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PREFACE 

Among the themes that have been central to mathematics education dur
ing the last 30 years are those of mathematical modelling and applications of 
mathematics to extra-mathematical fields. More generally we refer to these 
as relations between mathematics and the extra-mathematical world (some
times also called the "real world") or preferably, according to Henry PoUak, 
the "rest of the world". That applications and modelling have been important 
themes in mathematics education can be inferred from the wealth of litera
ture on these topics, including material generated from a multitude of na
tional and international conferences. In particular let us mention firstly the 
ICMEs (the International Congresses on Mathematical Education), with their 
regular working or topic groups and lectures on applications and modelling; 
and secondly the series of ICTMAs (the International Conferences on the 
Teaching of Mathematical Modelling and Applications) which have been 
held biennially since 1983. Their Proceedings and Survey Lectures, have 
addressed the state-of-the-art at the relevant time, and contain many exam
ples, studies, conceptual contributions and resources involving relations 
between the real world and mathematics, for all levels of the educational 
system. In curricula and textbooks we find today many more references to 
real world phenomena and problems than, say, twenty years ago. Yet while 
applications and modelling play more important roles in many countries' 
classrooms than in the past, there still exists a substantial gap between the 
ideals expressed in educational debate and innovative curricula on the one 
hand, and everyday teaching practice on the other. In particular, genuine 
modelling activities are still rather rare in mathematics classrooms. 

Altogether, during the last few decades there has been considerable work 
in mathematics education that has centred on applications and modelling. 
Many activities have had a primary focus on practice, e.g. construction and 
trial of mathematical modelling examples for teaching and examination pur
poses, writing of application-oriented textbooks, implementation of applica
tions and modelling in existing curricula, or development of innovative, 
modelling-oriented curricula. Several of these activities also contain research 
components such as: clarification of relevant concepts; investigation of com
petencies and identification of difficulties and strategies activated by stu
dents when dealing with application problems; observation and analysis of 
teaching; study of learning and communication processes in modelling-
oriented lessons; and evaluation of alternative approaches used to assess 
performance in applications and modelling. In particular during the last ten 
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years the number of genuine research contributions has increased considera
bly. 

That applications and modelling have been, and continue to be, central 
themes in mathematics education is not at all surprising. Nearly all questions 
and problems in mathematics education, that is questions and problems con
cerning human learning and the teaching of mathematics, influence and are 
influenced by relations between mathematics and some aspects of the real 
world. For instance, one essential answer (albeit not the only one) to the 
question as to why all persons ought to learn mathematics is that it provides 
a means for understanding the world around us, for coping with everyday 
problems, or for preparing for future professions. When addressing the ques
tion of how individuals acquire mathematical knowledge, we cannot avoid 
the role of its relationship to reality, especially the relevance of situated 
learning (including the problem of the dependence of learning on specific 
contexts). General questions as to what "mathematics" is, as a part of our 
culture and as a social phenomenon, of how mathematics has emerged and 
developed, involve also "applications" of mathematics in other disciplines, 
in nature and society. Today mathematical models and modelling have pene
trated a great variety of disciplines, leaving only a few fields (if any) where 
mathematical models do not play some role. This increasing involvement has 
been substantially supported and accelerated by the availability of powerful 
electronic tools, such as calculators and computers, with their enormous 
communication capabilities. 

Relations between the real world and mathematics are particularly rele
vant within the current OECD (Organisation for Economic Co-operation and 
Development) PISA project. What is being tested in PISA (Programme for 
International Student Assessment), is mathematical literacy, that is, accord
ing to the PISA framework, "an individual's capacity to identify and under
stand the role that mathematics plays in the world, to make well-founded 
judgements and to use and engage in mathematics, in ways that meet the 
needs of that individual's life as a constructive, concerned, and reflective 
citizen." That means the emphasis in PISA is on the use of mathematical 
knowledge in a multitude of situations and contexts. In several countries, this 
project has initiated an intense discussion about aims and design of mathe
matics instruction in schools, and especially about the role of mathematical 
modelling, applications of mathematics and relations to the real world. Such 
deliberations are also occurring in countries outside the OECD. 

This book is the Study Volume of ICMI Study 14 on "Applications and 
Modelling in Mathematics Education", which began effectively in 2002 with 
the development of the Discussion Document by the Programme Committee 
(published in Educational Studies in Mathematics 51(2002)1/2, pp 149-171). 
In mounting this Study, ICMI has taken into account the reasons mentioned 
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above for the importance of relationships between mathematics and the real 
world, as well as the contemporary state of the educational debate, and of 
research and development in this field. This does not, of course, mean that 
we claim to know satisfactory answers to the essential questions in this area, 
and that the role of the Study is simply to provide a forum for putting these 
together. Rather, an important aim of the Study and this Volume has been to 
identify shortcomings, as well as to stimulate further research and develop
ment activities, in addition to reporting on existing research and practice. 

Documenting the state-of-the-art in a field and identifying deficiencies 
and needed research requires a structuring framework. This is particularly 
important in an area which is as complex and difficult to survey as the teach
ing and learning of mathematical modelling and applications. As we have 
seen, this topic not only deals with most of the essential aspects of the teach
ing and learning of mathematics at large, it also touches upon a wide variety 
of versions of the real world outside mathematics that one seeks to model. 
Perceived in this way, the topic of applications and modelling may appear to 
encompass all of mathematics education plus much more. It is evident, there
fore, that we need a way of conceptualising the field so as to reduce com
plexity to a meaningful and tractable level. That is why this Volume com
mences with an introductory Part I where we clarify some of the basic con
cepts and notions of the field, and offer a conceptualisation that helps to 
structure it and to identify important challenges and questions. This introduc
tory part, at the same time, provides a concise access to the field for the un
initiated reader together with a brief sketch of its history. 

Following from this introductory part, the Volume contains plenary pa
pers given at the Study Conference (Dortmund, February 2004) and various 
papers that address important issues in the field. It is stressed, however, that 
this Study Volume is not simply the Proceedings of the Study Conference ~ 
rather, the production of this Volume has involved an independent process. 
Of course, the papers presented at the Study Conference provided a rich 
source for this Volume, and the majority of papers here were derived in 
some way from those Conference papers. However, many of the papers in 
this Volume have been produced independently of the Study Conference, in 
particular to fill gaps that became obvious during the Conference. 

We would like to express our sincere thanks to the members of the Pro
gramme Committee for this Study who have contributed in various ways to 
producing this Volume. In particular, several members have acted as editors 
of Sections in this Volume. Without their work and devotion, this extensive 
Volume could not have been completed. Our thanks go equally to all the 
authors who have contributed to this Volume and thus helped to make it - so 
we hope - a rich source of information and inspiration for readers. We also 
thank ICMI very much for having given priority to this Study, and in par-
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ticular its Secretary, Bernard Hodgson, for his sensitive way of channelling 
ICMI views and proposals into this Study while, at the same time, leaving 
the organisers and editors with all the freedom they wanted and needed to 
undertake this task. Eventually, we would like to thank the Publisher, 
Springer, also for their patience when the completion of this Volume was on 
their agenda. 

Let us finish this Preface by expressing our hope that this ICMI Study 14 
Volume will be of value both for mathematics educators, mathematics teach
ers and mathematicians as well as for interested professionals in other disci
plines in which mathematics plays an essential role, and that it will contrib
ute to a strengthening and further development of the field of applications 
and modelling in mathematics education, and to an intensification of various 
kinds of research and practice activities in the field. 

Werner Blum, Kassel (Germany) 
Peter Galbraith, Brisbane (Australia) 
Hans-Wolfgang Henn, Dortmund (Germany) 
Mogens Niss, Roskilde (Denmark) 
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Part 1 

INTRODUCTION 

Mogens Niss, Werner Blum and Peter Galbraith 
Roskilde University, Denmark, Email: mn@mmf.ruc.dk/ 
University of KasseI, Germany, Email: blum@mathematik.uni-kassel.de/ 
University of Queensland, Australia, Email: p.galbraith@uq.edu.au 

Abstract: In this part of the volume, we shall give an introduction both to the field of 
applications and modelling in mathematics education and to the present vol
ume. In section 1, we present the field of applications and modelling to the 
mathematics educator who is not a specialist in the field. In Section 2, we ex
plain the basic terms, notions and distinctions in applications and modelling. 
On this basis, we provide, in Section 3, the conceptualisation of the field 
adopted in this ICMI Study. This conceptualisation is centred on a number of 
issues which will be the subject of Section 4. In Section 5, we briefly outline 
the historical development of applications and modelling in mathematics edu
cation. Finally, in Section 6, the structure and organisation of the present book 
will be described and explained. 

1. INTRODUCTION FOR THE UN-INITIATED READER 

Our endeavour in this section is to briefly present the field of applications 
and mathematical modelling in mathematics education to interested mathe
matics educators who are not specialists in the field. 

For the remainder of this section, we need a first terse definition of the 
basic concepts involved. An application of mathematics occurs every time 
mathematics is applied, for some purpose, to deal with some domain of the 
extra-mathematical world, for instance in order to understand it better, to 
investigate issues, to explain phenomena, to solve problems, to pave the way 
for decisions, etc. The extra-mathematical world can be another subject or 
discipline, an area of practice, a sphere of private or social life, etc. The term 
"real world" is often used to describe the world outside mathematics, even 
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though, say, quantum physics or orbitals in chemistry may appear less than 
real to some. The extra-mathematical world is then a helpful way of indicat
ing that part of the wider "real world" that is relevant to a particular issue or 
problem. In any application of mathematics a mathematical model is in
volved, explicitly or implicitly. A mathematical model consists of the extra-
mathematical domain, D, of interest, some mathematical domain M, and a 
mapping from the extra-mathematical to the mathematical domain (see Fig. 
1-1). Objects, relations, phenomena, assumptions, questions, etc. in D are 
identified and selected as relevant for the purpose and situation and are then 
mapped ~ translated - into objects, relations, phenomena, assumptions, ques
tions, etc. pertaining to M. Within M, mathematical deliberations, manipula
tions and inferences are made, the outcomes of which are then translated 
back to D and interpreted as conclusions concerning that domain. This so-
called modelling cycle may be iterated several times, on the basis of valida
tion and evaluation of the model in relation to the domain, until the resulting 
conclusions concerning D are satisfactory in relation to the purpose of the 
model construction. The term modelling refers to the entire process, and eve
rything involved in it - from structuring D, to deciding upon a suitable 
mathematical domain M and a suitable mapping from D to M, to working 
mathematically within M, to interpreting and evaluating conclusions with 
regard to D, and to repeating the cycle several times if needed or desirable. 

extra-mathematical ( 1 1 1 mathematics 
world 

Figure 1-1. Mathematics and the rest of the world 

At various times in the history of mathematics teaching and learning, it 
has been debated whether some forms of mathematical applications (or, in 
more recent times, modelling) should have a place in different sorts of 
mathematics curricula, or whether the extra-mathematical utilisation of 
mathematics should be the responsibility of those subjects that utilise the 
applications and the modelling. Sometimes - or in some places - curricula 
have focused on pure mathematics while leaving applications and modelling 
(if relevant) to other subjects. At other times - or in other places - curricula 
have made explicit room for applications and modelling. The very fact that 
there are, from time to time, such debates about the possible place and role 
of applications and modelling in the teaching and learning of mathematics 
suggests that there are issues to consider and think about. If we suppose that 
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it has been agreed that applications and modelling should play some part in 
the mathematical education of a given category of students, hosts of further 
questions arise that are to do with "why?", "under what circumstances and 
conditions?", "what?", "when?", "how?", "taught by whom?", and so on. All 
of these questions need to be dealt with by research as well as by practice. 

When it comes to the question of "why?" there exists a fundamental du
ality (not to be mistaken for a dichotomy) between the categories of possible 
answers. The first category focuses on "applications and modelling for the 
learning ofmathematics'\ i.e. on the actual or potential ways in which appli
cations and modelling may be a vehicle for facilitation and support of stu
dents' learning of mathematics as a subject. The other category focuses on 
"learning mathematics so as to develop competency in applying mathematics 
and building mathematical models''' for areas and purposes that are basically 
extra-mathematical. We are dealing with a duality because the relationship 
between mathematical learning, and applications and modelling, has two 
different orientations, depending on which is the goal and which is the 
means. This duality plays out very differently at different educational levels, 
and for different types of curricula. 

At the primary and lower secondary levels the duality is only seldom 
made explicit, as it is quite customary at these levels to insist on both orien
tations simultaneously, recognising that they are intrinsically intertwined. A 
major reason why we teach mathematics to typical students at primary or 
lower secondary level, is that they should become able to use mathematics in 
a variety of contexts and situations outside the classroom. This implies that 
applications and modelling should be on the agenda of teaching and learn
ing, without necessarily using these terms. On the other hand, for most pri
mary or lower secondary students it is difficult to motivate or learn mathe
matical concepts, methods, techniques, terminology, and results and to en
gage in mathematical activity, unless clear reference is being established to 
the use and relevance of mathematics to extra-mathematical contexts and 
situations, which are often also responsible for creating meaning and sense-
making with regard to the mathematical entities at issue. 

Also at further educational levels where mathematics is being taught for 
vocational or professional purposes, that are closely related to other areas or 
subjects, for instance in, say, carpentry, plumbing, banking, economics or 
engineering, the duality is sometimes deliberately kept implicit so as to blur 
what is the goal and what is the means of mathematics teaching. However, 
even though implicit, the duality is there nevertheless, provided of course, 
there is such a thing as "mathematics" explicitly mentioned in the curricu
lum. 

In contrast, at upper secondary or tertiary level the duality between "ap
plications and modelling for the learning of mathematics" and "learning 
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mathematics for applications and modelling" is indeed, often, a significant 
one, worth fiirther exploration. 

Let us take a closer look at the two poles of this duality. Firstly, the "ap
plications and modelling for the learning of mathematics" pole is to do with 
(a) demonstrating to students that mathematics is actually being used by 
people outside the mathematics classroom for a variety of reasons and pur
poses, thus helping to generate a richer image of the nature and role of 
mathematics; (b) helping to provide meaning and interpretation to mathe
matical entities and activities; and (c) - partly as a consequence of (a) and 
(b) - providing motivation for students to engage in the study of mathemat
ics by helping to shape their beliefs and attitudes towards it. The second 
pole, "learning mathematics for applications and modelling", focuses (a) on 
one goal of the teaching and learning of mathematics, namely to equip stu
dents with the capability to bring mathematics to bear outside itself; and (b) 
on the fact that the extraneous use of mathematics is always brought about 
through mathematical models and modelling. 

In principle one might think that even if an ultimate goal is to foster ap
plications and modelling capabilities with students, this would not necessar
ily require applications and modelling to be dealt with in the classroom. In 
fact, from time to time, there has been a tendency amongst mathematics edu
cators, including teachers, to assume that once someone has learnt theoreti
cal mathematics in a proper and efficient way and to a satisfactory extent, 
that individual will be able to apply mathematics in other areas and contexts 
without fiirther teaching. Hence there is, according to this view, no reason to 
spend precious time in the study of mathematics on dealing with applications 
and modelling. Moreover, the reasoning goes, that as the extraneous use of 
mathematics involves by definition, non-mathematical objects, phenomena, 
features, and facts, the mathematics classroom is not the right place to deal 
with such matters, particularly since the mathematics teacher more often 
than not would be an amateur in dealing with them, and hence by and large 
be unqualified for the task. Instead, to the extent that mathematics is relevant 
in other areas and subjects, the teachers and professionals in those areas and 
subjects, will master the mathematics involved well enough for them to be in 
charge of the applications and modelling themselves. 

However, there is, today, ample evidence from practice and research that 
there is no automatic transfer from having learnt purely theoretical mathe
matics to being able to use it in situations that have not already been fiilly 
mathematised. Moreover, even if mathematics is being activated within other 
areas or subjects there is evidence that those aspects of models and model
ling that are to do with the relationships between the mathematical represen
tations and the domain of application, including validation of model assump
tions and results, are not taken seriously. This suggests that if we want stu-
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dents to develop applications and modelling competency as one outcome of 
their mathematical education, applications and modelling have to be explic
itly put on the agenda of the teaching and learning of mathematics. 

For this to be possible teachers must be able to orchestrate teaching envi
ronments, situations and activities that can foster the development of appli
cations and modelling competency, in many educational contexts alongside 
the development of other mathematical competencies. This gives rise to 
hosts of issues and decisions concerning allocation of time, design and plan
ning of the settings for teaching and learning, choice of activities and materi
als, design and implementation of assessment instruments, etc., in addition to 
striking a balance between applications and modelling work and other kinds 
of mathematical work, perhaps with other foci. In that context, although 
there are intimate relationships between applications and modelling and 
mathematics at large, including its theoretical aspects, mathematical compe
tence and mastery does indeed contain many other competencies in addition 
to applications and modelling competency. Furthermore, the successful de
velopment of applications and modelling competency presupposes that other 
mathematical competencies are also present, if only for the simple reason 
that work within the mathematical domain of a model cannot take place 
without such competencies. 

In the same way as students do not become able to apply mathematics 
and to analyse and construct mathematical models as an automatic result of 
having learnt purely theoretical mathematics, teachers do not become able to 
orchestrate environments, situations and activities for applications and mod
elling as an automatic result of having been trained as mathematicians or 
mathematics teachers in traditional ways that focus entirely on purely 
mathematical subject matter. And if we want teachers of mathematics to be
come able to place applications and modelling on the agenda of their teach
ing in efficient, successful, and reflective ways, they need opportunities to 
develop that capacity during their pre-service education and through regular 
in-service activities of professional development. 

In the hope that this section has provided a helpful first orientation to the 
non-specialist reader, we now go on to describe how the following sections 
of this introductory part of the Study Volume are designed to present a sys
tematic development of the field. In the following Section 2 basic terms, no
tions, and distinctions - in continuation of the terms defined in the first para
graph of this section ~ are introduced and elaborated. Then follows Section 3 
which introduces the conceptualisation of the field adopted for this ICMI 
Study, reflected both in the initiating Discussion Document produced by the 
International Programme Committee for this Study (Blum et. al., 2002) and 
in the present Volume. In Section 4, special attention is being paid to se
lected issues resulting from the way in which the field has been conceptual-
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ised by the Programme Committee. A brief historical sketch of the field, ap
plications and modelling in mathematics education, is given in Section 5. 
Finally, Part 1 is concluded in Section 6, by a description and explanation of 
the structure of this Volume. 

2. APPLICATIONS AND MODELLING -̂  NOTIONS 

Mathematical modelling and applications in education, by definition en
compass elements from both the mathematical and educational domains. As 
a result some common notions in the field have different shades of meaning 
from those with similar names found elsewhere in the education community. 
We believe it is important to clarify important distinctions. 

2.1 Models and Modelling 

Firstly we distinguish our use of the terms model and modelling from 
other usages found in general education. We read frequently of model teach
ers, of modelling good teaching practice, and of modelling student under
standing or classroom interaction, but these interpretations are not what we 
have in mind in using the terms. Similarly, models as physical objects (e.g. 
plaster models of geometrical solids or surfaces), mental models as used in a 
variety of learning contexts, and models as instantiations (e.g. of axiomatic 
geometry systems) illustrate usages that lie outside our particular field of 
activity. 

In continuation of our outline of a definition in the first paragraph of the 
previous section, let us look a little more closely at the purpose of construct
ing mathematical models. The generic purpose of building and making use 
of a model is to understand or tackle problems in some segment of the real 
world. Here we use the term problem in a broad sense, encompassing not 
only practical problems, but also problems of a more intellectual nature that 
aim at describing, explaining, understanding or even designing parts of the 
world, including issues and questions pertaining to scientific disciplines. 
Dealing with such problems requires individuals to build, test, and apply 
mathematical models designed to answer questions of importance in real 
world settings. The world we live in contains tangible objects, tools, arte
facts, and structures, both natural and humanly built. It is also a place of in
tangibles: ideas, expectations, values and power relationships. By real world 
we mean everything that is to do with nature, society or culture, including 
everyday life, as well as school and university subjects or scientific and 
scholarly disciplines different from mathematics. The extra-mathematical 
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domain of Section 1, relevant to a particular modelling enterprise, will in
volve a subset of this real world. 

The modelling perspective begins with the conceptualisation of some 
problem situation. Simplifying, structuring, and making this situation more 
precise - according to the problem solver's knowledge, goals, and interests -
leads to the specification of a problem in terms of the language and concepts 
of the situation. Some of the problems we address through mathematical 
modelling tend to be of a practical nature: How do we optimise a particular 
design? What is the best route for a new freeway? Which borrowing options 
are the cheapest for a given purpose? Such problems also involve intangi
bles. What does best route mean? Cheapest? Most direct? Least disruptive to 
communities? Other problems are of a scientific nature, like: Are we able to 
identify mechanisms that may be responsible for observed variations in 
predator-prey populations? 

If appropriate, real data are collected to provide more information on the 
situation of interest. These data frequently suggest the type of mathematical 
model that is appropriate to address the specified real-world problem. 
Through a process of mathematisation, the relevant objects, data, relations, 
conditions, and assumptions from the extra-mathematical domain are then 
translated into mathematics, resulting in a mathematical model through 
which to address the identified problem. 

Now mathematical methods are used to derive mathematical results, 
relevant to questions arising from the translation of the real world problem. 
Such methods include logical deduction from mathematical assumptions, 
utilisation of theoretical results within mathematical topics, solving equa
tions, performing symbolic manipulation or numerical computations, esti
mating parameters, performing statistical testing, simulation etc. 

The ensuing mathematical results must then be translated back into the 
extra-mathematical domain within which the original problem was located ~ 
that is interpreted in relation to the original real world problem context. The 
problem solver then validates the model by checking whether interpreted 
mathematical outcomes are reasonable and compatible in terms of the infor
mation given in the original problem. At the same time the model is evalu
ated by checking whether the solution is appropriate and useful for its pur
poses. When one or both of these 'tests' is deemed unsatisfactory, the whole 
process needs to be repeated using a modified or a totally different model. 
Finally (if achieved) the solution of the original real world problem is stated, 
and where relevant, communicated to others. 

While the sub-process leading from a real world problem situation to a 
mathematical model is sometimes called mathematical modellings it has be
come customary (as indicated in Section 1) to use that notion also for the 
entire process consisting of structuring, generating real world facts and data. 
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mathematising, working mathematically and interpreting/validating (perhaps 
several times round the loop) as just described. This latter position has been 
adopted for the present Volume. 

We hold that the distinction between the modelling process and models is 
a particularly important one. In the course of the modelling process, as de
picted above, one or more mathematical models may be produced and are 
thus integral parts of the greater whole. Sometimes a model will be an idio
syncratic, ad hoc construction, but often it will be a variation of a standard 
type (e.g. inverse proportionality, linear, exponential or logistic growth, the 
harmonic oscillator, a Poisson probability process, etc.). It follows that the 
study oi standard models is important in providing a wide-ranging toolkit to 
enhance the options available to solvers, but more often than not a simple 
application of such models is not capable of capturing all the significant fea
tures of the problem to be modelled. 

Different kinds of models (e.g. deterministic or stochastic models) can at 
times be developed using different formulations for the same problem and 
displaying different properties and qualities. Finally models can differ in 
their level of sophistication, and yet in different ways enhance understanding 
of a problem to a certain degree. For example simple modelling with arith
metic can provide useful insights at one level, for a problem whose complete 
solution may require sophisticated algebra or calculus. This feature is a ma
jor reason why modelling can begin with integrity in the elementary school. 

2.2 Applications versus Modelling 

Using mathematics to solve real world problems, in the broad sense 
adopted here, is often called applying mathematics, and a real world problem 
which has been addressed by means of mathematics is called an application 
of mathematics. Sometimes, though, the notions of "applying" or "applica
tion" are used for any kind of linking of the real world and mathematics. 

During the last one or two decades the term "applications and modelling^'' 
has been increasingly used to denote all kinds of relationships whatsoever 
between the real world and mathematics. The term "modelling", on the one 
hand, tends to focus on the direction "reality ~> mathematics" and, on the 
other hand and more generally, emphasises the processes involved. Simply 
put, with modelling we are standing outside mathematics looking in: "Where 
can I find some mathematics to help me with this problem?" In contrast, the 
term "application", on the one hand, tends to focus on the opposite direction 
"mathematics -> reality" and, more generally, emphasises the objects in
volved - in particular those parts of the real world which are (made) accessi
ble to a mathematical treatment and to which corresponding mathematical 
models already exist. Again simply put, with applications we are standing 
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inside mathematics looking out: "Where can I use this particular piece of 
mathematical knowledge?" It is in the comprehensive sense outlined here 
that we understand the term "applications and modelling" as used in the title 
of this Study. 

2.3 Applied Mathematics 

Applied Mathematics is a time-honoured descriptor for undergraduate or 
upper secondary courses (mainly in the Anglo-Saxon countries) that focus 
on applications of mathematics in fields such as solid and fluid mechanics. 
Typically they involve advanced topics (e.g. rigid dynamics and partial dif
ferential equations) and theory is developed and applied within the context 
of well-posed problems. Where they differ from the major emphasis in this 
volume is in starting from the point where a problem has already been for
mulated within a theoretical framework from physics. So the emphasis is in 
the application of (often) advanced designated mathematical techniques, 
rather than engaging in the complete modelling cycle, wherein the mathe
matics of relevance often needs to be first identified. 

