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Problem Definition

For a detailed exposition of the solution approach pre-
sented in this article please refer to [15]. As evidenced by
the successive announcement of ever faster computer sys-
tems in the past decade, increasing the speed of VLSI sys-
tems continues to be one of the major requirements for
VLSI system designers today. Faster integrated circuits are
making possible newer applications that were tradition-
ally considered difficult to implement in hardware. In this
scenario of increasing circuit complexity, reduction of cir-
cuit delay in integrated circuits is an important design ob-
jective. Transistor sizing is one such task that has been
employed for speeding up circuits for quite some time
now [6]. Given the circuit topology, the delay of a com-
binational circuit can be controlled by varying the sizes
of transistors in the circuit. Here, the size of a transis-
tor is measured in terms of its channel width, since the
channel lengths of MOS transistors in a digital circuit are
generally uniform. In any case, what really matters is the
ratio of channel width to channel length, and if channel
lengths are not uniform, this ratio can be considered as
the size. In coarse terms, the circuit delay can usually be
reduced by increasing the sizes of certain transistors in
the circuit from the minimum size. Hence, making the
circuit faster usually entails the penalty of increased cir-
cuit area relative to a minimum-sized circuit and the area-
delay trade-off involved here is the problem of transistor
size optimization. A related problem to transistor sizing is
called gate sizing, where a logic gate in a circuit is mod-

eled as an equivalent inverter and the sizing optimization
is carried out on this modified circuit with equivalent in-
verters in place of more complex gates. There is, there-
fore, a reduction in the number of size parameters cor-
responding to every gate in the circuit. Needless to say,
this is an easier problem to solve than the general transis-
tor sizing problem. Note that gate sizing mentioned here
is distinct from library specific gate sizing that is a dis-
crete optimization problem targeted to selecting appropri-
ate gate sizes from an underlying cell library. The gate siz-
ing problem targeted here is one of continuous gate sizing
where the gate sizes are allowed to vary in a continuous
manner between a minimum and a maximum size. There
has been a large amount of work done on transistor siz-
ing [1,2,3,5,6,9,10,12,13], that underlines the importance
of this optimization technique. Starting from a minimum-
sized circuit, TILOS, [6], uses a greedy strategy for tran-
sistor sizing by iteratively sizing transistors in the critical
path. A sensitivity factor is calculated for every transistor
in the critical path to quantify the gain in circuit speed
achieved by a unit upsizing of the transistor. The most
sensitive transistor is then bumped up in size by a small
constant factor to speed up the circuit. This process is re-
peated iteratively until the timing requirements are met.
The technique is extremely simple to implement and has
run-time behavior proportional to the size of the circuit.
Its chief drawback is that it does not have guaranteed con-
vergence properties and hence is not an exact optimization
technique.

Key Results

The solution presented in the article heretofore referred
to as MINFLOTRANSIT was a novel way of solving the
transistor sizing problem exactly and in an extremely fast
manner. Even though the article treats transistor sizing, in
the description, the results apply as well to the less general
problem of continuous gate sizing as described earlier. The
proposed approach has some similarity in form to [2,5,8]
which will be subsequently explained, but the similarity in
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Gate Sizing, Table 1

Comparison of TILOS and MINFLOTRANSIT on a Sun Ultrasparc 10 workstation for ISCAS85 and MCNC91 benchmarks for 0.13 um
technology. The delay specs. are with respect to a minimum-sized circuit. The optimization approach followed here was gate sizing

Circuit # Gates Area Saved over TILOS Delay Specs. CPU TIME (TILOS) CPU TIME (OURS)

Adder32 480 [ < 1% 0.5 Dmin 22s 5s
Adder256 3840 [ < 1% 0.5 Dmin 262s 608 s
Cm163a 65 | 2.1% 0.55 Dpin 0.13s 0.32s
Cm162a 71 [10.4% 0.5 Dmin 0.23s 0.96 s
Parity8 89 37% 0.45 Dpin 0.68s 2.15s
Frg1 177 | 1.9% 0.7 Dmin 0.55s 149s
population 518 6.7% 0.4 Dmin 57s 179s
Pmult8 1431 5% 0.5 Dmin 637s 1476's
Alu2 826 | 2.6% 0.6 Dmin 28s 71s
C432 160 | 9.4% 0.4 Dmin 05s 48s
C499 202 | 7.2% 0.57 Drin 1.47s 11.26s
€880 383 4% 0.4 Dmin 2.7s 82s
C1355 546 | 9.5% 0.4 Dmin 29s 765
C1908 880 | 4.6% 0.4 Dmin 36s 84s
C2670 1193 | 9.1% 0.4 Dmin 27s 69s
C3540 1669 | 7.7% 0.4 Dmin 226s 651s
C5315 2307 2% 0.4 Dmin 90s 201s
C6288 2416 | 16.5% 0.4 Dmin 1677 s 4138s
C7552 3512 | 3.3% 0.4 Dmin 320s 683s

content is minimal and the details of implementation are

vastly different.

In essence, the proposed technique and the techniques
in [2,5,8] are iterative relaxation approaches that involve
a two-step optimization strategy. The first-step involves
a delay budgeting step where optimal delays are com-
puted for transistors/gates. The second step involves sizing
transistors optimally under this “constant delay” model to
achieve these delay budgets. The two steps are iteratively
alternated until the solution converges, i. e., until the delay
budgets calculated in the first step are exactly satisfied by
the transistor sizes determined by the second step.

The primary features of the proposed approach are:

e Itis computationally fast and is comparable to TILOS
in its run-time behavior.

e It can be used for true transistor sizing as well as the
relaxed problem of gate sizing. Additionally, the ap-
proach can easily incorporate wire-sizing [15].

e It can be adapted for more general delay models than
the Elmore delay model [15].

The starting point for the proposed approach is a fast

guess solution. This could be obtained, for example, from

a circuit that has been optimized using TILOS to meet

the given delay requirements. The proposed approach,

as outlined earlier, is an iterative relaxation procedure

that involves an alternating two-phase relaxed optimiza-

tion sequence that is repeated iteratively until convergence

is achieved. The two-phases in the proposed approach
are:

e The D-phase where transistor sizes are assumed fixed
and transistor delays are regarded as variable param-
eters. Irrespective of the delay model employed, this
phase can be formulated as the dual of a min-cost net-
work flow problem. Using | V| to denote the number of
transistors and |E| the number of wires in the circuit,
this step in our application has worst-case complexity
of O(| V| |E| log(log | V1)) [7].

o The W-phase where transistor/gate delays are assumed
fixed and their sizes are regarded as variable parame-
ters. As long as the gate delay can be expressed as a sep-
arable function of the transistor sizes, this step can be
solved as a Simple Monotonic Program (SMP) [11].
The complexity of SMP is similar to an all-pairs short-
est path algorithm in a directed graph, [4,11], i.e,
(V| |E).

The objective function for the problem is the minimization

of circuit area. In the W-phase, this objective is addressed

directly, and in the D-phase the objective is chosen to fa-
cilitate a move in the solution space in a direction that is
known to lead to a reduction in the circuit area.
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Applications

The primary application of the solution provided here is
circuit and system optimization in automated VLSI de-
sign. The solution provided here can enable Electronic De-
sign Automation (EDA) tools that take a holistic approach
towards transistor sizing. This will in turn enable mak-
ing custom circuit design flows more realizable in prac-
tice. The mechanics of some of the elements of the solu-
tion provided here especially the D-phase have been used
to address other circuit optimization problems [14].

Open Problems

The related problem of Discrete gate sizing optimization
matching gate sized to available gate sizes from a standard
cell library is a provably hard optimization problem which
could be aided by the development of efficient heuristics
and probabilistic algorithms.

Experimental Results

A relative comparison of MINFLOTRANSIT with TILOS
is provided in Table 1 for gate sizing of ISACS85 and
menc91 benchmark circuits. As can be seen a significant
performance improvement is observed with a tolerable
loss in execution time.
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Competitive market equilibrium

Problem Definition

This problem is concerned with the computational com-
plexity of finding an exchange market equilibrium. The
exchange market model consists of a set of agents, each
with an initial endowment of commodities, interacting
through a market, trying to maximize each’s utility func-
tion. The equilibrium prices are determined by a clear-
ance condition. That is, all commodities are bought, col-
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lectively, by all the utility maximizing agents, subject to
their budget constraints (determined by the values of their
initial endowments of commodities at the market price).
The work of Deng, Papadimitriou and Safra [3] studies
the complexity, approximability, inapproximability, and
communication complexity of finding equilibrium prices.
The work shows the NP-hardness of approximating the
equilibrium in a market with indivisible goods. For mar-
kets with divisible goods and linear utility functions, it
develops a pseudo-polynomial time algorithm for com-
puting an e-equilibrium. It also gives a communication
complexity lower bound for computing Pareto alloca-
tions in markets with non-strictly concave utility func-
tions.

Market Model

In a pure exchange economy, there are m traders, labeled
by i =1,2,...,m, and n types of commodities, labeled by
j=1,2,...,n. The commodities could be divisible or indi-
visible. Each trader i comes to the market with initial en-
dowment of commodities, denoted by a vector w; € RY,
whose j-th entry is the amount of commodity j held by
trader i.

Associate each trader i a consumption set X; to rep-
resents the set of possible commodity bundles for him.
For example, when there are #; divisible commodities and
(n — n;) indivisible commodities, X; can be R}' x Z} "',
Each trader has a utility function X; — R, to present his
utility for a bundle of commodities. Usually, the utility
function is required to be concave and nondecreasing.

In the market, each trader acts as both a buyer and
a seller to maximize his utility. At a certain price p € R},
trader i is is solving the following optimization problem,
under his budget constraint:

u;(x;) s.t.

max x;i € X;and (p, x;) < (p,wi).

Definition 1 An equilibrium in a pure exchange econ-
omy is a price vector p € R” and bundles of commodities
{x;i e R",i=1,..., m}, such that

X; € argmax{u;(x;)|x; € X; and (x;, p) < (wi, p)},

Vi<i<m

m m
chij < Zwij,VI =
i=1 i=1

A
-.
IA

X

The concept of approximate equilibrium was introduced
in [3]:

Definition 2 ([3]) An e-approximate equilibrium in an
exchange market is a price vector p € R” and bundles of
goods {x; € R",i =1,...,m}, such that

1
u;(%;) > —— max{u;(x;)|x; € X;, (x;, p) < (w;, p)}. Vi

T l+e
(1)
(%i, p) < (1 +e){wi, p), Vi 2)
Z)‘cijf(1+e)2wij,‘v’j. (3)
i=1 i=1

Key Results

A linear market is a market in which all the agents have
linear utility functions. The deficiency of a market is the
smallest € > 0 for which an e-approximate equilibrium
exists.

Theorem 1 The deficiency of a linear market with indi-
visible goods is NP-hard to compute, even if the number of
agents is two. The deficiency is also NP-hard to approximate
within 1/3.

Theorem 2 There is a polynomial-time algorithm for find-
ing an equilibrium in linear markets with bounded number
of divisible goods. Ditto for a polynomial number of agents.

Theorem 3 If the number of goods is bounded, there is
a polynomial-time algorithm which, for any linear indivisi-
ble market for which a price equilibrium exists, and for any
€ > 0, finds an e-approximate equilibrium.

If the utility functions are strictly concave and the equi-
librium prices are broadcasted to all agents, the equi-
librium allocation can be computed distributely without
any communication, since each agent’s basket of goods
is uniquely determined. However, if the utility functions
are not strictly concave, e. g. linear functions, communica-
tions are needed to coordinate the agents’ behaviors.

Theorem 4 Any protocol with binary domains for com-
puting Pareto allocations of m agents and n divisible com-
modities with concave utility functions (resp. €-Pareto al-
locations for indivisible commodities, for any € < 1) must
have market communication complexity §2(mlog(m + n))
bits.
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Applications

This concept of market equilibrium is the outcome of a se-
quence of efforts trying to fully understand the laws that
govern human commercial activities, starting with the “in-
visible hand” of Adam Smith, and finally, the mathemati-
cal conclusion of Arrow and Debreu [1] that there exists
a set of prices that bring supply and demand into equilib-
rium, under quite general conditions on the agent utility
functions and their optimization behavior.

The work of Deng, Papadimitriou and Safra [3] explic-
itly called for an algorithmic complexity study of the prob-
lem, and developed interesting complexity results and ap-
proximation algorithms for several classes of utility func-
tions. There has since been a surge of algorithmic study
for the computation of the price equilibrium problem with
continuous variables, discovering and rediscovering poly-
nomial time algorithms for many classes of utility func-
tions, see [2,4,5,6,7,8,9].

Significant progress has been made in the above di-
rections but only as a first step. New ideas and methods
have already been invented and applied in reality. The
next significant step will soon manifest itself with many
active studies in microeconomic behavior analysis for E-
commercial markets. Nevertheless the algorithmic ana-
lytic foundation in [3] will be an indispensable tool for fur-
ther development in this reincarnated exciting field.

Open Problems

The most important open problem is what is the compu-
tational complexity for finding the equilibrium price, as
guaranteed by the Arrow-Debreu theorem. To the best
of the author’s knowledge, only the markets whose set of
equilibria is convex can be solved in polynomial time with
current techniques. And approximating equilibria in some
markets with disconnected set of equilibria, e. g. Leontief
economies, are shown to be PPAD-hard. Is the convexity
or (weakly) gross substitutability a necessary condition for
a market to be polynomial-time solvable?

Second, how to handle the dynamic case is especially
interesting in theory, mathematical modeling, and algo-
rithmic complexity as bounded rationality. Great progress
must be made in those directions for any theoretical work
to be meaningful in practice.

Third, incentive compatible mechanism design proto-
cols for the auction models have been most actively stud-
ied recently, especially with the rise of E-Commerce. Es-
pecially at this level, a proper approximate version of the
equilibrium concept handling price dynamics should be
especially important.
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Problem Definition

The generalized Steiner network problem is a network de-
sign problem, where the input consists of a graph together
with a collection of connectivity requirements, and the
goal is to find the cheapest subgraph meeting these re-
quirements.

