, and the Hcrt neurons

themselves, project to and stimulate thalamic and basal forebrain neurons, and all of these groups

contribute to the depolarization of layer 6b neurons of the cerebral cortex. Arousal‐related signaling occurs

through both Hcrtr1 and Hcrtr2. The involvement of both receptors is consistent with the more severe

phenotype of the double receptor knockout mice compared with either single receptor knockout (Willie

et al., 2003). It is also consistent with the observation that sporadic cases of canine narcolepsy associated

with lower or undetectable CSF hypocretin are more severe than are cases with the Hcrtr2 deficiencies alone

(Hungs and Mignot, 2001). Nevertheless, Hcrtr2 plays the more prominent role in raising arousal levels.

These peptides also have diverse effects on brain reward systems and autonomic systems related to stress

that serve to increase motivated behaviors, for example, feeding. The relation to feeding is a complex one.

Acute administration of Hcrt to sleeping rats increases food consumption. However, patients with narco-

lepsy have chronically low concentrations of the hypocretins, but have an increased likelihood of being

obese despite reduced daily calorie intake (Schuld et al., 2000; Nishino et al., 2001). Similarly, although

hypocretin knockout mice are hypophagic, they do not have lower weights than the unaffected controls.

Mice that have been genetically engineered to lack hypocretin neurons by expressing a toxic gene from the

hypocretin transcriptional promoter exhibit a phenotype similar to that of humans with narcolepsy, not

only with respect to sleep/REM measures, but also in demonstrating late‐onset obesity despite eating less

than their nonaffected littermates (Hara et al., 2001). Thus, chronic hypocretin underactivity does not

reduce body weight but increases it. Rather than considering the hypocretins to be orexigenic, they appear

to serve as a counter‐regulatory response to obesity.
10 Diagnosis and Potential Therapeutics for Sleep Disorders

Measurement of Hcrt1 in CSF provides a reliable diagnostic for sporadic narcolepsy. Although local release

of Hcrt at its targets within the brain varies during the 24‐h day, CSF Hcrt1 levels are relatively stable

(Salomon et al., 2003). In a study of 274 patients with various sleep disorders (171 with narcolepsy) and 296

controls, a cutoff value of 110 pg/mL (30% of the mean control values) was the most predictive of

narcolepsy (Mignot et al., 2002). Most narcolepsy patients had undetectable levels, while a few had

detectable, but very reduced levels. The assay was 99% specific for narcolepsy.

Hcrt1 has also been detected in plasma, although its origin remains to be demonstrated and high

nonspecific background immunoreactivities partially mask its detection. Decreased levels of plasma Hcrt1

were measured in narcoleptic patients using high‐performance liquid chromatography separation to

confirm that the signal included genuine Hcrt1 (Higuchi et al., 2002).

Given that most human narcolepsy is sporadic and results from depletion of Hcrt‐producing neurons,
replacement therapies can be envisioned. Small molecule agonists of the hypocretin receptors might have

therapeutic potential for human sleep disorders and might be preferable to the traditionally prescribed

amphetamines. ICV administration of Hcrt1 to normal mice and dogs strongly promotes wakefulness
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(Nishino et al., 2003). The effect is predominantly mediated by Hcrtr2, because the same dose of Hcrt1 has

no effect in Hcrtr2‐mutated narcoleptic dogs (Yoshida et al., 2003). Hcrt1 has low penetrance of the blood–

brain barrier, so a centrally penetrable agonist will need to be devised.
11 Questions to be Answered

Clearly there is still much to be learned about the hypocretin system. Do Hcrt neurons represent a single,

homogeneous population or do subpopulations exist? Do they all have the same function, or do subsets

project to different targets? What is the nature of the selective vulnerability of Hcrt neurons that results in

their degeneration and consequent narcolepsy in humans with particular histocompatibility types? Is Hcrt

itself an antigenic target or is there another precipitating antigen? Is the degeneration truly autoimmune,

and if so, why is immune privilege of the brain compromised? What are the roles of the two Hcrt receptors

at the various target nuclei? What are the signals that affect Hcrt neuronal activity? What is the natural

activity profile of these neurons? Is it state dependent?
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Abstract: Neuropeptide Y (NPY), a 36‐amino‐acid peptide is abundantly expressed throughout the

mammalian nervous system including: neocortex, hippocampus, striatum, amygdala, hypothalamus,

thalamus, and brain stem. NPY has been implicated in the regulation of a number of different behaviors

and neurophysiological functions, many of them part of the complex system(s) involved in maintaining and

regulating homeostasis. These include, among others, anxiety and stress related responses, feeding, learning

and memory, endocrine function, and circadian rhythms. The functions are mediated via different receptor

subtype populations (Y1–y6), all belonging to the G‐protein‐coupled receptor super‐family. The Y1 subtype

has been shown to mediate the anxiolytic effects of NPY, while the Y2 subtype is involved in regulation of

circadian rhythms and neuronal excitability in the hippocampus, and may thus be the receptor subtype

involved in the peptide’s effects on memory function. Stimulation of food intake by NPY has been proposed

to be mediated by Y5 and/or Y1 receptors within the hypothalamus. Here, we present a summary of current

findings concerning the central nervous system (CNS) functions of NPY in the context of homeostasis and

reaction to the environment.

List of Abbreviations: AA, amino acids; bp, base pair; CNS, central nervous system; CPON, C‐flanking
peptide of NPY; CRF, corticotropin‐releasing factor; CSF, cerebrospinal fluid; GABA, gamma‐aminobutyric

acid; HPA, hypothalamic–pituitary–adrenal (axis); ICV, intracerebroventricular; IV, intravenously; NPY,

neuropeptide Y; NPY‐LI, NPY‐like immunoreactivity; PCR, polymerase chain reaction; PP, pancreatic

polypeptide; PVN, paraventricular nucleus; PYY, peptide YY; SCN, suprachiasmatic nucleus; SNP, single

nucleotide polymorphism
1 Introduction

This chapter examines the function of neuropeptide Y (NPY) within the central nervous system (CNS).

Information is provided on the discovery of NPY, how it is processed in neurons, where it is located within

the CNS, and its receptor subtypes. Additional information on a range of behaviors NPYaffects through its

actions within the CNS is summarized.

In 1935, Sir Henry Dale postulated that information is exchanged between neurons as chemical signals,

which spurred a plethora of work aimed at identifying the substances mediating these signals. In addition to

the first characterized ‘‘classical’’ neurotransmitters, which include among others the catecholamines and

acetylcholine, a number of neuroactive peptides have been isolated. These peptides have been grouped into

families depending on common precursors and sequence homologies. One such family is the so‐called
pancreatic polypeptide family, which includes neuropeptide Y (NPY), pancreatic polypeptide (PP), peptide

YY (PYY), and related peptides. Since NPY is phylogenetically the ancestor of this family, a more correct

designation is probably the family of NPY‐related peptides.

The first peptide to be isolated in the family of NPY‐related peptides was PP, from avian pancreas, which

therefore gave name to the family (Kimmel et al., 1975). Later, PP‐like immunoreactivity was reported

within the mammalian CNS, but attempts to extract the PP protein from the mammalian brain were

unsuccessful pointing to the existence of ‘‘PP‐like’’ peptides. PYY, and then NPY, were isolated in the

beginning of the 1980s by Tatemoto, Mutt and coworkers using a method designed to detect peptides

having a C‐terminal amide group, a feature common to members of the PP‐family together with a length of

36 amino acids (AA) (Tatemoto, 1982; Tatemoto et al., 1982). Subsequent work showed that NPYaccounted

for almost all the PP‐like immunoreactivity in the brain, while PYY was mainly found in the intestine.

Phylogenetic studies have revealed NPY to be well conserved during evolution, implying an important

functional role of the peptide (Cerda‐Reverter and Larhammar, 2000; Conlon, 2002). The homology

between species is high for gene organization, cDNA, and peptide sequences (> Table 23-1). The organiza-

tion of the gene is highly conserved between human and rat, and the peptide sequence is identical between

the two species. The peptide precursor for NPY is 98 AA in both species. The precursor consists of a signal

peptide of 28 AA (29 AA in rat), which is necessary for the nascent peptide chain to enter the lumen of the

endoplasmic reticulum, and is cleaved upon entry into the lumen leaving a propeptide of 69 AA. The

propeptide consists of the 36 AA of NPY, a three‐amino‐acid motif (glycine–lysine–arginine) necessary for



. Table 23-1

Comparison of sequences between the members of the NPY‐family of peptides

Sequence

hNPY YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY‐ amide

cNPY YPSKPDSPGEDAPAEDMARYYSALRHYINLITRQRY‐ amide

tNPY YPSKPDNPGEGAPAEDLAKYYSALRHYINLITRQRY‐ amide

pNPY YPSKPDNPGEDAPAEDLARYYSALRHYINLITRQRY‐ amide

pPYY YPAKPEAPGEDASPEELSRYYASLRHYLNLVTRQRY‐ amide

hPYY YPIKPEAPGEDASPEELNRYYASLRHYLNLVTRQRY‐ amide

pPP APLEPUYPGDDATPEQMAQYAAELRRYINMLTRPRY‐ amide

rPP APLEPMYPGDYATHEQRAQYETQLRRYINTLTRPRY‐ amide

cPP GPSQPTYPGDDAPVEDLIRFYNDLQQYLNVVTRHRY‐ amide

Sequence homologies between NPY from human (hNPY), chicken (cNPY), fish (Torpedo marmorata; tNPY), and pig (pNPY).

Porcine PYY and human PYY, as well as human PP, rat PP (rPP), and chicken PP (cPP) are also displayed. Bold letters indicate

sequence differences compared with the top human sequence (for NPY), or with pig NPY (for pig PYY), or compared with

pig PYY (for human PYY), or compared with human PP (for rPP and cPP). The sequences for human and rat NPY are identical,

as are the sequences for pig and rat PYY. NPY peptide sequences have also been obtained from guinea pig and rabbit

(identical to hNPY), as well as cow (1 AA different from hNPY), frog (1 AA different from hNPY), and goldfish (5 AA different

from hNPY) among other species. The sequences for human PP and pig PP are identical. Peptide sequences for PP from dog,

cat, guinea pig, goose, ostrich, and a number of other species have also been determined
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generation of mature NPY from the propeptide, and a 30 AA peptide named C‐flanking peptide of NPY

(CPON) (> Figure 23-1). The NPY propeptide, generated in the endoplasmic reticulum, migrates into

specific large, dense core vesicles present in dendrites, cell bodies, and axons. Expression of the NPY gene is

tightly regulated, and NPY is primarily expressed in cells derived from the neural crest. Several factors are

involved in the regulation of expression indicated by the presence of a number of consensus sequences for

DNA‐binding proteins within the NPY gene. These include: five potential, GC‐rich SP‐1 sites, two

CCCCTC sites, a partial CAAT‐box, and one AP‐1 binding site (Minth et al., 1986; Minth and Dixon,

1990). Additionally, NPY expression is controlled by activators of cAMP and calcium‐ or phospholipid‐
dependent protein kinases. Phosphorylated cAMP responsive element‐binding protein (CREB) regulates

expression of NPY, and a decrease in p‐CREB has been speculated to result in decreased NPY levels (Pandey,

2003; Pandey et al., 2003).

Within the human NPY sequence, there exists a number of single nucleotide polymorphisms (SNPs).

The first one identified (1128 T/C) causes an AA change from leucine to proline at codon 7 in the signal

peptide of NPY (Karvonen et al., 1998). A recent study further examined the human NPY gene and

determined the existence of eight additional SNPs (Ding et al., 2005). The significance of these SNPs with

regard to peptide processing and expression remains to be elucidated, although some studies examining

SNP frequency and behavioral correlates have been performed (See Sect. 4).
2 Distribution of NPY Neurons in the CNS

The distribution of NPY neurons has been extensively studied using immunocytochemical methods,

radioimmunoassay (RIA), and in situ hybridization. Early studies demonstrated that NPY is the most

abundant and widely distributed neuropeptide in mammalian brain. In the rat, it is expressed at particu-

larly high levels in hypothalamic areas, nucleus accumbens, septum, and the periaqueductal gray matter.

Moderate expression levels have been shown in the hippocampus, the amygdala, the thalamus, and in the

basal ganglia, while expression is almost absent in the pons and the cerebellum. In humans, the highest

density of NPY mRNA‐positive cells was seen in nucleus accumbens, caudate nucleus, putamen, and



. Figure 23-1

A summary of the processing steps preceding generation of the mature (neuropeptide Y) NPY‐peptide. The
organization of rat and human NPY gene, mRNA, and protein are very similar. (a) General organization of the

NPY gene. The overall homology between rat and human NPY gene is 60%, a number that rises to 85% when

nucleotides in the open reading frame are compared. (b) The complementary DNA (cDNA) in rat is 559 bp while

the human NPY cDNA is 591 bp. This is mainly due to a difference in length of the poly(A) tail. (c) The cDNA in

rat predicts an open reading frame encoding a 98 amino acid precursor of NPY. In humans, the NPY precursor is

97 AA. The difference is due to the presence of two contiguous initiation codons (ATG) in rat. (d) The signal

peptide is cleaved upon entry into the lumen of the endoplasmic reticulum. (e) The mature peptide consists of

36 AA and is amidated at the C‐terminal
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substantia innominata. Fewer NPY mRNA‐containing neurons were found in frontal and parietal cortex,

the amygdala, and dentate gyrus. No NPY mRNA‐containing cells were found in substantia nigra (Brene

et al., 1989; Caberlotto et al., 1997). Tissue concentrations of NPY seem to correlate well with fiber density

and terminal networks, but not with density of cell bodies. NPY has been found in two basic types of

neurons; interneurons (Chronwall et al., 1985; De Quidt and Emson, 1986) and long projection cells

(De Quidt and Emson, 1986). In the forebrain NPY is mainly found in interneurons thought to constitute

elements of local inhibitory circuits. NPY containing long projection neurons are mainly found in the

brainstem where they project a considerable distance to a number of sites in the neural axis.
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2.1 Neocortex

NPY neurons in the cortex are organized in a way that correlates with areal, laminar, and columnar borders

of the cerebral cortex. Areal differences are apparent from RIA studies where the concentration of NPY in rat

and human cortex varies with as much as a factor of three between cortical regions. The highest concentra-

tions are detected in the cingulate gyrus and in association areas of the temporal lobe. Areas with the lowest

NPY expression include frontal and occipital lobes. For NPY mRNA, similar results have been reported in

the human brain. The presence of NPY‐positive somata has been demonstrated throughout the cerebral

cortex with the highest concentrations observed in layers II, III, V, and VI (Chan‐Palay et al., 1985; Brene
et al., 1989; Caberlotto et al., 2000). Unlike the somata, the distribution of NPY‐LI fiber plexuses varies
across cortical layers and areas. The NPY immunoreactive cortical neurons are mainly nonpyramidal cells.

Most NPY‐positive neurons also contain other neurotransmitter/neuromodulatory substances. Many

contain somatostatin‐like immunoreactivity and, in the cortex, this subpopulation also displays immuno-

reactivity for NADPH‐diaphorase/nitric oxide synthase (Chronwall et al., 1984; Hendry et al., 1984b; Unger

and Lange, 1992; Huh et al., 1997). There is a large group of inhibitory interneurons, where NPYand GABA

coexist. These GABA‐NPY‐positive neurons influence cortical output via synapses formed mainly on the

processes of pyramidal projection neurons. Only a small subpopulation of the total cortical NPY cell

population is not immunoreactive for GABA or its synthetic enzyme glutamic acid decarboxylase (Hendry

et al., 1984a; Aoki and Pickel, 1990; Demeulemeester et al., 1991). This subpopulation of neurons display

immunoreactivity for two members of the tachykinin peptide family: substance P and neurokinin A (Jones

et al., 1988). NPY‐LI cell bodies and processes are also found in subcortical white matter (Hendry et al.,

1984b).
2.2 Hippocampus

Evolutionarily, the hippocampal formation is an old part of the cerebral cortex. As in the neocortex,

hippocampal NPY‐immunoreactive neurons are mainly nonpyramidal cells. There is colocalization of NPY

with somatostatin and also GABA, but to lesser and varying degrees across the hippocampal formation

(Chan‐Palay et al., 1986; Kohler et al., 1986a, b). Somata and processes displaying NPY‐LI are unevenly

distributed in the parts of the hippocampus. Cell bodies containing NPY‐LI are found in the stratum

pyramidale, radiatum, and oriens of the CA region. The highest density of NPY neurons is found in the

hilus of the dentate gyrus. The majority of NPY innervation form local projections, but some evidence

exists for extrahippocampal origin of NPY‐terminals (Chan‐Palay et al., 1986).
2.3 Striatum

The striatum is a chemically heterogeneous structure consisting of patches, or striosomes, containing

neuronal populations with certain chemical signatures and a matrix surrounding the patches displaying

another set of chemical characteristics.

The majority of NPY‐LI‐positive somata are located in the matrix; however, there is a great deal of

species specificity. In cat, somata have been demonstrated in both compartments, while only the matrix

contains fibers that stain for NPY. In contrast no clustering of NPY somata is seen in human or monkey

striatum (Dawbarn et al., 1984; Smith and Parent, 1986). In rat, the majority of the NPY‐LI‐positive somata

are located in the matrix, but some neurons are also present in the patches. The primary dendrites of NPY

cells extend only within the compartment of origin (Kubota and Kawaguchi, 1993). As is seen in cortical

areas, the majority of NPY‐LI‐positive cells in the striatum are interneurons.

Colocalization of NPY with both somatostatin and NADPH‐diaphorase is found in the majority of

striatal NPY neurons (Vincent et al., 1983; Gaspar et al., 1987). There is evidence that dopamine afferents

from the substantia nigra regulate expression of NPY in the striatum. The nature of that regulation appears

to be a partial suppression under normal conditions (Kerkerian et al., 1986; Brene et al., 1989; Vuillet et al.,

1989).
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2.4 Amygdala

The amygdala is a structure consisting of a number of nuclei with different neurochemistry and cytoarch-

itecture. The expression of NPY‐LI is not homogenous throughout the structure. In primates, the NPY‐LI
perikarya are denser in the medial and basal nuclei, and more scattered in the central and cortical nuclei

(Gustafson et al., 1986; Schwartzberg et al., 1990).

There are three morphologically different types of NPY neurons within the amygdala; one group

consisting of small and bipolar neurons, a second group possessing large somata and being present at the

base of the stria terminalis, and a third group of very large, multipolar cells (Gustafson et al., 1986). A

fraction of the NPY neurons in rat amygdala are positive for somatostatin, and these are mainly the small,

bipolar neurons (McDonald, 1989; McDonald et al., 1995). Amygdaloid NPY‐containing cells are mainly

interneurons, but the existence of an amygdalofugal projection has also been suggested (Allen et al., 1984).

Within the central nucleus of the amygdala a dense fiber plexus has been located with a distribution

similar to that of noradrenergic axons rising from the brainstem (Fallon et al., 1978). However,

6‐hydroxydopamine lesions indicate that the two networks are not identical (Gustafson et al., 1986) since

complete loss of noradrenergic fibers is not found to alter NPY neurons. This has also been demonstrated in

pharmacological studies (Smialowska et al., 2001).
2.5 Hypothalamus and Thalamus

Hypothalamus has one of the highest expression levels of NPY in the CNS. NPY‐LI‐positive cell bodies or
preproNPY mRNA‐containing cell bodies are mainly found in the arcuate nucleus and in the lateral

hypothalamus (Gehlert et al., 1987; Morris, 1989), while fibers and terminals are spread throughout the

region. In the rat hypothalamus, the suprachiasmatic nuclei (SCN), supraoptic, and paraventricular nuclei

(PVN) are densely innervated, but the density of fibers is uneven within the individual nuclei (Gustafson

and Moore, 1987; Card and Moore, 1988). The SCN is innervated by NPY axons arising from the ventral

lateral geniculate nucleus of the thalamus (Gustafson et al., 1986; Harrington et al., 1987). NPY innervation

of the PVN arises from the brainstem (Sawchenko and Pfeiffer, 1988) as well as from a shorter projection

system originating in the arcuate nucleus (Bai et al., 1985). In the arcuate nucleus, NPY is colocalized with

agouti gene‐related protein (Broberger et al., 1998; Hahn et al., 1998). The NPY‐LI axons innervating the

parvocellular and magnocellular divisions of the PVN arise principally from adrenergic cell groups in

the medulla as well as from noradrenergic somata in the A1 cell group (Sawchenko et al., 1985). In the

parvocellular division, the innervation is the densest for neurons positive for corticotropin‐releasing factor
(CRF) and thyrotropin‐releasing factor (Sawchenko et al., 1985). Within the magnocellular division

innervation appears to be equally dense for vasopressin and oxytocin neurons.

The thalamus has low concentrations of NPY in the CNS except in discrete nuclei (Dawbarn et al., 1984;

Chronwall et al., 1985). Very few somata and only scattered fibers are found in the dorsal thalamus. NPY

fibers are present in the anterior thalamic nuclei of the rat (Nakagawa et al., 1985) and within certain

midline thalamic nuclei. There is a mismatch between the distribution of preproNPY mRNA and NPY‐LI
within the reticular nucleus. Most somata are found to express preproNPY mRNA, but very few fibers

and no somata display NPY‐LI. A plausible explanation for this discrepancy is the transient expression of

NPY‐LI during ontogeny in this nucleus, and the NPY mRNA present in the adult animal may be a remnant

of this expression (Foster et al., 1984).
2.6 Brain Stem

In the rat, NPY somata have been demonstrated in the central grey, interpeduncular nucleus, and inferior

colliculus (De Quidt and Emson, 1986; Morris, 1989), however, distribution of NPY fibers and somata is

sparse in other areas of the midbrain. NPY‐LI has been shown in some cranial nerve nuclei and monamine‐
containing nuclei in the lower brainstem. NPY‐positive neurons are found in the respiratory nuclei in cat
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(Aguirre, 1989). Other populations of NPY‐LI‐positive neurons are found in the spinal trigeminal nucleus

of the rat (De Quidt and Emson, 1986) and the dorsal motor nucleus of the vagus of the rabbit (Blessing

et al., 1986). Noradrenergic cells containing NPY are located in the A1 group in the ventrolateral medulla

and in the locus coeruleus (Everitt et al., 1984; Smialowska, 1988). Adrenergic C1 and C2 cell groups, as well

as serotonergic cells in the nucleus raphe pallidus, have also been shown to contain NPY (Everitt et al., 1984;

Blessing et al., 1986).
3 Neuropeptide Y Receptors

To date no less than six different receptor subtypes for NPY have been discovered (Y1, Y2, Y4, Y5, and y6),

each with a unique pharmacological profile and anatomical distribution. The Y4 receptor has higher affinity

for another member of the NPY family of peptides, PP, and the y6 receptor is present in mouse but not in

human or rat, and thus has limited generalizability. The molecular evolution of the NPY receptor subtypes

has been recently reviewed (Larhammar and Salaneck, 2004).

The presence of more than one receptor subtype was first demonstrated in a study where C‐terminal

fragments of NPY/PYY were found to be active at prejunctional sites, but not postjunctional sites, at the

sympathetic neuroeffector junction (Wahlestedt et al., 1986). The post‐ and prejunctional receptors were

referred to as Y1 and Y2, respectively. All receptors for NPY belong to the superfamily of G‐protein‐coupled
receptors and share the common feature of seven transmembrane spanning regions. NPY receptor subtypes

also differ in their ligand‐binding profiles.

NPY receptors mediate the inhibition of adenylate cyclase resulting in reduced cAMP accumulation

and/or elevated intracellular Ca2þ concentrations (Wahlestedt et al., 1986; Herzog et al., 1992). An

accumulation of inositol phosphatases has also been observed in blood vessels and in the cerebral cortex

as a result of NPY receptor activation (Hinson et al., 1988).

The Y1 receptor (Eva et al., 1992; Larhammar et al., 1992) requires the entire NPY peptide for activation

(Wahlestedt et al., 1986). Truncation of the first N‐terminal residue results in a reduction of biological

activity at the Y1 receptor. Thus, both the N‐ and C‐terminal portions of NPYare required for recognition

and activation at the Y1 receptor. In the periphery, the Y1 receptor is present postjunctionally at the vascular

sympathetic neuroeffector junction and mediates pressor responses to NPY (Grundemar and Hakanson,

1993). In the brain, Y1 receptor sites are concentrated in distinct layers of the cerebral cortex, the anterior

olfactory nucleus, dentate gyrus of the hippocampus, amygdala, and a few thalamic and hypothalamic

nuclei (Dumont et al., 1998b).

The Y2 receptor subtype (Gerald et al., 1995) is activated both by full‐length NPY peptide and by

C‐terminal fragments such as NPY13‐36. In the periphery, the Y2 receptor is located at prejunctional sites of
autonomic fibers, where it suppresses release of transmitters (Wahlestedt et al., 1986). In the CNS,

presynaptic Y2 receptors have been shown to decrease postsynaptic excitability through a Ca2þ‐mediated

downregulation of glutamate release at the synapse (Colmers et al., 1991). The majority of NPY receptors in

the CNS are most likely of the Y2 subtype, with especially high densities in the hippocampal formation

(Aicher et al., 1991; Dumont et al., 2000). Y2‐specific binding sites have been found to be prominent in the

lateral septum, piriform cortex, bed nucleus of stria terminalis, dorsal hippocampus, substantia nigra,

dorsal raphe nucleus, and the cerebellum (for review see Kaga et al., 2001).

The Y5 receptor was discovered in 1996 (Gerald et al., 1996). Y5mRNAcan be detected in brain by in situ

hybridization in the dentate gyrus and CA3 area of the hippocampus, cingulate cortex, in a number of hypo-

thalamic nuclei including the lateral hypothalamus, the PVN, and the supraoptic nucleus, as well as the in the

central and anterior cortical amygdaloid nuclei (Gerald et al., 1996; Fetissov et al., 2004). Competitive

binding studies have indicated presence of ‘‘Y5‐like’’ sites, determined as [125I][Leu31Pro34]PYY/BIBP3226‐
insensitive sites, in the olfactory bulb, the lateral septum, the anteroventral thalamic nucleus, the CA3

subfield of the ventral hippocampus, the nucleus tractus solitarius, and the area postrema (Dumont et al.,

1998a). However, unlike in situ hybridization studies, only a limited number of Y5 receptor sites were found

in hypothalamic nuclei using this methodology. The use of transgenic and knockout models has also helped

to unravel some of the different functions of these Y receptors (see Lin et al., 2004 for review).
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4 Central Nervous System Functions of NPY

NPY has a number of actions within the CNS that are important in homeostatic function. These actions

which include processes such as locomotion, cardiovascular regulation, circadian rhythms and sleep,

feeding, endocrine regulation, brain excitability, anxiety and depression, which appear at first to represent

a highly diverse set of functions. Using an integrative view, however, one can view NPY neural networks as

acting as inhibitory brain systems that dominate during times of ‘‘safety in the environment.’’ Thus, NPY

systems generally reduce locomotion, promote sleep, stimulate ovulation, enhance feeding responses,

reduce cardiovascular tone, lower overall brain excitability, and suppress anxious and depressive‐like
behaviors. These responses are counteracted by the effects of CRF and other stress hormones that

promote the opposite behavioral profile during times of ‘‘unsafety in the environment.’’ Therefore NPY

and CRF/stress systems can be envisioned as acting in concert to promote homeostasis in the face of

changing environmental conditions. These systems have also been suggested to regulate allostatic processes

occurring during chronic stress, drug addiction, and psychiatric disorders. Keeping this framework in

mind, behavioral responses to NPY are summarized in the next sections of this review. Due to space

limitations, each section only outlines a few key findings and then guides the reader to recent comprehen-

sive reviews in each area (for instance see Chronwall and Zukowska, 2004). A summary of some important

functions of NPY within the CNS grouped by association with different receptor subtypes is given in
>Table 23-2.
4.1 Locomotor Activity, Sedation, and Sleep

Central administration of NPY into the cerebral ventricles has been shown to produce a series of behaviors.

One obvious result is a dose‐dependent suppression of locomotor activity in both the home cage environ-

ment and in the open field test of responding in a novel environment (Heilig and Murison, 1987a). This

behavior most likely reflects sedation, since lower doses of NPY induce EEG synchronization typical of

anxiolytic‐like sedation (Fuxe et al., 1983; Ehlers et al., 1997a), and central administration of high doses of

NPY causes frank behavioral sedation. However, in spontaneously hypertensive rats, NPY paradoxically

increases locomotor activity. This is most likely due to differential Y1 vs. Y2 receptor distribution in the

brain of the different strains (Heilig et al., 1989b), as injection of NPY directly into the frontal cortex

appears to increase locomotor activity (Smialowski et al., 1992).

It has been suggested based on these and other data that the suppression of locomotor activity is

mediated via Y1 receptors in hypothalamic sites, while the Y2 receptor subtype may be responsible for

increased locomotor activity (Heilig et al., 1988b; Naveilhan et al., 2001). For instance, ICV injection of Y1

receptor antisense oligodeoxynucleotides does not affect locomotor activity (Heilig, 1995), whereas intra-

hypothalamic injections cause a decrease in locomotor activity (Lopez‐Valpuesta et al., 1996). Recent

studies using Y1, Y2, and Y5 receptor agonists further suggest that Y5 receptors may have a larger role in

sedation than Y1 and Y2 types (Sorensen et al., 2004). Thus, endogenous NPY may have differential effects

on locomotor activity depending on the brain system activated.

NPY has also been implicated in the regulation of sleep. In animal models NPY has been demonstrated

to shorten the latency to the onset of sleep and antagonize the insomnia producing effects of CRF (Ehlers

et al., 1997b). NPY has also been demonstrated to shorten the latency to sleep onset when given IV in young

men as well as increase the amount of sleep and reduce cortisol and ACTH secretion (Antonijevic et al.,

2000). These studies suggest that NPY participates in sleep regulation and may be important in the timing

of sleep onset (for review see Steiger, 2003).
4.2 Cardiovascular Regulation

ICVadministration of NPY produces lowered mean arterial blood pressure, heart rate, and respiratory rate

(Fuxe et al., 1983) and has been suggested as an important regulator in both cardiovascular and pulmonary



. Table 23-2

Important functions of neuropeptide Y associated with the Y1‐, Y2‐, and Y5‐receptor subtypes in the brain

Receptor Function Location Reference

Y1 Locomotor activity suppression Hypothalamus Heilig et al. (1988b),

Naveillhan et al. (2001)

Cardiovascular function (lower heart rate,

mean arterial blood pressure, respiratory

rate)

(Nucleus tractus

solitarius); (posterior

hypothalamus)

Fuxe et al. (1983), Barraco

et al. (1990), Martin

(2004)

Seizure modulation Hippocampus Gariboldi et al. (1998)

Anxiety‐related behavior Amygdala Britton et al. (1997), Heilig

(1995)

Antidepressant‐like effects Redrobe et al. (2003),

Tschenett et al. (2003)

Y2 Locomotor activation Hypothalamus Heilig et al. (1988b),

Naveilhan et al. (2001)

Cardiovascular function Nucleus tractus solitarius

(posterior hypothalamus

Aguirre et al. (1990)

Circadian rhythm Suprachiasmatic nucleus

(SCN)

Golombek et al. (1996),

Soscia and Harrington

(2005)

Feeding behavior Naveilhan et al. (1999)

Memory function Hippocampus Flood et al. (1989),

Redrobe et al. (2004)

Seizure modulation Hippocampus Colmers et al. (1991),

Schwarzer et al. (1998)

Antidepressant‐like effect Redrobe et al. (2003),

Tschenett et al. (2003)

Y5 Sedation Sorensen et al. (2004)

Circadian rhythm regulation SCN? Yannielli et al. (2004)

Feeding behavior Hypothalamus Gerald et al. (1996),

Schaffhauser et al. (1997)

Seizure modulation Hippocampus Benmaamar et al. (2005),

Vezzani et al. (2000)
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disorders (Groneberg et al., 2004). Central NPY regulation of cardiovascular functions was initially

suggested to be mediated by the nucleus tractus solitarius, as direct injections of the peptide into that

nucleus produced a reduction in blood pressure and heart rate (Barraco et al., 1990). Central regulation of

cardiovascular function by NPY may be mediated by Y2 (Aguirre et al., 1990) and/or Y1 receptors in this

structure. For instance, microinjections of [Leu34Pro31]‐NPY caused dose‐dependent vasodepressor and
bradycardic responses (Narvaez et al., 1993). More recent studies suggest that the Y1 receptor subtype

mediates the cardiovascular changes evoked by NPY central administration into posterior hypothalamic

sites (Martin, 2004). In addition to its role in vasoconstriction through Y1 receptors, it has been suggested

that NPY may have trophic properties that promote cardiac and vascular remodeling through a number of

Y‐type receptor systems (see Pedrazzini et al., 2003; Pons et al., 2004 for reviews).
4.3 Circadian Rhythms

The importance of NPY in the regulation of circadian rhythms has been verified in a number of different

studies and in a variety of species. NPY was localized in the rat suprachiasmatic nucleus (Card and
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Moore, 1988), and a pathway of NPY afferents from the intergeniculate leaflet to the SCN identified

(Card and Moore, 1989). Lesions or electrical stimulation of the thalamic intergeniculate leaflet (IGL)

are known to alter circadian rhythms (Harrington and Rusak, 1986; Rusak et al., 1989). NPY neurons in

the geniculohypothalamic tract, which links IGL to the SCN, are thought to relay photic stimuli as well

as nonphotic stimuli such as novelty‐induced arousal (see Yannielli and Harrington, 2001, 2004; Lall

and Biello, 2002 for reviews). The expression levels of NPY and mRNA in the SCN have been shown

to have a circadian rhythm (Calza et al., 1990), with NPY levels increasing during the light phase of

the cycle.

Microinjections of NPY directly into the SCN can generate a shift in the circadian rhythms, the

direction of which is dependent on the time of injection without an alteration in phase length (Albers

and Ferris, 1984). When NPY is injected during the subjective night, no phase‐shift is reported, although it

may inhibit the phase‐shifting effect of light. Injections made during the active day‐phase gave rise to a

dose‐dependent phase shift in both in vivo and in vitro systems (Weber and Rea, 1997; Harrington and

Schak, 2000). The time of maximal effect of endogenous NPY on circadian systems appears to be a time

when exogenous administration of NPY has little effect (Yannielli and Harrington, 2001).

The shift of circadian rhythm by NPY is suggested to be mediated via Y2 receptors (Golombek et al.,

1996; Huhman et al., 1996; Soscia and Harrington, 2005) through period 1 (per1) and period 2 (per2) gene

expression and/or glutamate mechanisms in SCN (Fukuhara et al., 2001; Maywood et al., 2002; Gamble

et al., 2004). Although there is also recent data to suggest that blockade of the Y5 receptor can potentiate

circadian responses to light in vivo and in vitro (Yannielli et al., 2004).
4.4 Feeding Behavior

Stimulation of food intake is one of the peptide’s most prominent effects when administered into the CNS,

and may be one of NPY’s most important actions in homeostasis. Acutely, the peptide stimulates food

intake for hours following central administration (Levine and Morley, 1984; Stanley and Leibowitz, 1985).

When administered chronically, NPY induces a state that mimics hormonal and metabolic changes seen in

obesity (Zarjevski et al., 1993; Vettor et al., 1994). NPY preferentially stimulates carbohydrate intake, having

little or no effect on intake of protein or fat (Stanley et al., 1985). It has been suggested that NPY‐induced
food consumption is due to an increased motivation to eat, since NPY‐treated animals will perform

activities, such as lever‐pressing, and will endure electric shocks in order to obtain food, without increasing

their passive food consumption (Flood and Morley, 1991) (see Kalra and Kalra, 2004b; Levine et al., 2004)

for reviews).

The site of action of NPY on feeding was found to be a pathway from the arcuate nucleus to the

paraventricular nucleus of the hypothalamus Sahu et al., 1988 (see (Kalra and Kalra, 2004a) for review). It is

presently not clear whether the profound effects of NPY on feeding are mediated by Y5 receptors, or a

combination of different Y receptors within the hypothalamus (Gerald et al., 1996; Kanatani et al., 2000).

A Y5 receptor antisense oligodeoxynucleotide was shown to inhibit food intake (Schaffhauser et al., 1997),

while inactivation of the Y5 receptor in mice did not cause any alteration in feeding behavior (Marsh et al.,

1998). Thus, even though the Y5 subtype may be involved in mediating feeding effects for NPY, it may not

be critical in overall regulation of food intake and related physiological factors. Indeed, Y5 mRNA

expression has been demonstrated to always be colocalized with expression of Y1 mRNA (but not vice

versa) (Parker and Herzog, 1999).

Involvement of the Y2 receptor subtype in mediating normal feeding behavior and leptin response has

also been suggested (Naveilhan et al., 1999). Mice lacking the Y2 receptor display increased body weight,

food intake, and fat deposition, as well as an attenuated response to leptin administration. Response to

central NPY administration was normal, as was refeeding following starvation. The Y2 receptor may thus

have an inhibitory role in the central regulation of feeding behavior.

In addition to increased feeding, NPY also affects energy expenditure (see Williams et al., 2004; Kishi

and Elmquist, 2005 for reviews). ICV administration of NPY has effects on energy metabolism such as

decreased brown‐fat thermogenesis and increased white‐fat lipoprotein lipase (LPL) enzymatic activity
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(Billington et al., 1991, 1994). A leucine(7)‐to‐proline(7) polymorphism in the signal peptide of NPY has

been associated with high serum total cholesterol and LDL cholesterol levels (Karvonen et al., 1998, 2000).

NPY neurons in the arcuate nucleus are found to be overactive in animals that are in negative energy

balance due to factors such as starvation, lactation, or diabetes (Frankish et al., 1995). Thus, it appears

that NPY neurons are responsive to numerous metabolic and hormonal signals including insulin and

glucocorticoids (see Herzog, 2003; Williams et al., 2004 for reviews).
4.5 Endocrine Regulation and Stress Responses

NPY appears to be important in many aspects of endocrine function including regulation of ovulation,

control of metabolism, and modulation of the stress response. NPY stimulates corticotropin‐releasing
hormone (CRH) gene expression through actions in the PVN both in vitro and in vivo (Haas and George,

1987; Tsagarakis et al., 1989). Injections of NPY into the PVN increase serum levels of ACTH, corticoste-

rone, and aldosterone (Harfstrand et al., 1987; Wahlestedt et al., 1987), in addition to influencing CRH gene

expression.

NPY also appears to play a significant role in the modulation of stress responses. For instance,

ICV administration of NPY largely prevents gastric ulceration induced by a strong stressor (Heilig and

Murison, 1987b). Transgenic rats overexpressing NPY in hippocampus were shown to be resistant to stress‐
induced increases in anxiety‐like behavior (Thorsell et al., 2000; Carvajal et al., 2004). The physiological
involvement of endogenous NPY in mediation of stress responses was also demonstrated in two studies

showing that NPY gene expression is affected by stress. Acute stress was found to downregulate NPY‐IR and

NPY mRNA expression in amygdala and cortex, while repeated exposure to the stressor lead to an

upregulation of NPY in the amygdala (Thorsell et al., 1998, 1999). On the basis of these and other

pharmacological and expression studies, it was proposed that an upregulation of NPY expression may

contribute to successful behavioral adaptation to stress through its ‘‘buffering’’ of stress‐promoting signals

such as CRF (Heilig and Thorsell, 2002). NPY has also been proposed to be involved in the integration of

stress and feeding behavior through hypothalamic–pituitary–adrenal (HPA) axis activity (Hanson and

Dallman, 1995).

Central administration of NPY also affects secretion of prolactin, growth hormone, and thyrotropin,

among others (Harfstrand et al., 1987). Depending on the hormonal state of the animal, NPY has also been

reported to modulate the release of luteinizing hormone from the pituitary gland (McDonald et al., 1985)

(see Evans, 1999; Magni, 2003 for reviews).
4.6 Memory Function

NPY has also been implicated in modulation of memory function as central administration of NPY has

been shown to improve memory retention and to reverse scopolamine‐induced amnesia in mice (Flood

et al., 1987). Central injection of NPY results in differential effects of NPYon memory retention depending

on brain site. When injected into the rostral hippocampus and septum memory retention was enhanced,

while injection into the amygdala or caudal hippocampus impaired retention (Flood et al., 1989). In a

model of short‐term or working memory, the delayed matching to sample test (DMTS), low doses of NPY

enhanced, while high doses were found to impair working memory (Thomas and Ahlers, 1991). Learning

deficits have been reported in younger but not older transgenic rats that overexpressed NPY (Thorsell et al.,

2000; Carvajal et al., 2004). The Y2 receptor subtype has been suggested to be involved in learning and

memory, perhaps through sites in hippocampus. NPY genes have been found to be upregulated following

long‐term potentiation, an electrophysiological model of short‐term memory, in the hippocampus

(Thompson et al., 2003). Furthermore NPY Y2 receptor knockout mice have been demonstrated to show

deficits in the Morris maze and in an object recognition test (Redrobe et al., 2004). However, it remains

important to dissect out whether these cognitive effects of NPY may be confounded by its actions on

emotionality and response to stress.
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4.7 Modulation of Brain Excitability and Seizures

There is ample data to suggest that NPY neuronal systems are important in the regulation of brain

excitability. The generation of epileptic seizures in the brain is largely thought of as resulting from an

imbalance between excitatory systems, the bulk of which are glutaminergic, and GABAergic inhibitory

systems. However, over the last two decades data have emerged underscoring the idea that peptides can

exert important modulatory effects on the generation of seizures (Ehlers et al., 1983). NPY has been

demonstrated to produce anticonvulsant activity in a number of animal models of epilepsy both in vivo and

in vitro (Klemp andWoldbye, 2001; Stroud et al., 2005; Tu et al., 2005; for reviews see Colmers and El, 2003;

Woldbye and Kokaia, 2004). Further data has been provided by NPY null mutants, which have been shown

to be more susceptible to seizures induced by a GABA antagonist (Erickson et al., 1996). NPY null mutant

mice have also been demonstrated to have lower seizure thresholds and more severe seizures to kindling and

chemically induced stimulation (Shannon and Yang, 2004), whereas rats overexpressing the NPY gene have

been found to be less susceptible to seizures (Vezzani et al., 2002).

A possible involvement of the Y1 receptor in seizure phenomena is supported by data showing that the

Y1 antagonist BIBP3226 has anticonvulsant properties (Gariboldi et al., 1998). Other studies, however, have

indicated that this role may be exerted by Y2 (Colmers et al., 1991; Colmers and Bleakman, 1994; Schwarzer

et al., 1998) or Y5 receptors (Woldbye et al., 1997; Vezzani et al., 2000; Reibel et al., 2001; Benmaamar et al.,

2005). Additionally, overexpression of NPY and/or its receptors has been demonstrated following the

induction of seizures in animals produced by electroshock or kainic acid (Schwarzer et al., 1998) as well

as in alcohol withdrawal (Bison and Crews, 2003). Overexpression of NPYand Y2 receptors have also been

found in human epileptic brain, and are suggested to be the result of mechanisms elicited to counter the

hyperexcitability underlying epileptic seizure activity (Vezzani and Sperk, 2004).
4.8 NPY in Anxiety and Depression

Exogenously administered NPY has been shown to have anxiolytic effects in a wide range of animal

models of experimental anxiety such as: the elevated plus maze (Heilig et al., 1989a; Broqua et al., 1995),

the Geller‐Seifer test of operant responding (Heilig et al., 1992), the Vogel punished drinking test (Heilig

et al., 1989a), the social interaction test (Sajdyk et al., 1999), and fear‐potentiated startle test (Broqua et al.,

1995). Additionally, mutant mice lacking NPY show increased anxiety‐like behavior (Bannon et al., 2000).

Antianxiety effects of NPY have been shown to rely in part on activation of Y1 receptors in the amygdala

(Heilig et al., 1993). ICV injections of NPY or NPY Y1 receptor agonists, but not Y2 receptor agonists,

produce anxiolysis in behavioral models of experimental anxiety (Broqua et al., 1995; Britton et al., 1997).

Antisense oligodeoxynucleotides targeting the Y1 receptor sequence block the anxiolytic action of NPY

(Heilig, 1995). Also, an anxiogenic‐like effect has been reported after injection of the nonspecific Y1

antagonist BIBP3226 (Kask et al., 1996, 1998) further supporting this hypothesis. Recently, a Y1 mediation

of the anxiolytic effects of NPY in rat amygdala was confirmed using the highly selective and soluble

compound BIBO3304 (Sajdyk et al., 1999).

NPY has also been shown to have antidepressant‐like actions in some animal models. For instance, NPY

has been reported to produce an antidepressant effect in the Porsolt test (Stogner and Holmes, 2000). A

differential NPY expression has also been detected in a genetic animal model of depression, the Flinders

Sensitive Line (FSL) rats (Caberlotto et al., 1998, 1999; Jimenez‐Vasquez et al., 2000). Treatment with

clinically effective antidepressants has been reported to increase NPYexpression in several brain regions in

rats, with frontal cortex being the most consistent region (Heilig et al., 1988a). Electroconvulsive shock

(ECS) has been much more consistent in upregulating brain NPY levels, with hippocampus as a seemingly

central target (Wahlestedt et al., 1990; Mathe et al., 1997, 1998).