2.4 Applied Problem Solving 

Applied Problem Solving is a term that admits a variety of interpretations 
and emphases. Sometimes it is used to denote the processes that are involved 
when a real world problem has to be solved. In this sense, it is only another 
term for modelling, where its use emphasises the strategic elements that are 
necessarily involved in the solution process. However, often the term is used 
for problem solving activities with any kind of extra-mathematical context 
whatsoever, including artificial or play-like contexts with only inessential 
references to extra-mathematical objects or phenomena. When we use this 
term, we always mean it in the narrower sense first mentioned. 

2.5 Modelling and Application Problems 

When it comes to curriculum materials, a variety of problem types appear 
under such headings that are variable in the degree to which they meet or 
attempt to genuinely meet real-world criteria. It is worth canvassing a few of 
the most common types. 

Word Problems: These have been with us for centuries, and because they 
are couched in verbal terms, are often presented as applications of mathe
matics. Word problems are nothing more than a "dressing up" of a purely 
mathematical problem in words referring to a segment of the real world. In 
this case mathematising means merely "undressing" the problem, and the 
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solving process then only consists of this undressing, the use of mathematics, 
and a straightforward interpretation. At their best, word problems allow for 
interesting and worthwhile activities located within what is effectively the 
solution and interpretation stages of the modelling cycle - translation takes 
place between the worlds of mathematics and words. At their worst, they 
promote mathematical tasks in an unrealistic disguise and recipe approaches 
to their solution. 

Standard applications: Typified by problems like finding the largest cy
lindrical parcel that can be shipped according to certain postal requirements, 
standard applications are characterised by the fact that the appropriate model 
is immediately at hand. Such problems can be solved without further regard 
to the nature of the given real world context. In our example, this context can 
be stripped away easily to expose a purely mathematical question about 
maximizing volumes of cylinders under prescribed constraints. So, the trans
lation processes involved in solving standard applications are straightfor
ward, that is, again, only a limited subset of the modelling cycle is needed. 

Modelling problems: A typical example of a modelling problem is the 
following: "Decide the best location for speed bumps to calm traffic along a 
road within the college campus." Here a particular question must first be 
specified, then a mathematical model must be formulated, solved and inter
preted. Finally the proposed solution must be evaluated, both mathematically 
and in context, followed by recommendations argued in terms of the model
ling effort. In problems like that, the complete modelling cycle is involved. 

It is not suggested that these problems typify some hierarchy of desirabil
ity independent of circumstances. They serve different purposes, and the 
challenge is to select and use appropriate examples of each genre. The point 
here is to acknowledge that while many problems are presented as examples 
of applications and modelling, only a few survive if the full modelling proc
ess is used as the criterion. 

2.6 Modelling Competency 

By a "competency^ we mean the ability of an individual to perform cer
tain appropriate actions in problem situations where these actions are re
quired or desirable. So mathematical modelling competency means the abil
ity to identify relevant questions, variables, relations or assumptions in a 
given real world situation, to translate these into mathematics and to inter
pret and validate the solution of the resulting mathematical problem in rela
tion to the given situation, as well as the ability to analyse or compare given 
models by investigating the assumptions being made, checking properties 
and scope of a given model etc. In short: modelling competency in our sense 
denotes the ability to perform the processes that are involved in the construe-
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tion and investigation of mathematical models. 
It is clear that modelling competency is not sufficient for solving real 

world tasks and problems. Typically, other competencies such as represent
ing the mathematical objects involved in an appropriate way, arguing and 
justifying what is being done when applying mathematics or "simply" per
forming mathematical algorithms and procedures are necessary as well. Ad
ditionally, when problems are solved in a group (typical for learning envi
ronments where modelling is required), social competencies not specific to 
mathematics are needed for effective cooperative teamwork and for the mu
tual construction and testing of knowledge generated during modelling activ
ity. The use of the term "competencies" in the context of modelling may in
volve several of these domains, typically in combination. Of course, these 
competencies may support and advance one another. If it is, for instance, the 
main objective of a modelling activity that mathematical conceptual struc
tures emerge during the solution of a modelling problem, then modelling 
competency contributes to the enhancement of mathematical competence. 
The reverse situation applies when individuals develop the ability to choose 
mathematical approaches to model formulation, based on a network of 
mathematical knowledge and competencies. 

3. CONCEPTUALISATION OF THE FIELD 

What is "the reality" of applications and modelling in mathematics edu
cation, that is, what is the societal and systemic framework in which activi
ties that have to do with the topic of this Volume take place? We consider 
this reality constituted essentially by two dimensions: The significant "do
mains'' within which mathematical applications and modelling are mani
fested on the one hand, and the educational levels within which mathemati
cal applications and modelling are taught and learnt, on the other. 

More specifically, in the first dimension we discern three different do
mains, each forming a kind of continuum. The first domain consists of the 
very notions of applications and modellings i.e. what is meant by an applica
tion of mathematics, and by mathematical modelling; their essential compo
nents in terms of concepts and processes; the epistemological characteristics 
of applications and modelling in terms of mathematics as a discipline and 
other disciplines and areas of practice. Here we also consider who uses 
mathematics; for what purposes; with what types of outcomes; what defines 
modelling competency, and so on. The second domain is that of the class-
roomy used here as a broad indicator of the location of teaching and learning 
activities pertaining to applications and modelling. While this includes the 
classroom in a literal sense, it also includes the student doing his or her 
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homework, individual or group activity, the teacher's planning of learning 
activities, looking at students' products, written or other, and so forth. The 
third and final domain is the system domain, where the word system, refers 
to the whole institutional, political, structural, organisational, administrative, 
financial, social, and physical environment that exerts an influence on the 
teaching and learning of applications and modelling. While we have chosen 
not to consider individuals, in particular students and teachers, as constitut
ing separate domains, this does not imply that individuals have been left out 
of our conceptualisation. The individual student is a member of the class
room, as defined above, when engaging in learning activities in applications 
and modelling. The individual teacher can also be regarded as a member of 
the applications and modelling classroom, namely when he or she is engaged 
in teaching, supervising, advising or assessing students. From another per
spective, however, the teacher is also a member of the system domain. This 
happens when he or she speaks or acts on behalf of the 'system' (typically in 
the form of his or her institution) in matters concerning selection, placement, 
and examination of the individual student, or invokes rules, procedures or 
other boundary conditions in decisions on, say, curricular matters. 

The second dimension is constituted by the educational levels. We have 
adopted a relatively crude division of levels, both in order to avoid excessive 
detail in the discussion, and to achieve a division which is compatible with 
the educational structure in most, maybe all, countries in the world. The lev
els adopted are the primary^ the secondary^ the tertiary levels, and the level 
of teacher education. Here we do not primarily refer to age levels but to in
trinsic levels of the learners' knowledge and competencies. While a much 
more fine-grained division might have been adopted, the present one at least 
allows for the consideration of applications and modelling at all educational 
levels. 

The issues, problems and questions that are dealt with in this Volume can 
be placed somewhere within this two-dimensional "reality space". They are 
constituted by certain objects, phenomena or situations, and drawn from 
combinations of applications and modelling contexts and educational levels, 
that these issues concern. To illustrate the point, let us give one example of 
such an issue. 

Issue: Context dependence and transfer 
One of the fundamental reasons for attributing a prominent position to 

applications and modelling in the teaching and learning of mathematics is 
the underlying assumption that students should be able to engage in applica
tions and modelling activities outside the classroom, that involve areas and 
contexts that are new to them. In other words, it is assumed that applications 
and modelling competency developed in and for some types of areas and 
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contexts can be transferred to other such types having different properties 
and characteristics. However, several research studies suggest that for many 
students this transfer is limited in scope and range, and that the knowledge 
and abilities of students relate considerably to the situation and the context in 
which they have been acquired. (See, e.g.. Brown, Collins & Duguid, 1989; 
de Corte, Greer & Verschaffel, 1996; Niss, 1999). Hence we ask: 

To what extent is applications and modelling competency transferable 
across areas and contexts? What teaching/learning environments are needed 
or suitable to foster such transferability? 

This issue therefore concerns the classroom domain and (at least) the 
primary, secondary, and tertiary levels. Consequently the issue is situated 
within the "rectangle" constituted by the entire classroom domain and the 
first three educational levels. If the focus were to be limited to address, say, 
the secondary level, then the rectangle would be reduced accordingly. 

In this Volume, various issues considered relevant to the field are ad
dressed. Each of the issues constitutes its own segment of reality, but of 
course those segments may intersect. The reality space and the issues placed 
within it may be mapped as in Fig. 1-2: 

Levels 

teacher 
education 

tertiary 

secondary 

pnnnary 

Domains 

notions classroom system 

Figure 1-2. The "reality" of applications and modelling 

What do we mean more precisely by an "issue"'? The formulation of the 
issue given above as an example consists of two parts. First, there is a back
ground part outlining a challenge, i.e. a dilemma or a problem, which may 
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be of a political, practical, or intellectual nature. Second, there are particular 
questions that serve the purpose of pinpointing some crucial aspects of the 
challenge that deserve to be dealt with. We shall identify some particularly 
important issues in the next section of this introductory chapter. 

From the point of view of this Study, an issue concerning applications 
and modelling in mathematics education may be viewed and approached 
from a variety of different perspectives^ each indicating the category of an
swers sought. The most basic of these perspectives is that of doing, i.e. ac
tual teaching and learning practice as enacted and carried out in the class
room (in the generalised sense outlined above). Here, the focus is on what 
does (or should) take place in everyday classrooms at given educational lev
els. Another perspective is the development and design of curricula, teaching 
and learning materials or activities, and so forth. Here, the focus is on estab
lishing short or long term plans and conditions for future teaching and learn
ing. A third perspective is that of research, which focuses on the generation 
of answers to research questions as yet unanswered. A fourth and final per
spective is that of policy for which the focus is on the instruments, strategies 
and policies that are or ought to be adopted in order to place matters pertain
ing to applications and modelling on the agenda of practice or research in 
some desired way. Accordingly, a given issue may be addressed from one or 
some (perhaps all) of these four perspectives. To avoid a possible misinter
pretation let us stress that the order in which we have presented these four 
perspectives does not imply a hierarchy. It appears that each of these per
spectives can be linked to a particular professional role: The role of teacher 
or student, the role of curriculum developer, the role of researcher, and the 
role of lobbyist or decision maker. An individual can assume several or even 
all of these roles, but not usually at the same time. 

In the above-mentioned example, the issue may be approached from the 
perspective of 'doing', e.g. the construction of rich learning environments, 
and the carrying through of specific teaching activities meant to underpin 
transferability of application and modelling competencies between certain 
areas and contexts. The 'development and design' perspective is adopted 
when finding or devising ways to orchestrate teaching and learning activities 
that are hoped to improve such transferability. When the emphasis is on 
understanding the nature and extent of transferability of competencies be
tween areas and contexts, or the effect of an implemented design, then the 
'research' perspective is invoked. Finally, the 'policy' perspective applies 
when the focus involves arguing or lobbying for, say, more room and time in 
the curriculum for rich first-hand experiences supporting a variety of appli
cations and modelling activities drawn from different areas, contexts, and 
situations. 

So, we can say in short that the present Volume essentially consists of the 
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identification, presentation, and explication of important issues in the field, 
of reflections upon these from various perspectives, and of conclusions con
cerning the issues raised and dealt with by means of these perspectives. 

4. ELABORATION OF SELECTED ISSUES 

In this section, a number of issues that present challenges and associated 
questions are introduced. They have been grouped according to certain in
herent emphases, and there is some natural overlap in the matters they ad
dress. The purpose here is to set the scene for the various sections in Part 3 
of the present Volume where these issues are elaborated into more detail, 
and approached from different perspectives. 

The specific connections with Part 3 of this Volume are as follows. The 
first two issues are closely connected with Section 3.1 on epistemology. The 
third issue relates to Section 3.2 on goals and authenticity, while Sections 
3.3, 3.4, and 3.5, respectively, address the next three issues of modelling 
competencies and beliefs, of mathematical competencies, and of pedagogy. 
Issues 7 and 8 associated with implementation and practice form the topic 
areas of Section 3.6, while issue 9 concerning assessment and evaluation is 
dealt with in Section 3.7. Issue 10 (technology) is embedded in many (if not 
all) of the other issues. Consequently we decided not to include a special 
section on technology in this Volume, but to address it within other sections, 
in particular in Sections 3.4 and 3.5. The questions in this section associated 
with the issues, are drawn selectively from the various perspectives illus
trated in the preceding section. They are representative, rather than exhaus
tive, and do not necessarily follow the order of the perspectives as intro
duced previously. Rather they have been chosen to reflect priority concerns 
within the respective issues, from which they follow seamlessly in the text. 

4.1 Epistemology of applications and modelling 

Essential characterisations of modelling and applications involve posing and 
solving problems located in the real-world, which for our purposes includes 
other discipline areas within which mathematics is applicable, activity within 
professions such as engineering or medicine, and general contexts of living 
as they impact on individuals, groups, and communities. The modelling en
terprise involves identifying and addressing open-ended questions, creating, 
refining and validating models, and arguing the case for implementation of 
model informed outcomes. These share in common a linking of the field of 
mathematics with some aspects of the world, with the purpose of enhancing 
knowledge, but also ensuring or advancing the sustainability of health, edu-
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cation and environmental well-being, and the reduction of poverty and dis
advantage. 

We therefore face an imperative to articulate the relationship between 
applications and modelling, its values, methods and skills, and the world we 
live in. This overriding purpose directs us to identify specific questions that 
force a clarification of our assumptions and understandings such as: 

What are the components of modelling as a process, and what is meant 
by or involved in each? How does knowledge of applications and modelling 
accumulate, evolve and change over time? What is the meaning and role of 
pure mathematical constructs such as abstraction, formalisation, generalisa
tion, verification and proof in terms of applications and modelling activities? 
How are mathematical content knowledge, modelling know-how, and con
text-specific knowledge deployed for successful modelling outcomes? What 
opportunities for generalisability and transfer occur when working across 
contexts? What is necessary for an applications and modelling enterprise to 
be considered genuine? 

4.2 Views of the modelling process 

Various views of the modelling process co-exist within educational cir
cles. These have to do both with perceptions of the modelling process, and 
constraints and opportunities perceived to exist within particular educational 
settings. Broadly speaking mathematical modelling activity can be viewed 
primarily as either a means or an end for educational purposes (see the expli
cation of this duality in Section 1). Both approaches can exist at all levels of 
education, and share aspects in common, such as some version of the model
ling process. And their goals are not necessarily mutually exclusive, since in 
seeking to solve genuine problems the need for new mathematical content 
may emerge, while real-world contexts can provide legitimate vehicles for 
the structured introduction of desired mathematics. Particular approaches, 
described by terms such as emergent modellings and model eliciting activi
ties, have been designed to focus attention on important educational chal
lenges in the model building process. Always, for different purposes, and at 
different levels, the perspective of the modeller is central, and many specific 
questions continue to require action. For example: 

Which versions of the modelling process are most appropriate for given 
purposes? To what extent are views and versions of the modelling process 
more or less applicable at different educational levels? What tensions exist 
between the 'modelling as means' and 'modelling as an end' approaches? 
How can essential modelling attributes (from the perspective of professional 
modellers) be introduced with integrity into modelling programmes at differ
ent educational levels? 
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4.3 Goals of applications and modelling and their curricular 
embedding 

Applications and modelling can make fundamental contributions to the 
development of students' competencies, and consequently deserve a pres
ence in mathematics curricula at all levels. In considering the balance to be 
achieved between applications and modelling activities, and other activities 
in mathematics classrooms, questions such as the following emerge: 

To what extent is it possible (or desirable) to identify a core curriculum 
in applications and modelling within the general mathematical curriculum? 
Which applications, models and modelling processes should be included in 
such a curriculum? Is it beneficial to generate specific courses or programs 
on applications and modelling, or is it better to integrate applications and 
modelling into standard mathematical courses? What characterises the con
tent of such courses at different educational levels from elementary to terti
ary, including teacher education? 

Since mathematics accounts for a large proportion of time in school, it 
needs to provide experiences and abilities that contribute to education for life 
after school, whether in further study, work, or in enhancing the quality of 
life. How and to what extent can applications and modelling provide sup
ports for enriching a student's general education for these purposes? In this 
enterprise what is a suitable balance between creating one's own models of 
real situations and problems, and making judgements about models made by 
others? 

With respect to the authenticity of application problems, there exists a 
wealth of applications and modelling problems and materials for use in 
mathematics classrooms at various educational levels, ranging from merely 
"dressed up" artificial problems, to those involving genuine problem situa
tions. The concept of authenticity, and its contribution to the development of 
modelling ability is an important area for study; and not least is the task of 
reaching an agreed and reasonable meaning for the term 'authenticity' itself 
This challenge has both teaching and research implications, directing atten
tion to questions such as the following: 

What are the requirements for problems to be regarded as authentic, as 
distinct from trivial or contrived? What authentic applications and modelling 
materials are available worldwide? Given the realities and pressures of class
rooms, teachers' backgrounds and interests, students' experience, competen
cies, and motivations, how can teachers set up and implement authentic ap
plications and modelling tasks? What effect does the authenticity of prob
lems have on the ability of students to transfer acquired knowledge and 
competencies to other contexts and situations? 
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4.4 Modelling competencies and beliefs 

One of the most important goals for students is the acquisition of model-
ling competency^ and hence we need to ask how modelling competency can 
be characterised, and how it can be developed over time. This overall pur
pose implies the need to pursue specific questions such as the following: 

Can specific sub-skills and sub-competencies of "modelling competency" 
be identified? How is modelling competency different from general problem 
solving ability? Are there identifiable stages in the development of model
ling competency? What different competencies are needed for collaborative 
work in modelling and applications, compared with those needed when 
working alone? To what extent is the capacity to solve modelling and appli
cation problems impacted by the context in which a problem is set? 

The successful development of applications and modelling competencies 
in learners is strongly dependent on the nurturing qualities of teachers, and 
this means that the inclusion of modelling in teacher pre-service and in-
service education courses must be effectively promoted. 

What is essential in a teacher education programme to equip prospective 
teachers to teach applications and modelling? Given the all-purpose curricu
lum needs of primary teachers, and their often-limited mathematical back
ground and confidence, how can they be provided with real, non-trivial 
modelling situations? 

Beliefs, attitudes and emotions play important roles in the development 
of critical and creative senses in all aspects of mathematics. Modelling aims, 
among other things, to provide students with a better apprehension of mathe
matical concepts, teaching them to formulate and to solve problems situated 
in specific contexts, awakening their critical and creative senses, and shaping 
their attitude towards mathematics and their picture of it. 

So we ask to what extent can applications and modelling provide an en
vironment to support both students and teachers in their development of ap
propriate beliefs about, and attitudes towards, mathematics? What are the 
implications of available research concerning beliefs, attitudes, and emotions 
for changing teaching practice and classroom cultures with respect to their 
contribution? In particular, can modelling effectively promote views of 
mathematics that extend beyond transmissive techniques, to advance its role 
as a tool for structuring other areas of knowledge? And what strategies are 
feasible for teacher education, both pre-service and in-service, to address the 
fear experienced by some teachers when faced with applications and model
ling? 
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4.5 Mathematical competencies and their relation to applica
tions and modelling 

Effective mathematics learning involves a duality between the learning of 
strategies, concepts and skills, and competency in using this knowledge to 
address problems that are located both within mathematics, and in the rest of 
the world. Just as mathematical knowledge contributes to modelling compe
tency, we consider also how modelling activities can contribute to the devel
opment of other mathematical competencies such as are listed in curricula 
worldwide. In particular, modelling problems provide contexts for coherent 
rather than piecemeal learning, providing a vehicle both for connecting indi
vidual pieces of mathematical knowledge and giving them purpose - a whole 
that is much more than the sum of the parts. Here we consider questions like 
the following: 

How can modelling activities assist in the effective development of spe
cific mathematical attributes, which are listed as desirable in the curriculum 
statements of various countries and programmes? Which particular mathe
matical competencies are applications and mathematical modelling ap
proaches most suited to enhance? To what extent are motivational factors 
important in using modelling activities to develop mathematical competen
cies? In what ways can the use of modelling and application problems con
tribute to a balance of pure and applied mathematical competencies? 

4.6 Modelling pedagogy 

The pedagogy of applications and modelling intersects with the general 
pedagogy of mathematics instruction in many respects, but simultaneously 
involves a range of practices that are not part of the traditional mathematics 
classroom. While examples of successful applications and modelling initia
tives have been documented in a variety of countries, and contexts, the ex
tent of such programmes remains modest. Furthermore, approaches to teach
ing applications and modelling vary from the use of traditional methods and 
course structures, to those that involve a variety of innovative teaching prac
tices, including an emphasis on group activity and the use of innovative as
sessment. When we seek to identify and articulate appropriate pedagogical 
principles and strategies for the development of applications and modelling 
courses and their teaching, we ask: 

What research evidence is available to inform and support the pedagogi
cal design and implementation of teaching strategies for courses with an ap
plications and modelling focus? What are the areas of greatest need in sup
porting the design and implementation of such courses? What obstacles ap
pear to inhibit necessary changes in classroom culture e.g. the introduction 
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of interactive teamwork, or new forms of assessment in applications and 
modelling initiatives? What criteria are most helpful in selecting relevant 
elements from general theories of human development and/or learning? 
What criteria can be used to choose the most desirable option at a particular 
point within an applications and modelling teaching segment (e.g. between 
individual and group activity)? What documentations of successful group 
and other innovative learning practices exist? 

4.7 Teaching/learning practice of applications and modelling 

Applications and modelling activities vary in style and format across lev
els of education and across national contexts. Rarely (except in some spe
cialised university programmes) do we find whole courses devoted to 
mathematical modelling. Applications when mentioned, are often restricted 
to illustrations purporting to show where some piece of recently learned 
mathematics is used in practice. In some places modelling requirements are 
included as a strand in a wider syllabus, in others curricular statements are 
sufficiently flexible to allow teachers to introduce a modelling approach on 
their own initiative. At senior secondary school level the influence of high 
stakes assessment has a definitive impact on whether and how modelling is 
included, and what kind of interpretation a modelling focus is likely to take. 
Questions of importance include the following: 

What kinds of teaching programmes have been successful at different 
levels of education - elementary, secondary, tertiary? What are minimum 
requirements for a teaching programme to achieve a measure of success? 
How can modelling approaches be introduced successfully into a conserva
tive school mathematics programme? What kind of challenges does a teacher 
face when 'going it alone', and what kind of support is most needed? What 
types of problems have been found to be most successful for student en
gagement and learning? 

4.8 Implementation of applications and modelling in prac
tice 

Changing educational systems is a major challenge, as it impacts upon 
many different parties with sectional interests. With the increasing interest in 
and argument for mathematical modelling both inside and outside the 
mathematical community, there is a need to ensure that mathematical model
ling is implemented in a sustained fashion at all levels of mathematics edu
cation. In spite of a variety of existing materials, innovative programmes, 
and sustained arguments for the inclusion of modelling in mathematics edu-
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cation, it is necessary to ask why its presence in everyday teaching practice 
remains limited in so many places. So we ask for example: 

What are obstacles that traditionally impede the introduction of applica
tions and mathematical modelling into curricula at different levels of educa
tion, and how can these be overcome? What documented evidence of suc
cess in overcoming impediments to the introduction of applications and 
modelling courses exist? What is required for developing a modelling envi
ronment within traditional courses at school or university, and how does one 
ensure that a mathematical modelling philosophy in curriculum documents is 
mirrored in classroom practice? What continuing education experiences such 
as support for teachers need to be provided to maintain initiatives in mathe
matical modelling? 

4.9 Assessment and evaluation of applications and modelling 

The teaching and learning of mathematics at all levels is closely related 
to the assessment of student achievement. To assess mathematical modelling 
performance is not easy, for the more complicated and open a problem, the 
more complicated it becomes to assess the quality of a solution. And when 
technology is available, assessment becomes even more complex. There are 
many indications that assessment modes traditionally used in mathematics 
education are not fully appropriate to assess modelling competency. Hence a 
need exists to investigate alternative assessment modes that are available to 
teachers, institutions and educational systems, that can capture the essential 
components of modelling competency - and to address obstacles to their im
plementation. Questions needing attention include the following: 

What are the practical implications of assessing mathematical modelling 
as a process, rather than a product? If there is a change in the mathematics 
conception of students while experiencing and learning mathematical model
ling, how can that change be assessed? When mathematical modelling is in
troduced into traditional courses at school or university, how should existing 
assessment procedures be adapted? When centralised testing of students is 
implemented, how do we ensure that mathematical modelling is assessed, 
and assessed validly? How does one reliably assess the contributions and 
achievement of individuals within group activities and projects? 

The evaluation of the effectiveness of teaching programmes with applica
tion and modelling components is similarly challenging. In what ways do 
common evaluation procedures for mathematical programmes carry over to 
programmes that combine mathematics with applications and modelling? 
What counts as success when evaluating outcomes from a modelling pro
gramme? What do biologists, economists, industrial and financial planners. 
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employers etc., look for in a student's or an employee's mathematical mod
elling abilities? 

4.10 Technology with and for applications and modelling 

Many technological devices are highly relevant for applications and 
modelling. They include calculators, computers, the Internet, and computa
tional or graphical software as well as all kinds of instruments for measuring, 
for performing experiments etc. These devices provide not only increased 
computational power, but broaden the range of possibilities for approaches 
to teaching, learning and assessment. On the other hand, the use of calcula
tors and computers may also bring associated problems and risks. 

