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Abstract: Long-term planning of backbone telephone networks has been an important 
area of application of combinatorial optimization over the last few years. In this chapter, 
we review polyhedral results for models related to these problems. In particular, we 
study classical survivability requirements in terms of /:-connectivity of the network, then 
we extend the survivability model to include the notion of bounded rings that limit the 
length of the rerouting path in case of link failure. 
Keywords: Network design, combinatorial optimization, branch-and-cut. 

15.1 INTRODUCTION 

Recently, the nature of services and the volume of demand in the telecommunication 
industry has changed drastically, with the replacement of analog transmission and tra-
ditional copper cables by digital technology and fiber optic transmission equipment. 
Moreover, we see an increasing competition among providers of telecommunication 
services, and the development of a broad range of new services for users, combin-
ing voice, data, graphics and video. Telecommunication network planning has thus 
become an important problem area for developing and applying optimization models. 
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Telephone companies have initiated extensive modeling and planning efforts to ex-
pand and upgrade their transmission facilities, which are, for most national telecom-
munication networks, divided in three main levels (see Balakrishnan et al. (1991)), 
namely, 

• The long-distance or backbone network that typically connects city pairs through 
gateway nodes; 

• The inter-office or switching center network within each city, that interconnects 
switching centers in different subdivisions (clusters of customers) and provides 
access to the gateway(s) node(s); 

• The local access network that connects individual subscribers belonging to a 
cluster to the corresponding switching center. 

These three levels differ in several ways including their design criteria. Ideally, 
the design of a telecommunication network should simultaneously account for these 
three levels. However, to simplify the planning task, the overall planning problem is 
decomposed by considering each level separately. 

In this chapter, we study models and techniques for long-term planning in the first 
level of the hierarchy, i.e. the backbone network. 

Planning in the backbone network is divided in two different stages : mid-term 
and long-term planning. Mid-term planning consists in dimensioning the network. 
More precisely, given a forecast of the demand matrix for this period and the current 
topology of the network, we have to compute how the expected demands will be routed 
as well as the necessary capacities of the cables. In some models, the addition of new 
edges is allowed. These problems involve, at the same time, survivable design criteria 
and routing constraints. A survey on these models can be found in De Jongh (1998). 

Long-term planning involves a longer period of time so that demand data are not 
reliable enough, and we only deal with topological aspects. The goal is then to de-
termine a set of cables connecting all nodes under some survivability criteria. In this 
context, the telephone network is seen as a given set of nodes and a set of possible 
fiber links that have to be placed between these nodes to achieve connectivity and 
survivability at minimum cost. 

In traditional backbone networks, the limited capacity of copper cables resulted in 
highly diverse routing between offices. The developments in fiber-optic technology 
have led to components that are cheap and reliable, having an almost unlimited capac-
ity. The introduction of such a technology has made hierarchical routing and bundling 
of traffic very attractive. This approach has resulted in sparse, even treelike network 
topologies with larger amounts of traffic carried by each link. 

Two main issues appear in the planning process of fiber-optic networks: economy 
and survivability. Economy refers to the construction cost, which is expressed as the 
sum of the edge costs, while survivability refers to the restoration of services in the 
event of node or link failure. Trees satisfy the primary goal of minimizing the total 
cost while connecting all nodes. However, only one node or edge breakdown causes a 
tree network to fail in its main objective of enabling communication between all pairs 
of nodes. 
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This means that some survivability constraints have to be considered while building 
the network. Losing end-to-end customer service could lead to dramatic loss of rev-
enue for commercial providers of telecommunication services. Constructing network 
topologies that provide protection against cable or office failures has become one of 
the most important problems in the field of telecommunications network design. 

The most studied models deal with /:-connectivity requirements, i.e. the ability to 
restore network service in the event of a failure of at most k—l components of the 
network. Among them, the minimum-cost two-connected spanning network problem 
consists in finding a network with minimal total cost for which two node-disjoint paths 
are available between every pair of nodes. This means that two-connected networks 
are able to deal with a single link or node failure, two-connected networks have been 
found to provide a sufficient level of survivability in most cases, and a considerable 
amount of research has focused on so-called low-connectivity constrained netv/ork de-
sign problems, i.e. problems for which each node j is characterized by a requirement 
rj G {0,1,2} and min{r/, rj} node-disjoint paths between every pair of nodes ij are 
required. Section 15.3 presents a survey of the literature on these models. 

Two-connectivity seems a sufficient level of survivability for most networks, since 
the probability of dealing with two simultaneous failures is very low. However, it turns 
out that the optimal solution of this problem is often a Hamiltonian cycle. Hence, any 
edge failure implies that the flow that passed through that edge must be rerouted, 
using all the edges of the network, an obviously undesirable feature. This led us 
to examine a new model for limiting the region of influence of the traffic which it 
is necessary to reroute : the Two-Connected Network with Bounded Rings problem 
(2CNBR). This problem is studied in Section 15.4. In addition to the classical two-
connectivity constraints, we require in this model that each edge belongs to at least one 
cycle (or ring) whose length is bounded by a given constant. It also finds its motivation 
in the emerging technology of self-healing rings. These are cycles in the network 
equipped in such a way that any link failure in the ring is automatically detected by 
the link end nodes and the traffic rerouted along the alternative path in the cycle. When 
such a strategy is chosen, rings must cover the network and their size is limited. These 
two requirements are fulfilled by our model. 

