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Abstract: Attempts to allow exponentially many inequalities to be candidates to La-
grangian dualization date from the early 1980s. In the literature, the term Relax-and-Cut 
is being used to denote the whole class of Lagrangian Relaxation algorithms where La-
grangian bounds are attempted to be improved by dynamically strengthening relaxations 
with the introduction of valid constraints (possibly selected from families with expo-
nentially many constraints). In this chapter, Relax-and-Cut algorithms are reviewed in 
their two flavors. Additionally, a general framework to obtain feasible integral solutions 
(that benefit from Lagrangian bounds) is also presented. Finally, the use of Relax-and-
Cut is demonstrated through an application to a hard-to-solve instance of the Knapsack 
Problem. For that application, Gomory cuts are used, for the first time, within a La-
grangian relaxation framework. 
Keywords: Relax-and-cut, Lagrangian relaxation, cutting planes, knapsack problem. 

5.1 INTRODUCTION 

Attempts to allow exponentially many inequalities to be candidates to Lagrangian du-
alization date from the early 1980s. A short list of selected contributions in this area, 
in chronological order, is initiated with the Restricted Lagrangian Approach of Balas 
and Christofides (1981) for the Traveling Salesman Problem. Later on, Gavish (1985) 
suggested an Augmented Lagrangian Approach to solve a Centralized Network De-
sign Problem. A contribution by Lucena (1992; 1993) follows with a scheme to dual-
ize violated inequalities on the fly, as they become violated at the solution to a valid 
Lagrangian Relaxation of the problem being solved. Almost simultaneously, Escud-
ero et al. (1994) proposed an algorithm to solve the Sequential Ordering Problem with 
Precedence Constraints. The authors called that algorithm Relax-and-Cut. In a more 
recent development, Barahona and Ladanyi (2001) proposed the use of the Volume Al-
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gorithm Barahona and Anbil (2000) as an alternative to the use of the Simplex method 
(or Interior Point algorithms) in implementations of Branch-and-Cut algorithms (Pad-
berg and Rinaldi, 1991). Finally, Ralphs and Galati (2003) describe a framework 
where various decomposition methods (including Lagrangian relaxation) and polyhe-
dral cutting plane algorithms can be viewed from a common theoretical perspective. 

Following Lucena (2004), we use the term Relax-and-Cut to refer not only to the 
algorithm in Escudero et al. (1994) but to a much larger class of algorithms which 
includes that one. According to that guideline, a Relax-and-Cut algorithm must be 
Lagrangian based. Furthermore, Lagrangian bounds must be attempted to be im-
proved by dynamically strengthening relaxations with the introduction of valid con-
straints (possibly selected from families with exponentially many constraints). Finally, 
strengthening constraints may or may not be explicitly dualized. 

The definition of Relax-and-Cut above is broad enough to include all algorithms in 
Balas and Christofides (1981), Gavish (1985), Lucena (1992), Lucena (1993), Escud-
ero et al. (1994), and Barahona and Ladanyi (2001). These algorithms, however, differ 
significantly among themselves. Differences are particularly pronounced in the way 
strengthening constraints are treated. For instance, in Gavish (1985) and Escudero 
et al. (1994), strengthening constraints are only used after Lagrangian Dual Problems 
are solved (and corresponding best possible Lagrangian bounds are obtained). Differ-
ently from that, strengthening constraints in Lucena (1992; 1993) are identified and 
used after every Lagrangian Relaxation Problem is solved. 

As for any Lagrangian Relaxation algorithm, Relax-and-Cut is initiated with a re-
laxation of a given model where a set of complicating constraints is dualized while 
remaining constraints are kept (Guignard, 2004). Following the nomenclature intro-
duced in Lucena (2004), Delayed Relax-and-Cut (DRC) algorithms (Lucena, 2004) 
then proceed by solving the corresponding Lagrangian Dual Problem. Valid con-
straints which violate the solution to that problem are then identified and may be either 
dualized or else kept. Either way, a new Lagrangian Dual Problem is formulated and 
solved and the procedure continues until a stopping criteria is reached. DRC was in-
troduced in Escudero et al. (1994) and a number of DRC applications are discussed 
in Guignard (1998). These include the Asymmetric Traveling Salesman Problem, the 
Generalized Assignment Problem, and the Multiple Choice Knapsack Problem. 