How should technology be used at different educational levels to effec
tively assist the development of students' modelling abilities, and to enrich 
their experience of open-ended mathematical situations in applications and 
modelling? What implications does technology have for the range of appli
cations and modelling problems that can be introduced? How is the culture 
of the classroom influenced by the presence of technological devices? Will 
button pressing compromise the thinking and reflection necessary within 
modelling problems, or can these be enhanced by technology? What evi
dence of successfijl or failed practice in teaching and learning applications 
and modelling has been documented as a direct consequence of the introduc
tion of technology? When does technology potentially kidnap learning pos
sibilities, e.g. by rendering a task trivial, and when can it enrich them? Are 
there circumstances where modelling processes cannot be developed without 
technology? With particular regard to less affluent countries, can applica
tions and modelling be undertaken successfully without any advanced tech
nology? What are the implications of the availability of technology for the 
design of assessment items and practices, for use in contexts involving ap
plications and modelling? 

5. A BRIEF HISTORY OF THE FIELD 

In this section we give a brief outline of the history of applications and 
modelling in mathematics education. Such a history has two aspects, one 
pertaining to applications and modelling in the practice of mathematics 
teaching and learning, and one pertaining to applications and modelling as a 
field of research and development within mathematics education. We shall 
deal with these two aspects in sequence. 
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5.1 Applications and modelling in mathematics instruction 

As long as mathematics has been part of general schooling, applications and 
(less so) modelling have been integrated with the learning of mathematics as 
far as primary and lower secondary levels are concerned. Of course, this 
does not imply that every single element in the learning of mathematics is 
linked to objects, phenomena or problems in extra-mathematical domains, 
but rather that from time to time elementary mathematics (e.g. arithmetic and 
geometry) is confronted with some extra-mathematical reality. Applications 
and modelling concerning inventories and taxation, land mensuration, trade, 
currency, calendars, lunar cycles, solar eclipses, construction of temples, 
division of inheritance etc., were dealt with in Mesopotamian and Egyptian 
scribe schools, and in Indian, Chinese, and Arabian textbooks. The same was 
true of many mathematical (text) books published in Europe (including the 
UK) 1200 - 1800, where one could also find applications and modelling 
concerning architecture, art (perspective drawings), ballistics, construction 
of fortresses and bastions, optics, horoscopes, map making, navigation, gam
bling, insurance, heat propagation, population forecasts etc. Also ancient 
Greek mathematicians such as Archimedes and Eratosthenes were involved 
in applications to warfare, physics, geography etc. 

Mathematics as a scientific discipline was always intimately intertwined 
with its neighbouring disciplines physics, astronomy and engineering, so 
much so that until the early 19*̂  century mathematics was by and large per
ceived as a natural science that involved many applications and modelling 
activities. However the notion of applications and modelling in our sense 
was hardly expressible at that time as it was extremely difficult to disentan
gle mathematics from the fields it served, a disentanglement which is neces
sary if we are to discern between extra-mathematical domains lending them
selves to mathematical representation, and mathematics as an independent 
edifice. So, while those who did receive some form of mathematical educa
tion were indeed exposed to what we, today, would term applications and 
modelling, this was in no way made explicit. 

We know that things changed radically with the advent of abstract non-
Euclidean geometry in the early 1800's, the development of abstract analy
sis, and abstract algebra, and the extraordinary development of pure mathe
matics during the second half of the 19* century and throughout the 20*̂  cen
tury. This development, however, always went in parallel and sometimes 
even hand-in-hand with an equally strong development of advanced uses of 
mathematics brought about through sophisticated application and modelling 
activities, some of which rested on the creation of new mathematical topics 
(e.g. functional analysis, linear programming, coding theory, cryptography) 
designed to cope with issues and problems pertaining to the real world in the 
sense of this Volume. 
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Up until the mid-19* century it was extremely difficult to obtain teaching 
of pure mathematics ~ except for Euclid's "Elements" which was part of 
many secondary or tertiary level curricula. Only from the mid-19* century 
did the idea that mathematics education should (also) be provided for general 
formative reasons begin to gain momentum - for purposes of training the 
logical "thinking muscle" (Niss, 1996, p 23). 

From the end of the 19* century, most post-elementary curricula began to 
contain both pure and applied components (but without explicit instances of 
modelling). Throughout the 20* century, the curricular balance between 
these components has been an issue of continuing debate amongst mathe
matics educators, as reflected in many curriculum documents. The choice 
made in different epochs regarding this balance was a reflection of societal 
trends as well as of intrinsic features of the teaching and learning of mathe
matics. Several authors (e.g. Galbraith, 1989; Niss, 1996) have identified 
"pendulum swings" in the emphases on pure versus applied aspects of 
mathematics in education. The pendulum swings can be seen, in part at least, 
as an instantiation of the duality discussed previously between "applications 
and modelling for the learning of mathematics" and "learning mathematics 
so as to develop competency in applying mathematics and building mathe
matical models". Moreover, to the extent that the teaching and learning of 
mathematics displays a balance between theoretical mathematics and the 
application of mathematics for extra-mathematical purposes, intrinsic pendu
lum swings are very likely to occur, caused by the simple fact that when one 
side of the balance receives too much emphasis to the disadvantage of the 
other, there is an inherent tendency to begin calling for more emphasis on 
the other side. 

At intervals throughout the 20* century pragmatic and utility oriented 
movements characteristically gained momentum, to insist on a serious role 
for the applications of mathematics in curricula, geared to students who were 
not expected to become mathematics professionals, but rather users of 
mathematics at various levels of sophistication. By this means, established 
applications of mathematics - e.g. interest and annuities, geographical coor
dinates, technical drawings, consumer arithmetic and so on - were given a 
place in many curricula. However, utilitarian movements frequently dealt 
only with low-level mathematics, and generally speaking no attention was 
paid to the analysis of applications as models, let alone to modelling as a 
process. In the 1920's the pendulum swung, in many countries, back to a 
stronger emphasis on theoretical mathematics, which was seen as well suited 
to exercising a general formation and development of the individual, not 
with respect to logical thinking alone, but with respect also to mental dispo
sitions and personal attitudes. The post-depression 1930's and the 1940's 
saw yet another pendulum swing back to an emphasis on utility and the ap-
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plication of mathematics, which was then succeeded by a renewed emphasis 
on purely theoretical mathematics in the late 1940's and the first half of the 
1950's. 

The late 1950's saw two new developments with very different orienta
tions, which were, however, intertwined to some degree. In the UK, for ex
ample, voices were raised, in particular amongst industrialists (Cooper, 
1985), that graduates from schools and universities were not able to use 
whatever mathematics they might have been taught to solve real world prob
lems. At best they had learnt mathematics by rote and were able to solve rou
tine problems with which they were familiar from the teaching they had re
ceived. However, when confronted with non-familiar situations they did not 
possess any tools to deal with them. This stimulated calls for mathematical 
instruction to take the application of mathematics seriously, to such an extent 
that students would become able to tackle open, unfamiliar problem situa
tions themselves. The resulting development towards mathematical model
ling as an educational enterprise (Pollak, 1968), began in engineering set
tings and the sciences, and spread to other fields during the next decades. 

At the same time, the so-called New or Modem Mathematics movement 
emerged and gained momentum. While its aim was to restore a proper focus 
on theoretical mathematics in a renovated form as encountered in university 
mathematics - the "Bourbakist orientation" - the ultimate end was, in fact, 
to equip students with the prerequisites needed for dealing with mathematics 
in real world contexts, which according to the reformers of mathematics re
quired a deep knowledge of and insight into theoretical mathematics. This is 
reflected in ICMI President Marshall Stone's chapter in the reform manifesto 
'TsFew Thinking in School Mathematics" based on the famous Royaumont 
meeting in 1959. This insistence on the eventual utility of mathematics made 
the initial intertwining of the modem mathematics reform and practitioners' 
call for a focus on real world problem solving possible. 

However the two movements soon diverged, so much so that they re
sulted in mutual opposition, and the divergence was amplified by the expan
sion of upper secondary and tertiary education from the late 1960's. This 
expansion meant that many more students, and new types of students, would 
receive some form of mathematics education, and for most the aim was not 
to prepare them to become mathematics professionals, but to teach them 
mathematics that could be used outside of mathematics itself In tum this 
implied that the application of mathematics gradually became a priority issue 
in mathematics education. As lessons from the reform movements of the late 
1950s and the 1960s strongly suggested that graduates from schools and uni
versities could not be expected to (be able to) put mathematics to use just 
because they had been taught theoretical mathematics, applications and 
modelling had to be taught, and not just praised. This influence was ac-
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knowledged in curriculum development, through the production of instruc
tional materials, and in teaching practice in a number of countries (e.g. the 
UK and Australia, Austria, Denmark, Germany, and the Netherlands) from 
the 1970s. Since then more and more countries have adopted a similar view, 
so that the active application of mathematics in open-ended situations by 
means of mathematical models and modelling has made its way into the 
teaching and learning of mathematics. 

It is characteristic that the later phases of this development were stimu
lated and sustained by the gradual establishment of communities of mathe
matics educators working on issues of applications and modelling in mathe
matics education, as elaborated in the following section. 

5.2 Applications and modelling as a field of research and de
velopment in mathematics education 

It is easy to observe, throughout the history of mathematics education, 
that the application of mathematics as an educational endeavour has always 
had its more or less influential, and more or less singular, advocates in de
bates on mathematics teaching and learning. The more emphasis the Zeit
geist placed on theoretical mathematics, the more vocal these voices became. 
Alongside the trends sketched in the previous sub-section such advocates 
increased in number, gained more and more strength, and became (better) 
organised in the 1960's. The call for applications and modelling received 
strong patronage in the late 1960s (for a very outspoken example, see Ham-
mersley, 1969), partly in reaction to a perceived neglect by enthusiastic ad
herents to 'modem mathematics' movements. Hans Freudenthal organised 
an instrumental conference in 1968 on the theme "How to Teach Mathemat
ics so as to be Useful?" the papers from which were subsequently published 
in Educational Studies in Mathematics in 1968. Freudenthal's opening ad
dress (Freudenthal, 1968) was assigned the telling title "Why to Teach 
Mathematics so as to be Useful?" 

Since then we may discern three phases of research and development 
concerning applications and modelling in mathematics education. In the first 
phase, which we might refer to as the advocacy phase (roughly in the decade 
1965 - 1975), symbolically initiated by Freudenthal's conference, advocates 
of applications and modelling provided arguments in favour of the serious 
inclusion of such components in the teaching of mathematics. 

This was continued in the second development phase, (1975 - 1990) 
which was mainly characterised by the development of actual curricula and 
materials at various levels so as to encompass applications and modelling 
components (e.g. Mathematics Applicable in the UK and COMAP/UMAP in 
the USA). The emphasis here included the design and conduct of - some-
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times experimental - teaching units and particular modelling courses, the 
procuration and implementation of instructional materials, and the genera
tion and cultivation of specific cases of applications and modelling for po
tential use in mathematics classrooms. During this phase attempts were made 
at systematising and analysing, at a theoretical level, the argument for appli
cations and modelling in mathematics education, and of investigating theo
retically (Blum & Niss, 1991) and historically (Kaiser-Messmer, 1986) the 
relationship between applications and modelling and other components of 
mathematics education. In other words a research perspective was emerging. 
The programmes of the International Congresses on Mathematical Educa-
tion (the ICMEs) reflected these trends, in particular since ICME-3 in 
Karlsruhe, 1976. The development phase further saw the initiation of what 
later became an international community of mathematics educators develop
ing and investigating applications and modelling at various educational lev
els. The most visible aspect of this initiation was the conference series Inter
national Conferences on the Teaching of Mathematical Modelling and Ap
plications (the ICTMAs) and the resulting conference Proceedings. The first 
conference was held in Exeter (UK) in 1983 (Berry et al, 1984), and since 
then an ICTMA has been held every second year. It is no coincidence that 
the word "modelling" figures prominently in the title, and before the word 
"applications". This is in order to underline the priority given to the model
ling process, a priority which was a focal point for the British polytechnic 
environment in which the ICTMAs were first conceived, and which remains 
so in the community. 

With some caution, the current phase (since 1990) might be termed the 
maturation phase, in the sense that it is during the last one-and-a-half dec
ades that empirical studies of teaching and learning of applications and mod
elling have been added to the theoretical emphases of the previous phases. 
This does not imply, however, that there is an abundance of such research at 
our disposal today, but the volume is growing, with studies increasingly un
dertaken by younger researchers entering the field. It is also during this 
phase that the community around the ICTMAs established itself as an organ
ised community, the International Community of Teachers of Mathematical 
Modelling and Applications, also carrying ICTMA as its acronym, and 
which was adopted by the International Commission on Mathematical In
struction as an Affiliated Study Group in 2004. During the same period, 
work in North America (e.g. Lesh & Doerr, 2003) has involved systematic 
research and development in the modelling field, mainly at elementary and 
secondary school levels. 

The present ICMI Study Volume might be said to formally mark the 
maturation of applications and modelling as a research discipline in the field 
of mathematics education. 
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6. ABOUT THE STRUCTURE OF THIS VOLUME 

This Volume consists of six parts. Following this introductory Part 1, the 
subsequent Part 2 contains the eight plenary papers of the Study Conference 
in Dortmund, 2004. In Part 3, the core part of this Volume, several crucial 
issues in the field of applications and modelling in mathematics education 
are addressed, grouped into seven Sections; these sections have resulted 
from Working Groups at the Conference, organised by members of the Pro
gramme Committee, and are edited by these members, in some cases sup
ported by co-editors from outside the Committee. The chapters in Part 4 dis
cuss some questions on applications and modelling that are specific to the 
various educational levels; these chapters, too, have resulted from Working 
Groups at the Conference, organised mostly by members of the Programme 
Committee, and have been written by the organisers. In addition to the chap
ters in Parts 3 and 4, Part 5 presents four selected case studies from different 
parts of the world; in each of these, some particularly interesting develop
ment in the field of applications and modelling is reported. Finally, Part 6 
contains a short bibliography. In the following, we will describe the content 
of each Part and its contribution to this Volume in some more detail. 

The papers in Part 2, based on the plenary presentations at the Study 
Conference in Dortmund and ordered here alphabetically, cover a wide range 
of topics - in particular, all the issues listed in Section 4 are addressed by 
this collection of papers. In Chapter 2.1, Claudi Alsina pleads for the inclu
sion of real world objects and situations into everyday mathematics teaching 
and gives several concrete examples. Morten Blomhoj and Tomas Hojgaard 
Jensen elaborate in Chapter 2.2 on mathematical competencies, based on the 
Danish KOM project, and on the role of modelling in this framework. Draw
ing on observations of students working in a technological setting, Jere Con-
frey and Alan Maloney analyse in Chapter 2.3 mathematical modelling from 
an epistemological point of view. In Chapter 2.4, Helen Doerr discusses the 
new challenge for pre-service and in-service teacher education programmes 
raised by the inclusion of applications and modelling in mathematics teach
ing. Mainly based on current work in assessment, Peter Galbraith in Chapter 
2.5 emphasises the need for further related research in the field of applica
tions and modelling. Brian Greer, Lieven Verschaffel and Swapna Muk-
hopadhyay make a plea in Chapter 2.6 for making mathematical modelling 
activities accessible for primary school children by way of appropriate real 
world problems, while in Chapter 2.7, Gabriele Kaiser and Katja Maali re
port on empirical studies into students' and teachers' beliefs, and consider 
ways that modelling competencies can be developed in everyday teaching. 
The final Chapter 2.8 contains reflections by Henry PoUak on various issues 
in mathematics education, based on interviews with him prior to the confer-
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ence, which he was unable to attend. These video interviews are included on 
the CD available with this book. 

The seven sections in Part 3 all have the same structure. The introduc
tory chapter, written by the section editors, contains a framework for the is
sue under discussion as well as a description of how each paper included in 
this section contributes to shedding light on certain aspects of this issue. So 
all remaining chapters of a section can be regarded as samples of how certain 
questions, combined with the issue considered in the section, may be ap
proached. Section 3.1, edited by Jere Confrey, deals with epistemology; 
here, certain aspects of the relationship between mathematics and the real 
world are analysed within an educational setting. Section 3.2, edited by Peter 
Galbraith, combines the challenge of goal setting within mathematical mod
elling activities, with questions of what role authenticity should play in the 
selection of tasks and problems for certain purposes. In Section 3.3, edited 
by Brian Greer and Lieven Verschaffel, several kinds and levels of model
ling activities, together with various facets of modelling competency are pre
sented and discussed. The extensive Section 3.4, edited by Eric MuUer and 
Hugh Burkhardt, contains papers dealing with roles that applications and 
modelling activities can play in advancing mathematical skills and abilities, 
including reflections on the role of the teacher and of technology. Pedagogi
cal aspects of modelling are the focus of Section 3.5, edited by Hans-
Wolfgang Henn, again including technological aspects. Section 3.6, edited 
by Thomas Linge^ard, addresses questions of how to implement applica
tions and modelling into teacher education programmes. Finally, Section 3.7, 
also edited by Peter Galbraith, focuses on the theory and practice of assess
ment and evaluation related to applications and modelling. 

The papers in Part 4 deal with five educational levels: primary, lower 
secondary, upper secondary, tertiary, and teacher education. These papers 
are not intended to be comprehensive surveys of what is going on around the 
world within this theme of the Study. Rather, some specific examples have 
been chosen that reflect priorities identified by the corresponding group 
members during the Conference. 

Part 5 presents four cases: A study of the modelling activities of pro
spective mathematics and science teachers in the USA, a study into the im
plementation of modelling in the secondary school mathematics curriculum 
in the province of Ontario/Canada, an investigation into the influences on the 
sustaining of application-oriented curriculum change for senior secondary 
mathematics in two Australian states, and a report on teaching experiments 
with modelling social issues in South African schools. All four cases indi
cate exemplary activities aimed towards a broader implementation of 
mathematical modelling in curricula and classrooms. 
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Part 6 contains a concise bibliography which includes some basic refer
ences (in English language) published on the topic of applications and mod
elling in mathematics education in recent years, most of them generated in 
the context of the ICME and ICTMA conference series. Many more publica
tions can be found in the separate lists of references contained in each of the 
chapters in this Volume. 
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Chapter 2.1 

LESS CHALK, LESS WORDS, LESS SYMBOLS 
MORE OBJECTS, MORE CONTEXT, MORE 
ACTIONS 

Claudi Alsina 
E.T.S. Arquitectura de Barcelona. Technical University of Catalonia (UPC), 
Email: claudio. alsina @ upc. edu 

Abstract: We will show how real objects, real places and real challenges may play an 
important role in the process of teaching mathematics by means of modelling 
and applications. 

1. INTRODUCTION 

Throughout this contribution we will defend the idea that realistic teach
ing is an appropriate method for quantitative literacy training (Steen, 1998, 
2001). 

An important consequence of teaching "via applications" is that the clas
sical way of delivering lectures needs to be changed. Teaching with applica
tions today means stopping the "talk & chalk" method; no longer using an 
old textbook and instead offering a very lively guiding program, based upon 
various information sources, which opens new windows to appreciate the 
context of the students and their creativity as individuals and as a group 
(Alsina, 1998b, 2003) 

Following the discussion document of this ICMI Study: "by real world 
we mean everything that has to do with nature, society or culture, including 
everyday life as well as school and university subjects or scientific and 
scholarly disciplines different from mathematics." 

So we will focus only on objects and instruments, on everyday situations, 
on frequent or recent events, on real challenges and showing how this realis
tic approach may play an important role in the process of teaching by means 
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of modelling and applications (see, e.g., the educational projects "Modelling 
our world" (COMAP, 1998) and "Math in context" (Romberg & de Lange, 
1998). 

The ideas that we will present here come from our own experience and 
research in teaching mathematics as a service subject, training groups of 
teachers and doing workshops with high school students. 

2. MATHEMATICAL TAKING OFF AND LANDING 

The following diagram shows the classical way to deal, step by step, with 
the procedures for modelling-working-applying: 

Real Problem 

1 

^ 
^ 
f 

Mathematical Model 

Mathematical Modelliiig 

j ^ 

*% 
Mathematical Working 

1 r 
Mathematical Resets 

1 

- J 

^ 
f 

Practical Coiisequeitces 

Mathematical Application 

While most contributions in this field focus their attention on the central 
parts of this diagram, our aim here is to fix our views on the two boxes at 
either extreme: the realities to be considered and skills for deriving practical 
consequences. Too often, both ends become theoretical: word problems ver
sus word solutions. If this is the case then we lose the possibility of motivat
ing and providing students applied competencies (Niss, 1992, 2001). 

3. LET US USE REAL OBJECTS 

Our chief concern in this section is to pay attention to the wide range of 
daily life objects that may be used for teaching purposes, either for introduc-
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ing new shapes and problems or for motivating a concrete visual approach to 
useful mathematics (Bolt, 1991; Steen, 1994; Alsina,1998a,b). All these ob
jects constitute real applications of mathematics and by observing their cha
racteristics and functional properties, students may appreciate the creativity 
behind them or may discover their limitations. As teachers may bring objects 
to the classroom and students may bring their own, this is a free material at 
our disposal. 

Example: Modelling in the rain - with umbrellas 
Today's umbrellas are sophisticated folding structures but they share with 

older ones a beautiful geometrical fact: the regular 8-gon determined by their 
extreme points. When you observe the moving octagonal pyramid of the 
structure you can discover how several articulated parallelograms change 
angles (and areas) but keep their perimeters. All these parallelograms deter
mine a moving bipyramid. If you join two extreme points of the 8-gon you 
obtain a moving 7-gon which can be used to mark the 7-gon in a given circle 
(one of the impossible solutions with rules and compasses!). 

It is interesting (Alsina, 2003) to collect umbrellas, fans, hats, etc, from 
all around the world (see also Gheverghese, 1996), i.e., daily life objects that 
exhibit flexibility. 

Example: Polyhedra and polygons in context 
Nature exhibits a very restrictive collection of polyhedra. Only in some 

specific classes of minerals does one find basic shapes such as cubes or 
prisms. However, designers have produced a wide range of objects that have 
polyhedral forms. Packaging, logistics and beauty have motivated these de
signs. 

Table 2J-L Polyhedra and daily life objects 

CUBES 
TETRAHEDRA 
OCTAHEDRA 

ICOSAHEDRA 
DODECAHEDRA 
PRISMS 
BOXES 

PYRAMIDS 

BIPYRAMIDS 
OTHER POLYHEDRA 

Dice, soup cubes, presents in boxes, hat boxes... 
Tetra Pack ®, 3D puzzles, tripods, 4-faced dice... 
Diamonds for cutting, table structures, kites, 8-
faced dice... 
MAA logo, 20-faced dice, domes, sculptures... 
Holders, 12-faced dice, no parking signs... 
Toblerone packages, cookie boxes, pencils... 
TetraBrik ® packaging, cakes, Chanel n** 5 box. 
packages... 
Egyptian pyramids, the top of an obeHsk, 
Sharkowski pieces... 
Whipping tops, jewels... 
Jewels, footballs, puzzles... 
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In our geometry education we anticipate the study of n-gons to the 
knowledge of polyhedra. This is, possibly, a mistake. Our visual experience 
goes, in general, from 3D to 2D. 

Nevertheless, n-gons appear also by themselves in some planar objects or 
graphical designs. 

Table 2.1-2, Polygons and daily life objects 

TRIANGLES 

QUADRILATERALS 

PENTAGONS 
HEXAGONS 
OCTAGONS 
n-GONS 

STAR GONS 

Traffic signs, damage signals, musical in
strument 
Paper sheets, tile, cookies, cubes, brooches. 
snacks 
Chrysler logo, napkin knot, tables 
Tiles, plates, pencil sections, kite 
Wind's directions, tables, trays, domes 
Hours in a watch (12), cookies, commercial 
logos 
Sea star, star of David, tyre, clasps 

Example: Curves in our life 

Table 2.1-3. Curves in our life 

Curve 
Straight line 

Circle 
Ellipse 
Parabola 
Hyperbola 
Sinusoid 
Cycloid 

Catenary 
Spirals 

Daily life examples 
Edge of a sheet of paper, string with a plumb-
bob... 
Plate, rim of a glass, coin, wheel, ring... 
Profile of a hat, inclined liquid in a glass... 
Parabolic antenna, hand near ear... 
Profile of a bell, arcs in a hexagonal pencil... 
Snake's movement, sea waves, roofs... 
Trajectory of a point in a wheel, pizza 
maker... 
Train wires, hanging chain... 
Classical discus, tape in a cassette, CDs... 

Example: Transformations in daily life experiences 
We may identify the basic geometrical transformations whose effects are 

seen in daily life movements: translation when walking down a street: rota
tion when the hands of a watch move or when we open a door; symmetry as 
a mirror effect: similitude when making reduced or enlarged Xerox copies; 
affinities when folding a box; projectivities when making shadows or photo
graphs; homeomorphisms when folding a T-shirt, etc. 
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4. LET US EXPLORE REAL PLACES 

Where are we teaching? Are we in a big city? Are we in a small village? 
Are we in a developed country...? We must be sensitive to our location. 
Some environments are rich in motivating contexts; others are not. We may 
take advantage of the location or, alternately, we may need to supply "addi
tional motivation". 

Do we have factories to visit? Are interesting measurements available in 
the area? Do we have notable buildings? How is public transportation organ
ized? How is pollution measured...? If we get positive answers to these ques
tions then we will have interesting places to generate mathematical activities 
at hand. Otherwise we can "bring" appropriate input to the classroom by 
means of Internet, books or pictures... 

Wherever we are, in addition to geographical or architectural possibili
ties, there are social demands, social issues to be faced, cultural activities, 
etc. 

We need to take these motivating situations into account as much as pos
sible: working conditions, retirement plans, economic indices, inflation, 
theatre, television, book reading, local dances, music, musical instruments 
and cuisine—all social and cultural realities may have some mathematical 
interest. 