The antidepressive actions of NPY appear to be predominantly mediated via the Y1 and Y2 receptor

systems. This has been shown in several animal models of depression (Redrobe et al., 2003; Tschenett

et al., 2003), and the results are consistent with the anxiogenic‐like effects of intraamygdala treatment of
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Y2‐preferring agonists in the rat social interaction test (Sajdyk et al., 2002a, b). Additionally NPY may

mediate some of the effects of some standard psychotropic drugs (Obuchowicz et al., 2004).
4.9 NPY in Alcohol Dependence

A direct link between NPY signaling and regulation of alcohol consumption was first shown in a study

where mice with a transgenic overexpression of NPY were found to consume less alcohol, while mice with

an NPY‐null‐mutation had an increased consumption of alcohol (Thiele et al., 1998). NPY and NPY

receptor expression patterns have been examined in ‘‘genetic models of alcohol dependence’’ (HAD/LAD,

P/NP, AA/ANA). For example, alcohol preferring rats (P rats) have been shown to have low levels of NPY in

amygdala, frontal cortex, and hippocampus compared with the nonpreferring (NP) line, but higher levels

in the hypothalamus (Ehlers et al., 1998a; Murphy et al., 2002). In the HAD line NPY‐IR was decreased in

central nucleus of the amygdala, paraventricular nucleus of the hypothalamus, and the arcuate nucleus

compared with LAD rats (Hwang et al., 1999). In the AA/ANA, a different pattern was seen, with lower

hippocampal NPY mRNA expression compared with the nonpreferring line (Caberlotto et al., 2001). The

NPY Y2 receptor subtype was also found to be reduced in the medial amygdala of the AA line compared

with the ANA line.

The effect of exogenous application of NPYon alcohol consumption appears to be in part dependent on

the individual’s history of alcohol exposure. In animal studies, central administration of NPY into the

lateral ventricles, central nucleus of the amygdala, or the third ventricle does not affect ethanol intake in

normal, outbred rat strains (Slawecki et al., 2000; Badia‐Elder et al., 2001; Katner et al., 2002a, b). However,

a significant suppression of alcohol intake was found in the P‐line compared with NP and normal Wistar

rats, and in the HAD rat line (Badia‐Elder et al., 2001, 2003). Additionally in animals in which alcohol

‘‘dependence’’ was produced by chronic alcohol exposure, NPY was also found to reduce alcohol drinking

(Thorsell et al., 2005).

The fact that NPY has similar behavioral actions to that of ethanol such as anxiolysis, mild sedation,

and stress buffering has led to the hypothesis that some of the effects of ethanol may be mediated through

NPY receptor systems. NPY and alcohol have a very similar electrophysiological profile and have additive

pharmacological effects (Ehlers et al., 1998b). Additionally, chronic exposure to alcohol causes upregulation

of NPY in the hypothalamus (Ehlers et al., 1998a). It has been suggested that chronic alcohol exposure can

cause a disruption of the homeostatic balance of both NPY and CRF leading to an allostatic state, i.e., a

stable state maintained outside the normal homeostatic range of a parameter in order to adapt to a chronic

environmental demand such as alcohol (Valdez and Koob, 2004). This theory also posits that these peptide

systems might represent molecular targets for treatment of alcohol dependence.
5 Concluding Remarks

Since its isolation and identification around 25 years ago, NPY has been demonstrated to be involved in a

number of centrally regulated processes and behaviors. NPY acts on a number of brain sites, including

cortex, hippocampus, amygdala, hypothalamus, and brain stem, through a series of receptors (Y1–y6).

Activation of NPY systems generally reduces locomotion, promotes sleep, stimulates ovulation, enhances

feeding responses, reduces cardiovascular tone, lowers overall brain excitability, buffers stress responses,

and suppresses anxious and depressive‐like behaviors. These responses are counteracted by the effects of

CRF and other stress hormones that promote the opposite behavioral profile. Therefore NPY and CRF/

stress systems can be envisioned as acting in concert to promote homeostasis in the face of changing

environmental conditions. These systems have also been suggested to regulate allostatic processes occurring

during chronic stress. Dysfunctions and changes in the NPY system may underlie some aspects of

psychiatric disorders and alcoholism, as well as endocrine syndromes, hypertension, and obesity. Thus

NPY may be a successful target for drugs aimed at alleviating these disorders.
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Abstract: Cholecystokinin (CCK) is a peptide originally discovered in the gastrointestinal tract but is also

found in high density in the mammalian brain. The C‐terminal sulfated octapeptide fragment of CCK8

constitutes one of the major neuropeptides in the brain. CCK8, interacting with nanomolar affinities with

two different receptors designated CCK1 and CCK2, has been shown to be involved in numerous physio-

logical functions and is involved in the modulation and control of multiple central functions. In particular,

CCK is involved in the neurobiology of anxiety, depression, psychosis, cognition, nociception, and feeding

behavior. The functional role of CCK has been facilitated thanks to the development of potent and selective

CCK receptor antagonists and agonists. In this chapter, the strategies followed to design these probes, and

their use to study the anatomy of CCK pathways, the neurochemical and pharmacological properties of this

peptide, and the clinical perspectives offered by manipulation of the CCK system are reported.

List of Abbreviations: ACC, anterior cingulate cortex; APA, aminopeptidase A; CCK, cholecystokinin;

CCKLM, CCK‐like material; CNS, central nervous system; GABA, gamma‐aminobutyric acid; GPCR,

G‐protein‐coupled receptor; IP3, inositol 1,4,5‐triphosphate; JNK, c‐Jun‐NH2‐terminal kinases; LETO,

Long–Evans Tokushima Otsuka; MAPK, mitogen‐activated protein kinase; NTS, nucleus tractus solitarius;

OLETF, Otsuka Long–Evans Tokushima fatty; PC, prohormone convertase; PKA, protein kinase A; PKC,

protein kinase C; PLA2, phospholipase A2; PLC, phospholipase C; PTX, pertussis toxin; TM, transmem-

brane‐spanning domains; VTA, ventral tegmental area
1 Introduction

1.1 Discovery of CCK in the Brain

The peptide cholecystokinin (CCK) was originally discovered in the gastrointestinal tract (Ivy and Oldberg,

1928) and has been shown to be involved in the secretion of pancreatic enzymes, contraction of gallbladder,

and gut motility. Then CCKwas discovered in the mammalian central nervous system (CNS) as a gastrin‐
like immunoreactive material (Vanderhaegen et al., 1975). CCK is more abundant in the brain than in the

periphery and is now generally believed to be the most widespread and abundant neuropeptide in the CNS

(Crawley, 1985; Moran and Schwartz, 1994). CCK meets the criteria of neurotransmitters since it is

synthesized de novo (Goltermann et al., 1981), is released via a calcium‐dependent mechanism (Emson

et al., 1980), is active at selective receptors (CCK1 and CCK2) (Moran et al., 1986), and its action

interrupted by inactivating enzymes generating inactive metabolites (Roques, 2000).

CCK is colocalized in cell bodies and terminals with many other neurotransmitters such as gamma‐
aminobutyric acid (GABA) (Hendry et al., 1984), dopamine (Hokfelt et al., 1980), serotonin (van der Kooy

et al., 1981), and opiates (Gall et al., 1987). There is also evidence of a major corticostriatal CCK‐containing
pathway, which is also thought to contain glutamate (Morino et al., 1994). In line with its different

colocalization and with its wide distribution in the brain (Lanaud et al., 1989) (> Figure 24-1), CCK is

involved in the modulation and control of multiple central functions. In particular, as discussed further,

numerous experimental and clinical studies have clearly shown that CCK, through its action at CCK1 and

CCK2 receptors, participates in the neurobiology of anxiety, depression, psychosis, cognition, nociception,

and food consumption.

CCK, initially characterized as a 33‐amino‐acid peptide (Mutt and Jorpes, 1968), is present in a variety of

biologically active molecular forms (Rehfeld et al., 1982) derived from a 115‐amino‐acid precursor molecule

(preprocholecystokinin, preproCCK) (Deschenes et al., 1984). Among these forms, small and large peptides

have been characterized, such as CCK‐58, CCK‐39, CCK‐33, CCK‐22, sulfated CCK‐8 and CCK‐7, unsul-
fated CCK‐8 and CCK‐7, and CCK‐5 and CCK‐4 (Rehfeld and Nielsen, 1995) (> Figure 24-2). The presence

of CCK in both gut and brain raises the intriguing issue of the evolutionary significance of separate pools of

a peptide in two systems originating from different embryonic areas (i.e., endoderm and ectoderm,

respectively). Characteristically, however, the processing of procholecystokinin (proCCK) varies markedly

between the brain and the gut. In neurons, CCK‐8 is always the predominating form, whereas the endocrine

cells contain a mixture of small and larger CCK peptides of which CCK‐33 or CCK‐22 often predominates.



. Figure 24-1

In situ hybridization of rat brain sections with a 35S‐labeled CCK oligodeoxynucleotide probe. a, Positive prints

of section exposed for 3 days in contact with an X‐ray film. Sections were hybridized with a labeled oligonucle-

otide probe alone (top); nonspecific signal obtained after hybridization with a mixture of labeled and unlabeled

CCK probes (bottom). b, Dark‐field illumination of different brain regions after a 21‐day exposure. C cortex, CA1

CA2, CA3, CA4 fields of Ammon’s horn, DG dentate gyrus, DLG dorsal lateral geniculate nucleus, LP lateropos-

terior thalamus nucleus, Po posterior thalamus nuclear group, VPL posteroventral thalamus nucleus, VPM

ventroposterior thalamus nucleus, SNC substantia nigra pars compacta, VTA ventral tegmental area, EW

Edinger–Westphal nucleus
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1.2 Processing of proCCK

During posttranslational processing, proCCK undergoes tyrosine sulfation, endoproteolytic cleavage,

removal of carboxy‐terminal arginines by carboxypeptidase E, and carboxy‐terminal amidation (Beinfeld,

2003a). The endoproteolytic cleavages of proCCK occur almost exclusively at mono‐ and dibasic sites and

are ensured by prohormone convertases (PCs), which are subtilisin‐ or kesin‐like enzymes. These enzymes

are found in cells that express CCK messenger RNA (mRNA), demonstrating that this class of enzymes has

the correct distribution and catalytic activity to process proCCK to biologically active products. To date,

eight mammalian PCs have been identified (Seidah and Chretien, 1999). The enzymes responsible for the

endoproteolytic cleavages in CCK during its processing have not been completely established. The most

likely candidates among this class are the prohormone convertases PC1, PC2, and PC5. In terms of catalytic

activity the three enzymes are good candidates for proCCK endoproteolysis. Moreover, these enzymes are

widely distributed in the brain, including in many areas that express high levels of CCK, as demonstrated

using double‐label in situ hybridization (Cain et al., 2003). PC2 is the most abundant of these enzymes in

terms of the intensity and number of cells labeled, and is widely colocalized with CCK. PC1 and PC5

mRNA‐positive cells are less abundant, but they are also widely distributed and strongly colocalized with

CCK in different brain areas: cerebral cortex, hippocampus, amygdala, ventral tegmental area (VTA), and

substantia nigra zona compacta. The degree of colocalization of the enzymes with CCK is region‐specific.
These three enzymes have their own unique distribution and, interestingly, many cells that express the



. Figure 24-2

Predicted structure of human preprocholecystokinin. The signal peptide consists of residues �20 to �1. The

amino‐terminal‐flanking peptide consists of residues 1 to 25. The largest characterized form from brain and

intestine, CCK‐58, consists of residues 26 to 83. Other active molecular forms are derived from this precursor,

such as CCK‐39, CCK‐33, CCK‐22, CCK‐7, and CCK‐5
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enzymes did not express CCK, supporting the hypothesis that PC1, PC2, and PC5 are involved in the

cleavage and processing of other prohormones or proteins in these neurons.

One way to establish the importance of these enzymes in proCCK processing in rodents is to examine

enzyme knockout mice. However, the results reported in the literature are not clear. Thus, while Rehfeld

et al. (2003) reported that the lack of PC1 was without effect on the cerebral maturation of proCCK, Cain

et al. (2004) demonstrated that CCK levels were decreased in hippocampus, amygdala, and pons medulla in

PC1 knockout mice as compared with wild‐type animals. Regarding the role played by PC2, it has been
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demonstrated that PC2‐null mice displayed a ninefold increase in cerebral proCCK concentrations, whereas

the concentrations of transmitter‐active CCK peptides were reduced (Rehfeld et al., 2002). Thus, PC2 plays

a major neuron‐specific role in the processing of proCCK.

2 CCK Receptors

Receptors for CCK have been pharmacologically classified on the basis of their affinity for the endogenous

peptide agonists. Receptors for CCK were first characterized on pancreatic acinar cells and identified as

CCK1 (also called CCK‐A) receptors (Sankaran et al., 1980). Subsequently, a second receptor, the CCK2

(also called CCK‐B) receptor, was identified in the brain and was shown to exhibit a distinct pharmacology

(Innis and Snyder, 1980).

2.1 Molecular Characterization

The CCK1 and CCK2 receptors have been cloned from several species (Wank et al., 1992; review in Noble

et al., 1999). The CCK1 receptor is highly conserved, with an overall amino acid homology of 80% and

pairwise amino acid sequence identities of 87–92% in humans, guinea pigs, rats, and rabbits. Similarly, the

CCK2 receptor is highly conserved in humans, canines, guinea pigs, calves, rabbits, and rats, with an overall

identity of 72% and pairwise amino acid sequence identities of 84–93% (review in Wank, 1995).

The deduced sequences of the rat CCK1 and CCK2 receptors correspond to 429‐ and 452‐amino‐acid
proteins, respectively. Hydropathy analysis of the primary sequence of CCK1 and CCK2 receptors predicts

seven transmembrane‐spanning domains (TM), as expected for a member of the G‐protein‐coupled
receptor (GPCR) superfamily (Dohlman et al., 1991).

In agreement with the heavy and variable degrees of glycosylation reported using ligand‐affinity cross‐
linking techniques (De Weerth et al., 1993), at least three consensus sequence sites for N‐linked glycosyla-

tion (Asn‐X‐Ser/Thr) have been identified in the CCK1 and CCK2 receptor sequences. There are multiple

potential serine and threonine phosphorylation sites in the CCK2 receptor: for protein kinase C (PKC)

(serine 82 in the first intracellular loop) and for protein kinase A (PKA) (serine 154 in the second

intracellular loop and serine 442 in the cytoplasmic tail). Like the CCK2 receptor, the CCK1 receptor has

three consensus sequences for PKC phosphorylation in the third intracellular loop, and one site in the

cytoplasmic tail of the rat pancreatic CCK1 receptor (Ozcelebi and Miller, 1995).

Moreover, in both receptors there are two cysteines in the first and second extracellular loops, which

may form a disulfide bridge required for stabilization of the tertiary structure as demonstrated for other

receptors belonging to the GPCR superfamily (Silvente‐Poirot et al., 1998), and a cysteine in the C terminus

of the receptor that may serve as a membrane‐anchoring palmitoylation site as demonstrated for rhodopsin

and the b2‐adrenergic receptors (O’Dowd et al., 1988; Ovchinikov et al., 1988).

Finally, on the basis of pharmacological and biochemical studies, the existence of subtypes of CCK1 and

CCK2 receptors has been postulated (Durieux et al., 1986; Knapp et al., 1990; Talkad et al., 1994).

Nevertheless, at this time only two genes have been cloned. Gastrin receptors in the stomach and CCK2

receptors in the brain were earlier viewed as distinct CCK receptors on the basis of their difference in the

affinity for CCK‐ and gastrin‐like peptides (Menozzi et al., 1989). Endogenous peptide agonists CCK8 [Asp‐
Tyr(SO3H)‐Met‐Gly‐trp‐Met‐Asp‐Phe‐NH2] and gastrin [H2N‐Gln‐Gly‐Pro‐Trp‐Met‐Glu‐Glu‐Glu‐Glu‐
Glu‐Ala‐Tyr(SO3H)‐Gly‐Trp‐Met‐Asp‐Phe‐NH2] share the same COOH‐terminal pentapeptide amide

sequence but differ in sulfation at the sixth (gastrin) or seventh (CCK) tyrosyl residue. Agonist‐binding
studies on brain membranes and parietal cells show a six‐ to tenfold and one‐ to twofold higher affinity for

CCK than for gastrin, respectively (Jensen et al., 1990). These small differences in agonist binding have

generated controversy regarding the existence of subtypes within this receptor class. The identification of a

single CCK2‐receptor‐encoding gene through low‐ and high‐stringency hybridization of complementary

DNA (cDNA) and genomic libraries and Northern and Southern blot analyses in numerous species

indicates that gastrin receptors do correspond to CCK2 receptors located in the gastrointestinal tract and

do not constitute a third type of CCK receptor (Wank, 1995).
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A third receptor has been pharmacologically identified, but not yet cloned. This receptor is a gastrin‐
preferring receptor, and has been described for the first time on an immortalized fibroblast cell line (Swiss

3T3 cells) that does not discriminate between iodinated and glycine‐extended gastrins (Singh et al., 1995).
2.2 CCK Receptor Localization

CCK1 receptors are found principally in the gastrointestinal tract and some brain structures, while CCK2

receptors are widely distributed in the CNS and in particular regions of the gastrointestinal tract, and on

pancreatic acinar and parietal cells (Moran et al., 1986; Pélaprat et al., 1987; Jensen et al., 1994).

Specific CCK‐binding sites were characterized in membranes from brain homogenates in the 1980’s

(Innis and Snyder, 1980; Saito et al., 1980). Autoradiographic studies using CCK‐related peptides in the

brain that do not distinguish between the two CCK receptors in several species (e.g., rats, guinea pigs,

monkeys, humans) showed high densities of CCK‐binding sites in several areas, including the cerebral

cortex, striatum, olfactory bulb and tubercle, and certain amygdaloid nuclei. Moderate levels were observed

in the hippocampus, claustrum, substantia nigra, superior colliculus, periaqueductal gray matter, and

pontine nuclei. Low densities were reported in several thalamic and hypothalamic nuclei and in the spinal

cord. Nevertheless, it is important to note that species‐specific heterogeneity in tissue expression is apparent
in different structures and indicates that the results of studies performed in one species may not necessarily

be generalized to other species (Niehoff, 1989). For example, in the cerebellum, high densities of CCK‐
binding sites were present in guinea pigs, humans, and mice, whereas only low levels were detected in rats

(Zarbin et al., 1983; Gaudreau et al., 1985).

With the development of specific radioligands, both CCK1 and CCK2 receptors were found in some

brain structures. However, the vast majority of CCK receptors in the CNS are of the CCK2 type, while CCK1

receptors are restricted to rather discrete regions (Moran et al., 1986). Nevertheless, a recent report on the

immunohistochemical distribution of CCK1 receptors in rat CNS, using antiserum, described numerous

brain regions displaying CCK1‐receptor‐like immunoreactivity (Mercer and Beart, 1997). Thus, CCK1

receptors were found in the interpeduncular nucleus, area postrema, medial nucleus tractus solitarius,

and, with additional areas of binding, in the habenular nuclei, dorsomedial nucleus of the hypothalamus,

central amygdala, nucleus accumbens, superior colliculus, periaqueductal gray matter, olivary nuclei, and

anteroventral thalamic nuclei (see references cited in Noble et al., 1999). The precise anatomical localization

of the two CCK receptor types serves to provide morphological substrates for many of the diverse functions

attributed to neural CCK, including involvement in feeding, satiety, cardiovascular regulation, anxiety,

pain, analgesia, memory, neuroendocrine control, osmotic stress, dopamine‐related behaviors, and neuro-

degenerative and neuropsychiatric disorders (see Crawley and Corwin, 1994).

In the rat, CCK2 mRNA was shown to be widely distributed in areas such as the cerebral cortex, the

olfactory regions, the hippocampal formation, the septum, the amygdala, the basal ganglia and related

regions (nucleus accumbens, caudate putamen, substantia nigra), the interpeduncular nucleus, and the

cerebellum (Honda et al., 1993). This mRNA localization is largely consistent with previously reported

histochemical binding studies (Pélaprat et al., 1987; Niehoff, 1989), except for regions such as the cerebel-

lum, where neither CCK2 receptors (Pélaprat et al., 1987) nor preproCCKmRNA (Lanaud et al., 1989) were

previously detected. This is consistent with the absence of the mRNA encoding the complete sequence of the

CCK2 receptor (Jagerschmidt et al., 1994).
3 Ligands of CCK Receptors

3.1 Endogenous Ligands

At CCK1 receptors, sulfated CCK8 was the minimal sequence for high‐affinity binding, whereas CCK5,

CCK4, gastrin, and unsulfated CCK8 interact with CCK2 receptors; albeit, their affinities are lower than that

for sulfated CCK8.
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CCK8 was shown to be efficiently cleaved by aminopeptidase A (APA) in vivo (Migaud et al., 1996;

Khaznadar et al., 1997), leading to formation of CCK7, and by the ubiquitously distributed peptidase II

(TPPII, EC 3.4.14.10), which is mainly enriched in the cytosol but is also present as an internal and/or

external component of the cell membrane (Rose et al., 1996). In contrast to various neuropeptides, the

degradation of CCK8 is much slower in brain membranes, which suggests that peptidases could be

associated with other clearing mechanisms. Indeed, an uptake system has been identified for CCK8

(Migaud et al., 1995), which could function to accumulate CCK8 and/or CCK7 for subsequent degradation

by TPPII inside cells, although we cannot exclude a role for the dipeptidylaminopeptidase (DAP,

EC 3.4.13.11) in CCK8 and CCK7 degradation (review in Roques, 2000).

CCK regularly colocalizes with classic transmitters and is most likely stored in morphologically distinct

vesicles. These vesicles have a larger diameter and are dense‐cored when viewed under the electron

microscope due to the accumulation of soluble peptides (Zhu et al., 1986; Verhage et al., 1991). As in the

case of a classic neurotransmitter, presynaptic CCK release is regulated by depolarization of the terminal

plasma membrane upon arrival of a train of action potentials, which leads to Ca2þ entry through high‐
voltage‐activated Ca channels. CCK release has been studied in vivo by microdialysis, as well as in vitro from

slices and purified nerve terminals. It appears that this release is subject to modulation by a variety of

transmitters, including effects of dopamine, serotonin, opioids, glutamate, and GABA receptor activation

(review in Ghijsen et al., 2001).
3.2 Synthetic Ligands

3.2.1 Agonists

Only a few compounds have been reported to be CCK1‐selective agonists; most of them are peptides, such

as A‐71378 [des‐NH2‐Tyr(SO3H)‐Nle‐Gly‐Trp‐Nle‐(NMe)Asp‐Phe‐NH2], or A‐71623 and A‐70874. In
order to overcome the number of difficulties that limit the use of peptides as drugs, efforts have been

devoted toward the development of nonpeptide ligands. Among the nonpeptide CCK1 receptor agonists,

two main families may be highlighted. The first family constitutes the series of 1,5‐benzodiazepines acting
in vitro and in vivo, developed by Glaxo‐Wellcome. Potency within this series was modulated by a

substituent on the N1‐anilinoacetamide moiety (Aquino et al., 1996), and by substitution and/or replace-

ment of phenylurea moiety in the C3 position (GW 5823, GW 7854; Henke et al., 1997). These modifica-

tions were also successfully adapted to a series of 1,4‐benzodiazepines (Sherrill et al., 2001). The second

family constitutes dipeptoid hybrids mainly discovered by Parke‐Davis. PD‐170,292 behaves as a full agonist
at the high‐affinity sites and as an antagonist at the low‐affinity sites of the CCK1 receptor (Bernad et al.,

2000). Finally, a new potent and selective nonpeptide agonist of the CCK1 receptor, SR146131, has been

characterized (Bignon et al., 1999). This compound is chemically related to the selective CCK1 receptor

antagonist SR27897B (> Table 24-1).

Different strategies have been followed to design potent and selective agonists of CCK2 receptors. In

spite of its intrinsic flexibility, CCK8 was found by nuclear magnetic resonance (NMR) to exist preferen-

tially in folded form in aqueous solution (Fournié‐Zaluski et al., 1986), with a proximity between Asp1 and

Gly4. This property was used to synthesize cyclic peptides such as BC 254 and BC 197, which were found to

be highly potent and selective CCK2 agonists (Charpentier et al., 1988a, 1989).

Another approach toward CCK2 agonists was to protect CCK8 from degrading enzymes such as APA

(Migaud et al., 1996), and a thiol/serine protease cleaving this peptide at theMet‐Gly bond (Rose et al., 1996).
Biologically active Boc[Nle28,31]CCK27–33 (BDNL; Ruiz‐Gayo et al., 1985) was used as the parent

compound to design enzyme‐resistant analogs. In this compound, the major sites of cleavage are at the

Trp30/Nle31 and Nle28/Gly29 bonds. Consequently, several enzyme‐resistant BDNL analogs containing either
a retro–inverso 28–29 amide bond or an (NMe)Nle31 residue, or a combination of these two modifications

have been synthesized (Charpentier et al., 1988b). This led to BC 264, a highly potent CCK2 agonist that

exhibits about the same affinity (KD¼ 0.1–0.5 nM) in all species (Charpentier et al., 1988b; Durieux et al.,

1991).



. Table 24-1

Ligands and their action

CCK1 CCK2

Agonists Antagonists Agonists Antagonists

A‐71378 SR‐27897 BC254 L‐365,260
A‐71623 Loxiglumide (CR‐1505) BC197 L‐740,093
A‐70874 Lorglumide (CR‐1409) BC264 YM‐022
GW‐5823 2‐NAP RB 400 YF‐476
GW‐7854 PD‐140,548 BBL454 PD‐134,308 (CI‐988)
PD‐170,292 IQM‐95,333 CI‐1015
SR‐146131 L‐364,718 (MK329, devazepide) RB 211

CR‐2194
LY‐262,691
RP‐73,870

RB 101, dual inhibitor of enkephalin‐degrading enzymes; BUBU, selective delta opioid receptor agonist; naltrindole,

selective delta opioid receptor antagonist
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The behavioral results obtained with BC 264, such as increase in memory processes and increase in

dopamine release in mesolimbic and nigrostrial pathways (review in Daugé and Roques, 1995), suggest that

the development of nonpeptide CCK2‐selective agonists endowed with good stability and bioavailability

should provide useful pharmacological tools and possibly interesting therapeutic agents. In order to design

such derivatives, the C‐terminal tetrapeptide showing significant CCK2 affinity and selectivity was used as a

scaffold, although it has been shown to trigger panic attacks in humans (De Montigny, 1989; Bradwejn

et al., 1991). Several modifications of CCK4, such as N‐terminal protection of the tetrapeptide in Boc‐CCK4

(Harhammer et al., 1991), and modifications of the different constituting amino acids with replacement of

Met by Nle or (NMe)Nle increased CCK2 selectivity of CCK4 (Corringer et al., 1993). NMR and molecular

dynamics studies indicated that the CCK2‐receptor‐selective CCK4 analogs adopt an S‐shaped conforma-

tion with a relatively well‐defined orientation of the side chains (Goudreau et al., 1994). The same type of

folded structures has been reported for several potent agonists derived from CCK4 and containing [trans‐3‐
propyl‐L‐proline] (Nadzan et al., 1991), a diketopiperazine skeleton (Shiosaki et al., 1990), or an [(alkylthio)
proline] residue (Kolodziej et al., 1995). Moreover, to stabilize the bioactive conformation of CCK2 receptor

agonists with the aim of designing nonpeptide ligands, macrocyclic constrained CCK4 analogs that are

endowed with CCK2 agonist properties and were found able to cross the blood–brain barrier have been

developed (Blommaert et al., 1997). On the basis of these results, compounds combining the modifications

introduced in BC 264 and CCK4 such as RB 400 (Million et al., 1997) and BBL454 (Bellier et al., 2004) were

found to be highly potent.
3.2.2 Antagonists

Much of the early research regarding the physiological effects of CCKwas hindered by the lack of selective

antagonists. The first CCK antagonists were derived from a naturally occurring benzodiazepine, asperlicin,

which has been isolated from the fungus Aspergillus alliaceus (Chang et al., 1985). The demonstrated high in

vitro and in vivo potency of asperlicin at CCK1 receptors conferred clear advantages over previously

reported CCK antagonists as a tool for investigating the physiological and pharmacological actions of

CCK. The 5‐phenyl‐1,4‐benzodiazepine ring was used as a model to design improved CCK receptor

antagonists (Evans et al., 1986), leading to several compounds such as L‐364,718 (MK‐329, devazepide),
which remained for several years the most potent CCK antagonist with a good selectivity for CCK1

receptors. Various benzodiazepine derivatives were developed, such as FK‐480, a highly selective and potent
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CCK1 receptor antagonist (Ito et al., 1994). Several other potent and selective antagonists of the CCK1

receptor have been described, including glutamic acid derivatives, such as loxiglumide (CR‐1505) or

lorglumide (CR‐1409; Makovec et al., 1995). Several other dipeptoids were synthesized, such as 2‐NAP
[2‐naphtalenesulfonyl 1‐aspartyl‐(2‐phenethyl)amide] (Hull et al., 1993), or PD‐140,548 (Boden et al.,

1993).

Interest in nonpeptide CCK‐receptor‐selective ligands has directed efforts toward the incorporation

of conformationally restricted structures as spacers between Trp and Phe residues in the sequence of

the CCK receptor endogenous ligand CCK4. Thus, recently, a new series of CCK4‐restricted analogs with

a 3‐oxoindolizidine ring was synthesized: IQM‐95,333 (Martin‐Martinez et al., 1997). Another CCK1

receptor antagonist, SR‐27,897, which is chemically unrelated to peptoids, benzodiazepine, or glutamic

acid derivatives, has been developed (Gully et al., 1993).

The moderate affinity of L‐364,718 for CCK2 receptors suggested that the benzodiazepine nucleus

might also hold a key to selective ligands for these receptors. The first compound of interest developed using

this strategy was L‐365,260 (Bock et al., 1989). Undoubtedly, the benzodiazepine template that is present in

asperlicin, L‐364,718 and L‐365,260, has been the most exploited structure in the development of CCK

receptor antagonists. This is particularly true for the CCK2 receptor where substantial investment by the

pharmaceutical industry has resulted in the generation of more potent and selective antagonists incorpor-

ating the benzodiazepine moiety, such as L‐740,093 (Patel et al., 1994), YM022 (Nishida et al., 1994), and

YF476 (Takinami et al., 1997).

A second approach in the development of nonpeptide antagonists of the CCK2 receptor has been

the synthesis of ‘‘dipeptoids’’ (Horwell et al., 1991). This led to tryptophan dipeptoid derivatives such as

PD‐134,308 (CI‐988) with nanomolar affinity for CCK2 receptors. A direct comparison of the structure of

these compounds showed that their sizes could be reduced to increase their lipophilicity. Indeed, the clinical

development of CI‐988 was limited due to its poor bioavailability, which was attributed to poor absorption

and efficient hepatic extraction. Several modifications have been performed, leading to compounds such as

CI‐1015 (Trivedi et al., 1998) or RB 211 (Blommaert et al., 1993).

Three other series have been described, leading to the synthesis of derivatives that have both excellent

selectivity and high affinity for CCK2 receptor: the 4‐benzamido‐5‐oxopentanoic derivatives, the

diphenylpyrazolidinone series, and the ureidoacetamides, of which CR‐2194 (Revel et al., 1992), LY‐
262,691 (Howbert et al., 1992), and RP‐73,870 (Pendley et al., 1995), respectively, are representative

examples.
4 CCK Signaling

The signal transduction pathways linked to CCK1 receptor activation have been extensively studied in

pancreatic acinar cells, where CCK stimulates amylase secretion. In this system it has been well established

that CCK1 receptor is capable of coupling to both phospholipase C (PLC) and adenylyl cyclase at

physiological concentrations. CCK activates the hydrolysis of polyphosphoinositides by PLC with

subsequent formation of the second messengers inositol 1,4,5‐triphosphate (IP3) (De Weerth et al.,

1993) and 1,2‐diacylglycerol, leading to the release of intracellular calcium (Yule et al., 1993; Dunlop

et al., 1997) and the activation of PKC, respectively. In addition, stimulation of the CCK1 receptor activates

other intracellular events, such as the phospholipase A2 (PLA2). Moreover, it was shown that mitogen‐
activated protein kinase (MAPK) and c‐Jun‐NH2‐terminal kinases (JNK, which phosphorylate serine

residues of c‐Jun) are rapidly activated by the octapeptide CCK8 in rat pancreas both in vitro and in vivo

(Dabrowski et al., 1996), and can also enhance the expression of immediate early genes (Day et al., 1994).

Most of these signaling pathways have not yet been confirmed in the CNS, even if we could speculate that

the intracellular effectors coupled to CCK1 receptors are identical.

This lack of characterization of signal transduction for CCK2 receptors in the brain is largely due to

the difficulty of working with isolated neurons. Thus, for a long time, central CCK2 receptors have not

been proved to be linked to a well‐characterized second‐messenger system in the brain, including the

phosphoinositide system, although phosphoinositide metabolism was shown to be affected by CCK
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in neuroblastoma (Barrett et al., 1989) and in the embryonic pituitary cell line (Lo and Hughes, 1988).

More recently, Zhang et al. (1992) showed that CCK8 increased the turnover of phosphoinositides and

IP3 labeling in dissociated neonatal rat brain cells, in which both CCK1 and CCK2 receptors were

expressed. However, it has not been possible to demonstrate their possible coupling with adenylyl cyclase

or PLC by using synaptoneurosomes from guinea pig cortex, although Ca2þ release from intracellular

stores, possibly via G‐protein‐independent mechanisms could be triggered by a CCK analog (Galas et al.,

1992).

Moreover, in a mammalian expression system it has been shown that CCK2 receptors are coupled to a

phospholipase pathway, leading to the release of arachidonic acid via a pertussis toxin (PTX)‐sensitive
G protein (Pommier et al., 1999, 2003), and to an MAPK pathway (Taniguchi et al., 1994).
5 Potential Therapeutic Applications of CCK in Diseases

5.1 Food Intake

Numerous neuropeptides affect the food intake by either stimulating (ghrelin, orexins) or inhibiting (CCK,

leptin, oxyntomodulin) the expression and release in the arcuate nucleus of hypothalamus of neuropeptide

Y and agouti‐related protein, which are the central (hypothalamic centers) orexigenic substances responsi-

ble for ingestive behavior in animals and humans.

The role of CCK and peripheral CCK1 receptors in the regulation of feeding behavior is an area under

intense investigation (review in Moran, 2004). CCK1 receptors appear to mediate the transmission of

sensory information from the gut to the brain. Peripherally administered CCK inhibits food consumption,

even after fasting, in many species, including humans (for reviews see Smith and Gibbs, 1992; Crawley and

Corwin, 1994). CCK1 receptor agonists have been proposed as anorectics for the treatment of obesity

(Simmons et al., 1994; Wettstein et al., 1994). Conversely, CCK1 receptor antagonists have been proposed

for the treatment of anorexia disorders (Wolkowitz et al., 1990). Recent work examining controls of food

intake and energy balance in the hyperphagic and obese Otsuka Long–Evans Tokushima Fatty (OLETF) rats

that lack CCK1 receptors have both confirmed the role of CCK in limiting meal size and identified new

actions of CCK in food intake control (Bi and Moran, 2002). The phenotype of OLETF rats appears to be

different from that of CCK1‐receptor‐deficient mice. Thus, a parallel analysis of the knockout animals

revealed that these mice reached adult weights that were indistinguishable from the corresponding age‐ and
sex‐matched animals. The similarity in weights between knockout and wild‐type animals persisted through

the rapid growth phase and extended well into adulthood. Moreover, the mutant mice had normal

pancreatic morphology and were normoglycemic. However, in contrast to wild‐type animals, CCK1‐
receptor‐deficient mice showed no change in food consumption after administration of exogenous

CCK8, supporting the hypothesis that CCK‐induced inhibition of food intake is mediated through the

CCK1 receptors (Kopin et al., 1999).

The entry of food into the intestine triggers the release of endogenous CCK by the intestinal mucosa,

thereby activating CCK1 receptors located in the periphery to transmit, mainly through the vagus nerve,

sensation of fullness to the brain, which subsequently terminates feeding and initiates the sequence of

behaviors associated with satiety (Smith and Gibbs, 1992). Besides activating vagal afferent nerve fibers,

CCK released in the plasma may also act on CCK1 receptors in the area postrema, a region of the brain stem

that has a leaky blood–brain barrier and monosynaptic connection to the nucleus tractus solitarus (NTS).

Studies investigating the role of CCK1 receptors in activating NTS neurons using highly selective CCK1

receptor agonists and antagonists have yielded conflicting data. Thus, CCK1 receptor blockade had no effect

on the postprandial activation of NTS neurons in one study, whereas others have shown a significant

reduction (Chen et al., 1993; Fraser and Davison, 1993; Zittel et al., 1999).

Controversial data regarding the role of CCK2 receptor in feeding behavior have been reported (Corwin

et al., 1991; Reidelberger et al., 1991), which led to the hypothesis that under certain conditions, the CCK2

receptor may play a role in modulating food intake. As a possible mechanism it was postulated that during

stress or anxiety, CCK2‐receptor‐mediated pathways are activated and in turn may influence eating
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behavior (review in Crawley and Corwin, 1994). However, when CCK2‐receptor‐deficient mice were

studied, the dose‐dependent CCK8‐induced inhibition of food intake was found similar to the pattern

observed in wild‐type animals, suggesting that the CCK2 receptor does not play a major role in mediating

the inhibitory effect of exogenous CCK (Kopin et al., 1999). Moreover, CCK2‐receptor‐deficient mice had

body weights comparable with the corresponding age‐ and sex‐matched controls, suggesting that CCK2

receptor is not essential for the maintenance of normal body weight.
5.2 CCK in Panic Attacks and Anxiety

Several lines of evidence point to a role for the peptide neurotransmitter CCK in the pathogenesis of panic

disorder and in mechanisms related to anxiety. The initial suggestion that the CCK system might be

involved in anxiety came from experiments of Bradwejn and de Montigny (1984, 1985) that showed that

benzodiazepine receptor agonists could attenuate CCK‐induced excitation of rat hippocampal neurons.

Subsequent clinical studies demonstrated that bolus injections of the CCK2 receptor agonists CCK4 or

pentagastrin provoke panic attacks in patients with panic disorders (Bradwejn et al., 1991, 1992). Recent

investigations have revealed that the panicogenic effects of CCK2 receptor agonists are not limited to panic

disorder, because individuals with social phobia, generalized anxiety disorder, obsessive compulsive disor-

der, and premenstrual dysphoric disorder also exhibit an augmented behavioral response to these ligands

(Le Melledo et al., 1995; de Leeuw et al., 1996; van Vliet et al., 1997). Interestingly, a significant association

exists between panic disorder and polymorphism of the CCK2 receptor gene (Kennedy et al., 1999). The

neurobiological mechanisms by which CCK2 receptor agonists provoke panic and concomitant biological

changes (robust increase in heart rate, blood pressure, hypothalamic–pituitary–adrenal axis activity,

elevated blood levels of dopamine, epinephrine, norepinephrine, and neuropeptide Y) have been the subject

of considerable research activity. Animal studies suggest that anxious behavior induced by various CCK

fragments is associated with selective CCK2 receptor stimulation (Harro et al., 1993). However, the

anxiogenic effects of CCK peptides in animals have not been observed by all investigators, and the relevant

negative findings should not be ignored (Shlik et al., 1997). The effect of CCK compounds could vary

considerably because of existing differences in the distribution and binding characteristics of CCK receptor

types and/or affinity states among species. CCK2 sites in several structures, including the nucleus tractus

solitaris, amygdala, nucleus accumbens, frontal cortex, hippocampus, and dorsal raphe nucleus have been

implicated in the anxiogenic properties of CCK (Frankland et al., 1997; Becker et al., 2001; Wunderlich

et al., 2002).

Recently, the effects of the selective CCK2 receptor agonist BC 264 and BC 197 and of the nonselective

CCK receptor agonist BDNL were investigated in rats subjected to the elevated plus maze (> Figure 24-2).

Surprisingly, BDNL and BC 197 did induce anxiogenic‐like effects, but BC 264 was devoid of any effect.

Complementary works have demonstrated intrinsic anxiolytic actions of CCK2 antagonists, principally

employing models of exploratory behavior, notably the elevated plus maze (Wunderlich et al., 2002; reviews

in Herranz, 2003; Millan, 2003). Contrariwise, anxiolytic actions of CCK2 (and CCK1) antagonists in

conflict paradigms are weak, inconsistent, and rarely dose‐dependent (Singh et al., 1991; Hendrie et al.,

1993; Charrier et al., 1995; Dawson et al., 1995). Moreover, mice lacking CCK2 receptors show

modest alterations in anxious behavior, and may even reveal an anxiogenic phenotype (Daugé et al.,

2001; Miyasaka et al., 2002; Abramov et al., 2004), as in OLETF rats (Kobayashi et al., 1996). These findings

question the anxiolytic potential of CCK2 (and CCK1) antagonists in humans. Correspondingly, in clinical

studies, despite their ability to block the panicogenic actions of CCK4, CCK2 antagonists have not proven

to be consistently efficacious as anxiolytic agents (review in Bradwejn and Koszycki, 2001; Radu et al.,

2003).

Panic disorder, like other neuropsychiatric disorders, is believed to be caused by multiple psychosocial

and biological factors. Moreover, several data are consistent with the notion that genetic variation in the

CCK neurotransmitter system contributes to the pathogenesis of panic disorder (Hosing et al., 2004;

Miyasaka et al., 2004), whereas other studies investigating the polymorphisms of the CCK and CCK2

receptor genes yielded inconclusive results (Hattori et al., 2002; Ise et al., 2003).
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5.3 Evidence of Regulatory Mechanisms Between Endogenous CCK and
Enkephalin Systems in the Control of Pain

A large body of evidence has now been accumulated supporting physiological interaction between CCK and

endogenous opioid peptides, enkephalins. Anatomical studies have shown that the distribution of CCK8

and CCK receptors parallels that of endogenous opioid peptides and opioid receptors in the pain‐proces-
sing regions in both the brain and the spinal cord (Gall et al., 1987; Pohl et al., 1990). This overlapping

distribution triggered numerous investigations on the role of CCK in nociception.

The opioid and CCK systems are critically involved, generally in an opposite manner in various

physiological processes. It has been suggested that CCK8 has an antiopioid activity. Thus, Faris et al.

(1983) found that CCK reduced the antinociceptive effects produced by the stress‐induced release of

endogenous opioids, and did not modify nonopiate responses induced by hind paw shock. In addition, it

has been shown that peripherally administered CCK antagonists or active immunization against CCK

potentiates exogenous opiate‐produced antinociception (Faris et al., 1984; Baber et al., 1989). However, few

studies have been performed on the possible physiological interactions between endogenous CCK and

endogenous opioid systems. It is now well established that endogenous opioid peptides, enkephalins, are

cleaved into inactive fragments by means of ectopeptidases (review in Roques, 2000). The development of

efficient inhibitors of these metabolizing enzymes allows the extracellular levels of enkephalins to be

monitored. The joint use of these inhibitors and CCK antagonists allowed the physiological responses of

the two neuropeptide systems to be studied.

The existence of regulatory mechanisms between CCK and enkephalin systems in the control of pain

has been proposed (> Figure 24-3). Thus, activation of CCK1 receptors potentiates the analgesic effects
. Figure 24-3

Hypothetical model of the supraspinal interactions between CCK, via CCK1 and CCK2 receptors, and the opioid

system via delta and mu opioid receptors. CCK receptor agonists, endogenous or exogenous, stimulate CCK2
and/or CCK1 receptors, which can modulate the opioidergic (enkephalinergic) systems either directly (via the

binding of opioid agonists or via C‐fiber‐evoked activity) or indirectly (via the release of endogenous enke-

phalins). In addition, activation of mu opioid receptors, which leads to antinociceptive responses, can nega-

tively modulate the release of endogenous CCK, whereas delta opioid receptor activation may enhance it
induced by the complete inhibitor of enkephalin‐degrading enzymes able to cross the blood–brain barrier,

i.e., RB 101 (Fournié‐Zaluski et al., 1992), while activation of CCK2 receptors reduces these effects (Derrien

et al., 1993; Noble et al., 1993). Schematically, stimulation of CCK1 receptors could enhance opioid release,

and/or directly improve the efficacy of transduction processes occurring at the mu sites, which might be
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allosterically evoked by CCK1 site occupation (Magnuson et al., 1990). In contrast, CCK2 receptor activa-

tion could negatively modulate the opioidergic system. Furthermore, the opioid system appears also to be

able to regulate the release of CCK peptides. Thus, the stimulation of mu opioid receptors has an inhibitory

influence on the Kþ‐evoked release of CCK‐like material (CCKLM) at spinal and supraspinal levels (Rattray

and De Belleroche, 1987; Rodriguez and Sacristan, 1989; Benoliel et al., 1991, 1992). On the other hand, in

vitro studies have shown that delta opioid agonists enhance the Kþ‐evoked release of CCKLM from slices of

rat substantia nigra (Benoliel et al., 1991, 1992). This result has been confirmed by in vivo binding studies.

Thus, the binding of the CCK2‐selective agonist [3H]pBC 264 was found to be reduced by administration

of the delta‐selective agonist BUBU, as by RB 101, through activation of delta opioid receptors by

endogenous enkephalins (Ruiz‐Gayo et al., 1992). Consequently, activation of delta opioid receptors

potentiates the release of CCK8, which could bind to CCK1 and CCK2 receptors. This increase is supported

by the blockade of CCK2‐binding sites by selective antagonists (blocking the negative feedback control

achieved by CCK8 via CCK2 receptor activation), which strongly potentiates (200–800%) the antinocicep-

tive effects induced by RB 101 in the rat tail flick test and the mouse hot plate test (Valverde et al., 1994) and

prolongs the action of the inhibitor (Valverde et al., 1995). Moreover, selective CCK2 receptor antagonists

may potentiate the antiallodynic effects of morphine or endogenous enkephalins (Coudoré‐Civiale et al.,
2000, 2001) (> Figure 24-4); these antagonists suppressed the development of autotomy behavior in a
. Figure 24-4

Antinociceptive effects on the paw pressure‐induced vocalization threshold in diabetic rats due to the associa-

tion between the dual inhibitor of enkephalin‐degrading enzymes, RB 101, with the CCK2 antagonist CI‐988.
**p< 0.01 as compared with control group
model of neuropathic pain in rat, and efficiently relieved the allodynia‐like symptoms in spinally injured

rats (review in Roques and Noble, 1996).

