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ProblemDefinition

Majority rule is arguably the best decision mechanism for
public decision making, which is employed not only in
public management but also in business management. The
concept of majority equilibrium captures such a demo-
cratic spirit in requiring that no other solutions would
pleasemore than half of the voters in comparison to it. The
work of Chen, Deng, Fang, and Tian [1] considers a public
facility location problem decided via a voting process un-
der the majority rule on a discrete network. This work dis-
tinguishes itself from previous work by applying the com-
putational complexity approach to the study of majority
equilibrium. For the model with a single public facility lo-
cated in trees, cycles, and cactus graphs, it is shown that the
majority equilibrium can be found in linear time. On the
other hand, when the number of public facilities is taken
as the input size (not a constant), finding a majority equi-
librium is shown to beNP-hard.

Consider a network G = ((V ; !); (E; l)) with vertex
and edge weight functions ! : V ! R+ and l : E ! R+,
respectively. Each vertex i 2 V represents a community,
and !(i) represents the number of voters that reside
there. For each e 2 E, l(e) > 0 represents the length of
the road e = (i; j) connecting two communities i and j.
For two vertices i; j 2 V , the distance between i and j,
denoted by dG (i; j), is the length of a shortest path join-
ing them. The location of a public facility such as a li-
brary, community center, etc., is to be determined by the

public via a voting process under the majority rule. Here,
each member of the community desires to have the pub-
lic facility close to himself, and the decision has to be
agreed upon by a majority of the voters. Denote the ver-
tex set of G by V = fv1; v2; � � � ; vng. Then each vi 2 V
has a preference order �i on V induced by the distance
on G. That is, x �i y if and only if dG (vi ; x) � dG (vi ; y)
for two vertices x; y 2 V ; similarly, x>i y if and only if
dG (vi ; x) < dG (vi ; y). Under such a preference profile,
four types of majority equilibrium, called Condorcet win-
ners, are defined as follows.

Definition 1 Let v0 2 V , then v0 is called:
(1) a weak quasi-Condorcet winner, if for every u 2 V dis-

tinct of v0,

!(fvi 2 V : v0 �i ug) �
X
v i2V

!(vi )/2;

(2) a strong quasi-Condorcet winner, if for every u 2 V
distinct of v0,

!(fvi 2 V : v0 �i ug) >
X
v i2V

!(vi )/2;

(3) a weak Condorcet winner, if for every u 2 V distinct
of v0,

!(fvi 2 V : v0>iug) � !(fvi 2 V : u>i v0g);

(4) a strong Condorcet winner, if for every u 2 V distinct
of v0,

!(fvi 2 V : v0>iug) > !(fvi 2 V : u>i v0g):

Under the majority voting mechanism described above,
the problem is to develop efficient ways for determin-
ing the existence of Condorcet winners and finding such
a winner when one exists.

Problem 1 (Finding Condorcet Winners)
INPUT: A network G = ((V ;w); (E; l)).
OUTPUT: A Condorcet winner v 2 V, or nonexistence of
Condorcet winners.
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Key Results

The mathematical results given in this section depend
deeply on the understanding of combinatorial structures
of underlying networks. Theorem 1, 2, and 3 below are
given for weak quasi-Condorcet winners in themodel with
a single facility to be located. Other kinds of Condorcet
winners can be discussed similarly.

Theorem 1 Every tree has one weak quasi-Condorcet win-
ner, or two adjacent weak quasi-Condorcet winners, which
can be found in linear time.

Theorem 2 Let Cn be a cycle of order n with vertex-
weight function ! : V(Cn)! R+. Then v 2 V (Cn) is
a weak quasi-Condorcet winner of Cn if and only if the
weight of each b n+12 c-interval containing v is at least
1
2
P

v2Cn
!(v). Furthermore, the problem of finding a weak

quasi-Condorcet winner of Cn is solvable in linear time.

Given a graph G = (V ; E), a vertex v of G is a cut vertex
if E(G) can be partitioned into two nonempty subsets E1
and E2 such that the induced graphsG[E1] andG[E2] have
just the vertex v in common. A block of G is a connected
subgraph of G that has no cut vertices and is maximal with
respect to this property. Every graph is the union of its
blocks. A graph G is called a cactus graph, if G is a con-
nected graph in which each block is an edge or a cycle.

Theorem 3 The problem of finding a weak quasi-
Condorcet winner of a cactus graph with vertex-weight
function is solvable in linear time.

In general, the problem can be extended to the cases where
a number of public facilities are required to be located dur-
ing one voting process, and the definitions of Condorcet
winners can also be extended accordingly. In such cases,
the public facilities may be of the same type, or different
types; and the utility functions of the voters may be of dif-
ferent forms.

Theorem 4 If there are a bounded constant number of
public facilities to be located at one voting process under the
majority rule, then the problem of finding a Condorcet win-
ner (any of the four types) can be solved in polynomial time.

Theorem 5 If the number of public facilities to be located
is not a constant but considered as the input size, the prob-
lem of finding a Condorcet winner is NP-hard; and the
corresponding decision problem: deciding whether a candi-
date set of public facilities is a Condorcet winner, is co-NP-
complete.

Applications

Damange [2] first reviewed continuous and discrete spa-
tial models of collective choice, aiming at characterizing
the public facility location problem as a result of the pu-
bic voting process. Although the network models in Chen
et al. [1] have been studied for some problems in eco-
nomics [3,4], the principal point of departure in Chen et
al.’s work is the computational complexity and algorith-
mic approach. This approach can be applied to more gen-
eral public decision-making processes.

For example, consider a public road repair problem,
pioneered by Tullock [5] to study redistribution of tax
revenue under a majority rule system. An edge-weighted
graph G = (V ; E;w) represents a network of local roads,
where the weight of each edge represents the cost of re-
pairing the road. There is also a distinguished vertex s 2 V
representing the entry point to the highway system. The
majority decision problem involves a set of agents A  V
situated at vertices of the network who would choose
a subset F of edges. The cost of repairing F, which is the
sum of the weights of edges in F, will be shared by all
n agents, each an n-th of the total. In this model, a ma-
jority stable solution under the majority rule is a subset
F  E that connects s to a subset A1 � A of agents with
jA1j > jAj/2 such that no other solutionH connecting s to
a subset of agents A2 � A with jA2j > jAj/2 satisfies the
conditions that

P
e2H w(e) �

P
e2F w(e), and for each

agent inA2, its shortest path to s in solutionH is not longer
than that in solution F, and at least one of the inequalities
is strict. It is shown in Chen et al. [1] that for this model,
finding a majority equilibrium is NP-hard for general
networks, and is polynomially solvable for tree networks.
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ProblemDefinition

This chapter studies market games for their performance
and convergence of the equilibrium points. The main ap-
plication is the content distribution in cellular networks
in which a service provider needs to provide data to
users. The service provider can use several cache loca-
tions to store and provide the data. The assumption is that
cache locations are selfish agents (resident subscribers)
who want to maximize their own profit. Most of the re-
sults apply to a general framework of monotone two-sided
markets.

Uncoordinated Two-Sided Markets

Various economic interactions can be modeled as two-
sided markets. A two-sided market consists of two disjoint
groups of agents: active agents and passive agents. Each
agent has a preference list over the agents of the other side,
and can be matched to one (or many) of the agents in the
other side. A central solution concept to these markets are
stable matchings, introduced by Gale and Shapley [5]. It is
well known that stable matchings can be achieved using
a centralized polynomial-time algorithm. Many markets,
however, do not have any centralized matching mecha-
nism to match agents. In those markets, matchings are
formed by actions of self-interested agents. Knuth [9] in-
troduced uncoordinated two-sided markets. In these mar-
kets, cycles of better or best responses exist, but ran-
dom better response and best response dynamics converge
to a stable matching with probability one [2,10,14]. Our
model for content distribution corresponds to a special
class of uncoordinated two-sided markets that is called the
distributed caching games.

Before introducing the distributed caching game as an
uncoordinated two-sided market, the distributed caching
problem and some game theoretic notations are defined.

Distributed Caching Problem

Let U be a set of n cache locations with given available
capacities Ai and given available bandwidths Bi for each
cache location i. There are k request types;1 each request
type t has a size at (1 � t � k). Let H be a set of m re-
quests with a reward Rj, a required bandwidth bj, a re-
quest type tj for each request j, and a cost cij for connect-
ing each cache location i to each request j. The profit of
providing request j by cache location i is fi j = Rj � ci j .
A cache location i can service a set of requests Si, if it
satisfies the bandwidth constraint:

P
j2Si b j � Bi , and the

capacity constraint:
P

t2ft jj j2Sig at � Ai (this means that
the sum of the sizes of the request types of the requests in
cache location i should be less than or equal to the available
capacity of cache location i). A set Si of requests is feasible
for cache location i if it satisfies both of these constraints.
The goal of the DCP problem is to find a feasible assign-
ment of requests to cache locations to maximize the total
profit; i. e., the total reward of requests that are provided
minus the connection costs of these requests.

Strategic Games

A strategic game G is defined as a tuple G(U; fFi ji 2
Ug; f˛i()ji 2 Ug) where (i) U is the set of n players or
agents, (ii) Fi is a family of feasible (pure) strategies or ac-
tions for player i and (iii) ˛i : ˘i2UFi ! R+ [ f0g is the
(private) payoff or utility function for agent i, given the set
of strategies of all players. Player i’s strategy is denoted by
si 2 Fi . A strategy profile or a (strategy) state, denoted by
S = (s1; s2; : : : ; sn), is a vector of strategies of players. Also
let S ˚ s0i := (s1; : : : ; si�1; s0i ; si+1; : : : ; sk).

Best-Response Moves

In a non-cooperative game, each agent wishes to maximize
its own payoff. For a strategy profile S = (s1; s2; : : : ; sn),
a better response move of player i is a strategy s0i such
that ˛i(S ˚ s0i ) � ˛i (S). In a strict better response move,
the above inequality is strict. Also, for a strategy profile
S = (s1; s2; : : : ; sn) a best response of player i in S is a better
response move s�i 2 Fi such that for any strategy si 2 Fi ,
˛i (S ˚ s�i ) � ˛i (S ˚ si ).

Nash Equilibria

A pure strategy Nash equilibrium (PSNE) of a strategic
game is a strategy profile in which each player plays his
best response.

1Request type can be thought of as different files that should be
delivered to clients.
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State Graph

The state graph, D = (F ;E), of a strategic game G, is an
arc-labeled directed graph, where the vertex set F corre-
sponds to the set of strategy profiles or states in G, and
there is an arc from state S to state S0 with label i if the only
difference between S and S0 is in the strategy of player i;
and player i plays one of his best responses in strategy pro-
file S0. A best-response walk is a directed walk in the state
graph.

Price of Anarchy

Given a strategic game, G(U; fFi ji 2 Ug; f˛()ji 2 Ug),
and a maximization social function � : ˘i2UFi ! R, the
price of anarchy, denoted by poa(G; � ), is the worst ratio
between the social value of a pure Nash equilibrium and
the optimum.

Distributed Caching Games

The distributed caching game can be formalized as a two-
sided market game: active agents correspond to n resi-
dent subscribers or cache locations, and passive agents
correspond to m requests from transit subscribers. For-
mally, given an instance of the DCP problem, a strate-
gic game G(U; fFi ji 2 Ug; f˛i ji 2 Ug) is defined as fol-
lows. The set of players (or active agents) U is the set
of cache locations. The family of feasible strategies Fi
of a cache location i is the family of subsets si of re-
quests such that

P
j2s i b j � Bi and

P
t2ft jj j2s i g at � Ai .

Given a vector S = (s1; s2; : : : ; sn) of strategies of cache
locations, the favorite cache locations for request j, de-
noted by FAV( j), is the set of cache locations i such that
j 2 si and f ij has the maximum profit among the cache
locations that have request j in their strategy set, i. e.,
fi j � fi 0 j for any i0 such that j 2 si 0 . For a strategy pro-
file S = (s1; : : : ; sn) ˛i(S) =

P
j:i2FAV( j) fi j/jFAV( j)j. Intu-

itively, the above definition implies that the profit of each
request goes to the cache locations with theminimum con-
nection cost (or equivalently with the maximum profit)
among the set of cache locations that provide this request.
If more than one cache location have the maximum profit
(or minimum connection cost) for a request j, the profit
of this request is divided equally between these cache loca-
tions. The payoff of a cache location is the sum of profits
from the requests it actually serves. A player i serves a re-
quest j if i 2 FAV( j). The social value of strategy profile S,
denoted by � (S), is the sum of profits of all players. This
value � (S) is a measure of the efficiency of the assignment
of requests and request types to cache locations.

Special Cases

In this paper, the following variants and special cases of
the DCP problem are also studied: The CapDCP prob-
lem is a special case of DCP problem without bandwidth
constraints. The BanDCP problem is a special case of
DCP problem without capacity constraints. In the uniform
BanDCP problem, the bandwidth consumption of all re-
quests is the same. In the uniform CapDC problem, the
size of all request types is the same.

Many-to-One Two-Sided Markets with Ties

In the distributed caching game, active and passive agents
correspond to cache locations and requests respectively.
The set of feasible strategies for each active agent corre-
spond to a set of solutions to a packing problem. More-
over, the preferences of both active and passive agents is
determined from the profit of requests to cache locations.
In many-to-one two-sided markets, the preference of pas-
sive and active agents as well as the feasible family of strate-
gies are arbitrary. The preference list of agents may have
ties as well.

Monotone and Matroid Markets

In monotone many-to-one two-sided markets, the prefer-
ences of both active and passive agents are determined
based on payoffs pi j = p ji for each active agent i and pas-
sive agent j (similar to the DCP game). An agent i prefers
j to j0 if pi j > pi j0 . In matroid two-sided markets, the fea-
sible set of strategies of each active agent is the set of in-
dependent sets of a matroid. Therefore, uniform BanDCP
game is a matroid two-sided market game.

Key Results

In this section, the known results for these problems are
summarized.

Centralized Approximation Algorithm

The distributed caching problem generalizes the multiple
knapsack problem and the generalized assignment prob-
lem [3] and as a result is an APX-hard problem.

Theorem 1 ([4]) There exists a linear programming
based 1 � 1

e -approximation algorithm and a local search 1
2 -

approximation algorithm for the DCP problem.

The 1 � 1
e -approximation for this problem is based on

rounding an exponentially large configuration linear pro-
gram [4]. On the basis of some reasonable complexity the-
oretic assumptions, this approximation factor of 1 � 1

e is
tight for this problem. More formally,
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Theorem 2 ([4]) For any � > 0, there exists no 1 � 1
e � �-

approximation algorithm for the DCP problem unless NP
 DTIME(nO(log log n)).

Price of Anarchy

Since the DCP game is a strategic game, it possesses mixed
Nash equilibria [12]. The DCP game is a valid-utility game
with a submodular social function as defined by Vetta [16].
This implies that the performance of anymixedNash equi-
librium of this game is at least 1

2 of the optimal solution.

Theorem 3 ([4,11]) The DCP game is a valid-utility game
and the price of anarchy for mixed Nash equilibria is 1

2 .
Moreover, this result holds for all monotone many-to-one
two-sided markets with ties.

A direct proof of the above price of anarchy bound for the
DCP game can be found in [11].

Pure Nash Equilibria: Existence and Convergence

This part surveys known results for existence and conver-
gence of pure Nash equilibria.

Theorem 4 ([11]) There are instances of the IBDC game
that have no pure Nash equilibrium.

Since, IBDC is a special case of CapDCP, the above theo-
rem implies that there are instances of the CapDCP game
that have no pure Nash equilibrium. In the above theorem,
the bandwidth consumption of requests are not uniform,
and this was essential in finding the example. The follow-
ing gives theorems for the uniform variant of these games.

Theorem 5 ([1,11]) Any instance of the uniform BanDCP
game does not contain any cycle of strict best-response
moves, and thus possess a pure Nash equilibrium. On the
other hand, there are instances of the uniform CapDCP
game with no pure Nash equilibria.

The above result for the uniform BanDCP game can be
generalized to matroid two-sided markets with ties as fol-
lows.

Theorem 6 ([1]) Any instance of the monotone matroid
two-sided market game with ties is a potential game, and
possess pure Nash equilibria. Moreover, any instance of the
matroid two-sided market game with ties possess pure Nash
equilibria.

Convergence Time to Equilibria

This section proves that there are instances of the uniform
CapDCP game in which finding a pure Nash equilibrium

is PLS-hard [8]. The definition of PLS-hard problems can
be found in papers by Yannakakis et al. [8,15].

Theorem 7 ([11]) There are instances of the uniform
CapDCP game with pure Nash equilibria2 for which find-
ing a pure Nash equilibrium is PLS-hard.

Using the above proof and a result of Schaffer and Yan-
nakakis [13,15], it is possible to show that in some in-
stances of the uniform CapDCP game, there are states from
which all paths of best responses have exponential length.

Corollary 1 ([11]) There are instances of the uniform
CapDCP game that have pure Nash equilibria with states
fromwhich any sequence of best-responsemoves to any pure
Nash equilibrium (or sink equilibrium) has an exponential
length.

The above theorems show exponential convergence to
pure Nash equilibria in generalDCP games. For the special
case of the uniform BanDCP game, the following is a posi-
tive result for the convergence time to equilibria.

Theorem 8 ([2]) The expected convergence time of a ran-
dom best-response walk to pure Nash equilibria in matroid
monotone two-sided markets (without ties) is polynomial.

Since the uniform BanDCP game is a special case of ma-
troid monotone two-sided markets with ties, the above
theorem indicates that for the BanDCP game with no tie
in the profit of requests, the convergence time of a ran-
dom best-response walk is polynomial. Finally, we state
a theorem about the convergence time of the general (non-
monotone) matroid two-sided market games.

Theorem 9 ([2]) In the matroid two-sided markets (with-
out ties), a random best response dynamic of players may
cycle, but it converges to a Nash equilibrium with probabil-
ity one. However, it may take exponential time to converge
to a pure Nash equilibrium.

Pure Nash equilibria of two-sided market games corre-
spond to stable matchings in two-sided markets and vice-
versa [2]. The fact that better response dynamics of players
in two-sided market games may cycle, but will converge to
a stable matching has been proved in [9,14]. Ackermann
et al. [2] extend these results for best-response dynamics,
and show an exponential lower bound for expected con-
vergence time to pure Nash equilibria.

2It is also possible to say that finding a sink equilibrium is PLS-
hard. A sink equilibrium is a set of strategy profiles that is closed un-
der best-response moves. A pure equilibrium is a sink equilibrium
with exactly one profile. This equilibrium concept is formally defined
in [7].
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Applications

The growth of the Internet, the World Wide Web, and
wide-area wireless networks allow an increasing number
of users to access vast amounts of information in different
geographic areas. As one of the most important functions
of the service provider, content delivery can be performed
by caching popular items in cache locations close to the
users. Performing such a task in a decentralizedmanner in
the presence of self-interested entities in the system can be
modeled as an uncoordinated two-sided market game.

The 3G subscriber market can be categorized into
groups with shared interest in location-based services,
e. g., the preview of movies in a theater or scenes of the
mountain nearby. Since the 3G radio resources are lim-
ited, it is expensive to repeatedly transmit large quantities
of data over the air interface from the base station (BS).
It is more economical for the service provider to offload
such repeated requests on to the ad-hoc network com-
prised of its subscribers where some of them recently ac-
quired a copy of the data. In this scenario, the goal for the
service provider is to give incentives for peer subscribers in
the system to cache and forward the data to the requesting
subscribers. Since each data item is large in size and tran-
sit subscribers are mobile, we assume that the data transfer
occurs in a close range of a few hops.

In this setting, envision a system consisting of two
groups of subscribers: resident and transit subscribers.
Resident subscribers are less mobile and mostly confined
to a certain geographical area. Resident subscribers have
incentives to cache data items that are specific to this geo-
graphical region since the service provider gives monetary
rewards for satisfying the queries of transit subscribers.
Transit subscribers request their favorite data items when
they visit a particular region. Since the service provider
does not have knowledge of the spatial and temporal dis-
tribution of requests, it is difficult if not impossible for
the provider to stipulate which subscriber should cache
which set of data items. Therefore, the decision of what
to cache is left to each individual subscriber. The realiza-
tion of this content distribution system depends on two
main issues. First, since subscribers are selfish agents, they
may act to increase their individual payoff and decrease
the performance of the system. Here, we provide a frame-
work for which we can prove that in an equilibrium sit-
uation of this framework, we use the performance of the
system efficiently. The second issue is that the payoff of
each request for each agent must be a function of the set of
agents that have this request in their strategy, since these
agents compete on this request and the profit of this re-
quest should be divided among these agents in an appro-

priate way. Therefore, each selfish agent may change the
set of items it cached in response to the set of items cached
by others. This model leads to a non-cooperative caching
scenario that can bemodeled on a two-sided market game,
studied and motivated in the context of market sharing
games and distributed caching games [4,6,11].

Open Problems

It is known that there exist instances of the distributed
caching game with no pure Nash equilibria. It is also
known that best response dynamics of playersmay take ex-
ponential time to converge to pure Nash equilibria. An in-
teresting question is to study the performance of sink equi-
libria [7,11] or the price of sinking [7,11] for these games.
The distributed caching game is a valid-utility game. Goe-
mans, Mirrokni, and Vetta [7] show that despite the price
of anarchy of 1

2 for valid-utility games, the performance
of sink equilibria (or price of sinking) for these games is
1
n . We conjecture that the price of sinking for DCP games
is a constant. Moreover, it is interesting to show that af-
ter polynomial rounds of best responses of players the ap-
proximation factor of the solution is a constant. We know
that one round of best responses of players is not suffi-
cient to get constant-factor solutions. It might be easier to
show that after a polynomial number of random best re-
sponses of players, the expected total profit of players is at
least a constant factor of the optimal solution. Similar pos-
itive results for sink equilibria and random best responses
of players are known for congestion games [7,11].

The complexity of verifying if a given state of the dis-
tributed caching game is in a sink equilibrium or not is an
interesting question to explore. Also, given a distributed
caching game (or a many-to-one two-sided market game),
an interesting problem is to check if the set of all sink
equilibria is pure Nash equilibria or not. Finally, an in-
teresting direction of research is to classify classes of two-
sided market games for which pure Nash equilibria exists
or best-response dynamics of players converge to a pure
Nash equilibrium.
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ProblemDefinition

Given an undirected edge-weighted graph,G = (V ; E), the
maximum cut problem (MAX-CUT) is to find a bipar-
tition of the vertices that maximizes the weight of the
edges crossing the partition. If the edge weights are non-
negative, then this problem is equivalent to finding amaxi-
mumweight subset of the edges that forms a bipartite sub-
graph, i. e. the maximum bipartite subgraph problem. All
results discussed in this article assume non-negative edge
weights. MAX-CUT is one of Karp’s original NP-complete
problems [19]. In fact, it is NP-hard to approximate to
within a factor better than 16/17[16,33].

For nearly twenty years, the best-known approxima-
tion factor for MAX-CUT was half, which can be achieved
by a very simple algorithm: Form a set S by placing each
vertex in S with probability half. Since each edge crosses
the cut (S;V n S) with probability half, the expected value
of this cut is half the total edge weight. This implies that for
any graph, there exists a cut with value at least half of the
total edge weight. In 1976, Sahni and Gonzalez presented
a deterministic half-approximation algorithm for MAX-
CUT, which is essentially a de-randomization of the afore-
mentioned randomized algorithm [31]: Iterate through
the vertices and form sets S and S̄ by placing each vertex
in the set that maximizes the weight of cut (S; S̄) thus far.
After each iteration of this process, the weight of this cut
will be at least half of the weight of the edges with both
endpoints in S [ S̄.

This simple half-approximation algorithm uses the
fact that for any graph with non-negative edge weights, the
total edge weight of a given graph is an upper bound on
the value of its maximum cut. There exist classes of graphs
for which a maximum cut is arbitrarily close to half the
total edge weight, i. e. graphs for which this “trivial” upper
bound can be close to twice the true value of an optimal so-
lution. An example of such a class of graphs are complete
graphs on n vertices, Kn. In order to obtain an approxima-
tion factor better than half, one must be able to compute
an upper bound on the value of a maximum cut that is
better, i. e. smaller, than the trivial upper bound for such
classes of graphs.

Linear Programming Relaxations

For many optimization (maximization) problems, linear
programming has been shown to yield better (upper)
bounds on the value of an optimal solution than can be ob-
tained via combinatorial methods. There are several well-
studied linear programming relaxations for MAX-CUT.
For example, a classical integer program has a variable xe
for each edge and a constraint for each odd cycle, requir-
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ing that an odd cycle C contribute at most jCj � 1 edges to
an optimal solution.

max
X
e2E

wexe

X
e2C

xe � jCj � 1 8 odd cycles C

xe 2 f0; 1g :

The last constraint can be relaxed so that each xe is re-
quired to lie between 0 and 1, but need not be integral, i. e.
0 � xe � 1. Although this relaxation may have exponen-
tially many constraints, there is a polynomial-time separa-
tion oracle (equivalent to finding a minimum weight odd-
cycle), and thus, the relaxation can be solved in polyno-
mial time [13]. Another classical integer program contains
a variable xij for each pair of vertices. In any partition of
the vertices, either zero or two edges from a 3-cycle cross
the cut. This requirement is enforced in the following in-
teger program. If edge (i; j) … E, then wij is set to 0.

max
X
i; j2V

wi jxi j

xi j + x jk + xki � 2 8i; j; k 2 V
xi j + x jk � xki � 0 8i; j; k 2 V

xi j 2 f0; 1g :

Again, the last constraint can be relaxed so that each xij is
required to lie between 0 and 1. In contrast to the afore-
mentioned cycle-constraint based linear program, this lin-
ear programming relaxation has a polynomial number of
constraints.

Both of these relaxations actually have the same opti-
mal value for any graph with non-negative edgeweights [3,
26,30]. (For a simplified proof of this, see [25].) Poljak
showed that the integrality gap for each of these relax-
ations is arbitrarily close to 2 [26]. In other words, there
are classes of graphs that have a maximum cut containing
close to half of the edges, but for which each of the above
relaxations yields an upper bound close to all the edges,
i. e. no better than the trivial “all-edges” bound. In partic-
ular, graphs with a maximum cut close to half the edges
and with high girth can be used to demonstrate this gap.
A comprehensive look at these linear programming relax-
ations is contained in the survey of Poljak and Tuza [30].

Eigenvalue Upper Bounds

Delorme and Poljak [7] presented an eigenvalue up-
per bound on the value of a maximum cut, which was
a strengthened version of a previous eigenvalue bound

considered by Mohar and Poljak [24]. Computing De-
lorme and Poljak’s upper bound is equivalent to solving an
eigenvalue minimization problem. They showed that their
bound is computable in polynomial time with arbitrary
precision. In a series of work, Delorme, Poljak and Rendl
showed that this upper bound behaves “differently” from
the linear-programming-based upper bounds. For exam-
ple, they studied classes of sparse random graphs (e. g.
G(n, p) with p = 50/n) and showed that their upper bound
is close to optimal on these graphs [8]. Since graphs of this
type can also be used to demonstrate an integrality gap ar-
bitrarily close to 2 for the aforementioned linear program-
ming relaxations, their work highlighted contrasting be-
havior between these two upper bounds. Further compu-
tational experiments on other classes of graphs gave more
evidence that the bound was indeed stronger than previ-
ously studied bounds [27,29]. Delorme and Poljak conjec-
tured that the 5-cycle demonstrated the worst-case behav-
ior for their bound: a ratio of 32/(25 + 5

p
5) 	 :88445 be-

tween their bound and the optimal integral solution. How-
ever, they could not prove that their bound was strictly less
than twice the value of a maximum cut in the worst case.

Key Results

In 1994, Goemans and Williamson presented a ran-
domized .87856-approximation algorithm for MAX-
CUT [11]. Their breakthrough work was based on round-
ing a semidefinite programming relaxation and was the
first use of semidefinite programming in approximation
algorithms. Poljak and Rendl showed that the upper
bound provided by this semidefinite relaxation is equiv-
alent to the eigenvalue bound of Delorme and Poljak [28].
Thus, Goemans and Williamson’s proved that the eigen-
value bound of Delorme and Poljak is no more than 1.138
times the value of a maximum cut.

A Semidefinite Relaxation

MAX-CUT can be formulated as the following quadratic
integer program, which is NP-hard to solve. Each vertex
i 2 V is represented by a variable yi, which is assigned ei-
ther 1 or �1 depending on which side of the cut it occu-
pies.

max
1
2

X
(i; j)2E

wi j(1 � yi y j)

yi 2 f�1; 1g 8i 2 V :

Goemans and Williamson considered the following relax-
ation of this integer program, in which each vertex is rep-
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resented by a unit vector.

max
1
2

X
(i; j)2E

wi j(1 � vi � v j)

vi � vi = 1 8i 2 V
vi 2 Rn 8i 2 V :

They showed that this relaxation is equivalent to
a semidefinite program. Specifically, consider the follow-
ing semidefinite relaxation:

max
1
2

X
(i; j)2E

wi j(1 � yi j)

yi i = 1 8i 2 V
Y positive semidefinite :

The equivalence of these two relaxations is due to the fact
that a matrix Y is positive semidefinite if and only if there
is a matrix B such that BTB = Y . The latter relaxation
can be solved to within arbitrary precision in polynomial
time via the Ellipsoid Algorithm, since it has a polyno-
mial-time separation oracle [14]. Thus, a solution to the
first relaxation can be obtained by finding a solution to
the second relaxation and finding a matrix B such that
BTB = Y . If the columns of B correspond to the vectors
fvig, then yi j = vi � v j , yielding a solution to the first re-
laxation.

Random-Hyperplane Rounding

Goemans and Williamson showed how to round the
semidefinite programming relaxation of MAX-CUT using
a new technique that has since become known as “ran-
dom-hyperplane rounding” [11]. First obtain a solution
to the first relaxation, which consists of a set of unit vec-
tors fvig, one vector for each vertex. Then choose a ran-
dom vector r 2 Rn in which each coordinate of r is cho-
sen from the standard normal distribution. Finally, set
S = fijvi � r � 0g and output the cut (S;V n S).

The probability that a particular edge (i; j) 2 E crosses
the cut is equal to the probability that the dot products
vi � r and v j � r differ in sign. This probability is exactly
equal to �i j/ , where �i j is the angle between vectors vi
and vj . Thus, the expected weight of edges crossing the cut
is equal to

P
(i; j)2E �i j/ . How large is this compared to

the objective value given by the semidefinite programming
relaxation, i. e. what is the approximation ratio?

Define ˛gw as the worst-case ratio of the expected con-
tribution of an edge to the cut, to its contribution to the
objective function of the semidefinite programming relax-
ation. In other words: ˛gw = min0���� 2

�
�

1�cos� . It can

be shown that ˛gw > :87856. Thus, the expected value of
a cut is at least ˛gw � SDPOPT , resulting in an approxima-
tion ratio of at least .87856 for MAX-CUT. The same anal-
ysis applies to weighted graphs with non-negative edge
weights.

This algorithm was de-randomized by Mahajan and
Hariharan [23]. Goemans and Williamson also applied
their random-hyperplane rounding techniques to give im-
proved approximation guarantees for other problems such
as MAX-DICUT and MAX-2SAT.

Integrality Gap and Hardness

Karloff showed that there exist graphs for which the best
hyperplane is only a factor ˛gw of the maximum cut [18],
showing that there are graphs for which the analysis in [11]
is tight. Since the optimal SDP value for such graphs equals
the optimal value of a maximum cut, these graphs can not
be used to demonstrate an integrality gap. However, Feige
and Schechtman showed that there exist graphs for which
the maximum cut is a ˛gw fraction of the SDP bound [9],
thereby establishing that the approximation guarantee of
Goemans and Williamson’s algorithm matches the in-
tegrality gap of their semidefinite programming relax-
ation. Recently, Khot, Kindler, Mossel and O’Donnell [21]
showed that if the Unique Games Conjecture of Khot [20]
is assumed to be true, then it is NP-hard to approximate
MAX-CUT to within any factor larger than ˛gw.

Applications

The work of Goemans and Williamson paved the way
for the further use of semidefinite programming in ap-
proximation algorithms, particularly for graph partition-
ing problems. Methods based on the random-hyperplane
technique have been successfully applied to many op-
timization problems that can be categorized as parti-
tion problems. A few examples are 3-COLORING [17],
MAX-3-CUT [10,12,22], MAX-BISECTION [15], CORRE-
LATION-CLUSTERING [5,32], and SPARSEST-CUT [2]. Ad-
ditionally, some progress has been made in extending
semidefinite programming techniques outside the domain
of graph partitioning to problems such as BETWEEN-
NESS [6], BANDWIDTH [4], and LINEAR EQUATIONS
mod p [1].

Cross References
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ProblemDefinition

Consider two rooted trees T1 and T2 with n leaves each.
The internal nodes of each tree have at least two children
each. The leaves in each tree are labeled with the same
set of labels and further, no label occurs more than once



Maximum Agreement Subtree (of 2 Binary Trees) M 493

in a particular tree. An agreement subtree of T1 and T2
is defined as follows. Let L1 be a subset of the leaves of
T1 and let L2 be the subset of those leaves of T2 which
have the same labels as leaves in L1. The subtree of T1 in-
duced by L1 is an agreement subtree of T1 and T2 if and
only if it is isomorphic to the subtree of T2 induced by L2.
The Maximum Agreement Subtree problem (henceforth
calledMAST) asks for the largest agreement subtree of T1
and T2.

The terms induced subtree and isomorphism used
above need to be defined. Intuitively, the subtree of T in-
duced by a subset L of the leaves of T is the topological
subtree of T restricted to the leaves in L, with branching in-
formation relevant to L preserved. More formally, for any
two leaves a b of a tree T, let lcaT (a; b) denote their lowest
common ancestor in T. If a = b, lcaT (a; b) = a. The sub-
tree U of T induced by a subset L of the leaves is the tree
with leaf set L and interior node set flcaT (a; b)ja; b 2 Lg
inheriting the ancestor relation from T, that is, for all
a; b 2 L, lcaU (a; b) = lcaT (a; b).

Intuitively, two trees are isomorphic if the children of
each node in one of the trees can be reordered so that
the leaf labels in each tree occur in the same order and
the shapes of the two trees become identical. Formally,
two trees U1 and U2 with the same leaf labels are said
to be isomorphic if there is a 1–1 mapping � between
their nodes mapping leaves to leaves with the same la-
bels and such that for any two different leaves a b of U1,
�(lcaU1(a; b)) = lcaU2 (�(a); �(b)).

Key Results

Previous Work

Finden and Gordon [8] gave a heuristic algorithm for
the MAST problem on binary trees which had an O(n5)
running time and did not guarantee an optimal so-
lution. Kubicka, Kubicki and McMorris [13] gave an
O(n(:5+�) log n) algorithm for the same problem. The first
polynomial time algorithm for this problem was given
by Steel and Warnow [15]; it had a running time of
O(n2). Steel and Warnow also considered the case of
non-binary and unrooted trees. Their algorithm takes
O(n2) time for fixed degree rooted and unrooted trees
and O(n4:5 log n) for arbitrary degree rooted and un-
rooted trees. They also give a linear reduction from the
rooted to the unrooted case. Farach and Thorup gave an
O(nc

p
log n) time algorithm for theMAST problem on bi-

nary trees; here c is a constant greater than 1. For arbi-
trary degree trees, their algorithm takes O(n2c

p
log n) time

for the unrooted case [6] and O(n1:5 log n) time for the

rooted case [7]. Farach, Przytycka, and Thorup [4] ob-
tained an O(n log3 n) algorithm for the MAST problem
on binary trees. Kao [12] obtained an algorithm for the
same problem which takes O(n log2 n) time. This algo-
rithm takes O(minfnd2 log d log2 n; nd

3
2 log3 ng) for de-

gree d trees.
The MAST problem for more than two trees has also

been studied. Amir and Keselman [1] showed that the
problem is NP-hard for even 3 unbounded degree trees.
However, polynomial bounds are known [1,5] for three or
more bounded degree trees.

Our Contribution

An O(n log n) algorithm for the MAST problem for two
binary trees is presented here. This algorithms is obtained
by improving upon the O(n log3 n) algorithm from [4] (in
fact, the final journal version [3] combines both papers).
The O(n log3 n) algorithm of [4] can be viewed as tak-
ing the following approach (although the authors do not
describe it this way). It identifies two special cases and
then solves the general case by interpolating between these
cases.