On a compulsory level we prepare future citizens in a very specific social 
context. Our mathematics teaching may benefit from local characteristics 
and it is our goal to prepare students to be critical citizens and good profes
sionals in whatever their context. 

Examples of local applications 
• 

• 
• 

• 
• 

• 

• 
• 
• 

Geometrical characteristics of the 
school 
Distances from school; times 
Geographical coordinates of the 
school 
Cost of food at school 
Ratios of ingredients in popular 
dishes 
Geometry of particular buildings 
in town 
Mathematics in folk dances 
Different scales in local charts 
Statistical study of minorities in 
local society 

Examples of global applications 
• 
• 
• 
• 

• 

• 

• 
• 
• 

• 

Demographic issues: perspectives 
Timing in travelling 
Mathematics in democracy 
Ecological problems: The Kyoto 
agreement 
Mathematics and traffic (cars. 
roads, petrol) 
Locations in the planet (GPS sys
tem) 
Air traffic control and capacities 
Digital images as messages 
Implications of air conditioning in 
housing 
Statistics on process: imports and 
exports 
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• 

• 

• 
• 

• 

• 
• 
• 
• 

History of calendars. Local holi
days 
Mathematics and sports. World 
records 
Art exhibits in the town 
Mathematics in newspapers and 
magazines 
Mathematics in consumer issues. 
Indices 
Numbers and classical tales 
Numbers in popular sayings 
Mathematics and music 
Alcohol rates and driving: waiting 
times 

• 

• 

• 
• 
• 

• 

• 

A visit to a car factory: sequential 
working 
A visit to a food factory: quality 
control 
Codes, phones, messages, Litemet 
Mathematics and genomics 
Art: painting, sculptures, build
ings 
Fair division: geometry and eq
uity 
Mathematics and information: 
CDs, DVDs. 

5. LET US FACE REAL CHALLENGES 

In the previous sections we have been using objects and places to provide 
visual images and to make mathematics visible. Let us consider now the 
challenge of facing realistic problems and finding realistic solutions. 

One may know a lot of things about cubes, observing minerals and 
houses, making cardboard models, enjoying interactive 3D-programs in the 
computer, etc., but occasionally it is useful to face the real problem of mak
ing a real cubic box, such as one that can be used to contain a present. Say, 
for example, that you want to open (and to close) just one face, and you want 
to transport the box - design problems may be very instructional. 

Example: Function and design 
Most shapes that we have around us are the result of a design process: 

houses, streets, cars, beds, bells, pencils... In this designed reality there is a 
strong mathematical component, from measurements to shapes. Most of 
these objects were designed to satisfy some desirable function. As part of the 
classical dialogue between form and function designers look for "optimal 
solutions". But "optimal" may hide different ideas: minimal quantity of ele
ment, low cost, ecological aims, transportability goals, etc. 

It's interesting to know how designers work and how they find the best 
design solutions. Let us recount here, in some detail, the story of Jacob 
Rabinov. 

Rabinov worked in New York, making 225 patents for all sorts of de
vices. When he retired, he wrote the acclaimed book Inventing for Fun and 
Profit One of Rabinov's favourite topics was "screws and screwdrivers". He 
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wanted to avoid the problem of so many screws being removed due to the 
fact that so many screwdrivers could be used for the same class of screw 
(even coins!). Thus, Rabinov took advantage of geometry and created a 
screw whose head made it impossible to manipulate with any conventional 
driver. Here we reproduce his description: 

If you make a triangular depression with sides in the shape of three arcs, 
were each point of the triangle is the center of curvature of the opposite 
arc, you have a triangular hole that can be driven with a specially 
shaped screwdriver, but not by any flat screwdriver. If you insert aflat 
blade, the blade will pivot at each comer and slide over the opposite 
curved surface, hit the next comer and slide again, and so on. Such a 
screw should look very attractive and would be very difficult to open 
without the proper tool. 

These three arcs quoted above form a Reuleaux triangle, a convex figure 
of constant width, which is not a circle. 

Example: Beware of the steps in a staircase! 
This is an example to be studied with materials on a 1:1 scale, and which 

has a universal value: all humans need stairs which are easy to climb and 
almost all human beings use shoes. Stairs are important objects. Measure 
them! (e.g. using electronic measurements). The ideal steps have two impor
tant measurements: H (height) and D (depth), related by the affine equation, 
2H + D = 63 cm. The inclination tan A = H:D is also interesting. What are 
the upper and lower bounds for H, D and A? When is it convenient to have a 
ramp and not a stair? In vertical ladders (such as in submarines) you face the 
steps to go down, but in normal stairs you come down the other way around: 
when is it better to face the steps? 

In houses, stairs, streets, singular buildings, parks, mountains or plains ~ 
not far away from the classroom site ~ we find 1:1 models to provide a rich 
setting in which to practice actual measuring, drawing techniques, indirect 
measurements, finding of data, etc. The best lecture in the blackboard on the 
inclination of streets can't replace the real experience (at least once!) of ef
fectively measuring the inclination in a real street. We want real challenges, 
not artificial questions. 
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6. IMPLEMENTATION IS THE ANSWER - WHAT ARE 
THE QUESTIONS? 

One major challenge in mathematics education is to achieve the goal that 
realistic modelling and realistic application be indeed implemented in 
courses. This, however, is not so easy. We have clear evidence that there are 
many difficulties entailed in introducing this approach to our daily teaching 
(Breiteig, Huntley, & Kaiser-MePmer, 1993). We would like to make some 
remarks: 

We need teachers who are confident 
The main objection is that pre-service education does not provide teach

ers enough knowledge and experiences to be confident in dealing with appli
cations and modelling. Thus, many improvements on pre-service and in-
service training need to be made. 

The level of learners 
Clearly, the level of learners will orientate us as to which choice to make 

concerning applications. While a tender, fictional tale on numeracy may be 
appropriate in kindergarten, there is no way to tell the same story in a high 
school. Each generation of students has topics that are relevant to them - and 
we want them to be interested. 

Often in recreational mathematics, problems are presented in a fiction-
real context which insinuates that the result to students' discovery will be a 
crucial issue in their lives. Crossing rivers, climbing castles, covering chess
boards with tetraminos - who does these things today? Useless mathematics 
cannot become useful even if it is presented in a fun way. 

"Cooked" examples to illustrate some mathematical concepts or results 
are related to situations which are not interesting for the students, or even 
teachers. Let us recall the old problem "if 5 workers in a building will end 
the work in 3 weeks, when will the building be finished if 25 workers are 
assigned?" 

Applications (and especially research activities related to them) are ideal 
for inducing cooperative work or teamwork. Good assessment, e.g., in set
ting up projects, needs to take into account individual and cooperative as
pects. Preparation for cooperative work is a crucial goal in today's circum
stances (Galbraith, 1998; deLange, 1996; Blum, Niss, & Huntley, 1981; 
Blum & Niss, 1991; Tanton, 2001). 

The applied approach is time consuming 
This is a key issue. Indeed, many teachers do not organize active learning 

visits, experiments, etc., because there is a lack of time. It seems there is no 
problem of time for chalkboard expositions. What is true is that our propos
als imply a careful preparation of agendas. 
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Technology is not the solution 
The growing power of technologies may induce some people to believe 

that these new devices are the essential tools for providing support for well-
structured experiences; that simulations and images may be enough to elimi
nate completely the need for "real experiments" and hands-on materials. 
This is not possible. New software gives new mathematical insights but can't 
replace "learning by making". Li our discussion here, technology serves to 
complement what we are presenting. 

Hands-on materials are not always available 
While textbooks and classroom materials are produced in big quantities, 

with a wide range of alternatives, very few kites can be purchased in the 
market. Of course, many materials can be easily made and real objects are 
everywhere. New commercial initiatives, however, would truly be welcome. 
Fortunately, many "free" opportunities exist around us. 

Realistic activities need to be properly integrated 
There is the risk that realistic experiences can become isolated, like is

lands in the sea of formal instruction. Such experiences are not useful if they 
are not combined with the usual activities of everyday teaching practice. 
These actions serve to assist students to learn important concepts, and of giv
ing them new opportunities to develop new skills. 
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WHAT'S ALL THE FUSS ABOUT 
COMPETENCIES? 
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Abstract: This paper deals with applying a description of a set of mathematical compe
tencies with the aim of developing mathematics education in general and in 
particular the work with mathematical modelling. Hence it offers a presenta
tion of the general idea of working with mathematical competencies as well as 
an analysis of some potentials of putting this idea into educational practice. 
Three challenges form the basis of the analysis: The fight against syllabusitis, 
the dilemma of teaching directed autonomy and the description of progress in 
mathematical modelling competency. 

1. INTRODUCTION 

Mathematics education is full of buzzwords. These are words that add 
flavour to an analysis, a discussion or the planning of a teaching practice just 
by being mentioned. "Metacognition", "project work" and "responsibility for 
one's own learning" are good examples. 

An underlying agenda for the structuring of this article is, that there are 
good arguments against using such buzzwords, the danger of replacing 
words for thoughtfulness being one. Consequently, one should always take a 
critical stance and ask the question: For what kind of challenges is this a po
tentially useful concept, and how should we understand and use the concept 
in the light of this? 

Within recent years "competence" has been added to the list of buzz
words, at least in the northwestern part of Europe. In what follows, we shall 
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analyse the cognate concept "mathematical competence" by attempting to 
answer the critical question posed above. 

Three potential uses of the concept are analyzed, hi each case the analy
sis is spanned by a general problematique pertinent to working with mathe
matical modelling in mathematics education and one or more developmental 
projects attempting to use the competence perspective to deal with this prob
lematique. 

2. FIGHTING SYLLABUSITIS IN MATHEMATICS 
EDUCATION 

What constitutes mathematics as a subject? Many things, of course, but 
we feel convinced that everyone will agree, that mathematics has to do with 
certain objects, concepts and procedures that we (tautologically) consider as 
mathematical. Many people use this relation to subject matter to characterize 
the subject. "Mathematics is the subject dealing with numbers, geometry, 
functions, calculations etc." is not a rare type of answer to the question of 
what constitutes mathematics. 

What, then, does it mean to master mathematics? With reference to the 
above it is tempting to identify mastering mathematics with proficiency in 
mathematical subject matter. However, this belief if transformed into educa
tional practice, is severely damaging. Damaging to the effect that is has been 
given the name of a disease, namely syllabusitis (Jensen, 1995). It is a dis
ease because it fails to acknowledge a lot of important aspects: Problem 
solving, reasoning and proving and - in the context of this paper not least -
modelling, just to mention some. Combined with the hardly ever challenged 
viewpoint that the aim of mathematics education is to make people better at 
mathematics, a curriculum infected by syllabusitis therefore fails to set an 
appropriate level of ambition and makes the educational struggle unfocused. 
Hence, it is important to address the following problematique: 

Problematique 1: How can we describe what it means to master mathe
matics in a way that supports the fight against syllabusitis in mathematics 
education? 

3. THE KOM PROJECT 

This problematique was a main ingredient in a proposal by Mogens Niss 
for applying a set of mathematical competencies as a tool for developing 
mathematics education (Niss, 1999). The so-called KOM project (Niss & 
Jensen, to appear), running from 2000 - 2002 and chaired by Mogens Niss 
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with Tomas H0jgaard Jensen as the academic secretary, thoroughly intro
duced, developed and exemplified this general idea at all educational levels 
from primary school to university (cf. Niss (2003) for an actual presentation 
of the project). 

The definition of the term "competence" in the KOM project (Niss & 
Jensen, to appear, ch. 4) is semantically identical to the one we use: Compe
tence is someone's insightful readiness to act in response to the challenges of 
a given situation (cf. Blomh0j & Jensen, 2003). A consequence of this defi
nition is that it makes competence headed for action, based on but identical 
to neither knowledge nor skills. Secondly, the situatedness should be no
ticed, since this defines competence development as a continuous process 
and highlights the absurdity of labelling anyone either incompetent or com
pletely competent (Ibid.). 

In our opinion these are good reasons for applying competence as an 
analytical concept in mathematics education, but in order to transform it into 
a developmental tool we need to be more specific. The straightforward ap
proach is to talk about mathematical competence when the challenges in the 
definition of competence are mathematical, but this is no more useful and no 
less tautological than the above-mentioned definition of mathematics as the 
subject dealing with mathematical subject matter. The important move is to 
focus on a mathematical competency defined as someone's insightful readi
ness to act in response to a certain kind of mathematical challenge of a given 
situation, and then identify, explicitly formulate and exemplify a set of 
mathematical competencies that can be agreed upon as independent dimen
sions in the spanning of mathematical competence. The core of the KOM 
project was to carry out such an analysis, of which the result is visualized in 
condensed form in Fig. 2.2-1. 

Figure 2.2-L A visual representation - the "KOM flower" - of the eight mathematical com
petencies presented and exemplified in the KOM report (Niss & Jensen, to appear, ch. 4). 
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This set of mathematical competencies has the potential of replacing the 
syllabus as the focus of attention when working with the development of 
mathematics education, simply because it offers a vocabulary for a focused 
discussion of what it means to master mathematics. Often when a syllabus 
attracts all the attention in a developmental process, it is because the tradi
tional specificity of the syllabus makes us feel comfortable in the discussion. 

4. THE DILEMMA OF TEACHING DIRECTED 
AUTONOMY 

Where does the discussion of the role of mathematical modelling in 
mathematics education appear in all this? The KOM project does not specifi
cally focus on this matter, but on a more general level the suggested compe
tence framework assigns a central role to mathematical modelling, namely as 
a natural constituent in the developing of mathematical modelling compe
tency. In short this competency is defined as someone's insightful readiness 
to carry through all parts of a mathematical modelling process in a certain 
context (Blomh0j & Jensen, 2003). Fig. 2.2-2 shows our model of this proc
ess, inspired by and quite similar to many other models of this process found 
in the literature. 

(f) Validation 

L 
Action/insight 

T 
(e) Interpretation/evaluation 

1 
Model results 

Theory 

Data 

(a) Formulation of task 

Domain of inquiry 

(b)Systematiziation 

System 

(d) Mathematical analysis 

Mathematical 
system 

(c) Mathematization 

Figure 2.2-2. A visual representation of the mathematical modelling process (adapted from 
Blomh0j & Jensen, 2003). 

Seeing the role of mathematical modelling as a natural constituent of the 
development of mathematical modelling competency derives from the as-



2.2, WHATS ALL THE FUSS ABOUT COMPETENCIES? 49 

sumption, that such development requires at least part of the teaching to be 
based on the holistic approach (Ibid.), i.e. students are challenged to work 
with full-scale mathematical modelling and have responsibility for directing 
the entire process. 

By virtue of the "underdetermined" nature of the initial parts of the 
mathematical modelling process, the key characteristic of this challenge is to 
learn to cope with a feeling of "perplexity due to too many roads to take and 
no compass given" (Ibid.). But what do we as authorities consider as quali
fied choices in this situation? Those maintaining the educational focus - in 
casu developing mathematical modelling competency, which confronts us 
with the dilemma of teaching directed autonomy: The simultaneous need for 
student directed working processes and for maintaining educational focus 
(Jensen, to appear, ch. 9). The students need to be responsible for most of the 
decisions, but the decisions they make also need to be "the right ones"! This 
brings us to our second highlighted problematique: 

Problematique 2: How can the dilemma of teaching directed autonomy 
be overcome when attempting to develop mathematical modelling compe
tency? 

5. THE ALLER0D EXPERIMENT 

The problematique was one important aspect of a longitudinal develop
mental research project (Jensen, to appear) named after the upper secondary 
school where the teaching took place from 2000 - 2002. It involved a class 
of 25 students, their mathematics teacher and Tomas H0jgaard Jensen as the 
researcher who initiated the experiment and took part in the planning and 
evaluation of the teaching. 

The aim of the experiment was making development of mathematical 
modelling competency the hub of the general mathematics education. The 
instructional focus was to use student directed project work initiated by invi
tations to mathematical modelling such as: 

• How far ahead must the road be clear in order to make a safe overtaking? 
• What are the maximum sizes of a board if one is to turn a comer? 
• Which means of transport is the best? 

In the curriculum a set of mathematical competencies and a set of subject 
areas spanned the mathematical content in a matrix structure (Jensen, 2(X)0, 
to appear), cf. Fig. 2.2-3. As a direct consequence of the aim of the project, 
the set of competencies were made the hub of the curriculum by creating a 
(often missing) link between the overall goals of the teaching and the sylla-
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bus. The intention was to use some of the competencies - not least mathe
matical modelling competency - as "guiding stars" for the students' attempt 
to structure their own project work, simply by pointing out the development 
of one of these competencies as the goal of each project work. 

Subject area 
Competency 
Math, thinking 
Problem tackling 
Modelling 
Reasoning 
Representing 
Symbol-form. 
Communication 
Aids and tools 

Num
bers 

Arith
metic 

Alge
bra 

Geo
metry 

Area 
N 

Figure 2.2-3, A matrix structure for describing the mathematical content of a piece of mathe
matics education (Niss & Jensen, to appear, ch. 8, and Jensen, to appear, ch. 9). 

This turned out to be a very promising approach in the struggle to resolve 
the dilemma of teaching directed autonomy: The set of competencies as an 
independent dimension in the forming of the matrix structure made it possi
ble to set up a very clear "contract" for each project work. Once having un
derstood the nature and core elements of the competency in focus, the stu
dents could decide (after discussions with each other and with the teacher) 
which choices would be in accordance with the educational focus and with 
their personal interest. 

The main pedagogical challenge of using this approach was to develop 
methods to help the students understand the nature and core elements of the 
different competencies in focus. It will take us too far to discuss the methods 
developed and used in the Aller0d experiment here (cf. Jensen, to appear), 
but it is safe to say that it is a challenge calling for more research and devel
opmental work. 

6. PROGRESS IN MATHEMATICAL MODELLING 
COMPETENCY 

Once having identified mathematical modelling competency as a central 
element in general education a third problem become apparent, namely: 

Problematique 3: How can progress in mathematical modelling compe
tency be described in ways that support the development of good and coher
ent teaching practices at different educational levels? 
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7. THE SAME MODELLING TASK AT THREE DIF
FERENT LEVELS 

Drawing on analyses from developmental projects at the lower secondary 
level (Blomh0j, 1993; Blomh0j & Skanstr0m, 2002), in teacher education 
(Blomh0j, 2000, 2003), and at first year university level (Blomh0j et al., 
2001; Blomh0j & Jensen, 2003), we shall illustrate how progress in mathe
matical modelling competency need to be described along more than one 
dimension. 

Analytically one can distinguish (at least) three different dimensions in 
mathematical modelling competency: A dimension describing the degree of 
coverage, meaning which parts of the modelling process the students are 
working with and at what level of reflection, a dimension that has to do with 
the technical level of the students activities involved in the modelling proc
ess, meaning what kind of mathematics they use and how flexible they do it, 
and a dimension that has to do with variation in the types of situations and 
contexts in which the students can actually activate their mathematical mod
elling competency, in short called the radius of action. In the KOM project 
these dimensions are proposed as a general approach to describing progres
sion in the possession of a given mathematical competency (Niss & Jensen, 
to appear, ch. 9). 

In the following we illustrate how progress in mathematical modelling 
competency in relation to a specific situation can be described as interplay 
between progress in the degree of coverage and progress in the technical 
level. For this purpose we use a modelling task, which we have used in de
velopmental projects on mathematical modelling at all levels from lower 
secondary to first year university teaching and in teacher education. The task 
has typically been given as a group task, with 6 - 8 lessons distributed over 
two weeks to write up a report. The task has its point of departure in the fol
lowing authentic text from a Danish traffic safety campaign (our translation): 

A car driving 60 km/h passes a car driving at a speed of 50 km/h. When 
the cars are right beside each other a girl appears some meters ahead. 
The drivers react in the same way and the cars have brakes of equal 
quality. The car with 50 km/h stops right in front of the girl, while the 
other car, with the initial speed of 60 km/h, hits the girl with 44 km/h. 
Seven out often die in such an accident. 

Given this text the students are simply asked: Can this be true? 

At all educational levels, the first challenge for the students are to recog
nize that the claim in the campaign must be based on some kind of mathe
matical model, and that it therefore makes sense to try to model the traffic 



52 Chapter 2,2 

situation described in the campaign text and evaluate the claim against such 
a model. 

The challenge is to use a holistic approach to the mathematical modelling 
process (cf. Fig. 2.2-2) and to see the potentials of a mathematical model 
connecting the specific description of the traffic situation and the claim of 
the campaign. Although this is certainly relevant in order to develop mathe
matical modelling competency, in this situation the students are not chal
lenged to formulate a relevant problem themselves (process (a) in the model
ling process) in order better to understand the phenomena in hand. If the stu
dents take the campaign text as a linguistic description of the system that 
they have to mathematize (and most students do), also process (b) has been 
taken care of in the task formulation. So, the task context takes care of the 
initial part of the modelling process. 

In some of the projects, at lover secondary level and in teacher education, 
the students were introduced to modelling dynamical phenomena with dif
ference equations and spreadsheet, while at the university course the students 
were expected to be able to use calculus to model the situation and hereby to 
be able to produce analytical results from analyzing their models. In relation 
to the degree of coverage the important thing is that in both cases the stu
dents are working with mathematization (process (c)) of a non-mathematical 
system. The way this is done at different educational levels can be seen as an 
example of progress in the technical level of the students' modelling activi
ties. 

However, at all levels the students typically try at some stage to model 
the situation without taking the time of reaction into account, meaning that 
they assume that the two cars start braking at the same point. Such a model 
produces the result that the car with the initial speed of 60 km/h hits the girl 
with 33 km/h and not the 44 km/h claimed in the campaign. Moreover this 
result is not depending on the braking effect of the cars. 

Facing this result, students normally - especially if supported by a dia
logue with the teacher - feel challenged to modify the model so that it may 
support the claim in the campaign. In this process the students experience, in 
a very concrete form, the cyclic nature of the modelling process. If embed
ded in the students' perception of mathematical modelling this constitutes a 
progress in the degree of coverage in their mathematical modelling compe
tency. 

After having included the time of reaction in the model, the need for real
istic parameter values for the braking effect and the time of reaction gradu
ally becomes apparent for the students. Finding such values, from the litera
ture, contacting the authorities behind the campaign or from experimenting 
with the model, also constitutes a progress in the degree of coverage in the 
students' mathematical modelling competency (e.g. relations between the 
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"Mathematical system" and "Data" and/or 'Theory" in Fig. 2.2-2). How this 
is actually done belongs to the technical dimension. 

At this stage of the modelling process the students are able to produce 
new model results. Fig. 2.2-4 shows an example of model results produced 
by a group of 9* graders. However, as can be seen from the dialogue with 
the teacher (our translation), having set up a model and produced some re
sults using e.g. a spreadsheet does not necessarily imply that the students on 
their own are able to interpret or evaluate the results in relation to the situa
tion modelled (process (e)). 
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Figure 2.2-4, Graphs showing the velocity and position of car 1 and car 2 (the graphs for car 2 
with the initial speed of 60 km/h are in bold). 

T: Where does the girl stand? 
SI: There! [Points at the point where the velocity graph for car 1 is zero.] 
T: In 2,7 sec? 
S2: No, she is standing here! [Points at the top point of the position graph of 

car 1.] 
T: Where? How many meters from the spot where the drivers first saw the 

girl? 
S2: 26 meters. [Point it out on the second axis.] 
T: So what about car 2? [The teacher leaves the place.] 

T: What did you find out? 
SI: Car 2 has passed that spot before car 1, the girl is dead before car 1 even 

stops. [Laughter.] 
S2: Car 2 hits the girl with 11 m/sec. 
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Following this dialogue the students question the meaning of the decreas
ing position of car 2 after the time where its velocity becomes zero, and 
eventually this was included in the students' reflections on the validity of the 
model in their report (process (f)). 

The dialogue illustrates the necessity for the teacher to challenge the stu
dents in order for them to interpret and reflect upon the outcome of their 
modelling activities. The teacher deliberately challenges the students' degree 
of coverage with respect to process (e) and (f) in the modelling process. 

At the university course all the students possessed the technical prerequi
site for mathematizing the system described in writing by means of using 
differential and integral calculus. However despite this fact typically only 
few groups (approx. 10%) are able to yield an analytical expression for the 
velocity of which car 2 is hitting the girl: 

Here vi and V2 are the initial velocity of car 1 and 2 respectively, b is the 
braking effect and t^ the time of reaction. 

This observation shows clearly that the competency to mathematizing a 
system does not follow automatically from mastering the mathematics in
volved in the process. Moreover, even after having reached an analytic ex
pression most first year university students need further challenge and sup
port in order to draw a clear conclusion, as can be seen from this quote from 
one of the student reports (our translation): 

According to our model the claim is only true when b-tr ^11,61 m/s. In
serting g^9,82 m/s^ as the maximal brake effect yields tr- 1,18 s as the 
minimal time of reaction. This is a slow reaction for drivers, who are not 
under influence of alcohol or other drugs. We therefore conclude that the 
claim ** 10=44" is slightly exaggerated. 

Nearly the same degree of coverage in terms of the level of reflection can 
be reached by 9*** graders (the first quote below) and teacher students (the 
second quote below) based on spreadsheet analyses of a difference equation 
model (our translation): 

Experimenting with the model we find that the speed with which the sec
ond car hits the girl increases as we increase the time of reaction or the 
braking effect. But when changing these figures the position of the girl is 
also changed. Of course it is good to have good brakes. 

