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Abstract: This chapter presents design of reliable networks. The exact calculation of 
any general network reliability measure is NP-hard. Therefore, network designers have 
been reluctant to use reliability as a design criterion. However, reliability is becoming 
an important concern to provide continuous service quality to network customers. The 
chapter discusses various network reliability measures and efficient techniques to eval-
uate them. Two genetic algorithms are presented to demonstrate how these techniques 
to estimate and compute network reliability can be incorporated within an optimization 
algorithm. Computational experiments show that the proposed approaches significantly 
reduce computational effort without compromising design quality. 
Keywords: Network reliability, network resilience, network design, network survivabil-
ity. 

26.1 INTRODUCTION 

While planning a telecommunication network, several competing interests such as 
cost, throughput, performance, connectivity requirements, and reliability must be con-
sidered. Among them, reliability has become an important concern in recent decades. 
Many new telecommunication technologies such as fiber-optic cables and high capac-
ity switches have provided economical benefits by means of capacity concentration 
(Ball et al., 1995). As a result, telecommunication networks tend to be sparser com-
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pared to networks based on traditional copper cables (Balakrishnan et al., 1998). A 
high capacity sparse network, however, is vulnerable to component (links and nodes) 
failures. Even a single component failure can significantly disturb the service quality 
of a network or leave many customers disconnected. Therefore, as the dependence on 
telecommunication networks increases and network topologies become sparser, net-
work reliability becomes an important concern while designing new networks. 

In the most general form, network reliability describes the ability of a network to 
continue network services in the case of component failures. This chapter focuses 
on designing reliable networks. The most challenging aspect of this problem is com-
puting a reliability measure of a network. The exact calculation of most reliability 
measures is NP-hard (Ball, 1980). Therefore, an overwhelming body of research on 
network reliability has focused on developing efficient techniques to evaluate network 
reliability, including exact methods, theoretical bounds, and simulation. However, 
work on optimal reliable network design did not fully exploit or implement these effi-
cient techniques in an optimization framework. 

The chapter is organized as follows: Section 26.2 presents network reliability mod-
eling and major reliability measures. Efficient evaluation of network reliability is very 
important for optimal network design. Therefore, the methods to evaluate network re-
liability measures are given in Section 26.3. Existing work on network reliability op-
timization is summarized in Section 26.4. Sections 26.5 presents a genetic algorithm 
(GA) to design reliable networks with an emphasis on demonstrating use of efficient 
reliability evaluation in a search algorithm. Section 26.6 presents a bi-objective GA to 
design resilient networks. 

26.2 NETWORK RELIABILITY MODELING 

Telecommunication networks consist of imperfect components. Both the links and the 
nodes of a network are subject to failure. Failure mechanisms of network components, 
especially those of links, have not been well defined in the literature (Ball et al., 1995). 
Nonetheless, failure rates can be derived from historical data. A telecommunication 
network with unreliable components is usually modeled as an undirected probabilistic 
network G= {E,V) with node set V and arc set E such that each arc can be in either 
of two states: operative or failed, with associated probabilities ptj and 1 — pij, re-
spectively. In this model, nodes represent telecommunication devices such as routers, 
switching stations, and computers, and arcs represent links connecting these devices. 
Although pij can be interpreted differently, it is usually defined as the probability that 
arc (/, j) is in the operative state at a random point in time. The common assumptions 
of this model are: 

• Arc failures are independent; 

• Nodes are perfectly reliable; 

• No repair is allowed. 

Hence, the probability of observing a particular state of the network is as follows: 

Pr{X}= n [l-Pij+x^ij){2pij-l)] (26.1) 
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where JC(/y) = 1 if arc (/, j) is operative in state X, X(^ij) = 0 otherwise. 
The assumptions of independent component failures and perfectly reliable nodes 

have been criticized as being impractical. Although in practice component failures 
are often observed together, the assumption of independent component failures is very 
important for computational tractability. Assuming perfectly reliable nodes is not very 
appropriate for telecommunication networks, either. However, a probabilistic network 
with unreliable nodes can be transformed to a probabilistic network with perfectly 
reliable nodes, or node failures can be incorporated into reliability calculations in some 
cases (Colboum, 1987). Therefore, most network reliability analysis and optimization 
papers assume perfectly reliable nodes. In Section 26.6, we relax the assumption 
of perfectly reliable nodes and use a reliability measure in which node failures are 
considered. 

26.3 NETWORK RELIABILITY MEASURES 

Generally, three major types of network reliability measures are considered in the 
network reliability literature: connectivity, resilience, and performability measures. 
The majority of the research on network reliability focuses on connectivity measures 
since the primary function of a telecommunication network is to provide connectivity. 
With respect to connectivity, network reliability is expressed as the probability that a 
specified set of nodes (T) of the network are connected at a random point in time. This 
probability can be computed as follows: 

R = E[4>(X)] = £ Pr{X}<l>(X) (26.2) 
Xes 

where S is the state space of all possible network states, and 4>(X) is a structure func-
tion defined as follows: 

,,_-. f 1, if all nodes in T are connected in state X; ..^ .. 
^^^^ = \ 0, otherwise. ^^ -̂̂ ^ 

The primary network reliability measures for undirected probabilistic networks are 
as follows 

• Two-terminal. Probability that a selected node pair, a source node s, and a sink 
node r, are connected (i.e., T = {s,t}). 

• All-terminal. Probability that every node can communicate with every other 
node in network G (i.e., T = V). 

• K-terminal. Given a node set K CV, probability that every node in K can 
communicate with every other node in K (i.e., T CV). 

A two-terminal measure is used when the communication between two specified 
nodes of a network is critical (e.g., two metropolitan areas, a file and a web server on 
different sites). The all-terminal measure is frequently used for the backbone level of 
packet switched networks since if a path fails in these networks, traffic can be rerouted 
around alternative paths as long as the network is globally connected. A AT-terminal 
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measure is used when connectivity of a subset of network nodes is concern (e.g., vir-
tual local area networks and distributed computing applications). The reliability mea-
sures defined above are strongly related with each other. A method that can be applied 
to one can also be applied to the others. Exact calculation of these reliability measures 
is NP-hard for general networks (Ball, 1980). 

Network resilience measures, in fact, are special cases of connectivity measures. 
The connectivity measures given above assume that a network is not operational if the 
desired connectivity is lost. In practice, however, a network continues to serve the 
remaining connected components even though one or more nodes have become dis-
connected. To evaluate the ability of a network coping with catastrophic failures and 
recovering network services in disconnected states, several network resilience mea-
sures have been proposed such as the probability that all operative node pairs can 
conmiunicate and the expected fraction of node pairs communicating (Ball, 1979). 
Unlike the binary structure function in the connectivity based reliability measures, the 
structure function is multi-model in resilience measures, which usually makes their 
calculation harder than reliability measures. 

