
N

Naïve Bayes

Geoffrey I. Webb

Monash University, Melbourne, Victoria

Synonyms
Idiot’s bayes; Simple bayes

Definition
Naïve Bayes is a simple learning algorithm that uti-

lizes 7Bayes rule together with a strong assumption
that the attributes are conditionally independent, given

the class. While this independence assumption is o�en

violated in practice, naïve Bayes nonetheless o�en deliv-

ers competitive classi�cation accuracy. Coupled with its

computational e�ciency and many other desirable fea-

tures, this leads to naïve Bayes being widely applied in

practice.

Motivation and Background
Naïve Bayes provides a mechanism for using the infor-

mation in sample data to estimate the posterior proba-

bility P(y | x) of each class y, given an object x. Once we
have such estimates, we can use them for7classi�cation
or other decision support applications.

Naïve Bayes’ many desirable properties include:

● Computational e�ciency: 7Training time is lin-
ear with respect to both the number of 7training
examples and the number of 7attributes, and
7classi�cation time is linear with respect to the
number of attributes and una�ected by the number

of training examples.

● Low variance: Because naïve Bayes does not utilize
search, it has low7variance, albeit at the cost of high
7bias.

● Incremental learning: Naïve Bayes operates from
estimates of low order probabilities that are derived

from the training data.�ese can readily be updated

as new training data are acquired.

● Direct prediction of posterior probabilities.
● Robustness in the face of noise: Naïve Bayes always
uses all attributes for all predictions and hence is

relatively insensitive to 7noise in the examples to
be classi�ed. Because it uses probabilities, it is also

relatively insensitive to noise in the7training data.
● Robustness in the face ofmissing values: Because naïve
Bayes always uses all attributes for all predictions,

if one attribute value is missing, information from

other attributes is still used, resulting in grace-

ful degradation in performance. It is also rel-

atively insensitive to 7missing attribute values
in the 7training data due to its probabilistic
framework.

Structure of Learning System
Naïve Bayes is based on7Bayes rule

P(y ∣ x) = P(y)P(x ∣ y)/P(x) ()

together with an assumption that the attributes are con-

ditionally independent given the class. For 7attribute-
value data, this assumption entitles

P(x ∣ y) =
n

∏
i=
P(xi ∣ y) ()

where xi is the value of the ith attribute in x, and n is the
number of attributes.

P(x) =
k

∏
i=
P(ci)P(x ∣ ci) ()

where k is the number of classes and ci is the ith class.
�us, () can be calculated by normalizing the numera-

tors of the right-hand-side of the equation.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC 



 N NC-Learning

For 7categorical attributes, the required proba-
bilities P(y) and P(xi ∣ y) are normally derived from
frequency counts stored in arrays whose values are cal-

culated by a single pass through the training data at

training time. �ese arrays can be updated as new data

are acquired, supporting 7incremental learning. Prob-
ability estimates are usually derived from the frequency

counts using smoothing functions such as the7Laplace
estimate or an7m-estimate.
For 7numeric attributes, either the data are dis-

cretized (see 7discretization), or probability density
estimation is employed.

In 7document classi�cation, two variants of naïve
Bayes are o�en employed (McCallumandNigam, ).

�e multivariate Bernoulli model utilizes naïve Bayes
as described above, with each word in a corpus repre-

sented by a binary variable that is true if and only if

the word is present in a document. However, only the

words that are present in a document are considered

when calculating the probabilities for that document.

In contrast, themultinomial model uses information
about the number of times a word appears in a docu-

ment. It treats each occurrence of a word in a document

as a separate event. �ese events are assumed indepen-

dent of each other. Hence the probability of a document

given a class is the product of the probabilities of each

word event given the class.

Cross References
7Bayes Rule
7Bayesian Methods
7Bayesian Networks
7Semi-Naïve Bayesian Learning

Recommended Reading
Lewis, D. () Naive Bayes at forty: the independence assumption

in information retrieval. In Machine Learning: ECML-, Pro-
ceedings of the th European Conference on Machine Learning,
Chemnitz, Germany (pp. –). Berlin: Springer.

McCallum, A., & Nigam, K. (). A comparison of event mod-

els for Naive Bayes text classification. In AAAI- Workshop on
Learning for Text Categorization (pp. –). CA: AAAI Press.

NC-Learning

7Negative Correlation Learning

NCL

7Negative Correlation Learning

Nearest Neighbor

Eamonn Keogh

University California-Riverside

Synonyms
Closest point; Most similar point

Definition
In a data collection M, the nearest neighbor to a data
object q is the data objectMi, which minimizes dist (q,
Mi), where dist is a distance measure de�ned for the
objects in question. Note that the fact that the objectMi

is the nearest neighbor to q does not imply that q is the
nearest neighbor toMi.

Motivation and Background
Nearest neighbors are useful in many machine learning

and data mining tasks, such as classi�cation, anomaly

detection, and motif discovery and in more gen-

eral tasks such as spell checking, vector quantization,

plagiarism detection, web search, and recommender

systems.

�e naive method to �nd the nearest neighbor to a

point q requires a linear scan of all objects in M. Since
this may be unacceptably slow for large datasets and/or

computationally demanding distance measures, there

is a huge amount of literature on speeding up near-

est neighbor searches (query-by-content). �e fastest

methods depend on the distancemeasure used, whether

the data is disk resident or in main memory, and the

structure of the data itself. Many methods are based

on the R-tree (Guttman, ) or one of its vari-

ants (Manolopoulos, Nanopoulos, Papadopoulos, and

�eodoridis, ). However, in recent years there has

been an increased awareness that for many applications



Negative Predictive Value N 

N

approximate nearest neighbors may su�ce.�is has led

to the development of techniques like locality sensitive
hashing, which �nds high-quality approximate nearest
neighbors in constant time.

�ede�nition of nearest neighbor allows for the def-

inition of one of the simplest classi�cation schemes, the

nearest neighbor classi�er.
�e major database (SIGMOD, VLDB, and PODS)

and data mining (SIGKDD, ICDM, and SDM) con-

ferences typically feature several papers on novel dis-

tance measures and techniques for speeding up near-

est neighbor search. Pavel et al.’s book provides an

excellent overview on the state-of-the-art techniques in

nearest neighbor searching.

Recommended Reading
Guttman, A. (). R-trees: A dynamic index structure for spatial

searching. In Proceedings of the  ACM SIGMOD interna-
tional conference on management of data (pp. –). New York:
ACM. ISBN ---

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N., &

Theodoridis, Y. (). R-trees: Theory and applications. Berlin:
Springer.

Zezula, P., Amato, G., Dohnal, V., & Batko, M. (). Sim-

ilarity search: The metric space approach. In Advances in
database systems (Vol. , p. ). New York: Springer.

ISBN ---

Nearest Neighbor Methods

7Instance-Based Learning

Negative Correlation Learning

Synonyms
NC-learning; NCL

Definition
Negative correlation learning (Liu & Yao, ) is

an 7ensemble learning technique. It can be used for
regression or classi�cation problems, though with clas-

si�cation problems the models must be capable of pro-

ducing posterior probabilities. �e model outputs are

combined with a uniformly weighted average. �e

squared error is augmented with a penalty term which

takes into account the diversity of the ensemble. �e

error for the ith model is,

E(fi(x)) =



(fi(x) − d) − λ(fi(x) − f̄ (x)). ()

�e coe�cient λ determines the balance between opti-
mizing individual accuracy, and optimizing ensemble

diversity. With λ = , the models are trained indepen-

dently, with no emphasis on diversity. With λ = , the

models are tightly coupled, and the ensemble is trained

as a single unit. �eoretical studies (Brown, Wyatt, &

Tino, ) have shown that NCworks by directly opti-

mizing the7bias-variance-covariance trade-o�, thus it
explicitly manages the ensemble diversity. When the
complexity of the individuals is su�cient to have high

individual accuracy, NC provides little bene�t. When

the complexity is low, NCwith a well-chosen λ can pro-
vide signi�cant performance improvements. �us the

best situation to make use of the NC framework is with

a large number of low accuracy models.

Recommended Reading
Brown, G., Wyatt, J. L., & Tino, P. (). Managing diversity in

regression ensembles. Journal of Machine Learning Research, ,
–.

Liu, Y., & Yao, X. (). Ensemble learning via negative correlation

Neural Networks, (), –.

Negative Predictive Value

Negative Predictive Value (NPV) is de�ned as a ratio of

true negatives to the total number of negatives predicted

by a model. �is is de�ned with reference to a special

case of the 7confusion matrix with two classes – one
designated the positive class and the other the negative
class – as indicated in Table .

NPV can then be de�ned in terms of true negatives

and false negatives as follows.

NPV = TN/(TN + FN)



 N Network Analysis

Negative Predictive Value. Table  The outcomes of

classification into positive and negative classes

Assigned Class

Positive Negative

Positive True Positive (TP) False Negative (FN)

A
ct

ua
l

C
la

ss

Negative False Positive (FP) True Negative (TN)

Network Analysis

7LinkMining and Link Discovery

Network Clustering

7Graph Clustering

Networks with Kernel Functions

7Radial Basis Function Networks

Neural Networks

Neural networks are learning algorithms based on a

loose analogy of how the human brain functions. Learn-

ing is achieved by adjusting the weights on the connec-

tions between nodes, which are analogous to synapses

and neurons.