In the case where edge lengths are equal to one, i.e. the edge (or node) cardinality 
of the rings is bounded, there exist more structural properties and polyhedral results. 
In particular, a lower bound on the number of edges in any feasible solution can be 
derived. These results are presented in Section 15.5. The chapter ends with a review 
of recent works on closely related models. 

15.2 NOTATION AND DEFINITIONS 

The aim in long-term planning of the backbone network is to determine a set of cables 
connecting given nodes and satisfying some survivability criteria that we will describe 
later. The given set of nodes and possible cable connections can be represented by an 
undirected graph G = {V,E) where V is the set of nodes and E is the set of edges that 
represent the possible pairs of nodes between which a direct transmission link (cable) 
can be placed. The graph G may have parallel edges but should not contain loops. 
Graphs without parallel edges and without loops are called simple. If there exists an 
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edge e \— {/,y} between two nodes / and 7, these two nodes are called adjacent, and 
e is incident to / and 7. Throughout this chapter, n := |y | and m\=\E\ will denote the 
number of nodes and edges of G. 

Given the graph G = {V,E) and W C V, the edge set 

^w):={{ij}eE\iew,jev\w} 

is called the cut induced by W, and its size is given by |8(W)|. We write 8G(W) to 
make clear - in case of possible ambiguities - with respect to which graph the cut 
induced by W is considered. For a single node v G V, we denote 8(v) := 8({v}). The 
degree of a node v is the cardinality of 8(v). The set 

E{w):={{ij]eE\ieW,jew} 

is the set of edges having both end nodes in W. We denote by G{W) = {W,E{W)) 
the subgraph induced by edges having both end nodes inW. If E{W) is empty, W is 
an independent set. G/W is the graph obtained from G by contracting the nodes in 
]y to a new node w (retaining parallel edges). Given two subsets of nodes W\ and W2, 
Wi n W2 = (j), the subset of edges having one endpoint in each subset is denoted by 

['^x''^2]'={{iJ}eE\ieWu jeW2]. 

We denote by V — z'.= y\{z} and£ — e \= ^\{^} the subsets obtained by re-
moving one node or one edge from the set of nodes or edges. G-z denotes the 
graph (y — z,E\b[z)), i.e. the graph obtained by removing a node z and its inci-
dent edges from G. This is extended to a subset Z C V of nodes by the notation 
G - Z : = ( n z , A ( 8 ( Z ) U £ ( Z ) ) ) . 

Each edge e := {ij} e E, has SL fixed cost Ce := ctj representing the cost of es-
tablishing the direct link connection, and a length de := dtj := d{ij). It is assumed 
throughout this work that these edge lengths satisfy the triangle inequality, i.e. 

d{i, j) -\-d{j,k)> d{i, k) for all /, j,keV. 

The cost of a network N = (V, F) where F C £• is a subset of possible edges is denoted 
by c{F) :— Y, Ce. The distance between two nodes / and j in this network is denoted 

eeF 
by df{ij) and is given by the length of a shortest path linking these two nodes in F. 

Without loss of generality, all costs are assumed to be nonnegative, because an edge 
e with a negative cost Cg will be contained in any optimum solution. 

For any pair of distinct nodes s,t eV, an [s,t]'path P is a sequence of nodes 
and edges (vo,ei,vi,^25--5V/_i,^/,v/), where each edge et is incident to the nodes 
v/_i and v/ (/ == 1,..., /), where vo = s and v/ = t, and where no node or edge appears 
more than once in P. A collection Pi ,P25 • • • 5 A: of [5,̂ ]-paths is called edge-disjoint if 
no edge appears in more than one path, and is called node-disjoint if no node (other 
than s and 0 appears in more than one path. A cycle (containing s and t) is a set of two 
node-disjoint [̂ -ĵ J-paths. 

A Hamiltonian cycle is a cycle using each node of the network exactly once. The 
problem of determining if a graph contains a Hamiltonian cycle is NP-complete. The 



DESIGN OF SURVIVABLE NETWORKS 371 

corresponding optimization problem - the traveling salesman problem (TSP) - has 
been well studied. We refer to Lawler et al. (1985) for an in depth treatment of this 
problem. 

A graph G = {V,E) is k-edge-connected (resp., k-node-connected) if, for each pair 
s,t of distinct nodes, G contains at least k edge-disjoint (resp., node-disjoint) [5-,̂ ]-
paths. 

