
R

Rademacher Average

7Rademacher Complexity

Rademacher Complexity

Synonyms
Rademacher average

Definition
Rademacher complexity is a measure used in
7generalization bounds to quantify the “richness” of a
class of functions. Letting ρ, . . . , ρn denoteRademacher
variables – independent random variables that take the
values ± with equal probability – the empirical or con-
ditional Rademacher complexity of a class of real-valued
functions F on the points x = (x, . . . , xn) ∈ X n is the
conditional expectation

R̂x(F) = Ex,ρ

⎡
⎢
⎢
⎢
⎣
sup
f ∈F


n

n

∑
i=

ρif (xi)
RRRRRRRRRRR

x
⎤
⎥
⎥
⎥
⎦
.

Intuitively, the empirical Rademacher average Rn(F)

measures how well functions f ∈ F evaluated on x ∈

X can align with randomly chosen labels. �e (full)
Rademacher complexity Rn(F) with respect to a dis-
tribution P over X is the average empirical complexity
when the arguments x, . . . , xn are independent random
variables drawn from P. �at is,

Rn(F) = Ex [R̂x(F)] .

�ere are several properties of theRademacher aver-
age thatmake it a useful quantity in analysis: for any two
classes F ⊆ G we have Rn(F) ≤ Rn(G); when c ⋅ F :=
{cf : f ∈ F} for c ∈ R we have Rn(c ⋅ F) = ∣c∣Rn(F);
when F + g := { f + g : f ∈ G} for some �xed function

g we have Rn(F + g) = Rn(F); and if conv(F) is the
convex hull of F then Rn(conv(F)) = Rn(F).

Radial Basis Function
Approximation

7Radial Basis Function Networks

Radial Basis Function Networks

M.D. Buhmann
Justus-Liebig University,
Giessen, Germany

Synonyms
Networks with kernel functions; Radial basis function
approximation; Radial basis function neural networks;
Regularization networks

Definition
Radial basis function networks are a means of approx-
imation by algorithms using linear combinations of
translates of a rotationally invariant function, called the
radial basis function. �e coe�cients of these approx-
imations usually solve a minimization problem and
can also be computed by interpolation processes. �e
radial basis functions constitute the so-called reproduc-
ing kernels on certain Hilbert-spaces or – in a slightly
more general setting – semi-Hilbert spaces. In the latter
case, the aforementioned approximation also contains
an element from the nullspace of the semi-norm of the
semi-Hilbert space. �at is usually a polynomial space.

Motivation and Background
Radial basis function networks are a method to approx-
imate functions and data by applying7kernel methods
to7neural networks.More speci�cally, approximations

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC 



 R Radial Basis Function Networks

of functions or data via algorithms that make use of
networks (or neural networks) can be interpreted as
either interpolation or minimization problems using
kernels of certain shapes, called radial basis functions
in the form in which we wish to consider them in this
chapter. In all cases, they are usually high-dimensional
approximations, that is the number of unknowns n in
the argument of the kernel may be very large. On the
other hand, the number of learning examples (“data”)
may be quite small. �e name neural networks comes
from the idea that this learning process simulates the
natural functioning of neurons.
At any rate, the purpose of this approach will be

the modelization of the learning process by mathemat-
ical methods. In most practical cases of networks, the
data from which we will learn in the method are rare,
i.e., we have few data “points.” We will consider this
learning approach as an approximation problem in this
description, essentially it is a minimizing (regression)
problem.

Structure of the Network/Learning System
To begin with, let φ : R+ → R be a univariate continu-
ous function and ∥ ⋅ ∥ be the Euclidean norm on Rn for
some n ∈ N, as used for approximation in the seminal
paper by Schoenberg (). Here,R+ denotes the set of
nonnegative reals. �erefore,

φ(∥ ⋅ ∥) : Rn → R, (x , x , . . . , xn)T ↦ φ(
√

x + x

 +⋯ + xn)

is a multivariate function and here the number n of
unknowns may be very large in practice. �is function
is rotationally invariant. Incidentally, much of what is
going to be said here will work if we replace this func-
tion by a general, n-variate function which need no
longer be rotationally invariant, but then, strictly speak-
ing, we are no longer talking about radial basis func-
tions.�en other conditions may replace the restriction
to radiality. Nonetheless, we stick to the simple case
(which is entirely su�cient for many practical applica-
tions) when the function really is radially symmetric.
We also require for the time being that this n-variate

function be positive de�nite, that is for all �nite sets Ξ
of pairwise di�erent the so-called centers or data sites
ξ ∈ Ξ ⊂ Rn, the symmetric matrix

A = {φ(∥ξ − ζ∥)}ξ,ζ∈Ξ

is a positive de�nite matrix. �e condition of pairwise
di�erent data in Ξ may, of course, in practice, not be
necessarily met.

�is property is usually obtained by requiring that
φ(∥ ⋅ ∥) be absolutely integrable and its Fourier trans-
form – which thereby exists and is continuous – is posi-
tive everywhere (“Bochner’s theorem”). An example for
such a useful function is the exponential (the “Gauß-
kernel”) φ(r) = exp(−cr), r ⩾ , where c is a positive
parameter. For this the above positive de�niteness is
guaranteed for all positive c and all n. Another exam-
ple is the Poisson-kernel φ(r) = exp(−cr). However, we
may also take the nonintegrable “inversemultiquadrics”
φ(r) = /

√
r + c, which has a Fourier transform in

the generalized or distributional sense that is also posi-
tive everywhere except at zero.�ere it has a singularity.
Nonetheless, the aforementioned matrices of the form
A are still always positive de�nite for these exponen-
tials and the inverse multiquadrics so long as c >  and
n = , , . . .

�is requirement of positive de�niteness guarantees
that for all given �nite sets Ξ and “data” fξ ∈ R, ξ ∈ Ξ,
there is a unique linear combination

s(x) = ∑
ξ∈Ξ

λξφ(∥x − ξ∥), x ∈ Rn,

which satis�es the linear interpolation conditions

s(ξ) = fξ , ∀ ξ ∈ Ξ.

�is is because the interpolation matrix which is used
to compute the coe�cients λξ is just the matrixA above
which is positive de�nite, thus regular. �e expression
in the pen-ultimate display is the network that approx-
imates the data given by the user. Of course the inter-
polation conditions are just what is meant by learning
from examples, the data being the ∣Ξ∣ examples. Here as
always, ∣Ξ∣ denotes the cardinality of the set Ξ. In the
learning theory the linear space spanned by the above
translates of φ(∥ ⋅ ∥) by ξ ∈ Ξ is called the feature space
with φ as activation function.
Incidentally, it is straightforward to generalize the

approximation method to an approximation to data in
Rm, m ∈ N, by approximating the data fξ ∈ Rm compo-
nentwise bym such expressions as the above, call them
s, s, . . . , sm.



Radial Basis Function Networks R 

R

Applications
Applications include classi�cation of data, pattern
recognition, 7time series analysis, picture smoothing
similar to di�usion methods, and optimization.

Theory/Solution
Returning to interpolation, the problem may also
be reinterpreted as a minimization problem. If the
weighted L-integral is de�ned as

∥g∥φ :=


(π)n/

√

∫
Rn


φ̂(∥x∥)

∣ĝ(x)∣ dx,

with φ̂ still being the above positive Fourier transform,
for all g : Rn → R for which the Fourier transform in
the sense of L(Rn) is well-de�ned and for which the
above integral is �nite, we may ask for the approximant
to the above data – which still must satisfy the afore-
mentioned interpolation conditions – that minimizes
∥ ⋅ ∥φ . As Duchon noted, for example, for the thin-plate
spline case φ(r) = r log r in this seminal papers this is
just the above interpolant, i.e., that linear combination s
of translates of radial basis functions, albeit in the thin-
plate spline case with a linear polynomial added as we
shall see below.

�is works immediately both for the two examples
of exponential functions and the inverse multiquadrics.
Note the fact that the latter has a Fourier transform
with a singularity at the origin, does not matter as its
reciprocal appears as a weight function in the integral
above. �e important requirement is that the Fourier
transform has no zero. It also works for the positive
de�nite radial basis functions of compact support for
instance in Buhmann ().

Regularization and Generalizations
Generally, since the interpolation problem to data may
be ill-conditioned or unsuitable in the face of 7noise,
smoothing or 7regularization are appropriate as an
alternative. Indeed, the interpolation problem may be
replaced by a smoothing problem which is of the form


∣Ξ∣ ∑ξ∈Ξ

(s(ξ) − fξ) + µ∥s∥φ = min
s
!.

Here the L-integral is still the one used in the descrip-
tion above and µ is a positive smoothing parameter.

However, when there is only a trivial nullspace of the
∥ ⋅ ∥φ , i.e., g =  is the only g with ∥g∥φ = , then it is
a norm and the solution of this problem will have the
form

s(x) = ∑
ξ∈Ξ

λξφ(∥x − ξ∥), x ∈ Rn.

�is is where the name regularization network comes
from, regularization and smoothing being used synony-
mously. �e form used here in the pen-ultimate display
is a classical regularizing network problem or in the
spline-terminology a smoothing spline problem. For
7support vector machines, the square of the residual
term s(ξ)− fξ should be replaced by another expression,
for example, the one by Vapnik ()

∣s(ξ) − fξ ∣є :=
⎧⎪⎪
⎨
⎪⎪⎩

fξ − s(ξ) − є if ∣fξ − s(ξ)∣ ≥ є,
 otherwise,

and for the support vectormachines classi�cation by the
truncated power function (⋅)ν

+ which is a positive power
for positive argument and otherwise zero.
In the case of a classical regularizing network, the

coe�cients of the solution may be found by solving
a similar linear system to the standard interpolation
linear system mentioned above, namely

(A + µI)λ = f ,

where f is the vector (fξ)ξ∈Ξ in RΞ of the data given,
and λ = (λξ)ξ∈Ξ . �e I denotes the ∣Ξ∣ × ∣Ξ∣ identity
matrix and A is still the same matrix as above. Inciden-
tally, scaling mechanisms may also be introduced into
the radial basis function by replacing the simple trans-
late φ(∥x − ξ∥) by φ(∥x − ξ∥/δ) for a positive δ which
may even depend on ξ.

�e ideas of regularization and smoothing are of
course not new; for instance, regularization goes back to
Tichonov et al. () (“Tichonov regularization”) and
spline smoothing to Wahba (), especially when the
smoothing parameter is adjusted via cross-validation or
generalized cross-validation (GCV).
Now to the case of semi-norms ∥ ⋅ ∥φ with non-

trivial nullspaces: indeed, the same idea can be carried
through for other radial basis functions as well. In par-
ticular we are thinking here of those that do not provide
positive de�nite radial basis interpolation matrices but
strictly conditionally positive de�nite ones. We have



 R Radial Basis Function Networks

strictly positive de�nite radial basis functions of order
k + , k ≥ −, if the above interpolation matrices A are
still positive de�nite but only on the subspace of those
nonzero vectors λ = (λξ) in RΞ which satisfy

∑
ξ∈Ξ

λξp(ξ) = , ∀ p ∈ Pkn,

where Pkn denotes the linear space of polynomials in
n variables with total degree at most k. In other words,
the quadratic form, λTAλ, need only be positive for such
λ ≠ . For simplicity of the presentation, we shall let P−n
denote {}. In particular, if the radial basis function is
conditionally positive de�nite of order , its interpola-
tionmatricesA are always positive de�nite, i.e., without
condition. Also, we have the minimal requirement that
the sets of centers Ξ are unisolvent for this polynomial
space, i.e., the only polynomial p ∈ Pkn that vanishes
identically on Ξ is the zero-polynomial.

�e connection of this with a layered neural net-
work is that the approximation above is a weighted sum
(weighted by the coe�cients λξ) over usually nonlin-
ear activation functions φ. �e entries in the sum are
the radial basis function neurons and there are usu-
ally many of them. �e number of nodes in the model
is n. �e hidden layer of “radial basis function units”
consists of ∣Ξ∣ nodes, i.e., the number of centers in our
radial basis function approximation. �e output layer
has m responses if the radial basis function approxi-
mation above is generalized to m-variate data, then we
get s, s, . . . , sm instead of just s, as already described.
�is network here is of the type of a nonlinear, layered,
and feedforward network. More than one hidden layer
is unusual. �e choice of the radial basis functions (its
smoothness for instance) and the �exibility in the posi-
tioning of the centers in clusters, grids (Buhmann, ,
for example) or otherwise providemuch of the required
freedom for good approximations.

�e properties of conditional positive de�niteness
are ful�lled now for a much larger realm of radial
basis functions, which have still nowhere vanishing,
generalized Fourier transforms but with higher order
singularities at the origin. (Remember that this cre-
ates no problem for the well-de�neness of ∥ ⋅ ∥φ .) For
instance, the above properties are true for the thin-plate
spline function φ(r) = r log r, the shi�ed logarithm
φ(r) = (r + c) log(r + c), and for the multiquadric
φ(r) = −

√
r + c. Here we still have a parameter

c which may now be arbitrary real. �e order of the
above is one for the multiquadric and two for the thin-
plate spline. Another commonly used radial basis func-
tionwhich gives rise to conditional positive de�niteness
is the φ(r) = r.
Hence the norm becomes a semi-norm with

nullspace Pkn but it still has the same form as a square-
integral with the reciprocal of the Fourier transform of
the radial basis function as a weight.

�erefore, we have to include a polynomial from the
nullspace of the semi-norm to the approximant which
becomes

s(x) = ∑
ξ∈Ξ

λξφ(∥x − ξ∥) + q(x), x ∈ Rn,

where q ∈ Pkn and the side conditions on the coe�cients

∑
ξ∈Ξ

λξp(ξ) = , ∀ p ∈ Pkn.

If we consider the regularization network problem
with the smoothing parameter µ again, then we have to
solve the linear system with a smoothing parameter µ

(A + µI)λ + PTb = f , Pλ = ,

where P = (pi(ξ))i=,. . .,L,ξ∈Ξ , and pi form a basis of Pkn,
bi being the components of b, and q(x) = ∑Li= bipi(x)
is the expression of the polynomial added to the radial
basis function sum. So in particular P is a matrix with
as many rows as the dimension L = (n+kn ) of Pkn is and
∣Ξ∣ columns.
In all cases, the radial basis functions composed

with the Euclidean norm can be regarded as reproduc-
ing kernels in the semi-Hilbert spaces de�ned by the
set X of distributions g for which ∥g∥φ is �nite and the
semi-inner product

(h, g) =


(π)n ∫Rn


φ̂(∥x∥)
ĥ(x)ĝ(x)dx, h, g, ∈ X.

In particular, ∥g∥φ = (g, g). If the evaluation functional
is continuous (bounded) on that space X, there exists a
reproducing kernel, i.e., there is a K : X × X → R such
that

g(x) = (g,K(⋅, x)), ∀ x ∈ Rn, g ∈ X,



Random Decision Forests R 

R

see, for example, Wahba (). If the semi-inner prod-
uct is actually an inner product, then the reproducing
kernel is unique. �e kernel gives rise to positive de�-
nite matrices {K(ξ, ζ)}ξ,ζ∈Ξ if and only if it is a positive
operator. For the spaces X de�ned by our radial basis
functions, it turns out that K(x, y) := φ(∥x − y∥), see,
e.g., the overview in Buhmann (). �en the matri-
ces A are positive de�nite if φ̂(∥ ⋅ ∥) is well-de�ned and
positive, but if it has a singularity at zero, the Amay be
only conditionally positive de�nite. Note here that
φ̂(∥ ⋅ ∥) denotes the n-variate Fourier transform of
φ(∥ ⋅ ∥), both being radially symmetric.

Advantages of the Approach
Why are we interested in using radial basis functions for
networks? �e radial basis functions have many excel-
lent approximation properties which make them useful
as general tools for approximation. Among them are
the variety of more or less smoothness as required (e.g.,
multiquadrics is C∞ for positive c and just continuous
for c = ), the fast evaluation and computationmethods
available (see, e.g., Beatson & Powell, ), the afore-
mentioned nonsingularity properties and their con-
nection with the theory of reproducing kernel Hilbert
spaces, and �nally their excellent convergence proper-
ties (see, e.g., Buhmann, ). Generally, neural net-
works are a tried and tested approach to approximation,
modeling, and smoothing by methods from learning
theory.

Limitations
�enumber of applications where the radial basis func-
tion approach has been used is vast. Also, the solutions
may be computed e�ciently by far �eld expansions,
approximated Lagrange functions, andmultipolemeth-
ods. However, there are still some limitations with these
important computationalmethods when the dimension
n is large. So far, most of the multipole and far �eld
methods have been implemented only for medium-
sized dimensions.

Cross References
7Neural Networks
7Regularization
7Support Vector Machines

Recommended Reading
Beatson, R. K., & Powell, M. J. D. (). An iterative method

for thin plate spline interpolation that employs approxima-
tions to Lagrange functions. In D. F. Griffiths & G. A. Wat-
son (Eds.), Numerical analysis  (pp. –). Burnt Mill:
Longman.

Broomhead, D., & Lowe, D. (). Radial basis functions, multi-
variable functional interpolation and adaptive networks, Com-
plex Systems, , –.

Buhmann, M. D. (). Multivariate cardinal-interpolation
with radial-basis functions. Constructive Approximation, ,
–.

Buhmann, M. D. (). Radial functions on compact support.
Proceedings of the Edinburgh Mathematical Society, , –.

Buhmann, M. D. (). Radial basis functions: Theory and imple-
mentations. Cambridge: Cambridge University Press.

Duchon, J. (). Interpolation des fonctions de deux variables
suivant le principe de la flexion des plaques minces. RAIRO,
, –.

Evgeniou, T., Poggio, T., & Pontil, M. (). Regularization net-
works and support vector machines. Advances in Computational
Mathematics, , –.

Hardy, R. L. (). Theory and applications of the multiquadric-
biharmonic method. Computers and Mathematics with Applica-
tions, , –.

Micchelli, C. A. (). Interpolation of scattered data: Distance
matrices and conditionally positive definite functions. Con-
structive Approximation, , –.

Pinkus, A. (). TDI-subpaces of C(Rd) and some density prob-
lems from neural networks. Journal of Approximation Theory,
, –.

Schoenberg, I. J. (). Metric spaces and completely monotone
functions. Annals of Mathematics, , –.

Tichonov, A. N., & Arsenin, V. Y. (). Solution of ill-posed prob-
lems. Washington, DC: V.H. Winston.

Vapnik, V. N. (). Statistical learning theory. New York: Wiley.
Wahba, G. (). A comparison of GCV and GML for choosing

the smoothing parameter in the generalized splines smoothing
problem. Annals of Statistics, , –.

Wahba, G. (). Spline models for observational data. Series in
applied mathematics (Vol. ). Philadelphia: SIAM.

Radial Basis Function Neural
Networks

7Radial Basis Function Networks

Random Decision Forests

7Random Forests



 R Random Forests

Random Forests

Synonyms
Random decision forests

Definition
Random Forests is an7ensemble learning technique. It
is a hybrid of the7Bagging algorithmand the7random
subspace method, and uses 7decision trees as the base
classi�er. Each tree is constructed fromabootstrap sam-
ple from the original dataset. An important point is that
the trees are not subjected to pruning a�er construc-
tion, enabling them to be partially over�tted to their
own sample of the data. To further diversify the classi-
�ers, at each branch in the tree, the decision of which
feature to split on is restricted to a random subset of
size n, from the full feature set. �e random subset is
chosen anew for each branching point. n is suggested
to be log(N + ), where N is the size of the whole
feature set.

Random Subspace Method

Synonyms
Random subspaces; RSM

Definition
�e random subspace method is an 7ensemble learn-
ing technique. �e principle is to increase diversity
between members of the ensemble by restricting clas-
si�ers to work on di�erent random subsets of the full
7feature space. Each classi�er learns with a subset of
size n, chosen uniformly at random from the full set
of sizeN. Empirical studies have suggested good results
can be obtained with the rule-of-thumb to choose
n = N/ features. �e method is generally found to
perform best when there are a large number of fea-
tures (large N), and the discriminative information is
spread across them. �e method can underperform in
the converse situation, when there are few informative
features, and a large number of noisy/irrelevant features.
7RandomForests is an algorithm combining RSMwith
the7Bagging algorithm, which can provide signi�cant
gains over each used separately.

Random Subspaces

7Random Subspace Method

Randomized Decision Rule

7Markovian Decision Rule

Rank Correlation

Definition
Rank correlationmeasures the correspondence between
two rankings τ and τ′ of a set ofm objects. Various pro-
posals for such measures have been made, especially in
the �eld of statistics. Two of the best-known measures
are Spearman’s Rank Correlation and Kendall’s tau:
Spearman’s Rank correlation calculates the sum of
squared rank distances and is normalized such that
it evaluates to − for reversed and to + for identical
rankings. Formally, it is de�ned as follows:

(τ, τ′) ↦  −
∑mi=(τ(i) − τ′(i))

m(m − )
()

Kendall’s tau is the number of pairwise rank inver-
sions between τ and τ′, again normalized to the range
[−,+]:

(τ, τ′) ↦  −
 ∣{(i, j) ∣ i < j, τ(i) < τ(j) ∧ τ′(i) > τ′(j)}∣

m(m − )
()

Cross References
7Preference Learning
7ROC Analysis

Ratio Scale

A ratiomeasurement scale possesses all the characteris-
tics of intervalmeasurement, and there exists a zero that,
the same as arithmetic zero, means “nil” or “nothing.”
See7Measurement Scales.



Recommender Systems R 

R

Real-Time Dynamic Programming

Real-Time Dynamic Programming (RTDP) is the
same as 7Adaptive Real-Time Dynamic Programming
(ARTDP)without the system identi�cation component.
It is applicable when an accurate model of the prob-
lem is available. It converges to an optimal policy of
a stochastic optimal path problem under suitable con-
ditions. RTDP was introduced by Barto, Bradtke, and
Singh () in their paper Learning toActUsingRTDP.

Recall

Recall is a measure of information retrieval perfor-
mance. Recall is the total number of documents
retrieved that are elevant/Total number of relevant doc-
uments in the database. See7Precision and Recall.

Cross References
7Sensitivity

Receiver Operating Characteristic
Analysis

7ROC Analysis

Recognition

7Classi�cation

Recommender Systems

Prem Melville, Vikas Sindhwani
IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

Definition
�e goal of a recommender system is to generate mean-
ingful recommendations to a collection of users for

items or products that might interest them. Sugges-
tions for books on Amazon, or movies on Net�ix,
are real-world examples of the operation of industry-
strength recommender systems. �e design of such
recommendation engines depends on the domain and
the particular characteristics of the data available. For
example, movie watchers on Net�ix frequently provide
ratings on a scale of  (disliked) to  (liked). Such a data
source records the quality of interactions between users
and items. Additionally, the system may have access to
user-speci�c and item-speci�c pro�le attributes such as
demographics and product descriptions, respectively.
Recommender systems di�er in the way they ana-
lyze these data sources to develop notions of a�nity
between users and items, which can be used to identify
well-matched pairs. 7Collaborative Filtering systems
analyze historical interactions alone, while 7Content-
based Filtering systems are based on pro�le attributes;
and hybrid techniques attempt to combine both of these
designs. �e architecture of recommender systems and
their evaluation on real-world problems is an active area
of research.

Motivation and Background
Obtaining recommendations from trusted sources is
a critical component of the natural process of human
decision making. With burgeoning consumerism buo-
yed by the emergence of the web, buyers are being
presentedwith an increasing range of choices while sell-
ers are being faced with the challenge of personalizing
their advertising e�orts. In parallel, it has become com-
mon for enterprises to collect large volumes of trans-
actional data that allows for deeper analysis of how a
customer base interacts with the space of product o�er-
ings. Recommender systems have evolved to ful�ll the
natural dual need of buyers and sellers by automat-
ing the generation of recommendations based on data
analysis.

�e term “collaborative �ltering” was introduced
in the context of the �rst commercial recommender
system, called Tapestry (Goldberg, Nichols, Oki, &
Terry, ), which was designed to recommend docu-
ments drawn from newsgroups to a collection of users.
�e motivation was to leverage social collaboration
in order to prevent users from getting inundated by
a large volume of streaming documents. Collabora-
tive �ltering, which analyzes usage data across users



 R Recommender Systems

to �nd well-matched user-item pairs, has since been
juxtaposed against the older methodology of content
�ltering, which had its original roots in information
retrieval. In content �ltering, recommendations are not
“collaborative” in the sense that suggestions made to
a user do not explicitly utilize information across the
entire user-base. Some early successes of collaborative
�ltering on related domains included the GroupLens
system (Resnick, Neophytos, Bergstrom, Mitesh, &
Riedl, b).
As noted in Billsus and Pazzani (), initial

formulations for recommender systems were based
on straightforward correlation statistics and predic-
tive modeling, not engaging the wider range of prac-
tices in statistics and machine learning literature.
�e collaborative �ltering problem was mapped to
classi�cation, which allowed dimensionality reduction
techniques to be brought into play to improve the
quality of the solutions. Concurrently, several e�orts
attempted to combine content-based methods with
collaborative �ltering, and to incorporate additional
domain knowledge in the architecture of recommender
systems.
Further researchwas spurred by the public availability

of datasets on the web, and the interest generated due
to direct relevance to e-commerce. Net�ix, an online
streaming video and DVD rental service, released a
large-scale dataset containing  million ratings given
by about half-a-million users to thousands of movie
titles, and announced an open competition for the
best collaborative �ltering algorithm in this domain.
Matrix Factorization (Bell, Koren, & Volinsky, )
techniques rooted in numerical linear algebra and sta-
tistical matrix analysis emerged as a state-of-the-art
technique.
Currently, recommender systems remain an active

area of research, with a dedicated ACM conference,
intersecting several subdisciplines of statistics, machine
learning, data mining, and information retrievals. App-
lications have been pursued in diverse domains rang-
ing from recommending webpages to music, books,
movies, and other consumer products.