Special Case 1: The internal nodes in both trees form
a path. The MAST problem reduces to essentially a size n
Longest Increasing Subsequence Problem in this case. As
is well known, this can be solved in O(n log n) time.

Special Case 2: Both trees T1 and T2 are complete bi-
nary trees. For each node v in T2, only certain nodes u in
T1 can be usefully mapped to v, in the sense that the sub-
tree of T1 rooted at u and the subtree of T2 rooted at v have
a non-empty Agreement Subtree. There are O(n log2 n)
such pairs (u, v). This can be seen as follows. Note that for
(u, v) to be such a pair, the subtree of T1 rooted at u and
the subtree of T2 rooted at vmust have a leaf-label in com-
mon. For each label, there are only O(log2 n) such pairs
obtained by pairing each ancestor of the leaf with this la-
bel in T1 with each ancestor of the leaf with this label in T2.
The total number of interesting pairs is thus O(n log2 n).
For each pair, computing the MAST takes O(1) time, as
it is simply a question of deciding the best way of pairing
their children.

The interpolation process takes a centroid decomposi-
tion of the two trees and compares pairs of centroid paths,
rather than individual nodes as in the complete tree case.
The comparison of a pair of centroid paths requires find-
ing matchings with special properties in appropriately de-
fined bipartite graphs, a non-trivial generalization of the
Longest Increasing Subsequence problem. This process
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creates O(n log2 n) interesting (u, v) pairs, each of which
takes O(log n) time to process.

This work provides two improvements, each of which
gains a log n factor.

Improvement 1: The complete tree special case is im-
proved to O(n log n) time as follows. A pair of nodes (u, v),
u 2 T1, v 2 T2, is said to be interesting if there is an agree-
ment subtree mapping u to v. As is shown below, for com-
plete trees, the total number of interesting pairs (u, v) is
just O(n log n). Consider a node v in T2. Let L2 be the set
of leaves which are descendants of v. Let L1 be the set of
leaves in T1 which have the same labels as the leaves in L2.
The only nodes that may be mapped to v are the nodes u
in the subtree of T1 induced by L1. The number of such
nodes u is O(size of the subtree of T2 rooted at v). The to-
tal number of interesting pairs is thus the sum of the sizes
of all subtrees of T2, which is O(n log n).

This reduces the number of interesting pairs (u, v) to
O(n log n). Again, processing a pair takes O(1) time (this
is less obvious, for identifying the descendants of u which
root the subtrees with which the two subtrees of v can be
matched is non-trivial). Constructing the above induced
subtree itself can be done in O(jL1j) time, as will be de-
tailed later. The basic tool here is to preprocess trees T1
and T2 inO(n) time so that least common ancestor queries
can be answered in O(1) time.

Improvement 2: As in [4], when the trees are not com-
plete binary trees, the algorithm takes centroid paths and
matches pairs of centroid paths. The O(log n) cost that the
algorithm in [4] incurs in processing each such interest-
ing pair of paths arises when there are large (polynomial
in n size) instances of the generalized Longest Increasing
Subsequence Problem. At first sight, it is not clear that
large instances of these problems can be created for suf-
ficiently many of the interesting pairs; unfortunately, this
turns out to be the case. However, these problem instances
still have some useful structure. By using (static) weighted
trees, pairs of interesting vertices are processed in O(1)
time per pair, on the average, as is shown by an appro-
priately parametrized analysis.

The Multiple Degree Case

The techniques can be generalized to higher degree
bounds d > 2, by combining it with techniques from ([6,
Sect. 2]) for unbounded degrees. This appears to yield an
algorithm with running time O(minfn

p
d log2 n; nd log n

log dg). The conjecture, however, is that there is an algo-
rithm with running time O(n

p
d log n).

Applications

Motivation

The MAST problem arises naturally in biology and lin-
guistics as a measure of consistency between two evolu-
tionary trees over species and languages, respectively. An
evolutionary tree for a set of taxa, either species or lan-
guages, is a rooted tree whose leaves represent the taxa and
whose internal nodes represent ancestor information. It is
often difficult to determine the true phylogeny for a set of
taxa, and one way to gain confidence in a particular tree is
to have different lines of evidence supporting that tree. In
the biological taxa case, one may construct trees from dif-
ferent parts of the DNA of the species. These are known as
gene trees. For many reasons, these trees need not entirely
agree, and so one is left with the task of finding a consensus
of the various gene trees. The maximum agreement sub-
tree is one method of arriving at such a consensus. Notice
that a gene is usually a binary tree, since DNA replicates by
a binary branching process. Therefore, the case of binary
trees is of great interest.

Another application arises in automated translation
between two languages [10]. The two trees are the parse
trees for the same meaning sentences in the two lan-
guages. A complication that arises in this application (due
in part to imperfect dictionaries) is that words need not be
uniquely matched, i. e., a word at the leaf of one tree could
match a number (usually small) of words at the leaves of
the other tree. The aim is to find a maximum agreement
subtree; this is done with the goal of improving context-
using dictionaries for automated translation. So long as
each word in one tree has only a constant number of
matches in the other tree (possibly with differing weights),
the algorithm given here can be used and its performance
remains O(n log n). More generally, if there are m word
matches in all, the performance becomesO((m + n) log n).
Note however, that if there are two collections of equal
meaning words in the two trees of sizes k1 and k2 respec-
tively, they induce k1 k2 matches.
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Tree alignment

ProblemDefinition

The Maximum Agreement Subtree problem for k trees (k-
MAST) is a generalization of a similar problem for two
trees (MAST). Consider a tuple of k rooted leaf-labeled
trees (T1; T2 : : : Tk). Let A = fa1; a2; : : : ang be the set of
leaf labels. Any subset B  A uniquely determines the
so called topological restriction T|B of the three T to B.
Namely, T|B is the topological subtree of T spanned by

all leaves labeled with elements from B and lowest com-
mon ancestors of all pairs of these leaves. In particular,
the ancestor relation in T|B is defined so that it agrees
with the ancestor relation in T. A subset B of A such
T1jB; : : : ; Tk jB are isomorphic is called an agreement set.

Problem 1 (k-MAST)
INPUT: A tuple ET = (T1; : : : ; Tk ) of leaf-labeled trees, with
a common set of labels A = fa1; : : : ; ang, such that for each
tree Ti there exists one-to-one mapping between the set of
leaves of that tree and the set of labels A.
OUTPUT: k-MAST( ET) equal to the maximum cardinality
agreement set of ET.

Key Results

In the general setting, k-MAST problem is NP-complete
for k � 3 [1]. Under the assumption that the degree of at
least one of the trees is bounded, Farach et al. proposed an
algorithm leading to the following theorem:

Theorem 1 If the degree of the trees in the tuple ET =
(T1; : : : ; Tk) is bounded by d then the k-MAST( ET) can be
computed in O(kn3 + nd ) time.

In what follows, the problem is restricted to finding the
cardinality of the maximum agreement set rather than the
set itself. The extension of this algorithm to an algorithm
that finds the agreement set (and subsequently the agree-
ment subtree) within the same time bounds is relatively
straightforward.

Recall that the classical O(n2) dynamic programming
algorithm for MAST of two binary trees [11] processes all
pairs of internal nodes of the two trees in a bottom up fash-
ion. For each pair of such nodes it computes the MAST
value for the subtrees rooted at this pair. There are O(n2)
pairs of nodes and the MAST value for the subtrees rooted
at a given pair of nodes can be computed in constant time
from MAST values of previously processed pairs of nodes.

To set the stage for the more general case, let k-
MAST(Ev) be the solution to the k-MAST problem for the
subtrees of T1(v1); : : : ; Tk(vk) where Ti (vi ) is the subtree
if Ti rooted at vi. If, for all i, ui is a strict ancestor of vi in
Ti then, Ev is dominated by Eu (denoted Ev � Eu).

A naive extension of the algorithm for two trees to
an algorithm for k trees would require computing k-
MAST(Ev) for all possible tuples Ev by processing these tu-
ples in the order consistent with the domination rela-
tion. The basic idea that allows to avoid ˝(nk ) complex-
ity is to replace the computation of k-MAST(Ev) with the
computation of a related value, mast(Ev), defined to be
the size of the maximum agreement set for the subtrees
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of (T1; : : : ; Tk) rooted at (v1; : : : vk) subject to the addi-
tional restriction that the agreement subtrees themselves
are rooted at v1; : : : vk respectively. Clearly

k-MAST(T1; : : : ; Tk) = max
Ev

mast(Ev) :

The benefit of computing mast rather than k-MAST fol-
lows from the fact that most of mast values are zero and
it is possible to identify (very efficiently) Ev with non-zero
mast values.

Remark 1 If mast(Ev) > 0 then Ev = (lcaT
1
(a; b); : : :

lcaT
k
(a; b)) for some leaf labels a, bwhere lcaT

i
(a; b) is the

lowest common ancestor of leaves labeled by a and b in the
tree Ti.

A tuple Ev such that Ev = (lcaT
1
(a; b); : : : lcaT

k
(a; b)) for

some a; b 2 A is called an lca-tuple. By Remark 1 it suf-
fices to compute mast values for the lca-tuples only. Just
like in the naive approach, mast(Ev) is computed from mast
values of other lca-tuples dominated by Ev. Another impor-
tant observation is that only some lca-tuples dominated by
Ev are needed to compute mast(Ev). To capture this, Farach
et al. define the so called proper domination relation (in-
troduced formally below) and show that the mast value for
any lca-tuple Ev can be computed from mast values of lca-
tuples properly dominated by Ev and that the proper domi-
nation relation has size O(n3).

Proper Domination Relation

Index the children of each internal node of any tree in
an arbitrary way. Given a pair Ev; Ew of lca-tuples such that
Ew � Ev the corresponding domination relation has asso-
ciated with it direction Eı Ew�Ev = (ı1; : : : ; ık) where wi de-
scends from the child of vi indexed with ıi. Let vi(j)
be the child of vi with index j. The direction domi-
nation is termed active is if the subtrees rooted at the
v1(ı1); : : : ; vk(ık) have at least one leaf label in common.
Note that each leaf label can witness only one active di-
rection, and consequently each lca-tuple can have at most
n active domination directions. Two directions Eı Ew�Ev and
EıEu�Ev are called compatible if and only if the direction vec-
tors differ in all coordinates.

Definition 1 Ev properly denominates Eu (denoted Eu < Ev)
if Ev dominates Eu along an active direction Eı and there ex-
ists another tuple Ew which is also dominated by Ev along an
active direction Eı? compatible with ı.

From the definition of proper domination and from the
fact that each leaf label can witness only one active domi-
nation direction, the following observations can be made:

Remark 2 The strong domination relation< on lca-tuples
has sizeO(n3). Furthermore, the relation can be computed
in O(kn3) time.

Remark 3 For any lca-tuple Ev, if mast(Ev) > 0 then either
Ev is an lca-tuple composed of leaves with the same label or
Ev properly dominates some lca-tuple.

It remains to show how the values mast(Ev) are computed.
For each lca-tuple Ev, the so called compatibility graphG(Ev)
is constructed. The nodes of G(Ev) are active directions
from Ev and there is an edge between two such nodes if and
only if corresponding directions are compatible. The ver-
tices of G(Ev) are weighted and the weight of a vertex cor-
responding to an active direction Eı equals the maximum
mast value of a lca-tuple dominated by Ev along the this di-
rection. Let MWC(G(Ev)) be the maximum weight clique
in G(Ev).

The bottom-up algorithm for computing non-zero
mast values based on the following recursive dependency
whose correctness follows immediately from the corre-
sponding definitions and Remark 3:

Lemma 2 For any lca-tuple Ev

mast(Ev) = max

(
1 if all elemets of Ev are leaves
MWC(G(Ev)) otherwise

: (1)

The final step is to demonstrate that once the lca-tuples
and the strong domination relation is pre-computed, the
computation all non-zero mast values can be preformed in
O(nd ) time. This is done by generating all possible cliques
for all G(Ev). Using the fact that the degree of at least one
tree is bounded by d one can show that all the cliques can
be generated in O(

P
l�d

�n
l
�
) = O(d3(ne/d)d ) time and

that there is O(d(ne/d)d ) of them [6].

Applications

The k-MAST problem is motivated by the need to com-
pare evolutionary trees. Recent advances in experimental
techniques in molecular biology provide diverse data that
can be used to construct evolutionary trees. This diver-
sity of data combined with the diversity of methods used
to construct evolutionary trees often leads to the situa-
tion when the evolution of the same set of species is ex-
plained by different evolutionary trees. Maximum Agree-
ment Subtree problem has emerged as a measure of the
agreement between such trees and as a method to identify
subtree which is common for these trees. The problem was
first defined by Finden and Gordon in the context of two
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binary trees [7]. These authors also gave a heuristic algo-
rithm to solve the problem. The O(n2) dynamic program-
ming algorithm for computing MAST values for two bi-
nary trees has been given in [11]. Subsequently, a number
of improvements leading to fast algorithms for computing
MAST value of two trees under various assumption about
rooting and tree degrees [5,10,8] and references therein.

The MAST problem for three or more unbounded de-
gree trees is NP-complete [1]. Amir and Keselman report
an O(knd+1 + n2d ) time algorithm for the agreement of
k bounded degree trees. The work described here provides
a O(kn3 + nd ) for the case where the number of trees is k
and the degree of at least one tree is bounded by d. For
d = 2 the complexity of the algorithm is dominated by the
first term. AnO(kn3) algorithm for this case was also given
by Bryant [4] and O(n2 logk�1 n) implementation of this
algorithm was proposed in [9].

k-MAST problem is fixed parameter tractable in p,
the smallest number of leafs labels such that removal of
the corresponding leaves produces agreement (see [3] and
references therein). Approximability of the MAST and
related problem has been studied in [2] and references
therein.

Cross References

�Maximum Agreement Subtree (of 2 Binary Trees)
�Maximum Agreement Supertree
�Maximum Compatible Tree
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ProblemDefinition

Let T be a tree whose leaves are distinctly labeled by a set
of taxa S. By distinctly labeled, we mean that no two leaves
in T have the same label. Given a subset S0 of S, the topo-
logical restriction of T to S0 (denoted by TjS0) is the tree
obtained by deleting from T all nodes which are not on
any path from the root to a leaf in S0 along with their
incident edges, and then contracting every edge between
a node having just one child and its child (see Fig. 1). For
any tree T, denote its set of leaves by�(T).

Maximum Agreement Supertree, Figure 1
Let T be the tree on the left. Then Tjfa; c;dg is the tree shown on
the right
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The maximum agreement supertree problem (MASP)
[8] is defined as follows.

Problem 1 Let D = fT1; T2; : : : ; Tkg be a set of rooted, un-
ordered trees, where each Ti is distinctly leaf-labeled and
where the sets �(Ti) may overlap. The maximum agree-
ment supertree problem (MASP) is to construct a distinctly
leaf-labeled tree Q with leaf set�(Q) 

S
Ti2D �(Ti ) such

that j�(Q)j is maximized and for each Ti 2 D, the topolog-
ical restriction of Ti to�(Q) is isomorphic to the topological
restriction of Q to �(Ti).

Below discussion uses the following notations: n =ˇ̌S
Ti2D �(Ti )

ˇ̌
, k = jDj, and D = maxTi2D

˚
deg(Ti )

�
where deg(Ti) is the degree of Ti.

Key Results

The following lemma gives the relationship between the
maximum agreement supertree problem and the maxi-
mum agreement subtree problem.

Lemma 1 ([8]) For any set D = fT1; T2; : : : ; Tkg of
distinctly leaf-labeled, rooted, unordered trees such that
�(T1) = �(T2) = : : : = �(Tk ), an optimal solution to
MASP for D is an optimal solution to MAST for D and vice
versa.

The above lemma implies the following theorem for com-
puting the maximum agreement supertree for two trees.

Theorem 2 ([8]) When k = 2 (there are two trees),
the maximum agreement supertree can be found in
O(TMAST + n) time where TMAST is the time required for
computing maximum agreement subtree of two O(n)-leaf
trees. Note that TMAST = O

�p
Dn log(2n/D)

�
(see [9]).

[1] generalized Theorem2 and gave the following solution.

Theorem 3 ([1]) For any fixed k > 2, if every leaf in
D appears in either 1 or k trees, the maximum agree-
ment supertree can be found in O(T 0MAST + kn) time where
T 0MAST is the time required for computing maximum agree-
ment subtree of k trees leaf-labeled by

T
Ti2D �(Ti). Note

that T 0MAST = O(km3 + mD) where n =
ˇ̌T

Ti2D �(Ti )
ˇ̌

(see [4]).

In general, the following two theorems showed that the
maximum agreement supertree problem is NP-hard.

Theorem 4 ([8,1]) For any fixed k � 3, MASP with un-
restricted D is NP-hard. Even stronger, MASP is still NP-
hard even if restricted to rooted triplets. (A rooted triplet is
a distinctly leaf-labeled, binary, rooted, unordered tree with
three leaves.)

Theorem 5 ([1]) MASP cannot be approximated in poly-
nomial time within a constant factor, unless P = NP.

Though theMASP problem is NP-hard, approximation al-
gorithm for this problem exists.

Theorem 6 ([8]) MASP can be approximated within
a factor of n

log n in O(n2) � min
˚
O(k � (log log n)2); O(k +

log n � log log n)
�

time. MASP restricted to rooted
triplets can be approximated within a factor of n

log n in
O(k + n2 log2 n) time.

Fixed parameter polynomial time algorithms for comput-
ing MASP also exist. For the case where a set of k bi-
nary trees T labeled by n distinct labels is given, a num-
ber of works have been done. Jansson et al.[8] first gave
an O(k(2n2)3k2 )-time algorithm to compute the MASP of
T . Recently, Guillemot and Berry [5] improved the time
complexity to O((8n)k ). Hoang and Sung [7] further im-
proved the time complexity to O((6n)k ) as summarized by
Theorem 7.

Theorem 7 ([7]) Given a set of k binary trees T which
are labeled by n distinct labels, their maximum agreement
supertree can be computed in O((6n)k ) time.

For the case where a set of k trees T are of degree D and
are labeled by n distinct labels, Hoang and Sung [7] gave
the following fixed-parameter polynomial time solution to
compute the MASP of T .

Theorem 8 ([7]) Given a set of k trees T of degree D which
are labeled by n distinct labels, their maximum agreement
supertree can be computed in O((kD)kD+3(2n)k) time.

Applications

An important objective in phylogenetics is to develop good
methods for merging a collection of phylogenetic trees on
overlapping sets of taxa into a single supertree so that no
(or as little as possible) branching information is lost. Ide-
ally, the resulting supertree can then be used to deduce
evolutionary relationships between taxa which do not oc-
cur together in any one of the input trees. Supertree meth-
ods are useful because most individual studies investigate
relatively few taxa [11] and because sample bias leads to
certain taxa being studiedmuchmore frequently than oth-
ers [2]. Also, supertree methods can combine trees con-
structed for different types of data or under different mod-
els of evolution. Furthermore, although computationally
expensive methods for constructing reliable phylogenetic
trees are infeasible for large sets of taxa, they can be ap-
plied to obtain highly accurate trees for smaller, overlap-
ping subsets of the taxa which may then be merged using
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computationally less intense, supertree-based techniques
(see, e. g., [3,6,10]).

Since the set of trees which is to be combined may
in practice contain contradictory branching structure (for
example, if the trees have been constructed from data orig-
inating from different genes or if the experimental data
contains errors), a supertree method needs to specify how
to resolve conflicts. One intuitive idea is to identify and
remove a smallest possible subset of the taxa so that the
remaining taxa can be combined without conflicts. In this
way, one would get an indication of which ancestral re-
lationships can be regarded as resolved and which taxa
need to be subjected to further experiments. The above
biological problem can be formalized as a computational
problem called the maximum agreement supertree prob-
lem (MASP).

A related problem is the maximum compatible su-
pertree problem (MCSP) [1], which is defined as follows.

Problem 2 Let D = fT1; T2; : : : ; Tkg be a set of rooted, un-
ordered trees, where each Ti is distinctly leaf-labeled and
where the sets �(Ti) may overlap. The maximum compat-
ible supertree problem (MCSP) is to construct a distinctly
leaf-labeled tree Q with leaf set�(Q) 

S
Ti2D �(Ti) such

that j�(Q)j is maximized and for each Ti 2 D, The topo-
logical restriction Qi

0 of Q to �(Ti) refines the topological
restriction Ti

0 of Ti, that is, Ti
0 can be obtained by collaps-

ing certain edges of Qi
0.

Open Problems

The current fixed parameter polynomial time algorithms
for MASP are not practical. It is important to provide
heuristics or to further improve the time complexity of
current fixed-parameter polynomial time algorithms.

Cross References

�Maximum Agreement Subtree (of 2 Binary Trees)
�Maximum Agreement Subtree (of 3 or More Trees)
�Maximum Compatible Tree
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Keywords and Synonyms

Maximum refinement subtree (MRST)

ProblemDefinition

This problem is a pattern matching problem on leaf-
labeled trees. Each input tree is considered as a branching
pattern inducing specific groups of leaves.Given a tree col-
lection with identical leaf sets, the goal is to find a largest
subset of leaves on the branching pattern of which the in-
put trees do not disagree. A maximum compatible tree is
a tree with such a leaf-set and with the branching pat-
terns of the input trees for these leaves. The Maximum
Compatible Tree problem (MCT) is to find such a tree
or, equivalently, its leaf set. The main motivation for this
problem is in phylogenetics, to measure the similarity be-
tween evolutionary trees, or to represent a consensus of
a set of trees. The problem was introduced in [9] and [10],
under the MRST acronym. Previous related works con-
cern the well-known Maximum Agreement Subtree prob-
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Maximum Compatible Tree, Figure 1
Three unrooted trees. A tree T, a tree T0 such that T0 = T jfa; c; eg and a tree T00 such that T00 D T

lem (MAST). Solving MAST is finding a largest subset of
leaves on which all input trees exactly agree. More pre-
cisely, MAST seeks a tree whose branching information
is isomorphic to that of a subtree in each of the input
trees, while MCT seeks a tree that contains the branch-
ing information (i. e. groups) of a subtree of each input
tree. This difference allows the tree obtained for MCT to
be more informative, as it can include branching informa-
tion present in one input tree but not in the others, as long
as this information is compatible with them. Both prob-
lems are equivalent when all input trees are binary. Gana-
pathy and Warnow [5] were the first to give an algorithm
to solve MCT in its general form. Their algorithm relies
on a simple dynamic programming approach similar to
a work on MAST [12] and has a running time exponential
in the number of input trees and in the maximum degree
of a node in the input trees. Later, [2] proposed a fixed-
parameter algorithm using one parameter only. Approx-
imation results have also been obtained [1,6], the result
being low-cost polynomial-time algorithms that approxi-
mate the complement ofMCTwithin a constant threshold.

Notations Trees considered here are evolutionary trees
(phylogenies). Such a tree T has its leaf set L(T) in bijection
with a label set and is either rooted, in which case all inter-
nal nodes have at least two children each, or unrooted, in
which case internal nodes have a degree of at least three.
The size of |T| of a tree T is the number of its leaves. Given
a set L of labels and a tree T, the restriction of T to L, de-
noted T|L, is the tree obtained in the following way: take
the smallest induced subgraph of T connecting leaves with
labels in L \ L(T), then remove any degree two (non-root)
node to make the tree homeomorphically irreducible. Two
trees T, T0 are isomorphic, denoted T = T 0, if and only if
there is a graph isomorphism T 7! T 0 preserving leaf la-
bels (and the root if both trees are rooted). A tree T refines
a tree T0, denoted T D T 0, wheneverT can be transformed
into T0 by collapsing some of its internal edges (collapsing
an edge means removing it and merging its extremities).
See Fig. 1 for examples of these relations between trees.

Note that a tree T properly refining another tree T0, agrees
with the entire evolutionary history of T0, while containing
additional information absent from T0: at least one high
degree node of T0 is replaced in T by several nodes of lesser
degree, hence T contains more speciation events than T0.
Given a collectionT = fT1; T2; : : : ; Tkg of input trees with
identical leaf sets L, a tree T with leaves in L is said to be
compatible with T if and only if 8Ti 2 T , T D Ti jL(T).
If there is a tree T compatible with T such that L(T) = L,
then the collection T is said to be compatible. Knowing
whether a collection is compatible is a problem for which
linear-time algorithms have been known for a long time
e. g. [8]. The MAXIMUM COMPATIBLE TREE problem is
a natural optimization version of this problem to deal with
incompatible collections of trees.

Problem 1 (MAXIMUM COMPATIBLE TREE – MCT)
Input: A collection T of trees with the same leaf sets.
Output: A tree compatible with T having the largest num-
ber of leaves. Such a tree is denotedMCT(T ).

See Fig. 2 for an example. Note that 8T ; jMCT(T )j �
jMAST(T )j and that MCT is equivalent to MAST when
input trees are binary. Note also that instances ofMCT and
MAST can have several optimum solutions.

Maximum Compatible Tree, Figure 2
An incompatible collection of two input trees fT1; T2g and their
maximum compatible tree, T = MCT(T1; T2). Removing the leaf
d renders the input trees compatible, hence L(T) = fa;b; c; eg.
Here, T strictly refines T2 restricted to L(T), which is expressed
by the fact that a node in T2 (the grey one) has its child subtrees
distributed between several connected nodes of T (grey nodes).
Note also that here jMCT(T1; T2)j > jMAST(T1; T2)j
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Key Results

Exact Algorithms

The MCT problem was shown to be NP-hard on 6 trees
in [9], then on 2 trees in [10]. The NP-hardness holds
as long as one of the input trees is not of bounded de-
gree. For two bounded-degree trees, Hein et al. mention
a polynomial-time algorithm based on aligning trees [10].
The work of Ganapathy and Warnow [5] proposed an ex-
ponential algorithm for solving MCT in the general case.
Given two trees T1,T2, they show how to compute a bi-
nary MCT of any pair of subtrees (S1 2 T1; S2 2 T2) by
dynamic programming. Subtrees whose root is of high de-
gree are handled by considering every possible partition of
the roots’s children in two sets. This leads the complex-
ity bound to have a term exponential in d, the maximum
degree of a node in the input trees. When dealing with k
input trees, k-tuples of subtrees are considered, and the si-
multaneous bipartitions of the roots’s children for k sub-
trees are considered. Hence, the complexity bound is also
exponential in k.

Theorem 1 ([5]) Let L be a set of n leaves. TheMCT prob-
lem for a collection of k rooted trees on L in which each tree
has degree at most d + 1, can be solved in O(22kdnk ) time.

The result easily extends to unrooted trees by considering
each of the n leaves in turn as a possible root for all trees of
the collection.

Theorem 2 ([5]) Given a collection of k unrooted trees
with degree at most d + 1 on an n-leaf set, the MCT prob-
lem can be solved in O(22kd nk+1).

Let T be a collection on a leaf-set L, [2] considered the
following decision problem, denoted MCTp: given T and
p 2 [0; n], does jMCT(T )j � n � p?

Theorem 3 ([2])
1. MCTp on rooted trees can be solved in O(minf3pkn;

2:27p + kn3g) time.
2. MCTp on unrooted trees can be solved in O

�
(p + 1) �

minf3pkn; 2:27p + kn3g
�
time.

The 3pkn term comes from an algorithm that first locates
in O(kn) time a 3-leaf set S on which the input trees
conflict, then recursively obtains a maximum compatible
tree T1, resp. T2, T3 for each of the three collections T1,
resp. T2;T3 obtained by removing from the input trees
a leaf in S, and last returning the Ti such that |Ti| is max-
imum (for i 2 [1; 3]). The 2:27p + kn3 term comes from
an algorithm reducting MCT to 3-HITTING SET. Negative
results have been obtained by Guillemot and Nicolas con-
cerning the fixed-parameter tractability of MCT wrt the
maximum degreeD of the input trees.

Theorem 4 ([7])
1. MCT is W[1]-hard with respect to D.
2. MCT can not be solved in O(No(2D/2)) time unless SNP
 SE, where N denotes the input length, i. e. N = O(kn).

The MCT problem also admits a variant that deals with
supertrees, i. e. trees having different (but overlapping) sets
of leaves. The resulting problem isW[2]-hard with respect
to p [3].

Approximation Algorithms

The idea of locating and then eliminating successively all
the conflicts between the input trees has also led to ap-
proximation algorithms for the complement version of the
MCT problem, denotedCMCT. Let L be the leaf set of each
tree in an input collection T , CMCT aims at selecting the
smallest number of leaves S  L such that the collection
fTi j(L � S) : Ti 2 T g is compatible.

Theorem 5 ([6]) Given a collection T of k rooted trees
on an n-leaf set L, there is a 3-approximation algorithm for
CMCT that runs in O(k2n2) time.

The running time of this algorithm was later improved:

Theorem 6 ([1]) There is an O(kn + n2) time 3-approxi-
mation algorithm forCMCT on a collection of k rooted trees
with n leaves.

Note also that working on rooted or unrooted trees does
not change the achievable approximation threshold for
CMCT [1].

Applications

In bioinformatics, the MCT problem (and similarly
MAST) is used to reach different practical goals. The
first motivation is to measure the similarity of a set
of trees. These trees can represent RNA secondary
structures [10,11] or estimates of a phylogeny inferred
from different datasets composed of molecular sequences
(e. g. genes) [13]. The gap between the size of a maximum
compatible tree and the number of input leaves indicates
the degree of disimilarity of the input trees. Concerning
the phylogenetic applications, quite often some edges of
the trees inferred from the datasets have been collapsed
due to insufficient statistical support, resulting in some
higher-degree nodes in the trees considered. Each such
node does not indicate a multi-speciation event but rather
the uncertainty with respect to the branching pattern to be
chosen for its child subtrees. In such a situation, the MCT
problem is to be preferred to MAST, as it correctly han-
dles high degree nodes, enabling them to be resolved ac-
cording to branching information present in other input
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trees. As a result, more leaves are conserved in the output
tree, hence a larger degree of similarity is detected between
the input trees. Note also that a low similarity value be-
tween the input trees can be due to horizontal gene trans-
fers. When these events are not too numerous, identifying
species subject to such effects is done by first suspecting
leaves discarded from a maximum compatible tree.

The shape of a maximum compatible tree, i. e. not just
its size, also has an application in systematic biology to ob-
tain a consensus of a set of phylogenies that are optimal for
some tree-building criterion. For instance, the maximum
parsimony and maximum likelihood criteria can provide
several dozens (sometimes hundreds) of optimal or near-
optimal trees. In practice, these trees are first grouped into
islands of neighboring trees, and a consensus tree is ob-
tained for each island by resorting to a classical consensus
treemethod, e. g. themajority-rule or strict consensus. The
trees representing the islands form a collection of which
a consensus is then sought. However, consensus methods
keeping all input leaves tend to create trees that lack of res-
olution. An alternative approach lies in proposing a rep-
resentative tree that contains a largest possible subset of
leaves on the position of which the trees of the collection
agree. Again, MCT is more suited thanMAST as the input
trees can contain some high-degree nodes, with the same
meaning as discussed above.

Open Problems

A direction for future work is to examine the variant of
MCT where some leaves are imposed in the output tree.
This question arises when a biologist wants to ensure that
the species central to his study are contained in the output
tree. For MAST on two trees, this constrained variant of
the problem was shown in a natural way to be of the same
complexity as the standart version [4]. For MCT however,
such a constraint can lead to several optimization prob-
lems that need to be sorted out. Another important work
to be done is a set of experiments to measure the range of
parameters for which the algorithms proposed to solve or
approximate MCT are useful.

URL to Code

A beta-version of a Perl program can be asked to the au-
thor of this entry.
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Keywords and Synonyms

Maximum-average segment

ProblemDefinition

Given a sequence of numbers, A = ha1; a2; : : : ; ani, and
two positive integers L, U, where 1 � L � U � n, the
maximum-density segment problem is to find a consec-
utive subsequence, i. e. a segment or substring, of A with
length at least L and at most U such that the average value
of the numbers in the subsequence is maximized.

Key Results

If there is no length constraint, then obviously the
maximum-density segment is the maximum number in
the sequence. Let’s first consider the problem where only
the length lower bound L is imposed. By observing that
the length of the shortest maximum-density segment with
length at least L is at most 2L � 1, Huang [7] gave an
O(nL)-time algorithm. Lin et al. [10] proposed a new tech-
nique, called the right-skew decomposition, to partition
each suffix of A into right-skew segments of strictly de-
creasing averages. The right-skew decomposition can be
done in O(n) time, and it can answer, for each position
i, a consecutive subsequence of A starting at that position
such that the average value of the numbers in the subse-
quence is maximized. On the basis of the right-skew de-
composition, Lin et al. [10] devised an O(n log L)-time al-
gorithm for the maximum-density segment problem with
a lower bound L, which was improved to O(n) time by
Goldwasser et al. [6]. Kim [8] gave another O(n)-time al-
gorithm by reducing the problem to the maximum-slope
problem in computation geometry. As for the problem
which takes both L and U into consideration, Chung and
Lu [4] bypassed the construction of the right-skew decom-
position and gave an O(n)-time algorithm.

It should be noted that a closely related problem
in data mining, which basically deals with a binary se-
quence, was independently formulated and studied by
Fukuda et al. [5].

An Extension to Multiple Segments

Given a sequence of numbers, A = ha1; a2; : : : ; ani, and
two positive integers L and k, where k � n

L , let d(A[i; j])
denote the density of segment A[i; j], defined as (ai +
ai+1 + � � � + a j)/( j � i + 1). The problem is to find k
disjoint segments fs1; s2; : : : ; skg of A, each has a length
of at least L, such that

P
1�i�k d(si ) is maximized.

Chen et al. [3] proposed an O(nkL)-time algorithm and
an improved O(nL + k2L2)-time algorithm was given by

Bergkvist and Damaschke [2]. Liu and Chao [11] gave an
O(n + k2L log L)-time algorithm.

Applications

In all organisms, the GC base composition of DNA varies
between 25–75%, with the greatest variation in bacteria.
Mammalian genomes typically have a GC content of 45–
50%. Nekrutenko and Li [12] showed that the extent of
the compositional heterogeneity in a genomic sequence
strongly correlates with its GC content. Genes are found
predominantly in the GC-richest isochore classes. Hence,
finding GC-rich regions is an important problem in gene
recognition and comparative genomics.

Given a DNA sequence, one would attempt to find
segments of length at least L with the highest C+G ratio.
Specifically, each of nucleotides C andG is assigned a score
of 1, and each of nucleotides A and T is assigned a score
of 0.

DNA sequence: ATGACTCGAGCTCGTCA
Binary sequence: 00101011011011010

The maximum-average segments of the binary sequence
correspond to those segments with the highest GC ratio in
the DNA sequence. Readers can refer to [1,9,10,13,14,15]
for more applications.

Open Problems

The best asymptotic time bound of the algorithms for
the multiple maximum-density segments problem is
O(n + k2L log L). Can this problem be solved in O(n)
time?
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ProblemDefinition

Let G = (V ; E) be an undirected graph, and let n = jVj,
m = jEj. Amatching in G is a subset M  E, such that no
two edges ofM have a common endpoint. A perfect match-
ing is a matching of cardinality n/2. The most basic match-
ing related problems are: finding a maximum matching
(i. e. a matching of maximum size) and, as a special case,
finding a perfect matching if one exists. One can also con-
sider the case where a weight function w : E ! R is given
and the problem is to find amaximum weight matching.

The maximum matching and maximum weight
matching are two of the most fundamental algorithmic
graph problems. They have also played a major role in the
development of combinatorial optimization and algorith-
mics. An excellent account of this can be found in a classic
monograph [10] by Lovász and Plummer devoted entirely
to matching problems. A more up-to-date, but also more
technical discussion of the subject can be found in [18].

Classical Approach

Solving the maximum matching problem in time polyno-
mial in n is a highly non-trivial task. The first such solu-
tion was given by Edmonds [3] in 1965 and has time com-
plexity O(n3). Edmond’s ingenious algorithm uses a com-
binatorial approach based on augmenting paths and blos-
soms. Several improvements followed, culminating in the
algorithm with complexity O(m

p
n) given by Micali and

Vazirani [11] in 1980 (a complete proof of the correctness
of this algorithm was given much later by Vazirani [19],
a nice exposition of the algorithm and its generalization to
the weighted case can be found in a work of Gabow and
Tarjan [4]). Beating this bound proved very difficult, sev-
eral authors managed to achieve only a logarithmic speed-
up for certain values of m and n. All these algorithms es-
sentially follow the combinatorial approach introduced by
Edmonds.