Several human and animal studies indicate that the anterior cingulate cortex (ACC), where CCK is

especially abundant, plays an important role in the affective component of pain. In recent studies it has been

reported that the releases of CCK in the rat ACC were enhanced following peripheral axotomy, a model of

phantom limb pain (Gustafsson et al., 2000), and during carrageenan‐induced arthritis (Erel et al., 2004).

Because CCK has been implicated in anxiety, it could be suggested that an altered cholecystokinergic

activity in the ACC may be of importance for the affective component of pain, as well as for an involvement

in the modulation of nociception.

There is evidence that the action of endogenous or exogenous opioids leads to an enhancement of CCK

activity, which in turn attenuates the acute antinociceptive effect of opioids, as previously described, and
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may be one of the mechanisms of opioid tolerance. Thus, systemically administered CCK antagonists have

been shown to prevent or revert tolerance to systemic exogenous opioids (Watkins et al., 1984; Dourish

et al., 1990; Wiesenfeld‐Hallin et al., 1999; Tortorici et al., 2003). In agreement with these observations,

Zhou et al. (1992) and Pu et al. (1994) have shown that the development of morphine tolerance in the rat

was associated with increased hybridization signals for the CCK mRNA in the brain.
5.4 CCK and Depression

One of the physiological actions of the neuropeptide CCK seems to involve modulation of the nigrostriatal

and mesolimbic dopaminergic pathways. Taking into consideration that the mesolimbic dopaminergic

pathways play a crucial role in motivation and rewarding processes, which are likely to be altered in

depression (for review see Willner, 1990), a role of CCK in mood disorders cannot be excluded.

Several studies have shown that selective CCK2 receptor agonists facilitate the suppression of motility

test in mice, an animal model used to select antidepressant drugs. Moreover, this effect was inhibited by

L‐365,260, demonstrating the selective involvement of the CCK2 receptors (Derrien et al., 1994a). However,

the most interesting results were obtained with the CCK2 antagonist, which alone decreased motor

inhibition in shocked mice and induced antidepressant‐like effect in the forced swim test in mice (Smadja

et al., 1995). This could result from an increase of extracellular dopamine contents since this effect was

suppressed both by D1‐ and D2‐selective antagonists. Moreover, it has been shown that the association of

ineffective doses of nomifensine (a blocker of dopamine reuptake) and L‐365,260 leads to a significant

decrease in the duration of immobility, suggesting that both drugs could act by a related mechanism

(Hernando et al., 1994).

Furthermore, it has been suggested that the endogenous enkephalins might be involved in the etiology

of depression. Accordingly, the ‘‘anxious’’ behavioral responses triggered by forced swimming, conditioned

suppression of motility, and learned helplessness were attenuated by treatment with the enkephalin‐
degrading enzyme inhibitors (Ben Natan et al., 1984; Gibert‐Rahola et al., 1990; Tejedor‐Real et al., 1993,
1995; Baamonde et al., 1992; Smadja et al., 1995), suggesting a potential role of endogenous enkephalins in

depressive syndromes. It has been demonstrated in these tests that the inhibitors modulated the functioning

of the mesocorticolimbic and nigrostriatal dopaminergic systems, which are known to be implicated in

mood control and have been shown to be connected with enkephalin pathways (review in Roques et al.,

1993).

It was therefore of interest to investigate the possible modulation of RB 101‐induced behavioral

responses by CCK ligands. The results obtained showed that the antidepressant‐like effects induced by the

CCK2 antagonist L‐365,260 was suppressed by the selective antagonist for delta opioid receptors, suggesting

the occurrence of physiologically adverse interactions between CCK and opioid systems (> Figure 24-5)

(Derrien et al., 1994a; Hernando et al., 1996). This indicates that CCK2 antagonists could block centrally

located CCK2 receptors, thus reinforcing the antidepressant‐like effects induced by delta opioid receptor

stimulation. Accordingly, the antidepressant‐like effect of RB 101 was potentiated by L‐365,260 and

suppressed by BC 264. As expected, the facilitation induced by L‐365,260 on RB 101 responses was blocked

by naltrindole (Smadja et al., 1995). Furthermore, Smadja et al. (1997) have shown that the endogenous

CCK system, through CCK2 receptors, could modulate opioid behavioral responses by a mechanism

directly involving two different mesolimbic structures, the anterior nucleus accumbens and the central

amygdala. Taken together, these data suggest that the clinical use of CCK2 antagonists, administered alone,

or in association with classical treatments or inhibitors of enkephalin catabolism, could be extended to the

treatment of depressive syndromes.

However, relatively little is known about the role of CCK in clinical depression. Several laboratories have

demonstrated that patients with major depression display cerebrospinal fluid CCK concentrations compa-

rable with those of control subjects (Geracioti et al. 1993). However, there is some evidence that an increase

in cerebrospinal fluid CCK levels can occur in particularly severe depression (Löfberg et al., 1998).

On the other hand, postmortem studies have revealed that compared with healthy controls and patients

with schizophrenia, suicide victims have elevated preproCCK mRNA levels and an increased density of



. Figure 24-5

Effects of the CCK2 antagonist L‐365,260 in shocked and nonshocked mice in the conditioned suppression of

motility test, and reversal by naltrindole, a selective delta opioid receptor antagonist. *p< 0.05 as compared

with control group; #p< 0.05 as compared with the same dose of L‐365,260 without naltrindole
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CCK‐containing neurons in the dorsolateral prefrontal cortex and a high density of CCK receptors in the

frontal cortex (Ferrier et al., 1983; Harro et al., 1992).
5.5 CCK in Learning and Memory Processes

During learning and memory processes, besides structural synaptic remodeling, changes are observed at

molecular and metabolic levels with the alterations in neurotransmitter and neuropeptide synthesis and

release (review in Gulpinar and Yegen, 2004). The peptide CCK has been proposed to facilitate memory

processing, and CCK‐like immunoreactivity in the hypothalamus was observed upon stress response and

stress‐induced memory dysfunction. Moreover, on the basis of anatomical data, studies of CCK on memory

processes have constituted an important field of investigation (review in Hadjiivanova et al., 2003), as this

neuropeptide is present in regions such as limbic structure and cortical areas, which are implicated in the

control of cognitive processes, and motivational and emotional behaviors. It has been suggested that CCK1

and CCK2 receptors have different roles in learning and memory functions (Harro and Oreland, 1993). In

particular, a balance between CCK1‐receptor‐mediated facilitatory effects and CCK2‐receptor‐mediated

inhibitory effects on memory retention has been postulated (Lemaire et al., 1992). However, there are

conflicting reports on the effects of CCK2 receptor agonists in the animal model of memory. For instance,

although some groups have reported that selective CCK2 receptor agonists (CCK4, BC 264) impair memory

(Lemaire et al., 1992; Derrien et al., 1994b), others have found that these peptides enhance memory

(Gerhardt et al., 1994; Léna et al., 1999; Taghzouti et al., 1999) (> Figure 24-6). Treatment with BC 264

has also been described to elicit prominent hypervigilance in monkeys and to increase behavioral arousal in

rats (Daugé and Roques, 1995). The latter findings suggest a possible role for CCK2 receptor in attention

activation that can facilitate learning. The apparent discrepancies observed with CCK agonists indicate that

CCK2 receptors could have different functions involving probably different neuronal pathways, according

to the task carried out by the animal.

Different animal models, including spontaneous mutants and knockout mice, may be interesting to

clarify the physiological role of specific receptors. Because OLETF rats lack both central and peripheral

CCK1 receptors, this model may be useful to clarify the functions of CCK1 receptors in the CNS. Learning

and memory in a Morris water maze learning task were significantly impaired in the OLETF rats compared

with the Long–Evans Tokushima Otsuka (LETO) controls, which were not considered to be due to

hypoactivity (Matsushita et al., 2003). On the other hand, mice lacking CCK2 receptors showed a decrease

in spontaneous alternation behavior as measured in the Y maze compared with that of wild‐type animals, as



. Figure 24-6

Effects of L‐365,260 (200 mg/kg) on the BC 264 induced improvement of performance. The CCK2 antagonist was

injected i.p. alone, 60 min before the experiment or 30 min before injection of the CCK2 agonist. The results are

expressed as means of the percentage of time spent in the novel arm � SEM (n ¼8–15). *p< 0.05 as compared

with control groups; #p< 0.05 as compared with CCK2 agonist group
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well as an impairment in retention of spatial recognition using a two‐trial memory test (Sebret et al., 1999;

Daugé et al., 2001). These results emphasize the physiological role of CCK improving, through CCK1 and

CCK2 receptor stimulation, some memory and/or attention processes.

To date only few studies have been devoted to the effects of CCK receptor agonists on human memory.

Recently, Shlik et al. (1998) found that the continuous administration of the selective CCK2 receptor

agonist, CCK4, had no effect on psychomotor performance, although it produced impairment in cognitive

tests of free recall and recognition. The results of this study suggest that CCK4 may exert a negative

influence on memory consolidation and retrieval.
5.6 Addiction

It is known that the dopaminergic projections from the VTA to the nucleus accumbens are involved in

positively motivated behaviors such as feeding, sexual behavior, and locomotor activity. The mesoaccum-

bens dopamine pathway is also highly implicated in the primary rewarding effects of drugs of abuse and in

the process of sensitization, in which subsequent presentations of a drug result in an increased neurochem-

ical and behavioral response. Sensitization is thought to play an important role in the development of

addictions. The colocalization of CCKwith dopamine in this pathway suggests a functional role for CCK in

reward behaviors. Furthermore, CCK‐containing projections from the prefrontal cortex to the striatum,

which also contain glutamate, may also play an important role in reward‐related behaviors, given

that glutamate has also been shown to be important in the induction and expression of sensitization

(Vanderschuren and Kalivas, 2000).

Evidence suggests that CCK1 receptors mediate dopamine‐agonist‐like effects in the caudal shell area of

the nucleus accumbens. For example, CCK1 agonists in this brain structure potentiate Kþ‐stimulated

endogenous dopamine release (Marshall et al., 1991), and increase extracellular concentrations of dopa-

mine and its metabolites, DOPAC and HVA (Voigt et al., 1985; Karia et al., 1994). Conversely, CCK

stimulation in the rostral core of the nucleus accumbens has dopamine antagonistic effects, such as

attenuated Kþ‐stimulated dopamine release and decreased extracellular dopamine concentrations and

turnover, which appear to be mediated by CCK2 receptors (Fuxe et al., 1980; Voigt et al., 1985). Recent
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studies of the CCK2 receptor knockout mice strongly support the role of CCK2 receptor as a negative

modulator of dopamine neurotransmission. In the absence of CCK2 receptor, these mice behave as they

have augmented dopamine neurotransmission compared with wild‐type animals. The knockout mice

displayed more locomotor activity than the wild type (Daugé et al., 2001), had increased sensitivity of

dopamine D2 receptors (Koks et al., 2003), and displayed more locomotor activity in response to a high

dose of amphetamine than did the wild type (Koks et al., 2001).

In drug self‐administration, intra‐accumbens administration of CCK2 agonist pentagastrin, increases

responding on a fixed‐ratio schedule for intravenous amphetamine self‐administration, consistent with the

effects of dopamine antagonists (Bush et al., 1999; Epping‐Jordan et al., 1998). CCK2 antagonists have also

been shown to decrease cocaine drinking in cocaine‐preferring rats in a free‐choice model (Crespi, 1998).

CCK1 ligands have not been thoroughly examined in drug self‐administration paradigms, although there is

a suggestion that CCK1 antagonists may decrease alcohol consumption in alcohol‐preferring rats, but have
no effect on cocaine intake (Crespi, 1998).

CCK also plays an important role in psychostimulant sensitization, in which the locomotor response to

the same dose of psychostimulant is increased after repeated drug administration. Endogenous CCK in the

nucleus accumbens seems to play an important role in mediating psychostimulant‐induced locomotor

activity, mainly in animals that have previously experienced chronic psychostimulant exposure (Wunderlich

et al., 2004). This is consistent with microdialysis studies, showing that systemic cocaine treatment of

drug‐naive and cocaine‐sensitized rats caused a sustained increase in extracellular CCK levels in the

nucleus accumbens that was more pronounced in sensitized rats. The increased basal levels of extracel-

lular CCK in cocaine‐sensitized rats suggest that the CCK system is upregulated by repeated cocaine

injections (Beinfeld, 2003b). These studies provide a neurochemical basis for the role of endogenous

CCK in the nucleus accumbens in the events following psychostimulant administration. CCK2 receptors,

but not CCK1 receptors, have been shown to be involved in the development of sensitization (Wunderlich

et al., 2000), which suggests an important role of CCK2 receptors in the acute effects of psychostimulants.

Conversely, CCK1, but not CCK2, antagonists attenuate the expression of amphetamine‐induced sensitiza-

tion, suggesting that CCK1 receptors may interact with the long‐term neurochemical consequences of

psychostimulants (DeSousa et al., 1999; Wunderlich et al., 2000). The role of CCK1 receptors in the

expression of sensitization is consistent with the role of CCK1 receptors in facilitating dopamine function

in the caudal part of the nucleus accumbens.

It has been proposed that the craving and self‐administration of opioid drugs could be explained either

by a preexisting deficit in the endogenous opioid system or by a deficit that could occur after chronic

administration of opiates. Thus, the use of a treatment increasing the level of endogenous opioid peptides

could be an interesting new approach in the treatment of drug abuse. Indeed, it has been shown that mixed

inhibitors such as RB 101 reduced the severity of the withdrawal syndrome in morphine‐dependent rats
after administration of naloxone (Maldonado et al., 1995). Moreover, as indicated above, several studies

demonstrated that activation of CCK2 receptors could modulate the opioid system negatively, suggesting

that selective blockade of these receptors may increase the ability of mixed enkephalin‐degrading enzyme

inhibitors to reduce the opioid withdrawal syndrome precipitated by naloxone. This has been recently

confirmed using RB 101 in association with the CCK2 antagonist PD‐134,308 (Maldonado et al., 1995).

Although early abstinence syndrome may be an important clinical problem in the treatment of

addiction, the most difficult aspect is the protracted abstinence syndrome, one of the main factors

contributing to relapse. Indeed, the first days after cessation of prolonged drug use leads to acute withdrawal

syndrome, which consists of physiological changes (i.e., agitation, hyperalgesia, tachycardia, hypertension,

diarrhea, and vomiting) and a variety of phenomena (i.e., cardiovascular, visceral, thermoregulatory, and

subjective changes), or depressive states that may persist for months or more after the last dose of opiate.

Thus, the main challenge in the management of opioid addiction is to develop a pharmacotherapy to

minimize the short‐term withdrawal syndrome and protracted opiate abstinence syndrome. The complete

inhibitors of enkephalin‐degrading enzymes could be administered alone or in combination with the

selective CCK2 antagonists to increase the endogenous opioid peptide levels, thus reducing the discomfort

of the short‐term withdrawal syndrome, as previously described (Maldonado et al., 1995). Moreover, the

protracted abstinence syndrome also could be ameliorated owing to the antidepressant‐like properties of
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these compounds, and thus, the possibility of relapse, the most important problem in the management of

opioid addiction, should be minimized (review in Roques and Noble, 1995).
5.7 Schizophrenia

Dysfunction of mesolimbic dopamine transmission is believed to be an important component underlying

schizophrenia. As previously mentioned, it has been shown that the CCK1 receptor modulates CCK‐
stimulated dopamine release in the posterior nucleus accumbens. Thus, it was speculated that alterations

in CCK1 receptor lead to an increase in dopamine release, which may in turn constitute a predisposition to

schizophrenia. This was confirmed by an association analysis conducted between unrelated schizophrenic

patients and healthy volunteers, which confirmed that the frequency of the 201A allele in the promoter

region of the human CCK2 receptor gene was higher in the schizophrenic group, especially in the paranoid

type, than in the control group (Tachikawa et al., 2000). Interestingly, significant associations have also been

reported between the polymorphic site of CCK1 receptor gene located at 779 in the intron n1 and exon

2 boundary and schizophrenic patients with auditory hallucinations (Wei and Hemmings, 1999; Sanjuan

et al., 2004) and between the promoter polymorphism located at �85 site and patients with hallucinations,

particularly those with hallucinations accompanying delirium tremens (Okubo et al., 2002). The same type

of study has been performed on the CCK2 receptors. However, the results suggest that the CCK2 receptor

gene polymorphisms have no association with schizophrenia (Tachikawa et al. 1999).

The precise role of CCK in schizophrenia remains incompletely understood (review in Bourin et al.,

1996; De Wied and Sigling, 2002). The most prominent finding relevant to this disorder is a reduction in

postmortem CCK mRNA levels in different brain areas (frontal, cerebral and entorhinal cortices, and

subiculum) of schizophrenic patients (Ferrier et al., 1983; Carruthers et al., 1984), especially those with

predominantly negative symptoms. On the other hand, a lower density of CCK‐receptor‐binding sites has
been found in the hippocampus and frontal cortex of schizophrenic patients compared with controls

(Farmery et al., 1985). However, it should be noted that not all studies confirmed the decrease in CCK

mRNA in schizophrenia. Indeed, in the postmortem study of Schalling et al. (1990), schizophrenic patients

had even higher CCK mRNA levels in the VTA and substantia nigra than control subjects. Such a finding

should suggest that elevated CCK synthesis in regions rich in dopaminergic neurons may be associated with

schizophrenia. Methodological problems, small number of patients, and heterogeneity in studied indivi-

duals might have contributed to these inconsistent results. Nevertheless, on the whole, the available data

suggest that negative symptoms of schizophrenia may be associated with reduced CCK activity (Ferrier

et al., 1983; Carruthers et al., 1984). This reduction may be attributed to either a decreased processing of

preproCCK in neurons or a reduction in synaptic levels of CCK due to activations in catabolic or reuptake

processes (Migaud et al., 1995). Several open studies reported that administration of nonselective CCK

receptor agonists in addition to ongoing neuroleptic treatment improved psychotic symptoms in

schizophrenic patients, as CCK appears to be required for neuroleptic‐induced depolarization inactivation

of dopamine neurons and associated antipsychotic responses (Beinfeld and Garver, 1991). However, other

placebo‐controlled studies indicated that nonselective CCK receptor agonists or antagonists are ineffective

in the treatment of schizophrenia (Whiteford et al., 1992).
6 Conclusions: Potential Therapeutic Applications

Since the original characterization of CCK by Ivy and Oldberg in 1928, followed by the isolation and

sequencing of this hormone (Jorpes and Mutt, 1966), and its detection in the CNS (Vanderhaeghen et al.,

1975), considerable advances have been made in the knowledge of the roles of this neuropeptide. The

actions of CCK and related peptides have been extended to include regulation of satiety, anxiety, pain, and

dopamine‐mediated behavior in the central and peripheral nervous systems. All the results reported above

encourage further research targeting CCK1 and CCK2 receptors as a possible way to new pharmacological

treatments.
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et al. 1984. Involvement of endogenous enkephalins in the

mouse ‘‘behavioral despair’’ test. Eur J Pharmacol 97:

301-304.

Benoliel JJ, Bourgoin S, Mauborgne A, Legrand JC, Hamon

M, et al. 1991. Differential inhibitory/stimulatory

modulation of spinal CCK release by mu and delta opioid

agonists, and selective blockade of mu‐dependent inhibi-

tion by kappa receptor stimulation. Neurosci Lett 124:

204-207.

Benoliel JJ, Mauborgne A, Bourgoin S, Legrand JC, Hamon

M, et al. 1992. Opioid control of the in vitro release of
CCK‐like material from the rat substantia nigra. J Neuro-

chem 58: 916-922.

Bernad N, Burgaud BG, Horwell DC, Lewthwaite RA,

Martinez J, et al. 2000. The design and synthesis of

the high efficacy, non‐peptide CCK1 receptor agonist

PD170292. Bioorg Med Chem Lett 10: 1245-1248.

Bi S, Moran TH. 2002. Actions of CCK in the controls of food

intake and body weight: lessons from the CCK‐A receptor

deficient OLETF rat. Neuropeptides 36: 171-181.

Bignon E, Bachy A, Boigegrain R, Brodin R, Cottineau M,

et al. 1999. SR146131: a new potent, orally active, and selec-

tive nonpeptide cholecystokinin subtype 1 receptor agonist.

I. In vitro studies. J Pharmacol Exp Ther 289: 742-751.

Blommaert AG, Weng JH, Dorville A, McCort I, Ducos B,

et al. 1993. Cholecystokinin peptidomimetics as selective

CCK‐B antagonists: design, synthesis, and in vitro and in

vivo biochemical properties. J Med Chem 36: 2868-2877.

Blommaert AGS, Dhôtel H, Ducos B, Durieux C, Goudreau

N, Bado A, Garbay C, Roques BP. 1997. Structure‐based

design of new constrained cyclic agonists of the cholecysto-

kinin CCK‐B receptor. J Med Chem 40: 647-658.

Bock MG, DiPardo RM, Evans BE, Rittle KE, Whitter WL,

et al. 1989. Benzodiazepine gastrin and brain cholecystoki-

nin receptor ligands: L‐365,260. J Med Chem 32: 13-16.

Boden PR, Higginbottom M, Hill DR, Horwell DC, Hughes J,

et al. 1993. Cholecystokinin dipeptoid antagonists: design,

synthesis, and anxiolytic profile of some novel CCK‐A and

CCK‐B selective and ‘‘mixed’’ CCK‐A/CCK‐B antagonists.

J Med Chem 36: 552-565.

Bourin M, Malinge M, Vasar E, Bradwejn J. 1996. Two faces of

cholecystokinin: anxiety and schizophrenia. Fundam Clin

Pharmacol 10: 116-126.

Bradwejn J, de Montigny C. 1984. Benzodiazepines antago-

nize cholecystokinin‐induced activation of rat hippocam-

pal neurons. Nature 312: 363-364.

Bradwejn J, de Montigny C. 1985. Effects of PK 8165, a partial

benzodiazepine receptor agonist, on cholecystokinin‐

induced activation of hippocampal pyramidal neurons: a

microiontophoretic study in the rat. Eur J Pharmacol 112:

415-418.

Bradwejn J, Koszycki D. 2001. Cholecystokinin and panic

disorder: past and future clinical research strategies. Scand

J Clin Lab Invest Suppl 234: 19-27.

Bradwejn J, Koszycki D, Payeur R, Bourin M, Borthwick H.

1992. Replication of action of cholecystokinin tetrapeptide

in panic disorder: clinical and behavioral findings. Am

J Psychiatry 149: 962-964.

Bradwejn J, Koszycki D, Shriqui C. 1991. Enhanced sensitivity

to cholecystokinin tetrapeptide in panic disorder. Arch Gen

Psychiatry 48: 603-610.



564 24 Cholecystokinin peptides in brain function
Bush DE, DeSousa NJ, Vaccarino FJ. 1999. Self‐administration

of intravenous amphetamine: effect of nucleus accumbens

CCKB receptor activation on fixed‐ratio responding. Psy-

chopharmacology (Berl) 147: 331-334.

Cain BM, Connolly K, Blum A, Vishnuvardham D, Marchand

JE, et al. 2003. Distribution and colocalization of cholecys-

tokinin with the prohormone convertase enzymes PC1,

PC2, and PC5 in rat brain. J Comp Neurol 467: 307-325.

Cain BM, Connolly K, Blum AC, Vishnuvardhan D,

Marchand JE, et al. 2004. Genetic inactivation of prohor-

mone convertase (PC1) causes a reduction in cholecystoki-

nin (CCK) levels in the hippocampus, amygdala, pons and

medulla in mouse brain that correlates with the degree of

colocalization of PC1 and CCK mRNA in these structures

in rat brain. J Neurochem 89: 307-313.

Carruthers B, Dawbarn D, De Quidt M, Emson PC, Hunter J,

et al. 1984. Changes in neuropeptide content of amygdala

in schizophrenia. Br J Pharmacol 81(Suppl): 190P.

Chang RSL, Lotti VJ, Monaghan RL, Birnbaum J, Stapley EO,

et al. 1985. A potent nonpeptide cholecystokinin antagonist

selective for peripheral tissues isolated from Aspergillus

alliaceus. Science 230: 177-179.

Charpentier B, Dor A, Roy P, England P, Pham H, et al. 1989.

Synthesis and binding affinities of cyclic and related linear

analogues of CCK8 selective for central receptors. J Med

Chem 31: 1184-1190.

Charpentier B, Durieux C, Pélaprat D, Dor A, Reibaud M,

et al. 1988b. Enzyme‐resistant CCK analogs with high affi-

nities for central receptors. Peptides 9: 835-841.

Charpentier B, Pélaprat D, Durieux C, Dor A, Reibaud M,

et al. 1988a. Cyclic cholecystokinin analogues with high

selectivity for central receptors. Proc Natl Acad Sci USA

85: 1968-1972.

Charrier D, Dangoumau L, Puech AJ, Hamon M, Thiebot

MH. 1995. Failure of CCK receptor ligands to modify

anxiety‐related behavioural suppression in an operant con-

flict paradigm in rats. Psychopharmacology (Berl) 121:

127-134.

Chen DY, Deutsch JA, Gonzalez MF, Gu Y. 1993. The induc-

tion and suppression of c‐fos expression in the rat brain by

cholecystokinin and its antagonist L‐364,718. Neurosci Lett

149: 91-94.

Corringer PJ, Weng JH, Ducos B, Durieux C, Boudeau P, et al.

1993. CCK‐B agonist or antagonist activities of structurally

hindered and peptidase‐resistant Boc‐CCK4 derivatives.

J Med Chem 36: 166-172.

Corwin RL, Gibbs J, Smith GP. 1991. Increased food intake

after type A but not type B cholecystokinin receptor block-

ade. Physiol Behav 50: 255-258.
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Monterrey I, Gonzalez‐Muniz R, Garcia‐Lopez MT, et al.

1997. Synthesis and stereochemical structure–activity rela-

tionships of 1,3‐dioxoperhydropyrido[1,2‐c]pyrimidine

derivatives: potent and selective cholecystokinin‐A receptor

antagonists. J Med Chem 40: 3402-3407.



568 24 Cholecystokinin peptides in brain function
Matsushita H, Akiyoshi J, Kai K, Ishii N, Kodama K, et al.

2003. Spatial memory impairment in OLETF rats with-

out cholecystokinin—a receptor. Neuropeptides 37:

271-276.

Menozzi D, Gardner JD, Maton PN. 1989. Properties of

receptors for gastrin and CCK on gastric smooth muscle

cells. Am J Physiol 257: G73-G79.

Mercer LD, Beart PM. 1997. Histochemistry in rat brain and

spinal cord with an antibody directed at the cholecystoki-

ninA receptor. Neurosci Lett 225: 97-100.

Migaud M, Durieux C, Viereck J, Soroca‐Lucas E, Fournié‐
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1985. Synthesis and biological activity of Boc(Nle28,

Nle31)CCK27‐33 a highly potent CCK8 analogue. Peptides

6: 415-420.

Ruiz‐Gayo M, Durieux C, Fournié‐Zaluski MC, Roques BP.
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574 25 Oxytocin and vasopressin: genetics and behavioral implications
: Oxytocin (OT) and vasopressin (VP) can profoundly affect animal physiology and behavior.

past 20 years, the genes that encode OT and VP, as well as their respective receptors, have been
Abstract

Over the

identified and intensively studied leading to a greater understanding of the hormones’ functions. The use of

transgenic animals, including knockout mice, and viral vectors have opened new vistas of research on the

behavioral roles of OTand VP. In this chapter, we briefly review the history and the evolutionary origins of

OTand VP, as well as their structures, regulation, and neuroanatomy. Finally, we highlight recently explored

roles for OT and VP in physiology and behavior.

List of Abbreviations: ACTH, adrenocorticotropic hormone; AH, anterior hypothalamus; AP‐2, activator
protein‐2; ATF‐2, activating transcription factor‐2; AVT, arginine vasotocin; BNST, bed nucleus of the stria

terminalis; CeM, central amygdala; CNS, central nervous system; CRF, corticotropin releasing factor; DAG,

diacylglycerol; ERE, estrogen response element; GRE, glucocorticoid response element; ICV, intracerebro-

ventricularly; IGR, intergenic region; IP3, 1,4,5 inositol triphosphate; LS, lateral septum; MeA, medial

amygdala; MPOA, medial preoptic area; MPOA‐AH, medial preoptic area‐anterior hypothalamus; OT,

oxytocin; OTKO, oxytocin knockout; OTR, oxytocin receptor; PIP2, phosphatidylinositol 4,5‐bisphosphate;
PLC, phospholipase C; PVN, paraventricular nucleus; SCN, suprachiasmatic nucleus; SON, supraoptic

nucleus; V1aR, vasopressin 1a receptor; V1aRKO, vasopressin 1a receptor knockout; V1bR, vasopressin 1b

receptor; V1bRKO, vasopressin 1b receptor knockout; VACM‐1, vasopressin‐activated calcium‐mobilizing

receptor; VLH, ventrolateral hypothalamus; VMH, ventromedial hypothalamus; VP, vasopressin; VP‐ir,
vasopressin immunoreactivity
1 Overview

This is an exciting time in the field of oxytocin (OT) and vasopressin (VP) research. The important roles for

OT and VP in the brain and in behavior are just now becoming understood. The use of modern molecular

biological techniques as well as behavioral studies have implicated OTand VP in the regulation of a variety

of behaviors. The use of viral vectors and transgenic animals, including knockout mice, has provided

valuable insights into the complex roles these two hormones play in the regulation of behavior. This chapter

will briefly review the history and the evolutionary origins of OT and VP, as well as their receptors,

structures, regulation, and neuroanatomy. Finally, the chapter highlights recently explored roles for OT

and VP in physiology and behavior.
2 History

The neurohypophysial hormones OT and VP were originally detected by Oliver and Schäfer in 1895 who

demonstrated that extracts of the pituitary altered blood pressure (Oliver and Schäfer, 1895). In the decades

that followed, other actions of posterior pituitary extracts were determined: in 1906, the uterine‐contracting
properties (Dale, 1906); in 1910, the milk‐ejection properties (Ott and Scott, 1910); and in 1913, the

antidiuretic properties (Farini, 1913; Vongraven, 1913). However, it was not until 1952 that du Vigneaud

and colleagues isolated two distinct peptides to which specific activities could be ascribed (du Vigneaud,

1952). Following this finding, the amino acid sequences and structures of OT (Tuppy, 1953; du Vigneaud

et al., 1953b) and VP (Turner et al., 1951; Archer and du Vigneaud, 1953; du Vigneaud et al., 1953a) were

elucidated, followed shortly by their syntheses (du Vigneaud et al., 1954a, b). In 1955, du Vigneaud won the

Nobel Prize in Chemistry due, in part, to his early descriptions and syntheses of OT and VP.

Since the 1950s, research examining the roles of OT and VP in the brain and periphery has intensified.

The development of specific agonists and antagonists for OT and VP receptors has allowed for a better

elucidation of the specific contributions to physiology and behavior that each peptide makes (Manning and

Sawyer, 1991; Barberis et al., 1999; Serradeil‐Le Gal et al., 2002). Pharmacological studies, as well as

transgenic animal studies, have implicated OT and VP in the regulation of social behaviors across species.

Enough scientific progress has been made so that we can now begin to integrate molecular biology and
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behavior to gain a better understanding of OT and VP from the regulatory level of transcription to that of

behavior.
3 Structure and Expression of Oxytocin and Vasopressin

3.1 Conservation Across Phyla

OT and VP are ancient neuropeptides that are members of a peptide family that is highly conserved

across phyla (> Table 25-1) and arose through the duplication of an ancestral vasotocin gene (Acher and

Chauvet, 1995; Acher et al., 1995). OT and VP are nonapeptides with the same ring structure formed

by a disulfide bridge (Hruby et al., 1990). Only the third and eighth amino acid residues differ between
. Table 25-1

Vasopressin/oxytocin superfamily

Vertebrate vasopressin family

Cys‐Tyr‐Phe‐Gln‐Asn‐Cys‐Pro‐Arg‐
Gly‐NH2

Vasopressin

(ADH)

Mammalsa

Cys‐Tyr‐Phe‐Gln‐Asn‐Cys‐Pro‐Lys‐Gly‐
NH2

Lysipressin Pigs, hippopotamuses, warthogs, some

marsupials

Cys‐Phe‐Phe‐Gln‐Asn‐Cys‐Pro‐Arg‐
Gly‐NH2

Phenypressin Some marsupials

Cys‐Tyr‐Ile‐Gln‐Asn‐Cys‐Pro‐Arg‐Gly‐
NH2

Vasotocinb Nonmammals

Vertebrate Oxytocin Family

Cys‐Tyr‐Ile‐Gln‐Asn‐Cys‐Pro‐Leu‐Gly‐
NH2

Oxytocin Mammalsc, ratfish

Cys‐Tyr‐Ile‐Gln‐Asn‐Cys‐Pro‐Ile‐Gly‐
NH2

Mesotocin Marsupials, birds, reptiles, amphibians, lungfishes

Cys‐Tyr‐Ile‐Ser‐Asn‐Cys‐Pro‐Ile‐Gly‐
NH2

Isotocin Bony fishes

Cys‐Tyr‐Ile‐N/Q‐Asn‐Cys‐Pro‐L/V‐Gly‐
NH2

Various tocins Sharks

Invertebrate VP/OT Superfamily

Cys‐Leu‐Ile‐Thr‐Asn‐Cys‐Pro‐Arg‐Gly‐
NH2

Diuretic

hormone

Locust

Cys‐Phe‐Val‐Arg‐Asn‐Cys‐Pro‐Thr‐
Gly‐NH2

Annetocin Earthworm

Cys‐Phe‐Ile‐Arg‐Asn‐Cys‐Pro‐Lys‐Gly‐
NH2

Lys‐
Connopressin

Geography and imperial cones, pond snail, sea

hare, leech

Cys‐Ile‐Ile‐Arg‐Asn‐Cys‐Pro‐Arg‐Gly‐
NH2

Arg‐
Connopressin

Striped cone

Cys‐Tyr‐Phe‐Arg‐Asn‐Cys‐Pro‐Ile‐Gly‐
NH2

Cephalotocin Octopus

Cys‐Phe‐Trp‐Thr‐Ser‐Cys‐Pro‐Ile‐Gly‐
NH2

Octopressin Octopus

aVasopressin is not found in some marsupials, pigs, and some other mammals
bVasotocin is the progenitor of the vertebrate neurohypophysial hormones. Only vasotocin is found in hagfish and

lampreys
cOxytocin is also found in some marsupials (Agnatha appeared 500 million years ago)
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the two peptides (> Table 25-1, > Figure 25-1). Even in the most primitive of organisms, such as the

freshwater hydra, an OT/VP‐like compound is found (Grimmelikhuijzen, 1984). In general, nonmammali-

an tetrapods use mesotocin and vasotocin instead of the mammalian OT and VP, respectively. Bony fish

have isotocin and vasotocin which correspond to the mammalian OT and VP (Acher, 1990). Exceptions to

these rules are shown in >Table 25-1 (e.g., the primitive ratfish has OT and some mammals have

mesotocin).
. Figure 25-1

Schematic representation of the oxytocin and vasopressin genes (top, large arrows), mRNAs (middle boxes), and

the neuropeptides themselves (bottom). The arrows point from the 50‐ to the 30‐ ends of the genes. NH2 and

COOH indicate the amino and carboxy termini, respectively. Abbreviations: GP, glycopeptide; SP, signalpep-

tide; NP, neurophysin
3.2 Chromosomal Arrangement

The OT and VP genes are similar in structure and are oriented in opposing transcriptional directions on

the same chromosome (Hara et al., 1990) (> Figure 25-1). These genes are found on chromosome 2 in

mice, chromosome 3 in rats, and chromosome 20 in humans (Dutil et al., 2001) (> Table 25-2). The

transcriptional units are separated by a region of DNA known as the intergenic region (IGR). The IGR

shows variability across species, being 10–11 kbp in length in rat and human (Mohr et al., 1998; Gainer

et al., 2001) and approximately 3.6 kbp in length in mouse (Hara et al., 1990). The IGR is particularly

interesting because portions of it appear to be necessary for normal OT and VP gene expression within the

hypothalamus (Fields et al., 2003; Young III and Gainer, 2003). The OTand VP genes are composed of three

exons: the first exon encodes the signal peptide, the nonapeptide, and the first nine amino acid residues of

the neurophysin protein; the second exon encodes the central portion of the neurophysin; and the third

exon encodes the C‐terminal part of the neurophysin as well as the glycopeptide of the VP preprohormone.

The greatest amount of variability in sequence across species is found in exon 3 while the greatest

conservation is found in exon 2 (Ivell and Richter, 1984; Ruppert et al., 1984; Sausville et al., 1985; Hara

et al., 1990).

3.3 Coding and Synthesis

As noted above, both OT and VP are synthesized as part of a precursor preprohormone. Each preprohor-

mone is cleaved resulting in the release of a nonapeptide, a neurophysin, and, in the case of VP, a

glycopeptide (also known as copeptin), as it is transported along the axon (Brownstein et al., 1980). The

bulk of the processing of the preprohormones occurs in the acidic environment within large, dense

core vesicles (approximately 160–200 nm in diameter), and includes proteolysis by prohormone

convertases and carboxypeptidase H/E and amidation of the carboxy‐terminal glycine to yield the final

OT and VP nonapeptides (see Burbach et al., 2001; Acher et al., 2002; von Eggelkraut‐Gottanka and



. Table 25-2

Gene information about vasopressin, oxytocin, and their receptors

Gene Species Symbola Chromosome

Known

exons

Amino

acidsb LocusIDc

Vasopressin Human AVP 20 (p13) 3 164 551

Rat Avp 3 (q41‐q42) 3 164 24211

Mouse Avp 2 (73.2cM) 3 168 11998

Oxytocin Human OXT 20 (p13) 3 125 5020

Rat Oxt 3 (q36) 3 125 25504

Mouse Oxt 2 (73.5cM) 3 125 18429

Vasopressin 1a

receptor

Human AVPR1A 12 (q14‐q15) 2 418 552

Rat Avpr1a 7 (q21) 2 424 25107

Mouse Avpr1a 10 D3

(122.1cM)

2 423 54140

Vasopressin 1b

receptor

Human AVPR1B 1 (q32) 3 424 553

Rat Avpr1b 13 (q13) 3 425 29462

Mouse Avpr1b 1 E4 (131.5cM) 3 421 26361

Vasopressin 2 receptor Human AVPR2 X (q28) 3 371 554

Rat Avpr2 X (q37) 3 371 25108

Mouse Avpr2 X (29.52 cM) 3 371 12000

Oxytocin receptor Human OXTR 3 (p25) 4 389 5021

Rat Oxtr 4 (q42) 4 388 25342

Mouse Oxtr 6 E3 (113cM) 4 388 18430

Dual AII/VP receptord Human NALP6 11 (p15) 8 513 171389

Rat Nalp6 1 (q41) 7 483 171390

Mouse Nalp6 7 F4 7 490 101613

VACM‐1 receptore Human CUL5 11 (q22‐q23) 19 780 8065

Rat Cul5 8 (q24) 18 780 64624

Mouse Cul5 9 C (53.8cM) 19 780 75717

aOffical gene symbol
bNumber of amino acids in the preprohormone for vasopressin and oxytocin
cAvailable at http://www.ncbi.nlm.nih.gov/LocusLink/index.html
dDual angiotensin II/vasopressin receptor
eVasopressin‐activated calcium‐mobilizing receptor protein (VACM‐1; Cullin‐5)
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Beck‐Sickinger, 2004 and references within). While the neurophysins themselves do not seem to be

biologically active, it has been suggested that they may protect either OT or VP from enzymatic damage

or are important for normal packaging (de Bree, 2000) and processing (Legros and Geenen, 1996) in

neurosecretory vesicles. Recently, it has been suggested that the function of the glycopeptide is to help in the

folding of the VP precursor which, in the absence of the glycopeptide, is less stable than the OT counterpart

(Barat et al., 2004).

By far, most OT and VP are synthesized within the magnocellular neurons of the hypothalamic

supraoptic nuclei (SON) and paraventricular nuclei (PVN), and are transported along their axons to the
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posterior pituitary where they are stored and ultimately released into the blood stream. Once released, VP

regulates salt and water homeostasis and OT regulates parturition and lactation. Within the brain, OT and

VP that are not routed to the pituitary are synthesized by and transported from smaller, parvocellular

neurons located in the PVN and elsewhere. However, even the magnocellular neurons of the SON and PVN

can release OT and VP from their dendrites to produce important local effects (for reviews and further

references, see: Ludwig, 1998; Hirasawa et al., 2004; Landgraf and Neumann, 2004; Morris and Ludwig,

2004).

The relative numbers and the distributions of OT and VP neurons within the SON and PVN vary

between species. In humans, for example, VP neurons vastly outnumber OT neurons in the SON, but are

nearly equal in the PVN (see Sukhov et al., 1993 and references within). In rats, however, the numbers of

these neurons are approximately equal in the two nuclei but distributed in more clearly delineated

and generally separate areas (Hou‐Yu et al., 1986). In an osmotically normal state, about 2–3% of

magnocellular neurons contain both OTand VP, but the percentage of colocalization dramatically increases

during a hyperosmolar state or lactation (Kiyama and Emson, 1990; Mezey and Kiss, 1991; Glasgow et al.,

1999; Telleria‐Diaz et al., 2001). The increased colocalization of VP and OT is probably to further water

retention, but this is speculative. Even in those cells considered exclusively vasopressinergic or oxyto-

cinergic, there appears to be expression of the ‘‘absent’’ gene at about 0.5% of the major ones (Xi et al.,

1999).

There are wide distributions of OT and VP fibers within the CNS. Fibers can be found from the

olfactory bulbs to the intermediate lateral column of the spinal cord (Buijs et al., 1983; De Vries et al., 1985,

1986; Buijs, 1987). In general, VP tends to be found in higher concentrations in the more rostral regions of

the brain and OT in the more caudal regions (Sofroniew, 1985a; Gainer and Wray, 1994). Most of the VP

and OT found in these subcortical regions are likely involved in the regulation of social and reproductive

behaviors, which will be discussed later in this chapter.
3.4 Vasopressin

3.4.1 CNS Distribution

As mentioned before, the majority of VP within the CNS is expressed within the magnocellular neurons of

the SON and PVN, from where it is transported to the posterior pituitary. The evidence for any extra‐
pituitary projections from the SON is scant (Mason et al., 1984; Alonso et al., 1986). In contrast,

parvocellular neurons of the PVN provide robust projections, especially to the brainstem and spinal

cord. Areas innervated by VP fibers include the hippocampus and subiculum, diagonal band of Broca,

locus coeruleus, solitary tract nucleus, dorsal motor nucleus of the vagus, medullary adrenergic groups, and

spinal cord (Buijs, 1978; Sawchenko and Swanson, 1982; De Vries and Buijs, 1983; Millan et al., 1984).

VP is also expressed within parvocellular neurons of the suprachiasmatic nucleus (SCN), bed nucleus of

the stria terminalis (BNST), and medial amygdala (MeA) (Sofroniew, 1983). Within the BNST and MeA,

VP‐expressing cells are sex‐steroid‐dependent (see below) with the males having more VP immunoreactive

cells than females in some species (Caffè and Van Leeuwen, 1983; Van Leeuwen et al., 1985; De Vries et al.,

1986; Buijs, 1987), but not all. For example, there appears to be no sex difference in VP‐immunoreactivity

(VP‐ir) within the BNSTand MeA of Syrian hamsters; instead, galanin may have replaced VP as the gender‐
dependent peptide (Miller et al., 1999). Nevertheless, there are sexual dimorphisms in brain AVT in

bullfrogs and newts, suggesting that across phyla VP and VP‐like compounds are sensitive to gonadal

steroids (Boyd and Moore, 1992). The BNST and MeA send VP fibers to the olfactory tubercle, nucleus of

the diagonal band, ventral pallidum, lateral septum, ventral hippocampus, paraventricular thalamic nuclei,

zona incerta, lateral habenula, ventral tegmental area, substantia nigra, periventricular gray, median and

dorsal raphe nuclei, and the locus coeruleus (De Vries et al., 1985). Neurons immunoreactive for VP have

also been described within the medial and lateral septum, vertical limb of the nucleus of diagonal band of

Broca, and locus coeruleus (Sofroniew, 1985b), but only those in the diagonal band have been confirmed by

hybridization histochemistry (Urban et al., 1990; Planas et al., 1995; Hallbeck et al., 1999). The patterns of
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VP immunostaining in four different vole species are similar to each other and to other rodents and also

show similar gender dimorphisms regardless of their social behavior (see below and Wang et al., 1996).