The Council for the Improvement of Traffic Safety has used a time of re
action of 1,5 sec, and a braking effect of 8 m/i. In this case the car with 
an initial speed of 60 km/h hits the girl with 43 km/h. This is only realistic 
for drivers, who have been drinking! 
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8. SUMMING UP AND CONCLUSIONS 

This paper has been framed by the following three problematiques: 
Problematique 1: How can we describe what it means to master mathe

matics in a way that supports the fight against syllabusitis in mathematics 
education? 

Problematique 2: How can the dilemma of teaching directed autonomy 
be overcome when attempting to develop mathematical modelling compe
tency? 

Problematique 3: How can progress in mathematical modelling compe
tency be described in a way that support the development of good and co
herent teaching practices at different educational levels? 

Having presented the general idea of working with a set of mathematical 
competencies as laid out in the KOM project, the attempt to use a holistic 
approach to the teaching of mathematical modelling in the Aller0d experi
ment and the description of progress in mathematical modelling competency 
when working with the same task at different educational levels, we are now 
in a position to sum up our conclusions as follows: 

Point 1: A competence description of mathematical mastery makes it 
easier to discuss and tackle syllabusitis: By using a syllabus as the hub of 
mathematics education we fail to set the appropriate level of ambition. 

Point 2: A matrix structured competence based curriculum can be a way 
to deal with a fundamental challenge when attempting to develop someone's 
mathematical modelling competency: The dilemma of teaching directed 
autonomy. 

Point 3: In order to describe and support progress in students' mathe
matical modelling competency we need three dimensions: 
• Degree of coverage, according to which part of the modelling process the 

students work with and the level of their reflections. 
• Technical level, according to which kind of mathematics the students use 

and how flexible they are in their use of mathematics. 
• Radius of action, according to the domain of situations in which the stu

dents are able to perform modelling activities. 

We have illustrated the need for and interplay between the first two di
mensions when analysing progress in mathematical modelling competency 
in relation to a specific situation. The limited space prevents us from illus
trating the necessity of operating also with the third dimension, radius of ac
tion, when describing progress in mathematical modelling competency in 
general. 
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A THEORY OF MATHEMATICAL MODELLING 
IN TECHNOLOGICAL SETTINGS 

Jere Confrey and Alan Maloney 
Washington University in St. Louis, USA, Email: jconfrey@wustledu / amaloney@wustledu 

Abstract: A theory of mathematical modelHng in education is offered, based on Dewey's 
description of inquiry. One aim is that a model provide a mapping between 
two stages of experience, rather than necessarily a mapping to a particular ver
sion of reality; a second aim is that it prepare students for further inquiry and 
reasoning experience. Two clinical interviews of students engaged in model
ling provide examples of progress from an indeterminate to a determinate 
situation, and of modelling's potential in differentiated instruction. 

1. INTRODUCTION 

One can identify four distinct but related approaches to technology in 
mathematics instruction: 
1. teach concepts and skills without computers, and provide these techno

logical tools as resources after mastery; 
2. introduce technology to make patterns visible more readily, and to sup

port mathematical concepts; 
3. teach new content necessitated by a technologically enhanced environ

ment (estimation, checking, iterative methods); 
4. focus on applications, problem solving, and modelling, and use the tech

nology as a tool for their solution. 

Selecting and prioritizing these approaches should engender a reconsid
eration of what mathematical knowledge is and why learning it should hold a 
central place in education. We take the position that mathematical modelling 
should be a central goal of mathematics instruction. We provide a theory of 
mathematical modelling that permits one to navigate among these varied 
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approaches to technology, and then illustrate our theory with summaries of 
two investigations by experienced teachers. 

Drawing upon an evolutionary view of knowledge, we believe that 
mathematical knowledge changes and evolves. We view mathematics not as 
a reservoir of ultimate knowledge, but rather as a tool that permits people to 
make sense of experience, gain predictive judgment, and offer explanation. 
This view is espoused by the pragmatists (Pierce, James, Dewey), with the 
perspective that knowledge should be subjected to criteria of "functional fit
ness" akin to the constructivist concept of viability, and to Piagetian accom
modation and assimilation. We concur with socio-cultural theorists who 
identify cultural heritage and language as particular influences on develop
ment of knowledge as a human endeavor (Bomstein & Bruner, 1989; Vygot-
sky, 1930), and draw on the experience of education and technology re
searchers who recognize that uses of technology influence the evolution of 
both knowledge and pedagogy (Linn & Hsi, 2000). Mathematical knowl
edge, in our view, should contribute to our ability to identify, address and 
solve problems presented by our cultural and environmental surrounds. 

Accordingly, we assert a primary role for the process of inquiry: it can 
lead us to means both to address outstanding problems and to secure results 
that can be preserved to inform future problem solving efforts. However, 
classroom use of "inquiry" often refers primarily to pedagogical processes, 
and can signal engagement without product, accomplishment, or proficiency. 
To avoid a tendency toward a narrowly process-oriented use of "inquiry," 
we draw on Dewey's definition of inquiry: 

...the controlled or directed transformation of an indeterminate situation 
into one that is so determinate in its constituent distinctions and relations 
as to convert the elements of the original situation into a unified whole 
(Dewey, 1938, in McDermott, p. 226) 

This profound definition of inquiry captures many of the key modelling 
ideas in the Discussion Document (DD) for the present volume, and related 
literature, in which it is suggested that mathematical modelling: 
• Is the "process leading from a problem situation to a mathematical 

model" (DD), 
• Includes the activities of "structuring, mathematising, working mathe

matically and interpreting/validating" (DD), 
• Is for the "purposes of predicting, describing, explaining, understanding 

or even designing part of the world," (DD), and 
• "involves the posing of genuine, non-rhetorical questions to which clear 

and specific answers are to be soughf (Niss, 2001, p. 3). 

For Dewey, inquiry is a set of processes and outcomes, including: 
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• recognition of the indeterminate situation, which "becomes problematic 
in the very process of being subjected to inquiry" (Dewey, 1973, p. 229); 

• anticipation, possibility, or predictions to be examined for their capacity 
for resolving the situation; 

• reasoning, which draws on an established body of knowledge as a means 
to convert the indeterminate into the determinate, examining the original 
idea, providing evidence, and developing refmed meanings more relevant 
to the problem than was the initial idea or prediction; and 

• an identifiable determinate outcome. 

Dewey's definition of inquiry offers important considerations that can 
help to unify evolving knowledge, pedagogy, and technology, and improve 
current conceptions of classroom inquiry, within a theory of modelling. 
First, "reasoning," a key underpinning of his theory of inquiry, is essential to 
mathematical modelling, in our view: problematic situations and ideas are 
necessarily considered in relation to previous experience and bodies of 
knowledge. Systems and structures of knowledge - neither inert nor irrele
vant to modelling-oriented approaches - provide means to relate local con
stituents of problems to distal ones in the transformation of the indeterminate 
situation. Deweyian inquiry can progress through iterative rounds of prob
lem definition and resolution - a generative learning process. 

Secondly, Deweyian inquiry requires an outcome, a determinate situation 
as a unified whole. He wrote, 

...inquiry is competent in any given case in the degree in which the operations 
involved in it actually do terminate in the establishment of an objectively unified 
existential situation. (Dewey, 1973, p. 227) 

We see Dewey's definition as the core of a definition of modelling, and 
therefore repurpose it as modelling, as it signals the production of a termi
nus, the model. We identify two subparts of that activity: inquiry and rea
soning. We place these in dialectic relation to one another. Inquiry is viewed 
a means to gain purchase on the indeterminate situation. Reasoning is the 
drawing on bodies of knowledge into the service of transforming the inde
terminate situation into a determinate outcome. 

Finally, most approaches to modelling describe a model as a map of real
ity, assuming the need to evaluate the fit between the model and the "real 
world." We focus instead on the concept of "fitness", referring to whether 
the model evolves to transform an indeterminate into a determinate situation. 
The mapping, then, is between two stages of experience (itself a key compo
nent of Deweyian educational philosophy). Fitness is pragmatically defined 
as the degree to which the mapping assists one in preparing oneself for fu
ture experience. This has led us to propose the following theory of model-
line: 
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Mathematical modelling is the process of encountering an indeterminate 
situation, problematizing it, and bringing inquiry, reasoning, and mathe
matical structures to bear to transform the situation. The modelling pro
duces an outcome - a model - which is a description or a representation 
of the situation, drawn from the mathematical disciplines, in relation to 
the person's experience, which itself has changed through the modelling 
process. 

The activity of modelling does not depend on mapping to a particular 
definition of "reality;" in theory or for assessment. Rather it demands coor
dinating the justified results with the method of inquiry to provide a means 
to address outstanding problems. What is produced, represented, and re
corded in inquiry into an indeterminate situation is a set of representations 
that are themselves key artifacts of the modelling process. These include ob
servations, responses, measurements, interactions, indicators, and descrip
tions. Together these may be described as data, coding systems, methods of 
sampling and data collection. They are typically mediated by various tech
nologies, and are close to the observed phenomena, but are not the phenom
ena themselves. It is through the coordination of these key artifacts, together 
with means of relating them through inquiry, reasoning, and experiment, that 
the indeterminate situation is converted into the determinate situation, the 
unified whole that we call a model. 

2. THE CASES 

We provide excerpts and analysis of student interviews to illustrate how 
our theoretical analysis of modelling can be applied to student work. The 
students in these cases were graduate students in education who had enrolled 
in a class on technology in mathematics and science education led by one of 
the authors. The class worked with computers and motion detectors for ap
proximately three weeks, exploring a variety of curve shapes in relation to 
position-time, velocity-time, acceleration-time, falling body problems, and 
quadratic equations. In working with falling bodies, the students had used 
software tools (Function Probe) for reflecting, translating, and stretching 
graphs to fit curves to particular datasets. 

As an assessment, each student investigated the motion of a vertically 
suspended spring (a "Slinky") with motion detector and computer. Their in
vestigations were videotaped and extensively analyzed. Each student was 
initially asked to predict the appearance of position-time and velocity-time 
graphs of the spring's motion. Thus, each student made extensive use of di
rect observation (of the spring's motion), qualitative graphing, and technol-
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ogy (motion detector and computer), coordinated among these, and refined 
their reasoning about the spring's motion. 

Student 1. A former second-grade teacher, M had not taken mathematics 
or science courses since early in her undergraduate career, and was insecure 
about her knowledge of those disciplines. In modelling the spring motion, 
her primary challenges turned out to be 1) predicting graphs of position-time 
and velocity-time and coordinating them with the spring's motion, 2) under
standing the relationship between velocity as slope on a position-time graph 
and velocity as a point on a velocity-time graph, for constantly changing mo
tion that reversed direction, and 3) interpreting negative velocity. 

She initially predicted that the graph of position-time would be repre
sented by a damped periodic function (our language for her picture; Fig. 2.3-
l.a). Her first drawing shows a constant and diminishing velocity for each 
drop and rise of the spring, and diminishing period and amplitude. 

v 
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Figure 2.3-1. a. Initial prediction of position-time graph (M). 
b. Initial prediction of velocity-time graph (M). 

Her initial conjecture about the velocity of the spring was that velocity 
would be constant, and the same, for the falling (extension) and rising (com
pression) of the spring, including the same sign. She believed (incorrectly) 
that her velocity-time graph represented this (Fig. 2.3-Lb). M realized cor
rectly that when the spring is fully extended and reverses direction, there is a 
momentary stop, with velocity going to zero, and showed the graph anchored 
to the X-axis (though she had not recognized at this point that the spring also 
stops momentarily at the top of its travel). Her graph achieved the continuity 
she expected from the smooth spring motion she observed. However, she 
conflated the representations of position-time and velocity-time, believing in 
both cases that the saw-tooth shape represented constant, equal speed during 
both dropping and rising. 

To understand velocity-time graphs better, M tried to disentangle two re
lated conceptual obstacles. The first was viewing velocity as a variable in 
itself, as a point. She understood velocity on a position-time graph as a de
rived quantity portrayed by slope, i.e. position change during a time interval. 
However, in her first try at a new simple velocity-time graph (Fig. 2.3-2.a), 
she stated that the steeper graph had greater velocity. 
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Figure 2.3-2. a. Velocity-time graph (M) b. Second velocity-time graph (M) 

Her second conceptual obstacle was interpreting negative velocity, ini
tially viewed as negative slope of a line segment located in quadrant 1 of 
position-time graph, not as a coordinate point (t,v) with v<0. An interview 
question led her to begin to coordinate these ideas: 
M: "I don't understand the velocity being negative.... I understand that the negativ

ity of the velocity is really an indication of direction. Right, when it negative... 
when it goes from 0 to - 5 is it going faster or is it going slower? 

I: ...if the velocity is zero, the object is not moving; we both agree on that... But 
what if the object is going negative five? And what are the units? 

M: Meters per second;... that's... 5 meters per second going the other direction." 
The exchange led M to define the meaning of the coordinate point (1, -5) 

on a velocity-time graph, but she then proposed (incorrectly) that the graph 
of a constant negative velocity for the spring should be represented with a 
straight slanted line reaching to (1, -5) . Subsequently she drew vertical line 
segments to represent that the spring stopped instantaneously at that point 
(Fig. 2.3-2.b). During the interview, she did not resolve whether the change 
from zero to - 5 m/s means that the spring speeds up or slows down. She per
ceived that the slanted line was consistent with graphs she had drawn previ
ously for a falling ball, forgetting that for a falling body, velocity steadily 
increases in a single direction. 

However, she observed the spring motion several times, attempting to 
coordinate her graph with her observations, each informing the other. She 
shortened the spring and moved it up and down slowly. She conjectured that 
the velocity increases as the spring drops, stating: 
M: "It increases until it gets to the stopping point. Definitely. Slower and slower 

and faster and faster " [explaining further] "... the weight of this is going to 
make it increase as it gets farther away from the starting point. The velocity is 
getting faster and then it stops. OK. So this is negative... stop, positive, stop. So, 
it's never positive always negative. Because it starts at zero [at the top] and this 
is a negative velocity [spring extending] and then it stops and it does the same 
thing coming up and then stops, so it's never going to be positive. Oh yeah be
cause here is zero. So I think I was right." 
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At this point, M was satisfied with the velocity-time graph in Fig. 2.3-2.b. 
M then used the motion detector to produce the graphs in the Fig. 2.3-3.a and 
2.3-3.b (time-synchronized p/t and v/t graphs), resulting in a crucial insight. 
Examining each graph separately, she explained to herself why the lines are 
curved. Then, examining the velocity curve, she said 
M: "...it's going farther and farther away from the motion detector. It is going faster 

and faster and then slower and slower. So within one trip, it's going to go.. .0-0-
OH!... within one trip on the way... right 'cause it has to slow down in order to 
stop...Half a trip is faster and half is slowing down... [but]... that does not make 
sense." 

Figure 2.3-3. a.M's p/t graph, from motion detector 
b.M's v/t graph, from motion detector 

This (precarious) insight helps her obtain the consistency she expects in 
her velocity-time graph when the spring changes direction. She again exam
ined the actual movement of the spring to consider why her initial conjecture 
- that the spring behaves like a falling body - did not make sense. She began 
to perceive in the spring's motion the change in velocity observed in her 
graphs, and tried to stabilize her prediction by looking at the section in Fig. 
2.3-2.b between locations a and b: 
M: "So it goes from 2.5 to 3.2 [sec], then it's going to here and its moving 2 m per 

sec, I am halfway, and then it gets to the top, why is it decreasing, oh because it 
has to stop. It's going faster [then] slower." 
She was now convinced that velocity became zero when the spring 

reached its maximum or minimum height, and recognized the graphical rep
resentation (v=0) of velocity crossing the horizontal axis once each for a trip 
up and a trip down. Her next challenge was to understand that the spring 
passes through the highest speed halfway through both its compression and 
extension, as she tentatively asserted previously, rather than like a falling 
body (constantly increasing speed). In the final sections of the interview, 
going beyond the logical conclusion that the spring must slow down in order 
to stop, she began to inquire about forces, gravity, and what she called the 
spring's "resistance." 

Student 2. D majored in mathematics, and later taught mathematics in 
middle school. He had studied physics in college, and was far more experi
enced with both graphical representation of periodic motion and modelling 
using formal equations. He quickly established a predictive mathematical 
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model based on his prior knowledge, sin(jc) • e'^. Considering his more ad
vanced knowledge, one might wonder if the spring task is at an appropriate 
level for him, but three themes emerge from this case which provide some 
insight into the nature of modelling, generalize beyond the particular exam
ple, and demonstrate the flexibility of modelling tasks. These are: 
1. assuring collection of high quality, reproducible data 
2. extending the analysis of the initial experiment, and 
3. varying the experiment to transform the basic model. 

Reproducibility. D carefully set up the experiment to provide consistent 
reproducible data. He ensured identical time-and-distance starting points for 
each replicate by configuring the motion detector to begin recording data 
when the end of the Slinky passed a fixed distance from the detector. He dis
cussed the importance of a "clean run", possible effects of outliers on the 
graphs, and methods to average data for specific periods of different trials. 

Extension of analysis and prediction. D sought to identify and explain 
sources of variation or deviation from his original predictions. In particular, 
he noted the presence of apparent harmonic oscillations in the spring data. 
He recognized the need to modify his original model. In one interaction, D 
noted that when the spring got to the top of its travel, a reproducible oscilla
tion resulted in a "chopping off of the overall graph. Rescaling the graph, D 
commented: 

D: You can really see different sine waves here. There's this major force 
here, but then it's going quickly here and... there's a first harmonic 
going on right there. ...it has a positive derivative here, so it's accel
erating along with the major frequency. And then here that first har
monic is decelerating, so we can see it kind of looks like it goes 
straight up and then turns, and doesn't accelerate quite as quickly but 
I bet if we did a Fourier transform we'd see a real strong line at... at 
um, about two and a half ..a frequency of two fifths Hertz I guess that 
is. And then we'd see one at half that frequency, er... at double that 
frequency, that's ah 5 Hertz, um, that's, I think we'd see two bright 
points there... it was reproducible, too: all three trials did that. 

D extended his exploration of the original model and its harmonics fur
ther, conjecturing that systematic variance or distortion could be amplified 
by modifying the setup. He bunched 20 coils together at the end of the 
spring, then released them when he released the entire spring: 

D: I'm going to try some sort of chaotic system, here, and I think proba
bly the best would be just bunch up a certain number of these, and I 
want to make it reproducible, bunch up 20 [coils], and then let it go. 
And see, so that'll be you know this much of an effect, [manually 
demonstrates just the lowest 20 coils oscillating], along with the lar-
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ger [spring].., I would hypothesize that this will cause a lot more 
harmonics than both of those frequencies. And there will be some re
lation between the whole length and the length [of coils at the bot
tom] I choose. It's not just going to be two oscillations, two frequen
cies anymore, but it'll be a good way to start that. 

In the following, we note his careful attention to data quality, adjusting 
the sampling frequency to ensure the capture of the phenomena of interest. 
It also illustrates how D extended his model, using the coiled start to stimu
late investigation of harmonics: 

D: I set the sampling frequency to 30 Hertz. It was originally at 10 
Hertz [which] would have lost a lot of these oscillations... 

D: ...there's a major oscillation..., and then you can see these minor os
cillations within that... actually sometimes have a greater velocity 
than the major oscillation, than the movement from the major oscilla
tion. So for example, here, while the general direction was going 
down, there was an upward harmonic that had enough velocity to ac
tually make the [spring] go up, even though [overall] it was coming 
down. 

Transforming the basic model The third theme emerged as D explored 
variations on the spring setup in order to understand their effects on the basic 
model. This was stimulated in part by the question "how would your model 
vary if you were to shorten the spring or add some weight to it?" In one ex
periment he shortened the spring. An interesting tactical move was to shor
ten the spring by a multiple {Vi) of its number of coils, rather than a fixed 
number (additive). 

D was confident that halving the spring length would transform the posi
tion-time curve: halve the amplitude, double the frequency (halve the period) 
and vertically translate the position-time curve (to account for the different 
distance between the detector and the spring). A subsequent exchange illus
trated D's strong and flexible background knowledge of transformations of 
the trigonometric curve. However, he was less certain whether there would 
be a change in the e~^ (damping) component of the mathematical model. He 
conjectured that there would be a horizontal shrink, and that this would be 
the same as a vertical stretch (a misconception). Visually, it was difficult to 
see that a horizontal translation, not a horizontal stretch, of an exponential 
equates to a vertical stretch. This differs from quadratic or linear fimctions, 
for which horizontal stretches can be equated to a vertical stretches. 
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3. CASE SUMMARIES 

We suggest that for M, the computer-generated representation itself be
came a determinate model for the previously indeterminate situation of the 
spring's motion. M used a number of landmarks to accomplish this, includ
ing reasoning she had previously acquired about position-time graphs, and 
then derived inquiry into velocity-time graphs from her observations of the 
spring and previous experience with motion detectors. Comparing hand-
drawn graphs to the technology-mediated representations served as feedback 
to her conjectures. 

M's determinate situation evolved to be the coordination of the technol
ogy-mediated graphs with the motion of the spring. She illustrated how 
modelling can proceed from rudimentary knowledge of the constituents of 
position, time, and speed, and a limited but solid experience of those ideas 
applied to rolling and falling objects. It is compelling how she repeatedly 
applied these constituents until she formed a consistent model that coordi
nates among her observations and two representations mediated through the 
technology, and changed her own perception of the spring's motion. Within 
our theory's dialectic of inquiry and reasoning she demonstrated stronger 
emphasis on inquiry. 

In D's case, we see how, in the same modelling situation, a more knowl
edgeable student can draw upon mathematical reasoning about trig func
tions, exponential decay, and transformations and harmonics. We also wit
ness a more sophisticated experience with data sampling, averaging, and the 
means of ensuring data quality. 

D's determinate situation was to generalize on the movement of springs 
as variations on the equation "sin times e raised to the negative time, with 
some constants." More advanced in his mathematical preparation, he ap
proached the indeterminate situation with a basic equation in mind as a 
model, proceeded to examine it in varied circumstances and extended it to 
include finer distinctions and variations. D demonstrated more structured 
mathematical reasoning, based on his more developed prior knowledge, in 
his expression of the inquiry-reasoning dialectic. Both students demonstrated 
alternative representations, sampling, observation, and data use as key ele
ments of the modelling process. 

4. DISCUSSION AND CONCLUSIONS 

Both students encounter an indeterminate situation, bring mathematical 
structures to bear, and transform the situation to a determinate form, result
ing in a model. Their models are not actually models "of reality," but rather 
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descriptions or representations drawn from mathematical discipline in rela
tion to their experience of the spring's motion. They identify different forms 
of evidence and bring different levels of prior knowledge to bear. Their own 
experience changes as a result of the modelling exercise. 

For both students, inquiry and reasoning led to finer and more focused 
experience of the spring's motion. Considering their different mathematical 
backgrounds and their progress in this very brief investigation, we suggest 
that modelling may be a vehicle for instruction differentiated across levels of 
experience within a single classroom setting. 

Muhip^c SMdrnviof K<jpn?5rnlJtllfin 

y~ Inquiry ^ 

DETERMINATE SITUATION 

Figure 2.3-4. A model of modelling 

Fig. 2.3-4 presents a graphic of our theory of modelling. Modelling can 
be an extraordinarily powerful organizer for mathematical instruction. It can 
anchor mathematical learning in the prior and current experience of a stu
dent, and build further experience through iterative rounds of inquiry and 
reasoning that incorporate mathematical problematizing. The entire model
ling process is embedded with mutually coordinated observations, represen
tations, and mathematization. The outcome of a modelling episode would be 
a condensed statement and summary of the students' mathematization ef
forts, which can be used both by students and instructors as the starting point 
for subsequent investigation. It is rich territory for metacognitive reflection. 

Early in this chapter, we identified four approaches to the use of technol
ogy in mathematics instruction. We now return to these and comment on the 
role and priority of each approach, assuming a focus on modelling as a cen
tral organizer of the study of mathematics. 

What are the roles of technology in a modelling approach to mathemati
cal instruction? Whether electronic or mechanical, technology can incorpo
rate and generate representations which are themselves the subject of or tools 
for identifying and transforming an indeterminate to a determinate situation. 
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Technology plays a central role in coordinating the inquiry, reasoning, and 
systematizing that lead to a determinate situation. 

A modelling approach to mathematical instruction accommodates - even 
requires - all four of the approaches to technology listed at the beginning of 
this chapter. Technology permeates the everyday environment of students; it 
is only logical that it provide content for multiple disciplines, both explicitly 
mathematical and those, for reasons pragmatic, pedagogical, or theoretical, 
predisposed to mathematical treatment (approach 3). A growing ensemble of 
technologies serves as qualitative and quantitative tools for student investi
gation of applications and problems at the heart of modem mathematics cu
rricula (approach 4). 

Mediation with technology to improve recognition of patterns of behavior 
of mathematical concepts (approach 2) and concept mastery prior to intro
duction of technology (approach 1) require implementation of effective pe
dagogical strategies, and should be nuanced, not rigidly traditional. Under
standing the genesis of mathematical ideas should guide decisions on tech
nology use in conceptual and skill development. It is incumbent on educators 
to integrate technology-supported approaches to foster students' concept ma
stery, but to avoid premature technology-based short-circuiting of conceptual 
development. 