The maximummatching problem is much simpler for
bipartite graphs. The complexity of O(m

p
n) was achieved

for this case already in 1971 by Hopcroft and Karp [6],
while the key ideas of the first polynomial algorithms
date back to 1920’s and the works of König and Egerváry
(see [10] and [18]).

Algebraic Approach

Around the time Micali and Vazirani introduced their
matching algorithm, Lovász gave a randomized (Monte
Carlo) reduction of the problem of testing whether a given
n-vertex graph has a perfect matching to the problem
of computing a certain determinant of a n � n matrix.
Using the Hopcroft-Bunch fast Gaussian elimination al-
gorithm [1] this determinant can be computed in time
MM(n) = O(n! ) – time required to multiply two n � n
matrices. Since ! < 2:38 (see [2]), for dense graphs this
algorithm is asymptotically faster than the matching algo-
rithm of Micali and Vazirani.

However, Lovász’s algorithm only tests for perfect
matching, it does not find it. Using it to find perfect/
maximum matchings in a straightforward fashion yields
algorithm with complexity O(mn! ) = O(n4:38). A major
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open problem in the field was thus: can maximummatch-
ings be actually found in O(n! ) time?

The first step in this direction was taken in 1989 by
Rabin and Vazirani [15]. They showed that maximum
matchings can be found in time O(n!+1) = O(n3:38).

Key Results

The following theorems state the key results of [12].

Theorem 1 Maximum matching in a n-vertex graph G
can be found in O(n3) time (Las Vegas) by performing
Gaussian elimination on a certain matrix related to G.

Theorem 2 Maximum matching in an n-vertex bipartite
graph can be found in Õ(n!) time (Las Vegas) by perform-
ing a Hopcroft-Bunch fast Gaussian elimination on a cer-
tain matrix related to G.

Theorem 3 Maximummatching in an n-vertex graph can
be found in Õ(n! ) time (Las Vegas).

Note: Õ notation suppresses polylogarithmic factors, so
Õ( f (n)) means O( f (n) logk(n)) for some k.

Let us briefly discuss these results. Theorem 1 shows
that effective matching algorithms can be simple. This is
in large contrast to augmenting paths/blossoms based al-
gorithms which a generally regarded quite complicated.

The other two theorems show that, for dense graphs,
the algebraic approach is asymptotically faster than the
combinatorial one.

The algorithm for the bipartite case is very simple. It’s
only non-elementary part is the fast matrix multiplication
algorithm used as black box by the Hopcroft-Bunch al-
gorithm. The general algorithm, however, is complicated
and uses strong structural results from matching theory.
A natural question is whether or not it is possible to give
a simpler and/or purely algebraic algorithm. This has been
positively answered by Harvey [5].

Several other related results followed. Mucha and
Sankowski [13] showed that maximum matchings in pla-
nar graphs can be found in time Õ(n!/2) = Õ(n1:19) which
is currently fastest known. Yuster and Zwick [20] extended
this to any excludedminor class of graphs. Sankowski [16]
gave an RNC work-efficient matching algorithm (see also
Mulmuley et al. [14] and Karp et al. [8] for earlier, less ef-
ficient RNCmatching algorithms, and Karloff [7] for a de-
scription of a general technique for making such algorithm
Las Vegas). He also generalized Theorem 2 to the case
of weighted bipartite graphs with integer weights from
[0; : : : ;W], showing that in this case maximum weight
matchings can be found in time Õ(Wn! ) (see [17]).

Applications

The maximum matching problem has numerous applica-
tions, both in practice and as a subroutine in other algo-
rithms. A nice discussion of practical applications can be
found in the monograph [10] by Lovász and Plummer. It
should be noted, however, that algorithms based on fast
matrix multiplication are completely impractical, so the
results discussed here are not really useful in these appli-
cations.

On the theoretical side, faster maximum (weight)
matching algorithms yield faster algorithms for related
problems: disjoint s-t paths problem, the minimum
(weight) edge cover problem, the (maximum weight)
b-matching problem, the (maximum weight) b-factor
problem, the maximum (weight) T-join or the Chinese
postman problem. For detailed discussion of all these ap-
plications see [10] and [18].

The algebraic algorithm of Theorem 1 also has a signif-
icant educational value. The combinatorial algorithms for
the general maximummatching problem are generally re-
garded too complicated for an undergraduate course. That
is definitely not the case with the algebraic O(n3) algo-
rithm.

Open Problems

One of the most important open problems in the area
is generalizing the results discussed above to weighted
graphs. Sankowski [17] gives a Õ(Wn!) algorithm for
bipartite graphs with integer weights from the interval
[0::W]. The complexity of this algorithm is really bad in
terms ofW. No effective algebraic algorithm is known for
general weighted graphs.

Another interesting, but most likely very hard problem
is the derandomization of the algorithms discussed.
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ProblemDefinition

Given a sequence of numbers, A = ha1; a2; : : : ; ani, and
two positive integers L, U, where 1 � L � U � n, the
maximum-sum segment problem is to find a consecutive
subsequence, i. e. a segment or substring, of A with length
at least L and at most U such that the sum of the numbers
in the subsequence is maximized.

Key Results

Themaximum-sum segment problem without length con-
straints is linear-time solvable by using Kadane’s algo-
rithm [2]. Huang extended the recurrence relation used
in [2] for solving the maximum-sum segment prob-
lem, and derived a linear-time algorithm for comput-
ing the maximum-sum segment with length at least L.
Lin et al. [10] proposed an O(n)-time algorithm for the
maximum-sum segment problem with both L and U con-
straints, and an online version was given by Fan et al. [8].

An Extension to Multiple Segments

Computing the k largest sums over all possible segments is
a natural extension of the maximum-sum segment prob-
lem. This extension has been considered from two per-
spectives, one of which allows the segments to overlap,
while the other disallows.

Linear-time algorithms for finding all the non-
overlapping maximal segments were given in [3,12]. On
the other hand, one may focus on finding the kmaximum-
sum segments whose overlapping is allowed. A naïve ap-
proach is to choose the k largest from the sums of all pos-
sible contiguous subsequences which requires O(n2) time.
Bae and Takaoka [1] presented an O(kn)-time algorithm
for the k maximum segment problem. Liu and Chao [11]
noted that the kmaximum-sum segments problem can be
solved in O(n + k) time [7], and gave an O(n + k)-time
algorithm for the LENGTH-CONSTRAINED k MAXIMUM-
SUM SEGMENTS PROBLEM.

Applications

The algorithms for the maximum-sum segment problem
have applications in finding GC-rich regions in a genomic
DNA sequence, postprocessing sequence alignments, and
annotating multiple sequence alignments. Readers can re-
fer to [3,4,5,6,10,12,13,14,15] for more details.
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Open Problems

It would be interesting to consider the higher dimensional
cases.
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ProblemDefinition

In the maximum 2-satisfiability problem (abbreviated as
MAX 2-SAT), one is given a Boolean formula in conjunc-
tive normal form, such that each clause contains at most
two literals. The task is to find an assignment to the vari-
ables of the formula such that a maximum number of
clauses is satisfied.

MAX 2-SAT is a classic optimization problem. Its deci-
sion version was proved NP-complete by Garey, Johnson,
and Stockmeyer [7], in stark contrast with 2-SAT which is
solvable in linear time [2]. To get a feeling for the difficulty
of the problem, theNP-completeness reduction is sketched
here. One can transform any 3-SAT instance F into a MAX
2-SAT instance F0, by replacing each clause of F such as

ci = (`1 _ `2 _ `3) ;

where `1, `2, and `3 are arbitrary literals, with the collec-
tion of 2-CNF clauses

(`1); (`2); (`3); (ci ); (:`1 _:`2); (:`2 _ :`3);
(:`1 _:`3); (`1 _ ci ); (`2 _ ci ); (`3 _ ci ) ;

where ci is a new variable. The following are true:
� If an assignment satisfies ci, then exactly seven of the

ten clauses in the 2-CNF collection can be satisfied.
� If an assignment does not satisfy ci, then exactly six of

the ten clauses can be satisfied.
If F is satisfiable then there is an assignment satisfying 7/10
of the clauses in F0, and if F is not satisfiable then no as-
signment satisfiesmore than 7/10 of the clauses in F0. Since
3-SAT reduces to MAX 2-SAT, it follows that MAX 2-SAT
(as a decision problem) is NP-complete.
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Notation

A CNF formula is represented as a set of clauses.
The symbols R and Z denote the sets of reals and in-

tegers, respectively. The letter ! denotes the smallest real
number such that for all � > 0, n by n matrix multipli-
cation over a ring can be performed in O(n!+�) ring op-
erations. Currently, it is known that ! < 2:376 [4]. The
ring matrix product of two matrices A and B is denoted by
A� B.

Let A and B be matrices with entries from R [ f1g.
The distance product of A and B (written shorthand as
A˝d B) is the matrix C defined by the formula

C[i; j] = min
k=1;:::;n

fA[i; k] + B[k; j]g :

A word on m’s and n’s: in reference to graphs, m and n
denote the number of edges and the number of nodes in
the graph, respectively. In reference to CNF formulas, m
and n denote the number of clauses and the number of
variables, respectively.

Key Result

The primary result of this article is a procedure solving
MAX 2-SAT in O(m � 2!n/3) time. The method can be gen-
eralized to count the number of solutions to any constraint
optimization problem with at most two variables per con-
straint (cf. [17]), though the presentation in this article
shall be somewhat different from the reference, and much
simpler. There are several other known exact algorithms
for MAX 2-SAT that are more effective in special cases,
such as sparse instances [3,8,9,11,12,13,15,16]. The proce-
dure described below is the only one known (to date) that
runs in O(pol y(m) � 2ın) time (for some fixed ı < 1) in all
possible cases.

Key Idea

The algorithm gives a reduction from MAX 2-SAT to the
problem MAX TRIANGLE, in which one is given a graph
with integer weights on its nodes and edges, and the goal
is to output a 3-cycle of maximum weight. At first, the ex-
istence of such a reduction sounds strange, as MAX TRI-
ANGLE can be trivially solved in O(n3) time by trying all
possible 3-cycles. The key is that the reduction exponen-
tially increases the problem size, from a MAX 2-SAT in-
stance withm clauses and n variables, to aMAX TRIANGLE
instance havingO(22n/3) edges,O(2n/3) nodes, and weights
in the range f�m; : : : ;mg.

Note that if MAX TRIANGLE required 	(n3) time to
solve, then the resulting MAX 2-SAT algorithm would

take 	(2n) time, rendering the above reduction pointless.
However, it turns out that the brute-force search of O(n3)
for MAX TRIANGLE is not the best one can do– using fast
matrix multiplication, there is an algorithm for MAX TRI-
ANGLE that runs in O(Wn!) time on graphs with weights
in the range f�W; : : : ;Wg.

Main Algorithm

First, a reduction from MAX 2-SAT to MAX TRIANGLE is
described, arguing that each triangle of weight K in the
resulting graph is in one-to-one correspondence with an
assignment that satisfies K clauses of the MAX 2-SAT in-
stance. Let a; b be reals, and letZ[a; b] := [a; b] \ Z

Lemma 1 IfMAX TRIANGLE on graphs with n nodes and
weights in Z[�W;W] is solvable in O( f (W) � g(n)) time,
for polynomials f and g, then MAX 2-SAT is solvable in
O( f (m) � g(2n/3)) time, where m is the number of clauses
and n is the number of variables.

Proof Let C be a given 2-CNF formula. Assume without
loss of generality that n is divisible by 3. Let F be an in-
stance of MAX 2-SAT. Arbitrarily partition the n variables
of F into three sets P1, P2, P3, each having n/3 variables.
For each Pi, make a list Li of all 2n/3 assignments to the
variables of Pi.

Define a graph G = (V ; E) with V = L1 [ L2 [ L3 and
E = f(u; v)ju 2 Pi ; v 2 Pj ; i ¤ jg. That is, G is a complete
tripartite graphwith 2n/3 nodes in each part, and each node
in G corresponds to an assignment to n/3 variables in C.
Weights are placed on the nodes and edges ofG as follows.
For a node v, define w(v) to be the number of clauses that
are satisfied by the partial assignment denoted by v. For
each edge {u, v}, define w(fu; vg) = �Wuv , where Wuv is
the number of clauses that are satisfied by both u and v.

Define the weight of a triangle in G to be the total sum
of all weights and nodes in the triangle.

Claim 1 There is a one-to-one correspondence between
the triangles of weightK inG and the variable assignments
satisfying exactly K clauses in F.

Proof Let a be a variable assignment. Then there ex-
ist unique nodes v1 2 L1; v2 2 L2, and v3 2 L3 such that
a is precisely the concatenation of v1, v2, v3 as assign-
ments.Moreover, any triple of nodes v1 2 L1; v2 2 L2, and
v3 2 L3 corresponds to an assignment. Thus there is a one-
to-one correspondence between triangles in G and assign-
ments to F.

The number of clauses satisfied by an assignment is ex-
actly the weight of its corresponding triangle. To see this,
let Ta = fv1; v2; v3g be the triangle in G corresponding to
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assignment a. Then

w(Ta) = w(v1) + w(v2) + w(v3) + w(fv1; v2g)
+ w(fv2; v3g) + w(fv1; v3g)

=
3X
i=1

jfc 2 Fjvi satisfies Fgj

�
X

i; j:i¤ j

jfc 2 Fjvi and v j satisfy Fgj

= jfc 2 Fja satisfies Fgj ;

where the last equality follows from the inclusion-
exclusion principle. �
Notice that the number of nodes inG is 3 � 2n/3, and the ab-
solute value of any node and edge weight is m. Therefore,
running a MAX TRIANGLE algorithm on G, a solution to
MAX 2-SAT is obtained in O( f (m) � g(3 � 2n/3)), which is
O( f (m) � g(2n/3)) since g is a polynomial. This completes
the proof of Lemma 1. �

Next, a procedure is described for finding a maximum tri-
angle faster than brute-force search, using fast matrix mul-
tiplication. Alon, Galil, and Margalit [1] (following Yu-
val [20]) showed that the distance product for matrices
with entries drawn from Z[�W;W] can be computed us-
ing fast matrix multiplication as a subroutine.

Theorem 2 (Alon, Galil, Margalit [1]) Let A and B be
n � n matrices with entries from Z[�W;W] [ f1g. Then
A˝d B can be computed in O(Wn! log n) time.

Proof (Sketch) One can replace1 entries inA andBwith
2W + 1 in the following. Define matrices A0 and B0, where

A0[i; j] = x3W�A[i; j] ; B0[i; j] = x3W�B[i; j] ;

and x is a variable. Let C = A0 � B0. Then

C[i; j] =
nX
k=1

x6W�A[i;k]�B[k; j] :

The next step is to pick a number x thatmakes it easy to de-
termine, from the sum of arbitrary powers of x, the largest
power of x appearing in the sum; this largest power imme-
diately gives the minimum A[i; k] + B[k; j]. Each C[i, j] is
a polynomial in x with coefficients from Z[0; n]. Suppose
each C[i, j] is evaluated at x = (n + 1). Then each entry of
C[i, j] can be seen as an (n + 1)-ary number, and the posi-
tion of this number’s most significant digit gives the mini-
mum A[i; k] + B[k; j].

In summary,A˝d B can be computed by constructing

A0[i; j] = (n + 1)3W�A[i; j] ; B0[i; j] = (n + 1)3W�B[i; j]

in O(W log n) time per entry, computing C = A0 � B0 in
O(n! � (W log n)) time (as the sizes of the entries are
O(W log n)), then extracting the minimum from each en-
try of C, in O(n2 �W log n) time. Note if the minimum for
an entry C[i, j] is at least 2W + 1, then C[i; j] =1. �

Using the fast distance product algorithm, one can solve
MAX TRIANGLE faster than brute-force. The following is
based on an algorithm by Itai and Rodeh [10] for detect-
ing if an unweighted graph has a triangle in less than n3

steps. The result can be generalized to counting the num-
ber of k-cliques, for arbitrary k � 3. (To keep the presen-
tation simple, the counting result is omitted. Concerning
the k-clique result, there is unfortunately no asymptotic
runtime benefit from using a k-clique algorithm instead of
a triangle algorithm, given the current best algorithms for
these problems.)

Theorem 3 MAX TRIANGLE can be solved in O(W
n! log n), for graphs with weights drawn from Z[�W;W].

Proof First, it is shown that a weight function on nodes
and edges can be converted into an equivalent weight
function with weights on only edges. Let w be the weight
function of G, and redefine the weights to be:

w0(fu; vg) =
w(u) + w(v)

2
+ w(fu; vg) ; w0(u) = 0 :

Note the weight of a triangle is unchanged by this reduc-
tion.

The next step is to use a fast distance product to find
a maximum weight triangle in an edge-weighted graph of
n nodes. Construe the vertex set of G as the set f1; : : : ; ng.
Define A to be the n � n matrix such that A[i; j] =
�w(fi; jg) if there is an edge fi; jg, and A[i; j] =1 other-
wise. The claim is that there is a triangle through node i of
weight at least K if and only if (A˝d A˝d A)[i; i] � �K.
This is because (A ˝d A ˝d A)[i; i] � �K if and only
if there are distinct j and k such that fi; jg; f j; kg; fk; ig
are edges and A[i; j] + A[ j; k] + A[k; i] � �K, i. e.,
w(fi; jg) + w(f j; kg) + w(fk; ig) � K.

Therefore, by finding an i such that (A˝d A˝d A)[i; i]
is minimized, one obtains a node i contained in a maxi-
mum triangle. To obtain the actual triangle, check all m
edges {j, k} to see if {i, j, k} is a triangle. �

Theorem 4 MAX 2-SAT can be solved in O(m � 1:732n)
time.

Proof Given a set of clauses C, apply the reduction from
Lemma 1 to get a graph G with O(2n/3) nodes and weights
from Z[�m;m]. Apply the algorithm of Theorem 3 to
output a max triangle in G in O(m � 2!n/3 log(2n/3)) =
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O(m � 1:732n) time, using the O(n2.376) matrix multipli-
cation of Coppersmith andWinograd [4]. �

Applications

By modifying the graph construction, one can solve other
problems inO(1.732n) time, such asMAX CUT,MINIMUM
BISECTION, and SPARSEST CUT. In general, any con-
straint optimization problem for which each constraint
has at most two variables can be solved faster using the
above approach. For more details, see [17] and the re-
cent survey by Woeginger [19]. Techniques similar to
the above algorithm have also been used by Dorn [6] to
speed up dynamic programming for some problems on
planar graphs (and in general, graphs of bounded branch-
width).

Open Problems

� Improve the space usage of the above algorithm. Cur-
rently, 	(22n/3) space is needed. A very interesting
open question is if there is a O(1.99n) time algorithm
for MAX 2-SAT that uses only polynomial space. This
question would have a positive answer if one could find
an algorithm for solving the k-CLIQUE problem that
uses polylogarithmic space and nk�ı time for some
ı > 0 and k � 3.

� Find a faster-than-2n algorithm for MAX 2-SAT that
does not require fast matrix multiplication. The fast
matrix multiplication algorithms have the unfortunate
reputation of being impractical.

� Generalize the above algorithm to work for MAX k-
SAT, where k is any positive integer. The current for-
mulation would require one to give an efficient algo-
rithm for finding a small hyperclique in a hypergraph.
However, no general results are known for this prob-
lem. It is conjectured that for all k � 2, MAX k-SAT is
in Õ(2n(1�

1
k+1 )) time, based on the conjecture that ma-

trix multiplication is in n2+o(1) time [17].
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ProblemDefinition

The MAX LEAF SPANNING TREE problem asks us to find
a spanning tree with at least k leaves in an undirected
graph. The decision version of parameterized MAX LEAF
SPANNING TREE is the following:

MAX LEAF SPANNING TREE
INPUT: A connected graph G, and an integer k.
PARAMETER: An integer k.
QUESTION: DoesG have a spanning tree with at least
k leaves?

The parameterized complexity of the nondeterministic
polynomial-time complete MAX LEAF SPANNING TREE
problem has been extensively studied [2,3,9,11] using a va-
riety of kernelization, branching and other fixed-parame-
ter tractable (FPT) techniques. The authors are the first to
propose an extremal structure method for hard compu-
tational problems. The method, following in the sense of
Grothendieck and in the spirit of the graph minors project
of Robertson and Seymour, is that a mathematical project
should unfold as a series of small steps in an overall tra-
jectory that is described by the appropriate “mathemati-
cal machine.” The authors are interested in statements of
the type: Every connected graph on n vertices that satis-
fies a certain set of properties has a spanning tree with at
least k leaves, and this spanning tree can be found in time
O( f (k) + nc), where c is a constant (independent of k) and
f is an arbitrary function.

In parameterized complexity, the value k is called the
parameter and is used to capture some structure of the in-
put or other aspect of the computational objective. For ex-
ample, k might be the number of edges to be deleted in
order to obtain a graph with no cycles, or k might be the
number of DNA sequences to be aligned in an alignment,
or kmay be the maximum type-declaration nesting depth
of a compiler, or k = 1/� may be the parameterization in
the analysis of approximation, or k might be a composite
of several variables.

There are two important ways of comparing FPT al-
gorithms, giving rise to two FPT races. In the “f (k)” race,
the competition is to find ever more slowing growing pa-
rameter functions f (k) governing the complexity of FPT
algorithms. The “kernelization race” refers to the follow-
ing lemma stating that a problem is in FPT if and only if
the input can be preprocessed (kernelized) in “ordinary”
polynomial time into an instance whose size is bounded
by a function of k only.

Lemma 1 A parameterized problem ˘ is in FPT if and
only if there is a polynomial-time transformation (in both n
and k) that takes (x, k) to (x0; k0) such that:
(1) (x, k) is a yes-instance of˘ if and only if (x0; k0) is a yes-

instance of˘ ,
(2) k0 � k, and
(3) jx0j � g(k) for some fixed function g.

In the situation described by the lemma, say that we can
kernelize to instances of size at most g(k). Although the
two races are often closely related, the result is not always
the same. The current best FPT algorithm for MAX LEAF
is due to Bonsma [1] (following the extremal structure ap-
proach outlined by the authors) with a running time of
O�(8:12k) to determine whether a graph G on n vertices
has a spanning tree with at least k leaves; however the au-
thors present the FPT algorithm with the smallest kernel
size.

The authors list five independent deliverables associ-
ated to the extremal structure theory, and illustrate all of
the objectives for the MAX LEAF problem. The five objec-
tives are:
(A) Better FPT algorithms as a result of deeper structure

theory, more powerful reduction rules associated with
that structure theory, and stronger inductive proofs of
improved kernelization bounds.

(B) Powerful preprocessing (data reduction/kerneliza-
tion) rules and combinations of rules that can be used
regardless of whether the parameter is small and that
can be combined with other approaches, such as ap-
proximation and heuristics. These are usually easy to
program.

(C) Gradients and transformation rules for local search
heuristics.

(D) Polynomial-time approximation algorithms and per-
formance bounds proved in a systematic way.

(E) Structure to exploit for solving other problems.

Key Results

The key results are programmatic, providing a method
of extremal structure as a systematic method for design-
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ing FPT algorithms. The five interrelated objectives listed
above are surveyed, and each is illustrated using the MAX
LEAF SPANNING TREE problem.

Objective A: FPT Algorithms

The objective here is to find polynomial-time preprocess-
ing (kernelization) rules where g(k) is as small as possible.
This has a direct payoff in terms of program objective B.

Rephrased as a structure theory question, the crucial
issue is: What is the structure of graphs that do not have
a subgraph with k leaves? A graph theory result due to
Kleitman and West shows that a graph of minimum de-
gree at least 3, that excludes a k-leaf subgraph, has at
most 4(k � 3) vertices. Figure 1 shows that this is the best
possible result for this hypothesis. However, investigating
the structure using extremal methods reveals the need for
the reduction rule of Fig. 2. About 20 different polyno-
mial-time reduction rules (some much more complex and
“global” in structure than the simple local reduction rule
depicted) are sufficient to kernelize to a graph of minimum
degree 2 having at most 3:5k vertices.

Max Leaf Spanning Tree, Figure 1
Reduction rules were developed in order to reduce this Kleit-
man–West graph structure

Max Leaf Spanning Tree, Figure 2
A reduction rule for the Kleitman–West graph

In general, an instance of a parameterized problem
consists of a pair (x, k) and a “boundary” which is located
by holding x fixed and varying k and regarding whether
the outcome of the decision problem is yes or no. Of inter-
est is the boundary when x is reduced. A typical boundary
lemma looks like the following.

Lemma 2 Suppose (G, k) is a reduced instance of MAX
LEAF, with (G, k) a yes-instance and (G; k + 1) a no-
instance. Then jGj � ck. (Here c is a small constant that
becomes clarified during the investigation.)

A proof of a boundary lemma is by minimum counterex-
ample. A counterexample would be a graph such that
(1) (G, k) is reduced, (2) (G, k) is a yes-instance of MAX
LEAF, (3) (G; k + 1) is a no-instance, and (4) jGj > ck.

The proof of a boundary lemma unfolds gradually. Ini-
tially, it is not known what bound will eventually succeed
and it is not known exactly what is meant by reduced. In
the course of an attempted proof, these details are worked
out. As the arguments unfold, structural situations will
suggest new reduction rules. Strategic choices involved in
a boundary lemma include:
(1) Determining the polarity of the boundary, and setting

up the boundary lemma.
(2) Choosing a witness structure.
(3) Setting inductive priorities.
(4) Developing a series of structural claims that describe

the situation at the boundary.
(5) Discovering reduction rules that can act in poly-

nomial-time on relevant structural situations at the
boundary.

(6) As the structure at the boundary becomes clear, filling
in the blank regarding the kernelization bound.

The overall structure of the argument is “by minimum
counterexample” according to the priorities established
by choice 3, which generally make reference to choice 2.
The proof proceeds by a series of small steps consisting of
structural claims that lead to a detailed structural picture at
the “boundary”—and thereby to the bound on the size of
G that is the conclusion of the lemma. The complete proof
assembles a series of claims made against the witness tree,
various sets of vertices, and inductive priorities and sets up
a master inequality leading to a proof by induction, and
a 3:5k problem kernel.

Objective B: Polynomial-Time Preprocessing
and Data-Reduction Routines

The authors have designed a table for tracing each pos-
sible boundary state for a possible solution. Examples are
given that show the surprising power of cascading data-re-
duction rules on real input distributions and that describe
a variety of mathematical phenomena relating to reduc-
tion rules. For example, some reduction rules, such as the
Kleitman–West dissolver rule for MAX LEAF (Fig. 2), have
a fixed “boundary size” (in this case 2), whereas crown-
type reduction rules do not have a fixed boundary size.
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Objective C: Gradients and Solution Transformations
for Local Search
A generalization of the usual setup for local search is given,
based on the mathematical power of the more compli-
cated gradient in obtaining superior kernelization bounds.
Idea 1 is that local search be conducted based onmaintain-
ing a “current witness structure” rather than a full solution
(spanning tree). Idea 2 is to use the list of inductive pri-
orities to define a “better solution” gradient for the local
search.

Objective D: Polynomial-Time
Approximation Algorithms
The polynomial-time extremal structure theory leads di-
rectly to a constant-factor p-time approximation algo-
rithm for MAX LEAF. First, reduce G using the kerneliza-
tion rules. The rules are approximation-preserving. Take
any tree T (not necessarily spanning) in G. If all of the
structural claims hold, then (by the boundary lemma argu-
ments) the tree T must have at least n/c leaves for c = 3:75.
Therefore, lifting T back along the reduction path, we ob-
tain a c-approximation.

If at least one of the structural claims does not hold,
then the tree T can be improved against one of the induc-
tive priorities. Notice that each claim is proved by an argu-
ment that can be interpreted as a polynomial-time routine
that improves T, when the claim is contradicted.

These consequences can be applied to the original T
(and its successors) only a polynomial number of times
(determined by the list of inductive priorities) until one
arrives at a tree T 0 for which all of the various structural
claims hold. At that point, we must have a c-approximate
solution.

Objective E: Structure To Exploit
in The Ecology of Complexity
The objective here is to understand how every input-gov-
erning problem parameter affects the complexity of ev-
ery other problem. As a small example, consider Table 1

Max Leaf Spanning Tree, Table 1
The complexity ecology of parameters

TW BW VC DS G ML
TW FPT W[1]-hard FPT FPT ? FPT
BW FPT W[1]-hard FPT FPT ? FPT
VC FPT ? FPT FPT ? FPT
DS ? ? W[1]-hard W[1]-hard ? ?
G W[1]-hard W[1]-hard W[1]-hard W[1]-hard FPT ?
ML FPT ? FPT FPT FPT ?

using the shorthand TW is TREEWIDTH, BW is BAND-
WIDTH, VC is VERTEX COVER, DS is DOMINATING SET,
G is GENUS and ML is MAX LEAF. The entry in the sec-
ond row and fourth column indicates that there is an FPT
algorithm to optimally solve the DOMINATING SET prob-
lem for a graph G of bandwidth at most k. The entry in
the fourth row and second column indicates that it is un-
known whether BANDWIDTH can be solved optimally by
an FPT algorithm when the parameter is a bound on the
domination number of the input.

MAX LEAF applies to the last row of the table. For
graphs of max leaf number bounded by k, the maxi-
mum size of an independent set can be computed in time
O�(2:972k) based on a reduction to a kernel of size at most
7k. There is a practical payoff for using the output of one
problem as the input to another.

Applications

TheMAX LEAF SPANNING TREE problem hasmotivations
in computer graphics for creating triangle strip represen-
tations for fast interactive rendering [5]. Other applica-
tions are found in the area of traffic grooming and net-
work design, such as the design of optical networks and
the utilization of wavelengths in order to minimize net-
work cost, either in terms of the line-terminating equip-
ment deployed or in terms of electronic switching [6]. The
minimum-energy problem in wireless networks consists
of finding a transmission radius vector for all stations in
such a way that the total transmission power of the whole
network is the least possible. A restricted version of this
problem is equivalent to the MAX LEAF SPANNING TREE
problem [7]. Finding spanning trees with many leaves is
equivalent to finding small connected dominating sets and
is also called the MINIMUM CONNECTED DOMINATING
problem [13].

Open Problems

Branching Strategies

While extremal structure is in some sense the right way to
design an FPT algorithm, this is not the only way. In par-
ticular, the recipe is silent on what to do with the kernel.
An open problem is to find general strategies for employ-
ing “parameter-appropriate structure theory” in branch-
ing strategies for sophisticated problem kernel analysis.

Turing Kernelizability

The polynomial-time transformation of (x, k) to the sim-
pler reduced instance (x0; k0) is a many:1 transformation.
One can generalize the notion of many:1 reduction to Tur-
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ing reduction. How should the quest for p-time extremal
theory unfold under this “more generous” FPT?

Algorithmic Forms of The Boundary Lemma Approach
The hypothesis of the boundary lemma that (G, k) is a yes-
instance implies that there exists a witness structure to this
fact. There is no assumption that one has algorithmic ac-
cess to this structure, and when reduction rules are discov-
ered, these have to be transformations that can be applied
to (G, k) and a structure that can be discovered in (G, k)
in polynomial time. In other words, reduction rules can-
not be defined with respect to the witness structure. Is it
possible to describe more general approaches to kerneliza-
tion where the witness structure used in the proof of the
boundary lemma is polynomial-time computable, and this
structure provides a conditional context for some reduc-
tion rules? How would this change the extremal method
recipe?

Problem Annotation
One might consider a generalized MAX LEAF problem
where vertices and edges have various annotations as to
whether they must be leaves (or internal vertices) in a so-
lution, etc. Such a generalized form of the problem would
generally be expected to be “more difficult” than the vanilla
form of the problem. However, several of the “best known”
FPT algorithms for various problems, are based on these
generalized, annotated forms of the problems. Examples
include PLANAR DOMINATING SET and FEEDBACK VER-
TEX SET [4]. Should annotation be part of the recipe for
the best possible polynomial-time kernelization?
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Keywords and Synonyms

MTS

ProblemDefinition

Metrical task systems (MTS), introduced by Borodin,
Linial, and Saks [5], is a cost minimization problem de-
fined on a metric space (X, dX) and informally described
as follows: A given system has a set of internal statesX. The
aim of the system is to serve a given sequence of tasks. The
servicing of each task has a certain cost that depends on
the task and the state of the system. The systemmay switch
states before serving the task, and the total cost for servic-
ing the task is the sum of the service cost of the task in the
new state and the distance between the states in a metric
space defined on the set of states. Following Manasse, Mc-
Geoch, and Sleator [11], an extended model is considered
here, in which the set of allowable tasks may be restricted.

Notation

Let T� denote the set of finite sequences of elements from
a set T. For x; y 2 T�, x ı y is the concatenation of the
sequences x and y, and jxj is the length of the sequence x.

Definition 1 (Metrical Task System) Fix a metric space
(X, dX). Let 
 = f(rx )x2X : 8x 2 X; r(x) 2 [0;1]g be
the set of all possible tasks. Let T  
 be a subset of tasks,
called allowable tasks.
MTS((X, dX), T,a0 2 X):
INPUT: A finite sequence of tasks � = (�1; : : : ; �m) 2 T�.
OUTPUT: A sequence of points a = (a1; : : : ; am) 2 X�,
jaj = j� j.
OBJECTIVE: minimize

cost(�; a) =
mX
i=1

(dX(ai�1; ai) + �i (ai)):

When T = 
 , the MTS problem is called general.

When X is finite and the task sequence � 2 T� is given in
advance, a dynamic programming algorithm can compute
an optimal solution in space O(jXj) and time O(j� j � jXj).
MTS, however, is most interesting in an online setting,
where the system must respond to a task � i with a state
ai 2 X without knowing the future tasks in � . Formally,

Definition 2 (Online algorithms for MTS) A deter-
ministic algorithm for a MTS((X, dX), T, a0) is a map-
ping S : T� ! X� such that for every � 2 T , jS(�)j = j� j.
A deterministic algorithm S : T� ! X� is called online
if for every �; � 2 T�, there exists a 2 X�, jaj = j� j such
that S(� ı �) = S(�) ı a. A randomized online algorithm

is a probability distribution over deterministic online al-
gorithms.

Online algorithms for MTS are evaluated using (asymp-
totic) competitive analysis, which is, roughly speaking, the
worst ratio of the algorithm’s cost to the optimal cost taken
over all possible task sequences.

Definition 3 A randomized online algorithm R for
MTS((X, dX), a0) is called c-competitive (against oblivious
adversaries) if there exists b = b(X) 2 R such that for any
task sequence � 2 T�, and any point sequence a 2 X�,
jaj = j� j,

E[cost(�; R(�))] � c � cost(�; a) + b;

where the expectation is taken over the distribution R.

The competitive ratio of an online algorithm R is the in-
fimum over c � 1 for which R is c-competitive. The de-
terministic [respectively, randomized] competitive ratio of
MTS((X, dX), T, a0) is the infimum over the competitive
ratios of all deterministic [respectively, randomized] on-
line algorithms for this problem. Note that because of the
existential quantifier over b, the asymptotic competitive
ratio (both randomized and deterministic) of a MTS((X,
dX), T, a0) is independent of a0, and it can therefore be
dropped from the notation.

Key Results

Theorem 1 ([5]) The deterministic competitive ratio of the
generalMTS problem on any n-pointmetric space is 2n � 1.

In contrast to the deterministic case, the understanding
of randomized algorithms for general MTS is not com-
plete, and generally no sharp bounds such as Theorem 1
are known.

Theorem 2 ([5,10]) The randomized competitive ratio of
the general MTS problem on n-point uniform space (where
all distances are equal) is at least Hn =

Pn�1
i=1 i�1, and at

most (1 + o(1))Hn.

The best bounds currently known for general n-point met-
rics are proved in two steps: First the given metric is
approximated by an ultrametric, and then a bound on
the competitive ratio of general MTS on ultrametrics is
proved.

Theorem 3 ([8,9]) For any n-point metric space (X, dX),
there exists an O(log2 n log log n) competitive randomized
algorithm for the general MTS on (X, dX).

The metric approximation component in the proof of
Theorem 3 is called probabilistic embedding. An op-
timal O(log n) probabilistic embedding is shown by



516 M Metrical Task Systems

Fakcheroenphol, Rao and Talwar before [8] improving
on results by Alon, Karp, Peleg, and West and by Bartal,
where this notion was invented. A different type of met-
ric approximation with better bounds for metrics of low
aspect ratio is given in [3].

Fiat and Mendel [9] show a O(log n log log n) compet-
itive algorithm for n-point ultrametrics, improving (and
using) a result of Bartal, Blum, Burch, and Tomkins [1],
where the first poly-logarithmic (or even sublinear) com-
petitive randomized algorithm for generalMTS on general
metric spaces is presented.