Formally, the input to the generalized Steiner network
problem is an undirected multigraph G = (V, E), where
each edge e € E has a non-negative cost c(e), and for each
pair of vertices i, j € V, there is a connectivity require-
ment 7; ; € Z. A feasible solution is a subset E' CE of
edges, such that every pair i, j € V of vertices is connected
by at least r; j edge-disjoint path in graph G’ = (V,E).
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The generalized Steiner network problem asks to find a so-
lution E’ of minimum cost ), c(e).

This problem generalizes several classical network de-
sign problems. Some examples include minimum span-
ning tree, Steiner tree and Steiner forest. The most general
special case for which a 2-approximation was previously
known is the Steiner forest problem [1,4].

Williamson et al. [8] were the first to show a non-
trivial approximation algorithm for the generalized Steiner
network problem, achieving a 2k-approximation, where
k = max; jev{r; ;}. This result was improved to O(log k)-
approximation by Goemans et al. [3].

Key Results

The main result of [6] is a factor-2 approximation algo-
rithm for the generalized Steiner network problem. The
techniques used in the design and the analysis of the algo-
rithm seem to be of independent interest.

The 2-approximation is achieved for a more general
problem, defined as follows. The input is a multigraph
G = (V, E) with costs c(-) on edges, and connectivity re-
quirement function f : 2V — Z. Function f is weakly sub-
modular, i. e., it has the following properties:

1. f(V)=0.
2. Forall A, B C V, at least one of the following two con-
ditions holds:

o f(A)+ f(B) < f(A\ B)+ f(B\ A).

o f(A)+f(B) < f(ANB) + f(AUB).

For any subset S C V of vertices, let §(S) denote the
set of edges with exactly one endpoint in S. The goal is to
find a minimum-cost subset of edges E’ C E, such that for
every subset S C V of vertices, |§(S) N E’| > f(S).

This problem can be equivalently expressed as an inte-
ger program. For each edge e € E, let x, be the indicator
variable of whether e belongs to the solution.

(IP) min Z c(e)x,

e€E
subject to:
D xe = f(9) vScv 1)
e€s(S)
x. €1{0,1} Ve€ E (2)

It is easy to see that the generalized Steiner network
problem is a special case of (IP), where for each S C V,

f(S) = maxjes, jgsiri,j}-

Techniques

The approximation algorithm uses the LP-rounding tech-
nique. The initial linear program (LP) is obtained from

(IP) by replacing the integrality constraint (2) with:

0<x,<1 Ve € E (3)
It is assumed that there is a separation oracle for (LP). It
is easy to see that such an oracle exists if (LP) is obtained
from the generalized Steiner network problem. The key re-
sult used in the design and the analysis of the algorithm is
summarized in the following theorem.

Theorem 1 In any basic solution of (LP), there is at least
one edge e € E with x, > 1/2.

The approximation algorithm works by iterative LP-
rounding. Given a basic optimal solution of (LP), let
E* C E be the subset of edges e with x, > 1/2. The edges
of E* are removed from the graph (and are eventually
added to the solution), and the problem is then solved
recursively on the residual graph, by solving (LP) on
G* = (V,E\ E*), where for each subset S C V, the new
requirement is f(S) — |8(S) N E*|. The main observation
that leads to factor-2 approximation is the following: if
E’ is a 2-approximation for the residual problem, then
E’ U E* is a 2-approximation for the original problem.

Given any solution to (LP), set S C V is called tight
iff constraint (1) holds with equality for S. The proof of
Theorem 1 involves constructing a large laminar family of
tight sets (a family where for every pair of sets, either one
set contains the other, or the two sets are disjoint). After
that a clever accounting scheme that charges edges to the
sets of the laminar family is used to show that there is at
least one edge e € E with x, > 1/2.

Applications

Generalized Steiner network is a very basic and natural
network design problem that has many applications in dif-
ferent areas, including the design of communication net-
works, VLSI design and vehicle routing. One example is
the design of survivable communication networks, which
remain functional even after the failure of some network
components (see [5] for more details).

Open Problems

The 2-approximation algorithm of Jain [6] for generalized
Steiner network is based on LP-rounding, and it has high
running time. It would be interesting to design a combina-
torial approximation algorithm for this problem.

It is not known whether a better approximation is pos-
sible for generalized Steiner network. Very few hardness of
approximation results are known for this type of problems.
The best current hardness factor stands on 1.01063 [2],
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and this result is valid even for the special case of Steiner
tree.
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Problem Definition

In the generalized two-server problem we are given two
servers: one moving in a metric space X and one moving
in a metric space Y. They are to serve requests r € X x Y
which arrive one by one. A request r = (x, y) is served by
moving either the X-server to point x or the Y-server to
point y. The decision as to which server to move to the

next request is irrevocable and has to be taken without any
knowledge about future requests. The objective is to min-
imize the total distance traveled by the two servers.

On-line Routing Problems

The generalized two-server problem belongs to a class of
routing problems called metrical service systems [5,10].
Such a system is defined by a metric space M of all possi-
ble system configurations, an initial configuration Cop, and
a set R of possible requests, where each request r € R is

a subset of Ml. Given a sequence, r1, 15 . .. , 7y, Of requests,
a feasible solution is a sequence, C;, C3, ..., C,, of config-
urations such that C; € r; foralli € {1,...,n}.

When we model the generalized two-server prob-
lem as a metrical service system we have M =X x Y
and R = {{x x Y} U{X x y}|x € X, y € Y}. In the clas-
sical two-server problem both servers move in the same
space and receive the same requests, i.e., M = X x X and
R ={{x x X} U{X x x}|x € X}.

The performance of algorithms for on-line optimiza-
tion problems is often measured using competitive analy-
sis. We say that an algorithm is a-competitive (o« > 1) for
some minimization problem if for every possible instance
the cost of the algorithm’s solution is at most « times the
cost of an optimal solution for the instance.

A standard algorithm that performs provably well for
several elementary routing problems is the so-called work
function algorithm [2,6,8]; after each request the algorithm
moves to a configuration with low cost and which is not
too far from the current configuration. More precisely: If
the system’s configuration after serving a sequence o is C
and r € M is the next request, then the work function al-
gorithm with parameter A > 1 moves to a configuration
C’ € r that minimizes

AW, (Ch+d(C,C'),

where d(C, C’) is the distance between configurations C
and C’, and Wy, ,(C’) is the cost of an optimal solution that

X Y Y3
XXy
RZAN
X, Xo Xy bz Yo W

Generalized Two-Server Problem, Figure 1

In this example both servers move in the plane and start from
the configuration (xo, yo). The X-server moves through requests
1 and 3, and the Y -server takes care of requests 2 and 4. The cost
of this solution is the sum of the path-lengths
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serves all requests (in order) in o plus request r with the
restriction that it ends in configuration C.

Key Results

The main result in [11] is a sufficient condition for a met-
rical service system to have a constant-competitive algo-
rithm. Additionally, the authors show that this condition
holds for the generalized two-server problem.

For a fixed metrical service system S with metric space
M, denote by A(C, o) the cost of algorithm A on input se-
quence o, starting in configuration C. Let OPT(C, o) be
the cost of the corresponding optimal solution. We say
that a path T in M serves a sequence o if it visits all re-
quests in order. Hence, a feasible path is a path that serves
the sequence and starts in the initial configuration.

Paths T and T are said to be independent if they are
far apart in the following way: |T1| + | 12| < d(C3,C)) +
d(C5, C{), where C{ and C! are, respectively, the start and
end point of path T;(i € {1, 2}). Notice, for example, that
two intersecting paths are not independent.

Theorem 1 Let S be a metrical service system with metric
space M. Suppose there exists an algorithm A and constants
a>1,8>0and m > 2 such that for any point C € M,

sequence o and pairwise independent paths T, T, ..., Ty,
that serve o
m
A(C.0) < aOPT(C.0) + B Y _|Ti| . (1)

i=1

Then there exists an algorithm B that is constant competi-
tive for S.

The proofin [11] of the theorem above provides an explicit
formulation of B. This algorithm combines algorithm A
with the work function algorithm and operates in phases.
In each phase, it applies algorithm A until its cost becomes
too large compared to the optimal cost. Then, it makes one
step of the work function algorithm and a new phase starts.
In each phase algorithm A makes a restart, i. e., it takes the
final configuration of the previous phase as the initial con-
figuration, whereas the work function algorithm remem-
bers the whole request sequence.

For the generalized two-server problem the so-called
balance algorithm satisfies condition (1). This algorithm
stores the cumulative costs of the two servers and with
each request it moves the server that minimizes the max-
imum of the two new values. The balance algorithm itself
is not constant competitive but Theorem 1 says that, if we
combine it in a clever way with the work function algo-
rithm, then we get an algorithm that is constant competi-
tive.

Applications

A set of metrical service systems can be combined to get
what is called in [9] the sum system. A request of the sum
system consists of one request for each system and to serve
it we need to serve at least one of the individual requests.
The generalized two-server problem should be considered
as one of the simplest sum systems since the two individ-
ual problems are completely trivial: there is one server and
each request consists of a single point.

Sum systems are particularly interesting to model sys-
tems for information storage and retrieval. To increase sta-
bility or efficiency one may store copies of the same infor-
mation in multiple systems (e. g. databases, hard disks). To
retrieve one piece of information we may read it from any
system. However, to read information it may be necessary
to change the configuration of the system. For example, if
the database is stored in a binary search tree, then it is effi-
cient to make on-line changes to the structure of the tree,
i. e., to use dynamic search trees [12].

Open Problems

A proof that the work function algorithm is competitive
for the generalized two-server problem (as conjectured
in [9] and [11]) is still lacking. Also, a randomized algo-
rithm with a smaller competitive ratio than that of [11]
is not known. No results (except for a lower bound) are
known for the generalized problem with more than two
servers. It is not even clear if the work function algorithm
may be competitive here.

There are systems for which the work function algo-
rithm is not competitive. It would be interesting to have
a non-trivial property that implies competitiveness of the
work function algorithm.
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Problem Definition

Auctions are used for allocating goods, tasks, resources,
etc. Participants in an auction include an auctioneer (usu-
ally a seller) and bidders (usually buyers). An auction has
well-defined rules that enforce an agreement between the
auctioneer and the winning bidder. Auctions are often
used when a seller has difficulty in estimating the value of
an auctioned good for buyers.

The Generalized Vickrey Auction protocol (GVA) [5]
is an auction protocol that can be used for combinatorial
auctions [3] in which multiple items/goods are sold si-
multaneously. Although conventional auctions sell a sin-
gle item at a time, combinatorial auctions sell multiple
items/goods. These goods may have interdependent val-
ues, e.g., these goods are complementary/substitutable
and bidders can bid on any combination of goods. In
a combinatorial auction, a bidder can express comple-
mentary/substitutable preferences over multiple bids. By
taking into account complementary/substitutable prefer-
ences, the participants’ utilities and the revenue of the
seller can be increased. The GVA is one instance of the
Clarke mechanism [2,4]. It is also called the Vickrey-

Clarke-Groves mechanism (VCG). As its name suggests,
it is a generalized version of the well-known Vickrey (or
second-price) auction protocol [6], proposed by an Amer-
ican economist W. Vickrey, a 1996 Nobel Prize winner.

Assume there is a set of bidders N = {1,2,...,n} and
asetofgoods M = {1,2,..., m}. Each bidder i has his/her
preferences over a bundle, i. e., a subset of goods B C M.
Formally, this can be modeled by supposing that bidder i
privately observes a parameter, or signal, 6;, which deter-
mines his/her preferences. The parameter 6; is called the
type of bidder i. A bidder is assumed to have a quasilinear,
private value defined as follows.

Definition 1 (Utility of a Bidder) The utility of bid-
der i, when i obtains B C M and pays p;, is represented
asv (B, 0;) — pi.

Here, the valuation of a bidder is determined indepen-
dently of other bidders’ valuations. Also, the utility of
abidder is linear in terms of the payment. Thus, this model
is called a quasilinear, private value model.

Definition 2 (Incentive Compatibility) An auction
protocol is (dominant-strategy) incentive compatible (or
strategy-proof ) if declaring the true type/evaluation val-
ues is a dominant strategy for each bidder, i. e., an optimal
strategy regardless of the actions of other bidders.

A combination of dominant strategies of all bidders is
called a dominant-strategy equilibrium.

Definition 3 (Individual Rationality) An auction pro-
tocol is individually rational if no participant suffers any
loss in a dominant-strategy equilibrium, i. e., the payment
never exceeds the evaluation value of the obtained goods.

Definition 4 (Pareto Efficiency) An auction protocol is
Pareto efficient when the sum of all participants’ utilities
(including that of the auctioneer), i. e., the social surplus,
is maximized in a dominant-strategy equilibrium.

The goal is to design an auction protocol that is incen-
tive compatible, individually rational, and Pareto efficient.
It is clear that individual rationality and Pareto efficiency
are desirable. Regarding the incentive compatibility, the
revelation principle states that in the design of an auction
protocol, it is possible to restrict attention only to incen-
tive compatible protocols without loss of generality [4]. In
other words, if a certain property (e. g., Pareto efficiency)
can be achieved using some auction protocol in a domi-
nant-strategy equilibrium, then the property can also be
achieved using an incentive-compatible auction protocol.
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Key Results

A feasible allocation is defined as a vector of n bun-

dles B = (B1,...,B,), where UjENBj C M and for all

j#j.BjN By =@hold.
The GV A protocol can be described as follows.

