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Abstract: The minimal cost network flow model is defined along with optimality cri-
teria and three efficient procedures for obtaining an optimal solution. Primal and dual 
network simplex methods are specializations of well-known algorithms for linear pro-
grams. The primal procedure maintains primal feasibility at each iteration and seeks 
to simultaneously achieve dual feasibility, The dual procedure maintains dual feasibility 
and moves toward primal feasibility. All operations for both algorithms can be performed 
on a graphical structure called a tree. The scaling push-relabel method is designed ex-
clusively for optimization problems on a network. Neither primal nor dual feasibility is 
achieved until the final iteration. 
Keywords: Networks-graphs flow algorithms, integer programming algorithms, linear 
programming algorithms, linear programming simplex algorithms. 

6.1 INTRODUCTION 

The special structure found in the minimum cost network flow problem has been ex-
ploited in the design of highly efficient solution techniques. In the early 1950s it was 
known that this special structure permits radical simplifications of the simplex method 
(see Dantzig (1951)). Methods for solving this problem are among the most efficient 
known for solving large-scale optimization problems. The mathematical foundations 
for these highly successful procedures can be found in the following classic books that 
appeared in the 1960s: Ford and Fulkerson (1962), Dantzig (1963), and Chames and 
Cooper (1967). Much of the history of this problem along with some thirteen dis-
tinct algorithms may be found in the award-winning manuscript Ahuja et al. (1993). 
Of the many algorithms found in the literature, the most computationally efficient ap-
pear to be the following: primal network simplex, dual network simplex, and scaling 
push-relabel. A pseudo-code for each of these algorithms is given in this presentation. 
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An important aspect of real-world network management is the rapid restoration of 
service in the event of fiber cuts and equipment failures. Our colleagues at MCI in 
Dallas, Texas have developed complex models for restoration that require the use of 
efficient solution software. Their first real-time restoration system involved solving a 
series of minimum cost network flow problems, each of which determined a least-cost 
restoration path for a prioritized list of customers. This particular application used a 
software implementation of the primal network simplex algorithm, as described in this 
presentation. 

6.1.1 Notation 

A network is a directed graph [V, E] with node set V = { 1 , . . . , v} and arc set E = 
{ 1 , . . . , ^} of ordered pairs of nodes. We adopt the mild notational abuse of referring 
to an arc k of E only by its endpoints, e.g. (ij) G E. Ambiguity results when there 
are multiple arcs from node / to node j . Alternatively, we may refer to i as the tail 
and to j as the head of SLVC k e E. An arc is said to be incident to its head and tail 
nodes and vice-versa. A arc is said to be directed from its tail node to its head node, 
corresponding to some mechanism being modeled which permits flow in that direction 
only. Arcs (ij) and {j,i) are said to be oppositely directed. For a given v G V, the 
sets F*(v) = {(v,7) e E} and B*{v) = {(/, v) G E} are known as the forward star and 
backward star, respectively, of node v. 

A finite odd length sequence P = {vi,^i,V2,^2,---5Vp,6p,Vp+i}, whose odd ele-
ments are nodes of V and whose even elements are arcs of £ , is called a walk of length 
p in [y, E] if ^j^ G {{vk, v^+i), (v^^+b v/:)}. If the nodes of P are distinct with the excep-
tion that vi — Vp+i is allowed, then P is said to be a path from vi to Vp^\ and those 
nodes are said to be linked by P. A graph is said to be connected if any two of its 
nodes can be linked. Note that in a path of length p > 2 the arcs will be distinct. If 
P is a path of length p > 2 with vi = Vp^\ and the arcs of P are distinct, then P is 
called a cycle. The requirement that the arcs of a cycle be distinct is necessary to pre-
vent an exceptional case from being a cycle when p = 2 (see example path C below). 
Given path or cycle P, the arc (vjt,v/:+i) in P is said to be traversed in the normal 
direction while the arc (v^+i, v^) in P is said to be traversed in the reverse direction. A 
graph from which no cycles can be formed is said to be acyclic. A connected acyclic 
graph is called a tree. A node in a tree having a single incident arc is known as a leaf 
node. A tree with at least one arc will have at least two leaf nodes. It is important 
to note that there is a unique path linking every pair of nodes in a tree. For the net-
work illustrated in Figure 6.1, V - {1,2,3,4}, E = {(1,2), (1,3), (2,3), (2,4), (3,4)}, 
P*(2) = {(2 ,3) , (2 ,4)} ,5*(2) -{(1 ,2)} ,W-{1, (1 ,3) ,3 , (3 ,4) ,4 , (3 ,4) ,3 , (2 ,3) ,2} 
is a walk of length 4 but not a path, P = {1, (1,3), 3, (2,3),2, (2,4),4} is a path from 
1 to 4 with arcs (1,3) and (2,4) traversed in the normal direction and arc (2,3) 
traversed in the reverse direction, C = {1,(1,3),3,(2,3),2,(1,2), 1} is a cycle, and 
C = {1,(1,3),3,(1,3),1} is a path but not a cycle. 