Theorem 4 ([2,12]) For any n-point metric space (X, dX),
the randomized competitive ratio of the generalMTS on (X,
dX) is at least˝(log n/ log log n).

Themetric approximation component in the proof of The-
orem 4 is called Ramsey subsets. It was first used in this
context by Karloff, Rabani, and Ravid, later improved by
Blum, Karloff, Rabani and Saks, and Bartal, Bollobás, and
Mendel [2]. A tight result on Ramsey subsets is proved
by Bartal, Linial, Mendel, and Naor. For a simpler (and
stronger) proof, see [12].

A lower bound of ˝(log n/ log log n) on the competi-
tive ratio of any randomized algorithm for generalMTS on
n-point ultrametrics is proved in [2], improving previous
results of Karloff, Rabani, and Ravid, and Blum, Karloff,
Rabani and Saks.

The last theorem is the only one not concerning gen-
eral MTSs.

Theorem 5 ([6]) It is PSPACE hard to determine the com-
petitive ratio of a given MTS instance ((X; dX ); a0 2 X; T),
even when dX is the uniform metric. On the other hand,
when dX is uniform, there is a polynomial time determin-
istic online algorithm for MTS((X; dX); a0 2 X; T) whose
competitive ratio is O(log jXj) times the deterministic com-
petitive ratio of the MTS((X, dX), a0, T). Here it is assumed
that the instance ((X, dX), a0, T) is given explicitly.

Applications

Metrical task systems were introduced as an abstraction
for online computation, they generalize many concrete
online problems such as paging, weighted caching, k-
server, and list update. Historically, it served as an indi-
cator for a general theory of competitive online computa-
tion.

The main technical contribution of the MTS model
is the development of the work function algorithm used
to prove the upper bound in Theorem 1. This algorithm
was later analyzed by Koutsoupias and Papadimitriou in
the context of the k-server problem, and was shown to

be 2k � 1 competitive. Furthermore, although the MTS
model generalizes the k-server problem, the general MTS
problem on the n-point metric is essentially equivalent to
the (n � 1)-server problem on the samemetric [2]. Hence,
lower bounds on the competitive ratio of general MTS im-
ply lower bounds for the k-server problem, and algorithms
for general MTS may constitute a first step in devising an
algorithm for the k-server problem, as is the case with the
work function algorithm.

The metric approximations used in Theorem 3, and
Theorem 4 have found other algorithmic applications.

Open Problems

There is still an obvious gap between the upper bound and
lower bound known on the randomized competitive ratio
of general MTS on general finite metrics. It is known that,
contrary to the deterministic case, the randomized com-
petitive ratio is not constant across all metric spaces of the
same size. However, in those cases where exact bounds are
known, the competitive ratio is	(log n). An obvious con-
jecture is that the randomized competitive is 	(log n) for
any n-point metric. Arguably, the simplest classes of met-
ric spaces for which no upper bound on the randomized
competitive ratio better than O(log2 n) is known, are paths
and cycles.

Also lacking is a “middle theory” for MTS. On the
one hand, general MTS are understood fairly well. On the
other hand, specialized MTS such as list update, deter-
ministic k-server algorithms, and deterministic weighted-
caching, are also understood fairly well, and have a much
better competitive ratio than the corresponding general
MTS. What may be missing are “in between” models of
MTS that can explain the low competitive ratios for some
of the concrete online problems mentioned above.

It would be also nice to strengthen Theorem 5, and
obtain a polynomial time deterministic online algorithm
whose competitive ratio on any MTS instance on any n-
point metric space is at most poly-log(n) times the deter-
ministic competitive ratio of that MTS instance.

Cross References
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ProblemDefinition

TheTraveling SalesmanProblem (TSP) is the following op-
timization problem:

Input: A complete loopless undirected graph G = (V ; E;
w) with a weight function w : E ! Q�0 that assigns to
each edge a non-negative weight.

Feasible solutions: All Hamiltonian tours, i. e, the sub-
graphs H of G that are connected, and each node in
them that has degree two.

Objective function: The weight function w(H) =
P

e2H
w(e) of the tour.

Goal: Minimization.

The TSP is an NP-hard optimization problem. This means
that a polynomial time algorithm for the TSP does not ex-
ist unless P = NP. One way out of this dilemma is pro-
vided by approximation algorithms. A polynomial time
algorithm for the TSP is called an ˛-approximation al-
gorithm if the tour H produced by the algorithm fulfills
w(H) � ˛ �OPT(G). Here OPT(G) is the weight of a min-
imum weight tour of G. If G is clear from the context,
one just writes OPT. An ˛-approximation algorithm al-
ways produces a feasible solution whose objective value is
at most a factor of ˛ away from the optimum value. ˛ is
also called the approximation factor or performance guar-
antee. ˛ does not need to be a constant; it can be a function
that depends on the size of the instance or the number of
nodes n.

If there exists a polynomial time approximation algo-
rithm for the TSP that achieves an exponential approxi-
mation factor in n, then P = NP [6]. Therefore, one has to
look at restricted instances. The most natural restriction is
the triangle inequality, that means,

w(u; v) � w(u; x) + w(x; v) for all u; v; x 2 V :

The corresponding problem is called the Metric TSP. For
the Metric TSP, approximation algorithms that achieve
a constant approximation factor exist. Note that for the
Metric TSP, it is sufficient to find a tour that visits each ver-
tex at least once: Given such a tour, we can find a Hamilto-
nian tour of no larger weight by skipping every vertex that
we already visited. By the triangle inequality, the new tour
cannot get heavier.

Key Results

A simple 2-approximation algorithm for the Metric TSP
is the tree doubling algorithm. It uses minimum spanning
trees to compute Hamiltonian tours. A spanning tree T of
a graph G = (V ; E;w) is a connected acyclic subgraph of
G that contains each node of V . The weight w(T) of such
a spanning tree is the sum of the weights of the edges in it,
i. e., w(T) =

P
e2T w(e). A spanning tree is called a min-

imum spanning tree if its weight is minimum among all
spanning trees of G. One can efficiently compute a min-
imum spanning tree, for instance via Prim’s or Kruskal’s
algorithm, see e. g. [5].

The tree doubling algorithm seems to be folklore. The
next lemma is the key for proving the upper bound on
the approximation performance of the tree doubling algo-
rithm.
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Input: a complete loopless edge weighted undirected
graph G = (V ; E;w) with weight function w : E !
Q�0 that fulfills the triangle inequality

Output: a Hamiltonian tour of G that is a 2" approxi-
mation

1: Compute a minimum spanning tree T of G.
2: Duplicate each edge of T and obtain a Eulerianmul-

tigraph T 0.
3: Compute a Eulerian tour of T 0 (for instance via a

depth first search in T). Whenever a node is visited
in the Eulerian tour that was already visited, this
node is skipped and one proceeds with the next un-
visited node along the Eulerian cycle. (This process
is called shortcutting.) Return the resulting Hamil-
tonian tour H.

Metric TSP, Algorithm 1
Tree doubling algorithm

Lemma 1 Let T be a minimum spanning tree of G =
(V ; E;w). Then w(T) � OPT.

Proof If one deletes any edge of a Hamiltonian tour of G,
one gets a spanning tree of G. �
Theorem 2 Algorithm 1 always returns a Hamiltonian
tour whose weight is at most twice the weight of an opti-
mum tour. Its running time is polynomial.

Proof By Lemma 1, w(T) � OPT. Since one duplicates
each edge of T, the weight of T0 equals w(T 0) = 2w(T) �
2OPT. When taking shortcuts in step 3, a path in T0 is
replaced by a single edge. By the triangle inequality, the
sum of the weights of the edges in such a path is at least
the weight of the edge it is replaced by. (Here, the algo-
rithm breaks down for arbitrary weight functions.) Thus
w(H) � w(T 0). This proves the claim about the approxi-
mation performance.

The running time is dominated by the time needed to
compute aminimum spanning tree. This is clearly polyno-
mial. �
Christofides’ algorithm (Algorithm 2) is a clever refine-
ment of the tree doubling algorithm. It first computes
a minimum spanning tree. On the nodes that have an odd
degree in T, it then computes a minimum weight perfect
matching. A matching M of G is called a matching on
U  V if all edges ofM consist of two nodes fromU. Such
a matching is called perfect if every node of U is incident
with an edge ofM.

Lemma 3 Let U  V ; #U even. Let M be a minimum
weight perfect matching on U. Then w(M) � OPT/2.

Input: a complete loopless edge weighted undirected
graph G = (V ; E;w) with weight function w : E !
Q�0 that fulfills the triangle inequality

Output: a Hamiltonian tour of G that is a 3/2" approxi-
mation

1: Compute a minimum spanning tree T of G.
2: Let U  V be the set of all nodes that have odd de-

gree in T . In G, compute a minimum weight per-
fect matching M on U .

3: Compute a Eulerian tour of T [ M (considered as
a multigraph).

4: Take shortcuts in this Eulerian tour to a Hamilto-
nian tour H.

Metric TSP, Algorithm 2
Christofides’ algorithm

Proof Let H be an optimum Hamiltonian tour of G. One
takes shortcuts in H to get a tour H0 on G|U as follows:
H induces a permutation of the nodes in U, namely the
order in which the nodes are visited by H. One connects
the nodes of U in the order given by the permutation.
To every edge of H0 corresponds a path in H connect-
ing the two nodes of this edge. By the triangle inequality,
w(H0) � w(H). Since #U is even, H0 is the union of two
matchings. The lighter one of these two has a weight of at
most w(H0)/2 � OPT/2. �

One can compute a minimum weight perfect matching in
time O(n3), see for instance [5].

Theorem 4 Algorithm 2 is a 3/2-approximation algorithm
with polynomial running time.

Proof First observe that the number of odd degree nodes
of the spanning tree is even, since the sum of the degrees
of all nodes equals 2(n � 1), which is even. Thus a per-
fect matching on U exists. The weight of the Eulerian tour
is obviously w(T) + w(M). By Lemma 1, w(T) � OPT. By
Lemma 3, w(M) � OPT/2. The weight w(H) of the com-
puted tour H is at most the weight of the Eulerian tour by
the triangle inequality, i. e.,w(H) � 3

2OPT. Thus the algo-
rithm is a 3/2-approximation algorithm. Its running time
is O(n3). �

Applications

Experimental analysis shows that Christofides’ algorithm
itself deviates by 10% to 15% from the optimum tour [3].
However, it can serve as a good starting tour for other
heuristics like the Lin–Kernigham heuristic.
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Metric TSP, Figure 1
A tight example for Christofides’ algorithm. There are 2n + 1
nodes. Solid edges have a weight of one, dashed ones have
a weight of 1 + �

Open Problems

The analysis of Algorithm 2 is tight; an example is themet-
ric completion of the graph depicted in Fig. 1. The unique
minimum spanning tree consists of all solid edges. It has
only two nodes of odd degree. The edge between these two
nodes has weight (1 + �)(n + 1). No shortcuts are needed,
and the weight of the tour produced by the algorithm is
	 3n. An optimum tour consists of all dashed edges plus
the leftmost and rightmost solid edge. The weight of this
tour is (2n � 1)(1 + �) + 2 	 2n.

The question whether there is an approximation algo-
rithm with a better performance guarantee is a major open
problem in the theory of approximation algorithms.

Held and Karp [2] design an LP based algorithm that
computes a lower bound for the weight of an optimum
TSP tour. It is conjectured that the weight of an optimum
TSP tour is at most a factor of 4/3 larger than this lower
bound, but this conjecture is unproven for more than three
decades. An algorithmic proof of this conjecture would
yield an 4/3-approximation algorithm for the Metric TSP.

Experimental Results

See e. g. [3], where a deviation of 10% to 15% of the opti-
mum (more precisely of the Held–Karp bound) is reported
for various sorts of instances.

Data Sets

The webpage of the 8th DIMACS implementation chal-
lenge, www.research.att.com/~dsj/chtsp/, contains a lot of
instances.

Cross References

�Minimum Spanning Trees

Recommended Reading

Christofides never published his algorithm. It is usually
cited as one of two technical reports from Carnegie Mellon
University, TR 388 of the Graduate School of Industrial

Administration (now Tepper School of Business) and CS-
93-13. None of them seem to be available at Carnegie Mel-
lon University anymore [Frank Balbach, personal com-
munication, 2006]. A one-page abstract was published in
a conference record. But his algorithm quickly found his
way into standard textbooks on algorithm theory, see [7]
for a recent one.
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Overview

Minimum bisection is a basic representative of a family of
discrete optimization problems dealing with partitioning
the vertices of an input graph. Typically, one wishes to
minimize the number of edges going across between the
different pieces, while keeping some control on the parti-
tion, say by restricting the number of pieces and/or their
size. (This description corresponds to an edge-cut of the
graph; other variants correspond to a vertex-cut with sim-
ilar restrictions.) In the minimum bisection problem, the

http://www.research.att.com/~dsj/chtsp/
http://www.tsp.gatech.edu
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goal is to partition the vertices of an input graph into two
equal-size sets, such that the number of edges connecting
the two sets is as small as possible.

In a seminal paper in 1988, Leighton and Rao [14] de-
vised for MINIMUM-BISECTION a logarithmic-factor bi-
criteria approximation algorithm.1 Their algorithm has
found numerous applications, but the question of finding
a true approximation with a similar factor remained open
for over a decade later. In 1999, Feige and Krauthgamer [6]
devised the first polynomial-time algorithm that approxi-
mates this problem within a factor that is polylogarithmic
(in the graph size).

Cuts and Bisections

Let G = (V ; E) be an undirected graph with n = jV j ver-
tices, and assume for simplicity that n is even. For a sub-
set S of the vertices, let S̄ = V n S. The cut (also known as
cutset) (S; S̄) is defined as the set of all edges with one end-
point in S and one endpoint in S̄. These edges are said to
cross the cut, and the two sets S and S̄ are called the two
sides of the cut.

Assume henceforth that G has nonnegative edge-
weights. (In the unweighted version, every edge has a unit
weight.) The cost of a cut (S; S̄) is then defined to be the
total edge-weight of all the edges crossing the cut.

A cut (S; S̄) is called a bisection ofG if its two sides have
equal cardinality, namely jSj = jS̄j = n/2. Let b(G) denote
the minimum cost of a bisection of G.

Problem 1 (MINIMUM-BISECTION)
Input: An undirected graph G with nonnegative edge-
weights.
Output: A bisection (S; S̄) of G that has minimum cost.

This definition has a crucial difference from the classi-
cal MINIMUM-CUT problem (see e. g. [10] and references
therein), namely, there is a restriction on the sizes of the
two sides of the cut. As it turns out,MINIMUM-BISECTION
is NP-hard (see [9]), while MINIMUM-CUT can be solved
in polynomial time.

Balanced Cuts and Edge Separators

The above rather basic definition of minimum bisec-
tion can be extended in several ways. Specifically, one
may require only an upper bound on the size of each
side. For 0 < ˇ < 1, a cut (S; S̄) is called ˇ-balanced if
maxfjSj; jS̄jg � ˇn. Note the latter requirement implies

1A bicriteria approximation algorithm partitions the vertices into
two sets each containing at most 2/3 of the vertices, and its value, i. e.
the number of edges connecting the two sets, is compared against that
of the best partition into equal-size sets.

minfjSj; jS̄jg � (1 � ˇ)n. In this terminology, a bisection
is a 1/2-balanced cut.

Problem 2 (ˇ-BALANCED-CUT)
Input: An undirected graph G with nonnegative edge-
weights.
Output: A ˇ-balanced cut (S; S̄) of G with maxfjSj; jS̄jg �
ˇn, that has cost as small as possible.

The special case of ˇ = 2/3 is commonly refered to as the
EDGE-SEPARATOR problem.

In general, the sizes of the two sides may be specified
in advance arbitrarily (rather than being equal); in this case
the input contains a number k, and the goal is to find a cut
(S; S̄) such that jSj = k. One may also wish to divide the
graph into more than two pieces of equal size and then the
input contains a number r � 2, or alternatively, to divide
the graph into r pieces of whose sizes are k1,. . . ,kr, where
the numbers ki are prescribed in the input; in either case,
the goal is to minimize the number of edges crossing be-
tween different pieces.

Problem 3 (PRESCRIBED-PARTITION)
Input: An undirected graph G = (V ; E) with nonnegative
edge-weights, and integers k1,. . . ,kr such that

P
i ki = jVj.

Output: A partition V = V1 [ � � � [ Vr of G with jVi j = ki
for all i, such that the total edge-weight of edges whose end-
points lie in different sets Vi is as small as possible.

Key Results

The main result of Feige and Krauthgamer [6] is an ap-
proximation algorithm for MINIMUM-BISECTION. The
approximation factor they originally claimed is O(log2 n),
because it used the algorithm of Leighton and Rao [14];
however, by using instead the algorithm of [2], the factor
immediately improves to O(log1:5 n).

Theorem 1 Minimum-Bisection can be approximated in
polynomial time within O(log1:5 n) factor. Specifically, the
algorithm produces for an input graph G a bisection (S; S̄)
whose cost is at most O(log1:5 n) � b(G).

The algorithm immediately extends to similar results for
related and/or more general problems that are defined
above.

Theorem 2 ˇ-Balanced-Cut (and in particular Edge-
Separator) can be approximated in polynomial time within
O(log1:5 n) factor.

Theorem 3 Prescribed-Partition can be approximated in
time nO(r) to within O(log1:5 n) factor.

For all three problems above, the approximation ratio
improves to O(log n) for the family of graphs excluding
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a fixedminor (which includes in particular planar graphs).
For simplicity, this result is stated forMinimum-Bisection.

Theorem 4 In graphs excluding a fixed graph as a minor
(e. g., planar graphs), the problems (i)Minimum-Bisection,
(ii) ˇ-Balanced-Cut, and (iii) Prescribed-Partition with
fixed r can all be approximated in polynomial time within
factor O(log n).

It should be noted that all these results can be generalized
further, including vertex-weights and terminals-vertices
(s � t pairs), see [Sect. 5 in 6].

Related Work

A bicriteria approximation algorithm for ˇ-balanced cut
returns a cut that is ˇ0-balanced for a predetermined
ˇ0 > ˇ. For bisection, for example, ˇ = 1/2 and typically
ˇ0 = 2/3.

The algorithms in the above theorems use (in a black-
box manner) an approximation algorithm for a problem
called minimum quotient-cuts (or equivalently, sparsest-
cut with uniform-demands). For this problem, the best
approximation currently known is O(

p
log n) for gen-

eral graphs due to Arora, Rao, and Vazirani [2], and
O(1) for graphs excluding a fixed minor due to Klein,
Plotkin, and Rao [13]. These approximation algorithms
for minimum quotient-cuts immediately give a poly-
nomial time bicriteria approximation (sometimes called
pseudo-approximation) for MINIMUM-BISECTION. For
example, in general graphs the algorithm is guaranteed
to produce a 2/3-balanced cut whose cost is at most
O(
p
log n) � b(G). Note however that a 2/3-balanced cut

does not provide a good approximation for the value of
b(G). For instance, if G consists of three disjoint cliques
of equal size, an optimal 2/3-balanced cut has no edges,
whereas b(G) = ˝(n2). For additional related work, in-
cluding approximation algorithms for dense graphs, for
directed graphs, and for other graph partitioning prob-
lems, see [Sect. 1 in 6] and the references therein.

Applications

One major motivation for MINIMUM-BISECTION, and
graph partitioning in general, is a divide-and-conquer ap-
proach to solving a variety of optimization problems, es-
pecially in graphs, see e. g. [15,16]. In fact, these problems
arise naturally in a wide range of practical settings such as
VLSI design and image processing; sometimes, the moti-
vation is described differently, e. g. as a clustering task.

Another application of MINIMUM-BISECTION is in as-
signment problems, of a form that is common in paral-
lel systems and in scientific computing: jobs need to be

assigned to machines in a balanced way, while assigning
certain pairs of jobs the same machine, as much as possi-
ble. For example, consider assigning n jobs to 2 machines,
when the amount of communication between every two
jobs is known, and the goal is to have equal load (number
of jobs) on each machine, and bring to minimum the total
communication that goes between the machines. Clearly,
this last problem can be restated asMINIMUM-BISECTION
in a suitable graph.

It should be noted that in many of these settings, a true
approximation is not absolutely necessary, and a bicriteria
approximation may suffice. Nevertheless, the algorithms
stated in Sect. “Key Results” have been used to design al-
gorithms for other problems, such as (1) an approxima-
tion algorithm for minimum bisection in k-uniform hy-
pergraphs [3]; (2) an approximation algorithm for a vari-
ant of the minimummulticut problem [17]; and (3) an al-
gorithm that efficiently certifies the unsatisfiability of ran-
dom 2k-SAT with sufficiently many clauses [5].

From a practical perspective, numerous heuristics (al-
gorithms without worst-case guarantees) for graph par-
titioning have been proposed and studied, see [1] for an
extensive survey. For example, one of the most famous
heuristics is Kerninghan and Lin’s local search heuristic
for minimum bisection [11].

Open Problems

Currently, there is a large gap between the O(log1:5 n)
approximation ratio for MINIMUM-BISECTION achieved
by Theorem 1 and the hardness of approximation results
known for it. As mentioned above,MINIMUM-BISECTION
is known to be NP-hard (see [9]).

The problem is not known to be APX-hard but sev-
eral results provide evidence towards this possibility. Bui
and Jones [4] show that for every fixed � > 0, it is NP-hard
to approximate the minimum bisection within an additive
term of n2�� . Feige [7] showed that if refuting 3SAT is
hard on average on a natural distribution of inputs, then
for every fixed " > 0 there is no 4/3 � " approximation
algorithm for minimum bisection. Khot [12] proved that
minimum bisection does not admit a polynomial-time ap-
proximation scheme (PTAS) unless NP has randomized
sub-exponential time algorithms.

Taking a broader perspective, currently there is a (mul-
tiplicative) gap of O(log n) between the approximation
ratio for MINIMUM-BISECTION and that of minimum
quotient-cuts (and thus also to the factor achieved by bi-
criteria approximation). It is interesting whether this gap
can be reduced, e. g. by using the algorithm of [2] in a non-
black box manner.
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The vertex-cut version ofMINIMUM-BISECTION is de-
fined as follows: the goal is to partition the vertices of the
input graph into V = A[ B [ S with jSj as small as possi-
ble, under the constraints that maxfjAj; jBjg � n/2 and no
edge connects A with B. It is not known whether a poly-
logarithmic factor approximation can be attained for this
problem. It should be noted that the same question regard-
ing the directed version of MINIMUM-BISECTION was an-
swered negatively by Feige and Yahalom [8].

Cross References

See entry on the paper by Arora, Rao, and Vazirani [2].
� Separators in Graphs
� Sparsest Cut
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ProblemDefinition

This problem is concerned with the most efficient use
of redundancy in load balancing on faulty parallel links.
More specifically, this problem considers a setting where
some messages need to be transmitted from a source to
a destination through some faulty parallel links. Each link
fails independently with a given probability, and in case of
failure, none of themessages assigned to it reaches the des-
tination1. An assignment of the messages to the links may
use redundancy, i. e. assign multiple copies of some mes-
sages to different links. The reliability of a redundant as-
signment is the probability that every message has a copy

1This assumption is realistic if the messages are split into many
small packets transmitted in a round-robin fashion. Then the suc-
cessful delivery of a message requires that all its packets should reach
the destination.
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Minimum Congestion Redundant Assignments, Figure 1
Two redundant assignments of 4 unit size messages to 8 identical links. Both assign every message to 4 links and 2 messages to
every link. The corresponding graph is depicted below each assignment. The assignment on the left is the most reliable 2-partition-
ing assignment �2. Lemma 3 implies that for every failure probability f , �2 is at least as reliable as any other assignment � with
Cong(�) � 2. For instance, �2 is at least as reliable as the assignment on the right. Indeed the reliability of the assignment on the
right is 1 � 4f 4 + 2f 6 + 4f 7 � 3f 8, which is bounded from above by Rel(�2) = 1 � 2f 4 + f 8 for all f 2 [0;1]

on some active link, thus managing to reach the destina-
tion. Redundancy increases reliability, but also increases
the message load assigned to the links. A good assign-
ment should achieve high reliability and keep the maxi-
mum load of the links as small as possible.

The reliability of a redundant assignment depends on
its structure. In particular, the reliability of different as-
signments putting the same load on every link and using
the same number of copies for eachmessagemay vary sub-
stantially (e. g. compare the reliability of the assignments
in Fig. 1). The crux of the problem is to find an efficient
way of exploiting redundancy in order to achieve high re-
liability and low maximum load2.

The work of Fotakis and Spirakis [1] formulates the
scenario above as an optimization problem called Mini-
mum Fault-Tolerant Congestion and suggests a simple and
provably efficient approach of exploiting redundancy. This
approach naturally leads to the formulation of another in-
teresting optimization problem, namely that of computing
an efficient fault-tolerant partition of a set of faulty parallel
links. [1] presents polynomial-time approximation algo-
rithms for computing a fault-tolerant partition of the links
and proves that combining fault-tolerant partitions with
standard load balancing algorithms results in a good ap-
proximation to Minimum Fault-Tolerant Congestion. To
the best knowledge of the entry authors, this work is the
first to consider the approximability of computing a re-

2If one does not insist on minimizing the maximum load, a reli-
able assignment is constructed by assigning everymessage to the most
reliable links.

dundant assignment that minimizes the maximum load
of the links subject to the constraint that random faults
should be tolerated with a given probability.

Notations and Definitions

Let M denote a set of m faulty parallel links connecting
a source s to a destination t, and let J denote a set of n
messages to be transmitted from s to t. Each link i has
a rational capacity ci � 1 and a rational failure probabil-
ity fi 2 (0; 1). Each message j has a rational size s j � 1.
Let fmax � maxi2Mf fig denote the failure probability of
the most unreliable link. Particular attention is paid to the
special case of identical capacity links, where all capacities
are assumed to be equal to 1.

The reliability of a set of links M0, denoted Rel(M0), is
the probability that there is an active link in M0. Formally,
Rel(M0) � 1 �

Q
i2M0 fi . The reliability of a collection of

disjoint link subsetsM = fM1; : : : ;M�g, denoted Rel(M),
is the probability that there is an active link in every subset
ofM. Formally,

Rel(M) �
�Y
`=1

Rel(M`) =
�Y
`=1

0
@1 �

Y
i2M`

fi

1
A :

A redundant assignment � : J 7! 2M n ; is a function
that assigns every message j to a non-empty set of links
�( j)  M. An assignment � is feasible for a set of linksM0

if for every message j, �( j) \ M0 ¤ ;. The reliability of an
assignment � , denoted Rel(�), is the probability that � is
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feasible for the actual set of active links. Formally,

Rel(�) �
X

M0	M
8 j2J; 
( j)\M0¤;

0
@Y

i2M0
(1 � fi)

Y
i2MnM0

fi

1
A

The congestion of an assignment � , denoted Cong(�), is
the maximum load assigned by � to a link inM. Formally,

Cong(�) � max
i2M

8<
:

X
j: i2
( j)

s j
ci

9=
; :

Problem 1 (Minimum Fault-Tolerant Congestion)
INPUT: A set of faulty parallel links M = f(c1; f1); : : : ;
(cm ; fm)g, a set of messages J = fs1; : : : ; sng, and a rational
number � 2 (0; 1).
OUTPUT: A redundant assignment � : J 7! 2M n ; with
Rel(�) � 1 � � that minimizes Cong(�).

Minimum Fault-Tolerant Congestion is NP-hard because
it is a generalization of minimizing makespan on (reli-
able) parallel machines. The decision version of Minimum
Fault-Tolerant Congestion belongs to PSPACE, but it is
not clear whether it belongs toNP. The reason is that com-
puting the reliability of a redundant assignment and decid-
ing whether it is a feasible solution is #P-complete.

The work of Fotakis and Spirakis [1] presents polyno-
mial-time approximation algorithms for Minimum Fault-
Tolerant Congestion based on a simple and natural class
of redundant assignments whose reliability can be com-
puted easily. The high level idea is to separate the re-
liability aspect from load balancing. Technically, the set
of links is partitioned in a collection of disjoint subsets
M = fM1; : : : ;M�g with Rel(M) � 1 � �. Every subset
M` 2M is regarded as a reliable link of effective capacity
c(M`) � mini2M`fcig. Then any algorithm for load bal-
ancing on reliable parallel machines can be used for as-
signing the messages to the subsets ofM, thus computing
a redundant assignment � with Rel(�) � 1 � �.

The assignments produced by this approach are
called partitioning assignments. More precisely, an as-
signment � : J 7! 2M n ; is a �-partitioning assignment
if for every pair of messages j; j0 , either �( j) = �( j0) or
�( j) \ �( j0) = ;, and � assigns the messages to � differ-
ent link subsets.

Computing an appropriate fault-tolerant collection of
disjoint link subsets is an interesting optimization problem
by itself. A feasible solutionM satisfies the constraint that
Rel(M) � 1 � �. For identical capacity links, themost nat-
ural objective is to maximize the number of subsets inM
(equivalently, the number of reliable links used by the load

balancing algorithm). For arbitrary capacities, this objec-
tive generalizes to maximizing the total effective capacity
ofM.

Problem 2 (Maximum Fault-Tolerant Partition)
INPUT: A set of faulty parallel links M = f(c1; f1); : : : ;
(cm ; fm)g, and a rational number � 2 (0; 1).
OUTPUT: A collection M = fM1; : : : ;M�g of disjoint
subsets of M with Rel(M) � 1 � � that maximizesP�
`=1 c(M`).

The problem of Maximum Fault-Tolerant Partition is
NP-hard. More precisely, given m identical capacity links
with rational failure probabilities and a rational num-
ber � 2 (0; 1), it is NP-complete to decide whether the
links can be partitioned into sets M1 and M2 with
Rel(M1) � Rel(M2) � 1 � �.

Key Results

Theorem 1 There is a 2-approximation algorithm for
Maximum Fault-Tolerant Partition of identical capacity
links. The time complexity of the algorithm is O((m �P

i2M ln fi) lnm).

Theorem 2 For every constant ı > 0, there is a (8 + ı)-
approximation algorithm for Maximum Fault-Tolerant
Partition of capacitated links. The time complexity of the
algorithm is polynomial in the input size and 1/ı.

To demonstrate the efficiency of the partitioning approach
for Maximum Fault-Tolerant Congestion, Fotakis and
Spirakis prove that for certain instances, the reliability of
the most reliable partitioning assignment bounds from
above the reliability of any other assignment with the same
congestion (see Fig. 1 for an example).

Lemma 3 For any positive integers �; �; � and any ra-
tional f 2 (0; 1), let � be a redundant assignment of ��
unit size messages to �� identical capacity links with fail-
ure probability f . Let �� be the �-partitioning assignment
that assigns � messages to each of � disjoint subsets con-
sisting of � links each. If Cong(�) � � = Cong(��), then
Rel(�) � (1 � f �)� = Rel(��).

Based on the previous upper bound on the reliability of
any redundant assignment, [1] presents polynomial-time
approximation algorithms for Maximum Fault-Tolerant
Congestion.

Theorem 4 There is a quasi-linear-time 4-approxima-
tion algorithm for Maximum Fault-Tolerant Congestion on
identical capacity links.
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Theorem 5 There is a polynomial-time 2 dln(m/�)/
ln(1/ fmax)e-approximation algorithm for Maximum Fault-
Tolerant Congestion on instances with unit size messages
and capacitated links.

Applications

In many applications dealing with faulty components
(e. g. fault-tolerant network design, fault-tolerant routing),
a combinatorial structure (e. g. a graph, a hypergraph)
should optimally tolerate random faults with respect to
a given property (e. g. connectivity, non-existence of iso-
lated points). For instance, Lomonosov [5] derived tight
upper and lower bounds on the probability that a graph
remains connected under random edge faults. Using the
bounds of Lomonosov, Karger [3] obtained improved the-
oretical and practical results for the problem of estimating
the reliability of a graph. In this work, Lemma 3 provides
a tight upper bound on the probability that isolated nodes
do not appear in a not necessarily connected hypergraph
with �� nodes and �� “faulty” hyperedges of cardinal-
ity�.

More precisely, let � be any assignment of�� unit size
messages to �� identical links that assigns every message
to � links and � messages to every link. Then � corre-
sponds to a hypergraphH
 , where the set of nodes consists
of �� elements corresponding to the unit size messages
and the set of hyperedges consists of �� elements corre-
sponding to the identical links. Every hyperedge contains
the messages assigned to the corresponding link and has
cardinality � (see Fig. 1 for a simple example with � = 2,
� = 2, and � = 4). Clearly, an assignment � is feasible for
a set of links M0  M iff the removal of the hyperedges
corresponding to the links in M n M0 does not leave any
isolated nodes3 in H
 . Lemma 3 implies that the hyper-
graph corresponding to the most reliable �-partitioning
assignment maximizes the probability that isolated nodes
do not appear when hyperedges are removed equiprobably
and independently.

The previous work on fault-tolerant network design
and routing mostly focuses on the worst-case fault model,
where a feasible solution must tolerate any configuration
of a given number of faults. The work of Gasieniec et
al. [2] studies the fault-tolerant version of minimizing con-
gestion of virtual path layouts in a complete ATM net-
work. In addition to several results for the worst-case fault
model, [2] constructs a virtual path layout of logarithmic
congestion that tolerates random faults with high proba-
bility. On the other hand, the work of Fotakis and Spirakis

3For a node v, let degH(v) � jfe 2 E(H) : v 2 egj. A node v is
isolated inH if degH(v) = 0.

shows how to construct redundant assignments that tol-
erate random faults with a probability given as part of the
input and achieve a congestion close to optimal.

Open Problems

An interesting research direction is to determine the com-
putational complexity of Minimum Fault-Tolerant Con-
gestion and related problems. The decision version of
Minimum Fault-Tolerant Congestion is included in the
class of languages decided by a polynomial-time non-de-
terministic Turing machine that reduces the language to
a single call of a #P oracle. After calling the oracle once, the
Turing machine rejects if the oracle’s outcome is less than
a given threshold and accepts otherwise. This class is de-
noted NP#P[1;comp] in [1]. In addition to Minimum Fault-
Tolerant Congestion, NP#P[1;comp] includes the decision
version of Stochastic Knapsack considered in [4]. A re-
sult of Toda and Watanabe [6] implies that NP#P[1;comp]

contains the entire Polynomial Hierarchy. A challenging
open problem is to determine whether the decision ver-
sion of Minimum Fault-Tolerant Congestion is complete
for NP#P[1;comp].

A second direction for further research is to con-
sider the generalizations of other fundamental optimiza-
tion problems (e. g. shortest paths, minimum connected
subgraph) under random faults. In the fault-tolerant ver-
sion of minimum connected subgraph for example, the
input consists of a graph whose edges fail independently
with given probabilities, and a rational number � 2 (0; 1).
The goal is to compute a spanning subgraph with a mini-
mum number of edges whose reliability is at least 1� �.
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ProblemDefinition

In the most commonmodel for wireless networks, stations
are represented by points in Rd . They are equipped with
a omnidirectional transmitter and receiver which enables
them to communicate with other stations. In order to send
a message from a station s to a station t, station s needs
to emit the message with enough power such that t can
receive it. It is usually assumed that the power required by
a station s to transmit data directly to station t is kstk˛ ,
for some constant ˛ � 1, where kstk denotes the distance
between s and t.

Because of the omnidirectional nature of the trans-
mitters and receivers, a message sent by a station s with
power r˛ can be received by all stations within a disc of ra-
dius r around s. Hence the energy required to send a mes-
sage from a station s directly to a set of stations S0 is deter-
mined by maxv2S0 ksvk˛ .

An instance of the minimum energy broadcast routing
problem in wireless networks (MEBR) consists of a set of
stations S and a constant ˛ � 1. One of the stations in S
is designated as the source station s0. The goal is to send
a message at minimum energy cost from s0 to all other sta-
tions in S. This operation is called broadcast.

In the case ˛ = 1, the optimal solution is to send the
message directly from s0 to all other stations. For ˛ > 1,
sending the message via intermediate stations which for-
ward it to other stations is often more energy efficient.

A solution of the MEBR instance can be described in
terms of a so-called broadcast tree. That is, a directed span-

ning tree of S which contains directed paths from s0 to all
other vertices. The solution described by a broadcast tree T
is the one in which every station forwards the message to
all its out-neighbors in T.