Structure of Learning System
�e most general setting in which recommender sys-
tems are studied is presented in Fig. . Known user

Items
1 2 ... i ... m

Users

1 5 3 1 2
2 2 4
: 5
u 3 4 2 1
: 4
n 3 2

a 3 5 ? 1

Recommender Systems. Figure . User ratings matrix,

where each cell ru,i corresponds to the rating of user u for

item i. The task is to predict the missing rating ra,i for the

active user a

preferences are represented as a matrix of n users and
m items, where each cell ru,i corresponds to the rating
given to item i by the user u. �is user ratings matrix is
typically sparse, as most users do not rate most items.
�e recommendation task is to predict what rating a
user would give to a previously unrated item. Typically,
ratings are predicted for all items that have not been
observed by a user, and the highest rated items are pre-
sented as recommendations. �e user under current
consideration for recommendations is referred to as the
active user.

�e myriad approaches to recommender systems
can be broadly categorized as:

● Collaborative Filtering (CF): In CF systems, a user is
recommended items based on the past ratings of all
users collectively.

● Content-based recommending: �ese approaches
recommend items that are similar in content to items
the user has liked in the past, or matched to pre-
de�ned attributes of the user.

● Hybrid approaches: �ese methods combine both
collaborative and content-based approaches.

Collaborative Filtering

Collaborative �ltering (CF) systems work by collect-
ing user feedback in the form of ratings for items
in a given domain and exploiting similarities in rat-
ing behavior amongst several users in determining
how to recommend an item. CF methods can be
further subdivided into neighborhood-based andmodel-
based approaches. Neighborhood-based methods are



Recommender Systems R 

R

also commonly referred to asmemory-based approaches
(Breese, Heckerman, & Kadie, ).

Neighborhood-based Collaborative Filtering In neigh-
borhood-based techniques, a subset of users are cho-
sen based on their similarity to the active user, and a
weighted combination of their ratings is used to pro-
duce predictions for this user. Most of these approaches
can be generalized by the algorithm summarized in the
following steps:

. Assign aweight to all users with respect to similarity
with the active user.

. Select k users that have the highest similarity with
the active user – commonly called the neighbor-
hood.

. Compute a prediction from a weighted combina-
tion of the selected neighbors’ ratings.

In step , the weight wa,u is a measure of similar-
ity between the user u and the active user a. �e most
commonly used measure of similarity is the Pearson
correlation coe�cient between the ratings of the two
users (Resnick, Iacovou, Sushak, Bergstrom, & Reidl,
a), de�ned below:

wa,u =
∑i∈I (ra,i − ra)(ru,i − ru)√

∑i∈I (ra,i − ra)

∑i∈I (ru,i − ru)


()

where I is the set of items rated by both users, ru,i is the
rating given to item i by user u, and ru is themean rating
given by user u.
In step , predictions are generally computed as

the weighted average of deviations from the neighbor’s
mean, as in:

pa,i = ra +
∑u∈K (ru,i − ru) ×wa,u

∑u∈K wa,u
()

where pa,i is the prediction for the active user a for
item i, wa,u is the similarity between users a and u,
and K is the neighborhood or set of most similar
users.
Similarity based on Pearson correlation measures

the extent towhich there is a linear dependence between
two variables. Alternatively, one can treat the ratings
of two users as a vector in an m-dimensional space,

and compute similarity based on the cosine of the angle
between them, given by:

wa,u = cos(ra, ru) =
ra ⋅ ru

∥ra∥ × ∥ru∥

=
∑
m
i= ra,iru,i√

∑
m
i= ra,i

√
∑
m
i= ru,i

()

When computing cosine similarity, one cannot have
negative ratings, and unrated items are treated as having
a rating of zero. Empirical studies (Breese et al., )
have found that Pearson correlation generally performs
better. �ere have been several other similarity mea-
sures used in the literature, including Spearman rank
correlation, Kendall’s τ correlation, mean squared di�er-
ences, entropy, and adjusted cosine similarity (Herlocker,
Konstan, Borchers, & Riedl, ; Su & Khoshgo�aar,
).
Several extensions to neighborhood-basedCF,which

have led to improved performance are discussed below.

Item-based Collaborative Filtering: When applied to
millions of users and items, conventional neighborhood-
based CF algorithms do not scale well, because of
the computational complexity of the search for sim-
ilar users. As a alternative, Linden, Smith, and York
() proposed item-to-item collaborative �ltering
where rather than matching similar users, they match
a user’s rated items to similar items. In practice, this
approach leads to faster online systems, and o�en
results in improved recommendations (Linden et al.,
; Sarwar, Karypis, Konstan, & Reidl, ).
In this approach, similarities between pairs of items

i and j are computed o�-line using Pearson correlation,
given by:

wi,j =
∑u∈U (ru,i − r̄i)(ru,j − r̄j)

√
∑u∈U (ru,i − r̄i)

√
∑u∈U(ru,j − r̄j)

()

whereU is the set of all users who have rated both items
i and j, ru,i is the rating of user u on item i, and r̄i is the
average rating of the ith item across users.
Now, the rating for item i for user a can be predicted

using a simple weighted average, as in:

pa,i =
∑j∈K ra,jwi,j
∑j∈K ∣wi,j∣

()



 R Recommender Systems

where K is the neighborhood set of the k items rated by
a that are most similar to i.
For item-based collaborative �ltering too, one may

use alternative similarity metrics such as adjusted cosine
similarity. A good empirical comparison of variations
of item-based methods can be found in Sarwar et al.
().

Signi�cance Weighting: It is common for the active
user to have highly correlated neighbors that are based
on very few co-rated (overlapping) items. �ese neigh-
bors based on a small number of overlapping items tend
to be bad predictors. One approach to tackle this prob-
lem is to multiply the similarity weight by a signi�cance
weighting factor, which devalues the correlations based
on few co-rated items (Herlocker et al., ).

Default Voting: An alternative approach to dealing
with correlations based on very few co-rated items is
to assume a default value for the rating for items that
have not been explicitly rated. In this way one can
now compute correlation (Eq. ) using the union of
items rated by users being matched as opposed to the
intersection. Such a default voting strategy has been
shown to improve collaborative �ltering by Breese et al.
().

Inverse User Frequency:Whenmeasuring the similar-
ity between users, items that have been rated by all (and
universally liked or disliked) are not as useful as less
common items. To account for this Breese et al. ()
introduced the notion of inverse user frequency, which
is computed as fi = logn/ni, where ni is the number
of users who have rated item i out of the total number
of n users. To apply inverse user frequency while using
similarity-based CF, the original rating is transformed
for i by multiplying it by the factor fi. �e underlying
assumption of this approach is that items that are uni-
versally loved or hated are rated more frequently than
others.

Case Ampli�cation: In order to favor users with high
similarity to the active user, Breese et al. () intro-
duced case ampli�cation which transforms the original
weights in Eq. () to

w′a,u = wa,u ⋅ ∣wa,u∣
ρ−

where ρ is the ampli�cation factor, and ρ ≥ .

Other notable extensions to similarity-based col-
laborative �ltering include weighted majority predic-
tion (Nakamura & Abe, ) and imputation-boosted
CF (Su, Khoshgo�aar, Zhu, & Greiner, ).

Model-based Collaborative Filtering Model-based tech-
niques provide recommendations by estimating param-
eters of statistical models for user ratings. For example,
Billsus and Pazzani () describe an early approach to
mapCF to a classi�cation problem, and build a classi�er
for each active user representing items as features over
users and available ratings as labels, possibly in con-
junction with dimensionality reduction techniques to
overcome data sparsity issues. Other predictive model-
ing techniques have also been applied in closely related
ways.
More recently, 7latent factor and matrix factoriza-

tionmodels have emerged as a state-of-the-art method-
ology in this class of techniques (Bell et al., ).
Unlike neighborhood based methods that generate
recommendations based on statistical notions of sim-
ilarity between users, or between items, latent factor
models assume that the similarity between users and
items is simultaneously induced by some hidden lower-
dimensional structure in the data. For example, the
rating that a user gives to a movie might be assumed
to depend on few implicit factors such as the user’s
taste across various movie genres. Matrix factorization
techniques are a class of widely successful latent factor
models where users and items are simultaneously rep-
resented as unknown feature vectors (column vectors)
wu,hi ∈ Rk along k latent dimensions.�ese feature vec-
tors are learnt so that inner products wTuhi approximate
the known preference ratings ru,i with respect to some
loss measure. �e squared loss is a standard choice for
the loss function, in which case the following objective
function is minimized,

J (W,H) = ∑
(u,i)∈L

(ru,i −wTuhi)


()

where W = [w . . .wn]T is an n × k matrix, H =

[h . . . hm] is a k×mmatrix, and L is the set of user-item
pairs for which the ratings are known. In the imprac-
tical limit where all user-item ratings are known, the
above objective function is J(W,H) = ∥R − WH∥fro



Recommender Systems R 

R

where R denotes the n × m fully known user-item
matrix. �e solution to this problem is given by tak-
ing the truncated SVD of R, R = UDVT and setting
W = UkD



k ,H = D



kV

T
k where Uk,Dk,Vk contain the

k largest singular triplets of R. However, in the realis-
tic setting where the majority of user-item ratings are
unknown and insu�cient number of matrix entries are
observed, such a nice globally optimal solution cannot
in general be directly obtained, and one has to explicitly
optimize the non-convex objective function J(W,H).
Note that in this case, the objective function is a par-
ticular form of weighted loss, that is, J(W,H) = ∥S ⊙
(R −WH)∥fro where ⊙ denotes elementwise products,
and S is a binary matrix that equals one over known
user-item pairs L, and  otherwise. �erefore, weighted
low-rank approximations are pertinent to this discus-
sion (Srebro & Jaakkola, ). Standard optimization
procedures include gradient-based techniques, or pro-
cedures like alternating least squares where H is solved
keepingW �xed and vice versa until a convergence cri-
terion is satis�ed. Note that �xing eitherW or H turns
the problem of estimating the other into a weighted
7linear regression task. In order to avoid learning a
model that over�ts, it is common tominimize the objec-
tive function in the presence of 7regularization terms,
J(W,H) + γ∥W∥ + λ∥H∥, where γ, λ are regular-
ization parameters that can be determined by cross-
validation. Once W,H are learnt, the product WH
provides an approximate reconstruction of the rating
matrix from where recommendations can be directly
read o�.
Di�erent choices of loss functions, regularizers, and

additional model constraints have generated a large
body of literature on matrix factorization techniques.
Arguably, for discrete ratings, the squared loss is not
the most natural loss function. �e maximum margin
matrix factorization (Rennie & Srebro, ) approach
uses margin-based loss functions such as the hinge loss
used in7SVM classi�cation, and its ordinal extensions
for handlingmultiple ordered rating categories. For rat-
ings that span over K values, this reduces to �nding
K −  thresholds that divide the real line into consecu-
tive intervals specifying rating bins to which the output
is mapped, with a penalty for insu�cient margin of sep-
aration. Rennie and Srebro () suggest a nonlinear
conjugate gradient algorithm to minimize a smoothed
version of this objective function.

Another class of techniques is the nonnegative
matrix factorization popularized by the work of Lee
and Seung () where nonnegativity constraints are
imposed on W,H. �ere are weighted extensions of
NMF that can be applied to recommendation problems.
�e rating behavior of each usermay be viewed as being
amanifestation of di�erent roles, for example, a compo-
sition of prototypical behavior in clusters of users bound
by interests or community.�us, the ratings of each user
are an additive sum of basis vectors of ratings in the
item space. By disallowing subtractive basis, nonnega-
tivity constraints lend a “part-based” interpretation to
the model. NMF can be solved with a variety of loss
functions, but with the generalized KL-divergence loss
de�ned as follows,

J(W,H) = ∑
u,i∈L

ru,i log
ru,i
wTuhi

− ru,i +wTuhi

NMF is in fact essentially equivalent to probabilis-
tic latent semantic analysis (pLSA) which has also
previously been used for collaborative �ltering tasks
(Hofmann, ).

�e recently concluded million-dollar Net�ix com-
petition has catapulted matrix factorization techniques
to the forefront of recommender technologies in col-
laborative �ltering settings (Bell et al., ). While the
�nal winning solution was a complex ensemble of dif-
ferent models, several enhancements to basic matrix
factorization models were found to lead to improve-
ments. �ese included:

. �e use of additional user-speci�c and item-
speci�c parameters to account for systematic biases
in the ratings such as popular movies receiving
higher ratings on average.

. Incorporating temporal dynamics of rating behav-
ior by introducing time-dependent variables.

Inmany settings, only implicit preferences are avail-
able, as opposed to explicit like–dislike ratings. For
example, large business organizations, typically, metic-
ulously record transactional details of products pur-
chased by their clients. �is is a one-class setting since
the business domain knowledge for negative examples –
that a client has no interest in buying a product ever
in the future – is typically not available explicitly in



 R Recommender Systems

corporate databases. Moreover, such knowledge is dif-
�cult to gather and maintain in the �rst place, given
the rapidly changing business environment. Another
example is recommendingTV shows based onwatching
habits of users, where preferences are implicit in what
the users chose to see without any source of explicit
ratings. Recently, matrix factorization techniques have
been advanced to handle such problems (Pan & Scholz,
) by formulating con�dence weighted objective
function, J(W,H) = ∑(u,i) cu,i (ru,i −wTuhi)


, under

the assumption that unobserved user-item pairs may
be taken as negative examples with a certain degree of
con�dence speci�ed via cu,i.

�e problem of recovering missing values in a
matrix from a small fraction of observed entries is also
known as theMatrix Completion problem. Recent work
by Candès & Tao () and Recht () has shown
that under certain assumptions on the singular vectors
of the matrix, the matrix completion problem can be
solved exactly by a convex optimization problem pro-
vided with a su�cient number of observed entries.�is
problem involves �nding among all matrices consistent
with the observed entries, the one with the minimum
nuclear norm (sum of singular values).

Content-based Recommending

Pure collaborative �ltering recommenders only utilize
the user ratings matrix, either directly, or to induce a
collaborative model. �ese approaches treat all users
and items as atomic units, where predictions are made
without regard to the speci�cs of individual users or
items.However, one canmake a better personalized rec-
ommendation by knowing more about a user, such as
demographic information (Pazzani, ), or about an
item, such as the director and genre of amovie (Melville,
Mooney, & Nagarajan, ). For instance, given movie
genre information, and knowing that a user liked “Star
Wars” and “Blade Runner,” one may infer a predilection
for science �ction and could hence recommend “Twelve
Monkeys.” Content-based recommenders refer to such
approaches, that provide recommendations by compar-
ing representations of content describing an item to
representations of content that interests the user. �ese
approaches are sometimes also referred to as content-
based �ltering.
Much research in this area has focused on recom-

mending items with associated textual content, such

as web pages, books, and movies; where the web
pages themselves or associated content like descrip-
tions and user reviews are available. As such, several
approaches have treated this problem as an infor-
mation retrieval (IR) task, where the content associ-
ated with the user’s preferences is treated as a query,
and the unrated documents are scored with rele-
vance/similarity to this query (Balabanovic & Shoham,
). In NewsWeeder (Lang, ), documents in each
rating category are converted into tf-idf word vectors,
and then averaged to get a prototype vector of each
category for a user. To classify a new document, it is
compared with each prototype vector and given a pre-
dicted rating based on the cosine similarity to each
category.
An alternative to IR approaches, is to treat rec-

ommending as a classi�cation task, where each exam-
ple represents the content of an item, and a user’s
past ratings are used as labels for these examples. In
the domain of book recommending, Mooney and Roy
() use text from �elds such as the title, author,
synopses, reviews, and subject terms, to train a multi-
nomial 7naïve Bayes classi�er. Ratings on a scale of
 to k can be directly mapped to k classes (Melville
et al., ), or alternatively, the numeric rating can
be used to weight the training example in a proba-
bilistic binary classi�cation setting (Mooney & Roy,
). Other classi�cation algorithms have also been
used for purely content-based recommending, includ-
ing7k-nearest neighbor,7decision trees, and7neural
networks (Pazzani & Billsus, ).

Hybrid Approaches

In order to leverage the strengths of content-based and
collaborative recommenders, there have been several
hybrid approaches proposed that combine the two. One
simple approach is to allow both content-based and col-
laborative �ltering methods to produce separate ranked
lists of recommendations, and then merge their results
to produce a �nal list (Cotter & Smyth, ). Claypool,
Gokhale, and Miranda () combine the two predic-
tions using an adaptive weighted average, where the
weight of the collaborative component increases as the
number of users accessing an item increases.
Melville et al. () proposed a general frame-

work for content-boosted collaborative �ltering, where
content-based predictions are applied to convert a



Recommender Systems R 

R

sparse user ratings matrix into a full ratings matrix,
and then a CF method is used to provide recommen-
dations. In particular, they use a Naïve Bayes classi�er
trained on documents describing the rated items of
each user, and replace the unrated items by predictions
from this classi�er.�ey use the resulting pseudo ratings
matrix to �nd neighbors similar to the active user, and
produce predictions using Pearson correlation, appro-
priately weighted to account for the overlap of actually
rated items, and for the active user’s content predictions.
�is approach has been shown to perform better than
pure collaborative �ltering, pure content-based sys-
tems, and a linear combination of the two. Within this
content-boosted CF framework, Su, Greiner, Khoshgof-
taar, and Zhu () demonstrated improved results
using a stronger content-predictor, TAN-ELR, and
unweighted Pearson collaborative �ltering.
Several other hybrid approaches are based on tra-

ditional collaborative �ltering, but also maintain a
content-based pro�le for each user. �ese content-
based pro�les, rather than co-rated items, are used
to �nd similar users. In Pazzani’s approach (Pazzani,
), each user-pro�le is represented by a vector of
weighted words derived from positive training exam-
ples using theWinnow algorithm. Predictions are made
by applying CF directly to the matrix of user-pro�les
(as opposed to the user-ratings matrix). An alterna-
tive approach, Fab (Balabanovic & Shoham, ), uses
7relevance feedback to simultaneouslymold a personal
�lter along with a communal “topic” �lter. Documents
are initially ranked by the topic �lter and then sent to
a user’s personal �lter. �e user’s relevance feedback is
used to modify both the personal �lter and the origi-
nating topic �lter. Good et al. () use collaborative
�ltering along with a number of personalized informa-
tion �ltering agents. Predictions for a user are made by
applying CF on the set of other users and the active
user’s personalized agents.
Several hybrid approaches treat recommending as

a classi�cation task, and incorporate collaborative ele-
ments in this task. Basu, Hirsh, and Cohen () use
Ripper, a 7rule induction system, to learn a function
that takes a user and movie and predicts whether the
movie will be liked or disliked. �ey combine collab-
orative and content information, by creating features
such as comedies liked by user and users who liked
movies of genre X. In other work, Soboro� and Nicholas

()multiply a term-documentmatrix representing all
item content with the user-ratings matrix to produce a
content-pro�le matrix. Using latent semantic Indexing,
a rank-k approximation of the content-pro�le matrix
is computed. Term vectors of the user’s relevant doc-
uments are averaged to produce a user’s pro�le. �en,
new documents are ranked against each user’s pro�le in
the LSI space.
Some hybrid approaches attempt to directly com-

bine content and collaborative data under a single
probabilistic framework. Popescul, Ungar, Pennock,
and Lawrence () extended Hofmann’s aspect mo-
del (Hofmann, ) to incorporate a three-way
co-occurrence data among users, items, and item con-
tent. �eir generative model assumes that users select
latent topics, and documents and their content words
are generated from these topics. Schein, Popescul,
Ungar, and Pennock () extend this approach, and
focus on making recommendations for items that have
not been rated by any user.

Evaluation Metrics

�e quality of a recommender system can be evalu-
ated by comparing recommendations to a test set of
known user ratings.�ese systems are typical measured
using predictive accuracy metrics (Herlocker, Konstan,
Terveen, & Riedl, ), where the predicted ratings
are directly compared to actual user ratings. �e most
commonly usedmetric in the literature is7MeanAbso-
lute Error (MAE) – de�ned as the average absolute
di�erence between predicted ratings and actual ratings,
given by:

MAE =
∑{u,i} ∣pu,i − ru,i∣

N
()

Where pu,i is the predicted rating for useru on item i, ru,i
is the actual rating, andN is the total number of ratings
in the test set.
A related commonly used metric, 7Root Mean

Squared Error (RMSE), puts more emphasis on larger
absolute errors, and is given by:

RMSE =

√
∑{u,i} (pu,i − ru,i)

N
()

Predictive accuracy metrics treat all items equally.
However, for most recommender systems the primary



 R Recommender Systems

concern is accurately predict the items a user will
like. As such, researchers o�en view recommending
as predicting good, that is, items with high ratings
versus bad or poorly rated items. In the context of
information retrieval (IR), identifying the good from
the background of bad items can be viewed as dis-
criminating between “relevant” and “irrelevant” items;
and as such, standard IR measures, like 7Precision,
7Recall and 7Area Under the ROC Curve (AUC)
can be utilized. �ese, and several other measures,
such as F-measure, Pearson’s product-moment cor-
relation, Kendall’s τ, mean average precision, half-
life utility, and normalized distance-based performance
measure are discussed in more detail by Herlocker et al.
().

Challenges and Limitations

�is section, presents some of the common hurdles
in deploying recommender systems, as well as some
research directions that address them.

Sparsity: Stated simply, most users do not rate most
items and, hence, the user ratings matrix is typically
very sparse. �is is a problem for collaborative �lter-
ing systems, since it decreases the probability of �nd-
ing a set of users with similar ratings. �is problem
o�en occurs when a system has a very high item-
to-user ratio, or the system is in the initial stages of
use. �is issue can be mitigated by using additional
domain information (Melville et al., ; Su et al.,
) ormaking assumptions about the data generation
process that allows for high-quality imputation (Su
et al., ).

�e Cold-Start Problem: New items and new users
pose a signi�cant challenge to recommender systems.
Collectively these problems are referred to as the cold-
start problem (Schein et al., ). �e �rst of these
problems arises in collaborative �ltering systems, where
an item cannot be recommended unless some user has
rated it before. �is issue applies not only to new items,
but also to obscure items, which is particularly detri-
mental to users with eclectic tastes. As such the new-
item problem is also o�en referred to as the �rst-rater
problem. Since content-based approaches (Mooney &
Roy, ; Pazzani & Billsus, ) do not rely on rat-
ings from other users, they can be used to produce

recommendations for all items, provided attributes of
the items are available. In fact, the content-based pre-
dictions of similar users can also be used to further
improve predictions for the active user (Melville et al.,
).

�e new-user problem is di�cult to tackle, since
without previous preferences of a user it is not possible
to �nd similar users or to build a content-based pro-
�le. As such, research in this area has primarily focused
on e�ectively selecting items to be rated by a user so
as to rapidly improve recommendation performance
with the least user feedback. In this setting, classical
techniques from 7active learning can be leveraged to
address the task of item selection (Harpale & Yang,
; Jin & Si, ).

Fraud:As recommender systems are being increasingly
adopted by commercial websites, they have started to
play a signi�cant role in a�ecting the pro�tability of sell-
ers. �is has led to many unscrupulous vendors engag-
ing in di�erent forms of fraud to game recommender
systems for their bene�t. Typically, they attempt to
in�ate the perceived desirability of their own products
(push attacks) or lower the ratings of their competitors
(nuke attacks). �ese types of attack have been broadly
studied as shilling attacks (Lam & Riedl, ) or pro-
�le injection attacks (Burke, Mobasher, Bhaumik, &
Williams, ). Such attacks usually involve setting
up dummy pro�les, and assume di�erent amounts of
knowledge about the system. For instance, the average
attack (Lam & Riedl, ) assumes knowledge of the
average rating for each item; and the attacker assigns
values randomly distributed around this average, along
with a high rating for the item being pushed. Studies
have shown that such attacks can be quite detrimental to
predicted ratings, though item-based collaborative �l-
tering tends to be more robust to these attacks (Lam &
Riedl, ). Obviously, content-based methods, which
only rely on a users past ratings, are una�ected by pro�le
injection attacks.
While pure content-based methods avoid some of

the pitfalls discussed above, collaborative �ltering still
has some key advantages over them. Firstly, CF can
perform in domains where there is not much content
associated with items, or where the content is di�-
cult for a computer to analyze, such as ideas, opinions,
etc. Secondly, a CF system has the ability to provide



Recommender Systems R 

R

serendipitous recommendations, that is, it can recom-
mend items that are relevant to the user, but do not
contain content from the user’s pro�le.

Recommended Reading
Good surveys of the literature in the field can be found in Adomavi-
cius and Tuzhilin (); Bell et al. (); Su and Khoshgoftaar
(). For extensive empirical comparisons on variations of Col-
laborative Filtering refer to Breese (), Herlocker (), Sarwar
et al. ().
Adomavicius, G., & Tuzhilin, A. (). Toward the next generation

of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Transactions on Knowledge and Data
Engineering, (), –.

Balabanovic, M., & Shoham, Y. (). Fab: Content-based, collabo-
rative recommendation. Communications of the Association for
Computing Machinery, (), –.

Basu, C., Hirsh, H., & Cohen, W. (July ). Recommendation as
classification: Using social and content-based information in
recommendation. In Proceedings of the fifteenth national con-
ference on artificial intelligence (AAAI-), Madison, Wisconsin
(pp. –).

Bell, R., Koren, Y., & Volinsky, C. (). Matrix factorization
techniques for recommender systems. IEEE Computer ():
–.

Billsus, D., & Pazzani, M. J. (). Learning collaborative infor-
mation filters. In Proceedings of the fifteenth international con-
ference on machine learning (ICML-), Madison, Wisconsin
(pp. –). San Francisco: Morgan Kaufmann.

Breese, J. S., Heckerman, D., & Kadie, C. (July ). Empirical anal-
ysis of predictive algorithms for collaborative filtering. In Pro-
ceedings of the fourteenth conference on uncertainty in artificial
intelligence, Madison, Wisconsin.

Burke, R., Mobasher, B., Bhaumik, R., & Williams, C. ().
Segment-based injection attacks against collaborative filtering
recommender systems. In ICDM ’: Proceedings of the fifth
IEEE international conference on data mining (pp. –).
Washington, DC: IEEE Computer Society. Houston, Texas.

Candès, E. J., & Tao, T. (). The power of convex relaxation: Near-
optimal matrix completion. IEEE Trans. Inform. Theory, (),
–.