As mentioned above, Relax-and-Cut algorithms in Lucena (1992; 1993) do not de-
lay the identification and use of violated constraints until the Lagrangian Dual Problem 
is solved. Differently from DRC, violated inequalities are attempted to be identified 
(and are dualized, in case of success) for every Lagrangian Relaxation Problem even-
tually solved. That variant of Relax-and-Cut is called Non Delayed Relax-and-Cut 
(NDRC) in Lucena (2004). NDRC was first proposed and successfully used for the 
Steiner Problem in Graphs in Lucena (1992; 1993). Later on, it was used for the Edge-
Weighted Clique Problem (Hunting et al., 2001), the Quadratic Knapsack Problem 
(de Moraes Palmeira et al., 1999), the Traveling Salesman Problem (Belloni and Lu-
cena, 2000), the Vehicle Routing Problem (Martinhon et al., 2004), the Linear Order-
ing Problem (Belloni and Lucena, 2003), the Rectangular Partition Problem (Calheiros 
et al., 2003), and the Capacitated Minimum Spanning Tree Problem (da Silva, 2002). 
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Assuming that the increasingly reinforced Lagrangian Dual Problems are solved to 
optimality, theoretical convergence of DRC algorithms is guaranteed (to a bound at 
least as good as that given by the Linear Programming (LP) relaxation of the original 
formulation, reinforced with the additional families of valid inequalities used within 
the Lagrangian framework). Recently, Belloni and Sagastizabal (2004) obtained a sim-
ilar result, under not very restrictive conditions, for a Bundle Method implementation 
ofNDRC, 

Starting with the pioneering work of Everett III (1963) and Held and Karp (1970; 
1971), a vast literature exists on Lagrangian relaxation. Among these, references such 
as Geoffrion (1974), Shapiro (1974; 1979), Fisher (1981), Beasley (1993), Lemarechal 
(2001), and Guignard (2004) are highly relevant. On the other hand, Relax-and-Cut 
is a relatively recent development and surveys on it can be found in Guignard (1998), 
Guignard (2004), and Lucena (2004). 

In this chapter, Relax-and-Cut algorithms are reviewed in their two variants, namely 
NDRC and DRC. In addition, the effectiveness of the approach is demonstrated in an 
application to a hard-to-solve instance of the Knapsack Problem (KP). That instance 
involves coefficients of the order of 10^ ,̂ which makes it considerably more challeng-
ing to solve than ordinary KP instances. Throughout that application, Gomory cuts 
(Gomory, 1963) are used, for the first time, within a Lagrangian relaxation framework. 

NDRC and DRC algorithms are discussed, respectively, in Sections 5.2 and 5.3. 
A framework for generating primal integral solutions (which benefit from Lagrangian 
dual information) is presented in Section 5.4. The generation of Gomory cuts for KP 
follows in Section 5.5. The KP instance used as an example (for the application of 
NDRC and DRC) is also introduced in that section. In Section 5.6, the generic dual 
algorithms of Sections 5.2 and 5.3 and the generic primal algorithm of Section 5.4 are 
specialized to KP The use of these algorithms is illustrated with a numerical example. 
Finally the chapter is closed in Section 5.7 with suggestions for future work. 

5.2 NON DELAYED RELAX AND CUT 

The NDRC algorithm in Lucena (1992; 1993) is based upon the use of SM and, 
throughout this chapter, we follow Lucena (1992; 1993; 2004) in using SM to de-
scribe and test NDRC. For the sake of clarity, the material presented in this section 
is focused on binary 0-1 problems. However, with the exception of Subsection 5.4, it 
generalizes to Mixed Integer Programming problems. 