Performance metrics such as response time and throughput are commonly used in 
design and analysis of telecommunication networks. Network performability mea-
sures are concerned with the performance of a network in various network states. 
Given a performance metric of a network (Ci), performability measures are usually 
expressed in three cases: 

• Pr{Q. < a} ; 

• B[Q]; 

• E[^ I at most k components fail]. 

The last group of the performability measures is primarily used to reduce the compu-
tational complexity by using a k value of usually one or two. The justification for this 
assumption is that network components are usually so reliable that it is adequate in 
practice to consider states with no and single failure only since these states cover most 
of the state-space probability (Sanso et al., 1992). 

26.4 EVALUATION OF RELIABILITY 

26.4.1 Exact Methods 

Methods for exact reliability calculation are two-fold: cut/path set enumeration meth-
ods and state enumeration methods (Ball et al., 1995). Cut/path set methods require 
enumerating all cut/path sets of a network. For example, given all path sets of a net-
work, Pi,...,P/i, let Ei be the event that all arcs in Pi are operational, then network 
reliability is calculated as 

R{G) = Pr{EiUE2 U... UE/,} (26.4) 

Unfortunately, equation (26.4) cannot be calculated easily since the Efs are not 
mutually exclusive events and the number of path sets of a network is exponential 



NETWORK RELIABILITY OPTIMIZATION 739 

in the number of arcs. In fact, a naive implementation of equation (26.4) leads to a 
doubly exponential time algorithm (Ball et al., 1995). For example, the backtracking 
algorithm (Ball and Slyke, 1977), which is based on generating cut sets, could be used 
in Deeter and Smith (1998) to design networks with only 5 nodes. The domination 
theorem developed by Satyanarayana and Prabhakar (1978) provides substantial im-
provement in the computation of equation (26.4). The most efficient algorithms based 
on cut/path sets are the algorithms proposed by Ball and Nemhauser (1979) and Pro van 
and Ball (1984), which can compute reliability in polynomial time in the number of 
minimal path and cut sets. 

The most basic state based method is complete state enumeration, requiring the 
generation of all 2^ states of a network with m arcs. Applying reliability preserving 
network reductions and network decomposition techniques can significantly reduce 
the computational effort in state space enumeration. In network reductions, a network 
G is reduced to a network G' with fewer nodes and/or arcs such that 

R{G) = XR{G') (26.5) 

where A, is a reliability-preserving multiplicative constant depending on reductions. In 
network decomposition, a network is partitioned into two or more subnetworks; then, 
the reliabilities of these subnetworks are calculated and used to obtain the reliability 
of the original network. This technique is successfully used for two-terminal reliabil-
ity in directed networks (deMercado et al., 1976; Singh and Ghosh, 1994; Hagstrom, 
1984). A powerful network decomposition technique is to pivot the reliability expres-
sion on the state of an individual arc, which is also known as factoring (Colboum, 
1987; Page and Perry, 1991; Resende, 1986; 1988; Satyanarayana and Chang, 1983). 
Conditioning on the state of arc (/, 7), the reliability expression for R{G) is given by 

R{G)=R{G'{Uj))pij^R{G-{iJ)){\-pij) (26.6) 

where G • (/, j) is a network obtained from G by merging nodes / and j into a new node 
and connecting each arc incident to them to this new node, and G - (i, j) is a network 
obtained by deleting arc (/, j) from G. If this decomposition is repeatedly applied with 
proper arc selection for pivoting and network reductions, significant improvements 
can be achieved in reliability computation since only relevant states of the network are 
considered (Satyanarayana and Chang, 1983). In reality, any technique to compute 
reliability requires exponential time in the worst case. For undirected networks, fac-
toring with network reductions provides the best possible time (see (Ball et al., 1995) 
for a comprehensive discussion). In Section 26.5, we used a factoring algorithm to 
calculate the all-terminal measure. 

26.4.2 Bounds 

Because of the intractability of exact reliability calculation, theoretical bounds on re-
liability were used as a substitute for actual reliability in several network reliability 
papers (Jan, 1993; AboElFotoh and Al-Sumait, 2001; Dengiz et al., 1997a;b). Bounds 
for approximating network reliability can be considered in three groups: 

• Bounds based on the reliability polynomial (Slyke and Frank, 1972; Ball and 
Provan, 1983); 
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• Bounds based on arc packing by cut or path sets (Lomonosov and Polesskii, 
1972; Aboelfotoh and Colboum, 1989; Brecht and Colboum, 1988); 

• Bounds based on the most probable states (Li and Silvester, 1984; Lam and Li, 
1986; Yang and Kubat, 1989). 

The first group of bounds depends on counting a small fraction of operational net-
work states to approximate reliability. An important shortcoming of this approach is 
that it is applicable only to networks with identical arc reliabilities. The second group 
of bounds considers only a fraction of all possible cut/path sets of a network to obtain 
a bound. These bounds can be used for networks with arbitrary arc reliabilities. How-
ever, they are computationally demanding since they require generating cut/path sets 
or an effective arc packing of a network. In addition, these bounds can be used only 
for connectivity based reliability measures with a binary structure function. 

The most probable state bounds are based on the observation that the reliabili-
ties of individual components are usually so high that only a small fraction of all 
possible states will cover the majority of the probability. Although the number of 
the possible network states is enormous, most of them have extremely low probabil-
ities of occurrence; hence, they can be ignored. The most probable states method 
requires enumerating k most probable states of a network, X^ X^,...,X^, such that 
Pr{X^} ^ Pr{X^} ^ , . . . , ^ Pr{X^) and Pr{X^} ^ Pr{K}} for all remaining states i 
of the network. Upper and lower bounds on reliability based on the k most probable 
states are given as follows: 

Rv{G) = X:4>(X'>r{X'} + (l-EPr{X'}) 
1 = 1 ( = 1 

RL{G) = |;<i>(x')Mx'} 

The tightness of these bounds depends on the number of the states considered. 
Several methods have been proposed to efficiently enumerate the k most probable 
states of a network (Li and Silvester, 1984; Lam and Li, 1986; Yang and Kubat, 1989). 