Problem 1 (MEBR)
INSTANCE: A set S of points in Rd, s0 2 S designated as
the source, and a constant ˛.
SOLUTION: A broadcast tree T of S.
MEASURE: The objective is to minimize the total energy
needed to broadcast a message from s0 to all other nodes,
which can be expressed by
X
u2S

max
v2ı(u)

kuvk˛ ; (1)

where ı(u) denotes the set of out-neighbors of station u in T.

TheMEBR problem is known to be NP-hard for d � 2 and
˛ > 1 [2]. APX-hardness is known for d � 3 [5].

Key Results

Numerous heuristics have been proposed for this problem.
Only a few of them have been analyzed theoretically. The
one which attains the best approximation guarantee is the
so-called MST-heuristic [12].

MST-HEURISTIC: Compute a minimum spanning
tree of S (mst(S)) and turn it into an broadcast tree by di-
recting the edges.

Theorem 1 [1] In the Euclidean plane, the MST-heuristic
is a 6 approximation algorithm for MEBR for all ˛ � 2.

Theorem 2 [9] In the Euclidean three-dimensional space,
the MST-heuristic is a 18.8 approximation algorithm for
MEBR for all ˛ � 3.

Minimum Energy Broadcasting in Wireless Geometric Networks,
Figure 1
Illustration of the first and second approach for bounding w(S).
In both approaches, w(S) is bounded in terms of the total area
covered by the shapes



Minimum Energy Broadcasting in Wireless Geometric Networks M 527

Minimum Energy Broadcasting in Wireless Geometric Networks, Figure 2
Illustration of the tight bound for d = 2. The total area of the equilateral triangles on the left is bounded by its extended convex hull
shown in the middle. The point set that maximizes area of the extended convex hull is the star shown on the right

For ˛ < d, the MST-heuristic does not provide a constant
approximation ratio. The d-dimensional kissing numbers
represent lower bounds for the performance of the MST-
heuristic. Hence the analysis for d = 2 is tight, whereas for
d = 3 the lower bound is 12.

Analysis

The analysis of the MST-heuristic is based on good upper
bounds for

w(S) :=
X

e2mst(S)

kek˛ ; (2)

which obviously is an upper bound on (1). The radius of an
instance of MEBR is the distance between s0 to the station
furthest from s0. It turns out that the MST-heuristic per-
forms worst on instances of radius 1 whose optimal solu-
tion is to broadcast themessage directly from s0 to all other
stations. Since the optimal value for such instances is 1, the
approximation ratio follows from good upper bounds on
w(S) for instances with radius 1.

The rest of this section focuses on the case d = ˛ = 2.
There are two main approaches for upper bounding w(S).
In both approaches, w(S) is upper bounded in terms of the
area of particular kinds of shapes associatedwith either the
stations or with the edges of the MST.

In the first approach, the shapes are disks of radius
m/2 placed around every station of S, wherem is the length
of the longest edge ofmst(S). LetA denote the area covered
by the disks. One can provew(S) � 4

�

�
A� (m/2)2

�
. As-

suming that S has radius 1, one can prove w(S) � 8 quite
easily [4]. This approach can even be extended to obtain
w(S) � 6:33 [8], and it can be generalized for d � 2.

In the second approach [7,11], w(S) is expressed in
terms of shapes associated with the edges of mst(S), e. g.,
diamond shapes as shown on the right of Fig. 1. The area
of a diamond for an edge e is equal to kek2/(2

p
3). Since

one can prove that the diamonds never intersect, one ob-
tainsw(S) = A/(2

p
3). For instances with radius 1, one can

get w(S) � 12:15.
For the 2-dimensional case, one can even obtain

a matching upper bound [1]. The shapes used in this proof
are equilateral triangles, arranged in pairs along every edge
of theMST. As can be seen on the left of Fig. 2, these shapes
do intersect. Still one can obtain a good upper bound on
their total area by means of the convex hull of S:

Let the extended convex hull of S be the convex hull of
S extended by equilateral triangles along the border of the
convex hull. One can prove that the total area generated
by the equilateral triangle shapes along the edges ofmst(S)
is upper bounded by the area of the extended convex hull
of S. By showing that for instances of radius 1 the area of
the extended convex hull is maximized by the point con-
figuration shown on the right of Fig. 2, the matching upper
bound of 6 can be established.

Applications

The MEBR problem is a special case of a large class of
problems called range assignment problems. In all these
problems, the goal is to assign a range to each station such
that a certain type of communication operation such as
broadcast, all-to-1 (gathering), all-to-all (gossiping), can
be accomplished. See [3] for a survey on range assignment
problems.

It is worth noting that the problem of upper bounding
w(S) has already been considered in different contexts. The
idea of using diamond shapes to upper bound the length of
anMST has already been used by Gilbert and Pollak in [6].
Steele [10] makes use of space filling curves to bound w(S).

Open Problems

An obvious open problem is to close the gap in the analysis
of the MST-heuristic for the three dimensional case. This
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might be very difficult, as the lower bound from the kissing
number might not be tight.

Even in the plane, the approximation ratio of theMST-
heuristic is quite large. It would be interesting to see a dif-
ferent approach for the problem, maybe based on LP-
rounding. It is still not known whetherMEBR is APX-hard
for instances in the Euclidean plane.Hence theremight ex-
ist a PTAS for this problem.

Cross References

� Broadcasting in Geometric Radio Networks
� Deterministic Broadcasting in Radio Networks
� Geometric Spanners
�Minimum Geometric Spanning Trees
�Minimum Spanning Trees
� Randomized Broadcasting in Radio Networks
� Randomized Gossiping in Radio Networks

Recommended Reading
1. C. Ambühl: An optimal bound for the MST algorithm to com-

pute energy efficient broadcast trees in wireless networks. In:
Proceedings of 32th International Colloquium on Automata,
Languages and Programming (ICALP). Lecture Notes in Com-
puter Science, vol. 3580, pp. 1139–1150. Springer, Berlin (2005)

2. Clementi, A., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On
the Complexity of Computing Minimum Energy Consumption
Broadcast Subgraphs. In: Proceedings of the 18th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS),
pp. 121–131 (2001)

3. Clementi, A., Huiban, G., Penna, P., Rossi, G., Verhoeven,
Y.: Some Recent Theoretical Advances and Open Ques-
tions on Energy Consumption in Ad-Hoc Wireless Networks.
In: Proceedings of the 3rd Workshop on Approximation
and Randomization Algorithms in Communication Networks
(ARACNE), pp. 23–38 (2002)

4. Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Improved
approximation results for the minimum energy broadcasting
problem. In: Proceedings of the 2004 joint workshop on Foun-
dations of mobile computing (2004)

5. Fuchs, B.: On the hardness of range assignment problems. In:
Proceedings of the 6th Italian Conference on Algorithms and
Complexity (CIAC), pp. 127–138 (2006)

6. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl.
Math. 16, 1–29 (1968)

7. Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adap-
tive broadcast consumption (ABC), a new heuristic and new
bounds for the minimum energy broadcast routing problem.
In: Proceeding of the 3rd IFIP-TC6 international networking
conference (NETWORKING), pp. 866–877 (2004)

8. Navarra, A.: Tighter bounds for the minimum energy broad-
casting problem. In: Proceedings of the 3rd International Sym-
posium on Modeling and Optimization in Mobile, Ad-hoc and
Wireless Networks (WiOpt), pp. 313–322 (2005)

9. Navarra, A.: 3-d minimum energy broadcasting. In: Proceed-
ings of the 13th Colloquium on Structural Information and
Communication Complexity (SIROCCO), pp. 240–252 (2006)

10. Steele, J.M.: Cost of sequential connection for points in space.
Oper. Res. Lett. 8, 137–142 (1989)

11. Wan, P.-J., Calinescu, G., Li, X.-Y., Frieder, O.: Minimum-energy
broadcasting in static ad hoc wireless networks. Wirel. Netw.
8, 607–617 (2002)

12. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Energy-efficient
broadcast and multicast trees in wireless networks. Mobile
Netw. Appl. 7, 481–492 (2002)

Minimum Energy Cost Broadcasting
inWireless Networks
2001; Wan, Calinescu, Li, Frieder

PENG-JUN WAN, XIANG-YANG LI, OPHIR FRIEDER
Department of Computer Science, Illinois Institute
of Technology, Chicago, IL, USA

Keywords and Synonyms

Minimum energy broadcast; MST; MEB

ProblemDefinition

Ad hoc wireless networks have received significant atten-
tion in recent years due to their potential applications in
battlefield, emergency disaster relief and other applica-
tions [11,15]. Unlike wired networks or cellular networks,
no wired backbone infrastructure is installed in ad hoc
wireless networks. A communication session is achieved
either through a single-hop transmission if the commu-
nication parties are close enough, or through relaying by
intermediate nodes otherwise. Omni-directional antennas
are used by all nodes to transmit and receive signals. They
are attractive in their broadcast nature. A single transmis-
sion by a node can be received by many nodes within
its vicinity. This feature is extremely useful for multicast-
ing/broadcasting communications. For the purpose of en-
ergy conservation, each node can dynamically adjust its
transmitting power based on the distance to the receiv-
ing node and the background noise. In the most common
power-attenuation model [10], the signal power falls as
1
r� , where r is the distance from the transmitter antenna
and � is a real constant between 2 and 4 dependent on
the wireless environment. Assume that all receivers have
the same power threshold for signal detection, which is
typically normalized to one. With these assumptions, the
power required to support a link between two nodes sep-
arated by a distance r is r� . A key observation here is that
relaying a signal between two nodes may result in lower
total transmission power than communicating over a large
distance due to the nonlinear power attenuation. They as-
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sume the network nodes are given as a finite point1 set P
in a two-dimensional plane. For any real number �, they
use G(�) to denote the weighted complete graph over P in
which the weight of an edge e is kek� .

The minimum-energy unicast routing is essentially
a shortest-path problem in G(�). Consider any unicast
path from a node p = p0 2 P to another node q = pm 2 P:
p0p1 � � � pm�1pm . In this path, the transmission power of
each node pi , 0 � i � m � 1, is kpipi+1k� and the trans-
mission power of pm is zero. Thus the total transmis-
sion energy required by this path is

Pm�1
i=0 kpipi+1k

� ,
which is the total weight of this path in G� . So by apply-
ing any shortest-path algorithm such as the Dijkstra’s al-
gorithm [5], one can solve the minimum-energy unicast
routing problem.

However, for broadcast applications (in general multi-
cast applications), Minimum-Energy Routing is far more
challenging. Any broadcast routing is viewed as an ar-
borescence (a directed tree) T, rooted at the source node
of the broadcasting, that spans all nodes. Use fT (p) to de-
note the transmission power of the node p required by T.
For any leaf node p of T, fT (p) = 0. For any internal node
p of T,

fT (p) = max
pq2T
kpqk� ;

in other words, the �-th power of the longest distance be-
tween p and its children in T. The total energy required by
T is

P
p2P fT (p). Thus the minimum-energy broad-

cast routing problem is different from the conven-
tional link-based minimum spanning tree (MST) prob-
lem. Indeed, while the MST can be solved in poly-
nomial time by algorithms such as Prim’s algorithm
and Kruskal’s algorithm [5], it is NP-hard [4] to find
the minimum-energy broadcast routing tree for nodes
placed in two-dimensional plane. In its general graph ver-
sion, the minimum-energy broadcast routing can also be
shown to be NP-hard [7], and even worse, it can not
be approximated within a factor of (1 � �) log�, un-
less NP  DTIME

h
nO(log log n)

i
, by an approximation-

preserving reduction from the Connected Dominating Set
problem [8], where � is the maximal degree and � is any
arbitrary small positive constant.

Three greedy heuristics have been proposed for the
minimum-energy broadcast routing problem by [15]. The
MST heuristic first applies the Prim’s algorithm to obtain
a MST, and then orient it as an arborescence rooted at the

1The terms node, point and vertex are interchangeable here: node
is a network term, point is a geometric term, and vertex is a graph
term.

source node. The SPT heuristic applies the Dijkstra’s al-
gorithm to obtain a SPT rooted at the source node. The
BIP heuristic is the node version of Dijkstra’s algorithm
for SPT. It maintains, throughout its execution, a single
arborescence rooted at the source node. The arborescence
starts from the source node, and new nodes are added to
the arborescence one at a time on the minimum incre-
mental cost basis until all nodes are included in the ar-
borescence. The incremental cost of adding a new node
to the arborescence is the minimum additional power in-
creased by some node in the current arborescence to reach
this new node. The implementation of BIP is based on
the standard Dijkstra’s algorithm, with one fundamental
difference on the operation whenever a new node q is
added. Whereas the Dijkstra’s algorithm updates the node
weights (representing the current knowing distances to the
source node), BIP updates the cost of each link (represent-
ing the incremental power to reach the head node of the
directed link). This update is performed by subtracting the
cost of the added link pq from the cost of every link qr that
starts from q to a node r not in the new arborescence.

Key Results

The performance of these three greedy heuristics have
been evaluated in [15] by simulation studies. However,
their analytic performances in terms of the approximation
ratio remained open until [13]. The work ofWan et al. [13]
derived the bounds on their approximation ratios.

Let us begin with the SPT algorithm. Let � be
a sufficiently small positive number. Consider m nodes
p1;p2; � � � ;pm evenly distributed on a cycle of radius 1
centered at a node o. For 1 � i � m, let qi be the point
in the line segment opi with

��oqi
�� = �. They consider

a broadcasting from the node o to these n = 2m nodes
p1;p2; � � � ;pm ; q1; q2; � � � ; qm . The SPT is the superposi-
tion of paths oqipi , 1 � i � m. Its total energy consump-
tion is �2 + m (1 � �)2. On the other hand, if the transmis-
sion power of node o is set to 1, then the signal can reach
all other points. Thus the minimum energy consumed by
all broadcasting methods is at most 1. So the approxima-
tion ratio of SPT is at least �2 + m (1 � �)2. As � �! 0, this
ratio converges to n

2 = m.
They [13] also proved that

Theorem 1 The approximation ratio of MST is at least 6
for any � � 2.

Theorem 2 The approximation ratio of BIP is at least 13
3

for any � = 2.

They then derived the upper bounds by extensively using
the geometric structures of EuclideanMSTs (EMST). They
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first observed that as long as the cost of a link is an increas-
ing function of the Euclidean length of the link, the set of
MSTs of any point set coincides with the set of Euclidean
MSTs of the same point set. They proved a key result about
an upper bound on the parameter

P
e2MST(P) kek

2 for any
finite point set P inside a disk with radius one.

Theorem 3 Let c be the supreme of
P

e2MST(P) kek
2 over

all such point sets P. Then 6 � c � 12.

The following lemma proved in [13] is used to bound the
energy cost for broadcast when each node can dynamically
adjust its power.

Lemma 4 For any point set P in the plane, the total
energy required by any broadcasting among P is at least
1
c
P

e2MST(P) kek
� .

Lemma 5 For any broadcasting among a point set P in
a two-dimensional plane, the total energy required by the
arborescence generated by the BIP algorithm is at mostP

e2MST(P) kek
� .

Thus, they conclude the following two theorems.

Theorem 6 The approximation ratio of EMST is at most
c, and therefore is at most 12.

Theorem 7 The approximation ratio of BIP is at most c,
and therefore is at most 12.

Later, Wan et al. [14] studied the energy efficient multi-
cast for wireless networks when each node can dynam-
ically adjust its power. Given a set of receivers Q, the
problem Min-Power Asymmetric Multicast seeks, for any
given communication session, an arborescence T of min-
imum total power which is rooted at the source node s
and reaches all nodes in Q. As a generalization of Min-
Power Asymmetric Broadcast Routing, Min-Power Asym-
metric Multicast Routing is also NP-hard. Wieselthier et
al. [15] adapted their three broadcasting heuristics to three
multicasting heuristics by a technique of pruning, which
was called as pruned minimum spanning tree (P-MST),
pruned shortest-path tree (P-SPT), and pruned broadcast-
ing incremental power (P-BIP), respectively in [14]. The
idea is as follows. They first obtain a spanning tree rooted
at the source of a given multicast session by applying
any of the three broadcasting heuristics. They then elim-
inate from the spanning arborescence all nodes which do
not have any descendant in Q. They [14] show by con-
structing examples that all structures P-SPT, P-MST and
P-BIP could have approximation ratio as large as 	(n)
in the worst case for multicast. They then further pro-
posed a multicast scheme with a constant approximation
ratio on the total energy consumption. Their protocol for

Min-Power Asymmetric Multicast Routing is based on
Takahashi-Matsuyama Steiner tree heuristic [12]. Initially,
the multicast tree T contains only the source node. At each
iterative step, the multicast tree T is grown by one path
from some node in T to some destination node from Q
that is not yet in the tree T. The path must have the least
total power among all such paths from a node in T to
a node in Q � T . This procedure is repeated until all re-
quired nodes are included in T. This heuristic is referred
to as Shortest Path First (SPF).

Theorem 8 For asymmetricmulticast communication, the
approximation ratio of SPF is between 6 and 2c, which is at
most 24.

Applications

Broadcasting andmulticasting in wireless ad hoc networks
are critical mechanisms in various applications such as in-
formation diffusion, wireless networks, and also for main-
taining consistent global network information. Broadcast-
ing is often necessary in MANET routing protocols. For
example, many unicast routing protocols such as Dynamic
Source Routing (DSR), Ad Hoc On Demand Distance
Vector (AODV), Zone Routing Protocol (ZRP), and Lo-
cation Aided Routing (LAR) use broadcasting or a deriva-
tion of it to establish routes. Currently, these protocols all
rely on a simplistic form of broadcasting called flooding, in
which each node (or all nodes in a localized area) retrans-
mits each received unique packet exactly one time. The
main problems with flooding are that it typically causes
unproductive and often harmful bandwidth congestion,
as well as inefficient use of node resources. Broadcast-
ing is also more efficient than sending multiple copies the
same packet through unicast. It is highly important to use
power-efficient broadcast algorithms for such networks
since wireless devises are often powered by batteries only.

Open Problems

There are some interesting questions left for further study.
For example, the exact value of the constant c remains un-
solved. A tighter upper bound on c can lead to tighter up-
per bounds on the approximation ratios of both the link-
based MST heuristic and the BIP heuristic. They conjec-
ture that the exact value for c is 6, which seems to be true
based on their extensive simulations. The second question
is what is the approximation lower bound for minimum
energy broadcast? Is there a PTAS for this problem?

So far, all the known theoretically good algorithms ei-
ther assume that the power needed to support a link uv is
proportional to kuvk� or is a fixed cost that is independent
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of the neighboring nodes that it will communicate with.
In practice, the energy consumption of a node is neither
solely dependent on the distance to its farthest neighbor,
nor totally independent of its communication neighbor.
For example, a more general power consumption model
for a node u would be c1 + c2 � kuvk� for some constants
c1 � 0 and c2 � 0 where v is its farthest communication
neighbor in a broadcast structure. No theoretical result is
known about the approximation of the optimum broad-
cast or multicast structure under this model. When c2 = 0,
this is the case where all nodes have a fixed power for com-
munication. Minimizing the total power used by a reliable
broadcast tree is equivalent to the minimum connected
dominating set problem (MCDS), i. e., minimize the num-
ber of nodes that relay themessage, since all relaying nodes
of a reliable broadcast form a connected dominating set
(CDS). Notice that recently a PTAS [2] has been proposed
for MCDS in UDG graph.

Another important question is how to find efficient
broadcast/multicast structures such that the delay from the
source node to the last node receiving message is bounded
by a predetermined value while the total energy consump-
tion is minimized. Notice that here the delay of a broad-
cast/multicast based on a tree is not simply the height of
the tree: many nodes cannot transmit simultaneously due
to the interference.
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ProblemDefinition

The problem is concerned with efficiently scheduling jobs
on a system with multiple resources to provide a good
quality of service. In scheduling literature, several models
have been considered to model the problem setting and
several different measures of quality have been studied.
This note considers the following model: There are sev-
eral identical machines, and jobs are released over time.
Each job is characterized by its size, which is the amount of
processing it must receive to be completed, and its release
time, before which it cannot be scheduled. In this model,
Leonardi and Raz studied the objective of minimizing the
average flow time of the jobs, where the flow time of a job is
duration of time since it is released until its processing re-
quirement is met. Flow time is also referred to as response
time or sojourn time and is a very natural and commonly
used measure of the quality of a schedule.
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Notations Let J = f1; 2; : : : ; ng denote the set of jobs in
the input instance. Each job j is characterized by its re-
lease time rj and its processing requirement pj. There is
a collection ofm identical machines, each having the same
processing capability. A schedule specifies which job ex-
ecutes at what time on each machine. Given a schedule,
the completion time cj of a job is the earliest time at which
job j receives pj amount of service. The flow time f j of j is
defined as c j � r j . A schedule is said to be preemptive, if
a job can be interrupted arbitrarily, and its execution can
be resumed later from the point of interruption without
any penalty. A schedule is non-preemptive if a job cannot
be interrupted once it is started. In the context of multiple
machines, a schedule is said to be migratory, if a job can
be moved from one machine to another during its execu-
tion without any penalty. In the offline model, all the jobs J
are given in advance. In scheduling algorithms, the online
model is usually more realistic than the offline model.

Key Results

For a single machine, it is a folklore result that the Short-
est Remaining Processing Time (SRPT) policy, that at any
time works on the job with the least remaining process-
ing time is optimal for minimizing the average flow time.
Note that SRPT is an online algorithm, and is a preemptive
scheduling policy.

If no preemption is allowed Kellerer, Tautenhahn, and
Woeginger [6] gave an O(n1/2) approximation algorithm
for minimizing the flow time on a single machine, and also
showed that no polynomial time algorithm can have an
approximation ratio of n1/2�" for any " > 0 unless P=NP.

Leonardi and Raz [8] gave the first non-trivial results
for minimizing the average flow time on multiple ma-
chines. Later, a simpler presentation of this result was
given by Leonardi [7]. The main result of [8] is the fol-
lowing.

Theorem 1 ([8]) On multiple machines, the SRPT algo-
rithm is O(min(log(n/m); log P)) competitive for minimiz-
ing average flow time, where P is the maximum to mini-
mum job size ratio.

They also gave a matching lower bound (up to constant
factors) on the competitive ratio.

Theorem 2 ([8]) For the problem of minimizing flow time
on multiple machines, any online algorithm has a competi-
tive ratio of ˝(min(log(n/m); log P)), even when random-
ization is allowed.

Note that minimizing the average flow time is equivalent
to minimizing the total flow time. Suppose each job pays

$1 at each time unit it is alive (i. e. unfinished), then the to-
tal payment received is equal to the total flow time. Sum-
ming up the payment over each time step, the total flow
time can be expressed as the summation over the number
of unfinished jobs at each time unit. As SRPT works on
jobs that can be finished as soon as possible, it seems intu-
itively that it should have the least number of unfinished
jobs at any time. While this is true for a single machine, it
is not true for multiple machines (as shown in an example
below). The main idea of [8] was to show that at any time,
the number of unfinished jobs under SRPT is “essentially”
nomore thanO(min(log P)) times that under any other al-
gorithm. To do this, they developed a technique of group-
ing jobs into a logarithmic number of classes according to
their remaining sizes and arguing about the total unfin-
ished work in these classes. This technique has found a lot
of uses since then to obtain other results. To obtain a guar-
antee in terms of n, some additional ideas are required.

The instance below shows how SRPT could deviate
from optimum in the case of multiple machines. This in-
stance is also the key component in the lower bound con-
struction in Theorem 2 above. Suppose there are two ma-
chines, and three jobs of size 1, 1, and 2 arrive at time t = 0.
SRPT would schedule the two jobs of size 1 at t = 0 and
then work on size 2 job at time t = 1. Thus, it has one unit
of unfinished work at t = 2. However, the optimum could
schedule the size 2 job at time 0, and finish all these jobs
by time 2. Now, at time t = 2 three more jobs with sizes
1/2, 1/2, and 1 arrive. Again, SRPT will work on size 1/2
jobs first, and it can be seen that it will have two unfin-
ished jobs with remaining work 1/2 each at t = 3, whereas
the optimum can finish all these jobs by time 3. This pat-
tern is continued by giving three jobs of size 1/4, 1/4, and
1/2 at t = 3 and so on. After k steps, SRPT will have k jobs
with sizes 1/2; 1/4; 1/8; : : : ; 1/2k�2; 1/2k�1; 1/2k�1, while
the optimum has no jobs remaining. Now the adversary
can give 2 jobs of size 1/2k each every 1/2k time units for
a long time, which implies that SRPT could be ˝(log P)
worse than optimum.

Leonardi and Raz also considered offline algorithms
for the non-preemptive setting in their paper.

Theorem 3 ([8]) There is a polynomial time off-line al-
gorithm that achieves an approximation ratio of O(n1/2

log n/m) for minimizing average flow time on m machines
without preemption.

To prove this result, they give a general technique to con-
vert a preemptive schedule to a non-preemptive one at the
loss of an O(n1/2) factor in the approximation ratio. They
also showed an almost matching lower bound. In particu-
lar,
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Theorem 4 ([8]) No polynomial time algorithm for min-
imizing the total flow time on multiple machines without
preemption can have an approximation ratio of O(n1/3�")
for any " > 0, unless P=NP.

Extensions Since the publication of these results, they
have been extended in several directions. Recall that
SRPT is both preemptive and migratory. Awerbuch, Azar,
Leonardi, and Regev [2] gave an online scheduling al-
gorithm that is non-migratory and still achieves a com-
petitive ratio of O(min(log(n/m); log P)). Avrahami and
Azar [1] gave an even more restricted O(min(log P;
log(n/m))) competitive online algorithm. Their algorithm,
in addition to being non-migratory, dispatches a job im-
mediately to a machine upon its arrival. Recently, Garg
and Kumar [4,5] have extended these results to a setting
where machines have non-uniform speeds. Other related
problems and settings such as stretch minimization (de-
fined as the flow time divided by the size of a job), weighted
flow time minimization, and the non-clairvoyant setting
where the size of a job is not unknown upon its arrival
have also been investigated. The reader is referred to a re-
cent survey by Pruhs, Sgall, and Torng [9] for more details.

Applications

The flow time measure considered here is one of the most
widely used measures of quality of service, as it corre-
sponds to the amount of time one has to wait to get the job
done. The scheduling model considered here arises very
naturally when there are multiple resources and several
agents that compete for service from these resources. For
example, consider a computing system with multiple ho-
mogeneous processors where jobs are submitted by users
arbitrarily over time. Keeping the average response time
low also keeps the frustration levels of the users low. The
model is not necessarily limited to computer systems. At
a grocery store each cashier can be viewed as a machine,
and the users lining up to checkout can be viewed as jobs.
The flow time of a user is time spent waiting until she fin-
ishes her transaction with the cashier. Of course, in many
applications there are additional constraints such as it may
be infeasible to preempt jobs, or if customers expect a cer-
tain fairness such people might prefer to be serviced in
a first come first served manner at a grocery store.

Open Problems

The online algorithm of Leonardi and Raz is also the best-
known offline approximation algorithm for the problem.
In particular, it is not known whether an O(1) approxi-
mation exists even for the case of two machines. Settling

this would be very interesting. In related work, Bansal [3]
considered the problem of finding non-migratory sched-
ules for a constant number of machines. He gave an al-
gorithm that produces a (1 + ")-approximate solution for
any " > 0 in time nO(log n/"2). This suggests the possibility
of a polynomial time approximation scheme for the prob-
lem, at least for the case of a constant number of machines.
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ProblemDefinition

Let S be a set of n points in d-dimensional real space where
d � 1 is an integer constant. A minimum spanning tree
(MST) of S is a connected acyclic graph with vertex set
S of minimum total edge length. The length of an edge
equals the distance between its endpoints under somemet-
ric. Under the so-called Lp metric, the distance between
two points x and y with coordinates (x1; x2; : : : ; xd ) and
(y1; y2; : : : ; yd ), respectively, is defined as the pth root of
the sum

Pd
i=1 jxi � yi jp .

Key Results

Since there is a very large number of papers concerned
with geometric MSTs, only a few of them will be men-
tioned here.

In the common Euclidean L2 metric, which simply
measures straight-line distances, the MST problem in two
dimensions can be solved optimally in time O(n log n), by
using the fact that the MST is a subgraph of the Delaunay
triangulation of the input point set. The latter is in turn
the dual of the Voronoi diagram of S, for which there exist
several O(n log n)-time algorithms. The term “optimally”
here refers to the algebraic computation tree model. After
computation of the Delaunay triangulation, the MST can
be computed in onlyO(n) additional time, by using a tech-
nique by Cheriton and Tarjan [5].

Even for higher dimensions, i. e., when d > 2, it holds
that the MST is a subgraph of the dual of the Voronoi
diagram; however, this fact cannot be exploited in the
same way as in the two-dimensional case, because this
dual may contain ˝(n2) edges. Therefore, in higher di-
mensions other geometric properties are used to reduce
the number of edges which have to be considered. The
first subquadratic-time algorithm for higher dimensions
was due to Yao [14]. A more efficient algorithm was later
proposed by Agarwal et al. [1]. For d = 3, their algorithm
runs in randomized expected time O((n log n)4/3 ), and for
d � 4, in expected time O(n2�2/(dd/2e+1)+� ), where " stands
for an arbitrarily small positive constant.

The algorithm by Agarwal et al. builds on exploring the
relationship between computing aMST and finding a clos-
est pair between n red points and m blue points, which is
called the bichromatic closest pair problem. They showed
that if Td (n;m) denotes the time to solve the latter prob-
lem, then a MST can be computed in O(Td (n; n) logd n)
time. Later, Callahan and Kosaraju [4] improved this
bound to O(Td (n; n) log n). Both methods achieve run-
ning time O(Td (n; n)), if Td (n; n) = ˝(n1+˛), for some
˛ > 0. Finally, Krznaric et al. [10] showed that the two
problems, i. e., computing a MST and computing the

bichromatic closest pair, have the same worst-case time
complexity (up to constant factors) in the commonly used
algebraic computation tree model, and for any fixed Lp
metric. The hardest part to prove is that a MST can be
computed in time O(Td (n; n)). The other part, which is
that the bichromatic closest pair problem is not harder
than computing the MST, is easy to show: if one first com-
putes a MST for the union of the n + m red and blue
points, one can then find a closest bichromatic pair in lin-
ear time, because at least one such pair has to be connected
by some edge of the MST.

The algorithm proposed by Krznaric et al. [10] is based
on the standard approach of joining trees in a forest with
the shortest edge connecting two different trees, similar
to the classical Kruskal’s and Prim’s MST algorithms for
graphs. To reduce the number of candidates to be con-
sidered as edges of the MST, the algorithm works in a se-
quence of phases, where in each phase only edges of equal
or similar length are considered, within a factor of 2.

The initial forest is the set S of points, that is, each
point of the input constitutes an individual edgeless tree.
Then, as long as there is more than one tree in the forest,
two trees aremerged by producing an edge connecting two
nodes, one from each tree. After this procedure, the edges
produced comprise a single tree that remains in the forest,
and this tree constitutes the output of the algorithm.

Assume that the next edge that the algorithm is going
to produce has length l. Each tree T in the forest is parti-
tioned into groups of nodes, each group having a specific
node representing the group. The representative node in
such a group is called a leader. Furthermore, every node
in a group including the leader has the property that it lies
within distance � � l from its leader, where " is a real con-
stant close to zero.

Instead of considering all pairs of nodes which can be
candidates for the next edge to produce, first only pairs of
leaders are considered. Only if a pair of leaders belong to
different trees and the distance between them is approxi-
mately l, then the closest pair of points between their two
respective groups is computed, using the algorithm for the
bichromatic closest pair problem.

Also, the following invariant is maintained: for any
phase producing edges of length 	(l), and for any leader,
there is only a constant number of other leaders at distance
	(l). Thus, the total number of pairs of leaders to consider
is only linear in the number of leaders.

Nearby leaders for any given leader can be found effi-
ciently by using bucketing techniques and data structures
for dynamic closest pair queries [3], together with extra ar-
tificial points which can be inserted and removed for prob-
ing purposes at various small boxes at distance 	(l) from
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the leader. In order to maintain the invariant, when mov-
ing to subsequent phases, one reduces the number of lead-
ers accordingly, as pairs of nearby groups merge into sin-
gle groups. Another tool which is also needed to consider
the right types of pairs is to organize the groups according
to the various directions in which there can be new candi-
dateMST edges adjacent to nodes in the group. For details,
please see the original paper by Krznaric et al. [10].

There is a special version of the bichromatic closest
point problem which was shown by Krznaric et al. [10]
to have the same worst-case time complexity as comput-
ing a MST: namely, the problem for the special case when
both the set of red points and the set of blue points have a
very small diameter compared with the distance between
the closest bichromatic pair. This ratio can be made arbi-
trarily small by choosing a suitable " as the parameter for
creating the groups and leadersmentioned above. This fact
was exploited in order to derive more efficient algorithms
for the three-dimensional case.

For example, in the L1 metric it is possible to build in
timeO(n log n) a special kind of a planar Voronoi diagram
for the blue points on a plane separating the blue from the
red points having the following property: for each query
point q in the half-space including the red points one can
use this Voronoi diagram to find in time O(log n) the blue
point which is closest to q under the L1 metric. (This pla-
nar Voronoi diagram can be seen as defined by the verti-
cal projections of the blue points onto the plane contain-
ing the diagram, and the size of a Voronoi cell depends
on the distance between the corresponding blue point and
the plane.) So, by using subsequently every red point as
a query point for this data structure, one can solve the
bichromatic closest pair problem for such well-separated
red–blue sets in total O(n log n) time.

By exploiting and building upon this idea, Krznaric
et al. [10] showed how to find a MST of S in optimal
O(n log n) time under the L1 and L1 metrics when d = 3.
This is an improvement over previous bounds due to
Gabow et al. [9] and Bespamyatnikh [2], who proved that,
for d = 3, a MST can be computed in O(n log n log log n)
time under the L1 and L1 metrics.

Themain results of Krznaric et al. [10] are summarized
in the following theorem.

Theorem In the algebraic computation tree model, for any
fixed Lp metric, and for any fixed number of dimensions,
computing the MST has the same worst-case complexity,
within constant factors, as solving the bichromatic closest
pair problem. Moreover, for three-dimensional space under
the L1 and L1 metrics, the MST (as well as the bichromatic
closest pair) can be computed in optimal O(n log n) time.

Approximate and Dynamic Solutions

Callahan and Kosaraju [4] showed that a spanning tree
of length within a factor 1 + � from that of a MST can
be computed in time O(n(log n + ��d/2 log ��1)). Approx-
imation algorithms with worse tradeoff between time
and quality had earlier been developed by Clarkson [6],
Vaidya [13] and Salowe [12]. In addition, if the input point
set is supported by certain basic data structures, then the
approximate length of aMST can be computed in random-
ized sublinear time [7]. Eppstein [8] gave fully dynamic al-
gorithms that maintain a MST when points are inserted or
deleted.

Applications

MSTs belong to the most basic structures in computa-
tional geometry and in graph theory, with a vast number
of applications.

Open Problems

Although the complexity of computing MSTs is settled
in relation to computing bichromatic closest pairs, this
means also that it remains open for all cases where the
complexity of computing bichromatic closest pairs re-
mains open, e. g., when the number of dimensions is
greater than 3.

Experimental Results

Narasimhan and Zachariasen [11] have reported experi-
ments with computing geometric MSTs via well-separated
pair decompositions.
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ProblemDefinition

The following classical optimization problem is consid-
ered: for a given undirected weighted geometric network,
find its minimum-cost sub-network that satisfies a priori
given multi-connectivity requirements.

Notations

Let G = (V ; E) be a geometric network, whose vertex set
V corresponds to a set of n points in R d for certain inte-
ger d, d � 2, and whose edge set E corresponds to a set of
straight-line segments connecting pairs of points in V . G
is called complete if E connects all pairs of points in V .

The cost ı(x; y) of an edge connecting a pair of points
x; y 2 Rd is equal to the Euclidean distance between

points x and y, that is, ı(x; y) =
qPd

i=1(xi � yi )2, where
x = (x1; : : : ; xd ) and y = (y1; : : : ; yd ). More generally, the
cost ı(x; y) could be defined using other norms, such as `p

norms for any p > 1, i. e., ı(x; y) =
�Pp

i=1(xi � yi)p
�1/p

.
The cost of the network is equal to the sum of the costs of
the edges of the network, cost(G) =

P
(x;y)2E ı(x; y).