Assume that a formulation for a fA f̂P-hard combinatorial optimization problem is 
given. Assume as well that exponentially many inequalities are included in it. Such a 
formulation can be generically described as 

max{cx: Ax<b, xeX}, (5.1) 

where, for simplicity, x denotes binary 0—1 variables (i.e. xeB^, for positive integral 
values of n). Accordingly, for positive integral values of m, we have c eR^, b £R^, 
A G E^^" and X C B". Assume, as it is customary in Lagrangian relaxation, that 

max{cjc: xeX} (5.2) 
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is an easy problem to solve. On the other hand, in what is unusual for the application 
of Lagrangian relaxation, assume that m is an exponential function of n, i.e. (5.1) 
contains exponentially many inequalities. Assume as well that one dualizes 

{aiX<bi\ /—1,2,...,m} (5.3) 

in a Lagrangian fashion (regardless of the difficulties associated with the dualization 
of exponentially many inequalities) and let ^ G M !̂ be the corresponding vector of 
Lagrangian multipliers. A valid upper bound on (5.1) is given by the solution to the 
Lagrangian Relaxation Problem 

LRP{X)=::m3ix{{c-XA)x-\-Xb: xeX}. (5.4) 

Subgradient Optimization (SO) could then be used to solve the corresponding La-
grangian Dual Problem 

LDP= min {LRP(X)} (5.5) 

and obtain the best possible Lagrangian bound on (5.1). Optimization is typically 
conducted here in an interactive way with multipliers being updated so that (5.5) is 
attained. For the sake of completeness, let us briefly review SM, as implemented in 
Fisher (1981). That implementation is precisely the one which is adapted in this paper 
to produce the computational results in the following sections. 

5.2.1 A brief description of the Subgradient Method 

At iteration k of SM, for a feasible vector X^ of Lagrangian multipliers, let x be an 
optimal solution to LRP{X^) and zib be a known lower bound on (5.1). Additionally, let 
g^ G M^ be a subgradient associated with the relaxed constraints at J. Corresponding, 
entries for g^ are 

g'^ :={bi-aix), /= l ,2 , . . . ,m. (5.6) 

In the literature (see Fisher (1981), for instance), to update Lagrangian multipliers, 
one generates first a step size 

a[LRP{X^)-zib] 
^ = ' ^ ' ; . ,2 ^ (5.7) 

i= l , . . . ,m 

where a is a real number assuming values in (0,2], and then computes 

:^f+i=max{O;:^f-0^^f}, / = l , . . . , m . (5.8) 

After Lagrangian multipliers are updated, one moves on to iteration /:+ 1 of SM. 
Under the conditions imposed here, the straightforward use of updating formulas 

(5.7)-(5.8) is not as simple as it might appear. The reason being the exceedingly large 
number of inequalities that one would have typically to deal with. 
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5.2.2 NDRC modifications to the Suhgradient Method 

Inequalities in (5.3), at iteration k of SM, may be classified into three sets. The first 
one contains inequalities that are violated by x. The second set is for those inequalities 
that have nonzero multipliers currently associated with them. Notice that an inequality 
may be, simultaneously, in the two sets just defined. Finally, the third set consists of 
the remaining inequalities. Following Lucena (2004), we will refer to these sets of 
inequalities respectively as the Currently Violated Active set, the Previously Violated 
Active set, and the Currently Inactive set. Accordingly, they are respectively denoted 
by CA{k), PA{k), and CI{k). 

For the traditional use of Lagrangian relaxation, say when m is a polynomial func-
tion of n, Beasley (1993) reported good practical convergence of SM to (5.5), while, 
arbitrarily setting g^ = 0 whenever g^ > 0 and ^^ = 0, for / G {1, . . . ,m}. In our con-
text, all subgradient entries that are candidates to that modification belong to CI{k). 

In spite of the exponentially many inequalities one is faced with, we follow Beasley's 
advice, The reasoning behind the SM modifications suggested above comes from two 
observations. The first one is that, irrespective of the suggested changes, from (5.8), 
multipliers for CI{k) inequalities would not change their present null values at the 
end of the current SM iteration. Clearly, CI(k) inequalities do not directly contribute 
to Lagrangian costs (at the current SM iteration). On the other hand, they do play a 
decisive role in determining the value of 0^ and this fact brings us to the second obser-
vation. Typically, for the application being described, the number of strictly positive 
subgradient entries associated with CI{k) inequalities, tends to be huge. If all these 
subgradient entries are explicitly used in (5.7), the value of 0^ would result extremely 
small, leaving multiplier values virtually unchanged from iteration to iteration and SM 
convergence problems should be expected. 

By following Beasley's suggestion, we are capable of dealing adequately, within 
a SM framework, with the exceedingly large number inequalities in CI{k). However, 
we may still face problems arising from a potentially large number inequalities in 
{CA{k) \PA{k)), i.e. those inequalities that will become effectively dualized (i.e. have 
a nonzero multiplier associated with them) at iteration k of SM. 

