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Abstract: In mammalian cells, the kynurenine pathway (KP) is a major biochemical route for the

conversion of tryptophan, yielding L-kynurenine (L-KYN) and ultimately several other metabolites, called

kynurenines, which derive directly or indirectly from L-KYN. Kynurenines have been shown to be involved

in various physiological and pathological processes. Alteration of KP metabolism is functionally significant

and occurs in a variety of diseases of the central nervous system. The discovery of the importance of

kynurenines in brain function under physiological and pathologic conditions has led to the identification of

potential new drug targets exploiting the therapeutic potential of the pathway. Some of these compounds

proved to provide neuroprotection in animal models of various human diseases which holds promise that

their effectiveness will translate to the clinic in the future.

List of Abbreviations: EAA, excitatory amino acid; HD, Huntington’s disease; IDO, indoleamine 2,3‐
dioxygenase ; KAT II KO, kynurenine‐aminotransferase knockout; KP, The kynurenine pathway; KYNA,

kynurenic acid; L‐KYN, L‐kynurenine; mNBA, meta‐nitrobenzoylalanine; MS, Multiple sclerosis; NAD,

nicotinamide adenine dinucleotide; NMDA, N‐methyl‐D‐aspartate; oMBA, Ortho‐methoxybenzoylalanine;

PD, Parkinson’s disease; QUIN, quinolinic acid; TDO, tryptophan dioxygenase; 3‐HAO, 3‐hydroxyanthra-
nilate‐oxygenase; 3‐HK, 3‐hydroxykynurenine
1 Introduction

The kynurenine pathway (KP) is a major route for the conversion of tryptophan, yielding L‐kynurenine
(L‐KYN) and ultimately several other metabolites, called kynurenines, which are derived directly or

indirectly from L‐KYN (> Figure 5-1). The metabolic cascade was originally known to be a source of

nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP),

two coenzymes of basic cellular processes, and only later it was discovered that some of its metabolites could

exhibit neuromodulatory actions. Interest in the research of KP emerged as it turned out that two

metabolites of the pathway, quinolinic acid (QUIN) and kynurenic acid (KYNA) exhibit activity at

glutamate receptors (Stone and Perkins, 1981; Perkins and Stone, 1982). QUIN was shown to inhibit

N‐methyl‐D‐aspartate (NMDA) receptors, whereas KYNA proved to be a broad‐spectrum antagonist of

excitatory amino acid (EAA) receptors with particular high affinity to the glycine‐coagonist site of the

NMDA receptor (Kessler et al., 1989). Subsequently, studies from several laboratories have clarified the role

of kynurenines in the brain function under physiological and pathological conditions. This has led to the

identification of potential new drug targets for various neurological disorders.
2 L‐Kynurenine and Neuroactive Metabolites of the Kynurenine Pathway

2.1 L-Kynurenine

L‐KYN (> Figure 5-1) is a major compound of the KP, serving as a source for the synthesis of all the other

metabolites of the pathway. L‐KYN is present in the blood, brain, and peripheral organs in low micromolar

concentrations, and gets transported through the blood–brain barrier by the neutral amino acid carrier

(Fukui et al., 1991). Although L‐KYN does not directly influence neuronal function, systemic or intracere-

bral administration of it decreases blood pressure (Lapin, 1976) and evokes convulsions (Lapin, 1978, 1981,

1982; Pinelli et al., 1984), probably by getting converted to its neuroactive metabolites.
2.2 Kynurenic Acid

KYNA (> Figure 5-1) was long known to be a side product of tryptophan metabolism but no particular

biological function was assigned to it until more recently when in neurophysiological experiments it

was shown to inhibit neurons (Perkins and Stone, 1982). Subsequently, KYNA was recognized as a broad‐
spectrum antagonist of ionotropic EAA receptors. Since EAA receptor activation takes place in a variety of
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Chemical structure of L‐kynurenine and neuroactive kynurenines
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pathological states, KYNA has been tested as a neuroprotective agent. Indeed, at high concentrations, KYNA

was shown to block excitotoxic damage and seizures induced by QUIN in rats (Foster et al., 1984) and to

protect against various conditions like ischemia, traumatic brain injury (Germano et al., 1987; Andiné et al.,

