
Facility Location F 299

F

Facility Location
1997; Shmoys, Tardos, Aardal

KAREN AARDAL1,2, JAROSLAW BYRKA1,2,
MOHAMMAD MAHDIAN3

1 CWI, Amsterdam, The Netherlands
2 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven,
The Netherlands

3 Yahoo! Research, Santa Clara, CA, USA

Keywords and Synonyms

Plant location; Warehouse location

ProblemDefinition

Facility location problems concern situations where
a planner needs to determine the location of facilities in-
tended to serve a given set of clients. The objective is usu-
ally to minimize the sum of the cost of opening the fa-
cilities and the cost of serving the clients by the facilities,
subject to various constraints, such as the number and the
type of clients a facility can serve. There are many vari-
ants of the facility location problem, depending on the
structure of the cost function and the constraints imposed
on the solution. Early references on facility location prob-
lems include Kuehn and Hamburger [35], Balinski and
Wolfe [8], Manne [40], and Balinski [7]. Review works in-
clude Krarup and Pruzan [34] andMirchandani and Fran-
cis [42]. It is interesting to notice that the algorithm that is
probably one of the most effective ones to solve the un-
capacitated facility location problem to optimality is the
primal-dual algorithm combined with branch-and-bound
due to Erlenkotter [16] dating back to 1978. His primal-
dual scheme is similar to techniques used in the modern
literature on approximation algorithms.

More recently, extensive research into approximation
algorithms for facility location problems has been carried
out. Review articles on this topic include Shmoys [49,50]

and Vygen [55]. Besides its theoretical and practical im-
portance, facility location problems provide a showcase
of common techniques in the field of approximation al-
gorithms, as many of these techniques such as linear
programming rounding, primal-dual methods, and local
search have been applied successfully to this family of
problems. This entry defines several facility location prob-
lems, gives a few historical pointers, and lists approxima-
tion algorithms with an emphasis on the results derived in
the paper by Shmoys, Tardos, and Aardal [51]. The tech-
niques applied to the uncapacitated facility location (UFL)
problem are discussed in some more detail.

In the UFL problem, a set F of nf facilities and a set
C of nc clients (also known as cities, or demand points) are
given. For every facility i 2 F , the facility opening cost is
equal to f i. Furthermore, for every facility i 2 F and client
j 2 C, there is a connection cost cij. The objective is to open
a subset of the facilities and connect each client to an open
facility so that the total cost is minimized. Notice that once
the set of open facilities is specified, it is optimal to con-
nect each client to the open facility that yields smallest
connection cost. Therefore, the objective is to find a set
S F that minimizes

P
i2S fi +

P
j2C mini2Sfci jg. This

definition and the definitions of other variants of the fa-
cility location problem in this entry assume unit demand
at each client. It is straightforward to generalize these def-
initions to the case where each client has a given demand.
The UFL problem can be formulated as the following inte-
ger program due to Balinski [7]. Let yi ; i 2 F be equal
to 1 if facility i is open, and equal to 0 otherwise. Let
xi j; i 2 F ; j 2 C be the fraction of client j assigned to fa-
cility i.

min
X
i2F

fi yi +
X
i2F

X
j2C

ci j xi j (1)

subject to
X
i2F

xi j = 1; for all j 2 C; (2)

xi j � yi � 0; for all i 2 F ; j 2 C (3)

x � 0; y 2 f0; 1gn f (4)

300 F Facility Location

In the linear programming (LP) relaxation of UFL the
constraint y 2 f0; 1gn f is substituted by the constraint
y 2 [0; 1]n f . Notice that in the uncapacitated case, it is
not necessary to require xi j 2 f0; 1g; i 2 F ; j 2 C if each
client has to be serviced by precisely one facility, as
0 � xi j � 1 by constraints (2) and (4). Moreover, if xij is
not integer, then it is always possible to create an integer
solution with the same cost by assigning client j completely
to one of the facilities currently servicing j.

A �-approximation algorithm is a polynomial algo-
rithm that, in case of minimization, is guaranteed to pro-
duce a feasible solution having value atmost �z�, where z�

is the value of an optimal solution, and � � 1. If � = 1 the
algorithm produces an optimal solution. In case of maxi-
mization, the algorithm produces a solution having value
at least �z�, where 0 � � � 1.

Hochbaum [25] developed an O(log n)-approxima-
tion algorithm for UFL. By a straightforward reduction
from the Set Cover problem, it can be shown that this
cannot be improved unless NP DTIME[nO(log log n)]
due to a result by Feige [17]. However, if the connec-
tion costs are restricted to come from distances in a met-
ric space, namely ci j = c ji � 0 for all i 2 F ; j 2 C (non-
negativity and symmetry) and ci j + c ji 0 + ci 0 j0 � ci j0 for
all i; i0 2 F ; j; j0 2 C (triangle inequality), then constant
approximation guarantees can be obtained. In all results
mentioned below, except for the maximization objectives,
it is assumed that the costs satisfy these restrictions. If the
distances between facilities and clients are Euclidean, then
for some location problems approximation schemes have
been obtained [5].

Variants and Related Problems

A variant of the uncapacitated facility location problem
is obtained by considering the objective coefficients cij as
the per unit profit of servicing client j from facility i. The
maximization version of UFL, max-UFL is obtained by
maximizing the profit minus the facility opening cost, i. e.,
max

P
i2F

P
j2C ci j xi j �

P
i2F fi yi . This variant was in-

troduced by Cornuéjols, Fisher, and Nemhauser [15].
In the k-median problem the facility opening cost

is removed from the objective function (1) to obtain
min

P
i2M

P
j2N ci jxi j , and the constraint that no more

than k facilities may be opened,
P

i2M yi � k, is added. In
the k-center problem the constraint

P
i2M yi � k is again

included, and the objective function here is to minimize
the maximum distance used on a link between an open fa-
cility and a client.

In the capacitated facility location problem a capacity
constraint

P
j2C xi j � ui yi is added for all i 2 F . Here it

is important to distinguish between the splittable and the
unsplittable case, and also between hard capacities and soft
capacities. In the splittable case one has x � 0, allowing
for a client to be serviced by multiple depots, and in the
unsplittable case one requires x 2 f0; 1gn f�nc . If each fa-
cility can be opened at most once (i. e., yi 2 f0; 1g), the ca-
pacities are called hard; otherwise, if the problem allows
a facility i to be opened any number r of times to serve rui
clients, the capacities are called soft.

In the k-level facility location problem, the following
are given: a set C of clients, k disjoint sets F1; : : : ;Fk of
facilities, an opening cost for each facility, and connec-
tion costs between clients and facilities. The goal is to con-
nect each client j through a path i1,. . . ,ik of open facili-
ties, with i` 2 F`. The connection cost for this client is
c ji1 + ci1 i2 + � � � + cik�1 ik . The goal is to minimize the sum
of connection costs and facility opening costs.

The problems mentioned above have all been consid-
ered by Shmoys, Tardos, and Aardal [51], with the excep-
tions of max-UFL, and the k-center and k-median prob-
lems. The max-UFL variant is included for historical rea-
sons, and k-center and k-median are included since they
have a rich history and since they are closely related to
UFL. Results on the capacitated facility location problem
with hard capacities arementioned as this, at least from the
application point of view, is a more realistic model than
the soft capacity version, which was treated in [51]. For
k-level facility location, Shmoys et al. considered the case
k = 2. Here, the problem for general k is considered.

There are many other variants of the facility location
problem that are not discussed here. Examples include
K-facility location [33], universal facility location [24,38],
online facility location [3,18,41], fault tolerant facility lo-
cation [28,30,54], facility location with outliers [12,28],
multicommodity facility location [48], priority facility lo-
cation [37,48], facility location with hierarchical facil-
ity costs [52], stochastic facility location [23,37,46], con-
nected facility location [53], load-balanced facility loca-
tion [22,32,37], concave-cost facility location [24], and
capacitated-cable facility location [37,47].

Key Results

Many algorithms have been proposed for location prob-
lems. To begin with, a brief description of the algorithms
of Shmoys, Tardos, and Aardal [51] is given. Then, a quick
overview of some key results is presented. Some of the al-
gorithms giving the best values of the approximation guar-
antee � are based on solving the LP-relaxation by a poly-
nomial algorithm, which can actually be quite time con-
suming, whereas some authors have suggested fast combi-

Facility Location F 301

natorial algorithms for facility location problems with less
competitive �-values.Due to space restrictions the focus of
this entry is on the algorithms that yield the best approxi-
mation guarantees. For more references the survey papers
by Shmoys [49,50] and by Vygen [55] are recommended.

The Algorithms of Shmoys, Tardos, and Aardal

First the algorithm for UFL is described, and then the re-
sults that can be obtained by adaptations of the algorithm
to other problems are mentioned.

The algorithm solves the LP relaxation and then, in
two stages, modifies the obtained fractional solution. The
first stage is called filtering and it is designed to bound the
connection cost of each client to the most distant facil-
ity fractionally serving him. To do so, the facility opening
variables yi are scaled up by a constant and then the con-
nection variables xij are adjusted to use the closest possible
facilities.

To describe the second stage, the notion of cluster-
ing, formalized later by Chudak and Shmoys [13] is used.
Based on the fractional solution, the instance is cut into
pieces called clusters. Each cluster has a distinct client
called the cluster center. This is done by iteratively choos-
ing a client, not covered by the previous clusters, as the
next cluster center, and adding to this cluster the facili-
ties that serve the cluster center in the fractional solution,
along with other clients served by these facilities. This con-
struction of clusters guarantees that the facilities in each
cluster are open to a total extent of one, and therefore af-
ter opening the facility with the smallest opening cost in
each cluster, the total facility opening cost that is paid does
not exceed the facility opening cost of the fractional so-
lution. Moreover, by choosing clients for the cluster cen-
ters in a greedy fashion, the algorithm makes each cluster
center the minimizer of a certain cost function among the
clients in the cluster. The remaining clients in the cluster
are also connected to the opened facility. The triangle in-
equality for connection costs is now used to bound the cost
of this connection. For UFL, this filtering and rounding al-
gorithm is a 4-approximation algorithm. Shmoys et al. also
show that if the filtering step is substituted by randomized
filtering, an approximation guarantee of 3.16 is obtained.

In the same paper, adaptations of the algorithm, with
and without randomized filtering, was made to yield ap-
proximation algorithms for the soft-capacitated facility lo-
cation problem, and for the 2-level uncapacitated problem.
Here, the results obtained using randomized filtering are
discussed.

For the problem with soft capacities two versions of
the problem were considered. Both have equal capacities,

i. e., ui = u for all i 2 F . In the first version, a solution is
“feasible” if the y-variables either take value 0, or a value
between 1 and � 0 � 1. Note that � 0 is not required to
be integer, so the constructed solution is not necessarily
integer. This can be interpreted as allowing for each fa-
cility i to expand to have capacity � 0u at a cost of � 0 fi .
A (�; � 0)-approximation algorithm is a polynomial algo-
rithm that produces such a feasible solution having a to-
tal cost within a factor of � of the true optimal cost, i. e.,
with y 2 f0; 1gn f . Shmoys et al. developed a (5:69; 4:24)-
approximation algorithm for the splittable case of this
problem, and a (7:62; 4:29)-approximation algorithm for
the unsplittable case.

In the second soft-capacitated model, the original
problem is changed to allow for the y-variables to take
nonnegative integer values, which can be interpreted as al-
lowing multiple facilities of capacity u to be opened at each
location. The approximation algorithms in this case pro-
duces a solution that is feasible with respect to this modi-
fied model. It is easy to show that the approximation guar-
antees obtained for the previous model also hold in this
case, i. e., Shmoys et al. obtained a 5.69-approximation al-
gorithm for splittable demands and a 7.62-approximation
algorithm for unsplittable demands. This latter model is
the one considered in most later papers, so this is the
model that is referred to in the paragraph on soft capac-
ity results below.

UFL

The first algorithm with constant performance guarantee
was the 3.16-approximation algorithm by Shmoys, Tar-
dos, and Aardal, see above. Since then numerous improve-
ments have been made. Guha and Khuller [19,20] proved
a lower bound on approximability of 1.463, and intro-
duced a greedy augmentation procedure. A series of ap-
proximation algorithms based on LP-rounding was then
developed (see e. g. [10,13]). There are also greedy algo-
rithms that only use the LP-relaxation implicitly to ob-
tain a lower bound for a primal-dual analysis. An exam-
ple is the JMS 1.61-approximation algorithm developed
by Jain, Mahdian, and Saberi [29]. Some algorithms com-
bine several techniques, like the 1.52-approximation algo-
rithm ofMahdian, Ye, and Zhang [39], which uses the JMS
algorithm and the greedy augmentation procedure. Cur-
rently, the best known approximation guarantee is 1.5 re-
ported by Byrka [10]. It is obtained by combining a ran-
domized LP-rounding algorithm with the greedy JMS al-
gorithm.

302 F Facility Location

max-UFL

The first constant factor approximation algorithm was de-
rived in 1977 by Cornuéjols et al. [15] for max-UFL. They
showed that opening one facility at a time in a greedy
fashion, choosing the facility to open as the one with
highest marginal profit, until no facility with positive
marginal profit can be found, yields a (1 � 1/e) 	 0:632-
approximation algorithm. The current best approximation
factor is 0.828 by Ageev and Sviridenko [2].

k-median, k-center

The first constant factor approximation algorithm for the
k-median problem is due to Charikar, Guha, Tardos, and
Shmoys [11]. This LP-rounding algorithm has the approx-
imation ratio of 6 2

3 . The currently best known approxima-
tion ratio is 3 + � achieved by a local search heuristic of
Arya, et al. [6] (see also a separate entry k-median and Fa-
cility Location).

The first constant factor approximation algorithm
for the k-center problem was given by Hochbaum and
Shmoys [26], who developed a 2-approximation algo-
rithm. This performance guarantee is the best possible un-
less P = NP.

Capacitated Facility Location

For the soft-capacitated problem with equal capacities, the
first constant factor approximation algorithms are due to
Shmoys et al. [51] for both the splittable and unsplittable
demand cases, see above. Recently, a 2-approximation al-
gorithm for the soft capacitated facility location problem
with unsplittable unit demands was proposed by Mahdian
et al. [39]. The integrality gap of the LP relaxation for the
problem is also 2. Hence, to improve the approximation
guarantee one would have to develop a better lower bound
on the optimal solution.

In the hard capacities version it is important to al-
low for splitting the demands, as otherwise even the fea-
sibility problem becomes difficult. Suppose demands are
splittable, then we may to distinguish between the equal
capacity case, where ui = u for all i 2 F , and the gen-
eral case. For the problem with equal capacities, a 5.83-
approximation algorithm was given by Chudak and Wil-
iamson [14]. The first constant factor approximation al-
gorithm, with � = 8:53 + �, for general capacities was
given by Pál, Tardos, and Wexler [44]. This was later
improved by Zhang, Chen, and Ye [57] who obtained
a 5.83-approximation algorithm also for general capaci-
ties.

k-level Problem

The first constant factor approximation algorithm for
k = 2 is due to Shmoys et al. [51], with � = 3:16. For
general k, the first algorithm, having � = 3, was pro-
posed by Aardal, Chudak, and Shmoys [1]. For k = 2,
Zhang [56] developed a 1.77-approximation algorithm.He
also showed that the problem for k = 3 and k = 4 can be
approximated by � = 2:523 1 and � = 2:81 respectively.

Applications

Facility location has numerous applications in the field
of operations research. See the book edited by Mirchan-
dani and Francis [42] or the book by Nemhauser and
Wolsey [43] for a survey and a description of applica-
tions of facility location in problems such as plant loca-
tion and locating bank accounts. Recently, the problem
has found new applications in network design problems
such as placement of routers and caches [22,36], agglom-
eration of traffic or data [4,21], and web server replications
in a content distribution network [31,45].

Open Problems

A major open question is to determine the exact approx-
imability threshold of UFL and close the gap between the
upper bound of 1.5 [10] and the lower bound of 1.463 [20].
Another important question is to find better approxima-
tion algorithms for k-median. In particular, it would be in-
teresting to find an LP-based 2-approximation algorithm
for k-median. Such an algorithm would determine the in-
tegrality gap of the natural LP relaxation of this problem,
as there are simple examples that show that this gap is at
least 2.

Experimental Results

Jain et al. [28] published experimental results comparing
various primal-dual algorithms. A more comprehensive
experimental study of several primal-dual, local search,
and heuristic algorithms is performed by Hoefer [27].
A collection of data sets for UFL and several other loca-
tion problems can be found in the OR-library maintained
by Beasley [9].

Cross References

� Assignment Problem
� Bin Packing (hardness of Capacitated Facility Location

with unsplittable demands)

1This value of � deviates slightly from the value 2.51 given in the
paper. The original argument contained a minor calculation error.

Facility Location F 303

� Circuit Placement
� Greedy Set-Cover Algorithms (hardness of a variant of

UFL, where facilities may be built at all locations with
the same cost)

� Local Approximation of Covering and Packing
Problems

� Local Search for K-medians and Facility Location

Recommended Reading

1. Aardal, K., Chudak, F.A., Shmoys, D.B.: A 3-approximation algo-
rithm for the k-level uncapacitated facility location problem.
Inf. Process. Lett. 72, 161–167 (1999)

2. Ageev, A.A., Sviridenko, M.I.: An 0.828-approximation algo-
rithm for the uncapacitated facility location problem. Discret.
Appl. Math. 93, 149–156 (1999)

3. Anagnostopoulos, A., Bent, R., Upfal, E., van Hentenryck, P.:
A simple and deterministic competitive algorithm for online
facility location. Inf. Comput. 194(2), 175–202 (2004)

4. Andrews, M., Zhang, L.: The access network design problem. In:
Proceedings of the 39th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 40–49. IEEE Computer
Society, Los Alamitos, CA, USA (1998)

5. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Eu-
clidean k-medians and related problems. In: Proceedings of
the 30th Annual ACM Symposium on Theory of Computing
(STOC), pp. 106–113. ACM, New York (1998)

6. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K.,
Pandit, V.: Local search heuristics for k-median and facility lo-
cation problems. In: Proceedings of the 33rd Annual ACMSym-
posium on Theory of Computing (STOC), pp. 21–29. ACM, New
York (2001)

7. Balinski, M.L.: On finding integer solutions to linear programs.
In: Proceedings of the IBM Scientific Computing Symposium
on Combinatorial Problems, pp. 225–248 IBM, White Plains, NY
(1966)

8. Balinski, M.L., Wolfe, P.: On Benders decomposition and a plant
location problem. In ARO-27. Mathematica Inc. Princeton
(1963)

9. Beasley, J.E.: Operations research library. http://people.brunel.
ac.uk/~mastjjb/jeb/info.html. Accessed 2008

10. Byrka, J.: An optimal bifactor approximation algorithm for the
metric uncapacitated facility location problem. In: Proceed-
ings of the 10th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX),
Lecture Notes in Computer Science, vol. 4627, pp. 29–43.
Springer, Berlin (2007)

11. Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-
factor approximation algorithm for the k-median problem. In:
Proceedings of the 31st Annual ACM Symposium on Theory of
Computing (STOC), pp. 1–10. ACM, New York (1999)

12. Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Facility lo-
cation with outliers. In: Proceedings of the 12th Annual ACM-
SIAMSymposiumonDiscrete Algorithms (SODA), pp. 642–651.
SIAM, Philadelphia (2001)

13. Chudak, F.A., Shmoys, D.B.: Improved approximation algo-
rithms for the uncapacitated facility location problem. SIAM
J Comput. 33(1), 1–25 (2003)

14. Chudak, F.A., Wiliamson, D.P.: Improved approximation algo-
rithms for capacitated facility location problems. In: Proceed-

ings of the 7th Conference on Integer Programing and Com-
binatorial Optimization (IPCO). Lecture Notes in Computer Sci-
ence, vol. 1610, pp. 99–113. Springer, Berlin (1999)

15. Cornuéjols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank
accounts to optimize float: An analytic study of exact and ap-
proximate algorithms. Manag. Sci. 8, 789–810 (1977)

16. Erlenkotter, D.: A dual-based procedure for uncapacitated fa-
cility location problems. Oper. Res. 26, 992–1009 (1978)

17. Feige, U.: A threshold of ln n for approximating set cover.
J. ACM 45, 634–652 (1998)

18. Fotakis, D.: On the competitive ratio for online facility location.
In: Proceedings of the 30th International Colloquium on Au-
tomata, Languages and Programming (ICALP). Lecture Notes
in Computer Science, vol. 2719, pp. 637–652. Springer, Berlin
(2003)

19. Guha, S., Khuller, S.: Greedy strikes back: Improved facility lo-
cation algorithms. In: Proceedings of the 9th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 228–248. SIAM,
Philadelphia (1998)

20. Guha, S., Khuller, S.: Greedy strikes back: Improved facility loca-
tion algorithms. J. Algorithms 31, 228–248 (1999)

21. Guha, S., Meyerson, A., Munagala, K.: A constant factor approx-
imation for the single sink edge installation problem. In: Pro-
ceedings of the 33rd Annual ACM Symposium on Theory of
Computing (STOC), pp. 383–388. ACM Press, New York (2001)

22. Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement
and network design problems. In: Proceedings of the 41st An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 603–612. IEEE Computer Society, Los Alamitos, CA,
USA (2000)

23. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approxi-
mation algorithms for stochastic optimization. In: Proceedings
of the 36st Annual ACM Symposium on Theory of Computing
(STOC), pp. 417–426. ACM, New York (2004)

24. Hajiaghayi, M., Mahdian, M., Mirrokni, V.S.: The facility location
problemwith general cost functions. Netw. 42(1), 42–47 (2003)

25. Hochbaum, D.S.: Heuristics for the fixed cost median problem.
Math. Program. 22(2), 148–162 (1982)

26. Hochbaum, D.S., Shmoys, D.B.: A best possible approximation
algorithm for the k-center problem. Math. Oper. Res. 10, 180–
184 (1985)

27. Hoefer, M.: Experimental comparison of heuristic and approx-
imation algorithms for uncapacitated facility location. In: Pro-
ceedings of the 2nd International Workshop on Experimental
and EfficientAlgorithms (WEA). LectureNotes in Computer Sci-
ence, vol. 2647, pp. 165–178. Springer, Berlin (2003)

28. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Ap-
proximation algorithms for facility location via dual fittingwith
factor-revealing LP. J. ACM 50(6), 795–824 (2003)

29. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for
facility location problems. In: Proceedings of the 34st Annual
ACM Symposium on Theory of Computing (STOC) pp. 731–
740, ACM Press, New York (2002)

30. Jain, K., Vazirani, V.V.: An approximation algorithm for the fault
tolerant metric facility location problem. In: Approximation Al-
gorithms for Combinatorial Optimization, Proceedings of AP-
PROX (2000), vol. (1913) of Lecture Notes in Computer Science,
pp. 177–183. Springer, Berlin (2000)

31. Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: On the
placement of internet instrumentations. In: Proceedings of the
19th Annual Joint Conference of the IEEE Computer and Com-

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

304 F Failure Detectors

munications Societies (INFOCOM), vol. 1, pp. 295–304. IEEE
Computer Society, Los Alamitos, CA, USA (2000)

32. Karger, D., Minkoff, M.: Building Steiner trees with incomplete
global knowledge. In: Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society, pp. 613–623. Los Alamitos (2000)

33. Krarup, J., Pruzan, P.M.: Ingredients of locational analysis. In:
Mirchandani, P., Francis, R. (eds.) Discrete Location Theory,
pp. 1–54. Wiley, New York (1990)

34. Krarup, J., Pruzan, P.M.: The simple plant location problem: Sur-
vey and synthesis. Eur. J. Oper. Res. 12, 38–81 (1983)

35. Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating
warehouses. Manag. Sci. 9, 643–666 (1963)

36. Li, B., Golin, M., Italiano, G., Deng, X., Sohraby, K.: On the op-
timal placement of web proxies in the internet. In: Proceed-
ings of the 18th Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM), pp. 1282–
1290. IEEE Computer Society, Los Alamitos (1999)

37. Mahdian, M.: Facility Location and the Analysis of Algorithms
through Factor-Revealing Programs. Ph. D. thesis, MIT, Cam-
bridge (2004)

38. Mahdian, M., Pál, M.: Universal facility location. In: Proceedings
of the 11th Annual European Symposium on Algorithms (ESA).
Lecture Notes in Computer Science, vol. 2832, pp. 409–421.
Springer, Berlin (2003)

39. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for
metric facility location problems. SIAM J. Comput. 36(2), 411–
432 (2006)

40. Manne, A.S.: Plant location under economies-of-scale – decen-
tralization and computation. Manag. Sci. 11, 213–235 (1964)

41. Meyerson, A.: Online facility location. In: Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 426–431. IEEE Computer Society, Los
Alamitos (2001)