Cross References
7Radial Basis Function Networks

Neural Network Architecture

7Topology of a Neural Network

Neuro-Dynamic Programming

7Value Function Approximation

Neuroevolution

Risto Miikkulainen

�e University of Texas at Austin

Austin, TX, USA

Synonyms
Evolving neural networks; Genetic neural networks

Definition
Neuroevolution is a method for modifying 7neural
network weights, topologies, or ensembles in order to

learn a speci�c task. Evolutionary computation (see

7Evolutionary Algorithms) is used to search for net-
work parameters that maximize a �tness function that

measures performance in the task. Compared to other

neural network learning methods, neuroevolution is

highly general, allowing learning without explicit tar-

gets, with non di�erentiable activation functions, and

with recurrent networks. It can also be combined with

standard neural network learning, e.g. to biological

adaptation. Neuroevolution can also be seen as a pol-

icy search method for reinforcement-learning prob-

lems, where it is well suited to continuous domains

and to domains where the state is only partially

observable.

Motivation and Background
�eprimarymotivation for neuroevolution is to be able

to train neural networks in sequential decision tasks

with sparse reinforcement information. Most neural

network learning is concerned with supervised tasks,

where the desired behavior is described in terms of a

corpus of input to output examples. However, many

learning tasks in the real world do not lend themselves

to the supervised learning approach. For example, in

game playing, vehicle control, and robotics, the opti-

mal actions at each point in time are not always known;

only a�er performing several actions, it is possible to get

information about how well they worked, such as win-

ning or losing the game. Neuroevolution makes it pos-

sible to �nd a neural network that optimizes behavior

given only such sparse information about how well the

networks are doing, without direct information about

what exactly they should be doing.



Neuroevolution N 

N

�e main bene�t of neuroevolution compared

with other reinforcement learning (RL) methods in

such tasks is that it allows representing continu-

ous state and action spaces and disambiguating hid-

den states naturally. Network activations are contin-

uous, and the network generalizes well between con-

tinuous values, largely avoiding the state explosion

problem that plagues many reinforcement-learning

approaches. 7Recurrent networks can encode memo-
ries of past states and actions, making it possible to

learn in7partially observable Markov decision process
(POMDP) environments that are di�cult for many RL

approaches.

Compared to other neural network learning meth-

ods, neuroevolution is highly general. As long as the

performance of the networks can be evaluated over

time, and the behavior of the network can be modi-

�ed through evolution, it can be applied to a wide range

of network architectures, including those with non

di�erentiable activation functions and recurrent and

higher-order connections. While most neural learning

algorithms focus on modifying only the weights, neu-

roevolution can be used to optimize other aspects of

the networks as well, including activation functions and

network topologies.

�ird, neuroevolution allows combining evolution

over a population of solutions with lifetime learn-

ing in individual solutions: the evolved networks can

each learn further through, e.g., backpropagation or

Hebbian learning. �e approach is therefore well suited

for understanding biological adaptation and building

arti�cial life systems.

Structure of the Learning System
Basic methods

In neuroevolution, a population of genetic encodings of

neural networks is evolved to �nd a network that solves

the given task.Most neuroevolutionmethods follow the

usual generate-and-test loop of evolutionary algorithms

(Fig. ). Each encoding in the population (a genotype)

is chosen in turn and decoded into the correspond-

ing neural network (a phenotype). �is network is then

employed in the task and its performance measured

over time, obtaining a �tness value for the correspond-

ing genotype. A�er all members of the population have

been evaluated in this manner, genetic operators are

Neuroevolution. Figure . Evolving neural networks.

A population of genetic neural networks encodings

(genotypes) is first created. At each iteration of evolution

(generation), each genotype is decoded into a neural

network (phenotype), which is evaluated in the task,

resulting in a fitness value for the genotype. Crossover

and mutation among the genotypes with the highest

fitness is then used to generate the next generation

used to create the next generation of the population.

�ose encodings with the highest �tness are mutated

and crossed over with each other, and the resulting o�-

spring replaces the genotypes with the lowest �tness

in the population. �e process therefore constitutes an

intelligent parallel search towards better genotypes and

continues until a network with a su�ciently high �tness

is found.

Several methods exist for evolving neural networks

depending on how the networks are encoded.�emost

straightforward encoding, sometimes called conven-

tional neuroevolution (CNE), is formed by concatenat-

ing the numerical values for the network weights (either

binary or �oating point; Floreano, Dürr, & Mattiussi,

; Scha�er, Whitley, & Eshelman, ; Yao, ).

�is encoding allows evolution to optimize the weights

of a �xed neural network architecture, an approach

that is easy to implement and is practical in many

domains.

In more challenging domains, the CNE approach

su�ers from three problems. �e method may cause

the population to converge before a solution is found,

making further progress di�cult (i.e., premature con-

vergence); similar networks, such as those where the

order of nodes is di�erent,may have di�erent encodings

and much e�ort is wasted in trying to optimize them in

parallel (i.e., competing conventions); a large number



 N Neuroevolution

of parameters need to be optimized at once, which is

di�cult through evolution.

More sophisticated encodings have been devised

to alleviate these problems. One approach is to run

the evolution at the level of solution components

instead of full solutions. �at is, instead of a popu-

lation of complete neural networks, a population of

network fragments, neurons, or connection weights is

evolved (Gomez, Schmidhuber, & Miikkulainen, ;

Moriarty, Schultz, & Grefenstette, ; Potter & Jong,

). Each individual is evaluated as part of a full net-

work, and its �tness re�ects how well it cooperates with

other individuals in forming a full network. Speci�ca-

tions for how to combine the components into a full

network can be evolved separately, or the combination

can be based on designated roles for subpopulations. In

this manner, the complex problem of �nding a solution

network is broken into several smaller subproblems;

evolution is forced to maintain diverse solutions, and

competing conventions and the number of parameters

is drastically reduced.

Another approach is to evolve the network topology,

in addition to the weights. �e idea is that topology can

have a large e�ect on function, and evolving appropri-

ate topologies can achieve good performance faster than

evolving weights only (Angeline, Saunders, Pollack, &

An, ; Floreano et al., ; Stanley &Miikkulainen,

; Yao, ). Since topologies are explicitly spec-

i�ed, competing conventions are largely avoided. It is

also possible to start evolution with simple solutions

and gradually make themmore complex, a process that

takes place in biology and is a powerful approach in

machine learning in general. Speciation according to

the topology can be used to avoid premature conver-

gence, and to protect novel topological solutions until

their weights have been su�ciently optimized.

All of the above methods map the genetic encod-

ing directly to the corresponding neural network, i.e.,

each part of the encoding corresponds to a part of the

network, and vice versa. Indirect encoding, in contrast,

speci�es a process through which the network is con-

structed, such as cell division or generation through

a grammar (Floreano et al., ; Gruau, Whitley, &

Adding, ; Stanley &Miikkulainen, ; Yao, ).

Such an encoding can be highly compact and also take

advantage of modular solutions. �e same structures

can be repeated with minor modi�cations, as they o�en

are in biology. It is, however, di�cult to optimize solu-

tions produced by indirect encoding, and realizing its

full potential is still future work.

�e ��h approach is to evolve an ensemble of neural

networks to solve the task together, instead of a sin-

gle network (Liu, Yao, & Higuchi, ). �is approach

takes advantage of the diversity in the population. Dif-

ferent networks learn di�erent parts or aspects of the

training data, and together the whole ensemble can

perform better than a single network. Diversity can

be created through speciation and negative correla-

tion, encouraging useful specializations to emerge. �e

approach can be used to design ensembles for classi�-

cation problems, but it can also be extended to control

tasks.

Extensions

�e basic mechanisms of neuroevolution can be aug-

mented in several ways, making the process more e�-

cient and extending it to various applications. One of

the most basic ones is incremental evolution or shap-

ing. Evolution is started on a simple task and once

that is mastered, the solutions are evolved further on

a more challenging task, and through a series of such

transfer steps, eventually on the actual goal task itself

(Gomez et al., ). Shaping can be done by chang-

ing the environment, such as increasing the speed of the

opponents, or by changing the �tness function, e.g., by

rewarding graduallymore complex behaviors. It is o�en

possible to solve challenging tasks by approaching them

incrementally evenwhen they cannot be solved directly.

Many extensions to evolutionary computationmeth-

ods apply particularly well to neuroevolution. For

instance, intelligent mutation techniques such as those

employed in evolutionary strategies are e�ective because

the weights o�en have suitable correlations (Igel, ).

Networks can also be evolved through coevolution

(Chellapilla & Fogel, ; Stanley & Miikkulainen,

). A coevolutionary arms race can be established,

e.g., based on complexi�cation of network topology: as

the network becomes gradually more complex, evolu-

tion is likely to elaborate on existing behaviors instead

of replacing them.

On the other hand, several extensions utilize the

special properties of the neural network phenotype. For



Neuroevolution N 

N

instance, neuron activation functions, initial states, and

learning rules can be evolved to �t the task (Floreano

et al., ; Yao, ; Scha�er et al., ). Most sig-

ni�cantly, evolution can be combined with other neural

network learning methods (Floreano et al., ). In

such approaches, evolution usually provides the initial

network, which then adapts further during its evalua-

tion in the task. �e adaptation can take place through

Hebbian learning, thereby strengthening those exist-

ing behaviors that are invoked o�en during evaluation.