Assume that a large number of inequalities exist in {CA{k) \PA{k)). These in-
equalities must therefore be violated at the solution to LRP{X^) and have zero valued 
Lagrangian multipliers currently associated with them. Typically, such inequalities 
may be partitioned into subsets (associated, for instance, with a partitioning of the set 
of vertices in an associated graph, if that applies) and, according to some associated 
criteria, a maximal inequality would exist for each subset. In order to avoid repeat-
edly penalizing the same variables, again and again, we only dualize one maximal 
inequality per subset of inequalities. Remaining inequalities in {CA{k)\PA{k)) have 
their subgradient entries arbitrarily set to 0, thus becoming, in effect, inequalities of 
CI{k). Examples of applications where the situation described above prevails, are dis-
cussed in Lucena (2004). However, for the application considered in Section 5.6, only 
Gomory cuts are used and, at every SM iteration, there will always be at most one 
fractional variable to generate Gomory cuts from. 

One should notice that, under the classification proposed above, inequalities may 
change groups from one SM iteration to another. It should also be noticed that the only 
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multipliers that may directly contribute to Lagrangian costs (c -f A,̂ +̂ A), at the end of 
iteration k of SM, are the ones associated with active inequalities, i.e. inequalities in 
{CA{k)UPA{k)). 

An important step, in the scheme outlined above, is the identification of inequalities 
violated at x. That problem must be solved at every iteration of SM and is equivalent 
to the separation problems found in Branch and Cut algorithms. However, NDRC 
separation problems typically involve a lower complexity than its Branch and Cut 
counterparts. This follows from the fact that LRP is normally chosen so that one will 
be separating over integral structures. For the application in Section 5.6, although 
one will not be working with integral structures, separation (of Gomory cuts) is quite 
straightforward. 

According to Lucena (2004), an NDRC algorithm could be seem as a Traditional 
Lagrangian Relaxation (TLR) algorithm where exponentially many inequalities are 
dualized but subgradients are projected, at every iteration of SM, into a smaller space, 
i.e. the space implied by active inequalities (formed by inequalities in {CA{k) U 
PA{k))). In doing so, only a fraction of the exponentially many inequalities involved 
are explicitly considered, at every SM iteration, to update Lagrangian multipliers. An 
analog of that idea, in terms of LP based algorithms, is to find the LP relaxation of a 
formulation involving exponentially many inequalities. Clearly, only a tiny fraction of 
these inequalities are tight at a LP relaxation solution. Furthermore, in practice, only a 
few of these inequalities would be explicitly used in a cutting plane algorithm to attain 
LP bounds. 

In another interpretation in Lucena (2004), NDRC may be seen as a Lagrangian 
relaxation algorithm where exponentially many candidate inequalities are dualized on 
the fly, as they become violated at an optimal solution to LRP{X^). Since inequalities 
may be dualized for every LRP (and not only for LDP), an analog of the idea, in terms 
of LP based algorithms, generates cutting planes as the LP is being solved. 

5.3 DELAYED RELAX AND CUT 

Description of a DRC algorithm is quite straightforward. Assume that an initial LDP 
is solved and let x be the corresponding LDP optimal solution. Violated inequalities 
associated with x are then separated and are either kept or else dualized, thus giving 
rise to a new (strengthened) LDP (see Guignard (1998) for a discussion on efficient 
cuts in DRC). The new LDP is then solved and the procedure is repeated until some 
stopping criteria is met (for instance, until either optimality is proven or else the max-
imum number of allowed LDP solving rounds is reached). DRC could be seen as a 
Lagrangian relaxation analog of LP based cutting plane algorithms. 

An important consideration in designing a DRC algorithm is the definition of an 
initial LDP to solve. In general, a trade off exists between LDP bound strength and 
the CPU time required to solve the problem. 