A network G = (V ; E) is spanning a set S of points
if V = S. G = (V ; E) is k-vertex-connected if for any set
U  V of fewer than k vertices, the network (V n U; E \
((V n U) � (V n U)) is connected. Similarly, G is k-edge-
connected if for any set E  E of fewer than k edges, the
network (V ; E n E) is connected.

The (Euclidean) Minimum-Cost k-Vertex Connected
Spanning Network Problem For a given set S of n
points in the Euclidean space Rd, find a minimum-cost k-
vertex connected Euclidean network spanning points in S.

The (Euclidean) Minimum-Cost k-Edge Connected
Spanning Network Problem For a given set S of n
points in the Euclidean space Rd, find a minimum-cost k-
edge connected Euclidean network spanning points in S.

A variant that allows parallel edges is also considered:

The (Euclidean) Minimum-Cost k-Edge Connected
Spanning Multi-Network Problem For a given set S
of n points in the Euclidean space Rd, find a minimum-
cost k-edge connected Euclidean multi-network spanning
points in S (where the multi-network can have parallel
edges).

The concept of minimum-cost k-connectivity nat-
urally extends to include that of Euclidean Steiner k-
connectivity by allowing the use of additional vertices,
called Steiner points. For a given set S of points in Rd,
a geometric network G is a Steiner k-vertex connected (or,
Steiner k-edge connected) for S if the vertex set of G is a su-
perset of S and for every pair of points from S there are k in-
ternally vertex-disjoint (edge-disjoint, respectively) paths
connecting them in G.

The (Euclidean) Minimum-Cost Steiner k-Vertex/Edge
Connectivity Problem Find a minimum-cost network
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on a superset of S that is Steiner k-vertex/edge connected
for S.

Note that for k = 1, it is simply the Steinerminimal tree
problem, which has been very extensively studied in the
literature (see, e. g., [14]).

In a more general formulation of multi-connectivity
graph problems, non-uniform connectivity constraints
have to be satisfied.

The Survivable Network Design Problem For a given
set S of points inRd and a connectivity requirement func-
tion r : S � S ! N , find a minimum-cost geometric net-
work spanning points in S such that for any pair of ver-
tices p; q 2 S the sub-network has rp;q internally vertex-
disjoint (or edge-disjoint, respectively) paths between p
and q.

In many applications of this problem, often regarded
as the most interesting ones [9,13], the connectivity re-
quirement function is specified with the help of a one-
argument function which assigns to each vertex p its
connectivity type rv 2 N. Then, for any pair of vertices
p; q 2 S, the connectivity requirement rp;q is simply given
as minfrp; rqg [12,13,17,18]. This includes the Steiner tree
problem (see, e. g., [2]), in which rp 2 f0; 1g for any vertex
p 2 S.

A polynomial-time approximation scheme (PTAS) is
a family of algorithms fA"g such that, for each fixed " > 0,
A" runs in time polynomial in the size of the input and
produces a (1 + ")-approximation.

Related Work

For a very extensive presentation of results concerning
problems of finding minimum-cost k-vertex- and k-edge-
connected spanning subgraphs, non-uniform connectiv-
ity, connectivity augmentation problems, and geometric
problems, see [1,3,11,15].

Despite the practical relevance of the multi-
connectivity problems for geometrical networks and the
vast amount of practical heuristic results reported (see,
e. g., [12,13,17,18]), very little theoretical research had
been done towards developing efficient approximation
algorithms for these problems until a few years ago. This
contrasts with the very rich and successful theoretical
investigations of the corresponding problems in general
metric spaces and for general weighted graphs. And so,
until 1998, even for the simplest and most fundamental
multi-connectivity problem, that of finding a minimum-
cost 2-vertex connected network spanning a given set of
points in the Euclidean plane, obtaining approximations
achieving better than a 3

2 ratio had been elusive (the ratio

3
2 is the best polynomial-time approximation ratio known
for general networks whose weights satisfy the triangle
inequality [8]; for other results, see e. g., [4,15]).

Key Results

The first result is an extension of the well-known NP-
hardness result of minimum-cost 2-connectivity in gen-
eral graphs (see, e. g., [10]) to geometric networks.

Theorem 1 The problem of finding a minimum-cost 2-
vertex/edge connected geometric network spanning a set of
n points in the plane isNP-hard.

Next result shows that if one considers the minimum-cost
multi-connectivity problems in an enough high dimen-
sion, the problems become APX-hard.

Theorem 2 ([6]) There exists a constant � > 0 such that
it isNP-hard to approximate within 1 + � the minimum-
cost 2-connected geometric network spanning a set of n
points inRdlog2 ne.

This result extends also to any `p norm.

Theorem 3 ([6]) For and integer d � log n and for any
fixed p � 1 there exists a constant � > 0 such that it is
NP-hard to approximate within 1 + � the minimum-cost
2-connected network spanning a set of n points in the `p
metric inRd.

Since the minimum-cost multi-connectivity problems are
hard, the research turned into the study of approximation
algorithms. By combining some of the ideas developed for
the polynomial-time approximation algorithms for TSP
due to Arora [2] (see also [16]) together with several
new ideas developed specifically for the multi-connectivity
problems in geometric networks, Czumaj and Lingas ob-
tained the following results.

Theorem 4 ([5,6]) Let k and d be any integers, k; d � 2,
and let " be any positive real. Let S be a set of n points
in Rd. There is a randomized algorithm that in time n �

(log n)(kd/")O(d) � 22(kd/")
O(d)

with probability at least 0.99
finds a k-vertex-connected (or k-edge-connected) spanning
network for S whose cost is at most (1 + ")-time optimal.

Furthermore, this algorithm can be derandomized in
polynomial-time to return a k-vertex-connected (or k-edge-
connected) spanning network for S whose cost is at most
(1 + ") times the optimum.

Observe that when all d, k, and " are constant, then the
running-times are n � logO(1) n.

The results in Theorem 4 give a PTAS for small values
of k and d.
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Theorem 5 (PTAS for vertex/edge-connectivity [6,5])
Let d � 2 be any constant integer. There is a certain positive
constant c < 1 such that for all k such that k � (log log n)c ,
the problems of finding aminimum-cost k-vertex-connected
spanning network and a k-edge-connected spanning net-
work for a set of points inRd admit PTAS.

The next theorem deals with multi-networks where feasi-
ble solutions are allowed to use parallel edges.

Theorem 6 ([5]) Let k and d be any integers, k; d � 2,
and let " be any positive real. Let S be a set of n points
in Rd. There is a randomized algorithm that in time n �

log n � (d/")O(d) + n � 22(k
O(1)
�(d/")O(d2)) , with probability at

least 0.99 finds a k-edge-connected spanning multi-network
for S whose cost is at most (1 + ") times the optimum. The
algorithm can be derandomized in polynomial-time.

Combining this theorem with the fact that parallel edges
can be eliminated in case k = 2, one obtains the following
result for 2-connectivity in networks.

Theorem 7 (Approximation schemes for 2-connected
graphs, [5]) Let d be any integer, d � 2, and let " be any
positive real. Let S be a set of n points inRd. There is a ran-
domized algorithm that in time n � log n � (d/")O(d) + n �
2(d/")O(d

2) , with probability at least 0.99 finds a 2-vertex-
connected (or 2-edge-connected) spanning network for S
whose cost is at most (1 + ") times the optimum. This al-
gorithm can be derandomized in polynomial-time.

For constant d the running time of the randomized algo-
rithms is n log n � (1/")O(1) + 2(1/")O(1) .

Theorem 8 ([7]) Let d be any integer, d � 2, and let " be
any positive real. Let S be a set of n points in Rd. There is
a randomized algorithm that in time n � log n � (d/")O(d) +

n �2(d/")O(d
2) +n �22d

dO(1)
, with probability at least 0.99 finds

a Steiner 2-vertex-connected (or 2-edge-connected) span-
ning network for S whose cost is at most (1 + ") times the
optimum. This algorithm can be derandomized in polyno-
mial-time.

Theorem 9 ([7]) Let d be any integer, d � 2, and let " be
any positive real. Let S be a set of n points in Rd. There is
a randomized algorithm that in time n � log n � (d/")O(d) +

n �2(d/")O(d
2) +n �22d

dO(1)
, with probability at least 0.99 gives

a (1 + ")-approximation for the geometric network surviv-
ability problem with rv 2 f0; 1; 2g for any v 2 V. This al-
gorithm can be derandomized in polynomial-time.

Applications

Multi-connectivity problems are central in algorithmic
graph theory and have numerous applications in com-
puter science and operation research, see, e. g., [1,13,
11,18]. They also play very important role in the de-
sign of networks that arise in practical situations, see,
e. g., [1,13]. Typical application areas include telecom-
munication, computer and road networks. Low degree
connectivity problems for geometrical networks in the
plane can often closely approximate such practical con-
nectivity problems (see, e. g., the discussion in [13,17,18]).
The survivable network design problem in geometric net-
works also arises in many applications, e. g., in telecom-
munication, communication network design, VLSI de-
sign, etc. [12,13,17,18].

Open Problems

The results discussed above lead to efficient algorithms
only for small connectivity requirements k; the running-
time is polynomial only for the value of k up to (log log n)c

for certain positive constant c < 1. It is an interesting open
problem if one can obtain polynomial-time approxima-
tion schemes algorithms also for large values of k.

It is also an interesting open problem if the multi-
connectivity problems in geometric networks can have
practically fast approximation schemes.

Cross References
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Keywords and Synonyms
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ProblemDefinition

Consider the following scheduling problem. There are
m parallel machines and n independent jobs. Each job is to
be assigned to one of the machines. The processing of job j
on machine i requires pi j units of time. The objective is to
find a schedule thatminimizes themakespan, defined to be
the time by which all jobs are completed. This problem is
denoted RjjCmax using standard scheduling notation ter-
minology [6].

There are few important special cases of the problem:
the restricted assignment problem with pi j 2 f1;1g,
the identical parallel machines with pi j = p j and the
uniform parallel machines pi j = p j/si where si > 0
is a speed of machine i. These problems are denoted
Rjpi j 2 f1;1gjCmax, PjjCmax and QjjCmax, respectively.
Two later problems admit polynomial time approximation
schemes [4,5].

Consider the following integer programming formula-
tion of the feasibility problem that finds a feasible assign-
ment of jobs to machines with makespan at most T

mX
i=1

xi j = 1 ; j = 1; : : : ; n ; (1)

nX
j=1

pi jxi j � T ; i = 1; : : : ;m ; (2)

xi j = 0 ; if pi j > T ; (3)

xi j 2 f0; 1g ; 8i; j : (4)

The variable xi j = 1 if job j is assigned to machine i and
xi j = 0, otherwise. The constraint (1) corresponds to job
assignments. The constraint (2) bounds the total process-
ing time of jobs assigned to one machine. The constraint
(3) forbids an assignment of a job to a machine if its pro-
cessing time is larger than the target makespan T.

Key Results

Theorem 1 (Rounding Theorem) Consider the linear
programming relaxation of the integer program (1)–(4) by
relaxing the integrality constraint (4) with the constraint

xi j � 0 ; 8i; j : (5)

If the linear program (1)–(3),(5) has a feasible solution for
some value of parameter T = T� then there exists a feasible
solution to an integer program (1)–(4) with parameter T =
T� + pmax where pmax = maxi; j pi j and such a solution can
be found in polynomial time.
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The idea of the proof is to start with a basic feasible so-
lution of the linear program (1)–(3),(5). The properties of
basic solutions imply the bound on the number of frac-
tional variables which in turn implies that the bipartite
graph defined between jobs and machines with edges cor-
responding to fractional variables has a very special struc-
ture. Lenstra, Shmoys and Tardos [7] show that it is possi-
ble to round fractional edges in such a way that each ma-
chine node has at most one edge (variable) rounded up
which implies the bound on the makespan.

The Theorem 1 combined with binary search on pa-
rameter T implies

Corollary 1 There is a 2-approximation algorithm for the
makespanminimization problem on unrelated parallel ma-
chines that runs in time polynomial in the input size.

Lenstra, Shmoys and Tardos [7] proved an inapproxima-
bility result that is valid even for the case of the restricted
assignment problem

Theorem 2 For every � < 3/2 there does not exist a poly-
nomial �-approximation algorithm for the makespan min-
imization problem on unrelated parallel machines unless
P = NP.

Generalizations

A natural generalization of the scheduling problem is to
add additional resource requirements

P
i; j ci j xi j � B, i. e.

there is a cost ci j associated with assigning job i to ma-
chine j. The goal is to find an assignment of jobs to ma-
chines of total cost at most B minimizing the makespan.
This problem is known under the name of the generalized
assignment problem. Shmoys and Tardos [8] proved an
analogous Rounding Theorem leading to a 2-approxima-
tion algorithm.

Even more general problem arises when each ma-
chine i has few modes s = 1; : : : ; k to process job j. Each
mode has the processing time pi js and the cost ci js asso-
ciated with it. The goal is to find a an assignment of jobs
to machines and modes of total cost at most Bminimizing
the makespan. Consider the following analogous integer
programming formulation of the problem

mX
i=1

kX
s=0

xi js = 1 ; j = 1; : : : ; n ; (6)

nX
j=1

kX
s=0

xi js pi js � T ; i = 1; : : : ;m ; (7)

nX
j=1

mX
i=1

kX
s=0

xi js ci js � B ; (8)

xi js = 0 ; if pi js > T ; (9)

xi js 2 f0; 1g ; 8 i; j; s : (10)

Theorem 3 (General Rounding Theorem) Consider the
linear programming relaxation of the integer program (6)–
(10) by relaxing the integrality constraint (10) with the con-
straint

xi js � 0 ; 8i; j; s : (11)

If linear program (6)–(9),(11) has a feasible solution for
some value of parameter T = T� then there exists a fea-
sible solution to the integer program (6)–(10) with param-
eter T = T� + pmax where pmax = maxi; j;s pi js and such
a solution can be found in polynomial time.

The randomized version of this Theorem was origi-
nally proved by Gandhi, Khuller, Parthasarathy and Srini-
vasan [2]. The deterministic version appeared first in [3].

Applications

Unrelated parallel machine scheduling is one of the ba-
sic scheduling models with a lot of industrial applications,
see for example [1, 9]. The rounding Theorem by Lenstra,
Shmoys, Tardos and its generalizations have found nu-
merous applications applications in design and analysis of
approximation algorithms where quite often generalized
assignment problem needs to be solved as a subroutine.

Open Problems

The most exciting open problem is to close the gap be-
tween positive (Corollary 1) and negative (Theorem 2) re-
sults for RjjCmax. A very simple example shows that the
integrality gap of the linear programming relaxation (1)–
(3),(5) is 2 and therefore there is a need for a stronger LP
to improve upon 2-approximation.

This example consists of m(T � 1) jobs such that for
each i 2 1; : : : ;m, processing time pi j = 1 for j =
(T � 1)(i� 1) + 1; : : : ; (T � 1)i and pi j =1 otherwise. In
other words, each machine has T � 1 jobs with unit pro-
cessing time, that cannot be processed on any other ma-
chine. Additionally, there is one large job b with process-
ing time pib = T for i = 1; : : : ;m.

One way to define a stronger LP is to define variables
xiS for each possible set S of jobs. The variable xiS = 1 if
the set S of jobs is assigned to be processed on machine i.
The set of jobs S is feasible for machine i if

P
j2S pi j � T .

Let Ci be the set of feasible sets for machine i. Consider the
following linear programming relaxation:

X
i;S2Ci : j2S

xiS = 1 ; j = 1; : : : ; n ; (12)
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X
S2Ci

xi S = 1 ; i = 1; : : : ;m ; (13)

xiS � 0 ; 8 i; S 2 Ci : (14)

The integrality gap of this linear program is also 2
for general unrelated parallel machine scheduling but it is
open for the special case of restricted assignment problem.

Cross References

� Flow Time Minimization
� List Scheduling
� Load Balancing
�Minimum Flow Time
�MinimumWeighted Completion Time
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ProblemDefinition

The minimum spanning tree (MST) problem is, given
a connected, weighted, and undirected graph G = (V ; E;
w), to find the tree withminimum totalweight spanning all
the verticesV . Herew : E ! R is the weight function. The
problem is frequently defined in geometric terms, where
V is a set of points in d-dimensional space and w corre-
sponds to Euclidean distance. The main distinction be-
tween these two settings is the form of the input. In the
graph setting the input has size O(m + n) and consists of
an enumeration of the n = jV j vertices and m = jEj edges
and edge weights. In the geometric setting the input con-
sists of an enumeration of the coordinates of each point
(O(dn) space): all

�V
2
�
edges are implicitly present and their

weights implicit in the point coordinates. See [16] for a dis-
cussion of the Euclidean minimum spanning tree prob-
lem.

History

The MST problem is generally recognized [7,12] as one
of the first combinatorial problems studied specifically
from an algorithmic perspective. It was formally defined
by Borůvka in 1926 [1] (predating the fields of computabil-
ity theory and combinatorial optimization, and evenmuch
of graph theory) and since his initial algorithm there has
been a sustained interest in the problem. The MST prob-
lem has motivated research in matroid optimization [3]
and the development of efficient data structures, partic-
ularly priority queues (aka heaps) and disjoint set struc-
tures [2,18].

Related Problems

The MST problem is frequently contrasted with the trav-
eling salesman and minimum Steiner tree problems [6].
A Steiner tree is a tree that may span any superset of the
given points; that is, additional points may be introduced
that reduce the weight of the minimum spanning tree. The
traveling salesman problem asks for a tour (cycle) of the
vertices with minimum total length. The generalization of
the MST problem to directed graphs is sometimes called
the minimum branching [5]. Whereas the undirected and
directed versions of theMST problem are solvable in poly-
nomial time, traveling salesman and minimum Steiner
tree are NP-complete [6].
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Optimality Conditions

A cut is a partition (V 0;V 00) of the vertices V . An edge
(u, v) crosses the cut (V 0;V 00) if u 2 V 0 and v 2 V 00. A se-
quence (v0; v1; : : : ; vk�1; v0) is a cycle if (vi ; vi+1(mod k)) 2
E for 0 � i < k.
The correctness of all MST algorithms is established by ap-
pealing to the dual cut and cycle properties, also known as
the blue rule and red rule [18].

Cut Property An edge is in someminimum spanning tree
if and only if it is the lightest edge crossing some cut.

Cycle Property An edge is not in any minimum spanning
tree if and only if it is the sole heaviest edge on some
cycle.

It follows from the cut and cycle properties that if the edge
weights are unique then there is a unique minimum span-
ning tree, denotedMST(G). Uniqueness can always be en-
forced by breaking ties in any consistent manner. MST al-
gorithms frequently appeal to a useful corollary of the cut
and cycle properties called the contractibility property. Let
G n C denote the graph derived from G by contracting the
subgraph C, that is, C is replaced by a single vertex c and
all edges incident to exactly one vertex in C become inci-
dent to c; in general G n C may have more than one edge
between two vertices.

Contractibility Property If C is a subgraph such that
for all pairs of edges e and f with exactly one end-
point in C, there exists a path P  C connecting e f
with each edge in P lighter than either e or f , then
C is contractible. For any contractible C it holds that
MST(G) = MST(C) [MST(G n C).

The Generic Greedy Algorithm

Until recently all MST algorithms could be viewed as mere
variations on the following generic greedyMST algorithm.
Let T consist initially of n trivial trees, each containing
a single vertex of G. Repeat the following step n � 1 times.
Choose any T 2 T and find the minimum weight edge
(u, v) with u 2 T and v in a different tree, say T 0 2 T . Re-
place T and T 0 in T with the single tree T [ f(u; v)g [ T 0.
After n � 1 iterations T = fMST(G)g. By the cut property
every edge selected by this algorithm is in the MST.

Modeling MST Algorithms

Another corollary of the cut and cycle properties is that the
set of minimum spanning trees of a graph is determined
solely by the relative order of the edge weights—their spe-
cific numerical values are not relevant. Thus, it is natural

to model MST algorithms as binary decision trees, where
nodes of the decision tree are identified with edge weight
comparisons and the children of a node correspond to the
possible outcomes of the comparison. In this decision tree
model a trivial lower bound on the time of the optimal
MST algorithm is the depth of the optimal decision tree.

Key Results

The primary result of [14] is an explicit MST algorithm
that is provably optimal even though its asymptotic run-
ning time is currently unknown.

Theorem 1 There is an explicit, deterministic minimum
spanning tree algorithm whose running time is on the order
of DMST(m; n), where m is the number of edges, n the num-
ber of vertices, and DMST(m; n) the maximum depth of an
optimal decision tree for any m-edge n-node graph.

It follows that the Pettie–Ramachandran algorithm [14] is
asymptotically no worse than anyMST algorithm that de-
duces the solution through edge weight comparisons. The
best known upper bound on DMST(m; n) is O(m˛(m; n)),
due to Chazelle [2]. It is trivially˝(m).
Let us briefly describe how the Pettie–Ramachandran
algorithm works. An (m, n) instance is a graph with
m edges and n vertices. Theorem 1 is proved by giv-
ing a linear time decomposition procedure that re-
duces any (m, n) instance of the MST problem to in-
stances of size (m�; n�); (m1; n1); : : : ; (ms ; ns), where
m = m� +

P
i mi , n =

P
i ni , n� � n/ log log log n and

each ni � log log log n. The (m�; n�) instance can be
solved in O(m + n) time with existing MST algo-
rithms [2]. To solve the other instances the Pettie–
Ramachandran algorithm performs a brute-force search
to find the minimum depth decision tree for every graph
with at most log log log n vertices. Once these decision
trees are found the remaining instances are solved in
O(
P

i DMST(mi ; ni )) = O(DMST(m; n)) time. Due to the
restricted size of these instances (ni � log log log n) the
time for a brute force search is a negligible o(n). The
decomposition procedure makes use of Chazelle’s soft
heap [2] (an approximate priority queue) and an extension
of the contractibility property.

Approximate Contractibility Let G0 be derived from G
by increasing the weight of some edges. If C is con-
tractible w.r.t. G0 then MST(G) = MST(MST(C) [
MST(G n C) [ E�), where E� is the set of edges with
increased weights.

A secondary result of [14] is that the running time
of the optimal algorithm is actually linear on nearly ev-
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ery graph topology, under any permutation of the edge
weights.

Theorem 2 Let G be selected uniformly at random from
the set of all n-vertex, m-edge graphs. Then regardless of the
edge weights,MST(G) can be found in O(m + n) time with
probability 1 � 2�˝(m/˛2), where ˛ = ˛(m; n) is the slowly
growing inverse-Ackermann function.

Theorem 1 should be contrasted with the results of Karger,
Klein, and Tarjan [9] and Chazelle [2] on the randomized
and deterministic complexity of the MST problem.

Theorem 3 [9] The minimum spanning forest of a graph
with m edges can be computed by a randomized algorithm
in O(m) time with probability 1 � 2�˝(m).

Theorem 4 [2] The minimum spanning tree of a graph
can be computed in O(m˛(m; n)) time by a deterministic
algorithm, where ˛ is the inverse-Ackermann function.

Applications

Borůvka [1] invented the MST problem while consider-
ing the practical problem of electrifying rural Moravia
(present day Czech Republic) with the shortest electrical
network. MSTs are used as a starting point for heuristic
approximations to the optimal traveling salesman tour and
optimal Steiner tree, as well as other network design prob-
lems. MSTs are a component in other graph optimiza-
tion algorithms, notably the single-source shortest path al-
gorithms of Thorup [19] and Pettie–Ramachandran [15].
MSTs are used as a tool for visualizing data that is pre-
sumed to have a tree structure; for example, if a matrix
contains dissimilarity data for a set of species, the mini-
mum spanning tree of the associated graph will presum-
ably group closely related species; see [7]. Other modern
uses of MSTs include modeling physical systems [17] and
image segmentation [8]; see [4] for more applications.

Open Problems

The chief open problem is to determine the determinis-
tic complexity of the minimum spanning tree problem. By
Theorem 1 this is tantamount to determining the decision-
tree complexity of the MST problem.

Experimental Results

Moret and Shapiro [11] evaluated the performance of
greedy MST algorithms using a variety of priority queues.
They concluded that the best MST algorithm is Jarník’s [7]
(also attributed to Prim and Dijkstra; see [3,7,12]) as im-
plemented with a pairing heap [13]. Katriel, Sanders, and

Träff [10] designed and implemented a non-greedy ran-
domized MST algorithm based on that of Karger et al. [9].
They concluded that on moderately dense graphs it runs
substantially faster than the greedy algorithms tested by
Moret and Shapiro.
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� Randomized Minimum Spanning Tree
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Keywords and Synonyms

Average weighted completion time

ProblemDefinition

The minimum weighted completion time problem in-
volves (i) a set J of n jobs, a positive weight wj for each job
j 2 J, and a release date rj before which it cannot be sched-
uled; (ii) a set ofmmachines, each of which can process at
most one job at any time; and (iii) an arbitrary set of posi-
tive values fpi; jg, where pi, j denotes the time to process job
j on machine i. A schedule involves assigning jobs to ma-
chines and choosing an order in which they are processed.
Let Cj denote the completion time of job j for a given
schedule. Theweighted completion time of a schedule is de-
fined as

P
j2J w jCj , and the goal is to compute a schedule

that has the minimum weighted completion time.
In the scheduling notation introduced by Graham et

al. [7], a scheduling problem is denoted by a 3-tuple ˛jˇj� ,
where ˛ denotes the machine environment, ˇ denotes the
additional constraints on jobs, and � denotes the objec-
tive function. In this article, we will be concerned with the
˛-values 1, P, R, and Rm, which respectively denote one
machine, identical parallel machines (i. e., for a fixed job j
and for each machine i, pi, j equals a value pj that is inde-
pendent of i), unrelated machines (the pi, j’s are dependent

on both job i and machine j), and a fixed number m (not
part of the input) of unrelated machines. The field ˇ takes
on the values rj, which indicates that the jobs have release
dates, and the value pmtn, which indicates that preemp-
tion of jobs is permitted. Further, the value prec in the field
ˇ indicates that the problem may involve precedence con-
straints between jobs, which poses further restrictions on
the schedule. The field � is either

P
wjCj or

P
Cj , which

denote total weighted and total (unweighted) completion
times, respectively.

Some of the simpler classes of the weighted comple-
tion time scheduling problems admit optimal polynomial-
time solutions. They include the problem Pjj

P
Cj , for

which the shortest-job-first strategy is optimal, the prob-
lem 1jj

P
wjCj , for which Smith’s rule [13] (scheduling

jobs in their nondecreasing order of p j/wj values) is op-
timal, and the problem Rjj

P
Cj , which can be solved

via matching techniques [2,9]. With the introduction of
release dates, even the simplest classes of the weighted
completion time minimization problem becomes strongly
nondeterministic polynomial-time (NP)-hard. In this ar-
ticle, we focus on the work of Afrati et al. [1], whose main
contribution is the design of polynomial-time approxi-
mation schemes (PTASs) for several classes of schedul-
ing problems to minimize weighted completion time with
release dates. Prior to this work, the best solutions for
minimizing weighted completion time with release dates
were all O(1)-approximation algorithms (e. g., [4,5,11]);
the only known PTAS for a strongly NP-hard problem
involving weighted completion time was due to Skutella
and Woeginger [12], who developed a PTAS for the prob-
lem Pjj

P
wjCj . For an excellent survey on the minimum

weighted completion time problem, we refer the reader to
Chekuri and Khanna [3].

Key Results

Afrati et al. [1] were the first to develop PTASs for weigh-
ted completion time problems involving release dates. We
summarize the running times of these PTASs in Table 1.

The results presented in Table 1 were obtained
through a careful sequence of input transformations fol-
lowed by dynamic programming. The input transforma-
tions ensure that the input becomes well structured at
a slight loss in optimality, while dynamic programming
allows efficient enumeration of all the near-optimal solu-
tions to the well-structured instance.

The first step in the input transformation is geometric
rounding, in which the processing times and release dates
are converted to powers of 1 + �, with at most 1 + � loss
in the overall performance. More significantly, this step



MinimumWeighted Completion Time M 545

MinimumWeighted Completion Time, Table 1
Summary of results of Afrati et al. [1]

Problem Running time of polynomial-time
approximation schemes

1jrjj
P

wjCj O(2poly(
1
� )n + n log n)

Pjrjj
P

wjCj O((m + 1)poly(
1
� )n + n log n)

Pjrj; pmtnj
P

wjCj O(2poly(
1
� )n + n log n)

Rmjrjj
P

wjCj O(f (m; 1
�
)poly(n))

Rmjrj; pmtnj
P

wjCj O(f (m; 1
�
)n + n log n)

Rmjj
P

wjCj O(f (m; 1
�
)n + n log n)

(i) ensures that there are only a small number of distinct
processing times and release dates to deal with, (ii) allows
time to be broken into geometrically increasing intervals,
and (iii) aligns release dates with start and end times of in-
tervals. These are useful properties that can be exploited
by dynamic programming.

The second step in the input transformation is time
stretching, in which small amounts of idle time are added
throughout the schedule. This step also changes comple-
tion times by a factor of at most 1 + O(�), but is useful
for cleaning up the scheduling. Specifically, if a job is
large (i. e., occupies a large portion of the interval where
it executes), it can be pushed into the idle time of a later
interval where it is small. This ensures that most jobs
have small sizes compared with the length of the inter-
vals where they execute, which greatly simplifies schedule
computation. The next step is job shifting. Consider a par-
tition of the time interval [0;1) into intervals of the
form Ix = [(1 + �)x ; (1 + �)x+1), for integral values of
x. The job-shifting step ensures that there is a slightly
suboptimal schedule in which every job j gets completed
within O(log1+�(1 + 1

�
)) intervals after rj. This has the

following nice property: If we consider blocks of intervals
B0;B1; : : :, with each blockBi containing O(log1+�(1+

1
�
))

consecutive intervals, then a job j starting in blockBi com-
pletes within the next block. Further, the other steps in the
job-shifting phase ensure that there are not too many large
jobs which spill over to the next block; this allows the
dynamic programming to be done efficiently.

The precise steps in the algorithms and their analysis
are subtle, and the above description is clearly an oversim-
plification. We refer the reader to [1] or [3] for further de-
tails.

Applications

A number of optimization problems in parallel comput-
ing and operations research can be formulated as ma-

chine scheduling problems. When precedence constraints
are introduced between jobs, the weighted completion
time objective can generalize the more commonly studied
makespan objective, and hence is important.

Open Problems

Some of the major open problems in this area are to im-
prove the approximation ratios for scheduling on unre-
lated or related machines for jobs with precedence con-
straints. The following problems in particularmerit special
mention. The best known solution for the 1jprecj

P
wjCj

problem is the 2-approximation algorithm due to Hall et
al. [8]; improving upon this factor is a major open prob-
lem in scheduling theory. The problem Rjprecj

P
j w jCj

in which the precedence constraints form an arbitrary
acyclic graph is especially open – the only known results
in this direction are when the precedence constraints form
chains [6] or trees [10].

The other open direction is inapproximability – there
are significant gaps between the known approximation
guarantees and hardness factors for various problem
classes. For instance, the Rjj

P
wjCj and Rjr jj

P
wjCj are

both known to be approximable-hard, but the best known
algorithms for these problems (due to Skutella [11]) have
approximation ratios of 3/2 and 2 respectively. Closing
these gaps remain a significant challenge.

Cross References

� Flow Time Minimization
� List Scheduling
�Minimum Flow Time
�MinimumMakespan on Unrelated Machines
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Keywords and Synonyms

Minimum length triangulation

ProblemDefinition

Given a set S of n points in the Euclidean plane, a triangu-
lation T of S is a maximal set of non-intersecting straight-
line segments whose endpoints are in S. The weight of T is
defined as the total Euclidean length of all edges in T. A tri-
angulation that achieves minimum weight is called amin-
imum weight triangulation, often abbreviated MWT, of S.

Key Results

Since there is a very large number of papers and results
dealing with minimum weight triangulation, only rela-
tively very few of them can be mentioned here.

Mulzer and Rote have shown that MWT in NP-
hard [11]. Their proof of NP-completeness is not given ex-
plicitly; it relies on extensive calculations which they per-
formed with a computer. Also recently, Remy and Ste-
ger have shown a quasi-polynomial time approximation
scheme for MWT [12]. These results are stated in the fol-
lowing theorem.

Theorem 1 The problem of computing the MWT (min-
imum weight triangulation) of an input set S of n points
in the plane is NP-hard. However, for any constant � > 0,
a triangulation of S achieving the approximation ratio of
1 + �, for an arbitrarily small positive constant �, can be
computed in time nO(log

8 n).

The Quasi-Greedy Triangulation
Approximates the MWT

Levcopoulos and Krznaric showed that a triangulation
of total length within a constant factor of MWT can be
computed in polynomial time for arbitrary point sets [7].
The triangulation achieving this result is a modification
of the so-called greedy triangulation. The greedy triangu-
lation starts with the empty set of diagonals and keeps
adding a shortest diagonal not intersecting the diagonals
which have already been added, until a full triangulation
is produced. The greedy triangulation has been shown
to approximate the minimum weight triangulation within
a constant factor, unless a special case arises where the
greedy diagonals inserted are “climbing” in a special, very
unbalanced way along a relatively long concave chain con-
taining many vertices and with a large empty space in
front of it, at the same time blocking visibility from an-
other, opposite concave chain of many vertices. In such
“bad” cases the worst case ratio between the length of the
greedy and the length of the minimum weight triangu-
lation is shown to be 	(

p
n). To obtain a triangulation

which always approximates the MWT within a constant
factor, it suffices to take care of this special bad case in or-
der to avoid the unbalanced “climbing”, and replace it by
a more balanced climbing along these two opposite chains.
Each edge inserted in this modified method is still almost
as short as the shortest diagonal, within a factor smaller
than 1.2. Therefore, the modified triangulation which al-
ways approximates the MWT is named the quasi-greedy
triangulation. In a similar way as the original greedy trian-
gulation, the quasi-greedy triangulation can be computed
in timeO(n log n) [8]. Gudmundsson and Levcopoulos [5]
showed later that a variant of this method can also be par-
allelized, thus achieving a constant factor approximation
of MWT in O(log n) time, using O(n) processors in the
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CRCW PRAM model. Another by-product of the quasi-
greedy triangulation is that one can easily select in lin-
ear time a subset of its edges to obtain a convex partition
which is within a constant factor of the minimum length
convex partition of the input point set. This last prop-
erty was crucial in the proof that the quasi-greedy trian-
gulation approximates the MWT. The proof also uses an
older result that the (original, unmodified) greedy trian-
gulation of any convex polygon approximates the mini-
mumweight triangulation [9]. Some of the results from [7]
and from [8] can be summarized in the following theo-
rem:

Theorem 2 Let S be an input set of n points in the plane.
The quasi-greedy triangulation of S, which is a slightly mod-
ified version of the greedy triangulation of S, has total length
within a constant factor of the length of the MWT (mini-
mum weight triangulation) of S, and can be computed in
time O(n log n). Moreover, the (unmodified) greedy trian-
gulation of S has length within O(

p
n) of the length ofMWT

of S, and this bound is asymptotically tight in the worst
case.

Computing the Exact MinimumWeight Triangulation

Below three approaches to compute the exact MWT are
shortly discussed. These approaches assume that it is nu-
merically possible to efficiently compare the total length of
sets of line segments in order to select the set of smallest
weight. This is a simplifying assumption, since this is an
open problem per se. However, the problem of comput-
ing the exact MWT remains NP-hard even under this as-
sumption [11]. The three approaches differ with respect to
the creation and selection of subproblems, which are then
solved by dynamic programming.

The first approach, sketched by Lingas [10], employs
a general method for computing optimal subgraphs of the
complete Euclidean graph. By developing this approach,
it is possible to achieve subexponential time 2O(

p
n log n).

The idea to create the subproblems which are solved by dy-
namic programming. This is done by trying all (suitable)
planar separators of length O(

p
n), separating the input

point set in a balanced way, and then to proceed recur-
sively within the resulting subproblems.

The second approach uses fixed-parameter algorithms.
So, for example, if there are only O(log n) points in the
interior of the convex hull of S, then the MWT of S can
be computed in polynomial time [4]. This approach ex-
tends also to compute the minimum weight triangulation
under the constraint that the outer boundary is not nec-
essarily the convex hull of the input vertices, it can be
an arbitrary polygon. Some of these algorithms have been

implemented, see Grantson et al. [2] for a comparison
of some implementations. These dynamic programming
approaches take typically cubic time with respect to the
points of the boundary, but exponential time with respect
to the number of remaining points. So, for example, if k
is the number of hole points inside the boundary polygon,
then an algorithm, which has also been implemented, can
compute the exact MWT in time O(n3 � 2k � k) [2].