Just as Dewey wrote of a map, a model acts as a guide: "that which we 
call a science or study puts the net product of our past experience in the form 
which makes it most available for the future. It economizes the workings of 
the mind in every way." (Dewey, 1973) It is this view of modelling in ma
thematics which we believe will move us into the next phase of mathematics 
teaching and learning. 
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FOR TEACHING MATHEMATICS THROUGH 
APPLICATIONS AND MODELLING? 
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Abstract: This paper begins by describing teachers' knowledge as the creation and de
velopment of increasingly sophisticated models or ways of interpreting the 
tasks of teaching. One study illuminates several ways that pre-service teachers 
perceive the processes of modelling and the limits of their experiences with 
stochastic models. Results from a second study indicate that teachers need to 
have a broad and deep understanding of the diversity of approaches that stu
dents might take with modeling tasks. The second study also suggests a rever
sal in the usual roles of teachers and students by engaging students as evalua-
tors of models. 

1. INTRODUCTION 

The call for contributions to the ICMI Study on Applications and Model
ling in Mathematics Education observes that only rarely do mathematics 
teacher education programs include an orientation to mathematical model
ling or the use of modelling in prospective teachers' mathematics courses. 
This suggests that one reason for the limited use of applications and model
ling at the primary and secondary levels of schooling is the lack of knowl
edge by those who are expected to teach mathematics through applications 
and modelling. However, the research base on the knowledge needed for 
teaching, at least in the United States, has established that subject matter 
knowledge alone, while necessary, is insufficient for quality teaching. This 
raises the issue, then, as to the scope of the knowledge that teachers need in 
order to be effective in using applications and modelling in their practice. As 
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I will argue below, the pedagogical knowledge for teaching modelling would 
appear to differ in some significant ways from traditional and reform-based 
methods for teaching mathematics. 

In this paper, I will frame a discussion of the issues that applications and 
modelling raise for the mathematics education community when we focus 
our attention on teachers and teaching. First, I will describe a theoretical per
spective on the nature and the development of teachers' knowledge. Second, 
I will provide results from my research on several aspects of the subject mat
ter knowledge of pre-service teachers within the context of an undergraduate 
course in mathematical modelling. Third, I will provide an analysis of an 
example from a research project on teachers' pedagogical knowledge when 
teaching mathematics through modelling tasks. This example, drawn from 
the practice of an experienced secondary school teacher, illuminates the 
kinds of pedagogical knowledge that seem to be necessary when teaching 
from a modelling perspective. I will conclude with some comments about 
the challenges that this research raises about the knowledge that teachers 
need when teaching mathematics through applications and modelling. 

2. THE NATURE OF TEACHERS' KNOWLEDGE 

The starting point for conceptualizing the nature and development of the 
knowledge needed to teach mathematics through modelling and applications 
is that teaching is primarily about the creation and refinement of sophisti
cated models or ways of interpreting the tasks of teaching. These tasks in
clude choosing appropriate modelling applications for students, knowing 
how students' models might develop over the course of several lessons or 
several applications, selecting activities and curricular materials that might 
further that development, and devising strategies for engaging students in the 
critical assessment of their models. 

A modelling perspective on teachers' knowledge foregrounds the notion 
that teachers have models for teaching (Doerr & Lesh, 2003). These models 
are the systems of interpretation that teachers use to see students' ways of 
thinking, to respond to students' ideas, to differentiate the nuances of con
texts in their practice, to see generalized understandings that cut across con
texts, and to revise their own thinking in light of their experiences. In exam
ining teachers' knowledge, we focus on how the teacher thinks about the 
context, what alternatives she considers, what purposes she has in mind, 
what elements of the situation she attends to and what meanings and rela
tionships those elements have for her. 

A central question for research on teacher knowledge is the examination 
of how teachers' models for teaching mathematics develop. It is clear that 
teachers come to their pre-service teacher programs with models of teaching 
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already in place, based on years of apprenticeship as observers of practice. 
Furthermore, teachers' models of practice (or systems for interpreting prac
tice) are significantly broader in scope and more complex than the kinds of 
models students develop. The results from two research projects that exam
ined the subject matter knowledge of pre-service teachers and the complexi
ties of the pedagogical knowledge of an experienced teacher illuminate some 
of the central characteristics of teachers' models for interpreting practice and 
provide some insight into the challenges inherent in the development of such 
models. 

3. SUBJECT MATTER KNOWLEDGE IN PRE-
SERVICE TEACHER EDUCATION 

Few studies have directly addressed the knowledge of mathematical 
modelling that pre-service and in-service teachers hold and how that knowl
edge is acquired (e.g., Dugdale, 1994; Linge^ard, 2002; Zbiek, 1998). To 
examine the modelling knowledge of those preparing to teach, I designed an 
undergraduate course in mathematical modelling. The primary goals of the 
course were to introduce pre-service teachers (N=8) to some basic ideas and 
techniques in mathematical modelling by engaging them in the process of 
building mathematical models. The course content drew on problem situa
tions from physics, biology, and mathematics itself The course began with 
several empirical models and then moved to an analysis of discrete dynami
cal systems and stochastic models. We finished the course with some exam
ples of continuous models. The technological tools included graphing calcu
lators and calculator probes for data collection. Maple, spreadsheets, and a 
simple dynamic systems simulation language. The students worked in small 
groups and completed five modelling projects over the course of the semes
ter. Several classes devoted time for students to work collaboratively on the 
projects and to present their findings. 

The students' class work, their final projects, class discussions, and writ
ten assignments were the data corpus for this research study. The research 
questions focused on examining the nature of pre-service teachers' knowled
ge and perceptions about mathematical modelling. The analysis of the data 
yielded three significant findings. The first finding related to the mathemati
cal knowledge of the pre-service teachers with respect to probabilistic situa
tions. A serious misconception about binomial distributions and the probabi
lities of independent events occurred among the pre-service teachers in the 
same ways that I have found among secondary school students (Doerr, 
2000). In particular, when creating a simulation for stochastic exponential 
growth using a random number generator, several pre-service teachers erro-
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neously used a random number from a uniform distribution as an appropriate 
number in a context that called for a binomial distribution. A subsequent 
project involved creating a simulation for a stochastic logistic growth situa
tion. In this context, the need for a random number from a binomial distribu
tion was even less obvious; nearly all of the students made the error of 
choosing a random number from a uniform distribution. This finding con
firmed results in the literature that would suggest that formal instruction in 
probability has limited impact on learners' abilities to reason probabilisti
cally. However, it was also the case that all of the students were able to ad
just their incorrect conceptions to mathematically correct ones through a 
process of explaining and justifying their models to each other. This suggests 
that mathematical modelling is a potentially powerful context for the mathe
matics learning of pre-service teachers. 

The second finding directly addresses the perceptions and beliefs held by 
the pre-service teachers as to the nature of the modelling process. As part of 
the course, the students completed several readings that discussed modelling 
at a meta-level (Bassanezi, 1994; Weigand & Weller, 1998). Weigand and 
Weller (1998) present a description of modelling that involves a six-step 
process: analyzing (A), simulating (S), modelling with equations (M), work
ing experimentally (W), interpreting (I), and explaining (E). Throughout the 
course, the pre-service teachers were asked to describe their own specific 
modelling processes in terms of these steps. Initially, the pre-service teachers 
saw Weigand and Weller's steps in the modelling process as an unproblem-
atic description of how modelling was really done. They saw the steps as 
occurring in sequence. Early in the course, when asked to map the processes 
they had used to create a model, most students created maps similar to that in 
Fig. 2.4-1. 

Figure 2.4-1. A sequential view of the modelling process 

But later in the course, the pre-service teachers made a striking shift from 
seeing modelling as a fairly linear, sequential activity to seeing modelling as 
a non-linear, cyclic activity. A typical student map of the modelling process 
now looked more like the one shown in Fig. 2.4-2. In this case, the students 
saw their process as beginning with the simulation step (S) and then moving 
to interpreting (I), then modelling with equations (M) and so on. 

The pre-service teachers engaged in extended discussions about the 
meaning of the terms that were used to identify each of these modelling 
steps. They began to give more nuanced meanings to the steps, describing 
their activities as "thinking about what is going on in the situation", "work-
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ing and re-working the math equations to get them right", and asking ques
tions such as "does everything we're doing make sense?" and "why do our 
ideas work?" This shift in the perceptions of the pre-service teachers came 
about as they reflected upon their experiences in developing models. 

Figure 2.4-2. A non-linear, cyclic view of the modelling process 

The third finding from the analysis contradicts the findings of Zbiek 
(1998), who in her study of pre-service secondary teachers found that many 
of the pre-service teachers tended to use regression analyses when available 
and that they often used curve-fitting uncritically in their approach to prob
lem situations. We found no evidence to confirm these tendencies. Even 
though curve-fitting software was readily available, students rarely used it 
and when curve fitting was done, students always attended to the meaning of 
the resulting equations and coefficients in the problem tasks. This result does 
not suggest that these pre-service teachers were more sophisticated than 
those in Zbiek's study, but rather it argues that the nature of the modelling 
tasks, the range of tools available, the norms for argumentation, and the 
standards for quality of a solution were significant in influencing the types of 
modelling behavior that occurred in each setting. 

Collectively, these findings suggest that pre-service teachers are likely to 
encounter greater difficulties in developing stochastic models than in devel
oping models of deterministic phenomena. This result can in part be ac
counted for by the well-known misconceptions from the research on prob
abilistic reasoning and by the dominance in mathematics courses of continu
ous functions and their applications in physics. It leaves unanswered, how
ever, questions about how to best approach the development of both kinds of 
models. The findings also suggest that by reflecting on their own modelling 
activity, pre-service teachers can come to understand the cyclic nature of the 
modelling process and appreciate the interconnectedness of the cognitive 
activities involved in the process. Finally, these results suggest that the use 
of regression models by pre-service teachers seems to be dependent on the 
kinds of modelling activities that they experience. This implies that pre-
service teachers need to be exposed to a range of modelling activities that 
provide multiple opportunities for explanations and justifications of the 
modelling decisions that were made. 
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4. PEDAGOGICAL KNOWLEDGE IN ACTION 

This set of results is drawn from the analysis of a teaching episode with 
an experienced secondary mathematics teacher who was using a sequence of 
modelling tasks related to exponential growth and decay. My intention in the 
analysis of the classroom data is to illustrate some of the pedagogical de
mands that are made on the teacher when a modelling approach is taken to 
the teaching and learning of mathematics. In this particular lesson with 16 -
17 year old students in a pre-calculus class, the students had been working 
on a task to model the doubling that occurs in bacteria growth. Finding ap
propriate graphs, equations, and tables to represent that growth was rela
tively straightforward for this group of students. One portion of the task fo
cused the students' attention on the problematic issue of quantifying the 
growth rate and what units might be used to measure that rate: 

A biologist knows that the population of a bacteria culture doubles every 
15 minutes. After 1 hour and 15 minutes, her assistant found that 80,000 
bacteria were present. 

Examine the rate at which the bacteria culture is growing. How fast is the 
culture growing at 1 hour? At 1.5 hours? At 2 hours? How are you mak
ing these estimates? What are the units for this rate? Do your estimates 
make sense in terms of your graph? 

The teacher, who had used these modelling tasks the previous year, knew 
that examining the rate of change would be problematic and challenging for 
her students. She recognized that the notion of rate of change was an impor
tant idea throughout the pre-calculus course. Understanding the changes in a 
model and ways of representing that change is a fundamental mathematical 
idea and one that foreshadows the development of important concepts in cal
culus. The teacher had chosen to focus on this particular aspect of the bacte
ria growth model because of the richness of the rate context. 

Several groups of students presented their work on the board, including 
tables, graphs, and equations. The discussion of these solutions started out 
slowly with some comments on the tables and the different units for the rates 
and some comments on the functions, which were different as well. But the 
most interesting discussion occurred as the students talked about the rate of 
change. The teacher was able to pull in many student-to-student arguments 
as well as many elaborated student explanations. She was careful in listening 
and seeing how the students elaborated their rate concepts as the discussion 
evolved. The students had four different ways of presenting rates: 

(I) Sara's method: Sara found the bacteria present at 1 hour. Her equa
tion was y = 2500 • 2'̂ '' where x was in hours. Her explanation of the "4" 
was that it took four quarters to double and hence four of these quarters 
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("4x") would give you one doubling. She then found the bacteria present 
at 1.00001 hours and divided the increase in the bacteria by .00001 and 
called this quantity "bacteria per hour". She then calculated the rate at 1.5 
hours and 2.0 hours and insightfully observed that the rate itself is also 
increasing by a doubling factor! In her arguments in class, Sara pointed 
out that rate could be thought of as the slope of "the little line segments 
between the points" of the graph. 

(2) Bryan's method: Bryan took the amount of bacteria present at 60 
minutes and divided it by 60, yielding 40,000/60 bacteria per minute. His 
equation was y = 2500 • T"^^^. Bryan was adamant that his equation and 
his estimate for the rate were correct! Bryan said that he still didn't see 
what was wrong with his approach. This seemed to be both a need for 
resolution of multiple methods and a need to reconcile his view with the 
other competing views in class. The teacher made the decision to con
tinue with the discussion. This brought Jack (another student) to Bryan's 
side, and he led other students to try to see Bryan's point of view. Sara 
and others appeared to appreciate what Bryan was saying but weren't 
convinced that it was correct, however they had difficulty in explaining a 
flaw in the reasoning. The graphic representation of Bryan's estimate 
could be seen as the slope of the line joining the point (60, 40000) and 
the origin. The teacher drew this segment on the graph as the discussion 
evolved. 

(3) Peter's method: Peter found the bacteria present at 1 hour and then 
said since it is 40,000, that you should divide the 40,000, since that is 
also the amount that it will increase in the next interval, by 15 to get the 
rate of increase. The teacher was initially unclear about how Peter was 
finding the rate. It appeared that the 40,000, which was the amount of 
bacteria present at 1 hour, was being divided by the time interval. But it 
was clear that the student was thinking that the 40,000 was both the 
amount and the increase in the amount, and hence you could divide it by 
the time interval and get the rate. The teacher re-cast Peter's description 
into the language of the change in the amount of bacteria divided by the 
change in the time interval and wrote (80,000 - 40,000)/15. Later the 
teacher commented that last year, several students had taken this ap
proach and she had had trouble grading their papers because the students 
had not made clear how they were thinking about the quantity. 

(4) Mark's method: Mark had written y = 2500 • 2^" as his equation. The 
discussion of his solution focused on the rate at 1.5 hours, or the 6^^ time 
interval. Mark had used x to represent the number of 15 minute time in
tervals, rather than the actual time in hours or minutes (as had been done 
by the other students). Mark changed the table interval on his calculator 
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to .001 and found 160,111 bacteria at 6.001. Mark had written the rate as 
(160,111 - 160,000)7.001 and then described the rate "as per 15 minute 
interval." The teacher asked, "How are we getting the 15 minutes?" Mark 
replied that he was using time as 15 minute intervals. 

During the discussion of Mark's method, Peter commented that this was 
just finding the slope between two points. Later, Mark argued that if we 
thought of the graph of the bacteria population as a position graph, then what 
we are trying to find is its velocity graph. The teacher quickly picked up on 
this as the connection to early work that the students had done with a simula
tion environment (Kaput & Roschelle, 1997) in exploring the relationship 
between a velocity and a position graph. She then asked, "How do we find a 
velocity graph from a position graph?" and the students answered, "by find
ing the slope." Bryan however stayed strong in his position by arguing that 
he was finding the slope at a point and asked, "what does that mean?" and 
"why can't I do it that way?" As class ended, Bryan and Mark continued to 
argue this point. After class, the teacher indicated that she wanted to have the 
students "commit" to their ideas and to think about the concept of rate, be
fore pursuing it fiirther in class. In this way, the teacher saw how a central 
concept such as rate of change is not understood "all at once" but is revisited 
through a sequence of modelling tasks. 

This teaching episode suggests two major implications for the pedagogi
cal knowledge of the teacher when teaching with modelling tasks. First, the 
teacher needs to have a broad and deep understanding of the diversity of ap
proaches that students might take. Trying to quickly grasp the mathematics 
presented in the four approaches described above, while simultaneously de
vising appropriate responses, is not an easy task for the teacher. The difficul
ties in doing this should not be underestimated. To acquire such understand
ing, the teacher must engage in listening to the students as they interpret and 
explain their models. In the case above, the teacher recognized the ambiguity 
in how one student (Peter) was finding the rate, since the value of the fianc-
tion at the particular point in time was also equal to the increase over the 
next time interval. The teacher cast the student's representation into the lan
guage of rate of change so as to clarify the underlying mathematics. 

The teacher also needed to carefially listen to another student's descrip
tion of the rate as being "per 15 minutes", an approach that the teacher had 
not expected. In this instance, the teacher probed the student's thinking and 
attempted to understand the mathematics being expressed by that student. 
Later, the teacher supported the development of the students' ideas by elabo
rating on the connections that the students made to earlier representations 
that they had used. Modelling tasks provide the opportunity for students to 
develop a diversity of approaches to expressing their interpretations of a 
given situation. While this created a rich source of mathematical discussion 
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for the students, it also placed substantial pedagogical knowledge demands 
on the teacher. This case illustrates four characteristics of the teachers' 
knowledge: (1) to be able to listen for anticipated ambiguities, (2) to offer 
useful representations of student ideas, (3) to hear unexpected approaches, 
and (4) to support students in making connections to other representations. 
How teachers acquire this knowledge, both in their preparation programs and 
in practice, remains an open question for researchers. 

The second implication for the pedagogical knowledge of the teacher is 
illuminated in the shift that occurs in giving explanations and justifications. 
Rather than the teacher giving explanations and justifications to the students, 
the discussion of the models created a learning context in which the students 
were giving explanations and justifications to each other and to the teacher. 
This shift signals an important aspect of learning that takes place when using 
applications and modelling: the task for the teacher becomes one of putting 
the students in situations where they can interpret, explain, justify and evalu
ate the "goodness" of their models. In the case of the competing models for 
finding the rate of growth, the teacher encouraged the students to share their 
thinking and make sense of the explanations that were given by others. At 
the end of the discussion, however, she chose to give the students time to 
"commit" to their own ideas, perhaps re-evaluate them, before continuing 
with class discussion. In this way, the teacher gave the students the task of 
refining and revising their models, rather than proceeding to evaluate them 
herself This change in pedagogical strategy is a major shift from more tradi
tional instruction in mathematics where a primary role of the teacher is to 
evaluate students' work. 

5. CONCLUDING REMARKS 

The brief synopses of research that I have presented here are intended to 
suggest some of the challenges for teacher education programs that are 
raised by the use of modelling and applications for the teaching and learning 
of mathematics. Teacher education programs need to address both the sub
ject matter knowledge of teachers and the development of new kinds of 
pedagogical knowledge. In particular, pre-service teachers need to gain ex
periences in their preparation programs with stochastic models; such a 
change would imply a shift away from the current dominance of determinis
tic models in the mathematical preparation of teachers. The difficulties that 
all learners have with probabilistic concepts make such a shift especially 
challenging. Pre-service teachers need to encounter modelling experiences 
that provide for a range of contexts and tools and that engage them in meta-
level analyses of their modelling activity. 
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Teaching mathematics through modelling provides substantial challenges 
to our current ideas about pedagogy. When engaged in such teaching, teach
ers are likely to encounter substantial diversity in student thinking. This 
places new demands on teachers for listening to students, responding with 
useful representations, hearing unexpected approaches, and making connec
tions to other mathematical ideas. A modelling approach to teaching mathe
matics calls for a major reversal in the usual roles of teachers and students. 
Students need to do more evaluating of their own ideas and teachers need to 
create opportunities where this evaluation can productively occur. Current 
research in the preparation and development of teachers in taking on these 
new roles is limited. International research in this area could provide the 
needed coherence for the development of a knowledge base of effective 
pedagogies when teaching mathematics through applications and modelling. 
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Abstract: This chapter argues that while there have been some notable achievements 
incorporating aspects of applications and modelling into educational pro
grammes, this is no cause for complacency. In addition to making current 
knowledge and initiatives available to a wider spectrum of the educational 
community, future advancement requires that new questions be posed, existing 
conceptualisations deepened, and dilemmas identified and addressed. The 
chapter samples a selection of issues, some ongoing, some emerging that are 
illustrative of these challenges. 

1. INTRODUCTION 

Picking the low hanging fruit is used in the English-speaking world to 
mean collecting the fruit that is easy to reach, rather than stretching for re
wards on higher branches. As a metaphor it refers to the temptation to repeat 
or re-invent activities, or move sideways to a new area of interest, rather than 
address tougher issues necessary for deepening progress in a field of study. 

When the low hanging fruit is also sweet, the incentive to search the 
higher branches is diminished further. In the case of applications and model
ling a shared excitement unites many who have enthused about early experi
ences in the field, for example when students unleash latent power that for 
whatever reasons had remained fettered in their previous mathematical life. 
However this very exhilaration can work against further progress, both indi
vidually, and particularly at a system level, by creating a sense of adequate 
achievement that obscures the reality that there is so much more to do. This 
Study Conference and its aftermath have a key part to play in disturbing 
complacency, and this chapter visits some areas where efforts have been ex-
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pended, and some successes have been achieved, but where more is needed 
to move attainments beyond levels that might be too readily accepted. Given 
limited space, the areas chosen have mainly to do with authenticity in model
ling activity, and with challenging issues associated with assessment. 

2. AS IF FRIENDS 

The expression 'as if friends' has been used to describe threats to the pro
gress of an initiative that occur through the impact of apparently supportive 
and related concepts or activities, that can fundamentally undermine or re
tard the initiative. Two examples selected for illustration with respect to the 
progress of applications and modelling are word problems, and the curve 
fitting capacity of electronic calculating devices. 

2.1 Word Problems versus Modelling Problems 

Certainly it would be fair to say that word problems are widely construed 
as close relatives of modelling problems, for both word problems and model
ling problems are couched in verbal clothes. In other ways the two may dif
fer markedly, specifically with respect to meaningfulness and purpose, for 
modelling problems have real-world connections, which word problems of
ten do not have. It was concern about the message conveyed by word prob
lems that prompted Henry PoUak to write a short article (PoUak, 1969) that 
contributed seminally to the arrival of applications and modelling as a sub
ject of importance in mainstream mathematics education. A contemporary 
example illustrating the same concerns expressed by PoUak is shown below. 

A take-away food shop sells hamburgers, sausages, and pizzas. On 
one day the number of hamburgers sold was three times the number of 
pizzas, and the number of sausages sold was five times the number of 
pizzas. The number of hamburgers and pizzas sold was in total 176. 
How many of each type of food was sold? 

While this problem is couched in the language of the real world there is no 
sense in which it represents how a vendor would make decisions essential to 
her/his livelihood. It does not show how mathematics can be applied to en
hance understanding of real problems. The point here is that this very issue, 
a major motivation behind the article by Pollak more than 30 years ago, re
mains an issue today. As was stated then, word problems have value in cur
ricula and we can learn from advances made in the understanding of how 
students cope with them. However if they are to play an enhancing (rather 
than a subverting) role in helping students to apply their mathematics to real 
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problems, it is essential to clarify those additional or different features that 
characterise examples that genuinely involve applications and modelling. 
Clearly this remains unfinished business. 

2.2 Modelling as Curve Fitting 

The view of modelling as a holistic process encompassing formulation, 
solution, interpretation, and evaluation as essential components is inherent in 
an approach within which links between the real and mathematical worlds 
are considered at every stage. It is salutary then to identify viewpoints in the 
mathematics education community that appear to differ explicitly, or by im
plication, from this view. It has become increasingly clear that some authors 
are using the term mathematical modelling to simply to describe procedures 
for fitting curves to sets of data points. Now it is beyond dispute that such 
skills are important for understanding and working with real world phenom
ena, but there is concern when such approaches ignore essential aspects of 
the real world context within which a problem is located. The purpose of one 
exercise was to fit a graph to national population data, using regression 
methods to search for the best fitting member among a range of 'possible' 
functions, that included, polynomials, exponentials, and rational functions -
as driven by their availability on CAS technology. Missing entirely was any 
consideration of an underlying growth model responsible for the data gen
eration in the first place - for example how a rate of change of population 
defined by births, deaths and migration could possibly lead to polynomial 
patterns of growth as explored in the paper. 
Using curve fitting as a synonym for modelling creates an aberration of the 
modelling concept. One of the qualities we need to continue to emphasise is 
the hoUstic nature of the modelling process, versus the detail present within 
component phases, and that the latter, while important, must be validated in 
terms of the total context. Subversion of reality by choices available on the 
menus of calculators represents a substantial distortion of modelling prac
tice, leading to bad modelling habits as well as inappropriate outcomes. 

3. ASSESSMENT IN APPLICATIONS AND MODEL
LING 

In addressing assessment it is recognised that a range of significantly dif
ferent emphases exist within the field of applications and modelling, and that 
their perceived importance varies with context and educational level. The 
following have been selected as representative of contemporary activity. 
• Assessment of tertiary modelling projects 
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• Diagnostic approaches to modelling competencies 
• Issues in task design 
• High stakes assessment at secondary level 

3*1 Tertiary Modelling Projects 

An early influence on the introduction of applications and modelling in 
the tertiary sector arose from statements by employers concerning perceived 
difficulties experienced by new graduates in working in teams, and solving 
real mathematical problems in the workplace (O'Carrol et.al., 1987). These 
aspects have been consistently addressed since that time, with emphases on 
formulation of problems, communication skills, various means of assessing 
quality in problem solutions, and in reporting outcomes of modelling pro
jects. As a variation Hamson (2001) described how students coped when 
presented with formulated environmental models, for which they were re
quired to examine and analyse outcomes. This approach suggests another 
way of assessing skills associated with the difficult formulation phase of 
modelling. It reverses the usual order by asking students to work 'back
wards' - that is to articulate what a real problem could look like, given its 
formulation as a mathematical problem. 