1. Each bidder i declares his/her type 6;, which can be dif-
ferent from his/her true type 6;.

2. The auctioneer chooses an optimal allocation B* ac-
cording to the declared types. More precisely, the auc-
tioneer chooses B* defined as follows:

E* = argm_gxz % (Bj, é]) .
B

jEN

3. Each bidder i pays p;, which is defined as follows (B].Ni

and B7 are the jth element of B~ and B*, respectively):

pi= Z V(B;-Vi,éj)— Z V(B;‘,éj),

JEN\{i} JeN\{i} 1)
where B~ = arg max Z v (B]-, 0]) .
B jen\tiy

The first term in Eq. (1) is the social surplus when bidder i
does not participate. The second term is the social surplus
except bidder i when i does participate. In the GVA, the
payment of bidder i can be considered as the decreased
amount of the other bidders’ social surplus resulting from
his/her participation.

A description of how this protocol works is given be-
low.

Example I Assume there are two goods a and b, and three
bidders, 1, 2, and 3, whose types are 6;, 6,, and 83, respec-
tively. The evaluation value for a bundle v(B, 6;) is deter-
mined as follows.

lay b} Ha, b}
6 $6 $0  $6
6, $0 $0  $8
65 $0  $5  $5

Here, bidder 1 wants good a only, and bidder 3 wants
good b only. Bidder 2’s utility is all-or-nothing, i. e., he/she
wants both goods at the same time and having only one
good is useless.

Assume each bidder i declares his/her true type 6;. The op-
timal allocation is to allocate good a to bidder 1 and b to
bidder 3,1.e., B* = ({a}, {}, {b}). The payment of bidder 1
is calculated as follows. If bidder 1 does not participate, the
optimal allocation would have been allocating both items

to bidder 2, i.e., B~! = ({3}, {a, b}, {}) and the social sur-
plus, i.e., 3 i1y ¥ (371, 0]> is equal to $8. When bid-
der 1 does participate, bidder 3 obtains {b}, and the social
surplus except for bidder 1, i. e., ZjeN\{l} v (B;‘, 0]-), is 5.
Therefore, bidder 1 pays the difference $8 — $5 = $3. The
obtained utility of bidder 1 is $6 — $3 = $3. The payment
of bidder 3 is calculated as $8 — $6 = $2.

The intuitive explanation of why truth telling is the
dominant strategy in the GVA is as follows. In the GVA,
goods are allocated so that the social surplus is maximized.
In general, the utility of society as a whole does not nec-
essarily mean maximizing the utility of each participant.
Therefore, each participant might have an incentive for ly-
ing if the group decision is made so that the social surplus
is maximized.

However, the payment of each bidder in the GVA is
cleverly determined so that the utility of each bidder is
maximized when the social surplus is maximized. Figure 1
illustrates the relationship between the payment and util-
ity of bidder 1 in Example 1. The payment of bidder 1 is
defined as the difference between the social surplus when
bidder 1 does not participate (i. e., the length of the upper
shaded bar) and the social surplus except bidder 1 when
bidder 1 does participate (the length of the lower black
bar), i.e., $8 — $5 = $3.

On the other hand, the utility of bidder 1 is the dif-
ference between the evaluation value of the obtained item
and the payment, which equals $6 — $3 = $3. This amount
is equal to the difference between the total length of the
lower bar and the upper bar. Since the length of the upper
bar is determined independently of bidder 1’s declaration,
bidder 1 can maximize his/her utility by maximizing the
length of the lower bar. However, the length of the lower
bar represents the social surplus. Thus, bidder 1 can max-
imize his/her utility when the social surplus is maximized.

Social Surplus when bidder 1 does not participate ($8)

Utility ($3)

($3)
<>

: Payment

Bidder 1's evaluation value ($6) Social Surplus

except bidder 1 ($5)
N

>

<
N

Social Surplus ($11)

Generalized Vickrey Auction, Figure 1
Utilities and Payments in the GVA
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Therefore, bidder 1 does not have an incentive for lying
since the group decision is made so that the social surplus
is maximized.

Theorem 1 The GVA is incentive compatible.

Proof Since the utility of bidder i is assumed to be quasi-
linear, it can be represented as

v(Bi, 0i) — pi =v(Bi, 6;)

_ Z V(B].Ni,éj> —Z V(B;‘,é])

JEN\{i} jeN\{i}
= V(B,', 01) + Z 14 (B;k, é])
jEN\{}
— Z V(B;'i,é])
JEN\{}

2)

The second term in Eq. (2) is determined independently of
bidder i’s declaration. Thus, bidder 1 can maximize his/her
utility by maximizing the first term. However, B* is chosen

sothat ) e v (B i éj) is maximized. Therefore, bidder i

can maximize his/her utility by declaring ;=6 e, by
declaring his/her true type. O

Theorem 2 The GVA is individually rational.

Proof This is clear from Eq. (2), since the first term is
always larger than (or at least equal to) the second term.[]

Theorem 3 The GVA is Pareto efficient.

Proof From Theorem 1, truth telling is a dominant-strat-
egy equilibrium. From the way of choosing the allocation,
the social surplus is maximized if all bidders declare their
true types. |

Applications

The GVA can be applied to combinatorial auctions, which
have lately attracted considerable attention [3]. The US
Federal Communications Commission has been conduct-
ing auctions for allocating spectrum rights. Clearly, there
exist interdependencies among the values of spectrum
rights. For example, a bidder may desire licenses for ad-
joining regions simultaneously, i.e., these licenses are
complementary. Thus, the spectrum auctions is a promis-
ing application field of combinatorial auctions and have
been a major driving force for activating the research on
combinatorial auctions.

Open Problems

Although the GVA has these good characteristics (Pareto
efficiency, incentive compatibility, and individual rational-
ity), these characteristics cannot be guaranteed when bid-
ders can submit false-name bids. Furthermore, [1] pointed
out several other limitations such as vulnerability to the
collusion of the auctioneer and/or losers.

Also, to execute the GVA, the auctioneer must solve
a complicated optimization problem. Various studies have
been conducted to introduce search techniques, which
were developed in the artificial intelligence literature, for
solving this optimization problem [3].
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Problem Definition

Geographic routing is a type of routing particularly well
suited for dynamic ad hoc networks. Sometimes also called
directional, geometric, location-based, or position-based
routing, it is based on two principal assumptions. First, it
is assumed that every node knows its own and its network
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neighbors’ positions. Second, the source of a message is
assumed to be informed about the position of the destina-
tion. Geographic routing is defined on a Euclidean graph,
that is a graph whose nodes are embedded in the Euclidean
plane. Formally, geographic ad hoc routing algorithms can
be defined as follows:

Definition 1 (Geographic Ad Hoc Routing Algorithm)

Let G = (V, E) be a Euclidean graph. The task of a geo-

graphic ad hoc routing algorithm A is to transmit a mes-

sage from a source s € V to a destination ¢ € V by sending
packets over the edges of G while complying with the fol-
lowing conditions:

e All nodes v € V know their geographic positions as
well as the geographic positions of all their neighbors
in G.

e The source s is informed about the position of the des-
tination ¢.

e The control information which can be stored in
a packet is limited by O(log n) bits, that is, only infor-
mation about a constant number of nodes is allowed.

e Except for the temporary storage of packets before for-
warding, a node is not allowed to maintain any infor-
mation.

Geographic routing is particularly interesting, as it oper-
ates without any routing tables whatsoever. Furthermore,
once the position of the destination is known, all opera-
tions are strictly local, that is, every node is required to
keep track only of its direct neighbors. These two fac-
tors—absence of necessity to keep routing tables up to
date and independence of remotely occurring topology
changes—are among the foremost reasons why geographic
routing is exceptionally suitable for operation in ad hoc
networks. Furthermore, in a sense, geographic routing can
be considered a lean version of source routing appropri-
ate for dynamic networks: While in source routing the
complete hop-by-hop route to be followed by the mes-
sage is specified by the source, in geographic routing the
source simply addresses the message with the position of
the destination. As the destination can generally be ex-
pected to move slowly compared to the frequency of topol-
ogy changes between the source and the destination, it
makes sense to keep track of the position of the destination
instead of maintaining network topology information up
to date; if the destination does not move too fast, the mes-
sage is delivered regardless of possible topology changes
among intermediate nodes.

The cost bounds presented in this entry are achieved
on unit disk graphs. A unit disk graph is defined as follows:

Definition 2 (Unit Disk Graph) Let V C R? be a set of
points in the 2-dimensional plane. The graph with edges

between all nodes with distance at most 1 is called the unit
disk graph of V.

Unit disk graphs are often employed to model wireless ad
hoc networks.

The routing algorithms considered in this entry oper-
ate on planar graphs, graphs that contain no two intersect-
ing edges. There exist strictly local algorithms construct-
ing such planar graphs given a unit disk graph. The edges
of planar graphs partition the Euclidean plane into con-
tiguous areas, so-called faces. The algorithms cited in this
entry are based on these faces.

Key Results

The first geographic routing algorithm shown to always
reach the destination was Face Routing introduced in [14].

Theorem 1 If the source and the destination are con-
nected, Face Routing executed on an arbitrary planar graph
always finds a path to the destination. It thereby takes at
most O(n) steps, where n is the total number of nodes in the
network.

There exists however a geographic routing algorithm
whose cost is bounded not only with respect to the to-
tal number of nodes, but in relation to the shortest path
between the source and the destination: The GOAFR*
algorithm [15,16,18,24] (pronounced as “gopher-plus”)
combines greedy routing—where every intermediate node
relays the message to be routed to its neighbor located
nearest to the destination—with face routing. Together
with the locally computable Gabriel Graph planarization
technique, the effort expended by the GOAFR* algorithm
is bounded as follows:

Theorem 2 Let ¢ be the cost of an optimal path from s to
t in a given unit disk graph. GOAFR" reaches t with cost
O(c?) if s and t are connected. If s and t are not connected,
GOAFR" reports so to the source.

On the other hand it can be shown that—on certain
worst-case graphs—no geographic routing algorithm op-
erating in compliance with the above definition can per-
form asymptotically better than GOAFR*:

Theorem 3 There exist graphs where any deterministic
(randomized) geographic ad hoc routing algorithm has (ex-
pected) cost 2(c?).

This leads to the following conclusion:

Theorem 4 The cost expended by GOAFR™ to reach the
destination on a unit disk graph is asymptotically optimal.

In addition, it has been shown that the GOAFR* algorithm
is not only guaranteed to have low worst-case cost but that



Geographic Routing

357

it also performs well in average-case networks with nodes
randomly placed in the plane [15,24].

Applications

By its strictly local nature geographic routing is particu-
larly well suited for application in potentially highly dy-
namic wireless ad hoc networks. However, also its employ-
ment in dynamic networks in general is conceivable.

Open Problems

A number of problems related to geographic routing re-
main open. This is true above all with respect to the dis-
semination within the network of information about the
destination position and on the other hand in the context
of node mobility as well as network dynamics. Various
approaches to these problems have been described in [7]
as well as in chapters 11 and 12 of [24]. More generally,
taking geographic routing one step further towards its ap-
plication in practical wireless ad hoc networks [12,13] is
a field yet largely open. A more specific open problem is
finally posed by the question whether geographic routing
can be adapted to networks with nodes embedded in three-
dimensional space.

Experimental Results

First experiences with geographic and in particular face
routing in practical networks have been made [12,13].
More specifically, problems in connection with graph pla-
narization that can occur in practice were observed, docu-
mented, and tackled.
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Problem Definition

Urban street systems can be modeled by plane geomet-
ric networks G = (V,E) whose edges e € E are piece-
wise smooth curves that connect the vertices v € V C R2.

Edges do not intersect, except at common endpoints in
V. Since streets are lined with houses, the quality of such
a network can be measured by the length of the connec-
tions it provides between two arbitrary points p and g
on G.

Let £6(p. q) denote a shortest path from p to g in G.
Then

1€c(p, 9|
|pal

is the detour one encounters when using network G, in or-
der to get from p to g, instead of walking straight. Here,
|.| denotes the Euclidean length. The geometric dilation of
network G is defined by

8(p.q) = 1

8(G) == sup 8(p,q). (2)

PF9EG

This definition differs from the notion of stretch fac-
tor (or: spanning ratio) used in the context of spanners;
see the monographs by Eppstein [6] or Narasimhan and
Smid [11]. In the latter, only the paths between the ver-
tices p, g € V are considered, whereas the geometric dila-
tion involves all points on the edges as well. As a conse-
quence, the stretch factor of a triangle T equals 1, but its
geometric dilation is given by 8(T) = +/2/(1 — cosa) > 2,
where & < 60° is the most acute angle of T.

Presented with a finite set S of points in the plane, one
would like to find a finite geometric network containing S
whose geometric dilation is as small as possible. The value
of

A(S) := inf{8(G); G finite plane geometric
network containing S}

is called the geometric dilation of point set S. The problem
is in computing, or bounding, A(S) for a given set S.

Key Results

Theorem 1 [4] Let S, denote the set of corners of
a regular n-gon. Then, A(S3) = 2/4/3. A(Sy) = +/2, and
A(Sy) = n/2 foralln > 5.

The networks realizing these minimum values are shown
in Fig. 1. The proof of minimality uses the following
two lemmata that may be interesting in their own right.
Lemma 1 was independently obtained by Aronov et al. [1].

Lemma 1 Let T be a tree containing S,,. Then §(T) > n/m.

Lemma 2 follows from a result of Gromov’s [7]. It can
more easily be proven by applying Cauchy’s surface area
formula, see [4].
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A(S3) = 2/v/3

Geometric Dilation of Geometric Networks, Figure 1
Minimum dilation embeddings of regular point sets

Lemma 2 Let C denote a simple closed curve in the plane.
Then 6(C) > m/2.

Clearly, Lemma 2 is tight for the circle. The next lemma
implies that the circle is the only closed curve attaining the
minimum geometric dilation of /2.

Lemma 3 [3] Let C be a simple closed curve of geometric
dilation < /2 + €(8). Then C is contained in an annulus
of width §.

For points in general position, computing their geo-
metric dilation seems quite complicated. Only for sets
S ={A,B,C} of size three is the solution completely
known.