42. Mirchandani, P.B., Francis, R.L.: Discrete Location Theory. Wiley,
New York (1990)

43. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Opti-
mization. Wiley, New York (1990)

44. Pál, M., Tardos, E., Wexler, T.: Facility location with nonuniform
hard capacities. In: Proceedings of the 42nd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 329–
338. IEEE Computer Society, Los Alamitos (2001)

45. Qiu, L., Padmanabhan, V.N., Voelker, G.: On the placement of
web server replicas. In: Proceedings of the 20th Annual Joint
Conference of the IEEE Computer and Communications Soci-
eties (INFOCOM), pp. 1587–1596. IEEE Computer Society, Los
Alamitos (2001)

46. Ravi, R., Sinha, A.: Hedging uncertainty: Approximation algo-
rithms for stochastic optimization problems. Math. Program.
108(1), 97–114 (2006)

47. Ravi, R., Sinha, A.: Integrated logistics: Approximation algo-
rithms combining facility location and network design. In:
Proceedings of the 9th Conference on Integer Programming
and Combinatorial Optimization (IPCO). Lecture Notes in Com-
puter Science, vol. 2337, pp. 212–229. Springer, Berlin (2002)

48. Ravi, R., Sinha, A.: Multicommodity facility location. In: Pro-
ceedings of the 15th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 342–349. SIAM, Philadelphia
(2004)

49. Shmoys, D.B.: Approximation algorithms for facility location
problems. In: Jansen, K., Khuller, S. (eds.) Approximation Algo-

rithms for Combinatorial Optimization. Lecture Notes in Com-
puter Science, vol. 1913, pp. 27–33. Springer, Berlin (2000)

50. Shmoys, D.B.: The design and analysis of approximation al-
gorithms: Facility location as a case study. In: Thomas, R.R.,
Hosten, S., Lee, J. (eds) Proceedings of Symposia in Appl. Math-
ematics, vol. 61, pp. 85–97. AMS, Providence, RI, USA (2004)

51. Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms
for facility location problems. In: Proceedings of the 29th
Annual ACM Symposium on Theory of Computing (STOC),
pp. 265–274. ACM Press, New York (1997)

52. Svitkina, Z., Tardos, E.: Facility location with hierarchical facil-
ity costs. In: Proceedings of the 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithm (SODA), pp. 153–161. SIAM,
Philadelphia, PA, USA (2006)

53. Swamy, C., Kumar, A.: Primal-dual algorithms for connected fa-
cility location problems. Algorithmica 40(4), 245–269 (2004)

54. Swamy, C., Shmoys, D.B.: Fault-tolerant facility location. In:
Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 735–736. SIAM, Philadelphia
(2003)

55. Vygen, J.: Approximation algorithms for facility location prob-
lems (lecture notes). Technical report No. 05950-OR, Research
Institute for Discrete Mathematics, University of Bonn (2005)
http://www.or.uni-bonn.de/~vygen/fl.pdf

56. Zhang, J.: Approximating the two-level facility location prob-
lem via a quasi-greedy approach. In: Proceedings of the 15th
AnnualACM-SIAMSymposiumonDiscrete Algorithms (SODA),
pp. 808–817. SIAM, Philadelphia (2004). Also, Math. Program.
108, 159–176 (2006)

57. Zhang, J., Chen, B., Ye, Y.: A multiexchange local search algo-
rithm for the capacitated facility location problem. Math. Oper.
Res. 30(2), 389–403 (2005)

Failure Detectors
1996; Chandra, Toueg

RACHID GUERRAOUI
School of Computer and Communication Sciences,
EPFL, Lausanne, Switzerland

Keywords and Synonyms

Partial synchrony; Time-outs; Failure information; Dis-
tributed oracles

ProblemDefinition

A distributed system is comprised of a collection of pro-
cesses. The processes typically seek to achieve some com-
mon task by communicating through message passing or
shared memory. Most interesting tasks require, at least at
certain points of the computation, some form of agree-
ment between the processes. An abstract form of such
agreement is consensus where processes need to agree on
a single value among a set of proposed values. Solving this
seemingly elementary problem is at the heart of reliable

http://www.or.uni-bonn.de/~vygen/fl.pdf

Failure Detectors F 305

distributed computing and, in particular, of distributed
database commitment, total ordering of messages, and
emulations of many shared object types.

Fischer, Lynch, and Paterson’s seminal result in the
theory of distributed computing [13] says that consensus
cannot be deterministically solved in an asynchronous dis-
tributed system that is prone to process failures. This im-
possibility holds consequently for all distributed comput-
ing problems which themselves rely on consensus.

Failures and asynchrony are fundamental ingredients
in the consensus impossibility. The impossibility holds
even if only one process fails, and it does so only by crash-
ing, i. e., stopping its activities. Tolerating crashes is the
least one would expect from a distributed system for the
goal of distribution is in general to avoid single points of
failures in centralized architectures. Usually, actual dis-
tributed applications exhibit more severe failures where
processes could deviate arbitrarily from the protocol as-
signed to them.

Asynchrony refers to the absence of assumptions on
process speeds and communication delays. This absence
prevents any process from distinguishing a crashed pro-
cess from a correct one and this inability is precisely what
leads to the consensus impossibility. In practice, however,
distributed systems are not completely asynchronous:
some timing assumptions can typically be made. In the
best case, if precise lower and upper bounds on commu-
nication delays and process speeds are assumed, then it is
easy to show that consensus and related impossibilities can
be circumvented despite the crash of any number of pro-
cesses [20].

Intuitively, the way that such timing assumptions
circumvent asynchronous impossibilities is by provid-
ing processes with information about failures, typically
through time-out (or heart-beat) mechanisms, usually un-
derlying actual distributed applications. Whereas certain
information about failures can indeed be obtained in dis-
tributed systems, the accuracy of such information might
vary from a system to another, depending on the under-
lying network, the load of the application, and the mech-
anisms used to detect failures. A crucial problem in this
context is to characterize such information, in an abstract
and precise way.

Key Results

The Failure Detector Abstraction

Chandra and Toueg [5] defined the failure detector ab-
straction as a simple way to capture failure information
that is needed to circumvent asynchronous impossibilities,

in particular the consensus impossibility. The model con-
sidered in [5] is a message passing one where processes
can fail by crashing. Processes that crash stop their activ-
ities and do not recover. Processes that do not crash are
said to be correct. At least one process is supposed to be
correct in every execution of the system.

Roughly speaking, a failure detector is an oracle that
provides processes with information about failures. The
oracle is accessed in each computation step of a process
and it provides the process with a value conveying some
failure information. The value is picked from some set of
values, called the range of the failure detector. For instance,
the range could be the set of subsets of processes in the
system, and each subset could depict the set of processes
detected to have crashed, or considered to be correct. This
would correspond to the situation where the failure detec-
tor is implemented using a time-out: every process q that
does not communicate within some time period with some
process p, would be included in subset of processes sus-
pected of having crashed by p.

More specifically, a failure detector is a function, D,
that associates to each failure pattern, F, a set of failure de-
tector histories fHig = D(F). Both the failure pattern and
the failure detector history are themselves functions.
� A failure pattern F is a function that associates to each

time t, the set of processes F(t) that have indeed crashed
by time t. This notion assumes the existence of a global
clock, outside the control of the processes, as well as
a specific concept of crash event associated with time.
A set of failure pattern is called an environment.

� A failure detector history H is also a function, which
associates to each process p and time t, some value v
from the range of failure detector values. (The range of
a failure detector D is denoted RD.) This value v is said
to be output by the failure detector D at process p and
time t.

Two observations are in order.
� By construction, the output of a failure detector does

not depend on the computation, i. e., on the actual steps
performed by the processes, on their algorithm or the
input of such algorithm. The output of the failure de-
tector depends solely on the failure pattern, namely on
whether and when processes crashed.

� A failure detector might associate several histories to
each failure pattern. Each history represents a suite
of possible combinations of outputs for the same
given failure pattern. This captures the inherent non-
determinism of a failure detection mechanism. Such
a mechanism is typically itself implemented as a dis-
tributed algorithm and the variations in communica-
tion delays for instance could lead the samemechanism

306 F Failure Detectors

to output (even slightly) different information for the
same failure pattern.

To illustrate these concepts, consider two classical exam-
ples of failure detectors.
1. The perfect failure detector outputs a subset of pro-

cesses, i. e., the range of the failure detector is the set
of subsets of processes in the system. When a process q
is output at some time t at a process p, then q is said to
be detected (of having crashed) by p. The perfect failure
detector guarantees the two following properties:
� Every process that crashes is eventually permanently

detected;
� No correct process is ever detected.

2. The eventually strong failure detector outputs a subset
of processes: when a process q is output at some time t
at a process p, then q is said to be suspected (of having
crashed) by p. An eventually strong failure detector en-
sures the two following properties:
� Every process that crashes is eventually suspected;
� Eventually, some correct process is never suspected.

The perfect failure detector is reliable: if a process q is de-
tected, then q has crashed. An eventually strong failure de-
tector is unreliable: there never is any guarantee that the
information that is output is accurate. The use of the the
term suspected conveys that idea. The distinction between
unreliability and reliability was precisely captured in [14]
for the general context where the range of the failure de-
tector can be arbitrary.

Consensus Algorithms

Two important results were established in [5].

Theorem 1 (Chandra-Toueg [5]) There is an algorithm
that solves consensus with a perfect failure detector.

The theorem above implicitly says that if the distributed
system provides means to implement perfect failure de-
tection, then the consensus impossibility can be circum-
vented, even if all but one process crashes. In fact, the re-
sult holds for any failure pattern, i. e., in any environment.

The second theorem below relates the existence of
a consensus algorithm to a resilience assumption. More
specifically, the theorem holds in the majority environ-
ment, which is the set of failure patterns where more than
half of the processes are correct.

Theorem 2 (Chandra-Toueg [5]) There is an algorithm
that implements consensus with an eventually strong failure
detector in the majority environment.

The algorithm underlying the result above is similar to
eventually synchronous consensus algorithms [10] and
share also some similarities with the Paxos algorithm [18].

It is shown in [5] that no algorithm using solely the even-
tually strong failure detector can solve consensus without
the majority assumption. (This result is generalized to any
unreliable failure detector in [14].) This resilience lower
bound is intuitively due to the possibility of partitions
in a message passing system where at least half of the
processes can crash and failure detection is unreliable.
In shared memory for example, no such possibility exists
and consensus can be solved with the eventually strong
failure [19].

Failure Detector Reductions

Failure detectors can be compared. A failure detector D2
is said to be weaker than a failure detector D1 if there is
an asynchronous algorithm, called a reduction algorithm,
which, using D1, can emulate D2. Three remarks are im-
portant here.
� The fact that the reduction algorithm is asynchronous

means that it does not use any other source of failure
information, besidesD1.

� Emulating failure detector D2 means implementing
a distributed variable that mimics the output that could
be provided by D2.

� The existence of a reduction algorithm depends on en-
vironment. Hence, strictly speaking, the fact that a fail-
ure detector is weaker than another one depends on the
environment under consideration.

If failure detector D1 is weaker than D2, and vice et versa,
then D1 and D2 are said to be equivalent. Else, if D1 is
weaker than D2 and D2 is not weaker than D1, then D1 is
said to be strictly weaker than D2. Again, strictly speaking,
these notions depend on the considered environment.

The ability to compare failure detectors help define
a notion ofweakest failure detector to solve a problem. Ba-
sically, a failure detector D is the weakest to solve a prob-
lem P if the two following properties are satisfied:
� There is an algorithm that solves P using D.
� If there is an algorithm that solves P using some failure

detector D0, then D is weaker than D0.

Theorem 3 (Chandra-Hadzilacos-Toueg [4]) The even-
tually strong failure detector is the weakest to solve consen-
sus in the majority environment.

The weakest failure detector to implement consensus in
any environment was later established in [8].

Applications

A Practical Perspective

The identification of the failure detector concept had an
impact on the design of reliable distributed architectures.

Failure Detectors F 307

Basically, a failure detector can be viewed as a first class
service of a distributed system, at the same level as a name
service or a file service. Time-out and heartbeat mecha-
nisms can thus be hidden under the failure detector ab-
straction, which can then export a unified interface to
higher level applications, including consensus and state
machine replication algorithms [2,11,21].

Maybe more importantly, a failure detector service can
encapsulate synchrony assumptions: these can be changed
without impact on the rest of the applications. Minimal
synchrony assumptions to devise specific failure detectors
could be explored leading to interesting theoretical re-
sults [1,7,12].

A Theoretical Perspective

A second application of the failure detector concept is
a theory of distributed computability. Failure detectors en-
able to classify problems. A problem A is harder (resp.
strictly harder) than problem B if the weakest failure de-
tector to solve B is weaker (resp. strictly weaker) than
the weakest failure detector to solve A. (This notion is of
course parametrized by a specific environment.)

Maybe surprisingly, the induced failure detection re-
duction between problems does not exactly match the
classical black-box reduction notion. For instance, it is
well known that there is no asynchronous distributed al-
gorithm that can use a Queue abstraction to implement
a Compare-Swap abstraction in a system of n > 2 pro-
cesses where n � 1 can fail by crashing [15]. In this sense,
a Compare-Swap abstraction is strictly more powerful (in
a black-box sense) than a Queue abstraction. It turns out
that:

Theorem 4 (Delporte-Fauconnier-Guerraoui [9]) The
weakest failure detector to solve the Queue problem is also
the weakest to solve the Compare-Swap problem in a system
of n > 2 processes where n � 1 can fail by crashing.

In a sense, this theorem indicates that reducibility as in-
duced by the failure detector notion is different from the
traditional black-box reduction.

Open Problems

Several issues underlying the failure detector notion are
still open. One such issue consists in identifying the weak-
est failure detector to solve the seminal set-agreement
problem [6]: a decision task where processes need to agree
on up to k values, instead of a single value as in con-
sensus. Three independent groups of researchers [3,16,22]
proved the impossibility of solving this problem in an

asynchronous system with k failures, generalizing the con-
sensus impossibility [13]. Determining the weakest fail-
ure detector to circumvent this impossibility would clearly
help understand the fundamentals of failure detection re-
ducibility.

Another interesting research direction is to relate the
complexity of distributed algorithm with the underlying
failure detector [17]. Clearly, failure detectors circum-
vents asynchronous impossibilities, but to what extend do
they boost the complexity of distributed algorithms? One
would of course expect the complexity of a solution to
a problem to be higher if the failure detector is weaker. But
to what extend?

Cross References

� Asynchronous Consensus Impossibility
� Atomic Broadcast
� Causal Order, Logical Clocks, State Machine

Replication
� Linearizability

Recommended Reading

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.:
On implementing Omega with weak reliability and synchrony
assumptions. In: 22th ACM Symposium on Principles of Dis-
tributed Computing, pp. 306–314 (2003)

2. Bertier, M., Marin, O., Sens, P.: Performance analysis of a hier-
archical failure detector. In: International Conference on De-
pendable Systems and Networks (DSN 2003), San Francisco,
CA, USA, Proceedings, pp. 635–644. 22–25 June 2003

3. Boroswsky, E., Gafni E.: Generalized FLP impossibility result for
t-resilient asynchronous computations. In: Proceedings of the
25th ACM Symposium on Theory of Computing, pp. 91–100,
ACM Press

4. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure de-
tector for solving consensus. J. ACM 43(4), 685–722 (1996)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

6. Chauduri, S.: More choices allow more faults: Set consen-
sus problems in totally asynchronous systems. Inf. Comput.
105(1), 132–158 (1993)

7. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of
failure detectors. IEEE Trans. Comput. 51(1), 13–32 (2002)

8. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Failure detec-
tion lower bounds on registers and consensus. In: Proceedings
of the 16th International Symposium on Distributed Comput-
ing, LNCS 2508 (2002)

9. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Implement-
ing atomic objects in a message passing system. Technical re-
port, EPFL Lausanne (2005)

10. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the pres-
ence of partial synchrony. J. ACM 35(2), 288–323 (1988)

11. Felber, P., Guerraoui, R., Fayad, M.: Putting oo distributed pro-
gramming to work. Commun. ACM 42(11), 97–101 (1999)

308 F False-Name-Proof Auction

12. Fernández, A., Jiménez, E., Raynal, M.: Eventual leader election
with weak assumptions on initial knowledge, communication
reliability and synchrony. In: Proc International Symposium on
Dependable Systems and Networks (DSN), pp. 166–178 (2006)

13. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–
382 (1985)

14. Guerraoui, R.: Indulgent algorithms. In: Proceedings of the 19th
Annual ACM Symposium on Principles of Distributed Comput-
ing, Portland, Oregon, USA, pp. 289–297, ACM, July 2000

15. Herlihy, M.: Wait-free synchronization. ACM Trans. Programm.
Lang. Syst. 13(1), 123–149 (1991)

16. Herlihy, M., Shavit, N.: The asynchronous computability theo-
rem for t-resilient tasks. In: Proceedings of the 25th ACM Sym-
posium on Theory of Computing, pp. 111–120, May 1993

17. Keidar, I., Rajsbaum, S.: On the cost of fault-tolerant consensus
when there are no faults-a tutorial. In: Tutorial 21th ACM Sym-
posium on Principles of Distributed Computing, July 2002

18. Lamport, L.: The Part-Time parliament. ACM Trans. Comput.
Syst. 16(2), 133–169 (1998)

19. Lo, W.-K., Hadzilacos, V.: Using failure detectors to solve con-
sensus in asynchronous shared memory systems. In: Proceed-
ings of the 8th International Workshop on Distributed Algo-
rithms, LNCS 857, pp. 280–295, September 1994

20. Lynch, N.: Distributed Algorithms. Morgan Kauffman (1996)
21. Michel, R., Corentin, T.: In search of the holy grail: Looking for

the weakest failure detector for wait-free set agreement. Tech-
nical Report TR 06-1811, INRIA, August 2006

22. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossi-
ble: The topology of public knowledge. In: Proceedings of the
25th ACM Symposium on Theory of Computing, pp. 101–110,
ACM Press, May 1993

False-Name-Proof Auction
2004; Yokoo, Sakurai, Matsubara

MAKOTO YOKOO
Information Science and Electrical Engineering,
Kyushu University,
Fukuoka, Japan

Keywords and Synonyms

False-name-proof auctions; Pseudonymous bidding; Ro-
bustness against false-name bids

ProblemDefinition

In Internet auctions, it is easy for a bidder to submit
multiple bids under multiple identifiers (e. g., multiple
e-mail addresses). If only one item/good is sold, a bid-
der cannot make any additional profit by using multiple
bids. However, in combinatorial auctions, where multiple
items/goods are sold simultaneously, submitting multiple

bids under fictitious names can be profitable. A bid made
under a fictitious name is called a false-name bid.

Here, use the samemodel as the GVA section. In addi-
tion, false-name bids are modeled as follows.
� Each bidder can use multiple identifiers.
� Each identifier is unique and cannot be impersonated.
� Nobody (except the owner) knows whether two identi-

fiers belongs to the same bidder or not.
The goal is to design a false-name-proof protocol, i. e.,
a protocol in which using false-names is useless, thus bid-
ders voluntarily refrain from using false-names.

The problems resulting from collusion have been dis-
cussed by many researchers. Compared with collusion,
a false-name bid is easier to execute on the Internet since
obtaining additional identifiers, such as another e-mail ad-
dress, is cheap. False-name bids can be considered as a very
restricted subclass of collusion.

Key Results

The Generalized Vickrey Auction (GVA) protocol is
(dominant strategy) incentive compatible, i. e., for each
bidder, truth-telling is a dominant strategy (a best strategy
regardless of the action of other bidders) if there exists no
false-name bids. However, when false-name bids are pos-
sible, truth-telling is no longer a dominant strategy, i. e.,
the GVA is not false-name-proof.

Here is an example, which is identical to Example 1 in
the GVA section.

Example 1 Assume there are two goods a and b, and three
bidders, bidder 1, 2, and 3, whose types are �1, �2, and �3,
respectively. The evaluation value for a bundle v(B; �i) is
determined as follows.

fag fbg fa; bg
�1 $6 $0 $6
�2 $0 $0 $8
�3 $0 $5 $5

As shown in the GVA section, good a is allocated to bid-
der 1, and b is allocated to bidder 3. Bidder 1 pays $3 and
bidder 3 pays $2.

Now consider another example.

Example 2 Assume there are only two bidders, bidder 1
and 2, whose types are �1 and �2, respectively. The evalu-
ation value for a bundle v(B; �i) is determined as follows.

fag fbg fa; bg
�1 $6 $5 $11
�2 $0 $0 $8

False-Name-Proof Auction F 309

In this case, the bidder 1 can obtains both goods, but
he/she requires to pay $8, since if bidder 1 does not par-
ticipate, the social surplus would have been $8. When bid-
der 1 does participate, bidder 1 takes everything and the
social surplus except bidder 1 becomes 0. Thus, bidder 1
needs to pay the decreased amount of the social surplus,
i. e., $8.

However, bidder 1 can use another identifier, namely,
bidder 3 and creates a situation identical to Example 1.
Then, good a is allocated to bidder 1, and b is allocated to
bidder 3. Bidder 1 pays $3 and bidder 3 pays $2. Since bid-
der 3 is a false-name of bidder 1, bidder 1 can obtain both
goods by paying $3 + $2 = $5. Thus, using a false-name is
profitable for bidder 1.

The effects of false-name bids on combinatorial auc-
tions are analyzed in [4]. The obtained results can be sum-
marized as follows.
� As shown in the above example, the GVA protocol is

not false-name-proof.
� There exists no false-name-proof combinatorial auc-

tion protocol that satisfies Pareto efficiency.
� If a surplus function of bidders satisfies a condition

called concavity, then the GVA is guaranteed to be
false-name-proof.

Also, a series of protocols that are false-name-proof in var-
ious settings have been developed: combinatorial auction
protocols [2,3], multi-unit auction protocols [1], and dou-
ble auction protocols [5].

Furthermore, in [2], a distinctive class of combinato-
rial auction protocols called a Price-oriented, Rationing-
free (PORF) protocol is identified. The description of
a PORF protocol can be used as a guideline for develop-
ing strategy/false-name proof protocols.

The outline of a PORF protocol is as follows:
1. For each bidder, the price of each bundle of goods is

determined independently of his/her own declaration,
while it depends on the declarations of other bidders.
More specifically, the price of bundle (a set of goods)
B for bidder i is determined by a function p(B; 	X),
where	X is a set of declared types by other bidders X.

2. Each bidder is allocated a bundle that maximizes
his/her utility independently of the allocations of other
bidders (i. e., rationing-free). The prices of bundles
must be determined so that allocation feasibility is sat-
isfied, i. e., no two bidders want the same item.

Although a PORF protocol appears to be quite different
from traditional protocol descriptions, surprisingly, it is
a sufficient and necessary condition for a protocol to be
strategy-proof. Furthermore, if a PORF protocol satisfies
the following additional condition, it is guaranteed to be
false-name-proof.

Definition 1 (No Super-Additive price increase (NSA))
For any subset of bidders S N and N 0 = N n S, and for
i 2 S, denote Bi as a bundle that maximizes i’s utility, thenP

i2S p(Bi ;
S

j2Snfigf� jg [N 0) � p(
S

i2S Bi ; 	N 0).

An intuitive description of this condition is that the price
of buying a combination of bundles (the right side of the
inequality) must be smaller than or equal to the sum of the
prices for buying these bundles separately (the left side).
This condition is also a necessary condition for a protocol
to be false-name-proof, i. e., any false-name-proof proto-
col can be described as a PORF protocol that satisfies the
NSA condition.

Here is a simple example of a PORF protocol that
is false-name-proof. This protocol is called the Max
Minimal-Bundle (M-MB) protocol [2]. To simplify the
protocol description, a concept called a minimal bundle
is introduced.

Definition 2 (minimal bundle) Bundle B is called
minimal for bidder i, if for all B0 � B and B0 ¤ B,
v(B0; �i) < v(B; �i) holds.

In this new protocol, the price of bundle B for bidder i is
defined as follows:
� p(B; 	X) = maxB j	M; j2X v(Bj ; � j), where B \ Bj ¤ ;

and Bj is minimal for bidder j.
How this protocol works using Example 1 is described

here. The prices for each bidder is determined as follows.

fag fbg fa; bg
bidder 1 $8 $8 $8
bidder 2 $6 $5 $6
bidder 3 $8 $8 $8

The minimal bundle for bidder 1 is {a}, the minimal
bundle for bidder 2 is {a, b}, and the minimal bundle for
bidder 3 is {b}. The price of bundle {a} for bidder 1 is equal
to the largest evaluation value of conflicting bundles. In
this case, the price is $8, i. e., the evaluation value of bid-
der 2 for bundle {a, b}. Similarly, the price of bidder 2 for
bundle {a, b} is 6, i. e., the evaluation value of bidder 1 for
bundle {a}. As a result, bundle {a, b} is allocated to bid-
der 2.