Claypool, M., Gokhale, A., & Miranda, T. (). Combining
content-based and collaborative filters in an online newspa-
per. In Proceedings of the SIGIR- workshop on recommender
systems: algorithms and evaluation.

Cotter, P., & Smyth, B. (). PTV: Intelligent personalized TV
guides. In Twelfth conference on innovative applications of arti-
ficial intelligence, Austin, Texas (pp. –).

Goldberg, D., Nichols, D., Oki, B., & Terry, D. (). Using col-
laborative filtering to weave an information tapestry. Commu-
nications of the Association of Computing Machinery, (),
–.

Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Her-
locker, J., et al. (July ). Combining collaborative filtering
with personal agents for better recommendations. In Proceed-
ings of the sixteenth national conference on artificial intelligence
(AAAI-), Orlando, Florida (pp. –).

Harpale, A. S., & Yang, Y. (). Personalized active learning for
collaborative filtering. In SIGIR ’: Proceedings of the st

annual international ACM SIGIR conference on research and
development in information retrieval, Singapore (pp. –).
New York: ACM.

Herlocker, J., Konstan, J., Borchers, A., & Riedl, J. (). An algo-
rithmic framework for performing collaborative filtering. In
Proceedings of nd international ACM SIGIR conference on
research and development in information retrieval, Berkeley,
California (pp. –). New York: ACM.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. ().
Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems, (), –.

Hofmann, T. (). Probabilistic latent semantic analysis. In Pro-
ceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, Stockholm, Sweden, July -August ,  Morgan
Kaufmann.

Hofmann, T. (). Latent semantic analysis for collaborative
filtering. ACM Transactions on Information Systems, (),
–.

Jin, R., & Si, L. (). A Bayesian approach toward active learning
for collaborative filtering. In UAI ’: Proceedings of the th
conference on uncertainty in artificial intelligence, Banff, Canada
(pp. –). Arlington: AUAI Press.

Lam, S. K., & Riedl, J. (). Shilling recommender systems for fun
and profit. In WWW ’: Proceedings of the th international
conference on World Wide Web, New York (pp. –). New
York: ACM.

Lang, K. (). NewsWeeder: Learning to filter netnews. In Proceed-
ings of the twelfth international conference on machine learning
(ICML-) (pp. –). San Francisco. Tahoe City, CA, USA.
Morgan Kaufmann, ISBN ---.

Lee, D. D., & Seung, H. S. (). Learning the parts of objects by
non-negative matrix factorization. Nature, , .

Linden, G., Smith, B., & York, J. (). Amazon.com recom-
mendations: Item-to-item collaborative filtering. IEEE Internet
Computing, (), –.

Melville, P., Mooney, R. J., & Nagarajan, R. (). Content-
boosted collaborative filtering for improved recommenda-
tions. In Proceedings of the eighteenth national confer-
ence on artificial intelligence (AAAI-), Edmonton, Alberta
(pp. –).

Mooney, R. J., & Roy, L. (June ). Content-based book recom-
mending using learning for text categorization. In Proceedings
of the fifth ACM conference on digital libraries, San Antonio,
Texas (pp. –).

Nakamura, A., & Abe, N. (). Collaborative filtering using
weighted majority prediction algorithms. In ICML ’: Proceed-
ings of the fifteenth international conference on machine learning
(pp. –). San Francisco: Morgan Kaufmann. Madison,
Wisconsin.

Pan, R., & Scholz, M. (). Mind the gaps: Weighting the unknown
in large-scale one-class collaborative filtering. In th ACM
SIGKDD conference on knowledge discovery and data mining
(KDD), Paris, France.

Pazzani, M. J. (). A framework for collaborative, content-based
and demographic filtering. Artificial Intelligence Review, 
(–), –.

Pazzani, M. J., & Billsus, D. (). Learning and revising user
profiles: The identification of interesting web sites. Machine
Learning, (), –.

Popescul, A., Ungar, L., Pennock, D. M., & Lawrence, S. (). Prob-
abilistic models for unified collaborative and content-based



 R Record Linkage

recommendation in sparse-data environments. In Proceedings
of the seventeenth conference on uncertainity in artificial intelli-
gence. University of Washington, Seattle.

Recht, B. (). A Simpler Approach to Matrix Completion.
Benjamin Recht. (to appear in Journal of Machine Learning
Research).

Rennie, J., & Srebro, N. (). Fast maximummargin matrix factor-
ization for collaborative prediction. In International conference
on machine learning, Bonn, Germany.

Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P., & Reidl, J.
(a). GroupLens: An open architecture for collaborative fil-
tering of netnews. In Proceedings of the  computer supported
cooperative work conference, New York. New York: ACM.

Resnick, P., Neophytos, I., Bergstrom, P., Mitesh, S., & Riedl, J.
(b). Grouplens: An open architecture for collaborative
filtering of netnews. In CSCW – Conference on computer
supported cooperative work, Chapel Hill (pp. –). Addison-
Wesley.

Sarwar, B., Karypis, G., Konstan, J., & Reidl, J. (). Item-based
collaborative filtering recommendation algorithms. In WWW
’: Proceedings of the tenth international conference on World
Wide Web (pp. –). New York: ACM. Hong Kong.

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. ().
Methods and metrics for cold-start recommendations. In SIGIR
’: Proceedings of the th annual international ACM SIGIR
conference on research and development in information retrieval
(pp. –). New York: ACM. Tampere, Finland.

Soboroff, I., & Nicholas, C. (). Combining content and collabo-
ration in text filtering. In T. Joachims (Ed.), Proceedings of the
IJCAI’ workshop on machine learning in information filtering
(pp. –).

Srebro, N., & Jaakkola, T. (). Weighted low-rank approxima-
tions. In International conference on machine learning (ICML).
Washington DC.

Su, X., Greiner, R., Khoshgoftaar, T. M., & Zhu, X. (). Hybrid
collaborative filtering algorithms using a mixture of experts. In
Web intelligence (pp. –).

Su, X., & Khoshgoftaar, T. M. (). A survey of collaborative
filtering techniques. Advances in Artificial Intelligence, ,
–.

Su, X., Khoshgoftaar, T. M., Zhu, X., & Greiner, R. ().
Imputation-boosted collaborative filtering using machine
learning classifiers. In SAC ’: Proceedings of the  ACM
symposium on applied computing (pp. –). New York:
ACM.

Record Linkage

7Entity Resolution

Recurrent Associative Memory

7Hop�eld Network

Recursive Partitioning

7Divide-and-Conquer Learning

Reference Reconciliation

7Entity Resolution

Regression

Novi Quadrianto, Wray L. Buntine
RSISE, ANU and SML, NICTA, Canberra, Australia

Definition
Regression is a fundamental problem in statistics and
machine learning. In regression studies, we are typ-
ically interested in inferring a real-valued function
(called a regression function) whose values correspond
to the mean of a dependent (or response or output)
variable conditioned on one or more independent (or
input) variables. Many di�erent techniques for esti-
mating this regression function have been developed,
including parametric, semi-parametric, and nonpara-
metric methods.

Motivation and Background
Assume that we are given a set of data points sampled
from an underlying but unknown distribution, each of
which includes input x and output y. An example is
given in Fig. .�e task of regression is to learn a hidden
functional relationship between x and y from observed
and possibly noisy data points. In Fig. , the input–
output relationship is a Gaussian corrupted sinusoidal
relationship, that is y = sin(πx)+є where є is normally
distributed noise. Various lines show the inferred rela-
tionship based on a linear parametric regression model
with polynomial basis functions. �e higher the degree
of the polynomial, the more complex is the inferred
relationship, as shown in Fig. , as the function tries to
better �t the observed data points.
While the most complex polynomial here is an

almost perfect reconstruction of observed data points
(it has “low bias”), it gives a very poor representation of



Regression R 

R

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

Sinusoidal observations
Degree–1 polynomial

Degree–5 polynomial

Degree–20 polynomial

x

y

Regression. Figure .  data points (one-dimensional input x and output y variables) with a Gaussian corrupted sinu-

soidal input–output relationship, y = sin(πx)+єwhere є is normally distributed noise. The task is to learn the functional

relationship between x and y. Various lines show the inferred relationship based on a linear regression model with

polynomial basis functions having various degrees

the true underlying function sin(πx) that can change
signi�cantly with the change of a few data points (it has
“high variance”).�is phenomemon is called the7bias-
variance dilemma, and selecting a complex model with
too high a variance is called 7over-�tting. Complex
parametric models (like polynomial regression) lead to
low bias estimators with a high variance, while sim-
ple models lead to low variance estimators with high
bias. To sidestep the problem of trying to estimate or
select the model complexity represented for instance
by the degree of the polynomial, so-called nonpara-
metric methods allow a rich variety of functions from
the outset (i.e., a function class not �nitely parame-
terizable) and usually provide a hyperparameter that
tunes the regularity, curvature, or complexity of the
function.

Theory/Solution
Formally, in a regression problem, we are interested
in recovering a functional dependency yi = f (xi) + єi
from N observed training data points {(xi, yi)}Ni=,

where yi ∈R is the noisy observed output at input
location xi ∈Rd. For 7Linear Regression, we repre-
sent the regression function f () by a parameter w ∈

RH in the form f (xi) := ⟨ϕ(xi),w⟩ for H �xed
basis functions {ϕh(xi)}Hh=. With general basis func-
tions such as polynomials, exponentials, sigmoids, or
even more sophisticated Fourier or wavelets bases,
we can obtain a regression function which is non-
linear with regard to the input variables although still
linear with regard to the parameters.
In regression, many more methods are possible.

Some variations on these standard linear models are
piecewise linear models, trees, and splines (roughly,
piecewise polynomial models joined up smoothly)
(Hastie, Tibshirani, & Friedman, ).�ese are called
semi-parametric models, because they have a linear
parametric component as well as a nonparametric
component.

Fitting In general, regression �ts a model to data using
an objective function or quality criterion in a form
such as



 R Regression

E(f ) =
N

∑
i=

є(yi, f (xi)) ,

where smaller E(f ) implies better quality.�is might be
derived as an error/loss function, or as a negative log
likelihood or log probability.�e squared error function
is the most convenient (leading to a least squares calcu-
lation), butmany possibilities exist. In general, methods
are distinguished by three aspects, () the representation
of the function f (), () the form of the term є(yi, f (xi)),
and () the penalty term discussed next.

Regularized/Penalized Fitting �e issue of over-�tting,
as mentioned already in the section Motivation and
Background, is usually addressed by introducing a
regularization or penalty term to the objective func-
tion. �e regularized objective function is now in the
form of

Ereg = E(f ) + λR(f ). ()

Here, E(f ) measures the quality of the solution for f ()
on the observed data points, R(f ) penalizes complex-
ity of f (), and λ is called the regularization parameter
which controls the relative importance between the two.
Measures of function curvature, for instance, can be
used for R(f ). In standard 7Support Vector Machines,
the term E(f )measures the hinge loss, and penaltyR(f )
is the sum of squares of the parameters, also used in
ridge regression (Hastie et al., ).

Bias-Variance Dilemma

As we have seen in the previous section, the introduc-
tion of the regularization term can help avoid over-
�tting. However, this raises the question of determining
an optimal value for the regularization parameter λ.�e
speci�c choice of λ controls the bias-variance tradeo�
(Geman, Bienenstock, & Doursat, ).
Recall that we try to infer a latent regression func-

tion f (x) based on N observed training data points
D = {(xi, yi)}Ni=. �e notation f (x;D) explicitly shows
the dependence of f on the data D. �e mean squared
error (MSE) which measures the e�ectiveness of f as a
predictor of y is

E[(y − f (x;D))∣x,D] = E[(y − E[y∣x])∣x,D]

+ (f (x;D) − E[y∣x]) ()

where E[.] means expectation with respect to a con-
ditional distribution p(y∣x). �e �rst term of () does
not depend on f (x;D) and it represents the intrinsic
noise on the data. �e MSE of f as an estimator of the
regression E[y∣x] is

ED[(f (x;D) − E[y∣x])] ()

where ED means expectation with respect to the train-
ing set D. �e estimation error in () can be decom-
posed into a bias and a variance terms, that is

ED[(f (x;D) − E[y∣x])]

= ED[(f (x;D) − ED[f (x;D)] + ED[f (x;D)]

− E[y∣x])]

= ED[(f (x;D) − ED[f (x;D)])] + (ED[f (x;D)]

− E[y∣x])

+ ED[(f (x;D) − ED[f (x;D)])](ED[f (x;D)]

− E[y∣x])

= ED[(f (x;D) − ED[f (x;D)])] + (ED[f (x;D)]

− E[y∣x])

= variance + bias.

�e bias termmeasures the di�erence between the aver-
age predictor over all datasets and the desired regression
function. �e variance term measures the adaptabil-
ity of the predictor to a particular dataset. �ere is a
tradeo� between the bias and variance contributions
to the estimation error, with very �exible models hav-
ing low bias but high variance (over-�tting) and rela-
tively rigid models having low variance but high bias
(under-�tting). Typically, variance is reduced through
“smoothing,” that is an introduction of the regulariza-
tion term. �is, however, will introduce bias as peaks
and valleys of the regression function will be blurred.
To achieve an optimal predictive capability, an estima-
tor with the best balance between bias and variance is
chosen by varying the regularization parameter λ. It is
crucial to note that bias-variance decomposition albeit
powerful is based on averages of datasets, however in
practice only a single dataset is observed. In this regard,
a Bayesian treatment of regression, such as Gaussian
process regression which will avoid over-�tting prob-
lem of maximum likelihood and which will also lead



Regression R 

R

to automatic methods of determining model complex-
ity using the training data alone could be an attractive
alternative.

Nonparametric Regression

In the parametric approach, an assumption on the
mathematical form of the functional relationship
between input x and output y such as linear, polyno-
mial, exponential, or combination of them needs to be
chosen a priori. Subsequently, parameters are placed
on each of the chosen forms and the optimal values
learnt from the observed data. �is is restrictive both
in the �xed functional form and in the ability to vary
the model complexity. Nonparametric approaches try
to derive the functional relationship directly from the
data, that is, they do not parameterize the regression
function.

7Gaussian Processes for regression, for instance, is
well-developed. Another approach is the kernel method,
of which a rich variety exists (Hastie et al., ). �ese
can be viewed as a regression variant of nearest neighbor
classi�cation where the function is made up of a local
element for each data point:

f (x) =
∑i yiKλ(xi, x)
∑i Kλ(xi, x)

,

where the function Kλ(xi, ) is a nonnegative “bump”
in x space centered at its �rst argument with diameter
approximately given by λ. �us, the function has a vari-
able contribution from each data point, and λ controls
the bias-variance tradeo�.

Generalized Linear Models

�e previous discussion about regression focuses on
continuous output/dependent variables.While this type
of regression problem is ubiquitous, there are however
some interests in cases of restricted output variables:

. �e output variable consists of two categories
(called binomial regression).

. �e output variable consists of more than two cate-
gories (calledmultinomial regression).

. �e output variable consists of more than two cat-
egories which can be ordered in a meaningful way
(called ordinal regression). and

. �e output variable is a count of the repetition of the
occurrence of an event (called poisson regression).

Nelder and Wedderburn () introduced the gen-
eralized linear model (GLM) by allowing the linear
model to be related to the output variables via a link
function. �is is a way to unify di�erent cases of
response variables under one framework, each only dif-
fers in the choice of the link function. Speci�cally, in
GLM, each output variable is assumed to be gener-
ated from the exponential family of distributions. �e
mean of this distribution depends on the input variables
through

E[y] = g(µ) = w +wϕ(xi) + . . . +wDϕD(xi), ()

where g(µ) is the link function (Table ). �e param-
eters of the generalized linear model can then be esti-
mated by the maximum likelihood method, which can
be found by iterative re-weighted least squares (IRLS),
an instance of the expectation maximization (EM)
algorithm.

Other Variants of Regression

So far, we have focused on the problem of predicting a
single output variable y from an input variable x. Some
studies look at predicting multiple output variables
simultaneously. �e simplest approach for the multiple
outputs problem would be to model each output vari-
able with a di�erent set of basis functions. �e more
common approach uses the same set of basis functions
to model all of the output variables. Not surprisingly,

Regression. Table  A table of Various Link Functions

Associated with the Assumed Distribution on the Output

Variable

Distribution of
Dependent

Variable Name Link Function

Gaussian Identity link g(µ) = µ

Poisson Log link g(µ) = log(µ)

Binomial

Multinomial
Logit link g(µ) = log (

µ
−µ )

Exponential

Gamma
Inverse link g(µ) = µ−

Inverse Inverse g(µ) = µ−

Gaussian squared link



 R Regression Trees

the solution to the multiple outputs problem decouples
into independent regression problems with shared basis
functions.
For some other studies, the focus of regression is on

computing several regression functions corresponding
to various percentage points or quantiles (instead of the
mean) of the conditional distribution of the dependent
variable given the independent variables. �is type of
regression is called quantile regression (Koenker, ).
Sum of tilted absolute loss (called pinball loss) is being
optimized for this type of regression. Quantile regres-
sion hasmany important applicationswithin economet-
rics, data mining, social sciences, and ecology, among
other domains.
Instead of inferring one regression function corre-

sponding to the mean of a response variable, k regres-
sion functions can be computed with the assumption
that the response variable is generated by a mixture of
k components. �is is called the mixture of regressions
problem (Ga�ney & Smyth, ). Applications include
trajectory clustering, robot planning, and motion seg-
mentation.
Another important variant is the heteroscedastic

regression model where the noise variance on the data
is a function of the input variable x. �e Gaussian pro-
cess framework can be used conveniently to model this
noise-dependent case by introducing a second Gaus-
sian process to model the dependency of noise variance
on the input variable (Goldberg, Williams, & Bishop,
). �ere are also attempts to make the regression
model more robust to the presence of a few problematic
data points called outliers. Sum of absolute loss (instead
of sum of squared loss) or student’s t-distribution
(instead of Gaussian distribution) can be used for robust
regression.

Cross References
7Gaussian Processes
7Linear Regression
7Support Vector Machines

Recommended Reading
Machine learning textbooks such as Bishop (), among oth-
ers, introduce different regression models. For a more statistical
introduction including an extensive overview of the many differ-
ent semi-parametric methods and non-parametric methods such as
kernel methods see Hastie et al. (). For a coverage of key statis-
tical issues including nonlinear regression, identifiability, measures

of curvature, autocorrelation, and such, see Seber and Wild ().
For a large variety of built-in regression techniques, refer to R
(http://www.r-project.org/).
Bishop, C. (). Pattern recognition and machine learning.

Springer.
Gaffney, S., & Smyth, P. (). Trajectory clustering with mixtures

of regression models. In ACM SIGKDD (Vol. , pp. –).
ACM

Geman, S., Bienenstock, E., & Doursat, R. (). Neural networks
and the bias/variance dilemma. Neural Computation, , –.

Goldberg, P., Williams, C., & Bishop, C. (). Regression with
input-dependent noise: A Gaussian process treatment. In Neu-
ral information processing systems (Vol. ). The MIT Press

Hastie, T., Tibshirani, R., & Friedman, J. (). The elements of
statistical learning: Data mining, inference, and prediction (Cor-
rected ed.). Springer.

Koenker, R. ().Quantile regression. Cambridge University Press.
Nelder, J. A., & Wedderburn, R. W. M. (). Generalized linear

models. Journal of the Royal Statistical Society: Series A, ,
–.

Seber, G., & Wild, C. (). Nonlinear regression. New York: Wiley.

Regression Trees

Luís Torgo
University of Porto, Rua Campo Alegre, Porto,
Portugal

Synonyms
Decision trees for regression; Piecewise constant
models; Tree-based regression

Definition
Regression trees are supervised learning methods that
address multiple regression problems. �ey provide a
tree-based approximation f̂ , of an unknown regression
function Y = f (x)+ ε with Y ∈R and ε ≈N(, σ ), based
on a given sample of dataD = {⟨xi,, . . . , xi,p, yi⟩}ni=.�e
obtainedmodels consist of a hierarchy of logical tests on
the values of any of the p predictor variables.�e termi-
nal nodes of these trees, known as the leaves, contain
the numerical predictions of the model for the target
variable Y .

Motivation and Background
Work on regression trees goes back to the AID
system by Morgan and Sonquist Morgan ().

http://www.r-project.org/


Regression Trees R 

R

Nonetheless, the seminal work is the book Classi-
�cation and Regression Trees by Breiman and col-
leagues (Breiman, Friedman, Olshen, & Stone, ).
�is book has established several standards in many
theoretical aspects of tree-based regression, including
over-�tting avoidance by post-pruning, the notion of
surrogate splits for handling unknown variable, and
estimating variable importance.
Regression trees have several features that make

them a very interesting approach to several multi-
ple regression problems. For example, regression trees
provide: (a) automatic variable selection making them
highly insensitive to irrelevant variables; (b) computa-
tional e�ciency that allows addressing large problems;
(c) handling of unknown variable values; (d) handling
of both numerical and nominal predictor variables; (e)
insensitivity to predictors’ scales; and (f) interpretable
models for most domains. In spite of all these advan-
tages, regression trees have poor prediction accuracy
in several domains because of the piecewise constant
approximation they provide.

Structure of Learning System
�emost common regression trees are binary with log-
ical tests in each node (an example is given on the le�
graph of Fig. ). Tests on numerical variables usually
take the form xi < α, with α ∈ R, while tests on nom-
inal variables have the form xj ∈ {v, . . . , vm}. Each

path from the root (top) node to a leaf can be seen
as a logical assertion de�ning a region on the predic-
tors’ space. Any regression tree provides a full mutually
exclusive partition of the predictor space into L regions
with boundaries that are parallel to the predictors’ axes
due to the form of the tests. Figure  illustrates these
ideas with a tree and the respective partitioning on the
right side of the graph. All observations in a partition
are predicted with the same constant value, and that is
the reason for regression trees sometimes being referred
to as piecewise constant models.
Using a regression tree for obtaining predictions

for new observations is straightforward. For each new
observation a path from the root node to a leaf is fol-
lowed, selecting the branches according to the variable
values of the observation. �e leaf contains the predic-
tion for the observation.

Learning a Regression Tree

A binary regression tree is obtained by a very e�-
cient algorithm known as recursive partitioning (Algo-
rithm ).
If the termination criterion is not met by the input

sample D, the algorithm selects the best logical test on
one of the predictor variables according to some cri-
terion. �is test divides the current sample into two
partitions: the one with the cases satisfying the test, and
the remaining. �e algorithm proceeds by recursively

Example regression tree

x2< 3.113

x1< 3.386

x2< 6.057

x1 ≥6.569

x2 ≥3.113

x1 ≥3.386

x2 ≥6.057

x1< 6.569

3.65
n = 20

0.75
n = 2

3.97
n = 18

2.22
n = 6

4.84
n = 12

3.79
n = 7

2.3
n = 3

4.9
n = 4

6.32
n = 5

2 4 6 8 10

2
4

6
8

10

Partitioning of the predictors' space

x1

x 2

Y = 0.75

Y = 2.22

Y = 6.32

Y = 4.90 Y = 2.30

Regression Trees. Figure . A regression tree and the partitioning it provides



 R Regression Trees

Algorithm  Recursive Partitioning.
: function RecursivePartitioning(D)
Input : D, a sample of cases, {⟨xi,, . . . , xi,p, yi⟩}
Output : t, a tree node

: if <termination criterion> then
: Return a leaf node with <constant k>
: else
: t ← new tree node
: t.split ← <Find the best test on one of

the variables>
: t.le�Node ← RecursivePartitioning(x ∈ D :

x ⊧ t.split)
: t.rightNode ← RecursivePartitioning(x ∈

D : x ⊭ t.split)
: Return the node t
: end if
: end function

applying the same method to these two partitions to
obtain the le� and right branches of the node. Algo-
rithm  has threemain components that characterize the
type of regression tree we are obtaining: (a) the termina-
tion criterion; (b) the constant k; and (c) the method to
�nd the best test on one of the predictors. �e choices for
these components are related to the preference criteria
that are selected to build the trees. �e most common
criterion is the minimization of the sum of the square
errors, known as the least squares (LS) criterion. Using
this criterion it can be easily proven (e.g., Breiman et al.,
) that the constant k should be the average target
variable value of the cases in the leaf. With respect to
the termination criterion, usually very relaxed settings
are selected so that an overly large tree is grown. �e
reasoning is that the trees will be pruned a�erward with
the goal of overcoming the problemof over-�tting of the
training data.
According to the LS criterion the error in a given

node is given by,

Err(t) =

nt

∑
⟨xi ,yi⟩∈Dt

(yi − kt) ()

where Dt is the sample of cases in node t, nt is the car-
dinality of this set and kt is the average target variable
value of the cases in Dt .

Any logical test sdivides the cases inDt into two par-
titions, DtL and DtR . �e resulting pooled error is given
by,

Err(t, s) =
ntL
nt

× Err(tL) +
ntR
nt

× Err(tR) ()

where ntL/nt (ntR/nt) is the proportion of cases going to
the le� (right) branch of t.
In this context, we can estimate the value of the split

s by the respective error reduction, and this can be used
to evaluate all candidate split tests for a node,

∆(s, t) = Err(t) − Err(t, s) ()

Finding the best split test for a node t involves eval-
uating all possible tests for this node using Eq. (). For
each predictor of the problem one needs to evaluate all
possible splits in that variable. For continuous variables
this requires a sorting operation on the values of this
variable occurring in the node. A�er this sorting, a fast
incremental algorithm can be used to �nd the best cut-
point value for the test (e.g. Torgo, ). With respect
to nominal variables, Breiman et al. () have proved
a theorem that avoids trying all possible combinations
of values, reducing the computational complexity of this
task fromO(v−− ) toO(v− ), where v is the number
of values of the nominal variable.
Departures from the standard learning procedure

described above include, among others: the use of mul-
tivariate split nodes (e.g., Breiman et al., ; Gama,
; Li, Lue, & Chen, ) to overcome the axis par-
allel representation limitation of partitions; the use of
di�erent criteria to �nd the best split node (e.g., Buja
& Lee, ; Loh, ; Robnik-Sikonja & Kononenko,
); the use of di�erent preference criteria to guide
the tree growth (e.g., Breiman et al., ; Buja & Lee,
; Torgo, ; Torgo & Ribeiro, ); and the use
of both regression and split nodes (e.g., Lubinsky, ;
Malerba, Esposito, Ceci, & Appice, ).