Theorem 2 [5] The plane geometric network of minimum
geometric dilation containing three given points {A, B, C} is
either a line segment, or a Steiner tree as depicted in Fig. 1,
or a simple path consisting of two line segments and one
segment of an exponential spiral; see Fig. 2.

The optimum path shown in Fig. 2 contains a degree two
Steiner vertex, P, situated at distance |AB| from B. The path
runs straight between A, Band B, P. From P to C it follows
an exponential spiral centered at A.

The next results provide upper and lower bounds to
A(S).

Theorem 3 [4] For each finite point set S the estimate
A(S) < 1.678 holds.

Geometric Dilation of Geometric Networks, Figure 2
The minimum dilation embedding of points A, B, and C

A(Sy) = V2

A(S,)=7/2ifn>5

To prove this general upper bound one can replace each
vertex of the hexagonal tiling of R? with a certain closed
Zindler curve (by definition, all point pairs bisecting the
perimeter of a Zindler curve have identical distance). This
results in a network G of geometric dilation & 1.6778; see
Fig. 3. Given a finite point set S, one applies a slight defor-
mation to a scaled version of G, such that all points of S
lie on a finite part, G, of the deformed net. By Dirichlet’s
result on simultaneous approximation of real numbers by
rationals, a deformation small as compared to the cell size
is sufficient, so that the dilation is not affected. See [8] for
the history and properties of Zindler curves.

Theorem 4 [3] There exists a finite point set S such that
A(S) > (1 + 107 Hx/2.

Theorem 4 holds for the set S of 19 x 19 vertices of the in-
teger grid. Roughly, if S were contained in a geometric net-
work G of dilation close to 77/2, the boundaries of the faces
of G must be contained in small annuli, by Lemma 3. To
the inner and outer circles of these annuli, one can now ap-
ply a result by Kuperberg et al. [9] stating that an enlarge-

Gr

Geometric Dilation of Geometric Networks, Figure 3
A network of geometric dilation ~ 1,6778
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ment, by a certain factor, of a packing of disks of radius
< 1 cannot cover a square of size 4.

Applications

The geometric dilation has applications in the theory of
knots, see, e. g., Kusner and Sullivan [10] and Denne and
Sullivan [2]. With respect to urban planning, the above
results highlight principal dilation bounds for connecting
given sites with plane geometric networks.

Open Problems

For practical applications, one would welcome upper
bounds to the weight (= total edge length) of a geomet-
ric network, in addition to upper bounds on its geometric
dilation. Some theoretical questions require further inves-
tigation, too. Is A(S) always attained by a finite network?
How to compute, or approximate, A(S) for a given finite
set S? What is the precise value of sup{A(S); S finite}?
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Problem Definition

Consider a set S of n points in d-dimensional Euclidean
space. A network on S can be modeled as an undirected
graph G with vertex set S of size n and an edge set E where
every edge (u,v) has a weight. A geometric (Euclidean)
network is a network where the weight of the edge (u, v) is
the Euclidean distance |uv| between its endpoints. Given
a real number ¢ > 1 we say that G is a t-spanner for S, if
for each pair of points u, v € S, there exists a path in G of
weight at most ¢ times the Euclidean distance between u
and v. The minimum ¢ such that G is a t-spanner for S is
called the stretch factor, or dilation, of G. For a more de-
tailed description of the construction of ¢-spanners see the
book by Narasimhan and Smid [18]. The problem consid-
ered is the construction of f-spanners given a set S of n
points in R? and a positive real value ¢ > 1, where d is
a constant. The aim is to compute a good t-spanner for S
with respect to the following quality measures:

size: the number of edges in the graph.

degree: the maximum number of edges incident on a ver-
tex.

weight: the sum of the edge weights.

spanner diameter: the smallest integer k such that for any
pair of vertices u and v in S, there is a path in the graph
of length at most ¢ - |uv| between u and v containing at
most k edges.

fault-tolerance: the resilience of the graph to edge, vertex
or region failures.

Thus, good t-spanners require large fault-tolerance and
small size, degree, weight and spanner diameter.
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Key Results

This section contains a description of the three most com-
mon approaches for constructing a t-spanner of a set of
points in Euclidean space. It also contains a description
of the construction of fault-tolerant spanners, spanners
among polygonal obstacles and, finally, a short note on dy-
namic and kinetic spanners.

Spanners of Points in Euclidean Space

The most well-known classes of ¢-spanner networks for
points in Euclidean space include: @-graphs, WSPD-
graphs and Greedy-spanners. In the following sections the
main idea of each of these classes is given, together with
the known bounds on the quality measures.

The @-Graph The ©-graph was discovered indepen-
dently by Clarkson and Keil in the late 80’s. The general
idea is to process each point p € S independently as fol-
lows. Partition R¢ into k simplicial cones of angular di-
ameter at most 6 and apex at p, where k = O(1/0971).
For each non-empty cone C, an edge is added between p
and the point in C whose orthogonal projection onto some
fixed ray in C emanating from p is closest to p, see Fig. la.
The resulting graph is called the ®-graph on S.

Theorem 1 The ©-graph is a t-spanner of S for t = 1/
(cos @ —sin 0) with O(n/0971) edges, and can be computed
in O((n/04 ") log? ™" n) time using O(n/09 +nlog" 2 n)
space.

The following variants of the @-graph also give bounds on
the degree, diameter and weight.

Skip-List Spanners The idea is to generalize skip-lists and
apply them to the construction of spanners. Construct
a sequence of h subsets, Sy, ..., Sy, where S; = S and §; is
constructed from S;_; as follows (reminiscent of the lev-
els in a skip list). For each point in S;_, flip a fair coin.
The set S; is the set of all points of S;—; whose coin flip
produced heads. The construction stops if S; = @. For each

Geometric Spanners, Figure 1
a lllustrating the @ -graph. b A graph with a region-fault

subseta @-graph is constructed. The union of the graphs is
the skip-list spanner of $ with dilation ¢, having O(n/6%¢~1)
edges and O(log n) spanner diameter with high probabil-
ity [3].

Gap-Greedy A set of directed edges is said to satisfy the
gap property if the sources of any two distinct edges in the
set are separated by a distance that is at least proportional
to the length of the shorter of the two edges. Arya and
Smid [5] proposed an algorithm that uses the gap prop-
erty to decide whether or not an edge should be added
to the t-spanner graph. Using the gap property the con-
structed spanner can be shown to have degree O(1/69~1)
and weight O(log n - wt(MST(S))), where wt(MST(S)) is
the weight of the minimum spanning tree of S.

The WSPD-Graph Let A and B be two finite sets of
points in RY. We say that A and B are well-separated with
respect to a real value s > 0, if there are two disjoint balls
C4 and Cg, having the same radius, such that C4 contains
A, Cp contains B, and the distance between C4 and Cp is
at least equal to s times the radius of C4. The value s is
denoted the separation ratio.

Definition 1 ([6]) Let S be a set of points in R, and let
s > 0 be a real number. A well-separated pair decomposi-
tion (WSPD) for S with respect to s is a sequence {A;, B;},
1 < i < m, of pairs of non-empty subsets of S, such that
(1) A;NB; =@ for all i=1,2,...,m, (2) for each un-
ordered pair {p, g} of distinct points of S, there is exactly
one pair {A;, B;} in the sequence, such that p € A; and
q € Bj,or p € B; and g € A;, and (3) A, and B, are well-
separated with respect tos, forall i =1,2,...,m.

The well-separated pair decomposition (WSPD) was de-
veloped by Callahan and Kosaraju [6]. The construction
of a t-spanner using the well-separated pair decomposi-
tion is done by first constructing a WSPD of S with respect
to a separation constant s = (4(¢ + 1))/(t — 1). Initially set
the spanner graph G = (S, ¥) and add edges iteratively as
follows. For each well-separated pair {A, B} in the decom-
position, an edge (a, b) is added to the graph, where a and b
are arbitrary points in A and B, respectively. The resulting
graph is called the WSPD-graph on S.

Theorem 2 The WSPD-graph is a t-spanner for S with
o(s? - n) edges and can be constructed in time O(s%n +
nlogn), where s = 4(t + 1)/(t — 1).

There are modifications that can be made to obtain
bounded diameter or bounded degree.
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Bounded Diameter Arya, Mount and Smid [3] showed
how to modify the construction algorithm such that the
diameter of the graph is bounded by 2 log n. Instead of se-
lecting an arbitrary point in each well-separated set, their
algorithm carefully chooses a specially selected point for
each set.

Bounded Degree A single point v can be part of many
well-separated pairs and each of these pairs may generate
an edge with an endpoint at v. Arya et al. [2] suggested
an algorithm that retains only the shortest edge for each
cone direction, thus combining the &-graph approach
with the WSPD-graph. By adding a post-processing step
that handles all high-degree vertices, a t-spanner of degree
O(1/(t — 1)2471) is obtained.

The Greedy-Spanner The greedy algorithm was first
presented in 1989 by Bern (see also Levcopoulos and Lin-
gas [15]) and since then the greedy algorithm has been
subject to considerable research. The graph constructed
using the greedy algorithm is called a Greedy-spanner,
and the general idea is that the algorithm iteratively builds
a graph G. The edges in the complete graph are processed
in order of increasing edge length. Testing an edge (u,v)
entails a shortest path query in the partial spanner graph G.
If the shortest path in G between u and v is at most ¢ - [uy|
then the edge (u, v) is discarded, otherwise it is added to
the partial spanner graph G.

Das, Narasimhan and Salowe [11] proved that the
greedy-spanner fulfills the so-called leapfrog property.
A set of undirected edges E is said to satisfy the t-leapfrog
property, if for every k > 2, and for every possible se-
quence {(p1,491), ..., Pk, qk)} of pairwise distinct edges
of E,

k k—1
tlprarl < Y lpsgil + ¢+ (D laipial + lpear)) -
i=2 i=1

Using the leapfrog property it is possible to bound the
weight of the graph. Das and Narasimhan [10] observed
that the Greedy-spanner can be approximated while main-
taining the leapfrog property. This observation allowed for
faster construction algorithms.

Theorem 3 ([14]) The approximate greedy-spanner is
a t-spanner of S with maximum degree O(1/(t — 1)2d-1y,
weight O((1/(t — 1)**=1 . wt(MST(S)))), and can be com-
puted in time O(n/((t — 1)>*) log n).

Fault-Tolerant Spanners

The concept of fault-tolerant spanners was first introduced
by Levcopoulos et al. [16] in 1998, i. ., after one or more
vertices or edges fail, the spanner should retain its good
properties. In particular, there should still be a short path
between any two vertices in what remains of the spanner
after the fault. Czumaj and Zhao [8] showed that a greedy
approach produces a k-vertex (or k-edge) fault tolerant
geometric t-spanner with degree O(k) and total weight
O(Kk? - wt(MST(S))); these bounds are asymptotically op-
timal.

For geometric spanners it is natural to consider region
faults, i. e., faults that destroy all vertices and edges inter-
secting some geometric fault region. For a fault region F
let G © F be the part of G that remains after the points
from S inside F and all edges that intersect F have been re-
moved from the graph, see Fig. 1b. Abam et al. [1] showed
how to construct region-fault tolerant t-spanners of size
O(nlogn) that are fault-tolerant to any convex region-
fault. If one is allowed to use Steiner points then a linear
size t-spanner can be achieved.

Spanners Among Obstacles

The visibility graph of a set of pairwise non-intersecting
polygons is a graph of intervisible locations. Each polygo-
nal vertex is a vertex in the graph, and each edge represents
a visible connection between them; that is, if two vertices
can see each other, an edge is drawn between them. This
graph is useful since it contains the shortest obstacle avoid-
ing path between any pair of vertices.

Das [9] showed that a t-spanner of the visibility graph
of a point set in the Euclidean plane can be constructed by
using the @-graph approach followed by a pruning step.
The obtained graph has linear size and constant degree.

Dynamic and Kinetic Spanners

Not much is known in the areas of dynamic or kinetic
spanners. Arya et al. [4] showed a data structure of size
O(n logd n) that maintains the skip-list spanner, described
in Sect. “The ®-Graph”, in O(logd nloglogn) expected
amortized time per insertion and deletion in the model of
random updates.

Gao et al. [13] showed how to maintain a t-spanner of
size O(n/(t—1)%) and maximum degree O(1/(t=2)4 log )
in time O((loga)/(t — %) per insertion and deletion,
where o denotes the aspect ratio of S, i. e., the ratio of the
maximum pairwise distance to the minimum pairwise dis-
tance. The idea is to use an hierarchical structure T with
O(log a) levels, where each level contains a set of centers
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(subset of S). Each vertex v on level i in T is connected
by an edge to all other vertices on level i within distance
O(2!/(t — 1)) of v. The resulting graph is a t-spanner of
S and it can be maintained as stated above. The approach
can be generalized to the kinetic case so that the total num-
ber of events in maintaining the spanner is O(n? log n) un-
der pseudo-algebraic motion. Each event can be updated
in O((log )/(t — DY) time.

Applications

The construction of sparse spanners has been shown to
have numerous applications areas such as metric space
searching [1], which includes query by content in multi-
media objects, text retrieval, pattern recognition and func-
tion approximation. Another example is broadcasting in
communication networks [17]. Several well-known theo-
retical results also use the construction of t-spanners as
a building block, for example, Rao and Smith [19] made
a breakthrough by showing an optimal O(nlog n)-time
approximation scheme for the well-known Euclidean trav-
eling salesperson problem, using t-spanners (or banyans).
Similarly, Czumaj and Lingas [7] showed approximation
schemes for minimum-cost multi-connectivity problems
in geometric networks.