It is clear that this protocol satisfies the allocation fea-
sibility. For each good l, choose bidder j* and bundle B�j
that maximize v(Bj ; � j) where l 2 Bj and Bj is minimal
for bidder j. Then, only bidder j* is willing to obtain a bun-
dle that contains good l. For all other bidders, the price of
a bundle that contains l is higher than (or equal to) his/her
evaluation value.

Furthermore, it is clear that this protocol satisfies the
NSA condition. In this pricing scheme, p(B [B0; 	X) =

310 F Fast Minimal Triangulation

max(p(B; 	X); p(B0; 	X)) holds for all B; B0, and 	X .
Therefore, the following formula holds

p

 [
i2S

Bi ; 	X

!
= max

i2S
p(Bi ; 	X) �

X
i2S

p(Bi ; 	X) :

Furthermore, in this pricing scheme, prices increase
monotonically by adding opponents, i. e., for all X 0 �
X, p(B; 	X0) � p(B; 	X) holds. Therefore, for each i,
p(Bi ;

S
j2Snfigf� jg[N 0) � p(Bi ; 	N 0) holds. Therefore,

the NSA condition, i. e.,
P

i2S p(Bi ;
S

j2Snfigf� jg[N 0)�
p(
S

i2S Bi ; 	N 0) holds.

Applications

In Internet auctions, using multiple identifiers (e. g., mul-
tiple e-mail addresses) is quite easy and identifying each
participant on the Internet is virtually impossible. Combi-
natorial auctions have lately attracted considerable atten-
tion. When combinatorial auctions become widely used
in Internet auctions, false-name-bids could be a serious
problem.

Open Problems

It is shown that there exists no false-name-proof protocol
that is Pareto efficient. Thus, it is inevitable to give up the
efficiency to some extent. However, the theoretical lower-
bound of the efficieny loss, i. e., the amount of the effi-
ciency loss that is inevitabe for any false-name-proof pro-
tocol, is not identified yet. Also, the efficiency loss of ex-
isting false-name-proof protocols can be quite large. More
efficient false-name-proof protocols in various settings are
needed.

Cross References

� Generalized Vickrey Auction

Recommended Reading
1. Iwasaki, A., Yokoo, M., Terada, K.: A robust open ascending-price

multi-unit auction protocol against false-name bids. Decis. Sup-
port. Syst. 39, 23–39 (2005)

2. Yokoo, M.: The characterization of strategy/false-name proof
combinatorial auction protocols: Price-oriented, rationing-free
protocol. In: Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence, pp. 733–739 (2003)

3. Yokoo, M., Sakurai, Y., Matsubara, S.: Robust combinatorial auc-
tion protocol against false-name bids. Artif. Intell. 130, 167–181
(2001)

4. Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name
bids in combinatorial auctions: New fraud in Internet auctions.
Games Econ. Behav. 46, 174–188 (2004)

5. Yokoo, M., Sakurai, Y., Matsubara, S.: Robust double auction pro-
tocol against false-name bids. Decis. Support. Syst. 39, 23–39
(2005)

Fast Minimal Triangulation
2005; Heggernes, Telle, Villanger

YNGVE VILLANGER
Department of Informatics,
University of Bergen,
Bergen, Norway

Keywords and Synonyms

Minimal fill problem

ProblemDefinition

Minimal triangulation is the addition of an inclusion min-
imal set of edges to an arbitrary undirected graph, such
that a chordal graph is obtained. A graph is chordal if ev-
ery cycle of length at least 4 contains an edge between two
nonconsecutive vertices of the cycle.

More formally, Let G = (V ; E) be a simple and
undirected graph, where n = jV j and m = jEj. A graph
H = (V ; E [F), where E \ F = ; is a triangulation of G
if H is chordal, and H is a minimal triangulation if there
exists no F 0 � F, such that H0 = (V ; E [F 0) is chordal.
Edges in F are called fill edges, and a triangulation is mini-
mal if and only if the removal of any single fill edge results
in a chordless four cycle [10].

Since minimal triangulations were first described in
the mid-1970s, a variety of algorithms have been pub-
lished. A complete overview of these along with different
characterizations of chordal graphs and minimal triangu-
lations can be found in the survey of Heggernes et al. [5] on
minimal triangulations. Minimal triangulation algorithms
can roughly be partitioned into algorithms that obtain
the triangulation through elimination orderings, and those
that obtain it through vertex separators. Most of these al-
gorithms have an O(nm) running time, which becomes
O(n3) for dense graphs. Among those that use elimina-
tion orderings, Kratsch and Spinrad’s O(n2:69)-time algo-
rithm [8] is currently the fastest one. The fastest algorithm
is an o(n2:376)-time algorithm by Heggernes et al. [5]. This
algorithm is based on vertex separators, and will be dis-
cussed further in the next section. Both the algorithm of
Kratsch and Spinrad [8] and the algorithm of Heggernes
et al. [5] use the matrix multiplication algorithm of Cop-

Fast Minimal Triangulation F 311

Algorithm FMT - Fast Minimal Triangulation
Input: An arbitrary graph G = (V ; E).
Output: Aminimal triangulation G0 of G.

Let Q1;Q2 and Q3 be empty queues; Insert G into Q1; G0 = G;
repeat

Construct a zero matrix M with a row for each vertex in V (columns are added later);
while Q1 is nonempty do

Pop a graph H = (U;D) from Q1;
Call Algorithm Partition(H) which returns a vertex subset A � U ;
Push vertex set A onto Q3;
for each connected component C of H[U n A] do

Add a column in M such that M(v;C) = 1 for all vertices v 2 NH(C);
if there exists a non-edge uv in H[NH[C]] with u 2 C then

Push HC = (NH[C];DC) onto Q2, where uv 62 DC if u 2 C and uv 62 D;
Compute MMT ;
Add to G0 the edges indicated by the nonzero elements of MMT ;
while Q3 is nonempty do

Pop a vertex set A from Q3;
if G0[A] is not complete then Push G0[A] onto Q2;

Swap names of Q1 and Q2;
until Q1 is empty

Fast Minimal Triangulation, Figure 1
Fast minimal triangulation algorithm

persmith and Winograd [3] to obtain an o(n3)-time algo-
rithm.

Key Results

For a vertex set A � V , the subgraph of G induced by A is
G[A] = (A;W), where uv 2 W if u; v 2 A and uv 2 Eg).
The closed neighborhood of A is N[A] = U , where u; v 2
U for every uv 2 E; where u 2 Ag and N(A) = N[A] n A.
A is called a clique if G[A] is a complete graph. A vertex
set S � V is called a separator if G[V n S] is disconnected,
and S is called a minimal separator if there exists a pair of
vertices a; b 2 V n S such that a, b are contained in differ-
ent connected components of G[V n S], and in the same
connected component of G[V n S0] for any S0 � S. A ver-
tex set ˝ V is a potential maximal clique if there ex-
ists no connected component of G[V n˝] that contains
˝ in its neighborhood, and for every vertex pair u; v 2 ˝ ,
uv is an edge or there exists a connected component of
G[V n˝] that contains both u and v in its neighborhood.

From the results in [1,7], the following recursive min-
imal triangulation algorithm is obtained. Find a vertex set
A which is either a minimal separator or a potential max-

imal clique. Complete G[A] into a clique. Recursively for
each connected componentC ofG[V n A] whereG[N[C]]
is not a clique, find a minimal triangulation of G[N[C]].
An important property here is that the set of connected
components of G[V n A] defines independent minimal
triangulation problems.

The recursive algorithm just described defines a tree,
where the given input graph G is the root node, and where
each connected component of G[V n A] becomes a child
of the root node defined by G. Now continue recursively
for each of the subproblems defined by these connected
components. A node H which is actually a subproblem of
the algorithm is defined to be at level i, if the distance from
H to the root in the tree is i. Notice that all subproblems
at the same level can be triangulated independently. Let
k be the number of levels. If this recursive algorithm can
be completed for every subgraph at each level in O(f (n))
time, then this trivially provides an O(f (n) � k)-time algo-
rithm.

The algorithm in Fig. 1 uses queues to obtain this level-
by-level approach, and matrix multiplication to complete
all the vertex separators at a given level in O(n˛) time,
where ˛ < 2:376 [3]. In contrast to the previously de-

312 F Fast Minimal Triangulation

Algorithm Partition
Input: A graph H = (U;D) (a subproblem popped from Q1).
Output: A subset A of U such that either A = N[K] for some connected H[K]

or A is a potential maximal clique of H (and G0).

Part I: defining P
Unmark all vertices of H; k = 1;
while there exists an unmarked vertex u do

if E H̄(U n NH[u]) < 2
5 jĒ(H)j thenMark u as an s-vertex (stop vertex);

else
Ck = fug; Mark u as a c-vertex (component vertex);
while there exists a vertex v 2 NH[Ck] which is unmarked or marked as an s-vertex do

if EH̄(U n NH[Ck [fvg]) � 2
5 jĒ(H)j then

Ck = Ck [fvg; Mark v as a c-vertex (component vertex);
else

Mark v as a p-vertex (potential maximal clique vertex); Associate v with Ck ;
k = k + 1;

P = the set of all p-vertices and s-vertices;

Part II: defining A
if H[U n P] has a full component C then A = NH[C];
else if there exist two non-adjacent vertices u; v such that u is an s-vertex

and v is an s-vertex or a p-vertex then A = NH[u];
else if there exist two non-adjacent p-vertices u and v, where u is associated with Ci

and v is associated with Cj and u 62 NH(Cj) and v 62 NH(Ci) then A = NH[Ci [fug];
else A = P;

Fast Minimal Triangulation, Figure 2
Partitioning algorithm. Let Ē(H) = W, where uv 2 W if uv 62 D be the set of nonedges of H. Define EH̄(S) to be the sum of degrees in
H̄ = (U; Ē) of vertices in S � U = V(H)

scribed recursive algorithm, the algorithm in Fig. 1 uses
a partitioning subroutine that either returns a set of mini-
mal separators or a potential maximal clique.

Even though all subproblems at the same level can be
solved independently they may share vertices and edges,
but no nonedges (i. e., pair of vertices that are not adja-
cent). Since triangulation involves edge addition, the num-
ber of nonedges will decrease for each level, and the sum of
nonedges for all subproblems at the same level will never
exceed n2. The partitioning algorithm in Fig. 2 exploits this
fact and has an O(n2 � m) running time, which sums up
to O(n2) for each level. Thus, each level in the fast min-
imal triangulation algorithm given in Fig. 1 can be com-
pleted in O(n2 + n˛) time, whereO(n˛) is the time needed
to computeMMT . The partitioning algorithm in Fig. 2 ac-
tually finds a setA that defines a set of minimal separators,
such that no subproblem contains more than four fifths
of the nonedges in the input graph. As a result, the num-
ber of levels in the fast minimal triangulation algorithm

is at most log4/5(n
2) = 2 log4/5(n), and the running time

O(n˛ log n) is obtained.

Applications

The first minimal triangulation algorithms weremotivated
by the need to find good pivotal orderings for Gaussian
elimination. Finding an optimal ordering is equivalent
to solving the minimum triangulation problem, which is
a nondeterministic polynomial-time hard problem. Since
any minimum triangulation is also a minimal triangula-
tion, and minimal triangulations can be found in polyno-
mial time, then the set of minimal triangulations can be
a good place to search for a pivotal ordering.

Probably because of the desired goal, the first mini-
mal triangulation algorithms were based on orderings, and
produced an ordering called a minimal elimination order-
ing. The problem of computing a minimal triangulation
has received increasing attention since then, and several

Fault-Tolerant Quantum Computation F 313

new applications and characterizations related to the ver-
tex separator properties have been published. Two of the
new applications are computing the tree-width of a graph,
and reconstructing evolutionary history through phyloge-
netic trees [6]. The new separator-based characterizations
of minimal triangulations have increased the knowledge of
minimal triangulations [1,7,9]. One result based on these
characterizations is an algorithm that computes the tree-
width of a graph in polynomial time if the number of min-
imal separators is polynomially bounded [2]. A second ap-
plication is faster exact (exponential-time) algorithms for
computing the tree-width of a graph [4].

Open Problems

The algorithm described shows that a minimal triangu-
lation can be found in O((n2 + n˛) log n) time, where
O(n˛) is the time required to preform an n � n binary
matrix multiplication. As a result, any improved binary
matrix multiplication algorithm will result in a faster al-
gorithm for computing a minimal triangulation. An in-
teresting question is whether or not this relation goes the
other way as well. Does there exist an O((n2 + nˇ) f (n))
algorithm for binary matrix multiplication, where O(nˇ)
is the time required to find a minimal triangulation and
f (n) = o(n˛�2) or at least f (n) = O(n). A possibly sim-
pler and related question previously asked in [8] is: Is it
at least as hard to compute a minimal triangulation as
to determine whether a graph contains at least one tri-
angle? A more algorithmic question is if there exists an
O(n2 + n˛)-time algorithm for computing a minimal tri-
angulation.

Cross References

� Treewidth of Graphs

Recommended Reading
1. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in:

Grouping the minimal separators. SIAM J. Comput. 31, 212–
232 (2001)

2. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques
of a graph. Theor. Comput. Sci. 276(1–2), 17–32 (2002)

3. Coppersmith, D., Winograd, S.: Matrix multiplication via arith-
metic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

4. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algo-
rithms for treewidth and minimum fill-in. In: ICALP of LNCS,
vol. 3142, pp. 568–580. Springer, Berlin (2004)

5. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal
triangulations in time O(n˛ log n) = o(n2:376). SIAM J. Discret.
Math. 19(4), 900–913 (2005)

6. Huson, D.H., Nettles, S., Warnow, T.: Obtaining highly accurate
topology estimates of evolutionary trees from very short se-
quences. In: RECOMB, 1999, pp. 198–207

7. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum
fill-in of asteroidal triple-free graphs. Theor. Comput. Sci. 175,
309–335 (1997)

8. Kratsch, D., Spinrad, J.: Minimal fill in O(n2:69) time. Discret.
Math. 306(3), 366–371 (2006)

9. Parra, A., Scheffler, P.: Characterizations and algorithmic appli-
cations of chordal graph embeddings. Discret. Appl. Math. 79,
171–188 (1997)

10. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)

Fault-Tolerant
Quantum Computation
1996; Shor, Aharonov, Ben-Or, Kitaev

BEN W. REICHARDT
Department of Computer Science,
University of California, Berkeley, CA, USA

Keywords and Synonyms

Quantum noise threshold

ProblemDefinition

Fault tolerance is the study of reliable computation us-
ing unreliable components. With a given noise model, can
one still reliably compute? For example, one can run many
copies of a classical calculation in parallel, periodically us-
ing majority gates to catch and correct faults. Von Neu-
mann showed in 1956 that if each gate fails independently
with probability p, flipping its output bit 0$ 1, then such
a fault-tolerance scheme still allows for arbitrarily reliable
computation provided p is below some constant threshold
(whose value depends on the model details) [10].

In a quantum computer, the basic gates aremuchmore
vulnerable to noise than classical transistors – after all,
depending on the implementation, they are manipulating
single electron spins, photon polarizations and similarly
fragile subatomic particles. It might not be possible to en-
gineer systems with noise rates less than 10�2, or perhaps
10�3, per gate. Additionally, the phenomenon of entan-
glement makes quantum systems inherently fragile. For
example, in Schrödinger’s cat state – an equal superposi-
tion between a living cat and a dead cat, often idealized as
1/
p
2(j0ni + j1ni) – an interaction with just one quantum

bit (“qubit”) can collapse, or decohere, the entire system.
Fault-tolerance techniques will therefore be essential for
achieving the considerable potential of quantum comput-
ers. Practical fault-tolerance techniques will need to con-
trol high noise rates and do so with low overhead, since
qubits are expensive.

314 F Fault-Tolerant Quantum Computation

Fault-Tolerant Quantum Computation, Figure 1
Bit-flip X errors flip 0 and 1. In a qubit, j0i and j1i might be rep-
resented by horizontal and vertical polarization of a photon, re-
spectively. Phase-flip Z errors flip the ˙45ı polarized states j+i
and j�i

Quantum systems are continuous, not discrete, so
there are many possible noise models. However, the essen-
tial features of quantum noise for fault-tolerance results
can be captured by a simple discrete model similar to the
one Von Neumann used. The main difference is that, in
addition to bit-flip X errors which swap 0 and 1, there can
also be phase-flip Z errors which swap j+i � 1/

p
2(j0i +

j1i) and j�i � 1/
p
2(j0i � j1i) (Fig. 1). A noisy gate is

modeled as a perfect gate followed by independent intro-
duction of X, Z, or Y (which is both X and Z) errors with
respective probabilities pX, pZ, pY. One popular model is
independent depolarizing noise (pX = pZ = pY � p/3);
a depolarized qubit is completely randomized.

Faulty measurements and preparations of single-qubit
states must additionally be modeled, and there can be
memory noise on resting qubits. It is often assumed that
measurement results can be fed into a classical computer
that works perfectly and dynamically adjusts the quan-
tum gates, although such control is not necessary. Another
common, though unnecessary, assumption is that any pair
of qubits in the computer can interact; this is called a non-
local gate. In many proposed quantum computer imple-
mentations, however, qubit mobility is limited so gates can
be applied only locally, between physically nearby qubits.

Key Results

The key result in fault tolerance is the existence of a noise
threshold, for certain noise and computational models.

The noise threshold is a positive, constant noise rate (or set
of model parameters) such that with noise below this rate,
reliable computation is possible. That is, given an input-
less quantum circuit C of perfect gates, there exists a “sim-
ulating” circuit FTC of faulty gates such that with proba-
bility at least 2/3, say, themeasured output ofC agrees with
that of FTC. Moreover, FTC should be only polynomially
larger than C.

A quantum circuit with N gates can a priori tolerate
only O(1/N) error per gate, since a single failure might
randomize the entire output. In 1996, Shor showed how to
tolerate O(1/poly(logN)) error per gate by encoding each
qubit into a poly(log N)-sized quantum error-correcting
code; and then implementing each gate of the desired cir-
cuit directly on the encoded qubits, alternating compu-
tation and error-correction steps (similar to Von Neu-
mann’s scheme) [8]. Shor’s result has two main technical
pieces:
1. The discovery of quantum error-correcting codes

(QECCs) was a major result. Remarkably, even though
quantum errors can be continuous, codes that cor-
rect discrete errors suffice. (Measuring the syndrome of
a code block projects into a discrete error event.) The
first quantum code, discovered by Shor, was a nine-
qubit code consisting of the concatenation of the three-
qubit repetition code j0i 7! j000i; j1i 7! j111i to
protect against bit-flip errors, with its dual j+i 7! j +
++i; j�i 7! j���i to protect against phase-flip er-
rors. Since then, many other QECCs have been dis-
covered. Codes like the nine-qubit code that can cor-
rect bit- and phase-flip errors separately are known as
Calderbank-Shor-Steane (CSS) codes, and have quan-
tum codewords which are simultaneously superposi-
tions over codewords of classical codes in both the j0/1i
and j + /�i bases.

2. QECCs allow for quantum memory or for communi-
cating over a noisy channel. For computation, however,
it must be possible to compute on encoded states with-
out first decoding. An operation is said to be fault tol-
erant if it cannot cause correlated errors within a code
block. With the n-bit majority code, all classical gates
can be applied transversely – an encoded gate can be
implemented by applying the unencoded gate to bits
i of each code block, 1 � i � n. This is fault toler-
ant because a single failure affects at most one bit
in each block, thus failures can’t spread too quickly.
For CSS quantum codes, the controlled-NOT gate
CNOT: ja; bi 7! ja; a˚ bi can similarly be applied
transversely. However, the CNOT gate by itself is not
universal, so Shor also gave a fault-tolerant implemen-
tation of the Toffoli gate ja; b; ci 7! ja; b; c ˚ (a ^ b)i.

Fault-Tolerant Quantum Computation F 315

Procedures are additionally needed for error correction
using faulty gates, and for the initial preparation step.
The encoding of j0iwill be a highly entangled state and
difficult to prepare (unlike 0n for the classical majority
code).

However, Shor did not prove the existence of a constant
tolerable noise rate, a noise threshold. Several groups –
Aharonov/Ben-Or, Kitaev, and Knill/Laflamme/Zurek –
each had the idea of using smaller codes, and concatenat-
ing the procedure repeatedly on top of itself. Intuitively,
with a distance-three code (i. e., code that corrects any one
error), one expects the “effective” logical error rate of an
encoded gate to be at most c p2 for some constant c, be-
cause one error can be corrected but two errors cannot.
The effective error rate for a twice-encoded gate should
then be at most c(cp2)2; and since the effective error rate is
dropping doubly-exponentially fast in the number of lev-
els of concatenation, the overhead in achieving a 1/N error
rate is only poly(logN). The threshold for improvement,
cp2 < p, is p < 1/c. However, this rough argument is not
rigorous, because the effective error rate is ill defined, and
logical errors need not fit the same model as physical er-
rors (for example, they will not be independent).

Aharonov and Ben-Or, and Kitaev gave independent
rigorous proofs of the existence of a positive constant noise
threshold, in 1997 [1,5].

Broadly, there has since been progress on two fronts of
the fault-tolerance problem:
1. First, work has proceeded on extending the set of noise

and computation models in which a fault-tolerance
threshold is known to exist. For example, correlated or
even adversarial noise, leakage errors (where a qubit
leaves the j0i; j1i subspace), and non-Markovian noise
(in which the environment has amemory) have all been
shown to be tolerable in theory, even with only local
gates.

2. Threshold existence proofs establish that building
a working quantum computer is possible in principle.
Physicists need only engineer quantum systems with
a low enough constant noise rate. But realizing the po-
tential of a quantum computer will require practical
fault-tolerance schemes. Schemes will have to tolerate
a high noise rate (not just some constant) and do so
with low overhead (not just polylogarithmic). However,
rough estimates of the noise rate tolerated by the orig-
inal existence proofs are not promising – below 10�6

noise per gate. If the true threshold is only 10�6, then
building a quantum computer will be next to impossi-
ble. Therefore, second, there has been substantial work
on optimizing fault-tolerance schemes primarily in or-
der to improve the tolerable noise rate. These opti-

mizations are typically evaluated with simulations and
heuristic analytical models. Recently, though, Aliferis,
Gottesman and Preskill have developed a method to
prove reasonably good threshold lower bounds, up to
2 � 10�4, based on counting “malignant” sets of error
locations [3].

In a breakthrough, Knill has constructed a novel fault-
tolerance scheme based on very efficient distance-two
codes [6]. His codes cannot correct any errors and the
scheme uses extensive postselection on no detected er-
rors – i. e., on detecting an error, the enclosing subrou-
tine is restarted. He has estimated a threshold above 3%
per gate, an order of magnitude higher than previous es-
timates. Reichardt has proved a threshold lower bound
of 10�3 for a similar scheme [7], somewhat supporting
Knill’s high estimate. However, reliance on postselection
leads to an enormous overhead at high error rates, greatly
limiting practicality. (A classical fault-tolerance scheme
based on error detection could not be efficient, but quan-
tum teleportation allows Knill’s scheme to be at least theo-
retically efficient.) There seems to be tradeoff between the
tolerable noise rate and the overhead required to achieve it.

There are several complementary approaches to quan-
tum fault tolerance. For maximum efficiency, it is wise
to exploit any known noise structure before switching
to general fault-tolerance procedures. Specialized tech-
niques include careful quantum engineering, techniques
from nuclear magnetic resonance (NMR) such as dy-
namical decoupling and composite pulse sequences, and
decoherence-free subspaces. For very small quantum com-
puters, such techniques may give sufficient noise protec-
tion.

It is possible that an inherently reliable quantum-
computing device will be engineered or discovered, like
the transistor for classical computing, and this is the goal
of topological quantum computing [4].

Applications

As quantum systems are noisy and entanglement-fragile,
fault-tolerance techniques will probably be essential in im-
plementing any quantum algorithms – including, e. g., ef-
ficient factoring and quantum simulation.

The quantum error-correcting codes originally devel-
oped for fault-tolerance have many other applications, in-
cluding for example quantum key distribution.

Open Problems

Dealing with noise may turn out to be the most daunt-
ing task in building a quantum computer. Currently,
physicists’ low-end estimates of achievable noise rates are

316 F File Caching and Sharing

only slightly below theorists’ high-end (mostly simulation-
based) estimates of tolerable noise rates, at reasonable lev-
els of overhead. However these estimates are made with
different noise models – most simulations are based on
the simple independent depolarizing noise model, and
threshold lower bounds for more general noise are much
lower. Also, both communities may be being too op-
timistic. Unanticipated noise sources may well appear
as experiments progress. The probabilistic noise mod-
els used by theorists in simulations may not match re-
ality closely enough, or the overhead/threshold tradeoff
may be impractical. It is not clear if fault-tolerant quan-
tum computing will work in practice, unless inefficien-
cies are wrung out of the system. Developing more effi-
cient fault-tolerance techniques is a major open problem.
Quantum system engineering, with more realistic simula-
tions, will be required to understand better various trade-
offs and strategies for working with gate locality restric-
tions.