1988; Hicks et al., 1994; Salvati et al., 1999). Intracerebroventricular administration of KYNA was shown to

dose‐dependently evoke characteristic behavior in the rat: increased stereotypy and ataxia (Vécsei and Beal,

1990a, 1991). At lower concentrations, KYNAwas recognized to act as a competitive antagonist at the glycine

site of the NMDA receptor (IC50 ffi 8 mM) (Kessler et al., 1989) and as a noncompetive blocker at the a7‐
nicotonic receptor (IC50ffi 7 mM) (Hilmas et al., 2001). These receptors could be the major sites of action of

KYNA in the brain and thus endogenous KYNA could modify glutamatergic and cholinergic neurotrans-

mission. Indeed, the level of KYNA seems to determine the vulnerability of the brain against excitotoxins,

because intraperitoneal (i.p.) injection of amphetamine – which leads to reduction in the brain concentra-

tion of KYNA‐potentiated quinolinate but not kainate excitotoxicity, and readjusting the level of KYNA to

control levels by pharmacological manipulation of the KP, restored the vulnerability (Poeggeler et al., 1998;

Rassoulpour et al., 2002). Furthermore, endogenous KYNA might influence glutamatergic neurotransmis-

sion presynaptically because modest elevations of KYNA in the rat striatum in vivo and in synaptosomes in

vitro are able to inhibit glutamate release (Carpenedo et al., 2001).

Generation of kynurenine aminotransferase knockout (KAT II KO) mice – which have reduced brain

KYNA levels early in development (<28 days) – has provided a useful tool for studying the role of KYNA in

brain function and underlined the importance of endogenous KYNA in modulating glutamatergic and

cholinergic neurotransmission. Intrastriatal injection of EAA receptor agonist QUIN induced significantly

larger lesion in KAT II KO mice compared with wild‐type mice (Sapko et al., 2003). Furthermore, the

observation that KAT II KO mice have increased activity of a7‐nicotonic receptor has proved the previous

hypothesis that endogenous KYNA is an important regulator of a7‐nicotonic receptor activity (Alkondon
et al., 2003). The changes observed in the KAT II KO mice are evident early in development (<28 days),

when cerebral KYNA levels are significanly decreased but tend to be reverted as the KYNA levels return to

normal levels. These observations suggest that changes in endogenous KYNA levels have profound effects

on the function of glutamatergic and cholineric receptors.
2.3 Quinolinic Acid

QUIN (> Figure 5-1) is present in the brain in concentrations similar to that of KYNA (50–100 nmol). It

has pronounced effects on neuronal activity being an agonist at the NMDA receptor (Stone and Perkins,
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1981), preferentially activating the NR2A and NR2B NMDA receptor subtypes (de Carvalho et al., 1996).

Besides acting at the NMDA receptor, QUIN produces toxic free radicals (Rios and Santamaria, 1991). Due

to the compound’s excitotoxic and free‐radical‐generating property, injection of QUIN into the rat striatum

leads to excitotoxic damage (Schwarcz et al., 1983) duplicating the neurochemical features of Huntington’s

disease (HD) (Beal et al., 1986). In addition, long‐term exposure to submicromolar concentrations of

QUIN results in neuronal death in vitro (Whetsell and Schwarcz, 1989). In pathological states, like

neuroinflammatory diseases, dramatic increases of its level in the brain could occur which could result in

neuronal damage.