A recent hybridization histochemical study in the rat has found VP expression within several new areas,

including pyramidal cells of the hippocampus, parabrachial nucleus, and a portion of the mesencephalic

reticular nucleus (Hallbeck et al., 1999).
3.4.2 Regulation

In the 50‐flanking region of both the OT and VP genes, there are important regulatory elements. In most

eukaryotic cells, TATA and CAAT boxes are found close to the start site of transcription and regulate basal

transcription. However, the promoters for OT and VP do not contain CAAT boxes but instead have

‘‘atypical’’ TATA boxes (Gainer and Wray, 1994). This atypical TATA box in the VP gene (CATA) may be

involved in cell‐specific and physiological regulation (Ho and Murphy, 2002). As described below, OT and

VP are expressed in cells in different locations within the brain (and periphery, at least for OT). How

expression is specifically targeted to those areas is still largely a mystery. The majority of studies examining

this issue have used transgenic animals, and certain minimal requirements for expression in some areas are

being ascertained. The interested reader is referred to a recent review (Young III and Gainer, 2003). The

pathways from the cell surface receptors to the cis‐acting elements have been difficult to elucidate due to the

lack of pure neuronal culture systems that express OTor VP. Nonetheless, progress is being made and a brief

survey of regulatory components is presented (see Itoi et al., 2004 for a review). Many of the observations

are phenomenological and await direct connection between physiological state or perturbation and VP

regulation.

Perhaps the best understood regulator of VP is corticosterone. This glucocorticoid suppresses expres-

sion of VP (as well as corticotropin‐releasing factor, CRF) in the parvocellular neurons of the PVN

(Tramu et al., 1983; Kiss et al., 1984; Sawchenko et al., 1984; Schipper et al., 1984). A sequence resembling

the consensus glucocorticoid response element (GRE) has been identified, which spans from �622 to

�608 in the rat VP promoter and is proposed to act as a negative response element (Mohr and Richter,

1990). Although negative regulation by a glucocorticoid has been shown in a heterologous cell system

(Iwasaki et al., 1997), a specific GRE has not been demonstrated. However, in more neuronal cell cultures,

removal of sequence 50 of �588 of the rat promoter does lead to increased reporter expression (Kim et al.,

2001).

The VP gene appears to be regulated by other nuclear hormone receptors, in addition to the glucocor-

ticoid receptor, in a region‐specific manner. De Vries and colleagues noted that the density of VP fibers in

the lateral septum (LS) is elevated in males compared with females and that testosterone administered to

females and castrated males increases the density of VP fibers within the LS (De Vries et al., 1983). They also

observed that gonadectomy in males or females reduces VP in certain regions of the brain that receive

innervation from the BNST and MeA, but no reduction was observed in regions that receive innervation

from the magnocellular neurons of the PVN and SON (De Vries et al., 1984, 1985). VP mRNA levels in the

BNSTand MeA are also testosterone dependent (Miller et al., 1989, 1992; Wang and De Vries, 1995). Their

studies, as well as more recent ones by others using knockout mice, also indicate that testosterone can act

through both the androgen receptor and the estrogen receptor but is a stronger regulator through the

estrogen receptor (Brot et al., 1993; De Vries et al., 1994; Wang and De Vries, 1995; Plumari et al., 2002; Han

and De Vries, 2003; Scordalakes and Rissman, 2004). Gonadectomy has no effect on VP‐ir in Syrian

hamsters (Albers et al., 1991c), but it does affect VP‐ir in Siberian hamsters (Dubois‐Dauphin et al.,

1994). Therefore, it is not clear how widely this gonadal steroid dependency is conserved across mammals.

Also, in chronically hyperosmolar rats there is evidence that gonadal steroids may modulate OT and VP

expression (Crowley and Amico, 1993; O’Keefe et al., 1995). Androgen receptors are found in nonmagno-

cellular responsive neurons (Zhou et al., 1994). Estrogen receptor beta is expressed in VP magnocellular

neurons (Alves et al., 1998). An estrogen response element (ERE) is found over 4kb downstream of the

transcriptional start site of the rat VP gene (Shapiro et al., 2000), but whether this is the site where

androgens and/or its metabolites exert their effects is unknown.
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Hypovolemia or hyperosmolality are strong stimuli for the expression of VP (and OT) in magno-

cellular neurons of the PVN and SON, but the intracellular pathways are unclear. Hyperosmolality

activates the cAMP pathway (Young III et al., 1987). Elevation of cAMP in cultured hypothalamic

neurons stimulates VP expression (Sladek and Gallagher, 1993). In the absence of synaptic transmission,

elevation of cAMP increases VP expression in parvocellular PVN neurons (Arima et al., 2001), and this

increase can be inhibited by glucocorticoids (Kuwahara et al., 2003). It is possible that this osmotic response

is mediated through two different cAMP‐responsive elements (�227 to �220 and �123 to �116) (Iwasaki

et al., 1997). Similarly, animals in a hyperosmotic condition have increased expression of the immediate

early genes c‐fos and c‐jun in these nuclei (Carter and Murphy, 1990), as well as increases in the

alpha isoform of activator protein‐2 (AP‐2) and activating transcription factor‐2 (ATF‐2) (Meeker and

Fernandes, 2002). In the VP promoter, putative regulatory elements for cAMP and AP‐2 have been

identified (Mohr and Richter, 1990). Cell extracts from a nonneuronal cell line were used to show that

the proximal VP promoter contains an AP‐1, five E‐Box, and two GC‐rich transcription binding sites

(Grace et al., 1999).

The SCN, site of the mammalian circadian pacemaker (see below), has also been extensively investi-

gated. VP expression within the SCN undergoes a circadian rhythm with peak mRNA levels during the day

(light‐phase) in rats (Uhl and Reppert, 1986; Burbach et al., 1988; Young III et al., 1993). The SCN receives

excitatory input from the retina and both excitatory and inhibitory inputs from elsewhere in the CNS, in

addition to input from intrinsic neurons (Albers et al., 1991a, b; Moore, 1992). How these inputs are

transduced to affect VP expression is unclear. Numerous studies have shown that regulation of immediate

early genes undergo circadian rhythms (e.g., Schwartz et al., 2000), and tremendous progress has been made

recently in understanding the underlying molecular biology of the circadian clock (Hastings and Herzog,

2004). For example, the E‐Box element, found in many genes including VP, is recognized by transcription

factors containing the basic helix–loop–helix motif and is important in the generation of rhythmic

expression by BMAL1 and CLOCK proteins (Jin et al., 1999; Hastings and Herzog, 2004). Muñoz et al.

defined some of the E‐Box flanking sequence involved in VP circadian transcription through BMAL1 and

CLOCK (Muñoz et al., 2002). Arima et al. (2002) provide evidence that the circadian rhythm of VP

expression requires neural activity and a MAP kinase pathway.

Two other mechanisms appear to be involved in regulating VP expression. The first is the regulation of

the poly(A) tail of the mRNA. Increases in plasma osmolality increase the length of the poly(A) tail in rats

and that may serve to prolong the half‐life of the VP message (Carrazana et al., 1988; Zingg et al., 1988).

Interestingly, the increase in mRNA levels and the increase in mRNA poly(A) tail length induced by

hyperosmolality are regulated separately. Administration of p‐chlorophenylalanine blocks the increase in

mRNA levels but does not prevent the increase in tail length (Carter and Murphy, 1989). Tail length can also

be shortened by starvation (Chooi et al., 1992). The second mechanism for regulating VP expression is the

distribution of the VP mRNA within the cell and its processes. Because VP mRNA is found in both axons

and dendrites, sorting to different neuronal processes may be important in regulating where VP is

synthesized and released, although studies examining this idea are in their infancy (Trembleau et al.,

1996; Mohr and Richter, 2004). It is worth noting, as well, that many small cell lung cancers express VP,

accounting for some of its pathology. These cells have been used to identify potential regulatory sites within

the VP gene (North, 2000; Coulson, 2002).
3.5 Oxytocin

3.5.1 CNS Distribution

OT synthesized in the magnocellular neurons of the PVN and SON project to the posterior pituitary.

Parvocellular (or, at least smaller than the magnocellular) neurons in the PVN project to similar areas in the

brainstem and spinal cord as the VP neurons described previously. Parvocellular OT neurons outside the

PVN have been described in mice (Castel and Morris, 1988; Jirikowski et al., 1990) and various vole species

(Wang et al., 1996). However, in the rat, it appears that the PVN is responsible for most, if not all, brain OT
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projections (De Vries and Buijs, 1983; Rinaman, 1998; although see Jirikowski et al., 1988). OT is not

expressed in the SCN, and there are very few or no OT neurons in the BNST and MeA.
3.5.2 Regulation

Most of the work examining the promoter region of the OT gene has focused on nuclear hormone receptors

and orphan receptors. Estrogen binding is observed in 10–40% of the magnocellular OT neurons of

the rat PVN and SON and only occasionally in mouse OT neurons elsewhere (Jirikowski et al., 1990).

OT‐immunoreactive neurons are observed after short‐term estradiol treatment in the rat septohippocampal

nucleus, lateral subcommissural area, medial preoptic area (MPOA), perifornical regions, zona incerta, and

ansa lenticularis, along with more fibers in the LS, preoptic area, striatum, and amygdala (Jirikowski et al.,

1988). The human and rat promoters have proven EREs (Burbach et al., 1990; Richard and Zingg, 1990;

Mohr and Schmitz, 1991), but the bovine promoter apparently does not (Adan et al., 1991). Subsequently,

the most proximal ERE in the rat promoter was shown to be a composite hormone response element that

responds to a variety of nuclear hormone receptors and orphan receptors (Adan et al., 1993).

There are ample studies demonstrating that in cell culture both estrogen receptor alpha and beta,

thyroid hormone receptors, retinoic acid receptors, and some orphan receptors can stimulate the tran-

scription of OT (Richard and Zingg, 1990; Adan et al., 1992; Burbach et al., 1992, 1993; Vasudevan et al.,

2001). However, one study provides strong evidence that retinoic acid actually represses activity from this

element (Lipkin et al., 1992), but the reason for this discrepancy is unknown. Interesting recent studies

suggest that steroid hormone receptors may not, in fact, act directly upon the promoter to affect

transcription, but instead influence other transacting factors, either directly or through kinases (Stedronsky

et al., 2002).

In vivo studies support the idea that both OTand VP are regulated by estrogen and thyroid hormones in

the hypothalamus (Burbach and Adan, 1993; Dellovade et al., 1999; Ciosek, 2002; Nomura et al., 2002;

Patisaul et al., 2003); although this may not always be through direct effects within the synthesizing neurons

(Sladek and Somponpun, 2004). Progesterone may also directly activate expression of OT in the PVN

(Thomas et al., 1999).

As with VP, hyperosmolality increases OT mRNA levels independent of an increase in poly(A) tail

length (Carter and Murphy, 1989), but this effect is dependent upon gonadal steroids, since gonadectomy

blocks this increase (Crowley and Amico, 1993). Increases in OTmRNA are also accompanied by increases

in c‐fos protein (Giovannelli et al., 1992). Interestingly, OT transcript poly(A) tail length also increases

during pregnancy and lactation (Zingg and Lefebvre, 1989).
4 Vasopressin and Oxytocin Receptors

4.1 The Vasopressin Receptors

There are two principle classes of VP receptors: V1 and V2 receptors (V1R and V2R, respectively), both of

which are seven transmembrane G‐protein‐coupled receptors. Activation of the V2R increases cAMP that

mediates the classical antidiuretic effects of vasopressin. The V1Rs are coupled to Gaq/11 GTP binding

proteins, which along with Gbl, activate phopholipase C (PLC) activity (Michell et al., 1979; Jard et al.,

1987). PLC then generates 1,4,5‐inositol triphosphate (IP3) and diacylglycerol (DAG) from phosphatidy-

linositol 4,5‐bisphosphate (PIP2). IP3 facilitates the release of intracellular Ca
2þ stores while DAG activates

protein kinase C to modulate cellular activity. There are two subtypes of the V1R: V1aR and V1bR. In the

periphery, V1aR mediates the effects of VP on vasoconstriction and can be found in liver, kidney, platelets,

and smooth muscle (Ostrowski et al., 1992; Watters et al., 1998). Centrally, V1aR is found in a variety of

brain nuclei (Ostrowski et al., 1992, 1994; Szot et al., 1994), where it has been implicated in the regulation of

several social behaviors, including social recognition, affiliative behavior, aggressive behavior, and scent

marking behavior (Ferris et al., 1984, 1997; Albers and Ferris, 1985; Albers et al., 1986; Winslow et al., 1993).
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The V1bR (sometimes called V3R) was originally described in the pituitary (Antoni, 1984; Jard et al., 1986;

Arsenijevic et al., 1994) and finally cloned (Lolait et al., 1995). Subsequently, V1bR was also found in the

brain as well as in several peripheral tissues (Arsenijevic et al., 1994; Lolait et al., 1995). More recently, V1bR

has been linked to stress adaptation (Volpi et al., 2004a) and aggressive behavior in mice (Wersinger et al.,

2002). There is no conclusive evidence for expression of the V2R within the CNS. Transcription of the

ARHGAP4 gene within the CNS overlaps the transcription of V2R, and reverse transcriptase‐PCR analysis

must must be carried out under specific conditions to avoid this ‘‘contaminant’’ (Foletta et al., 2002).

Readers interested in the actions of VP at the renal V2R and V1aR are referred to some excellent reviews

(Bankir, 2001; Inoue et al., 2001).

Recent work has indicated that there are other proteins in the brain that bind VP (> Table 25-2). The

vasopressin‐activated calcium‐mobilizing receptor protein (i.e. VACM‐1or Cullin‐5) and the dual angio-

tensin II/vasopressin receptors have widespread neuronal distributions (Hurbin et al., 2000; Ceremuga

et al., 2003a). The former receptor is coupled to the phosphoinositol pathway (Burnatowska‐Hledin et al.,

1995) and the latter to the adenylate cyclase system (Ruiz‐Opazo et al., 1995). The roles, of these receptors in
the brain, including behavioral roles, are unknown, however, levels of Cullin‐5 increase in the cerebral

cortex and, to a lesser extent, in the hypothalamus following water deprivation (Ceremuga et al., 2003b).

(> Table 25-2) summarizes genetic information about VP, OT, and their receptors.
4.1.1 CNS Distribution

The distribution of V1aR expression within the CNS has been primarily studied using receptor autoradi-

ography and hybridization histochemistry. Receptor autoradiography identifies the locations of binding to

the receptor protein, whereas hybridization histochemistry identifies the cells that transcribe the receptor

gene. The former technique was greatly facilitated through the use of specific and potent 125I‐labeled V1aR

antagonists (Johnson et al., 1993; Kremarik et al., 1993). Prominent V1aR binding is present in the rat LS,

neocortical layer IV, hippocampal formation, amygdalostriatal area, BNST, various hypothalamic areas

(including SCN), ventral tegmental area, substantia nigra, superior colliculus, dorsal raphe, nucleus of the

solitary tract, and inferior olive (Johnson et al., 1993). V1aR binding is moderate throughout the spinal

cord, but with higher binding in the dorsolateral motoneurons in general and all motoneurons in the

lumbar 5/6 levels where innervation to the perineal muscles originates (Tribollet et al., 1997).

Neurons containing V1aR transcripts are found extensively throughout the rat CNS, being especially

prominent, for example, in the olfactory bulb, hippocampal formation, LS, SCN, PVN, anterior hypotha-

lamic area, arcuate nucleus, lateral habenula, ventral tegmental area, substantia nigra (pars compacta),

superior colliculus, raphe nuclei, locus coeruleus, inferior olive, area postrema, and nucleus of the solitary

tract (Ostrowski et al., 1994; Szot et al., 1994). Transcripts are also detected in the choroid plexus and

endothelial cells. The distributions of VP (and OT) binding have been examined in a number of rodent

species, and they are remarkably similar. Differences in binding in selected areas may mediate important

adaptations or behavioral traits, and these differences will be mentioned below when correlations are

possible.

The V1bR was originally described in the anterior pituitary where it facilitates the release of adreno-

corticotropic hormone (ACTH) from the corticotropes (Jard et al., 1987; Antoni, 1993). V1bR in the

pituitary helps mediate the effects of VP on the hypothalamic–pituitary–adrenal axis, which is the regulator

of the stress response in mammals (Volpi et al., 2004a). V1bR mRNA is also found in a variety of peripheral

tissues including kidney, thymus, heart, lung, spleen, uterus, and breast (Lolait et al., 1995), although its

role in these tissues remains unclear. Only recently have V1bR transcripts as well as V1bR immunoreactive

cell bodies been found in the rat brain, including in the olfactory bulb, piriform cortical layer II, septum,

cerebral cortex, hippocampus, PVN, SCN, cerebellum, and red nucleus. (Lolait et al., 1995; Saito et al.,

1995; Vaccari et al., 1998; Hernando et al., 2001; Stemmelin et al., 2005). It should be noted, however, that

V1bR distribution has not been mapped by receptor autoradiography due to the lack of specific radi-

olabeled ligands. Fortunately, the development of a V1bR knockout (V1bRKO) mouse has offered critical

insight into the role of V1bR in the mouse brain (below).



Oxytocin and vasopressin: genetics and behavioral implications 25 583
4.1.2 Regulation

Within the CNS, V1aR transcription and translation are sensitive to gonadal steroids. In the photoperiodic

Syrian and Siberian hamsters, exposure to short ‘‘winter‐like’’ photoperiods results in dramatic reductions

in V1aR binding within brain areas associated with the neural regulation of social behavior (Dubois‐
Dauphin et al., 1994; Caldwell and Albers, 2003, 2004b). Likewise, gonadectomy and lactation can decrease

V1aR mRNA and receptor binding within the hypothalamus (Johnson et al., 1995; Delville et al., 1995;

Young et al., 2000). In young rats, estrogen increases V1aR mRNA in the preoptic area of the hypothalamus

(Funabashi et al., 2000). Castration leads to reduced binding in the pudendal nuclei of L5/L6 (Tribollet

et al., 1997). While it is clear that gonadal hormones can affect V1aR transcription and translation within

specific parts of the brain, the mechanisms underlying these changes remain unknown. Presumably,

gonadal steroids could directly affect V1aR transcription through response elements, but none have been

identified yet. There do, however, appear to be putative GREs within the 50‐flanking region of the V1aR

gene. In rats, adrenal steroids can affect V1aR mRNA expression and V1aR binding within the LS and BNST

(Watters et al., 1996). There is still much work to do to understand the regulation of V1aR transcription and

its complex relationship with steroid hormones.

A recent study found that expression of the V1aR increased after traumatic head injury (Szmydynger‐
Chodobska et al., 2004). The increase was observed in astrocytes of the damaged frontal cortex, and the

receptor was observed to move from the cell body to processes with time. It is interesting to speculate as to

whether VP plays a role in cerebral edema that may accompany brain trauma.

Some very provocative work has focused on interspecies and individual variations in the V1aR

promoter of voles. Across vole species there are profound differences in social structure and behavior.

Prairie voles (Microtus ochrogaster) and pine voles (Microtus pinetorum) tend to be social and monogamous

while montane voles (Microtus montanus) and meadow voles (Microtus pennsylvanicus) tend to be asocial

and polygamous. These social behaviors are mediated, at least in part, by VP action on the V1aR (Winslow

et al., 1993; Wang et al., 1994; Cho et al., 1999; Young et al., 1999; Liu et al., 2001). There are striking

differences in the distribution and density of V1aR between these species (Young et al., 1997b, 1999).

Within the promoter region of the V1aR gene of the prairie and pine voles, there is an approximately 400‐bp
sequence of repetitive DNA, known as a microsatellite sequence, which is absent from the promoter region

of the V1aR gene in the montane and meadow voles. The length of this microsatellite sequence shows

a correlation with V1aR expression patterns and ultimately behavior (Hammock and Young, 2002;

Hammock et al., 2004). We will come back to the role of this microsatellite polymorphism in the mediation

of behavior later in this chapter.

While V1bR has only been described relatively recently, there has been some work examining its

regulation in the pituitary. In the rat, pituitary expression of V1bR appears to be positively regulated by

corticosteroids and perhaps by VP (Rabadan‐Diehl et al., 1997; Rabadan‐Diehl and Aguilera, 1998). V1bR

expression appears to increase or decrease depending on the stressor (Rabadan‐Diehl et al., 1995; Aguilera
and Rabadan‐Diehl, 2000; Qahwash et al., 2002). In the rat, there are AP‐1 and AP‐2 sites and a GRE in the

50‐flanking region. In humans there is a half‐palindromic sequence for estrogen, a cAMP response element,

and a GRE (Aguilera et al., 2003). The V1bR promoter also contains a GAGA box essential for expression

(Volpi et al., 2002). The V1bR 50‐untranslated region contains small expressed minicistrons or open reading

frames that appear to inhibit V1bR expression posttranscriptionally as well as an internal ribosomal entry

site that may be uncovered when increased expression is desired (Nomura et al., 2001; Aguilera et al., 2003).

How these regulatory elements all interact to regulate the V1bR gene is still being investigated (Volpi et al.,

2004b). Nothing is known about V1bR regulation in the brain proper and will likely be a fruitful field for

investigation.
4.2 The Oxytocin Receptor

Physiologically and behaviorally, OT regulates reproduction across species, from its peripheral effects on

milk ejection and uterine contractions to its central effects on sexual behavior, maternal behavior, and pair
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bonding. A single OT receptor (OTR) appears to transduce the actions of OT. This receptor was first

isolated and identified by Kimura and colleagues in 1992.

The OTR is also a member of the G‐protein‐coupled receptor family. Like other members of this family,

the OTR contains seven transmembrane domains and is similar in structure to the VP receptors. The OTR

is also coupled to Gaq/11 GTP‐binding proteins and Gbl (Ku et al., 1995; Gimpl and Fahrenholz, 2001; Zingg

and Laporte, 2003) to cause the hydrolysis of phosphatidylinositol and act through pathways similar to that

of the V1Rs.
4.2.1 CNS Distribution

Initially, the location of OTR expression was determined by receptor autoradiography, using a potent and

specific 125I‐labeled antagonist (Kremarik et al., 1993; Veinante and Freund‐Mercier, 1997). In the rat, OT

binding is found in numerous regions, especially in the hippocampal formation (ventral subiculum

particularly), LS, central amygdala (CeA), olfactory tubercle, accumbens nucleus shell, dorsal caudate‐
putamen, BNST, MeA, and ventromedial hypothalamus (VMH). Binding in the spinal cord is light and

confined to the superficial dorsal horn (Tribollet et al., 1997).

Hybridization histochemistry reveals OTR transcripts in many areas of the rat CNS, including main and

accessory olfactory bulbs, neocortical layers II and III, piriform cortical layer II, hippocampal formation,

olfactory tubercle, BNST, medial habenula, VMH, PVN, and SON. Expression is lower in the midbrain,

pons, and medulla (Vaccari et al., 1998). Recently, an OTR–lacZ reporter mouse has shown additional OTR

gene expression in the medial septum, parts of the amygdala and mammillary nuclei, and some brainstem

nuclei (Gould and Zingg, 2003).

The distribution of the OTR is highly species specific, as is elegantly illustrated in receptor binding

differences between two closely related species of voles, the polygamous montane vole and the monoga-

mous prairie vole (Insel and Shapiro, 1992; Insel et al., 1997). Differences in the distributions of the OTRs

have also been shown among mice, rats, voles, hamsters, and guinea pigs (Insel et al., 1993). These

differences in OTR distribution across species are thought to confer differing behavioral phenotypes, as

discussed below.
4.2.2 Regulation

In a variety of species, both transcription and translation of the OTR gene are sensitive to gonadal steroids.

In rats, OTR binding and mRNA levels in the brain and myometrium of the uterus are increased with

estradiol and testosterone treatment (Tribollet et al., 1990; Stevenson et al., 1994; Larcher et al., 1995;

Breton and Zingg, 1997). Curiously, estrogen tremendously increases the expression of the OTR in the

kidney (Ostrowski et al., 1995; Breton et al., 1996). Castration and inhibition of estrogen synthesis results in

a decrease in OTR binding in the rat brain (Tribollet et al., 1990). OTR within the VMH, an important

nucleus for the regulation of sex behavior, has been the focus of intense study. OTR expression within the

VMH of both males and females is particularly sensitive to gonadal steroids (de Kloet et al., 1985, 1986;

Coirini et al., 1989; Johnson et al., 1991; Bale and Dorsa, 1995; Bale et al., 1995; Quinones‐Jenab et al.,

1997). Interestingly, the mouse is the only known species in which there is a complete palindromic ERE in

the promoter of the OTR gene (Bale and Dorsa, 1997); rats and humans have only half‐palindromic EREs

(Inoue et al., 1994; Rozen et al., 1995). It does appear likely, however, that estrogen can act on the half‐
palindromic EREs with low affinity (Sanchez et al., 2002). The OTR gene has several other response

elements in its promoter, including an interleukin response element, a cAMP response element, and

AP‐1, AP‐2, AP‐3, and AP‐4 sites (Rozen et al., 1995; Bale and Dorsa, 1998; Gimpl and Fahrenholz,

2001). While there seems to be ample information on potential modulators of OTR synthesis, there is

much work to do to understand their interaction with one another. For a more detailed description of the

OTR system, there are several excellent reviews including ones by Gimpl and Fahrenholz (2001), Kimura

et al. (2003), and Zingg and Laporte (2003).
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5 Behavioral and Physiological Effects of Vasopressin and Oxytocin

Across species OT facilitates bonding behaviors between offspring and parents and between males and

females, whereas VP appears to be more involved in the regulation of aggression and male parental care.

Understanding the involvement of OTand VP in the regulation of sexual and social behaviors has been, and

continues to be, the source of exciting research in behavioral neuroendocrinology. Our understanding of

how OT and VP systems interact with one another and with other neurotransmitter systems to affect

behavior is still in its infancy. However, some recent work has begun to shed some light on their profound

and lasting effects on behavior across species. The use of transgenic animal models and viral vectors has

moved the field forward and provided valuable insight into the individual roles of OT and VP in the

mediation of behavior. This section will survey past and current findings on the roles of OT and VP in the

regulation of a variety of behaviors. A summary of this section can be found in >Table 25-3.
. Table 25-3

Summary of the behavioral effects of OT and VP

Behavioral

classes Behaviors Effects of OT Effects of VP

Reproductive

behaviors

Maternal

behavior

*when injected ICV and into the

MPOA

Maternal aggression impaired in V1bRKO

mice

Female

sexual

behavior

* when injected into the MPOA‐
AH and VMH

No known effect

Male sexual

behavior

* in erection when injected ICV No known effect

Social behaviors

Aggression

Female

aggression

* when injected into the MPOA‐
AH (hamsters) and CeM (rats).

Maternal aggression impaired in V1bRKO

mice

Male

aggression

, conflicting reports * when injected into the AH and LS

impaired in V1bRKO mice

Social memory Social

recognition

, conflicting reports, but is

impaired in OTKO mice

impaired in V1aRKO and V1bRKO mice

Partner

preference

* when injected ICV in females

and in males following neonatal

exposure

* when injected ICV in male prairie voles;

dependent on V1aR distribution

Other Behavioral

and Physiological

Effects

Scent

marking and

grooming

* when injected ICV in males

and females (rats)

* when injected into the MPOA‐AH
(hamsters)

Anxiety and

depression

+ in anxiety when injected ICV in

females

Correlation in VP release from the PVN

and * in anxiety (rats); V1aRKO mice

show reduced anxiety

Learning and

memory

* in spatial learning in female;

acts as an amnestic in some

tests

* in spatial learning when injected into

the ventral hippocampus of

scopolamine‐treated male rats

Fever No known effect + when infused into the LS
5.1 Reproductive Behaviors

5.1.1 Maternal Behavior

The term ‘‘maternal behavior’’ encompasses a spectrum of behaviors describing the care of offspring by a

female of a species. In a variety of species, OT is important for the regulation of maternal behaviors. In rats,
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OT infused intracerebroventricularly (ICV) or directly into the medial preoptic area (MPOA) can stimulate

maternal behavior (Pedersen and Prange, 1979; Pedersen et al., 1982; Fahrbach et al., 1985; Pedersen, 1997).

Similarly, in mice OT injected ICV increases maternal behavior (McCarthy, 1990). Lesions of OT‐producing
neurons in estrogen‐primed virgin female rats inhibit maternal behavior (Insel and Harbaugh, 1989), and

centrally administered OT antisera or OTR antagonists reduce maternal behaviors (Pedersen et al., 1982;

Fahrbach et al., 1985; van Leengoed et al., 1987). In sheep, high levels of OT within the limbic system are

important for maternal behavior and OT injected ICV can induce maternal behavior in sexually naı̈ve

animals. It may be that in sheep OT is a more potent regulator of maternal behavior because its effects are

faster acting than those seen in rodents (Keverne and Kendrick, 1994; Kendrick et al., 1997).

While OT can directly influence maternal behavior, estrogen also interacts with the OTsystem. Estrogen

can affect the transduction of OT signals by altering OTR transcription and translation. As estrogen

concentrations change across the estrous cycle and during pregnancy, there are coinciding changes in

OTR expression. In rats, as estrogen levels increase following parturition, there is an activation of c‐fos and
fos‐B in OTR expressing cells within the MPOA, BNST, and amygdala (Lin et al., 2003). Exogenous estrogen

treatment increases OTR density within the MPOA, resulting in the support of OT mediated maternal

behaviors (Patchev et al., 1993; Young et al., 1997a). Estrogen induced OTR in the LS, CeA, PVN, and BNST

can affect grooming and licking behavior in rats, both of which are part of the normal repertoire of

maternal behaviors (Champagne et al., 2001; Francis et al., 2002). In light of these data, it is obvious that OT

is a regulator of maternal behavior in rats. Surprisingly, mice with a disruption of their OT gene (OTKO)

display normal maternal behaviors (Winslow and Insel, 2002). Oxytocin knockout (OTKO) mice show

normal parturition, licking, and grooming behaviors, but do not lactate. The conflicting results between in

vivo pharmacological studies and the OTKO studies may be due to a developmental compensation in

OTKO mice. This idea is supported by a recent study that found that within the VMH of OTKO mice, VP

can act on the OTR (Ragnauth et al., 2004). If VP is substituting for OT in OTKO mice, it would then

explain the presence of normal maternal behavior in OTKO mice.
5.1.2 Female Sexual Behavior

OT within the CNS also regulates female sexual receptivity across species. In female Syrian hamsters, OT

microinjected into the medial preoptic area‐anterior hypothalamic continuum (MPOA‐AH) or into the

VMH induces sexual responsiveness, as measured by the duration and frequency of sexual receptivity, i.e.,

lordosis behavior (Whitman and Albers, 1995). In rats, OT injected into the MPOA‐AH or medial basal

hypothalamus in combination with estrogen or estrogen conjugated to bovine serum albumin (so it cannot

pass through the cell membrane and into the cell to act on classical estrogen receptors), increases sexual

receptivity (Caldwell et al., 1989; Caldwell and Moe, 1999). Conversely, OTR antagonists injected ICV in

rats or into the MPOA‐AH of Syrian hamsters reduce sexual receptivity (Benelli et al., 1994; Whitman and

Albers, 1995). Also, when infused into the VMH of female rats, antisense oligonucleotides against OTR

prevent female sexual receptivity (McCarthy et al., 1994). Aside from its regulatory effects on lordosis, OT

injected into the MPOA‐AH of Syrian hamsters increases their ultrasonic vocalizations, an important

component of sex behavior (Floody et al., 1987). Interestingly, low concentrations of OT infused into the

lateral ventricles can actually reduce lordosis, suggesting that the effects of OTon receptivity do not follow a

simple dose–response curve (Schulze and Gorzalka, 1992). Again surprisingly, female (and male) sexual

behavior is not significantly affected in OTKO mice (Nishimori et al., 1996; DeVries et al., 1997). Whether

this is permitted through compensation and/or redundancy of this vital behavior remains unanswered.
5.1.3 Male Sexual Behavior

In males, OT neurons originating from the PVN and projecting to extrahypothalamic brain areas and spinal

cord are involved in aspects of male sexual behavior, including copulation and erection. Humans show

increases in plasma OTat ejaculation (Carmichael et al., 1987; Murphy et al., 1987) and in male rats, OT is
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elevated following exposure to females (Hillegaart et al., 1998). At least in rodents, these increases in OT

correlate with the intensity of copulation (Hillegaart et al., 1998). OT administered centrally can induce

penile erection that castration or hypophysectomy can abolish (Argiolas et al., 1985; Argiolas, 1999). OT

antagonists injected ICV reduce mounts and intromissions, and ejaculations are completely abolished

(Argiolas et al., 1988). One of the critical sites for the neural regulation of erection is the PVN. Lesions of

OT neurons of the PVN prevents erection and injections of OTR antagonists into the lateral ventricles also

prevent erection (for review see Argiolas, 1999; Andersson, 2001; Argiolas and Melis, 2004). Even in

amphibians such as the rough‐skinned newt (Taricha granulosa), clasping behaviors are affected by the

OT homologue AVT (Moore, 1983), suggesting that OT is important to displays of sexual behavior across

species.
5.2 Social Behaviors

5.2.1 Aggression

In a variety of species, aggressive behavior is important to the development and maintenance of social

structures. Defense of territory, protection of young, formation of social hierarchies, and competition for

mates are just some of the reasons why animals display aggressive behaviors. In general, males are more

aggressive than females, though females often show increased aggression during pregnancy and in the

subsequent postpartum period. Recently, interest in understanding the neural underpinnings of violent and

aggressive behavior has increased. Aggression is notoriously difficult to study, but the use of specific

pharmacological agents and transgenic mouse models have aided in our understanding of the neural

regulation of aggression and have shown that OT and VP have important roles in the regulation of

aggression across species.

5.2.1.1 Female Aggression In many mammalian species, females are only aggressive during pregnancy and

following parturition. There are, however, notable exceptions in some mammalian species, such as spotted

hyenas (Holekamp and Smale, 2000) and Syrian hamsters (Payne and Swanson, 1970). In female Syrian

hamsters, injections of OT into the MPOA‐AH can reduce the duration of aggressive behavior directed

toward a nonaggressive, female intruder (Harmon et al., 2002a). Even in female voles, OT injected ICV can

decrease male‐directed aggression (Bales and Carter, 2003b). Thus, it appears that OT can reduce

nonmaternal aggressive behaviors.

The role of OT in the regulation of maternal aggressive behavior remains somewhat murky. While OT

can facilitate maternal aggression in female Syrian hamsters when microinjected into the amygdala (Ferris

et al., 1992), OT antagonists injected into the CeM of rats also increases maternal aggression (Lubin et al.,

2003). Reduction of OT using antisense oligonucleotides and lesions of the PVN also reduce maternal

aggression in rats (Giovenardi et al., 1998). Most of the studies that have implicated OT in the mediation of

maternal aggression have used gestational cocaine treatment. Gestational cocaine treatment reduces OTand

OTR in several brain areas (Johns et al., 2004). As a result, there is a subsequent increase in maternal

aggression thought to be due in part to these changes in the OT neurocircuitry (Johns et al., 1997; Elliott

et al., 2001). While OTKOmice would seem the obvious model in which to examine OTregulated maternal

aggression, to our knowledge maternal aggression has not been examined in OTKO mice. However, the

results of studies using these mice might be difficult to interpret in light of the recent work suggesting that

VP can act directly on the OTR in OTKO mice (Ragnauth et al., 2004).

5.2.1.2 Male Aggression VP has been implicated in the modulation of male aggressive behavior across

species. In birds, fish, rodents, and primates, VP or nonmammalian VP homologues can affect aggressive

behavior (Ferris and Potegal, 1988; Winslow and Insel, 1991b; Goodson and Adkins‐Regan, 1999; Semsar

et al., 2001). Some neurocircuitry underlying aggressive behavior has been described. In Syrian hamsters,

the anterior hypothalamus (AH), which has reciprocal connections with the ventrolateral hypothalamus

(VLH), MeA, and BNST, is an important site in the regulation of aggressive behavior (Delville et al., 2000)
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and will be discussed in more detail below. In rats and mice, gonadal steroid‐dependent VP projections

from the BNST and the MeA to the LS (De Vries et al., 1984, 1985; Van Leeuwen et al., 1985; Miller et al.,

1992) have been implicated in the modulation of aggressive behavior (Scordalakes and Rissman, 2004). In

rats and prairie voles, VP injected into the LS can induce agonistic behavior (Koolhaas et al., 1991; Winslow

et al., 1993; Wang et al., 1994). However, in wild‐type (WT) rats there is a negative correlation between

reduced VP in the LS and aggressive behavior (Everts et al., 1997). While the exact role of VP in the LS is not

certain, it may be that the LS regulates the emotional aspects of aggressive behavior (Desmedt et al., 1999;

Everts and Koolhaas, 1999).

Aggressive behavior in Syrian hamsters is particularly well‐studied (Ferris and Delville, 1994). Micro-

injections of specific V1aR antagonists into the VLH and the AH can reduce agonistic behavior (Ferris and

Potegal, 1988; Delville et al., 1996). Interestingly, only in socially dominant animals do microinjections of

VP into the AH facilitate offensive aggressive behavior (Ferris et al., 1997; Caldwell and Albers, 2004a). This

seems to be a common theme across species; while VP is an important modulator of aggressive behavior, its

effects are specific to the social status of the animal. For instance, only in ‘‘dominant’’ squirrel monkeys does

an ICV injection of VP increases aggression (Winslow and Insel, 1991b). Even conditions such as housing,

which are known to affect social status (Grelk et al., 1974), alter VP neurocircuitry by causing a redistribu-

tion of V1aR. Syrian hamsters that are singly housed show more V1aR binding in several brain areas

compared with group‐housed males (Smith et al., 2001) and tend to be more aggressive (Brain, 1972).

There is more VP‐ir in the LS of mice bred for short‐attack latencies, and more VP‐ir in the BNSTof mice

bred for long‐attack latencies (Compaan et al., 1993). While it is not surprising that the brain of a dominant

animal differs from that of a subordinate animal, understanding this plasticity will continue to be an

exciting area of research.

Until recently, most work examining the regulation of aggressive behavior by VP assumed action via the

V1aR. However, aggression studies using V1bR knockout (KO) mice suggest that normal displays of

aggressive behavior require a functional V1bR. V1bRKO mice show significant reductions in aggressive

behavior as they do not attack intruders in either neutral arena or resident–intruder behavioral models

(Wersinger et al., 2002). In contrast, V1bRKO mice show normal predatory aggression (Wersinger et al.,

2003), suggesting that the V1bR is critical for social forms of aggressive behavior. V1bRKO mice also have

reduced social motivation and spend equal time investigating clean bedding or bedding soiled either by

females or males (Wersinger et al., 2004). A recent study in Syrian hamsters supports the findings of the

V1bRKO studies. Hamsters administered a selective V1bR antagonist orally showed marked reductions in

offensive aggression, and the authors also suggested that the V1bR may be involved in the behavioral

response to stress (Blanchard et al., 2005). While the distribution of V1bR binding in mice and hamsters has

yet to be determined, the behavioral findings indicate that further study of the V1bR and its role in

aggressive behavior will be enlightening.

The role of OT in the mediation of aggressive behavior in males is conflicting. In OTKO mice, one

group reported increases in aggressive behavior in male OTKO mice (Winslow et al., 2000) while another

group reported decreases in aggressive behavior (DeVries et al., 1997; Young III et al., 1998). Since two

different groups generated the OTKO mice used in the above studies and the methods employed were not

identical, the precise role of OT in the modulation of male aggressive behavior remains unknown.
5.2.2 Social Memory

Formation of social bonds between individuals is important for the survival of many species. Throughout

the animal kingdom successful reproduction requires interactions between individuals. Whether a species is

social or asocial, monogamous or polygamous, the formation of social bonds is critical. Social recognition

is a specific type of memory on which animals rely to recognize familiar from unfamiliar conspecifics, while

partner preference refers to an individual’s social attachment to a conspecific. Classical pharmacological

studies as well as transgenic animal studies have been successful in deepening our understanding of the

neural regulation of social recognition. However, the use of nontraditional model species, like voles, has

provided valuable insight into the molecular basis of partner preference. This section will review some of
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the more recent work in the field of social recognition and partner preference, although, the interested

reader should refer to several recent reviews on the topic (Bielsky and Young, 2004; Insel and Fernald, 2004;

Keverne and Curley, 2004; Young and Wang, 2004).

5.2.2.1 Social Recognition Although the sensory modality by which individuals recognize one another may

differ among species, the ability to recognize individuals is essential for survival. Whether an animal is

recognizing a parent, an offspring, a potential mate, or an aggressor, social recognition is important for

displaying appropriate behaviors. In humans and nonhuman primates, social recognition depends mostly

on visual and auditory cues, whereas in other mammals such as rodents, olfactory and pheromonal cues

provide the most accurate information about others. The processing of the olfactory information relies

upon OTand VP to aid in the formation of social memories. An in depth review of the neural regulation of

social recognition can be found in a recent article by Bielsky and Young (2004).

The evidence that VP is critical for social recognition is compelling. Since the LS receives projections

from the MeA and BNST (De Vries and Buijs, 1983; Caffè et al., 1985) and contains VP receptors (Johnson

et al., 1993), it has been the focus of studies on social recognition. Injections of VP into the LS can enhance

social recognition (Dantzer et al., 1987). Conversely, V1aR antagonists or antisense oligonucleotides can

inhibit or reduce social recognition (Landgraf et al., 1995). Social recognition is improved when V1aR

expression is artificially increased in the LS of rats using a viral vector expressing a vole V1aR gene (Landgraf

et al., 2003).

The use of V1aRKO and V1bRKO mice has provided valuable insight into the role of VP in the

regulation of social recognition. V1bRKOmice do not show normal chemoinvestigatory behaviors and have

mild impairments in social recognition (Wersinger et al., 2002). V1bRKO mice do have normal olfaction,

and there are no known differences in fos‐like immunoreactivity between V1bRKO mice and WT mice

following exposure to the odor of a conspecific male. These results suggest that V1bRKOmice process initial

olfactory information normally (Wersinger et al., 2002). Interestingly, V1bRKO females do not show

pregnancy block when exposed to a novel male (the Bruce effect); they remain pregnant, as if they do

not recognize a stranger mouse as ‘‘new’’ (Temple et al., 2003). Studies utilizing an operant conditioning

task to examine olfactory discrimination have confirmed that V1bKO mice can discriminate between male

and female urine even though they do not spend more time investigating female than male bedding. It has

been suggested that they lack normal social motivation based on these data. They can distinguish male from

female, but it is as if they just do not care; therefore, they do not behave in a socially appropriate manner

(Wersinger et al., 2002, 2004). Further exploration of this hypothesis will be interesting. It may be that V1bR

and V1aR differentially regulate very specific aspects of social recognition. Recent studies examining

V1aRKO mice suggest that they have much more profound impairments in social recognition than do

V1bRKOmice (Bielsky et al., 2003). Upon repeated exposure to the same female, V1aRKOmale mice fail to

reduce their olfactory investigation. Since studies of V1aRKOmice show normal olfactory investigation and

habituation, the authors suggest that the V1aR is critical for the appropriate processing of olfactory cues

(Bielsky et al., 2003).

The effects of OT on social recognition are more complex. There are conflicting reports in rats, where

OT has been shown to both facilitate and inhibit social recognition ( Popik et al., 1996; Dluzen et al., 1998).

While high concentrations of OT injected into the LS enhance social recognition in the rat, low doses of OT

injected into the MPOA are more effective (Popik and Van Ree, 1991). Interestingly, OTR antagonists

infused into the LS or MPOA do not block social recognition (Popik et al., 1996). Possible explanations for

the discrepancies between agonist and antagonist studies include, the use of antagonists that were not

highly selective and that OT could affect social recognition via V1 receptors.

While studies in rats may not clearly point to OT for the regulation of social recognition, this is not the

case in mouse studies. OTKO mice do not display normal social recognition (Ferguson et al., 2000), and

comparisons between OTKO and estrogen receptor alpha and beta KO mice suggest the effects of OT on

social recognition are gonadal‐steroid‐dependent (Choleris et al., 2003). The differences in social recogni-

tion between WT and OTKO mice are likely due to differences in the processing of olfactory information.

OTKO mice have decreased c‐fos activation within the MeA, BNST, and MPOA (Ferguson et al., 2001). All

three of these areas process olfactory information downstream of the accessory olfactory bulb (Meredith,
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1991). In fact, if OT is injected prior to a social encounter in OTKO mice, either ICV or intracerebrally

directly into the CeA, social recognition is fully restored. Conversely, ICV injections of OT antagonists into

WT mice reduce social recognition. OT has no effects on social memory if it is administered after the

encounter (Ferguson et al., 2001), suggesting that OT is critical for memory acquisition rather than

memory recall. Another example of the impaired social recognition is displayed by OTKO mice, which

when exposed to their first mate or a novel mate (Bruce effect), do not remain pregnant (Temple et al.,

2003). Choleris et al. (2004) have proposed a four‐gene micronet for the regulation of social recognition in

mice that includes estrogen receptor alpha, estrogen receptor beta, OT, and the OTR, although the reduced

social recognition in the V1aRKO and V1bRKO suggests a much more complicated scenario in which

numerous genes are involved.

5.2.2.2 Pair Bonding Pair bonding is the monogamous relationship between sexual partners. Pair bond

formation is studied by measuring an animal’s partner preference (the amount of time individuals spend

with their respective partners versus strangers). While monogamy is rare among mammalian species, being

found in fewer than 5% of species (Kleiman, 1977), understanding its neural basis continues to be an

exciting area of research. One of the questions driving this field of research is why does one species

demonstrate monogamy while another species does not?