Alternatively, supervised learning such as backpropaga-

tion can be used, provided targets are available. Even

if the optimal behaviors are not known, such training

can be useful. Networks can be trained to imitate the

most successful individuals in the population, or part

of the network can be trained in a related task such as

predicting the next inputs, or evaluating the utility of

actions based on values obtained through Q-learning.

�e weight changes may be encoded back into the

genotype, implementing Lamarckian evolution; alter-

natively, they may a�ect selection through the Baldwin

e�ect, i.e., networks that learn well will be selected for

reproduction even if the weight changes themselves

are not inherited (Ackley & Littman, ; Bryant &

Miikkulainen, ; Gruau et al., ).

�ere are also several ways to bias and direct

the learning system using human knowledge. For

instance, human-coded rules can be encoded in partial

network structures and incorporated into the evolv-

ing networks as structural mutations. Such knowl-

edge can be used to implement initial behaviors in

the population, or it can serve as an advice during

evolution (Miikkulainen, Bryant, Cornelius, Karpov,

Stanley, & Yong, ). In cases where rule-based

knowledge is not available, it may still be possible

to obtain examples of human behavior. Such exam-

ples can then be incorporated into evolution, either

as components of �tness or by explicitly training the

evolved solutions towards human behavior through,

e.g., backpropagation (Bryant & Miikkulainen, ).

Similarly, knowledge about the task and its compo-

nents can be utilized in designing e�ective shaping

strategies. In this manner, human expertise can be

used to bootstrap and guide evolution in di�cult

tasks, as well as direct it towards the desired kinds of

solutions.

Applications
Neuroevolution methods are powerful especially in

continuous domains of reinforcement learning, and

those that have partially observable states. For instance,

in the benchmark task of balancing the inverted pen-

dulum without velocity information (making the prob-

lem partially observable), the advanced methods have

been shown to �nd solutions two orders of magni-

tude faster than value-function-based reinforcement-

learning methods (measured by number of evaluations;

Gomez et al., ). �ey can also solve harder ver-

sions of the problem, such as balancing two poles

simultaneously.

�emethod is powerful enough to make many real-

world applications of reinforcement learning possible.

�e most obvious area is adaptive, nonlinear control

of physical devices. For instance, neural network con-

trollers have been evolved to drive mobile robots, auto-

mobiles, and even rockets (Gomez & Miikkulainen,

; Nol� & Floreano, ; Togelius & Lucas, ).

�e control approach have been extended to optimize

systems such as chemical processes, manufacturing sys-

tems, and computer systems. A crucial limitation with

current approaches is that the controllers usually need

to be developed in simulation and transferred to the real

system. Evolution is the strongest as an o�-line learning

method where it is free to explore potential solutions in

parallel.

Evolution of neural networks is a natural tool for

problems in arti�cial life. Because networks imple-

ment behaviors, it is possible to design neuroevolu-

tion experiments on how behaviors such as foraging,

pursuit and evasion, hunting and herding, collabora-

tion, and even communication may emerge in response

to environmental pressure (Werner & Dyer, ). It

is possible to analyze the evolved circuits and under-

stand how they map to function, leading to insights

into biological networks (Keinan, Sandbank, Hilgetag,

Meilijson, & Ruppin, ). �e evolutionary behav-

ior approach is also useful for constructing characters

in arti�cial environments, such as games and simu-

lators. Non-player characters in current video games

are usually scripted and limited; neuroevolution can

be used to evolve complex behaviors for them, and

even adapt them in real time (Miikkulainen et al.,

).



 N Neuron

Programs and Data
So�ware for, e.g., the NEAT method for evolving net-

work weights and topologies, and the ESP method

for evolving neurons to form networks is available at

http://nn.cs.utexas.edu/keyword?neuroevolution.

�e TEEM so�ware for evolving neural networks for

robotics experiments is available at http://teem.ep�.ch.

�e OpenNERO so�ware for evolving intelligent mul-

tiagent behavior in simulated environments is at

http://nn.cs.utexas.edu/?opennero.

Cross References
7Evolutionary Algorithms
7Reinforcement Learning

Recommended Reading
Ackley, D., & Littman, M. (). Interactions between learning

and evolution. In C. G. Langton, C. Taylor, J. D. Farmer, &

S. Rasmussen (Eds.), Artificial life II (pp. –). Reading,
MA: Addison-Wesley.

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (). An evolution-

ary algorithm that constructs recurrent neural networks. IEEE
Transactions on Neural Networks, , –.

Bryant, B. D., & Miikkulainen, R. (). Acquiring visibly

intelligent behavior with example-guided neuroevolu-

tion http://nn.cs.utexas.edu/keyword?bryant:aaai. In

Proceedings of the twenty-second national conference on
artificial intelligence (pp. –). Menlo Park, CA: AAAI
Press.

Chellapilla, K., & Fogel, D. B. (). Evolution, neural networks,

games, and intelligence. Proceedings of the IEEE, , –.
Floreano, D., Dürr, P., & Mattiussi, C. (). Neuroevolution: From

architectures to learning. Evolutionary Intelligence, , –.
Gomez, F., & Miikkulainen, R. (). Active guidance for

a finless rocket using neuroevolution http://nn.

cs.utexas.edu/keyword?gomez:gecco. In Proceedings of
the genetic and evolutionary computation conference (pp.
–). San Francisco: Morgan Kaufmann.

Gomez, F., Schmidhuber, J., & Miikkulainen, R. (). Acceler-

ated neural evolution through cooperatively coevolved syn-

apses http://nn.cs.utexas.edu/keyword?gomez:jmlr. Journal
of Machine Learning Research, , –.

Gruau, F., & Whitley, D. (). Adding learning to the cellular

development of neural networks: Evolution and the Baldwin

effect. Evolutionary Computation, , – .
Igel, C. (). Neuroevolution for reinforcement learning using

evolution strategies http://www.neuroinformatik.ruhr-uni-

bochum.de/ini/PEOPLE/igel/NfRLUES.pdf. In R. Sarker,

R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, &

T. Gedeon, (Eds.), Proceedings of the  congress on evolu-
tionary computation (pp. –). Piscataway, NJ: IEEE
Press.

Keinan, A., Sandbank, B., Hilgetag, C. C., Meilijson, I., & Rup-

pin, E. (). Axiomatic scalable neurocontroller analysis via

the Shapley value. Artificial Life, , –.

Liu, Y., Yao, X., & Higuchi, T. (). Evolutionary ensembles with

negative correlation learning. IEEE Transactions on Evolution-
ary Computation, , –.

Miikkulainen, R., Bryant, B. D., Cornelius, R., Karpov,

I. V., Stanley, K. O., & Yong, C. H. (). Compu-

tational intelligence in games http://nn.cs.utexas.edu/

keyword?miikkulainen:cigames. In G. Y. Yen & D. B.

Fogel (Eds.), Computational intelligence: Principles and practice
(–). Piscataway, NJ: IEEE Computational Intelligence

Society.

Moriarty, D. E., Schultz, A. C., & Grefenstette, J. J. (). Evolution-

ary algorithms for reinforcement learning. Journal of Artificial
Intelligence Research, , –.

Nolfi, S., & Floreano, D. (). Evolutionary robotics. Cambridge,
MA: MIT Press.

Potter, M. A., & Jong, K. A. D. (). Cooperative coevolu-

tion: An architecture for evolving coadapted subcomponents

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve

&db=pubmed&dopt=abstract&list_uids=.

Evolutionary Computation, , –.
Schaffer, J. D., Whitley, D., & Eshelman, L. J. (). Combinations

of genetic algorithms and neural networks: A survey of the

state of the art. In D. Whitley & J. Schaffer (Eds.), Proceedings
of the international workshop on combinations of genetic algo-
rithms and neural networks (pp. –). Los Alamitos, CA: IEEE
Computer Society Press.

Stanley, K. O., & Miikkulainen, R. (). A taxonomy for artificial

embryogeny http://nn.cs.utexas.edu/keyword?stanley:alife.

Artificial Life, , –.
Stanley, K. O., & Miikkulainen, R. (). Competitive

coevolution through evolutionary complexification

http://nn.cs.utexas.edu/keyword?stanley:jair. Journal of
Artificial Intelligence Research, , –.

Togelius, J., & Lucas, S. M. (). Evolving robust

and specialized car racing skills http://algoval.essex.

ac.uk/rep/games/TogeliusEvolving.pdf. In IEEE congress
on evolutionary computation (pp. –). Piscataway, NJ:
IEEE.

Werner, G. M., & Dyer, M. G. (). Evolution of communication in

artificial organisms. In C. G. Langton, C. Taylor, J. D. Farmer, &

S. Rasmussen (Eds.) Proceedings of the workshop on artifi-
cial life (ALIFE ’) (pp. –). Reading, MA: Addison-
Wesley.

Yao, X. (). Evolving artificial neural networks. Proceedings of the
IEEE, (), –.