When the type of connectivity is not mentioned, we assume node-connectivity. The 
edge connectivity (resp., node-connectivity) of a graph is the maximal k for which it is 
/:-edge-connected (resp., /:-node-connected). A 1-edge-connected network is also 1-
node-connected, and we call it simply connected. A cycle-free graph is di forest and a 
connected forest is a tree. A connected component of a graph is a maximal connected 
subgraph. IfG-e has more connected components than G for some edge e, we call e 
a bridge. Similarly, if Z is a node set and G-Z has more connected components than 
G, we call Z an articulation set of G. If a single node forms an articulation set, the 
node is called articulation point. 

Node and edge-disjoint [5-, r]-paths are related to cuts and articulation sets by Men-
ger's theorem (Menger, 1927). 

Theorem 15.1 (Menger) 

1. In a graph G — (V,E), there is no cut of size k—\ or less disconnecting two 
given nodes s and t, if and only if there exist at least k edge-disjoint [s,t]-paths 
in G. 

2. Let s and t be two nonadjacent nodes in G. Then there is no articulation set Z 
of size k— \ or less disconnecting s and t, if and only if there exist at least k 
node-disjoint [s,t]-paths in G. 

We will also use the following definitions arising from polyhedral theory (see e.g. 
Nemhauser and Wolsey (1988)). Given a polyhedron P, the dimension dim(P) of P is 
defined as the maximum number of affinely independent elements in P minus one. An 
inequality a^x < a is valid with respect to P if P C {x: a^x < a}. The set F^ := {x G 
P : a^x = a} is called the face of P defined by a^x < a. If dim{Fa) = dim(P) — 1 and 
Fa 7̂  (j), then Fa is SL facet of P and a^x < a is cdlltd facet-inducing or facet-defining. 
A vector x is a vertex of P if it cannot be written as a non-trivial convex combination 
of points in P. 

The convex hull of a set of points S will be denoted by conv(5). We also denote by 
Ci the i-ih unit vector in W. 

15.3 LOW-CONNECTIVITY CONSTRAINED NETWORK DESIGN 
PROBLEMS 

Throughout this chapter, a (backbone) telephone network is seen as a set of gateway 
nodes (or telephone offices) and fiber links that are placed between nodes. In this 
context, survivability refers to the restoration of services in the event of office or link 
failure, or, in other words, a network is survivable if there exists a prespecified num-
ber of node-disjoint or edge-disjoint paths between any two offices. The only costs 
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considered are construction costs, like the cost of digging trenches and placing a fiber 
cable into service. 

In this framework, a considerable amount of research has focused on low con-
nectivity constrained network design problems. Following the terminology used by 
Monma and Shallcross (1989) and Stoer (1992), these models can be described infor-
mally as follows : we are given a set of telephone offices that have to be connected by 
a network. The offices may be classified according to importance, namely the 

• special offices, for which a "high" degree of survivability has to be ensured in 
the network to be constructed; 

• ordinary offices, which have to be simply connected to the network; 

• optional offices, which may not be part of the network at all. 

Given are also the pairs of offices between which a direct transmission link can 
be placed, and the associated cost of placing the fiber cable and putting it into ser-
vice. The problem now consists in determining where to place fiber cables so that 
the construction cost, i.e. the sum of the fiber cable costs, is minimized and certain 
survivability constraints are ensured. For instance, we may require that 

• the destruction of any single link may not disconnect any two special offices, or 

• the destruction of any single office may not disconnect any two special offices. 

These requirements are equivalent to ask that there exist 

• at least two edge-disjoint paths, or 

• at least two node-disjoint paths 

between any two special offices. 
Higher survivability levels may be imposed by requiring the existence of three or 

more paths between certain pairs of offices according to their importance class. How-
ever, up to now, low-connectivity requirements have been found to provide a sufficient 
level of survivability for telephone companies. For high-connectivity requirements, 
the reader is referred to Grotschel et al. (1995b); Stoer (1992). 

In graph-theoretic language, the set of offices and possible link connections can 
be represented by an undirected graph G = {V,E). The survivability requirement or 
importance of a node is modeled by node types. In particular, each node s eV has an 
associated nonnegative integer r̂ , the type ofs. Sometimes, we also write r{s) instead 
of r̂ . A network Â  =^ (V^F), where F C £ is a subset of the possible links, is said to 
satisfy the node-connectivity requirements, if, for each pair s,t eV of distinct nodes, 
Â  contains at least 

r{s,t) :=:min{r„rj 

node-disjoint [̂ -jfj-paths. 
Similarly, we say that Â  satisfies the edge-connectivity requirements, if, for each 

pair s,t eV of distinct nodes, Â  contains at least r{s,t) edge-disjoint [^,r]-paths. If all 
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node types have the same value k, it is equivalent to request that N is /:-node-connected 
or /:-edge-connected. 

We restrict here to low-connectivity requirements, i.e. node types r̂  G {0,1,2}. 
Using our previous classification of nodes, 

• special offices are represented by nodes of type 2, 

• ordinary offices by nodes of type 1, and 

• optional offices by nodes of type 0. 