An easy to solve LDP would typically return a weak bound, requiring, however,/^w 
SM (or Bundle Method, or Volume Algorithm) iterations to be solved. On the other 
hand, a hard to solve LDP would typically return a stronger bound requiring, however, 
a large number of SM (or Bundle Method, or Volume Algorithm) iterations to be 
solved. That issue is treated in more detail in Lucena (2004), where an application of 
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DRC to the Steiner Tree Problem is carried out. In the context of the KP application in 
Section 5.6, an easy to solve LDP is used. Such an LDP contains only one constraint, 
i.e. the knapsack inequality. An example of a harder to solve LDP would be, for 
instance, one containing one or more Lifted Minimum Cover Inequalities (see Wolsey 
(1998), for instance) associated with the LP relaxation of KP. 

5.4 LAGRANGIAN HEURISTICS 

Assume that a given basic heuristic, denoted here BH, is available for generating feasi-
ble solutions to (5.1). We typically call BH, for the first time, prior to initializing SM. 
Additional calls are made alongside some of the iterations of SM (or Bundle Method or 
Volume Algorithm). For the first call of BH, the original costs c are used. Remaining 
calls are performed either under the available Lagrangian modified costs (c — X,̂ A), 
or else under costs given by {\—x)c (where, J, as before, is an optimal solution to 
LRP{X^)). Costs (1 —x)c attempt to make it attractive to BH to select variables set to 
1 in X. After a feasible solution to (5.1) is generated, either under Lagrangian costs or 
else under costs (1 — jc)c, the actual value for that feasible solution must be computed 
(under the original costs c). For the applications we have so far considered, the use 
of costs (1 —x)c has proved, in most cases, more effective than the use of Lagrangian 
modified costs. 

The motivation for the Lagrangian Heuristic (LH) sketched above, is the common 
sense belief that dual information must obviously be relevant to primal heuristics. 

As it is the case for any non exact solution algorithm, feasible solutions generated 
by LH may also be attempted to be improved through local search procedures. 

Ideally, it is desirable that BH be fast, to allow a large number of calls to be made 
to it. In our experience, in most cases, a simple greedy heuristic suffices to eventually 
return (alongside the application of SM) good quality feasible solutions to problem 
(5.1). 

So far, LH have been specifically tailored to the Steiner Problem in Graphs (Lucena, 
1992; 1993), the Traveling Salesman Problem (Belloni and Lucena, 2000), the Vehicle 
Routing Problem (Martinhon et al., 2004), the Linear Ordering Problem (Belloni and 
Lucena, 2003), the Rectangular Partition Problem (Calheiros et al., 2003), and the 
Capacitated Minimum Spanning Tree Problem (da Silva, 2002). 

5.5 GOMORY CUTS FOR THE 0-1 KNAPSACK PROBLEM 

The 0 - 1 KP (see Martello and Toth (1997) and Pisinger (1997) for solution algo-
rithms for the problem) is formulated as 

z — max 52 ^'}^i (̂ -9) 

subject to 

X G B " , (5.11) 
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where coefficients {uj : j — \,...,n} and b are positive integers. The analogy nor-
mally associated with the problem is that of filling a knapsack of capacity b with items 
selected from among n objects with capacities {ai: i= l,,..,n}. Items should be se-
lected in order to maximize value (as expressed by the objective function) of knapsack 
load. 

The LP relaxation of (5.9)-(5.11) is obtained by relaxing integrality enforcing con-
straints (5.11), thus resulting in 

z = max ^ CjXj (5.12) 

subject to 

£ ajXj<b, (5.13) 

0<Xj< 1, 7 - l , . . . , n . (5.14) 

For the purposes of this chapter, it is more convenient to explicitly associate slack 
variables {xn+j : 7 = 1,. . . ,n} to the right most inequalities in (5.14), associate slack 
variable X2n+i to inequality (5.13) and rewrite (5.12)-(5.14) as 

z = max ^ CjXj (5.15) 

subject to 

Xj+Xn+j = l, 7=1 , . . . ,W, (5.16) 

52 ^jXj -\-X2n+i = b, (5.17) 

Xj>0, 7 = l,...,n. (5.18) 

Following Dantzig (1957), an optimal solution to (5.12)-(5.14) is straightforward 
to compute. Assume that the coefficients {cj: 7 = 1,..., n} are ordered so that 

ci/ai > 02/a2 > . . . >Cn/an (5.19) 

and that f is the largest integer for which 

£ aj < b. (5.20) 

An optimal solution to (5.12)-(5.14) is then given by 

•^;=1. J = ^^'-'J\ 

Xj = 0, 7 = / - f 2 , . . . , n , 

Xj*+i = {b- £ aj)/aj*+i). 