Neuron

Risto Miikkulainen

�e University of Texas at Austin

Austin, TX, USA

Synonyms
Node; Unit

Definition
Neurons carry out the computational operations of a

network; together with connections (see 7Topology

http://nn.cs.utexas.edu/keyword?neuroevolution
http://teem.epfl.ch
http://nn.cs.utexas.edu/?opennero
http://nn.cs.utexas.edu/keyword?bryant:aaai07
http://nn.cs.utexas.edu/keyword?gomez:jmlr08
http://nn.cs.utexas.edu/keyword?stanley:alife03
http://nn.cs.utexas.edu/keyword?stanley:jair04
http://nn.cs.utexas.edu/keyword?miikkulainen:cigames06
http://nn.cs.utexas.edu/keyword?miikkulainen:cigames06
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=10753229.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=10753229
http://nn.cs.utexas.edu/keyword?gomez:gecco03
http://nn.cs.utexas.edu/keyword?gomez:gecco03
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/igel/NfRLUES.pdf
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/igel/NfRLUES.pdf
http://algoval.essex.ac.uk/rep/games/Togelius2006Evolving.pdf
http://algoval.essex.ac.uk/rep/games/Togelius2006Evolving.pdf


Noise N 

N

of a Neural Network, 7Weights), they constitute the
neural network. Computational neurons are highly

abstracted from their biological counterparts. In most

cases, the neuron forms a weighted sum of a large num-

ber of inputs (activations of other neurons), applies a

nonlinear transfer function to that sum, and broad-

casts the resulting output activation to a large number

of other neurons. Such activation models the �ring rate

of the biological neuron, and the nonlinearity is used

to limit it to a certain range (e.g., / with a threshold,

( .. ) with a sigmoid, (− .. ) with a hyperbolic tangent,

or ( ..∞) with an exponential function). Each neuron

may also have a bias weight, i.e., a weight from a vir-

tual neuron that is always maximally activated, which

the learning algorithm can use to adjust the input sum

quickly into the most e�ective range of the nonlin-

earity. Alternatively to �ring rate neurons, the �ring

events (i.e., spikes or action potentials) of the neuron

can be represented explicitly. In such an integrate-and-

�re approach, each spike causes a change in the neuron’s

membrane potential that decays over time; an output

spike is generated if the potential exceeds a threshold

(see 7Biological Learning). In contrast, networks such
as7Self-Organizing Maps and7Radial Basis Function
Networks abstract the �ring rate further into a measure

of similarity (or distance) between the neuron’s input

weight vector and the vector of input activities. Learn-

ing in neural networks usually takes place by adjusting

the weights on the input connections of the neuron, and

can also include adjusting the parameters of the non-

linear transfer function, or the neuron’s connectivity

with other neurons. In this manner, the neuron con-

verges information from other neurons, makes a simple

decision based on it, broadcasts the result widely, and

adapts.

Node

7Neuron

No-Free-Lunch Theorem

A theorem establishing that performance on test data

cannot be deduced from performance on training data.

It follows that the justi�cation for any particular learn-

ing algorithm must be based on an assumption that

nature is uniform in some way. Since di�erent machine

learning algorithms make such di�erent assumptions,

no-free-lunch theorems have been used to argue that it

not possible to deduce that any algorithm is superior to

any other from �rst principles. �us “good” algorithms

are those whose 7inductive bias matches the way the
world happens to be.

Nogood Learning

Nogood learning is a 7deductive learning technique
used for the purpose of 7intelligent backtracking in
constraint satisfaction. �e approach analyzes failures

at backtracking points and derives sets of variable bind-

ings, or nogoods, that will never lead to a solution.�ese
nogood constraints can then be used to prune later

search nodes.

Noise

�e training data for a learning algorithm is said to be

noisy if the data contain errors. Errors can be of two
types:

● A measurement error occurs when some attribute
values are incorrect or inaccurate. Note that mea-

surement of physical properties by continuous val-

ues is always subject to some error.

● In supervised learning, classi�cation error means
that a training example has an incorrect class label.

In addition to errors, training examples may have

7missing attribute values. �at is, the values of some
attribute values are not recorded.

Noisy data can cause learning algorithms to fail

to converge to a concept description or to build a

concept description that has poor classi�cation accu-

racy on unseen examples. �is is o�en due to 7over
�tting.

For methods to minimize the e�ects of noise, see

7Over Fitting.



 N Nominal Attribute

Nominal Attribute

A nominal attribute assumes values that classify data
into mutually exclusive (nonoverlapping), exhaustive,

unordered categories. See 7Attribute and 7Measure-
ment Scales.

Nonparametric Bayesian

7Gaussian Process

Nonparametric Cluster Analysis

7Density-Based Clustering

Non-Parametric Methods

7Instance-Based Learning

Nonstandard Criteria in
Evolutionary Learning

Michele Sebag

Université Paris-Sud, Orsay, France

Introduction
Machine learning (ML), primarily concerned with

extracting models or hypotheses from data, comes into

three main �avors: 7supervised learning also known
as 7classi�cation or 7regression (Bishop, ; Duda
et al., ; Han and Kamber, ), 7unsupervised
learning also known as 7clustering (Ben-David et al.,
), and7reinforcement learning (Sutton and Barto,
).

All three types of problems can be viewed as opti-

mization problems. �e ML core task is to de�ne a

learning criterion (i.e., the function to be optimized)
such that it enforces (i) the statistical relevance of the

solution; (ii) the well-posedness of the underlying opti-

mization problem. Since evolutionary computation (see

7Evolutionary Algorithms) makes it possible to handle
ill-posed optimization problems, the �eld of evolution-

ary learning (Holland, ) has investigated quite a

few nonstandard learning criteria and search spaces.

Only supervisedMLwill be considered in the following.

Unsupervised learning has hardly been touched upon in

the evolutionary computation (EC) literature; regarding

reinforcement learning, the interested reader is referred

to the entries related to 7evolutionary robotics and
control.

�e entry will �rst brie�y summarize the formal

background of supervised ML and its two mainstream

approaches for the last decade, namely support vec-

tor machines (SVMs) (Cristianini and Shawe-Taylor,

; Schölkopf et al., ; Vapnik, ) and ensem-

ble learning (Breiman ; Dietterich, ; Schapire,

). �erea�er and without pretending to exhaustiv-

ity, this entry will illustrate some innovative variants of

these approaches in the literature, building upon the

evolutionary freedom of setting and tackling optimiza-

tion problems.

Formal Background

Supervised learning exploits a dataset E = {(xi, yi), xi ∈
X, yi ∈ Y , i =  . . . n}, where X stands for the instance
space (e.g., IRd), Y is the label space, and (xi, yi)
is a labeled example, as depicted in Table . Super-

vised learning is referred to as classi�cation (respec-
tively regression) when Y is a �nite set (respectively
when Y = IR).

�e ML goal is to �nd a hypothesis or classi�er h :
X ↦ Y such that h(x) is “su�ciently close” to the true
label y of x for any x ranging in the instance domain.
It is generally assumed that the available examples are

independently and identically distributed (iid) a�er a

probability distribution PXY on X × Y . Letting ℓ(y′, y)
denote the loss incurred by labeling x as y′ instead of
its true label y, the learning criterion is most naturally
de�ned as the expectation of the loss, or generalization



Nonstandard Criteria in Evolutionary Learning N 

N

Nonstandard Criteria in Evolutionary Learning. Table 

Excerpt of a dataset in a failure identification prob-

lem (binary classification). Instance space X is the cross

product of all attribute domains: for example, attribute

Temperature ranges in IR, attribute Material ranges in

{Ni, Fe, . . .}. Label space Y is binary

Temperature Material Aging Label

x . Ni No Failure

x . Fe Yes OK

error, to beminimized, whereH denotes the hypothesis
space:

Find h∗ = argmin{F(h)

= ∫ ℓ(h(x), y)dP(x, y), h ∈ H}

�e generalization error however is not computable,

since the joint distribution PXY of instances and labels

is unknown; only its approximation on the training

set, referred to as empirical error, can be computed as
follows:

Fe(h) =


n

n

∑
i=
ℓ(h(xi), yi)

Using results from the theory of measure and inte-

gration, the generalization error is upper bounded by

the empirical error, plus a term re�ecting the num-

ber of examples and the regularity of the hypothesis

class (Fig. ).

Note that minimizing the empirical error alone

leads to the infamous over�tting problem: while the pre-
dictive accuracy on the training set is excellent, the error

on a (disjoint) test set is much higher. All learning crite-

ria thus involve a trade-o� between the empirical error

and a so-called regularization term, providing good

guarantees (upper bound) on the generalization error.

In practice, learning algorithms also involve hyper-

parameters (e.g., the weight of the regularization term).

�ese are adjusted using cross-validation using a grid

search (EC approaches have also been used to �nd opti-

mal learning hyperparameters, ranging from the topol-

ogy of neural nets [Miikkulainen et al., ], to the

kernel parameters in SVM [Friedrichs and Igel, ;

Mierswa, ].) �e dataset is divided into K subsets
with same class distribution; hypothesis hi is learned
from the training set made of all subsets except the

i-th and the empirical error of hi is measured on the ith
subset. An approximation of the generalization error is

provided by the average of the hi errors when i =  . . .K,
referred to as cross-fold error, and the hyperparame-

ter setting is empirically determined to minimize the

cross-fold error.

Support Vector Machines

Considering a real-valued instance space (X = IRD), a

linear 7support vector machine (SVM) (Boser et al.,
) constructs the separating hyperplane (where

< a, b > stands for the dot product of vectors

a and b):

h(x) = < w, x > +b

which maximizes the margin that is, the minimal dis-

tance between the examples and the hyperplane, when

such separating hyperplanes exists (Fig. ). A slightly

more complex formulation, involving the so-called

slack variables xii, is de�ned to deal with noise (Cortes
and Vapnik, ).