2.4 3‐Hydroxykynurenine

No important physiological function in the brain has so far been assigned to 3‐hydroxykynurenine (3‐HK)

(> Figure 5-1), but in the primate lenses it could act as major UV filter together with its glucoside

derivative, L‐KYN and 4‐(2‐amino‐3‐hydroxyphenyl)‐4‐oxobutanoic acid O‐b‐D‐glucoside and may be

useful in protecting the retina from UV radiation (Vazquez et al., 2002). However, the autooxidation of

these metabolites has been proposed in the processes leading to opacification of the lens and cataract

formation (Chiarugi et al., 1999). In the brain, 3‐HK can cause neuronal death in cell cultures by generating

toxic free radicals. 3‐HK is present in nanomolar concentrations in the mammalian brain, but under

pathological conditions similarly to QUIN its level could increase dramatically reaching the micromolar

range (0.8–1.2 mM) (Eastman and Guilarte, 1989). Chronic exposure of neuronal cultures to these levels of

3‐HK could cause neuronal death (Okuda et al., 1996). 3‐HK should get into neurons to induce toxicity,

because the inhibition of its uptake by large neutral amino acid prevents from neuronal death (Okuda et al.,

1998). 3‐HK potentiates QUIN toxicity in the rat striatum, which suggests that these metabolites may act in

concert to induce neuronal damage (Guidetti and Schwarcz, 1999).

3 Enzymes of the Kynurenine Pathway

> Figure 5-2 summarizes the enzymes and metabolites of the KP. The first and rate‐limiting step in the

formation of L‐KYN is the conversion of L‐tryptophan to formyl kynurenine, which is catalyzed by two

distinct heme‐containing enzymes. In peripheral tissues and particularly in the liver, tryptophan dioxygenase

(TDO; tryptophan pyrrolase; EC 1.13.1.2.) is mainly responsible for yielding L‐KYN but in most mamma-

lian organs including intestine, lung, epididymis, placenta, central nervous system, reticuloendothelial

system, indoleamine 2,3‐dioxygenase (IDO; EC 1.13.11.42) is able to convert tryptophan to formyl kynur-

enine. In the second step, formyl kynurenine is rapidly metabolized into L‐KYN by formamidase, an enzyme

abundant in most mammalian organs (Mehler and Knox, 1950).

TDO is able to metabolize L‐ but not D‐tryptophan (Schutz et al., 1972), whereas IDO not only acts on

L‐tryptophan, but it can also cleave the indole ring of the D‐tryptophan, L‐ or D‐5‐hydroxytryptophan,
indoleamins like 5‐HT, tryptamine, and melatonine (Hirata and Hayaishi, 1975; Yoshida and Hayaishi,

1987). The gene encoding TDO contains glucocorticoid‐responsive elements (Danesh et al., 1983, 1987)

which explains that glucocorticoid administration increases TDO formation in the liver, which causes a

decrease in blood tryptophan levels with L‐KYN accumulation. The transcription of the gene of IDO is

under tight immunological control, and it contains two interferon‐stimulated response elements (ISRE)

and at least one gamma‐interferon‐activated sequence (GAS) (Dai and Gupta, 1990; Tone et al., 1990).

Interferons and proinflammatory cytokines stimulate (Carlin et al., 1989; Taylor and Feng, 1991), whereas

other cytokines and growth factors, like interleukin‐4 or TGF‐beta, inhibit IDO expression and activity

(Musso et al., 1994; Yuan et al., 1998).

L‐KYN is the key player of the pathway serving as a substrate of several enzymes: kynurenine

3‐hydroxylase (EC 1.14.13.9; yielding 3‐HK), kynureninase (EC 3.7.1.3; yielding anthranilic acid), and

kynurenine aminotransferases (KATs; yielding KYNA). Kynurenine 3‐hydroxylase is present in the liver,

placenta, spleen, kidney, and brain (Erickson et al., 1992) and requires NADPH and molecular oxygen
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The kynurenine pathway
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for the conversion of L‐KYN to 3‐HK. The enzyme has a high affinity for its substrate (Km ffi 1 mM),

implicating that it converts most of the available L‐KYN under physiological conditions.