A graph [V,E] is said to be a subgraph of [V,E] if V C y and E C E and when 
y = y , the subgraph is said to span [V,E] or to be a spanning subgraph of [V,E]. A 
spanning tree of [V,E] is a tree that spans [V,E]. Some spanning trees for the example 
network in Figure 6.1 are illustrated in Figure 6.2. 



NETWORK FLOW ALGORITHMS 149 

Figure 6.1 Example Network 

6.1.2 The Problem 

In network [V,E], let c{k) and u{k) denote the unit cost and arc capacity, respectively, 
for SLTckeE with corresponding ^-vectors c and u. In this presentation it is assumed 
that 0 < u{k) < cx). Let r(v) denote the requirement for node veV with corresponding 
V-vector r. If r(v) > 0, then node v is said to be a supply node with supply r(v). 
If r(v) < 0, then node v is said to be a demand node with demand |r(v)|. Note that 
some authors reverse this sign convention. If r(v) = 0, then node v is said to be a 
transshipment node. 

Figure 6.2 Spanning Trees 

Let x{k) denote the flow on arc /: G £ with corresponding e-vector ox flow vector 
X. Given problem data D = {V,E,c,u,r), the set of feasible flows is X = X^^nX^^, 
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where 

52 x{k)=:^r{v)yvev 
/:G5*(v) 

are the flow conservation equations and 

X'^ = {x:0< x{k) < u{k) yk e E} 

are the simple flow bounds. Note that for each node veV, there is a flow conservation 
equation specifying that the difference of the total flow out of v and the total flow into 
V to be the requirement at v. Given D, the minimal cost network flow problem is to find 
a flow vector x such that 

ex — m\n{cx : x G X}. 

Defining the v x ^ node-arc incidence matrix A associated with [V, E] by 

{ +1, if the tail of arc k is node n 
— 1, if the head of arc k is node n 

0, otherwise, 

allows us to express this problem concisely as 

minimize ex 
subject to Ax = b 

0 < A: < M 

For the network illustrated in Figure 6.1 the node-arc incidence matrix is 

1 1 

and the flow conservation equations are 

-1 

x(l,2) + ;c(l,3) 
x(l,2) + x(2,3) -f x{2A) 

- x(l,3) - x(2,3) 
- ^(2,4) 

- r(l) 
= r(2) 

+ x(3,4) - r(3) 
- ^(3,4) = r(4) 

Let I denote a v-component row vector with all entries 1. Note that 1A = 0 since the 
only two nonzero entries in each column of A are -fl and —1. Hence, \A=\r = 

Y, r(y) = 0, which implies that X y^^ only if total supply equals total demand. 
vev 
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6.1.3 Specializations of the Network Flow Problem 

The assignment problem, the semi-assignment problem, and the transportation problem 
are all special cases of the minimum cost network flow problem. The shortest path 
problem between a pair of nodes, say s and t, can be modeled by setting r{s) = 1, 
r{t) =:: - 1 , and r(v) = 0, Vv G V \ {s,t}. The cost c{k) forkeE is the length of arc 
k and u{k) = l,\/k e E. The maximal continuous flow problem between node 1 and 
node 4 in Figure 6.1 is modeled as illustrated in Figure 6.3, where c(4,1) = — 1 and 
all other costs are zero. Physical links which permit an arbitrary direction of flow are 
referred to as undirected links. Models which use undirected links can be accommo-
dated in the network structure presented here by replacing each undirected link with a 
pair of oppositely directed arcs. 