Open Problems

There are many open problems in this area. Only a few are

mentioned here:

1. Design a dynamic t-spanner that can be updated in
O(log® n) time, for some constant c.

2. Determine if there exists a fault-tolerant ¢-spanner of
linear size for convex region faults.

3. The k-vertex fault tolerant spanner by Czumaj and
Zhao [8] produces a k-vertex fault tolerant ¢-spanner of
degree O(k) and weight O(k? - wt(MST(S))). However,
it is not known how to implement it efficiently. Can
such a spanner be computed in O(nlog n + kn) time?

4. Bound the weight of skip-list spanners.

Experimental Results

The problem of constructing spanners has received con-
siderable attention from a theoretical perspective but not
much attention from a practical, or experimental per-
spective. Navarro and Paredes [1] presented four heuris-
tics for point sets in high-dimensional space (d = 20) and
showed by empirical methods that the running time was
O(n***) and the number of edges in the produced graphs
was O(n!'13). Recently Farshi and Gudmundsson [12] per-
formed a thorough comparison of the construction algo-

rithms discussed in Section “Spanners of Points in Eu-
clidean Space”.
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Problem Definition

Let G = (V, E) be an undirected graph with |V| = n and
|E| = m. The edge connectivity of two vertices s,t € V,
denoted by A(s, t), is defined as the size of the smallest
cut that separates s and #; such a cut is called a mini-
mum s-t cut. Clearly, one can represent the A(s, t) val-
ues for all pairs of vertices s and ¢ in a table of size o(n?).
However, for reasons of efficiency, one would like to rep-
resent all the A(s, t) values in a more succinct manner.
Gomory-Hu trees (also known as cut trees) offer one such
succinct representation of linear (i.e., O(n)) space and
constant (i. e., O(1)) lookup time. It has the additional ad-
vantage that apart from representing all the A(s, t) values,
it also contains structural information from which a min-
imum s-t cut can be retrieved easily for any pair of ver-
tices s and t.

Formally, a Gomory-Hu tree T = (V, F) of an undi-
rected graph G = (V, E) is a weighted undirected tree de-
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Gomory-Hu Trees, Figure 1
An undirected graph (left) and a corresponding Gomory-Hu tree
(right)

fined on the vertices of the graph such that the following

properties are satisfied:

e For any pair of vertices s, t € V, A(s, t) is equal to the
minimum weight on an edge in the unique path con-
necting s to t in T. Call this edge e(s, t). If there are
multiple edges with the minimum weight on the s to ¢
pathin T, any one of these edges is designated as e(s, t).

e For any pair of vertices s and t, the bipartition of ver-
tices into components produced by removing e(s, t) (if
there are multiple candidates for e(s, t), this property
holds for each candidate edge) from T corresponds to
a minimum s—f cut in the original graph G.

To understand this definition better, consider the fol-
lowing example. Figure 1 shows an undirected graph and
a corresponding Gomory-Hu tree. Focus on a pair of ver-
tices, for instance, 3 and 5. Clearly, the edge (6, 5) of weight
3 is a minimum-weight edge on the 3 to 5 path in the Go-
mory-Hu tree. It is easy to see that A(3,5) = 3 in the orig-
inal graph. Now, removing this edge produces the vertex
bipartition ({1, 2, 3, 6}, {4, 5}), which is a cut of size 3 in
the original graph.

It is not immediate that such Gomory-Hu trees exist
for all undirected graphs. In a classical result in 1961, Go-
mory and Hu [7] showed that not only do such trees exist
for all undirected graphs, but that they can also be com-
puted using # — 1 minimum s-¢ computations (which are
equivalent to maximum flow computations, by the cele-
brated Menger’s theorem). In fact, a graph can have mul-
tiple Gomory-Hu trees.

All previous algorithms for building Gomory-Hu trees
in undirected graphs used maximum flow subroutines.
Gomory and Hu showed how to compute the cut tree T
using n — 1 maximum flow computations and graph con-
tractions. Gusfield [8] proposed an algorithm that does not
use graph contractions; all n — 1 maximum flow compu-
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tations are performed on the input graph. Goldberg and
Tsioutsiouliklis [6] did an experimental study of the algo-
rithms due to Gomory and Hu and due to Gusfield for the
cut tree problem and described efficient implementations
of these algorithms. Examples were shown by Benczar [1]
that cut trees do not exist for directed graphs.

Any maximum flow based approach for constructing
a Gomory-Hu tree would have a running time of (n — 1)
times the time for computing a single maximum flow.
Till now, faster algorithms for Gomory-Hu trees were by-
products of faster algorithms for computing a maximum
flow. The current fastest O(m + nA(s, t)) (polylog n factors
ignored in O notation) maximum-flow algorithm, due to
Karger and Levine [10], yields the current best expected
running time of O(n®) for Gomory-Hu tree construc-
tion on simple unweighted graphs with » vertices. Bhal-
gat et al. [2] improved this time complexity to O(mn).
Note that both Karger and Levine’s algorithm and Bhal-
gatetal’salgorithm are randomized Las Vegas algorithms.
The fastest deterministic algorithm for the Gomory-Hu
tree construction problem is a by-product of Goldberg
and Rao’s maximum-flow algorithm [5] and has a running
time of O(nm'? min(m, n?)).

Key Results

Bhalgat et al. [2] considered the problem of designing an
efficient algorithm for constructing a Gomory-Hu tree on
unweighted undirected graphs. The main theorem shown
in this paper is the following.

Theorem 1 Let G = (V, E) be a simple unweighted graph
with m edges and n vertices. Then a Gomory-Hu tree for G
can be built in expected time O(mn).

Their algorithm is always faster by a factor of £2(n*°)

(polylog n factors ignored in £2 notation) compared to the
previous best algorithm.

Instead of using maximum flow subroutines, they use
a Steiner connectivity algorithm. The Steiner connectivity
of a set of vertices S (called the Steiner set) in an undirected
graph is the minimum size of a cut which splits S into two
parts; such a cut is called a minimum Steiner cut. Gener-
alizing a tree-packing algorithm given by Gabow [4] for
finding the edge connectivity of a graph, Cole and Hariha-
ran [3] gave an algorithm for finding the Steiner connec-
tivity k of a set of vertices in either undirected or directed
Eulerian unweighted graphs in O(mk?) time. (For undi-
rected graphs, their algorithm runs a little faster in time
O(m + nk>).) Bhalgat et al. improved this result and gave
the following theorem.

Theorem 2 In an undirected or directed Eulerian un-
weighted graph, the Steiner connectivity k of a set of vertices
can be determined in time O(mk).

The algorithm in [3] was used by Hariharan et al. [9] to de-
sign an algorithm with expected running time O(m + nk®)
to compute a partial Gomory-Hu tree for representing
the A(s, t) values for all pairs of vertices s, t that satisfied
A(s, t) < k. Replacing the algorithm in [3] by the new al-
gorithm for computing Steiner connectivity yields an algo-
rithm to compute a partial Gomory-Hu tree in expected
running time O(m + nk?). Bhalgat et al. showed that us-
ing a more detailed analysis this result can be improved to
give the following theorem.

Theorem 3 The partial Gomory-Hu tree of an undirected
unweighted graph to represent all A(s, t) values not exceed-
ing k can be constructed in expected time O(mk).

Since A(s, t) < n for all s, ¢ vertex pairs in an unweighted
(and simple) graph, setting k to n in Theorem 3 implies
Theorem 1.

Applications

Gomory-Hu trees have many applications in multitermi-
nal network flows and are an important data structure in
graph connectivity literature.

Open Problems

The problem of derandomizing the algorithm due to Bhal-
gat et al. [2] to produce an O(mn) time deterministic algo-
rithm for constructing Gomory-Hu trees for unweighted
undirected graphs remains open. The other main chal-
lenge is to extend the results in [2] to weighted graphs.

Experimental Results

Goldberg and Tsioutsiouliklis [6] did an extensive exper-
imental study of the cut tree algorithms due to Gomory
and Hu [7] and that due to Gusfield [8]. They showed how
to efficiently implement these algorithms and also intro-
duced and evaluated heuristics for speeding up the algo-
rithms. Their general observation was that while Gusfield’s
algorithm is faster in many situations, Gomory and Hu’s
algorithm is more robust. For more detailed results of their
experiments, refer to [6].

No experimental results are reported for the algorithm
due to Bhalgat et al. [2].

Cross References

» Approximate Maximum Flow Construction
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Problem Definition

The graph bandwidth problem concerns producing a lin-
ear ordering of the vertices of a graph G = (V, E) so as to
minimize the maximum “stretch” of any edge in the or-
dering. Formally, let n = | V|, and consider any one-to-one
mapping 7 : V. — {1, 2, ..., n}. The bandwidth of this or-
dering is bwy (G) = maxy, ,ieg |7 (1) — w(v)|. The band-
width of G is given by the bandwidth of the best possible
ordering: bw(G) = min; bwx (G).

The original motivation for this problem lies in the
preprocessing of sparse symmetric square matrices. Let A

be such an n X n matrix, and consider the problem of find-
ing a permutation matrix P such that the non-zero entries
of PTAP all lie in as narrow a band as possible about the
diagonal. This problem is equivalent to minimizing the
bandwidth of the graph G whose vertex set is {1,2,...,n}
and which has an edge {u, v} precisely when A, , # 0.

In lieu of this fact, one tries to efficiently compute a lin-
ear ordering 7 for which bw;(G) < A - bw(G), with the
approximation factor A is as small as possible. There is
even evidence that achieving any value A = O(1) is NP-
hard [18]. Much of the difficulty of the bandwidth prob-
lem is due to the objective function being a maximum over
all edges of the graph. This makes divide-and-conquer ap-
proaches ineffective for graph bandwidth, whereas they
often succeed for related problems like Minimum Lin-
ear Arrangement [6] (here the objective is to minimize
Z{u,v}GE |7 (1) — 7 (v)]). Instead, a more global algorithm
is required. To this end, a good lower bound on the value
of bw(G) has to be initially discussed.

The Local Density

For any pair of vertices u,v € V, let d(u,v) to be the
shortest path distance between u and v in the graph G.
Then, define B(v,r) ={u € V :d(u,v) <r} as the ball
of radius r about a vertex v € V. Finally, the local den-
sity of G is defined by D(G) = max,ev ,>1|B(v, r)|/(21).
It is not difficult to see that bw(G) > D(G). Although
it was conjectured that an upper bound of the form
bw(G) < poly(log ) - D(G) holds, it was not proven until
the seminal work of Feige [7].

Key Results
Feige proved the following.

Theorem 1 There is an efficient algorithm that, given
a graph G = (V,E) as input, produces a linear order-
ing m: V. — {1,2,...,n} for which bwy(G) <

0] ((log n)®/log nloglog n) -D(G). In particular, this pro-
vides a poly(log n)-approximation algorithm for the band-
width problem in general graphs.

Feige’s algorithmic framework can be described quite sim-

ply as follows.

1. Compute a representation f: V— R" of G in Eu-
clidean space.

2. Let uy,uy,...,u, be independent N(0,1)! random
variables, and for each vertex v € V, compute h(v) =

IN(0, 1) denotes a standard normal random variable with mean 0
and variance 1.
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Yor uifi(v), where f;(v) is the ith coordinate of the

vector f(v).
3. Sort the vertices by the value h(v), breaking ties arbi-

trarily, and output the induced linear ordering.
An equivalent characterization of steps (2) and (3) is to
choose a uniformly random vector a € $"~! from the
(n — 1)-dimensional sphere $S"~! C R" and output the
linear ordering induced by the values h(v) = (a, f(v)),
where (-,-) denotes the usual inner product on R".
In other words, the algorithm first computes a map
f: V. — R", projects the images of the vertices onto a ran-
domly oriented line, and then outputs the induced order-
ing; step (2) is the standard way that such a random pro-
jection is implemented.

Volume-Respecting Embeddings

The only step left unspecified is (1); the function f has
to somehow preserve the structure of the graph G in or-
der for the algorithm to output a low-bandwidth order-
ing. The inspiration for the existence of such an f comes
from the field of low-distortion metric embeddings (see,
e.g. [2,14]). Feige introduced a generalization of low-dis-
tortion embeddings to mappings called volume respecting
embeddings. Roughly, the map f should be non-expan-
sive, in the sense that || f(u) — f(v)|| <1 for every edge
{u, v} € E, and should satisfy the following property: For
any set of k vertices v, ..., vk, the (k — 1)-dimensional
volume of the convex hull of the points f(v1),..., f(vk)
should be as large as possible. The proper value of k is cho-
sen to optimize the performance of the algorithm. Refer
to [7,10,11] for precise definitions on volume-respecting
embeddings, and a detailed discussion of their construc-
tion. Feige showed that a modification of Bourgain’s em-
bedding [2] yields a mapping f: V — R" which is good
enough to obtain the results of Theorem 1.

The requirement || f(u) — f(v)|| <1 for every edge
{u, v} is natural since f(u) and f(v) need to have similar
projections onto the random direction a; intuitively, this
suggests that u and v will not be mapped too far apart in
the induced linear ordering. But even if |h(u) — h(v)]| is
small, it may be that many vertices project between h(u)
and h(v), causing u and v to incur a large stretch. To pre-
vent this, the images of the vertices should be sufficiently
“spread out,” which corresponds to the volume require-
ment on the convex hull of the images.

Applications

As was mentioned previously, the graph bandwidth prob-
lem has applications to preprocessing sparse symmetric
matrices. Minimizing the bandwidth of matrices helps in

improving the efficiency of certain linear algebraic algo-
rithms like Gaussian elimination; see [3,8,17]. Follow-up
work has shown that Feige’s techniques can be applied to
VLSI layout problems [19].

Open Problems

First, state the bandwidth conjecture (see, e. g. [13]).

Conjecture: For any n-node graph G = (V, E), one has
bw(G) = O(log n) - D(G).

The conjecture is interesting and unresolved even in
the special case when G is a tree (see [9] for the best results
for trees). The best-known bound in the general case fol-
lows from [7,10], and is of the form bw(G) = O(log )** -
D(G). It is known that the conjectured upper bound is best
possible, even for trees [4]. One suspects that these combi-
natorial studies will lead to improved approximation algo-
rithms.