26.4.3 Simulation and other Estimation Techniques 

Simulation has been a major alternative to estimate new reliability, especially for large 
networks, due to the intractability of the exact calculation of network reliability and 
the absence of tight bounds. The application of simulation to estimate new reliability 
and performability measures is outwardly straightforward. For example, the procedure 
for the Crude Monte Carlo (CMC) method, which is based on sampling of network 
states, is given as follows: 

Stepl. SQiR = 0 
Step 2. For k=l...K do following steps 

a. For each {ij) e E generate a random number U, then if ptj < U then 
X(^ij) = 1 else X(^ij) = 0 
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b. R = R-\-^{X) 

Step 3. R{G)=R/K 

Although the CMC simulation is easy to implement, reliability estimation using 
simulation is computationally very expensive. A major concern is that networks and 
components are usually so reliable that large numbers of network states are required to 
be sampled in order to observe a few network failures and obtain an accurate estimate 
of reliability. This significantly increases the cost of accurate estimations especially 
for highly reliable networks. An accurate estimate is particularly important if simu-
lation is to be used within an optimization algorithm to compare alternative designs. 
Several alternative approaches such as dagger sampling (Kumamoto et al., 1980), strat-
ified sampling (Slyke and Frank, 1972), the Markov model (Mazumdar et al., 1999), 
the sequential construction/destruction methods (Easton and Wong, 1980; Fishman, 
1986a), importance sampling using bounds (Fishman, 1986b), graph evolution method 
(Elperin et al., 1991) and sampling based on failures sets (Kumamoto et al., 1977) have 
been proposed in the literature to improve efficiency and effectiveness of simulation 
in estimating network reliability. 

As a new approach to estimate network reliability, Srivaree-ratana et al. (2002) used 
artificial neural networks to estimate all-terminal and two-terminal reliability. 

26.5 RELIABLE NETWORK DESIGN PROBLEM 

26.5.1 Problem Formulation 

In the most general form, the optimization problem is to find a network topology max-
imizing the reliability for a given cost constraint or minimizing the design cost for a 
given reliability constraint. We refer to these two problems as PI and P2, respectively. 
As a part of the overall network design problem, however, P2 is a more common 
problem. In addition to the cost or reliability constraint, there might be some other 
constraints restricting topologies such as survivability constraints (e.g., node degrees, 
node or link connectivity requirement) or performance constraints (e.g., network di-
ameter). 

Decision variable ztj represents the type of the arc installed between nodes / and j 
from a discrete set of arc types {0,1,...,L} where L is the most reliable arc type and 
Zij = 0 means that no arc is installed on {ij). Then, the design cost is: 

C{Z) = t t ^ijizij) (26.7) 

where Cij{l) is the cost of installing arc type / between nodes / and j . This cost usually 
depends on the distance between node pairs and may include fixed and variable costs 
such as cabling, installation costs, and right of way costs. In many formulations of the 
problem, arc types are ignored and only binary decision variables Zij are used. 

The problem formulated in this chapter is to minimize the design cost subject to 
a given minimum all-terminal reliability requirement Rmin and a 2-node connectivity 
constraint. A network is 2-node connected if at least 2 nodes must be removed in order 
to disconnect the remaining nodes. For fiber-optic networks, 2-node/link connectivity 
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is frequently used to ensure a minimum level of survivability (Monma and Shallcross, 
1989). 

26.5.2 Solution Approaches 

Alternative methods have been proposed in the literature to solve the network design 
problem considering reliability. Due to the difficultly of the problem and calculating 
reliability measures, however, few exact methods were developed. Aggarwal et al. 
(1982a;b) proposed an approach based on enumeration of the spanning trees of the 
possible network topology. However, this approach is only applicable to very small 
networks. Jan et al. (1993) developed a branch-and-bound algorithm to minimize the 
design cost subject to a minimum all-terminal reliability constraint. In this approach, 
the problem was sequentially solved by considering solutions with only n — 1, n, n -h 
l,...,n{n - l)/2 arcs. An upper bound on reliability was used to efficiently eliminate 
infeasible branches, and a lower bound was used to fathom unpromising subproblems. 
The approach was tested for networks up to 12 nodes. However, this approach is 
only applicable to networks with identical arc failure probabilities. In another paper, 
Jan (1993) investigated the topological features of networks that may lead to high 
reliability. 

Belovich (1995) developed a construction heuristic to enhance the reliability of an 
existing network by adding the most promising arcs to the network. The reliability 
metric used in this study was the probability that all packets arrive at their destination, 
which is estimated by a linear-time upper bound. 

Kumar et al. (1995a;b) developed a GA to design and extend existing networks 
considering various objectives such as reliability, delay, and average nodal distance. 
Genetic Algorithm 

Dengiz et al. (1997a;b) presented a GA approach for the network design problem to 
maximize all-terminal reliability under a cost constraint. An upper bound on reliability 
was used to evaluate the fitness of candidate solutions, and simulation was used to 
estimate the reliability of the best solution. In their GA, the crossover operator was 
supported with a network repair algorithm to make sure that offspring had a minimum 
node degree of two. Due to the limitation of the upper bound used in their GA, only 
arcs with identical reliability were assumed. Deeter and Smith (1998) also proposed 
a GA to solve both PI and P2 with different arc types and objective functions (two-
terminal and all-terminal reliability). In their method, network reliability was exactly 
calculated for small size networks and CMC simulation was used for larger networks. 

AboElFotoh and Al-Sumait (2001) developed a neural network (NN) approach to 
solve the problem. In this approach, each arc was represented by a neuron. If an 
arc was selected in a solution, the corresponding neuron's output became one (i.e., 
the neuron fired), otherwise zero. The NN aimed to minimize an energy function 
composed of three terms: the cost of a solution, reliability, and a penalty term for 
higher reliability than required. To evaluate the reliability term in the energy function, 
an upper bound was used when arc reliabilities were high or a lower bound was used 
when arc reliabilities were low. Srivaree-ratana et al. (2002) used a NN approach 
to estimate all-terminal reliability within a simulated annealing algorithm to evaluate 
candidate solutions. 
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26.5.3 A Genetic Algorithm to Design Reliable Networks 

In this section, a GA is introduced to solve the formulated problem. The main dif-
ference between the GA herein and previous approaches is that the GA uses a com-
bination of techniques for efficient evaluation of all-terminal reliability so that large 
problems with practical importance can be solved. Unlike some of the previous ap-
proaches, the reliability evaluation procedure of the GA is efficient for general types 
of networks. In addition, the GA employs advanced operators to deal with the 2-node 
connectivity survivability constraint. 

26.5.3.1 Problem Encoding. A node-to-node adjacency matrix representa-
tion with arc types is used to represent solutions. In this representation, a network is 
stored in an n x yz matrix, Z = {ztj}, such that Zij = / if arc type / is used between 
nodes / and 7, / = 0, ...,L where type 1 denotes the least reliable, type L denotes the 
most reliable arc type, and type 0 means that no arc exists between nodes / and j . If 
arc types are not considered, then L = 1 with ztj = 1 denoting that arc (/, j) is selected 
in the solution, otherwise ztj = 0. 