Kynureninase has been characterized from rodent liver, kidney, and spleen (Kawai et al., 1988). It is a

pyridoxal phosphate‐dependent enzyme that converts L‐KYN and 3‐HK into L‐alanine and anthranilic or

3‐hydroxyanthranilic acid, respectively. It has been shown that the affinity of the enzyme is tenfold higher

for 3‐HK than for L‐KYN (Km for L‐KYN: 250 mM, Km for 3‐HK: 25 mM; Alberati‐Giani et al., 1996;
Toma et al., 1997).
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3‐Hydroxyanthranilate oxygenase (3‐HAO, EC 1.13.11.6) has been purified from mammalian liver or

kidney and it requires ferrous ions (Fe2þ) and sulfhydryl groups for its activity (Long et al., 1954; Decker

et al., 1961; Koontz and Shiman, 1976). 3‐HAO cleaves the benzene ring of 3‐hydroxyanthranilate into

a‐amino‐b‐carboxymuconate‐e‐semialdehyde, an unstable compound, which nonenzymatically gets

transformed into QUIN. A portion of a‐amino‐b‐carboxymuconate‐e‐semialdehyde is metabolized by

a‐amino‐b‐carboxymuconate‐e‐semialdehyde decarboxylase (EC 4.1.1.45) to produce picolinic acid or

aminomuconic acids.

3‐HAO has been shown to be present in the brain (Foster et al., 1986), and increased activity of the

enzyme has been detected in various pathological states, like in the striatum of HD patients (Schwarcz et al.,

1988a), in gerbil hippocampus after global ischemia (Saito et al., 1993), and in epileptic rats (Du et al., 1993).

QUIN is metabolized by quinolinic acid phosphoribosyltransferase (QPRT; EC 2.4.2.19) yielding nicotinic

acid mononucleotide and subsequent degradation products, including NADþ. Since QPRT has a very low

activity, the levels of QUIN in the extracellular space are essentially determined by its rate of synthesis.

KYNA is converted from L‐KYN in the brain by two distinct KATs (Okuno et al., 1991; Guidetti et al.,

1997). Arbitrarily termed KAT I and KAT II, these enzymes have substantially different pH optimum and

substrate specificity. KAT I (EC 2.6.1.14; also called glutamine transaminase K) has an optimal pH of

9.5–10, whereas KAT II has a maximal activity in the neutral pH. KAT I prefers pyruvate as a cosubstrate

and it is potently inhibited by glutamine. KAT II shows no preference for pyruvate, and it is not sensitive to

inhibition by glutamine. These differences suggest that KAT II might be responsible for most part of the

KYNA synthesis in the brain. Lesion and pharmacological studies have also confirmed that in most brain

regions KYNA derives primarily from KAT II activity (Guidetti et al., 1997). Under pathological conditions,

however, such as after exposure to mitochondrial toxins, a massive increase in KAT I immunostaining has

been observed in the neurons in the affected brain areas (Csillik et al., 2002; Knyihár‐Csillik et al., 1999).

Both KATs have high affinity for their substrate (Km in the millimolar range), suggesting that L‐KYN
bioavailability determines the rate for KYNA biosynthesis. Indeed, in experiments, when rat brain slices or

human astrocyte cultures are exposed to L‐KYN, the levels of KYNA increase linearly with L‐KYN availability

(Turski et al., 1989; Kiss et al., 2003).

No catabolic enzyme or cellular re‐uptake system of KYNA exists in mammals (Turski et al., 1989); so

KYNA is extruded from the brain by a probenecid‐sensitive carrier system (Moroni et al., 1988). More

recently, QUIN has been also shown to exit the brain by the same carrier system (Morrison et al., 1999).

All of the enzymes of the KP are detectable in the brain, but their activities are much lower than in the

peripheral organs (Stone, 1993). KP enzymes are predominantly localized in glial cells according to

immunocytochemical, lesion, and molecular biological studies (Guidetti et al., 1995; Schwarcz et al.,

1996; Guillamin et al., 2001).

Astrocytes seem to produce most part of KYNA in the brain (Guillamin et al., 2001), whereas microglial

cells are the primary source of metabolites of the QUIN branch of the pathway (Lehrmann et al., 2001).

4 Alterations of the KP under Pathological Conditions

Elucidation of the importance of the KP in brain function has facilitated extensive research, investigating

the alterations of the pathway in various neurological disorders. In the literature, a recent extensive review is

available on this topic (Stone, 2001). In a great number of diseases – especially in neuroimmunological

disorders – dramatic increases in the level of QUIN have been detected, suggesting its role in the

pathological processes. Whereas, in diseases with cognitive alterations, elevated levels of cerebral KYNA

have been shown which could contribute to cognitive defects by inhibiting NMDA receptor function.