To shorten notation, we extend the type function r to sets by setting 

r{W) := max{r, I ^ G W} for all W C y, and 
con{W) : - msix{r{s,t)\seW,teV\W} 

= rmn{r{W),r{V\W)} 
foraWWCV^d^y^Wy^V. 

We write conG(W) to make clear with respect to which graph con(W) is considered. 
In order to formulate network design problems as integer linear programs, we asso-

ciate with every subset F C £" an incidence vector x^ = (x^)eeE ^ {0,1}'^' by setting 

if ^ G F , 

otherwise . \ 0 01 

Conversely, each vector x G {0, Ij'^l induces a subset 

F'':={eeE\xe = l} 

of the edge set E. For any subset of edges F C F we define 

eeF 

We can now formulate the connectivity constrained network design problem as the 
following integer linear program: 

™ n I^eeE^eXe 

s.t, 

x{b{W))>con{W) WcV,(^y^Wy^V, (15.1) 

X{8G-Z{W)) > conG-,{W) zeV.Wc V\{z}, 

^^W^V\{z}^ (15.2) 

x^G{0,l} e^E. (15.3) 

It follows from Menger's Theorem that, for any feasible solution x of this program, 
the subgraph Â  = {V,F^) of G defines a network satisfying the node-connectivity 
requirements. Removing (15.2), we obtain an integer linear program for edge-connec-
tivity requirements. Inequalities (15.1) are called cut inequalities, while inequalities 
(15.2) are called node cut inequalities. 

The remainder of this section is devoted to a review of the work on these models, 
describing exact solution methods for more general or more specialized problems. 
Much of the material is taken from references cited in the surveys of Christofides and 
Whitlock (1981); Winter (1986b); Stoer (1992). 



374 HANDBOOK OF OPTIMIZATION IN TELECOMMUNICATIONS 

15.3.1 Structural properties and particular cases 

A lot of research has focused on the survivability model presented in the previous 
section. The next sections survey these results. We begin by looking at the complexity 
of the problem, before considering some polynomially solvable cases. We also present 
work on particular cases, either with restricted connectivity requirements or restricted 
costs. 

15.3.1.1 Complexity. The connectivity constrained network design problem is 
NP-hard in general. In particular : 

• If r̂  G {0,1}, V̂- G y, it reduces to the well-known NP-hard Steiner tree problem 
in networks. Winter (1987) made an in depth survey of these problems. 

• If r̂  — 2, V̂  G V, it consists in determining a minimum cost two-connected 
network. This last problem is NP-hard even if the graph is complete and costs 
satisfy the triangle inequality, since with an algorithm for this problem, one 
could decide whether a graph has a Hamiltonian cycle by associating a cost 
equal to 1 to all graph edges and cost equal to 2 to all non-graph edges (see 
Eswaran and Tarjan (1976)). 

However, for some particular connectivity requirements or costs, or when the un-
derlying graph G is restricted, the problem may become polynomially solvable. We 
now review these cases. 

15.3.1.2 Restricted connectivity requirements. By restricting the con-
nectivity requirements r̂ , the connectivity constrained network design problem re-
duces to some well-known polynomially solvable problems : 

• If rs = I, \/s eV, the problem reduces to the minimum spanning tree problem. 
The most famous polynomial time algorithms for solving it are those from 
Kruskal (1956) and Prim (1957). 

• If r̂  = 1 for exactly two nodes of V and rs = 0 for all the other nodes, the 
problem becomes a shortest path problem, solvable e.g. by the algorithms of 
Bellman (1958) or Dijkstra (1959). 

• If rs — k, k> 2, for exactly two nodes of V and r̂  = 0 for all the other nodes, 
the problem becomes a /:-shortest paths problem. This problem was studied by 
Suurballe (1974) and Suurballe and Tarjan (1984). 

• If r̂  G {0,1}, V̂  G V, the problem reduces to the Steiner tree problem in net-
works. This problem is NP-hard in general, but Lawler (1976) solved it in poly-
nomial time in the case where either the number of nodes of type 0 or the number 
of nodes of type 1 is restricted. 

15.3.1.3 Restricted costs. Under uniform or 0/1 costs, certain classes of con-
nectivity constrained network design problems are polynomially solvable. We now 
examine these choices of costs. 
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Under uniform costs, the underlying graph G can be seen as a complete graph, 
and the problem turns into the construction of a sufficiently highly connected graph 
with a minimum number of edges. Chou and Frank (1970) solved this problem for 
edge connectivity requirements by producing a feasible graph where each node has 
degree r̂ , except possibly for one node that has degree r̂  -h 1. Since these are the 
lowest possible degrees under the given connectivity requirements, the graph has the 
minimum number of edges. This proves the following lemma. 

Lemma 15.1 Given node types rs > 2 for a set V of nodes, the minimum number of 
edges of a graph satisfying the edge-connectivity requirements given by r is 

"^ sev 

The use of parallel edges is allowed in the construction. 

Stoer (1992) describes a polynomial algorithm similar to that of Chou and Frank 
which also handles nodes of type 1. Frank and Chou (1970) also solved the problem 
when no parallel edges but extra nodes are allowed in the solution. 