Figure 6.3 Maximum Flow From Nodes 1 to 4 

6.1.4 Duality Theory and Optimality Conditions 

The dual of the primal problem min{cx :Ax: = r ,0<^<w}is max{r7C — u]u:nA—iu< 
c,/n>0}. If xe {x : Ax = r,0 <x<u} and {It, ft) e {(7C,;u) : TIA—JU<C,ILI>0}, 
then ex > r% — ufi. If ;c* is optimal for the primal and (TT*,^*) is optimal for the 
dual, then ex* = ni* — ujd*. For any v-component 7t and any arc k = (ij), c{k) = 
c{k) — 7t(/) +71(7) is called the reduced cost for arc k. If (i,7t) satisfy the following 
conditions: 

Ax = r 

if c{k) - 0 , then 0 < x{k) < u{k) 

\ic{k)>0 , thenjc(i^)=0 

if c(A:) < 0 , then Jc(A:) = u{k) 

(6.1a) 

(6.1b) 

(6.1c) 

(6.1d) 

then X is an optimum for the primal problem. Proofs of these results may be found in 
any standard textbook on linear programming. 

6.1.5 Basic Solutions 

Members of X of particular interest can be produced by partitioning E into three mu-
tually disjoint sets (B,L, U) with [V,B] a spanning tree for [V,E]. (Thus 5ULU U = E 
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and BnL = BnU = LnU = (^.) This induces partitionings of the flow vector, the arc 
capacity vector, and the flow conservation equations as A^JT -\-A^X^ -\-A^X^ = r. 
Let x{k) = Oyk e L and x{k) = u{k) ^k e U. Since [V,B] is a tree, it can easily be 

shown that v — 1 is the rank of both A^ and the augmented matrix \A^\ r — A^x^ , 

so that A^x^ = Y-AP^ can be solved uniquely. Let be that unique solution. 
If 0 < x^ < M ,̂ then 0 < x < w and x is called the basic feasible solution relative 
to the partitioning {B,L,U) with A^ often referred to as the basis (even though it is 
rank-deficient). 

Since [V, B] is a tree, the unique solution to A^)r =r — A^x^ can be constructed 
one component at a time by the following simple method. 

procedure Flows-On-A-Tree{V, B, b, x) 
/* Flows On A Tree solves Nx = b. */ 
/* [V, B] is a tree with node-arc incidence matrix Â . */ 
/* b is the right-hand side. */ 
/* X is the solution. */ 
begin 

[V,B]^[V,B]mdh^b\ 
while V ^ (j) do 

3 a leaf node n of [V^B]; 
if3(n,v) e^then 
I B^B\{{n,v)y,V^V\{ny, 
I x{n, v) ^ b{n)\ b{v) ^ b{v)+b{n)\ 

else 
select (v, n) G B\ 
B^B\{{v,n)yS^V\{ny 
x{v,n) ^ -b{n)\ b{v) ^ b{v)-b{ny, 

end 
end 

end 
Algorithm 6.1: Flows on a tree 

For the tree illustrated in Figure 6.4, Jc( 1,6) =2,f(3,6) = -3 ,JC(4,2) = -3,jc(4,3) = 
2,.x(5,3) = -6,andjc(7,6)=:l. 

It is also relatively easy to create a set of dual variables % such that the reduced 
costs are zero for all k e B, i.e. c{k) = c{k) — 7t(/) + n{j) = 0 for all k = (ij) e B. 
Note that -7t(/) -f n{j) = -(7t(/) + a) + {%{]) -f a), which implies that adding any a 
to every component of a set of dual variables 7t yielding reduced costs of zero will 
produce another set of dual variables yielding reduced costs of zero. Since [V,B] is 
a tree, a set of dual variables yielding zero reduced costs can be constructed by the 
following simple method. 