4.1 Diseases with Increased Cerebral QUIN Levels

Infection of the CNS with viruses, bacteria, parazites: Significant increases in QUIN levels in the CNS have

been described in patients with AIDS–dementia complex (Heyes et al., 1991, 1998), Lyme borelliosis

(Halperin and Heyes, 1992), in mice infected with Herpes simlex virus type 1, cerebral malaria, and



Kynurenines in the brain: Preclinical and clinical studies, therapeutic considerations 5 97
Toxoplasma gondii (Reinhard, 1998; Sanni et al., 1998; Fujigaki et al., 2002), in macaques with poliovirus

infection and septicaemia (Heyes and Lackner, 1990; Heyes et al., 1992). Reinhard et al. (1994) listed many

other infectious diseases in which alterations of the KP have been described.

Multiple sclerosis (MS): Experimental allergic encephalomyelitis is an autoimmune inflammatory

disorder and serves as an animal model of human MS. The levels of neurotoxic kynurenine metabolites,

3‐HK and QUIN, are elevated in the spinal cord of affected animals (Flanagan et al., 1995; Chiarugi et al.,

2001). Since QUIN has been shown to be toxic to oligodendrocytes (Cammer, 2001), elevated levels of

QUIN might contribute to the pathology of the disease.

Huntington’s disease: QUIN has long been hypothesized to play an important role in HD, because

intrastriatal injection of QUIN duplicates many of the distinct neuropathological features of the striatum

of patients with HD (Schwarcz et al., 1983; Beal et al., 1996). However, no changes in QUIN levels in

tissue samples have been detected in HD patients dying after a prolonged illness (Reynolds et al., 1998;

Schwarcz et al., 1988b). Of potential interest is the finding that elevated cortical and striatal content of 3‐HK

and QUIN has been shown in early grade HD, suggesting a causal role of QUIN in nerve cell loss in HD

(Guidetti et al., 2000, 2003).

Parkinson’s disease (PD): 3‐HK has been shown to be significantly increased in the putamen and

substantia nigra in patients with PD, which could play a causal role in the neuronal loss in PD (Ogawa

et al., 1992).

Ischaemia: Dramatic increases in cerebral QUIN levels have been observed several days after global

ischemia in a gerbil model of the disease (Heyes and Nowak, 1990; Saito et al., 1993). The changes have been

observed in brain areas exposed to ishemia, but not in areas with an uninterrupted blood supply (Saito

et al., 1992).

Traumatic brain/spinal cord injury: Both in humans and in the animal model of the disease, massive

increases (50‐fold) in the level of QUIN in the CSF (Sinz et al., 1998) and in affected areas have been shown

(Blight et al., 1995, 1997).
4.2 Diseases with Increased Cerebral KYNA Levels

Alzheimer’s disease (AD): Increased level of KYNA has been measured in the putamen and caudate nucleus

of AD patients, which could be responsible for the cognitive deficits seen in AD patients (Baran et al., 1999).

Down’s syndrome: The cortical levels of KYNA have been shown to be elevated in the postmortem

specimens of Down’s syndrome patients that could play a causal role in the impaired memory and learning

defects seen in these patients (Baran et al., 1996).

Schizophrenia: Elevated levels of KYNA have been detected in the prefrontal cortex (Brodmann area 9),

but not in other cortical areas of schizophrenic patients (Schwarcz and Pellicciari, 2002). Increased KYNA

levels may contribute to the hypofunction of glutamatergic neurotransmission that plays a critical role in

schizophrenia (Tamminga, 1998).
5 Therapeutic Approaches based on Kynurenines

After KYNAwas recognized as a broad‐spectrum antagonist of EAA receptors, its neuroprotective potential has

been investigated in a variety of disorders. KYNA itself poorly enters the brain due to its polar structure and lack

of efficient transport across the blood–brain barrier, but if systematically given in high doses, it protects against

anoxia (Simon et al., 1986), ischemia (Germano et al., 1987; Andiné et al., 1988; Salvati et al., 1999), traumatic

brain injury (Hicks et al., 1994), and antagonizes the toxic effects of QUIN (Foster et al., 1984). There are

several strategies to generate neuroprotective drugs that have superior therapeutic potency to KYNA.