Pruning Regression Trees

As most nonparametric modeling techniques, regres-
sion trees may 7over-�t the training data which will
inevitably lead to poor out-of-the-sample predictive
performance. �e standard procedure to �ght this
undesirable e�ect is to grow an overly large tree and
then to use some reliable error estimation procedure to



Regularization R 

R

�nd the “best” sub-tree of this large model. �is proce-
dure is known as post-pruning a tree (Breiman et al.,
). An alternative is to stop tree growth sooner in
a process known as pre-pruning, which again needs to
be guided by reliable error estimation to know when
over-�tting is starting to occur. Although more e�-
cient in computational terms, this latter alternative may
lead to stop tree growth too soon even with look-ahead
mechanisms.
Post-pruning is usually carried out in a three stages

procedure: (a) a set of sub-trees of the initial tree is gen-
erated; (b) some reliable error estimation procedure is
used to obtain estimates for each member of this set;
and (c) somemethod based on these estimates is used to
select one of these trees as the �nal treemodel. Di�erent
methods exist for each of these steps. A common setup
(e.g., Breiman et al., ) is to use error-complexity
pruning to generate a sequence of nested sub-trees,
whose error is then estimated by cross validation. �e
�nal tree is selected using the x-SE rule, which starts
with the lowest estimated error sub-tree and then selects
the smallest tree within the interval of x standard errors
of the lowest estimated error tree (a frequent setting is
to use one standard error).
Variations on the subject of pruning regression

trees include, among others: pre-pruning alternatives
(e.g., Breiman & Meisel, ; Friedman, ); the use
of di�erent tree error estimators (see Torgo () for
a comparative study and references to di�erent alterna-
tives); and the use of the MinimumDescription Length
(MDL) principle to guide the pruning (Robnik-Sikonja
& Kononenko, ).

Cross References
7Model Trees
7Out-of-the-Sample
7Random Forests
7Regression
7Supervised Learning
7Training Sample

Recommended Reading
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (). Classifica-

tion and regression trees. Statistics/probability series. Wadsworth
& Brooks/Cole Advanced Books & Software.

Breiman, L., & Meisel, W. S. (). General estimates of the intrinsic
variability of data in nonlinear regression models. Journal of the
American Statistical Association, , –.

Buja, A., & Lee, Y.-S. (). Data mining criteria for tree-based
regression and classification. In Proceedings of ACM SIGKDD
international conference on knowledge discovery and data mining
(pp. –). San Francisco, California, USA.

Friedman, J. H. (). A tree-structured approach to nonparamet-
ric multiple regression. In T. Gasser & M. Rosenblatt (Eds.),
Smoothing techniques for curve estimation. Lecture notes in
mathematics (Vol. , pp. –). Berlin: Springer.

Gama, J. (). Functional trees.Machine Learning, (), –.
Li, K. C., Lue, H., & Chen, C. (). Interactive tree-structured

regression via principal Hessians direction. Journal of the Amer-
ican Statistical Association, , –.

Loh, W. (). Regression trees with unbiased variable selection
and interaction detection. Statistica Sinica, , –.

Lubinsky, D. (). Tree structured interpretable regression. In
Proceedings of the workshop on AI & statistics.

Malerba, D., Esposito, F., Ceci, M., & Appice, A. (). Top-down
induction of model trees with regression and splitting nodes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
(), –.

Morgan, J. N., & Sonquist, J. A. (). Problems in the analysis
of survey data, and a proposal. Journal of American Statistical
Association, (), –.

Robnik-Sikonja, M., & Kononenko, I. (). Context-sensitive
attribute estimation in regression. In Proceedings of the ICML-
 workshop on learning in context-sensitive domains. Brighton,
UK.

Robnik-Sikonja, M., & Kononenko, I. (). Pruning regression
trees with MDL. In Proceedings of ECAI-. Brighton, UK.

Torgo, L. (). Error estimates for pruning regression trees. In C.
Nedellec & C. Rouveirol (Eds.), Proceedings of the tenth Euro-
pean conference on machine learning. LNAI (Vol. ). London,
UK: Springer-Verlag.

Torgo, L. (). Inductive learning of tree-based regression mod-
els. PhD thesis, Department of Computer Science, Faculty of
Sciences, University of Porto.

Torgo, L., & Ribeiro, R. (). Predicting outliers. In N. Lavrac, D.
Gamberger, L. Todorovski, & H. Blockeel (Eds.), Proceedings of
principles of data mining and knowledge discovery (PKDD’).
LNAI (Vol. , pp. –). Berlin/Heidelberg: Springer-
Verlag.

Regularization

Xinhua Zhang
Australian National University, NICTA London Circuit
Canberra, Australia

Definition
Regularization plays a key role in many machine learn-
ing algorithms. Exactly �tting a model to the training
data is generally undesirable, because it will �t the noise



 R Regularization

in the training examples (7over�tting), and is doomed
to predict (generalize) poorly on unseen data. In con-
trast, a simple model that �ts the training data well is
more likely to capture the regularities in it and gener-
alize well. So a regularizer is introduced to quantify the
complexity of a model, and many successful machine
learning algorithms fall in the framework of regularized
risk minimization:

(How well the model �ts the training data) ()

+λ ⋅ (complexity/regularization of the model), ()

where the positive real number λ controls the tradeo�.
�ere is a variety of regularizers, which yield di�er-

ent statistical and computational properties. In general,
there is no universally best regularizer, and a regular-
ization approach must be chosen depending on the
dataset.

Motivation and Background
�emain goal of machine learning is to induce a model
from the observed data, and use thismodel tomake pre-
dictions and decisions. �is is also largely the goal of
general natural science, and is commonly called inverse
problems (“forward problem” means using the model
to generate observations). �erefore, it is no surprise
that regularization had been well studied before the
emergence of machine learning.
Inverse problems are typically ill-posed, e.g., hav-

ing only a �nite number of samples drawn from an
uncountable space, or having a �nite number of mea-
surements in an in�nite dimensional space. In machine
learning, we o�en need to induce a classi�er for the
whole feature-label space, while only a �nite number of
feature-label pairs are available for training. In practice,
the set of candidate models is o�en �exible enough to
precisely �t all the training examples. However, this can
lead to signi�cant over�tting when the training data is
noisy, and the real challenge is how to generalize well on
the unseen data in the whole feature-label space.
Many techniques have been proposed to tackle ill-

posed inverse problems. Almost all of them introduce
an additional measure on how much a model is pre-
ferred a priori (i.e., without observing the training data).
�is extra belief on the desirable form of the model
re�ects the external knowledge of the model designer.
It cannot be replaced by the data itself according to the

“no free lunch theorem,” which states that if there is
no assumption on the mechanism of labeling, then it is
impossible to generalize and any model can be inferior
to another on some distribution of the feature-label pair
(Devroye, Gyor, & Lugosi, ).
A commonly used prior is the so-called 7Occam’s

razor, which prefers “simple” models. It asserts that
among all the models which �t the training data well,
the simplest one is more likely to capture the “regular-
ities” in it and hence has a larger chance to generalize
well to the unseen data. �en an immediate question
is how to quantify the complexity of a model, which
is o�en called a regularizer. Intuitively, a regularizer
can encode preference for a sparse model (few features
are relevant for prediction), a large margin model (two
classes have a wide margin), or a smooth model with
weak high-frequency components. A general frame-
work of regularization was given by Tikhonov ().

Theory
Suppose n feature-label pairs {(xi, yi)}

n
i= are drawn iid

from a certain joint distribution P on X × Y , where X
and Y are the spaces of feature and label respectively.
Let the marginal distribution on X and Y be Px and Py
respectively. For convenience, let X be Rp (Euclidean
space). Denote X := (x, . . . , xn) and y := (y, . . . , yn)⊺.

An Illustrative Example: Ridge Regression

Ridge regression is illustrative of the use of regulariza-
tion. It tries to �t the label y by a linear model ⟨w, x⟩
(inner product). So we need to solve a system of linear
equations in w: (x, . . . , xn)⊺w = y, which is equivalent
to a linear least square problem: minw∈Rp ∥X⊺w − y∥. If
the rank of X is less than the dimension of w, then it is
overdetermined and the solution is not unique.
To approach this ill-posed problem, one needs to

introduce additional assumptions on what models are
preferred, i.e., the regularizer. One choice is to pick a
matrix Γ and regularizew by ∥Γw∥

. As a result, we solve
minw∈Rp ∥X⊺w − y∥ + λ ∥Γ⊺w∥

, and the solution has
closed formw∗ = (XX⊺+λΓΓ⊺)Xy. Γ can be simply the
identity matrix which encodes our preference for small
norm models.

�e use of regularization can also be justi�ed
from a Bayesian point of view. Treating w as a
multi-variate random variable and the likelihood as
exp (−∥X⊺w − y∥), then the minimizer of ∥X⊺w − y∥



Regularization R 

R

is just a maximum likelihood estimate of w. However,
we may also assume a prior distribution over w, e.g.,
a Gaussian prior p(w) ∼ exp (−λ ∥Γ⊺w∥


). �en the

solution of the ridge regression is simply the maximum
a posterior estimate of w.

Examples of Regularization

A common approach to regularization is to penalize a
model by its complexity measured by some real-valued
function, e.g., a certain “norm” of w. We list some
examples below:

L regularization: L regularizer, ∥w∥ := ∑i ∣wi∣, is a
popular approach to �nding sparse models, i.e., only a
few components of w are nonzero and only the corre-
sponding small number of features are relevant to the
prediction. A well-known example is the LASSO algo-
rithm (Tibshirani, ), which uses a L regularized
least square:

min
w∈Rp

∥X⊺w − y∥

+ λ ∥w∥ .

L regularization: �e L regularizer, 
 ∣∣w∣∣


 :=


 ∑i w


i , is popular due to its self-dual properties. In

all Lp spaces, only the L space is Hilbertian and self-
adjoint, so it a�ords much convenience in studying
and exploiting the dual properties of the L regularized
models. A well-known example is the support vector
machines (SVMs), which minimize the L regularized
hinge loss:


n

n

∑
i=
max {,  − ⟨w, xi⟩} +

λ

∥w∥


 .

Lp regularization: In general, all Lp norms ∥w∥p :=

(∑i ∣wi∣
p
)
/p
(p ≥ ) can be used for regularization.

When p < , (∑i ∣wi∣
p
)
/p
is no longer convex. A spe-

cially interesting case is when p = , and ∥w∥ is de�ned
as the number of nonzero elements inw (the sparseness
of w). But explicitly optimizing the L norm leads to a
combinatorial problem which is hard to solve. In some
cases, the L regularizer can approximately recover the
solution of L regularization (Candes & Tao, ).

Lp,q regularizer: �e Lp,q regularizer is popular in the
context of multi-task learning (Tropp, ). Suppose
there are T tasks, and each training example xi has
a label vector yi ∈ RT with each component corre-
sponding to a task. For each task t, we seek for a linear
regressor ⟨wt , x⟩ such that for each training example xi,
⟨wt , xi⟩ �ts the tth component of yi. Of course, the wt
could be determined independently from each other.
But in many applications, the T tasks are somehow
related, and it will be advantageous to learn them as a
whole. Stackwt ’s into amatrixW := (w, . . . ,wT)where
each column corresponds to a task and each row cor-
responds to a feature. �en the intuition of multitask
learning can be concretized by regularizingW with the
Lp,q compositional norm (p, q ≥ ):

∥W∥p,q :=
⎛

⎝
∑
i
(∑
t
∣wit ∣

p
)

q
p ⎞

⎠


q

,

where wit is the ith component of wt . When q = , it
becomes the L norm of the Lp norm of the rows, and
the sparse inducing property of L norm encourages the
rows to have Lp norm , i.e., the corresponding feature
is not used by any task. Other choices of p and q are also
possible.

Entropy regularizer: �e entropy regularizer is useful
in boosting, and it works in a slightly di�erent way from
the above regularizers. Boosting aims to �nd a con-
vex combination of hypotheses, such that the training
data is accurately classi�ed by the ensemble. At each
step, the boosting algorithm maintains a distribution
d (di >  and ∑i di = ) over the training examples,
feeds d to an oracle which returns a new hypothesis,
and then updates d and go on. As a “simple” ensemble
means a small number of weak hypotheses, the boosting
algorithm is expected to �nd an accurate ensemble by
taking as few steps as possible. �is can be achieved by
exponentiated gradient descent (Kivinen & Warmuth,
), which stems from the relative entropy regularizer
∑i di log

di
/n applied at each step. It also attractsd toward

the uniform distribution, which helps avoid over�tting
the noise, i.e., trying hard to match the (incorrect) label
of a few training examples.

Miscellaneous: Instead of using a function that directly
measures the complexity of the modelw, regularization



 R Regularization

can also be achieved by penalizing the complexity of the
output of the model on the training data. �is is called
value regularization (Rifkin&Lippert, ). It not only
yields neat derivations of standard algorithms, but also
provides much convenience in studying the learning
theory and optimization.
Furthermore, the regularized risk minimization

framework in () is not the only approach to regulariza-
tion. For example, in7online learning where themodel
is updated iteratively, early stopping is an e�ective form
of regularization and it has been widely used in train-
ing neural networks. Suppose the available dataset is
divided into a training set and a validation set, and
the model is learned online from the training set. �en
the algorithm terminates when the performance of the
model on the validation set stops improving.

Measuring the Capacity of Model Class

Besides penalizing the complexity of the model, we can
restrict the complexity of the model class F in the �rst
place. For example, 7linear regression is intrinsically
“simpler” than quadratic regression.7Decision stumps
are “simpler” than linear classi�ers. In other words, reg-
ularization can be achieved by restricting the capacity
of the model class, and the key question is how to quan-
tify this capacity. Some commonly usedmeasures in the
context of binary classi�cation are the following.

VC dimension: �e Vapnik–Chervonenkis dimension
(7VC dimension) quanti�es howmany data points can
be arbitrarily labeled by using the functions in F (Vap-
nik & Chervonenkis, ). F is said to shatter a set of
data points x, . . . , xn if for any assignment of labels to
these points, there exists a function f ∈ F which yields
this labeling.�eVC dimension ofF is themaximum n
such that there exist n data points that can be shattered
byF . For example, decision stumps haveVCdimension
, and linear classi�ers (with bias) in a p-dimensional
space have VC dimension p + .

Covering number: �e idea of covering number (Guo,
Bartlett, Shawe-Taylor & Williamson ) is to
characterize the inherent “dimension” of F , in a way
that follows the standard concept of vector dimension.
Given n data points x, . . . , xn, wemay endow themodel
class F with the following metric:

dn(f , g) :=

n

n

∑
i=

δ(f (xi) ≠ g(xi)), ∀ f , g ∈ F ,

where δ(⋅) =  if ⋅ is true and  otherwise. A set of
functions f, . . . , fm is said to be a cover of F at radius
є if for any function f ∈ F , there exists an fi such that
dn( f , fi) < є. �en the covering number of F at radius
є >  with respect to dn is the minimum size of a cover
of radius є.
To understand themotivation of the de�nition, con-

sider the unit ball in Rp. To cover it by є radius balls,
one needs order N(є, p) = є−p balls. �en the dimen-
sion p can be estimated from the rate of growth of
logN(є, p) = −p log є with respect to є. �e covering
number is an analogy of N(є, p), and the dimension of
F can be estimated in the same spirit.

Rademacher average: �e Rademacher average is a
so� variant of the VC dimension. Instead of requiring
the model class to shatter n data points, it allows that
the labels be violated at some cost. Let σi ∈ {−, } be
an arbitrary assignment of the labels, and assume all
functions in F range in {−, } (this restriction can be
relaxed). �en a model f ∈ F is considered as the most
consistent with {σi} if it maximizes n ∑

n
i= σif (xi). �is

term equals  ifF does contain a model consistent with
{σi}. �en we take an average over all possible assign-
ments of σi, i.e., treating σi as a binary random variable
with P(σi = ) = P(σi = −) = ., and calculating the
expectation of the best compatibility over {σi}:

Rn(F) = E
σ

⎡
⎢
⎢
⎢
⎣
sup
f ∈F


n

n

∑
i=

σif (xi)
⎤
⎥
⎥
⎥
⎦
.

Rademacher complexity o�en leads to tighter general-
ization bounds than VC dimension thanks to its depen-
dency on the observed data. Furthermore, we may take
expectation over the samples x, . . . , xn drawn indepen-
dently and identically from Px:

R(F) = E
xi∼Px

E
σ

⎡
⎢
⎢
⎢
⎣
sup
f ∈F


n

n

∑
i=

σif (xi)
⎤
⎥
⎥
⎥
⎦
.

�erefore, similar to VC dimension, the Rademacher
average is high if the model class F is “rich,” and can
match most assignments of {σi}.

Applications
In many applications such as bioinformatics, the train-
ing examples are expensive and the number of fea-
tures p is much higher than the number of labeled



Reinforcement Learning R 

R

examples n. In such cases, regularization is crucial, (e.g.,
Zhang, Zhang, & Wells, ).
L regularizationhas gainedmuchpopularity recently

in the �eld of compressed sensing, and it has been
widely used in imaging for radar, astronomy, medical
diagnosis, and geophysics. See an ensemble of publica-
tions at http://dsp.rice.edu/cs

�e main spirit of regularization, namely a pref-
erence for models with lower complexity, has been
used by some7model evaluation techniques. Examples
include Akaike information criterion (AIC), Bayesian
information criterion (BIC), 7minimum description
length (MDL), and the 7minimum message length
(MML).

Cross References
7Minimum Description Length
7Model Evaluation
7Occam’s Razor
7Over�tting
7Statistical Learning�eory
7Support Vector Machines
7VC Dimension

Recommended Reading
Regularization lies at the heart of statistical machine learning,
and it is indispensable in almost every learning algorithm. A
comprehensive statistical analysis from the computational learn-
ing theory perspective can be found in Bousquet, Boucheron, &
Lugosi () and Vapnik (). Abundant resources on com-
pressed sensing including both theory and applications are available
at http://dsp.rice.edu/cs. Regularizations related to SVMs and ker-
nel methods are discussed in detail by Schölkopf & Smola ()
and Shawe-Taylor & Cristianini (). Anthony & Bartlett ()
provide in-depth theoretical analysis for neural networks.
Anthony, M., & Bartlett, P. L. (). Neural network learning: The-

oretical foundations. Cambridge: Cambridge University Press.
Bousquet, O., Boucheron, S., & Lugosi, G. (). Theory of classi-

fication: A survey of recent advances. ESAIM: Probability and
Statistics, , –.

Candes, E., & Tao, T. (). Decoding by linear programming. IEEE
Transactions on Information Theory, (), –.

Devroye, L., Györ, L., & Lugosi, G. (). A probabilistic theory
of pattern recognition, vol.  of applications of mathematics.
New York: Springer.

Guo, Y., Bartlett, P. L., Shawe-Taylor, J., & Williamson, R. C. ().
Covering numbers for support vector machines. In Proceedings
of the Annual Conference Computational Learning Theory.

Kivinen, J., & Warmuth, M. K. (). Exponentiated gradient ver-
sus gradient descent for linear predictors. Information and
Computation, (), –.

Rifkin, R. M., & Lippert, R. A. (). Value regularization and
Fenchel duality. Journal of Machine Learning Research, ,
–.

Schölkopf, B., & Smola, A. (). Learning with kernels. Cambridge:
MIT Press.

Shawe-Taylor, J., & Cristianini, N. (). Kernel methods for pat-
tern analysis. Cambridge: Cambridge University Press.

Tibshirani, R. (). Regression shrinkage and selection via the
LASSO. Journal of the Royal Statistical Society. Series B. Statis-
tical Methodology, , –.

Tikhonov, A. N. (). On the stability of inverse problems.Doklady
Akademii nauk SSSR, (), –.

Tropp, J. A. (). Algorithms for simultaneous sparse approx-
imation, part ii: Convex relaxation. Signal Processing, (),
C–.

Vapnik, V. (). Statistical Learning Theory. Wiley: New York
Vapnik, V., & Chervonenkis, A. (). On the uniform convergence

of relative frequencies of events to their probabilities. Theory of
Probability and its Applications, (), –.

Zhang, M., Zhang, D., & Wells, M. T. (). Variable selection
for large p small n regression models with incomplete data:
Mapping QTL with epistases. BMC Bioinformatics, , .

Regularization Networks

7Radial Basis Function Networks

Reinforcement Learning

Peter Stone
�e University of Texas at Austin, Austin, TX, USA

Reinforcement learning describes a large class of learn-
ing problems characteristic of autonomous agents inter-
acting in an environment: sequential decision-making
problems with delayed reward. Reinforcement learn-
ing algorithms seek to learn a policy (mapping from
states to actions) that maximize the reward received
over time.
Unlike in 7supervised learning problems, in rein-

forcement-learning problems, there are no labeled
examples of correct and incorrect behavior. However,
unlike7unsupervised learning problems, a reward sig-
nal can be perceived.
Manydi�erent algorithms for solving reinforcement-

learning problems are covered in other entries. �is

http://dsp.rice.edu/cs
http://dsp.rice.edu/cs


 R Reinforcement Learning

entry provides just a brief high-level classi�cation of the
algorithms.
Perhaps the most well-known approach to solving

reinforcement-learning problems, as covered in detail
by Sutton and Barto (), is based on learning a value
function, which represents the long-term expected
reward of each state the agent may encounter, given
a particular policy. �is approach typically assumes
that the environment is a 7Markov decision process
in which rewards are discounted over time, though
it is also possible to optimize for average reward
per time step as in 7average-reward reinforcement
learning. If a complete model of the environment
is available, 7dynamic programming, or speci�cally
7value iteration, can be used to compute an opti-
mal value function, from which an optimal policy can
be derived.
If a model is not available, an optimal value func-

tion can be learned from experience via model-free
techniques such as 7temporal di�erence learning,
which combine elements of dynamic programming
with Monte Carlo estimation. Partly due to Watkins’
elegant proof that 7Q-learning converges to the opti-
mal value function (Watkins, ), temporal di�erence
methods are currently among the most commonly used
approaches for reinforcement-learning problems.
Watkins’ convergence proof relies on executing

a policy that visits every state in�nitely o�en. In
practice, Q-learning does converge in small, discrete
domains. However in larger, and particularly in con-
tinuous domains, the learning algorithm must gener-
alize the value function across states, a process known
as 7value function approximation. Examples include
7instance-based reinforcement learning, 7Gaussian
process reinforcement learning, and 7relational rein-
forcement learning.
Even when combined with value function approxi-

mation, the most basic value-free methods, such as Q-
learning and SARSA are very ine�cient with respect to
experience: they are not sample-e�cient. With the view
that experience is o�en more costly than computation,
much research has been devoted to making more e�-
cient use of experience, for instance via 7hierarchical
reinforcement learning, 7reward shaping, or 7model-
based reinforcement learning inwhich the experience is
used to learn a domainmodel, which can then be solved
via dynamic programming.

�ough these methods make e�cient use of the
experience that is presented to them, the goal of opti-
mizing sample e�ciency also motivates the study of
7e�cient exploration in reinforcement learning. �e
study of exploration methods can be isolated from
the full reinforcement-learning problem by removing
the notion of temporally delayed reward as is done in
7associative reinforcement learning or by removing
the notion of states altogether as is done in 7k-armed
bandits. k-Armed bandit algorithms focus entirely on
the exploration versus exploitation challenge, without
having to worry about generalization across states or
delayed rewards. Back in the context of the full RL prob-
lem,7Bayesian reinforcement learning enables optimal
exploration given prior distributions over the param-
eters of the learning problem. However, its computa-
tional complexity has limited its use so far to very small
domains.
Althoughmost of themethods above revolve around

learning a value function, reinforcement-learning prob-
lems can also be solved without learning value func-
tions, by directly searching the space of potential
policies via policy search. E�ective ways of conduct-
ing such a search include 7policy gradient reinforce-
ment learning, 7least squares reinforcement learning
methods, and evolutionary reinforcement learning.
As typically formulated, the goal of a reinforcement-

learning algorithm is to learn an optimal (or high-
performing) policy based on knowledge of, or
experience of, a reward function (and state transition
function). However, it is also possible to take the
opposite perspective that of trying to learn the reward
function based on observation of the optimal policy.
�is problem formulation is known as 7inverse
reinforcement learning.
Leveraging this large body of theory and algorithms,

a current focus in the �eld is deploying large-scale,
successful applications of reinforcement learning. Two
such applications treated herein are7autonomous heli-
copter �ight using reinforcement learning and 7robot
learning.

Cross References
7Associative Reinforcement Learning
7Autonomous Helicopter Flight Using Reinforcement
Learning



Relational Learning R 

R

7Average-Reward Reinforcement Learning
7Bayesian Reinforcement Learning
7Dynamic Programming
7E�cient Exploration in Reinforcement Learning
7Gaussian Process Reinforcement Learning
7Hierarchical Reinforcement Learning
7Instance-Based Reinforcement Learning
7Inverse Reinforcement Learning
7Least Squares Reinforcement Learning Methods
7Model-Based Reinforcement Learning
7Policy Gradient Methods
7Q-Learning
7Relational Reinforcement Learning
7Reward Shaping
7Symbolic Dynamic Programming
7Temporal Di�erence Learning
7Value Function Approximation

Recommended Reading
Sutton, R. S., & Barto, A. G. (). Reinforcement learning: An

introduction. Cambridge, MA: MIT.
Watkins, C. J. C. H. (). Learning from delayed rewards. PhD

thesis, King’s College, Cambridge, UK.

Reinforcement Learning in
Structured Domains

7Relational Reinforcement Learning

Relational

�e adjective relational can have two di�erent mean-
ings inmachine learning.�e ambiguity comes from an
ambiguity in database terminology.

7Relational Data Mining refers to relational
database, and is sometimes denoted multi-relational
data mining. Indeed a relational database typically
involves several relations (a relation is the formal name
of a table). �ose tables are o�en linked to each other,
but the “relational” adjective does not refer to those
relationships.

On the other hand, 7Relational Learning focuses
on those relationships and intends to learn whether a
relationship exists between some given entities.