Several criterion-based approaches have been developed to evaluate as
pects of the modelling process; use of videos of oral presentations rated on 
systematic criteria associated mainly with presentation skills (Le Masurier in 
Haines et.al, 1993); construction of rating scales for the assessment of mod
elling work reported in poster format (Houston, 1997); criteria for assessing 
extended mathematical modelling tasks in terms of communication, execu
tion, and interpretation skills (Goldfinch and Goodall, 1995); criteria emerg
ing from the use of self, peer, and tutor assessment of group oral presenta
tions (Crouch and Haines in Izard, 1997). A central concem within the latter 
approach involves the consistency of raters. Crouch and Haines noted incon
sistencies between peer and self-assessments, with those with good model
ling performances often not recognising quality work carried out by peers. 
Houston found that peers were generally consistent with the lecturer but var
ied along the dimension of leniency-stringency, while Goldfinch & Goodall 
found that peers while generally consistent with the lecturer, again differed 
in stringency, and advocated specific training in the use of rating scales. All 
reported studies within this genre identified difficulties with inexperienced 
judges in identifying and rewarding quality work. Apart from course grades, 
the development of peer assessment capability bears directly on goals to en
hance the ability of graduates to work in teams, in which the capacity to 
evaluate validly the models of others is essential to success. One suggestion 
to make raters more accountable in peer assessment is to 'assess the asses-
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sor' by including a judgement of the quality with which individuals identify 
significant aspects of others' models. Many excellent suggestions for assess
ing aspects of applications and modelling in higher education are also illus
trated in publications from the HEFCE Project (1996). 

3.2 Diagnostic approaches 

Haines et al. (e.g. 2(X)3) describe studies that probe student understanding 
within intermediate stages of the modelling cycle. Do students become better 
at these intermediate phases, e.g. identifying key assumptions, clarifying 
model purpose, formulating a precise problem e t c . ? Using multiple choice 
tools the authors highlighted difficulties that undergraduate students experi
ence at early stages of the modelling process: (a) in identifying broad as
sumptions that influence a simple model (b) in posing clarifying assumptions 
and making a related mathematical formulation. They focused on how stu
dents reached decisions to select multiple-choice alternatives, when sets of 
alternatives were provided. It can be inferred that this approach has a diag
nostic component in that student facility with respect to particular modelling 
skills is specifically targeted. A challenge remains to relate performance on 
such sub-skills to overall modelling ability, as a defined link if established, 
opens the way for the use of such multiple-choice testing also as a summa-
tive procedure in assessing modelling competence. Establishing this link un
ambiguously remains a challenge. 

Houston and Neill (2003) expanded the above approach to include a 
wider group of students at the University of Ulster, and the subsequent 
analysis of student performance assisted materially in the preparation of a 
new modelling module. This outcome identifies a second diagnostic function 
for the approach, directed towards course evaluation and re-design, through 
the location of strengths and weaknesses in existing programs. 

Other results of interest from these studies include the identification of 
intuitive modellers among those with no formal prior experience in mathe
matical modelling, and we are then left wondering at the extent of lost poten
tial in terms of those with parallel latent capacities in secondary education. 

3.3 Issues in task design 

The design of modelling tasks is a necessary precursor to their inclusion 
in assessment programs. Initiatives such as the OECD Programme for Inter
national Student Assessment (PISA) has included items with applications 
and modelling content (Turner, 2004). Application skills sampled by the 
items, include the need to make assumptions, choose a mathematical ap
proach, and interpret outcomes. The items do not provide for extended mod-
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elling work, but it is interesting that even so the omission rates were gener
ally very high across countries, pointing to deficits in the confidence, as well 
as competence, with which students approach contextualised problems. Re
garding the design of short items of this type, Izard et al. (2003) discuss the 
appropriateness of item-response theory for analysing the performance of 
students on questions with modelling content. This is a beautifully written 
analysis with potential to enhance what can be achieved at item level, noting 
also that the term item limits the scope to which the theory applies within the 
wider field of mathematical modelling. Particularly helpful within diagnostic 
assessment, and potentially within PISA type testing, it is not yet applicable, 
for example, to extended modelling problems involving several iterations 
around the modelling loop. 

Turner noted that the complexity of mathematical modelling activities 
that 15-year-old students can cope with appears to be rather low, and this 
turns attention to the presently poorly understood relationship between task 
complexity and task difficulty. While this nexus has been addressed at the 
general level within test theory, again for short items, the term complexity 
takes on several layers of meaning when extended modelling tasks become 
the focus. Stillman (2002), and Stillman and Galbraith (2003) discuss an 
empirical approach to estimating the complexity of mathematical application 
tasks among senior secondary school students and teachers. Six types of 
complexity were theorised and identified, each with a series of sub-ranges: 
conceptual; mathematical; linguistic, intellectual; representational; and 
contextual Data indicate that students and teachers appear to focus on only 
some of the possible complexity components, and individuals differ in what 
they attend to. Given the limits on human information processing capacity it 
seems likely that the search for a common construct for the complexity of 
extended application and modelling problems, and its impact on task diffi
culty is likely to be a long one. 

3.4 Secondary school high stakes assessment 

The extended nature of modelling problems creates issues concerning 
valid and reliable evidence when high stakes assessment is involved. Phi
losophical issues emerge with respect to legitimate measures of modelling 
competence, leading to different procedures being adopted by different au
thorities, within and across national boundaries. Can modelling ability be 
estimated, on the basis of performance on a single common problem, or is a 
pattern of performance across several problems needed to provide a reUable 
estimate? Both approaches have been used, and the implications for students, 
teachers, and for school organisation are profoundly different. 
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Eid (2001) analysed senior school examination questions used in two 
Gennan states, to identify an almost complete lack of application content. He 
identified sample questions that could form modelling based assessment 
tasks, and raised the central dilemma of how much of a substantial modelling 
task can be included in a formal examination governed by entrenched system 
procedures. He therefore raises issues relevant to potential practice. 

In terms of actual practices Australia has, for some time, mandated in
vestigative activities, including applications and modelling, within formal 
assessment structures in some of its states. From the early nineties the state 
of Victoria prescribed an investigative project, where the investigations pro
vided opportunity for open-ended creative thinking, but were structured so 
that the requirement, for example, to formulate a mathematical problem from 
a general real life situation was avoided. All students did the prescribed in
vestigation over the same specified time period of four weeks, teachers were 
given instructions as to how the project should be supervised, and a list of 
criteria were provided for the report format. The modus operandi assumed 
that problem solving or investigative ability can be assessed by means of a 
single task, even though for some students this was the first time they were 
faced with such an experience in their school life. This assumption begs the 
question of how much modelling ability can be enhanced by experience, and 
appears in tension with the development of modelling skills through targeted 
teaching programs. By contrast the state of Queensland has mandated appli
cations and modelling as a component of formal assessment, in which all 
assessment is school-based, with peer review processes charged with moni
toring comparability of quality. Here teachers can construct their own ap
proved projects within a system of assessment which is criterion based, and 
exit performance is assigned on the basis of cumulative assessment data, ob
tained through as many as six problems undertaken over a two-year period. 

Such different practices lead us to consider the influence of primary driv
ers of high stakes assessment schemes, for in addressing the challenge pre
sented by workable valid assessment of applications and modelling perform
ance in the context of high-stakes assessment, we cannot avoid the direct and 
profound impact of system procedures. The risk is real that the integrity of 
applications and modelling will be compromised by proclaimed needs to 
conform to what are presented as non-negotiable attributes of a mandated, 
external, assessment system. 

Of course this issue knows no national or state boundaries, and attention 
is thus directed to the philosophy of assessment, in whatever forms it is prac
tised. In considering the practice of using a single common extended model
ling task undertaken simultaneously by all students, we might ask what, in 
terms of the activity of mathematicians, does modelling resemble most? It 
can be argued that the open ended properties involved in modelling prob-



86 Chapter 2.5 

lems, the need for the solver to make and act on assumptions, to formulate a 
mathematical problem from a general non-mathematised context, to carry 
out validation activities, to revisit earlier stages of the modelling process, 
and to produce a critical report, is much more like research activity than 
other kinds of mathematical learning typically assessed by some form of 
common test. That is, philosophically the research thesis is a much closer fit 
for the type of activity within a modelling project than are questions on tradi
tional timed examination papers. And in thesis work expertise is gained and 
tested over time, in a process within which reflection and action on feedback 
is an integral part of the learning process, and where ultimately the quality of 
the work is assessed by criterion-referenced judgments exercised by examin
ers, guided by canons of scholarship characteristic of the field. Furthermore 
the process is applied to a wide range of problems and examiners respond 
with qualitative judgments by comparing performance with respect to agreed 
scholarly indicators. 

But surely this is Untrustworthy? Subjective? Surely in order to assess 
the relative merits of research candidates in a given area of mathematics, 
every student should be given the same thesis topic, enrolled at the same 
time, and given the same due date for submission! Ridiculous - of course it 
is - and yet essentially similar arguments are used to defend approaches to 
student assessment of mathematical modelling activity. The purpose here is 
to raise the issue of tension and compromise, to highlight the question of 
drivers of assessment programs, where power is located, and the extent to 
which its exercise threatens to compromise the integrity of the fundamental 
objectives that applications and modelling encompass. 

In reflecting on such issues there is no suggestion that other, and argua
bly more valid procedures, are easy to apply. The alternative of profiling 
students using their longitudinal performance across several tasks also has 
difficulties, for this latter approach depends on the efficiency and efficacy of 
a moderation system. The thesis system works because examiners are schol
ars with a strong shared understanding of the canons of disciplinary scholar
ship underpinning the criteria that are severally applied to candidates' sub
missions. This is much more difficult to achieve within mass secondary edu
cation, when hundreds or thousands of individual teachers are involved. The 
task of attaining and maintaining comparability through peer review proc
esses is a huge one, and remains a challenge of major proportions. But it also 
arguably has sufficient integrity to warrant a substantial investment in pro
fessional development and support. 
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4. FINAL REFLECTIONS 

In considering applications and modelling within educational settings 
there is a danger that artefacts of education (e.g. assessment issues) can blind 
us to other potential goals, purposes and measures of achievement. This 
element has been there from the start when Henry PoUak asked, not what 
word problems could achieve in terms of student performance, but what they 
contributed to the capacity of students to apply their mathematics to prob
lems outside the classroom. Early ICTMA conferences^ were motivated by 
concerns expressed by employers that graduates were ill equipped to work in 
teams on non-standard problems in the field. Institutional or systemic as
sessment procedures do not necessarily contribute to enhancing purposes 
such as these, and formal assessment data alone stand to overlook important 
potential indicators of success. Applications and modelling is unusual within 
the mathematics curriculum, in that evidence of successful, and at times un-
forseen teaching and learning, may occur independently of formal or infor
mal teaching or assessment measures. Examples of this occurred within a 
modelling program (Galbraith & Clatworthy, 1990), where a student within 
his hobby of hydroponics, spontaneously and idiosyncratically applied the 
modelling process to re-invigorate the growth environment of plants. Linje-
^ard and Holmquist (2001) describe how modelling courses for prospective 
teachers produced impacts that affected their views of the mathematical 
world, in addition to modelling specific attainments, while McNab et al. 
(2(K)4) refer to the way in which primary school children were reconnected 
to their world and life-experiences through the medium of modelling. Such 
examples illustrate perhaps that authenticity remains the supreme challenge, 
and that other artefacts of education (including assessment) should remain its 
servant. Whatever our personal priorities, the road to better outcomes for 
applications and modelling leads ever on. 
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Abstract: We make the case for introducing fundamental ideas about modelling 
early, in particular through reconceptualizing word problems that 
describe real-world situations as exercises in modelling. Further, we 
argue for modelling as a means of giving children a sense of agency 
through recognizing the potential of mathematics as a critical tool for 
analysis of issues important in their lives. 

1. EARLY AND AUTHENTIC CONNECTIONS 

In this contribution we will first make the case for the early introduction 
in schools of fundamental ideas about modelling and for laying the founda
tions of a mathematical disposition, in particular through reconceptualizing 
word problems that describe real-world situations as exercises in modelling 
(Verschaffel, 2002). Further, and more broadly, we will argue for modelling 
as a means of giving children a sense of agency through recognizing the 
potential of mathematics as a critical tool for analysis of issues important in 
their lives, their communities, or society in general (Mukhopadhyay & 
Greer, 2001). 

Our plea to take mathematical modelling seriously already at the elemen
tary school level is a reaction against the fact that investigations of, discus
sions about, and instructional efforts for, mathematical modelling take place, 
almost exclusively, at the higher secondary and tertiary level. However, as 
argued convincingly by Usiskin in his contribution to this book, the gener
ally accepted definitions of mathematical model and the modelling process 
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do not require mathematics at such a (high) level. Indeed, these two terms 
are often described in such a way that makes mathematical modelling syn
onymous with what might be termed real-world problem solving. This reali
zation suggests that modelling might begin as early as the very first years of 
the primary school. 

Before going further, we want to emphasize that, especially among re
searchers and designers working at the primary school level, the term 
mathematical modelling is not only used to refer to a process whereby a 
situation has to be problematized and understood, translated into mathemat
ics, worked out mathematically, translated back into the original (real-world) 
situation, evaluated and communicated. Besides this type of modelling, 
which requires that the student has aheady at his disposal at least some 
mathematical models and tools to mathematize, there is another kind of 
modelling, wherein model-eliciting activities are used as a vehicle for the 
development (rather than the application) of mathematical concepts. This 
second type of modelling is called 'emergent modelling' (Gravemeijer, 
2004). Although it is very difficult, if not impossible, to make a sharp dis
tinction between the two aspects of mathematical modelling, it is clear that 
they are associated with different phases in the teaching/learning process and 
with different kinds of instructional activities. However, in this contribution 
the focus will be on the first aspect of modelling. 

2. MODELLING WITH ELEMENTARY ARITHMETIC 

2.1 Suspension of sense-making 
There are many examples of responses by children to word problems that 
show an apparent willingness to ignore things that they know about the 
world, language, and logic (see the first chapter of Verschaffel, Greer, & De 
Corte (2000) for a survey). The most dramatic and well-known example is 
probably the French research (prompted by a satirical reflection from 
Gustave Flaubert, see Verschaffel et al., 2000) in which elementary school 
children were posed questions of the type: 

• There are 26 sheep and 10 goats on a ship. How old is the captain? 

A large majority gave a numerical answer, while only a small minority 
questioned whether an answer is possible. 

Intrigued by this example and other manifestations of "suspension of 
sense-making" (Schoenfeld, 1991, p. 340), we carried out in parallel in 
Northern Ireland and in Flanders pencil-and-paper studies with upper ele
mentary and lower secondary school students, using a set of somewhat dif
ferent problems including those Usted below (Greer 1993; Verschaffel, De 
Corte, &Lasure, 1994): 
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• A man wants to have a rope long enough to stretch between two poles 12 
meters apart, but he only has pieces of rope 1.5 meters long. How many 
of these would he need to tie together to stretch between the poles? 

• Carl has 5 friends and Georges has 6 friends. They decide to give a party 
together. They invite all their friends. All friends are present. How many 
friends are there at the party? 

• Bruce and Alice go to the same school. Bruce lives at a distance of 17 km 
from the school and Alice at 8 km. How far do Bruce and Alice live from 
each other? 

• John's best time to run 100 meters is 17 seconds. How long will it take 
him to run 1 kilometer? 

Note that, while all problems mentioned above are about sense-making, 
the four items from the latter list differ from the former "captain's problem" 
in that they admit sensible answers. We termed these latter items "problem
atic" (P-items, for short), in the sense that a proper answer requires (at least 
from our point of view) the application of judgment based on real-world 
knowledge and assumptions, rather than the straightforward application of 
arithmetical operations on the given numbers (as in standard word prob
lems). 

Both studies showed that the vast majority of children responded by ap
parently assuming that the situations described in the problems could be 
neatly mapped on to simple arithmetic operations. For example, on the four 
sample problems above, 100, 89, 95 and 97 % of children tested gave the 
non-realistic answers '8 pieces', '11 friends', '9 km' or '25 km', and '170 
seconds', without any further qualification (Verschaffel et al., 1994). 

Our studies were replicated in many other countries, using the same P-
items, the same testing conditions and the same scoring criteria. Findings 
were strikingly consistent with our results, sometimes to the great surprise 
and disappointment of these other researchers, who had anticipated that the 
'disastrous' picture of the Northern Irish and Flemish pupils would not apply 
to their students (see Verschaffel et al., 2000). 

Our first reaction to such findings was shock. How could it be that the re
sults of some years of mathematics education could be the willingness of 
children to collude in negating their knowledge of reality? We came to real
ize that this apparent "suspension of sense-making" can be construed as 
sense-making of a different sort, namely a strategic decision to play the 
"word problem game". As expressed by Schoenfeld (1991, p. 340): 

... such behavior is sense-making of the deepest kind. In the context of 
schooling, such behavior represents the construction of a set of behaviors 
that results in praise for good performance, minimal conflict, fitting in 
socially etc. What could be more sensible than that? 
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Students' strategies and beliefs develop from their perceptions and inter
pretations of the didactical contract (Brousseau, 1997) or socio-mathematical 
norms (Yackel & Cobb, 1996) that determine - mainly implicitly - how to 
behave in a mathematics class, how to think, how to communicate with the 
teacher, and so on. More specifically, this enculturation seems to be mainly 
caused by two aspects of current instructional practice, namely (1) the nature 
of the problems given and (2) the way in which these problems are con
ceived and treated by teachers. Support for the second factor comes from a 
study by Verschaffel, De Corte, and Borghart (1997), wherein pre-service 
elementary school teachers were asked, first, to solve a set of problems 
themselves, and, second, to evaluate alternative answers from (imaginary) 
pupils to the same set of problems. The results indicated that these future 
teachers shared, though in a less extreme form, students' tendency to suspend 
sense-making. 

As a result, students learn to play the "Word Problem Game", the rules of 
which include: 
• Any problem presented by the teacher or in a textbook is solvable and 

makes sense. 
• There is a single, correct, and precise numerical answer which must be 

obtained by performing one or more arithmetical operations with num
bers given in the text. 

• Violations of your knowledge about the everyday world may be ignored. 

2.2 Word problems as modelling exercises 
A minimal and rather easily achievable goal is to improve the quality of 

word problems as applications in numerous ways that have been suggested 
over many years, such as: 

• Break up the expectation that any word problem can be solved by adding, 
subtracting, multiplying, or dividing the numbers given in the problem, 
or a simple combination thereof, by varying the quantitative relation
ships, including irrelevant data, and so on. 

• Weed out word problems that supposedly describe real-world situations 
but are not reaUstic (we do not argue for getting rid of puzzle-like or 
"whimsical" word problems). 

• Valorize forms of answer other than single, exact numerical answers. 

More radically, we recommend a modelling perspective whereby arith
metic operations should be mindfully evaluated as candidate models for a 
given situation presented verbally or otherwise, with many examples to help 
students discriminate between cases where application of the operations pro
vides a model that is (a) precise, (b) approximate, (c) inappropriate. To put it 
another way, we are arguing that what we have termed "implicit modelling" 
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(Greer & Verschaffel, this volume), carried out through routine expertise, be 
replaced by "explicit modelling" necessitating adaptive expertise. 

A number of design studies have been carried out by researchers to take 
the modelling approach seriously, in particular an intervention involving the 
creation and evaluation of a learning environment for mathematical model
ling and problem solving in upper elementary school children. Without any 
attempt to be exhaustive, we list a few design studies that have been set up 
recently according to this modelling perspective: 

• Several so-called 'developmental research' projects by the Freudenthal 
Institute in The Netherlands (Gravemeijer, 2004; Van den Heuvel-
Panhuizen, 2004), 

• The Jasper studies of the Cognition and Technology Group at Vanderbilt 
(1997), 

• The numerous design experiments with model-eliciting activities summa
rized in the recent book by Lesh and Doerr (2003), and 

• The learning environment for mathematical modelling and problem solv
ing in upper elementary school children that we developed, implemented 
and tested a few years ago in Leuven (Verschaffel, De Corte, Lasure, 
Van Vaerenbergh, Bogaerts, & Ratinckx, 1999). 

Characteristics conmion to these experimental programs include: 

• The use of more realistic and challenging tasks than traditional textbook 
problems, 

• A variety of teaching methods and learner activities, including expert 
modelling of the strategic aspects of the modelling process, small-group 
work, and whole-class discussions, and 

• The creation of a classroom climate conducive to the development of the 
elaborated view of mathematical modelling and of the accompanying be
liefs. 

Generally, these studies have produced positive outcomes in terms of 
performance, underlying processes, and motivational and affective aspects of 
learning. After reviewing the available research evidence, Niss (2001, p. 8) 
concluded that "application and modelling capability can be learnt - and ac
cording to the above-mentioned findings has to be learnt - but at a cost, in 
terms of effort, complexity of task, time consumption, and reduction of syl
labus in the traditional sense". 
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3. MODELLING SOCIAL ISSUES 

3.1 The political nature of mathematics education 

This is a great discovery, education is politics! After that, when a teacher 
discovers that he or she is a politician, too, the teacher has to ask "What 
kind of politics am I doing in the classroom?" (Freire, 1987, p. 46) 

Generally, it is implicit that mathematics education, like mathematics, is 
politically neutral and thus exempt from Freire's declaration. According to 
Apple (2000, p. 243): "It is unfortunate but true that there is not a long tradi
tion within the mainstream of mathematics education of both critically and 
rigorously examining the connections between mathematics as an area of 
study and the larger relations of unequal economic, political, and cultural 
power". However, there are signs of change, building on a major shift within 
the discipline of mathematics education from a mainly psychological and 
pedagogical perspective towards recognition of the historical, cultural, and 
social contexts of both mathematics and mathematics education. This shift is 
encapsulated in the phrase "mathematics as a human activity" whence the 
acknowledgment of the political situatedness of mathematics education is a 
natural outgrowth (Mukhopadhyay & Greer, 2001; for an excellent review of 
the emergence of this perspective see Vithal, 2003, Chapter 1). 

Particularly in the United States, there are powerful conservative 
counter-forces at work. In the Mathematics Framework for California Public 
Schools (California Department of Education, 2000, p. 157) there is a dis
cussion of the following "extreme example": 

The 20 percent of California families with the lowest annual earnings pay 
an average of 14.1 percent in state and local taxes, and the middle 20 per
cent pay only 8.8 percent. What does that difference mean? Do you think 
it is fair? What additional questions do you have? 

The following comments are made (p. 157): 

.. .a proper understanding of the difference in the two figures of 14.1 per
cent and 8.8 percent would require a strong background in politics, eco
nomics, and sociology... Moreover, the idea of "fairness" is a difficult 
one even for professional political scientists and sociologists. Formulat
ing a mathematical transcription of this elusive concept in this context is 
therefore beyond the grasp of the best professionals, much less that of 
school students. Since it is impossible to transcribe the problem into 
mathematics ... this is therefore not a mathematical problem. 
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In effect, the argument defines as non-mathematical any act of modelling 
that does not uncontroversially lead to a precise set of equations that can be 
solved to yield a single answer. 

3*2 Modelling as a tool for critical analysis 
Here we consider three examples of mathematical analysis applied to as

pects of contemporary US culture. 
The first example, from the work of Mukhopadhyay (1998), starts with 

the simple question: "What would Barbie look like if she was the height of 
an average woman?''. Barbie dolls, perhaps the ultimate icon of US culture, 
have given rise to a very extensive literature analysing the remarkable asso
ciated cultural phenomena from sociological and other perspectives. The 
investigation begins as an exercise in proportional reasoning. In order to 
dramatize the contrast between the doll that is often idealised as having a 
"perfect" human body, and the individual chosen for comparison, the con
tour of that individual is sketched. The projected Barbie, using the computed 
measures of her relevant body-parts is then superposed on the full-size con
tour drawing. The obvious differences in body shape (for example, Barbie's 
waist is so narrow she could not bear children) lead into discussions of issues 
of body-image and eating disorders. The conditions under which the dolls 
are manufactured in, for example, China and Brazil lead to another area of 
discussion based on data about the economics of sweatshop labor. 

The second example is from Eric Gutstein, a mathematics educator at the 
University of Illinois, Chicago. As part of his work, he teaches middle 
school mathematics in a public school situated in a low-income, Mexican 
immigrant community. In a recent project, he used an article from the Chi
cago Tribune as the basis for a three-week project on whether there is racial 
discrimination in the allocation of mortgage loans. The resulting discussion 
was intense and open. One student wrote as follows (Gutstein, 2003a, p. 36): 

[It would seem that racism] is a factor because white applicants no matter 
what their income was, they were always denied less times than African 
Americans and Latinos. And it is also a factor because the ratio of appli
cants denied between African Americans and whites is 5:1 and between 
Latinos and whites is 3:1. That data shows that racism is a factor. 

There are always two sides to a story. Racism is not a factor because we 
do not know whether or not those people had bad credit or were unem
ployed. It could be possible that a lot of those people could have been in 
debt. Even though the banks want to make loans they also want to make 
sure that they get paid. 
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So with the data provided it is very hard to conclude whether or not ra
cism is a factor when it comes to obtaining a mortgage loan in the Chi
cago area. 

This is a sophisticated response that belies the condescending attitude of 
the statement cited above that children cannot be expected to understand 
such complex issues. 