For the tree illustrated in Figure 6.4,7t(l) = -10,7t(2) = -4,7t(3) = 0,7t(4) = 2, 
7t(5) = -1,7t(6) = - 3 , and 7t(7) = - 3 . 

6.2 THE PRIMAL NETWORK SIMPLEX ALGORITHM 

This algorithm is a specialization of the primal simplex method for linear program-
ming that exploits the underlying network structure. It constructs a series of basic 
feasible solutions x and associated partitionings (5,L, U) such that Ax = r,0 < x < u. 
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Figure 6.4 Example Tree 

procedure Duals-On-A-Tree {V, B, c, n) 
/* produces dual variables 7t */ 
/* [V,fi]isatree*/ 
/* c is the unit cost vector */ 
/* 7t satisfies c{k) = c{k) - Tt{i) 4- n{j) =0\/k= {i, j) eBV 
begin 

select a node v eV;V <-V\{v}; 7t(v) <- 0; 
/* a arbitrary node has its dual set to 0 above */ 
/* all other duals are set recursively as V shrinks */ 
while V 7̂  (|) do 

if 3(n, v) eB with veV and neV\V then 
I 7t(v) ^ %{n) - c(n, v)\V ^V\ {v}; 

end 
if 3(v, n) eB with veV andneV\V then 

I 7t(v) ^ 7t(n) +c(n, v); V ^ V \ {v}; 
end 

end 
end 

Algorithm 6.2: Duals on a tree 

As the basic feasible solutions progress, the dual variables n are updated to maintain 
reduced costs of zero for all ke B. At optimality the basic feasible solution will also 
satisfy c{k) > 0 V/: G L and c{k) < 0 V/: € f/. The corresponding specialized procedure 
follows. 

One simple strategy for obtaining the initial basic feasible solution is to append one 
additional node w and v additional arcs to the network. Before enlarging the network 
all original arcs are placed in L with zero flows and U is empty. Then as additional 
arcs are appended they are placed in B. For each v eV with r(v) > 0, append the arc 
z = (v, w) with c{z) = 0, u{z) = r(v), and x{z) = r(v). For each v eV with r(v) < 0, 
append the arc z = (w,v) with c{z) = ^ and u{z) = x{z) — —r{v). This strategy is 
illustrated in Figure 6.5. The procedure Duals On A Tree can be used to determine 7t 
at each iteration (see /* Dual Calculation */ in procedure Primal Network Simplex), 
although it is possible to update only a portion of ft whenever B changes. 
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procedure Primal-Network-Simplex{V, E,c,u, r) 
/* returnsxeX such thatx £ argmin{c;c: A: G X} */ 
/* [V, £•] is a network */ 
/* c is the unit cost vector */ 
/* u is the arc capacity vector */ 
/* r is the requirements vector */ 
/* assumption: X = {x : Ax = r, 0 < x < u} ^ (^ '^f 
/* assumption: u{k) <oo\/kG E '^/ 
begin 

Obtain {B,L, U) with Jc the corresponding basic feasible solution; 
repeat 

/* Dual Calculation */ 
Obtain a set of duals 7t for which c{k) = 0 VA: € B', 
/* Pricing */ 
N- ^{keL: c{k) <Q}\N^ ^{keU \ c{k) > 0}; 
ifA^-UA^-^=(j)then 

I return x 
else 

I select)t=(r,/i)e/V"UA^+; 
end 
if A: GL then 
I {o4)^{Kt)\ 

else 
I {o,d)^(t,h)-

end 
/* Column Update */ 
P ^ the path in \y, B] from o io d\Q^ {keB \ k^P}\ 
Q^ ^ {k^Q \ kis traversed in the normal direction in P}; 

/* Ratio Test */ 
A+ ^ min{M(fl) -x[a) : a G Q^}; A~ ^ min{jc(fl) : a G Q~}\ 
A^min{MW,A+,A-}; 
/* Flow Update */ 
x{a) <^x{d)+^'ia^Q^\x{a)^ x{a) - A VA G g"; 
if A: GL then 