Cross References
7Propositionalization
7Relational Data Mining
7Relational Learning

Relational Data Mining

7Inductive Logic Programming

Relational Dynamic Programming

7Symbolic Dynamic Programming

Relational Learning

Jan Struyf, Hendrik Blockeel
Katholieke Universiteit Leuven, Heverlee, Belgium

Problem Definition
Relational learning refers to learning in a context where
there may be relationships between learning examples,
or where these examples may have a complex internal
structure (i.e., consist ofmultiple components and there
may be relationships between these components). In
other words, the “relational” may refer to both an inter-
nal or external relational structure describing the exam-
ples. In fact, there is no essential di�erence between
these two cases, as it depends on the de�nition of an
example whether relations are internal or external to it.
Most methods, however, are clearly set in one of these
two contexts.

Learning from Examples with External Relationships

�is setting considers learning from a set of exam-
ples where each example itself has a relatively sim-
ple description, for instance in the attribute-value
format, and relationships may be present among these
examples.



 R Relational Learning

Example . Consider the task of web-page classi�cation.
Each web-page is described by a �xed set of attributes,
such as a bag of words representation of the page. Web-
pages may be related through hyperlinks, and the class
label of a given page typically depends on the labels of
the pages to which it links.

Example . Consider the Internet Movie Database
(www.imdb.com). Each movie is described by a �xed
set of attributes, such as its title and genre. Movies are
related to other entity types, such as Studio, Director,
Producer, and Actor, each of which is in turn described
by a di�erent set of attributes. Note that twomovies can
be related through the other entity types. For example,
they can be made by the same studio or star the same
well-known actor. �e learning task in this domain
could be, for instance, predicting the opening weekend
box o�ce receipts of the movies.

If relationships are present among examples, then
the examples may not be independent and identi-
cally distributed (i.i.d.), an assumption made by many
learning algorithms. Relational data that violates this
assumption can be detrimental to learning performance
as Jensen andNeville () show. Relationships among
examples can, on the other hand, also be exploited by
the learning algorithm. 7Collective classi�cation tech-
niques (Jensen, Neville, & Gallagher, ), for exam-
ple, take the class labels of related examples into account
when classifying a new instance.

Learning from Examples with a Complex Internal

Structure

In this setting, each example may have a complex inter-
nal structure, but no relationships exist that relate dif-
ferent examples to one another. Learning algorithms
typically use individual-centered representations in this
setting, such as logical interpretations or strongly typed
terms (Lloyd, ), which store together all data of a
given example. An important advantage of individual-
centered representations is that they scale better to large
datasets. Special cases of this setting include applica-
tions where the examples can be represented as graphs,
trees, or sequences.

Example . Consider a database of candidate chemical
compounds to be used in drugs. �e molecular struc-
ture of each compound can be represented as a graph
where the vertices are atoms and the edges are bonds.

Each atom is labeledwith its element type and the bonds
can be single, double, triple, or aromatic bonds. Com-
pounds are classi�ed as active or inactive with regard
to a given disease and the goal is to build models that
are able to distinguish active from inactive compounds
based on their molecular structure. Such models can,
for instance, be used to gain insight in the common
substructures, such as binding sites, that determine a
compound’s activity.

Approaches to Relational Learning
Many di�erent kinds of learning tasks have been
de�ned in relational learning, and an even larger num-
ber of approaches have been proposed for tackling these
tasks. We give an overview of di�erent learning settings
that can be considered instances of relational learning.

Inductive Logic Programming

In 7inductive logic programming (ILP), the input
and output knowledge of a learner are described in
(variants of) �rst-order predicate logic. Languages
based on �rst-order logic are highly expressive from
the point of view of knowledge representation, and
indeed, a language such as Prolog (Bratko, ) can
be used without adaptations to represent objects and
the relationships between them, as well as background
knowledge that one may have about the domain.

Example . �is example is based on the work by
Finn, Muggleton, Page, and Srinivasan (). Con-
sider a data set that describes chemical compounds.�e
active compounds in the set are ACE inhibitors, which
are used in treatments for hypertension. �e molecu-
lar structure of the compounds is represented as a set of
Prolog facts, such as: atom(m, a, o).

atom(m, a, c).
. . .
bond(m, a, a, ).
. . .
coord(m, a, ., −., .).
coord(m, a, ., −., .).
. . .

which states that molecule m includes an oxygen
atom a and a carbon atom a that are single bonded.
�e coord/ predicate lists the D coordinates of the

www.imdb.com


Relational Learning R 

R

ca

ACE_inhibitor(A) :-

zincsite(A, B),

hacc(A, C),

dist(A, B, C, 7.9, 1.0),

hacc(A, D),

dist(A, B, D, 8.5, 1.0),

dist(A, C, D, 2.1, 1.0),

hacc(A, E),

dist(A, B, E, 4.9, 1.0),

dist(A, C, E, 3.1, 1.0),

dist(A, D, E, 3.8, 1.0).

b

Molecule A is an ACE inhibitor if:
molecule A can bind to zinc at site B, and
molecule A contains a hydrogen acceptor C, and
the distance between B and C is 7.9 ± 1.0Å, and
molecule A contains a hydrogen acceptor D, and
the distance between B and D is 8.5 ± 1.0Å, and
the distance between C and D is 2.1 ± 1.0Å, and
molecule A contains a hydrogen acceptor E, and
the distance between B and E is 4.9 ± 1.0Å, and
the distance between C and E is 3.1 ± 1.0Å, and
the distance between D and E is 3.8 ± 1.0Å.

Relational Learning. Figure . (a) Prolog clause modeling the concept of an ACE inhibitor in terms of the background

knowledge predicates zincsite/, hacc/, and dist/. (b) The inductive logic programming system Progol automatically

translates (a) into the “Sternberg English” rule, which can be easily read by human experts. (c) A molecule with the

active site indicated by the atoms B, C, D, and E. (Image courtesy of Finn et al. ().)

atoms in the given conformer. Background knowl-
edge, such as the concepts zinc site, hydrogen donor,
and the distance between atoms, are de�ned by means
of Prolog clauses. Figure  shows a clause learned
by the inductive logic programming system Progol
(Džeroski & Lavrač, , Ch. ) that makes use of these
background knowledge predicates. �is clause is the
description of a pharmacophore, that is, a submolecular
structure that causes a certain observable property of a
molecule.
More details on the theory of inductive logic pro-

gramming and descriptions of algorithms can be found
in the entry on 7inductive logic programming in
this encyclopedia, or in references (De Raedt, ;
Džeroski & Lavrač, ).

Learning from Graphs

A graph is a mathematical structure consisting of a set
of nodes V and a set of edges E ⊆ V between those
nodes. �e set of edges is by de�nition a binary rela-
tion de�ned over the nodes. Hence, for any learning

problem where the relationships between examples can
be described using a single binary relation, the training
set can be represented straightforwardly as a graph.�is
setting covers a wide range of relational learning tasks,
for example, webmining (the set of links between pages
is a binary relation), social network analysis, etc. Non-
binary relationships can be represented as hypergraphs;
in a hypergraph, edges are de�ned as subsets of V of
arbitrary size, rather than elements of V.
In graph-based learning systems, there is a clear

distinction between approaches that learn from exam-
ples with external relationships, where the whole data
set is represented as a single graph and each node is
an example, and individual-centered approaches, where
each example by itself is a graph. In the �rst kind of
approaches, the goal is o�en to predict properties of
existing nodes or edges, to predict the existence or
non-existence of edges (“7link discovery”), to predict
whether two nodes actually refer to the same object
(“node identi�cation”), detection of subgraphs that fre-
quently occur in the graph, etc. When learning from



 R Relational Learning

multiple graphs, a typical goal is to learn a model for
classifying the graphs, to �nd frequent substructures
(where frequency is de�ned as the number of graphs a
subgraphs occurs in), etc.
Compared to other methods for relational learning,

graph-basedmethods typically focusmore on the struc-
ture of the graph, and less on properties of single nodes.
�ey may take node and edge labels into account, but
typically do not allow for more elaborate information
to be associated with each node.

7Graph mining methods are o�en more e�cient
than other relational mining methods because they
avoid certain kinds of overhead, but are typically still
NP-complete, as they generally rely on subgraph iso-
morphism testing. Nevertheless, researchers have been
able to signi�cantly improve e�ciency or even avoid
NP-completeness by looking only for linear or tree-
shaped patterns, or by restricting the graphs analyzed
to a relatively broad subclass. As an example, Horváth
et al. () show that a large majority of molecules
belong to the class of outerplanar graphs, and propose
an e�cient algorithm for subgraph isomorphism testing
in this class.
More information about mining graph data can be

found in the7graphmining entry in this encyclopedia,
or in (Cook & Holder, ; Washio & Motoda, ).

Multi-relational Data Mining

Multi-relational data mining approaches relational
learning from the relational database point of view.
�e term “multi-relational” refers to the fact that from
the database perspective, one learns from information
spread over multiple tables or relations, as opposed
to 7attribute-value learning, where one learns from a
single table.

Multi-relational data mining systems tightly inte-
grate with relational databases. Mainly rule and
decision tree learners have been developed in this set-
ting. Because practical relational databases may be
huge, most of these systems pay much attention to e�-
ciency and scalability, and use techniques such as sam-
pling and pre-computation (e.g., materializing views).
An example of a scalable and e�cient multi-relational
rule learning system is CrossMine (Yin, Han, Yang, &
Yu, ).
An alternative approach to relational learning and

multi-relational data mining is 7propositionalization.
Propositionalization consists of automatically convert-
ing the relational representation into an attribute-
value representation and then using attribute-value
data mining algorithms on the resulting representation.
An important line of research within multi-relational
data mining investigates how database approaches can
be used to this end. Database oriented propositionaliza-
tion creates a view in which each example is represented
by precisely one row. Information from related enti-
ties is incorporated into this row by adding derived
attributes, computed by means of aggregation. In the
movie database (Example ), the view representing
movies could include aggregated attributes such as the
number of actors starring in themovie. A comparison of
propositionalization approaches is presented by Krogel
et al. (), and a discussion of them is also included
in this volume.
Finally, note that most inductive logic program-

ming systems are directly applicable to multi-relational
data mining by representing each relational table as a
predicate. �is is possible because the relational rep-
resentation is essentially a subset of �rst-order logic
(known as datalog). Much research on multi-relational

Representation
generality

Graphs Relational
databases

Logic

Learning from graphs

Relational learning

Multi-relational
data mining

Inductive logic
programming

Statistical relational learning Probabilistic logic
learning

Relational reinforcement learning



Relational Learning R 

R

data mining was developed within the ILP community
(Džeroski & Lavrač, ).

Statistical Relational Learning/Probabilistic Logic

Learning

Research on relational learning, especially in the begin-
ning, has largely focused on how to handle the rela-
tional structure of the data, and ignored aspects such
as uncertainty. Indeed, the databases handled in multi-
relational data mining, or the knowledge assumed
given in inductive logic programming, are typically
assumed to be deterministic. With the rise of proba-
bilistic representations and algorithms within machine
learning has come an increased interest in enabling rela-
tional learners to cope with uncertainty in the input
data. �is goal has been approached from at least
two di�erent directions: statistical learning approaches
have been extended toward the relational setting, giv-
ing rise to the area of 7statistical relational learn-
ing, whereas inductive logic programming researchers
have investigated how to extend their knowledge rep-
resentation and learning algorithms to cater for prob-
abilistic information, referring to this research area as
7probabilistic logic learning. While there are some dif-
ferences in terminology and approaches, both research
areas essentially address the same research question,
namely how to integrate relational and probabilistic
learning.
Among the best known approaches for statisti-

cal relational learning is the learning of probabilis-
tic relational models (PRMs, Džeroski & Lavrač, ,
Chap. ). PRMs extend Bayesian networks to the rela-
tional representationused in relational databases. PRMs
model the joint probability distribution over the non-
key attributes in a relational database schema. Similar
to Bayesian networks, PRMs are 7graphical models.
Each attribute corresponds to a node and direct depen-
dencies are modeled by directed edges. Such edges
can connect attributes from di�erent entity types that
are (indirectly) related (such a relationship is called a
“slot chain”). Inference in PRMs occurs by construct-
ing a 7Bayesian network by instantiating the PRM
with the data in the database and performing the infer-
ence in the latter. To handle :N relationships in the
Bayesian network, PRMsmake use of aggregation, sim-
ilar to the propositionalization techniques mentioned
above.

Bayesian logic programs (BLPs) (Kersting, )
aim at combining the inference power of Bayesian net-
works with that of �rst-order logic reasoning. Similar to
PRMs, the semantics of a BLP is de�ned by translating
it to a Bayesian network. Using this network, the prob-
ability of a given interpretation or the probability that a
given query yields a particular answer can be computed.

�e acyclicity requirement of Bayesian networks
carries over to representations such as PRMs and
BLPs. Markov logic networks (MLNs) (Richardson &
Domingos, ) upgrade 7Markov networks to �rst-
order logic and allow networks with cycles. MLNs are
de�ned as sets of weighted �rst-order logic formulas.
�ese are viewed as “so�” constraints on logical inter-
pretations: the fewer formulas a given interpretation
violates, the higher its probability. �e weight deter-
mines the contribution of a given formula: the higher
its weight, the greater the di�erence in log probabil-
ity between an interpretation that satis�es the formula
and one that does not, other things being equal. �e
Alchemy system implements structure and parameter
learning for MLNs.
More speci�c statistical learning techniques such as

Naïve Bayes andHiddenMarkovModels have also been
upgraded to the relational setting. More information
about such algorithms and about statistical relational
learning in general can be found in (Getoor & Taskar,
; Kersting, ).
In probabilistic logic learning, two types of seman-

tics are distinguished (De Raedt & Kersting, ):
the model theoretic semantics and the proof theoretic
semantics. Approaches that are based on themodel the-
oretic semantics de�ne a probability distribution over
interpretations and extend probabilistic attribute-value
techniques, such as Bayesian networks and Markov
networks, while proof theoretic semantics approaches
de�ne a probability distribution over proofs and
upgrade, e.g., stochastic context free grammars.

Example . Consider the case where each example is a
sentence in natural language. In this example, a model
theoretic approach would de�ne a probability distribu-
tion directly over sentences. A proof theoretic approach
would de�ne a probability distribution over “proofs,” in
this case possible parse trees of the sentence (each sen-
tence may have several possible parses). Note that the
proof theoretic view is more general in the sense that



 R Relational Learning

the distribution over sentences can be computed from
the distribution over proofs.

Stochastic logic programs (SLPs) (Muggleton, )
follow most closely the proof theoretic view and
upgrade stochastic context free grammars to �rst-
order logic. SLPs are logic programs with probabilities
attached to the clauses such that the probabilities of
clauses with the same head sum to .. �e probability
of a proof is then computed as the product of the prob-
abilities of the clauses that are used in the proof. PRISM
(Sato &Kameya, ) follows a related approach where
the probabilities are de�ned on ground facts.
Like with standard graphical models, learning algo-

rithms may include both parameter learning (estimat-
ing the probabilities) and structure learning (learning
the program). For most frameworks mentioned above,
such techniques have been or are being developed.
For amore detailed treatment of statistical relational

learning and probabilistic logic learning, we refer to the
entry on statistical relational learning in this volume,
and to several reference works (De Raedt & Kersting,
; Getoor & Taskar, ; Kersting, ; De Raedt,
Frasconi, Kersting, & Muggleton, ).

Relational Reinforcement Learning

Relational reinforcement learning (RRL) (Džeroski, De
Raedt, &Driessens, ; Tadepalli, Givan, &Driessens,
) is reinforcement learning upgraded to the rela-
tional setting. Reinforcement learning is concerned
with how an agent should act in a given environment
to maximize its accumulated reward. In RRL, both the
state of the environment and the actions are represented
using a relational representation, typically in the formof
a logic program.
Much research in RRL focuses on Q-learning,

which represents the knowledge of the agent by
means of a Q-function mapping state–action pairs to
real values. During exploration, the agent selects in
each state the action that is ranked highest by the
Q-function. �e Q-function is typically represented
using a relational regression technique. Several tech-
niques, such as relational regression trees, relational
instance based learning, and relational kernel based
regression have been considered in this context. Note
that the regression algorithms must be able to learn
incrementally: each time the agent receives a new

reward, the Q-function must be incrementally updated
for the episode (sequence of state-action pairs) that led
to the reward. Due to the use of relational regression
techniques, the agent is able to generalize over states:
it will perform similar actions in similar states and
therefore scales better to large application domains.
More recent topics in RRL include how expert

knowledge can be provided to the agent in the form
of guidance, and how learned knowledge can be trans-
ferred to related domains (“transfer learning”). More
details on these techniques and more speci�c informa-
tion on the topic of relational reinforcement learning
can be found in its corresponding encyclopedia entry
and in the related entry on 7symbolic dynamic pro-
gramming, as well as in references (Džeroski et al., ;
Tadepalli et al., ).

Cross References
7Inductive Logic Programming
7Multi-Relational Data Mining
7Relational Reinforcement Learning

Recommended Reading
Most of the topics covered in this entry have more detailed entries in
this encyclopedia, namely “Inductive Logic Programming,” “Graph
Mining,” “Relational Data Mining,” and “Relational Reinforcement
Learning.” These entries provide a brief introduction to these more
specific topics and appropriate references for further reading.
Direct relevant references to the literature include the following.

A comprehensive introduction to ILP can be found in De Raedt’s
book (De Raedt, ) on logical and relational learning, or in
the collection edited by Džeroski and Lavrač () on relational
data mining. Learning from graphs is covered by Cook and Holder
(). Džeroski and Lavrač () is also a good starting point for
reading about multi-relational data mining, together with research
papers on multi-relational data mining systems, for instance, Yin
et al. (), who present a detailed description of the CrossMine
system. Statistical relational learning in general is covered in the
collection edited by Getoor & Taskar (), while De Raedt &
Kersting () and De Raedt et al. () present overviews of
approaches originating in logic-based learning. An overview of
relational reinforcement learning can be found in Tadepalli et al.
().
Bratko, I. (). Prolog programming for artificial intelligence.

Reading, MA: Addison-Wesley (rd ed.).
Cook, D. J., & Holder, L. B. ().Mining graph data. Hoboken, NJ:

Wiley.
De Raedt, L. (). Logical and relational learning. Berlin: Springer.
De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. ().

Probabilistic inductive logic programming. Berlin: Springer.
De Raedt, L., & Kersting, K. (). Probabilistic logic learning.

SIGKDD Explorations, (), –.



Relational Reinforcement Learning R 

R

Džeroski, S., De Raedt, L., & Driessens, K. (). Relational rein-
forcement learning. Machine Learning, , –.

Džeroski, S., & Lavrač, N., (Eds.). (). Relational data mining.
Berlin: Springer.

Finn, P., Muggleton, S., Page, D., & Srinivasan, A. (). Phar-
macophore discovery using the inductive logic programming
system PROGOL. Machine Learning, , –.

Getoor, L., & Taskar, B. (). Introduction to statistical relational
learning. Cambridge: MIT Press.

Horváth, T., Ramon, J., & Wrobel, S. (). Frequent subgraph
mining in outerplanar graphs. In Proceedings of the th ACM
SIGKDD international conference on knowledge discovery and
data mining (pp. –). New York: ACM.

Jensen, D., & Neville, J. (). Linkage and autocorrelation cause
feature selection bias in relational learning. In Proceeding of the
th International Conference on Machine Learning, University
of New South Wales, Sydney (pp. –). San Francisco, CA:
Morgan Kaufmann.

Jensen, D., Neville, J., & Gallagher, B. (). Why collective infer-
ence improves relational classification. In Proceedings of the
th ACM SIGKDD international conference on knowledge dis-
covery and data mining, Philadelphia, PA (pp. –). New
York: ACM.

Kersting, K. (). An inductive logic programming approach to
statistical relational learning. Amsterdam: IOS Press.

Krogel, M.-A., Rawles, S., Železný, F., Flach, P., Lavrač, N., &
Wrobel, S. (). Comparative evaluation of approaches to
propositionalization. In Proceedings of the th international
conference on inductive logic programming, Szeged, Hungary
(pp. –). Berlin: Springer-Verlag.

Lloyd, J. W. (). Logic for learning. Berlin: Springer.
Muggleton, S. (). Stochastic logic programs. In L. De Raedt

(Ed.), Advances in inductive logic programming (pp. –).
Amsterdam: IOS Press.

Richardson, M., & Domingos, P. (). Markov logic networks.
Machine Learning, (–), –.

Sato, T., & Kameya, Y. (). PRISM: A symbolic-statistical mod-
eling language. In Proceedings of the th International joint
conference on artificial intelligence (IJCAI ), Nagoya, Japan
(pp. –). San Francisco, CA: Morgan Kaufmann.

Tadepalli, P., Givan, R., & Driessens, K. (). Relational rein-
forcement learning: An overview. In Proceeding of the ICML’
Workshop on relational reinforcement learning, Banff, Canada
(pp. –).

Washio, T., & Motoda, H. (). State of the art of graph-based data
mining. SIGKDD Explorations, (), –.

Yin, X., Han, J., Yang, J., & Yu, P. S. (). Efficient classifica-
tion across multiple database relations: A CrossMine approach.
IEEE Transactions on Knowledge and Data Engineering, (),
–.

Relational Regression Tree

7First-Order Regression Tree

Relational Reinforcement Learning

Kurt Driessens
Universiteit Leuven, Celestijnenlaan, Belgium

Synonyms
Learning in worlds with objects; Reinforcement learn-
ing in structured domains

Definition
Relational reinforcement learning is concerned with
learning behavior or control policies based on a numer-
ical feedback signal, much like standard reinforce-
ment learning, in complex domains where states (and
actions) are largely characterized by the presence of
objects, their properties, and the existing relations
between those objects. Relational reinforcement learn-
ing uses approaches similar to those used for standard
reinforcement learning, but extends these with meth-
ods that can abstract over speci�c object identities and
exploit the structural information available in the envi-
ronment.

Motivation and Background
7Reinforcement learning is a very attractive machine
learning framework, as it tackles – in a sense – the
whole arti�cial intelligence problem at a small scale:
an agent acts in an unknown environment and has
to learn how to behave optimally by reinforcement,
i.e., through rewards and punishment. Reinforcement
learning has produced some impressive and promis-
ing results. However, the applicability of reinforcement
learning has been greatly limited by its problem of deal-
ing with large problem spaces and its inability to gener-
alize the learned knowledge to new but related problem
domains.
While standard reinforcement learning methods

represent the learning environment as a set of unre-
lated states or, when using7attribute-value representa-
tions, as a vector space consisting of a �xed number of
independent dimensions, humans tend to think about
their environment in terms of objects, their properties,
and the relations between them. Examples of objects in
everyday life are chairs, people, streets, trees, etc. �is
representation allows people to treat or use most of



 R Relational Reinforcement Learning

the new objects that they encounter correctly, without
requiring training time to learn how to use them. For
example, people are able to drink their co�ee from any
cup that will hold it, even if they have never encoun-
tered that speci�c cup before, because they already have
experience with drinking their co�ee from other cup-
type objects. Standard reinforcement learning agents do
not have this ability. �eir state and action representa-
tions do not allow them to abstract away from speci�c
object-identities and recognize them as a type of object
they are already accustomed to.
Relational reinforcement learning tries to overcome

this problem by representing states of the learning
agent’s environment as sets of objects, their prop-
erties, and the relationships between them, similar
to the approaches used in 7relational learning and
7inductive logic programming. �ese structural rep-
resentations make it possible for the relational rein-
forcement learning agent to abstract away from speci�c
identities of objects and o�en also from the amount of
objects present, the exact learning environment, or even
the speci�c task to be performed.

�e term “Relational reinforcement learning” was
introduced by Džeroski, De Raedt, and Blockeel ()
when they �rst teamed the Q-learning algorithm with
a �rst-order regression algorithm. Since then, rela-
tional reinforcement learning has gained an increasing
amount of interest.

Structure of the Learning System
In principle, the structure of a relational reinforcement
learning system is very similar to that of standard rein-
forcement learning systems Fig. . At a high level, the
learning agent interacts with an environment by per-
forming actions that in�uence that environment, and
the environment provides the learning agent with a
description of its current state and a numerical feed-
back of the behavior of the agent. �e goal of the
agent is to maximize some cumulative form of this
feedback signal.�emajor di�erence between standard
reinforcement learning and relational reinforcement
learning is the representation of the state–action–space.
Relational reinforcement learning works on 7Markov
decision processes where states and actions have been
relationally factored, so-called relational Markov deci-
sion processes (RMDPs).

An RMDP can be de�ned as follows:

De�nition  (Relational Markov Decision Process)
Let PS be a set of state related predicates, PA a set of action
related predicates and C a set of constants in a logic Λ. Let
B be a theory de�ned in that logic.
An RMDP
is de�ned as < S,A,T,R >, where S ≡ {s ⊂ HPS∪C∣s ⊧

B} represents the set of states, A ≡ {a ⊂ HPA∪C∣a ⊧ B}
represents the set of actions, in which HX is the set of
facts that can be constructed given the symbols in X,
and T and R represent the transition probabilities and
reward function respectively: T : S × A × S → [, ] and
R : S→ R.

In less formal language, this means that the states
and actions in an RMDP are represented using a set of
constants C and a set of predicates PS and PA respec-
tively and constrained by a background theory B. �is
means that the background theory B de�nes which
states are possible in the domain and which actions can
be executed in which states.

�e following example illustrates these concepts.
Consider the blocks world depicted in Fig. . To
represent this environment in �rst-order logic, one
could use:

● State related predicates: PS = {on/, clear/}
● Action related predicate: PA = {move/}
● Constants: C = {,,,,�oor}

�e set of factsHPS∪C would then include, for example:
on(, ), on(,�oor) and clear() but also on(, ) and
on(�oor, ). To constrain the possible states to those
that actually make sense in a standard, i.e., real-world
view of the blocks world, the theory B can include rules
to make states that include these kinds of facts impos-
sible. For example, to make sure that a block cannot be
on top of itself, B could include the following rule:

false← on(X,X).