�e function to be optimized, the L norm of

the hyperplane normal vector w, is quadratic; using
Lagrangemultipliers to account for the constraints gives

rise to the so-called dual formulation. Let us call support
vectors those examples for which the constraint is active
(Lagrange multiplier αi > ), then it becomes

h(x) = ∑ yiαi < xi, x > +b with αi > ; ∑ αiyi = 

Aswill be seen in section “EvolutionaryRegularization,”

this formulation de�nes a search space, which can be

directly explored by EC (Mierswa, ).

Obviously however, linear classi�ers are limited.

�e power of SVMs comes from the so-called ker-

nel trick, naturally exporting the SVM approach to

nonlinear hypothesis spaces. Let us map the instance

space X onto some feature space X′ via mapping Φ. If
the scalar product on X′ can be computed in X (e.g.,
< Φ(x), Φ(x′) >=def K(x, x′)) then a linear classi-
�er in X′ (nonlinear with reference to X) is given as



 N Nonstandard Criteria in Evolutionary Learning

For an iid. sample x, . . . xn, for g ∈ G

∫ g(x)dx < 

n ∑
n
i= g(xi) + C(n,G)

Nonstandard Criteria in Evolutionary Learning. Figure . Bounding the integral from the empirical average depending

on the uniform sample size and the class of functions G at hand

+

+

+

+

+

−

−

−

−
−

Optimal hyperplane

Separating hyperplane

Margin

without noise

Minimize 


∣∣w∣∣

s.t. for i =  to n

yi(< w, xi > +b) ≥ 

with noise

Minimize 


∣∣w∣∣ + C∑n

i= xii

s.t. for i =  to n

yi(< w, xi > +b) ≥  − xii; xii ≥ 
Nonstandard Criteria in Evolutionary Learning. Figure . Linear support vector machines. The optimal hyperplane is

the one maximizing the minimal distance to the examples

h(x)= ∑i yiαiK(xi, x)+ b. �e only requirement is to
use a positive de�nite kernel (ensuring that the under-

lying optimization problem is well posed). Again, this

requirement can be relaxed in the evolutionary learning

framework (Mierswa, ).

Among the most widely used kernels are the Gaus-

sian kernel (K(x, x′) = exp{− ∣∣x−x
′∣∣

σ  }) and the poly-

nomial kernel (K(x, x′)= (<x, x′>+ c)d). �e kernel
parameters σ , c,d, referred to as learning hyper-
parameters, have been tuned by some authors using EC,

as well as the kernel itself (see among others (Friedrichs

and Igel, ; Gagné et al., ; Mierswa, )).

Ensemble methods

�eother mainstream approach in supervised learning,

7ensemble learning (EL), relies on somewhat di�er-
ent principles. Schapire’s seminal paper,�e strength of
weak learnability, exploring the relationship between
weak learnability (ability of building a hypothesis
slightly better than random guessing, whatever the

distribution of the dataset is (C)) and strong learn-
ability (ability of building a hypothesis with arbitrar-
ily high predictive accuracy), established a major and

counterintuitive result: strong and weak learnability are

equivalent (Schapire, ). �e idea behind the proof



Nonstandard Criteria in Evolutionary Learning N 

N

is that combiningmany weak hypotheses learned under

di�erent distributions yields an arbitrarily accurate

hypothesis. As the errors of the weak hypotheses should

not concentrate in any particular region of the instance

space (for condition C to hold), the law of large num-

bers states that averaging them leads to exponentially

decrease the empirical error.

Two main EL approaches have been investigated in

the literature. �e �rst one, 7bagging (Breiman, ),
builds a large number of independent hypotheses; the

source of variations is bootstrapping (uniformly select-

ing the training set with replacement from the initial

dataset); or varying the parameters of the learning algo-

rithm; or subsampling the features considered at each

step of the learning process (Amit et al., ; Breiman,

). �e �nal classi�er is usually obtained by averag-

ing these solutions.

�e other EL approach, 7boosting (Freund and
Shapire, ), iteratively builds a sequence of hypothe-

ses, where each hi somehow is in charge of correcting
themistakes of h, . . . hi−. Speci�cally, a distributionWt

is de�ned on the training set at step t, with W being

the uniform distribution. At step t, the weight of every
example misclassi�ed by ht is increased (multiplied by
exp{−ht(xi).hi}; then a normalization step follows to
ensure that Wt+ still sums to ); hypothesis ht+ will
thus focus on the examples misclassi�ed by ht . Finally,
the classi�er is de�ned as the weighted vote of all ht .

�e intuition behind boosting is that not all exam-

ples are equal: some examples are more di�cult than

others (more hypotheses misclassify them) and the

learning process should thus focus on these examples

(with the caveat that a di�cult example might be so

because it is noisy). Interestingly, the intuition that

examples are not equal has been formalized in terms

of coevolution (When designing a program, the �tness

of the candidate solutions is computed a�er some test

cases; for the sake of accuracy and feasability, the di�-

culty and number of test cases must be commensurate

with the competence of the current candidate solu-

tions. Hillis de�ned a competitive coevolution setting

between the program species and the test case species:

while programs aim at solving test cases, test cases aim

at defeating candidate programs. �is major line of

research however is outside the scope of evolutionary

learning as it assumes that the whole distribution PXY is

known.) by D. Hillis in the early s (Hillis, ).

Many empirical studies suggest that boosting is

more e�ective than bagging (with some caveat in the

case of noisy domains), thanks to the higher diversity of

the boosting ensemble (Dietterich, ; Margineantu

and Dietterich, ).

In the ensemble learning framework, the margin of
an example x is de�ned as the di�erence between the
(cumulated weight or number) of hypotheses labeling x
as positive, and those labeling x as negative. Like in the
SVM framework, the margin of an example re�ects the

con�dence of its classi�cation (how much this example

should be perturbed for its label to be modi�ed).

Learning Criteria
Learning criterion and �tness functionwill be used inter-
changeably in the following. Since Holland’s seminal

papers on evolutionary learning (Holland, , ),

the most used learning criterion is the predictive accu-

racy on the available dataset. A�er the early s

however, drawbacks related to either learning or evo-

lutionary issues motivated the design of new �tness

functions.

Evolutionary Regularization

In the 7genetic programming �eld, the early use of
more sophisticated learning criteria was motivated by

the so-called bloat phenomenon (Banzhaf and Lang-

don, ; Poli, ), that is, the uncontrolled growth

of the solution size as evolution goes on. Two main

approaches have been considered. �e �rst one boils

down to regularization (section “Formal Background”):

the �tness function is composed of the predictive accu-

racy plus an additional term meant to penalize large-

sized solutions (Blickle, ).�e tricky issue of course

is how to adjust the weight of the penalization term;

the statistical ML theory o�ers no principled solution

to this issue (except in an asymptotic perspective, when

the number of training examples goes to in�nity (Gelly

et al., )); thus, the weight is adjusted empirically

using cross-validation (section “Formal Background”).

Another approach (Blickle, ) is based on the

use of two �tness functions during the same evolution

run, a�er the so-called behavioral memory paradigm

(Schoenauer and Xanthakis, ). In a �rst phase, the

population is evolved to maximize the predictive accu-

racy. In a second phase, the optimization goal becomes



 N Nonstandard Criteria in Evolutionary Learning

tominimize the solution sizewhile preserving the predic-
tive accuracy reached in the former phase. As could have
been expected, this second approach also depends upon

the careful empirical adjustment of hyper-parameters

(when to switch from one phase to another one).

Another approach is to consider regularized learn-

ing as amulti-objective optimization problem, avoiding

the computationally heavy tuning of the regularization

weight (Note however that in the case where the reg-

ularization involves the L norm of the solution, the
Pareto front can be analytically derived using the cele-

brated LASSO algorithm (Hastie et al., ; Tibshirani,

).). Mierswa () applies multi-objective evolu-

tionary optimization, speci�cally NSGA-II ([Deb et al.,

]; see the Multi-Objective Evolutionary Optimiza-

tion entry in this encyclopedia), to the simultaneous

optimization of the margin and the error. �e search

space is nicely and elegantly derived from the dual form

of SVMs (section “Support Vector Machines”): it con-

sists of vectors (α, . . . αn), where most αi are zero and

∑i αiyi = . A customized mutation operator, similar
in spirit to the sequential minimization optimization

proposed by Platt [], enables to explore the solu-

tions with few support vectors. �e Pareto front shows

the trade-o� between the regularization term and the

training error. At some point however, a hold-out (test

set) needs be used to detect and avoid over�tting solu-

tions, boiling down to cross-validation. Another multi-

objective optimization learning is proposed by Suttorp

and Igel () (see section “AUC Area Under the Roc

Curve”).

Ensemble Learning and Boosting

Ensemble learning and evolutionary computation share

two main original features. Firstly, both rely on a

population of candidate solutions; secondly, the diver-

sity of these solutions commands the e�ectiveness

of the approach. It is no surprise therefore that

evolutionary ensemble learning, tightly coupling EC

and EL, has been intensively investigated in the last

decade (Another exploitation of the hypotheses built

along independent evolutionary learning runs concerns

feature selection (Jong et al., ), which is outside the

scope of this entry.)