26.5.3.2 Crossover Operator. The GA's crossover operator is basic uniform 
crossover with an efficient repair algorithm for 2-node-connectivity as follows: 

Step 1. Randomly select two parents X = {xtj} and Y = {ytj} 
Step 2. Set Zij = [1 -U\xij-\- \U]yij for i = l,...,n, 7 =/4-l, . . . ,n 
Step 3. IfZCXorZCY Then retum Z and stop. 
Step 4. For each node v = 1,..., n, perform the following steps. 

Step 4.1 Delete node v from offspring Z, and let s be the node with smallest 
index in V \ v. 

Step 4.2 ^(v) = {s}, LIST={^}, 5(v) = V \ v 
Step 4.3 Select node / from the end of LIST. 
Step4.4 If there exists an arc {ij) such that ; € S{v) Then 5(v) = S{v)\j, 

S{v) = S{v)Uj, and LIST=LIST Uj Else LIST=LIST \/ 
Step 4.5 If LISTT^ 0 Then go to Step 4.3 
Step 4.6 If ^(v) = 0 Then stop since Z is 2-node connected with respect to v. 
Step 4.7 Find the minimum distance arc {iJ) such that / G 5(v), j G 5(v), and 

Xij -\-_yij > 1, and set ztj = INT{\,L). 
Step 4.8 5(v) = 5(v) \ j , ^(v) = ^(v) U 7, and LIST=LIST U7 
Step 4.9 Go to Step 4.3 

Step 5. Retum Z 

26.5.3.3 Mutat ion Operators. The GA has several mutation operators per-
turbing network topologies without disturbing 2-node connectivity. To achieve this, 
the mutation operators create a solution from an existing solution by changing the cy-
cles of the existing solution. This approach was used by Monma and Shallcross (1989) 
to find minimum cost 2-node and 2-arc connected network topologies. The mutation 
operators are given below. 
Procedure: One-Link-Exchange 

file://-/-_yij
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Step 1. Find a random cycle C of at least four nodes. 
Step 2. Randomly choose four nodes a, b, c, and dofC such that Zab^^y {ci,b) ^ C, 

and Zed = 0. 
Step 3. Set Zcd = Zab and Zab = 0. 

Procedure: Two-Link-Exchange 

Step 1. Find a random cycle C of at least four nodes. 
Step 2. On cycle C, randomly determine two arcs (a,Z?) and {c,d) such that Zab^ 1» 

Zcd> 1, Zac = 0, and ẑ rf = 0. 
Step 3. Set Zac = âZ;, Zbd = -̂ crf. f̂lZ> = 0, and Zcd = 0. 

Procedure: Three-Link-Exchange 

Step 1. Find a random cycle C of at least four nodes. 
Step 2. On cycle C, randomly choose three arcs {a,b), {c,d) , and {e,f) such that 

Zad = 0, z/7e = 0, and Zcf = 0. 
Step 3. Set ẑ rf = Zab, Zbe = Ze/ , ̂ c/ = Zcrf, âz? = 0, Zed = 0, and Zef == 0. 

Procedure: Add-Two-and-Remove-One-Arcs 

Step 1. Find a random cycle C of at least four nodes. 
Step 2. Randomly choose an arc {a,b) on cycle C such that Zac = 0 and Zbd — 0. 
Step 3. Set Zac = min(l,z«^ - 1), Zbc = min(l,Za^ - 1), and Zab = 0. 

Procedure: Add-One-and-Remove-Two-Arcs 

Step 1. Find two random adjacent cycles C and C" with a common arc {a,b). 
Step 2. Remove arc (a,c) G C and {b,d) G C", i.e. ẑ c = 0 and Zbd = 0. 
Step 3. Set Zcd = max(L, Zac + 1 , Ẑ;̂  + 1) • 

Procedure: Delete-an-Arc 

Step 1. Find a random cycle C of at least four nodes. 
Step 2. Randomly choose two nodes a and b such that Zab > 1 and (a, b) ^ C. 
Step 3. Setz^^ = 0 

Procedure: Add-an-Arc 

Step 1. Randomly choose two nodes a and b such that ẑ z? = 0 
Step 2. StiZab=lNT{\,L) 

Procedure: Change-Arc-Type 

Step 1. Randomly choose an arc {a,b) such that Zab > 1 
Step 2. Change type of arc {a, b) to another type. 

26.5.3.4 Fitness Function. The mutation and crossover operators of the GA 
always produce feasible network topologies with respect to the connectivity require-
ment. However, a candidate solution may violate the reliability constraint. Infeasible 
solutions with respect to reliability are penalized using a penalty function as follows 
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f{Z,t) = C(Z) +C™i„(09(0 (^'^^^^^^^-m)\ (26.8) 

where Cfnm{t) is the cost of the cheapest solution in the population, and 0(r) is an 
adaptive penalty factor, which is updated at each generation t as follows 

e(r) = e(r - 1) (0.5 -f fraction of infeasible solutions ) (26.9) 

Without requiring any parameter setting, this adaptive penalty function is a simpli-
fied version of the adaptive penalty function given by Coit and Smith (1996) and Coit 
et al. (1996). For the first generation, 0(1) = 1, and then in the following generations 
it is increased if the population includes more infeasible solutions than feasible ones, 
or it is decreased if the otherwise is true. 

26.5.3.5 Calculation of All-terminal Reliability. The reliability evalua-
tion subroutines of the GA include an upper bound for quick assessment of all-terminal 
reliability, simulation (the Sequential Construction Method (Easton and Wong, 1980)), 
and an exact method based on the factoring procedure given by Page and Perry (1991) 
with minor modifications. The overall objective in the reliability evaluation is to min-
imize rigorous analysis of reliability without losing accuracy. The details of the relia-
bility evaluation is given below. 

When a new solution Z is produced, first an upper bound (Ry (Z)) on the reliability 
is calculated as follows: 

Ru{Z) = l-t((uii-Pik)yn^^ (26.10) 

where ptj = 0 if ztj = 0. This bound can be used with arbitrary arc reliabilities, and in 
addition, it is computationally very efficient since only cut sets separating individual 
nodes, which can be identified easily, are considered. If Ru{Z) < Rmim solution Z 
is infeasible; therefore, R{Z) is not evaluated further by simulation or factoring, and 
R{Z) — Ru{Z) is used in the fitness calculation. 

If the infeasibility of solution Z is not determined by the upper bound, then sim-
ulation or factoring is used to evaluate its reliability. However, if solution Z is not 
promising, meaning that it has a higher cost than the cost of the Best Feasible Solution 
found so far in the search, a rigorous analysis of reliability is not required. Therefore, 
the reliability of a non-promising solution is estimated by simulation using a very low 
number of replications. For a promising solution, factoring or simulation with a high 
number of replications is used depending on the size and density of the solution. For 
problems with 10 or less nodes, factoring is used regardless of the density of solutions. 
For problems with larger than 10 nodes, if m < 1.5n, factoring is used; otherwise, sim-
ulation is used to estimate the reliability. 