One strategy to exploit the therapeutic potential of KYNA is to develop chemically related drugs with

better bioavailability and higher potency on the glycine site of the NMDA receptor.

The second approach uses prodrugs of KYNA or its analogs, which readily penetrate the blood–brain

barrier, and are hydrolyzed in the CNS to form active compounds.
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Third way is manipulating the KP by administering compounds that block the activity of the KP

enzymes. With this strategy, one can shift L‐KYNmetabolism to the KYNA or QUIN branch with the aim to

inhibit or excite EAA receptors, respectively.

Recently, several reviews have been published on the therapeutic alternatives based on kynureninergic

manipulations (Stone, 2000, 2001; Schwarcz and Pellicciari, 2002; Stone and Darlington, 2002).
5.1 KYNA Analogs

Several attempts have been made to use the KYNA structure to develop NMDA glycine site antagonists

with better bioavailability and higher potency on the glycine site of the NMDA receptor. Substitution of

KYNA with halogen atoms (7‐chlorokynurenic acid and 5,7‐dichlorokynurenic acid; Baron et al., 1990),

replacement of the 4‐hydroxy group of KYNA with amido substituents (MDL 100,748, L‐689,560; Baron
et al., 1992; Leeson et al., 1992), substitution with a phenyl or more complex lipophil groups at position 3 of

the KYNA nucleus (MDL 104,653, L‐701,324; Kulagowski et al., 1994; Bristow et al., 1996), or replacment of

the six‐membered nitrogen containing ring by a five‐carbon ring (GV150526A or gavestinel; Glaxo, 1993)

provided compounds that have superior neuroprotective abilities compared with KYNA. Gavestinel has

already entered clinical trials but the Glycine Antagonist in Neuroprotection (GAIN) Americas trial, a

randomized, double‐blind placebo‐controlled phase III trial has failed to show any benefit of gavestinel

treatment in acute ischemic stroke patients (Sacco et al., 2001).
5.2 Prodrugs of KYNA and of KYNA Analogs

L‐KYN readily penetrates the blood–brain barrier by the neutral amino acid transporter (Fukui et al., 1991)

and serves as a precursor for the neuroprotectant KYNA in the brain. This explains that systemic administra-

tion of L‐KYN has been shown to protect against cerebral ischemia or local injection of NMDA in neonatal

rats (Nozaki and Beal, 1992) and to counteract pentylenetetrazol‐ and NMDA‐induced seizures in mice

(Vécsei et al., 1992), but only modest effects of L‐KYN treatment havebeen observed on kainate‐induced
seizures in rats (Vécsei et al., 1990b). However, it should be noted that L‐KYN gets converted not only to

KYNA but also to 3‐HK and QUIN which poses considerable limitations to L‐KYN therapy and explains the

poor efficacy of L‐KYN treatment since systemical administration of L‐KYN is not capable of selectively

increasing the levels of the neuroprotectant KYNA. For this reason, more potent KYNA precursors have

been searched that are not getting metabolized in the QUIN branch of the pathway.

L‐4‐Chlorokynurenine or 4,6‐dichlorokynurenines are potent precursors that meet the previously men-

tioned criteria of not getting metabolized to QUIN. These compounds are converted to two NMDA glycine

site antagonists, namely 7‐chlorokynurenic acid and 5,7‐dichlorokynurenic acid, respectively (Hokari et al.,