Unfortunately, to our knowledge, no general solution for the node connectivity ver-
sion of the problem is available in the literature. But more can be said about uniform 
connectivity requirements rs =k for some k>2. 

An early work by Fulkerson and Shapley (1971) - written in 1961 but published 
ten years later - proved Lemma 15.1 for the edge-connectivity problem with uniform 
requirements, but without using parallel edges. Harary (1962) showed with the help of 
a polynomial algorithm that the same result holds for the node-connectivity problem 
with uniform requirements, leading to the following lemma. 

Lemma 15.2 Given k>2 and n> k-\-l, the minimum number of edges in a k-node-
connected graph on n nodes without parallel edges is 

kn 

y 
Now, one may guess that Lemma 15.1 also holds for general node-connectivity 

requirements, but this conjecture is not true and a counter-example can be found in 
Stoer (1992). 

We now turn to problems with 0/1 costs. These are known in the literature as 
augmentation problems, since these correspond to the problem of augmenting a graph 
G = {y,E) by a minimum number of edges in V x V, so that it meets connectivity 
requirements. 

These augmentation problems were brought up by Eswaran and Tarjan (1976) for 
two-edge and two-node-connected graphs. Rosenthal and Goldner (1977) studied the 
augmentation to two-node-connected graphs. Their linear time algorithm contains 
an error that was corrected by Hsu and Ramachandran (1993), who also proposed a 
parallel implementation of their algorithm. Hsu and Ramachandran (1991) also de-
veloped a linear time algorithm for the augmentation to 3-node-connected networks. 
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The augmentation to /:-edge-connected graphs was studied by Watanabe and Naka-
mura (1987), Ueno et al. (1988) and Cai and Sun (1989). The fastest known algorithm 
for this problem is the one by Naor et al. (1990). Frank (1992) solved the augmen-
tation problem completely for general edge-connectivity requirements. All solution 
procedures allow the use of parallel edges, except those of Eswaran and Tarjan (1976) 
and Rosenthal and Goldner (1977). Again, the problem of augmentation to a node-
connected graph is open in most cases. 

15.3.1.4 Other polynomially solvable cases. Other cases of connectiv-
ity constrained network design problems are polynomially solvable if the underlying 
graph G is restricted to certain graph classes. 

Among these, the class of series-parallel graphs has received a lot of attention. 
Series-parallel graphs are created from a single edge by two operations : 

• addition of parallel edges, 

• subdivision of edges by insertion of nodes. 

Works on various connectivity requirements for these graphs can be found in the 
literature: 

• r̂  G {0,1}, VJ G V (Steiner tree problem): 
The problem was solved in linear time by Wald and Colboum (1983). Goemans 
(1994) gave a complete description of the poly tope associated with the solutions 
of the problem. 

• rs — k, k>2, ys eV, with edge connectivity requirements (/:-edge-connected 
network problem): 
Mahjoub (1994) gave a complete description of the poly tope associated with 
the solutions of the case when k = 2. This work was extended to any /: > 2 by 
Didi Biha and Mahjoub (1996). 

• rs e {0,2}, \/s eV (two-connected Steiner subgraph problem): 
The problem was solved in linear time by Winter (1986a), both for edge and 
node-connectivity requirements. Coullard et al. (1991) gave a complete de-
scription of the polytope associated with the solutions of the node-connectivity 
case. 

Winter has also developed linear-time algorithms for the case r̂  G {0,2} in outer-
planar (Winter, 1985b) and Halin graphs (Winter, 1985a). He also mentions in Win-
ter (1987) that he solved the problem in linear time for r̂  G {0,3} in Halin graphs. 
Coullard et al. solved the problem with r̂  G {0,2} in W4-free graphs (Coullard et al., 
1993) and gave a complete description of the dominant of the corresponding polytope 
(Coullard et al., 1996). 

Dominant of the polytopes of /:-edge-connected networks where parallel edges are 
allowed were completely described by Comuejols et al. (1985) for k even and G series-
parallel and by Chopra (1994) for k odd and G outerplanar. 
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15.3.2 Polyhedral studies and exact algorithms 

Most Branch-and-Cut algorithms for these problems are based on the linear program-
ming formulation (15.1)-(15.3). The first method for solving the problem exactly was 
developed by Christofides and Whitlock (1981). Their algorithm is based on the linear 
relaxation obtained by replacing integrality constraints (15.3) by 0 < x̂  < 1, and keep-
ing only cut constraints (15.1) corresponding to subsets W such that |W| = 1. These 
particular cut constraints are called degree constraints. The starting linear program is 
thus 

^^^ HeeE^eXe 

s.t. 

jc(8(v)) > r(v) veV, 

0 < ;ĉ  < 1 eeE. 