I x{k) ^ A; 
else 

I x{k)^u{k)-^\ 
end 
/* Basis Exchange */ 
L^L\{k}\U ^U\{k}\ 
ifA = M(it)then 

if A: G L then 
I U^UD{k}\ 

else 
I L^LU{k)\ 

end 
else 

R^{a£Q- \ x{a) = Q}\J{a£Q^ : x[a) = u[a)}\ 
select reR',B^{B\ {r}) U {k}; 
if r G (2~ then 

I L ^ L U { r } ; 
else 

I U^UU{r}\ 
end 

end 
until exited; 

end 
Algorithm 6.3: Primal network simplex method 
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Efficient software implementations of the primal simplex algorithm use special 
heuristics for the pricing operation and special data structures for maintaining and 
traversing the tree [V,B]. The data associated with the arcs is often indexed using a 
structure associated with the forward or backward stars for the nodes. Details may be 
found in Glover et al. (1974a), Glover et al. (1974b), Glover et al. (1974c), Bradley 
et al. (1977), Barr et al. (1979), Kennington and Helgason (1980), and Grigoriadis 
(1986). 

Figure 6,5a Example With 2 Source Nodes And 1 Demand Node 

Legend: [ cost, capacity, flow ] 

Figure 6.5b Initial Basic Feasible Solution 

Figure 6.5 The Starting Solution 

6.3 THE DUAL NETWORK SIMPLEX ALGORITHM 

This algorithm is a specialization of the dual simplex method for linear programming 
that exploits the underlying network structure. It constructs a series of basic solutions 
X and associated partitionings {B,L,U) such that Ax = r and c(k) = O^k e B^c{k) > 
0\/keL, and c{k) < OV/: G t/. Any basic solution that satisfies these conditions is said 
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to be dual feasible. At optimality 0 < x{k) < u{k) V/: G B. That is, primal feasibility is 
only attained at the final step. The corresponding specialized procedure follows. 

Under the assumption that all arc capacities are finite an initial dual feasible so-
lution can easily be constructed. If this assumption does not hold, it is still possible 
to obtain such a solution using the two-phase approach described in Kennington and 
Mohamed (1997). The starting procedure (under finite arc capacities) follows. 

6.4 THE SCALING PUSH-RELABEL ALGORITHM 

The scaling push-relabel method extends the ideas of cost-scaling developed by Rock 
(1980) and Bland and Jensen (1992). The strategy is based on the concept of e-
optimality which can be found in Tardos (1985) and Bertsekas (1991). The presenta-
tion here follows that of Goldberg (1997) and Ahuja et al. (1993). 

Let e > 0 be a given scalar. If (Jc,7t) satisfy the conditions: 

Ax = r (6.2a) 

if I c{k) I < e , then 0 < x{k) < u{k) (6.2b) 

if c(k) > e , then x{k) = 0 (6.2c) 

if c{k) < - e , then x{k) = u{k) (6.2d) 

then X is said to be an ^-optimum for min{cx :Ax — r,0<x<u). For e == 0, these 
conditions are the optimality conditions (6.1a)-(6.1d). If e < 1/v and the cost vector 
is all integer, then an e-optimum is also optimal for min{c;c :A;c = r ,0<jc<w}. 
Proofs are available in both Bertsekas (1991) and Ahuja et al. (1993). The method 
begins with a fairly large value for e and a solution (jc,c) that satisfies (6.2b)-(6.2d). 
After a series of flow and reduced cost adjustments, (6.2a) is also satisfied. Then e is 
reduced and the process is repeated until e < 1 /v . 

For a given flow vector x, the excess flow e{v) at node v is given by 

e{v) = r{v)-Y, x{a)^ J^ x{a). 
aeF\v) aeB*{v) 

Hence, when e{v) > 0 the node v has excess supply that must be distributed. A push 
operation attempts to push flow away from v. This can be accomplished by increasing 
flow in some a G F*{v) or decreasing flow in some a e B*{v) . If a push maintaining 
(6.2b)-(6.2d) is not possible, 7t(v) is modified so that a push will be permissible. The 
procedure implementing this approach follows. 

A number of heuristic strategies for improving the computational performance of 
scaling push-relabel algorithms can be found in Goldberg (1997). 