1996). 4‐Chlorokynurenine is also metabolized to 4‐chloro‐3‐hydroxyanthranilic acid, which is a potent and

selective inhibitor of 3‐hydroxyanthranilic acid oxygenase, and thus the administration of 4‐chlorokynurenine
causes a reduction of QUIN synthesis besides inhibiting NMDA receptors. It penetrates into the brain easier

than its metabolite7‐chlorokynurenic acid, and provides several additional benefits compared with other

glycine site NMDA receptor antagonists: it preferentially gets metabolized in brain areas where neurodegen-

eration takes place, allowing lower dosage of the drug (Lee and Schwarcz, 2001). 4‐Chlorokynurenine
diminishes brain damage induced by focal application of QUIN and malonate into the rat striatum and

hippocampus (Guidetti et al., 2000; Wu et al., 1997) and inhibits convulsions and neurotoxicity after systemic

application of kainate (Wu et al., 2002). The conversion of 4‐chlorokynurenine to 7‐chlorokynurenic
acid has also been observed in human astrocytes, implicating that 4‐chlorokynurenine therapy might be

used in humans in diseases of excitotoxic origin (Kiss et al., 2003).

Another prodrug strategy uses D‐glucose and D‐galactose conjugates of KYNA and its analogs for

allowing better penetration of these drugs into the brain, assuming that the conjugates are recognized by

the glucose transporter facilitating their entry and get hydrolyzed in the brain to release the active
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compound (Battaglia et al., 2000a; Bonina et al., 2000). Systemic administration of 7‐chlorokynurenic acid‐
D‐glucopyranos‐60‐yl ester or 7‐chlorokynurenic acid‐D‐glucopyranos‐30‐yl ester has provided protection

against seizures induced by NMDA in mice.

A glucosamine–kynurenic acid conjugate has also been synthesized which induced stereotypy and

ataxia in freely moving rats and reduced the evoked excitatory postsynaptic potentials in rat motor cortical

slices after intracerebroventricular administration (Füvesi et al., 2004). Further studies are under way to

characterize the bioavailability and therapeutic efficacy of the glucosamine–kynurenic acid conjugate after

systemic administration.
5.3 KP Enzyme Inhibitors

5.3.1 Manipulation of the KP with the Aim to Elevate the Cerebral Level of KYNA

Modulation of the KP by inhibiting enzymes of QUIN synthesis is a rational approach to divert the

kynurenine metabolism toward the neuroprotective KYNA. This therapy would be particularly useful in

clinical situations when excessive EAA receptor activation takes place. The administration of kynurenine

3‐hydroxylase inhibitors is the most rational approach to evoke marked elevation in cerebral KYNA

levels with concomitant attenuation of 3‐HK and QUIN formation. While application of compounds

inhibiting kynureninase and 3‐hydroxyanthranilic acid oxygenase – enzymes that act downstream from the

3‐HK – has limited therapeutic potency, these drugs cause an increase in 3‐HK levels with modest KYNA

elevations.

Kynurenine 3‐hydroxylase inhibitors: The first drug reported to exhibit kynurenine 3‐hydroxylase inhibit-
ing activity was nicotinylalanine (> Figure 5-3, Moroni et al., 1991), which is an analog of L‐KYN.
Subsequently, analogs with more potency and higher selectivity have been synthesized: meta‐nitrobenzoy-
lalanine (mNBA) is 1,000 times more active and by far more selective than nicotinylalanine (> Figure 5-3,

Pellicciari et al., 1994). Modification of the aromatic ring region and the side chain yielded (R,S)‐3,4‐
dichlorobenzoylalanine (PNU 156561, formerly known as FCE 288833A), which showed further improve-

ments in its potency and selectivity, compared with mNBA (> Figure 5-3, Speciale et al., 1996). The
. Figure 5-3

Chemical structure of selected kynurenine 3‐hydroxylase inhibitors
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screening of a library of sulfonamides led to the identification of 3,4‐dimethoxy‐N‐[4‐(3‐nitrophenyl)
thiazol‐2‐yl]benzenesulfonamide (IC50 ¼ 37 nM, Ro‐61‐8048), which is currently the most potent non-

competitive inhibitor of the kynurenine 3‐hydroxylase (> Figure 5-3, Röver et al., 1997).