Given a solution to this LP, they impose the edge-connectivity requirements by 
adding violated cut constraints. These can be found in polynomial time by computing 
the minimum cut in the graph G — (V, £") with edge capacities equal to the values of the 
corresponding variables in the solution of the current LP - using e.g. the Gomory-Hu 
algorithm (Gomory and Hu, 1961). When all cut constraints are satisfied, if some vari-
ables have fractional values, a branch-and-bound procedure is applied. Christofides 
and Whitlock (1981) mention that this algorithm is able to solve problems with "well 
over a hundred nodes" for edge-connectivity requirements. 

If one wants to add node-connectivity requirements, they propose to check the 
node-connectivity each time an integer solution satisfying edge-connectivity require-
ments is found. If some node-connectivity requirements are violated, the correspond-
ing node-cut constraints (15.2) are added to the LP. 

Grotschel, Monma and Stoer studied in detail network design problems with con-
nectivity constraints. A survey of their work can be found in (Grotschel et al., 1995a) 
and (Stoer, 1992). 

In their earliest work on the subject, Grotschel and Monma (1990) introduced a 
general model mixing edge and node survivability requirements. They examined the 
dimension of the associated polytope and proved facet results for cut and node-cut 
inequalities. 

They also described completely the polytope of the (l-)connected network problem, 
based on the work of Comuejols et al. (1985). This is done by the introduction 
of partition inequalities, that generalize cut inequalities (15.1). Given a partition 
Wi, W2,..., Wp (/? > 2) of y into p nonempty subsets, the inequality 

^L^(8W)>P-l 

is valid for the polytope of connected networks. 
Based on partition inequalities for connected networks, Grotschel and Monma in-

troduced the node-partition inequalities for /:-node-connected networks. These in-
equalities come from the fact that the deletion of A: — 1 nodes from a A:-node-connected 
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network leaves a connected graph. Thus, if Z C y is a node set with exactly k—l 
nodes and Wi, W2,..., Ŵ  (p > 2) is a partition of V\Z into p nonempty subsets, the 
inequality 

is valid for the poly tope of /:-node-connected networks. It is obvious that these node-
partition inequalities are a generalization of node cut inequalities (15.2). 

Grotschel, Monma and Stoer then attacked low-connectivity constrained problems 
(with rs G {0,1,2}), deriving new facets (Grotschel et al., 1992b) and implementing 
some of these into a Branch-and-Cut algorithm (Grotschel et al., 1992a). They gen-
eralized partition and node-partition inequalities, and introduced lifted 2-cover and 
comb inequalities. These results were extended to higher survivability requirements 
in Grotschel etal. (1995b). 

More inequalities for two-edge-connected network problems were found by Boyd 
and Hao (1993) (complemented comb inequalities), and by Boyd and Zhang (1994) 
(clique tree inequalities). Bai'ou et al. (2000) and Kerivin and Mahjoub (2002) studied 
an extension of partition inequalities, the F-partition inequalities, first introduced by 
Mahjoub (1994), and showed these prove helpful for solving low survivability network 
design problems where edge-connectivity only is considered. 

15.4 TWO-CONNECTED NETWORKS WITH BOUNDED RINGS 

It turns out that the optimal solution of the two-connected network problem is often a 
Hamiltonian cycle. Hence, any edge failure implies that the flow that passed through 
that edge must be rerouted, using all the edges of the network, an obviously undesir-
able feature. 

It is therefore necessary to add extra constraints to limit the region of influence 
of the traffic which is necessary to reroute if a connection is broken. Imposing a 
limit on the length of the rerouting can be done by limiting the length of the shortest 
cycle including each edge. Such a condition has also a direct implication in networks 
using the technology of self-healing rings. Self-healing rings are cycles in the network 
equipped in such a way that any link failure in the ring is automatically detected and 
the traffic rerouted by the alternative path in the cycle. It is natural to impose a limited 
length of these rings. This is equivalent to set a bound on the length of the shortest 
cycle including each edge. 

The problem of designing a minimum cost network Â  with the following con-
straints: 

1. The network Â  contains at least two node-disjoint paths between every pair of 
nodes (2-connectivity constraints), 
and 

2. each edge of// belongs to at least one cycle whose length is bounded by a given 
constant K (ring constraints). 

This problem is called the Two-Connected Network with Bounded rings (2CNBR) 
problem. It was first studied by Fortz et al. (2000). More polyhedral results can be 
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found in (Fortz, 2000; Fortz and Labbe, 2002; 2004). Recently, Fortz et al. (2003a) 
studied the edge connectivity version of the problem. 

A useful tool to analyze feasible solutions of 2CNBR is the restriction of a graph 
to bounded rings. Given a graph G = {V,E) and a constant ^ > 0, we define for each 
subset of edges F C £" its restriction to bounded rings FK as 

J J., e belongs to at least one cycle 1 
^ *~ \ * of length less than or equal to ^ in F J " 

The subgraph GK = {V,EK) is the restriction ofG to bounded rings. Note that an edge 
e e E\EK will never belong to a feasible solution of 2CNBR. 