A family of diversity-oriented learning criteria

has been investigated by Xin Yao and collaborators,

switching the optimization goal from “learning the

best hypothesis” toward “learning the best ensemble”

(Monirul Islam and Yao, ). �e hypothesis space

is that of neural networks (NNs). Nonparametric and

parametric operators are used to simultaneously opti-

mize the neural topology and the NN weights. Among

parametric operators is the gradient-based backpropa-

gation (BP) algorithm to locally optimize the weights

(Rumelhart andMcClelland, ), combinedwith sim-

ulated annealing to escape BP local minima.

Liu et al. () enforce the diversity of the networks

using a negative correlation learning criterion. Specif-
ically, the BP algorithm is modi�ed by replacing the

error of the t-thNNon the i-th example with aweighted
sum of this error and the error of the ensemble of the

other NNs; denotingH−t the ensemble made of all NNs
but the tth one:

(ht(xi)−yi) → (−λ)(ht(xi)−yi)+λ(H−t(xi)−yi))

Moreover, ensemble negative correlation–based learn-

ing exploits the fact that not all examples are equal,

along the same line as boosting (section “Ensemble

Methods”): to each training example is attached a

weight, re�ecting the number of hypotheses that mis-

classify it; �nally the �tness associated to each network

is the sumof theweights of all examples it correctly clas-

si�es.While this approach nicely suggests that ensemble

learning is a multiple objective optimization (MOO)

problem (minimize the error rate and maximize the

diversity), it classically handles the MOO problem as

a �xed weighted sum of the objectives (the value of

parameter λ is �xed by the user).
�e MOO perspective is further investigated by

Chandra and Yao in the DIVACE system, enforcing the

multilevel evolution of ensemble of classi�ers (Chandra

and Yao, a,b). In (Chandra and Yao, b), the

top-level evolution simultaneously minimizes the error

rate (accuracy) and maximizes the negative correlation

(diversity). In (Chandra and Yao, a), the negative

correlation-inspired criterion is replaced by a pairwise
failure crediting; the di�erence concerns the misclassi�-
cation of examples that are correctly classi�ed by other

classi�ers. Several heuristics have been investigated

to construct the ensemble from the last population,

based on averaging the hypothesis values, using the

(weighted) vote of all hypotheses, or selecting a sub-

set of hypotheses, for example, by clustering the �nal



Nonstandard Criteria in Evolutionary Learning N 

N

hypothesis population a�er their phenotypic distance,

and selecting a hypothesis in each cluster.

Gagné et al. () tackle both the construction of

a portfolio of classi�ers, and the selection of a sub-

set thereof, either from the �nal population only as

in (Chandra and Yao, a,b), or from all genera-

tions. In order to do so, a reference set of classi�ers

is used to de�ne a dynamic optimization problem: the

�tness of a candidate hypothesis re�ects whether h
improves on the reference set; in the meantime, the

reference set is updated every generation. Speci�cally,

noting wi the fraction of reference classi�ers misclas-

sifying the i-th example, F(h) is set to the sum of
wγ
i , taken over all examples correctly classi�ed by h.
Parameter γ is used to mitigate the in�uence of noisy
examples.

Boosting and Large-Scale Learning

Another keymotivation for designing new learning cri-

teria is to yield scalable learning algorithms, copingwith

giga or terabytes of data (see [Sonnenburg et al., ]).

Song et al. (, ) presented an elegant genetic

programming approach to tackle the intrusion detec-

tion challenge (Lippmann et al., ); this challenge

o�ers a , pattern training set, exceeding stan-

dard available RAM capacities. �e proposed approach

relies on the dynamic subset selection method �rst pre-

sented byGathercole andRoss ().�ewhole dataset

is equally and randomly divided into subsets Ei with

same distribution as the whole dataset, where each Ei

�ts within the available RAM. Iteratively, some subset

Ei is selected with uniform probability, and loaded in

memory; it is used for a number of generations set to

Gmax × Err(i) where Gmax is the user-supplied maxi-

mum number of generations, and Err(i) is the mini-
mum number of patterns in Ei misclassi�ed the previ-

ous time Ei was considered. Within Ei, a competition is

initiated between training patterns to yield a frugal yet

challenging assessment of the hypotheses. Speci�cally,

every generation or so, a restricted subset is selected

by tournament in Ei, considering both the di�culty

of the patterns (the di�culty of pattern xj being the
number of hypotheses misclassifying xj last time xj was
selected) and its age (the number of generations since

xj was last selected). With some probability (% in the

experiments), the tournament returns the pattern with

maximum age; otherwise, it returns the pattern with

maximum di�culty.

�e dynamic selection subset (DSS) heuristics can

thus be viewed as a mixture of uniform sampling (mod-

eled by the age-based selection) and boosting (corre-

sponding to the di�culty-based selection). �is mixed

distribution gets the best of both worlds: it speeds up

learning by putting the stress on the most challeng-

ing patterns, akin boosting; in the meanwhile, it pre-

vents noisy examples from leading learning astray as

the training set always includes a su�cient proportion

of uniformly selected examples.�e authors report that

the approach yields accurate classi�ers (though out-

performed by the Challenge winning entry), while one

trial takes min on a modest laptop computer ( GHz

Pentium,  MB RAM).

Gagné et al., aiming at the scalable optimization

of SVM kernels, proposed another use of dynamic

selection subset in a coevolutionary perspective (Gagné

et al., ). Speci�cally, any kernel induces a similarity

on the training set

s(x, x′) = K(x, x′) − K(x, x) − K(x′, x′)

�is similarity directly enables the classi�cation of

examples along the k-nearest neighbor approach (Duda
et al., ) (see7Nearest Neighbor), labeling an exam-
ple a�er the majority of its neighbors. Inspired from

(Gilad-Bachrach et al., ), the margin of an exam-

ple is de�ned as the rank of its closest neighbor in the

same class, minus the rank of its closest neighbor in the

other class (the closer a neighbor, the higher its rank is).

�e larger themargin of an example, themore con�dent

one can be it will be correctly classi�ed; the �tness of the

kernel could thus be de�ned as the sum of the example

margins. Computed naively however, this �tness would

be quadratic in the size of the training set, hindering the

scalability of the approach.

A three-species coevolutionary framework was thus

de�ned. �e �rst species is that of kernels; the sec-

ond species includes the candidate neighbor instances,

referred to as prototypes; the third species includes the

training instances, referred to as test cases. Kernels and

prototypes undergo a cooperative co-evolution: they



 N Nonstandard Criteria in Evolutionary Learning

cooperate to yield the underlying metric (similarity)

and the reference points (prototypes) enabling to clas-

sify all training instances. �e test cases, in the mean-

while, undergo a competitive coevolutionwith the other

two species: they present the learning process withmore

and more di�cult training examples, aiming at a good

coverage of the whole instance space. �e approach

reportedly yields accurate kernels at a moderate com-

putational cost.

AUC: Area Under the ROC Curve

�e misclassi�cation rate criterion is notably ill-suited

to problem domains with a minority class. If the goal is

to discriminate a rare disease (< % of the training set)

from a healthy state, the default hypothesis (“everyone

is healthy” with % misclassi�ed examples) can hardly

be outperformed in terms of predictive accuracy. Stan-

dard heuristics accommodating ill-balanced problems

involve the oversampling of the minority class, under-

sampling of the majority class, or cost-sensitive loss

function (e.g., misclassifying a healthy person for an ill

one costs , whereas the opposite costs ) (Domingos,

).

Another principled approach is based on the so-

called area under the receiver-operating characteristics

curve (see 7ROC Analysis). Let us consider a con-
tinuous hypothesis h, mapping the instance space on
the real-value space IR. For each threshold τ let the
binary classi�er hτ be de�ned as instance x is positive i�
h(x) > τ. To each τ value can be associated the true pos-
itive (TP) rate (fraction of ill persons that are correctly

classi�ed) and the false positive (FP) rate (fraction of

healty persons misclassi�ed as ill ones). In the (FP,TP)

plane, the curve drawn as τ varies de�nes the ROC
curve (Fig. ).

Noting that the ideal classi�er lies in the upper le�

corner (% false positive rate, % true positive rate),

it comes naturally to optimize the area under the ROC

curve. �is criterion, also referred to as Wilcoxon rank

test, has been intensively studied in both theoretical

and algorithmic perspectives (see among many others

(Cortes and Mohri, ; Ferri et al., ; Joachims,

; Rosset, )).

�e AUC criterion has been investigated in the EC

literature since the s (Fogel et al., ), for it de�nes

a combinatorial optimization problem. Considering the

search space of real-valued functions, mapping instance

ROC Curve

1

0.5

0

5.00
False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

1

ROC Curve
Best Tradeoff

Nonstandard Criteria in Evolutionary Learning. Figure .

The receiver operating characteristic (ROC) Curve depicts

how the true positive (TP) rate increases vs the false

positive (FP) rate. Random guessing corresponds to the

diagonal line. The ROC curve is insensitive to ill-balanced

distributions as TP and FP rates are normalized

space X onto IR, the AUC (Wilcoxon) criterion is

de�ned as

F(h) = Pr(h(x) > h(x′)∣y > y′)

Fe(h) ∝ #{(xi, xj) s.t. h(xi) > h(xj), yi = , yj = }

Speci�cally, hypothesis h is used to rank the
instances; any ranking such that all positive instances

are ranked before the negative ones gets the optimal

AUC. �e �tness criterion can be computed with com-

plexity O(n logn) where n stands for the number of
training instances, by showing that

Fe(h) ∝ ∑
i=. . .n,yi=

i × rank(i)

Interestingly, the optimization of the AUC criterion

can be dealt with in the SVM framework, as shown by

Joachims (), replacing class constraints by inegality

constraints (Fig. ):

yi(< w, xi > +b) ≥  i =  . . . n

→ < w, xi − xj > ≥  i, j =  . . . n, s.t. yi > yj

In practice, the quadratic optimization process intro-

duces gradually the violated constraints only, to avoid

dealing with a quadratic number of constraints.