However, the best approximation algorithms, which
achieve ratio O((log n)?(loglog n)!/*), are not based on
the local density bound. Instead, they are a hybrid of
a semi-definite programming approach of [1,5] with the
arguments of Feige, and the volume-respecting embed-
dings constructed in [12,16]. Determining the approxima-
bility of graph bandwidth is an outstanding open problem,
and likely requires improving both the upper and lower
bounds.
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Problem Definition

An independent set in an undirected graph G = (V, E) is
a set of vertices that induce a subgraph which does not
contain any edges. The size of the maximum independent
set in G is denoted by «(G). For an integer k, a k-coloring
of G is a function o: V — [1... k] which assigns colors
to the vertices of G. A valid k-coloring of G is a coloring

in which each color class is an independent set. The chro-
matic number y(G) of G is the smallest k for which there
exists a valid k-coloring of G. Finding x(G) is a fundamen-
tal NP-hard problem. Hence, when limited to polynomial
time algorithms, one turns to the question of estimating
the value of y(G) or to the closely related problem of ap-
proximate coloring.

Problem 1 (Approximate coloring)

INPUT: Undirected graph G = (V, E).

OUTPUT: A valid coloring of G with r- x(G) colors, for
some approximation ratior > 1.

OBJECTIVE: Minimize .

Let G be a graph of size n. The approximate coloring of G
can be solved efficiently within an approximation ratio of

r=0 (n(logl;)gn)z)
log’ n

mation of «(G) [8]. These results may seem rather weak,
however it is NP-hard to approximate «(G) and y(G)
within a ratio of n! ¢ for any constant & > 0[9,14,21]. Un-
der stronger complexity assumptions, there is some con-
stant 0 < 6 < 1 such that neither problem can be approx-
imated within a ratio of n/ZIOg(s " [17,21]. This chapter will
concentrate on the problem of coloring graphs G for which
x(G) is small. As will be seen, in this case the approxima-
tion ratio achievable significantly improves.

[12]. This holds also for the approxi-

Vector Coloring of Graphs

The algorithms achieving the best ratios for approximate
coloring when y(G) is small [1,3,13,15] are all based on
the idea of vector coloring, introduced by Karger, Motwani,
and Sudan [15]!

Definition 1 A vector k-coloring of a graph is an assign-
ment of unit vectors to its vertices, such that for every edge,
the inner product of the vectors assigned to its endpoints
is at most (in the sense that it can only be more negative)
—1/(k —1).

The vector chromatic number 7(G) of G is the smallest k
for which there exists a vector k-coloring of G. The vector
chromatic number can be formulated as follows:

7(G) Minimize k
subjectto: (v;,v;) < —ﬁ V(i,j) €E
(vi,vi) =1 VieV.
Here, assume that V =[1,...,n] and that the vectors

{vi}_, are in R". Every k-colorable graph is also vector

Wector coloring as presented in [15] is closely related to the
Lovasz 6 function [19]. This connection will be discussed shortly.
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k-colorable. This can be seen by identifying each color
class with one vertex of a perfect (k — 1)-dimensional sim-
plex centered at the origin. Moreover, unlike the chro-
matic number, a vector k-coloring (when it exists) can
be found in polynomial time using semidefinite program-
ming (up to an arbitrarily small error in the inner prod-
ucts).

Claim 1 (Complexity of vector coloring [15]) Lete > 0.
If a graph G has a vector k-coloring then a vector (k + ¢€)-
coloring of the graph can be constructed in time polynomial
in n andlog(1/¢).

One can strengthen Definition 1 to obtain a different no-
tion of vector coloring and the vector chromatic number.

72(G) Minimize k
1
subject to: (v, vj) = ) V(i,j) €E
(vi,vi) = VieV
73(G) Minimize k
1
subject to: (v, vj) = i V(i j) €E
1
(Vi,Vj)Z—m Vl,]GV
(V,‘,V,‘)ZI VieV.

The function _)()z(G) is referred to as the strict vec-
tor chromatic number of G and is equal to the Lovasz
6 function on G [15,19], where G is the complement
graph of G. The function _)()3(G) is referred to as the
strong vector chromatic number. An analog to Claim 1
holds for both 7,(G) and 7 3(G). Let w(G) denote
the size of the maximum clique in G, it holds that:
©(G) = 7 (G) = 72(G) = 73(G) = 1(G).

Key Results

In what follows, assume that G has n vertices and max-
imal degree A. The O(-) and £2(-) notation are used to
suppress polylogarithmic factors. The key result of Karger,
Motwani, and Sudan [15] is stated below:

Theorem 1 ([15]) If_)((G) = k then G can be colored in
polynomial time usingmin{O(Al_Z/k), O(n =3+ DY ol
ors.

As mentioned above, the use of vector coloring in the con-
text of approximate coloring was initiated in [15]. Roughly
speaking, once given a vector coloring of G, the heart of
the algorithm in [15] finds a large independent set in G. In

a nutshell, this independent set corresponds to a set of vec-
tors in the vector coloring which are close to one another
(and thus by definition cannot share an edge). Combin-
ing this with the ideas of Wigderson [20] mentioned below
yields Theorem 1.

A description of related work is given below. The first
two theorems below appeared prior to the work of Karger,
Motwani, and Sudan [15].

Theorem 2 ([20]) If x(G) = k then G can be colored in
polynomial time using O(kn'~"* =Dy colors.

Theorem 3 ([2]) If x(G) = 3 then G can be colored in
polynomial time using O(n>'®) colors. If y(G) = k > 4
then G can be colored in polynomial time using at most
O(n!—1k=312)y colors.

Combining the techniques of [15] and [2] the following
results were obtained for graphs G with x(G) = 3, 4 (these
results were also extended for higher values of y(G)).

Theorem 4 ([3]) If x(G) =3 then G can be colored in
polynomial time using O(n*1*) colors.

Theorem 5 ([13]) If x(G) = 4 then G can be colored in
polynomial time using O(n”'*) colors.

The currently best-known result for coloring a 3-colorable
graph is presented in [1]. In their algorithm, [1] use the
strict vector coloring relaxation (i.e. ) enhanced with
certain odd cycle constraints.

Theorem 6 ([1]) If x(G) = 3 then G can be colored in
polynomial time using O(n%2!1) colors.

To put the above theorems in perspective, it is NP-hard to
color a 3-colorable graph G with 4 colors [11,16] and a k-
colorable graph (for sufficiently large k) with k1°8%)/2> col-
ors [17]. Under stronger complexity assumptions (related
to the Unique Games Conjecture [18]) for any constant k
it is hard to color a k-colorable graph with any constant
number of colors [6]. The wide gap between these hard-
ness results and the approximation ratios presented in this
section has been a major initiative in the study of approxi-
mate coloring.

Finally, the limitations of vector coloring are ad-
dressed. Namely, are there graphs for which 7 (G) is
a poor estimate of y(G)? One would expect the answer
to be “yes” as estimating x(G) beyond a factor of n!~¢
is a hard problem. As will be stated below, this is indeed
the case (even when _)()(G) is small). Some of the results
that follow are stated in terms of the maximum indepen-
dent set «(G) in G. As x(G) > n/a(G), these results im-
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ply a lower bound on y(G). Theorem 1 (i) states that the
original analysis of [15] is essentially tight. Theorem 1
(ii) presents bounds for the case of 7 (G) = 3. Theorem 1
(iii) and Theorem 2 present graphs G in which there is
an extremely large gap between y(G) and the relaxations
7 (G) and 7 2(G).

Theorem 7 ([10]) (i) For every constant ¢ > 0 and
constant k > 2, there are infinitely many graphs G with
7(G) = k and a(G) < n/A7"Yk¢ (here A > n® for
some constant § > 0). (ii) There are infinitely many graphs
G with ¥ (G) = 3 and a(G) < n%8*_ (iii) For some con-
stant c, there are infinitely many graphs G with  (G) =
O(log n/loglog n) and a(G) < log* n.

Theorem 8 ([7]) For some constant c, there are infinitely
many graphs G with 72(G) < 2v108" gud x(G) >
nj2cv/1ogn,

Vector colorings, including the Lovasz 6 function and its
variants, have been extensively studied in the context of
approximation algorithms for problems other than Prob-
lem 1. These include approximating «(G), approximating
the Minimum Vertex Cover problem, and combinatorial
optimization in the context of random graphs.

Applications

Besides its theoretical significance, graph coloring has sev-
eral concrete applications that fall under the model of con-
flict free allocation of resources (see for example [4,5]).

Open Problems

By far the major open problem in the context of approx-
imate coloring addresses the wide gap between what is
known to be hard and what can be obtained in polyno-
mial time. The case of constant y(G) is especially intrigu-
ing, as the best-known upper bounds (on the approxima-
tion ratio) are polynomial while the lower bounds are of
constant nature. Regarding the vector coloring paradigm,
a majority of the results stated in Sect. “Key Results” use
the weakest form of vector coloring Y(G) in their proof,
while stronger relaxations such as 72(G) and 73(G) may
also be considered. It would be very interesting to improve
upon the algorithmic results stated above using stronger
relaxations, as would a matching analysis of the limitations
of these relaxations.
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Problem Definition

An undirected graph is said to be k-connected (specifi-
cally, k-vertex-connected) if the removal of any set of k — 1
or fewer vertices (with their incident edges) does not dis-
connect G. Analogously, it is k-edge-connected if the re-
moval of any set of k —1 edges does not disconnect G.
Menger’s theorem states that a k-vertex-connected graph
has at least k openly vertex-disjoint paths connecting ev-
ery pair of vertices. For k-edge-connected graphs there are
k edge-disjoint paths connecting every pair of vertices. The
connectivity of a graph is the largest value of k for which
it is k-connected. Finding the connectivity of a graph, and
finding k disjoint paths between a given pair of vertices can
be found using algorithms for maximum flow. An edge is
said to be critical in a k-connected graph if upon its re-
moval the graph is no longer k-connected.

The problem of finding a minimum-cardinality k-
vertex-connected (k-edge-connected) subgraph that spans
all vertices of a given graph is called k-VCSS (k-ECSS) and
is known to be nondeterministic polynomial-time hard for
k > 2. We review some results in finding approximately
minimum solutions to k-VCSS and k-ECSS. We focus pri-
marily on simple graphs. A simple approximation algo-
rithm is one that considers the edges in some order and
removes edges that are not critical. It thus outputs a k-con-
nected subgraph in which all edges are critical and it can
be shown that it is a 2-approximation algorithm (that out-
puts a solution with at most kn edges in an n-vertex graph,
and since each vertex has to have degree at least k, we can
claim that kn/2 edges are necessary).

Approximation algorithms that do better than the sim-
ple algorithm mentioned above can be classified into two

categories: depth first search (DFS) based, and matching
based.

Key Results
Lower Bounds for k-Connected Spanning Subgraphs

Each node of a k-connected graph has at least k edges in-
cident to it. Therefore, the sum of the degrees of all its
nodes is at least kn, where # is the number of its nodes.
Since each edge is counted twice in this degree-sum, the
cardinality of its edges is at least kn/2. This is called the de-
gree lower bound. Expanding on this idea yields a stronger
lower bound on the cardinality of a k-connected spanning
subgraph of a given graph. Let Dy be a subgraph in which
the degree of each node is at least k. Unlike a k-connected
subgraph, Dy has no connectivity constraints. The count-
ing argument above shows that any Dy has at least kn/2
edges. A minimum cardinality Dy can be computed in
polynomial time by reducing the problem to matching,
and it is called the matching lower bound.

DFS-Based Approaches

The following natural algorithm finds a 3/2 approximation
for 2-ECSS. Root the tree at some node r and run DFS. All
edges of the graph are now either tree edges or back edges.
Process the DFS tree in postorder. For each subtree, if the
removal of the edge from its root to its parent separates
the graph into two components, then add a farthest-back
edge from this subtree, whose other end is closest to r. It
can be shown that the number of back edges added by the
algorithm is at most half the size of Opt.

This algorithm has been generalized to solve the
2-VCSS problem with the same approximation ratio, by
adding carefully chosen back edges that allow the deletion
of tree edges. Wherever it is unable to delete a tree edge, it
adds a vertex to an independent set I. In the final analysis,
the number of edges used is less than n + |I|. Since Opt is
at least max(n, 2|I|), it obtains a 3/2-approximation ratio.

The algorithm can also be extended to the k-ECSS
problem by repeating these ideas k/2 times, augmenting
the connectivity by 2 in each round. It has been shown that
this algorithm achieves a performance of about 1.61.

Matching-Based Approaches

Several approximation algorithms for k-ECSS and k-VCSS
problems have used a minimum cardinality Dy as a start-
ing solution, which is then augmented with additional
edges to satisfy the connectivity constraints. This approach
yields better ratios than the DFS-based approaches.
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1+ % Algorithm for k-VCSS  Find a minimum cardinal-
ity Di—;. Add just enough additional edges to it to make
the subgraph k-connected. In this step, it is ensured that
the edges added are critical. It is known by a theorem
of Mader that in a k-connected graph, a cycle of critical
edges contains at least one node of degree k. Since the
edges added by the algorithm in the second step are all
critical, there can be no cycle induced by these edges be-
cause the degree of all the nodes on such a cycle would
be at least k + 1. Therefore, at most n — 1 edges are added
in this step. The number of edges added in the first step,
in the minimum Dj_; is at most Opt — n/2. The to-
tal number of edges in the solution thus computed is at
most (1 + 1/k) times the number of edges in an optimal
k-VCSS.

1+ ﬁ Algorithm for k-ECSS Mader’s theorem about
cycles induced by critical edges is valid only for vertex con-
nectivity and not edge connectivity, Therefore, a differ-
ent algorithm is proposed for k-ECSS in graphs that are
k-edge-connected, but not k-connected. This algorithm
finds a minimum cardinality Dy and augments it with
a minimal set of edges to make the subgraph k-edge-con-
nected. The number of edges added in the last step is at
most %(n — 1). Since the number of edges added in the
first step is at most Opt, the total number of edges is at
most (1 + %)Opt.