Further we denote by ^G,K the set of incidence vectors jc^ with F C.E such that 

1. F is two-connected, 

2. F^FK. 

Then, the 2CNBR problem consists in 

mm < J^ CeXe : x G (DG.K 
^eeE 

Checking that GK is two-connected, i.e. that (DQ^K is nonempty, can be done in 
polynomial time. We therefore assume in the remainder of this chapter that there 
always exists a feasible solution to the problem. 

Since all costs c ,̂ ^ G £" are assumed to be nonnegative, there always exists an 
optimal solution of 2CNBR whose induced graph is minimal with respect to inclusion. 
More precisely, if FK is two-connected, as F 3 F/̂ :, F is also two-connected and the 
cost of F is greater than or equal to the cost of FK. We can thus relax the constraints 
and just require that FK is two-connected for a set of edges F to be feasible. Hence, 
2CNBR can be equivalently formulated as 

min < J^ CeXe : x G {0,1}'^' and Ff^ is two-connected >. 
[eeE J 

We denote by 

^G,A: :^ conv{jc G {0,1}'^' : F | is two-connected} 

the polyhedron associated to the 2CNBR problem. 
Several formulations have been proposed for this problem. The first formulation 

using only design variables was proposed in Fortz and Labbe (2002). If a subset of 
edges S C E is such that {G — S)K is not two-connected, then G — S does not contain 
a feasible solution, and therefore each feasible solution contains at least one edge 
from S. As we are only interested in minimal feasible solutions, this is sufficient to 
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formulate the 2CNBR problem as the following integer linear program : 

min 2^ CeXe 
eeE 

s.t. 

x{S) > 1 SCE, {G-S)K is not two-connected, (15.4) 

JC^G{0,1} eeE. (15.5) 

Constraints (15.4) are called subset constraints. 

15.4.1 Cut and ring-cut inequalities 

Fortz and Labbe (2002) studied under which conditions cut constraints (15.1) are 
facet-defining for 2CNBR. Given a subset of nodes WCV,(d^W^V,thQ cut con-
straint imposes that there are at least two edges leaving W, i.e. 

x{8{W)) > 2. 

To characterize which cut constraints define facets, it is useful to know, for any pair of 
edges e , / G 8(VF), if there exists a vector of ^G,K lying in the face x{8{W)) — 2 whose 
corresponding graph contains e and / . This is the case if and only if the incidence 
vector of 

Cej '=E{,w)y^E{w\w)y^{eJ) 
belongs to ^G,K^ i.e. if (Pej^K is two-connected. A useful tool to represent and 
analyze the vectors belonging to the face defined by a cut constraint is the ring-cut 
graph defined below. 

Definition 15.1 (Ring-cut graph) 
Let G = {V,E) be a graph, K > 0 a given constant, and W CV a subset of nodes, 

The ring-cut graph RCGW.K '= {8{^),RCEW,K) induced by W is the graph defined by 
associating one node to each edge in 8{W) and by the set of edges 

RCEw,K = {{^5/} ^ 8(W): {Cej)K is two-connected^ . 

With the help of the ring-cut graph, we can characterize which cut constraints are 
facet-defining. 

Theorem 15.2 Let G — (V,£ )̂ be a graph, K > 0 a given constant, and W CV a 
subset of nodes, (d ^W y^V. The inequality 

x{b(W)) > 2 

defines a facet of^G,K if and only if 

L for all e G 8(W), there exists f G 8(W) such that {Cej)K is two-connected; 

2. in each connected component ofRCGw,K> there exists a cycle of odd cardinality; 
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3. for all e G E{W)UE{V\W), there exist f,ge 6(W) such that {C/^g \ {e})K is 
two-connected. 

Moreover, Fortz and Labbe (2002) used the ring-cut graph to derive new valid 
inequalities. Let G = {V,E) be a graph, K > 0 a. given constant, W CV a, subset of 
nodes, id ^W y^V. If S C 8{W) is an independent subset in the ring-cut graph RCGW,K^ 

then 
JC(5 ' )+2JC(8(W)\5)>3 (15.6) 

is a valid inequality for the 2CNBR problem. Inequalities (15.6) are called ring-cut 
inequalities. Fortz and Labbe (2002) also provide necessary conditions for these in-
equalities to be facet-defining. 

15.4.2 Node-partition inequalities 

In Section 15.3.2, we mentioned that node-partition inequalities (Grotschel and Monma, 
1990) are valid for the two-connected network polytope. 

Given a node z eV and a partition Wi, W2,..., Ŵ  (P ^ 2) of V\{z}, the node-
partition inequality for two-connected networks is 

^ I : ^ ( 6 G - Z W - ) ) > P - 1 . 