Nonstandard Criteria in Evolutionary Learning N 

N

�e �exibility of EC can still allow for more speci�c

and application-driven interpretation of the AUC cri-

terion. Typically in medical applications, the physician

is most interested in the beginning of the AUC curve,

trying to �nd a threshold τ retrieving a high fraction of
ill patients for a very low false positive rate. �e same

situation occurs in customer relationship management,

replacing positive cases by potential churners.�eAUC

criterion can be easily adapted to minimize the number

of false positive within the top k-ranked individuals, as
shown by Mozer et al., ().

In a statistical perspective however (and contrar-

ily to a common practice in the ML and data mining

communities), it has been argued that selecting a clas-

si�er based on its AUC was not appropriate (David J.

Hand, ). �e objection is that the AUC maximiza-

tion yields the best hypothesis under a uniform distri-
bution of the misclassi�cation costs, whereas hypothesis
h is used with a speci�c threshold τ, corresponding to a
particular point of the ROC curve (Fig. ).

Still, ROC curves convey very clear intuitions about

the trade-o� between TP and FP rates; analogous to

a Pareto front, they enable one to select a posteriori

the best trade-o� according to a one’s implicit prefer-

ences. An interesting approach along these lines has

been investigated by Suttorp and Igel () to learn

SVMs, using a multi-objective optimization setting to

simultaneously minimize the FP rate, and maximize

the TP rate, and maximize the number of support

vectors.

�e last objective actually corresponds to a regu-

larization term: the empirical error plus the number

of support vectors upper-bounds the so-called leave-

one-out error (when the number of folds in cross-

fold validation is set to the number of examples),

since the hypothesis is not modi�ed when removing

a non-support vectors. (see Zhang [] for more

detail).

Conclusions
Unsurprisingly, the bottom line of evolutionary learn-

ing matches that of EC: any e�ort to customize the

�tness function is highly rewarded; a good knowl-

edge of the domain application enables to choose

appropriate, frugal yet e�ective, search space and varia-

tion operators.

Another message concerns the validation of the

proposed approaches. In early decades, hypotheses

were assessed from their training error, with poor

applicative relevance due to over�tting. Better prac-

tices are now widely used (e.g., training, validation,

and test sets); as advocated by Dietterich (), good

practices are based on cross-validation. Taking into

account early remarks about the University of Cali-

fornia Irvine (UCI) repository (Holte, ), experi-

mental validation should consider actually challenging

problems.

Due to space limitations, this entry has excluded

some nice and elegant work at the crossroad of machine

learning and evolutionary computation, among others,

interactive optimization and modelisation of the user’s

preferences (Llorà et al., ), interactive feature con-

struction (Krawiec and Bhanu, ; Venturini et al.,

), or ML-based heuristics for noisy optimization

(Heidrich-Meisner and Igel, ).

Recommended Reading
Amit, Y., Geman, D., & Wilder, K. (). Joint induction of shape

features and tree classifiers. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, (), –.

Banzhaf, W., & Langdon, W. B. (). Some considerations on the

reason for bloat. Genetic Programming and Evolvable Machines,
(), –.

Ben-David, S., von Luxburg, U., Shawe-Taylor, J., & Tishby, N. (Eds.).

(). Theoretical foundations of clustering. NIPS Workshop.
Bishop, C. (). Pattern recognition and machine learning.

Springer.

Blickle, T. (). Evolving compact solutions in genetic program-

ming: a case study. In H.-M. Voigt et al. (Eds.), Proceedings
of the th international inference on parallel problem solving
from nature. Lecture notes in computer science (vol. , pp.
–). Berlin: Springer.

Boser, B., Guyon, I., & Vapnik, V. (). A training algorithm for

optimal margin classifiers. Proceedings of the th annual ACM
conference on Computational Learning Theory, COLT’, (pp.
–). Pittsburgh, PA.

Breiman, L. (). Arcing classifiers. Annals of Statistics, (),
–.

Breiman, L. (). Random forests. Machine Learning, (), –.
Chandra, A., & Yao, X. (). Ensemble learning using multi-

objective evolutionary algorithms. Journal of Mathematical
Modelling and Algorithms, (), –.

Chandra, A., & Yao X. (). Evolving hybrid ensembles of learn-

ing machines for better generalisation. Neurocomputing, ,
–.

Cortes, C., & Vapnik, V. N. (). Support-vector networks.

Machine Learning, , –.



 N Nonstandard Criteria in Evolutionary Learning

Cortes, C., & Mohri, M. (). Confidence intervals for the area

under the ROC curve. Advances in Neural Information Process-
ing Systems, NIPS, .

Cristianini, N., & Shawe-Taylor, J. (). An introduction to sup-
port vector machines and other kernel-based learning methods.
Cambridge: Cambridge University Press.

David J. Hand. (). Measuring classifier performance: a coher-

ent alternative to the area under the ROC curve. Machine
Learning, (), –. http://dx.doi.org/./S--
-, DBLP, http://dblp.uni- trier.de

Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (). A fast elitist

non-dominated sorting genetic algorithm for multi-objective

optimization: NSGA-II. In M. Schoenauer et al. (Eds.), Pro-
ceedings of the parallel problem solving from nature VI confer-
ence, Paris, France, pp. –. Springer. Lecture Notes in
Computer Science No. .

Dietterich, T. G. (). Approximate statistical tests for comparing

supervised classification learning algorithms. Neural Computa-
tion, , –.

Dietterich, T. (). Ensemble methods in machine learning. In

J. Kittler & F. Roli (Eds.), First International Workshop on
Multiple Classifier Systems, Springer, pp. –.

Domingos, P. (). Meta-cost: a general method for making clas-

sifiers cost sensitive. In Proceedings of the th ACM SIGKDD
International Conference on Knowledge discovery and data min-
ing, (pp. –). San Diego, CA: ACM.

Duda, R. O., Hart, P. E., & Stork, D. G. (). Pattern classification
(nd ed.). New York: Wiley.

Ferri, C., Flach, P. A., & Hernndez-Orallo, J. (). Learning deci-

sion trees using the area under the ROC curve. In C. Sammut

& A. G. Hoffman (Eds.), Proceedings of the Nineteenth Inter-
national Conference on Machine Learning (ICML ), (pp.
–). Morgan Kaufmann.

Fogel, D. B., Wasson, E. C., Boughton, E. M., Porto, V. W., and

Angeline, P. J. (). Linear and neural models for classify-

ing breast cancer. IEEE Transactions on Medical Imaging, (),
–.

Freund, Y., & Shapire, R. E. (). Experiments with a new boosting

algorithm. In L. Saitta (Ed.), Proceedings of the Thirteenth Inter-
national Conference on Machine Learning (ICML ), (pp.
–). Bari: Morgan Kaufmann.

Friedrichs, F., & Igel, C. (). Evolutionary tuning of multiple

SVM parameters. Neurocomputing, (C), –.
Gagné, C., Schoenauer, M., Sebag, M., & Tomassini, M. ().

Genetic programming for kernel-based learning with co-

evolving subsets selection. In T. P. Runarsson, H.-G. Beyer, E.

K. Burke, J. J. Merelo Guervós, L. Darrell Whitley, & X. Yao

(Eds.), Parallel problem solving from nature – PPSN IX, vol-
ume  of Lecture Notes in Computer Science (pp. –).
Springer.

Gagné, C., Sebag, M., Schoenauer, M., & Tomassini, M. ().

Ensemble learning for free with evolutionary algorithms? In

H. Lipson (Ed.), Genetic and Evolutionary Computation Con-
ference, GECCO , (pp. –). ACM.

Gathercole, C., & Ross, P. (). Dynamic training subset selec-

tion for supervised learning in genetic programming. In Parallel
problem solving from nature – PPSN III, volume  of lecture
notes in computer science (pp. –). Springer.

Gelly, S., Teytaud, O., Bredeche, N., & Schoenauer, M. ().

Universal consistency and bloat in GP: Some theoretical

considerations about genetic programming from a statisti-

cal learning theory viewpoint. Revue d’Intelligence Artificielle,
(), –.

Gilad-Bachrach, R., Navot, A., & Tishby, N. (). Margin based

feature selection – theory and algorithms. Proceedings of the
Twenty-First International Conference on Machine Learning
(ICML ), ACM Press, p. .

Han, J., & Kamber, M. (). Data mining: concepts and techniques.
New York: Morgan Kaufmann.

Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (). The entire

regularization path for the support vector machine. Advances
in Neural Information Processing Systems, NIPS .

Heidrich-Meisner, V., & Igel, C. (). Hoeffding and Bernstein

races for selecting policies in evolutionary direct policy search.

Proceedings of the Twenty-Sixth International Conference on
Machine Learning (ICML ), ACM, pp. –.

Hillis, W. D. (). Co-evolving parasites improve simulated evo-

lution as an optimization procedure. Physica D, , –.
Holland, J. (). Escaping brittleness: The possibilities of general

purpose learning algorithms applied to parallel rule-based sys-

tems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),

Machine learning: an artificial intelligence approach (vol. , pp.
–). Morgan Kaufmann.