The first work linking OT and VP to partner preference was completed in prairie voles (Carter et al.,

1992; Winslow et al., 1993). Voles have continued to be the model species of choice since there are

monogamous as well as polygamous species within the genus Microtus. As mentioned previously, prairie

and pine voles tend to be social and monogamous while montane and meadow voles tend to be asocial and

polygamous. The facilitation of partner preference by OT and VP is sex specific, with OT being more

important in females and VP in males. Female prairie voles administered OT ICV develop a partner

preference more rapidly, while an OT antagonist given prior to mating can block partner preference

formation (Williams et al., 1994; Insel and Hulihan, 1995; Cho et al., 1999). In male prairie voles, VP

and V1aR antagonists facilitates and inhibit formation of partner preference, respectively (Winslow et al.,

1993; Cho et al., 1999). The reason for this sex difference remains poorly understood since there are no

discernable differences in OTR and V1aR densities and distributions between male and female prairie voles.

A recent study has suggested that neonatal exposure to OT can increase partner preference in adult males

(Bales and Carter, 2003a).

While the exact basis for the sex difference remains to be determined, the reasons why OTand VP have

differential effects in monogamous versus polygamous voles is better understood. Polygamous voles have a

lower density of OTR in the caudate‐putamen and nucleus accumbens compared with monogamous voles

(Insel and Shapiro, 1992). They also have lower densities of V1aR in the ventral pallidum, MeA, and

thalamus (Insel et al., 1994). Most of the aforementioned areas are a part of the mesolimbic dopamine

reward pathway, suggesting that in certain species, pair bonding may be reinforcing (Insel and Young, 2001;

Insel, 2003). This hypothesis is supported by studies that have shown that dopamine acting through D2

receptors within the nucleus accumbens is necessary for partner preference formation (Gingrich et al., 2000;

Aragona et al., 2003a, b; Liu and Wang, 2003).

There is increasing support for the idea that animals are polygamous or monogamous partly because of

differences in the distribution of OT and VP receptors. Transgenic mice that express the prairie vole V1aR

gene in a prairie vole‐like pattern show increased affiliative behaviors when VP is injected ICV (Young et al.,

1999). VP induces increased partner preference in polygamous meadow voles in which the prairie vole

V1aR is overexpressed in the ventral pallidum via a viral vector (Lim et al., 2004b). The molecular basis of

pair bonding, as reflected in the distribution patterns of V1aR expression, has been attributed to differences

in microsatellite sequence length in the 50‐UTR region of the V1aR coding sequence. These microsatellite

sequences are repetitive, unstable (Li et al., 2004), and can modulate gene expression levels and regional

distribution (Hammock and Young, 2002; Hammock et al., 2004). It is thought that microsatellite

sequences are more susceptible to mutation and may represent a mechanism for the generation of

individual variation within a species (Hammock and Young, 2002; Phelps and Young, 2003; Lim et al.,

2004b). For a more in depth review of pair bonding and its genetic regulation, see articles by Insel (2003),

Young and Wang (2004), Aragona and Wang (2004), and Lim et al. (2004a).
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5.3 Other Behavioral and Physiological Effects

5.3.1 Scent Marking and Grooming

The most extensive work examining the role of VP in scent marking has been done in Syrian hamsters.

Syrian hamsters have a specialized form of scent marking known as flank marking. Flank marking is

displayed for several reasons including marking territory, attracting a mate, and informing others of their

dominance status (Johnson, 1973). In 1984, Ferris and colleagues made the serendipitous finding that flank

marking was induced when VP was injected unilaterally into the MPOA‐AH (Ferris et al., 1984). The

MPOA‐AH is thought to be the critical regulatory site for this behavior, because lesions of the MPOA‐AH,

but not other sites, result in reductions in flank marking (Ferris et al., 1986). Not only does VP induce flank

marking, but also does so in a dose‐dependent manner. Concentrations ranging from 0.09 mM to 90 mM
induce from 3 to 80 flank marks, respectively, within a 10‐min period (Ferris and Potegal, 1988). The

facilitation of flank marking is also testosterone‐dependent. When hamsters are castrated, there are

significant declines in flank marking that can be restored following treatment with exogenous testosterone

(Albers et al., 1988). The effects of VP on flank marking are mediated primarily through V1aR. Specific

antagonists for the V1aR have been shown to significantly reduce levels of VP‐induced flank marking and

odor‐induced flank marking (Ferris et al., 1985, 1988; Albers et al., 1986). In female Syrian hamsters, OT has

been found to facilitate flank marking when injected into the MPOA‐AH of socially dominant female

hamsters. Similar to what has been found in VP‐facilitated aggression, social experience is critical for OT’s

effects on flank marking as socially naı̈ve females show no increases in flank marking compared with

controls (Harmon et al., 2002b).

The only other species in which VP has been shown to have an effect on scent marking is in male

squirrel monkeys. When VP is administered centrally during a social separation test, squirrel monkeys will

increase their scent marking and grooming behavior (Winslow and Insel, 1991a). In other species, VP tends

to affect grooming. In mice, VP injected in the MPOA can induce grooming (Meisenberg and Simmons,

1982; Lumley et al., 2001). In rats, OT, rather than VP, given ICV can induce self‐grooming in males and

females and this effect of OT is inhibited by an OTR antagonist (Delanoy et al., 1978; Caldwell et al., 1986;

Drago et al., 1986, 1991). OT‐induced grooming has even been used as a way to measure the sensitivity of

OTreceptors in OTKOmice. OTKOmice given OT ICV show increased grooming behavior compared with

WT controls, suggesting that in OTKO mice, the OTR is more responsive to OT (Amico et al., 2004).
5.3.2 Anxiety and Depression

Anxiety1 is one of the behavioral manifestations of stress. While OT has been consistently linked to anxiety,

the role of VP has been much less clear. However, there is increasing evidence that both OT and VP are

important in the modulation of anxiety in a variety of species. In two rat lines bred for high‐ or low‐anxiety‐
related behavior, there is a correlation between increased VP mRNA and VP release from the PVN and the

high‐anxiety phenotype (Wigger et al., 2004). The increase in VP in the PVN has been attributed to an

overexpression of VP due to an impaired repression of the VP promoter (Murgatroyd et al., 2004). These

studies suggest that VP release from the PVN may be important to the regulation of anxiety in males. The

LS is also an area demonstrated to be involved in the regulation of anxiety. Lesions of the LS and V1aR

antisense oligonucleotides infused into the LS result in decreases in anxiety‐like behaviors in rats (Landgraf

et al., 1995; Menard and Treit, 1996). Interestingly, disruption of the V1bR in mice has not been found to

affect anxiety‐like behaviors (Wersinger et al., 2003). However, V1aRKO males are significantly less anxious

than WTmales (Bielsky et al., 2003). Therefore, it may be that the V1aR is the more critical receptor for the
1 When anxiety is mentioned in relation to animals, one is really referring to behaviors that are affected with a similar rank order

of potency by agents (‘‘anxiolytics’’) that are used to treat anxiety in humans. Similar caveats are applied when anthropomor-

phizing any human mental disturbance.
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effect of VP on anxiety. The V1bR antagonist SSR149415 shows weak anxiolytic activity but stronger

activity indicative of antidepressant potential in rats (Griebel et al., 2002). This selective V1bR antagonist,

when injected into the LS of rats, has antidepressant‐like effects on their behavior (Stemmelin et al., 2005).

Finally, a single‐nucleotide polymorphism in the V1bR gene in humans has been reported to have a

protective effect on recurrent major depression (van West et al., 2004).

In birds, OT injected ICV decreases food intake and pecking frequency, suggesting that their general

state of arousal and anxiety may be increased (Jonaidi et al., 2003). In rats and mice, OT has been

characterized as an anxiolytic (Windle et al., 1997; Neumann et al., 2000; Bale et al., 2001; McCarthy

et al., 1996). During the perinatal period, rats show increased anxiety‐like behavior, compared with virgin

female controls. These behaviors can be enhanced following treatment with an OTR antagonist. However,

in virgin female and male rats, treatment with the OTR antagonist has no effect on anxiety‐like behaviors
(Neumann et al., 2000; Neumann, 2001). Female OTKOmice have higher level of anxiety‐like behavior than
WTanimals, and this anxiety‐like behavior can be decreased by ICV administration of OT (Mantella et al.,

2003). In contrast to females, male OTKO mice display less anxiety‐like behavior (Winslow et al., 2000;

Mantella et al., 2003). Overall, it appears that OT may be more important to the regulation of anxiety in

females and VP in males. It will be interesting to find out if the regulation of anxiety‐like behaviors is truly
sexually dimorphic, using two completely different neuroanatomical circuits, or if the main difference lies

in the type of neuropeptide and receptor.
5.3.3 Learning and Memory

Throughout the 1960s and 1970s, David De Wied dominated this field by examining the effects of VP and

OTon learning and memory. His earliest study in 1965 found that in rats, removal of the posterior pituitary

impaired active avoidance shuttlebox performance (De Weid, 1965). He subsequently showed that this

impairment is improved by treatment with VP (De Weid, 1976). Not only did he find that VP facilitates

memory processing, but that its effects are more robust during consolidation and retrieval rather than

during learning. By chemically altering VP, he was able to determine which parts of the peptide (VP and OT

‘‘metabolites’’) were biologically active in the aspects of learning and memory he studied (De Weid et al.,

1993). He also showed that OT acts as a natural amnestic agent by impairing memory consolidation and

retrieval (De Weid et al., 1991). De Wied’s theories on learning and memory have been challenged. Sahgal

and colleagues propose that both central and peripheral VP increase baseline arousal, which in turn alters

learning and memory (Sahgal, 1984; Sahgal and Wright, 1984). While this argument has yet to be settled,

especially with regard to the existence of VP and OT metabolite receptors, there is still ongoing research

examining the roles of OT and VP on learning and memory, including spatial memory.

While it is known that rodents that give birth have improved spatial memory, only recently has it been

shown that OT has a role. In a study by Tomizawa and colleagues (2003), OT given ICV to mice that have

never been pregnant increased spatial learning (reference memory only with no effect on working memory).

Conversely, they showed that an OTR antagonist administered ICV to females that had delivered several

litters inhibited spatial learning. Further, they suggest that OT improves spatial learning by stimulating

long‐lasting, long‐term potentiation and phosphorylation of the cAMP responsive element binding protein

in the hippocampus (Tomizawa et al., 2003). It will be interesting to see if these hypotheses are confirmed

and expanded to include males.

Some studies in male rats and mice have suggested that VP acting on the V1aR is important for normal

spatial memory. VP microinjected into the ventral hippocampus of rats can improve scopolamine‐induced
impairment of spatial memory (Fujiwara et al., 1997). Conversely V1aR agonists enhance spatial memory

(Mishima et al., 2003), whereas V1aR antagonists, but not V2 antagonists, suppress this effect (Mishima

et al., 2001; Egashira et al., 2004). Recent work examining spatial memory in V1aRKO male mice has

supported the idea that VP may be important to spatial memory. V1aRKO mice show more errors in

the eight‐arm radial maze than do WTmice (Egashira et al., 2004). Interestingly, no impairments are seen

in the Morris water maze. The authors suggest that this is because the eight‐arm radial maze is also testing

working memory, and it is this aspect of memory that may be affected by the lack of V1aR (Egashira et al.,
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2004). To date no deficits in spatial memory have been observed in V1bRKO (Wersinger et al., 2002;

Egashira et al., 2004).
5.3.4 Fever

During late pregnancy and in newborns, there is a natural suppression of fever concurrent with increases in

circulating VP (Alexander et al., 1974; Stark et al., 1979). Studies examining circulating VP find no effect on

fever reduction (antipyresis) (Cooper et al., 1979). However, VP infused into the septal area of the brain in

several species reduces fever (Cooper et al., 1979; Naylor et al., 1985; Cooper et al., 1987). Fever is also

reduced when the BNST is electrically stimulated, resulting in the release of VP into the septum (Naylor

et al., 1988). These effects are thought to be mediated through the V1aR based on agonist/antagonist studies

(Cooper et al., 1987; Landgraf et al., 1990). The interested reader is referred to a recent review (Roth et al.,

2004).
6 Future Directions

The future for research into the roles of VP and OT in brain function is bright. There is ample work to be

done in the continuing examination of knockout mice. This work will be considerably aided through the

use of conditional knockouts and virally mediated interventions so that the possibility of developmental

compensation is avoided. Obviously, the relevance of these studies to human behavior will remain a strong

focus. Although not covered in this review, the development of specific and orally active pharmacologic VP

and OT agents will play a critical role in sharpening this focus. Recent publications discuss some of the

advances in this field of pharmacology (Serradeil‐Le Gal et al., 2002; Cirillo et al., 2003; Pitt et al., 2004).

Other recent work in nonhuman animals investigates whether some human diseases might be caused by

dysfunctions of the VP and OTsystems. Attention has focused on autism and the OTR and V1aR given their

roles in social recognition. To date, however, links have been tantalizing but not definitive (Auranen et al.,

2002; Kim et al., 2002; Shao et al., 2002; Wassink et al., 2004). The V1aR has also been investigated for roles

in sexual fidelity (Cherkas et al., 2004) and eating habits (Bachner‐Melman et al., 2004). Although the V1bR

has not been implicated in the above behaviors, a recent study has proposed a protective role against major

depression (van West et al., 2004). Linkage analysis remains a promising avenue of research. Coupled with

the development of better behavioral animal models, the next decade should be a rewarding one for

investigators of OT and VP.
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Oliver MD, Schäfer FRS. 1895. On the physiological action of

extracts of pituitary body and certain other glandular

organs. J Physiol 18: 277-279.

Ostrowski NL, Lolait SJ, Bradley DJ, O’Carroll A, Brownstein

MJ, et al. 1992. Distribution of V1a and V2 vasopressin

receptor messenger ribonucleic acids in rat liver, kidney,

pituitary and brain. Endocrinology 131: 533-535.

Ostrowski NL, Lolait SJ, Young WS III. 1994. Cellular locali-

zation of vasopressin V1a receptor messenger ribonucleic

acid in adult male rat brain, pineal, and brain vasculature.

Endocrinology 135: 1511-1528.

Ostrowski NL, Young WS III, Lolait SJ. 1995. Estrogen

increases renal oxytocin receptor gene expression. Endocri-

nology 136: 1801-1804.

Ott I, Scott JC. 1910. The action of infundibulin upon

the mammary secretion. Proc Soc Exp Biol (NY) 8:

48-49.

Patchev VK, Schlosser SF, Hassan AHS, Almeida OFX. 1993.

Oxytocin binding sites in rat limbic and hypothalamic

structures: site‐specific modulation by adrenal and gonadal

steroids. Neuroscience 57: 537-543.

Patisaul HB, Scordalakes EM, Young LJ, Rissman EF. 2003.

Oxytocin, but not oxytocin receptor, is regulated by oestro-

gen receptor beta in the female mouse hypothalamus.

J Neuroendocrinol 15: 787-793.

Payne AP, Swanson HH. 1970. Agonistic behaviour between

pairs of hamsters of the same and opposite sex in a neutral

observation area. Behaviour 36: 260-269.

Pedersen CA. 1997. Oxytocin control of maternal behavior.

Regulation by sex steroids and offspring stimuli. Ann N Y

Acad Sci 807: 126-145.
Pedersen CA, Ascher JA, Monroe YL, Prange AJ Jr. 1982.

Oxytocin induces maternal behavior in virgin female rats.

Science 216: 648-649.

Pedersen CA, Prange AJ. 1979. Induction of maternal behav-

ior in virgin rats after intracerebroventricular administra-

tion of oxytocin. Proc Natl Acad Sci USA 76: 6661-6665.

Phelps SM, Young LJ. 2003. Extraordinary diversity in vaso-

pressin (V1a) receptor distributions among wild prairie

voles (Microtus ochrogaster): patterns of variation and co-

variation. J Comp Neurol 466: 564-576.

Pitt GR, Batt AR, Haigh RM, Penson AM, Robson PA, et al.

2004. Non‐peptide oxytocin agonists. Bioorg Med Chem

Lett 14: 4585-4589.

Planas B, Kolb PE, Raskind MA, Miller MA. 1995. Vasopressin

and galanin mRNAs coexist in the nucleus of the horizontal

diagonal band: a novel site of vasopressin gene expression.

J Comp Neurol 361: 48-56.

Plumari L, Viglietti‐Panzica C, Allieri F, Honda S, Harada N,

et al. 2002. Changes in the arginine–vasopressin immuno-

reactive systems in male mice lacking a functional aroma-

tase gene. J Neuroendocrinol 14: 971-978.

Popik P, Van Ree JM. 1991. Oxytocin but not vasopressin

facilitates social recognition following injection into the

medial preoptic area of the rat brain. Eur Neuropsycho-

pharmacol 1: 555-560.

Popik P, Vetulani J, Van Ree JM. 1996. Facilitation and atten-

uation of social recognition in rats by different oxytocin‐

related peptides. Eur J Pharmacol 308: 113-116.

Qahwash IM, Cassar CA, Radcliff RP, Smith GW. 2002. Bac-

terial lipopolysaccharide‐induced coordinate downregula-

tion of arginine vasopressin receptor V3 and corticotropin‐

releasing factor receptor 1 messenger ribonucleic acids in

the anterior pituitary of endotoxemic steers. Endocrine 18:

13-20.

Quinones‐Jenab V, Jenab S, Ogawa S, Adan RA, Burbach JP,

et al. 1997. Effects of estrogen on oxytocin receptor mes-

senger ribonucleic acid expression in the uterus, pituitary,

and forebrain of the female rat. Neuroendocrinology 65:

9-17.

Rabadan‐Diehl C, Aguilera G. 1998. Glucocorticoids increase

vasopressin V1b receptor coupling to phospholipase C.

Endocrinology 139: 3220-3226.

Rabadan‐Diehl C, Lolait SJ, Aguilera G. 1995. Regulation of

pituitary vasopressin V1b receptor mRNA during stress in

the rat. J Neuroendocrinol 7: 903-910.

Rabadan‐Diehl C, Makara G, Kiss A, Lolait S, Zelena D, et al.

1997. Regulation of pituitary V1b vasopressin receptor

messenger ribonucleic acid by adrenalectomy and gluco-

corticoid administration. Endocrinology 138: 5189-5194.

Ragnauth AK, Goodwillie A, Brewer C, Muglia LJ, Pfaff

DW, et al. 2004. Vasopressin stimulates ventromedial



604 25 Oxytocin and vasopressin: genetics and behavioral implications
hypothalamic neurons via oxytocin receptors in oxytocin

gene knockout male and female mice. 80 (2): 99.

Richard S, Zingg HH. 1990. The human oxytocin gene

promoter is regulated by estrogens. J Biol Chem 265:

6098-6103.

Rinaman L. 1998. Oxytocinergic inputs to the nucleus of the

solitary tract and dorsal motor nucleus of the vagus in

neonatal rats. J Comp Neurol 399: 101-109.

Roth J, Zeisberger E, Vybı́ral S, Janský L. 2004. Endogenous
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Abstract: The corticotropin‐releasing factor (CRF) has been associated with two major functions since its

discovery in the early 1980’s. The first major role of CRF is to function as a hormone released from the

hypothalamus to activate the hypothalamic–pituitary–adrenal (HPA) axis during stress. The other impor-

tant role of CRF, which is also known as the extrahypothalamic function, is to mediate the response to

stressful conditions of many other brain regions, involved in emotional and cognitive processes, such as

dorsal raphe nucleus, hippocampus, prefrontal cortex, amygdala, and ventral tegmental area. Since the HPA

axis has been well studied and the extrahypothalamic function of CRF is relatively new, this chapter focuses

more on the CRF acting as a neuropeptide, especially in cortical and subcortical limbic areas. Understand-

ing the physiology and pathology of CRF in the central nervous system (CNS) could provide more

opportunities to find treatment for the stress‐related neuropsychiatric disorders, including depression

and anxiety.

List of Abbreviations: 5‐HT, serotonin; ACTH, adrenocorticotropic hormone; AMPA, a‐amino‐3‐
hydroxy‐5‐methylisoxazolepropionic acid; AVP, vasopressin; BLA, basolateral, and basomedial amyg-

daloid nuclei; CaMKII, calcium/calmodulin‐dependent protein kinase II; cAMP, cyclic adenosine mono-

phosphate; CeA, central nucleus of amygdala; CF, climbing fiber; CNS, central nervous system; CREB,

cAMP response element‐binding protein; CRF, corticotropin‐releasing factor; CRF‐BP, CRF binding pro-

tein; CRFR, CRF receptors; CSF, cerebrospinal fluid; DA, dopamine; DR, dorsal raphe nucleus; EPSC,

excitatory postsynaptic current; ERK, extracellular signal‐regulated kinase; GABA, g‐amino butyric acid;

GPCR, G‐protein‐coupled receptor; GR, glucocorticoid receptor; HPA, hypothalamic–pituitary–adrenal;

HPG, hypothalamic–pituitary–gonadal; IPSP, inhibitory postsynaptic potential; JNK, c‐jun N‐
terminal kinase; KO, knockout; LC, locus coeruleus; LH, luteinizing hormone; LSMLN, lateral septum

mediolateral nucleus; LTD, long‐term depression; LTP, long‐term potentiation; MAPK, mitogen‐activated
protein kinase; MDD, major depressive disorder; MR, mineralocorticoid receptor; NE, norepinephrine;

NMDA, N‐methyl‐D‐aspartic acid; OE, overexpression; PFC, prefrontal cortex; PI3K, phosphatidylinositol‐
3 kinase; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; POMC, proopiomelano-

cortin; PS‐LTP, long‐term potentiation of population spikes; PTSD, posttraumatic stress disorder; PVN,

paraventricular nucleus; SAPK, stress‐activated protein kinase; sIPSC, spontaneous inhibitory postsynaptic

current; UcnI, urocortin I; UcnII, stresscopin‐related peptide; UcnIII, stresscopin; VTA, ventral tegmental

area
1 Introduction

Corticotropin‐releasing factor (CRF) was first characterized in 1981 (Vale et al., 1981). It was first known

for its important regulatory effect in the endocrine stress response. During a stress response, CRF released

from the hypothalamus activates the hypothalamic–pituitary–adrenal (HPA) axis through CRF receptors

(CRFR) on the anterior pituitary corticotropes to stimulate the release of adrenocorticotropic hormone

(ACTH). ACTH then enters the blood stream and stimulates the synthesis and release of glucocorticoids at

the adrenal gland cortex. The glucocorticoids, through a negative feedback system, can inhibit CRF or

ACTH production (Tsigos and Chrousos, 2002).

Two decades since its discovery, many studies have shown that in addition to its original role as

hormones, the CRF ligand family also plays a critical role as neuropeptides in the regulation of stress

response and behaviors associated with these responses. While acute responses to stress are necessary

in order to maintain homeostasis in the organism, chronic stress, exaggerated responses to stress,

or inadequate termination of the stress response can lead to mental diseases. The extrahypothalamic

functions of CRF family members are heavily involved in the development of psychological disorders

related to heightened stress sensitivity and dysregulation of stress‐coping mechanisms (Bale and Vale,

2004).
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2 CRF and CRF‐Associated Proteins

2.1 CRF Ligand Family

There are four known molecules that belong to the CRF ligand family so far (> Figure 26-1): CRF, urocortin

I (UcnI), stresscopin‐related peptide (UcnII), and stresscopin (UcnIII). These ligands are expressed in

different regions of the body and have different affinities toward different CRFR subtypes.
. Figure 26-1

Alignment of the corticotropin‐releasing factor (CRF) peptide family members. The amino acids that are

homologous between the CRF peptides are boxed. h, human; m, mouse; o, ovine; UCN 1, urocortin 1; UCN 2,

urocortin 2; UCN 3, urocortin 3 (From Pharmacol Rev. 2003, 55:21‐26).

Peptide Sequence Length Identity(%)
CRF is a 41‐amino‐acid polypeptide found in brain areas important for stress adaptation, learning, and

memory, such as the paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala

(CeA), and hindbrain regions in the CNS (Bale and Vale, 2004). It is generated by cleaving the C terminus of

the 196‐amino‐acid precursor called preproCRF (Dautzenberg and Hauger, 2002). The C‐terminal region is

required for CRF to function properly, and the N‐terminal can exist in heterogeneous forms both within

and between species (Vale et al., 1981). The primary function of CRF is to activate the HPA axis during

stressful conditions. Specifically, it will activate the transcription of the proopiomelanocortin (POMC) gene

and stimulate the release of ACTH and b‐endorphin from cells in the anterior pituitary gland. The animal

study designed to observe the effect of chronic HPA axis activation by overexpressing CRF (CRF‐OE) shows

that constitutively high level of ACTH and corticosteroid due to high CRF concentration leads to the

development of Cushing’s syndrome‐like symptoms in mice (Stenzel‐Poore et al., 1992). In addition, these

CRF‐OE mice exhibit delayed and attenuated HPA axis hormone responses to stress that may result from

desensitization of the HPA axis (Coste et al., 2001). On the other hand, mice deficient in CRF show that

corticosteroid levels are blunted in both basal and acute stress conditions (Muglia et al., 1995).
2.2 CRF Receptors

There are two known receptors for the CRF ligand family: CRFR1 located at chromosome arm 17q12–q22

and CRFR2 located at chromosome arm 7p15.1 (Horn et al., 2001). Both receptors have seven transmem-

brane domains (> Figure 26-2) and are predominantly linked to the activation of adenylate cyclase and

protein kinase A (PKA) through Gs. They belong to the class B subtype of G‐protein‐coupled receptors

(GPCRs), which can usually be distinguished from the rest of GPCRs by two features: (1) Class B GPCR

have a large extracellular N‐terminal domain that is critical for ligand binding; (2) They also contain six

highly conserved cysteine residues that are likely involved in disulfide bond formation (Rashid et al., 2004).



. Figure 26-2

Two‐dimensional structure of the human corticotropin‐releasing factor 1 (CRF1) and corticotropin‐releasing
factor 2 (CRF2) receptors. Identical amino acids between both receptors are represented as filled circleswhereas

divergent residues are shown as open circles. The arrows indicate sites for insertion or deletion of exons in

nonfunctional variants of the CRF1 and CRF2 receptor (Chen et al., 1993; Myers et al., 1998; Grammatopoulos

et al., 1999; Miyata et al., 1999). The symbols { and } indicate the deletion of a 40‐amino‐acid exon in a

nonfunctional splice variant of the human CRF1 receptor (Ross et al., 1994) whereas the symbol ] represents

the common splice site for the three CRF2 variants CRF2a, CRF2b, and CRF2c (From Pharmacol Rev. 2003,

55:21‐26).
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There are several splice variants of CRFR1 and CRFR2 expressed throughout central and peripheral

tissues. CRFR1 has a and b isoforms in addition to subtypes designated c–h; however, some of them are not

functional (Grammatopoulos and Chrousos, 2002). CRFR2 is expressed in three functional subtypes, a, b,
and g through the use of alternative 50‐exons. These isoforms differ in their N‐terminal sequence for ligand

selectivity as well as their distribution in both tissues and species (Bale and Vale, 2004). CRFR1 and CRFR2

are very similar (over 80% identical) at the transmembrane domains and the intracellular domains

including the third intracellular loop where G‐proteins interact with most GPCRs (Perrin and Vale,

1999). Through mutagenesis and chimeric‐receptor studies, it is now known that the second and third

extracellular domains, the N terminus and its juxtamembrane region are important in determining the

specificity of ligand–receptor binding (Perrin et al., 2003). Among the four ligands in the family, CRF has

tenfold higher affinity for CRFR1 than CRFR2. UcnI seems to have equal affinities for both receptors, while

UcnII and UcnIII appear to have higher affinity for CRFR2, although UcnII may also activate CRFR1 at

higher concentrations (Perrin et al., 1995).

The tissue distribution of CRFR variants is related to their endogenous functions. CRFR1 is the

dominative receptor in the CNS, and CRFR2 is expressed at several limited locations (Lovenberg et al.,

1995). Basically, CRFR1 is distributed throughout the cerebral cortex, cerebellum, olfactory bulb, medial

septum, hippocampus, amygdala, and the pituitary, where the HPA axis signaling continues (Potter et al.,

1994). Central CRFR2 is predominantly limited to sites in the lateral septum, PVN of the hypothala-

mus, and choroid plexus. In peripheral tissues, however, CRFR2 is the dominative receptor found to

be expressed in the cardiac myocytes, gastrointestinal tract, lung, skeletal muscle, and vasculature (Perrin

et al., 1995).
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The current consent is that the stress response is mediated by the homeostatic balance of both CRFR1

and CRFR2’s functions. Many experiments have shown the importance of CRFR1 in the stress response

through the HPA axis. Antagonists of CRFR1 can reduce the release of ACTH following a stress response but

not the basal hormone level (Bale and Vale, 2004). Two independent lines of CRFR1 knockout (CRFR1‐KO)

mice have demonstrated that in the absence of CRFR1, these mice showed a blunted response to restraint

stress as revealed by a minimal increase in plasma ACTH and corticosterone, compared with the significant

release seen in wild‐type littermates (Smith et al., 1998; Timpl et al., 1998).

The role of CRFR2 in the stress response remains unclear. Central administration of the CRFR2

antagonist produces little effect on the ACTH response to or recovery from a restraint stress (Pelleymounter

et al., 2002). In addition, CRFR2 knockout (CRFR2‐KO) mice developed by three independent laboratories

(Bale et al., 2000b; Coste et al., 2000; Kishimoto et al., 2000) all showed normal basal levels of ACTH and

corticosterone and a normal circadian rhythm of hormone levels. Two lines of these mice, however, revealed

heightened sensitivity to stress (Bale et al., 2000b; Coste et al., 2000). These studies suggest that this receptor

may function endogenously to dampen or modulate the stress response associated with CRFR1 activation.

Interestingly, no differences were found in basal CRF mRNA or protein levels in the PVN in CRFR2‐KO
mice (Bale et al., 2000b; Coste et al., 2000). However, it has been found that the expression levels of

vasopressin (AVP) in the PVN is increased, which suggests that the CRF response is augmented in these

mice, and thus results in the increased sensitivity and hormone levels (Bale et al., 2002).

The response to stress in mice deficient in both CRF receptors (CRFR1/2‐KO) has also been examined.

In the absence of either known receptor, mice display remarkably little HPA axis response to a restraint

stress (Bale et al., 2002). ACTH and corticosterone levels following restraint stress are significantly lower in

the CRFR1/2‐KO mice compared with CRFR1‐KO mice, suggesting a possible role of CRFR2 in mediating

HPA‐axis sensitivity (Bale et al., 2002). Since CRFR1 is abundantly expressed in anterior pituitary cortico-

tropes, and CRFR2 is not, it suggests that a possible new involvement of CRFR2 in HPA axis activation may

occur upstream of corticotropic cell stimulation, possibly in CRF cell bodies within the hypothalamus.

Taken together, these data suggest that both CRF receptors participate in the maintenance and regulation of

homeostasis in response to stress.

These studies support a hypothetical model in which CRFR1 and CRFR2 play important and opposing

roles in regulation of organismal responses to stress and perturbations of homeostasis. This model suggests

that following a challenge, CRF activation of CRFR1 stimulates the HPA axis and sympathetic nervous

system, in order to maintain physiologic equilibrium under acute and chronic perturbations for energy

mobilization and redistribution. CRFR2, however, may function as an inhibitory or modulatory receptor to

dampen the actions of CRFR1. Regulation of the relative contribution of the two CRF receptors to brain

CRF pathways may be essential in coordinating physiological responses to stress. The development of

disorders related to heightened stress sensitivity and dysregulation of stress‐coping mechanisms appears to

involve regulatory mechanisms of CRF family members (Bale and Vale, 2004).
2.3 CRF Binding Protein

The binding protein of CRF (CRF‐BP) is a 37 kDa N‐linked glycoprotein expressed in several regions in the

body, such as cerebral cortex, hippocampus, pituitary, liver, placenta, and in the circulation. Both CRF and

UcnI have high affinities for the CRF‐BP, but neither UcnII nor UcnIII binds to the CRF‐BP.
It has been proposed that CRF‐BP can modulate CRF activities by competing for ligand availability with

CRF Receptors, and it has also been proposed to prevent inappropriate pituitary–adrenal stimulation

during pregnancy (Potter et al., 1991). Consistent with its proposed role, about 40–60% of the human brain

CRF is bound with CRF‐BP by forming dimer complexes (CRF2/BP2) (Jahn et al., 2002; Bale and Vale,

2004). Recombinant CRF‐BP is known to reduce the endocrine activities of CRF, which then leads to the

blocking of CRF‐induced ACTH secretion from the anterior pituitary (Potter et al., 1992, 1994; Chen et al.,

1993). However, the data from CRF‐BP overexpression (CRF‐BP‐OE) and knockout (CRF‐BP‐KO) experi-

ments show the opposite results. In both cases, although high levels of circulating CRF‐BP were detected in

these mice, the HPA axis stress response remained unchanged in basal or acute stress conditions (Burrows
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et al., 1998; Lovejoy et al., 1998; Karolyi et al., 1999). Increased levels of CRF and AVP were detected in the

PVN of these mice, which suggests that a compensation of increased ligand expression to overcome the

increased production of CRF‐BP was taking place.

As inferred from the data on CRF‐BP‐KO and CRF‐BP‐OE mice, CRF‐BP is not a critical component in

regulation of the stress response. In addition, CRF‐BP has been detected in brain regions not associated

with CRF activity, suggesting that it may also have CRF‐independent actions. It appears that the function of

CRF‐BP is not very clear and is in need of more data at this stage.
3 Physiological Function of CRF

3.1 Intracellular Signal Transduction of CRF

3.1.1 PKA and PKC Pathways

As mentioned previously, CRFR1 and CRFR2 located in the nervous system are predominately linked to Gs,

adenylate cyclase, and the PKA pathway (Dautzenberg et al., 2000). However, other G proteins have been

observed to link to CRF receptors in various tissues (Grammatopoulos et al., 2001). For example, in Leydig

cells and the placenta, CRFR1 might signal exclusively via Gq‐mediated stimulation of phospholipase C

(PLC) and formation of inositol phosphates (Grammatopoulos et al., 2000). In addition, the observation

that CRF increases intracellular Ca2þ concentrations in astrocytes and melanoma cells suggests that the

undefined CRF receptor subtypes in these settings might also signal via the PLC pathway (Fazal et al., 1998).

Even within the nervous system, CRFR1 in cerebral cortex can couple to both Gs and Gq proteins, thereby

activating cyclic adenosine monophosphate (cAMP) and PLC pathways (Dieterich et al., 1996). Data

obtained from physiological experiments on hippocampus slices also show that CRF can increase neuronal

activity by activating different intracellular signaling pathways (PKC or PKA) in two mouse inbred strains,

BALB/c and C57BL/6N (Blank et al., 2003).
3.1.2 MAPK Pathway

The mitogen‐activated protein kinase (MAPK) superfamily of signaling cascade includes the extracellular

signal‐regulated kinase (ERK) 1/2 (which is also known as the p42/p44 MAPKs), the p38 MAPK, and the

stress‐activated protein kinase/c‐jun N‐terminal kinase (SAPK/JNK). The ERK cascade has been linked to

many important cellular functions. Originally, it was discovered as a critical regulator of gene expression,

cell division, and differentiation. Later, the ERK cascade was found to be heavily involved in the neuronal

synaptic plasticity and memory formation, especially during the late phase of long‐term potentiation (LTP)

mediated through the N‐methyl‐D‐aspartic acid (NMDA) receptors (Atkins et al., 1998; Kandel, 2001;

Matynia et al., 2001; Sweatt, 2001).

Previous studies have shown that memory can be markedly enhanced by acute stressful experiences

(Shors et al., 1992), and modulation of ERK1/2‐dependent signaling by hippocampal CRFR2 is selectively

involved in the enhancing effects of stress on memory consolidation (Sananbenesi et al., 2003). It has been

found that the phosphorylation and activation of p42/p44 MAPK and calcium/cAMP response element‐
binding protein (CREB) in the CHO cell line transfected with CRFR1 or CRF2a is increased, but not

p38MAPK or SAPK (Rossant et al., 1999). However, the pathways from CRF to MAPK and CREB are not

simple. Apparently CRF does not activate MAPK through the usual cAMP/PKA pathway. Instead, CRF

activation of MAPK is mediated by either bg‐subunits of heterotrimeric G proteins or phosphatidylinositol‐
3 kinase (PI3K). CREB is activated almost entirely by CRF through the cAMP/PKA pathway (Rossant et al.,

1999).

Another very important cellular function of MAPK is the cytoprotective effects against external insults.

In organotypic hippocampal cultures, CRF in low physiological concentrations (2 pM) can prevent

glutamate‐induced neurotoxicity primarily via CRFR1‐mediated signaling through the PKA/ERK pathway
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(Elliott‐Hunt et al., 2002). In cultured rat hippocampal neurons, CRF can increase the resistance of the cells

to oxidative and excitotoxic insults through CRFR1. This neuroprotective effect is mediated by multiple

protein kinases including PKA, PKC, and the downstream ERK1/2 (Pedersen et al., 2002). This cytopro-

tective effect, mediated through MAPK, is not limited to the CNS. For example, UcnII and UcnIII can

mediate a cardioprotective effect through CRFR2 and ERK1/2 in rat heart (Brar et al., 2004b). Interestingly,

the phosphorylation of ERK1/2 in this case is regulated by the PI3K and Ras/Raf‐1 pathway, but indepen-

dent of cAMP/PKA pathway.

Furthermore, CRF has been found to function as a differentiating factor, through cAMP‐and
ERK‐signaling pathways, which triggers neurite outgrowth and morphological changes in a neuronal cell

line that expresses CRFR1 (Cibelli et al., 2001). It is clear now that the activation of MAPK by CRF varies

according to the cell type, the CRFR subtypes, and the signaling pathways (Brar et al., 2004a). Since CRFR

can couple to multiple G proteins, the CRF modulation of MAPK signaling can be very complex

(Grammatopoulos et al., 2001).
3.2 Extrahypothalamic Functions of CRF in Different Brain Regions

3.2.1 CRF in the Dorsal Raphe Nucleus

The dorsal raphe nucleus (DR) contains heterogeneous populations of neurons, with distinct morpholo-

gies, projections, and neurochemical characteristics. The majority of the DR neurons are serotonergic, and

they have parallel and overlapping ascending projections to many forebrain structures (Hornung, 2003).

However, the serotonergic neurons could be subcategorized further according to their morphology and

firing patterns. What makes it even more complex is that different subtypes of serotonergic neurons may

respond to the same stimuli differently. The primary function of DR includes the regulation of sleep–awake

states, behavioral arousal, and stress‐related affective conditions (Abrams et al., 2004). The mRNA and

protein of both CRFRs have been detected in the DR, but CRFR2 mRNAs exist in a much greater amount

than that of CRFR1 (Day et al., 2004). Given the involvement of both serotonin (5‐HT) and CRF in stress, it

is important to understand the role of CRF in serotonergic DR nucleus.

CRF in the DR regulates the release of serotonin in forebrain terminal regions. By measuring the

extracellular levels of serotonin by in vivo microdialysis in the DR neurons, one study has shown that the

concentration of extracellular 5‐HT is increased during and after stress (e.g., inescapable electric tailshocks)

(Maswood et al., 1998). Subsequent experiments show that the inescapable shock increased 5‐HT release

from the DR, similar to the CRF effect, which further supports the positive regulatory function of CRF at

DR (Hammack et al., 2002). Another study has shown that intracerebroventricular administration of CRF

produces a bimodal effect on extracellular levels of 5‐HT in the lateral septum. Doses of 0.3 and 1.0 mg
decreased extracellular 5‐HT levels, whereas both a higher (3.0 mg) and a lower (0.1 mg) dose had no effect

(Price and Lucki, 2001). Similarly, another study shows that low concentrations of CRF produce primarily

an inhibitory effect on DR discharge, and the effect diminishes or becomes excitatory at higher CRF

concentration (Kirby et al., 2000). Depending on the targeting area, CRF can have opposite effects as well.

For example, the midline raphe neurons are positively regulated by CRF, while the more rostral dorsal raphe

serotonergic neurons are negatively regulated by CRF (Lowry et al., 2000). The same study demonstrates

that a subpopulation of serotonergic DR neurons responds to CRF by increasing the firing frequency

(Lowry et al., 2000). In general, CRF can interfere with the DR serotonergic system by changing the firing

rate of neurons and the amount of serotonin released.

The serotonergic neurons in the DR are constantly under inhibitory control of GABAergic neurons

located in the same area (Tao and Auerbach, 2000; Varga et al., 2001). Several studies demonstrate that CRF

can also directly affect the GABAergic neurons in the dorsolateral DR to indirectly regulate the activities of

serotonergic neurons under certain conditions. For example, CRF has been found to increase the expression

of the immediate early gene, c‐fos, of the GABAergic neurons following a swim stress task through a

CRFR1‐mediated pathway (Roche et al., 2003). By interacting with GABAergic neurons in the dorsolateral

DR, CRF can reduce the amount of 5‐HTreleased at the DR target areas (Roche et al., 2003). Another study
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shows that activation of CRFR2 on the DR serotonergic neurons inhibits neuronal activities, whereas

activation of CRFR2 on the nonserotonergic neurons indirectly excites the DR serotonergic neurons

through disinhibition (Pernar et al., 2004). Both observations described above support earlier observations

of Kirby et al. Once again they demonstrate the complex nature of the mechanisms by which CRF regulates

neurons in the DR region.
3.2.2 CRF in the Hippocampus and Synaptic Plasticity

The hippocampus has a long‐established role in certain forms of memory. The ventral hippocampus, a

subregion of the hippocampus, is anatomically connected to prefrontal cortex, amygdala, and other subcor-

tical regions associated with the HPA axis (Sananbenesi et al., 2003). As a target of CRF, hippocampus shows

many responses to stressful stimuli. For example, repeated stress leads to atrophy of the dendrites in the CA3

region and the suppression of neurogenesis of dentate gyrus granule neurons (McEwen, 1999; Chen et al.,

2004). In addition, the AMPA, but not NMDA, portion of synaptic responses of dentate gyrus neurons is

significantly increased after corticosterone administration in chronically stressed rats (Karst and Joels, 2003).

Acute inescapable stress can dramatically affect the induction and the direction of plasticity at

glutamatergic synapses in the hippocampus (Shors et al., 1997; Xu et al., 1997). The induction of

activity‐dependent persistent increases in synaptic efficacy, such as long‐term potentiation (LTP), is

inhibited by behavioral stress (Shors et al., 1989, 1997), while the induction of stable homosynaptic long‐
term depression (LTD), which is persistent decreases in synaptic efficacy, in the hippocampal CA1 area is

facilitated by exposure to stress (Kim et al., 1996; Xu et al., 1997). However, another study shows that CRF

application and acute stress facilitate (prime) LTP of population spikes (PS‐LTP) in the mouse hippocam-

pus and enhance context‐dependent fear conditioning (Blank et al., 2002). Interestingly, the CA1 hippo-

campal extracellular 5‐HT, which is released by serotonergic neurons located in the DR, can mimic the

effect of stress by blocking the induction of LTP in nonstressed animals either through an indirect 5‐HT3

receptor or a direct 5‐HT1A‐receptor‐mediated pathway (Shakesby et al., 2002). With in vivo microdialysis,

it has been shown that the stress‐induced increase of extracellular 5‐HT in hippocampus is mediated by

CRF. Both CRFR1 and CRFR2 are thought to be involved in this modulation (Linthorst et al., 2002).
3.2.3 CRF in the Prefrontal Cortex

The prefrontal cortex (PFC) is important for its ‘‘executive’’ capacity to process ongoing information and

plan future actions. Stress has been recognized to strongly influence cognitive and emotional processes

subserved by PFC, including working memory, attention, and inhibition of inappropriate responses

(Arnsten, 1998). Elucidation of the functional role of key neuromodulators in PFC, such as serotonin,

dopamine, and CRF, is central to understanding why prefrontal cortical deficits are so prominent in many

mental illnesses that are exacerbated by stress. In response to stress, PFC shows neurochemical changes and

mediates altered behavior (Wellman, 2001). For example, chronic corticosterone treatment can reorganize

the apical dendrites by increasing the amount of dendritic material proximally and decreasing the distal

dendritic material in the PFC of rats (Wellman, 2001). Another study has shown that endogenous

glucocorticoids are essential for maintaining working memory through a D1‐receptor‐mediated hypodo-

paminergic mechanism in the PFC (Mizoguchi et al., 2004).

PFC is composed of two major neuronal populations: glutamatergic pyramidal projection neurons

and GABAergic interneurons. One of the key roles of GABAergic inhibition in PFC is to shape the temporal

flow of information, and thus regulating working memory (Constantinidis et al., 2002). As the primary

inhibitory transmitter in the CNS, the downregulated GABA system has been linked to the pathophysiology

of several anxiety disorders. This suggests that the GABA system plays a role in homeostasis during stress,

opposing the action of CRF on HPA axis (Lydiard, 2003). The GABAergic inhibitory transmission is one of

the main targets of the serotonergic system in PFC (Zhou and Hablitz, 1999; Feng et al., 2001; Yan, 2002).