In an attempt to solve larger problems, a different ap-
proach uses properties of MWT which usually help to
identify, for random point sets, many edges that must be,
respectively cannot be, in MWT. One can then use dy-
namic programming to fill in the remaining MWT-edges.
For random sets consisting of tens of thousands of points
from the uniform distribution, one can thus compute the
exact MWT in minutes [1].

Applications

The problem of computing a triangulation arises, for ex-
ample, in finite element analysis, terrain modeling, stock
cutting and numerical approximation [3,6]. Theminimum
weight triangulation has attracted the attention of many
researchers, mainly due to its natural definition of opti-
mality, and because it has proved to be a challenging prob-
lem over the past thirty years, with unknown complexity
status until the end of 2005.

Open Problems

All results mentioned leave open problems. For example,
can one find a simpler proof of NP-completeness, which
can be checked without running computer programs? It
would be desirable to improve the approximation constant
which can be achieved in polynomial time (to simplify the
proof, the constant shown in [7] is not explicitly calcu-
lated and it would be relatively large, if the proof is not
refined). The time bound for the approximation scheme
could hopefully be improved. It could also be possible to
refine the software which computes efficiently the exact
MWT for large random point sets, so that it can handle
efficiently a wider range of input, i. e., not only completely
random point sets. This could perhaps be done by combin-
ing this software with implementations of fixed parameter
algorithms, as the ones reported in [2,4], or with other ap-
proaches. It is also open whether or not the subexponential
exact method can be further improved.

Experimental Results

Please see the last paragraph under the section about key
results.
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URL to Code

Link to code used to compare some dynamic program-
ming approaches in [2]: http://fuzzy.cs.uni-magdeburg.
de/~borgelt/pointgon.html
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ProblemDefinition

How can a network be explored efficiently with the help of
mobile agents? This is a very broad question and to answer
it adequately it will be necessary to understand more pre-
cisely what mobile agents are, what kind of networked en-
vironment they need to probe, and what complexity mea-
sures are interesting to analyze.

Mobile Agents

Mobile agents are autonomous, intelligent computer soft-
ware that canmove within a network. They aremodeled as
automata with limited memory and computation capabil-
ity and are usually employed by another entity (to which
they must report their findings) for the purpose of col-
lecting information. The actions executed by the mobile
agents can be discrete or continuous and transitions from
one state to the next can be either deterministic or non-
deterministic, thus giving rise to various natural complex-
ity measures depending on the assumptions being consid-
ered.

Network Model

The network model is inherited directly from the theory of
distributed computing. It is a connected graph whose ver-
tices comprise the computing nodes and edges correspond
to communication links. It may be static or dynamic and
its resources may have various levels of accessibility. De-
pending on themodel being considered, nodes and links of
the network may have distinct labels. A particularly useful
abstraction is an anonymous network whereby the nodes
have no identities, which means that an agent cannot dis-
tinguish two nodes except perhaps by their degree. The
outgoing edges of a node are usually thought of as distin-
guishable but an important distinction can be made be-

http://fuzzy.cs.uni-magdeburg.de/~borgelt/pointgon.html
http://fuzzy.cs.uni-magdeburg.de/~borgelt/pointgon.html
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tween a globally consistent edge-labeling versus a locally
independent edge-labeling.

Efficiency Measures for Exploration

Efficiency measures being adopted involve the time re-
quired for completing the exploration task, usually mea-
sured either by the number of edge traversals or nodes
visited by the mobile agent. The interplay between
time required for exploration and memory used by the
mobile agent (time/memory tradeoffs) are key parameters
considered for evaluating algorithms. Several researchers
impose no restrictions on the memory but rather seek al-
gorithmsminimizing exploration time. Others, investigate
theminimum size of memorywhich allows for exploration
of a given type of network (e. g., tree) of given (known or
unknown) size, regardless of the exploration time. Finally,
several researchers consider time/memory tradeoffs.

Main Problems

Given a model for both the agents and the network, the
graph exploration problem is that of designing an algo-
rithm for the agent that allows it to visit all of the nodes
and/or edges of the network. A closely related problem is
where the domain to be explored is presented as a region
of the plane with obstacles and exploration becomes vis-
iting all unobstructed portions of the region in the sense
of visibility. Another related problem is that of rendezvous
where two or more agents are required to gather at a single
node of a network.

Key Results

Claude Shannon [17] is credited with the first finite au-
tomaton algorithm capable of exploring an arbitrary maze
(which has a range of 5 � 5 squares) by trial and er-
ror means. Exploration problems for mobile agents have
been extensively studied in the scientific literature and the
reader will find a useful historical introduction in Fraigni-
aud et al.[11].

Exploration in General Graphs

The network is modeled as a graph and the agent canmove
from node to node only along the edges. The graph setting
can be further specified in two different ways. In Deng and
Papadimitriou [8] the agent explores strongly connected
directed graphs and it can move only in the direction from
head to tail of an edge, but not vice-versa. At each point,
the agent has a map of all nodes and edges visited and
can recognize if it sees them again. They minimize the ra-
tio of the total number of edges traversed divided by the

optimum number of traversals, had the agent known the
graph. In Panaite and Pelc [15] the explored graph is undi-
rected and the agent can traverse edges in both directions.
In the graph setting it is often required that apart from
completing exploration the agent has to draw a map of the
graph, i. e., output an isomorphic copy of it. Exploration of
directed graphs assuming the existence of labels is inves-
tigated in Albers and Henzinger [1] and Deng and Pa-
padimitriou [8]. Also in Panaite and Pelc [15], an explo-
ration algorithm is proposed working in time e + O(n),
where is n the number of nodes and e the number of
links. Fraigniaud et al. [11] investigate memory require-
ments for exploring unknown graphs (of unknown size)
with unlabeled nodes and locally labeled edges at each
node. In order to explore all graphs of diameterD andmax
degree d a mobile agent needs ˝(D log d) memory bits
even when exploration is restricted to planar graphs. Sev-
eral researchers also investigate exploration of anonymous
graphs in which agents are allowed to drop and remove
pebbles. For example in Bender et al. [4] it is shown that
one pebble is enough for exploration, if the agent knows
an upper bound on the size of the graph, and 	(log log n)
pebbles are necessary and sufficient otherwise.

Exploration in Trees
In this setting it is assumed the agent can distinguish ports
at a node (locally), but there is no global orientation of the
edges and no markers available. Exploration with stop is
when the mobile agent has to traverse all edges and stop at
some node. For exploration with return the mobile agent
has to traverse all edges and stop at the starting node. In
perpetual exploration the mobile agent has to traverse all
edges of the tree but is not required to stop. The upper and
lower bounds on memory for the exploration algorithms
analyzed in Diks et al. [9] are summarized in the table, de-
pending on the knowledge that themobile agent has. Here,
n is the number of nodes of the tree, N � n is an upper
bound known to the mobile agent, and d is the maximum
degree of a node of the tree.

Exploration Knowledge Lower Bounds Upper Bounds
Perpetual ; None O(log d)
w/Stop n�N ˝(log log log n) O(logN)
w/Return ; ˝(logn) O(log2 n)

Exploration in a Geometric Setting

Exploration in a geometric setting with unknown terrain
and convex obstacles is considered by Blum et al. [5]. They
compare the distance walked by the agent (or robot) to the
length of the shortest (obstacle-free) path in the scene and
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describe and analyze robot strategies thatminimize this ra-
tio for different kinds of scenes. There is also related litera-
ture for exploration in more general settings with polygo-
nal and rectangular obstacles by Deng et al. [7] and Bar-
Eli et al. [3], respectively. A setting that is important in
wireless networking is when nodes are aware of their lo-
cation. In this case, Kranakis et al. [12] give efficient algo-
rithms for navigation, namely compass routing and face
routing that guarantee delivery in Delaunay and arbitrary
planar geometric graphs, respectively, using only local in-
formation.

Rendezvous

The rendezvous search problem differs from the explo-
ration problem in that it concerns two searchers placed at
different nodes of a graph that want to minimize the time
required to rendezvous (usually) at the same node. At any
given time the mobile agents may occupy a vertex of the
graph and can either stay still or move from vertex to ver-
tex. It is of interest to minimize the time required to ren-
dezvous. A natural extension of this problem is to study
multi-agent mobile systems. More generally, given a par-
ticular agentmodel and networkmodel, a set of agents dis-
tributed arbitrarily over the nodes of the network are said
to rendezvous if executing their programs after some fi-
nite time they all occupy the same node of the network at
the same time. Of special interest is the highly symmet-
ric case of anonymous agents on an anonymous network
and the simplest interesting case is that of two agents at-
tempting to rendezvous on a ring network. In particular, in
the model studied by Sawchuk [16] the agents cannot dis-
tinguish between the nodes, the computation proceeds in
synchronous steps, and the edges of each node are oriented
consistently. The table summarizes time/memory trade-
offs known for six algorithms (see Kranakis et al. [13] and
Flocchini et al. [10]) when the k mobile agents use indis-
tinguishable pebbles (one per mobile agent) to mark their
position in an n node ring.

Memory Time Memory Time
O(k log n) O(n) O(log n) O(n)
O(log n) O(kn) O(log k) O(n)

O(k log log n) O
�

n log n
log log n

�
O(log k) O(n log k)

Kranakis et al.[14] show a striking computational differ-
ence for rendezvous in an oriented, synchronous, n � n
torus when the mobile agents may have more indistin-
guishable tokens. It is shown that two agents with a con-
stant number of unmovable tokens, or with one mov-
able token each cannot rendezvous if they have o(log n)

memory, while they can perform rendezvous with de-
tection as long as they have one unmovable token and
O(log n) memory. In contrast, when two agents have two
movable tokens each then rendezvous (respectively, ren-
dezvous with detection) is possible with constant mem-
ory in a torus. Finally, two agents with three movable to-
kens each and constant memory can perform rendezvous
with detection in a torus. If the condition on synchrony
is dropped the rendezvous problem becomes very chal-
lenging. For a given initial location of agents in a graph,
De Marco et al. [6] measure the performance of a ren-
dezvous algorithm as the number of edge traversals of both
agents until rendezvous is achieved. If the agents are ini-
tially situated at a distance D in an infinite line, they give
a rendezvous algorithm with cost O(DjLminj

2) when D
is known and O((D + jLmaxj)3) if D is unknown, where
jLminj and jLmaxj are the lengths of the shorter and longer
label of the agents, respectively. These results still hold for
the case of the ring of unknown size but then they also give
an optimal algorithm of cost O(njLminj), if the size n of the
ring is known, and of cost O(njLmaxj), if it is unknown.
For arbitrary graphs, they show that rendezvous is feasible
if an upper bound on the size of the graph is known and
they give an optimal algorithm of cost O(DjLminj) if the
topology of the graph and the initial positions are known
to the agents.

Applications

Interest inmobile agents has been fueled by two overriding
concerns. First, to simplify the complexities of distributed
computing, and second to overcome the limitations of user
interface approaches. Today they find numerous applica-
tions in diverse fields such as distributed problem solv-
ing and planning (e. g., task sharing and coordination),
network maintenance (e. g., daemons in networking sys-
tems for carrying out tasks like monitoring and surveil-
lance), electronic commerce and intelligence search (e. g.,
data mining and surfing crawlers to find products and
services from multiple sources), robotic exploration (e. g.,
rovers, and other mobile platforms that can explore poten-
tially dangerous environments or even enhance planetary
extravehicular activity), and distributed rational decision
making (e. g., auction protocols, bargaining, decisionmak-
ing). The interested reader can find useful information in
several articles in the volume edited by Weiss [18].

Open Problems

Specific directions for further research would include the
study of time/memory tradeoffs in search game models
(see Alpern and Gal [2]). Multi-agent systems are partic-
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ularly useful for content-based searches and exploration,
and further investigations in this area would be fruitful.
Memory restricted mobile agents provide a rich model
with applications in sensor systems. In the geometric set-
ting, navigation and routing in a three dimensional envi-
ronment using only local information is an area withmany
open problems.
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ProblemDefinition

Three related optimization problems derived from the
classical edge disjoint paths problem (EDP) are described.
An instance of EDP consists of an undirected graph G =
(V ; E) and a multiset T = fs1t1; s2t2; : : : ; sk tkg of k node
pairs. EDP is a decision problem: can the pairs in T be
connected (alternatively routed) via edge-disjoint paths?
In other words, are there paths P1; P2; : : : ; Pk such that for
1 � i � k; Pi is path from si to ti, and no edge e 2 E
is in more than one of these paths? EDP is known to be
NP-Complete. This article considers there maximization
problems related to EDP.
� Maximum Edge-Disjoint Paths Problem (MEDP).

Input to MEDP is the same as for EDP. The objective
is to maximize the number of pairs in T that can be
routed via edge-disjoint paths. The output consists of
a subset S  f1; 2; : : : ; kg and for each i 2 S a path Pi
connecting si to ti such that the paths are edge-disjoint.
The goal is to maximize |S|.
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� Maximum Edge-Disjoint Paths Problem with Con-
gestion (MEDPwC). MEDPwC is a relaxation of
MEDP. The input, in addition to G and the node pairs,
contains an integer congestion parameter c. The output
is the same for MEDP; a subset S  f1; 2; : : : ; kg and
for each i 2 S a path Pi connecting si to ti. However,
the paths Pi ; 1 � i � k are not required to be edge-
disjoint. The relaxed requirement is that for each edge
e 2 E, the number of paths for the routed pairs that
contain e is at most c. Note that MEDPwC with c = 1 is
the same as MEDP.

� All-or-Nothing Multicommodity Flow Problem
(ANF). ANF is a different relaxation of MEDP ob-
tained by relaxing the notion of routing. A pair si ti
is now said to be routed if a unit flow is sent from si
to ti (potentially on multiple paths). The input is the
same as for MEDP. The output consists of a subset
S  f1; 2; : : : ; kg such that there is a feasible multi-
commodity flow in G that routes one unit of flow for
each pair in S. The goal is to maximize |S|.

In the rest of the article, graphs are assumed to be undi-
rected multigraphs. Given a graph G = (V ; E) and S � V ,
let ıG(S) denote the set of edges with exactly one end point
in S. Let n denote the number of vertices in the input
graph.

Key Results

A few results in the broader literature are reviewed in addi-
tion to the results from [6]. EDP is NP-Complete when k is
part of the input. A highly non-trivial result of Robertson
and Seymour yields a polynomial time algorithm when k
is a fixed constant.

Theorem 1 ([16]) There is a polynomial time algorithm
for EDP when k is a fixed constant independent of the input
size.

Using Theorem 1 it is easy to see that MEDP and MED-
PwC have polynomial time algorithms for fixed k . The
same holds for ANF by simple enumeration since the de-
cision version is polynomial-time solvable via linear pro-
gramming.

The focus of this article is on the case when k is part
of the input, and in this setting, all three problems consid-
ered are NP-hard. The starting point for most approxima-
tion algorithms is the natural multicommodity flow relax-
ation given below. This relaxation is valid for both MEDP
and ANF. The end points of the input pairs are referred to
as terminals and let X denote the set of terminals. To de-
scribe the relaxation as well as simplify further discussion,
the following simple assumption is made without loss of

generality; each node in the graph participates in at most
one of the input pairs. This assumption implies that the in-
put pairs induce a matchingM on the terminal setX. Thus
the input for the problem can alternatively given as a triple
(G; X;M).

For the given instance (G; X;M), let Pi denote the set
of paths joining si and ti in G and let P = [iPi . The
LP relaxation has the following variables. For each path
P 2 P there is a variable f (P) which is the amount of flow
sent on P. For each pair si ti there is a variable xi to indicate
the total flow that is routed for the pair.

(MCF � LP)max
kX
i=1

xi s:t

xi �
X
P2Pi

f (P) = 0 1 � i � k

X
P : e2P

f (P) � 1 8e 2 E

xi ; f (P) 2 [0; 1] 1 � i � k; P 2 P

The above path formulation has an exponential (in n)
number of variables, however it can still be solved in poly-
nomial time. There is also an equivalent compact formu-
lation with a polynomial number of variables and con-
straints. Let OPT denote the value of an optimum solution
to a given instance. Similarly, let OPT-LP denote the value
of an optimum solution the LP relaxation for the given
instance. It can be seen that OPT-LP � OPT. It is known
that the integrality gap of (MCF-LP) is ˝(

p
n) [10]; that

is, there is an infinite family of instances such that OPT �
LP/OPT = ˝(

p
n. The current best approximation algo-

rithm for MEDP is given by the following theorem.

Theorem 2 ([4]) The integrality gap of (MCF-LP) for
MEDP is	(

p
n) and there is an O(

p
n) approximation for

MEDP.

For MEDPwC the approximation ratio improves with the
congestion parameter c.

Theorem 3 ([18])
There is an O(n1/c ) approximation for MEDPwC with

congestion parameter c. In particular there is a polynomial
time algorithm that routes˝(OPT-LP/n1/c ) pairs with con-
gestion at most c.

The above theorem is established via randomized round-
ing of a solution to (MCF-LP). Similar results, but via sim-
pler combinatorial algorithms, are obtained in [2,15].

In [6] a new framework was introduced to obtain ap-
proximation algorithm for routing problems in undirected
graphs via (MCF-LP). A key part of the framework is the
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Multicommodity Flow, Well-linked Terminals and Routing Problems, Table 1
Known bounds for MEDP, ANF and MEDPwC in general undirected graphs. The best upper bound on the approximation ratio is the
same as the upper bound on the integrality gap of (MCF-LP)

Integrality Gap of (MCF-LP) Approximation Ratio
Upper bound Lower bound Lower bound

MEDP O(
p
n) ˝(

p
n) ˝(log1/2�� n)

MEDPwC O(n1/c) ˝(log(1��)/(c+1) n) ˝(log(1��)/(c+1) n)
ANF O(log2 n) ˝(log1/2�� n) ˝(log1/2�� n)

so-called well-linked decomposition that allows a reduc-
tion of an arbitrary instance to an instance in which the
terminals satisfy a strong property.

Definition 1 Let G = (V ; E) be a graph. A subset X 
V is cut-well-linked in G if for every S � V , jıG (S)j �
minfjS \ Xj; j(V n S) \ Xjg. X is flow-well-linked if there
exists a feasible fractional multicommodity flow in G for
the instance in which there is a demand of 1/|X| for each
unordered pair uv; u; v 2 X.

The main result in [6] is the following.

Theorem 4 ([6]) Let (G; X;M) be an instance of MEDP
or ANF and let OPT-LP be the value of an optimum solu-
tion to (MCF-LP) on (G; X;M). There there is a polyno-
mial time algorithm that obtains a collection of instances
(G1; X1;M1); (G2; X2;M2); : : : ; (Gh ; Xh ;Mh)with the fol-
lowing properties:
� The graphs G1;G2; : : : ;Gh are node-disjoint induced

subgraphs of G. For 1 � i � h; Xi  X and Mi  M.
� For 1 � i � h; Xi is flow-well-linked in Gi.
�
Ph

i=1 jXi j = ˝(OPT-LP/ log2 n).

For planar graphs and graphs that exclude a fixed minor,
the above theorem gives a stronger guarantee:

Ph
i=1 jXi j =

˝(OPT-LP/ log n). A well-linked instance satisfies a strong
symmetry property based on the following observation.
If A is flow-well-linked in G then for any matching J
on X, OPT-LP on the instance (G;A; J) is ˝(jAj). Thus
the particular matching M of a given well-linked instance
(G; X;M) is essentially irrelevant. The second part of the
framework in [6] consists of exploiting the well-linked
property of the instances produced by the decomposition
procedure. At a high level this is done by showing that
if G has a well-linked set X, then it contains a “crossbar”
(a routing structure) of size ˝(jXj/poly(log n)). See [6]
for more precise definitions. Techniques for the second
part vary based on the problem as well as the family of
graphs in question. The following results are obtained us-
ing Theorem 4 and other non-trivial ideas for the second
part [7,8,6,3].

Theorem 5 ([6) There is an O(log2 n) approximation for
ANF. This improves to an O(log n) approximation in pla-
nar graphs.

Theorem 6 ([6) There is an O(log n) approximation for
MEDPwC in planar graphs for c � 2. There is an O(log n)
approximation for ANF in planar graphs.

Theorem 7 ([3) There is an O(r log n log r) approxima-
tion for MEDP in graphs of treewidth at most r.

Generalizations and Variants

Some natural variants and generalizations of the problems
mentioned in this article are obtained by considering three
orthogonal aspects: (i) node disjointness instead of edge-
disjointness, (ii) capacities on the edges and/or nodes, and
(iii) demand values on the pairs (each pair si ti has an in-
teger demand di and the objective is to route di units of
flow between si and ti). Results similar to those mentioned
in the article are shown to hold for these generalizations
and variants [6]. Capacities and demand values on pairs
are somewhat easier to handle while node-disjoint prob-
lems often require additional non-trivial ideas. The reader
is referred to [6] for more details.

For some special classes of graphs (trees, expanders
and grids to name a few), constant factor or poly-logarith-
mic approximation ratios are known for MEDP.

Applications

Flow problems are at the core of combinatorial optimiza-
tion and have numerous applications in optimization,
computer science and operations research. Very special
cases of EDP andMEDP include classical problems such as
single-commodity flows, andmatchings in general graphs,
both of which have many applications. EDP and variants
arise most directly in telecommunication networks and
VLSI design. Since EDP captures difficult problems as spe-
cial cases, there are only a few algorithmic tools that can
address the numerous applications in a unified fashion.
Consequently, empirical research tends to focus on appli-
cation specific approaches to obtain satisfactory solutions.



554 M Multicut

The flip side of the difficulty of EDP is that it offers a rich
source of problems, the study of which has led to impor-
tant algorithmic advances of broad applicability, as well as
fundamental insights in graph theory, combinatorial opti-
mization, and related fields.

Open Problems

A number of very interesting open problems remain re-
garding the approximability of the problems discussed in
this article. Table 1 gives the best known upper and lower
bounds on the approximation ratio as well as integrality
gap of (MCF-LP). All the inapproximability results in Ta-
ble 1, and the integrality gap lower bounds for MEDPwC
and ANF, are from [1]. The inapproximability results are
based on the assumption that NP 6 ZTIME(npoly(log n)).
Closing the gaps between the lower and upper bounds are
the major open problems.
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ProblemDefinition

The Multicut problem is a natural generalization of the s-t
mincut problem—given an undirected capacitated graph
G = (V ; E) with k pairs of vertices fsi ; tig; the goal is
to find a subset of edges of the smallest total capacity
whose removal from G disconnects si from ti for ev-
ery i 2 f1; � � � ; kg. However, unlike the Mincut problem
which is polynomial-time solvable, the Multicut problem
is known to be NP-hard and APX-hard for k � 3 [6].

This problem is closely related to the Multi-Commod-
ity Flow problem. The input to the latter is a capacitated
network with k commodities (source-sink pairs); the goal
is to route as much total flow between these source-sink
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pairs as possible while satisfying capacity constraints. The
maximummulti-commodity flow in a graph can be found
in polynomial time via linear programming, and there are
also several combinatorial FPTASes known for this prob-
lem [7,9,11].

It is immediate from the definition of Multicut that the
multicommodity flow in a graph is bounded above by the
capacity of a minimummulticut in the graph. When there
is a single commodity to be routed, themax-flowmin-cut
theorem of Ford and Fulkerson [8] states that the converse
also holds: the maximum s-t flow in a graph is exactly
equal to the minimum s-t cut in the graph. This duality
between flows and cuts in a graph has many applications
and, in particular, leads to a simple algorithm for finding
the minimum cut in a graph.

Given its simplicity and elegance, several attempts
have been made to extend this duality to other classes of
flow and partitioning problems. Hu showed, for exam-
ple, that the min-multicut equals the maximum multi-
commodity flow when there are only two commodities
in the graph [12]. Unfortunately, this property does not
extend to graphs with more than two commodities. The
focus has therefore been on obtaining approximate max-
multicommodity flow min-multicut theorems. Such theo-
rems would also imply a polynomial-time algorithm for
approximately computing the capacity of the minimum
multicut in a graph.

Key Results

Garg, Vazirani andYannakakis [10] were the first to obtain
an approximate max-multicommodity flow min-multicut
theorem. They showed that the maximummulticommod-
ity flow in a graph is always at least an O(log k) fraction of
theminimummulticut in the graph. Moreover, their proof
of this result is constructive. That is, they also provide an
algorithm for computing a multicut for a given graph with
capacity at most O(log k) times the maximum multicom-
modity flow in the graph. This is the best approximation
algorithm known to date for the Multicut problem.

Theorem 1 Let M denote the minimum multicut in
a graph with k commodities and f denote the maximum
multicommodity flow in the graph. Then

M
O(log k)

� f � M :

Moreover, there is a polynomial time algorithm for finding
an O(log k)-approximate multicut in a graph.

Furthermore, they show that this theorem is tight to within
constant factors. That is, there are families of graphs in

which the gap between the maximum multicommodity
flow and minimummulticut is	(log k).

Theorem 2 There exists a infinite family of multicut in-
stances f(Gk ; Pk )g such that for all k, the graph Gk =
(Vk ; Ek) contains k vertices and Pk  Vk � Vk is a set of
˝(k2) source-sink pairs. Furthermore, themaximummulti-
commodity flow in the instance (Gk ; Pk) is O(k/ log k) and
the minimum multicut is˝(k).

Garg et al. also consider the Sparsest Cut problem which is
another partitioning problem closely related to Multicut,
and provided an approximation algorithm for this prob-
lem. Their results for Sparsest Cut have subsequently been
improved upon [3,15]. The reader is referred to the entry
on� Sparsest Cut for more details.

Applications

A key application of the Multicut problem is to the
2CNF �Deletion problem. The latter is a constraint sat-
isfaction problem in which given a weighted set of clauses
of the form P � Q, where P and Q are literals, the goal
is to delete a minimum weight set of clauses so that the
remaining set is satisfiable. The 2CNF �Deletion prob-
lem models a number of partitioning problems, for ex-
ample the Minimum Edge-Deletion Graph Bipartization
problem—finding the minimumweight set of edges whose
deletion makes a graph bipartite. Klein et al. [14] showed
that the 2CNF �Deletion problem reduces in an ap-
proximation preserving way to Multicut. Therefore, a �-
approximation to Multicut implies a �-approximation to
2CNF �Deletion. (See the survey by Shmoys [16] for
more applications.)

Open Problems

There is a big gap between the best-known algorithm
for Multicut and the best hardness result (APX-hardness)
known for the problem. Improvements in either direction
may be possible, although there are indications that the
O(log k) approximation is the best possible. In particular,
Theorem 2 implies that the integrality gap of the natural
linear programming relaxation for Multicut is 	(log k).
Although improved approximations have been obtained
for other partitioning problems using semi-definite pro-
gramming instead of linear programming, Agarwal et
al. [1] showed that similar improvements cannot be
achieved for Multicut—the integrality gap of the natural
SDP-relaxation for Multicut is also	(log k). On the other
hand, there are indications that the APX-hardness is not
tight. In particular, assuming the so-called Unique Games
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conjecture, it has been shown that Multicut cannot be ap-
proximated to within any constant factor [4,13]. In light
of these negative results, the main open problem related to
this work is to obtain a super-constant hardness for the
Multicut problem under a standard assumption such as
P ¤ NP.

The Multicut problem has also been studied in di-
rected graphs. The best known approximation algorithm
for this problem is an O(n11/23 logO(1) n)-approximation
due to Aggarwal, Alon and Charikar [2], while on the
hardness side, Chuzhoy and Khanna [5] show that there
is no 2˝(log1�� n) approximation, for any � > 0, unless
NPZPP. Chuzhoy and Khanna also exhibit a family of
instances for which the integrality gap of the natural LP re-
laxation of this problem (which is also the gap between the
maximum directed multicommodity flow and the mini-
mum directed multicut) is˝(n1/7).
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ProblemDefinition

Let c be a given compression algorithm, and let c(D) be
the result of c compressing data D. The compressed search
problem with compression algorithm c is defined as follows.

INPUT: Compressed text c(T) and pattern P:
OUTPUT: All locations in T where pattern P occurs.

A compressed matching algorithm is optimal if its time
complexity is O(jc(T)j).

Although optimality in terms of time is always impor-
tant, when dealingwith compression, the criterion of extra
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space is perhaps more important [20]. Applications em-
ploy compression techniques specifically because there is
a limited amount of available space. Thus, it is not suffi-
cient for a compressed matching algorithm to be optimal
in terms of time, it must also satisfy the given space con-
straints. Space constraints may be due to limited amount
of disk space (e. g., on a server), or they may be related to
the size of the memory or cache. Note that if an algorithm
uses as little extra space as the size of the cache, the run-
time of the algorithm is also greatly reduced as no cache
misses will occur [13]. It is also important to remember
that in many applications, e. g., LZ compression on strings,
the compression ratio – jSj/jc(S)j – is a small constant.
In a case where the compression ratio of the given text is
a constant, an optimal compressed matching performs no
better than the naive algorithm of decompressing the text.
However, if the constants hidden in the “big O” are smaller
than the compression ratio, then the compressedmatching
does offer a practical benefit. If those constants are larger
than the optimal the compressed search algorithmmay, in
fact, be using more space than the uncompressed text.

Definition 1 (inplace) A compressed matching is said to
be inplace if the extra space used is proportional to the in-
put size of the pattern.

Note that this definition encompasses the compressed
matching model (e. g., [2]) where the pattern is input
in uncompressed form, as well as the fully compressed
model [10], where the pattern is input in compressed form.
The inplace requirement allows the extra space to be the
input size of the pattern, whatever that size may be. How-
ever, in many applications the compression ratio is a con-
stant; therefore, a stronger space constraint is defined.

Definition 2 Let AP be the set of all patterns of size
m, and let c(AP) be the set of all compressed images of
AP. Letm0 be the length of the smallest pattern in c(AP).
A compressed matching algorithm with input pattern P of
length m is called strongly inplace if the amount of extra
space used is proportional to m0.

The problem as defined above is equally applicable to tex-
tual (one-dimensional), image (two-dimensional), or any
type of data, such as bitmaps, concordances, tables, XML
data, or any possible data structure.

The compressed matching problem is considered cru-
cial in image databases, since they are highly compress-
ible. The initial definition of the compressed matching
paradigm was motivated by the two dimensional run-
length compression. This is the compression used for fax
transmissions. The run-length compression is defined as
follows.

Let S = s1s2 � � � sn be a string over some alphabet
˙ . The run-length compression of string S is the string
S0 = � r1

1 �
r2
2 � � ��

rk
k such that (1) �i ¤ �i+1 for 1 � i < k

and (2) S can be described as the concatenation of k seg-
ments, the symbol �1 repeated r1 times, the symbol �2 re-
peated r2 times, : : :, and the symbol �k repeated rk times.
The two-dimensional run-length compression is the con-
catenation of the run-length compression of all the matrix
rows (or columns).

The two-dimensional run-length compressed matching
problem is defined as follows:
INPUT: Text array T of size n � n, and pattern array P
of size m � m both in two-dimensional run-length com-
pressed form.
OUTPUT: All locations in T of occurrences of P. For-
mally, the output is the set of locations (i, j) such that
T[i + k; j + l] = P[k + 1; l + 1] k; l = 0 : : :m � 1.

Another ubiquitous lossless two-dimensional com-
pression is CompuServe’s GIF standard, widely used on
the World Wide Web. It uses LZW [19] (a variation of
LZ78) on the image linearized row by row.

The two-dimensional LZ compression is formally de-
fined as follows. Given an image T[1 : : : n; 1 : : : n], create
a string Tlin [1 : : : n2] by concatenating all rows of T. Com-
pressing Tlin with one-dimensional LZ78 yields the two-
dimensional LZ compression of the image T.

The two-dimensional LZ compressedmatching problem
is defined as follows:
INPUT: Text array T of size n � n, and pattern array P of
sizem � m both in two-dimensional LZ compressed form.
OUTPUT: All locations in T of occurrences of P. For-
mally, the output is the set of locations (i, j) such that
T[i + k; j + l] = P[k + 1; l + 1] k; l = 0 : : :m � 1.

Key Results

The definition of compressed search first appeared in the
context of searching for two dimensional run-length com-
pression [1,2]. The following result was achieved there.

Theorem 1 (Amir and Benson [3]) There exists an
O(jc(T)j log jc(T)j) worst-case time solution to the com-
pressed search problem with the two dimensional run-
length compression algorithm.

The abovementioned paper did not succeed in achieving
either an optimal or an inplace algorithm. Nevertheless, it
introduced the notion of two-dimensional periodicity. As
in strings, periodicity plays a crucial rôle in two-dimen-
sional string matching, and its advent has provided solu-
tions to many longstanding open problems of two-dimen-
sional string matching. In [5], it was used to achieve the
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first linear-time, alphabet-independent, two-dimensional
text scanning. Later, in [4,16] it was used in two different
ways for a linear-time witness table construction. In [7] it
was used to achieve the first parallel, time and work opti-
mal, CREW algorithm for text scanning. A simpler variant
of periodicity was used by [11] to obtain a constant-time
CRCW algorithm for text scanning. A recent further at-
tempt has been made [17] to generalize periodicity analy-
sis to higher dimensions.

The first optimal two-dimensional compressed search
algorithm was the following.

Theorem 2 (Amir et al. [6]) There exists an O(jc(T)j)
worst-case time solution to the compressed search prob-
lem with the two-dimensional run-length compression al-
gorithm.

Optimality was achieved by a concept the authors called
witness-free dueling. The paper proved new properties of
two-dimensional periodicity. This enables duels to be per-
formed in which no witness is required. At the heart of the
dueling idea lies the concept that two overlapping occur-
rences of a pattern in a text can use the content of a pre-
determined text position or witness in the overlap to elim-
inate one of them. Finding witnesses is a costly operation
in a compressed text; thus, the importance of witness-free
dueling.

The original algorithm of Amir et al. [6] takes time
O(jc(T)j + jPj log �), where � is min(jPj; j˙ j), and ˙

is the alphabet. However with the witness table con-
struction of Galil and Park [12] the time is reduced to
O(jc(T)j + jPj). Using known techniques, one can modify
their algorithm so that its extra space is O(jPj). This cre-
ates an optimal algorithm that is also inplace, provided the
pattern is input in uncompressed form. With use of the
run-length compression, the difference between jPj and
jc(P)j can be quadratic. Therefore it is important to seek
an inplace algorithm.

Theorem 3 (Amir et al. [9]) There exists an O(jc(T)j +
jPj log �) worst-case time solution to the compressed search
problem with the two-dimensional run-length compression
algorithm, where � ismin(jPj; j˙ j), and˙ is the alphabet,
for all patterns that have no trivial rows (rows consisting
of a single repeating symbol). The amount of space used is
O(jc(P)j).

This algorithm uses the framework of the noncompressed
two dimensional pattern matching algorithm of [6].
The idea is to use the dueling mechanism defined by
Vishkin [18]. Applying the dueling paradigm directly to
run-length compressedmatching has previously been con-
sidered impossible since the location of a witness in the

compressed text cannot be accessed in constant time.
In [9], a way was shown in which a witness can be ac-
cessed in (amortized) constant time, enabling a relatively
straightforward application of the dueling paradigm to
compressed matching.

A strongly inplace compressedmatching algorithm ex-
ists for the two-dimensional LZ compression, but its pre-
processing is not optimal.

Theorem 4 (Amir et al. [8]) There exists an O(jc(T)j +
jPj3 log �) worst-case time solution to the compressed
search problem with the two-dimensional LZ compression
algorithm, where � is min(jPj; j˙ j), and ˙ is the alpha-
bet. The amount of space used is O(m), for an m � m size
pattern. O(m) is the best compression achievable for any
m �m sized pattern under the two-dimensional LZ com-
pression.

The algorithm of [8] can be applied to any two-dimen-
sional compressed text, in which the compression tech-
nique allows sequential decompression in small space.

Applications

The problem has many applications since two-dimen-
sional data appears in many different types of compres-
sion. The two compressions discussed here are the run-
length compression, used by fax transmissions, and the LZ
compression, used by GIF.

Open Problems

Any lossless two-dimensional compression used, espe-
cially one with a large compression ratio, presents the
problem of enabling the search without uncompressing
the data for saving of both time and space.