Holland, J. H. (). Adaptation in natural and artificial systems.
Ann Arbor: University of Michigan Press.

Holte, R. C. (). Very simple classification rules perform well on

most commonly used datasets. Machine Learning, , –.
Monirul Islam, M., & Yao, X. Evolving artificial neural network

ensembles. In J. Fulcher & L. C. Jain (Eds.), Computational intel-
ligence: a compendium, volume  of studies in computational
intelligence (pp. –). Springer.

Joachims, T. (). A support vector method for multivariate per-

formance measures. In L. De Raedt & S. Wrobel (Eds.), Proceed-
ings of the Twenty-second International Conference on Machine
Learning (ICML ), volume  of ACM International Con-
ference Proceeding Series (pp. –). ACM.

Jong, K., Marchiori, E., & Sebag, M. (). Ensemble learning

with evolutionary computation: application to feature ranking.

In X. Yao et al. (Eds.), Parallel problem solving from nature –
PPSN VIII, volume  of lecture notes in computer science (pp.
–). Springer.

Miikkulainen, R., Stanley, K. O., & Bryant, B. D. (). Evolving

adaptive neural networks with and without adaptive synapses.

Evolutionary Computation, , –.
Krawiec, K., & Bhanu, B. (). Visual learning by evolution-

ary and coevolutionary feature synthesis. IEEE Transactions on
Evolutionary Computation, (), –.

Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K. ().

Analysis and results of the  DARPA on-line intrusion detec-

tion evaluation. In H. Debar, L. Mé, & S. F. Wu (Eds.), Recent
advances in intrusion detection, volume  of lecture notes in
computer science (pp. –). Springer.

Liu, Y., Yao, X., & Higuchi, T. (). Evolutionary ensembles with

negative correlation learning. IEEE Transactions on Evolution-
ary Computation, (), –.

Llorà, X., Sastry, K., Goldberg, D. E., Gupta, A., & Lakshmi, L.

(). Combating user fatigue in igas: partial ordering, sup-

port vector machines, and synthetic fitness. In H.-G. Beyer &

U.-M. O’Reilly (Eds.), Genetic and Evolutionary Computation
Conference (GECCO ), ACM, pp. –.

http://dblp.uni-trier.de
http://dx.doi.org/10.1007/S10994-009-5119-5
http://dx.doi.org/10.1007/S10994-009-5119-5


NP-Completeness N 

N

Margineantu, D., & Dietterich, T. G. (). Pruning adaptive

boosting. Proceedings of the Fourteenth International Confer-
ence on Machine Learning (ICML ), Morgan Kaufmann,
pp. –.

Mierswa, I. Evolutionary learning with kernels: a generic solu-

tion for large margin problems. In M. Cattolico (Ed.), Genetic
and Evolutionary Computation Conference (GECCO ), ACM,
pp. –.

Mierswa, I. (). Controlling overfitting with multi-objective

support vector machines. In H. Lipson (Ed.), Genetic
and Evolutionary Computation Conference (GECCO ),
pp. –.

Mozer, M. C., Dodier, R., Colagrosso, M. C., Guerra-Salcedo, C., &

Wolniewicz, R. (). Prodding the ROC curve: constrained

optimization of classifier performance. Advances in Neural
Information Processing Systems, NIPS, MIT Press.

Platt, J. (). Fast training of support vector machines using

sequential minimal optimization. In B. Schölkopf et al. (Eds.),

Advances in kernel methods – support vector learning. Morgan
Kaufmann.

Poli, R. (). Genetic programming theory. In C. Ryan &

M. Keijzer (Eds.), Genetic and evolutionary computation confer-
ence, GECCO , (Companion), ACM, pp. –.

Rosset, S. (). Model selection via the auc. Proceedings of
the Twenty-First International Conference on Machine Learn-
ing (ICML ), volume  of ACM International Conference
Proceeding Series. ACM.

Rumelhart, D. E., & McClelland, J. L. (). Parallel distributed
processing. Cambridge: MIT Press.

Schapire, R. E. (). The strength of weak learnability. Machine
Learning, , .

Schoenauer, M., & Xanthakis, S. Constrained GA optimiza-

tion. In S. Forrest (Ed.), Proceedings of the th Interna-
tional Conference on Genetic Algorithms, Morgan Kaufmann,
pp. –.

Schölkopf, B., Burges, C., & Smola, A. (). Advances in Kernel
methods: support vector machines. Cambridge: MIT Press.

Song, D., Heywood, M. I., & Nur Zincir-heywood, A. (). A

linear genetic programming approach to intrusion detection.

Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO), Springer, pp. –, LNCS .

Song, D., Heywood, M. I., & Nur Zincir-Heywood, A. (). Train-

ing genetic programming on half a million patterns: an example

from anomaly detection. IEEE Transactions on Evolutionary
Computation, (), –.

Sonnenburg, S., Franc, V., Yom-Tov, E., & Sebag, M. (Eds.). ().

Large scale machine learning challenge. ICML Workshop.
Sutton, R. S., & Barto, A. G. (). Reinforcement learning. Cam-

bridge: MIT Press.

Suttorp, T., & Igel, C. (). Multi-objective optimization of sup-

port vector machines. In Y. Jin (Ed.), Multi-objective Machine
Learning, volume  of Studies in Computational Intelligence
(pp. –). Springer.

Tibshirani, R. (). Regression shrinkage and selection via the

lasso. Royal Statistical Society, B, (), –.
Vapnik, V. N. (). The nature of statistical learning. New York:

Springer.

Venturini, G., Slimane, M., Morin, F., & Asselin de Beauville, J.

P. (). On using interactive genetic algorithms for knowl-

edge discovery in databases. In Th. Bäck, (Ed.), International

Conference on Genetic Algorithms (ICGA), Morgan Kaufmann,
pp. –.

Zhang, T. (). Leave-one-out bounds for kernel methods. Neural
Computation, (), –.

Nonstationary Kernels

7Local Distance Metric Adaptation

Nonstationary Kernels
Supersmoothing

7Locally Weighted Regression for Control

Normal Distribution

7Gaussian Distribution

NP-Completeness

Definition
A decision problem consists in identifying symbol

strings, presented as inputs, that have some speci�ed

property. �e output consists in a yes/no or / answer.

A decision problem belongs to the class P if there exists

an algorithm, that is, a deterministic procedure, for

deciding any instance of the problem in a length of time

bounded by a polynomial function of the length of the

input.

A decision problem is in the class NP if it is pos-

sible for every yes-instance of the problem to verify

in polynomial time, a�er having been supplied with a

polynomial-length witness, that the instance is indeed
of the desired property.

An example is the problem to answer the question

for two given numbers n andm whether n has a divisor
d strictly between m and n. �is problem is in NP: if
the answer is positive, then such a divisor d will be a
witness, since it can be easily checked that d lies between
the required bounds, and that n is indeed divisible by d.
However, it is not knownwhether this decision problem

is in P or not, as it may not be easy to �nd a suitable

divisor d, even if one exists.



 N Numeric Attribute

�e class of NP-complete decision problems con-
tains such problems in NP for which if some algorithm

decides it, then every problem in NP can be decided

in polynomial time. A theorem of Stephen Cook and

Leonid Levin states that such decision problems exist.

Several decision problems of this class are problems on

7graphs.

Recommended Reading
Stephen Cook (). The complexity of theorem proving proce-

dures. Proceedings of the third annual ACM symposium on

theory of computing, –.

Leonid Levin (). Universal’nye pereborne zadachi. Problemy
Peredachi Informatsii (): –.

English translation, Universal Search Problems, in B. A. Trakhten-

brot (). A Survey of Russian Approaches to Perebor (Brute-

Force Searches) Algorithms. Annals of the History of Computing
(): –.

Numeric Attribute

Synonyms
Quantitative attribute

Definition
Numeric attributes are numerical in nature. �eir val-
ues can be ranked in order and can be subjected to

meaningful arithmetic operations. See 7Attribute and
7Measurement Scales.


	N
	Naïve Bayes
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Cross References
	Recommended Reading

	NC-Learning
	NCL
	Nearest Neighbor
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Nearest Neighbor Methods

	Negative Correlation Learning
	Synonyms
	Definition
	Recommended Reading

	Negative Predictive Value
	Network Analysis
	Network Clustering
	Networks with Kernel Functions
	Neural Networks
	Cross References

	Neural Network Architecture
	Neuro-Dynamic Programming
	Neuroevolution
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Basic methods
	Extensions

	Applications
	Programs and Data
	Cross References
	Recommended Reading

	Neuron
	Synonyms
	Definition

	Node
	No-Free-Lunch Theorem
	Nogood Learning
	Noise
	Nominal Attribute
	Nonparametric Bayesian
	Nonparametric Cluster Analysis
	Non-Parametric Methods
	Nonstandard Criteria in Evolutionary Learning
	Introduction
	Formal Background
	Support Vector Machines
	Ensemble methods

	Learning Criteria
	Evolutionary Regularization
	Ensemble Learning and Boosting
	Boosting and Large-Scale Learning
	AUC: Area Under the ROC Curve

	Conclusions
	Recommended Reading

	Nonstationary Kernels
	Nonstationary Kernels Supersmoothing
	Normal Distribution
	NP-Completeness
	Definition
	Recommended Reading

	Numeric Attribute
	Synonyms
	Definition