When simulation is used, the estimated reliability is a random variable. Therefore, 
to ensure the feasibility of a promising solution Z with 100(1 — a) percent confidence, 
the reliability constraint is modified as follows 

R{G)-ZaO^^Z)^^niin (26.11) 
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where R{G) is the estimated all-terminal reliability, and G /̂̂ N is the standard deviation 
of the estimation. 

26.5.3.6 Overall Algorithm. The GA has a dynamic population size (jj), 
which is randomly and uniformly selected between jLimin and jumax in each genera-
tion. In a generation, each solution participates in crossover exactly two times with 
randomly selected solutions. The mutation rate (MR) determines the probability of so-
lutions being mutated in each generation. In mutation, one of the mutation operators is 
selected randomly and uniformly. Iterations continue until no new solution improving 
the Best Feasible Solution is found in the last grimax solutions evaluated or a maximum 
number of gmax new solutions are evaluated. The details of the GAs overall procedure 
is given as follows: 

Step I, t=l, 0 ( 0 - 1 Kf) = INT{llmin.lImax) 
Step 2. Generate ii{t) initial solutions. 
Step 3. Crossover: Do the following steps for i = 1, ...,^(f) — 1: 

Step 3.1 Crossover the f^ and (/+1)^^ solutions. 
Step 3.2 Evaluate and add offspring to the end of the population. Update the 

Best Feasible Solution if necessary. 

Step 4. Mutation: Do the following steps for i = 1, ...,^(r): 

Step 4.1 Generate a random number U. If U < MR then randomly and uni-
formly select a mutation operator, and mutate solution the i^^ solution. 

Step 4.2 Evaluate the mutated solution, update the Best Feasible Solution if 
necessary, and replace the original solution with the mutated one. 

Step 5. Stop if t > gmax or the Best Feasible Solution has not been updated in last 
g^max solutions evaluated. 

Step 6. Update 0(r), and calculate the fitness of the population. 
Step 7. Sort the population in the descending order of the fitness. 
Step 8. r - r -t-1 and^{t) = min(p(r - l),INT{jUmin,iJmax)) 
Step 9. Shuffle the first iu{t) solutions of the population, and delete the rest while mak-

ing sure that the Best Feasible Solution stays in the population. Go to Step 3. 

26.5.3.7 Computational Experiments. To test the performance of the GA, 
several problems from the literature are studied. The first set of problems includes 8, 
9, 10, 15, 20, and 25-node test problems taken from Dengiz et al. (1997a). These 
problems have identical arc reliabilities (i.e., no arc choice is available); therefore, 
the decision variables are binary variables indicating whether to include an arc in a 
solution or not. In Dengiz et al. (1997a), a GA is used to solve the problems,and a 
branch-and-bound algorithm is also implemented to find optimal solutions for small 
problems. The second set of problems is taken from Deeter and Smith (1998), and 
includes a 10-node problem with three arc reliability choices of .70, .80, and .90 and 
a 19-node problem with three arc reliability choices of .96, .975, and .99. 

For each problem instance, the GA was run 10 times using a different random 
number seed in each run. The computational results given in Tables 26.1 and 26.3 
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Table 26.1 Computational results for the problems with identical arc reliability. 

Breakdown of the Computational Effort in Percents 
Solutions CPU per Simulation Simulation Upper 

n p Rmin Search Solution Factoring ^ = 200 A" = 20, OOP Bound 

8 
8 
8 
8 
8 
8 

9 
9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
10 

15 
15 
15 
15 
15 
15 

20 
20 
20 
20 
20 
20 

25 
25 
25 
25 
25 
25 

0.90 
0.90 
0.90 
0.95 
0.95 
0.95 

0.90 
0.90 
0.90 
0.95 
0.95 
0.95 

0.90 
0.90 
0.90 
0.95 
0.95 
0.95 

0.90 

0.90 
0.90 
0.95 
0.95 
0.95 

0.90 
0.90 
0.90 

0.95 
0.95 
0.95 

0.90 
0.90 
0.90 
0.95 
0.95 
0.95 

0.90 
0.95 
0.99 
0.90 
0.95 
0.99 

0.90 
0.95 
0.99 
0.90 
0.95 
0.99 

0.90 
0.95 
0.99 
0.90 
0.95 
0.99 

0.90 
0.95 

0.99 
0.90 
0.95 
0.99 

0.90 
0.95 
0.99 
0.90 
0.95 
0.99 

0.90 

0.95 
0.99 
0.90 
0.95 
0.99 

11059.0 
11229.2 
11440.9 
10649.7 
10526.0 
10705.6 

11729.9 
11705.3 
13936.3 
12926.0 
11438.4 

13057.7 

11078.1 
12549.4 
14008.4 
11710.4 
11564.5 
13517.0 

22951.1 
21954.7 
21604.2 
16217.2 
15167.7 
19444.3 

31640.3 
26509.1 
33876.6 
22477.0 
24829.2 
26770.1 

42792.1 

42863.8 

43971.7 
31845.4 
32155.1 
37142.4 

0.003 
0.003 
0.003 
0.004 
0.004 
0.004 

0.004 

0.003 
0.002 
0.003 
0.004 

0.003 

0.003 
0.003 
0.003 
0.004 
0.004 
0.003 

0.004 
0.004 

0.005 
0.004 
0.004 
0.004 

0.004 
0.008 
0.011 
0.005 
0.005 
0.005 

0.012 

0.036 
0.001 
0.006 
0.006 
0.019 

4.67 
14.97 
0.12 
0.09 
0.22 

0.25 

4.15 
7.92 

0.19 
0.12 
0.25 
0.81 

1.93 
8.78 
0.20 
0.17 
0.24 
2.86 

36.48 

15.13 
0.00 
0.77 
9.10 
0.90 

32.21 
1.49 
0.00 
6.37 
19.14 
1.30 

31.08 
3.72 
0.00 
7.61 
24.84 

2.38 

95.33 
75.76 
30.05 
99.90 
99.78 
53.88 

95.84 
64.21 

32.22 
99.88 
99.74 
49.76 

98.06 
57.12 
32.08 
99.83 
99.76 
47.29 

56.64 
43.16 

41.45 
99.20 
90.87 
39.16 

50.12 
43.30 
42.20 
93.61 
80.84 

41.76 

44.59 

43.66 
37.85 
92.36 
75.11 
43.58 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.03 
0.18 
0.96 
0.02 
0.03 
0.13 