The gaps between threshold upper bounds, threshold
estimates and rigorously proven threshold lower bounds
are closing, at least for simple noise models. Our un-
derstanding of what to expect with more realistic noise
models is less developed, though. One current line of re-
search is in extending threshold proofs to more realis-
tic noise models – e. g., [2]. A major open question here
is whether a noise threshold can be shown to even exist
where the bath Hamiltonian is unbounded – e. g., where
system qubits are coupled to a non-Markovian, harmonic
oscillator bath. Even when a threshold is known to ex-
ist, rigorous threshold lower bounds in more general noise
models may still be far too conservative (according to ar-
guments, mostly intuitive, known as “twirling”) and, since
simulations of general noise models are impractical, new
ideas are needed for more efficient analyzes.

Theoretically, it is of interest what is the best asymp-
totic overhead in the simulating circuit FTC versus C?
Overhead can be measured in terms of size N and depth/
time T. With concatenated coding, the size and depth
of FTC are O(Npoly logN) and O(Tpoly logN), respec-
tively. For classical circuits C, however, the depth can be
only O(T). It is not known if the quantum depth overhead
can be improved.

Experimental Results

Fault-tolerance schemes have been simulated for large
quantum systems, in order to obtain threshold estimates.
For example, extensive simulations including geometric
locality constraints have been run by Thaker et al. [9].

Error correction using very small codes has been ex-
perimentally verified in the lab.

URL to Code

Andrew Cross has written and distributes code for giv-
ing Monte Carlo estimates of and rigorous lower bounds
on fault-tolerance thresholds: http://web.mit.edu/awcross/
www/qasm-tools/. Emanuel Knill has releasedMathemat-
ica code for estimating fault-tolerance thresholds for cer-
tain postselection-based schemes: http://arxiv.org/e-print/
quant-ph/0404104.

Cross References

� Quantum Error Correction

Recommended Readings

1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantumcomputation
with constant error rate. In: Proc. 29th ACMSymp. on Theory of
Computing (STOC), pp. 176–188, (1997). quant-ph/9906129

2. Aharonov, D., Kitaev, A.Y., Preskill, J.: Fault-tolerant quantum
computation with long-range correlated noise. Phys. Rev. Lett.
96, 050504 (2006). quant-ph/0510231

3. Aliferis, P., Gottesman, D., Preskill, J.: Quantumaccuracy thresh-
old for concatenated distance-3 codes. Quant. Inf. Comput. 6,
97–165 (2006). quant-ph/0504218

4. Freedman, M.H., Kitaev, A.Y., Larsen, M.J., Wang, Z.: Topological
quantum computation. Bull. AMS 40(1), 31–38 (2002)

5. Kitaev, A.Y.: Quantum computations: algorithms and error cor-
rection. Russ. Math. Surv. 52, 1191–1249 (1997)

6. Knill, E.: Quantum computing with realistically noisy devices.
Nature 434, 39–44 (2005)

7. Reichardt, B.W.: Error-detection-based quantum fault toler-
ance against discrete Pauli noise. Ph. D. thesis, University of
California, Berkeley (2006). quant-ph/0612004

8. Shor, P.W.: Fault-tolerant quantum computation. In: Proc. 37th
Symp. on Foundations of Computer Science (FOCS) (1996).
quant-ph/9605011

9. Thaker, D.D., Metodi, T.S., Cross, A.W., Chuang, I.L., Chong, F.T.:
Quantummemory hierarchies: Efficient designs tomatch avail-
able parallelism in quantum computing. In: Proc. 33rd. Int.
Symp. on Computer Architecture (ISCA), pp. 378–390 (2006)
quant-ph/0604070

10. von Neumann, J.: Probabilistic logic and the synthesis of reli-
able organisms from unreliable components. In: Shannon, C.E.,
McCarthy, J. (eds.) Automata Studies, pp. 43–98. PrincetonUni-
versity Press, Princeton (1956)

File Caching and Sharing
� Data Migration
� Online Paging and Caching
� P2P

http://web.mit.edu/awcross/www/qasm-tools/
http://web.mit.edu/awcross/www/qasm-tools/
http://arxiv.org/e-print/quant-ph/0404104
http://arxiv.org/e-print/quant-ph/0404104

Floorplan and Placement F 317

Floorplan and Placement
1994; Kajitani, Nakatake, Murata, Fujiyoshi

YOJI KAJITANI
Department of Information and Media Sciences,
The University of Kitakyushu, Kitakyushu, Japan

Keywords and Synonyms

Layout; Alignment; Packing; Dissection

ProblemDefinition

The problem is concerned with efficient coding of the con-
straint that defines the placement of objects on a plane
without mutual overlapping. This has numerous motiva-
tions, especially in the design automation of integrated
semiconductor chips, where almost hundreds of millions
of rectangular modules shall be placed within a small rect-
angular area (chip). Until 1994, the only known coding ef-
ficient in computer aided design was Polish-Expression [1].
However, this can only handle a limited class of place-
ments of the slicing structure. In 1994 Nakatake, Fujiyoshi,
Murata, and Kajitani [2], andMurata, Fujiyoshi, Nakatake,
and Kajitani [3] were finally successful to answer this long-
standing problem in two contrasting ways. Their code
names are Bounded-Sliceline-Grid (BSG) for floorplanning
and Sequence-Pair (SP) for placement.

Notations

1. Floorplanning, placement, compaction, packing, layout:
Often they are used as exchangeable terms. However, they
have their own implications to be used in the following
context. Floorplanning concerns the design of the plane by
restricting and partitioning a given area on which objects
are able to be properly placed. Packing tries a placement
with an intention to reduce the area occupied by the ob-
jects. Compaction supports packing by pushing objects to
the center of the placement. The result, including other en-
vironments, is the layout. BSG and SP are paired concepts,
the former for “floorplanning”, the latter for “placement”.

2.ABLR-relation:The objects to be placed are assumed
rectangles in this entry though they could be more general
depending on the problem. For two objects p and q, p is
said to be above q (denoted as pAq) if the bottom edge
(boundary) of p is above the top edge of q. Other relations
with respect to “below” (pBq), “left-of ” (pLq), and “right-
of ” (pRq) are analogously defined. These four relations are
generally calledABLR-relations. A placement without mu-
tual overlapping of objects is said to be feasible. Trivially,
a placement is feasible if and only if every pair of objects is

in one of ABLR-relations. The example in Fig. 1 will help
these definitions.

It must be noted that a pair of objects may satisfy two
ABLR-relations simultaneously, but not three. Further-
more, an arbitrary set of ABLR-relations is not necessarily
consistent for any feasible placement. For example, any set
of ABLR-relations including relations (pAq), (qAr), and
(rAp) is not consistent.

3. Compaction: Given a placement, its bounding-box
is the minimum rectangle that encloses all the objects.
A placement of objects is evaluated by the smallness of
the bounding box’s area, abbreviated as the bb-area. An
ABLR-relation set is also evaluated by the minimum bb-
area of all the placements that satisfy the set. However,
given a consistent ABLR-relation set, the corresponding
placement is not unique in general. Still, the minimum bb-
area is easily obtained by a common technique called the
“Longest-Path Algorithm”. (See for example [4].)

Consider the placementwhose objects are all inside the
1st quadrant of the xy-coordinate system, without loss of
generality with respect to minimizing the bb-area. It is evi-
dent that if a given ABLR-relation set is feasible, there is an
object that has no object left or below it. Place it such that
its left-bottom corner is at the origin. From the remain-
ing objects, take one that has no object left of or below it.
Place it as leftward and downward as long as any ABLR-
relation with already fixed objects is not violated. See Fig. 1
to catch the concept, where the ABLR-relation set is the
one obtained the placement in (a) (so that it is trivially fea-
sible). It is possible to obtain different ABLR-relation sets,
according to which compaction would produce different
placements.

4. Slice-line: If it is possible to draw a straight hori-
zontal line or vertical line to separate the objects into two
groups, the line is said a slice-line. If each group again has
a slice-line, and so does recursively, the placement is said
to be a slicing structure. Figure 2 shows placements of slic-
ing and non-slicing structures.

5. Spiral: Two structures each consisting of four line
segments connected by a T-junction as shown in Fig. 3a
are spirals. Their regular alignment in the 1st quadrant as
shown in (b) is the Bounded-Sliceline-Grid or BSG. A BSG
is a floorplan, or a T-junction dissection, of the rectangular
area into rectangular regions called rooms. It is denoted
as an n � m BSG if the numbers of rows and columns of
its rooms are n and m, respectively. According to the left-
bottom room being p-type or q-type, the BSG is said to be
p-type or q-type, respectively.

In a BSG, take two rooms x and y. The ABLR-relations
between them are all that is defined by the rule: If the bot-
tom segment of x is the top segment of y (Fig. 3), room x

318 F Floorplan and Placement

Floorplan and Placement, Figure 1
a A feasible placement whose ABLR-relations could be observed differently. b Compacted placement if ABLR-relations are (qLr),
(sAp), Its Sequence-Pair is SP= (qspr,pqrs) and Single-Sequence is SS = (2413). c Compacted placement for (qLr), (sRp),
SP = (qpsr,pqrs). SS = (2143). d Compacted placement if (qAr), (sAp), SP = (qspr,prqs). SS = (3412)

Floorplan and Placement, Figure 2
a A placement with a slice-line. b A slicing structure since a slice-line can be found in each ith hierachy No. k(k = 1;2;3;4). c A place-
ment that has no slice-line

Floorplan and Placement, Figure 3
a Two types of the spiral structure (2) 5 � 5p-type Bounded-
Sliceline-Grid (BSG)

is above room y. Furthermore, Transitive-Law is assumed:
If “x is above y” and “z is above x”, then “z is above y”.

Other relations are analogously defined.

Lemma 1 A room is in a unique ABLR-relation with every
other room.

An n � n BSG has n2 rooms. A BSG-assignment is a one-
to-one mapping of n objects into the rooms of n � n BSG.
(n2 � n rooms remain vacant.)

After a BSG-assignment, a pair of two objects inher-
its the same ABLR-relation as the ABLR-relation defined
between corresponding rooms. In Fig. 3, if x, y, and z are

the names of objects, are ABLR-relations among them as
f(xAy); (xRz); (yBx); (yBz); (zLx); (zAy)g.

Key Results

The input is n objects that are rectangles of arbitrary sizes.
The main concern is the solution space, the collection of
distinct consistent ABLR-relation sets, to be generated by
BSG or SP.

Theorem 2 ([4,5])
1) For any feasible ABLR-relation set, there is a BSG-as-

signment into n � n BSG of any type that generates the
same ABLR-relation set.

2) The size n � n is a minimum: if the number of rows or
columns is less than n, there is a feasible ABLR-relation
set that is not obtained by any BSG-assignment.

The proof to 1) is not trivial [5](Appendix). The number
of solutions is n2Cn . A remarkable feature of an n � n BSG
is that any ABLR-relation set of n objects is generated by
a proper BSG-assignment. By this property, BSG is said to
be universal [11].

In contrast to the BSG-based generation of consistent
ABLR-relation sets, SP directly imposes the ABLR-rela-
tions on objects.

Floorplan and Placement F 319

A pair of permutations of object names, represented as
(
 +,
 �), is called the Sequence-Pair, or SP. See Fig. 1.
An SP is decoded to a unique ABLR-relation set by the
rule:

Consider a pair (x, y) of names such that x is before y
in
 �. Then (xLy) or (xAy) if x is before or after y in
 +,
respectively. ABLR-relations “B” and “R” can be derived as
the inverse of “A” and “L”. Examples are given in Fig. 1.

A remarkable feature of Sequence-Pair is that its gen-
eration and decoding are both possible by simple opera-
tions. The question is what the solution space of all SP’s
is

Theorem 3 Any feasible placement has a corresponding SP
that generates an ABLR-relation set satisfied by the place-
ment. On the other hand, any SP has a corresponding place-
ment that satisfies the ABLR-relation set derived from the
SP.

Using SP, a common compaction technique mentioned
before is described in a very simple way:

Minimum Area Placement from SP = (� +,� �)

1. Relabel the objects such that
 � = (1; 2; : : : ; n). Then

 + = (p1; p2; : : : ; pn) will be a permutation of num-
bers 1; 2; : : : ; n. It is simply a kind of normalization
of SP [10]. But Kajitani [11] considers it a concept de-
rived from Q-sequence [9] and studies its implication
by the name of Single-Sequence or SS. In the example in
Fig. 1b, p, q, r, and s are labeled as 1, 2, 3, and 4 so that
SS = (2413).

2. Take object 1 and place it at the left-bottom corner in
the 1st quadrant.

3. For k = 2; 3; : : : ; n, place k such that its left edge is at
the rightmost edge of the objects with smaller numbers
than k and lie before k in SS, and its bottom edge is at
the topmost edge of the objects with smaller numbers
than k and lie after k in SS.

Applications

Many ideas followed after BSG and SP [2,3,4,5] as seen in
the reference. They all applied a common methodology of
a stochastic heuristic search, called Simulated Annealing,
to generate feasible placements one after another based
on some evaluation (with respect to the smallness of the
bb-area), and to keep the best-so-far as the output. This
methodology has become practical by the speed achieved
due to their simple data structure. The first and naive im-
plementation of BSG [2] could output the layout of suffi-
ciently small area placement of five hundred rectangles in
several minutes. (Finding a placement with the minimum

bb-area is NP-hard [3].) Since then many ideas followed,
including currently widely used codes such as O-tree [6],
B*-tree [8], Corner–Block–List [7], Q-sequence [9], Sin-
gle-Sequence [11], and others. Their common feature is
in coding the nonoverlapping constraint along horizontal
and vertical directions, which is the inheritant property of
rectangles.

As long as applications are concerned with the rectan-
gle placement in the minimum area, and do not mind mu-
tual interconnection, the problem can be solved practically
enough by BSG, SP, and those related ideas. However, in
an integrated circuit layout problem, mutual connection
is a major concern. Objects are not restricted to rectan-
gles, even soft objects are used for performance. Many ef-
forts have been devoted with a certain degree of success.
For example, techniques concerned with rectilinear ob-
jects, rectilinear chip, insertion of small but numerous ele-
ments like buffers and decoupling capacitors, replacement
for design change, symmetric placement for analog cir-
cuit design, 3-dimensional placement, etc. have been de-
veloped. Here few of them is cited but it is recommended
to look at proceedings of ICCAD, DAC, ASPDAC, DATE,
and journals TCAD, TCAS, particularly those that cover
VLSI physical design.

Open Problems

BSG

The claim of Theorem 2 that a BSG needs n rows to pro-
vide any feasible ABLR-relation set is reasonable if consid-
ering a placement of all objects aligned vertically. This is
due to the rectangular framework of a BSG. However, ex-
periments have been suggesting a question if from the be-
ginning [5] if we need such big BSGs. The octagonal BSG is
defined in Fig. 4. It is believed to hold the following claim
expecting a drastic reduction of the solution space.

Floorplan and Placement, Figure 4
Octagonal BSG of size n, p-type: a If n is odd, it has (n2 + 1)/2
rooms. b If n is even, it has (n2 + 2n)/2 rooms

320 F Flow Time Minimization

Conjecture (BSG): For any feasible ABLR-relation set,
there is an assignment of n objects into octagonal BSG of
size n, any type, that generates the sameABLR-relation set.

If this is true, then the size of the solution space needed
by a BSG reduces to (n2+1)/2Cn or (n2+2n)/2Cn .

SP or SS

It is possible to define the universality of SP or SS in
the same manner as defined for BSG. In general, two
sequences of arbitrary k numbers P = (p1; p2; : : : ; pk)
and Q=(q1; q2; : : : ; qk) are said similar with each other
if ord(pi) = ord(qi) for every i where ord(pi) = j implies
that pi is the jth smallest in the sequence. If they are single-
sequences, two similar sequences generate the same set of
ABLR-relations under the natural one-to-one correspon-
dence between numbers.

An SS of lengthm (necessarily� n) is said universal of
order n if SS has a subsequence (a sequence obtained from
SS by deleting some of the numbers) that is similar to any
sequence of length n. Since rooms of a BSG are considered
n2 objects, Theorem 2 implies that there is a universal SS of
order n whose length is n2. The known facts about smaller
universal SS are:
1. For n = 2; 132; 231; 213, and 312 are the shortest uni-

versal SS. Note that 123 and 321 are not universal.
2. For n = 3; SS = 41352 is the shortest universal SP.
3. For n = 4, the shortest length of universal SS 10 or less.
4. The size of universal SS is˝(n2) [12].

Open Problem (SP)

It is still an open problem to characterize the universal SP.
For example, give a way to 1) certify a sequence as uni-
versal and 2) generate a minimum universal sequence for
general n.

Cross References

� Bin Packing
� Circuit Placement
� Slicing Floorplan Orientation
� Sphere Packing Problem

Recommended Reading
1. Wong, D.F., Liu, C.L.: A new algorithm for floorplan design. In:

ACM/IEEE Design Automation Conference (DAC), November
1985, 23rd, pp. 101–107

2. Nakatake, S., Murata, H., Fujiyoshi, K., Kajitani, Y.: Bounded
Sliceline Grid (BSG) for module packing. IEICE Technical Re-
port, October 1994, VLD94-66, vol. 94, no. 313, pp. 19–24 (in
Japanese)

3. Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: A solu-
tion space of size (n!)2 for optimal rectangle packing. In: 8th
Karuizawa Workshop on Circuits and Systems, April 1995,
pp. 109–114

4. Murata, H., Nakatake, S., Fujiyoshi, K., Kajitani, Y.: VLSI Module
placement based on rectangle-packing by Sequence-Pair. IEEE
Trans. Comput. AidedDesign (TCAD) 15(12), 1518–1524 (1996)

5. Nakatake, S., Fujiyoshi, K., Murata, H., Kajitani, Y.: Module pack-
ing based on the BSG-structure and IC layout applications. IEEE
TCAD 17(6), 519–530 (1998)

6. Guo, P.N., Cheng, C.K., Yoshimura, T.: An O-tree representation
of non-slicing floorplan and its applications. In: 36thDAC., June
1998, pp. 268–273

7. Hong, X., Dong, S., Ma, Y., Cai, Y., Cheng, C.K., Gu, J.: Cor-
ner Block List: An efficient topological representation of non-
slicing floorplan. In: International Computer Aided Design (IC-
CAD) ’00, November 2000, pp. 8–12,

8. Chang, Y.-C., Chang, Y.-W., Wu, G.-M.,Wu, S.-W.: B*-trees: A new
representation for non-slicing floorplans. In: 37th DAC, June
2000, pp. 458–463

9. Sakanushi, K., Kajitani, Y., Mehta, D.: The quarter-state-
sequence floorplan representation. In: IEEE TCAS-I: 50(3), 376–
386 (2003)

10. Kodama, C., Fujiyoshi, K.: Selected Sequence-Pair: An effi-
cient decodable packing representation in linear time using
Sequence-Pair. In: Proc. ASP-DAC 2003, pp. 331–337

11. Kajitani, Y.: Theory of placement by Single-Sequence Realted
with DAG, SP, BSG, and O-tree. In: International Symposium on
Circuts and Systems, May 2006

12. Imahori, S.: Privatre communication, December 2005

Flow TimeMinimization
2001; Becchetti, Leonardi,
Marchetti-Spaccamela, Pruhs

LUCA BECCHETTI1, STEFANO LEONARDI1,
ALBERTO MARCHETTI-SPACCAMELA1, KIRK PRUHS2
1 Department of Information and Computer Systems,
University of Rome, Rome, Italy

2 Computer Science, University of Pittsburgh,
Pittsburgh, PA, USA

Keywords and Synonyms

Flow time: response time

ProblemDefinition

Shortest-job-first heuristics arise in sequencing problems,
when the goal is minimizing the perceived latency of users
of a multiuser or multitasking system. In this problem, the
algorithm has to schedule a set of jobs on a pool ofm iden-
tical machines. Each job has a release date and a processing
time, and the goal is to minimize the average time spent by
jobs in the system. This is normally considered a suitable
measure of the quality of service provided by a system to

Flow Time Minimization F 321

interactive users. This optimization problem can be more
formally described as follows:

Input A set of m identical machines and a set of n jobs
1; 2; : : : ; n. Every job j has a release date rj and a processing
time pj. In the sequel, I denotes the set of feasible input
instances.

Goal The goal is minimizing the average flow (also
known as average response) time of the jobs. Let Cj de-
note the time at which job j is completed by the system.
The flow time or response time Fj of job j is defined by
Fj = Cj � r j . The goal is thus minimizing

min
1
n

nX
j=1

Fj :

Since n is part of the input, this is equivalent to minimizing
the total flow time, i. e.

Pn
j=1 Fj .

Off-line versus on-line In the off-line setting, the algo-
rithm has full knowledge of the input instance. In particu-
lar, for every j = 1; : : : ; n, the algorithm knows rj and pj.

Conversely, in the on-line setting, at any time t, the
algorithm is only aware of the set of jobs released up to
time t.

In the sequel, A and OPT denote, respectively, the al-
gorithm under consideration and the optimal, off-line pol-
icy for the problem.A(I) andOPT(I) denote the respective
costs on a specific input instance I.

Further assumptions in the on-line case Further as-
sumptions can be made as to the algorithm’s knowledge
of processing times of jobs. In particular, in this survey
an important case is considered, realistic in many appli-
cations, i. e. that pj is completely unknown to the on-line
algorithms until the job eventually completes (non-clair-
voyance) [1,3].

Performance metric In all cases, as is common in com-
binatorial optimization, the performance of the algorithm
is measured with respect to its optimal, off-line counter-
part. In a minimization problem such as those considered
in this survey, the competitive ratio �A is defined as:

�A = max
I2I

A(I)
OPT(I)

:

In the off-line case, �A is the approximation ratio of
the algorithm. In the on-line setting, �A is known as the
competitive ratio of A.

Preemption When preemption is allowed, a job that is
being processed may be interrupted and resumed later af-
ter processing other jobs in the interim. As shown further,
preemption is necessary to design efficient algorithms in
the framework considered in this survey [5,6].

Key Results

Algorithms

Consider any job j in the instance and a time t inA’s sched-
ule, and denote by wj(t) the amount of time spent by A
on job j until t. Denote by x j(t) = p j � wj(t) its remaining
processing time at t.

The best known heuristic for minimizing the average
flow time when preemption is allowed is shortest remain-
ing processing time (SRPT). At any time t, SRPT executes
a pending job j such that xj(t) is minimum.When preemp-
tion is not allowed, this heuristic translates to shortest job
first (SJF): at the beginning of the schedule, or when a job
completes, the algorithm chooses a pending job with the
shortest processing time and runs it to completion.

Complexity

The problem under consideration is polynomially solvable
on a single machine when preemption is allowed [9,10].
When preemption is allowed, SRPT is optimal for the
single-machine case. On parallel machines, the best
known upper bound for the preemptive case is achieved
by SRPT, which was proven to be O(logmin n/m; P)-
approximate [6], P being the ratio between the largest
and smallest processing times of the instance. Notice that
SRPT is an on-line algorithm, so the previous result holds
for the on-line case as well. The authors of [6] also prove
that this lower bound is tight in the on-line case. In the
off-line case, no non-constant lower bound is known when
preemption is allowed.

In the non-preemptive case, no off-line algorithm can
be better than˝(n1/3��)-approximate, for every � > 0, the
best upper bound being O(

p
n/m log(n/m)) [6]. The up-

per and lower bound become O(
p
n) and ˝(n1/2��) for

the single machine case [5].

Extensions Many extensions have been proposed to the
scenarios described above, in particular for the preemp-
tive, on-line case. Most proposals concern the power of the
algorithm or the knowledge of the input instance. For the
former aspect, one interesting case is the one in which the
algorithm is equipped with faster machines than its opti-
mal counterpart. This aspect has been considered in [4].
There the authors prove that even a moderate increase

322 F Formal Methods

in speed makes some very simple heuristics have perfor-
mances that can be very close to the optimum.

As to the algorithm’s knowledge of the input instance,
an interesting case in the on-line setting, consistent with
many real applications, is the non-clairvoyant case de-
scribed above. This aspect has been considered in [1,3].
In particular, the authors of [1] proved that a random-
ized variant of the MLF heuristic described above achieves
a competitive ratio that in the average is at most a polylog-
arithmic factor away from the optimum.