Since (PG^K is included in this polytope, node-partition inequalities are also valid 
for the 2CNBR problem. Fortz and Labbe (2002) give sufficient conditions for node-
partition inequalities to define facets of (PG^K-

15.5 RINGS OF BOUNDED CARDINALITY 

An important application of ring constraints appears in topologies using the recent 
technology of self-healing rings. Self-healing rings are cycles in the network equipped 
in such a way that any link failure in the ring is automatically detected and the traf-
fic rerouted by the alternative path in the cycle. Due to technological constraints, the 
length of self-healing rings must be limited. This is equivalent to set a bound on the 
length of the shortest cycle including each edge. In practice, the length of the ring is 
computed as the number of hops, i.e., the number of nodes that compose the ring. This 
corresponds to the particular case of 2CNBR that arises when a unit length is given 
to each edge. This model is only a first step in solving the self-healing ring network 
design problem, as it only ensures the presence of feasible rings in the network. The 
next step is dimensioning the rings, taking into account the demands and the addi-
tional cost for inter-ring transfer. A heuristic for the self-healing ring network design 
problem was proposed by Fortz et al. (2003b). 

In this section, we present additional properties for this particular case, coming 
from Fortz et al. (2003a) and Fortz and Labbe (2004). We first describe a new class of 
valid inequalities, the cycle inequalities, that can be used to provide an alternative for-
mulation of this special case. Another important result is a lower bound on the number 
of edges in any feasible solution of 2CNBR. This result is useful for showing that the 
problem is NP-complete for any fixed K >3 and for deriving new valid inequalities. 
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Figure 15.1 C^ and Tji 

15.5.1 Cycle and metric inequalities 

Let G = {V,E) be a graph and K>3. Let 7C = (Vb,..., V )̂ be a partition of V such 
that p>Ksind let e e [Vo.Vp]. Moreover, let Q = ufJô fV;-, V;+i] U [Vo,Vp] and 7;̂  = 
6(Vb, • • •, Vp) \ CTT. Then, the inequality 

x{T^)>Xe (15.7) 

is valid for 2CNBR, with T^ := T^ U ([Vb, V̂ ] \ {e}), as illustrated in Figure 15.1. 
Inequalities (15.7) will be called cycle inequalities. Fortz et al. (2003a) showed that 
a formulation of 2CNBR is obtained by node-cut constraints, cycle inequalities and 
trivial inequalities. 

Cycle inequalities are a special case of metric inequalities, that were studied by 
Fortz et al. (2000). Consider an edge e := {ij} e E and a set of node potentials 
{(^k)kev satisfying 

ai-aj > K- 1. 

Then 
52 ^f^f^^e (15.8) 

feE-e 

is a valid inequality for T{G,K) where 

f o r a l l / : = { ^ , / } G £ - ^ . 
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15.5.2 Cyclomatic inequalities 

Theorem 15.3 Let G = (V^E) be a two-connected network with n=\V\ nodes and 
m = \E\ edges, such that there exists a covering of the network by cycles using at most 
K nodes. Them 

m>M(n,/i:):=« + m i n M ^ ^ - ^ ,h^—j- 1, (15.10) 

i.e., G contains at least M{n^K) edges. 

From this result, the complexity of the problem for K fixed can be established. 

Problem 15.4 (R2CNBR) Let G = {V,E) be a graph, K >3 a given constant and 
B >0 an integer To each edge e e E is associated a cost Cg and a unit length de = I. 
Does there exists a subset F CE of edges such that FK is two-connected and c{F) < B 
? 

Theorem 15.5 R2CNBR is NP-complete for any K>3. 

Moreover, the result also applies to partitions of V, leading to a new class of valid 
inequalities: 

Proposition 15.1 Let G — {V,E) be a graph with n=\V\ nodes, K>3 a given con-
stant, and Wi, W2,..., Wp {p>2) a partition ofV. Then 

l:tx{diWi))>M{p,K) (15.11) 

is a valid inequality for ^G,K' 

Inequalities (15.11) are called cyclomatic inequalities. The inequality bounding the 
total number of edges (i.e., p = n) is facet-defining for complete graphs. 

15.6 RELATED HOP-CONSTRAINED MODELS 

Other network design problems with limits on the lengths of paths in the network 
have been studied. In most of these models, there must exist a path between any pair 
of nodes, or between a given root and any other node, using at most L links (hops). 
The hop-constrained minimum spanning tree problem was studied by Gouveia (1996); 
Gouveia and Magnanti (2003). Shortest paths with hop constraints have also received 
attention. The L-path polytope - the convex hull of incidence vectors of ^^paths with 
no more than L edges - was first studied by Dahl (1999). Recently, Nguyen (2003) 
gave a complete description of this polytope. The directed version of the problem was 
studied by Dahl and Gouveia (2004); Dahl et al. (2004). 

The hop-constrained network design problem (HCNDP) consists in finding at min-
imum cost a subgraph such that each pair of terminals is connected by at least K 
edge-disjoint paths using at most L links, where K and L are fixed constants. Balakr-
ishnan and Altinkemer (1992) studied the problem for AT = 1 within the framework of 
a more general model. The case K =1 and L = 2 was considered by Dahl and Johan-
nes sen (2004). Huygens et al. (2004) consider a single pair of terminals with K = 2 
and L = 3, and provide a complete description of the associated polytope. 
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