Searching in two-dimensional lossy compressions will
be a major challenge. Initial steps in this direction can be
found in [15,14], where JPEG compression is considered.
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ProblemDefinition

Given two two-dimensional arrays, the text T[1 : : : n;
1 : : : n] and the pattern P[1 : : : m; 1 : : : m],m � n, both
with element values from alphabet ˙ of size � , the ba-
sic two-dimensional string matching (2DSM) problem is to
find all occurrences of P in T, i. e., all m � m subarrays of
T that are identical to P. In addition to the basic prob-
lem, several types of generalizations are considered: ap-
proximate matching (allow local errors), invariant match-
ing (allow global transformations), indexedmatching (pre-
process the text), andmultidimensional matching.

In approximate matching, an occurrence is a subarray
S of the text, whose distance d(S,P) from the pattern does
not exceed a threshold k. Different distance measures lead
to different variants of the problem. When no distance is
explicitly mentioned, the Hamming distance, the number
of mismatching elements, is assumed.

For one-dimensional strings, the most common dis-
tance is the Levenshtein distance, the minimum num-
ber of insertions, deletions and substitutions for trans-
forming one string into the other. A simple generalization
to two dimensions is the Krithivasan–Sitalakshmi (KS)
distance, which is the sum of row-wise Levenshtein dis-
tances. Baeza-Yates and Navarro [6] introduced several
other generalizations, one of which, the RC distance, is de-
fined as follows. A two-dimensional array can be decom-
posed into a sequence of rows and columns by remov-
ing either the last row or the last column from the array
until nothing is left. Different decompositions are possi-
ble depending on whether a row or a column is removed
at each step. The RC distance is the minimum cost of
transforming a decomposition of one array into a decom-
position of the other, where the minimum is taken over
all possible decompositions as well as all possible trans-
formations. A transformation consists of insertions, dele-
tions and modifications of rows and columns. The cost
of inserting or deleting a row/column is the length of
the row/column, and the cost of modification is the Lev-
enshtein distance between the original and the modified
row/column.

The invariant matching problems search for occur-
rences that match the pattern after some global transfor-
mation of the pattern. In the scaling invariant matching
problem, an occurrence is a subarray that matches the pat-
tern scaled by some factor. If only integral scaling fac-
tors are allowed, the definition of the problem is obvi-
ous. For real-valued scaling, a refined model is needed,
where the text and pattern elements, called pixels in this
case, are unit squares on a plane. Scaling the patternmeans
stretching the pixels. An occurrence is a matching M be-
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tween text pixels and pattern pixels. The scaled pattern is
placed on top of the text with one corner aligned, and each
text pixel T[r, s], whose center is covered by the pattern,
is matched with the covering pattern pixel P[r0; s0], i. e.,
([r; s]; [r0 ; s0]) 2 M.

In the rotation invariantmatching problem, too, an oc-
currence is amatching between text pixels and pattern pix-
els. This time the center of the pattern is placed at the cen-
ter of a text pixel and the pattern is rotated around the cen-
ter. The matching is again defined by which pattern pixels
cover which text pixel centers.

In the indexed form of the problems, the text can be
preprocessed to speed up the matching. The preprocessing
and matching complexities are reported separately.

All the problems can be generalized to more than two
dimensions. In the d-dimensional problem, the text is an
nd array and the pattern an md array. The focus is on two
dimensions, but multidimensional generalizations of the
results are mentioned when they exist.

Many other variants of the problems are omitted here
due to lack of space. Some of them as well as some of the
results in this entry are surveyed by Amir [1]. A wider
range of problems as well as traditional image processing
techniques for solving them can be found in [9].

Key Results

The classical solution to the 2DSM problem by Bird [8]
and independently by Baker [7] reduces the problem to
one-dimensional string matching. It has two phases:
1. Find all occurrences of pattern rows on the text rows

and mark them. This takes O(n2 logmin(m; �)) time
using the Aho-Corasick algorithm. On an integer al-
phabet˙ = f0; 1; : : : ; ��1g, the time can be improved
toO(n2+m2 min(m; �)+�) usingO(m2 min(m; �)+�)
space.

2. The pattern is considered a sequence of m rows and
each n � m subarray of the text a sequence of n rows.
The Knuth–Morris–Pratt string matching algorithm is
used for finding the occurrences of the pattern in each
subarray. The algorithm makes O(n) row comparisons
for each of the n�m + 1 subarrays. With the markings
from Step 1, a row comparison can be done in constant
time, givingO(n2) time complexity for Step 2.

The time complexity of the Bird–Baker algorithm is linear
if the alphabet size � is constant. The algorithm of Amir,
Benson and Farach [2] (with improvements by Galil and
Park [14]) achieves linear time independent of the alpha-
bet size using a quite different kind of algorithm based on
string matching by duels and two-dimensional periodic-
ity.

Theorem 1 (Bird [8]; Baker [7]; Amir, Benson and
Farach [2]) The 2DSM problem can be solved in the op-
timal O(n2) worst-case time.

The Bird–Baker algorithm generalizes straightforwardly
into higher dimensions by repeated application of Step 1
to reduce a problem in d dimensions into n � m + 1
problems in d � 1 dimensions. The time complexity is
O(dnd logmd ). The Amir–Benson–Farach algorithm has
been generalized to three dimensions with the time com-
plexity O(n3) [13].

The average-case complexity of the 2DSM problem
was studied by Kärkkäinen andUkkonen [15], who proved
a lower bound and gave an algorithmmatching the bound.

Theorem 2 (Kärkkäinen andUkkonen [15]) The 2DSM-
problem can be solved in the optimal O(n2(log� m)/m2)
average-case time.

The result (both lower and upper bound) generalizes to the
d-dimensional case with the 	(nd log� m/md ) average-
case time complexity.

Amir and Landau [5] give algorithms for approximate
2DSM problems for both the Hamming distance and the
KS distance. The RC model was developed and studied by
Baeza–Yates and Navarro [6].

Theorem 3 (Amir and Landau [5]; Baeza–Yates and
Navarro [6]) The approximate 2DSM problem can be
solved in O(kn2) worst-case time for the Hamming dis-
tance, in O(k2n2) worst-case time for the KS distance, and
in O(k2mn2) worst-case time for the RC distance.

The results for the KS and RC distances generalize to d
dimensions with the time complexitiesO(k(k + d)nd ) and
O(d!m2d nd ), respectively.

Approximate matching algorithms with good average-
case complexity are described by Kärkkäinen and Ukko-
nen [15] for the Hamming distance, and by Baeza-Yates
and Navarro [6] for the KS and RC distances.

Theorem 4 (Kärkkäinen and Ukkonen [15]; Baeza–
Yates and Navarro [6]) The approximate 2DSM problem
can be solved in O(kn2(log� m)/m2) average-case time for
the Hamming and KS distances, and in O(n2/m) average-
case time for the RC distance.

The results for the Hamming and the RC distance have
d-dimensional generalizations with the time complexities
O(knd (log� md )/md ) andO(knd /md�1), respectively.

The scaling and rotation invariant 2DSM problems in-
volve a continuous valued parameter (scaling factor or
rotation angle). However, the corresponding matching
between text and pattern pixels changes only at certain
points, and there are only O(nm) effectively distinct scales
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and O(m3) effectively distinct rotation angles. A separate
search for each distinct scale or rotation would give algo-
rithms with time complexities O(n3m) and O(n2m3), but
faster algorithms exist.

Theorem 5 (Amir and Chencinski [3]; Amir, Kapah and
Tsur [4]) The scaling invariant 2DSM problem can be
solved in O(n2m) worst-case time, and the rotation invari-
ant 2DSM problem in O(n2m2) worst-case time.

Fast average-case algorithms for the rotation invariant
problem are described by Fredriksson, Navarro andUkko-
nen [11]. They also consider approximate matching ver-
sions.

Theorem 6 (Fredriksson, Navarro and Ukkonen [11])
The rotation invariant 2DSM problem can be solved in the
optimalO(n2(log� m)/m2) average-case time. The rotation
invariant approximate 2DSM problem can be solved in the
optimal O(n2(k + log� m)/m2) average-case time.

Fredriksson, Navarro and Ukkonen [11] also consider ro-
tation invariant matching in d dimensions.

Indexed matching is based on two-dimensional suffix
trees and arrays, which are the subject of another entry
2D-Pattern Indexing. Their properties are similar to one-
dimensional suffix trees and arrays.

Theorem 7 (Kim and Park [16]) The text can be prepro-
cessed in O(n2) time so that subsequently a 2DSM query
can be answered in O(m2 log �) time or in O(m2 + log n)
time.

Fredriksson, Navarro and Ukkonen [11] describe an index
suitable for rotation invariant matching.

Theorem 8 (Fredriksson, Navarro and Ukkonen [11])
The text can be preprocessed in O(n2) time so that sub-
sequently a rotation invariant 2DSM query can be an-
swered in O((log� n)5/2) average-case time and a rotation
invariant approximate 2DSM query can be answered in
O((2 log� n)k+3/2� k) average-case time.

Applications

The main application area is pattern matching in im-
ages, particularly applications where the point of view in
the image is well-defined, such as aerial and astronomical
photography, optical character recognition, and biomed-
ical imaging. Even three-dimensional problems arise in
biomedical applications [12].

Open Problems

Many combinations of the different variants of the prob-
lem have not been studied. Combining scaling and rota-

tion invariance is an example. With rotation invariant ap-
proximate matching under the RC distance even the prob-
lem needs further specification.

Experimental Results

No conclusive results exist though some experiments are
reported in [10,12,15].
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ProblemDefinition

The problem is concerned with scheduling dynamically
arriving jobs in the scenario when the processing require-
ments of jobs are unknown to the scheduler. This is a clas-
sic problem that arises for example in CPU scheduling,
where users submit jobs (various commands to the oper-
ating system) over time. The scheduler is only aware of the
existence of the job and does not know how long it will
take to execute, and the goal is to schedule jobs to pro-
vide good quality of service to the users. Formally, this
note considers the average flow time measure, defined as
the average duration of time since a job is released until its
processing requirement is met.

Notations

Let J = f1; 2; : : : ; ng denote the set of jobs in the input in-
stance. Each job j is characterized by its release time rj and

its processing requirement pj. In the online setting, job j
is revealed to the scheduler only at time rj. A further re-
striction is the non-clairvoyant setting, where only the ex-
istence of job j is revealed at rj, in particular the sched-
uler does not know pj until the job meets its processing
requirement and leaves the system. Given a schedule, the
completion time cj of a job is the earliest time at which
job j receives pj amount of service. The flow time f j of j
is defined as c j � r j . A schedule is said to be preemptive,
if a job can be interrupted arbitrarily, and its execution
can be resumed later from the point of interruption with-
out any penalty. It is well known that preemption is nec-
essary to obtain reasonable guarantees even in the offline
setting [4].

There are several natural non-clairvoyant algorithms
such as First Come First Served, Processor Sharing (work
on all current unfinished jobs at equal rate), Shortest
Elapsed Time First (work on job that has received least
amount of service thus far). Coffman and Kleinrock [2]
proposed another natural algorithm known as the Multi-
Level Feedback Queueing (MLF). MLF works as fol-
lows: There are queues Q0;Q1;Q2; : : : and thresholds
0 < t0 < t1 < t2 : : :. Initially upon arrival, a job is placed
in Q0. When a job in Qi receives ti amount of cumulative
service, it is moved to Qi+ 1. The algorithm at any time
works on the lowest numbered non-empty queue. Coff-
man and Kleinrock analyzed MLF in a queuing theoretic
setting, where the jobs arrive according to a Poisson pro-
cess and the processing requirements are chosen identi-
cally and independently from a known probability distri-
bution.

Recall that the online Shortest Remaining Processing
Time (SRPT) algorithm, that at any time works on the job
with the least remaining processing time, produces an op-
timum schedule. However, SRPT requires the knowledge
of job sizes and hence is not non-clairvoyant. Since a non-
clairvoyant algorithm only knows a lower bound on a jobs
size (determined by the amount of service it has received
thus far), MLF tries to mimic SRPT by favoring jobs that
have received the least service thus far.

Key Results

While non-clairvoyant algorithms have been studied ex-
tensively in the queuing theoretic setting for many
decades, this notion was considered relatively recently in
the context of competitive analysis by Motwani, Phillips
and Torng [5]. As in traditional competitive analysis,
a non-clairvoyant algorithm is called c-competitive if
for every input instance, its performance is no worse
than c times than optimum offline solution for that in-
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stance. Motwani, Phillips and Torng showed the follow-
ing.

Theorem 1 ([5]) For the problem of minimizing aver-
age flow time on a single machine, any deterministic non-
clairvoyant algorithm must have a competitive ratio of at
least ˝(n1/3) and any randomized algorithm must have
a competitive ratio of at least˝(log n), where n is number
of jobs in the instance.

It is not too surprising that any deterministic algorithm
must have a poor competitive ratio. For example, con-
sider MLF where the thresholds are powers of 2, i. e.
1; 2; 4; : : :. Say n = 2k jobs of size 2k + 1 each arrive at
times 0; 2k ; 2 � 2k ; : : : ; (2k � 1)2k respectively. Then, it is
easily verified that the average flow time under MLF is
˝(n2), where as the average flow time is under the opti-
mum algorithm is˝(n).

Note that MLF performs poorly on the above instance
since all jobs are stuck till the end with just one unit
of work remaining. Interestingly, Kalyanasundaram and
Pruhs [3] designed a randomized variant of MLF (known
as RMLF) and proved that its competitive ratio is almost
optimum. For each job j, and for each queueQi, the RMLF
algorithm sets a threshold ti; j randomly and indepen-
dently according to a truncated exponential distribution.
Roughly speaking, setting a random threshold ensures that
if a job is stuck in a queue, then its remaining processing is
a reasonable fraction of its original processing time.

Theorem 2 ([3]) The RMLF algorithm is O(log n
log log n) competitive against an oblivious adversary.
Moreover, the RMLF algorithm is O(log n log log n) com-
petitive even against an adaptive adversary provided the ad-
versary chooses all the job sizes in advance.

Later, Becchetti and Leonardi [1] showed that in fact the
RMLF is optimally competitive up to constant factors.
They also analyzed RMLF on identical parallel machines.

Theorem 3 ([1]) The RMLF algorithm is O(log n)
competitive for a single machine. For multiple iden-
tical machines, RMLF achieves a competitive ratio of
O(log n log( nm )), where m is the number of machines.

Applications

MLF and its variants are widely used in operating sys-
tems [6,7]. These algorithms are not only close to opti-
mum with respect to flow time, but also have other at-
tractive properties such as the amortized number of pre-
emptions is logarithmic (preemptions occur only if a job
arrives or departs or moves to another queue).

Open Problems

It is not known whether there exists a o(n)-competitive de-
terministic algorithm. It would be interesting to close the
gap between the upper and lower bounds for this case. Of-
ten in real systems, even though the scheduler may not
know the exact job size, it might have some information
about its distribution based on historical data. An inter-
esting direction of research could be to design and analyze
algorithms that use this information.
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ProblemDefinition

In this problem, an auctioneer would like to sell an id-
iosyncratic commodity with m copies to n bidders, de-
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noted by i = 1; 2; : : : ; n. Each bidder i has two kinds of
privately known information: tui 2 R+, tbi 2 R+. tui 2 R+

represents the price buyer i is willing to pay per copy of the
commodity and tbi 2 R+ represents i’s budget.

Then a one-round sealed-bid auction proceeds as fol-
lows. Simultaneously all the bidders submit their bids to
the auctioneer. When receiving the reported unit value
vector u = (u1; : : : ; un) and the reported budget vector
b = (b1; : : : ; bn) of bids, the auctioneer computes and out-
puts the allocation vector x = (x1; : : : ; xn) and the price
vector p = (p1; : : : ; pn). Each element of the allocation
vector indicates the number of copies allocated to the cor-
responding bidder. If bidder i receives xi copies of the
commodity, he pays the auctioneer pixi. Then bidder i’s
total payoff is (tui � pi )xi if xi pi � tbi and �1 other-
wise. Correspondingly, the revenue of the auctioneer is
A(u; b;m) =

P
i pi xi .

If each bidder submits his privately true unit value tui
and budget tbi to the auctioneer, the auctioneer can deter-
mine the single price pF (i. e.,8i, pi = pF ) and the alloca-
tion vector which maximize the auctioneer’s revenue. This
optimal single price revenue is denoted by F(u; b;m).

Interestingly, in this problem, we assume bidders have
free will, and have complete knowledge of the auction
mechanism. Bidders would just report the bid (maybe dif-
ferent from his corresponding privately true values) which
could maximize his payoff according to the auction mech-
anism.

So the objective of the problem is to design a truth-
ful auction satisfying voluntary participation to raise the
auctioneer’s revenue as much as possible. An auction is
truthful if for every bidder i, bidding his true valuation
would maximize his payoff, regardless of the bids submit-
ted by the other bidders [8,9]. An auction satisfies volun-
tary participation if each bidder’s payoff is guaranteed to
be non-negative if he reports his bid truthfully. The per-
formance of the auction A is determined by competitive
ratioˇ which is defined as the upper bound of F(u;b;m)

A(u;b;m) [5].
Clearly, the smaller the competitive ratio ˇ is, the better
the auctionA is.

Definition (Multiple Unit Auctions with Budget Con-
straint)
INPUT: the number of copies m, the submitted unit value
vector u, the submitted budget vector b.
OUTPUT: the allocation vector x and the price vector p.
CONSTRAINTS:
(a) Truthful
(b) Voluntary participation
(c)

P
i xi � m.

Key Results

Let bmax denote the largest budget amongst the bidders re-
ceiving copies in the optimal solution and define ˛ = F

bmax
.

Theorem 1 ([2]) A truthful auction satisfying voluntary
participation with competitive ratio 1/max0<ı<1f(1 � ı)

(1 � 2e�
˛ı2
36 )g can be designed.

Theorem 2 ([1]) A truthful auction satisfying voluntary
participation with competitive ratio 4˛

˛�1 can be designed.

Theorem 3 ([1]) If ˛ is known in advance, then
a truthful auction satisfying voluntary participation
with competitive ratio (x˛+1)˛

(x˛�1)2 can be designed, where

x = ˛�1+((˛�1)2�4˛)1/2
2˛ .

Theorem 4 ([1]) For any truthful randomized auctionA
satisfying voluntary participation, the competitive ratio is
at least 2 � � when ˛ � 2.

Applications

This problem is motivated by the development of the IT
industry and the popularization of auctions, especially,
auctions on the Internet. The multiple copy auction of rel-
atively low-value goods, such as the auction of online ads
for search terms to bidders with budget constraint, is as-
suming a very important role. Companies such as Google
and Yahoo!’s revenue depends almost on certain types of
auctions.

All previous work concerning auctions with budget
constraint only focused on the traditional physical world
where the object to sell is almost unique, such as antiques,
paintings, land and nature resources. More specifically, [4]
studied the problem of single unit, single bidder with a
budget. [6] studied the model of single unit, multiple bid-
ders with common public budget. [7] studied the problem
of single unit, multiple bidders with flexible budgets.

Recently, [3] extended this problem so that the auc-
tioneer could sell unlimited copies of goods and the bid-
ders have both budget and copy constraints. This general
model is especially suitable for digital goods, which can
produce unlimited copies with marginal cost zero, such as
license sales, mp3 copies, online advertisements, etc. Fur-
ther, the auction mechanism designed in [3] could obtain
a similar competitive ratio.
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ProblemDefinition

This problem is motivated by an important and timely ap-
plication in computational biology that arises in whole-
genome shotgun sequencing. Shotgun sequencing is a high
throughput technique that has resulted in the sequenc-
ing of a large number of bacterial genomes as well as
Drosophila (fruit fly) and Mouse and the celebrated Hu-
man genome (at Celera) (see, e. g. [8]). In all such projects,
one is left with a collection of DNA fragments. These frag-
ments are subsequently assembled, in-silico, by a com-

putational algorithm. The typical assembly algorithm re-
peatedly merges overlapping fragments into longer frag-
ments called contigs. For various biological and computa-
tional reasons some regions of the DNA cannot covered
by the contigs. Thus, the contigs must be ordered and ori-
ented and the gaps between them must be sequenced us-
ing slower, more tedious methods. For further details see,
e. g., [3]. When the number of gaps is small (e. g., less than
ten) biologists often use combinatorial PCR. This tech-
nique initiates a set of “bi-directional molecular walks”
along the gaps in the sequence; these walks are facilitated
by PCR. In order to initiate the molecular walks biolo-
gists use primers. Primers are designed so that they bind
to unique (with respect to the entire DNA sequence) tem-
plates occurring at the end of each contig. A primer (at the
right temperature and concentration) anneals to the desig-
nated unique DNA substring and promotes copying of the
template starting from the primer binding site, initiating
a one-directional walk along the gap in the DNA sequence.
A PCR reaction occurs, and can be observed as a DNA lad-
der, when two primers that bind to positions on two ends
of the same gap are placed in the same test tube.

If there are N contigs, the combinatorial (exhaustive)
PCR technique tests all possible pairs (quadratically many)
of 2N primers by placing two primers per tube with the
original uncut DNA strand. PCR products can be detected
using gels or they can be read using sequencing technol-
ogy or DNAmass-spectometry. When the number of gaps
is large, the quadratic number of PCR experiments is pro-
hibitive, so primers are pooled using K > 2 primers per
tube; this technique is calledmultiplex PCR [4]. This prob-
lem deals with finding optimal strategies for pooling the
primers tominimize the number of biological experiments
needed in the gap-closing process.

This problem can be modeled as the problem of iden-
tifying or learning a hidden matching given a vertex set V
and an allowed query operation: for a subset F  V , the
query QF is “does F contain at least one edge of the match-
ing”? In this formulation each vertex represents a primer,
an edge of the matching represents a reaction, and the
query represents checking for a reaction when a set of
primers are combined in a test tube. The objective is to
identify the matching asking as few queries as possible,
that is performing as few tests as possible. For further dis-
cussion of this model see [3,7].

This problem is of interest even in the deterministic,
fully non-adaptive case. A family F of subsets of a ver-
tex set V solves the matching problem on V if for any
two distinct matchings M1 and M2 on V there is at least
one F 2 F that contains an edge of one of the matchings
and does not contain any edge of the other. Obviously, any
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such family enables learning an unknown matching deter-
ministically and non-adaptively, by asking the questions
QF for each F 2 F . The objective here is to determine the
minimum possible cardinality of a family that solves the
matching problem on a set of n vertices.

Other interesting variants of this problem are when the
algorithm may be randomized, or when it is adaptive, that
is when the queries are asked in k rounds, and the queries
of each round may depend on the answers from the previ-
ous rounds.

Key Results

In [2], the authors study the number of queries needed to
learn a hidden matching in several models. Following is
a summary of the main results presented in this paper.

The trivial upper bound on the size of a family that
solves the matching problem on n vertices is

�n
2
�
, achieved

by the family of all pairs of vertices. Theorem 1 shows that
in the deterministic non-adaptive setting one cannot do
much better than this, namely, that the trivial upper bound
is tight up to a constant factor. Theorem 2 improves this
upper bound by showing a family of approximately half
that size that solves the matching problem.

Theorem 1 For every n > 2, every familyF that solves the
matching problem on n vertices satisfies

jF j � 49
153

 
n
2

!
:

Theorem 2 For every n there exists a family of size

�
1
2
+ o(1)

� 
n
2

!

that solves the matching problem on n vertices.

Theorem 3 shows that one can do much better using
randomized algorithms. That is, one can learn a hidden
matching asking onlyO(n log n) queries, rather than order
of n2. These randomized algorithms make no errors, how-
ever, they might ask more queries with some small proba-
bility.

Theorem 3 The matching problem on n vertices can be
solved by probabilistic algorithms with the following param-
eters:
� 2 rounds and (1/(2 ln 2))n log n(1 + o(1)) 	 0:72n log n

queries
� 1 round and (1/ ln 2)n log n(1 + o(1)) 	 1:44n log n

queries.

Finally, Theorem 4 considers adaptive algorithms. In this
case there is a tradeoff between the number of queries and
the number of rounds. The more rounds one allows, the
fewer tests are needed, however, as each round can start
only after the previous one is completed, this increases the
running time of the entire procedure.

Theorem 4 For all 3 � k � log n, there is a deterministic
k-round algorithm for the matching problem on n vertices
that asks

O
�
n1+

1
2(k�1) (log n)1+

1
k�1

�

queries per round.

Applications

As described in Sect. “Problem Definition”, this prob-
lem was motivated by the application of gap closing in
whole-genome sequencing, where the vertices correspond
to primers, the edges to PCR reactions between pairs of
primers that bind to the two ends of a gap, and the queries
to tests in which a set of primers are combined in a test
tube.

This gap-closing problem can be stated more gener-
ally as follows. Given a set of chemicals, a guarantee that
each chemical reacts with at most one of the others, and an
experimental mechanism to determine whether a reaction
occurs when several chemicals are combined in a test tube,
the objective is to determinewhich pairs of chemicals react
with each other with a minimum number of experiments.

Another generalization which may have more applica-
tions in molecular biology is when the hidden subgraph is
not a matching but some other fixed graph, or a family of
graphs. The paper [2], as well as some other related works
(e. g. [1,5,6]), consider this generalization for other graphs.
Some of these generalizations have other specific applica-
tions in molecular biology.

Open Problems

� Determine the smallest possible constant c such that
there is a deterministic non-adaptive algorithm for
the matching problem on n vertices that performs
c
�n
2
�
(1 + o(1)) queries.

� Find more efficient deterministic k-round algorithms
or prove lower bounds for the number of queries in
such algorithms.

� Find efficient algorithms and prove lower bounds for
the generalization of the problem to graphs other than
matchings.



Multiway Cut M 567

Recommended Reading
1. Alon, N., Asodi, V.: Learning a hidden subgraph, ICALP. LNCS

3142, 110–121 (2004). Also: SIAM J. Discret. Math. 18, 697–712
(2005)

2. Alon, N., Beigel, R., Kasif, S., Rudich, S., Sudakov, B.: Learning
a Hidden Matching, Proceedings of the 43rd IEEE FOCS, 2002,
197–206. Also: SIAM J. Computing 33, 487–501 (2004)

3. Beigel, R., Alon, N., Apaydin, M.S., Fortnow, L., Kasif, S.: An op-
timal procedure for gap closing in whole genome shotgun se-
quencing. Proc. RECOMB, ACM Press pp. 22–30. (2001)

4. Burgart, L.J., Robinson, R.A., Heller, M.J., Wilke, W.W., Iak-
oubova, O.K., Cheville, J.C.: Multiplex polymerase chain reac-
tion. Mod. Pathol. 5, 320–323 (1992)

5. Grebinski, V., Kucherov, G.: Optimal Query Bounds for Recon-
structing a Hamiltonian Cycle in Complete Graphs. Proc. 5th
Israeli Symposium on Theoretical Computer Science, pp. 166–
173. (1997)

6. Grebinski, V., Kucherov, G.: Reconstructing a Hamiltonian Cycle
by Querying the Graph: Application to DNA Physical Mapping.
Discret. Appl. Math. 88, 147–165 (1998)

7. Tettelin, H., Radune, D., Kasif, S., Khouri, H., Salzberg, S.: Pipette
Optimal Multiplexed PCR: Efficiently Closing Whole Genome
Shotgun Sequencing Project. Genomics 62, 500–507 (1999)

8. Venter, J.C., Adams, M.D., Sutton, G.G., Kerlavage, A.R., Smith,
H.O., Hunkapiller, M.: Shotgun sequencing of the human
genome. Science 280, 1540–1542 (1998)

Multiway Cut
1998; Calinescu, Karloff, Rabani

GRUIA CALINESCU
Department of Computer Science, Illinois Institute
of Technology, Chicago, IL, USA

Keywords and Synonyms

Multiterminal cut

ProblemDefinition

Given an undirected graph with edge costs and a subset
of k nodes called terminals, a multiway cut is a subset of
edges whose removal disconnects each terminal from the
rest. MULTIWAY CUT is the problem of finding amultiway
cut of minimum cost.

Previous Work

Dahlhaus, Johnson, Papadimitriou, Seymour, and Yan-
nakakis [6] initiated the study of MULTIWAY CUT and
proved that MULTIWAY CUT is MAX SNP-hard even
when restricted to instances with three terminals and unit
edge costs. Therefore, unless P = NP, there is no poly-
nomial-time approximation scheme for MULTIWAY CUT.

For k = 2, the problem is identical to the undirected ver-
sion of the extensively studied s-tmin-cut problem of Ford
and Fulkerson, and thus has polynomial-time algorithms
(see, e. g., [1]). Prior to this paper, the best (and essen-
tially the only) approximation algorithm for k � 3 was
due to the above-mentioned paper of Dahlhaus et al. They
give a very simple combinatorial isolation heuristic that
achieves an approximation ratio of 2(1 � 1/k). Specifically,
for each terminal i, find a minimum-cost cut separating i
from the remaining terminals, and then output the union
of the k � 1 cheapest of the k cuts. For k = 4 and for k = 8,
Alon (see [6]) observed that the isolation heuristic can be
modified to give improved ratios of 4/3 and 12/7, respec-
tively.

In special cases, far better results are known. For fixed
k in planar graphs, the problem is solvable in polynomial
time [6]. For trees and 2-trees, there are linear-time algo-
rithms [5]. For dense unweighted graphs, there is a poly-
nomial-time approximation scheme [2,8].

Key Results

Theorem 1 ([3]) There is a deterministic polynomial
time algorithm that finds a multiway cut of cost at most
(1:5 � 1/k) times the optimum multiway cut.

The approximation algorithm from Theorem 1 is based
on a novel linear programming relaxation described later.
On the basis of the same linear program, the approxima-
tion ratio was subsequently improved to 1.3438 by Karger,
Klein, Stein, Thorup, and Young [10]. For three termi-
nals, [10] and Cheung, Cunningham, and Tang [4] give
very different 12/11-approximation algorithms.

Two variations of the problem have been considered in
the literature: Garg, Vazirani, and Yannakakis [9] obtain
a (2 � 2/k)-approximation ratio for the node-weighted
version, and Naor and Zosin [11] obtain 2-approxima-
tion for the case of directed graphs. It is known that any
approximation ratio for these variations translates imme-
diately into the same approximation ratio for VERTEX
COVER, and thus it is hard to get any significant improve-
ment over the approximation ratio of 2.

The algorithm from Theorem 1 appears next, giving
a flavor of how this result is obtained. The complete proof
of the approximation ratio is not long and appears in [3]
or the book [12].

Notation

Let G = (V ; E) be an undirected graph on V = f1; 2;
: : : ; ng in which each edge uv 2 E has a non-negative cost
c(u; v) = c(v; u), and let T = f1; 2; : : : ; kg  V be a set
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of terminals. MULTIWAY CUT is the problem of finding
a minimum cost set C  E such that in (V ; EŸC), each of
the terminals 1; 2; : : : ; k is in a different component. Let
MWC = MWC(G) be the value of the optimal solution to
MULTIWAY CUT.

�k denotes the (k � 1)-simplex, i. e., the (k � 1)-di-
mensional convex polytope in Rk given by fx 2 Rk j(x �
0) ^ (

P
i xi = 1)g.

For x 2 Rk , kxk is its L1 norm: kxk =
P

i jxi j. For
j = 1; 2; : : : ; k, e j 2 Rk denotes the unit vector given by
(e j) j = 1 and (e j)i = 0 for all i ¤ j.

LP-Relaxation

The simplex relaxation for MULTIWAY CUT with edge
costs has as variables k-dimensional real vectors xu, de-
fined for each vertex u 2 V :

Minimize
1
2

X
uv2E

c(u; v) � kxu � xvk

Subject to:
xu 2 �k 8u 2 V
xt = et 8t 2 T:

In other words, the terminals stay at the vertices of the
(k � 1)-simplex, and the other nodes anywhere in the sim-
plex, and measure an edge’s length by the total variation
distance between its endpoints. Clearly, placing all nodes
at simplex vertices gives an integral solution: the lengths of
edges are either 0 (if both endpoints are at the same vertex)
or 1 (if the endpoints are at different vertices), and the re-
moval of all unit length edges disconnects the graph into at
least k components, each containing at most one terminal.

To solve this relaxation as a linear program, new vari-
ables are introduced: yuv, defined for all uv 2 E, and xui ,
defined for all u 2 V and i 2 T . Also new variables are
yuvi , defined for all i 2 T and uv 2 E. Then one writes the
linear program:

Minimize
1
2

X
uv2E

c(u; v)yuv

Subject to:
xu 2 �k 8u 2 V
xt = et 8t 2 T

yuv =
X
i2T

yuvi 8uv 2 E

yuvi � xui � xvi 8uv 2 E ; i 2 T
yuvi � xvi � xui 8uv 2 E ; i 2 T :

It is easy to see that this linear program optimally
solves the simplex relaxation above, by noticing that an op-
timal solution to the linear program can be assumed to put
yuvi = jxui � xvi j and yuv = kxu � xvk. Thus, solving the
simplex relaxation can be done in polynomial time. This
is the first step of the approximation algorithm. Clearly,
the value Z� of this solution is a lower bound on the cost
of the minimummultiway cut MWC.

The second step of the algorithm is a rounding proce-
dure which transforms a feasible solution of the simplex
relaxation into an integral feasible solution. The rounding
procedure below differs slightly from the one given in [3],
but can be proven to give exactly the same solution. This
variant is easier to present, although if one wants to prove
the approximation ratio then the only way we know of is
by showing that indeed this variant gives the same solution
as the more complicated algorithm given in [3].

Rounding

Set B(i; �) = fu 2 V j xui > 1 � �g, the set of nodes suit-
ably “close” to terminal i in the simplex. Choose a permu-
tation � = h�1; �2; : : : ; �ki to be either h1; 2; 3; : : : ; k �
1; ki or hk � 1; k � 2; k � 3; : : : ; 1; ki with probability 1/2
each. Independently, choose � 2 (0; 1) uniformly at ran-
dom. Then, process the terminals in the order �(1); �(2);
�(3); : : : ; �(k). For each j from 1 to k � 1, place the nodes
that remain in B(� j ; �) at e� j . Place whatever nodes re-
main at the end at ek. The following code specifies the
rounding proceduremore formally. x̄ denotes the rounded
(integral) solution.

1: Let � = h1; : : : ; k� 3; k� 2; k� 1; ki or hk� 1; k�
2; k � 3; : : : ; 1; ki, each with prob. 1/2

2: Let � be a random real in (0; 1) /* See the paragraph
below. */

3: for j = 1 to k � 1 do
4: for all u such that xu 2 B(� j; �) n [i :i< jB(�i ; �)

do
5: x̄u := e� j /* assign node u to terminal � j */
6: end for
7: end for
8: for all u such that xu 62 [i :i<kB(�i ; �) do
9: x̄u := ek

10: end for

Multiway Cut, Algorithm 1
The Rounding Procedure

To derandomize and implement this algorithm in poly-
nomial time, one tries both permutations � and at most
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k(n + 1) values of �. Indeed, for any permutation � , two
different values of �, �1 < �2, produce combinatorially
distinct solutions only if there is a terminal i and a node
u such that xui 2 (1 � �2; 1 � �1]. Thus, there are at most
k(n + 1) “interesting” values of �, which can be deter-
mined easily by sorting the nodes according to each coor-
dinate separately. The resulting discrete sample space for
(�; �) has size at most 2k(n + 1), so one can search it ex-
haustively.

The analysis of the algorithm, however, is based on
the randomized algorithm above, as the proof shows that
the expected total cost of edges whose endpoints are at
different vertices of �k in the rounded solution x̄ is at
most 1:5 Z�. To get an (1:5 � 1/k)Z� upper bound, one
must rename the terminals such that terminal kmaximizes
a certain quantity given by the simplex relaxation, or al-
ternatively randomly pick a terminal as the last element of
the permutation (the order of the first k � 1 terminals does
not matter as long as both the increasing and the decreas-
ing permutations are tried by the rounding procedure).
Exhaustive search of the sample space produces one inte-
gral solution whose cost does not exceed the average.

Applications

MULTIWAY CUT is used in Computer Vision, but unless
one can solve the instance exactly, algorithms for the gen-
eralization METRIC LABELING are needed. MULTIWAY
CUT has applications in parallel and distributed comput-
ing, as well as in chip design.

Open Problems

The improvements of [10,4] are based on better round-
ing procedures and both compare the integral solution
obtained to Z�. This leads to the natural question: what
is the supremum, over multiway cut instances G, of
Z�(G)/MWC(G). This supremum is called integrality gap
or integrality ratio. For three terminals, [10] and [4] show
that the integrality gap is exactly 12/11, while for general k,
Freund and Karloff [7] give a lower bound of 8/7. The best-

known upper bound is 1.3438, achieved by an approxima-
tion algorithm of [10].
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