Applications

The first and traditional field of application for schedul-
ing policies is resource assignment to processes in mul-
titasking operating systems [11]. In particular, the use of
shortest-job-like heuristics, notably the MLF heuristic, is
documented in operating systems of wide use, such as
UNIX and WINDOWS NT [8,11]. Their application to
other domains, such as access to Web resources, has been
considered more recently [2].

Open Problems

Shortest-job-first-based heuristics such as those consid-
ered in this survey have been studied in depth in the re-
cent past. Still, some questions remain open. One concerns
the off-line, parallel-machine case, where no non-constant
lower bound on the approximation is known yet. As to
the on-line case, there still is no tight lower bound for
the non-clairvoyant case on parallel machines. The cur-
rent ˝(log n) lower bound was achieved for the single-
machine case [7], and there are reasons to believe that it
is below the one for the parallel case by a logarithmic fac-
tor.

Cross References

�Minimum Flow Time
�MinimumWeighted Completion Time
�Multi-level Feedback Queues
� Shortest Elapsed Time First Scheduling

Recommended Reading
1. Becchetti, L., Leonardi, S.: Nonclairvoyant scheduling to min-

imize the total flow time on single and parallel machines.
J. ACM 51(4), 517–539 (2004)

2. Crovella, M.E., Frangioso, R., Harchal-Balter, M.: Connection
scheduling in web servers. In: Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Systems (USITS-99),
1999 pp. 243–254

3. Kalyanasundaram, B., Pruhs, K.: Minimizing flow time nonclair-
voyantly. J. ACM 50(4), 551–567 (2003)

4. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clair-
voyance. J. ACM 47(4), 617–643 (2000)

5. Kellerer, H., Tautenhahn, T., Woeginger, G.J.: Approximability
and nonapproximability results for minimizing total flow time
on a singlemachine. In: Proceedings of 28th Annual ACM Sym-
posiumon the Theory of Computing (STOC ’96), 1996, pp. 418–
426

6. Leonardi, S., Raz, D.: Approximating total flow time on parallel
machines. In: Proceedings of the Annual ACM Symposium on
the Theory of Computing STOC, 1997, pp. 110–119

7. Motwani, R., Phillips, S., Torng, E.: Nonclairvoyant scheduling.
Theor. Comput. Sci. 130(1), 17–47 (1994)

8. Nutt, G.: Operating System Projects Using Windows NT. Addi-
son-Wesley, Reading (1999)

9. Schrage, L.: A proof of the optimality of the shortest remaining
processing time discipline. Oper. Res. 16(1), 687–690 (1968)

10. Smith, D.R.: A new proof of the optimality of the shortest re-
maining processing time discipline. Oper. Res. 26(1), 197–199
(1976)

11. Tanenbaum, A.S.: Modern Operating Systems. Prentice-Hall,
Englewood Cliffs (1992)

Formal Methods
� Learning Automata
� Symbolic Model Checking

FPGA Technology Mapping
1992; Cong, Ding

JASON CONG1, YUZHENG DING2

1 Department of Computer Science, UCLA,
Los Angeles, CA, USA

2 Synopsys Inc., Mountain View, CA, USA

Keywords and Synonyms

Lookup-Table Mapping; LUT Mapping; FlowMap

ProblemDefinition

Introduction

Field Programmable Gate Array (FPGA) is a type of inte-
grated circuit (IC) device that can be (re)programmed to
implement custom logic functions. A majority of FPGA
devices use lookup-table (LUT) as the basic logic element,
where a LUT of K logic inputs (K-LUT) can implement
any Boolean function of up to K variables. An FPGA
also contains other logic elements, such as registers, pro-
grammable interconnect resources, and input/output re-
sources [5].

FPGA Technology Mapping F 323

The programming of an FPGA involves the transfor-
mation of a logic design into a form suitable for imple-
mentation on the target FPGA device. This generally takes
multiple steps. For LUT based FPGAs, technology map-
ping is to transform a general Boolean logic network (ob-
tained from the design specification through earlier trans-
formations) into a functional equivalent K-LUT network
that can be implemented by the target FPGA device. The
objective of a technology mapping algorithm is to gener-
ate, among many possible solutions, an optimized one ac-
cording to certain criteria, some of which are: timing opti-
mization, which is to make the resultant implementation
operable at faster speed; area minimization, which is to
make the resultant implementation compact in size; power
minimization, which is to make the resultant implementa-
tion low in power consumption. The algorithm presented
here, named FlowMap [2], is for timing optimization; it
was the first provably optimal polynomial time algorithm
for technology mapping problems on general Boolean net-
works, and the concepts and approach it introduced has
since generated numerous useful derivations and applica-
tions.

Data Representation and Preliminaries

The input data to a technology mapping algorithm for
LUT based FPGA is a general Boolean network, which can
be modeled as a direct acyclic graph N = (V , E). A node
v 2 V can either represent a logic signal source from out-
side of the network, in which case it has no incoming edge
and is called a primary input (PI) node; or it can represent
a logic gate, in which case it has incoming edge(s) from PIs
and/or other gates, which are its logic input(s). If the logic
output of the gate is also used outside of the network, its
node is a primary output (PO), which can have no outgo-
ing edge if it is only used outside.

If hu; vi 2 E; u is said to be a fanin of v, and v a fanout
of u. For a node v, input(v) denotes the set of its fanins;
similarly for a subgraph H, input(H) denotes the set of
distinct nodes outside of H that are fanins of nodes in H.
If there is a direct path in N from a node u to a node v,
u is said to be a predecessor of v and v a successor of u.
The input network of a node v, denoted Nv, is the sub-
graph containing v and all of its predecessors. A cone of
a non-PI node v, denoted Cv, is a subgraph of Nv contain-
ing v and possibly some of its non-PI predecessors, such
that for any node u 2 Cv , there is a path from u to v in Cv.
If jinput(Cv)j � K, Cv is called a K-feasible cone. The net-
workN isK-bounded if every non-PI node has aK-feasible
cone. A cut of a non-PI node v is a bipartition (X, X0) of
nodes in Nv such that X0 is a cone of v; input(X0) is called

the cut-set of (X, X0), and n(X; X 0) = jinput(X 0)j the size
of the cut. If n(X; X 0) � K, (X, X0) is a K-feasible cut. The
volume of (X, X0) is vol(X; X 0) = jX 0j.

A topological order of the nodes in the network N is
a linear ordering of the nodes in which each node appears
after all of its predecessors and before any of its successors.
Such an order is always possible for an acyclic graph.

Problem Formulation

A K-cover of a given Boolean network N is a network
NM = (VM ; EM), where VM consists of the PI nodes of N
and some K-feasible cones of nodes in N, such that for
each PO node v of N, VM contains a cone Cv of v; and
if Cu 2 VM , then for each non-PI node v 2 input(Cu), VM
also contains a cone Cv of v. edge hu;Cv i 2 EM if and only
if PI node u 2 input(Cv); edge hCu ;Cv i 2 EM if and only
if non-PI node u 2 input(Cv). Since each K-feasible cone
can be implemented by a K-LUT, a K-cover can be im-
plemented by a network of K-LUTs. Therefore, the tech-
nology mapping problem for K-LUT based FPGA, which
is to transform N into a network of K-LUTs, is to find
a K-cover NM of N.

The depth of a network is the number of edges in its
longest path. A technology mapping solution NM is depth
optimal if among all possible mapping solutions of N it
has the minimum depth. If each level of K-LUT logic is
assumed to contribute a constant amount of logic delay
(known as the unit delaymodel), the minimum depth cor-
responds to the smallest logic propagation delay through
themapping solution, or in other words, the fastestK-LUT
implementation of the network N. The problem solved by
the FlowMap algorithm is depth optimal technology map-
ping for K-LUT based FPGAs.

A Boolean network that is not K-bounded may not
have a mapping solution as defined above. To make a net-
work K-bounded, gate decompositionmay be used to break
larger gates into smaller ones. The FlowMap algorithm ap-
plies, as pre-processing, an algorithm named DMIG [3]
that converts all gates into 2-input ones in a depth op-
timal fashion, thus making the network K-bounded for
K � 2. Different decomposition schemesmay result in dif-
ferent K-bounded networks, and consequently different
mapping solutions; the optimality of FlowMap is with re-
spect to a given K-bounded network.

Figure 1 illustrates a Boolean network, its DAG, a cov-
ering with 3-feasible cones, and the resultant 3-LUT net-
work. As illustrated, the cones in the coveringmay overlap;
this is allowed and often beneficial. (When the mapped
network is implemented, the overlapped portion of logic
will be replicated into each of the K-LUTs that contain it.)

324 F FPGA Technology Mapping

FPGA Technology Mapping, Figure 1

Key Results

The FlowMap algorithm takes a two-phase approach. In
the first phase, it determines for each non-PI node a pre-
ferred K-feasible cone as a candidate for the covering;
the cones are computed such that if used, they will yield
a depth optimal mapping solution. This is the central piece
of the algorithm. In the second phase the cones necessary
to form a cover are chosen to generate a mapping solution.

Structure of Depth Optimal K-covers

Let M(v) denote a K-cover (or equivalently, K-LUT map-
ping solution) of the input network Nv of v. If v is a PI,
M(v) consists of v itself. (For simplicity, in the rest of the
article M(v) shall be referred as a K-cover of v.) With that
defined, first there is

Lemma 1 If Cv is the K-feasible cone of v in a K-cover
M(v), then M(v) = fCv g+

S
fM(u) : u 2 input(Cv)g where

M(u) is a certain K-cover of u. Conversely, if Cv is a K-
feasible cone of v, and for each u 2 input(Cv), M(u) a K-
cover of u, then M(v) = fCvg +

S
fM(u) : u 2 input(Cv)g

is a K-cover of v.

In other words, a K-cover consists of a K-feasible cone
and a K-cover of each input of the cone. Note that for
u1 2 input(Cv), u2 2 input(Cv), M(u1) and M(u2) may
overlap, and an overlapped portion may or may not be
covered the same way; the union above includes all dis-
tinct cones from all parts. Also note that for a given Cv,
there can be different K-covers of v containing Cv, varying
by the choice ofM(u) for each u 2 input(Cv).

Let d(M(v)) denote the depth ofM(v). Then

Lemma 2 For K-cover M(v) = fCvg +
S
fM(u) : u 2

input(Cv)g, d(M(v)) = maxfd(M(u)) : u 2 input(Cv)g+1.

In particular, let M�(u) denote a K-cover of u with min-
imum depth, then d(M(v)) � maxfd(M�(u)) : u 2
input(Cv)g+1; the equality holds when everyM(u) inM(v)
is of minimum depth.

Recall that Cv defines a K-feasible cut (X, X0) where
X 0 = Cv , X = Nv � Cv . Let H(X, X0) denote the height of
the cut (X, X0), defined as H(X; X 0) = maxfd(M�(u)) :
u 2 input(X 0)g + 1. Clearly, H(X, X0) gives the minimum
depth of any K-cover of v containing Cv = X 0. Moreover,
by properly choosing the cut, H(X; X 0) height can be min-
imized, which leads to a K-cover with minimum depth:

Theorem 1 If K-feasible cut (X; X 0) of v has the min-
imum height among all K-feasible cuts of v, then the
K-cover M�(v) = fX 0g +

S
fM�(u) : u 2 input(X 0)g, is of

minimum depth among all K-covers of v.

That is, a minimum height K-feasible cut defines a mini-
mum depth K-cover. So the central task for depth optimal
technology mapping becomes the computation of a mini-
mum height K-feasible cut for each PO node.

By definition, the height of a cut depends on the
(depths of) minimumdepthK-covers of nodes in Nv�fvg.
This suggests a dynamic programming procedure that fol-
lows topological order, so that when the minimum depth
K-cover of v is to be determined, a minimum depth K-
cover of each node in Nv � fvg is already known and the
height of a cut can be readily determined. This is how the
first phase of the FlowMap algorithm is carried out.

FPGA Technology Mapping F 325

MinimumHeight K-feasible Cut Computation

The first phase of FlowMap was originally called the la-
beling phase, as it involves the computation of a label for
each node in the K-bounded graph. The label of a non-PI
node v, denoted l(v), is defined as the minimum height of
any cut of v. For convenience, the labels of PI nodes are
defined to be 0.

The so defined label has an importantmonotonic prop-
erty.

Lemma 3 Let p = maxfl(u) : u 2 input(v)g, then p �
l(v) � p + 1.

Note that this also implies that for any node u 2 Nv � fvg,
l(u) � p. Based on this, in order to find a minimumheight
K-feasible cut, it is sufficient to check if there is one of
height p; if not, then anyK-feasible cut will be of minimum
height (p + 1), and one always exists for a K-bounded
graph.

The search for a K-feasible cut of a height p (p > 0;
p = 0 is trivial) in FlowMap is done by transforming Nv
into a flow network Fv and computing a network flow [4]
on it (hence the name). The transformation is as follows.
For each node u 2 Nv � fvg, l(u) < p, Fv has two nodes
u1 and u2, linked by a bridge edge hu1; u2i; Fv has a single
sink node t for all other nodes in Nv, and a single source
node s. For each PI node u of Nv, which corresponds to
a bridge edge hu1; u2i in Fv, Fv contains edge hs; u1i; for
each edge hu;wi in Nv, if both u and w have bridge edges
in Fv, then Fv contains edge hu2;w1i; if u has a bridge edge
butw does not, Fv contains edge hu2; ti; otherwise (neither
has bridge) no corresponding edge is in Fv. The bridging
edges have unit capacity; all others have infinite capacity.
Noting that each edge in Fv with finite (unit) capacity cor-
responds to a node u 2 Nv with l(u) < p and vice versa,
and according to the Max-Flow Min-Cut Theorem [4], it
can be shown

Lemma 4 Node v has a K-feasible cut of height p if and
only if Fv has a maximum network flow of size no more
than K.

On the flow network Fv, a maximum flow can be com-
puted by running the augmenting path algorithm [4].
Once a maximum flow is obtained, the residual graph of
the flow network is disconnected, and the corresponding
min-cut (X, X0) can be identified as follows: v 2 X 0; for
u 2 Nv � fvg, if it is bridged in Fv, and u1 can be reached
in a depth-first search of the residual graph from s, then
u 2 X; otherwise u 2 X 0.

Note that as soon as the flow size exceeds K , the com-
putation can stop, knowing there will not be a desired K-
feasible cut. In this case, one can modify the flow network

by bridging all node in Nv � fvg allowing the inclusion of
nodes u with l(u) = p in the cut computation, and find
a K-feasible cut with height p+1 the same way.

An augmenting path is found in linear time to the
number of edges, and there are at most K augmentations
for each cut computation. Applying the algorithm to every
node in topological order, one would have

Theorem 2 In a K-bounded Boolean network of n nodes
and m edges, the computation of a minimum height K-
feasible cut for every node can be completed in O(Kmn)
time.

The cut found by the algorithm has another property:

Lemma 5 The cut (X, X0) computed as above is the unique
maximum volume min-cut; moreover, if (Y, Y0) is another
min-cut, then Y 0 X 0.

Intuitively a cut of larger volume defines a larger cone
which covers more logic, therefore a cut of larger volume
is preferred. Note however Lemma 5 only claims maxi-
mum amongmin-cuts; if n(X; X 0) < K, there can be other
cuts that are still K-feasible, but with larger cut size and
larger cut volume. A post-processing algorithm used by
FlowMap tries to grow (X, X0) by collapsing all nodes in
X0, plus one or more in the cut-set, into the sink, and re-
peat the flow computation; this will force a cut of larger
volume, an improvement if it is still K-feasible.

K-cover Construction

Once minimum height K-feasible cuts have been com-
puted for all nodes, each node v has a K-feasible cone Cv
defined by its cut, which has minimum depth. From here,
constructing the K-cover NM = (VM ; EM) is straight-
forward. First, the cones of all PO nodes are included
in VM . Then, for any cone Cv 2 VM , cone Cu for each
non-PI node u 2 input(v) is also include in VM ; so is ev-
ery PI node u 2 input(v). Similarly, an hCu ;Cv i 2 EM for
each non-PI node u 2 input(Cv); hu;Cv i 2 EM for each PI
node u 2 input(Cv).

Lemma 6 The K-cover constructed as above is depth opti-
mal.

This is a linear time procedure, therefore

Theorem 3 The problem of depth optimal technology
mapping for K-LUT based FPGAs on a Boolean network of
n nodes and m edges can be solved in O(Kmn) time.

Applications

The FlowMap algorithm has been used as a center piece or
a framework for more complicated FPGA logic synthesis

326 F Fractional Packing and Covering Problems

and technology mapping algorithms. There are many pos-
sible variations that can address various needs in its ap-
plications. Some are briefed below; details of such varia-
tions/applications can be found in [1,3].

Complicated Delay Models

With minimal change the algorithm can be applied where
non-unit delay model is used, allowing delay of the nodes
and/or the edges to vary, as long as they are static. Dy-
namic delaymodels, where the delay of a net is determined
by its post-mapping structure, cannot be applied to the al-
gorithm; In fact, delay optimal mapping under dynamic
delay models is NP-hard [3].

Complicated Architectures

The algorithm can be adapted to FPGA architectures that
are more sophisticated than homogeneous K-LUT arrays.
For example, mapping for FPGA with two LUT sizes can
be carried out by computing a cone for each size and dy-
namically choosing the best one.

Multiple Optimization Objectives

While the algorithm is for delay minimization, area mini-
mization (in terms of the number of cones selected) as well
as other objectives can also be incorporated, by adapting
the criteria for cut selection. The original algorithm con-
siders area minimization by maximizing the volume of the
cuts; substantially more minimization can be achieved by
considering more K-feasible cuts, and make smart choices
to e. g. increase sharing among input networks, allow cuts
of larger heights along no-critical paths, etc. Achieving
area optimality, however, is NP-hard.

Integration with Other Optimizations

The algorithm can be combined with other types of opti-
mizations, including retiming, logic resynthesis, and phys-
ical synthesis.

Cross References

� Circuit Partitioning: A Network-Flow-Based Balanced
Min-Cut Approach

� Performance-Driven Clustering
� Sequential Circuit Technology Mapping

Recommended Reading

The FlowMap algorithm, with more details and experi-
mental results, was published in [2]. General information

about FPGA can be found in [5]. A good source of con-
cepts and algorithms of network flow is [4]. Comprehen-
sive surveys of FPGA design automation, including many
variations and applications of the FlowMap algorithm, as
well as other algorithms, are presented in [1,3].

1. Chen, D., Cong, J., Pan, P.: FPGA design automation: a survey.
Foundations and Trends in Electronic Design Automation, vol 1,
no 3. Now Publishers, Hanover, USA (2006)

2. Cong, J., Ding, Y.: An optimal technology mapping algorithm
for delay optimization in lookup-table based FPGA designs,
Proc. IEEE/ACM International Conference on Computer-Aided
Design, pp. 48–53. San Jose, USA (1992)

3. Cong, J., Ding, Y.: Combinational logic synthesis for LUT based
field programmable gate arrays. ACM Trans. Design Autom.
Electron. Sys. 1(2): 145–204 (1996)

4. Tarjan, R.: Data Structures and Network Algorithms. SIAM.
Philadelphia, USA (1983)

5. Trimberger, S.: Field-Programmable Gate Array Technology.
Springer, Boston, USA (1994)

Fractional Packing
and Covering Problems
1991; Plotkin, Shmoys, Tardos
1995; Plotkin, Shmoys, Tardos

GEORGE KARAKOSTAS
Department of Computing & Software,
McMaster University, Hamilton, ON, Canada

ProblemDefinition

This entry presents results on fast algorithms that pro-
duce approximate solutions to problems which can be for-
mulated as Linear Programs (LP), and therefore can be
solved exactly, albeit with slower running times. The gen-
eral format of the family of these problems is the follow-
ing: Given a set of m inequalities on n variables, and an
oracle that produces the solution of an appropriate opti-
mization problem over a convex set P 2 Rn , find a solu-
tion x 2 P that satisfies the inequalities, or detect that no
such x exists. The basic idea of the algorithm will always be
to start from an infeasible solution x, and use the optimiza-
tion oracle to find a direction in which the violation of the
inequalities can be decreased; this is done by calculating
a vector y that is a dual solution corresponding to x. Then
x is carefully updated towards that direction, and the pro-
cess is repeated until x becomes ‘approximately’ feasible.
In what follows, the particular problems tackled, together
with the corresponding optimization oracle, as well as the
different notions of ‘approximation’ used are defined.

Fractional Packing and Covering Problems F 327

� The fractional packing problem and its oracle are de-
fined as follows:

PACKING:Given anm � nmatrixA, b > 0, and a con-
vex set P in Rn such that Ax � 0; 8x 2 P, is there
x 2 P such that Ax� b?

PACK_ORACLE:Given m-dimensional vector y � 0
and P as above, return x̄ := argminfyTAx : x 2 Pg:

� The relaxed fractional packing problem and its oracle
are defined as follows:

RELAXED PACKING:Given " > 0, an m � n matrix
A, b > 0, and convex sets P and P̂ in Rn such
that P P̂ and Ax � 0; 8x 2 P̂, find x 2 P̂ such
that Ax � (1 + ")b, or show that 6 9x 2 P such that
Ax� b.

REL_PACK_ORACLE:Given m-dimensional vector
y � 0 and P; P̂ as above, return x̄ 2 P̂ such that
yTAx̄ � minfyTAx : x 2 Pg.

� The fractional covering problem and its oracle are de-
fined as follows:

COVERING:Given an m � n matrix A, b > 0, and
a convex set P in Rn such that Ax � 0; 8x 2 P, is
there x 2 P such that Ax � b?

COVER_ORACLE:Given m-dimensional vector y � 0
and P as above, return x̄ := argmaxfyTAx : x 2 Pg:

� The simultaneous packing and covering problem and
its oracle are defined as follows:

SIMULTANEOUS PACKING AND COVERING:Given
m̂ � n and (m � m̂) � n matrices Â;A respectively,
b > 0 and b̂ > 0, and a convex set P in Rn such that
Ax � 0 andÂx � 0; 8x 2 P, is there x 2 P such
that Ax� b, and Âx � b̂?

SIM_ORACLE:Given P as above, a constant � and
a dual solution (y; ŷ), return x̄ 2 P such that

Ax̄ � �b; and

yTAx̄ �
X

i2I(�;x̄)

ŷ i âi x̄ = minfyTAx

�
X

i2I(�;x)

ŷ i âi x : x a vertex of P such that Ax � �bg;

where I(�; x) := fi : âi x � �big:

� The general problem and its oracle are defined as fol-
lows:

GENERAL:Given an m � n matrix A, an arbitrary vec-
tor b, and a convex set P in Rn , is there x 2 P such
that Ax� b,?

GEN_ORACLE:Given m-dimensional vector y � 0
and P as above, return x̄ := argminfyTAx : x 2 Pg:

Definitions and Notation

For an error parameter " > x0, a point x 2 P is an "-ap-
proximation solution for the fractional packing (or cover-
ing) problem if Ax � (1 + ")b (or Ax � (1 � ")b). On the
other hand, if x 2 P satisfies Ax� b (or Ax � b), then x
is an exact solution. For the GENERAL problem, given an
error parameter " > 0 and a positive tolerance vector d,
x 2 P is an "-approximation solution if Ax � b + "d, and
an exact solution ifAx� b. An "-relaxed decision procedure
for these problems either finds an "-approximation solu-
tion, or correctly reports that no exact solution exists. In
general, for a minimization (maximization) problem, an
(1 + ")-approximation ((1 � ")-approximation) algorithm
returns a solution at most (1 + ") (at least (1 � ")) times
the optimal.

The algorithms developed work within time that de-
pends polynomially on "�1, for any error parameter " > 0.
Their running time will also depend on the width � of the
convex set P relative to the set of inequalities Ax� b or
Ax � b defining the problem at hand. More specifically
the width � is defined as follows for each one of the prob-
lems considered here:
� PACKING: � := maxi maxx2P ai x

bi :

� RELAXED PACKING: �̂ := maxi maxx2P̂
a i x
b i :

� COVERING: � := maxi maxx2P ai x
bi :

� SIMULTANEOUS PACKING AND COVERING: � :=
maxx2P
maxfmaxi a i x

b i ;maxi â i x
b̂ i
g:

� GENERAL: � := maxi maxx2P jai x�bi jdi + 1, where d is
the tolerance vector defined above.

Key Results

Many of the results below were presented in [7] by assum-
ing a model of computation with exact arithmetic on real
numbers and exponentiation in a single step. But, as the
authors mention [7], they can be converted to run on the
RAM model by using approximate exponentiation, a ver-
sion of the oracle that produces a nearly optimal solution,
and a limit on the numbers used that is polynomial in the
input length similar to the size of numbers used in exact
linear programming algorithms. However they leave as an
open problem the construction of "-approximate solutions
using polylogarithmic precision for the general case of the
problems they consider (as can be done, for example, in
the multicommodity flow case [4]).