(5.21) 

(5.22) 

(5.23) 



LAGRANGIAN RELAX-AND-CUT 137 

5.5.1 LP relaxation basis 

Let us now translate solution (5.21)-(5.23) in terms of an optimal basis to (5.15)-
(5.18). For each of the first j* rows in (5.16), the corresponding basic variable is 
Xj, j = 1,..., j * . Accordingly, (̂n+;)> ^OY j = (y* + 2),.. . ,n, is basic for the last 
n — (7* + 1) rows in (5.16). If (̂j*_̂ .i) > 0 then the basic variable associated with the 
(7* + l)-th row in (5.16) is ̂ (y*+i) while the basic variable associated with row (5.17) 
is X(„_̂ y*+i). Otherwise, if X(̂ *+i) = 0 then X(^n+j*+i) is the basic variable associated 
with the (7* + l)-th row in (5.16) and X(^2n+i) is the basic variable associated with row 
(5.17). 

Whenever ;c(̂ *4.1) > 0, a fractional Gomory cut may be generated from the (7* +1 )-
th row in (5.16). Furthermore, such a cut may be obtained with very few pivoting 
operations. More specifically, consider the rows in (5.16) for which a variable Xj, 
j — 1,..., w, is basic. Each of these rows should be multiplied by their corresponding 
aj and then be subtracted from row (5.17). One should then select Xn^j* as the pivot 
for the updated row (5.17) and from that eliminate the variable from the (7* + l)-th 
row in (5.16). A fractional Gomory cut is then generated from the updated row 7* in 
(5.16). Such a cut may clearly involve slack variables in {x{n+j) '- J — 1?• • • 5̂ } ^^^ 
one should then use constraints (5.16) and (5.17) to rewrite the cut only in terms of the 
original variables. 

It is not difficult to verify that, due to the particular structure of (5.16)-(5.18), it is 
always possible to generate Gomory cuts where coefficients are integral valued. 

5.5.2 Knapsack instance 

Table 5.1 describes the coefficients {cj : 1,... ,n} and {uj : I,... ,n} associated with 
a particular 0 - 1 KP instance. For that instance, the RHS coefficient in (5.10) is 
b = 12107067865319564. One should notice that such an instance involves coeffi-
cients of the order of 10^ .̂ Coefficients of such a magnitude preclude the use of 
Dynamic Programming (DP) recursions to attain optimality since the associated state 
space would be out of reach of currently available computer memory. Likewise, rein-
forcing Linear Programming (LP) relaxation (5.12)-(5.14) with violated valid inequal-
ities, in an LP based cutting plane approach, would probably not be an option. That 
applies since, after generating a few, say Gomory cuts, one would, most likely, run into 
numerical problems while performing matrix inversions. Finally, a 0.000001% gap be-
tween upper and lower bounds tends to be, for ordinary applications, tight enough to 
provide an optimality certificate. However, for our KP instance such a gap corresponds 
to millions of units and is by no means a guarantee of optimality. 

For the numerical results in Section 5.6, coding was carried out in FORTRAN. In 
a 32 bits computer, like the one we use, the largest integer variable one is capable 
of representing, may contain only 8 decimal digits. We have thus used floating point 
variables to represent the coefficients of the KP instance in Table 5.1. Great care was 
then taken to minimize the possibilities of incurring in rounding off errors. That in-
volved an extensive use of FORTRAN compiler intrinsic functions that round down a 
real valued number to the real number which represents the resulting integer. When-
ever one of the coefficients of the KP instance had to be explicitly considered, it was 
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first increased by a conveniently small tolerance and then rounded down as suggested 
above. 