6.5 SOFTWARE IMPLEMENTATIONS AND EMPIRICAL 
EVALUATIONS 

The first software implementations which clearly demonstrated the power of the pri-
mal network simplex algorithm were developed by Srinivasan and Thompson (1973) 



NETWORK FLOW ALGORITHMS 157 

procedure Dual-Network-Simplex{V, E, c, u, r) 
/* returns x€X such that Jc G argmin{c;c :xeX} */ 
/* [V,E] is a network */ 
/* c is the unit cost vector */ 
/* u is the arc capacity vector */ 
/* r is the requirements vector */ 
/* assumption: X = {x:Ax = r,0<x<u} ^^*/ 
/* assumption: u{k) <oo\fkeE */ 
begin 

Obtain (fi,L, U) with Jc the corresponding dual feasible solution; 
repeat 

/* Check Primal Feasibility */ 
/ <— {fl : x{a) < 0 or x{a) > u{a)}\ 
if/ = (()then 

I return x; 
end 
/* Dual Calculation */ 
Obtain a set of duals 7t for which c{k) = 0\fkeB\ 
/* Select Leaving Variable */ 
select qel\ 
/* Select Entering Variable */ 
d{q)^V,d{a)^0'ia£B\{q}; 
Obtain 7(v) Vv G V so that d{k) - y{i) +y(;) = 0 Vit = {i, j) G fi; 
/* the above values follow the dual calculation scheme */ 
i f%)>Othen 

I w(/,;) ^ (yU) - Y(0) V(/,;) G LUC/; 

I vv(/,;) ^ (YW-YO')) VO',;) eLUC/; 
end 
r^{aeL: w{a)<0}u{aeU : w(fl[) >0}; 

8 . ™ a x { | g : « e r } } . A ^ { . e r : | g = 8 } ; 

select A; = (r,/i) G A; 
if it GL then 

else 
I {o,rf)-(/,A); 

end 
/* Column Update */ 
P 4- the path in [¥,8] from otod,Q<^ {keB : keP}\ 
Q'^ ^ {keQ : kis traversed in the normal direction in P}; 

/* Flow Update */ 
i{x{q) > u{q) then 

I A^x{q)-u{q)\ 
else 
I A <--%); 

end 
x{a) ^ jc(a) + AVfl G G"*"; x{a) ̂  x{a)-A\fa G 6"; 
if A; GL then 

I x{k) f- A; 

I x{k)^u{k)-A', 
end 
/* Basis Exchange */ 
B^{B\{q})v{k}: 
ifx{q) = u{q) then 
I t/^C/uM; 

else 
I L^LU{q}-

end 
L<-L\{/:};C/^L\{/:}; 

until exited', 
end 

Algorithm 6.4: Dual simplex network method 
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procedure Dual-Feasible-Solutioniy^ E, c, M, r) 
/* returns (fl,L, U) with x dual feasible */ 
/* [V, E] is a network */ 
/* c is the unit cost vector */ 
/* u is the arc capacity vector */ 
/* r is the requirements vector */ 
/* assumption: X = {x : Ax = r, 0 < ;c < «} 7̂  (j) */ 
/* assumption: u{k) <oo\fkeE */ 
begin 

Obtain B such that [V, B] is a spanning tree for [V, E]; 
/* apply procedure Duals On A Tree */ 
Obtain a set of duals 7t for which c{k) = 0 V/: € B\ 
L^{aeE : c{a) > 0}, x{a) ^ 0 VA G L; 
f/ ^ {fl G £ : c(fl) < 0}, x{a) ^ u{a) \Ia£U\ 
b{v)^r{v)- I u{yj)+ l^ M(/,V)VVGV; 

(v,7)€F*(v) (/,v)G5*(v) 
Apply procedure Flows-On-A-Tree to obtainx[a)'ia € 5; 

end 
Algorithm 6.5: Dual Feasible Solution 

and by Glover and Klingman and their colleagues at the University of Texas at Austin 
(see Glover et al. (1974a), Glover et al. (1974b), and Glover et al. (1974c)). Other 
important contributions were made by Bradley et al. (1977) and Barr et al. (1979). 
Variations of the three methods presented in this exposition have been implemented in 
software and evaluated in a number of studies. 