Theorem 1 For 0 < " � 1, there is a deterministic "-re-
laxed decision procedure for the fractional packing problem
that uses O("�2� log(m"�1)) calls to PACK_ORACLE, plus

328 F Fractional Packing and Covering Problems

the time to compute Ax for the current iterate x between
consecutive calls.

For the case of P being written as a product of smaller-
dimension polytopes, i. e., P = P1 � � � � � Pk , each Pl

with width �l (obviously � �
P

l �
l), and a separate

PACK_ORACLE for each Pl ;Al , then randomization can
be used to potentially speed up the algorithm. By using the
notation PACK_ORACLE l for the Pl ;Al oracle, the follow-
ing holds:

Theorem 2 For 0 < " � 1, there is a randomized "-re-
laxed decision procedure for the fractional packing prob-
lem that is expected to use O("�2(

P
l �

l) log(m"�1) +
k log(�"�1)) calls to PACK_ORACLE l for some l 2

f1; : : : ; kg (possibly a different l in every call), plus the
time to compute

P
l A

l x l for the current iterate x =
(x1; x2; : : : ; xk) between consecutive calls.

Theorem 2 holds for RELAXED PACKING as well, if � is re-
placed by �̂ and PACK_ORACLE by REL_PACK_ORACLE.

In fact, one needs only an approximate version of
PACK_ORACLE. Let CP(y) be the minimum cost yTAx
achieved by PACK_ORACLE for a given y.

Theorem 3 Let PACK_ORACLE be replaced by an ora-
cle that given vector y � 0, finds a point x̄ 2 P such that
yTAx̄ � (1 + "/2)CP (y) + ("/2)�yTb, where � is minimum
so that Ax � �b is satisfied by the current iterate x. Then
Theorems 1 and 2 still hold.

Theorem 3 shows that even if no efficient implementation
exists for an oracle, as in, e. g., the case when this oracle
solves an NP-hard problem, a fully polynomial approxi-
mation scheme for it suffices.

Similar results can be proven for the fractional cov-
ering problem (COVER_ORACLE l is defined similarly to
PACK_ORACLE l above):

Theorem 4 For 0 < " < 1, there is a deterministic "-re-
laxed decision procedure for the fractional covering prob-
lem that uses O(m + � log2 m + "�2� log(m"�1)) calls to
COVER_ORACLE, plus the time to compute Ax for the cur-
rent iterate x between consecutive calls.

Theorem 5 For 0 < " < 1, there is a randomized "-re-
laxed decision procedure for the fractional packing problem
that is expected to use O(mk + (

P
l �

l) log2 m + k log "�1 +
"�2(

P
l �

l) log(m"�1)) calls to COVER_ ORACLEl for
some l 2 f1; : : : ; kg (possibly a different l in every call),
plus the time to compute

P
l A

l x l for the current iterate
x = (x1; x2; : : : ; xk) between consecutive calls.

Let CC(y) be the maximum cost yTAx achieved by
COVER_ORACLE for a given y.

Theorem 6 Let COVER_ORACLE be replaced by an ora-
cle that given vector y � 0, finds a point x̄ 2 P such that
yTAx̄ � (1 � "/2)CC(y) � ("/2)�yTb, where � is maxi-
mum so that Ax � �b is satisfied by the current iterate x.
Then Theorems 4 and 5 still hold.

For the simultaneous packing and covering problem, the
following is proven:

Theorem 7 For 0 < " � 1, there is a randomized "-re-
laxed decision procedure for the simultaneous pack-
ing and covering problem that is expected to use
O(m2(log2 �)"�2 log("�1m log �)) calls to SIM_ORACLE,
and a deterministic version that uses a factor of log � more
calls, plus the time to compute Âx for the current iterate x
between consecutive calls.

For the GENERAL problem, the following is shown:

Theorem 8 For 0 < " < 1, there is a deterministic "-re-
laxed decision procedure for the GENERAL problem that
uses O("�2�2 log(m�"�1)) calls to GEN_ORACLE, plus the
time to compute Ax for the current iterate x between con-
secutive calls.

The running times of these algorithms are proportional
to the width �, and the authors devise techniques to
reduce this width for many special cases of the prob-
lems considered. One example of the results obtained
by these techniques is the following: If a packing prob-
lem is defined by a convex set that is a product of k
smaller-dimension convex sets, i. e., P = P1 � � � � � Pk ,
and the inequalities

P
l A

l x l � b, then there is a ran-
domized "-relaxed decision procedure that is expected to
use O("�2k log(m"�1) + k log k) calls to a subroutine that
finds a minimum-cost point in P̂l = fxl 2 Pl : Al x l �
bg; l = 1; : : : ; k, and a deterministic version that uses
O("�2k2 log(m"�1)) such calls, plus the time to compute
Ax for the current iterate x between consecutive calls. This
result can be applied to themulticommodity flow problem,
but the required subroutine is a single-source minimum-
cost flow computation, instead of a shortest-path calcula-
tion needed for the original algorithm.

Applications

The results presented above can be used in order to ob-
tain fast approximate solutions to linear programs, even
if these can be solved exactly by LP algorithms. Many ap-
proximation algorithms are based on the rounding of the
solution of such programs, and hence one might want to
solve them approximately (with the overall approxima-
tion factor absorbing the LP solution approximation fac-

Fully Dynamic All Pairs Shortest Paths F 329

tor), but more efficiently. Two such examples, that appear
in [7], are mentioned here.

Theorems 1, 2 can be applied for the improvement
of the running time of the algorithm by Lenstra, Shmoys,
and Tardos [5] for the scheduling of unrelated paral-
lel machines without preemption (RjjCmax): N jobs are
to be scheduled on M machines, with each job i sched-
uled on exactly one machine j with processing time pij,
so that the maximum total processing time over all ma-
chines is minimized. Then, for any fixed r > 1, there
is a deterministic (1 + r)-approximation algorithm that
runs in O(M2N log2 N logM) time, and a randomized
version that runs in O(MN logM log N) expected time.
For the version of the problem with preemption, there
are polynomial-time approximation schemes that run in
O(MN2 log2 N) time and O(MN logN logM) expected
time in the deterministic and randomized case respec-
tively.

A well-known lower bound for the metric Traveling
Salesman Problem (metric TSP) on N nodes is the Held-
Karp bound [2], that can be formulated as the optimum
of a linear program over the subtour elimination poly-
tope. By using a randomized minimum-cut algorithm by
Karger and Stein [3], one can obtain a randomized ap-
proximation scheme that computes the Held-Karp bound
in O(N4 log6 N) expected time.

Open Problems

The main open problem is the further reduction of the
running time for the approximate solution of the vari-
ous fractional problems. One direction would be to im-
prove the bounds for specific problems, as has been done
very successfully for the multicommodity flow problem
in a series of papers starting with Shahrokhi and Mat-
ula [8]. This same starting point also led to a series of re-
sults by Grigoriadis and Khachiyan developed indepen-
dently to [7], starting with [1] which presents an algo-
rithm with a number of calls smaller than the one in The-
orem 1 by a factor of log(m"�1)/ logm. Considerable ef-
fort has been dedicated to the reduction of the dependence
of the running time on the width of the problem or the
reduction of the width itself (for example, see [9] for se-
quential and parallel algorithms for mixed packing and
covering), so this can be another direction of improve-
ment.

A problem left open by [7] is the development of ap-
proximation schemes for the RAM model, that use only
polylogarithmic in the input length precision and work for
the general case of the problems considered.

Cross References

�MinimumMakespan on Unrelated Machines

Recommended Reading

1. Grigoriadis, M.D., Khachiyan, L.G.: Fast approximation schemes
for convex programs with many blocks and coupling con-
straints. SIAM J. Optim. 4, 86–107 (1994)

2. Held, M., Karp, R.M.: The traveling-salesman problem and min-
imum cost spanning trees. Oper. Res. 18, 1138–1162 (1970)

3. Karger, D.R., Stein, C.: An Õ(n2) algorithm for minimum cut.
In: Proceeding of 25th Annual ACM Symposium on Theory of
Computing (STOC), 1993, pp. 757–765

4. Leighton, F.T., Makedon, F., Plotkin, S.A., Stein, C., Tardos, É.,
Tragoudas, S.: Fast approximation algorithms for multicom-
modity flow problems. J. Comp. Syst. Sci. 50(2), 228–243 (1995)

5. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algo-
rithms for scheduling unrelated parallel machines. Math. Pro-
gram. Ser. A 24, 259–272 (1990)

6. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algo-
rithms for fractional packing and covering problems. In: Pro-
ceedings of 32nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1991, pp. 495–504

7. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation al-
gorithms for fractional packing and covering problems. Math.
Oper. Res. 20(2) 257–301 (1995). Preliminary version appeared
in [6]

8. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow
problem. J. ACM 37, 318–334 (1990)

9. Young, N.E.: Sequential and parallel algorithms formixed pack-
ing and covering. In: Proceedings of 42nd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), 2001,
pp. 538–546

Full-Text Index Construction
� Suffix Array Construction
� Suffix Tree Construction in Hierarchical Memory
� Suffix Tree Construction in RAM

Fully Dynamic All Pairs
Shortest Paths
2004; Demetrescu, Italiano

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

ProblemDefinition

The problem is concerned with efficiently maintaining in-
formation about all-pairs shortest paths in a dynamically
changing graph. This problem has been investigated since

330 F Fully Dynamic All Pairs Shortest Paths

the 60s [17,18,20], and plays a crucial role in many appli-
cations, including network optimization and routing, traf-
fic information systems, databases, compilers, garbage col-
lection, interactive verification systems, robotics, dataflow
analysis, and document formatting.

A dynamic graph algorithm maintains a given prop-
ertyP on a graph subject to dynamic changes, such as edge
insertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on prop-
erty P quickly, and perform update operations faster than
recomputing from scratch, as carried out by the fastest
static algorithm. An algorithm is said to be fully dynamic
if it can handle both edge insertions and edge deletions.
A partially dynamic algorithm can handle either edge in-
sertions or edge deletions, but not both: it is incremental if
it supports insertions only, and decremental if it supports
deletions only. In this entry, fully dynamic algorithms for
maintaining shortest paths on general directed graphs are
presented.

In the fully dynamic All Pairs Shortest Path (APSP)
problem one wishes to maintain a directed graph G =
(V ; E) with real-valued edge weights under an intermixed
sequence of the following operations:

Update(x, y,w): update the weight of edge (x, y) to the
real value w; this includes as a special
case both edge insertion (if the weight is
set from +1 tow < +1) and edge dele-
tion (if the weight is set to w = +1);

Distance(x, y): output the shortest distance from x to y.
Path(x, y): report a shortest path from x to y, if any.

More formally, the problem can be defined as follows.

Problem 1 (Fully Dynamic All-Pairs Shortest Paths)
INPUT: A weighted directed graph G = (V ; E), and a se-
quence � of operations as defined above.

OUTPUT: A matrix D such entry D[x; y] stores the dis-
tance from vertex x to vertex y throughout the sequence � of
operations.

Throughout this entry, m and n denotes respectively the
number of edges and vertices in G.

Demetrescu and Italiano [3] proposed a new approach
to dynamic path problems based on maintaining classes
of paths characterized by local properties, i. e., properties
that hold for all proper subpaths, even if theymay not hold
for the entire paths. They showed that this approach can
play a crucial role in the dynamic maintenance of shortest
paths.

Key Results

Theorem 1 The fully dynamic shoretest path problem can
be solved in O(n2 log3 n) amortized time per update during
any intermixed sequence of operations. The space required
is O(mn).

Using the same approach, Thorup [22] has shown how to
slightly improve the running times:

Theorem 2 The fully dynamic shoretest path problem can
be solved in O(n2(log n + log2(m/n))) amortized time per
update during any intermixed sequence of operations. The
space required is O(mn).

Applications

Dynamic shortest paths find applications in many ar-
eas, including network optimization and routing, trans-
portation networks, traffic information systems, databases,
compilers, garbage collection, interactive verification sys-
tems, robotics, dataflow analysis, and document format-
ting.

Open Problems

The recent work on dynamic shortest paths has raised
some new and perhaps intriguing questions. First, can
one reduce the space usage for dynamic shortest paths to
O(n2)? Second, and perhaps more importantly, can one
solve efficiently fully dynamic single-source reachability
and shortest paths on general graphs? Finally, are there any
general techniques for making increase-only algorithms
fully dynamic? Similar techniques have been widely ex-
ploited in the case of fully dynamic algorithms on undi-
rected graphs [11,12,13].

Experimental Results

A thorough empirical study of the algorithms described in
this entry is carried out in [4].

Data Sets

Data sets are described in [4].

Cross References

� Dynamic Trees
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs
� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Fully Dynamic Connectivity F 331

Recommended Reading

1. Ausiello, G., Italiano, G.F., Marchetti-Spaccamela, A., Nanni, U.:
Incremental algorithms for minimal length paths. J. Algorithm
12(4), 615–38 (1991)

2. Demetrescu, C.: Fully Dynamic Algorithms for Path Problems
on Directed Graphs. Ph. D. thesis, Department of Computer
and Systems Science, University of Rome “La Sapienza”, Rome
(2001)

3. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all
pairs shortest paths. J. Assoc. Comp. Mach. 51(6), 968–992
(2004)

4. Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic
all pairs shortest path algorithms. ACM Trans. Algorithms 2(4),
578–601 (2006)

5. Demetrescu, C., Italiano, G.F.: Trade-offs for fully dynamic
reachability on dags: Breaking through the O(n2) barrier. J. As-
soc. Comp. Mach. 52(2), 147–156 (2005)

6. Demetrescu, C., Italiano, G.F.: Fully Dynamic All Pairs Shortest
Paths with Real Edge Weights. J. Comp. Syst. Sci. 72(5), 813–
837 (2006)

7. Even, S., Gazit, H.: Updating distances in dynamic graphs.
Method. Oper. Res. 49, 371–387 (1985)

8. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Semi-dynamic
algorithms for maintaining single source shortest paths trees.
Algorithmica 22(3), 250–274 (1998)

9. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic
algorithms for maintaining shortest paths trees. J. Algorithm
34, 351–381 (2000)

10. Henzinger, M., King, V.: Fully dynamic biconnectivity and tran-
sitive closure. In: Proc. 36th IEEE Symposiumon Foundations of
Computer Science (FOCS’95). IEEE Computer Society, pp. 664–
672. Los Alamos (1995)

11. Henzinger, M., King, V.: Maintainingminimumspanning forests
in dynamic graphs. SIAM J. Comp. 31(2), 364–374 (2001)

12. Henzinger, M.R., King, V.: Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. J. ACM
46(4), 502–516 (1999)

13. Holm, J., de Lichtenberg, K., Thorup,M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760
(2001)

14. King, V.: Fully dynamic algorithms for maintaining all-pairs
shortest paths and transitive closure in digraphs. In: Proc.
40th IEEE Symposium on Foundations of Computer Science
(FOCS’99). IEEE Computer Society pp. 81–99. Los Alamos
(1999)

15. King, V., Sagert, G.: A fully dynamic algorithm for maintain-
ing the transitive closure. J. Comp. Syst. Sci. 65(1), 150–167
(2002)

16. King, V., Thorup, M.: A space saving trick for directed dynamic
transitive closure and shortest path algorithms. In: Proceed-
ings of the 7th Annual International Computing and Combi-
natorics Conference (COCOON). LNCS, vol. 2108, pp. 268–277.
Springer, Berlin (2001)

17. Loubal, P.: A network evaluation procedure. Highway Res. Rec.
205, 96–109 (1967)

18. Murchland, J.: The effect of increasing or decreasing the length
of a single arc on all shortest distances in a graph. Technical re-
port, LBS-TNT-26, London Business School, Transport Network
Theory Unit, London (1967)

19. Ramalingam, G., Reps, T.: An incremental algorithm for a gen-
eralization of the shortest path problem. J. Algorithm 21, 267–
305 (1996)

20. Rodionov, V.: The parametric problem of shortest distances.
USSR Comp. Math. Math. Phys. 8(5), 336–343 (1968)

21. Rohnert, H.: A dynamization of the all-pairs least cost prob-
lem. In: Proc. 2nd Annual Symposium on Theoretical Aspects
of Computer Science, (STACS’85). LNCS, vol. 182, pp. 279–286.
Springer, Berlin (1985)

22. Thorup, M.: Fully-dynamic all-pairs shortest paths: Faster and
allowing negative cycles. In: Proceedings of the 9th Scandina-
vian Workshop on Algorithm Theory (SWAT’04), pp. 384–396.
Springer, Berlin (2004)

23. Thorup, M.: Worst-case update times for fully-dynamic all-pairs
shortest paths. In: Proceedings of the 37th ACMSymposiumon
Theory of Computing (STOC 2005), ACM. New York (2005)

Fully Dynamic Connectivity
2001; Holm, de Lichtenberg, Thorup

VALERIE KING
Department of Computer Science, University of Victoria,
Victoria, BC, Canada

Keywords and Synonyms

Incremental algorithms for graphs; Fully dynamic graph
algorithm for maintaining connectivity

ProblemDefinition

Design a data structure for an undirected graph with
a fixed set of nodes which can process queries of the form
“Are nodes i and j connected?” and updates of the form
“Insert edge fi; jg”; “Delete edge fi; jg.” The goal is to
minimize update and query times, over the worst-case se-
quence of queries and updates. Algorithms to solve this
problem are called “fully dynamic” as opposed to “partially
dynamic” since both insertions and deletions are allowed.

Key Results

Holm et al. [4] gave the first deterministic fully dynamic
graph algorithm for maintaining connectivity in an undi-
rected graph with polylogarithmic amortized time per op-
eration, specifically, O(log2 n) amortized cost per update
operation and O(log n/ log log n) worst-case per query,
where n is the number of nodes. The basic technique is ex-
tended to maintain minimum spanning trees in O(log4 n)
amortized cost per update operation, and 2-edge connec-
tivity and biconnectivity in O(log5 n) amortized time per
operation.

The algorithm relies on a simple novel technique for
maintaining a spanning forest in a graph which enables

332 F Fully Dynamic Connectivity: Upper and Lower Bounds

efficient search for a replacement edge when a tree edge is
deleted. This technique ensures that each nontree edge is
examined no more than log2 n times. The algorithm relies
on previously known tree data structures, such as top trees
or ET-trees to store and quickly retrieve information about
the spanning trees and the nontree edges incident to them.

Algorithms to achieve a query time O(log n/
log log log n) and expected amortized update time O(log n
(log log n)3) for connectivity and O(log3 n log log n) ex-
pected amortized update time for 2-edge and biconnectiv-
ity were given in [6]. Lower bounds showing a continuum
of tradeoffs for connectivity between query and update
times in the cell probe model which match the known
upper bounds were proved in [5]. Specifically, if tu and
tq are the amortized update and query time, respectively,
then tq � lg(tu /tq) = ˝(lg n) and tu � lg(tq/tu) = ˝(lg n).

A previously known, somewhat different random-
ized method for computing dynamic connectivity with
O(log3 n) amortized expected update time can be found
in [2], improved to O(log2 n) in [3]. Amethod which min-
imizes worst-case rather than amortized update time is
given in [1]: O(

p
n) time per update for connectivity, as

well as 2-edge connectivity and bipartiteness.

Open Problems

Can the worst-case update time be reduced to o(n1/2), with
polylogarithmic query time?

Can the lower bounds on the tradeoffs in [6] be
matched for all possible query costs?

Applications

Dynamic connectivity has been used as a subroutine for
several static graph algorithms, such as the maximum flow
problem in a static graph [7], and for speeding up numer-
ical studies of the Potts spin model.

URL to Code

See http://www.mpi-sb.mpg.de/LEDA/friends/dyngraph.
html for software which implements the algorithm in [2]
and other older methods.

Cross References

� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Transitive Closure

Recommended Reading
1. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.:. Sparsifica-

tion–a technique for speeding up dynamic graph algorithms.
J. ACM 44(5), 669–696.1 (1997)

2. Henzinger, M.R., King, V.: Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation. J. ACM 46(4),
502–536 (1999) (presented at ACM STOC 1995)

3. Henzinger, M.R., Thorup, M.: Sampling to provide or to bound:
With applications to fully dynamic graph algorithms. Random
Struct. Algorithms 11(4), 369–379 (1997) (presented at ICALP
1996)

4. Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic Deter-
ministic Fully-Dynamic Algorithms for Connectivity, Minimum
Spanning Tree, 2-Edge, and Biconnectivity. J. ACM 48(4), 723–
760 (2001) (presented at ACM STOC 1998)

5. Iyer, R., Karger, D., Rahul, H., Thorup, M.: An experimen-
tal study of poly-logarithmic fully-dynamic connectivity algo-
rithms. J. Exp. Algorithmics 6(4) (2001) (presented at ALENEX
2000)

6. Pătraşcu,M., Demaine, E.: Logarithmic Lower Bounds in the Cell-
ProbeModel. SIAM J. Comput. 35(4), 932–963 (2006) (presented
at ACM STOC 2004)

7. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In:
Proceedings of the 32th ACM Symposium on Theory of Com-
puting pp. 343–350. ACM STOC (2000)

8. Thorup, M.: Dynamic Graph Algorithms with Applications. In:
Halldórsson, M.M. (ed) 7th Scandinavian Workshop on Algo-
rithm Theory (SWAT), Norway, 5–7 July 2000, pp. 1–9

9. Zaroliagis, C.D.: Implementations and experimental studies
of dynamic graph algorithms. In: Experimental Algorithmics,
Dagstuhl seminar, September 2000, Lecture Notes in Computer
Science, vol. 2547. Springer (2002), Journal Article: J. Exp. Algo-
rithmics 229–278 (2000)

Fully Dynamic Connectivity:
Upper and Lower Bounds
2000; Thorup

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

Keywords and Synonyms

Dynamic connected components; Dynamic spanning for-
ests

ProblemDefinition

The problem is concerned with efficiently maintaining
information about connectivity in a dynamically chang-
ing graph. A dynamic graph algorithm maintains a given
property P on a graph subject to dynamic changes, such
as edge insertions, edge deletions and edge weight up-
dates. A dynamic graph algorithm should process queries
on property P quickly, and perform update operations
faster than recomputing from scratch, as carried out by
the fastest static algorithm. An algorithm is said to be fully
dynamic if it can handle both edge insertions and edge

http://www.mpi-sb.mpg.de/LEDA/friends/dyngraph.html
http://www.mpi-sb.mpg.de/LEDA/friends/dyngraph.html

Fully Dynamic Connectivity: Upper and Lower Bounds F 333

deletions. A partially dynamic algorithm can handle either
edge insertions or edge deletions, but not both: it is incre-
mental if it supports insertions only, and decremental if it
supports deletions only.

In the fully dynamic connectivity problem, one wishes
to maintain an undirected graph G = (V ; E) under an in-
termixed sequence of the following operations:

Connected(u, v): Return true if vertices u and v are in the
same connected component of the graph. Return false
otherwise.

Insert(x, y): Insert a new edge between the two vertices x
and y.

Delete(x, y): Delete the edge between the two vertices x
and y.

Key Results

In this section, a high level description of the algorithm
for the fully dynamic connectivity problem in undirected
graphs described in [11] is presented: the algorithm, due
to Holm, de Lichtenberg and Thorup, answers connec-
tivity queries in O(log n/ log log n) worst-case running
time while supporting edge insertions and deletions in
O(log2 n) amortized time.

The algorithmmaintains a spanning forest F of the dy-
namically changing graph G. Edges in F are referred to as
tree edges. Let e be a tree edge of forest F, and let T be the
tree of F containing it. When e is deleted, the two trees T1
and T2 obtained from T after the deletion of e can be re-
connected if and only if there is a non-tree edge in G with
one endpoint in T1 and the other endpoint in T2. Such
an edge is called a replacement edge for e. In other words,
if there is a replacement edge for e, T is reconnected via
this replacement edge; otherwise, the deletion of e creates
a new connected component in G.

To accommodate systematic search for replacement
edges, the algorithm associates to each edge e a level `(e)
and, based on edge levels, maintains a set of sub-forests of
the spanning forest F: for each level i, forest Fi is the sub-
forest induced by tree edges of level � i. Denoting by L
denotes the maximum edge level, it follows that:

F = F0 � F1 � F2 � � � � � FL :

Initially, all edges have level 0; levels are then progressively
increased, but never decreased. The changes of edge levels
are accomplished so as to maintain the following invari-
ants, which obviously hold at the beginning.

Invariant (1): F is a maximum spanning forest of G if
edge levels are interpreted as weights.

Invariant (2): The number of nodes in each tree of Fi is at
most n/2i .