0.04 
1.31 
2.37 
0.02 
0.02 

0.33 

0.14 

4.15 
1.30 
0.02 
0.03 
1.77 

0.00 
9.26 

69.83 
0.00 
0.00 

45.86 

0.00 

27.87 
67.58 
0.00 
0.00 

49.42 

0.00 
34.10 
67.72 
0.00 
0.00 

49.85 

6.84 
41.52 
57.60 
0.00 
0.00 

59.79 

17.62 
53.89 
55.43 
0.00 
0.00 
56.60 

24.19 
48.47 
60.85 
0.00 
0.01 
52.27 

represent the averaged values over ten runs. The parameters of the GA used in all 
runs are as follows: fimin = 25, jUtnax = 50, MR = 0.1, grimax = 10,000, and gmax — 
100,000. In simulation, K = 20,000 is used for promising solutions and K = 200 for 
non-promising solutions. 
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Table 26.1 lists the computational effort to solve the problems with identical arc 
reliabilities. In the table, the total number of solutions evaluated is broken down into 
groups with respect to the reliability evaluation method used. For example, for the 
8-node problem with p = 0.90 and Rmin == 99, a total of 11,440.9 solutions were eval-
uated on the average over 10 runs, and factoring was used for .13 percent, simulation 
with 200 replications for 30.05 percent, and only the upper bound for 69.83 percent 
to evaluate the solutions. For most cases, factoring or simulation with K = 20,000 
was used to evaluate a very small fraction of solutions searched. When Rmin = -99, 
the upper bound was especially effective in identifying infeasible solutions, reducing 
the need for factoring or simulation. However, the upper bound did not provide useful 
information when Rmin and p were low. The highest percent of rigorous evaluation 
occurred when Rmin = -90. For these cases, however, the CPU time per solution did 
not increase significantly or even decreased in some cases. The main reason for this 
is that Rfnin = .90 can be achieved with sparse networks with a few arcs, and the reli-
ability of these networks can be computed by factoring using only several pivots and 
network reductions. Although more solutions were exactly evaluated for these cases, 
each evaluation took significantly less time, in turn, improving overall CPU time per 
solution. 

Table 26.2 summarizes the results for the problems with identical arc reliabilities. 
In this table, the cost and reliability of the Best Feasible Solution found, the average 
best cost over 10 runs, the difference between the cost of the best and the worst so-
lutions found in 10 runs, and the p-value for Best Feasible Solution are given. Here, 
/?-value is the probability that the reliability of the Best Feasible Solution is higher than 
Rfnin- A /7-value of one indicates that all-terminal reliability was exactly computed. In 
most cases, the GA found the previously reported optimal solutions or improved upon 
the previous best results. As seen in the table, the GA was very robust over random 
number seeds. In many cases, the same solution was found in 10 runs or the best and 
worst solutions were very close. For most cases, the reliability of the Best Feasible 
Solution was exactly calculated by factoring. 

Table 26.3 lists the computational results for the problems with arc choices. Com-
pared with the computational results of Set I, a higher percent of solutions were rig-
orously evaluated. However, allowing multiple arc choices did not complicate the re-
liability calculation as reasonable CPU times were observed. Similarly, for high Rmin 
values, the upper bound alone was quite useful in identifying infeasible solutions. As 
seen in Table 26.4, the GA improved upon previous results. 

26.6 RESILIENT NETWORK DESIGN PROBLEM 

26.6.1 Problem DeGnition 

In Section 26.3, network resilience measures were briefly introduced. In this section, 
a network resilience measure, called traffic efficiency (7), is used to design resilient 
networks. The traffic efficiency of a network G is given as 

nG) = l z \ t t ^ij(^)tij\pm (26.12) 
'XeS \i=l7=(+l / 
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Table 26.2 Results for the problems with identical arc reliabilities. 

n 

8 
8 
8 
8 
8 
8 

9 
9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
10 

15 
15 
15 
15 
15 
15 

20 
20 
20 
20 
20 
20 

25 
25 
25 
25 
25 
25 

P_ 

0.90 
0.90 
0.90 
0.95 
0.95 
0.95 

0.90 
0.90 
0.90 
0.95 
0.95 
0.95 

0.90 
0.90 
0.90 
0.95 

0.95 
0.95 

0.90 

0.90 
0.90 
0.95 
0.95 
0.95 

0.90 
0.90 
0.90 
0.95 
0.95 

0.95 

0.90 

0.90 
0.90 
0.95 

0.95 
0.95 

^min 

0.90 
0.95 
0.99 
0.90 
0.95 
0.99 

0.90 
0.95 
0.99 
0.90 

0.95 
0.99 

0.90 
0.95 
0.99 
0.90 

0.95 
0.99 

0.90 
0.95 
0.99 
0.90 
0.95 
0.99 

0.90 
0.95 
0.99 
0.90 
0.95 

0.99 

0.90 

0.95 
0.99 
0.90 
0.95 
0.99 

Best 
Solution 
Reported 

203* 
247* 

-
-

179* 

-

239* 
286* 

-
-

209* 

-

154* 

197* 

-
-

136* 

-

_ 
317 
-
-
-
-

_ 
-
-
-
926 
-

_ 
-
-

1606 

-
" 

Best 
Cost 

208.00 
247.00 
321.00 
173.00 
184.00 
247.00 

239.00 
286.00 
401.00 
204.00 
209.00 
286.00 

154.00 
197.00 
283.00 
136.00 
136.00 
206.00 

225.00 

262.00 
373.00 
170.00 
196.00 
262.00 

192.00 
249.00 

357.00 
147.00 
160.00 
248.00 

322.00 

391.00 
518.00 
247.00 
271.00 
390.00 

Results of the Genetic Algorithm 
Mean 

Cost 

208.00 
247.00 
321.00 
173.00 
184.00 

247.00 

239.00 
287.50 
401.80 
204.50 
209.00 
289.00 

154.00 
197.20 
283.40 
136.00 

136.00 
207.80 

227.00 
263.80 
377.00 
178.00 
198.70 
264.70 

209.80 
257.10 
373.60 
154.20 
165.30 

254.80 

338.00 
405.40 
533.10 
258.60 
277.90 
407.90 

Range 

0 
0 
0 
0 
0 
0 

0 
15 
1 
5 
0 
15 

0 
2 
1 
0 
0 
3 

4 
6 
11 
29 
12 
11 

40 
21 
30 
16 
18 
17 

41 
32 
28 
31 
20 
43 

Best 
Reliability 

0.931722 

0.961377 
0.990744 

0.942755 
0.974181 

0.991377 

0.906564 
0.956670 
0.990750 
0.928789 
0.966935 
0.990752 

0.905014 
0.951644 

0.990793 
0.961130 
0.961130 
0.990621 

0.901397 
0.953308 
0.990589 
0.913171 
0.950277 
0.990486 

0.900449 
0.951573 
0.990564 
0.911795 
0.950021 
0.990022 

0.901312 
0.950441 
0.991245 
0.903600 

0.951735 
0.990752 

p-Value 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
0.984 

1.0 
1.0 
1.0 

1.0 
0.964 
0.954 

1.0 
1.0 
1.0 

1.0 
1.0 
0.9998 
1.0 
1.0 
1.0 

* The optimal solution reported in (Dengiz et al., 1997a). 
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Table 26.3 Computational results for the test problems with different arc reliabilities. 