Better Algorithms for Small k For k € {2,3}, bet-
ter algorithms have been obtained by implementing the
abovementioned algorithms carefully, deleting unneces-
sary edges, and by getting better lower bounds. For
k =2, a 4/3 approximation can be obtained by generat-
ing a path/cycle cover from a minimum cardinality D, and
2-connecting them one at a time to a “core” component.
Small cycles/paths allow an edge to be deleted when they
are 2-connected to the core, which allows a simple amor-
tized analysis. This method also generalizes to the 3-ECSS
problem, yielding a 4/3 ratio.

Hybrid approaches have been proposed which use the
path/cycle cover to generate a specific DFS tree of the orig-
inal graph and then 2-connect the tree, trying to delete
edges wherever possible. The best ratios achieved using
this approach are 5/4 for 2-ECSS, 9/7 for 2-VCSS, and 5/4
for 2-VCSS in 3-connected graphs.

Applications

Network design is one of the main application areas
for this work. This involves the construction of low-cost
highly connected networks.

Recommended Reading

For additional information on DFS, matchings and
path/cycle covers, see [3]. Fast 2-approximation algo-
rithms for k-ECSS and k-VCSS were studied by Nag-
amochi and Ibaraki [13]. DFS-based algorithms for 2-con-
nectivity were introduced by Khuller and Vishkin [11].
They obtained 3/2 for 2-ECSS, 5/3 for 2-VCSS, and 2 for
weighted k-ECSS. The ratio for 2-VCSS was improved to
3/2 by Garg et al. [6], 4/3 by Vempala and Vetta [14],
and 9/7 by Gubbala and Raghavachari [7]. Khuller and
Raghavachari [10] gave an algorithm for k-ECSS, which
was later improved by Gabow [4], who showed that the al-
gorithm obtains a ratio of about 1.61. Cheriyan et al. [2]
studied the k-VCSS problem with edge weights and de-
signed an O(log k) approximation algorithm in graphs
with at least 6k? vertices.

The matching-based algorithms were introduced by
Cheriyan and Thurimella [1]. They proposed algorithms
with ratios of 1 + % for k-VCSS, 1 + % for k-ECSS, 1 + %
for k-VCSS in directed graphs, and 1 + % for k-ECSS in

directed graphs. Vempala and Vetta [14] obtained a ra-
tio of 4/3 for 2-VCSS. The ratios were further improved
by Krysta and Kumar [12], who introduced the hybrid ap-
proach, which was used to derive a 5/4 algorithm by Jothi
et al. [9]. A 3/2-approximation algorithm for 3-ECSS has
been proposed by Gabow [5] that works on multigraphs,
whereas the earlier algorithm of Cheriyan and Thurimella
gets the same ratio in simple graphs only. This ratio has
been improved to 4/3 by Gubbala and Raghavachari [8].
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Problem Definition

The problem of determining isomorphism of two combi-
natorial structures is a ubiquitous one, with applications
in many areas. The paradigm case of concern in this chap-
ter is isomorphism of two graphs. In this case, an isomor-
phism consists of a bijection between the vertex sets of the
graphs which induces a bijection between the edge sets
of the graphs. One can also take the second graph to be
a copy of the first, so that isomorphisms map a graph onto
themselves. Such isomorphisms are called automorphisms
or, less formally, symmetries. The set of all automorphisms
forms a group under function composition called the au-
tomorphism group. Computing the automorphism group
is a problem rather similar to that of determining isomor-
phisms.

Graph isomorphism is closely related to many other
types of isomorphism of combinatorial structures. In the
section entitled “Applications”, several examples are given.

Formal Description

A graphis apair G = (V, E) of finite sets, with E being a set
of 2-tuples (v, w) of elements of V. The elements of V are
called vertices (also points, nodes), while the elements of
E are called directed edges (also arcs). A complementary
pair (v, w), (w, v) of directed edges (v # w) will be called
an undirected edge and denoted {v, w}. A directed edge
of the form (v,v) will also be considered an undirected
edge, called a loop (also self-loop). The word “edges” with-
out qualification will indicate undirected edges, directed
edges, or both.

Given two graphs G| = (Vi, E;) and G, = (V3, E;), an
isomorphism from G; to G is a bijection from V to V;
such that the induced action on E, is a bijection onto E;.
If G| = G, then the isomorphism is an automorphism of
Gi. The set of all automorphisms of Gy is a group under
function composition, called the automorphism group of
G, and denoted Aut(Gy).

In Fig. 1 two isomorphic graphs are shown, together
with an isomorphism between them and the automor-
phism group of the first.

Canonical Labeling

Practical applications of graph isomorphism testing do
not usually involve individual pairs of graphs. More com-
monly, one must decide whether a certain graph is isomor-
phic to any of a collection of graphs (the database lookup
problem) or one has a collection of graphs and needs to
identify the isomorphism classes in it (the graph sorting
problem). Such applications are not well served by an al-
gorithm that can only test graphs in pairs.

An alternative is a canonical labeling algorithm. The
essential idea is that in each isomorphism class there is
a unique, canonical graph which the algorithm can find,
given as input any graph in the isomorphism class. The
canonical graph might be, for example, the least graph in
the isomorphism class according to some ordering (such
as lexicographic) of the graphs in the class. Practical al-
gorithms usually compute a canonical form designed for
efficiency rather than ease of description.

Key Results

The graph isomorphism problem plays a key role in mod-
ern complexity theory. It is not known to be solvable
in polynomial time, nor to be NP-complete, nor is it
known to be in the class co-NP. See [3,3] for details.
Polynomial-time algorithms are known for many special
classes, notably graphs with bounded genus, bounded de-
gree, bounded tree-width, and bounded eigenvalue multi-
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1 2 3 4 Automorphisms:
(1)
(36)(45)
(14)(23)(58)(67)
o O (1584)(2673)
8 7 6 5 (18)(2 7)(36)(45)
(18)(27)
1 2 3 4 5 6 7 8 (15)(48)(26)(37)
AN (1485)(2376)
a b f e h g ¢ d

Graph Isomorphism, Figure 1
Example of an isomorphism and an automorphism group

plicity. The fastest theoretical algorithm for general graphs
requires exp(n1/2+°(1)) time [1], but it is not known to be
practical.

In this entry, the focus is on the program nauty,
which is generally regarded as the most successful for
practical use. McKay wrote the first version of nauty
in 1976 and described its method of operation in [5]. It
is known [7] to have exponential worst-case time, but in
practice the worst case is rarely encountered.

The input to nauty is a graph with colored vertices.
Two outputs are produced. The first is a set of generators
for the color-preserving automorphism group. Though it
is rarely necessary, the full group can also be developed ele-
ment by element. The second, optional, output is a canoni-
cal graph. The canonical graph has the following property:
two input graphs with the same number of vertices of each
color have the same canonical graph if and only if they are
isomorphic by a color-preserving isomorphism.

Two graph data structures are supported: a packed ad-
jacency matrix suitable for small dense graphs and a linked
list suitable for large sparse graphs.

Applications

As mentioned, nauty can handle graphs with colored
vertices. In this section, it is described how several other
types of isomorphism problems can be solved by mapping
them onto a problem for vertex-colored graphs.

Isomorphism of Edge-Colored Graphs

An isomorphism of two graphs, each with both vertices
and edges colored, is defined in the obvious way. An ex-
ample of such a graph appears at the left of Fig. 2.

In the center of the figure the colors are identified with
the integers 1, 2, 3. At the right of the figure an equivalent
vertex-colored graph is shown. In this case there are two
layers, each with its own color. Edges of color 1 are repre-
sented as an edge in the first (lowest) layer, edges of color 2
are represented as an edge in the second layer, and edges
of color 3 are represented as edges in both layers. It is now
easy to see that the automorphism group of the new graph
(specifically, its action on the first layer) is the automor-
phism group of the original graph. Moreover, the order in
which a canonical labeling of the new graph labels the ver-
tices of the first layer can be taken to be a canonical labeling
of the original graph.

More generally, if the edge colors are integers in
{1,2,...,2% — 1}, there are d layers, and the binary ex-
pansion of each color number dictates which layers con-
tain edges. The vertical threads (each corresponding to one
vertex of the original graph) can be connected using either
paths or cliques. If the original graph has n vertices and k
colors, the new graph has O(nlog k) vertices. This can be
improved to O(n,/log k) vertices by also using edges that
are not horizontal.
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310
0 0 3
2 00
2 01
Graph Isomorphism, Figure 2
Graph isomorphism with colored edges
5
1
1
4 0
0

2

Graph Isomorphism, Figure 3
Hypergraph/design isomorphism as graph isomorphism

Isomorphism of Hypergraphs and Designs

A hypergraph is similar to an undirected graph except that
the edges can be vertex sets of any size, not just of size 2.
Such a structure is also called a design.

On the left of Fig. 3 there is a hypergraph with five ver-
tices, two edges of size 2, and one edge of size 3. On the
right is an equivalent vertex-colored graph. The vertices
on the left, colored with one color, represent the hyper-
graph edges, while the edges on the right, colored with
a different color, represent the hypergraph vertices. The
edges of the graph indicate the hypergraph incidence (con-
tainment) relationship.

The edge-vertex incidence matrix appears in the cen-
ter of the figure. This can be any binary matrix at all, which
correctly suggests that the problem under consideration
is just that of determining the 0-1 matrix equivalence un-
der independent permutation of the rows and columns. By
combining this idea with the previous construction, such
an equivalence relation on the set of matrices with arbi-
trary entries can be handled.

Other Examples

For several applications to equivalence operations such
as isotopy, important for Latin squares and quasigroups,
see [6].

Another important type of equivalence relates ma-
trices over {—1,+1}. As well as permuting rows and

S N O O

e e

A A

1 2 3 4

1

000 2

100 3
11 1

4

5

columns, it allows multiplication of rows and columns
by -1. A method of converting this Hadamard equivalence
problem to a graph isomorphism problem is given in [4].

Experimental Results

Nauty gives a choice of sparse and dense data structures,

and some special code for difficult graph classes. For the

following timing examples, the best of the various options

are used for a single CPU of a 2.4 GHz Intel Core-duo pro-

Cessor.

1. Random graph with 10,000 vertices, p = %: 0.014s for

group only, 0.4 s for canonical labeling as well.

Random cubic graph with 100,000 vertices: 8s.

3. 1-skeleton of 20-dimensional cube (1,048,576 vertices,
group size 2.5 x 10*4): 925,

4. 3-dimensional mesh of size 50 (125,000 vertices): 0.7 s.

5. 1027-vertex strongly regular graph from random
Steiner triple system: 0.6s.

Examples of more difficult graphs can be found in the

nauty documentation.

»

URL to Code

The source code of nauty is available at http://cs.anu.
edu.au/~bdm/nauty/. Another implementation of the au-
tomorphism group portion of nauty, highly optimized for
large sparse graphs, is available as saucy [2]. Nauty is


http://cs.anu.edu.au/~bdm/nauty/
http://cs.anu.edu.au/~bdm/nauty/
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also incorporated into a number of general-purpose pack-
ages, including GAP, Magma, and MuPad.
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Problem Definition

Consider a graph G = (V,E). A subset C of V is called
a dominating set if every vertex is either in C or adjacent
to a vertex in C. If, furthermore, the subgraph induced by
Cis connected, then Cis called a connected dominating set.
Given a connected graph G, find a connecting dom-
inating set of minimum cardinality. This problem is de-
noted by MCDS and is NP-hard. Its optimal solution is
called a minimum connected dominating set. The follow-
ing is a greedy approximation with potential function f.

Greedy Algorithm A:

C <« 0;

while f(C) > 2do
choose a vertex x to maximize f(C) — f(C U {x}) and
C < C U {x}; output C.

Here, f is defined as f(C) = p(C) + q(C) where p(C) is the
number of connected components of subgraph induced
by C and ¢(C) is the number of connected components
of subgraph with vertex set V and edge set {(u,v) € E |
u € Corv € C}. f has an important property that C is
a connected dominating set if and only if f(C) = 2.

If Cis a connected dominating set, then p(C) = q(C) =
1 and hence f(C) = 2. Conversely, suppose f(CU{x}) = 2.
Since p(C) > 1 and ¢q(C) > 1, one has p(C) = ¢q(C) =
1 which implies that C is a connected dominating set.
f has another property, for G with at least three ver-
tices, that if f(C) > 2, then there exists x € V such that
f(C) — f(CU {x}) > 0.Infact, for C = @, since Gisa con-
nected graph with at least three vertices, there must exist
a vertex x with degree at least two and for such a ver-
tex x, f(CU {x}) < f(C). For C # @, consider a con-
nected component of the subgraph induced by C. Let B
denote its vertex set which is a subset of C. For every ver-
tex y adjacent to B, if y is adjacent to a vertex not ad-
jacent to B and not in C, then p(C U {y}) < p(C) and
q(C U {y}) < q(C); if y is adjacent to a vertex in C — B,
then p(C U {y}) < p(C) and q(C U {y}) < q(C).

Now, look at a possible analysis for the above greedy
algorithm: Let x, ..., X be vertices chosen by the greedy
algorithm in the ordering of their appearance in the algo-
rithm. Denote C; = {x1,...,x;}. Let C* = {y1,..., Yopt}
be a minimum connected dominating set. Since adding C*
to C; will reduce the potential function value from f(C;)
to 2, the value of f reduced by a vertex in C* would be
(f(Ci) — 2)/opt in average. By the greedy rule for choos-
ing x; + 1, one has

f(Ci)—Z.

f(C)— f(Ciy1) = opt
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Hence,
f(Cin) =22 (€)= D1 - =)
1 . 1 ..
=(f®-201- @)Hl =(n-2)1- @)Hl :
where n = | V|. Note that 1 — 1/opt < e~!/°P*, Hence,
f(C)—2<(n—2)e"oP".
Choose i such that f(C;) > opt +2 > f(Ciy1). Then

opt < (n—2)e"lopt

and
g—i=<opt.
Therefore,

-2
gfopt+i§0pt(1+lnn )
opt

Is this analysis correct? The answer is NO. Why? How
could one give a correct analysis. This article will an-
swer those questions and introduce a new general tech-
nique, analysis of greedy approximation with nonsubmod-
ular potential function.