Invariant (1) should be interpreted as follows. Let (u, v) be
a non-tree edge of level `(u, v) and let u � � � v be the unique
path between u and v in F (such a path exists since F is
a spanning forest of G). Let e be any edge in u � � � v and
let `(e) be its level. Due to (1), `(e) � `(u; v). Since this
holds for each edge in the path, and by construction F`(u;v)
contains all the tree edges of level� `(u; v), the entire path
is contained in F`(u;v), i. e., u and v are connected in F`(u;v).

Invariant (2) implies that the maximum number of
levels is L � blog2 nc.

Note that when a new edge is inserted, it is given level
0. Its level can be then increased at most blog2 nc times
as a consequence of edge deletions. When a tree edge e =
(v;w) of level `(e) is deleted, the algorithm looks for a re-
placement edge at the highest possible level, if any. Due to
invariant (1), such a replacement edge has level ` � `(e).
Hence, a replacement subroutine Replace((u, w),`(e))
is called with parameters e and `(e). The operations per-
formed by this subroutine are now sketched.

Replace((u,w), `) finds a replacement edge of the high-
est level� `, if any. If such a replacement does not exist
in level `, there are two cases: if ` > 0, the algorithm
recurses on level ` � 1; otherwise, ` = 0, and the dele-
tion of (v,w) disconnects v and w in G.

During the search at level `, suitably chosen tree and non-
tree edges may be promoted at higher levels as follows. Let
Tv and Tw be the trees of forest F` obtained after deleting
(v,w) and let, w.l.o.g., Tv be smaller than Tw. ThenTv con-
tains at most n/2`+1 vertices, since Tv [Tw [f(v;w)g was
a tree at level ` and due to invariant (2). Thus, edges in Tv
of level ` can be promoted at level `+1 by maintaining the
invariants. Non-tree edges incident to Tv are finally visited
one by one: if an edge does connect Tv and Tw, a replace-
ment edge has been found and the search stops, otherwise
its level is increased by 1.

Trees of each forest are maintained so that the basic
operations needed to implement edge insertions and dele-
tions can be supported in O(log n) time. There are few
variants of basic data structures that can accomplish this
task, and one could use the Euler Tour trees (in short ET-
tree), first introduced in [17], for this purpose.

In addition to inserting and deleting edges from a for-
est, ET-trees must also support operations such as finding
the tree of a forest that contains a given vertex, comput-
ing the size of a tree, and, more importantly, finding tree
edges of level ` in Tv and non-tree edges of level ` incident
to Tv. This can be done by augmenting the ET-trees with

334 F Fully Dynamic Connectivity: Upper and Lower Bounds

a constant amount of information per node: the interested
reader is referred to [11] for details.

Using an amortization argument based on level
changes, the claimed O(log2 n) bound on the update time
can be proved. Namely, inserting an edge costs O(log n), as
well as increasing its level. Since this can happen O(log n)
times, the total amortized insertion cost, inclusive of level
increases, is O(log2 n). With respect to edge deletions, cut-
ting and linking O(log n) forest has a total cost O(log2 n);
moreover, there are O(log n) recursive calls to Replace,
each of cost O(log n) plus the cost amortized over level in-
creases. The ET-trees over F0 = F allows it to answer con-
nectivity queries in O(log n) worst-case time. As shown
in [11], this can be reduced to O(log n/ log log n) by using
a	(log n)-ary version of ET-trees.

Theorem 1 A dynamic graph G with n vertices can be
maintained upon insertions and deletions of edges using
O(log2 n) amortized time per update and answering con-
nectivity queries in O(log n/ log log n) worst-case running
time.

Later on, Thorup [18] gave another data structure which
achieves slightly different time bounds:

Theorem 2 A dynamic graph G with n vertices can be
maintained upon insertions and deletions of edges using
O(log n � (log log n)3) amortized time per update and an-
swering connectivity queries in O(log n/ log log log n) time.

The bounds given in Theorems 1 and 2 are not directly
comparable, because each sacrifices the running time of
one operation (either query or update) in order to improve
the other.

The best known lower bound for the dynamic connec-
tivity problem holds in the bit-probe model of computa-
tion and is due to Pǎtraşcu and Tarni̧tǎ [16]. The bit-probe
model is an instantiation of the cell-probe model with one-
bit cells. In this model, memory is organized in cells, and
the algorithms may read or write a cell in constant time.
The number of cell probes is taken as the measure of com-
plexity. For formal definitions of this model, the interested
reader is referred to [13].

Theorem 3 Consider a bit-probe implementation for
dynamic connectivity, in which updates take expected
amortized time tu, and queries take expected time tq.
Then, in the average case of an input distribution, tu =
˝
�
log2n/log2(tu + tq)

�
. In particular

maxftu ; tqg = ˝

 �
log n

log log n

�2
!
:

In the bit-probe model, the best upper bound per oper-
ation is given by the algorithm of Theorem 2, namely it
is O(log2 n/ log log log n). Consequently, the gap between
upper and lower bound appears to be limited essentially to
doubly logarithmic factors only.

Applications

Dynamic graph connectivity appears as a basic subprob-
lem of many other important problems, such as the dy-
namic maintenance of minimum spanning trees and dy-
namic edge and vertex connectivity problems. Further-
more, there are several applications of dynamic graph con-
nectivity in other disciplines, ranging from Computational
Biology, where dynamic graph connectivity proved to be
useful for the dynamic maintenance of protein molec-
ular surfaces as the molecules undergo conformational
changes [6], to Image Processing, when one is interested
in maintaining the connected components of a bitmap im-
age [3].

Open Problems

The work on dynamic connectivity raises some open
and perhaps intruiguing questions. The first natural open
problem is whether the gap between upper and lower
bounds can be closed. Note that the lower bound of The-
orem 3 seems to imply that different trade-offs between
queries and updates could be possible: can we design a data
structure with o(log n) time per update andO(poly(log n))
per query? This would be particulary interesting in appli-
cations where the total number of queries is substantially
larger than the number of updates.

Finally, is it possible to design an algorithm with
matching O(log n) update and query bounds for general
graphs? Note that this is possible in the special case of
plane graphs [5].

Experimental Results

A thorough empirical study of dynamic connectivity algo-
rithms has been carried out in [1,12].

Data Sets

Data sets are described in [1,12].

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Higher Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs

Fully Dynamic Higher Connectivity F 335

� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Recommended Reading

1. Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dy-
namic graph algorithms. ACM J. Exp. Algorithmics 2 (1997)

2. Beame, P., Fich, F.E.: Optimal bounds for the predecessor prob-
lem and related problems. J. Comp. Syst. Sci. 65(1), 38–72
(2002)

3. Eppstein, D.: Dynamic Connectivity in Digital Images. Inf. Pro-
cess. Lett. 62(3), 121–126 (1997)

4. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsifica-
tion – a technique for speeding up dynamic graph algorithms.
J. Assoc. Comp. Mach. 44(5), 669–696 (1997)

5. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook,
J., Yung, M.: Maintenance of a minimum spanning forest in
a dynamic plane graph. J. Algorithms 13, 33–54 (1992)

6. Eyal, E., Halperin, D.: Improved Maintenance of Molecular Sur-
faces Using Dynamic Graph Connectivity. in: Proc. 5th Interna-
tional Workshop on Algorithms in Bioinformatics (WABI 2005),
Mallorca, Spain, 2005, pp. 401–413

7. Frederickson, G.N.: Data structures for on-line updating ofmin-
imum spanning trees. SIAM J. Comp. 14, 781–798 (1985)

8. Frederickson, G.N.: Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees. In: Proc. 32nd
Symp. Foundations of Computer Science, 1991, pp. 632–641

9. Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dy-
namic connectivity problems in graphs. Algorithmica 22(3),
351–362 (1998)

10. Henzinger, M.R., King, V.: Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. J. ACM
46(4), 502–516 (1999)

11. Holm, J., de Lichtenberg, K., Thorup,M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760
(2001)

12. Iyer, R., Karger, D., Rahul, H., Thorup,M.: An Experimental Study
of Polylogarithmic, Fully Dynamic, Connectivity Algorithms.
ACM J. Exp. Algorithmics 6 (2001)

13. Miltersen, P.B.: Cell probe complexity – a survey. In: 19th Con-
ference on the Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), Advances in Data Struc-
tures Workshop, 1999

14. Miltersen, P.B., Subramanian, S., Vitter, J.S., Tamassia, R.: Com-
plexity models for incremental computation. In: Ausiello, G.,
Italiano, G.F. (eds.) Special Issue on Dynamic and On-line Al-
gorithms. Theor. Comp. Sci. 130(1), 203–236 (1994)

15. Pǎtraşcu, M., Demain, E.D.: Lower Bounds for Dynamic Connec-
tivity. In: Proc. 36th ACM Symposium on Theory of Computing
(STOC), 2004, pp. 546–553

16. Pǎtraşcu, M., Tarniţǎ, C.: On Dynamic Bit-Probe Complexity,
Theoretical Computer Science, Special Issue on ICALP’05. In:
Italiano, G.F., Palamidessi, C. (eds.) vol. 380, pp. 127–142 (2007)
A preliminary version in Proc. 32nd International Colloquium
on Automata, Languages and Programming (ICALP’05), 2005,
pp. 969–981

17. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity al-
gorithm. SIAM J. Comp. 14, 862–874 (1985)

18. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In:
Proc. 32nd ACM Symposium on Theory of Computing (STOC),
2000, pp. 343–350

Fully Dynamic Higher Connectivity
1997; Eppstein, Galil, Italiano, Nissenzweig

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

Keywords and Synonyms

Fully dynamic edge connectivity; Fully dynamic vertex
connectivity

ProblemDefinition

The problem is concerned with efficiently maintaining in-
formation about edge and vertex connectivity in a dynam-
ically changing graph. Before defining formally the prob-
lems, a few preliminary definitions follow.

Given an undirected graph G = (V ; E), and an integer
k � 2, a pair of vertices hu; vi is said to be k-edge-connected
if the removal of any (k � 1) edges inG leaves u and v con-
nected. It is not difficult to see that this is an equivalence
relationship: the vertices of a graph G are partitioned by
this relationship into equivalence classes called k-edge-con-
nected components. G is said to be k-edge-connected if the
removal of any (k � 1) edges leaves G connected. As a re-
sult of these definitions, G is k-edge-connected if and only
if any two vertices of G are k-edge-connected. An edge set
E0 E is an edge-cut for vertices x and y if the removal of
all the edges in E0 disconnects G into two graphs, one con-
taining x and the other containing y. An edge set E0 E is
an edge-cut for G if the removal of all the edges in E0 dis-
connects G into two graphs. An edge-cut E0 for G (for x
and y, respectively) is minimal if removing any edge from
E0 reconnects G (for x and y, respectively). The cardinality
of an edge-cut E0, denoted by jE0j, is given by the number
of edges in E0. An edge-cut E0 for G (for x and y, respec-
tively) is said to be a minimum cardinality edge-cut or in
short a connectivity edge-cut if there is no other edge-cut
E00 for G (for x and y respectively) such that jE00j < jE0j.
Connectivity edge-cuts are of course minimal edge-cuts.
Note that G is k-edge-connected if and only if a connec-
tivity edge-cut for G contains at least k edges, and vertices
x and y are k-edge-connected if and only if a connectivity
edge-cut for x and y contains at least k edges. A connectiv-
ity edge-cut of cardinality 1 is called a bridge.

336 F Fully Dynamic Higher Connectivity

The following theoremdue to Ford and Fulkerson, and
Elias, Feinstein and Shannon (see [7]) gives another char-
acterization of k-edge connectivity.

Theorem 1 (Ford and Fulkerson, Elias, Feinstein and
Shannon) Given a graph G and two vertices x and y in
G, x and y are k-edge-connected if and only if there are at
least k edge-disjoint paths between x and y.

In a similar fashion, a vertex set V 0 V � fx; yg is said
to be a vertex-cut for vertices x and y if the removal of all
the vertices in V 0 disconnects x and y. V 0 � V is a vertex-
cut for vertices G if the removal of all the vertices in V 0

disconnects G.
The cardinality of a vertex-cut V 0, denoted by jV 0j, is

given by the number of vertices in V 0. A vertex-cut V 0 for
x and y is said to be a minimum cardinality vertex-cut or
in short a connectivity vertex-cut if there is no other vertex-
cut V 00 for x and y such that jV 00j < jV 0j. Then x and y are
k-vertex-connected if and only if a connectivity vertex-cut
for x and y contains at least k vertices. A graph G is said
to be k-vertex-connected if all its pairs of vertices are k-ver-
tex-connected. A connectivity vertex-cut of cardinality 1
is called an articulation point, while a connectivity vertex-
cut of cardinality 2 is called a separation pair. Note that for
vertex connectivity it is no longer true that the removal of
a connectivity vertex-cut splits G into two sets of vertices.

The following theorem due to Menger (see [7]) gives
another characterization of k-vertex connectivity.

Theorem (Menger) 2 Given a graph G and two vertices
x and y in G, x and y are k-vertex-connected if and only if
there are at least k vertex-disjoint paths between x and y.

A dynamic graph algorithm maintains a given property P
on a graph subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on property
P quickly, and perform update operations faster than re-
computing from scratch, as carried out by the fastest static
algorithm. An algorithm is fully dynamic if it can handle
both edge insertions and edge deletions. A partially dy-
namic algorithm can handle either edge insertions or edge
deletions, but not both: it is incremental if it supports in-
sertions only, and decremental if it supports deletions only.

In the fully dynamic k-edge connectivity problem one
wishes to maintain an undirected graph G = (V ; E) under
an intermixed sequence of the following operations:
� k-EdgeConnected(u, v): Return true if vertices u and v

are in the same k-edge-connected component. Return
false otherwise.

� Insert(x, y): Insert a new edge between the two vertices
x and y.

� Delete(x, y): Delete the edge between the two vertices x
and y.
In the fully dynamic k-vertex connectivity problem one

wishes to maintain an undirected graph G = (V ; E) under
an intermixed sequence of the following operations:
� k-VertexConnected(u, v): Return true if vertices u and v

are k-vertex-connected. Return false otherwise.
� Insert(x, y): Insert a new edge between the two vertices

x and y.
� Delete(x, y): Delete the edge between the two vertices x

and y.

Key Results

To the best knowledge of the author, the most efficient
fully dynamic algorithms for k-edge and k-vertex connec-
tivity were proposed in [3,12]. Their running times are
characterized by the following theorems.

Theorem 3 The fully dynamic k-edge connectivity prob-
lem can be solved in:
1. O(log4 n) time per update and O(log3 n) time per query,

for k = 2
2. O(n2/3) time per update and query, for k = 3
3. O(n˛(n)) time per update and query, for k = 4
4. O(n log n) time per update and query, for k � 5 :

Theorem 4 The fully dynamic k-vertex connectivity prob-
lem can be solved in:
1. O(log4 n) time per update and O(log3 n) time per query,

for k = 2
2. O(n) time per update and query, for k = 3
3. O(n˛(n)) time per update and query, for k = 4 :

Applications

Vertex and edge connectivity problems arise often in is-
sues related to network reliability and survivability. In
computer networks, the vertex connectivity of the under-
lying graph is related to the smallest number of nodes that
might fail before disconnecting the whole network. Simi-
larly, the edge connectivity is related to the smallest num-
ber of links that might fail before disconnecting the en-
tire network. Analogously, if two nodes are k-vertex-con-
nected then they can remain connected even after the fail-
ure of up to (k � 1) other nodes, and if they are k-edge-
connected then they can survive the failure of up to (k � 1)
links. It is important to investigate the dynamic versions
of those problems in contexts where the networks are dy-
namically evolving, say, when links may go up and down
because of failures and repairs.

Fully Dynamic Higher Connectivity for Planar Graphs F 337

Open Problems

The work of Eppstein et al. [3] and Holm et al. [12] raises
some intriguing questions. First, while efficient dynamic
algorithms for k-edge connectivity are known for gen-
eral k, no efficient fully dynamic k-vertex connectivity is
known for k � 5. To the best of the author’s knowledge, in
this case even no static algorithm is known. Second, fully
dynamic 2-edge and 2-vertex connectivity can be solved
in polylogarithmic time per update, while the best known
update bounds for higher edge and vertex connectivity are
polynomial: Can this gap be reduced, i. e., can one design
polylogarithnmic algorithms for fully dynamic 3-edge and
3-vertex connectivity?

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs
� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Recommended Reading
1. Dinitz, E.A.: Maintaining the 4-edge-connected components of

a graph on-line. In: Proc. 2nd Israel Symp. Theory of Computing
and Systems, 1993, pp. 88–99

2. Dinitz, E.A., Karzanov A.V., Lomonosov M.V.: On the structure
of the system of minimal edge cuts in a graph. In: Fridman,
A.A. (ed) Studies in Discrete Optimization, pp. 290–306. Nauka,
Moscow (1990). In Russian

3. Eppstein, D., Galil Z., Italiano G.F., Nissenzweig A.: Sparsifica-
tion – a technique for speeding up dynamic graph algorithms.
J. Assoc. Comput. Mach. 44(5), 669–696 (1997)

4. Frederickson, G.N.: Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees. SIAM J. Com-
put. 26(2), 484–538 (1997)

5. Galil, Z., Italiano, G. F.: Fully dynamic algorithms for 2-edge-
connectivity. SIAM J. Comput. 21, 1047–1069 (1992)

6. Galil, Z., Italiano, G.F.: Maintaining the 3-edge-connected com-
ponents of a graph on-line. SIAM J. Comput. 22, 11–28 (1993)

7. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
8. Henzinger, M.R.: Fully dynamic biconnectivity in graphs. Algo-

rithmica 13(6), 503–538 (1995)
9. Henzinger, M.R.: Improved data structures for fully dynamic bi-

connectivity. SIAM J. Comput. 29(6), 1761–1815 (2000)
10. Henzinger, M., King V.: Fully dynamic biconnectivity and tran-

sitive closure. In: Proc. 36th IEEE Symposium on Foundations
of Computer Science (FOCS’95), 1995, pp. 664–672

11. Henzinger, M.R., King, V.: Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. J. ACM
46(4), 502–516 (1999)

12. Holm, J., de Lichtenberg, K., Thorup,M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum

spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760
(2001)

13. Karzanov, A.V., Timofeev, E. A.: Efficient algorithm for finding
all minimal edge cuts of a nonoriented graph. Cybernetics 22,
156–162 (1986)

14. La Poutré, J.A.: Maintenance of triconnected components of
graphs. In: Proc. 19th Int. Colloquium on Automata, Lan-
guages and Programming. Lecture Notes in Computer Sci-
ence, vol. 623, pp. 354–365. Springer, Berlin (1992)

15. La Poutré, J.A.: Maintenance of 2- and 3-edge-connected com-
ponents of graphs II. SIAM J. Comput. 29(5), 1521–1549 (2000)

16. La Poutré, J.A., van Leeuwen, J., Overmars, M.H.: Maintenance
of 2- and 3-connected components of graphs, part I: 2- and
3-edge-connected components. Discret. Math. 114, 329–359
(1993)

17. La Poutré, J.A., Westbrook, J.: Dynamic two-connectivity with
backtracking. In: Proc. 5th ACM-SIAM Symp. Discrete Algo-
rithms, 1994, pp. 204–212

18. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and
biconnected components on-line. Algorithmica 7, 433–464
(1992)

Fully Dynamic Higher Connectivity
for Planar Graphs
1998; Eppstein, Galil, Italiano, Spencer

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

Keywords and Synonyms

Fully dynamic edge connectivity; Fully dynamic vertex
connectivity

ProblemDefinition

In this entry, the problem ofmaintaining a dynamic planar
graph subject to edge insertions and edge deletions that
preserve planarity but that can change the embedding is
considered. In particular, in this problem one is concerned
with the problem of efficiently maintaining information
about edge and vertex connectivity in such a dynamically
changing planar graph. The algorithms to solve this prob-
lem must handle insertions that keep the graph planar
without regard to any particular embedding of the graph.
The interested reader is referred to the chapter “Fully Dy-
namic Planarity Testing” of this encyclopedia for algo-
rithms to learn how to check efficiently whether a graph
subject to edge insertions and deletions remains planar
(without regard to any particular embedding).

Before defining formally the problems considered
here, a few preliminary definitions follow.

338 F Fully Dynamic Higher Connectivity for Planar Graphs

Given an undirected graph G = (V ; E), and an integer
k � 2, a pair of vertices hu; vi is said to be k-edge-connected
if the removal of any (k � 1) edges inG leaves u and v con-
nected. It is not difficult to see that this is an equivalence
relationship: the vertices of a graph G are partitioned by
this relationship into equivalence classes called k-edge-con-
nected components. G is said to be k-edge-connected if the
removal of any (k � 1) edges leaves G connected. As a re-
sult of these definitions, G is k-edge-connected if and only
if any two vertices of G are k-edge-connected. An edge set
E0 E is an edge-cut for vertices x and y if the removal of
all the edges in E0 disconnects G into two graphs, one con-
taining x and the other containing y. An edge set E0 E is
an edge-cut for G if the removal of all the edges in E0 dis-
connects G into two graphs. An edge-cut E0 for G (for x
and y, respectively) is minimal if removing any edge from
E0 reconnects G (for x and y, respectively). The cardinality
of an edge-cut E0, denoted by jE0j, is given by the number
of edges in E0. An edge-cut E0 for G (for x and y, respec-
tively) is said to be a minimum cardinality edge-cut or in
short a connectivity edge-cut if there is no other edge-cut
E00 for G (for x and y, respectively) such that jE00j < jE0j.
Connectivity edge-cuts are of course minimal edge-cuts.
Note that G is k-edge-connected if and only if a connec-
tivity edge-cut for G contains at least k edges, and vertices
x and y are k-edge-connected if and only if a connectivity
edge-cut for x and y contains at least k edges. A connectiv-
ity edge-cut of cardinality 1 is called a bridge.

In a similar fashion, a vertex set V 0 V � fx; yg is
said to be a vertex-cut for vertices x and y if the removal
of all the vertices in V 0 disconnects x and y. V 0 � V is
a vertex-cut for vertices G if the removal of all the vertices
in V 0 disconnects G.

The cardinality of a vertex-cut V 0, denoted by jV 0j, is
given by the number of vertices in V 0. A vertex-cut V 0 for
x and y is said to be a minimum cardinality vertex-cut or
in short a connectivity vertex-cut if there is no other vertex-
cut V 00 for x and y such that jV 00j < jV 0j. Then x and y are
k-vertex-connected if and only if a connectivity vertex-cut
for x and y contains at least k vertices. A graph G is said
to be k-vertex-connected if all its pairs of vertices are k-ver-
tex-connected. A connectivity vertex-cut of cardinality 1
is called an articulation point, while a connectivity vertex-
cut of cardinality 2 is called a separation pair. Note that for
vertex connectivity it is no longer true that the removal of
a connectivity vertex-cut splits G into two sets of vertices.

A dynamic graph algorithm maintains a given prop-
ertyP on a graph subject to dynamic changes, such as edge
insertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on prop-
erty P quickly, and perform update operations faster than

recomputing from scratch, as carried out by the fastest
static algorithm. An algorithm is fully dynamic if it can
handle both edge insertions and edge deletions. A par-
tially dynamic algorithm can handle either edge insertions
or edge deletions, but not both: it is incremental if it sup-
ports insertions only, and decremental if it supports dele-
tions only.

In the fully dynamic k-edge connectivity problem for
a planar graph one wishes to maintain an undirected
planar graph G = (V ; E) under an intermixed sequence
of edge insertions, edge deletions and queries about the
k-edge connectivity of the underlying planar graph. Sim-
ilarly, in thefully dynamic k-vertex connectivity problem
for a planar graph one wishes to maintain an undirected
planar graph G = (V ; E) under an intermixed sequence
of edge insertions, edge deletions and queries about the
k-vertex connectivity of the underlying planar graph.

Key Results

The algorithms in [2,3] solve efficiently the above prob-
lems for small values of k:

Theorem 1 One can maintain a planar graph, subject
to insertions and deletions that preserve planarity, and al-
low queries that test the 2-edge connectivity of the graph,
or test whether two vertices belong to the same 2-edge-con-
nected component, in O(log n) amortized time per insertion
or query, and O(log2 n) per deletion.

Theorem 2 One can maintain a planar graph, subject to
insertions and deletions that preserve planarity, and allow
testing of the 3-edge and 4-edge connectivity of the graph in
O(n1/2) time per update, or testing of whether two vertices
are 3- or 4-edge-connected, in O(n1/2) time per update or
query.

Theorem 3 One can maintain a planar graph, subject to
insertions and deletions that preserve planarity, and allow
queries that test the 3-vertex connectivity of the graph, or
test whether two vertices belong to the same 3-vertex-con-
nected component, in O(n1/2) amortized time per update or
query.

Note that these theorems improve on the bounds known
for the same problems on general graphs, reported in the
chapter “Fully Dynamic Higher Connectivity.”