Breakdown of the Computational Effort in Percent 

n 

10 
10 
10 

19 
19 
19 
19 

^min 

0.900 
0.950 
0.990 

0.900 
0.950 
0.990 
0.995 

Solutions 
Search 

23468.5 
20083.9 
24737.9 

30123.3 
32827.8 
34049.4 
37834.1 

CPU per 
Solution 

0.00267 
0.00267 
0.00284 

0.00498 
0.00501 
0.01729 
0.02836 

Factoring 

36.08 
23.70 
7.97 

3.44 
14.04 
37.08 
13.24 

Simulation 
A-= 200 

44.85 
41.74 
39.08 

96.54 
85.93 
50.20 
44.59 

Simulation 
A-= 20,000 

0.00 
0.00 
0.00 

0.01 
0.02 
4.92 
9.13 

Upper 
Bound 

19.07 
34.55 
52.94 

0.00 
0.00 
7.80 
33.04 

Table 26.4 Results for the test problems with different arc reliabilities. 

Results of the Genetic Algorithm 

n 

10 
10 
10 

19 
19 
19 
19 

t^min 

0.900 
0.950 
0.990 

0.900 
0.950 
0.990 
0.995 

Best Solution 
Reported 

5661.32 
-

_ 
-

7694708.00 
-

Best 
Cost 

3792.92 
4403.93 
5843.50 

1292390.00 
1348283.00 
1619322.00 
1805600.00 

Mean 
Cost 

3868.18 
4560.89 
5936.91 

1428689.60 
1406466.00 
1665539.90 
1854732.50 

Range 

166 
318 
253 

291536 
262051 
160733 
103731 

Best 
Reliability 

0.902018 
0.950242 
0.990014 

0.902125 
0.952263 
0.990015 
0.995006 

p-Value 

1.0 
1.0 
1.0 

1.0 
1.0 

0.969 
1.0 
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where Xtj (X) = 1 if nodes / and j are connected in state X, T/J (X) = 0 if they are not, tij 
is the two-way traffic average demand between nodes / and 7, and y = £ ttj. By as-

i<j<n 

signing proper values to ttj, T{G) can represent different network resilience measures. 
For example, if ttj = 1 for each node pair / and 7, T{G) gives the expected fraction of 
node pairs communicating. 

There are several important differences between network resilience and connectiv-
ity based reliability measures such as all-terminal reliability. First, all-terminal relia-
bility implicitly ignores the effect of node failures in the reliability function since all 
nodes must be operational as the minimum requirement. The probability that all nodes 
are operational (i.e., the product of individual node reliabilities) can be incorporated 
into the reliability function as a constant term after which the reliability analysis is car-
ried out without node failures (Colboum, 1987). In other words, node failures have the 
same effect on all-terminal reliability independent of network topology. Therefore, the 
majority of the research on the reliable network design problem assumes perfectly re-
liable nodes. On the other hand, node failures must be taken into account while calcu-
lating a network resilience measure since a network's service availability in disconnect 
states is also of interest. While modeling telecommunication networks as probabilistic 
graphs, in fact, nodes represent complex processing units that are more likely to fail 
than highly reliable links (cables or microwaves) represented by arcs. Therefore, the 
assumption of perfectly reliable nodes does not represent reality in telecommunication 
networks. 

Another drawback of all-terminal reliability is that disconnectivity of all nodes is 
considered equally in the reliability function, meaning that disconnectivity of a node 
with a large amount of incoming and outgoing traffic and a node with a small amount 
of traffic have equal weights in the reliability function. In both cases, the network ser-
vice level is zero (i.e., the network is disconnected). Because of these reasons, network 
resilience measures are more versatile than pure connectivity based measures such as 
all-terminal reliability in modeling connectivity of telecommunication networks. 

26.6.2 A Bi-ohjective Genetic Algorithm to Design Resilient Networks 

In this section, the resilient network problem is formulated as a bi-objective problem 
with a 2-node connectivity constraint. Multiple conflicting objectives are common in 
most real-world telecommunication network design problems. In fact, the overall task 
of designing networks involves several phases, in which many conflicting objectives 
are considered. Choosing a network topology is the first step of the network design 
process. Candidate topologies are refined in the detailed design phases based on the 
specifications and available technology. Therefore, in topological design, cost and 
resilience (or reliability) are not hard constraints but competing objectives. The objec-
tive in this section is to introduce an approach to aid network designers in choosing a 
final network design by providing the trade-off curve of cost and network resilience in 
terms of a set of network topologies that are not inferior to each other with respect to 
cost or resilience. 
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26.6.2.1 Bi-objective optimization. If the objectives under consideration 
conflict among each other, optimizing with respect to a single objective often results 
in unacceptable results with respect to the other objectives. Therefore, a perfect multi-
objective solution that simultaneously optimizes each objective function is almost im-
possible. A reasonable solution to a multi-objective problem is to investigate a set of 
solutions, each of which satisfies the objectives at an acceptable level without being 
dominated by any other solution. The ultimate goal of a multi-objective optimization 
is to identify the Pareto optimal set, which is the set of feasible solutions which are 
not dominated by any other feasible solutions in the solution space. 

In our case, a solution X is said to dominate another solution Y if and only if at 
least one of the following conditions is satisfied. 

(i) C(Z) < C(7) and T{X) > T{Y) 
(ii) C(Z) < CIY) and r(X) > T(Y). 

A feasible solution X is said to be Pareto optimal if it is not dominated by any other 
feasible solution Y in the solution space. A true Pareto optimal solution cannot be 
improved with respect to any objective without worsening at least one other objective. 

The goal of a multi-objective algorithm is to find the set of all non-dominated so-
lutions in the solution space, called the Pareto set. The representation of Pareto set 
in the objective space is called Pareto front. Depending on the problem, the Pareto 
set may be very large, making it very expensive or impossible to investigate fully. In 
many cases, therefore, investigating a set of solutions uniformly approximating the 
true Pareto front is preferable. 

There are alternative approaches to multi-objective optimization such as, weighted 
sums of objectives, alternating objectives, and Pareto ranking. In the recent decade, 
GA has become a popular heuristic tool for multi-objective optimization problems. 
This popularity can be attributed to its multi-solution approach and its capability to 
exploit the similarities of Pareto optimal solutions in order to generate new solutions 
by means of crossover. Interested readers may refer to the comprehensive survey 
papers by Fonseca and Fleming (1995), Deb (1999), and Van Veldhuizen and Lamont 
(2000). 