Relational Reinforcement Learning. Figure . Example

state–action pairs in the Blocks World



Relational Reinforcement Learning R 

R

One can also include more extensive rules to de�ne the
exact physics of the blocks world that one is interested
in. For example, including

false← on(Y ,X), on(Z,X),X ≠ �oor,Y ≠ Z

as part of the theoryB, one can exclude states where two
blocks are on top of the same block. �e action space
given by HPA∪C consists of facts such asmove(, ) and
move(�oor, ) and can be constrained by rules such as:

false← move(�oor,X).

whichmakes sure that the �oor cannot be placed on top
of a block.

�e le�most state–action pair of Fig.  can be fully
speci�ed by the following set of facts (state description
on the le�, action on the right):

on(,�oor). clear().
on(,). clear().
on(,). clear(�oor).
on(,�oor).

One can easily generalize over speci�c states and
create abstract states (or state–action pairs) that rep-
resent sets of states (or state–action pairs) by using
variables instead of constants and by listing only those
parts of states and actions that hold for each element of
the abstract state (or state–action pair). For example, the
abstract state “on(, ), on(,�oor)” represents all states
in which block  is on top of block , which in turn is on
the �oor. �e abstract state does not specify the loca-
tions of any other blocks. Of the three states depicted
in Fig. , the set of states represented by the abstract
state would include the le� and middle states. Abstract
states can also be represented by using variables when
one does not want to specify the location of any spe-
ci�c block, but wants to focus on structural aspects of
the states and actions. �e abstract state–action pair
“move(X,Y), on(Y ,�oor)” represents all state–action
pairs where a block is moved on top of another block
that is on the �oor, for example the middle and right
state–action pairs of Fig. .

Added Benefits of Relational Reinforcement Learning

We already stated that the real world is made up out of
interacting objects, or at least that humans o�en think

about the real world as such. Relational reinforcement
learning allows this same representation to be used by
reinforcement learning agents, which in turn leads to
more human-interpretable learning results.
As a consequence of the used logical or relational

representation of states and actions, the results learned
by a relational reinforcement learning agent can be re-
used more easily when some of the parameters of the
learning task change. Because relational reinforcement
learning algorithms try to solve the problem at hand
at an abstract level, the solutions will o�en carry over
to di�erent instantiations of that abstract problem. For
example, the resulting policies learned by the RRL sys-
tem (Driessens, ) discussed below, a very simple
example of which is shown in Fig. , o�en generalize
over domains with a varying number of objects. If only
actionswhich lead to the “optimal” leaf are executed, the
shown policy tree will organize any number of blocks
into a single stack.
As another example of this, the relational approxi-

mate policy iteration approach (Fern, Yoon, & Givan,
), also discussed below, is able to learn task speci�c
control knowledge from random walks in the environ-
ment. By treating the resulting state of such a random
walk as a goal state and generalizing over the speci�cs
of that goal (and the rest of the random walk) relational
approximate policy iteration can learn domain speci�c,
but goal independent policies.�is generalization of the
policy is accomplished by parametrization of the goal
and focusing on the relations between objects in the
goal, states and actions when representing the learned
policy.
Another practical bene�t of relational reinforce-

ment learning lies in the �eld of inductive transfer.
Transfer learning is concerned with the added ben-
e�ts of having experience with a related task when
being confronted with a new one. Because of the struc-
tural representation of learned results, the transfer of
knowledge learned by relational reinforcement learn-
ing agents can be accomplished by recycling those parts

Relational Reinforcement Learning. Figure . Simple

relational policy for stacking any number of blocks



 R Relational Reinforcement Learning

Reward

Environment

State

Action

examples

Relational
policy

Learning

Relational
learning
algorithm

Relational reinforcement
learning agent

Relational Reinforcement Learning. Figure . Structure

of the RRL system

of the results that still hold valid information for the
new task. Depending on the relation between the two
tasks, this can yield substantial bene�ts concerning the
required training experience.

�e use of �rst-order logic as a representational lan-
guage in relational reinforcement learning also allows
the integration of reasoning methods with traditional
reinforcement learning approaches. One example of
this is 7Symbolic Dynamic Programming, which uses
logical regression to compute necessary preconditions
that allow an agent to reach certain goals. �is same
integration allows the use of search or planning knowl-
edge as background information to extend the normal
description of states and actions.

Example Relational Reinforcement Learning

Approaches

Relational Q-Learning Relational reinforcement learn-
ing was introduced with the development of the RRL-
system (Džeroski et al., ). �is is a Q-learning
system that employs a relational regression algorithm
to generalize the Q-table used by standard Q-learning
algorithms into a Q-function. �e di�erences with a
standard Q-learning agent are mostly located inside
the learning agent. One important di�erence is the
agent’s representation of the current state. In rela-
tional reinforcement learning, this representation con-
tains structural or relational information about the
environment.
Inside the learning agent, the information consist-

ing of encountered states, chosen actions, and the con-
nected rewards is translated into learning examples.

�ese examples are then processed by a relational learn-
ing system that produces a relational Q-function and/or
policy as a result. �e relational representation of the
Q-function allows the RRL-system to use the struc-
tural properties of states and actions when assigning a
Q-value to them.
Several relational regression approaches have been

developed and applied in this context. While the orig-
inal approach used an of-the-shelve relational regres-
sion algorithm that processed the learning examples
in batch and had to be restarted to be able to pro-
cess newly available learning experiences, a number of
incremental algorithms have been developed for use
in relational reinforcement learning since then. �ese
include an incremental �rst-order regression tree algo-
rithm, incremental relational instance based regression,
kernel based regression that uses Gaussian processes,
and graph-kernels and algorithms that include combi-
nations of the above (Driessens, ).
It is possible to translate the learned Q-function

approximations into a function that directly represents
its policy. Using the values predicted by the learned
Q-function, one can generate learning examples that
represent state–action pairs and label them as either
part of the learned policy or not. �is results in a
binary classi�cation problem that can be handled by
a supervised relational learning algorithms. �is tech-
nique is known as P-learning (Džeroski, De Raedt, &
Driessens, ). It exhibits better generalization per-
formance across related learning problems than the
Q-learning approach described above. Other than the
�rst-order decision trees mentioned above, rule-based
learners have also been applied to this kind of policy
learning.

Non-parametric Policy Gradients Non-parametric pol-
icy gradients (Kersting & Driessens, ), also a
model-free approach, apply Friedmann’s gradient boost-
ing (Friedman, ) in an otherwise standard pol-
icy gradient approach for reinforcement learning. To
avoid having to represent policies using a �xed num-
ber of parameters, policies are represented as a weighted
sum of regression models grown in a stage-wise opti-
mization (�is allows the number of parameters to
grow as the experience of the learner increases, hence
the name non-parametric.). While this does not make



Relational Reinforcement Learning R 

R

non-parametric policy gradients a technique specif-
ically designed for relational reinforcement learn-
ing, it allows, like the relational Q-learning approach
described above, the use of relational regression mod-
els and is not constrained to the attribute-value setting
of standard policy gradients.

�e idea behind the approach is that instead of �nd-
ing a single, highly accurate policy, it is easier to �nd
many rough rules of thumb of how to change the way
the agent currently acts. �e learned policy is repre-
sented as

π(s, a) =
eΨ(s,a)

∑b eΨ(s,b)
,

where instead of assuming a linear parameterization for
Ψ as is done in standard policy gradients, it is assumed
that Ψ will be represented by a linear combination of
functions. Speci�cally, one starts with some initial func-
tion Ψ, e.g., based on the zero potential, and iteratively
adds corrections Ψm = Ψ + ∆ + ⋯ + ∆m. In contrast
to the standard gradient approach, ∆m here denotes the
so-called functional gradient, which is sampled during
interaction with the environment and then generalized
by an o�-the-shelf regression algorithm.

�e advantages of policy gradients over value-
function techniques are that they can learn non-
deterministic policies and that convergence of the
learning process can be guaranteed, even when using
function approximation (Sutton, McAllester, Singh, &
Mansour, ). Experimental results show that non-
parametric policy gradients have the potential to sig-
ni�cantly outperform relational Q-learning (Kersting &
Driessens, ).

Relational Approximate Policy Iteration Adi�erent app-
roach, which also directly learns a policy, is taken
in relational approximate policy iteration (Fern et al.,
). Like standard policy iteration, the approach iter-
atively improves its policy through interleaving evalu-
ation and improvement steps. In contrast to standard
policy iteration, it uses a policy language bias and a
generalizing policy function.
Instead of building a value-function approximation

for each policy evaluation step, relational approximate
policy iteration evaluates the current policy and its
closely related neighbors by sampling the state–action–
space through a technique called policy roll-out. �is

technique generates a set of trajectories from a given
state, by executing every possible action in that state
and following the current policy for a number of steps
a�erward (It is also possible to improve convergence
speed by following the next policy.). �ese trajectories
and their associated costs result in number of learn-
ing examples – one for each possible action in each
selected state – that can be used, togetherwith the policy
language bias to generate the next, improved policy.
Because every possible action in each sampled state

needs to be evaluated, this approach does require a
model or a resettable simulator of the environment.
However, relational approximate policy iteration has
been shown to work well for learning domain speci�c
control knowledge and performs very well on planning
competition problems.

Symbolic Dynamic Programming In contrast to the pre-
vious techniques, 7symbolic dynamic programming
(SDP) does not learn a policy through exploration of the
environment. Instead, it is a model-based approach that
uses knowledge about preconditions and consequences
of actions to compute the fastest way to reach a given
goal. Like other dynamic programming techniques,
SDP starts from the goal the agent wants to reach and
reasons backwards to �nd the policy that is needed to
reach that goal. In contrast to other dynamic program-
ming techniques, it does not solve speci�c instantiations
of the problem domain, but instead solves the problem
at an abstract level, thereby solving it for all possible
instantiations of the problem at once.
SDP treats the required goal-conditions as an

abstract state de�nition. Because pre- and post-
conditions of actions are known, SDP can compute
the necessary conditions that allow actions to reach
the abstract goal state. �ese conditions de�ne abstract
states from which it is possible to reach a goal state in
one step. Starting from these abstract states, the same
approach can be used to discover abstract states that
allow the goal to be reached in two steps and so on.

�is approachwas �rst proposed byBoutilier, Reiter,
and Price (), implemented as a working system by
Kersting, van Otterlo, and De Raedt () and later
improved upon by Sanner andBoutilier ().�is last
approach won nd place in the probabilistic program-
ming competition at ICAPS in .



 R Relational Value Iteration

Cross References
7Hierarchical Reinforcement Learning
7Inductive Logic Programming
7Model-Based Reinforcement Learning
7Policy Iteration
7Q-learning
7Reinforcement Learning
7Relational Learning
7Symbolic Dynamic Programming
7Temporal Di�erence Learning

Further Information
�e �eld of relational reinforcement learning has given
rise to a number of PhD dissertations in the last few
years (Croonenborghs, ; Driessens, ; Sanner,
; van Otterlo, ). �e dissertation of Mar-
tijn van Otterlo resulted in a book (van Otterlo,
) which provides a recent and reasonably com-
plete overview of the relational reinforcement learn-
ing research �eld. Other publications that presents an
overview of relational reinforcement learning research
include the proceedings of the two workshops on repre-
sentational issues in (relational) reinforcement learning
at the International Conferences of Machine Learning
in  and  (Driessens, Fern, & van Otterlo, ;
Tadepalli, Givan, & Driessens, ).

Recommended Reading
Boutilier, C., Reiter, R., & Price, B. (). Symbolic dynamic pro-

gramming for first-order MDPs. In Proceedings of the th inter-
national joint conference on artificial intelligence (IJCAI-),
Seattle, WA (pp. –).

Croonenborghs, T. (). Model-assisted approaches for relational
reinforcement learning. PHD thesis, Department of Compute
Science, Katholieke Universiteit Leuven.

Driessens, K. (). Relational reinforcement learning. PhD the-
sis, Department of Computer Science, Katholieke Universiteit
Leuven.

Driessens, K., Fern, A., & van Otterlo, M. (Eds.). (). Proceedings
of ICML- workshop on rich representation for reinforcement
learning, Bonn, Germany.

Džeroski, S., De Raedt, L., & Blockeel, H. (). Relational rein-
forcement learning. In Proceedings of the th international
conference on machine learning (ICML-) (pp. –). San
Francisco, CA: Morgan Kaufmann. Madison, WI, USA.

Džeroski, S., De Raedt, L., & Driessens, K. (). Relational rein-
forcement learning. Machine Learning, , –.

Fern, A., Yoon, S., & Givan, R. (). Approximate policy iteration
with a policy language bias: Solving relational Markov decision
processes. Journal of Artificial Intelligence Research, , –.

Friedman, J. (). Greedy function approximation: A gradient
boosting machine. Annals of Statistics, , –.

Kersting, K., & Driessens, K. (). Non-parametric policy gra-
dients: A unified treatment of propositional and relational
domains. In A. McAllum & S. Roweis (Eds.), Proceedings of the
th international conference on machine learning (ICML ),
Helsinki, Finland (pp. –).

Kersting, K., van Otterlo, M., & De Raedt, L. (). Bellman
goes relational. In Proceedings of the twenty-first international
conference on machine learning (ICML-), Banff, Canada
(pp. –).

Sanner, S. (). First-order decision-theoretic planning in struc-
tured relational environments. PhD thesis, Department of Com-
pute Science, University of Toronto.

Sanner, S., & Boutilier, C. (). Approximate linear programming
for first-order MDPs. In Proceedings of the st conference on
Uncertainty in AI (UAI), Edinburgh, Scotland.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (). Pol-
icy gradient methods for reinforcement learning with function
approximation. In Advances in neural information processing
systems  (pp. –). Cambridge: MIT Press.

Tadepalli, P., Givan, R., & Driessens, K. (Eds.). (). Proceedings
of the ICML- workshop on relational reinforcement learning,
Banff, Canada.

van Otterlo, M. (). The logic of adaptive learning. PhD thesis,
Centre for Telematics and Information Technology, University
of Twente.

van Otterlo, M. (). The logic of adaptive behavior: Knowledge
representation and algorithms for adaptive sequential deci-
sion making under uncertainty in first-order and relational
domains. Amsterdam, The Netherlands: IOS Press.

Relational Value Iteration

7Symbolic Dynamic Programming

Relationship Extraction

7Link Prediction

Relevance Feedback

Relevance feedback provides a measure of the extent
to which the results of a search match the expectations
of the user who initiated the query. Explicit feedback
require users to assess relevance by choosing one out of
a number of choices, or to rank documents to re�ect
their perceived degree of relevance. Implicit feedback
is obtained by monitoring user’s behavior such as time
spent browsing a document, amount of scrolling per-
formed while browsing a document, number of times



Reward Shaping R 

R

a document is visited, etc. Relevance feedback is one
the techniques used to support query reformulation and
turn the search into an iterative and interactive process.

Cross References
7Search Engines: Applications of ML

Representation Language

7Hypothesis Language

Reservoir Computing

Risto Miikkulainen
�e University of Texas at Austin, Austin, TX, USA

Synonyms
Echo state network; Liquid state machine

Definition
Reservoir computing is an approach to sequential pro-
cessing where recurrency is separated from the out-
put mapping (Jaeger, ; Maass, Natschlaeger, &
Markram, ). �e input sequence activates neurons
in a recurrent neural network (a reservoir, where activ-
ity propagates as in a liquid). �e recurrent network is
large, nonlinear, randomly connected, and �xed. A lin-
ear output network receives activation from the recur-
rent network and generates the output of the entire
machine. �e idea is that if the recurrent network is
large and complex enough, the desired outputs can
likely be learned as linear transformations of its acti-
vation. Moreover, because the output transformation
is linear, it is fast to train. Reservoir computing has
been successful in particular in speech and language
processing and vision and cognitive neuroscience.

Recommended Reading
Jaeger, H. (). Adaptive nonlinear system identification

with echo state networks. In S. Becker, S. Thrun, & K.
Obermayer (Eds.), Advances in neural information pro-
cessing systems (Vol. , pp. –). Cambridge, MA:
MIT Press.

Maass, W., Natschlaeger, T., & Markram, H. (). Real-time
computing without stable states: A new framework for neural
computation based on perturbations. Neural Computation, ,
–.

Resolution

7First-Order Logic

Resubstitution Estimate

Resubstitution estimates are estimates that are derived by
applying a 7model to the 7training data from which
it was learned. For example, resubstitution error is the
error of a model on the training data.

Cross References
7Model Evaluation

Reward

In most Markov decision process applications, the
decision-maker receives a reward each period. �is
reward can depend on the current state, the action
taken, and the next state and is denoted by rt(s, a, s′).

Reward Selection

7Reward Shaping

Reward Shaping

Eric Wiewiora
University of California, San Diego

Synonyms
Heuristic rewards; Reward selection

Definition
Reward shaping is a technique inspired by animal train-
ing where supplemental rewards are provided tomake a
problem easier to learn.�ere is usually an obvious nat-
ural reward for any problem. For games, this is usually a
win or loss. For �nancial problems, the reward is usually
pro�t. Reward shaping augments the natural reward sig-
nal by adding additional rewards for making progress
toward a good solution.



 R Reward Shaping

Motivation and Background
Reward shaping is a method for engineering a reward
function in order to provide more frequent feedback
on appropriate behaviors. It is most o�en discussed
in the 7reinforcement learning framework. Providing
feedback is crucial during early learning so that promis-
ing behaviors are tried early. �is is necessary in large
domains, where reinforcement signals may be few and
far between.
A good example of such a problem is chess. �e

objective of chess is to win a match, and an appropriate
reinforcement signal should be based on this. If an agent
were to learn chess without prior knowledge, it would
have to search for a great deal of time before stumbling
onto a winning strategy. We can speed up this process
by rewarding the agent more frequently. One possibility
is to reward the learner for capturing enemy pieces, and
punish the learner for losing pieces. �is new reward
creates a much richer learning environment, but also
runs the risk of distracting the agent from the true goal
(winning the game).
Another domain where feedback is extremely

important is in robotics and other real-world applica-
tions. In the real world, learning requires a large amount
of interaction time, andmay be quite expensive.Mataric
noted that in order to mitigate “thrashing” (repeatedly
trying ine�ective actions) rewards should be supplied as
o�en as possible (Mataric, ).
If a problem is inherently described by sparse

rewards, it may be di�cult to change the reward struc-
ture without disrupting progress to the original goal.
�e behavior that is optimal with a richer reward func-
tion may be quite di�erent from the intended behavior,
even if relatively small shaping rewards are added. A
classic example of this is found in Randlov and Alsrom
(). While training an agent to control a bicycle sim-
ulation, they rewarded an agent whenever it moved
toward a target destination. In response to this reward,
the agent learned to ride in a tight circle, receiving
reward whenever it moved in the direction of the goal.

Theory
We assume a reinforcement learning framework. For
every time step t, the learner observes state st , takes
action at , and receives reward rt . �e goal of reinforce-
ment learning is to �nd a policy π(s) that produces

actions that optimize some long-term measurement of
reward. We de�ne the value function for every state as
the expected in�nite horizon discounted reward

V(s) = max
π
E [

∞
∑
t=

γtrt ∣s = s, at = π(st)] ,

where γ is the discount rate. A reinforcement learner’s
goal is to learn a good estimate of V(s), and to use this
estimate to choose a good policy.
A natural reward source should be fairly obvi-

ous from the problem at hand. Financial problems
should use net monetary gain or loss as reward. Games
and goal-directed problems should reward winning the
game or reaching the goal. It is usually advantageous
to augment this natural reward with a shaping reward
ft . We de�ne the augmented value function V ′ for the
reinforcement learning problem with shaping rewards

V ′(s) = max
π′
E [

∞
∑
t=

γt(rt + ft)∣s = s, at = π′(st)] .

Ideally, the policy that optimizes the augmented value
function will di�er much from the previous optimal
policy.
Constructing an appropriate shaping reward sys-

tem is inherently a problem-dependent task, though
a line of research aids in the implementation of these
reward signals. Potential-based shaping provides a for-
mal framework for translating imperfect knowledge of
the relative value of states and actions into a shaping
reward.

Potential-Based Shaping
Ng et al. proposed amethod for adding shaping rewards
in a way that guarantees the optimal policymaintains its
optimality (Ng, Harada, & Russell, ). �ey de�ne
a potential function Φ() over the states. �e shaping
reward f for transitioning from state s to s′ is de�ned
as the discounted change in this state potential:

f (s, s′) = γΦ(s′) −Φ(s).

�is potential-based shaping reward is added to the nat-
ural reward for every state transition the learner expe-
riences. Call the augmented reward r′t = rt + f (st , st+),
and the value function based on this reward V ′(s). �e
potential-based shaping concept can also be applied to



Robot Learning R 

R

actions as well as states. SeeWiewiora, Cottrell, & Elkan
() for details.
It can be shown that the augmented value function

is closely related to the original:

V ′(s) = V(s) −Φ(s).

An obvious choice for the potential function is Φ(s) ≈
V(s), making V ′() close to zero. �is intuition is
strengthened by results presented by Wiewiora ().
�is paper shows that for most reinforcement learning
systems, the potential function acts as an initial estimate
of the natural value function V().
However,evenif thepotential functionusedforshap-

ing is very close to the true natural value function, learn-
ing may still be di�cult. Koenig et al. have shown that
initial estimates of the value function have a large in�u-
ence on the e�ciencyof reinforcement learning (Koenig
& Simmons, ). With an initial estimate of the value
function set below the optimal value, many reinforce-
ment learning algorithms could require learning time
exponential in the state and action space in order to �nd
a highly rewarding state. On the other hand, in non-
random environments, an optimistic initialization the
value function creates learning time that is polynomial
in the state-action space before a goal is found.

Cross References
7Reinforcement Learning

Recommended Reading
Koenig, S., & Simmons, R. G. (). The effect of representation and

knowledge on goal directed exploration with reinforcement-
learning algorithms. Machine Learning, (–), –.

Mataric, M. J. (). Reward functions for accelerated learning. In
International conference on machine learning, New Brunswick,
NJ (pp. –). San Francisco, CA: Morgan Kaufmann.

Ng, A. Y., Harada, D., & Russell, S. (). Policy invariance under
reward transformations: Theory and application to reward
shaping. In Machine learning, proceedings of the sixteenth inter-
national conference, Bled, Slovenia (pp. –). San Fran-
cisco, CA: Morgan Kaufmann.

Randlov, J., & Alstrom, P. (). Learning to drive a bicycle using
reinforcement learning and shaping. In Proceedings of the fif-
teenth international conference on machine learning, Madison,
WI. San Francisco, CA: Morgan Kaufmann.

Wiewiora, E., Cottrell, G., & Elkan, C. (). Principled meth-
ods for advising reinforcement learning agents. In Machine
learning, proceedings of the twentieth international conference,
Washington, DC (pp. –). Menlo Park, CA: AAAI Press.

Wiewiora, E. (). Potential-based shaping and Q-value initializa-
tion are equivalent. Journal of Artificial Intelligence Research, ,
–.

RIPPER

7Rule Learning

Robot Learning

Jan Peters, Russ Tedrake, Nicholas Roy,
Jun Morimoto
Max Planck Institute for Biological Cybernetics,
Germany
Massachusetts Institute of Technology, Cambridge,
MA, USA
Advanced Telecommunication Research Institute
International ATR, Kyoto, Japan

Definition
Robot learning consists of amultitude ofmachine learn-
ing approaches, particularly 7reinforcement learn-
ing, 7inverse reinforcement learning and 7regression
methods.�ese methods have been adapted su�ciently
to domain to achieve real-time learning in complex
robot systems such as helicopters, �apping-wing �ight,
legged robots, anthropomorphic arms, and humanoid
robots.

Robot Skill Learning Problems
In classical arti�cial intelligence-based robotics app-
roaches, scientists attempted to manually generate a set
of rules and models that allows the robot systems to
sense and act in the real world. In contrast, 7robot
learning has become an interesting problem in robotics
as () it may be prohibitively hard to program a robot for
many tasks, () not all situations, as well as goals,may be
foreseeable, and () real-world environments are o�en
nonstationary (Connell and Mahadevan, ). Hence,
future robots need to be able to adapt to the real world.
In comparison to many other machine learning

domains, robot learning su�ers from a variety of com-
plex real-world problems. �e real-world training time
is limited and, hence, only a few complete execu-
tions of a task can ever be generated. �ese episodes



 R Robot Learning

are frequently perceived noisily, have a large variabil-
ity in the executed actions, do not cover all possible
scenarios, and o�en do not include all reactions to
external stimuli. At the same time, high-dimensional
data is obtained at a fast rate (e.g., proprioceptive
information at Hz to  kHz, vision at –Hz).
Hence, domain-appropriate machine learning methods
are o�en needed in this domain.
A straightforward way to categorize robot learning

approaches is given by the type of feedback (Connell
andMahadevan, ). A scalar performance score such
as a reward or cost will o�en result in a7reinforcement
learning approach. A presented desired action or pre-
dicted behavior allows supervised learning approaches
such as model learning or direct imitation learning.
Feedback in terms of an explanation has become most
prominent in apprenticeship learning. �ese methods
will be explained inmore detail in the next section. Note
that unsupervised learning problems, where no feed-
back is required can also be found in robotics, see Ham
et al. () and Jenkins et al. () but only for special
topics.
Note that this overview on7robot learning focuses

on general problems that need to be addressed to teach
robots new skills or tasks. Hence, several important spe-
ci�c robotics problems in specialized domains such as
7simultaneous localization and map building (SLAM)
for mobile robots (�run et al., ) and unsupervised
sensor fusion approaches for robot perception (Apol-
loni et al., ; Jenkins et al., ) are considered
beyond the scope of this article.

Robot Learning Systems
As learning has found many applications in robotics,
this article can only scratch the surface. It focuses on
the key problem of teaching a robot new abilities with
methods such as () Model Learning, () Imitation
and Apprenticeship Learning, and () Reinforcement
Learning.