For example, by activating 5‐HT2 receptors, 5‐HT induces a large desensitizing enhancement of the
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amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSC) mediated by GABAA

receptors (Zhou and Hablitz, 1999). On the other hand, activation of 5‐HT4 receptor produces an activity‐
dependent bidirectional regulation of GABA‐evoked currents (Cai et al., 2002). A recent study (Tan et al.,

2004) has established a link between CRF and 5‐HT in the PFC, both of which are critically involved in the

pathophysiology of stress‐related mental disorders such as anxiety and depression. The experimental data

have demonstrated that in PFC slices pretreated with CRF or from stressed animals, the 5‐HTregulation of

sIPSC lasts much longer, suggesting that in response to stressful stimuli, CRF could lead to disturbed PFC

functions by altering the serotonergic regulation of GABA transmission (Tan et al., 2004). This finding

provides a possible mechanism for the stress‐induced exacerbation of psychiatric disorders that are

associated with aberrant serotonin actions.
3.2.4 CRF in the Amygdala and Fear Memory

Many studies have demonstrated that the amygdala, a collection of nuclei buried deep within the temporal

lobe, is critical for providing affective salience to sensory information and is involved in the associative

processes for both appetitive and aversive emotions (Maren, 2003; Rainnie et al., 2004). Studies have shown

that amygdala, especially the basolateral amygdaloid complex (BLA), is an essential component mediating

emotional arousal, stress hormone effect on cognitive functions, and the acquisition and expression of

pavlovian fear conditioning (Goldstein et al., 1996; Maren, 2003).

The amygdala is a major extrahypothalamic source of CRF‐containing neurons and has high expression
levels for the two CRF receptors (Palkovits et al., 1983; Van Pett et al., 2000). Under normal conditions, the

function of amygdala can be modulated by stress hormones such as CRF. The dysfunction of amygdala can

also contribute to the pathology of disorders such as posttraumatic stress disorder (PTSD) (Maren, 2003).

During periods of stress, CRF is released into the amygdala (Cratty et al., 1995; Pich et al., 1995), and local

CRF receptor activation has been suggested as a substrate for stress‐induced alterations in affective behavior

(Gray and Bingaman, 1996; Yu and Shinnick‐Gallagher, 1998). In addition, acute stress has been found to

correlate with the increased gene expression of CRF‐BP, but not CRF or CRFRs, in the BLA region

(Herringa et al., 2004). It appears that continuous activation of CRFRs of BLA neurons can cause the

animal to develop anxiety‐like responses in behavioral tests. These behavioral and autonomic responses

persist for over one month in the absence of additional CRFR stimulus. Whole‐cell patch‐clamp recordings

from BLA neurons of these hyperreactive animals revealed a pronounced reduction in both spontaneous

and stimulation‐evoked IPSPs, leading to a hyperexcitability of the BLA network. This stress‐induced
plasticity appears to be dependent on NMDA receptors and subsequent calcium/calmodulin‐dependent
protein kinase II (CaMKII) activation (Rainnie et al., 2004).

The BLA projects extensively to several regions of the prefrontal cortex, where the working memory

is formed. Exposure to stress or glucocorticoid administration impairs the induction of LTP of the

amygdala–prefrontal cortex pathway and the working memory (Maroun and Richter‐Levin, 2003;

Roozendaal et al., 2004). Lesions or pharmacological inactivation of BLA can block the modulatory effect

of glucocorticoids on working memory (Roozendaal et al., 2004), suggesting that BLA activities are essential

for the glucocorticoid effect on PFC functions.

The central nucleus of amygdala is thought to be a key extrahypothalamic region in response to CRF

and stress conditions. In acutely dissociated CeA neurons, CRF increases the peak of the whole‐cell Ca2þ

current, which may be functionally related to the autonomic, behavioral, and endocrine response to stress

(Yu and Shinnick‐Gallagher, 1998). CRF and ethanol have both been found to enhance GABA‐mediated

neurotransmission in CeA (Roberto et al., 2003; Nie et al., 2004). However, the effect of both CRF and

ethanol on GABAergic neurotransmission is lost in CRFR1 knockout mice, suggesting that the behavioral

and motivational effects of ethanol are at least partially mediated through CRF signaling (Nie et al., 2004).

Another limbic nucleus, lateral septum mediolateral nucleus (LSMLN), which is reciprocally innervated

with CeA, is also involved in the stress and affective disorders. Experimental data (Liu et al., 2004) suggest

that CRF depresses excitatory glutamatergic transmission through CRFR1‐mediated postsynaptic pathways

in the CeA, while facilitating glutamatergic transmission in the LSMLN. Conversely, UcnI, with higher
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affinity to CRFR2 than CRF, facilitates the excitatory postsynaptic current (EPSC) via CRFR2‐mediated

presynaptic and postsynaptic pathways in the CeA, while depressing EPSCs in the LSMLN through the same

signaling pathway. These data demonstrate that CRF receptors in CeA and LSMLN synapses exert and

maintain a significant synaptic tone and regulate excitatory glutamatergic transmission differently in these

regions (Liu et al., 2004).
3.2.5 CRF in the Ventral Tegmental Area

The ventral tegmental area (VTA), which sends dopaminergic inputs to the nucleus accumbens, PFC, and

amygdala, plays a central role in both acute and chronic responses to addictive drugs (Spanagel and Weiss,

1999). The state of stress contributes significantly to various aspects of drug addiction, particularly in acute

withdrawal, protracted abstinence, and vulnerability to relapse (Koob and Heinrichs, 1999). CRF appears to

be a key link between the behavioral and physiological effects of stress and drugs of abuse (Shaham et al.,

2000). For example, acute withdrawal is associated with a negative affective state including dysphoria,

depression, irritability, and anxiety, which is mostly, if not all, associated with the CRF and the stress

response system (Koob and Heinrichs, 1999).

Similar to drugs of abuse, stress increases the dopamine (DA) released to PFC and nucleus accumbens

(De Biasi and Dani, 2003). Moreover, the AMPA/NMDA ratio, an indirect measurement of synaptic

strength, in VTA dopaminergic neurons is increased in rats treated with drugs of abuse such as cocaine,

morphine, amphetamine, and in stressed animals (Saal et al., 2003). Another study has shown that CRF can

potentiate NMDAR‐mediated EPSCs in a subset of VTA dopaminergic neurons through the CRFR2/PLC/

PKC pathway (Ungless et al., 2003). Taken together, these results suggest that the CRF regulation of VTA

dopamine neurons may be a key neural adaptation contributing to addiction.
3.2.6 CRF in Other Brain Regions

The locus coeruleus–norepinephrine (LC/NE) autonomic systems is another major component of the stress

system besides the CRF (Tsigos and Chrousos, 2002). Data have shown that NE neurons in the brain

stem can stimulate PVN to release CRF, and therefore activate the HPA axis. On the other hand, the

CRF‐containing neurons in the PVN, amygdala, and other areas have projection to the LC to modulate the

electrophysiological activities of LC/NE neurons (Dunn et al., 2004). In addition, long‐term blockade of

CRFR1 increases exploratory behavior, possibly by reducing the LC activity (Mallo et al., 2004). CRF in the

LC area might even play an important role in stress‐induced suppression of the reproductive system,

because CRF administered in LC area reduces the luteinizing hormone (LH) pulse frequency in ovariecto-

mized rats. This result shows that CRF can impact and inhibit the hypothalamic–pituitary–gonadal (HPG)

axis and is consistent with the well‐established regulatory function of LC during stress (Mitchell et al., 2005).

In the cerebellum, a high concentration of CRF is found in the climbing fiber (CF) afferents, which

supply excitatory synapse from the inferior olive to the Purkinje cells. One important function of the CF

system is to induce LTD at the parallel fiber synapses of Purkinje cells (Ito, 1989). CRF found in CF appears

to play a crucial role in cerebellar LTD, because LTD induction is effectively blocked by specific CRF

receptor antagonists, and LTD is no longer observed in CF‐deprived cerebella but is restored by CRF

replenishment (Miyata et al., 1999).

The impact of CRF as a neuropeptide in various brain areas is summarized in >Table 26-1.
4 CRF and Stress‐Related Neuropsychiatric Disorders

4.1 Linkages Between CRF and Mental Disorders

Many findings show that the pathophysiology of several mental disorders, such as major depressive

disorder (MDD), anxiety, panic disorder, PTSD, and schizophrenia, is related to the stress response system,
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Extrahypothalamic functions of CRF

Brain regions
Impact of CRF

Direct effectsa Indirect effects

Dorsal raphe

nucleus

� CRF has opposite effects on different regions

of serotonergic neurons in DR

� In stressed animals, CRF in DR regulates

the release of serotonin in forebrain

terminal regions

� In response to stress, CRF interacts with

GABAergic neurons in DR to indirectly

regulate the activities of serotonergic

neurons and serotonin release

Hippocampus — � Repeated stress leads to atrophy of

dendrites in CA3 and the suppression of

neurogenesis of dentate gyrus granule

neurons

� The induction of hippocampal LTP is

inhibited by behavioral stress

� The induction of hippocampal LTD is

facilitated by exposure to stress

Prefrontal

cortex

� CRF alters the serotonergic regulation of GABA

transmission in PFC

� In response to stress, PFC shows

neurochemical changes and mediates

altered behavior

Amygdala � Continuous activation of CRFRs of BLA

neurons induces anxiety‐like responses in

animal behavioral tests, which is attributable

to the reduction of GABAergic inhibition and

hyperexcitability of the BLA network

� Exposure to stress or glucocorticoid

administration impairs the induction of

LTP of the amygdala–prefrontal cortex

pathway and the working memory

� Ethanol enhances GABA‐mediated

transmission in CeA through CRF signaling

� CRFRs CeA and LSMLN synapses regulate

excitatory glutamatergic transmission

differently in these regions

Ventral

tegmental

area

� CRF potentiates NMDAR‐mediated EPSCs in a

subset of VTA neurons through the CRFR2/

PLC/PKC pathway

� Stress increases the dopamine released to

PFC and to nucleus accumbens from VTA

� Stress increases the synaptic strength in

VTA dopaminergic neurons

Locus

coeruleus

� The CRF‐containing neurons have projection

to LC for modulating the electrophysiological

activities of norepinephrine neurons

—

� Long‐term blockade of CRFR1 increases

exploratory behavior, possibly by reducing the

LC activity

Cerebellum � High concentration of CRF found in the

climbing fiber afferents plays a crucial role in

cerebellar LTD at the parallel fiber synapses of

Purkinje cells

aDirect effect of CRF: data obtained from in vitro studies with application of CRF or other CRFR ligands directly on tissues.

Indirect effect of CRF: data obtained from in vivo studies with animals exposed to external stressors
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to the noncontinuous hypersecretion of cortisol due to increased CRF activities, as well as to systems that

regulate the CRF response (Arborelius et al., 1999; Claes, 2004). Many experimental data suggest that

alteration of CRF1 and/or CRF2 receptor functioning is involved in the etiology of human stress disorders,

particularly anxiety and depression (Arborelius et al., 1999). Severe anxiety and depression has been

hypothesized to result from exaggerated neurotransmission in one or more of the following CRF‐regulated
pathways mediating the stress response: the HPA axis, the LC/NE systems, and the serotonergic DR system

(Arborelius et al., 1999; Dautzenberg and Hauger, 2002).

Acute stress, acute experience of loss, chronic stress factors, and early childhood trauma, which depend

on a critical time window, the nature of the stressors, presence or absence of supportive environment, and

genetic liability, all can induce depression (Arborelius et al., 1999; Rosenblum et al., 2001; Claes, 2004).

MDD patients often have clinically significant excessive exposure to glucocorticoids (Gold et al., 2002;

Claes, 2004). Glucocorticoids exert negative feedback effects on hypothalamic CRF neurons. In depressed

patients, the negative feedback loop fails to bring cortisol levels back to their homeostatic levels, either

secondary to loss of glucocorticoid negative feedback or to an overriding stimulus to activation of the HPA

axis.

Increasing amount of data indicate that lifelong susceptibility to anxiety can be determined by both

genetic and environmental factors during early development (Gross and Hen, 2004). It has been shown that

5‐HT is essential for the establishment of normal anxiety‐modulating circuits during postnatal develop-

ment (Gross et al., 2002; Gross and Hen, 2004). Experimental data also show that application of CRFR

antagonists or CRF antisense oligodeoxynucleotide can produce anxiolytic effects in the rats through

CRFR1‐dependent pathways (Arborelius et al., 1999). In addition, environmental conditions during

developmental stages are known to alter the glucocorticoid receptor gene expression in the hippocampus

and the HPA axis responses to stress (Weaver et al., 2001).

One of the most consistent findings in the study of PTSD, a subclass of anxiety disorder, is the decrease

of the volume of hippocampus, a structure in the medial temporal lobe required for associative memory

(Gross and Hen, 2004). The volume and structure of hippocampus, which can be easily damaged by stress

hormone and environment factors, might be different from person to person due to genetic variation

(McEwen, 1999; Claes, 2004; Gross and Hen, 2004). PTSD is an example of anxiety disorders in which

environmental risk factors seem to be modulated by genetic factors. In other words, the hippocampal

volume is a preexisting condition that determines the susceptibility to PTSD (Gross and Hen, 2004).

Similar to MDD, PTSD is characterized by a central CRF hyperdrive, but unlike in MDD, HPA axis negative

feedback is enhanced, resulting in a low cortisol output (Bremner et al., 1997; Heim et al., 1997; Yehuda,

1997; Baker et al., 1999). In panic disorder, another subclass of anxiety disorders, a diminished ACTH

response to CRF suggests that the HPA axis is dysfunctional (Roy‐Byrne et al., 1986).
Abnormal prefrontal cortical activity and activation of the HPA axis have been extensively reported in

patients with affective disorders and schizophrenia. The mineralocorticoid receptor (MR) and glucocorti-

coid receptor (GR) are two nuclear hormone receptors of primary importance in the control of stress‐
related HPA activity. A recent study shows that blocking brain MR activity significantly enhances CRF‐
induced ACTH and cortisol release in humans (Born et al., 1997). The expression of MR is deficient in the

prefrontal cortex of patients with schizophrenia and affective disorders (Xing et al., 2004). Moreover, it has

been reported that CRF concentrations in the cerebrospinal fluid (CSF) are increased in 18 of 21 male

patients with schizophrenia after maintenance haloperidol is replaced by placebo. However, CRF concen-

trations are not significantly related to severity of psychosis, depression, anxiety or negative symptoms

(Forman et al., 1994).
4.2 Alteration of the CRF System in Brains of Patients Suffering from
Depression and of Suicide Victims

Conflicting results have been obtained regarding the alteration of the CRF system in brains of patients

suffering from depression and suicide victims. Some reports show that the CRF level in CSF, the circulating

cortisol, or the CRF immunoreactivity in PVN neurons is increased in patients suffering from depression
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(Nemeroff et al., 1984; Raddsheer et al., 1995; Austin et al., 2003), whereas others have found a 23%

reduction in the number of CRF binding sites in the frontal cortex of the suicide victims (Nemeroff et al.,

1988). On the other hand, several reports show that there is no difference between patients suffering from

depression and the control groups in CRF immunoreactivity, in receptor binding, or in CRF levels (Pitts

et al., 1995; Hucks et al., 1997; Austin et al., 2003). However, postmortem detection of very high

concentrations of CRF in the CSF of severely depressed suicide victims has provided additional support

for the hypothesis that chronic hypersecretion of CRF plays a leading role in the etiology of major

depression (Arborelius et al., 1999; Dautzenberg and Hauger, 2002).

Recent studies show that there are indeed differences between the brains of patients suffering from

depression and of control groups. These differences are found at more local regions rather than the whole

brain. For example, CRFR1 is increased in the regions related to the NE/5‐HT neurotransmission, such as

the locus coeruleus, the median raphe, and the caudal dorsal raphe, when compared between suicide

victims and control groups. However, no difference exists in dorsal tegmentum or medial parabrachial

nucleus. CRFR1 levels are specifically increased in NE‐ and 5‐HT‐ containing pontine nuclei (Austin et al.,

2003). Other differences, such as a shift in the ratio of CRFR1/R2 in the pituitaries of suicide victims, have

also been reported (Hiroi et al., 2001). Also, it has been found that in the frontal cortex, mRNA of CRFR1,

but not CRFR2, is reduced in brains from suicide victims (Merali et al., 2004).
4.3 Mice with Mutant CRF System

The knockout (KO) and overexpression (OE) systems are two valuable tools for investigating how CRF

system functions in relation to the stress‐related disorders. KO or OE systems have been generated for

almost every member in the CRF family. Phenotypes obtained from these animals have greatly expanded or

confirmed what we know about the pathophysiological functions of CRF.

CRF‐OEmice show increased anxiety‐like behaviors and hyperactivity in a novel environment (Stenzel‐
Poore et al., 1994), which suggests a connection between stress, anxiety, and locomotor activity. Despite

strong evidence in support of the involvement of CRF in anxiogenic behaviors, CRF‐KO mice display

normal behavioral responses to stress (Weninger et al., 1999). A significant increase in anxiety‐like
behaviors has been found in the UcnI‐KO mice (Vetter et al., 2002). CRF‐BP‐KO mice display an expected

increase in anxiety‐like behaviors which is presumably the result of increased free CRF or UcnI in the

absence of the binding protein (Karolyi et al., 1999). Although these results suggest an important regulatory

role for CRF‐BP in ‘‘dampening’’ functions in stress‐induced behaviors, expression levels and comparisons

of unbound CRF ligands have not yet been well characterized in these mice.

Mice deficient for CRFR1 display the predicted phenotype of reduced anxiety and impaired stress

response (Smith et al., 1998). These results obtained from global deletion of CRFR1 have confirmed

previous studies for an anxiogenic role for this receptor. CRFR2‐KO mice show the expected anxiety‐like
behaviors; supporting the hypothesis that CRFR2 normally functions to reduce the anxiety‐generating
action of CRFR1 (Bale et al., 2000a). Consistent with the hypothesis, treatment of CRFR2‐KOmice with the

CRFR1 antagonist decreased the anxiety behaviors in experimental animals. The increased CRF mRNA

levels in the central nucleus of the amygdala in CRFR2‐KO mice may explain the increased anxiety‐like and
depression‐like behaviors detected in these mice (Bale et al., 2000a), as this nucleus plays a major role in the

transduction of stress signals (Liang et al., 1992). Results from testing double CRF‐receptor‐deficient mice

for anxiety‐like behaviors have revealed that their responses are sexually dichotomous (Bale et al., 2002).

Female CRFR1/2‐KOmice display decreased levels of anxiety‐like behaviors when compared with wild‐type
mice, while male CRFR1/2‐KO mice display anxiogenic‐like behavior.
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Abstract: This chapter provides a brief historical perspective concerning the discovery of the renin–

angiotensin system (RAS), followed by a description of the biochemical pathways that permit synthesis

and degradation of active angiotensin peptides, and the three receptor subtypes thus far characterized. This

is followed by a review of the physiologies and behaviors mediated by these peptides. These classic

physiologies include cardiovascular control, vasopressin release, thirst, and electrolyte balance. More

recently angiotensins have been implicated in the mediation of stress, anxiety, depression, learning, and

memory consolidation. The chapter concludes with a water shortage scenario that is envisioned to

encompass and illustrate the majority of the angiotensin mediated physiologies and behaviors.

List of Abbreviations: ACD, acyl‐coenzyme A dehydrogenase; ACE, angiotensin‐converting enzyme;

ACE2, human angiotensin‐converting enzyme homologue; ACh, acetylcholine; ACTH, adrenocorticotropic

hormone; ADH, antidiuretic hormone; Ang, angiotensin; AngI, angiotensin I; AngII, angiotensin II; AngIII,

angiotensin III; AngIV, angiotesnin IV; Ang(1‐7), angiotensin II(1‐7); Ang(2‐7), angiotensin II(2‐7); Ang
(3‐7), angiotensin II(3‐7); AMPA, a‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid; AP, area post-
rema; AP‐1, activator protein‐1; AP‐A, aminopeptidase A; APMA, p‐aminophenylmercuric acetate; AP‐N,
aminopeptidase N; AT, angiotensin receptor subtype; Carb‐P, carboxypeptidase P; CRH, corticotropin‐
releasing hormone; CVOs, circumventricular organs; EC27, 2‐amino‐pentane‐1,5‐dithiol; EC33, 3‐amino‐
4‐thio‐butyl‐sulfonate; ERK, extracellular signal‐regulated kinase; GLUT, glucose transporter molecules;

GST, glutathione‐s‐transferase; GTPgS, guanosine triphosphate g sulfate; ICV, intracerebroventricular;

IRAP, insulin‐regulated aminopeptidase; LVV‐H7, leucine‐valine‐valine‐hemorphin‐7; MAP‐K, microtu-

bule‐associated protein kinase; NMDA, N‐methyl‐D‐aspartate; NO, nitric oxide; NTS, nucleus of solitary
tract; OVLT, organum vasculosum of the lamina terminalis; PAI‐1, plasminogen activator inhibitor‐1; PO,
propyl oligopeptidase; PVN, paraventricular nucleus; RAS, renin–angiotensin system; SFO, subfornical

organ; SON, supraoptic nucleus; tPA, tissue plasminogen activator; uPA, urokinase plasminogen activator
1 Introduction

In 1898 Tiegerstedt and Bergman isolated a kidney extract, later identified as renin, that produced a pressor

response when injected into rabbit (Tiegerstedt and Bergman, 1898). Approximately forty years later

angiotensin II (AngII) was shown to be the active agent by two independent research groups, and renin

was identified as a protease (EC 3.4.23.15) (Munoz et al., 1939; Braun‐Menendez et al., 1940; Page and

Helmer, 1940). Subsequently the synthesis steps necessary for the formation of the active forms of

angiotensins were identified (Elliott and Perart, 1956; Skeggs et al., 1957). By the 1960s and early 1970s

research attention moved to the brain facilitated by four complementary observations that provoked

interest in determining whether an independent brain renin–angiotensin system (RAS) exists: (1) Bickerton

and Buckley (1961) employed cross‐circulation experiments to show that AngII, arterially injected into one

dog and into the head of a second dog, could produce a pressor response in the lower body of the second

dog, even though the only connection between the head and lower body was via nerves. (2) Epstein et al.

(1970) discovered that injections of AngII into the brain produced robust drinking in the rat. (3) Ganten

et al. (1971a, b) isolated renin in the dog brain, while Fisher‐Ferraro et al. (1971) identified renin and AngII

in the dog brain. (4) Finally, Sirrett et al. (1977) developed a radio‐receptor binding assay to establish the

presence of AngII receptors in the rat brain. Taken together these observations suggested an independent

brain RAS separate from the blood‐borne AngII system. Confirmation of this hypothesis required several

more years of work utilizing a variety of techniques including radioimmunoassay, immunohistochemistry,

radio‐receptor binding assays, and Northern blots of renin and angiotensinogen mRNAs (Phillips et al.,

1979; Harding et al., 1981; Ganten et al., 1983; Hermann et al., 1984; Dzau et al., 1986; Lynch et al., 1986).

The most recent events to facilitate our understanding of the RAS occurred during the late 1980s and

early 1990s and included two related sets of findings. (1) Two angiotensin receptor subtypes were cloned

and sequenced (Chiu et al., 1989; Whitebread et al., 1989; Iwai et al., 1991; Murphy et al., 1991; Kambayashi

et al., 1993; Mukoyama et al., 1993). (2) A third angiotensin receptor subtype was discovered (but to date

has not been cloned and sequenced) that appears to mediate nonclassical functions including influences
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upon blood flow, learning, and memory (Harding et al., 1992; Swanson et al., 1992; Bernier et al., 1994,

1995). These discoveries have rekindled interest in the brain RAS and its potential role in additional

physiologies and pathologies.
2 Biochemistry of the Renin–Angiotensin System

The RAS mediates several physiologies including blood pressure, sodium and body water balance, cyclicity

of reproductive hormones and sexual behaviors, and pituitary gland hormones. These functions appear to

be under the control of the AT1 receptor subtype (Allen et al., 2000; deGasparo et al., 2000; Gard, 2002;

McKinley et al., 2003; Thomas and Mendelsohn, 2003). A second subtype, the AT2, has also been implicated

in the regulation of blood pressure, renal function, and vascular growth (deGasparo and Siragy, 1999; Speth

et al., 1995; deGasparo et al., 2000). The octapeptide AngII has traditionally been considered the end

product of the RAS, and therefore the active ligand at these receptors subtypes. Accumulating evidence

indicates that additional shorter‐chain angiotensins also serve as effector peptides in this system. These

peptides include the heptapeptide des Asp1‐AngII referred to as angiotensin III (AngIII) (Wright and

Harding, 1997; Vauquelin et al., 2002), the hexapeptide des Asp1, des Arg2‐AngII referred to as AngIV

(Wright and Harding, 1994, 1995, 1997; Wright et al., 1995; deGasparo et al., 2000; Albiston et al., 2003;

Thomas and Mendelsohn, 2003), and the heptapeptide des Phe8‐AngII referred to as Ang(1‐7) (Ferrario
et al., 1997; Santos et al., 2000; Ferrario, 2003). The proposed functions mediated by AngIV include

influences upon blood flow (Kramár et al., 1997; Coleman et al., 1998; Møeller et al., 1999; Slinker et al.,

1999), kidney natriuresis (Handa et al., 1998; Hamilton et al., 2001), expression of plasminogen activator

inhibitor (PAI‐1) in endothelial cells (Kerins et al., 1995; Mehta et al., 2002) and in epithelial cells of the

kidney proximal tubule (Gesualdo et al., 1999), and memory facilitation (reviewed in Wright et al., 2002a;

Albiston et al., 2003; Bohlen und Halback, 2003). The functions thus far identified for Ang(1‐7) include
vasopressin, nitric oxide (NO), and prostaglandin release, and facilitation of baroreceptor reflex sensitivity

(Santos et al., 2000; Kucharewicz et al., 2002).
2.1 Formation of Angiotensin Ligands

Angiotensinogen serves as a precursor protein to angiotensin peptides (> Figure 27-1). The decapeptide

angiotensin I (AngI) is formed by the protease renin (EC 3.4.23.15) acting upon the amino‐terminal of

angiotensinogen. AngI is a substrate for angiotensin‐converting enzyme (ACE: EC 3.4.15.1), a zinc

metalloprotease that hydrolyzes the carboxy‐terminal dipeptide His‐Leu to form AngII (Johnston, 1990).

AngII is converted to AngIII by glutamyl aminopeptidase A (AP‐A: EC 3.4.11.7, or A‐like activity) that

cleaves the Asp residue at the N‐terminal (Rich et al., 1984; Wilk and Healy, 1993; Chauvel et al., 1994).

Membrane alanyl aminopeptidase N (AP‐N: EC 3.4.11.2) cleaves Arg at the N‐terminal of AngIII to form

AngIV. AngIV can be further converted to Ang(3‐7) by carboxypeptidase P (Carb‐P) and propyl oligo-

peptidase (PO) cleavage of the Pro–Phe bond. Endopeptidases such as chymotrypsin are capable of cleaving

the Val, Tyr, and Ile residues along with dipeptidyl carboxypeptidase that cleaves the His–Pro bond,

reducing AngIV and Ang(3‐7) to inactive peptide fragments and amino acid constituents (Unger et al.,

1988; Johnston, 1990; Saavedra, 1992; Speth et al., 2003).

AngII can also be converted to Ang(1‐7) by Carb‐P cleavage of phenylalanine (reviewed in Wright and

Harding, 1997) or by ACE cleavage of the dipeptide Phe‐His from Ang(1‐9) (Vauquelin et al., 2002), and

can be further converted to Ang(2‐7) by AP‐A acting at the Asp‐Arg bond (Mentlein and Roos, 1996).

AngI is considered inactive while AngII and AngIII are full agonists at the AT1 and AT2 receptor sub-

types (reviewed in deGasparo et al., 2000). AngIV binds with low affinity at the AT1 and AT2 receptor

subtypes (Glossman et al., 1974; Bennett and Snyder, 1976; Harding et al., 1992; Swanson et al., 1992), but

with high affinity and specificity at the AT4 receptor subtype (Harding et al., 1992; Jarvis et al., 1992;

Swanson et al., 1992; Bernier et al., 1994). A specific binding site for Ang(1‐7) has been reported (Santos

et al., 1994, 2000; Ferrario, 2003; Neves et al., 2003), but not fully elucidated.



. Figure 27-1

Summary of the peptide structures and enzymes involved in the conversion of the tetradecapeptide portion of

angiotensinogen to angiotensin I (AngI) through shorter fragments. Those forms of angiotensin considered

biologically active include AngII, AngIII, AngIV, and Ang(1‐7)
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2.2 Angiotensin Receptor Subtypes

At present there are three recognized angiotensin receptor subtypes (deGasparo et al., 1995), two that are

structurally similar, and a third that appears different. The AT1 and AT2 subtypes are similar given their

G protein coupling as compared with the AT4 subtype that is a much larger protein and appears to be

insensitive to guanine nucleotides, suggesting that it may not be G‐protein‐linked.
2.2.1 AT1 and AT2 Receptor Subtypes

The AT1 receptor subtype is a G‐protein‐coupled receptor with signaling via phospholipase‐C and calcium.

Thus, the angiotensin ligand binds to the AT1 receptor and induces a conformational change in the receptor

protein that activates G proteins that, in turn, mediate signal transduction. This transduction involves

several plasma membrane mechanisms including phospholipase‐C, ‐A2, ‐D, and adenylate cyclase, plus

L‐type and T‐type voltage sensitive calcium channels (Sayeski et al., 1998; deGasparo et al., 2000). This AT1

receptor (now designated AT1A) is also coupled to intracellular signaling cascades that regulate gene

transcription and the expression of proteins that mediate cellular proliferation and growth in many target

tissues. Expression cloning was used to isolate the cDNAs encoding this receptor protein (Murphy et al.,

1991; Sasaki et al., 1991) and it was found to be a seven transmembrane domain protein consisting of 359‐
amino‐acids with a molecular mass of approximately 41 kDa (Sandberg et al., 1994). Subsequently, a second

AT1 subtype was discovered and designated AT1B that was also cloned from the rat (Iwai and Inagami,

1992; Kakar et al., 1992), mouse (Sadamura et al., 1992), and human (Konoshi et al., 1994). This subtype is

approximately 92–95% homologous with the amino acid sequence of the AT1A subtype (Guo and Inagami,

1994; Speth et al., 1995). Of these two isoforms the AT1A subtype appears to be responsible for the

classic functions associated with the brain angiotensin system (reviewed in Saavedra, 1999; Thomas and

Mendelsohn, 2003).
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The AT2 receptor subtype has also been cloned using a rat fetus expression library and sequenced

(Bottari et al., 1991; Kambayashi et al., 1993). In common with the AT1 subtype, this receptor protein also

evidences a seven transmembrane domain characteristic of G‐protein‐coupled receptors, however it shows

only about 32–34% amino acid sequence identity with the rat AT1 receptor. The AT2 receptor protein

includes a 363‐amino‐acid sequence (40 kDa) with 99% sequence agreement between rat and mouse, and

72% homology with human (deGasparo et al., 2000). Even though this AT2 receptor possesses structural

features in common with members of the seven transmembrane family of receptors, it displays few if any

functional similarities with this group, although it does appear to be G‐protein‐coupled (Bottari et al., 1991;
Kambayashi et al., 1993; Mukoyama et al., 1993; deGasparo et al., 2000). Specific characteristics of the AT1

and AT2 receptor subtypes are summarized in >Table 27-1.
. Table 27-1

Characteristics of the angiotensin receptor subtypes

Characteristic AT1 AT2 AT4

Affinity AngII>AngIII>AngI AngIII>AngII>AngI AngIV

Sensitivity to

SH reagents

Inactivation Enhancement No effect

Selective

antagonists

CGP46027, DuP753, DuP532, EXP3174,

L158809, GR117289, SK/F108566, SC51316,

UP269‐6, LR‐B/081

CGP42112A, PD123177,

PD121981, PD123319,

PD124125

Divalinal‐AngIV,
Nle1, Leual3‐
AngIV

Coupling to

G protein

Yes Likely Unlikely

Signal

transduction

↑Ca2þ, ↑P3, ↓adenylyl cyclase,
↑prostaglandins

↓cGMP/↑cGMP,

↑prostaglandins

Unknown

Structure 359 amino acids, 7 transmembrane domains 363 amino acids, 7

transmembrane domains

Trimer

Molecular size 41–42 kDa 40–41 kDa a 165 kDa,

b 50–60 kDa,

g 70–80 kDa

Adapted from Wright and Harding (1997, 2004), Speth et al. (2003)
2.2.2 AT4 Receptor Subtype

Before 1988, angiotensins shorter than AngIII were considered biologically inactive and therefore of little

physiological importance. This assumption was based on two facts: (1) AngIV reveals a very poor affinity

for the AT1 and AT2 sites (Glossman et al., 1974; Bennett and Snyder, 1976; Harding et al., 1992; Swanson

et al., 1992) and (2) AngIV and shorter fragments are considerably less potent than AngII and AngIII in

eliciting classic angiotensin‐dependent functions (Blair‐West et al., 1971; Fitzsimons, 1971; Tonnaer et al.,

1982; Unger et al., 1988; Wright et al., 1989). Two findings changed this assumption. First, Jan Braszko et al.

(1988) reported that AngIV facilitated acquisition of a conditioned avoidance response in rats. Second, a

separate and distinct binding site for AngIV was discovered (Harding et al., 1992; Swanson et al., 1992) and

subsequently classified as the AT4 subtype (deGasparo et al., 1995). This subtype was originally identified in

bovine adrenal membranes (Harding et al., 1992; Jarvis et al., 1992; Swanson et al., 1992; Bernier et al.,

1994). These characterization studies indicated that the AT4 receptor subtype is distinct from the AT1 and

AT2 sites given that ligands known to bind to these sites do not bind at the AT4 site (> Table 27-1) (Harding

et al., 1992; Swanson et al., 1992). It was determined that [125I]AngIV binds at the AT4 site reversibly,

saturably, and with high affinity. This AT4 site has been found in a variety of mammalian tissues including

adrenal gland, bladder, colon, heart, kidney, prostate, brain, and spinal cord.
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Given that a small peptide is capable of activating the AT4 site, and that the vast majority of small

peptide receptors are G‐protein‐linked, it was logical to predict that the AT4 receptor might be a serpentine

G‐protein‐linked receptor as well. However, this does not appear to be the case since binding to this site was

found to be insensitive to guanine nucleotides, suggesting that the AT4 receptor is not G‐protein‐linked. In
addition the AT4 receptor subunit exhibits a molecular weight of between 160 and 190 kDa as determined

by reduced SDS‐polyacrylamide gel electrophoresis. This receptor appears to be a trimer as suggested by

results from a nonreducing gel that indicated two additional subunits. An equivalent molecular weight has

been observed for this receptor in other bovine tissues including heart, thymus, kidney, bladder, aorta, and

hippocampus (Zhang et al., 1999). Further, Bernier and colleagues (1995, 1998) have reported a similar

molecular weight for the binding subunit of the AT4 receptor in bovine aortic endothelial cells. The lack of

linkage to G proteins is also supported by the observation that guanosine triphosphate g sulfate (GTPgS)
failed to alter [125I]AngIV binding in rabbit heart (Hanesworth et al., 1993), guinea pig brain (Miller‐Wing

et al., 1993), and rat vascular smooth muscle (Hall et al., 1993). A single report by Dulin et al. (1995)

indicates that GTPgS can inhibit AT4 receptor binding in opossum kidney cells. Thus, to date there is little

evidence linking the AT4 receptor to G proteins, however, as experienced with the AT2 receptor, a definitive

conclusion must await cloning and sequencing of the AT4 receptor.
2.2.3 Insulin‐Regulated Membrane Aminopeptidase (IRAP)

A potentially important advancement in our understanding of the AT4 receptor system is the recent

identification of this receptor as insulin‐regulated membrane aminopeptidase (IRAP) (Albiston et al.,

2001), a membrane associated aminopeptidase that codistributes with the GLUT4 transporter (Kandror

and Pilch, 1994; Keller et al., 1995). The initial identification was based on sequence homology between a

tryptic fragment derived from the human brain AT4 receptor and human IRAP, and on the near identical

masses of IRAP and the AT4‐receptor‐binding subunit protein. Subsequent expression of IRAP in HEK293T

cells (Lee et al., 2003) yielded an AT4 receptor‐like binding site with an affinity for AngIV that was similar to

the native receptor. These authors have proposed that the multiple physiological actions of AT4 receptor

ligands are due to their ability to competitively inhibit the peptidase activity of IRAP, thus potentiating the

actions of endogenous peptides that are normally degraded by IRAP (Lew et al., 2003). This model predicts

that the action of all AT4 receptor ligands should be qualitatively equivalent since their action is simply due

to their binding to IRAP and competitive interference with IRAP’s ability to catabolize endogenous

peptides. Clearly this notion does not fit with the existence of both agonists and antagonists that exhibit

opposite physiological actions (Kramár et al., 1997, 2001; Wright et al., 1999; Hamilton et al., 2001).

Further, this model predicts that the physiological effects of AT4 receptor ligands should be slow since this

action requires an accumulation of endogenous ligand. Again this prediction does not agree with the

observation that AT4 ligands have amazingly rapid effects on signaling molecules (Chen et al., 2001; Handa,

2001; Li et al., 2002). For example, studies in our laboratory indicate that AT4 receptor activation can lead to

a 20‐fold increase in ERK activation in C6 glioma cells within 30 s (Harding, Anderson and Meighan,

unpublished). Similarly, in vivo studies indicate rapid responses to AT4 receptor ligands. The time course of

AT4‐dependent changes to blood flow (Kramár et al., 1997), renal oxygen consumption (Handa et al.,

1998), and long‐term potentiation are rapid (Kramár et al., 2001; Wayner et al., 2001), typically manifesting

in less than 1 min. It is difficult to imagine that sufficient peptide would accumulate in such a short period

of time to impact physiological responses. More typical time frames for in vivo peptidase inhibitors are

hours or days, not seconds. Additionally, the concentrations of AT4 ligands required to effect changes in

physiological function can be subpicomolar or subnanomolar (Chen et al., 2001; Handa, 2001; Li et al.,

2002), concentrations that are well below that reported for any known enzyme inhibitor. This concern is

magnified for IRAP specifically because the recently reported Ki of Norleucine
1‐Angiotensin IV (Nle1‐

AngIV) for IRAP of >0.3 mM (Lew et al., 2003) is several orders of magnitude higher than the biologically

effective doses of AT4 ligands. Also casting doubt on the hypothesis that AT4 ligands function as competitive

substrates is a study by Caron and colleagues (2003), suggesting that AngIV ligands interact allosterically

with the IRAP receptor at a site distinct from the active site. The precise characteristics concerning the
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structure of AngIV, its analogs, and other angiotensins such as AngIII, that render them nonsubstrates for

IRAP, but still retain their ability to bind, are presently unclear (Lew et al., 2003). Finally, this highly unusual

situation is in opposition to earlier work by Tsujimoto et al. (1992) who demonstrated that AngIII is an

excellent substrate for human placental leucine aminopeptidase (homolog of rat IRAP; Keller et al., 1995).

The discordance between the IRAP inhibitor model and laboratory observations suggests two likely

possibilities. First, IRAP may not be the signal transducing AT4 receptor but is instead involved with

regulating the extracellular levels of endogenous AT4 receptor ligands. Second, IRAP may be the signal

transducing receptor but relies on activities beyond its abilities as an aminopeptidase. If the second

possibility is correct then IRAP should possess in its short 109‐amino‐acid hydrophilic N‐terminal segment

the information required for signal transduction. Lending credibility to this possibility are previous studies,

one indicating that the N terminus of IRAP contains two dileucine motifs and several acidic regions that

play important roles in vesicular trafficking (Keller et al., 1995; Waters et al., 1997). A peptide consisting of

residues 55–82 of the N terminus, containing one of the dileucine motifs and acidic clusters, was sufficient

to cause GLUT4 translocation (Waters et al., 1997). Correspondingly, Ryu et al. (2002) showed in vitro

phosphorylation of IRAP Ser80, which is involved in the regulation of insulin‐stimulated GLUT4 translo-

cation. The poly (ADP‐ribose) polymerase tankyrase was identified in a yeast two‐hybrid system and

interacted with 96–101 amino acids of IRAP (Chi and Lodish, 2000). Interestingly, acyl‐coenzyme A

dehydrogenases (ACDs), identified by glutathione‐s‐transferase (GST) fusion‐IRAP (GST‐IRAP55‐82) is
probably involved in retention of GLUT4 vesicles to designated intracellular compartments (Katagiri et al.,

2002). Similar mechanisms might exist for IRAP at the plasma membrane resulting in signal transduction,

given that several signaling events have been associated with activation of AT4 receptor/IRAP by AT4 ligands

(Handa, 2001; Li et al., 2002). Even though the exact role played by IRAP in AT4 ligand signaling is not clear,

the high affinity of IRAP for AT4 receptor ligands suggests that its function is substantial.

In addition to AngIVacting as a ligand at the AT4 receptor/IRAP complex, recent studies indicate that a

decapeptide, LVV‐hemorphin‐7 (LVV‐H7) isolated from sheep cerebral cortex (Møeller et al., 1997), also

acts as an AT4 ligand. Although there is minimal structural overlap between AngIV and LVV‐H7, the latter

ligand exhibits many of the same effects as the hexapeptide as observed from several in vitro assays

including facilitation of cellular proliferation (Mustafa et al., 2001), potassium‐evoked acetylcholine release

from hippocampal slices (Lee et al., 2001), the inhibition of catalytic activity by IRAP (Albiston et al., 2001),

and attenuation of scopolamine‐induced interference with acquisition of associative and spatial memory

tasks (Albiston et al., 2004). Presumably other putative endogenous ligands will be found in the near future.
2.2.4 Angiotensin(1‐7)

Ferrario and colleagues (Schiavone et al., 1988) were the first to report biological activity of Ang(1‐7) in the

form of vasopressin release from the posterior pituitary gland (> Table 27-2). In the years since that

discovery, many investigators have confirmed the biological importance of this peptide (reviewed in Santos

et al., 2000; Carey and Siragy, 2003; Kucharewicz et al., 2002). Ang(1‐7) opposes several of the actions

of AngII and AngIII. Specifically, Ang(1‐7) stimulates the release of NO and vasodilator prostaglandins

(Meng and Busija, 1993; Osei et al., 1993; Paula et al., 1995; Brosnihan and Ferrario, 1996; Li et al., 1997).

Ang(1‐7)‐stimulated release of NO appears to be primarily from vascular endothelial and smooth muscle

cells (Jaiswal et al., 1992; Muthalif et al., 1998) and opposes AngII‐induced vasoconstriction (Ueda et al.,

2000). It also appears to protect cardiac and endothelium function as well as coronary perfusion, as

demonstrated in a heart failure model (Loot et al., 2002). Further, Ang(1‐7) has been shown to facilitate

baroreceptor reflex sensitivity and modulate circadian rhythm influences on heart rate and blood pressure

(Campagnole‐Santos et al., 1992; Silva‐Barcellos et al., 2001). It is well established that AngII promotes

thrombosis primarily via expression of PAI‐1 (Feener et al., 1995; Vaughan et al., 1995), although this effect

may in fact be via AngIV (Kerins et al., 1995). Kucharewicz and colleagues (2000, 2002) have shown that

Ang(1‐7) functions as an antithrombotic compound when administered to renal hypertensive rats that

served as a venous thrombosis model. A putative binding site with high affinity for Ang(1‐7) has been
identified but not characterized (Santos et al., 1994). Tallant and colleagues (1997) have reported that



. Table 27-2

Summary of angiotensin‐mediated physiologies and behaviors

Receptor subtype

AT1 AT2 AT4 Ang(1–7)

Blood pressure Blood pressure Blood flow Blood pressure

Thirst Thirst Kidney natriuresis Vasopressin release

Body water balance Renal function PAI‐1 expression NO release

Cyclicity of reproductive hormones and

behaviors

Vascular growth ACh release Prostaglandin release

Sympathetic activation Memory Baroreceptor reflex

ACTH release Cognitive effect Antithrombosis

Memory

Cognitive effect
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Ang(1‐7) binding to this site cannot be inhibited by AT1 or AT2 receptor subtype antagonists, but can be

blocked by sarile (Sar1,Ile8‐AngII) in bovine aortic endothelial cells. On the other hand, Santos et al. (2000)

have noted the action of Ang(1‐7) to be inhibited by losartan and AT2 receptor antagonists. The intracellu-

lar signaling mechanisms are presently undetermined (reviewed in Santos et al., 2000).
3 Classic Brain Angiotensin‐Mediated Physiologies and Behaviors

The RAS is critical for the mediation of blood pressure and the maintenance of volume and electrolyte

homeostasis. AngII has been assumed to be the primary effector peptide responsible for vasoconstriction,

facilitation of sympathetic activation, and control of body fluid balance. However, there is accumulating

evidence that AngIII, and perhaps Ang(1‐7), also play roles in the central regulation of these physiologies.

Angiotensins have also been implicated in the processes of anxiety and depression primarily through

influences upon the autonomic nervous system. In addition, both AngII and AngIV are prominently

involved in learning and memory. This latter topic has captured considerable attention, especially with

the discovery of the AT4 receptor subtype and IRAP as possible binding sites for AngIV and LVV‐H7.
3.1 Cardiovascular Control

The peripheral RAS contributes to cardiovascular functioning by direct inotropic influences upon the heart

and via increased vascular resistance (reviewed in Johnston, 1990; Wright and Harding, 1997). This

influence upon vascular resistance occurs due to direct action on vascular smooth muscle and indirect

action via the brain resulting in sympathetic nervous system arousal, stimulation of vasopressin release, and

inhibition of the baroreceptor reflex (Unger et al., 1988; Phillips and Sumners, 1998; Culman et al., 2002).