5.6 GOMORY BASED RELAX-AND-CUT ALGORITHMS FOR KP 

Assuming that p > 1 Gomory cuts are currently dualized, the Lagrangian Relaxation 
Problem one will be faced with, either under NDRC or DRC, at any SM iteration, is 
given by 

LRP(A,) = max £ c'jXj-\-const{X) (5.24) 

subject to 

Z cijXj<b, (5.25) 

0< ;cy< l , 7 -1 , . . . , n , (5.26) 

where A, G M^ is a vector of Lagrangian multipliers associated with dualized Gomory 
cuts, const(A,) is a non negative constant associated with these multipliers and {c^: j = 
1,...,n} are the corresponding Lagrangian modified objective function coefficients. 
Clearly, if no dualized Gomory cut exists, Lagrangian Relaxation Problem (5.24)-
(5.26) corresponds to (5.12)-(5.14). One should also notice that a Lagrangian modi-
fied objective function coefficient, say c', may eventually become negative throughout 
the application of SM. In that case, variable Xj is guaranteed to assume a value of 0 at 
an optimal solution x to (5.24)-(5.26). 

5.6.1 A Lagrangian heuristic to KP 

Following Section 5.4, a basic greedy heuristic BH was used to generate feasible solu-
tions to the KP instance on Table 5.1. BH was called for every SM iteration and took, 
as an input, Lagrangian modified costs {c'j : j — I,... ,n}. Assume that an ordering 

is obtained from these input costs. BH then considers indices in {/i,..., /„} (for corre-
sponding item inclusion into the knapsack) in the order they appear in (5.27). Assume 
that iteration k of BH is being performed (i.e. that the item implied by index ik is be-
ing considered for possible inclusion into the knapsack). Assume as well that bk is the 
capacity left at the knapsack at iteration k of BH. The item implied by ik should then 
be included into the knapsack if a/̂  < bk. Iterations should be performed until either 
the knapsack is filled to capacity or else until it could be established that none of the 
items still to be investigated could be successfully introduced into the knapsack. 

Once a feasible solution is retumed by BH, the cost of that solution under {cj : j = 
1,..., n} must be computed (to obtain a valid KP lower bound). The solution should 
then be subjected to Local Search in an attempt to improve it. The search neighbor-
hood we use is formed by those items that could feasibly replace an item currently 
included in the knapsack. Item replacement should be carried out for that pair of items 
(if any) leading to the largest KP lower bound increase. In case of success one should 
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check if spare space still exists in the knapsack to include items currently left out of it 
(whenever applicable, items should be included by their cost/benefit ratios) and iterate. 

Within a Lagrangian relaxation framework, repeated calls to BH followed by Local 
Search (as outlined above), give rise to a Lagrangian heuristic LH to KP (see Section 
5.4). 

5.6.2 Variable fixing tests 

Whenever an optimal solution x is obtained for (5.24)-(5.26), a valid upper bound 
LRP(X) is generated for KP. One may then use LP reduced costs, together with a 
feasible KP lower bound zw, in an attempt to price variables out of an optimal solution. 
Accordingly if Cj is the reduced cost associated with variable Xj in 3c, the variable is 
guaranteed to be out of an optimal solution if 

LRF{X)+cj<zib^ (5.28) 

Assume that variable Xj is such that Xj = I. One may attempt to price that variable 
into an optimal solution by solving (5.24)-(5.26) with the additional constraint ;cy = 0. 
Clearly, if the solution value thus obtained is less than zib^ variable Xj is guaranteed to 
be in an optimal solution to KP. The variable could then be fixed to 1. 

5.6.3 A NDRC algorithm for KP 

Whenever applicable (i.e. when x is fractional), a NDRC algorithm for KP would 
separate Gomory cuts, as suggested in Section 5.5. These cuts should be dynamically 
dualized, as proposed in Section 5.2. In our experiments with the KP instance in 
Table 5.1, a total of 1000 SM iterations were performed. Parameter a, initially set to 
2.0, was halved after 50 consecutive SM iterations without an overall improvement on 
the best upper bound so far generated. LH, as described above, was called for every 
SM iteration. The same applies to the proposed variable fixing tests. 

The computational results obtained are shown on Table 5.6.3. Best lower and upper 
bounds obtained up to the given fixed number of SM iterations are presented in the 
table. Twenty four variables were fixed into an optimal solution while ten variables 
were fixed out. Comparing the LP relaxation of the KP instance with the best upper 
bound generated, it is possible to see that the initial duality gap (i.e. LP relaxation 
value minus the best lower bound found) was closed by over 82% by the best NDRC 
upper bound obtained. 