26.6.2.2 Overall Optimization Algorithm. The bi-objective GA uses the 
same problem encoding scheme, crossover operator, and mutation operators as the 
single objective GA given in the previous section. Generally, a multi-objective GA 
has two sets of solutions, the population where general GA operations are applied 
and the elitist list storing all non-dominated solutions found so far during the search. 
However, the bi-objective GA does not use an elitist list and its population is made of 
only non-dominated solutions found so far in the search. 

The overall procedure of the bi-objective GA is given below. In each iteration, a 
single solution is generated by either crossover or mutation, which is selected ran-
domly and uniformly. In mutation, one of the mutation operators is also randomly 
and uniformly selected. Iterations continue until a maximum number of new solutions 
(gmax) is reached. The overall procedure of the bi-objective GA is as follows: 

Step 1. Generate ̂ 0 nondominated initial solutions, t = 1. 
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Step 2. IfU < 0.5, Then go to Step 3 Else Step 4. 
Step 3. Crossover: 

Step 3.1 Randomly select two solutions X and 7, and crossover them to pro-
duce new solution Z. 

Step 3.2 Evaluate solution Z, and update the population if necessary. Go to 
Step 5. 

Step 4. Mutation: 

Step 4.1 Randomly select a solution X, and randomly and uniformly choose a 
mutation operator, and mutate solution X to generate new solution Z. 

Step 4.2 Evaluate solution Z, and update the population if necessary. Go to 
Step 5. 

S t e p s . Stop if t > gmax-
Step 6. If mod{t, Kstep) — 0, Then perform K additional replications for each solution 

in the population and update estimations using (26.13) and (26.14). Check the 
population one more time with the new estimates and remove any dominated 
solutions. 

Step 7. Set r = r + 1 . Go to Step 3. 

26.6.2.3 Calculation of Traffic Efficiency and Evaluation of Solu-
tions. The exact calculation of traffic efficiency, which requires examining 2""̂ ^̂  
network states, is intractable. In a sense, the exact calculation of T{G) is more dif-
ficult than the exact calculation of R{G) since node failures must be considered. In 
addition, enumeration schemes such as factoring (Page and Perry, 1991) and domi-
nation theory (Satyanarayana and Chang, 1983), which exploit the binary nature of 
the reliability structure function to improve performance of enumeration, cannot be 
used with the same efficiency. The most probable state bounds are the only bounds 
applicable to estimate T{G). However, these bounds were very inconsistent in our ini-
tial experiments, meaning that the upper bound did not correlate well with the actual 
T{G). Therefore, a simulation based on Sequential Construction Sampling (Easton 
and Wong, 1980) is used to estimate T{G). The details of the simulation procedure 
will not be included herein. 

Estimating traffic efficiency is a very computationally intense operation. To reduce 
the computational effort at the beginning of the search, T{G) is estimated using a 
low number of simulation replications assuming that solutions at the beginning are 
inferior. As the search progresses, the number of replications is gradually increased 
to the maximum replication number K^axy which is done in Kstep steps by performing 
Kfnax/Kstep additional replications for each solution in the population in every new 
gmax/Kstep solutious evaluated. 

This process requires updating the estimate for each solution in the current popu-
lation, which is performed as follows. Let T{Z,K\) and O^/^A' ) ^^ estimated traffic 
efficiency and the variance of the estimation, respectively, using total K\ replications. 
After K2 additional replications, the new estimate can calculated as follows: 

K\ +A2 



754 HANDBOOK OF OPTIMIZATION IN TELECOMMUNICATIONS 

Table 26.5 The coordinates of the nodes for the 10- and 20-node problems 

node 1 2 3 4 5 6 7 8 9 10 

X 26 38 93 74 86 60 26 44 54 52 
y 5 86 64 8 61 10 70 70 71 36 

node 11 12 13 14 15 16 17 18 19 20 

X 57 13 32 93 7 33 54 49 99 50 
y 28 68 9 56 42 52 13 3 56 27 

with the following variance 

^T{Z,Ki-{-K2) '• 
K^ X<^T{Z,Ki)~^^2 xa; nz,K2) 

{Ki+K2Y 
(26.14) 

26.6.2.4 Computational Experiments. A 10-node and a 20-node problem 
were used to demonstrate the effectiveness of the bi-objective GA. The x and y coor-
dinates of the nodes for both problems are given in Table 26.5. The 10-node problem 
uses the first 10 nodes of the 20-node problem. The cost of each arc is equal to the 
Euclidean distance between its two-end nodes. For both problems, all arcs and nodes 
have reliabilities of .97 and .99, respectively. The parameters of the bi-objective GA 
in all runs were as follows: gmax = 100,000, and for simulation, K^ax = 40,000 and 
f^step = 10. 

Figure 26.1 shows the Pareto front found for the 20-node problem. As seen in the 
figure, the final Pareto front is diverse, and it significantly improved upon the initial 
one. A similar result was obtained for the 10-node problem. Figure 26.2 illustrates the 
network designs found at the opposing ends and in the middle of the Pareto front for 
the 20-node problem. The least resilient and cheapest solution is made of two cycles; a 
similar cycle based structure was also observed at the low resilience end of the Pareto 
front for the 10-node problem. The most resilient and expensive solution found is not 
fully dense although in theory the fully dense network is the most resilient network. 
However, after a level of density, adding arcs improves resilience only at a negligible 
level since node failures becomes main reason for disconnectivity. Therefore, at the 
high-cost/high-resilience end of the Pareto front, solutions did not reach full-density. 
Another interesting observation is that the nodes have almost a uniform number of 
links (3 or 4). When the nodes are subject to failure, over connecting a node really 
does not really improve resilience. These examples provide convincing evidence that 
the bi-objective GA is capable of identifying a wide spectrum of solutions for large 
problems in a single run. 
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Figure 26.1 The Pareto Front found for the 20-node problem. 

26.7 CONCLUSIONS 

Network reliability has become important criteria because of recent technological in-
novations that encourage sparse networks and high traffic. Computing and estimating 
a network reliability measure is a difficult task. This chapter presented two GAs to 
solve the reliable and resilient network design problem considering a survivability 
constraint. The main focus of the algorithms was to efficiently evaluate the reliability 
of candidate solutions. State-of-the-art techniques are introduced and used to evaluate 
reliability, making it possible to solve large problems in relatively short time, even by 
exactly computing reliability. 
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0 10 20 30 40 SO 60 70 80 90 100 

(a) The least resilient solution 

0 10 20 30 40 50 60 70 80 90 100 

(b) A solution between the most and least resilient solutions 

0 10 20 30 40 SO 60 70 80 90 100 

(c) The most resilient solution 

Figure 26.2 Sample solutions found for the 20-node problem. 
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