Discovery of components of the RAS in the brain led to the notion of a local and independent brain

RAS. Considerable evidence now supports the existence of two primary brain angiotensinergic pathways

(reviewed in Llorens‐Cortes and Mendelsohn, 2002). The first is a forebrain pathway that integrates

circumventricular organs (CVOs see below) with the paraventricular nuclei (PVN), supraoptic nuclei

(SON), and median preoptic nuclei. A second pathway bridges the hypothalamus and medulla (including

area postrema (AP) and nucleus of the solitary tract (NTS)). Since CVOs possess fenestrated capillaries and

are heavily distributed with angiotensin receptors, activation of these receptors by blood‐borne angioten-
sins is thought to impact central cardiovascular circuits thus permitting interaction between the peripheral
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and central RASs. Given that the AT1 receptor subtype binds AngII and AngIII with approximately the same

affinity, and similarly provoke changes in blood pressure, thirst, and vasopressin release, it has been

postulated that either AngII and AngIII are equivalently potent at the AT1 subtype, or AngII must be

converted to AngIII in order to activate this receptor subtype (reviewed in Wright and Harding, 1997;

Llorens‐Cortes and Mendelsohn, 2002).

This section summarizes the influences of AngII and AngIII upon blood pressure and vasopressin

release. There is continuing debate over the identity of the active ligand at the AT1 receptor subtype.
3.1.1 Angiotensin II

Intracerebroventricular (ICV) injections of AngII produce reliable pressor responses via activation of AT1

receptors located in the CVOs (subfornical organ (SFO), organum vasculosum lamina terminalis (OVLT),

and AP) that directly or indirectly project to the PVN and SON to induce vasopressin release, a potent

vasoconstrictor (reviewed in Wright and Harding, 1992; Phillips and Sumners, 1998). The primary

mechanism mediating vasopressin release from these nuclei appears to be norepinephrine activation of

a‐adrenergic receptors located on PVN and SON neurons (Culman et al., 1995). Microinjections of AngII

into the SFO, OVLT, and PVN also elicit elevations in blood pressure (reviewed in Wright and Harding,

1992). The pressor response induced by circulating AngII appears to be mediated primarily by the SFO and

AP. The absence of a blood–brain barrier at these CVO sites also permits penetration by other circulating

hormones.

AngII also activates AT1 receptors in the medulla in the control of blood pressure. Target structures

include NTS, AP, and anterior ventrolateral medulla (Culman et al., 2002). In particular, the AP appears to

detect blood‐borne AngII while AngII activation of the NTS influences the baroreceptor reflex. Thus,

circulating levels of AngII impact the baroreceptor reflex via a pathway from the AP to the NTS (Phillips,

1987; Muratami et al., 1996). Finally, AngII activation of AT1 receptors in the anterior ventrolateral medulla

increases blood pressure by activation of the sympathetic nervous system, tachycardia, and catecholamine

release from the adrenal medulla (Unger et al., 1985; Dampney et al., 1996; Head, 1996; Muratami et al.,

1996; Allen et al., 2001).
3.1.2 Angiotensin III and Shorter Fragments

In the 1970s and 1980s, Fitzsimons and colleagues investigated the potency of centrally applied AngIII and

found it to possess 50% or less the potency of AngII depending upon the infusion site (reviewed in Wright

and Harding, 1992, 1997; Fitzsimons, 1998). Tonnaer et al. (1982) reported the greatest pressor activity

for ICV injected AngII followed by AngI and AngIII (pmol range), with less activity induced by AngII(3‐8),
(4‐8), (5‐8), and (6‐8) (nmol range). The C‐terminal dipeptide AngII(7‐8) and other dipeptides were

inactive. Studies by Fink and Bruner (1985) and Wright et al. (1985) reevaluated the potency of AngIII and

corrected potential shortcomings by siliconizing all glassware to discourage adherence of peptides, by

reducing the doses in order to minimize the half‐life advantage of AngII over AngIII, and by utilizing

degradation resistant analogs in an effort to reduce the in vivo conversion of AngII to AngIII and AngIII to

AngIV. Under these conditions pressor responses induced by ICV infusion of AngII, AngIII, and succes-

sively shortened C‐terminal fragments of AngII(5‐8) were compared (Wright et al., 1985, 1989). The results

indicated that AngII, AngIII, [Sar1]AngII, and [Sar1]AngIII were identical with respect to pressor responses

in the alert rat, while AngIV and [Sar1]AngIV revealed 70% of the activity of the above compounds. The

activity of the shorter C‐terminal fragments dropped to below 35%.

In an effort to determine the active ligand at the AT1 receptor subtype, our laboratory also employed

aminopeptidase inhibitors in combination with metabolically resistant angiotensin analogs (reviewed in

Wright and Harding, 1992, 1997). Pretreatment with the nonspecific AP‐A inhibitor, amastatin, sig-

nificantly reduced subsequent pressor responses to [D‐Asp1]AngII, by inhibiting conversion to AngIII.

In contrast, ICV pretreatment with the AP‐N and aminopeptidase B inhibitior, bestatin, potentiated
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subsequent pressor responses to [D‐Arg1]AngIII by inhibiting its conversion to AngIV. Intracerebroventi-

cular pretreatment with the nonspecific AT1 receptor antagonist sarthran greatly diminished subsequent

pressor responses to [D‐Asp1]AngII, [D‐Arg1]AngIII, AngII, and AngIII, suggesting that these ligands act at

the same angiotensin receptor site in the brain. These results support the hypothesis that AngIII, and/or

AngIII‐like ligands, serve as active forms with respect to cardiovascular function.

Zini and colleagues (1996) have developed selective inhibitors of AP‐A and AP‐N (> Figure 27-2). The

AP‐A inhibitor (3‐amino‐4‐thio‐butyl‐sulfonate: EC33) has been shown to increase the half‐life of AngII by
. Figure 27-2

Location of enzymatic activities of aminopeptidase‐A (AP‐A) and aminopeptidase‐N (AP‐N) that are inhibited

by 3‐amino‐4‐thio‐butyl‐sulfonate (EC33) and 2‐amino‐pentane‐1,5‐dithiol (EC27), respectively. PC18 has a

similar inhibitory action upon AP‐N as EC27. EC33’s inhibitory potency is approximately 100� greater for AP‐A
(Ki¼0.29mM) than forAP‐N (Ki¼ 25mM). EC27’s inhibitorypotency is about 100�greater forAP‐N (Ki¼ 0.03mM)

than for AP‐A (Ki ¼ 2.4 mM). (Modified from Llorens‐Cortes and Mendelsohn, 2002; Wright and Harding, 2004)
2.6‐fold as measured in hypothalamic homogenates, and completely blocked the formation of AngIII. An

AP‐N inhibitor (2‐amino‐pentane‐1,5‐dithiol: EC27) increased the half‐life of AngIII by 2.3‐fold. When

AngII was ICV injected into mice, plasma vasopressin levels were increased twofold; however, the coappli-

cation of EC33 inhibited this AngII‐induced vasopressin response in a dose‐dependent fashion. In contrast,

ICV injection of EC27 alone increased plasma vasopressin levels in a dose‐dependent fashion. This EC27
stimulation of vasopressin release could be blocked by the accompanying injection of the nonspecific

angiotensin receptor antagonist saralasin (Sar1,Ala8‐AngII). These results suggest that central angiotensin‐
induced vasopressin release is dependent upon the conversion of AngII to AngIII, and therefore AngIII may

be the main effector peptide in the brain with respect to the mediation of vasopressin release. Consistent

with these findings, Song et al. (1997) developed an antiserum with anticatalytic activity against AP‐A.
When ICV infused, it reduced both drinking and blood pressure responses to the subsequent ICV delivery

of AngII by 73% and 59%, respectively. This same antiserum had no effect on ICV‐infused AngIII‐induced
drinking and blood pressure responses.

Our laboratory has utilized ICV infused EC33 or PC18 (an AP‐N inhibitor with similar structure to

EC27) followed by the metabolically stable analogs [D‐Asp1]AngII or [D‐Arg1]AngIII to sort out relative

contributions by AngII and AngIII to pressor response in rats (Wright et al., 2002b). Pretreatment by ICV

infusion with EC33 blocked the pressor activity induced by the subsequent infusion of [D‐Asp1]AngII, while
EC33 had no effect on the pressor response to subsequent infusion of [D‐Arg1]AngIII (> Figure 27-3). In

contrast, pretreatment infusion with PC18 extended the duration of the [D‐Asp1]AngII pressor effect by
approximately 2 to 3 times, and the duration of [D‐Arg1]AngIII’s effect by approximately 10 to 15 times.

Pretreatment with the specific AT1 receptor antagonist losartan blocked the pressor responses induced by

the subsequent infusion of both analogs, indicating that they act via the AT1 receptor subtype. These results



. Figure 27-3

Results from the use of EC33 to block conversion of AngII to AngIII, and PC18 to block conversion of AngIII to

AngIV, upon pressor response in the rat. Losartan ICV pretreatment followed by [D‐Asp1]AngII or [D‐Arg1]AngIII
resulted in significant reductions in pressor responses suggesting that both analogs act at the AT1 receptor

subtype
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suggest that the brain AT1 receptor may be designed to preferentially bind AngIII in mediating blood

pressure maintenance.

3.2 Thirst

One of the most dramatic behavioral phenomena associated with the central injection of angiotensin

is its ability to induce drinking. Linazasoro et al. (1954) and Nairn et al. (1956) first demonstrated

that peripherally infused renal extracts induced drinking in rats and postulated that this response

was angiotensin‐induced. Since then many investigators have confirmed and extended these initial

observations.
3.2.1 Angiotensin II

In 1968 Booth discovered that microinjections of AngII into the rostral hypothalamus induced drinking

(Booth, 1968). Soon after Epstein et al. (1970) established dose‐response drinking to ICV injected AngII.

Simpson and Routtenberg (1973) showed that microinjection of AngII into the SFO induced drinking.

Buggy et al. (1975; Buggy and Fisher, 1976) found that AngII infused into the third ventricle in the

proximity of the OVLT, but not permitted to reach the SFO, also induced drinking. Following additional

efforts to sort out the respective contributions of the SFO and OVLT, it was generally agreed that the OVLT

detects angiotensins in both the cerebrospinal fluid and blood, while drinking induced by elevations in

blood‐borne angiotensins is primarily mediated by the highly vascularized SFO (reviewed in Lind, 1988;

Wright and Harding, 1992).
3.2.2 Angiotensin III and Shorter Fragments

AngIII was originally found to possess about 50% of the dipsogenic activity of AngII when delivered into

the diencephalon of the rat, while AngIV, AngII(4‐8), and Ang(5‐8) produced only slight dipsogenic

acivitity (Fitzsimons, 1971, 1980). With the removal of phenylalanine from the C‐terminal, i.e., Ang(1‐7),
a complete loss of activity was noted. Tonnaer et al. (1982) examined AngI, AngII, and several C‐terminal

fragments for dipsogenic activity when injected ICV into rats. The greatest intakes occurred for AngII, AngI,

and AngIII (pmol range) in that order, followed by AngII(4‐8), AngIV, AngII(5‐8), and AngII(6‐8) (nmol

range). The C‐terminal dipeptide AngII(7‐8) and other dipeptide fragments were relatively ineffective.

Pretreatment with the ACE inhibitor captopril greatly reduced the drinking induced by AngI suggesting that

the conversion of AngI to AngII and/or AngIII is necessary for biological activity in the brain. In addition

pretreatment with saralasin blocked drinking to AngI and AngII(4‐8); the other angiotensins and fragments

were not similarly tested. More recent investigations have established reasonably equivalent drinking
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responses in rats to ICV infusions of AngII and AngIII, particularly at low doses (Wright et al., 1985), if

precautions are taken to avoid peptide adherence to glass mixing and storage containers, adjustments are

made for differences in the purities of the compounds, and the angiotensins are infused rather than bolus

injected.
3.3 Sodium Appetite

Central application of angiotensins also produces sodium appetite that follows a much slower time course

to develop as compared with drinking (reviewed in Fitzsimons, 1998). Body sodium conservation is

primarily controlled by the renin–angiotensin–aldosterone system, and these hormones are elevated during

sodium deficiency, and in turn, act directly or indirectly on the brain to arouse sodium appetite (Richter,

1936; Epstein, 1982). The salt appetite that develops in a sodium‐depleted rat can be suppressed by central

application of angiotensin receptor antagonists (Buggy and Jonklaas, 1984; Weiss et al., 1986) or ACE

inhibitors (Moe et al., 1984). In fact, sodium appetite induced by adrenalectomy can be suppressed by

interruption of the brain RAS (Sakai and Epstein, 1990). AngII‐induced sodium intake appears to be a

function of activation of forebrain angiotensin receptors, but is not dependent on the SFO. Microinfusion

of AngII near the OVLT produced both water and sodium intake in rats, while injections into the SFO

elicited only water consumption (Fitts and Masson, 1990).

Peripheral infusions of high doses of AngII are required to provoke a sodium appetite, and at these

levels plasma aldosterone is elevated which facilitates central AngII‐elicited sodium intake (Summy‐Long
et al., 1983). Peripheral aldosterone can penetrate the blood–brain barrier and has been shown to elevate

brain AngII receptor numbers (Wong et al., 1990). Related to this, there is ongoing discussion concerning

whether the appetite for sodium is primary or secondary to an immediate and sustained natriuresis

(reviewed in Unger et al., 1988; Fitzsimons, 1998). Intracerebroventricular injections of AngII produced

an immediate increase in urinary sodium excretion in alert rats, prepared with a chronic indwelling urethral

catheter, which lasted for at least one hour (Unger et al., 1989). Thus, it may be that ICV AngII‐induced
sodium loss stimulates sodium appetite as a compensatory response.

Little evidence exists concerning AngIII’s potential involvement in sodium appetite, and available data

are conflicting. Peripheral administration of AngIII has been shown ineffective in eliciting a salt appetite in

Fischer 344 and Sprague‐Dawley rats, while AngII is capable of producing a sodium appetite (Caputo et al.,

1992). Acute AngIII infusions into the preoptic area failed to increase sodium appetite in rats, whereas

AngII stimulated the appetite (Avrith and Fitzsimons, 1980). However, ICV infused AngIII is equipotent to

AngII in stimulating sodium consumption in baboons (Blair‐West et al., 2001). Our laboratory has utilized

the AP‐A and AP‐N inhibitors, EC33 and PC18, respectively, to investigate the roles of AngII and AngIII in

salt appetite (Wilson et al., 2005). Rats were sodium depleted with furosemide, followed by endogenous

angiotensin blockade with the ACE inhibitor captopril. [D‐Asp1,D‐Arg2]AngII and [D‐Arg1]AngIII were then
ICV infused in order to evaluate the relative roles of AngII and AngIII in provoking sodium appetite.

Both forms were effective in eliciting water and sodium (0.3 M NaCl) intakes (> Figure 27-4). AngII
. Figure 27-4

Results from the use of EC33 and PC18 upon the subsequent administration of [D‐Asp1,D‐Arg2]AngII or [D‐Arg1]
AngIII, respectively, upon water and sodium intakes in the rat
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analog‐induced intakes of water and NaCl were decreased following pretreatment with EC33. Use of PC18

produced increased intakes of both fluids following treatment with the AngIII analog. These findings

support a role for both peptides in eliciting and mediating sodium appetite.
4 Novel Brain Angiotensin‐Mediated Physiologies and Behaviors

There is accumulating evidence that angiotensins, by direct action or as modulators, influence the roles of

other transmitters important in cognitive processing, depression and mood change, and stress responses.

Pharmacological manipulation of brain angiotensins can result in altered mental acuity, antidepressant‐
and anxiolytic‐like effects (reviewed in Gard, 2002). Angiotensins have also been implicated in the

enhancement of learning acquisition and memory consolidation. The present section considers available

evidence linking brain angiotensins with altered cognitive processing, learning and memory, adaptation to

stress, and depression. There is growing recognition that the complexity of the brain RAS has been

significantly underestimated. It is now clear that some ‘‘metabolic fragments’’ of AngII are indeed active

forms of angiotensin designed, in some cases, to counter‐balance and/or modulate the initial actions put

into motion by AngII and AngIII via the AT1 receptor subtype.
4.1 Angiotensin‐Converting Enzyme Inhibitors and Cognition

Accompanying the therapeutic benefits of ACE inhibitors (captopril, enalapril, ramipril) in treating

hypertension, congestive heart failure, and following mild cardiac infarction, there appears to be facilitated

cognitive functioning and feelings of well‐being. Croog et al. (1986) employed 626 mild to moderate

hypertensive male patients in randomized double‐blind trials over a 24‐week study. Patient self‐reports
indicated improved mental acuity at work, less sexual dysfunction, and increased sense of well‐being on

captopril. There was no change with propranolol treatment, and a decline in those patients placed on

methyldopa. Blood pressure was equivalently controlled in all three treatment groups. Deicken (1986) and

Zubenko and Nixon (1984) have reported captopril‐induced mood elevating effects in depressed patients.

Barnes et al. (1992) posited that elevated brain AngII levels may interfere with acetylcholine (ACh) release

that in turn interferes with cognitive processing (Bartus et al., 1982). According to this hypothesis ACE

inhibitors may facilitate cognitive functioning by reducing the synthesis of AngII, thus removing an

inhibitory influence upon ACh release (Barnes et al., 1990). In support of this hypothesis Costall and

colleagues (1989) treated mice with captopril or ceranapril and measured a habituatory response of mice

moving from a brightly lit area to the darker area of a light/dark box. The muscarinic ACh receptor

antagonist scopolamine impaired habituation, while captopril and ceranapril were both effective at

countering this scopolamine effect (Barnes et al., 1992). Scopolamine has also been shown to delay the

time required for rats to locate a submerged platform in the Morris water maze task (Morris, 1984).

Treatment with ceranapril offset this scopolamine‐induced impairment such that escape times were not

different from controls. In further support, Barnes et al. (Barnes et al., 1991a, b) reported high binding

densities for [3H]‐ceranapril in rat striatum and hippocampus, and human caudate, attributed to ACE in

the microvasculature and perhaps at extravascular sites. Intravenous pretreatment with captopril reduced

subsequent [3H]‐ceranapril binding in most areas of the brain, except in the striatum and brain stem,

measured 20 min following treatment. Barnes and colleagues (1989) have also reported AngII‐induced
interference with potassium‐mediated release of [3H]‐ACh from rat entorhinal cortex slices. This AngII

effect could be blocked by sarthran. In line with this, Mondadori and Etienne (1990) found that captopril

and enalapril reduced electroshock‐induced amnesia in mice. These animals were trained to avoid the dark

compartment of a two‐chamber passive avoidance apparatus by applying foot shock when in the dark side

immediately following an electroconvulsive shock. Recall of the conditioned response was facilitated in

those mice given ACE inhibitors one hour prior to the conditioning trial. Flood andMorely (1993) reported

similar results using an active avoidance task in mice. Barnes et al. (1990, 1991c) have shown that reasonably
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low doses of losartan and the AT2 receptor antagonist P123177 improved scopolamine‐impaired

performance in the previously described habituation test. Similarly, DeNoble et al. (1991) measured

impaired performance on a passive avoidance task in rats ICV treated with renin. This impairment could

be offset with ACE inhibitor treatment or by the application of the AT1 receptor antagonists EXP3312 or

EXP3880, but not PD123177. The proposal that ACE inhibitors enhance learning has been challenged by

Chen and Mendelsohn (1992) who reported that a high oral dose of ceranapril in rats inhibited ACE at the

CVOs, but not within blood–brain barrier protected structures. This suggests that ceranapril does not cross

the blood–brain barrier.

At present, evidence favoring improved cognitive functioning by ACE inhibitors and AT1 receptor

antagonists is stronger in animal tests of habituation and active or passive avoidance tasks than for animals

evaluated using spatial learning paradigms. Our laboratory has measured facilitated Morris water maze

performance in scopolamine, or mecamylamine, pretreated rats with ICV treatment of AngIV analogs

(Pederson et al., 1998; Wright et al., 1999; Olson et al., 2004). This suggests a role for AngIV in the

facilitation of cognitive processing noted during treatment with ACE inhibitors. It has also been established

that Ang(1‐7) and AngI(3‐10) levels are elevated during treatment with ACE inhibitors (Lawrence et al.,

1990). Both AngII(2‐7) and AngI(3‐10) bind at the AT4 receptor subtype with affinities nearly comparable

to that of native AngIV (Harding et al., unpublished observations; Sardinia et al., 1993). Also, conversion of

Ang(1‐7) to a ligand that acts at the AT4 receptor is not only possible, but likely.
4.2 Learning and Memory

A role for the brain RAS in learning and memory was suggested many years ago, however the assay tools to

measure the presumed changes in neuronal plasticity underlying memory consolidation have only recently

become available. This section reviews literature supporting the involvement of AngII and AngIV in these

processes.
4.2.1 Angiotensin II

Memory acquisition can be measured in animals using several protocols including passive and active

avoidance conditioning and spatial recognition tasks. Passive and active avoidance conditioning procedures

are typically used to assess associative learning. Associative learning is the process of attaching meaning

(consequences) to a previously neutral object or event. That consequence is usually a foot shock (a

punishment). With passive avoidance conditioning (also called a step‐through task), the animal is placed

in the lighted side of a two‐compartment apparatus and permitted to move to the more preferred dark

compartment on several preconditioning trials. Once the animal has habituated to the compartment it

typically moves to the dark side within 10–20 s. The final ‘‘conditioning trial’’ consists of placing the animal

into the illuminated compartment and allowing it to enter the dark compartment. Once in the dark

compartment a guillotine door is dropped to close off the entrance, and a mild foot shock is applied for a

short duration, usually 1–2 s. Thus, the conditioning paradigm consists of an association among the cues

that denote the preferred dark compartment (conditioned stimuli) and the noxious foot shock (uncondi-

tioned stimulus). The conditioned response takes the form of an increased latency (reluctance) to move

from the lighted compartment to the dark compartment on subsequent retention trials, i.e. passive

avoidance conditioning. These retention trials are usually placed at 24‐h intervals following conditioning

in order to measure the subsequent strength of the conditioned response.

Circular water and eight‐arm radial mazes are used to measure the acquisition of spatial memory by

using rodent models. With the circular water maze (Morris water maze) the animal is placed into the water

at a different location next to the walls of the tank on each training trial. The goal is to locate a submerged

platform (2–3 cm below the surface fixed in position) using extra‐maze visual cues placed on the walls

surrounding the maze. If the animal is unsuccessful at the end of a trial it is placed on the platform for a

short rest period permitting an opportunity to orient using these cues. The number of trials per day can
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vary from 1 to as many as 20 or 25. The number of days of training may vary from 1 or 2 days, to a week or

longer. The dependent measures may include the latency and distance required to find the platform on each

trial, swim speed, and efficiency of search patterns. The eight‐arm radial maze protocol requires food

reward to motivate the animal. Several arms of the maze are baited with food. The animal is placed at the

start point in the middle of the maze (origin of all arms) and must run down each arm to determine

whether food is present at the end of the arm. The important measures include the latency required to

locate the arms that contain food, and avoid those arms not baited with food, and the number of errors due

to reentry into a previously visited arm.

Over thirty years ago Rolls and colleagues (1972) placed rats on a progressive ratio schedule‐bar
press response for food and water, and found that motivational levels were approximately equal following

24 h of water deprivation and when provided water and prepared with an injection of AngII into the

preoptic area of the hypothalamus. Graeff et al. (1973) conditioned water‐deprived rats to press a bar for

water, and then injected AngII into the septal area and measured equivalent bar pressing when rats were

satiated. These results suggest that AngII injections may simulate the motivational characteristics present

while water‐deprived. At about the same time it was reported that ICV‐infused AngII interfered with

performance of a variable interval operant task in rabbits (Melo and Graeff, 1975). Similarly, ICV‐infused
renin 1 min prior to the initiation of acquisition training on a passive avoidance task in rats interfered with

recall of that task 1 and 2 days later (Köller et al., 1979). Recall that renin is responsible for the conversion of

angiotensinogen to AngI, thus providing additional substrate for ACE‐mediated conversion to AngII.

Angiotensin II was assumed to be responsible for disruption of recall given that this performance deficit

was attenuated by ICV infusion of the ACE inhibitor captopril. It was also reported that AngII injected

into the dorsal neostriatum 5 min following passive avoidance conditioning interfered with the recall of

the conditioned response 24 h later (Morgan and Routtenberg, 1977). Along these lines, DeNoble et al.

(1991) observed that ICV‐infused renin disrupted performance of a passive avoidance task in a dose‐
dependent pattern, i.e. as the renin dose was increased, the level of retention decreased. The coapplication of

an AT1 receptor antagonist (EXP3312 or EXP3880) and the ACE inhibitor captopril attenuated this renin‐
induced deficit. Since coapplication of an AT2 receptor antagonist (PD123177) failed to influence this

performance deficit produced by renin, it was concluded that the AT1 receptor subtype mediated this

deficit. It follows that compounds that decreased AT1 receptor activation would be expected to facilitate

cognitive processing.

In contrast with the above findings, central injections of AngII have been reported by some investi-

gators to improve acquisition and recall. Baranowska et al. (1983) injected AngII (ICV: 1 and 2 mg) 15 min

prior to active avoidance conditioning trials in rats. A buzzer served as a conditioned stimulus and foot

shock as the unconditioned stimulus. Angiotensin II facilitated acquisition of the response but did not

influence extinction. A low ICV dose of AngII (0.5 mg) inhibited the acquisition of this conditioned

response. Pretreatment with saralasin or sarile (Sar1,Ile8‐AngII) failed to block these AngII effects. These

results were interpreted to suggest that AngII exerts a bimodal action upon learning, that is, an inhibitory

influence at low doses and a facilitatory effect at higher doses. Subsequent reports from this laboratory

indicated that ICV‐delivered AngII and AngIV (1 nmol � 1 mg), 15 min prior to testing for retention,

facilitated recall of a passive avoidance conditioned response (Braszko et al., 1987; Georgiev et al., 1988).

These treatments also facilitated the acquisition of a shuttlebox active avoidance task (Braszko et al., 1987,

1988; Georgiev et al., 1988). Further, such treatments facilitated T‐maze performance when delivered

immediately following acquisition training. However, if AngII and AngIV were administered 15 min

prior to testing for recall of T‐maze performance, no facilitation of performance was noted (Braszko

et al., 1987, 1988).

Along these lines, microinjection of AngII into the CA1 hippocampal field has been shown to facilitate

acquisition of an active avoidance (shuttlebox) task in rats (Belcheva et al., 2000). Kulakowska and

colleagues (1996) extended this work to an object recognition task in which AngII facilitation could be

blocked by pretreatment with losartan. These results suggest that the AT1 receptor mediated this AngII‐
induced improvement in object recognition. However, Braszko (2002) has recently reported that ICVAngII‐
induced facilitation of passive avoidance conditioning, conditioned avoidance responding, and open‐field
locomotor behavior, could be blocked by combined pretreatment with losartan plus an AT2 receptor
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antagonist (PD123319), but not by each alone. Further, Braszko and colleagues (2003) have attempted to

explain these variable AngII effects upon acquisition by measuring changes in motor and anxiety responses

to ICV infusion of AngII. They found significant increases in anxiety as measured using an elevated ‘‘plus’’

maze, and impaired motor coordination as measured with the ‘‘chimney’’ test. Pretreatment with either

losartan or PD123319 counteracted the AngII‐induced heightened anxiety effects, but only losartan offset

the impaired motor coordination effects.

The vast majority of these studies utilized native angiotensins rather than analogs that are resistant to

conversion to shorter‐chain peptides. Thus, it is very likely that these results are due to a combination of

effects resulting from the conversion of AngII to AngIII and perhaps to Ang(1‐7), Ang(2‐7), Ang(3‐7), and
AngIV.
4.2.2 Angiotensin IV

The frequently noted failure of AT1 and AT2 receptor antagonists to influence performance on cognitive

tasks, or block subsequent AngII facilitation of a conditioned response, may indicate that AngII is converted

to AngIII, and then to AngIV (or an AngIV‐like compound), and it is this ligand that acts at the AT4

receptor subtype to improve performance. Our laboratory has discovered that the ICV infusion of AngIV

leads to c‐fos expression in the hippocampus and piriform cortices, while similar injection of AngII failed to

induce c‐fos‐like immunoreactivity in these structures, but did activate c‐fos expression in circumventri-

cular organs (Roberts et al., 1995) and the hypothalamus (Zhu and Herbert, 1996). Pretreatment with

losartan prevented this AngII‐induced c‐fos immunoreactivity, while pretreatment with the AT4 receptor

antagonist, divalinal‐AngIV, blocked AngIV‐induced c‐fos expression (Roberts et al., 1995). There were no

crossover effects exhibited by these antagonists. Along these lines, Braszko and colleagues (1988, 1991) were

the first to report that ICV injected AngII and AngIV were equivalent at facilitating exploratory behavior in

rats tested in an open field, improved recall of passive avoidance conditioning and the acquisition of active

avoidance conditioning. Our laboratory confirmed and extended these findings in that ICV‐infused AngIV

improved the recall of a passive avoidance response in a dose‐dependent fashion, with the most prominent

facilitation at the highest dose (1 nmol) employed (Wright et al., 1993, 1995). We also found that ICV

treatment with divalinal‐AngIV, disrupted recall of this response (Wright et al., 1995). Along these lines

osmotic pump ICV delivery of divalinal‐AngIV during 6 days of training significantly impaired acquisition

of the Morris water maze task (Wright et al., 1999). Our laboratory has also determined that ICV injected,

metabolically resistant analogs of AngIV can be utilized to facilitate acquisition of successful search patterns

in spatial memory tasks as compared with control animals treated with artificial cerebrospinal fluid, or a

pentapeptide that does not bind at the AT4 receptor subtype (Stubley‐Weatherly et al., 1996; Wright et al.,

1999). A similar facilitation of acquisition by AngIV analogs (eg. Nle1‐AngIV) has been observed in

scopolamine‐treated rats (Pederson et al., 1998, 2001) and in perforant path damaged rats (Wright et al.,

1999).

Recently our laboratory has reported that ICV treatment with the nicotinic ACh receptor antagonist,

mecamylamine, also disrupted acquisition of the Morris water maze task. Once again the ICVapplication of

Nle1‐AngIV overcame this deficit in spatial learning (Olson et al., 2004). However, Nle1‐AngIV could not

compensate for impaired acquisition resulting from the combined application of scopolamine plus

mecamylamine. These results suggest that Nle1‐AngIV‐induced compensation via the AT4 receptor subtype

may be dependent upon the brain cholinergic system. This notion is supported by the observation that

AngIV and LVV‐H7 induced the release of ACh from rat hippocampal slices in a dose‐dependent fashion
(Lee et al., 2001). This release of ACh could be blocked by divalinal‐AngIV. These investigators have also
shown AngIV‐ and LVV‐H7‐induced facilitation of spatial learning using the Barnes circular maze in which

the animal must locate one escape tunnel among eight possible locations (Lee et al., 2004). The rats were

tested three trials per day for 10 training days but received only one ICV bolus injection of AngIVor LVV‐
H7 on day 1, 5 min prior to testing. Taken together, these results suggest an important upstream role for the

AngIV/AT4 receptor system in learning and memory processes.
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4.3 Stress

Considerable evidence supports an important role for the brain RAS in the control of stress‐induced
physiologies. AT1 receptors are prominent in structures that control stress responses including median

eminence, PVN, anterior pituitary gland, adrenal medulla, and zona glomerulosa (reviewed in Wright and

Harding, 1992; Armando et al., 2003). Elevations in brain AngII facilitated the release of norepinephrine

in vivo and in cell culture (reviewed in Phillips, 1987; Gard, 2002). In turn, elevations in norepinephrine

were shown to block AngII release and downregulation of AngII receptors. The application of stressors

elevated circulating and brain levels of renin and AngII (Yang et al., 1996; Peng and Phillips, 2001). Stress

also upregulates the expression of AT1 receptors within the PVN, where corticotropin‐releasing hormone

(CRH) cell bodies are located (Castren and Saavedra, 1988; Jezova et al., 1998), and the anterior pituitary

(Leong et al., 2002). During stress, locally synthesized AngII within the anterior pituitary facilitates release

of adrenocorticotropic hormone (ACTH; Ganong andMurakami, 1987). Thus, stress‐induced upregulation
of PVN AT1 receptors appears to provoke CRH synthesis that preludes the facilitation of ACTH release and

elevated adrenal corticoid secretion. Short periods of isolation stress have been shown to elevate AT1

receptor expression in the PVN, along with correlated elevations in pituitary ACTH, adrenal corticosterone,

catecholamines, and aldosterone. Nishimura et al. (2000) have shown that peripheral treatment with the

AT1 receptor antagonist, candesartan, prevented AT1 receptor binding following isolation, both in the

anterior pituitary and adrenal glands, and in the PVN. This treatment also interfered with the typical

elevations in pituitary ACTH and adrenal corticosterone.

A second model that has been examined is gastric ulceration induced by cold restraint. This procedure

induces gastric mucosa damage (Overmier and Murison, 2000) due to reduced blood flow and elevated free

radical formation (Tuncel et al., 1998). Of particular interest, AngII‐mediated constriction of the stomach

vasculature via AT1 receptor stimulation appears to be an important mediator of this reduction in blood

flow (Heinemann et al., 1999). Bregonzio and colleagues (2003) reported that administration of cande-

sartan significantly decreased the occurrence of gastric ulcerations induced by cold restraint stress. Taken

together these results point to an important role for the AngII/AT1 receptor system in the etiology of stress

response. Saavedra and colleagues (Armando et al., 2003) have recently recommended that AT1 receptor

antagonists be evaluated for clinical efficacy in the treatment of stress‐related disease states.
4.4 Depression

The first suggestion that the brain RAS may be important in depression came with the observation that

captopril induced an antidepressant effect in hypertensive patients who also suffered from depression

(Zubenko and Nixon, 1984; Deicken, 1986; Germain and Chouinard, 1988, 1989). There had been previous

hints concerning this relationship from animal studies. Specifically, rats treated with antidepressants

revealed decreased water intake induced by peripherally or centrally injected isoprenaline either in the

presence or absence of a a2‐adrenoceptor antagonist (Goldstein et al., 1985; Przegalinski et al., 1988).

Further testing indicated that each of the antidepressant drugs fluoxetine, desipramine, and tranylcypro-

mine reduced AngII‐induced dipsogenicity in rats (Gard and Mycroft, 1991; Gard et al., 1994).

Captopril treatment has also been shown to protect animals against forced swimming induced learned

helplessness/depression. This protocol requires the animal to swim within a small pool of water that has no

escape. Eventually the animal stops swimming and becomes immobile. When placed in the pool the next

day, it assumes immobility significantly sooner than during the initial trial. On each subsequent test day the

latency to evidence immobility decreases, i.e. learned helplessness. Pretreatment with captopril reduced

immobility in mice, equivalent to that of treatment with antidepressants, imipramine or mianserine

(Giardina and Ebert, 1989). Learned helplessness induced by foot shock in rats could be prevented by

pretreatment with captopril to the same degree as imipramine (Martin et al., 1990). Under both protocols

the protective effects of captopril were reversed by naloxone, suggesting that the ACE inhibitor was exerting

its antidepressant effects, at least in part, via opioid receptors. In addition, this effect is also dependent upon
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the brain RAS since pretreatment with losartan also provided protection from immobility in the forced

swim test (Gard et al., 1999; Gard, 2002).

These results suggest that antidepressants exert their positive effects in part by inhibiting the brain RAS.

The precise mechanism(s) of this inhibition remains to be determined.
5 Conclusions

The existence of a separate and distinct brain RAS is now undisputed. The necessary synthetic precursors

and peptidases required for the formation and degradation of the active forms of angiotensins have been

identified in brain tissues, and so have three receptor subtypes. There is coordination among the peripheral,

pituitary, and central RASs via stimulation of brain angiotensin receptors located within peripheral tissues,

the CVOs, and pituitary gland. These CVOs are located in the proximity of brain ventricles, are richly

vascularized, and possess a reduced blood–brain barrier permitting access to peptides and other molecules.

In this way the brain RAS interacts with many neurotransmitter and neuromodulator systems in the

regulation of systemic blood pressure, body fluid homeostasis, vasopressin release, cyclicity of reproductive

hormones, and sexual behaviors. These classic functions appear to be primarily mediated by the AT1

receptor subtype. In addition, the brain RAS has been implicated in several novel functions including

learning and memory consolidation, cognitive processing, stress, anxiety, and depression. Several of these

processes appear to be mediated by a combination of reduced AT1 receptor activation, coupled with

increased activation of the AT4 subtype, and/or other binding sites. These observations have significantly

expanded our understanding concerning the physiologies and behaviors mediated by the RAS, and

facilitated the potential for clinical intervention in the treatment of related disorders.

Some authors have posited that the mammalian CNS is poorly designed to deal with present‐day
information overload, psychological and sociological stressors, and related problem‐solving behaviors, but
is better equipped to deal with acute, single, short‐duration stressors. On the other hand, many angiotensin

researchers have long argued that the RAS is critically important to mammalian ability to deal with

multiple, overlapping, environmental challenges. With additional insight concerning the extent and

precision of this system’s regulatory capacity comes the growing realization of the role of the RAS

as a ‘‘coping’’ mechanism designed to address challenges far beyond cardiovascular and body fluid

homeostasis.

One can envision the overall activation of this system in the face of a reasonably straightforward

environmental challenge such as water shortage (> Figure 27-5). With time, body water depletion leads to

elevated plasma angiotensins and osmolality detected by CVOs and hypothalamic osmodetectors, respec-

tively. These stimuli activate pathways to target structures throughout the brain, including limbic regions,

to initiate drinking behavior and sodium appetite, suppress hunger, elevate blood perfusion pressure, and

conserve water and sodium via vasopressin and aldosterone release acting at kidney nephrons. Such

elevations in angiotensins also stimulate increased exploratory behaviors, modified by the recall of relevant

memories, thus increasing the likelihood of discovering water within the animal’s temporarily extended

environmental range. Accompanying this generalized arousal, the acuity of some of the animal’s sensory

systems (vision, audition, taste, and olfaction) are facilitated, while the sensitivity of nonessential sensory

systems and sexual desire are temporarily reduced. In the event that water is located and ingested, tissue

osmolality and circulating levels of angiotensins are reduced, stimulation of CVOs declines, and these

systems return to base level functioning. On the other hand, if a long and exhausting search for water is

unsuccessful the animal may be forced to adopt a different strategy, one that conserves its remaining energy

in favor of longevity. Under these circumstances, reduced arousal (depressive state) in a safe, cool location

may be a reasonable option. During this time a reduction in sympathetic arousal would be anticipated,

accompanied by decreased blood pressure due to reduced intravascular volume and vasoconstriction, along

with reduced plasma angiotensin levels and vasopressin release. Decreased circulating angiotensin levels

would be expected to reduce activation of AT1 receptors, and eventually calm the animal. A quiescent state

is important given that the animal is forced to patiently await a reversal of bad fortune. This may take the

form of a rain shower, moisture from nighttime condensation, or body fluids from prey.
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Major changes in physiologies and behaviors accompanying environmental water shortage
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As we marvel at how well‐adapted the mammal is to the above environmental contingencies, we must

also concede that this system is challenged by today’s multidimensional stressors and the diseases that may

possibly occur should this system fail as in acute or chronic hypertension, atherosclerosis, heart failure,

electrolyte imbalance, stress and anxiety disorders, depression, and memory impairment. The development

of future treatment strategies must consider the nature of the environmental stressors that shaped the

evolution of the RAS, and encourage an understanding of the pathogenesis of this system that includes

consideration of both peripheral and brain RASs and the several receptor subtypes involved. Thus, new

treatment strategies must employ the medicinal chemistry necessary to develop compounds that gain access

to angiotensin receptors located in the periphery, at CVOs, pituitary gland, and especially within structures

protected by the blood–brain barrier.
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Abstract: In the 21st century obesity affects around 25% of the population and is now one of the main

contributors to ill health in Western societies. In recent years major advances have been made in identifying

the key hormones that regulate food intake and body weight. In particular the cloning of the ob gene that

encodes the endocrine peptide, leptin, has fueled a great deal of research into this area, and has established

that this hormone plays a pivotal role in regulating energy balance via its actions in the hypothalamus. This

in turn has greatly enhanced our understanding of the highly intricate neural systems within the hypothal-

amus that regulate energy homeostasis, and the complex interplay that exists between a range of orexigenic

and anorexigenic agents (like leptin) to control this process. However, in addition to its fundamental role in

regulating food intake and body weight, evidence is emerging that hypothalamic leptin receptors also play a

key role in controlling reproductive function and bone formation. Moreover evidence is mounting that in

addition to its hypothalamic actions, leptin has widespread actions in the CNS. Indeed in the hippocampus

leptin is implicated in associative learning and memory processes as leptin‐receptor‐deficient rodents

(db/db mice and fa/fa rats) display impairments in both long‐term potentiation (LTP) and long‐term
depression (LTD), and in spatial memory tasks. Furthermore, at the cellular level, leptin has the capacity to

convert hippocampal short‐term potentiation (STP) into LTP. There is also evidence that leptin, via its

ability to modify the activity of specific potassium channels in the hippocampus, can regulate neuronal

excitability. More recent studies indicate that the hormone leptin plays a key role in the development of the

CNS. Indeed abnormal brain development has been reported in leptin‐deficient or insensitive rodents, and
recent studies indicate that leptin actively participates in the development of the hypothalamus as specific

arcuate nucleus projection pathways are permanently disrupted in ob/ob (leptin‐deficient) mice. In this

chapter the recent advances made in leptin neurobiology are discussed. In particular the key role of leptin in

regulating energy balance is addressed, together with the emerging evidence that this hormone play a

fundamental role in numerous other CNS functions.

List of Abbreviations: a‐MSH, a melanocortin‐stimulating hormone; ARC, arcuate nucleus; CART,

cocaine‐ and amphetamine‐regulated transcript; CIS, cytokine inducible sequence; CNS, central nervous

system; db, diabetes; IRS, insulin receptor substrate; JAK, janus tyrosine kinase; KATP, ATP‐sensitive
potassium channel; MAPK, mitogen‐activated protein kinase; NPY, neuropeptide Y; ob, obese; ObR,

leptin receptor; PI‐3 kinase, phosphoinositide‐3 kinase; POMC, proopiomelanocortin; SOCS, suppressor

of cytokine signaling; STAT, signal transducers and activators of transcription; VMH, ventromedial

hypothalamus
1 Introduction

It is now well established that a physiological system exists that homeostatically regulates body weight. In

1953, Kennedy was one of the first to propose that the amount of energy stored in adipose mass is a balance

between calorie intake and energy expenditure (Kennedy, 1953). In his adipostatic model of body weight

regulation he envisaged that adipose mass was maintained at a set point by a homeostatic mechanism, such

that changes in food intake and energy expenditure occurred in response to changes in energy stores. In

later studies, Hervey (1958) formulated the idea of a circulating satiety factor, as in parabiosis experiments

between obese rats (with lesions in to ventral medial hypothalamus; VMH) and control rats, and demon-

strated that the lean animals died from starvation. The concept of a circulating satiety factor was further

supported by the discovery of natural recessive mutations in the obese (ob) and diabetes (db) genes, which

resulted in hyperphagia, reduced energy expenditure, and obesity in mice (Ingalls et al., 1950). Subsequent

parabiosis experiments between wild‐type mice and either ob/ob or db/dbmice (Hausberger, 1959; Coleman

and Hummel, 1969; Coleman, 1973) suggested that the circulating satiety factor was encoded by the ob

locus, whereas the db locus was necessary for the response to this factor. The cloning of the ob and db genes

(Zhang et al., 1994) confirmed the role for these genetic loci in energy homeostasis proposed by Coleman.

The product of the ob gene was termed leptin (from the Greek, ‘‘leptos’’ meaning thin) as injection of leptin

into leptin‐deficient or normal mice resulted in a marked reduction in food intake and body weight (Halaas

et al., 1995).
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2 Leptin

The ob gene, which was first identified from mice by positional cloning techniques, encodes a highly

conserved 167‐amino‐acid protein (Zhang et al., 1994). Leptin is synthesized predominantly, although

not exclusively, by white adipose tissue, and it circulates in the plasma at levels proportional to body

adiposity (Maffei et al., 1995; Considine et al., 1996). The obese gene product displays a high degree of

homology among different species. Leptin is also very similar in structure to other cytokines (Madej et al.,

1995), and it contains an intrachain disulphide bond that is required for biological activity (Grasso et al.,

1997).
2.1 Mutations in the ob Gene

In mice, mutations in the ob gene are known to cause early‐onset obesity (Zhang et al., 1994; Campfield

et al., 1995). In C57B1/6J ob/ob mice, substitution of a cysteine residue with a threonine residue in the ob

gene results in the synthesis of a truncated leptin protein that is not secreted (Zhang et al., 1994; Rau et al.,

1999). In another leptin‐deficient mouse strain (ob2J/ob2J), the synthesis of ob mRNA is prevented by the

insertion of a transposon in the first intron of the ob gene (Zhang et al., 1994). Both these mutant mice

display, deficiencies in leptin, morbid obesity, hypothermia, and hyperphagia.