5.6.4 A DRC algorithm for KP 

A DRC algorithm for KP would generate an initial Gomory cut from LP relaxation 
(5.12)-(5.14). Such a cut would then be dualized and a fixed number of SM iterations 
would be carried out in an attempt to solve the corresponding LDP. Assume that a few 
rounds of DRC Gomory cut separations have already been performed and consider 
the corresponding LDP. Let x be an optimal solution to the very last LRP(X,) solved 
while attempting to solve LDP with SM. Three outcomes are then possible. If x is 
integral, the DRC algorithm should be stopped since no Gomory cut could be gener-
ated from X. If X is fractional but the newly separated Gomory cut is already currently 
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Table 5.2 Lower and upper bounds for NDRC 

Iteration Lower Bound Upper Bound 

1 18970083333551896 19110448305312768 
100 18970083333551900 19068005714952528 
200 19014186620712300 19049279232335140 
300 19014186620712300 19042422190532812 
400 19014186620712300 19041389490291912 
500 19014186620712300 19038788425295852 
600 19014186620712300 19036609424140228 
700 19014186620712300 19035349741901788 
800 19014186620712300 19033798315232872 
900 19014186620712300 19032012697947240 
1000 19014186620712300 19031191289895520 

dualized, LDP should be, once again, stopped. Finally, if J is fractional and a Gomory 
cut different from the ones currently dualized is separated from x, the cut should be 
dualized thus giving rise to a new LDP to be solved. In our experiments with the KP 
instance in Table 5.1, a total of 10 LDP rounds were performed. Each of these rounds 
involved 100 SM iterations where parameter a, initially set to 2.0, was halved after 5 
consecutive SM iterations without an overall improvement on the best upper bound so 
far generated in the round. 

LH, as described above, was called for every SM iteration. The same applies to the 
proposed variable fixing tests. 

The computational results obtained are shown in Table 5.6.4. Best lower and upper 
bounds obtained up to the end of every LDP solving round are presented in the table 
(round 0 corresponds to the initial lower and upper bounds). Twenty four variables 
were fixed in an optimal solution while ten variables were fixed out. Comparing the 
LP relaxation of the KP instance with the best upper bound generated, it is possible to 
see that the initial duality gap (i.e. LP relaxation minus best lower bound) was closed 
by over 74% by the best upper bound obtained. 

Comparing the best lower bounds generated respectively by NDRC and DRC, one 
should notice that a difference of only 4 units exists in favor of the NDRC bound. 
Such a small difference between feasible solution values involving 17 digit numbers, 
give a hint on the difficulty of finding proven optimal solutions to our KP instance. 

The slightly better results obtained by NDRC are in accordance with results ob-
tained in Lucena (2004) for the Steiner Tree Problem. In any case, duality gap re-
ductions were substantial for both NDRC and DRC. One should then expect that a 
Branch-and-Bound algorithm based on either approach would perform well for the 
KP instance tested. 
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Table 5.3 Lower and upper bounds for DRC 

Round Lower Bound Upper Bound 

0 18970083333551896 19110448305312768 

1 19014186620712292 19050199902159760 
2 19014186620712292 19044749414273156 
3 19014186620712292 19044745465383692 
4 19014186620712292 19044744079996880 
5 19014186620712300 19042060411170460 
6 19014186620712300 19041048482141080 
7 19014186620712300 19041026532351020 
8 19014186620712304 19038583646728036 
9 19014186620712304 19038583646728036 
10 19014186620712304 19038583646728036 

5.7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

Relax-and-Cut is proving to be an attractive proposition for generating good quality 
dual bounds to Integer Programming Problems. The technique may be used on its own, 
as exemplified in this chapter, or be combined with LP based solution algorithms into 
a hybrid solution approach (see Calheiros et al. (2003), for details). Relax-and-Cut 
also appears very attractive for the development of Lagrangian heuristics. 

Implementing NDRC under subgradient optimization methods different from SM, 
appears clearly relevant. One example of this appears in Belloni and Sagastizabal 
(2004) where NDRC was adapted to operate under a Bundle method (Bonnans et al., 
1997). Investigating variants of SM to NDRC that retain computational lightness 
while improving accuracy also appears very attractive. 

For the particular application focused in this chapter we plan to implement an ex-
act solution Branch-and-Bound algorithm based on NDRC. Such an algorithm should 
include, in addition to the Gomory cuts studied here. Lifted Minimum Cover Inequal-
ities. 
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