Model Learning

Model learning is the machine learning counterpart to
classical system identi�cation (Farrell and Polycarpou,
; Schaal et al., ). However, while the classi-
cal approaches heavily rely on the structure of physi-
cally based models, speci�cation of the relevant state
variables and hand-tuned approximations of unknown

nonlinearities, model learning approaches avoid many
of these labor-intensive steps and the entire process to
bemore easily automated.Machine learning and system
identi�cation approaches o�en assume an observable
state of the system to estimate the mapping from inputs
to outputs of the system. However, a learning system is
o�en able to learn this mapping including the statistics
needed to cope with unidenti�ed state variables and can
hence cope with a larger class of systems. Two types of
models are commonly learned, i.e., forwardmodels and
inverse models.
Forward models predict the behavior of the system

based either on the current state or a history of pre-
ceeding observations. �ey can be viewed as “learned
simulators” that may be used for optimizing a policy
or for predicting future information. Examples of the
application of such learned simulators range from the
early work in the late s by Atkeson and Schaal
in robot arm-based cartpole swing-ups to Ng’s recent
extensions for stabilizing an inverted helicopter. Most
forward models can directly be learned by regression.
Conversely, inverse models attempt to predict the

input to a system in order to achieve a desired output
in the next step, i.e., it uses the model of the system
to directly generate control signals. In traditional con-
trol, these are o�en called approximation-based control
systems (Farrell and Polycarpou, ). Inverse model
learning can be solved straightforwardly by regression
if the system dynamics are uniquely invertible, e.g., as in
inverse dynamics learning for a fully actuated system.
However, for underactuated or redundantly actuated
systems, operational space control, etc., such a unique
inverses do not exist and additional optimization is
needed.

Imitation and Apprenticeship Learning

A key problem in robotics is to ease the problem of
programming a complex behavior. Traditional robot
programming approaches rely on accurate, manual
modeling of the task and removal of all uncertainities,
so that they work well. In contrast to classical robot pro-
gramming, learning from demonstration approaches
aim at recovering the instructions directly from a
human demonstration. Numerous unsolved problems
exist in this context such as discovering the intent of
the teacher or determing themapping from the teacher’s
kinematics to the robot’s kinematics (o�en called the



Robot Learning R 

R

correspondence problem). Twodi�erent approaches are
common in this area: direct imitation learning and
apprenticeship learning.
In imitation learning (Schaal et al., ), also

known as 7behavioral cloning, the robot system
directly estimates a policy from a teacher’s presenta-
tion, and, subsequently, the robot system reproduces the
task using this policy. A key advantage of this approach
is that it can o�en learn a task successfully from few
demonstrations. In areas where human demonstrations
are straightforward to obtain, e.g., for learning racket
sports, manipulation, drumming on anthropomorphic
systems, direct imitation learning o�en proved to be an
appropriate approach. Its major shortcomings are that
it cannot explain why the derived policy is a good one,
and it may struggle with learning from noisy demon-
strations.
Hence, apprenticeship learning (Coates et al., )

has been proposed as an alternative, where a reward
function is used as an explanation of the teacher’s
behavior. Here, the reward function is chosen under
which the teacher appears to act optimally, and the
optimal policy for this reward function is subsequently
computed as a solution. �is approach transforms the
problem of learning from demonstrations onto the
harder problem of approximate optimal control or rein-
forcement learning, hence it is also known as inverse
optimal control or7inverse reinforcement learning. As
a result, it is limited to problems that can be solved
by current reinforcement learning methods. Addition-
ally, it o�en has a hard time dealing with tasks, where
only fewdemonstrationswith low variance exist.Hence,
inverse reinforcement learning has been particularly
successful in areas where it is hard for a human to
demonstrate the desired behavior such as for helicopter
acrobatics or in robot locomotion.
Further information on learning by demonstration

may be found in Coates et al. () and Schaal et al.
().

Robot Reinforcement Learning

�e ability to self-improve with respect to an arbitrary
reward function, i.e.,7reinforcement learning, is essen-
tial for robot systems to become more autonomous.
Here, the system learns about its policy by interacting
with its environment and receiving scores (i.e., rewards

or costs) for the quality of its performance. Few o�-
the-shelf reinforcement learning methods scale into the
domain of robotics both in terms of dimensionality
and the number of trials needed to obtain an inter-
esting behavior. �ree di�erent but overlapping styles
of reinforcement learning can be found in robotics:
model-based reinforcement learning, model-free
7value function approximation methods, and direct
policy search (see7Markov Decision Process).
Model-based reinforcement learning relies upon a

learned forward model used for simulation-based opti-
mization as discussed before. While o�en highly e�-
cient, it frequently su�ers from the fact that learned
models are imperfect and, hence, the optimization
method can be guaranteed to be biased by the errors
in the model. A full Bayesian treatment of model
uncertainty appears to be a promising way for alle-
viating this shortcoming of this otherwise powerful
approach.
Value function approximation methods have been

the core approach used in reinforcement learning dur-
ing the s. �ese techniques rely upon approximat-
ing the expected rewards for every possible action in
every visited state. Subsequently, the controller chooses
the actions in accordance to this value. Such approxima-
tion requires a globally consistent value function, where
the quality of the policy is determined by the largest
error of the value function at any possible state. As a
result, thesemethods have been problematic for anthro-
pomorphic robotics as the high-dimensional domains
o�en defy learning such a global construct. How-
ever, it has been highly sucessful in low-dimensional
domains such as mobile vehicle control and robot soc-
cer with wheeled robots as well as on well-understood
test domains such as cart-pole systems.
Unlike the previous two approaches, policy search

attempts to directly learn the optimal policy from expe-
rience without solving intermediary learning problems.
Policies o�en have signi�cantly fewer parameters than
models or value functions. For example, for the con-
trol of a prismatic robot optimally with respect to
a quadratic reward function, the number of policy
parameters grows linearly in the number of state dimen-
sions, while it grows quadratically in the size of the
model and value function (this part is well-known as
this problem is analytically tractable). In general cases,
the number of parameters of value functions does o�en



 R Robot Learning

even grow exponentially in the number of states (which
is known as the “Curse ofDimensionality”).�is insight
has given rise to policy search methods, particularly,
7policy gradientmethods and probabilistic approaches
to policy search such as the reward-weighted regres-
sion or PoWER (Kober and Peters, ). To date,
application results of direct policy search approaches
range from gait optimization in locomotion (Tedrake
et al., ) to various motor learning examples
(e.g., Ball-in-a-Cup, T-Ball, or throwing darts, see e.g.,
Kober and Peters, ).
Further information on reinforcement learning for

robotics may be found in Connell and Mahadevan
(), Kober and Peters (), Riedmiller et al.
(), and Tedrake et al. ().

Application Domains
�e possible application domains for robot learning
have not been fully explored; one could even aggres-
sively state that a huge number of challenges remain
to be fully addressed in order to solve the problem of
robot learning. Nevertheless, robot learning has been
successful in several application domains.
For accurate execution of desired trajectories,

model learning has been scaled to learning the
full inverse dynamics of a humanoid robot in real
time more accurately than achievable with physical
models (Schaal et al., ). Current work focuses
mainly on improving the concurrent execution of
tasks as well as control of redundant or underactuated
systems.
Various approaches have been successful in task

learning. Learning by demonstration approaches are
moving increasingly toward industrial grade solutions,
where fast training of complex tasks becomes possible.
Skills ranging from motor toys, e.g., basic movements,
paddling a ball, to complex tasks such as cooking a
complete meal, basic table tennis strokes, helicopter
acrobatics, or footplacement in locomotion have been
learned from human teachers. Reinforcement learning
has yielded better gaits in locomotion, jumping behav-
iors for legged robots, perching with �xed wing �ight
robots, forehands in table tennis as well as various appli-
cations of learning to control motor toys used for the
motor development of children.

Cross References
7Behavioral Cloning
7Inverse Reinforcement Learning
7Policy Search
7Reinforcement Learning
7Value Function Approximation

Recommended Reading
Recently, several special issues (Morimoto et al., ; Peters and
Ng, ) and books (Sigaud, ) have covered the domain
of robot learning. The classical book (Connell and Mahadevan,
) is interesting nearly  years after its publication. Additional
special topics are treated in Apolloni et al. () and Thrun et al.
().

Apolloni, B., Ghosh, A., Alpaslan, F. N., Jain, L. C., & Patnaik,
S. (). Machine learning and robot perception. Studies in
computational intelligence (Vol. ). Berlin: Springer.

Coates, A., Abbeel, P., & Ng, A. Y. (). Apprenticeship learn-
ing for helicopter control. Communications of the ACM, (),
–.

Connell, J. H., & Mahadevan, S. (). Robot learning. Dordrecht:
Kluwer Academic.

Farrell, J. A., & Polycarpou, M. M. (). Adaptive approxima-
tion based control. Adaptive and learning systems for signal
processing, communications and control series. Hoboken: John
Wiley.

Ham, J., Lin, Y., & Lee, D. D. (). Learning nonlinear
appearance manifolds for robot localization. In Interna-
tional conference on intelligent robots and Systems, Takamatsu,
Japan.

Jenkins, O., Bodenheimer, R., & Peters, R. (). Manipulation
manifolds: Explorations into uncovering manifolds in sensory-
motor spaces ( pages). In International conference on develop-
ment and learning, Bloomington, IN

Kober, J., & Peters, J. (). Policy search for motor primitives in
robotics. In Advances in neural information processing systems
. Cambridge: MIT Press.

Morimoto, J., Toussaint, M., & Jenkins, C. (). Special issue
on robot learning in practice. IEEE Robotics and Automation
Magazine, (), –.

Peters, J., & Ng, A. (). Special issue on robot learning.
Autonomous Robots, (–):–.

Peters, J., & Schaal, S. (). Reinforcement learning of
motor skills with policy gradients. Neural Networks, ():
–.

Riedmiller, M., Gabel, T., Hafner, R., & Lange, S. (July ).
Reinforcement learning for robot soccer. Autonomous Robots,
():–.

Schaal, S., Atkeson, C. G., & Vijayakumar, S. Scalable techniques
from nonparameteric statistics for real-time robot learning.
Applied Intelligence, ():–.

Schaal, S., Ijspeert, A., & Billard, A. (). Computational
approaches to motor learning by imitation. Philosophical Trans-
action of the Royal Society of London: Series B, Biological Sci-
ences, ():–.



ROC Analysis R 

R

Sigaud, O., & Peters, J. (). From motor learning to interaction
learning in robots. Studies in computational intelligence (Vol.
). Heidelberg: Springer.

Tedrake, R., Zhang, T. W., & Seung, H. S. (). Stochastic pol-
icy gradient reinforcement learning on a simple d biped.
In Proceedings of the IEEE international conference on intelli-
gent robots and systems (pp. –). IROS , Sendai,
Japan.

Thrun, S., Burgard, W., & Fox, D. (). Probabilistic robotics.
Cambridge: MIT Press.

ROC Analysis

Peter A. Flach
University of Bristol
Bristol, UK

Synonyms
Receiver operating characteristic analysis

Definition
ROC analysis investigates and employs the relation-
ship between 7sensitivity and 7speci�city of a binary
classi�er. Sensitivity or 7true positive rate measures
the proportion of positives correctly classi�ed; speci-
�city or7true negative ratemeasures the proportion of
negatives correctly classi�ed. Conventionally, the true
positive rate (tpr) is plotted against the 7false posi-
tive rate (fpr), which is one minus true negative rate.
If a classi�er outputs a score proportional to its belief
that an instance belongs to the positive class, decreas-
ing the 7decision threshold – above which an instance
is deemed to belong to the positive class – will increase
both true and false positive rates. Varying the decision
threshold from its maximal to its minimal value results
in a piecewise linear curve from (, ) to (, ), such that
each segment has a nonnegative slope (Fig. ).�is ROC
curve is the main tool used in ROC analysis. It can be
used to address a range of problems, including: () deter-
mining a decision threshold that minimizes7error rate
or misclassi�cation cost under given class and cost dis-
tributions; () identifying regions where one classi�er
outperforms another; () identifying regions where a
classi�er performsworse than chance; and () obtaining
calibrated estimates of the class posterior.

Motivation and Background
ROC analysis has its origins in signal detection theory
(Egan, ). In its simplest form, a detection problem
involves determining the value of a binary signal con-
taminated with random noise. In the absence of any
other information, the most sensible decision thresh-
old would be halfway between the two signal values.
If the noise distribution is zero-centered and symmet-
ric, sensitivity and speci�city at this threshold have the
same expected value, whichmeans that the correspond-
ing operating point on the ROC curve is located at the
intersection with the descending diagonal tpr + fpr = .
However, we may wish to choose di�erent operating
points, for instance because false negatives and false
positives have di�erent costs. In that case, we need to
estimate the noise distribution.
A slight reformulation of the signal detection sce-

nario clari�es its relevance in a machine learning set-
ting. Instead of superimposing random noise on a
deterministic signal, we can view the resulting noisy
signal as coming from a 7mixture distribution con-
sisting of two component distributions with di�erent
means. �e detection problem is now to decide, given
a received value, from which component distribution it
was drawn. �is is essentially what happens in a binary
7classi�cation scenario, where the scores assigned by
a trained classi�er follow a mixture distribution with
one component for each class. �e random variations
in the data are translated by the classi�er into random
variations in the scores, and the classi�er’s performance
depends on how well the per-class score distributions
are separated. Figure  illustrates this for both dis-
crete and continuous distributions. In practice, empir-
ical ROC curves and distributions obtained from a
test set are discrete because of the �nite resolution
supplied by the test set. �is resolution is further
reduced if the classi�er only assigns a limited number
of di�erent scores, as is the case with 7decision trees;
the histogram example illustrates this.

Solutions
For convenience we will assume henceforth that score
distributions are discrete, and that decision thresholds
always fall between actual scores (the results easily gen-
eralize to continuous distributions using probability



 R ROC Analysis

Class Score
+ 0.98
+ 0.93
+ 0.87
+ 0.84
– 0.79
+ 0.73
+ 0.67
– 0.62
+ 0.57
– 0.54
– 0.48
+ 0.43
– 0.37
+ 0.34
– 0.28
– 0.24
+ 0.18
– 0.12
– 0.09
– 0.03

ROC Analysis. Figure . The table on the left gives the scores assigned by a classifier to ten positive and ten negative

examples. Each threshold on the classifier’s score results in particular true and false positive rates: e.g., thresholding the

score at . results in three misclassified positives (tpr = .) and three misclassified negatives (fpr = .); thresholding

at . yields tpr = . and fpr = .. Considering all possible thresholds gives the ROC curve on the right; this curve

can also be constructed without explicit reference to scores, by going down the examples sorted on decreasing score

and making a step up (to the right) if the example is positive (negative)

4 3 2 1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Score

R
el

at
iv

e 
F

re
qu

en
cy

,
P

ro
ba

bi
lit

y 
D

en
si

ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP rate

T
P

 r
at

e

Raw scores ROC curve

Histogram ROC curve
Theoretical ROC curve

ROC Analysis. Figure . (left) Artificial classifier “scores”for two classes were obtained by sampling  points each from

two 7Gaussian distributions with mean  and , and unit variance. The figure shows the raw scores on the x-axis and

normalized histograms obtained by uniform five-bin discretization. (right) The jagged ROC curve was obtained by

thresholding the raw scores as before. The histogram gives rise to a smoothed ROC curve with only five segments.

The dotted line is the theoretical curve obtained from the true Gaussian distributions

density functions). �ere is a useful duality between
thresholds and scores: decision thresholds correspond
to operating points connecting two segments in the
ROC curve, and actual scores correspond to segments
of the ROC curve connecting two operating points. Let

f(s∣+) and f(s∣−) denote the relative frequency of posi-
tive (negative) examples from a test set being assigned
score s. (Note that s itself may be an estimate of the
likelihood p(x∣+) of observing a positive example with
feature vector x. We will return to this later.)



ROC Analysis R 

R

Properties of ROC Curves

�e �rst property to note is that the true (false) posi-
tive rate achieved at a certain decision threshold t is the
proportion of the positive (negative) score distribution
to the right of the threshold; that is, tpr(t) = ∑s>t f(s∣+)
and fpr(t) = ∑s>t f(s∣−). In Fig.  , setting the thresh-
old at  using the discretized scores gives a true positive
rate of . and a false positive rate of ., as can be
seen by summing the bars of the histogram to the right
of the threshold. Although the ROC curve does not dis-
play thresholds or scores, this allows us to reconstruct
the range of thresholds yielding a particular operating
point from the score distributions.
If we connect two distinct operating points on an

ROC curve by a straight line, the slope of that line seg-
ment is equal to the ratio of positives to negatives in the
corresponding score interval; that is,

slope(t, t) =
tpr(t) − tpr(t)
fpr(t) − fpr(t)

=
∑t<s<t f(s∣+)
∑t<s<t f(s∣−)

Choosing the score interval small enough to cover a sin-
gle segment of the ROC curve corresponding to score s,
it follows that the segment has slope f(s∣+)/f(s∣−).

�is can be veri�ed in Fig. : e.g., the top-right seg-
ment of the smoothed curve has slope  because the
le�most bin of the histogram contains only negative
examples. For continuous distributions the slope of the
ROC curve at any operating point is equal to the ratio
of probability densities at that score.
It can happen that slope(t, t)< slope(t, t)< slope

(t, t) for t < t < t, which means that the ROC curve
has a “dent” or concavity. �is is inevitable when using
raw classi�er scores (unless the positives and nega-
tives are perfectly separated), but can also be observed
in the smoothed curve in the example: the rightmost
bin of the histogram has a positive-to-negative ratio of
, while the next bin has a ratio of . Consequently,
the two le�most segments of the ROC curve display
a slight concavity. It means that performance can be
improved by combining the two bins, leading to one
large segment with slope . In other words, ROC curve
concavities demonstrate locally suboptimal behavior of
a classi�er. An extreme case of suboptimal behavior
occurs if the entire curve is concave, or at least below
the ascending diagonal: in that case, performance can
simply be improved by assigning all test instances the

same score, resulting in an ROC curve that follows the
ascending diagonal. A convexROC curve is one without
concavities.

The AUC Statistic

�e most important statistic associated with ROC
curves is the area under (ROC) curve or AUC. Since
the curve is located in the unit square, we have  ≤

AUC ≤ . AUC =  is achieved if the classi�er scores
every positive higher than every negative; AUC =  is
achieved if every negative is scored higher than every
positive. AUC = / is obtained in a range of di�erent
scenarios, including: () the classi�er assigns the same
score to all test examples, whether positive or nega-
tive, and thus the ROC curve is the ascending diagonal;
() the per-class score distributions are similar, which
results in an ROC curve close (but not identical) to the
ascending diagonal; and () the classi�er gives half of
a particular class the highest scores, and the other half,
the lowest scores. Note that, although a classi�er with
AUC close to / is o�en said to perform randomly,
there is nothing random in the third classi�er: rather,
its excellent performance on some of the examples is
counterbalanced by its very poor performance on some
others. (Sometimes a linear rescaling AUC− called the
Gini coe�cient is preferred, which has a related use in
the assessment of income or wealth distributions using
Lorenz curves: a Gini coe�cient close to  means that
income is approximately evenly distributed. Notice that
this Gini coe�cient is o�en called the Gini index, but
should not be confused with the impurity measure used
in decision tree learning).
AUC has a very useful statistical interpretation: it

is the expectation that a (uniformly) randomly drawn
positive receives a higher score than a randomly drawn
negative. It is a normalized version of the Wilcoxon–
Mann–Whitney sum of ranks test, which tests the null
hypothesis that two samples of ordinal measurements
are drawn from a single distribution.�e “sumof ranks”
epithet refers to one method to compute this statis-
tic, which is to assign each test example an integer
rank according to decreasing score (the highest scoring
example gets rank , the next gets rank , etc.); sum up
the ranks of the n− negatives, which have to be high; and
subtract ∑n

−

i= i = n−(n− + )/ to achieve  if all nega-
tives are ranked �rst.�e AUC statistic is then obtained
by normalizing by the number of pairs of one positive



 R ROC Analysis

and one negative, n+n−. �ere are several other ways to
calculate AUC: for instance, we can calculate, for each
negative, the number of positives preceding it, which
basically is a columnwise calculation and yields an alter-
native view of AUC as the expected true positive rate
if the operating point is chosen just before a randomly
drawn negative.

Identifying Optimal Points and the ROC Convex Hull

In order to select an operating point on an ROC curve,
we �rst need to specify the objective function that
we aim to optimize. In the simplest case this will be
7accuracy, the proportion of correctly predicted exam-
ples. Denoting the proportion of positives by pos, we
can express accuracy as a weighted average of the true
positive and true negative rates pos ⋅ tpr + ( − pos)
( − fpr). It follows that points with the same accuracy
lie on a straight line with slope ( − pos)/pos; these par-
allel lines are the isometrics for accuracy (Flach, ).
In order to �nd the optimal operating point for a given
class distribution, we can start with an accuracy isomet-
ric through (, ) and slide it down until it touches the
ROC curve in one or more points (Fig.  (le�)). In the
case of a single point this uniquely determines the oper-
ating point and thus, the threshold. If there are several
points in common between the accuracy isometric and
the ROC curve, we can make an arbitrary choice, or
interpolate stochastically. We can read o� the achieved
accuracy by intersecting the accuracy isometric with the
descending diagonal, on which tpr =  − fpr and there-
fore the true positive rate at the intersection point is
equal to the accuracy associated with the isometric.
We can generalize this approach to any objec-

tive function that is a linear combination of true
and false positive rates. For instance, let predicting
class i for an instance of class j incur cost cost(i∣j), so
for instance the cost of a false positive is cost(+∣−)
(pro�ts for correct predictions are modeled as negative
costs, e.g., cost(+∣+)< ). Cost isometrics then have
slope(cost(+∣−) − cost(−∣−))/(cost(−∣+) − cost(+∣+)).
Nonuniform class distributions are simply taken into
account by multiplying the class and cost ratio, giving
a single skew ratio expressing the relative importance of
negatives compared to positives.

�is procedure of selecting an optimal point on an
ROC curve can be generalized to select among points
lying on more than one curve, or even an arbitrary set

of points (e.g., points representing di�erent categori-
cal classi�ers). In such scenarios, it is likely that certain
points are never selected for any skew ratio; such points
are said to be dominated. For instance, points on a con-
cave region of an ROC curve are dominated. �e non-
dominated points are optimal for a given closed interval
of skew ratios, and can be joined to form the convex hull
of the given ROC curve or set of ROC points (Fig. 
(right)). (In multiobjective optimization, this concept is
called the Pareto front.) �is notion of the ROC convex
hull (sometimes abbreviated as ROCCH) is extremely
useful in a range of situations. For instance, if an ROC
curve displays concavities, the convex hull represents a
discretization of the scores which achieves higher AUC.
Alternatively, the convex hull of a set of categorical clas-
si�ers can be interpreted as a hybrid classi�er that can
reach any point on the convex hull by stochastic inter-
polation between twoneighboring classi�ers (Provost&
Fawcett, ).

Obtaining Calibrated Estimates of the Class Posterior

Recall that each segment of an ROC curve has slope
slope(s) = f(s∣+)/f(s∣−), where s is the score associated
with the segment, and f(s∣+) and f(s∣−) are the rela-
tive frequencies of positives and negatives of assigned
score s. Now consider the function cal(s) = slope(s)/
(slope(s) + )= f(s∣+)/( f(s∣+) + f(s∣−)): the calibration
map s↦ cal(s) adjusts the classi�er’s scores to re�ect the
empirical probabilities observed in the test set. If the
ROC curve is convex, slope(s) and cal(s) are mono-
tonically nonincreasing with decreasing s, and thus
replacing the scores s with cal(s) does not change the
ROC curve (other than merging neighboring segments
with di�erent scores but the same slope into a single
segment).
Consider decision trees as a concrete example. Once

we have trained (and possibly pruned) a tree, we can
obtain a score in each leaf l by taking the ratio of posi-
tive to negative training examples in that leaf: score(l) =
p(+∣l)/p(−∣l). �ese scores represent posterior odds,
taking into account the class prior in the training
set. Each leaf gives rise to a di�erent segment of the
ROC curve, which, by the nature of how the scores
were calculated, will be convex. �e calibrated scores
cal(score(l)) then represent an adjusted estimate of the
positive posterior that replaces the training set prior
with a uniform prior. To see this, notice that duplicating



ROC Analysis R 

R

ROC Analysis. Figure . (left) The slope of accuracy isometrics reflects the class ratio. Isometric A has slope /: this cor-

responds to having twice as many positives as negatives, meaning that an increase in true positive rate of x is worth

a x increase in false positive rate. This selects two optimal points on the ROC curve. Isometric B corresponds to a uni-

form class distribution, and selects optimal points which make fewer positive predictions. In either case, the achieved

accuracy can be read off on the y-axis after intersecting the isometric with the descending diagonal (slightly higher for

points selected by A). (right) The convex hull selects those points on an ROC curve which are optimal under some class

distribution. The slope of each segment of the convex hull gives the class ratio under which the two end points of the

segment yield equal accuracy. All points under the convex hull are nonoptimal

all positive training examples would amplify all uncal-
ibrated scores score(l) with a factor , but the ROC
curve and therefore the calibrated probability estimates
remain unchanged.
If the ROC curve is not convex, the mapping

s ↦ cal(s) is not monotonic; while the scores cal(s)
would lead to improved performance on the data
from which the ROC curve was derived, this is very
unlikely to generalize to other data, and thus leads to
7over�tting. �is is why, in practice, a less drastic cali-
bration procedure involving the convex hull is applied
(Fawcett & Niculescu-Mizil, ). Let s and s be
the scores associated with the start and end segments
of a concavity, i.e., s > s and slope(s)< slope(s).
Let slope(ss) denote the slope of the line seg-
ment of the convex hull that repairs this concav-
ity, which implies slope(s)< slope(ss)< slope(s).
�e calibration map will then map any score in
the interval [s, s] to slope(ss)/(slope(ss) + )
(Fig. ).

�is ROC-based calibration procedure, which is
also known as isotonic regression (Zadrozny & Elkan,

++-+--+-+--+--- ++++-

+ + + +

+ + -
+ -

+ + - - -+ - -
- - -

0 .2 .4 .6 .8 1

1

.8

.6

.4

.2

0

Original scores

C
al

ib
ra

te
d 

sc
or

es

ROC Analysis. Figure . The piecewise constant calibra-

tion map derived from the convex hull in Fig. . The orig-

inal score distributions are indicated at the top of the

figure, and the calibrated distributions are on the right.