Key Results
The Role of Submodularity

Consider a set X and a function f defined on the power
set 2%, i.e., the family of all subsets of X. f is said to be
submodular if for any two subsets A and B in 2%,

f(A)+ f(B) > f(ANB) + f(AUB) .

For example, consider a connected graph G. Let X be the
vertex set of G. The function —q(C) defined in last section
is submodular. To see this, first mention a property of sub-
modular functions.

A submodular function f is normalized if f(@) = 0. Ev-
ery submodular function f can be normalized by setting
g(A) = f(A) — f(9). A function f is monotone increasing
if f(A) < f(B) for A C B.Denote A, f(A) = f(AU{x})—
f(A).

Lemma 1 A function f:2%X — R is submodular if and
only if Ay f(A) < A, f(B) foranyx € X —Band A C B.
Moreover, f is monotone increasing if and only if A, f(A) <
Ay f(B) forany x € Band A C B.

Proof Iff is submodular, then for x € X — Band A C B,
one has

FAU{x}) + f(B)

> f((AU{x}) UB) + f(AU {x}) N B)

= f(BU{x}) + f(A),

that is,
A f(A) > A f(B) . (1)

Conversely, suppose (1) holds for any x € Band A C B.
Let Cand D be two setand C\ D = {x1, ..., xt}. Then

k
f(CUD)—f(D)=) Ay f(DU {x1.....xi1)
i=1

k
<Y ALf(CND)U{x.....xio)
i=1

=f(O)—f(CND).

If f is monotone increasing, then for A C B, f(A) < f(B).
Hence, for x € B,

A)xf(A) = 0= A f(B).

Conversely, if A,f(A) > A,f(B) for any x € B and
A C B,thenforanyxand A, A, f(A) > A, f(AU{x}) =0,
thatis f(A) < f(AU {x}).LetB— A = {x},...,x¢}. Then

JA) = fLAU{x)) = f(AU{x, x2}) < --- < f(B) .

Next, the submodularity of —q(A) is studied.
Lemma 2 IfA C B, then A,q(A) > A,q(B).

Proof Note that each connected component of graph
(V. D(B)) is constituted by one or more connected com-
ponents of graph (V, D(A)) since A C B. Thus, the num-
ber of connected components of (V, D(B)) dominated
by y is no more than the number of connected compo-
nents of (V, D(A)) dominated by y. Therefore, the lemma
holds.

The relationship between submodular functions and
greedy algorithms have been established for a long
time [3].

Let f be a normalized, monotone increasing, submod-
ular integer function. Consider the minimization problem

c(4)
subjectto A € Cy.

min
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where c is a nonnegative cost function defined on 2% and
Cr=1{C| f(CU{x})— f(C) = 0 forall x € X}. The fol-
lowing is a greedy algorithm to produce approximation
solution for this problem.

Greedy Algorithm B

input submodular function f and cost function c;

A<~ 0

while there exists x € E such that A, f(A) > 0

do select a vertex x that maximizes Ay f(A)/c(x) and set
A<« AU {x};

return A.

The following two results are well-known.

Theorem 1 Iff is a normalized, monotone increasing, sub-
modular integer function, then Greedy Algorithm B pro-
duces an approximation solution within a factor of H(y)
from optimal, where y = maxyeg f({x}).

Theorem 2 Let f be a normalized, monotone increas-
ing, submodular function and c a nonnegative cost func-
tion. If in Greedy Algorithm B, selected x always satisfies
Ay f(Ai—1)/c(x) > 1, then it produces an approximation
solution within a factor of 1 + In(f*/opt) from optimal for
above minimization problem where f* = f(A*) and opt =
c(A*) for optimal solution A*.

Now, come back to the analysis of Greedy Algorithm A for
the MCDS. It looks like that the submodularity of f is not
used. Actually, the submodularity was implicitly used in
the following statement:

“Since adding C* to C; will reduce the potential function
value from f(C;) to 2, the value of f reduced by a vertex
in C* would be (f(C;) — 2)/opt in average. By the greedy
rule for choosing x; + 1, one has

f(C)—2
f(Ci) = f(Cin) = T .

To see this, write this argument more carefully.

Let C* = {y1...., yop+} and denote C;." ={y.-- 00
Then
f(Ci)—2=f(Ci)— f(C;UC")
opt

=Y [f(C;UCry) = f(C; U CP)]

i1

where Cj = 0. By the greedy rule for choosing x; + 1, one
has

F(C) = f(Civ1) = f(Ci) = f(Ci U dy;})

for j =1,..., opt. Therefore, it needs to have
—Ay, f(Ci) = f(Ci) — f(Ci U{y;})
> f(CUC) - f(CUC)) 2

= —Ay/.f(C,» U C;-k_l)

in order to have
f(Ci)—2

F(C) = f(Cin) = opt

(2) asks the submodularity of — f. Unfortunately, — f is not
submodular. A counterexample can be found in [3]. This is
why the analysis of Greedy Algorithm A in Sect. “Problem
Definition” is incorrect.

Giving up Submodularity

Giving up submodularity is a challenge task since it is open
for a long time. But, it is possible based on the following
observation on (2) by Du et al. [1]: The submodularity of
—f is applied to increment of a vertex y; belonging to
optimal solutionC*.

Since the ordering of y;s is flexible, one may arrange it
tomake Ay f(Ci) — Ay, f(Ci U C;.k 1) under control. This

is a successful idea for the MCDS.

Lemma 3 Let y;’s be ordered in the way that for any
j=1,...,0pt, {y1,...,y;} induces a connected subgraph.
Then

Ay f(C)) = Ay f(C;UCT) =1.
Proof Since all yy,..., yj—1 are connected, y; can domi-
nate at most one additional connected component in the

subgraph induced by C;—; U C]*.‘_1 than in the subgraph
induced by ¢; — 1. Hence

Ay p(Ci)— Ay, f(Ci U C]*.‘_l) <1.
Moreover, since —q is submodular,

Ay,.q(Ci) — Ay,9(C; U C;-k_l) <0.
Therefore,

Ay f(C) = Ay f(CUC) =1.

Now, one can give a correct analysis for the greedy algo-
rithm for the MCDS [4].
By Lemma 3,

f(Ci) =2
opt

f(Ci)— f(Ciy1) = —-1.
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Hence,

f(Cin1) =2 —opt < (f(C;) — 2+ opt) (1 - %)

1 i+1
(f(@) —2—opt) (1 — @)

1 i+1
(n—2—opt)(1—@) )

where n = | V|. Note that 1 — 1/opt < e~!/°P*, Hence,

IA

f(Ci) —2—opt < (n—2)e /ort
Choose i such that f(C;) > 2-opt +2 > f(Cjs1). Then

opt < (n—2)e "lop!

and
g—i=<2-o0pt.
Therefore,

-2
g§2-opt+i§opt(2+lnn
opt

) < opt(2 +1né)
where § is the maximum degree of input graph G.

Applications

The technique introduced in previous section has many
applications, including analysis of iterated 1-Steiner trees
for minimum Steiner tree problem and analysis of greedy
approximations for optimization problems in optical net-
works [4] and wireless networks [3].

Open Problems

Can one show the performance ratio 1 + H(§) for Greedy
Algorithm B for the MCDS? The answer is unknown.
More generally, it is unknown how to get a clean gener-
alization of Theorem 1.

Cross References

» Connected Dominating Set
» Local Search Algorithms for k<SAT
» Steiner Trees
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Problem Definition

Given a collection S of sets over a universe U, a set cover
C C S is a subcollection of the sets whose union is U.
The set-cover problem is, given S, to find a minimum-
cardinality set cover. In the weighted set-cover problem,
for each set s € S a weight ws > 0 is also specified, and
the goal is to find a set cover C of minimum total weight
ZSEC Ws.

Weighted set cover is a special case of minimizing a lin-
ear function subject to a submodular constraint, defined as
follows. Given a collection S of objects, for each object s
a non-negative weight w;, and a non-decreasing submod-
ular function f : 25 — R, the goal is to find a subcollec-
tion C C S such that f(C) = f(S) minimizing ) o ;.
(Taking f(C) = | Usec s| gives weighted set cover.)

Key Results

The greedy algorithm for weighted set cover builds a cover
by repeatedly choosing a set s that minimize the weight
w; divided by number of elements in s not yet covered by
chosen sets. It stops and returns the chosen sets when they
form a cover:
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greedy-set-cover(S, w)

1. Initialize C < @. Define f(C) = | Usec s].

2. Repeat until f(C) = f(S):

3. Choose s € S minimizing the price per
element w,/[f(C U {s}) — f(C)].

4. Let C < C U {s}.

5. Return C.

Let Hy denote 25:1 1/i ~ In k, where k is the largest
set size.

Theorem 1 The greedy algorithm returns a set cover of
weight at most Hy, times the minimum weight of any cover.

Proof When the greedy algorithm chooses a set s, imagine
that it charges the price per element for that iteration to
each element newly covered by s. Then the total weight of
the sets chosen by the algorithm equals the total amount
charged, and each element is charged once.

Consider any set s = {xx, xk—1,..., %1} in the opti-
mal set cover C*. Without loss of generality, suppose that
the greedy algorithm covers the elements of s in the or-
der given: xi, xk—1, ..., X1. At the start of the iteration in
which the algorithm covers element x; of s, at least i el-
ements of s remain uncovered. Thus, if the greedy algo-
rithm were to choose s in that iteration, it would pay a cost
per element of at most w;/i. Thus, in this iteration, the
greedy algorithm pays at most w/i per element covered.
Thus, it charges element x; at most w/i to be covered.
Summing over i, the total amount charged to elements in s
is at most w; Hy. Summing over s € C* and noting that ev-
ery element is in some set in C*, the total amount charged
to elements overall is at most ) o -« WsHy = HrOPT. [

The theorem was shown first for the unweighted case
(each w; = 1) by Johnson [6], Lovasz [9], and Stein [14],
then extended to the weighted case by Chvatal [2].

Since then a few refinements and improvements have
been shown, including the following:

Theorem 2 Let S be a set system over a universe with
n elements and weights ws < 1. The total weight of the
cover C returned by the greedy algorithm is at most
[1 +In(n/OPT)]OPT + 1 (compare to [13]).

Proof Assume without loss of generality that the algo-
rithm covers the elements in order x,,, x,,—1, ..., x1. At the
start of the iteration in which the algorithm covers x;, there
are at least i elements left to cover, and all of them could be
covered using multiple sets of total cost OPT. Thus, there
is some set that covers not-yet-covered elements at a cost
of at most OPT/i per element.

Recall the charging scheme from the previous proof.
By the preceding observation, element x; is charged
at most OPT/i. Thus, the total charge to elements
Xpn, ..., X;isatmost (H, — H;—;)OPT. Using the assump-
tion that each w; < I, the charge to each of the remain-
ing elements is at most 1 per element. Thus, the total
charge to all elements is at most i — 1 + (H, — H;—)OPT.
Taking i=1+[0OPT], the total charge is at most
[OPT] + (Hy — Hyopr1)OPT < 1+ OPT(1 + In(n/0PT)).O

Each of the above proofs implicitly constructs a linear-
programming primal-dual pair to show the approximation
ratio. The same approximation ratios can be shown with
respect to any fractional optimum (solution to the frac-
tional set-cover linear program).

Other Results

The greedy algorithm has been shown to have an approx-
imation ratio of Inn —Inlnn + O(1) [12]. For the spe-
cial case of set systems whose duals have finite Vapnik-
Chervonenkis (VC) dimension, other algorithms have
substantially better approximation ratio [1]. Constant-
factor approximation algorithms are known for geometric
variants of the closely related k-median and facility loca-
tion problems.

The greedy algorithm generalizes naturally to many
problems. For example, for minimizing a linear function
subject to a submodular constraint (defined above), the
natural extension of the greedy algorithm gives an Hj-
approximate solution, where k = max;es f({s}) — f(9),
assuming f is integer-valued [10].

The set-cover problem generalizes to allow each el-
ement x to require an arbitrary number r, of sets con-
taining it to be in the cover. This generalization admits
a polynomial-time O(log n)-approximation algorithm [8].

The special case when each element belongs to at most
r sets has a simple r-approximation algorithm ([15] §
15.2). When the sets have uniform weights (w; = 1), theal-
gorithm reduces to the following: select any maximal col-
lection of elements, no two of which are contained in the
same set; return all sets that contain a selected element.

The variant “Max k-coverage” asks for a set collection
of total weight at most k covering as many of the elements
as possible. This variant has a (1 — 1/e)-approximation al-
gorithm ([15] Problem 2.18) (see [7] for sets with non-
uniform weights).

For a general discussion of greedy methods for approx-
imate combinatorial optimization, see ([5] Ch. 4).

Finally, under likely complexity-theoretic assump-
tions, the In n approximation ratio is essentially the best
possible for any polynomial-time algorithm [3,4].
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Applications

Set Cover and its generalizations and variants are funda-

mental problems with numerous applications. Examples

include:

selecting a small number of nodes in a network to store
a file so that all nodes have a nearby copy,

selecting a small number of sentences to be uttered to
tune all features in a speech-recognition model [11],
selecting a small number of telescope snapshots to be
taken to capture light from all galaxies in the night sky,
finding a short string having each string in a given set
as a contiguous sub-string.

Cross References
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