Systemic administration of kynurenine 3‐hydroxylase inhibitors results in inhibition of maximal

electroshock‐induced seizures in rats and audiogenic seizures in DBA/2 mice (Russi et al., 1992; Carpenedo

et al., 1994) and provides protection in a rat focal ischemia and a gerbil global ischemia model (Cozzi et al.,

1999). Furthermore, these drugs significantly reduce blood and brain accumulation of QUIN in immu-

nostimulated mice, suggesting that the application of kynurenine 3‐hydroxylase inhibitors may be of benefit

to the patient with neuroimmunological disorders (Chiarugi and Moroni, 1999b).

Kynureninase inhibitors: These compounds inhibit the QUIN branch of the pathway downstream of

3‐HK, which explains the limited therapeutic potency of these drugs compared with the kynurenine

3‐hydroxylase inhibitors. Application of these drugs also results in accumulation of 3‐HK in the brain

besides elevating cerebral KYNA levels. ortho‐Methoxybenzoylalanine (oMBA) is a prototype inhibitor of

kynurenase, which is chemically related to mNBA but preferentially inhibits kynureninase (Pellicciari et al.,

1994). Administration of oMBA results in an increase in the amount of KYNA in the brain in vivo and

antagonizes audiogenic convulsion in DBA2 mice (Carpenedo et al., 1994; Chiarugi et al., 1995). Although

oMBA is a selective inhibitor of kynureninase in vitro, it also inhibits 3‐hydroxyanthranilic acid oxygenase

in vivo, making it difficult to study the metabolic effects of kynureninase inhibitors in vivo (Chiarugi

and Moroni, 1999a).

3‐Hydroxyanthranilic acid oxygenase inhibitors: Halogenated substrate analogs, such as 4‐chloro‐3‐
hydroxyanthranilic acid, were the first potent, selective, and competitive blockers reported to inhibit

3‐hydroxyanthranilic acid oxygenase (Todd et al., 1989; Walsh et al., 1991); but more recently, dihaloge-

nated analogs of 3‐hydroxyanthranilic acid have also been described with even higher potency and

selectivity (Linderberg et al., 1999). These drugs reduce functional deficits in animals exposed to experi-

mental spinal cord injury and reduce QUIN accumulation in the brain of traumatized animals (Blight et al.,

1995) and in the blood and brain of immunoactivated mice (Saito et al., 1994).
5.3.2 KP Enzyme Inhibition with the Aim to Decrease Cerebral KYNA Levels

Since certain cognition enhancers have been shown to decrease KYNA levels in the brain (Poeggeler et al., 1998;

Rassoulpour et al., 1998) and others to prevent the KYNA antagonism of the NMDA receptor (Pittaluga et al.,

1995), one might hypothesize that KYNA plays an important role in cognitive processes and pharmacological

inhibition of cerebral KYNA levels might be a useful strategy to produce cognition enhancer drugs. Further-

more, the cognitive deficits might be attenuated with the use of these drugs in diseases with elevated cerebral

KYNA levels such as schizophrenia, Alzheimer’s disease, or Down’s syndrome.

KAT inhibitors: KAT II is responsible for producing large part of KYNA present in the brain that makes it

a prime target for influencing cerebral KYNA levels. a‐Aminoadipate, quisqualate, DL‐5‐bromocriptine, and

certain metabotropic glutamate receptor agonists, such as L‐(þ)‐2‐amino‐4‐phosphonobutyric acid

(L‐AP4), 4‐carboxy‐3‐hydroxyphenylglycine (4C3HPG), and L‐serine‐o‐phosphate (L‐SOP) selectively

block KAT II in vitro (Battaglia et al., 2000b). However, all KAT II inhibitors known so far influence

other cellular processes besides acting on the KP, rendering it difficult to characterize the behavioral

consequences of decreased KYNA content in the brain. Synthesis of more selective KAT II inhibitors is

essential to study the importance of KYNA in the brain function.
6 Conclusion

The discovery of the importance of kynurenines in brain function under physiological and pathologic

conditions has led to the identification of potential new drug targets exploiting the therapeutic potential

of the pathway. Some of these compounds proved to provide neuroprotection in animal models of various

human diseases, which holds promise that their effectiveness will translate to the clinic in the future.
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