Goldberg (1997) reports on an experiment involving the five codes listed in Ta-
ble 6.1. Kennington and Whitler (1998) report on an experiment with the six codes 
listed in Table 6.2. The scaling push-relabel code of Goldberg was found to be both 
fast and robust over a variety of problem structures. All the techniques and codes have 
their champions, but it is generally accepted that specialized network codes are at least 
two orders of magnitude faster than general linear programming software that can be 
used for these problems. Several solvers are available on-line at h t tp : //www-neos. 
mcs . anl.gov/neos/ or ftp: //dimacs. rutgers .edu/pub/netf low/. 

http://anl.gov/neos/
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procedure Scaling Push-Relabel{V, E,c,u, r, a) 
/* ReturnsxeX such thatx e SLVgmin{cx :xeX} */ 
/* [V, E] is a network */ 
/* c is the unit cost vector */ 
/* u is the arc capacity vector */ 
/* r is the requirements vector */ 
/* a is a reduction constant greater than 1 */ 
/* assumption: X = {x : AJC = r, 0 < jc < w} ^ (|)} */ 
/* assumption: u{k) < oo V/: G £" */ 
/* assumption: c{k) is an integer V^ G £" */ 
begin 

8<—max{| c{a) |: a€E}; 
x(a) ^ 0 Vfl G £", c{a) ^ c{a) VA G E\ 
repeat 

i fe<l /vthen 
I return Jc; 

end 
/* Scale */ 
£ ^ e/a; 
forall aeE do 

ifc(fli)>Othen 
I xia)^0', 

end 
if c{a) < 0 then 

I x{a) <— u{a)\ 
end 

end 
forall V G V do 

e{v) = r{v)-l^ x{a)+ £ x{a); 
aeF*{v) aeB*{v) 

while 3v eV such that g(v) > 0 do 
• /* Push */ 

if 3a = (v, 7) G E such that c{a) < 0 and x{a) < u{a) then 
h^m\n{e(v),u{a)-x{a)}\ 
x{a) <— x{a) + 5; 
e(v) <— ^(v) - 6 ; 

else 
if 3a = (r, v) G £̂  ^MC/I that c{a) > 0 fl«^ x{a) > 0 then 

6*—min{e(v),jc(fl)}; 
x{a) <— Jc(fl[) - 5; 
e{i)^e{i)+6\ 
e{v) <— e{v) — 6; 

else 
/* Relabel */ 
Fi ^ min{c(fl) : A G F*(V) and jc(fl) < «(«)}; 
F2 ^ min{-c(fl) : a G fi*(v) and Jc(fl) > 0}; 
F«-e4-min{Fi,F2}; 
c(fl)^c(fl)-FVflGF*(v); 
c(fl)^c(fl)+FVflGfi*(v); 

end 
end 

end 
end 

until exited; 
end 

Algorithm 6.6: Scaling Push Relabel Algorithm 
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Table 6.1 Computer Codes in the Goldberg (1997) Study 

Code Name Algorithm Type Reference 

NETFLO 
RNET Version 3.61 
RELAX Version III 
SPUR 
CS 

Primal Simplex 
Primal Simplex 
Scaling Push-Relabel 
Scaling Push-Relabel 
Scaling Push-Relabel 

Kennington and Helgason (1980) 
Grigoriadis (1986) 
Bertsekas and Tseng (1990) 
Goldberg and Kharitonov (1993) 
Goldberg (1997) 

Table 6.2 Computer Codes in the Kennington and Whitler (1998) Study 

Code Name Algorithm Type Reference 

NETFLO 
CPLEX Version 4.0 
RELAX Version IV 
CS2 
NETFL02 (Primal) 
NETFL02 (Dual) 

Primal Simplex 
Primal Simplex 
Scaling Push-Relabel 
Scaling Push-Relabel 
Primal Simplex 
Primal Simplex 

Kennington and Helgason (1980) 
CPLEX Callable Library 
Bertsekas and Tseng (1994) 
Goldberg (1992) 
Kennington and Whitler (1998) 
Kennington and Whitler (1998) 
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