We can clearly see the combined effect of binning the

scores and redistributing them over the interval [, ]



 R ROC Analysis

), not only produces calibrated probability esti-
mates but also improves AUC. �is is in contrast with
other calibration procedures such as logistic calibra-
tion which do not bin the scores and therefore do not
change the ROC curve. ROC-based calibration can be
shown to achieve lowest Brier score (Brier, ), which
measures themean squared error in the probability esti-
mates as compared with the ideal probabilities ( for a
positive and  for a negative), among all probability esti-
mators that do not reverse pairwise rankings. On the
other hand, being a nonparametric method it typically
requiresmore data than parametricmethods in order to
estimate the bin boundaries reliably.

Future Directions
ROC analysis in its original form is restricted to binary
classi�cation, and its extension tomore than two classes
gives rise to many open problems. c-class ROC anal-
ysis requires c(c − ) dimensions, in order to distin-
guish each possible misclassi�cation type. Srinivasan
proved that basic concepts such as the ROC polytope
and its linearly interpolated convex hull generalize to
the c-class case (Srinivasan, ). In theory, the vol-
ume under the ROC polytope can be employed for
assessing the quality of a multiclass classi�er (Ferri,
Hernández-Orallo, & Salido, ), but this volume is
hard to compute as – unlike the two-class case, where
the segments of an ROC curve can simply be enumer-
ated in O(n logn) time by sorting the n examples on
their score (Fawcett, ; Flach, ) – there is no
simple way to enumerate the ROC polytope. Mossman
considers the special case of -class ROCanalysis, where
for each class the two possible misclassi�cations are
treated equally (the so-called one-versus-rest scenario)
(Mossman, ). Hand and Till propose the average
of all one-versus-rest AUCs as an approximation of
the area under the ROC polytope (Hand & Till, ).
Various algorithms forminimizing a classi�er’smisclas-
si�cation costs by reweighting the classes are considered
in Bourke, Deng, Scott, Schapire, and Vinodchandran
() and Lachiche and Flach ().
Other research directions include the explicit visu-

alization of misclassi�cation costs (Drummond &
Holte, ), and using ROC analysis to study the
behavior of machine learning algorithms and the
relations betweenmachine learningmetrics (Fuernkranz
& Flach, ).

Cross References
7Accuracy
7Class Imbalance Problem
7Classi�cation
7Confusion Matrix
7Cost-Sensitive Learning
7Error Rate
7False Negative
7False Positive
7Gaussian Distribution
7Posterior Probability
7Precision
7Prior Probability
7Recall
7Sensitivity
7Speci�city
7True Negative
7True Positive

Recommended Reading
Bourke, C., Deng, K., Scott, S., Schapire, R., & Vinodchandran,

N. V. (). On reoptimizing multi-class classifiers. Machine
Learning, (–), –.

Brier, G. (). Verification of forecasts expressed in terms of
probabilities. Monthly Weather Review, , –.

Drummond, C., & Holte, R. (). Cost curves: An improved
method for visualizing classifier performance. Machine Learn-
ing, (), –.

Egan, J. (). Signal detection theory and ROC analysis. Series in
cognitition and perception. New York: Academic Press.

Fawcett, T. (). An introduction to ROC analysis. Pattern Recog-
nition Letters, (), –.

Fawcett, T., & Niculescu-Mizil, A. (). PAV and the ROC convex
hull. Machine Learning, (), –.

Ferri, C., Hernández-Orallo, J., & Salido, M. (). Volume under
the ROC surface for multi-class problems. In Proceedings of
the fourteenth (ECML ) (pp. –). Lecture Notes in
Computer Science . Berlin: Springer.

Flach, P. (). The geometry of ROC space: Understanding
machine learning metrics through ROC isometrics. In Pro-
ceedings of the twentieth international conference on machine
learning (ICML ) (pp. –). Washington, DC: AAAI
Press.

Flach, P. (). The many faces of ROC analysis in machine
learning. ICML- Tutorial. http://www.cs.bris.ac.uk/flach/
ICMLtutorial/. Accessed on  December .

Fuernkranz, J., & Flach, P. (). ROC ‘n’ Rule learning – towards
a better understanding of covering algorithms. Machine Learn-
ing, (), –.

Hand, D., & Till, R. (). A simple generalization of the area
under the ROC curve to multiple class classification problems.
Machine Learning, (), –.

Lachiche, N., & Flach, P. (). Improving accuracy and cost of
two-class and multi-class probabilistic classifiers using ROC

http://www.cs.bris.ac.uk/flach/ICML04tutorial/
http://www.cs.bris.ac.uk/flach/ICML04tutorial/


Rule Learning R 

R

curves. In Proceedings of the twentieth international conference
on machine learning (ICML’) (pp. –). Washington, DC:
AAAI Press.

Mossman, D. (). Three-way ROCs.Medical Decision Making, ,
–.

Provost, F., & Fawcett, T. (). Robust classification for imprecise
environments. Machine Learning, (), –.

Srinivasan, A. (). Note on the location of optimal classifiers in
n-dimensional ROC space. Technical report PRG-
TR--. Oxford University Computing Laboratory,
Oxford.

Zadrozny, B., & Elkan, C. (). Transforming classifier scores
into accurate multiclass probability estimates. In Proceedings
of the th ACM SIGKDD international conference on knowledge
discovery and data mining (pp. –). New York: ACM.

ROC Convex Hull

�e convex hull of an7ROC curve is a geometric con-
struction that selects the points on the curve that are
optimal under some class and cost distribution. It is
analogous to the Pareto front in multiobjective opti-
mization. See7ROC Analysis.

ROC Curve

�eROC curve is a plot depicting the trade-o� between
the7true positive rate and the7false positive rate for a
classi�er under varying decision thresholds. See7ROC
Analysis.

Rotation Forests

Rotation Forests is an7ensemble learning technique. It
is similar to the 7Random Forests approach to build-
ing decision tree ensembles. In the �rst step, the orig-
inal feature set is split randomly into K disjoint sub-
sets. Next, 7principal components analysis is used to
extract n principal component dimensions from each
of the K subsets. �ese are then pooled, and the orig-
inal data projected linearly into this new feature space.
A tree is then built from this data in the usual manner.
�is process is repeated to create an ensemble of trees,
each time with a di�erent random split of the original
feature set.

As the tree learning algorithm builds the classi�ca-
tion regions using hyperplanes parallel to the feature
axes, a small rotation of the axes may lead to a very
di�erent tree. �e e�ect of rotating the axes is that clas-
si�cation regions of high accuracy can be constructed
with far fewer trees than in7Bagging and7Adaboost.

RSM

7Random Subspace Method

Rule Learning

Johannes Fürnkranz
Fachbereich Informatik, Darmstadt, Germany

Synonyms
AQ; Covering algorithm; CN; Foil; Laplace estimate;
m-estimate; OPUS; RIPPER

Definition
Inductive rule learning solves a 7classi�cation prob-
lem via the induction of a 7rule set or a 7decision
list. �e principal approach is the so-called separate-
and-conquer or covering algorithm, which learns one
rule at a time, successively removing the covered exam-
ples. Individual algorithmswithin this framework di�er
primarily in the way they learn single rules. A more
extensive survey of this family of algorithms can be
found in Fürnkranz ().

The Covering Algorithm
Most covering algorithms operate in a7concept learn-
ing framework, that is, they assume a set of positive and
negative training examples. Adaptations to the multi-
class case are typically performed via 7class binariza-
tion, transforming the original problem into a set of
binary problems. Some algorithms, most notably CN
(Clark & Niblett, ; Clark & Boswell, ), learn
multi-class rules directly by optimizing over all possible
classes in the head of the rule. In this case, the resulting
theory is interpreted as a decision list. In the following,
a two-class problem with a positive and a negative class
will be assumed.



 R Rule Learning

procedure Covering (Examples, Classi�er)
Input: Examples, a set of positive and negative

examples for a class c.
// initialize the classi�er
Classi�er = ∅
// loop until no more positive examples are covered
while Positive (Examples) ≠ ∅ do

// �nd the best rule for the current examples
Rule = FindBestRule (Examples)
// check if we need more rules
if RuleStoppingCriterion (Classi�er,

Rule, Examples)
then break while
// remove covered examples and add rule to rule set
Examples = Examples ∖ Cover (Rule, Examples)
Classi�er = Classi�er ∪ Rule

endwhile
// post-process the rule set (e.g., pruning)
Classi�er = PostProcessing (Classi�er)
Output: Classi�er

�e Covering algorithm starts with an empty the-
ory. If there are any positive examples in the training set
it calls the subroutine FindBestRule for learning a sin-
gle rule that will cover a subset of the positive examples
(and possibly some negative examples as well). All cov-
ered examples are then separated from the training set,
the learned rule is added to the theory, and another
rule is learned from the remaining examples. Rules are
learned in this way until no positive examples are le�
or until the RuleStoppingCriterion �res. In the sim-
plest case, the stopping criterion is a check whether
there are still remaining positive examples that need to
be covered.�e resulting theorymay also undergo some
PostProcessing, for example, a separate pruning and
re-induction phase as in Ripper (Cohen, ).
In the following, these componentswill be discussed

in more detail.

Finding the Best Rule

Single rules are typically found by searching the space
of possible rules for a rule that optimizes a given qual-
ity criterion de�ned in EvaluateRule.�e value of this
heuristic function is the higher the more positive and

procedure FindBestRule (Examples, BestRule)
Input: Examples, a set of positive and negative

examples for a class c.
InitRule = InitializeRule (Examples)
InitVal = EvaluateRule (InitRule)
BestRule = <InitVal, InitRule>
Rules = {BestRule}
while Rules ≠ ∅ do
Candidates = SelectCandidates(Rules, Examples)
Rules = Rules ∖ Candidates
for Candidate ∈ Candidates do
Re�nements = RefineRule(Candidate, Examples)

for Re�nement ∈ Re�nements do
Evaluation = EvaluateRule (Re�nement,

Examples)
if StoppingCriterion(Re�nement,

Examples)
then next Re�nement
NewRule = <Evaluation, Re�nement>
Rules = InsertSort(NewRule, Rules)
if NewRule > BestRule
then BestRule = NewRule

endfor
endfor
Rules = FilterRules(Rules, Examples)

endwhile
Output: BestRule

the less negative examples are covered by the candi-
date rule. FindBestRule maintains Rules, a sorted list
of candidate rules, which is initialized by the procedure
InitializeRule. New rules will be inserted in appro-
priate places (InsertSort), so that Rules will always
be sorted in decreasing order of the heuristic evalua-
tions of the rules. At each cycle, SelectCandidates
selects a subset of these candidate rules, which are then
re�ned using the 7re�nement operator RefineRule.
Each re�nement is evaluated and inserted into the
sorted Rules list unless the StoppingCriterion pre-
vents this. If the evaluation of the NewRule is better
than the best rule found previously, BestRule is set to
NewRule. FilterRules selects the subset of the ordered
rule list that will be used in subsequent iterations.When
all candidate rules have been processed, the best rule is
returned.



Rule Learning R 

R

Di�erent choices of these functions allow the de�-
nition of di�erent biases for the separate-and-conquer
learner. �e 7search bias is de�ned by the choice of
a search strategy (InitializeRule and RefineRule),
a search algorithm (SelectCandidates and Fil-
terRules), and a search heuristic (EvaluateRule).
�e re�nement operator RefineRule constitutes the
7language bias of the algorithm. An over�tting avoid-
ance bias can be implemented via some StoppingCri-
terion and/or in a post-processing phase.
For example, InitializeRule and RefineRulemay

be de�ned so that they realize a top-down (general-to-
speci�c), a bottom-up (speci�c-to-general) or a bidirec-
tional search. Exhaustive 7breadth-�rst, 7depth-�rst,
or best-�rst searches can be realized by appropriate
choices of EvaluateRule, and no �ltering or candi-
date selection. FilterRules can, for example, be used
to realize a 7hill-climbing or 7beam search by main-
taining only the best or the BeamWidth best rules. Evo-
lutionary algorithms and stochastic local search can also
be easily realized.

�e most common algorithm for �nding the best
rule is a top-down hill-climbing algorithm. It basically
constructs a rule by consecutively adding conditions
to the rule body so that a given quality criterion is
greedily optimized. �is constitutes a simple greedy
hill-climbing algorithm for �nding a local optimum in
the hypothesis space de�ned by the feature set. Initial-
izeRule will thus return the most general rule, the rule
with the body {true}, and RefineRule will return all
possible extensions of the rule by a single condition. Fil-
terRules will only let the best re�nement pass for the
next iteration, so that SelectCandidates will always
have only one choice.�e search heuristic, the stopping
criterion, and the post-processing are discussed in the
next sections.

Rule Learning Heuristics

�e covering algorithm tries to �nd a rule set that is
as complete and consistent as possible. �us, each rule
should cover as many positive examples and as few neg-
ative examples as possible. �e exact trade-o� between
these two objectives is realized via the choice of a rule
learning heuristic. A few important ones are (assume
that p out of P positive examples and n out ofN negative
examples are covered by the rule):

Laplace estimate(Lap = p+
p+n+) computes the fraction

of positive examples in all covered examples, where
each class is initialized with one virtual example in
order to penalize rules with low coverage.

m-estimate(m =
p+m⋅P/(P+N)
p+n+m ) is a generalization of the

Laplace estimate which uses m examples for initial-
ization, which are distributed according to the class
distribution in the training set (Cestnik, ).

Information gain(ig = p ⋅ (log
p
p+n − log

p′

p′+n′ )),
where p′ and n′ are the number of positive and
negative examples covered by the rule’s predeces-
sor) is Quinlan’s () adaptation of the informa-
tion gain heuristic used for decision tree learning.
�e main di�erence is that this only focuses on a
single branch (a rule), whereas the decision tree
version tries to optimize all successors of a node
simultaneously.

Correlation and χ(corr = p(N−n)−(P−p)n√
PN(p+n)(P−p+N−n)) com-

putes the four-�eld correlation of covered/
uncovered positive/negative examples. It is equiva-
lent to a χ statistic (χ = (P +N) corr).

An exhaustive overview and theoretical comparison
of various search heuristics in coverage space, a variant
of 7ROC space can be found in Fürnkranz and Flach
().

Overfitting Avoidance

It is trivial to �nd a rule set that is complete and con-
sistent on the training data. To achieve this, one only
needs to convert each positive example into a rule. Each
of these rules is consistent (provided the data set is
not inconsistent), and collectively they cover the entire
example set (completeness). However, this is clearly a
bad case of 7over�tting because the theory will not
generalize to new positive examples.
Over�tting is to some extent handled by the search

heuristics described above, but most algorithms use
additional7pruning techniques. One can discriminate
between7pre-pruning techniques, where a separate cri-
terion is used to �lter out unpromising rules. For exam-
ple, CN computes the likelihood ratio statistic lrs=  ⋅
(p log pep + n log

n
en
), where ep =(p + n) P

P+N and en =
(p+n) N

P+N = (p+n)−ep are the number of positive and
negative examples one could expect if the p+n examples



 R Rule Learning

covered by the rule were distributed in the same way
as the P + N examples in the full data set. �is statis-
tic follows a χ distribution, which allows to �lter out
rules for which the distribution of the covered exam-
ples is not statistically and signi�cantly di�erent from
the distribution of examples in the full data set. Other
pre-pruning criteria are simple thresholds that de�ne
a minimum acceptable value for the search heuristic,
or Foil’s 7minimum description length criterion that
relates the length of a rule to the number of examples it
covers.
However, it can be shown experimentally that CN

or Foil still have a tendency to over�t the data. Instead,
state-of-the-art algorithms 7post-prune a rule right
a�er it has been learned. For this purpose, one third of
the training data are reserved for pruning. A�er a rule
has been learned, it is greedily simpli�ed on the prun-
ing set. Simpli�cations can be the deletion of the last
condition, a �nal sequence of conditions, or an arbi-
trary condition of the rule. If the simpli�cation does
not decrease the accuracy of the rule on the prun-
ing set, it will be performed. �is so-called incremental
reduced error pruning algorithm (Fürnkranz & Wid-
mer, ) is used in the rule learning algorithmRipper
(Cohen, ).
A survey and experimental comparison of pruning

techniques for rule learning can be found in Fürnkranz
().

Alternatives to Covering
An obvious generalization of covering is to not entirely
remove covered examples but to reduce their example
7weights, thus decreasing their importance in subse-
quent iterations (see, e.g., the Slipper algorithm; Cohen
& Singer ).
Rules can also be learned by alternative strategies.

�ere have been numerous proposals, only the most
in�uential can be mentioned. Each path from the root
to a leaf of a 7decision tree corresponds to a rule and
so rules can be learned by �rst learning a decision tree
and then post-processing it (see, e.g., the C.rules
algorithm; Quinlan, ). It is also possible to use
the 7APriori algorithm for an exhaustive search for
classi�cation rules, and to use a subsequent covering
algorithm to combine the rules into a rule set (see,
e.g., the CBA algorithm; Liu, Hsu, & Ma, ). RISE

(Domingos, ) combines bottom-up generalization
with7nearest neighbor algorithms to learn a theory via
“conquering without separating”.

Well-known Rule Learning Algorithms
AQ can be considered as the original covering algo-
rithm. Its original version was conceived by Ryszard
Michalski in the s (Michalski, ), and numerous
versions and variants of the algorithm appeared sub-
sequently in the literature. AQ uses a top-down beam
search for �nding the best rule. It does not search all
possible specializations of a rule, but only considers
re�nements that cover a particular example, the so-
called seed example. �is idea is basically the same as
the use of a 7bottom clause in 7inductive logic pro-
gramming.
CN (Clark & Niblett, ; Clark & Boswell, )

employs a beam search guided by the Laplace estimate,
and uses the likelihood ratio signi�cance test to �ght
over�tting. It can operate in twomodes, one for learning
rule sets (by modeling each class independently), and
one for learning decision lists.
Foil (Quinlan, ) was the �rst relational learn-

ing algorithm that received attention beyond the �eld
of inductive logic programming. It learns a conceptwith
the covering loop and learns individual concepts with a
top-down re�nement operator, guided by information
gain. �e main di�erence to previous systems is that
Foil allowed the use of �rst-order background knowl-
edge. Instead of only being able to use tests on single
attributes, Foil could employ tests that compute rela-
tions between multiple attributes, as well as introduce
new variables in the body of a rule.
Ripper (Cohen, ) was the �rst rule learning

system that e�ectively countered the over�tting prob-
lem via incremental reduced error pruning, as described
above. It also added a post-processing phase for opti-
mizing a rule set in the context of other rules. �e key
idea is to remove one rule out of a previously learned
rule set and try to relearn it not only in the context
of previous rules (as would be the case in the regular
covering rule), but in the context of a complete theory.
Ripper is still state-of-the-art in inductive rule learn-
ing. A freely accessible reimplementation can be found
in the Weka machine learning library under the name
of JRip.



Rule Learning R 

R

Opus (Webb, ) was the �rst rule learning algo-
rithm to demonstrate the feasibility of a full exhaus-
tive search through all possible rule bodies for �nd-
ing a rule that maximizes a given quality criterion (or
heuristic function). �e key idea is the use of ordered
search that prevents that a rule is generated multiple
times. �is means that even though there are l! di�er-
ent orders of the conditions of a rule of length l, only
one of them can be taken by the learner for �nding
this rule. In addition,OPUSuses several techniques that
prune signi�cant parts of the search space, so that this
search method becomes feasible. Follow-up work has
shown that this technique is also an e�cient alterna-
tive for 7association rule discovery, provided that the
database to mine �ts into the memory of the learning
system.

Cross References
7Apriori Algorithm
7Association Rule
7Decision List
7Decision Trees
7Subgroup Discovery

Recommended Reading
Cestnik, B. (). Estimating probabilities: A crucial task in

machine learning. In L. Aiello (Ed.), Proceedings of the ninth
European conference on artificial intelligence (ECAI-), Stock-
holm, Sweden (pp. –). Pitman, London.

Clark, P., & Boswell, R. (). Rule induction with CN: Some
recent improvements. In Proceedings of the fifth European work-
ing session on learning (EWSL-), Porto, Portugal (pp. –).
London: Springer.

Clark, P., & Niblett, T. (). The CN induction algorithm.
Machine Learning, (), –.

Cohen, W. W. (). Fast effective rule induction. In A. Prieditis
& S. Russell (Eds.), Proceedings of the th international confer-
ence on machine learning (ML-), Lake Tahoe, California (pp.
–). Morgan Kaufmann, San Mateo, CA.

Cohen, W. W., & Singer, Y. (). A simple, fast, and effective rule
learner. In Proceedings of the th national conference on artifi-
cial intelligence (AAAI-), Orlando (pp. –). Menlo Park:
AAAI/MIT Press.

Domingos, P. (). Unifying instance-based and rule-based induc-
tion. Machine Learning, , –.

Fürnkranz, J. (). Pruning algorithms for rule learning. Machine
Learning, (), –.

Fürnkranz, J. (February ). Separate-and-conquer rule learning.
Artificial Intelligence Review, (), –.

Fürnkranz, J., & Flach, P. (). ROC ‘n’ rule learning – Towards
a better understanding of covering algorithms. Machine Learn-
ing, (), –.

Fürnkranz, J., & Widmer, G. (). Incremental reduced error
pruning. In W. Cohen & H. Hirsh (Eds.), Proceedings of the
th international conference on machine learning (ML-), New
Brunswick, NJ (pp. –). Morgan Kaufmann, San Mateo, CA.

Liu, B., Hsu, W., & Ma, Y. (). Integrating classification and
association rule mining. In R. Agrawal, P. Stolorz, & G.
Piatetsky-Shapiro (Eds.), Proceedings of the fourth international
conference on knowledge discovery and data mining (KDD-),
New York City, NY (pp. –).

Michalski, R. S. (). On the quasi-minimal solution of the cover-
ing problem. In Proceedings of the fifth international symposium
on information processing (FCIP-), Bled, Yugoslavia. Switching
circuits (Vol. A, pp. –).

Quinlan, J. R. (). Learning logical definitions from relations.
Machine Learning, , –.

Quinlan, J. R. (). C.: Programs for machine learning. San
Mateo: Morgan Kaufmann.

Webb, G. I. (). OPUS: An efficient admissible algorithm for
unordered search. Journal of Artificial Intelligence Research, ,
–.




	R
	Rademacher Average
	Rademacher Complexity
	Synonyms
	Definition

	Radial Basis Function Approximation
	Radial Basis Function Networks
	Synonyms
	Definition
	Motivation and Background
	Structure of the Network/Learning System
	Applications
	Theory/Solution
	Regularization and Generalizations
	Advantages of the Approach
	Limitations
	Cross References
	Recommended Reading

	Radial Basis Function Neural Networks
	Random Decision Forests
	Random Forests
	Synonyms
	Definition

	Random Subspace Method
	Synonyms
	Definition

	Random Subspaces
	Randomized Decision Rule
	Rank Correlation
	Definition
	Cross References

	Ratio Scale
	Real-Time Dynamic Programming
	Recall
	Cross References

	Receiver Operating Characteristic Analysis
	Recognition
	Recommender Systems
	Definition
	Motivation and Background
	Structure of Learning System
	Collaborative Filtering
	Neighborhood-based Collaborative Filtering
	Model-based Collaborative Filtering

	Content-based Recommending
	Hybrid Approaches
	Evaluation Metrics
	Challenges and Limitations

	Recommended Reading

	Record Linkage
	Recurrent Associative Memory
	Recursive Partitioning
	Reference Reconciliation
	Regression
	Definition
	Motivation and Background
	Theory/Solution
	Fitting
	Regularized/Penalized Fitting
	Bias-Variance Dilemma
	Nonparametric Regression
	Generalized Linear Models
	Other Variants of Regression

	Cross References
	Recommended Reading

	Regression Trees
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Learning a Regression Tree
	Pruning Regression Trees

	Cross References
	Recommended Reading

	Regularization
	Definition
	Motivation and Background
	Theory
	An Illustrative Example: Ridge Regression
	Examples of Regularization
	Measuring the Capacity of Model Class

	Applications
	Cross References
	Recommended Reading

	Regularization Networks
	Reinforcement Learning
	Cross References
	Recommended Reading

	Reinforcement Learning in Structured Domains
	Relational
	Cross References

	Relational Data Mining
	Relational Dynamic Programming
	Relational Learning
	Problem Definition
	Learning from Examples with External Relationships
	Learning from Examples with a Complex Internal Structure

	Approaches to Relational Learning
	Inductive Logic Programming
	Learning from Graphs
	Multi-relational Data Mining
	Statistical Relational Learning/Probabilistic Logic Learning
	Relational Reinforcement Learning

	Cross References
	Recommended Reading

	Relational Regression Tree
	Relational Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Added Benefits of Relational Reinforcement Learning
	Example Relational Reinforcement Learning Approaches
	Relational Q-Learning
	Non-parametric Policy Gradients
	Relational Approximate Policy Iteration
	Symbolic Dynamic Programming


	Cross References
	Further Information
	Recommended Reading

	Relational Value Iteration
	Relationship Extraction
	Relevance Feedback
	Cross References

	Representation Language
	Reservoir Computing
	Synonyms
	Definition
	Recommended Reading

	Resolution
	Resubstitution Estimate
	Cross References

	Reward
	Reward Selection
	Reward Shaping
	Synonyms
	Definition
	Motivation and Background
	Theory
	Potential-Based Shaping
	Cross References
	Recommended Reading

	RIPPER
	Robot Learning
	Definition
	Robot Skill Learning Problems
	Robot Learning Systems
	Model Learning
	Imitation and Apprenticeship Learning
	Robot Reinforcement Learning

	Application Domains
	Cross References
	Recommended Reading

	ROC Analysis
	Synonyms
	Definition
	Motivation and Background
	Solutions
	Properties of ROC Curves
	The AUC Statistic
	Identifying Optimal Points and the ROC Convex Hull
	Obtaining Calibrated Estimates of the Class Posterior

	Future Directions
	Cross References
	Recommended Reading

	ROC Convex Hull
	ROC Curve
	Rotation Forests
	RSM
	Rule Learning
	Synonyms
	Definition
	The Covering Algorithm
	Finding the Best Rule
	Rule Learning Heuristics
	Overfitting Avoidance

	Alternatives to Covering
	Well-known Rule Learning Algorithms
	Cross References
	Recommended Reading