Applications

The interest reader is referred to the chapter “Fully Dy-
namic Higher Connectivity” for applications of dynamic
edge and vertex connectivity. The case of planar graphs

Fully Dynamic Minimum Spanning Trees F 339

is especially important, as these graphs arise frequently in
applications.

Open Problems

A number of problems related to the work of Eppstein
et al. [2,3] remain open. First, can the running times per
operation be improved? Second, as in the case of general
graphs, also for planar graphs fully dynamic 2-edge con-
nectivity can be solved in polylogarithmic time per up-
date, while the best known update bounds for higher edge
and vertex connectivity are polynomial: Can this gap be re-
duced, i. e., can one design polylogarithnmic algorithms at
least for fully dynamic 3-edge and 3-vertex connectivity?
Third, in the special case of planar graphs can one solve
fully dynamic k-vertex connectivity for general k?

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity
� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Recommended Reading
1. Galil Z., Italiano G.F., Sarnak N.: Fully dynamic planarity testing

with applications. J. ACM 48, 28–91 (1999)
2. Eppstein D., Galil Z., Italiano G.F., Spencer T.H.: Separator based

sparsification I: planarity testing and minimum spanning trees.
J. Comput. Syst. Sci., Special issue of STOC 93 52(1), 3–27 (1996)

3. Eppstein D., Galil Z., Italiano G.F., Spencer T.H.: Separator based
sparsification II: edge and vertex connectivity. SIAM J. Comput.
28, 341–381 (1999)

4. Giammarresi D., ItalianoG.F.: Decremental 2- and 3-connectivity
on planar graphs. Algorithmica 16(3), 263–287 (1996)

5. Hershberger J., M.R., Suri S.: Data structures for two-edge con-
nectivity in planar graphs. Theor. Comput. Sci. 130(1), 139–161
(1994)

Fully Dynamic Minimum
Spanning Trees
2000; Holm, de Lichtenberg, Thorup

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

Keywords and Synonyms

Dynamic minimum spanning forests

ProblemDefinition

Let G = (V ; E) be an undirected weighted graph. The
problem considered here is concerned with maintaining
efficiently information about a minimum spanning tree of
G (or minimum spanning forest if G is not connected),
when G is subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. One ex-
pects from the dynamic algorithm to perform update oper-
ations faster than recomputing the entire minimum span-
ning tree from scratch.

Throughout, an algorithm is said to be fully dynamic
if it can handle both edge insertions and edge deletions.
A partially dynamic algorithm can handle either edge in-
sertions or edge deletions, but not both: it is incremental if
it supports insertions only, and decremental if it supports
deletions only.

Key Results

The dynamic minimum spanning forest algorithm pre-
sented in this section builds upon the dynamic connectiv-
ity algorithm described in the entry “Fully Dynamic Con-
nectivity”. In particular, a few simple changes to that al-
gorithm are sufficient to maintain a minimum spanning
forest of a weighted undirected graph upon deletions of
edges [13]. A general reduction from [11] can then be ap-
plied to make the deletions-only algorithm fully dynamic.

This section starts by describing a decremental algo-
rithm for maintaining a minimum spanning forest under
deletions only. Throughout the sequence of deletions, the
algorithm maintains a minimum spanning forest F of the
dynamically changing graphG. The edges in F are referred
to as tree edges and the other edges (in G � F) are referred
to as non-tree edges. Let e be an edge being deleted. If e is
a non-tree edge, then the minimum spanning forest does
not need to change, so the interesting case is when e is
a tree edge of forest F. Let T be the tree of F containing
e. In this case, the deletion of e disconnects the tree T into
two treesT1 and T2: to update theminimum spanning for-
est, one has to look for the minimum weight edge having
one endpoint in T1 and the other endpoint in T2. Such an
edge is called a replacement edge for e.

As for the dynamic connectivity algorithm, to search
for replacement edges, the algorithm associates to each
edge e a level `(e) and, based on edge levels,maintains a set
of sub-forests of the minimum spanning forest F: for each
level i, forest Fi is the sub-forest induced by tree edges of
level � i. Denoting by L the maximum edge level, it fol-
lows that:

F = F0 � F1 � F2 � � � � � FL :

340 F Fully Dynamic Minimum Spanning Trees

Initially, all edges have level 0; levels are then progres-
sively increased, but never decreased. The changes of edge
levels are accomplished so as to maintain the following in-
variants, which obviously hold at the beginning.

Invariant (1): F is a maximum spanning forest of G if
edge levels are interpreted as weights.

Invariant (2): The number of nodes in each tree of Fi is at
most n/2i .

Invariant (3): Every cycle C has a non-tree edge of max-
imum weight and minimum level among all the edges
in C.

Invariant (1) should be interpreted as follows. Let (u,v) be
a non-tree edge of level `(u, v) and let u � � � v be the unique
path between u and v in F (such a path exists since F is
a spanning forest of G). Let e be any edge in u � � � v and
let `(e) be its level. Due to (1), `(e) � `(u; v). Since this
holds for each edge in the path, and by construction F`(u;v)
contains all the tree edges of level � `(u; v), the entire
path is contained in F`(u;v), i. e., u and v are connected in
F`(u;v).

Invariant (2) implies that the maximum number of
levels is L � blog2 nc.

Invariant (3) can be used to prove that, among all the
replacement edges, the lightest edge is on the maximum
level. Let e1 and e2 be two replacement edges withw(e1) <
w(e2), and let Ci be the cycle induced by ei in F, i = 1; 2.
Since F is a minimum spanning forest, ei has maximum
weight among all the edges in Ci . In particular, since by
hypothesis w(e1) < w(e2), e2 is also the heaviest edge in
cycle C = (C1[C2)n (C1\C2). Thanks to Invariant (3), e2
has minimum level in C, proving that `(e2) � `(e1). Thus,
considering non-tree edges from higher to lower levels is
correct.

Note that initially, an edge is is given level 0. Its level
can be then increased at most blog2 nc times as a conse-
quence of edge deletions. When a tree edge e = (v;w) of
level `(e) is deleted, the algorithm looks for a replacement
edge at the highest possible level, if any. Due to invariant
(1), such a replacement edge has level ` � `(e). Hence,
a replacement subroutine Replace((u;w); `(e)) is called
with parameters e and `(e). The operations performed by
this subroutine are now sketched.

Replace((u;w); `) finds a replacement edge of the high-
est level � `, if any, considering edges in order of in-
creasing weight. If such a replacement does not exist in
level `, there are two cases: if ` > 0, the algorithm re-
curses on level `� 1; otherwise, ` = 0, and the deletion
of (v,w) disconnects v and w in G.

It is possible to show that Replace returns a replacement
edge of minimum weight on the highest possible level,
yielding the following lemma:

Lemma 1 There exists a deletions-only minimum span-
ning forest algorithm that can be initialized on a graph with
n vertices and m edges and supports any sequence of edge
deletions in O(m log2 n) total time.

The description of a fully dynamic algorithm which per-
forms updates in O(log4 n) time now follows. The reduc-
tion used to obtain a fully dynamic algorithm is a slight
generalization of the construction proposed by Henzinger
and King [11] and works as follows.

Lemma 2 Suppose there is a deletions-only minimum
spanning tree algorithm that, for any k and `, can be initial-
ized on a graph with k vertices and ` edges and supports any
sequence of˝(`) deletions in total time O(` � t(k; `)), where
t is a non-decreasing function. Then there exists a fully-
dynamic minimum spanning tree algorithm for a graph
with n nodes starting with no edges, that, for m edges, sup-
ports updates in time

O

0
@log3 n +

3+log2 mX
i=1

iX
j=1

t
�
minfn; 2 jg; 2 j

�
1
A :

The interested reader is referred to references [11]
and [13] for the description of the construction that proves
Lemma 2. From Lemma 1 one gets t(k; `) = O(log2 k).
Hence, combining Lemmas 1 and 2, the claimed result fol-
lows:

Theorem 3 There exists a fully-dynamic minimum span-
ning forest algorithm that, for a graph with n vertices, start-
ing with no edges, maintains a minimum spanning forest in
O(log4 n) amortized time per edge insertion or deletion.

There is a lower bound of˝(log n) for dynamicminimum
spanning tree, given by Eppstein et al. [6], which uses the
following argument. Let A be an algorithm for maintain-
ing a minimum spanning tree of an arbitrary (multi)graph
G. Let A be such that change weight(e; �) returns the
edge f that replace e in the minimum spanning tree, if e
is replaced. Clearly, any dynamic spanning tree algorithm
can be modified to return f . One can use algorithm A to
sort n positive numbers x1, x2, : : :, xn, as follows. Con-
struct a multigraph G consisting of two nodes connected
by (n + 1) edges e0, e1, : : :, en, such that edge e0 has weight
0 and edge ei has weight xi. The initial spanning tree is e0.
Increase the weight of e0 to +1. Whichever edge replaces
e0, say ei, is the edge of minimum weight. Now increase
the weight of ei to +1: the replacement of ei gives the
second smallest weight. Continuing in this fashion gives

Fully Dynamic Minimum Spanning Trees F 341

the numbers sorted in increasing order. A similar argu-
ment applies when only edge decreases are allowed. Since
Paul and Simon [14] have shown that any sorting algo-
rithm needs˝(n log n) time to sort n numbers on a unit-
cost random access machine whose repertoire of opera-
tions include additions, subtractions, multiplications and
comparisons with 0, but not divisions or bit-wise Boolean
operations, the following theorem follows.

Theorem 4 Any unit-cost random access algorithm that
performs additions, subtractions, multiplications and com-
parisons with 0, but not divisions or bit-wise Boolean oper-
ations, requires ˝(log n) amortized time per operation to
maintain a minimum spanning tree dynamically.

Applications

Minimum spanning trees have applications in many areas,
including network design, VLSI, and geometric optimiza-
tion, and the problem of maintaining minimum spanning
trees dynamically arises in such applications.

Algorithms for maintaining a minimum spanning for-
est of a graph can be used also for maintaining informa-
tion about the connected components of a graph. There
are also other applications of dynamic minimum span-
ning trees algorithms, which include finding the k smallest
spanning trees [3,4,5,8,9], sampling spanning trees [7] and
dynamicmatroid intersection problems [10]. Note that the
first two problems are not necessarily dynamic: however,
efficient solutions for these problems need dynamic data
structures.

Open Problems

The first natural open question is to ask whether the gap
between upper and lower bounds for the dynamic mini-
mum spanning tree problem can be closed. Note that this
is possible in the special case of plane graphs [6].

Second, the techniques for dynamic minimum span-
ning trees can be extended to dynamic 2-edge and 2-vertex
connectivity, which indeed can be solved in polylogarith-
mic time per update. Can one extend the same technique
also to higher forms of connectivity? This is particularly
important, since the best known update bounds for higher
edge and vertex connectivity are polynomial, and it would
be useful to design polylogarithnmic algorithms at least for
fully dynamic 3-edge and 3-vertex connectivity.

Experimental Results

A thorough empirical study on the performance evalua-
tion of dynamic minimum spanning trees algorithms has
been carried out in [1,2].

Data Sets

Data sets are described in [1,2].

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Recommended Reading

1. Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dy-
namic graph algorithms. ACM. J. Exp. Algorithm 2, (1997)

2. Cattaneo, G., Faruolo, P., Ferraro Petrillo, U., Italiano, G.F.: Main-
taining Dynamic Minimum Spanning Trees: An Experimental
Study. In: Proceeding 4thWorkshop on Algorithm Engineering
and Experiments (ALENEX 02), 6–8 Jan 2002. pp. 111–125

3. Eppstein, D.: Finding the k smallest spanning trees. BIT. 32,
237–248 (1992)

4. Eppstein, D.: Tree-weighted neighbors and geometric k small-
est spanning trees. Int. J. Comput. Geom. Appl. 4, 229–238
(1994)

5. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsifica-
tion – a technique for speeding up dynamic graph algorithms.
J. Assoc. Comput. Mach. 44(5), 669–696 (1997)

6. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook,
J., Yung, M.: Maintenance of a minimum spanning forest in
a dynamic plane graph. J. Algorithms 13, 33–54 (1992)

7. Feder, T., Mihail, M.: Balanced matroids. In: Proceeding 24th
ACM Symp. Theory of Computing, pp 26–38, Victoria, British
Columbia, Canada, May 04–06 1992

8. Frederickson, G.N.: Data structures for on-line updating of min-
imum spanning trees. SIAM. J. Comput. 14, 781–798 (1985)

9. Frederickson, G.N.: Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees. In: Proceed-
ing 32nd Symp. Foundations of Computer Science, pp 632–
641, San Juan, Puerto Rico, October 01–04 1991

10. Frederickson, G.N., Srinivas, M.A.: Algorithms and data struc-
tures for an expanded family of matroid intersection problems.
SIAM. J. Comput. 18, 112–138 (1989)

11. Henzinger, M.R., King, V.: Maintaining minimum spanning
forests in dynamic graphs. SIAM. J. Comput. 31(2), 364–374
(2001)

12. Henzinger, M.R., King, V.: Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. J. ACM
46(4), 502–516 (1999)

13. Holm, J., de Lichtenberg, K., Thorup,M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760
(2001)

14. Paul, J., Simon, W.: Decision trees and random access ma-
chines. In: Symposium über Logik und Algorithmik. (1980) See
also Mehlhorn, K.: Sorting and Searching, pp. 85–97. Springer,
Berlin (1984)

342 F Fully Dynamic Planarity Testing

15. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity al-
gorithm. SIAM. J. Comput. 14, 862–874 (1985)

Fully Dynamic Planarity Testing
1999; Galil, Italiano, Sarnak

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

ProblemDefinition

In this entry, the problem ofmaintaining a dynamic planar
graph subject to edge insertions and edge deletions that
preserve planarity but that can change the embedding is
considered. Before formally defining the problem, few pre-
liminary definitions follow.

A graph is planar if it can be embedded in the plane
so that no two edges intersect. In a dynamic framework,
a planar graph that is committed to an embedding is called
plane, and the general term planar is used only when
changes in the embedding are allowed. An edge insertion
that preserves the embedding is called embedding-preserv-
ing, whereas it is called planarity-preserving if it keeps the
graph planar, even though its embedding can change; fi-
nally, an edge insertion is called arbitrary if it is not known
to preserve planarity. Extensive work on dynamic graph
algorithms has used ad hoc techniques to solve a number
of problems such as minimum spanning forests, 2-edge-
connectivity and planarity testing for plane graphs (with
embedding-preserving insertions) [5,6,7,9,10,11,12]: this
entry is concerned with more general planarity-preserving
updates.

The work of Galil et al. [8] and of Eppstein et al. [3]
provides a general technique for dynamic planar graph
problems, including those mentioned above: in all these
problems, one can deal with either arbitrary or planarity-
preserving insertions and therefore allow changes of the
embedding.

The fully dynamic planarity testing problem can be de-
fined as follows. One wishes to maintain a (not necessar-
ily planar) graph subject to arbitrary edge insertions and
deletions, and allow queries that test whether the graph is
currently planar, or whether a potential new edge would
violate planarity.

Key Results

Eppstein et al. [3] provided a way to apply the sparsifica-
tion technique [2] to families of graphs that are already
sparse, such as planar graphs.

The new ideas behind this technique are the following.
The notion of a certificate can be expanded to a definition
for graphs in which a subset of the vertices are denoted
as interesting; these compressed certificatesmay reduce the
size of the graph by removing uninteresting vertices. Using
this notion, one can define a type of sparsification based on
separators, small sets of vertices the removal of which splits
the graph into roughly equal size components. Recursively
finding separators in these components gives a separator
tree which can also be used as a sparsification tree; the in-
teresting vertices in each certificate will be those vertices
used in separators at higher levels of the tree. The notion
of a balanced separator tree, which also partitions the inter-
esting vertices evenly in the tree, is introduced: such a tree
can be computed in linear time, and can bemaintained dy-
namically. Using this technique, the following results can
be achieved.

Theorem 1 One can maintain a planar graph, subject
to insertions and deletions that preserve planarity, and al-
low queries that test whether a new edge would violate pla-
narity, in amortized time O(n1/2) per update or query.

This result can be improved, in order to allow arbitrary
insertions or deletions, even if they might let the graph be-
come nonplanar, using the following approach. The data
structure above can be used to maintain a planar sub-
graph of the given graph. Whenever one attempts to in-
sert a new edge, and the resulting graph would be non-
planar, the algorithm does not actually perform the inser-
tion, but instead adds the edge to a list of nonplanar edges.
Whenever a query is performed, and the list of nonplanar
edges is nonempty, the algorithm attempts once more to
add those edges one at a time to the planar subgraph. The
time for each successful addition can be charged to the
insertion operation that put that edge in the list of non-
planar edges. As soon as the algorithm finds some edge
in the list that can not be added, it stops trying to add
the other edges in the list. The time for this failed inser-
tion can be charged to the query the algorithm is currently
performing. In this way the list of nonplanar edges will
be empty if and only if the graph is planar, and the al-
gorithm can test planarity even for updates in nonplanar
graphs.

Theorem 2 One canmaintain a graph, subject to arbitrary
insertions and deletions, and allow queries that test whether
the graph is presently planar or whether a new edge would
violate planarity, in amortized time O(n1/2) per update or
query.

Fully Dynamic Transitive Closure F 343

Applications

Planar graphs are perhaps one of themost important inter-
esting subclasses of graphs which combine beautiful struc-
tural results with relevance in applications. In particular,
planarity testing is a basic problem, which appears natu-
rally in many applications, such as VLSI layout, graphics,
and computer aided design. In all these applications, there
seems to be a need for dealing with dynamic updates.

Open Problems

The O(n1/2) bound for planarity testing is amortized. Can
we improve this bound or make it worst-case?

Finally, the complexity of the algorithms presented
here, and the large constant factors involved in some of the
asymptotic time bounds, make some of the results unsuit-
able for practical applications. Can one simplify the meth-
ods while retaining similar theoretical bounds?

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs
� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Transitive Closure

Recommended Reading

1. Cimikowski, R.: Branch-and-bound techniques for the maxi-
mum planar subgraph problem. Int. J. Computer Math. 53,
135–147 (1994)

2. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsifica-
tion – a technique for speeding up dynamic graph algorithms.
J. Assoc. Comput. Mach. 44(5), 669–696 (1997)

3. Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator
based sparsification I: planarity testing and minimum span-
ning trees. J. Comput. Syst. Sci. Special issue of STOC 93 52(1),
3–27 (1996)

4. Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator
based sparsification II: edge and vertex connectivity. SIAM J.
Comput. 28, 341–381 (1999)

5. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook,
J., Yung, M.: Maintenance of a minimum spanning forest in
a dynamic plane graph. J. Algorithms 13, 33–54 (1992)

6. Frederickson, G.N.: Data structures for on-line updating ofmin-
imum spanning trees, with applications. SIAM J. Comput. 14,
781–798 (1985)

7. Frederickson, G.N.: Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees. SIAM J. Com-
put. 26(2), 484–538 (1997)

8. Galil, Z., Italiano, G.F., Sarnak, N.: Fully dynamic planarity test-
ing with applications. J. ACM 48, 28–91 (1999)

9. Giammarresi, D., Italiano, G.F.: Decremental 2- and 3-connec-
tivity on planar graphs. Algorithmica 16(3):263–287 (1996)

10. Hershberger, J., Suri, M.R., Suri, S.: Data structures for two-edge
connectivity in planar graphs. Theor. Comput. Sci.130(1), 139–
161 (1994)

11. Italiano, G.F., La Poutré, J.A., Rauch, M.: Fully dynamic planarity
testing inplanar embedded graphs. 1st Annual European Sym-
posium on Algorithms, Bad Honnef, Germany, 30 September–
2 October 1993

12. Tamassia, R.: A dynamic data structure for planar graph em-
bedding. 15th Int. Colloq. Automata, Languages, and Program-
ming. LNCS, vol. 317, pp. 576–590. Springer, Berlin (1988)

Fully Dynamic Transitive Closure
1999; King

VALERIE KING
Department of Computer Science Department,
University of Victoria,
Victoria, BC, Canada

Keywords and Synonyms

Incremental algorithms for digraphs; Fully dynamic graph
algorithm for maintaining transitive closure; All-pairs dy-
namic reachability

ProblemDefinition

Design a data structure for a directed graph with a fixed
set of node which can process queries of the form “Is there
a path from i to j ?” and updates of the form: “Insert edge
(i, j)”; “Delete edge (i, j)”. The goal is to minimize update
and query times, over the worst case sequence of queries
and updates. Algorithms to solve this problem are called
“fully dynamic” as opposed to “partially dynamic” since
both insertions and deletions are allowed.

Key Results

This work [4] gives the first deterministic fully dynamic
graph algorithm for maintaining the transitive closure in
a directed graph. It uses O(n2 log n) amortized time per
update and O(1) worst case query time where n is number
of nodes in the graph. The basic technique is extended to
give fully dynamic algorithms for approximate and exact
all-pairs shortest paths problems.

The basic building block of these algorithms is
a method of maintaining all-pairs shortest paths with in-

344 F Fully Dynamic Transitive Closure

sertions and deletions for distances up to d. For each ver-
tex v, a single-source shortest path tree of depth d which
reach v (“Inv”) and another tree of vertices which are
reached by v (“Outv”) are maintained during any sequence
of deletions. Each insert of a set of edges incident to v re-
sults in the rebuilding of Inv and OutvI. For each pair of
vertices x, y and each length, a count is kept of the number
of v such that there is a path from x in Inv to y in Outv of
that length.

To maintain transitive closure, lg n levels of these trees
are maintained for trees of depth 2, where the edges used
to construct a forest on one level depend on the paths in
the forest of the previous level.

Space required was reduced from O(n3) to O(n2)
in [6]. A log n factor was shaved off [7,10]. Other tradeoffs
between update and query time are given in [1,7,8,9,10].
A deletions only randomized transitive closure algorithm
running in O(mn) time overall is given by [8] where m is
the initial number of edges in the graph. A simple monte
carlo transitive closure algorithm for acyclic graphs is pre-
sented in [5]. Dynamic single source reachability in a di-
graph is presented in [8,9]. All-pairs shortest paths can be
maintained with nearly the same update time [2].

Applications

None

Open Problems

Can reachability from a single source in a directed graph
be maintained in o(mn) time over a worst case sequence
of m deletions?

Can strongly connected components be maintained in
o(mn) time over a worst case sequence ofm deletions?

Experimental Results

Experimental results on older techniques can be found
in [3].

Cross References

� All Pairs Shortest Paths in Sparse Graphs
� All Pairs Shortest Paths via Matrix Multiplication
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity

Recommended Reading
1. Demestrescu, C., Italiano, G.F.: Trade-offs for fully dynamic

transitive closure on DAG’s: breaking through the O(n2) bar-
rier, (presented in FOCS 2000). J. ACM 52(2), 147–156 (2005)

2. Demestrescu, C., Italiano, G.F.: A new approach to dynamic all
pairs shortest paths, (presented in STOC 2003). J. ACM 51(6),
968–992 (2004)

3. Frigioni, D., Miller, T., Nanni, U., Zaroliagis, C.D.: An experimen-
tal study of dynamic algorithms for transitive closure. ACM J
Exp. Algorithms 6(9) (2001)

4. King, V.: Fully dynamic algorithms for maintaining all-pairs
shortest paths and transitive closure in digraphs. In: Proceed-
ings of the 40th Annual IEEE Symposium on Foundation of
Computer Science. ComiIEEE FOCS pp. 81–91. IEEE Computer
Society, New York (1999)

5. King, V., Sagert, G.: A fully dynamic algorithm for maintaining
the transitive closure, (presented in FOCS 1999). JCCS 65(1),
150–167 (2002)

6. King, V., Thorup, M.: A space saving trick for dynamic transitive
closure and shortest path algorithms. In: Proceedings of the
7th Annual International Conference of Computing and Com-
inatorics, vol. 2108/2001, pp. 269–277. Lect. Notes Comp. Sci.
COCOON Springer, Heidelberg (2001)

7. Roditty, L.: A faster and simpler fully dynamic transitive closure.
In: Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms. ACM IEEE SODA, pp. 404–412. ACM, Balti-
more (2003)

8. Roditty, L., Zwick, U.: Improved dynamic reachability algo-
rithms for directed graphs. In: Proceedings of the 43rd Annual
Symposium on Foundation of Computer Science. IEEE FOCS,
pp. 679–688 IEEEComputer Society, Vancouver, Canada (2002)

9. Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for
directedgraphswith an almost linear update time. In: Proceed-
ings of the 36th ACM Symposium on Theory of Computing.
ACM STOC, pp. 184–191 ACM, Chicago (2004)

10. Sankowski, S.: Dynamic transitive closure via dynamic matrix
inverse. In: Proceedings of the 45th Annual Symposium on
Foundations of Computer Science. IEEE FOCS, 509–517, IEEE
Computer Society, Rome, Italy (2004)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