In humans, mutations in the ob gene are extremely rare. Two children from a Pakistani family were the

first reported humans with morbid obesity due to a specific mutation in the ob gene (Montague et al.,

1997). In these cases, a truncated form of leptin that is targeted for degradation by proteosomes was

synthesized following deletion of a single guanine nucleotide in codon 133 (Rau et al., 1999). Three

members of a Turkish family have also been identified with morbid obesity associated with genetic

abnormalities in the ob gene. In these individuals a missense mutation in codon 105 had occurred that

encodes an abnormal form of leptin that cannot be secreted (Strobel et al., 1998). The rarity of such genetic

abnormalities in humans suggests that mutations in the ob gene are unlikely to underlie the resistance to

leptin associated with most obese humans.
2.2 Sites of Leptin Expression

Initially it was thought that adipose tissue was the only site of leptin expression. However there is now

evidence that leptin is widely expressed in numerous extraadipose tissues including skeletal muscle, gastric

fundic mucosa, placenta, and mammary epithelium (Casabiell et al., 1997; Masuzaki et al., 1997; Bado et al.,

1998; Wang et al., 1998). In these peripheral tissues, the expression of leptin is also influenced by a range of

external factors. For instance, in placenta, leptin expression is stimulated by glucocorticoids, insulin, and

hypoxia (Mise et al., 1998; Shekhawat et al., 1998). The synthesis of leptin in the gastric fundus is attenuated

by feeding, or administration of gastrin, or cholecystokinin (Bado et al., 1998). Infusion of glucose and

lipids induces de novo synthesis of leptin in rat skeletal muscle, raising the possibility that leptin has the

ability to sense nutrient influx in skeletal muscle and adipose tissue.

In the CNS, leptin mRNA, ob protein, and leptin immunoreactivity are all expressed in various brain

regions including hypothalamus, hippocampus, cortex, and cerebellum (Morash et al., 1999; Ur et al.,

2002). As well as displaying differential distribution throughout the CNS, the subcellular localization of

leptin labeling also varies between neuronal populations. For example in the dentate gyrus region of the

hippocampus, leptin labeling is associated with nuclear and perinuclear regions, whereas in the CA2/CA3

region labeling is only evident in the nucleus (Ur et al., 2002). The possibility that leptin may be released

and made from specific neuronal populations is demonstrated by localization of leptin labeling to specific

subpopulations of neurons. Indeed in the supraoptic nucleus and paraventricular nucleus (PVN), leptin

labeling is confined to oxytocin‐ and vasopressin‐containing neurons.
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2.3 What Regulates Leptin Expression?

2.3.1 Status of Energy Stores

Leptin expression is influenced by the status of energy stores as the levels of adipose tissue ob mRNA and

serum leptin are elevated in obese animals and humans (Frederich et al., 1995; Hamilton et al., 1995; Maffei

et al., 1995). Indeed, fasting in rodents and in humans can attenuate the circulating levels of leptin within

hours. In rodents leptin levels also increase within hours after food consumption, whereas in humans

alterations in the levels of leptin are only apparent after several days of overeating (Saladin et al., 1995;

Kolacznyski et al., 1996). As leptin levels are not enhanced in response to a single meal in humans, leptin is

unlikely to act as a satiety signal in a meal‐dependent manner. Thus the nutritional regulation of leptin

expression is also likely to bemediated, at least in part, by insulin. Indeed, during feeding leptin levels increase

after insulin secretion has peaked (Sinha et al., 1996). Insulin is also reported to directly stimulate leptin

expression in adipocytes (Rentsch and Chiesi, 1996). In a rodent model of diabetes (streptozotocin‐induced)
where insulin levels are low, there is also a correlated depression in leptin levels (MacDougald et al., 1995).
2.3.2 Hormonal Regulation of Leptin Expression

Leptin expression, in addition to being constitutively regulated, can also be influenced by numerous other

hormonal systems. In primary cultures of adipocytes, glucocorticoids directly stimulate synthesis of leptin

(De Vos et al., 1995; Murakami et al., 1995; Slieker et al., 1996), whereas in humans, the chronic rise in

cortisol levels that occurs in Cushing’s syndrome patients is associated with an elevation in leptin expression

(Cizza et al., 1997; Leal‐Cerro et al., 2001). Interestingly, the plasma levels of leptin and cortisol display an

inverse circadian rhythm such that peak glucocorticoid levels occur when leptin levels are low at the start of

the light cycle in humans, whereas at night when glucocorticoid levels dip, leptin levels peak (Ahima et al.,

1996; Laughlin and Yen, 1997; Licinio et al., 1997).

Leptin levels are higher in prepubertal rodents and prepubertal boys, but the levels of leptin do not

appear to be dependent on triglyceride levels or adipose mass (Mantzoros et al., 1997; Ahima et al., 1998).

This prepubertal rise in leptin levels occurs prior to increases in testosterone and estradiol, and it has been

postulated that this process is involved in the maturation of the gonadal axis (Mantzoros et al., 1997; Ahima

et al., 1998). Sex differences also exist in the circulating levels of leptin such that females have higher levels

than males when matched for body weight, age, or body fat (Saad et al., 1997). This may be due to

differences in the distribution of body fat and the levels of testosterone. Indeed females have higher levels of

adipose tissue compared with males, and leptin synthesis is inhibited by testosterone, but is not affected by

ovarian sex hormones (Blum et al., 1997; Castracane et al., 1998).
2.3.3 Infection and Inflammation

Leptin synthesis can be stimulated by infection, endotoxins, and cytokines, including tumor necrosis factor

(TNF) (Sarraf et al., 1997; Bullo et al., 2002), IL‐1 (Janik et al., 1997), and leukemia inhibitory factor (Sarraf

et al., 1997). The rise in leptin levels in response to these cytokines has been linked to the anorexia and weight

loss that develops in inflammatory conditions (Sarraf et al., 1997; Lennie et al., 2001). A number of agents

can also influence the leptin levels by means of directly affecting the ob gene. For instance thiazolidine-

diones, such as troglitazone, and catecholamines reduce the expression of leptin by binding to specific

nuclear transcription factor binding sites on the ob gene promoter (Gong et al., 1996; Hwang et al., 1996).
3 Leptin Receptor

The leptin receptor (ObR) was first isolated from the choroid plexus by expression cloning strategies

(Tartaglia et al., 1995). The diabetes (db) gene encodes ObR and at least six receptor isoforms (termed
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ObRa–f), generated by alternate splicing of the db gene, have been identified to date (Lee et al., 1996; Wang

et al., 1998). The leptin receptor isoforms have identical N‐terminal extracellular ligand‐binding domains,

but distinct C‐terminal intracellular domains. All the isoforms, with the exception of ObRe, are membrane‐
spanning receptors that have either short‐ (approximately 30–40 residues) or long‐ (302 residues) intracel-
lular domains (see > Figure 28-1). The extended cytoplasmic domain of the long isoform (ObRb) contains
. Figure 28-1

Schematic representation of the structure of the six leptin receptor isoforms (ObR). ObRa,c,d, and f are the short

isoforms that have short intracellular domains and limited signaling capacity. ObRb is the long form of the

receptor and it has a long intracellular domain that can initiate signaling cascades. ObRe is distinct from the

other isoforms as it has no transmembrane domain
various motifs required for the initiation of signaling cascades following leptin receptor activation. Thus,

ObRb is the main signaling‐competent isoform, and it plays a crucial role in the regulation of the obese state

as insertion of a premature stop codon in the cytoplasmic domain of the ObRb mRNA transcript results in

an obese phenotype that is comparable to db/db mice (Chen et al., 1996). In contrast, the short isoforms

(ObRa,c,d,f) with their smaller cytoplasmic region, have limited ability to signal. However, there is evidence

that in hepatocytes that lack ObRb, leptin antagonizes glucagon‐induced cAMP accumulation (Zhao et al.,

2000). ObRa can also stimulate the Ras–MAPK signaling pathway in CHO cells (Yamashita et al., 1998) and

HEK293 cells (Bjorbaek et al., 1998). ObRe is a distinct isoform as it lacks a transmembrane domain (Lee

et al., 1997), and it has been proposed to act as a soluble receptor as it is the major site of leptin binding in

the plasma.
3.1 Leptin Receptor Mutations

In rodents, leptin receptor mutations result in early onset obesity (Chua et al., 1996; Takaya et al., 1996a, b;

White et al., 1997). In db/db mice (C57B1/K strain) a truncated form of ObRb, that is incapable of
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stimulating JAK‐STATsignaling, is produced by insertion of a stop codon at the 30‐end of the ObRb mRNA

transcript (Ghilardi et al., 1996; Vaisse et al., 1996). In contrast the other splice variants are expressed

normally in db/db mice. Mutations in the db gene cause, insensitivity to leptin, hyperphagia, morbid

obesity, and various neuroendocrine abnormalities (Campfield et al., 1995; Halaas et al., 1995). In fa/fa

(fatty) rats, a single point mutation in the extracellular domain of all leptin receptor isoforms occurs, which

results in attenuation of the affinity of the receptor for leptin as well as the receptor‐driven signal

transduction capacity (Da Silva et al., 1998). Obese Koletsky rats have a point mutation at amino acid

763, which results in a stop codon in the extracellular domain and failure of expression of all leptin receptor

isoforms (Takaya et al., 1996a, b; Wu‐Peng et al., 1997).
In humans, mutations in the leptin receptor have been identified, but these are extremely rare. Three

sisters from a Kabilian family were the first reported human cases with mutations in the leptin receptor

(Clement et al., 1998). These patients produced truncated leptin receptors lacking both transmembrane and

intracellular domains due to a point mutation in the splice donor site of exon 16. Like mutations in the

human ob gene, mutations in the db gene cause hyperphagia, early onset obesity, and hypothalamic

hypogonadism. However unlike db/db mice, humans with this mutation do not develop hyperglycemia,

hypercorticism, and hypothermia (Bray and York, 1979; Clement et al., 1998).
3.2 Leptin Receptor Expression in the CNS

3.2.1 Hypothalamus

In the CNS, the main target for leptin with respect to regulating food intake and body weight is the

hypothalamus. Several hypothalamic nuclei including the ventromedial hypothalamus (VMH), arcuate

nucleus (ARC), and dorsomedial hypothalamus (DMN) in particular express high levels of leptin receptor

mRNA and protein in rodents (Schwartz et al., 1996b; Hakansson et al., 1996, 1998; Elmquist et al., 1998).

High levels of leptin receptor mRNA have also been detected in human hypothalamus (Savioz et al., 1997;

Burguera et al., 2000). In the hypothalamus leptin receptor expression is influenced by the circulating

plasma levels of leptin, as an increase in ObRb is evident in leptin‐deficient rodents (ob/ob mice) or fasted

rats (Baskin et al., 1998; Lin et al., 2000).

The ARC is particularly enriched with leptin receptors, which correlates well with the role this nucleus

plays in converting peripheral signals into neuronal responses (Dawson et al., 1997; Tang‐Christensen et al.,

1999). Two neuronal populations are critical targets for leptin in the ARC: an orexigenic pathway compris-

ing neuropeptide Y (NPY)‐ and agouti‐related protein (AGRP)‐containing neurons and an anorexigenic

pathway consisting of proopiomelanocortin (POMC) and cocaine‐and amphetamine‐regulated transcript

(CART)‐containing neurons. Leptin‐deficient (ob/ob) or leptin‐insensitive (db/db) mice, or fasted rats have

elevated levels of NPY/AGRP mRNA and attenuated levels of POMC/CART mRNA (Ahima, 2000).

Moreover, administration of leptin to either fasted rats or leptin‐deficient mice alleviates these changes

(Ahima, 2000). In response to circulating levels of leptin (and other hormones), neurons within the ARC

subsequently innervate various second‐order neuron centers where further integration of adiposity/satiety

signaling occurs. In turn, outputs from these second‐order centers descend through hindbrain regions

where there is further integration prior to output to spinal neurons and peripheral organs.
3.2.2 Extrahypothalamic Brain Regions

In addition to the hypothalamus, high levels of leptin receptor immunoreactivity and ObRb mRNA have

been detected in a number of brain regions that are not generally associated with energy homeostasis,

including the hippocampus, thalamus, brain stem, cerebellum, olfactory tract, pyriform cortex, and

substantia nigra (Mercer et al., 1996; Elmquist et al., 1998; Hakansson et al., 1998; Baskin et al., 1999). In

the hippocampus in particular, the CA1/CA3 regions and the dentate gyrus display widespread expression

of leptin receptor mRNA (Huang et al., 1996; Mercer et al., 1996) and leptin receptor immunoreactivity
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(Hakansson et al., 1998). Furthermore, as in the hypothalamus, the expression of leptin receptor mRNA is

altered in fasted rodents relative to control animals (Lin et al., 1997). In primary neuronal cultures prepared

from the CA1/CA3 regions of the hippocampus, leptin receptor immunolabeling is evident on both

neurons and glial cells (Shanley et al., 2002b). In dual‐labeling studies leptin receptor staining is also

associated with somatodendritic regions, axonal processes, and points of synaptic contact (Shanley et al.,

2002a, b).

The expression of leptin receptors in many extrahypothalamic brain regions suggests that this hormone,

in addition to its role in regulating energy homoeostasis, may play a more fundamental modulatory role in

the CNS. In support of this possibility, recent evidence indicates that leptin mRNA, ob protein, and leptin

immunoreactivity are all widely expressed in a number of brain regions such as the hippocampus,

hypothalamus, and cerebellum (Morash et al., 1999; Ur et al., 2002). This lends support to the possibility

that leptin may actually be made and released locally within the CNS. It is not yet known whether centrally

derived leptin fulfills the criteria of being either a neurotransmitter or cotransmitter in the brain. However,

as circulating leptin can be transported from the plasma, across the blood–brain barrier to all regions of the

brain (Banks et al., 2000), leptin originating from peripheral tissues may still be able to function in the

brain. Indeed intraperitoneal administration of leptin influences glucocorticoid expression in the hippo-

campus (Proulx et al., 2000).
3.3 Leptin‐Receptor‐Driven Signal Transduction

ObR shows greatest homology to the class I cytokine receptors (Ihle, 1995); a family of proteins that

includes IL‐6, leukemia‐inhibitory factor, and granulocyte colony‐ stimulating factor receptors. In a manner

similar to other cytokines, binding of leptin to ObR results in the activation of janus tyrosine kinases

(JAKs). Numerous studies have demonstrated that JAK2 is preferentially activated during leptin receptor

signal transduction (Baumann et al., 1996; Bjorbaek, 1997; Ghilardi, 1997), although there is evidence for

signaling via JAK1 (Bjorbaek, 1997). Following leptin binding, JAK2 associates with specific domains

within the cytoplasmic (C‐terminal) region of the leptin receptor, resulting in trans‐phosphorylation of

JAK2 and subsequent phosphorylation of tyrosine residues on the receptor. These events in turn act as a

switch to recruit and activate various downstream signaling pathways, including the STAT (signal transdu-

cers and activators of transcription) family of transcription factors, insulin receptor substrate (IRS)

proteins, phosphoinositide 3‐kinase (PI‐3 kinase), and Ras–Raf–MAPK (see > Figure 28-2).

Initially it was thought that the long formof the leptin receptor (ObRb) was the only signaling‐competent

isoform due to the various motifs required for signaling that are expressed within its long intracellular

domain. This suggestion was reinforced by studies performed by Bjorbaek et al. (1998) who demonstrated

that the short isoforms are unable to undergo tyrosine phosphorylation. However the short forms of the

receptor may have the capacity to signal in some cell types, as activation of recombinant ObRa can stimulate

the MAPK‐signaling cascade in CHO cells (Yamashita et al., 1998), whereas in hepatocytes that do not

express ObRb, leptin antagonizes the effects of glucagon on cAMP levels (Zhao et al., 2000).
3.3.1 The STAT Family of Transcription Factors

Only ObRb contains the various signaling motifs required for activation of the STAT family of transcription

factors. One tyrosine residue (Y1138) on ObRb enables STAT3 binding, which in turn results in STAT3

dimerization and concomitant translocation to the nucleus. Like other cytokines, ObRb activation leads to

tyrosine phosphorylation of STAT1, 3, and 5 in vitro (Carpenter et al., 1998; Li and Friedman, 1999; Morton

et al., 1999). In contrast, in mice intravenous administration of leptin results in specific activation of STAT3

in the hypothalamus. This in turn stimulates activation of the immediate early genes, c‐fos and c‐jun
(Bjorbaek et al., 1998). STAT3 signaling appears to be required for leptin regulation of energy balance as

gene‐targeted disruption of ObRb–STAT3 signaling in mice results hyperphagia and obesity (Bates et al.,

2003; Gao et al., 2004).



. Figure 28-2

Schematic representation of leptin‐receptor‐driven signaling. In a manner similar to other class I cytokines,

activation of the long form of the leptin receptor promotes stimulation of a number of signaling molecules

including signal transducers and activators of transcription 3 (STAT3), mitogen‐activated protein kinase

(MAPK), and phosphoinositide‐3 (PI‐3) kinase
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Recently a new family of cytokine‐inducible inhibitors of signaling has been identified, including CIS

(cytokine inducible sequence) and SOCS 1–3 (suppressor of cytokine signaling). In the hypothalamus

(Bjorbaek et al., 1998) and in COS cells (Bjorbaek et al., 1999), leptin can induce expression of SOCS3

mRNA, which may act as an important regulatory mechanism for controlling leptin‐receptor‐driven signal

transduction at the level of transcription (Bjorbaek et al., 2000). Indeed, recent studies indicate that the level

of SOCS3 expression is a critical determinant of leptin sensitivity, and thus susceptibility to obesity

(Howard et al., 2004).
3.3.2 PI‐3 Kinase

In addition to promoting changes in gene transcription via activation of the JAK–STAT signaling pathway,

leptin can also evoke more rapid responses (within minutes) by stimulating alternative signaling cascades.
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In hypothalamic glucose‐responsive ARC neurons, leptin activates ATP‐sensitive Kþ (KATP) channels via

rapid activation of a PI‐3 kinase‐dependent process (Spanswick et al., 1997). Similarly in peripheral insulin‐
secreting cells the ability of leptin to stimulate KATP channel activation involves the activation of PI‐3 kinase
(Harvey et al., 2000b). A key role for this enzyme has been identified in linking leptin receptor activation to

reduced food intake, as intracerebral infusion of selective inhibitors of PI‐3 kinase prevent the anorectic

effects of leptin (Niswender et al., 2001). PI‐3 kinase is also a key element of leptin‐receptor‐driven signaling
in hippocampal neurons (Shanley et al., 2001, 2002a, b).

It is well established that one of the main functions of PI‐3 kinase is to phosphorylate phosphoinositides
on the 3‐position, resulting primarily in phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns(3,4,5)P3).

Numerous studies also indicate a link between the actin cytoskeleton and the lipid products of PI‐3 kinase,
as the activity of a number of key cytoskeleton proteins is dependent on the levels of either PtdIns(4,5)P2 or

PtdIns(3,4,5)P3 (Janmey, 1998). A functional role for the cytoskeleton in the actions of leptin has also been

demonstrated as the ability of leptin to stimulate KATP channels in peripheral cells has been shown to be due

to PI‐3‐kinase‐driven alterations in actin dynamics (Harvey et al., 2000a, b). Indeed leptin‐induced
activation of KATP channels in CRI‐G1 insulin‐secreting cells is prevented by the actin filament stabilizer,

phalloidin. Moreover, application of leptin to these cells also evokes rapid disassembly of actin filaments, via

stimulation of a PI‐3‐kinase‐dependent process. In addition to direct signaling via its lipid products, PI‐3
kinase also possesses serine kinase activity, and this enzyme has been shown to interact with AGC serine

kinases, Tec tyrosine kinases, and Rho GTPases. In pancreatic beta cells (Zhao et al., 1998) and hepatocytes

(Zhao et al., 2000), there is good evidence that leptin activates cyclic nucleotide phosphodiesterase 3B

downstream of PI‐3 kinase stimulation. This pathway has also been implicated in the hypothalamic actions

of leptin on food intake and body weight as intracerebroventricular (ICV) administration of selective

inhibitors of cyclic phosphodiesterase 3B prevent the anorexigenic effects of leptin (Zhao et al., 2002).
3.3.3 Ras–Raf–MAPK Signaling Cascade

In addition to activating the PI‐3‐kinase signaling cascade, leptin can also rapidly stimulate the Ras–Raf–

MAPK pathway. Activation of this pathway involves tyrosine phosphorylation of the adaptor protein, Src

homology collagen (Shc), which in turn interacts with Grb2, and this subsequently recruits the Son of

sevenless (SOS) exchange protein to the plasma membrane to enable activation by Ras. Once activated, Ras

acts like a molecular switch by stimulating a serine kinase cascade through the step‐wise activation of Raf,

MEK, and ERK. Activation of this pathway downstream of leptin receptor activation has been observed in

numerous cell lines including MIN6 insulinoma cells, C3H10T1/2 cells, and HEK293 cells expressing

recombinant ObRb (Tanabe et al., 1997; Takahashi et al., 1997; Banks et al., 2000). Leptin also utilizes

this signaling cascade in rat preadipocytes and porcine chromaffin cells (Takekoshi et al., 2001; Machinal‐
Quelin et al., 2002). In neurons there is also evidence that leptin‐receptor‐driven activation of the MAPK

pathway occurs (Shanley et al., 2001; Morikawa et al., 2004).
4 Biological Roles of Leptin

4.1 Leptin Transport to the Brain and Sites of Action

Leptin enters the brain via a saturable transport system (Banks et al., 1996), possibly via receptor‐mediated

transcytosis across the blood–brain barrier. In support of such a mechanism, high levels of the short

leptin receptor isoforms are expressed on brain microvessels, and which are capable of binding and

internalising leptin (Golden et al., 1997; Bjorbaek et al., 1998). As the key leptin target neurons lie in

close proximity to the median eminence, and capillaries in the median eminence lack tight junctions, leptin

may reach its hypothalamic targets via diffusion. Leptin may also reach the brain via the cerebrospinal fluid

(CSF) (Schwartz et al., 1996a, b). Indeed high levels of ObRa are expressed in the main site of CSF
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production, the choroid plexus, which could mediate blood‐to‐CSF transport of leptin (Bjorbaek et al.,

1998).
4.2 Role of Leptin in the Hypothalamus

4.2.1 Regulation of Food Intake and Body Weight

Within the brain, the hypothalamus is the main site of leptin action with respect to regulating food intake

and body weight. Several hypothalamic nuclei are particularly enriched with high levels of leptin receptors

including the ARC, VMN, and DMN (Hakansson et al., 1996, 1998; Schwartz et al., 1996a, b; Elmquist et al.,

1998). Indeed, intravenous or intraperitoneal injection of leptin results in the activation of all these

hypothalamic nuclei (Ahima, 2000). Furthermore, ICV administration of leptin to leptin‐deficient ob/ob
mice and wild‐type mice inhibits food intake and attenuates body weight (Elmquist et al., 1999; Ahima and

Flier, 2000).

Within the hypothalamus the ARC has been established as the key hypothalamic nucleus that converts

peripheral leptin signals into both the neuronal and behavioral responses associated with altering energy

homeostasis (Dawson et al., 1997; Tang‐Christensen et al., 1999). In the ARC, two neuronal populations are

key targets for leptin; an orexigenic pathway consisting of NPY‐ and AGRP‐containing neurons, and an

anorexigenic pathway comprising of POMC‐ and CART‐ containing neurons. These neurons subsequently
innervate various second‐order neuronal centres where further integration of satiety/adiposity signaling

occurs. These second‐order neurons then feed information to hindbrain regions where there is additional

integration prior to output to spinal neurons and peripheral organs (see > Figure 28-3).
. Figure 28-3

Schematic representation of the key leptin‐sensitive pathways in the hypothalamus. When leptin levels increase

in the arcuate nucleus (ARC), neuropeptide Y and agouti‐related protein (NPY/AGRP)‐containing neurons are

inhibited, which in turn reduces release of these peptides from the paraventricular nucleus (PVN). The resultant

reduction in the levels of these orexigenic peptides acts to reduce food intake. An increase in leptin also

simultaneously excites proopiomelanocortin and cocaine‐ and amphetamine‐regulated transcript (POMC/

CART)‐containing neurons in the ARC, which in turn increases release of a‐melanocortin‐stimulating hormone

(aMSH) from the PVN. This stimulates melanocortin receptors (MC3/4‐R), which in turn inhibit food intake
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It is now well documented that gene transcriptional changes (mediated by the JAK–STAT signaling

pathway) are crucial for the effects of leptin on energy balance. Indeed, targeted disruption of leptin‐
receptor‐driven STAT3 signaling causes obesity in mice (Bates et al., 2003; Gao et al., 2004). More recent

studies have also indicated that long lasting alterations in the efficacy of both excitatory and inhibitory

synaptic transmission are evident in leptin‐deficient rodents, suggesting that the plasticity of specific

hypothalamic synapses are also important for the anorexigenic actions of leptin (Pinto et al., 2004).

However, it is not clear at this stage whether these leptin‐induced changes in the efficacy of synaptic

function also involve gene transcriptional changes.

In addition to these long‐lasting changes in neuronal function, leptin can evoke acute changes in the

properties of ARC neurons, which may also contribute to the anorexigenic actions of leptin. For instance,

leptin hyperpolarizes glucose‐responsive ARC neurons via activation of KATP channels (Spanswick et al.,

1997), and this effect of leptin is not apparent in Zucker fa/fa rats which have dysfunctional leptin receptors.

However KATP channel (Kir 6.2
�/�) knockout mice display no deficits in the ability of leptin to reduce food

intake (Miki et al., 2001), indicating that the acute activation of these potassium channels is unlikely to be

the only nontranscriptional mechanism underlying leptin‐receptor‐driven regulation of food intake. Indeed
as well as inhibiting glucose‐responsive hypothalamic neurons, leptin excites POMC‐containing neurons,

via a combination of depolarization through activation of a nonselective cation channel and by reducing

the release of GABA from NPY‐containing neurons (Cowley et al., 2001). Thus at least two distinct

populations of hypothalamic neurons are sensitive to leptin: those that are depolarized by leptin with the

subsequent release of appetite‐reducing hormones such as a‐MSH, and those that are hyperpolarized by

leptin resulting in a reduction in the release of appetite‐stimulating agents, such as NPYand AGRP. Another

target for leptin in the regulation of energy homeostasis is AMP‐activated protein kinase (AMPK); a kinase

that acts like a fuel gauge to monitor the cellular status of energy stores. In the ARC and PVN, leptin inhibits

the activity of AMPK, whereas the consitutively active form of AMPK blocks the effects of leptin on food

intake and body weight (Minokoshi et al., 2004), suggesting that inhibition of hypothalamic AMPK is

necessary for the anorexigenic properties of leptin.

Leptin can also interact with a number of other neurotransmitter systems that are involved in

maintaining food intake, including melanocortins (Sahu, 1998), endocannabinoids (Di Marzo et al.,

2001), and orexins (Tritos et al., 2001). Thus it is likely that a complex system within the hypothalamus

exists whereby a number of effectors are targeted by leptin, and the relative contribution of each of these

effector system is crucial for the effects of leptin on energy homeostasis.
4.2.2 Role of Leptin Resistance in the Development of Obesity

It is well documented that obesity in humans and many animals is associated with high circulating levels

of leptin indicating that a leptin‐resistant state rather than leptin deficiency per se is likely to contribute

to the development of this disease. One potential cause of leptin resistance is a reduction in the transport

of leptin across the blood–brain barrier. In support of this possibility obese humans have lower levels

of leptin in the CSF than in the plasma (Caro et al., 1996; Schwartz et al., 1996a, b). Injection of leptin

directly into the brain of obese rodents is also more effective at reducing weight than peripheral adminis-

tration of leptin (Halaas et al., 1997; Van Heek et al., 1997). Moreover the transport rate of leptin across

the blood–brain barrier is significantly attenuated in rodent models of obesity compared with lean

controls (Banks et al., 1999; Kastin et al., 1999; Burguera et al., 2000; Dube et al., 2000; Banks, 2004),

and alterations in the uptake of leptin are evident following obesity‐induced lesions of the CNS (Banks

et al., 2001), indicating that defective blood‐to‐brain transport of leptin is likely to be a key factor in

producing and reinforcing the leptin‐resistant state. Interestingly, this impaired leptin transport can be

reversed with even modest weight reduction in rodents (Banks and Farrell, 2003). Recent studies also

indicate that triglycerides may be an important cause of leptin resistance as a number of triglycerides, but

not their free fatty acid constituents, inhibit transport of leptin across the blood–brain barrier (Banks et al.,

2004). It has been postulated that at the cellular level the short isoforms play an important role in leptin

transport across the blood–brain barrier as high levels of these isoforms are expressed at the choroid
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plexus, and leptin transport is impaired in Koletsky rats that lack the short form of the leptin receptor

(Kastin et al., 1999).

Another potential source of leptin resistance is defective or attenuated leptin‐receptor‐driven signaling

in the hypothalamus. Indeed studies on rodents fed a high‐fat diet indicate that defects in leptin receptor

signaling upstream of STAT3 activation in hypothalamic neurons contributes to leptin resistance (El‐
Haschimi et al., 2000). Furthermore, in diet‐induced obese (DIO) mice, leptin resistance is characterized

by a reduction in STAT3, but an increase in SOCS3 levels (Munzberg et al., 2004). The elevations in SOCS3

levels occur specifically in the ARC (Munzberg et al., 2004), indicating that defects in the ARC in particular

may play a role in the pathogenesis of leptin‐resistant obesity. In support of a key role for SOCS3 in

mediating the development of leptin resistance, targeted disruption of SOCS3 in mice increases the leptin

sensitivity and reduces diet‐induced obesity (Mori et al., 2004; Howard et al., 2004). Other negative

regulators of leptin‐receptor‐driven signaling that may confer resistance to leptin in diet‐induced obesity

include protein tyrosine phosphatase 1B (Cheng et al., 2002; Zabolotny et al., 2002) and SHP‐2 (Carpenter
et al., 1998; Li and Friedman, 1999).
4.2.3 Role in Reproductive Function

Evidence is accumulating that the reproductive system is also regulated by leptin receptors expressed in the

hypothalamus. For instance, animal models that display leptin deficiency and resistance are associated with

dysfunctions in the reproductive system (Swerdloff et al., 1976), which can be rescued by leptin treatment

(Barash et al., 1996). The onset of puberty in normal (wild type) mice is accelerated by leptin (Ahima et al.,

1997), whereas the occurrence of hypothalamic hypogonadism in humans has been linked to mutations in

the ob and db genes (Montague et al., 1997; Strobel et al., 1998). Transgenic mice that overexpress leptin

also display accelerated puberty (Yura et al., 2000), whereas leptin adminsitration to rodents reverses the

delay in sexual maturation induced by fasting. Thus leptin may be the key hormone linking sufficient

energy stores and normal reproductive function. In various animal models leptin is also reported to restore

the pulsatile release pattern of luteinizing hormone (LH), which is attenuated during fasting (Gonzalez

et al., 1999). As there is evidence that leptin directly stimulates gonadotrophin‐releasing hormone (GnRH)

secretion in the hypothalamus in vivo and the pulsatile nature of LH release is regulated by GnRH, it is

feasible that this effect of leptin is a hypothalamic‐driven process (Watanobe, 2002). Thus it has been

proposed that under conditions where there are adequate nutritional stores, leptin, in conjunction with

GnRH and the growth hormone axis, acts to initiate the complex process of puberty.
4.2.4 Regulation of Bone Formation

It is also emerging that leptin, via its actions in the hypothalamus is a potent regulator of bone formation.

The possibility that bone mass, body weight, and reproduction could all be controlled by the same hormone

was suggested by the observations that obesity prevents bone loss whereas gonadal failure results in it

(Karsenty, 2001). Leptin‐ and leptin‐receptor‐deficient rodents, despite being obese and hypogonadic,

exhibit enhanced bone formation, which subsequently leads to high bone mass (HBM) (Ducy et al.,

2000). Defects in leptin signaling, as opposed to obesity per se, are thought to contribute to these changes

in bone density as the HBM phenotype is evident in leptin‐deficient rodents (ob/ob mice) prior to the

development of obesity. The exact mechanisms underlying the effects of leptin on bone formation are

unclear. Although a hypothalamic site for the antiosteogenic actions of leptin has been identified, as ICV

infusion of leptin causes bone loss in ob/ob and wild‐type mice (Ducy et al., 2000), the leptin‐receptor‐
driven hypothalamic networks that regulate bone formation and food intake appear to differ (Takeda et al.,

2002). Thus the neuropeptides that mediate the anorexigenic effects of leptin do not affect bone formation.

Moreover manipulations that alter the ability of leptin to inhibit bone formation have no effect on body

weight (Takeda et al., 2002). Recent studies also indicate that the antiosteogenic and anorexigenic actions of

leptin are regulated by similar plasma concentrations of leptin (Elefteriou et al., 2004), indicating that the



Leptin in brain function 28 667
circulating levels of leptin are a key determinant of bone formation. Although numerous studies have

demonstrated that the hypothalamus plays a pivotal role in the ability of leptin to regulate bone formation,

there is also evidence that leptin may act locally to influence bone mass by inhibiting osteoclast generation

(Holloway et al., 2002). Thus a complex regulatory mechanism appears to exist that controls bone

formation which involves a combination of both central and peripheral actions of leptin.
4.3 Role of Leptin in the Hippocampal Formation

4.3.1 Is Leptin a Potential Cognitive Enhancer?

It is well documented that the hippocampus is an area of the brain that is critically involved in learning and

memory processes. Indeed in this region, the phenomenon of long‐term potentiation (LTP), which is a long

lasting increase in the efficacy of excitatory synaptic transmission, occurs and this process is thought to be a

cellular correlate of certain aspects of learning, memory, and habituation. In particular N‐methyl‐D‐
aspartate (NMDA) receptor‐dependent LTP evoked in the CA1 region of the hippocampus may underlie

the formation of spatial memory (Bliss and Collingridge, 1993). A potential role for leptin in hippocampal

synaptic plasticity was suggested by recent studies using genetically obese, leptin‐receptor‐deficient rodents
(db/db mice and fa/fa rats) that displayed impairments in both hippocampal LTP (Li et al., 2002; Gerges

et al., 2003) and long‐term depression (LTD) (Li et al., 2002). These animals also showed impaired

performance in spatial memory tasks in the Morris water maze (Li et al., 2002). Further evidence that

implicates leptin in hippocampal synaptic plasticity was obtained by Shanley et al. (2001) and coworkers

who demonstrated that leptin has the ability to convert short lasting potentiation (STP) of synaptic

transmission (induced by primed burst stimulation of the Schaffer collateral‐commissural pathway) into

LTP. More recent studies have demonstrated that direct administration of leptin to the dentate region of the

rat hippocampus enhances the level of LTP evoked in this region of the brain (Wayner et al., 2004). Leptin

adminstration into the CA1 region of the hippocampus also improves memory processing in mice

performing T‐maze foot shock avoidance and step down passive avoidance tests (Farr et al., 2004).

So what are the potential mechanisms underlying the modulatory effects of leptin on hippocampal

synaptic plasticity? It is well established that LTP can be modulated by a number of hormones, and one of

the main targets for modulation is the NMDA subtype of glutamate receptor. Indeed leptin can rapidly

facilitate NMDA‐receptor‐mediated synaptic currents and NMDA‐evoked Ca2þ influx in the hippocampus

(Shanley et al., 2001), and this effect is selective for NMDA receptors as leptin fails to alter Ca2þ influx via

AMPA (a‐amino‐3‐hydroxy‐5‐methyl‐isoxazole) receptors. The ability of leptin to modify NMDA

responses involves a PI‐3‐kinase‐driven process as two distinct PI‐3 kinase inhibitors, namely LY294002

and wortmannin, attenuate the effects of leptin. Inhibitors of MAPK (PD98059 and U0126) and Src

tyrosine kinase (PP1 and lavendustin A) also attenuate leptin‐induced facilitation of NMDA responses

(Shanley et al., 2001) indicating that MAPK‐ and Src tyrosine kinase‐ dependent pathways contribute to the
actions of leptin. It is well documented that activation of all these signaling cascades (namley PI‐3 kinase;

MAPK; Src tyrosine kinases) play a role in hippocampal LTP (English and Sweatt, 1997; Lu et al., 1998;

Coogan et al., 1999; Kelly and Lynch, 2000; Huang et al., 2001; Komiyama et al., 2002; Sanna et al., 2002;

Man et al., 2003; Opazo et al., 2003; Kelleher et al., 2004). Thus leptin may be released from CA1 synapses

during high‐frequency stimulation and the induction phase of LTP, and modulate synaptic plasticity by

influencing these signaling cascades, and subsequently modifying NMDA receptor function. Alternatively,

hormonally released leptin (from adipocytes) may be transported from the periphery to the brain, where it

acts to modulate the threshold for the induction of LTP by selective facilitation of NMDA receptors.

However as there is no direct evidence that leptin can stimulate these pathways in hippocampal neurons, it

is possible that leptin acts in concert with other neurotransmitters/agents capable of stimulating these

pathways.

As these findings indicate that leptin is a potential cognitive enhancer, does leptin insensitivity or

leptin deficits affect cognitive function in humans? It is known that diabetes is commonly associated

with obesity, and cognitive deficits have been found in some diabetic patients. Thus insensitivity to leptin



668 28 Leptin in brain function
may be a key contributor to these cognitive deficits. Although there is no direct evidence that human

obesity results in cognitive deficits, it is well established that lower cognitive functioning can be associated

with patients with obesity and hypertension (Elias et al., 2003), which suggests that obesity may have

adverse effects on cognitive performance. In support of such a possibility, functional imaging of cerebral

blood flow has demonstrated regional differences in the brain responses of lean and obese subjects,

suggesting that the circulating levels of leptin in the brain are altered in obese individuals (Gautier et al.,

2000, 2001).
4.3.2 Leptin Has Anticonvulsant Properties

Potassium channels are a key cellular target for leptin in both peripheral cells and central neurons. Indeed, in

peripheral insulin‐secreting cells (Harvey et al., 1997; Kellerer et al., 1997), leptin inhibits insulin secretion

via activation of KATP channels, whereas in hypothalamic glucose‐responsive neurons, leptin causes

neuronal inhibition via activation of KATP channels (Spanswick et al., 1997). In contrast, in the hippocam-

pus leptin activates a distinct type of potassium channel, the large conductance Ca2þ‐activated Kþ (BK)

channel. However, like KATP channel activation by leptin (Harvey et al., 2000a, b), a PI‐3 kinase‐dependent
process connects leptin receptor activation to the stimulation of BK channels (Shanley et al., 2002a).

It is well established that the activity of neuronal BK channels is tightly regulated by both voltage and

levels of intracellular Ca2þ (Latorre, 1989), and the activity of postsynaptic BK channels is key to regulating

the level of neuronal excitability which determines action potential firing rate and burst firing pattern.

Thus, BK channels are thought to play a pivotal part in regulating seizure‐like activity in the brain (Alger

and Williamson, 1988; Shao et al., 1999). Indeed, leptin significantly attenuates the frequency of epilepti-

form discharges in two distinct models of epilepsy, via a process involving the activation of BK channels

(Shanley et al., 2002b). Interestingly, Shanley et al. (2002b) also found that leptin‐receptor‐deficient rodents
(Zucker fa/fa rats) displayed an enhanced frequency of seizure‐like activity compared with lean control

animals, indicating that the degree of neuronal excitability is enhanced in animals with leptin receptor and/

or signaling deficits. As unregulated hyperexcitability in the CNS is a hallmark of neurological diseases such

as epilepsy, the coupling of leptin receptors to BK channels may provide a novel, and useful therapeutic

target in the treatment of this disease.

Interestingly there are numerous reports of an increased frequency of reproductive disorders, in

particular polycystic ovary syndrome, in women with epilepsy. The prevalence of such disorders appears

to be independent of the antiepileptic medication used or the type of seizure (Bilo et al., 2001). Thus as

leptin is a possible pathogenic factor in polycystic ovary syndrome (El Orabi et al., 1999) and as leptin is a

potent anticonvulsant, it is tempting to speculate that the occurrence of reproductive disorders in epileptic

patients may be linked and possibly may be due to defects in the leptin system.
4.4 Leptin and Neuronal Development

The possibility that leptin has a role in developmental processes was originally suggested by the high levels

of leptin expression in placenta (Masuzaki et al., 1997). Leptin is also implicated in in utero development as

both leptin and leptin receptors are widely expressed in fetal tissues and human umbilical cord (Hoggard

et al., 1997; Akerman et al., 2002). Indeed leptin receptor gene expression is evident in a number of

embryonic mesoderm‐derived tissues including musculoaponeurotic laminae and bone primordia

(Camand et al., 2002). Leptin‐receptor‐driven pathways are also implicated in development of the CNS,

as changes in the expression levels and the localization of ObRb have been detected in rodent brains at

different stages of development (Chen et al., 1999, 2000; Matsuda et al., 1999; Morash et al., 2003). For

example in mouse embryos (at embryonic day 14.5; E14.5) leptin receptor mRNA is localized to the

ventricular zone of the thalamus. However in the ARC and VMN, leptin receptor mRNA was not detected

until E18.5 (Udagawa et al., 2000). The expression of the leptin (ob) gene also appears to be developmen-

tally regulated as age‐related changes in the expression levels of leptin mRNA levels have been observed in
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rodent brains (Morash et al., 2001). For instance in the pituitary, ob mRNA levels peak during postnatal

days 7–14, whereas by postnatal day 22 the levels of ob mRNA fall significantly. Interestingly the expression

of the leptin gene during the postnatal period is also tissue dependent. For example, in contrast to the

pituitary, ob gene levels are low in cerebral cortex in neonatal rats (postnatal days 2–7), but are maximal

between postnatal days 14–28 (Morash et al., 2001).

In addition to developmental changes in neuronal ob and ObRb mRNA levels, specifc changes in the

brains of leptin‐deficient or insensitive rodents have been observed, which also supports a role for leptin in

neuronal development. Indeed reductions in brain weight and protein content have been reported in ob/ob

and db/dbmice compared with control mice (Ahima et al., 1999; Steppan and Swick, 1999). The levels of a

number of synaptic proteins, including synaptobrevin and syntaxin‐1 are also attenuated in hippocampal

and neocortical brain regions of ob/ob and db/db mice, and these deficits are reversed by postnatal

administration of leptin (Ahima et al., 1999). Other neuronal deficits that are evident in leptin‐deficient
(ob/ob) rodents include altered dendritic orientation (Bereiter and Jeanrenaud, 1979), reduced neuronal

soma size (Bereiter and Jeanrenaud, 1979), as well as reductions in brain myelination (Sena et al., 1985).

Alterations in the organization of neuronal connections (Bereiter and Jeanrenaud, 1980) have also been

observed in leptin‐deficient (ob/ob) mice. Moreover recent studies have demonstrated that leptin‐deficiency
results in profound disruption in the development of ARC projections to the PVN in the hypothalamus

(Bouret et al., 2004). Moreover, leptin directly induces neurite growth from neurons within the ARC, and

this developmental activity is restricted to a critical period in neonatal development. Thus, it is possible that

the neonatal surge in leptin acts as a peripheral signal to direct the development of central circuits in the

brain, in particular promoting the formation of specific hypothalamic pathways that convey leptin signals

to brain regions involved in regulating energy balance.
4.5 Neuroprotective Effects of Leptin

Another possible function of leptin is to act as a neuroprotective agent. Administration of leptin intraperi-

toneally has been shown to protect (by around 50%) against excitotoxic lesions induced by injection of the

glutamatergic analogue ibotenate into the developing mouse brain in vivo (Dicou et al., 2001). In the same

study, Dicou et al. (2001) also demonstrated that leptin significantly reduced NMDA‐induced cytotoxicity

in cultured mouse cortical neurons. Furthermore, in both cases the neuroprotective effects of leptin were

inhibited by a selective JAK2 inhibitor, indicating that leptin‐receptor‐driven activation of a JAK2‐
dependent process contributes to this process. In human neuroblastoma cells (SH‐SY5Y), leptin is also

reported to inhibit apoptosis (Russo et al., 2004). The mechanisms underlying leptin‐induced suppression

of apotosis involves activation of JAK–STAT, PI‐3 kinase, and MAPK signaling cascades and subsequent

downregulation of the apoptotic factors caspase‐10 and tumour necrosis factor (TNF). The antiapoptotic

actions of leptin in the CNS parallel its ability to reduce apoptosis in peripheral cells. For instance, in

hepatic stellate cells leptin potently abolishes cytcloheximide‐ and TNF‐induced apoptosis, via a process

involving activation of ERK and Akt (Saxena et al., 2004).
5 Conclusions

It is well documented that the adipocyte‐derived hormone leptin plays an important role in controlling

feeding behavior and energy expenditure by signaling information regarding the status of energy stores to

leptin receptors located on specific neurons within the hypothalamus. However, it is becoming apparent

that this hormone has other neuronal functions that are unrelated to its effects on energy homeostasis.

Indeed, there is evidence that leptin, via its actions in the hypothalamus, is an important regulator of the

reproductive system and of bone formation. However leptin and its receptors are widely expressed in many

extrahypothalamic brain regions, including the hippocampus, cerebellum, amygdala and brainstem, sug-

gesting that leptin is a multifaceted hormone in the CNS. Indeed there is good evidence that leptin plays an

important role in learning and memory processes as leptin‐insensitive rodents display impairments in
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hippocampal synaptic plasticity, and a number of studies indicate that leptin can facilitate hippocampal

LTP, possibly via enhancement of NMDA receptor function. Alterations in the efficacy of synaptic connec-

tions have also been observed in the hypothalamus of leptin‐deficient rodents, suggesting that leptin also

influences the plasticity of synapses in this region of the brain. Another potential function of leptin is as an

anticonvulsant agent, as it can potently regulate hippocampal hyperexcitability by promoting the activation

of BK channels. This process may have important implications for diseases, like temporal lobe epilepsy, that

are characterized by unregulated excitability in the brain. More recent studies have identified a prominent

role for leptin in the development of the CNS as leptin has the ability to promote neurite outgrowth in

the hypothalamus, and specific deficits in key hypothalamic feeding pathways have been identified in leptin‐
deficient rodents.
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