The third example is from a description by Tate (1995a) of the pedagogy 
of a teacher in a predominantly African American urban middle school. Stu
dents are asked to pose a problem negatively affecting their conununity, to 
research it and develop strategies to tackle it, and to resolve the problem by 
implementing these strategies. As a particularly striking example, the stu
dents identified the presence of 13 liquor stores within 1000 feet of their 
school as a problem, developed a plan to move them away, and carried out 
that plan by various direct actions, including lobbying the state senate. 
Mathematical modelling was one tool used in this real-problem-driven exer
cise. For example, the students analyzed the local tax and other codes that 
led to financial advantages for the liquor stores and reconstructed this incen
tive system to protect their school community. As Tate (1995a, p. 170) 
comments: 

This required the students to think about mathematics as a way to 
model their reality... Percentages, decimals, and fractions became 
more than isolated numbers as the students tried to mathematically 
manipulate these different, yet related, symbol systems and to link 
them to real problem solving and decision making. 

3.3 Diverse realities 
If a decision is made to mathematize situations and issues that connect 

with students' lived experience, then it brings a further commitment to re
spect the diversity of that experience across genders, classes, and ethnicity 
(Cooper & Dunne, 20(X); Gutstein, 2003b). A very clear example is the fol
lowing: 

It costs $1.50 each way to ride the bus between home and work. A 
weekly pass is $16.00. Which is the better deal, paying the daily fare or 
buying the weekly pass? 

When African American students were asked about their responses, it 
was discovered that they "transformed the 'neutral' assumptions of the prob
lem - all people work 5 days a week and have one job - into their own reali
ties and perspectives" (Tate, 1995b, p. 440). In their experience, as opposed 
to white middle-class experience, a job (such as cleaning) might mean mak
ing several bus trips every day, not just two, and working more than 5 days a 
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week. If items of this type are used for assessment, and assumptions are 
made about the "right" answers, the implications for inequity are clear, given 
that, as Tate (1995b, p. 440) puts it: "the underpinnings of school mathemat
ics curriculum, assessment, and pedagogy are often more closely aligned 
with the idealized experience of the White middle class". 

4. CONCLUDING COMMENTS 

In typical elementary schools worldwide, the teaching of early arithmetic 
is predominantly focused on computational proficiency. Even word prob
lems that putatively link mathematics and aspects of the real world are often 
no more than thinly disguised exercises in the four basic operations. Given 
that many adults claim inability to do, and fear of, mathematics, we may 
conjecture that such a regime establishes early a negative and narrow dispo
sition towards mathematics in many children. An alternative vision, doubt
less Utopian, sees early arithmetic as an opportunity to lay the foundations 
for a positive and productive mathematical disposition, including a grasp of 
the relationship between aspects of reality and mathematical structures as 
mediated by modelling acts, and a belief in the power of mathematics as a 
sense-making and critical tool. 
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Abstract: The paper deals with the gap between the relevance of applications and model
ling in didactical discussions and its minor importance in everyday mathemat
ics teaching. Results of our own empirical studies that describe mathematical 
beliefs of teachers and students as being central obstacles are presented. Fur
ther, the studies demonstrate the possibility to change these beliefs as well as 
ways to promote modelling competencies. 

1. INTRODUCTION 

Empirical studies have shown that applications and modelling only play a 
minor role in everyday mathematics teaching. This situation has not yet 
changed decisively, although many teaching materials have been developed 
over the last decades and are available. This is not exclusively a typical 
German situation. A number of empirical and international comparative 
studies indicate that applications and modelling are less significant in every
day school life in many countries, although there are country specific differ
ences. 

In the following, we present the results of our own studies which point 
out problems and opportunities of integrating modelling and application in 
lower secondary mathematics classroom. The results of the first study refer 
to students (MaaB, 2004), while the results of the second study focus on 
teachers (Komella, 2003; Ross, 2002). 
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2. RESULTS OF AN EMPIRICAL STUDY FOCUS
SING ON MATHEMATICS STUDENTS 

This study deals with the following questions: 
1. How far do students' mathematical beliefs change when modelling prob

lems are included in ordinary mathematics lessons? 
2. How far do such lessons enable students to carry out modelling processes 

on their own? 
3. What kind of connections exist between the students' mathematical be

liefs and their modelling competencies? 

2.1 Theoretical frame 
To answer these questions, the theoretical approach focuses on discus

sions about applications of mathematics and discussions about beliefs. 
First to the discussion of modelling and modelling competencies: We de

scribe a modelling process as a process in which a non-mathematical prob
lem is solved through the application of mathematics (cf. Blum, 1996). 
Competencies for modelling include abilities to model problems as well as 
the willingness to implement them. 

Secondly, we refer to the conception of mathematical beliefs which are 
described as an individual's stable knowledge of certain objects and affairs 
as well as of corresponding attitudes and emotions (Pehkonen & Tomer, 
1996). Considering possible connections between beliefs and learning proc
esses, the search for methods to change beliefs is a central problem which 
has not yet been solved. An important contribution to characterize students' 
beliefs was given by Grigutsch (1996). He categorizes students' beliefs 
mainly by four aspects of mathematical belief systems which refer to 
mathematics as a field of science. Mathematics can be understood as a sci
ence which mainly consists of problem solving processes (aspect of process), 
a science which is relevant for society and life (aspect of application), an 
exact, formal and logical science (aspect of formalism) or a collection of 
rules and formulas (aspect of scheme). The first two aspects are called dy
namic beliefs, the last two static beliefs. 

Based on this theoretical background, this study aimed to show the ef
fects of modelling lessons on students in a comprehensive manner. 

2.2 Methodological approach 
Classroom setting 

During the data collection period of 15 month (April 2001 - June 2002), 
six modelling units were integrated into two parallel classes, age 13-14, in 
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a Gymnasium (i.e. school type for higher achieving students). For example, 
in three of these units the students had to answer the following questions: 
1. How large is the surface of a 'Porsche'? 
2. How can different rates of various mobile phone contracts be compared 

depending on customers' habits? 
3. Is it possible to heat the water required in Stuttgart-Waldhausen by solar 

collectors on the roof of houses? 

Theoretical basis and methods in data collection 
Aiming at an explanation of complex relations in the context of everyday 

life and at a contribution to an empirically founded theory, the study is a 
qualitative study which theoretically starts off mainly from the Grounded 
Theory (Strauss & Corbin, 1998). Furthermore, a long-lasting incorporation 
of modelling tasks into everyday mathematics teaching practice became pos
sible because in this study the researcher and the teacher were represented by 
the same person according to Action Research (Altrichter & Posch, 1998). 

In order to meet the complexity of the research's objectives, a variety of 
methods in data collection were used (questionnaires, interviews, learner's 
diaries, tests, concept maps). Based on computer-aided data evaluation, ty
pologies were created to explain interrelations between phenomena. The 
main tool to elucidate the results was the construction of ideal types as de
scribed by Weber (see Kelle & Kluge, 1999). 

2.3 Results of the study 
The following results are based on the data-evaluation of 35 students and 

their development during the whole period of the study. First, the recon
structed types of reaction will be explained. Then we will refer to the prob
lems and possibiUties of integrating modelling into mathematics classes. 

Types of reaction 
Mathematical belief systems 

The results of this study show, on the one hand, that the aspects reported 
by Grigutsch exist in the students' mind. On the other hand, it became clear, 
that those aspects do not sufficiently describe the students' mathematical 
belief systems. Many students seemed to have no idea how to characterize 
mathematics as a science. Their thinking primarily concentrated on the les
sons taught and their own role in these lessons. These beliefs will be called 
'non subject-based'. 

Among others, the following beliefs were reconstructed: 
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Cognitive shaped non subject-based beliefs: 
• Beliefs about the short duration of teaching units within the mathematics 

classes: * Exercises in maths lessons should only last one hour.' 
• Beliefs about a minor importance of words in the exercises: Tow have to 

write in German, in mathematics you have to calculate*. 
• Beliefs about the necessity of learning: ^Either one is able to deal with 

mathematics or not, learning is useless.' 
Affective shaped non subject-based beliefs: 
• Beliefs about teaching methods: 7 liked the lesson because we were al

lowed to work in groups. * 
• Beliefs about the atmosphere within mathematics classes: 7/ is absolutely 

shit that some students cannot respect Mrs Maafi' orders. Then she gets 
angry and the atmosphere gets really bad.' 

• Beliefs about understanding: 'Today I understood everything. And when 
you understand something, you like it. * 
These non subject-based beliefs seem to be so important for some stu

dents that subject-based beliefs, as described by Grigutsch (1996), could not 
be reconstructed. Altogether, the reconstruction of students' individual 
mathematical belief systems shows a complex structure of different beliefs. 
However, frequently one subject-based or non subject-based aspect turned 
out to be the most important. Furthermore, the results indicate that almost all 
components of the belief system are responsible for the way students act in a 
typical manner. The interrelation between belief system and the students' 
actions can be described by six ideal types. 

Ideal type A+B: Students with a process-oriented or an application-
oriented mathematical belief system have a positive attitude towards model
ling examples. The application-oriented beliefs increased during the study. 

At the end of the study, one student with a process-oriented belief system 
who, at the beginning, had hardly any application-oriented beliefs answered 
to the question "Do you think that you can use the things you learned during 
the modelling units?" 7 think it can't do any harm, because knowledge is 
always regarded positively. Moreover, I have learned to react independently 
and to see whether anybody wants to cheat me.' 

Ideal type F: Students with an affective-shaped non subject-based 
mathematical belief system who have also the impression to understand the 
content quite well, regard the modelling examples as positive. They develop 
application-oriented beliefs. 

One student answered the question 'What did you learn from modelling 
examples?' as follows: 'A lot! 1. Mathematics is everywhere. 2. Maths les
sons can be fun. 3. Everybody needs mathematics. 4. Which mobile phone 
contract I have to choose... 5. Well, many important things. * 
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Ideal type C+D+E: Students with a scheme-oriented, a formalism-
oriented or a cognitive-shaped non subject-based belief system reject model
ling examples in an emotional way. No or only very few application-oriented 
beliefs are developed until the end of the study. 

Students answered the question about what they have learned, as follows: 
'Modelling examples don't belong into maths lessons because you don't 
have to calculate,,. I have learnt nothing, * 7 have learnt that maths lessons 
can be horrifying,' 

On the question "When do you need mathematics in life?" one student 
answered: It depends on the profession. As an engineer you need geometry, 
as a shop assistant you need plus, minus, times and divided by, * 

ModeUing competencies 
Reaction pattems of the students can be reconstructed from mathematical 

competencies as well as mathematical beliefs which have great influence on 
the acquisition of modelling competencies. In an idealized way, four types of 
modellers can be distinguished: 

Reality-distant modellers have a positive attitude towards context-free 
mathematics and reject modelling examples. As consequence an affective 
barrier is set up which mainly results in a lack of competency to solve prob
lems closely connected to context-related mathematics which means that 
they have problems with the construction of real models, with their valida
tion and partially also with the interpretation of the results. 

Mathematics-distant modellers clearly give preference to the context of 
real-world problems and show only low performance in mathematics les
sons. These students are very enthusiastic about modelling examples. They 
are able to construct real models and validate solutions quite well. Lack of 
ability is found in constructing mathematical models, in finding a mathe
matical solution and in interpreting complex solutions. 

Reflected modellers have positive attitudes towards mathematics itself 
as well as towards modelling examples. They show an appropriate perform
ance in mathematics. Deficits within the modelling process are hardly to be 
found. 

Uninterested modellers are neither interested in the context of real-
world problems nor in mathematics itself. They have deficits in mathemati
cal con^etencies. While dealing with modelling problems, problems occur 
in every part of the modelling process. 

Problems and opportunities 
Which problems may occur? 
The negative reactions of those students whose belief system can be 

characterized as scheme- or formalism-orientated or as cognitive shaped 
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non subject-based might prevent many teachers from integrating modelling 
problems in their classes after a first effort. Thus, students' beliefs might 
even prevent a broad implementation of realistic tasks in everyday mathe
matics teaching. 

What opportunities are offered by the integration of modelling examples 
in daily school routine? 

The integration of modelling examples in mathematical lessons can lead 
to the development of students' application-oriented beliefs as we have seen 
above. 

Students at lower secondary level are able to develop modelling compe
tencies which include meta-knowledge of modelling processes. Therefore, 
students become qualified to model unknown real world problems by them
selves and to question critically already accomplished modelling. At the end 
of the study almost every student was able to deal with simple modelling 
tasks even when the context of the task was unknown to him/her. Many of 
them were even able to deal with complex modelling problems. 

Modelling problems provide an important educational contribution to 
mathematics lessons which meet the individual abilities of (many) more stu
dents (than in usual mathematics lessons). The open formulation of model
ling problems and the necessity to simplify the complex reality enables stu
dents to develop solutions by themselves, according to their capabilities. The 
results of this study show that strong students choose more challenging mod
els while weaker students prefer simpler ways to achieve their final solution. 

The positive attitude towards modelling examples evoked by the connec
tion to reality and the unusual success of weaker students allows an affective 
access to mathematics and, from a long-term perspective, may positively 
improve the acquirement of mathematical competencies. 

3. RESULTS OF AN EMPIRICAL STUDY FOCUS
SING ON MATHEMATICS TEACHERS 

The second study gives insight to the teachers' perspectives. Many teach
ers think it deskable to discuss contextual and modelling problems in les
sons, but a look at teaching practice makes it clear that contextual and mod
elling problems play only a rather minor role. For this reason, within the 
framework of our study we will examine the question 'what are the mathe
matical beliefs of teachers towards applications and modelling tasks?' 
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3.1 Frame and design of the study 
The study was conducted within the evaluation of a pilot programme by 

the German government together with the federal states which was aimed at 
increasing the efficiency of mathematical and scientific teaching. This inno
vative programme, carried out during the period 1998 - 2003, aimed at fun
damental changes in mathematics teaching: namely, a change of the tasks as 
practised in lessons and a change of the dominating learning and teaching 
structures focused on a stronger integration of applications and modelling 
examples. Over the whole time teachers were offered further education pro
grammes, both by internal and external initiatives. Furthermore, the partici
pating teachers were asked to try out already existing material and to de
velop new material through teamwork. Teachers were given access to a great 
amount of material - developed all over Germany within this innovation pro
gramme - through a special server: (http://blk.mat.uni-bayreuth.de). 

The study, whose results will be described, is restricted to the evaluation 
of this programme at the six participating schools in Hamburg. Due to organ
isational constraints, the evaluation is limited to a period of only one year. 
This short time implied that really great effects of change could not be ex
pected. 

The evaluation study started when the students of the 6 participating 
schools attended year 7 and 8 and ended when they were in year 8 and 9. 
The study is divided up into different components: In the first the develop
ment of mathematical literacy as well as students' beliefs are examined. Due 
to lack of space, we do not refer to this part of the study (see Kaiser & Wil-
lander, 2005). In the second qualitatively oriented component the mathe
matical belief systems of the teachers involved were examined. 

The theoretical approach of his study, like that of the first study, uses the 
approach of Grigutsch (1996) about the classification of mathematical belief 
systems, that is; process-oriented and application-oriented mathematical be
liefs as dynamic belief systems; and formalism-oriented and scheme-
oriented mathematical beliefs as static mathematical belief systems (for de
tails concerning teachers see Grigutsch, Raatz, & TSmer, 1998). Beliefs are 
characterised as stable patterns of conviction. 

Results of empirical studies show how strongly mathematical beliefs 
about mathematics and mathematics teaching control the pedagogical behav
iour of teachers. Mathematical innovations like the introduction of applica
tions and modelling bring up the question how much there is a possibility for 
change. 

There exists nearly no empirical study which investigates the difficulties 
in changing beliefs. However, well known studies that analyse the difficul
ties of changing attitudes - a psychological construct closely related to the 
concept of beliefs - show that beliefs are not easily modifiable. Ambrose 
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(2004) points out for example that the changes in the belief systems of 
teachers are more incremental than monumental. In this context, Pehkonen 
(1994) distinguishes between "surface beliefs" which are not deeply rooted 
within the belief system, and "deep beliefs" that are functioning as central 
anchor points. Pehkonen (1994) points out that these deep beliefs need to be 
changed because they are motivating teachers during their mathematics les
sons. 

Methodologically, the study is qualitatively oriented and applying meth
ods from qualitative social science. Furthermore, the applied empirical 
methods concerning choice of sample, data analysis and data interpretation 
are based on the theoretical attempts of the Grounded Theory (Strauss & 
Corbin, 1998). 

In this study, all teachers involved in mathematics teaching of year 7 and 
8 students of the six participating schools have been asked about their 
mathematical beliefs at the beginning of the project and after one year. This 
has been done in written form via open and closed items. Altogether 41 
teachers participated at the beginning and 29 at the second questioning. With 
8 teachers, who were chosen for certain theoretical criteria, partly standard
ised interviews were done, 4 at the beginning and 4 at the end of the study 
(for details see Ross, 2002; Komella, 2003). 

3.2 Results of the study 
The written questioning at the beginning of the study shows a clear 

dominance of static beliefs about the nature of mathematics, in other words 
for these teachers mathematics mean exact mathematical thinking and exact 
ways of working as it is described in the formalism-oriented approach. 

In one of the in-depth interviews a teacher describes his view about 
mathematics as follows: Mathematics is at first a Jormal language', in con
trast to colloquial language *not redundant*, 'precise' and 'logical*. Ac
cording to this teacher's opinion there is only a weak relation between 
mathematics and everyday teaching: 'For me mathematics is ,.. not always, 
sometimes yes,.... has also a relation to life. * 

Besides the formalistic position there are also scheme oriented under
standings. Within these understandings, mathematics is reduced to the accu
mulation of rules and formulae. Mathematics is - as expressed in an inter
view - 'the logical sequence of formulae*. Non-mathematical applications 
do not form a constitutive part of mathematics. In mathematics lessons stu
dents learn 'the basic conditions of mathematics*, 'and everything else 
comes from the other subjects, there one continues to calculate. * 

This goes along with the fact that there is only seen a weak relation be
tween mathematical subject knowledge and the real world. In the interview. 
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one teacher explained that mathematics might even be replaced by playing 
chess because mathematics is aimed at developing thinking competencies. 

Mathematical beliefs for which the aspect of application plays a central 
role, could only seldom be reconstructed. In one of the in-depth interviews it 
becomes clear that for teachers with such an orientation the aspect of appli
cation has a fundamental meaning: *What shall I do with mathematics, if I 
cannot apply it somehow for my life?' However, not its usefulness, but the 
training of 'critical questioning' is as important as the training of thinking 
abilities. 

Beliefs about the nature of mathematics teaching were also dominated by 
static understandings. Likewise, the beliefs about the goals of mathematics 
teaching are predominated by schematic aspects. Dynamic ideas only prevail 
with beliefs about the learning of mathematics. 

Taken together, it becomes obvious that for the whole group of ques
tioned teachers applications and modelling play only a minor role in their 
beliefs about mathematics and mathematics teaching. 

In the follow-up study conducted one year later, only slight changes 
could be observed: Altogether, the beliefs about the nature of mathematics 
and the nature of mathematics teaching changed slightly towards a greater 
relevance of application and modelling examples. The results of the in-depth 
interviews are as follows: Teachers with mathematical beliefs, in which the 
aspect of application only plays a minor role, interpreted application oriented 
beliefs about the nature of mathematics or the nature of mathematics teach
ing in a way by which they became appropriate for their own mathematical 
beliefs. In detail: Teachers with a process oriented understanding of mathe
matics and mathematics teaching stress the many chances which exist for 
developing solutions and reduce applications and modelling to this aspect. In 
contrast to that, teachers with schematic mathematical beliefs restrict appli
cations and modelling to examples that enable easy mathematisations or lead 
directly to a formula. For teachers with formalistic beliefs, the context nearly 
does not play any role. 

4. PROSPECTS AND POSSIBLE CONSEQUENCES 

On the one hand, the studies demonstrate that it is possible to integrate 
modelling examples into mathematics lessons, on the other hand, they make 
clear that it is extremely important to do so in a consequent way. The intense 
disapproval reaction of students with scheme and formalism oriented 
mathematical beliefs, as described in the first study, demonstrate how rele
vant it is to tackle applications and modelling examples as an integral part of 
mathematics teaching, starting at primary level. Furthermore, the studies 
show that the students' partly disapproval reaction must not lead to the ne-
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gleet of applications and modelling. If one adapts oneself to these reactions, 
one can meet them in an adequate manner. In addition to a change in the 
mathematical beliefs of the students, a very positive development of the stu
dents' modelling competencies could be observed. Students developed espe
cially a high level of meta-cognitive competencies which are generally re
garded as an undeniable component of modelling competencies. 

The results of both studies support the findings and assumptions from 
other studies. Specifically the result that teachers and their beliefs about 
mathematics must be regarded as essential reasons for the low realisation of 
applications and modelling in mathematics teaching. In order to promote real 
world and modelling examples within the mainstream mathematics educa
tion, it will be necessary to integrate real world examples and modelling 
courses in pre-service and in-service education for teachers. 
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MATHEMATICAL MODELLING -
A CONVERSATION WITH HENRY POLLAK 

Henry Pollak 
Teachers College, Columbia University, New York, USA, Email:hpollak@adsight.com 

Foreword to Henry Pollak's paper 

Henry Pollak is, without any doubt, one of the pioneers in the field of 
applications and modelling in mathematics education. As early as in the 
sixties of the last century he pleaded for an integration of applications 
and modelling into mathematics teaching (for instance, Pollak, 1969). He 
was able to do that particularly competently and credibly since he was 
not part of the educational system itself but a leading member of Bell 
Laboratories. The educational scene of the sixties and the early seventies 
was shaped by the New Maths movement which had, in contrast to its 
own intentions, led in many countries to an emphasis on intra-
mathematical aspects (see Pollak, 2003, for the situation in the USA). In
ternationally, Henry's engagement for applications and modelling be
came particularly visible at ICME-3, 1976, where he gave the survey lec
ture on "The Interaction between Mathematics and Other School Sub
jects" (Pollak, 1979), Also in the first ICTMAs, Henry was active on a 
prominent position, for instance as a plenary speaker at ICTMA-3, 1987 
(Pollak, 1989). 

How is the situation of applications and modelling in mathematics 
education today, thirty years after ICME-3 and twenty years after 
ICTMA-3? Especially due to Henry Pollak's strong voice and his enor
mous influence, applications and modelling now occupy in many coun
tries far more important curricular positions than at those times. Mathe
matics education now deals much more intensively with questions of 
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teaching and learning modelling and applications, as can be seen, among 
other things, by the series of ICME and ICTMA conferences and not 
least by the present ICMI Study. For personal reasons, Henry Pollak was 
not able to come to the Study Conference. However, he was present in a 
plenary session through a video that was produced for this special pur
pose, and which showed excerpts from interviews with him.̂  The follow
ing paper is a transcript of that video. By this, we hope to convey the au
thenticity and livelyness of Henry's contribution as far as possible. 

Mathematics education owes a great deal to Henry Pollak, and this 
chapter of the Volume ought also to be seen as homage to this pioneer in 
our field. 

1. INTRODUCTION 

The important conferences on the teaching of applications and modelling 
which have been going on for twenty years now have also been a major 
force in the spreading of those ideas and I am delighted to have a chance to 
participate once again in such a conference - it's been a long time since I 
have been able to come to one. 

I think the question you have to ask yourself is: What is a complete 
mathematics education, that is, what are all the things that should be going 
on when kids are learning mathematics? 

2. MATHEMATICS EDUCATION 

Mathematicians may often feel that it is just the importance and the 
beauty of the subject that obviously justifies all this time - not all the stu
dents feel that way. There are going to be students - I think many of them -
who are more interested in the usefulness of mathematics and being able to 
apply it to something else that they are interested in - rather than becoming 
professional mathematicians. 

You have to remember roughly what the data are: roughly speaking, if 
you start at 9th grade and go through graduate school, you lose about half the 
students each year from the year before and so you end up with millions of 
students in the 9th grade and in the United States we end up with about two 
per year per million population getting a PhD in mathematics. 

We have lost all the others along the way some way or the other, and ma
ny of those are going to be interested in how the subject gets used. 

And so, I myself feel it should be an essential part of mathematics educa
tion to learn about how one uses mathematics. Now you will say: 'Well, we 
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do that. Because, after all, our textbooks are full of word problems and all 
those uses of maths' and the answer is quite frequently: they are not. They 
are simply using words from some other discipline in the hope that those will 
keep the students interested. 

But basically in the use of mathematics you have to formulate problems 
from outside of maths as well as solving them after you succeeded in formu
lating them. And you go back and forth between these two things a good 
deal, and this whole process of beginning with the situation that you are try
ing to (or that you hope to) understand mathematically until you finally get 
to a picture of it, and a formulation of it that will allow you to get some an
swers - that whole process is what we call mathematical modelling. 

First thing you do is to identify something in the real world that you want 
to know or to do or to understand so the result at the end of step one is a 
question in the real world. Then we select particular objects within that ques
tion that seem important to the real world question and we identify the rela
tions among them. So at this stage we have identified key concepts in the 
real world situation. Three - we then decide what we will keep and what 
we'll ignore about the objects and their interrelations. You simply cannot 
take everything into account. And the result then is an idealized version of 
the original question. Then, once we have this idealized version, we translate 
it into mathematical terms and we obtain a mathematical formulation of this 
idealized question. This is what is called a mathematical model. 

There are many disciplines in which modelling has been the game for 
centuries, physics and chemistry, there are branches of engineering, and 
more recently there are branches of the social sciences. It is their great chal
lenge to take situations in their field and try to understand them in a quantita
tive theoretical kind of way, in order to explain what they see and to make 
suggestions and predictions and forecasts for the future. 

The question I am asking is not when did model building ever appear, or 
when did models ever appear? The question I am asking is when did mathe
matics educators get interested enough and think it was important enough so 
that they started to pay some attention to it in the teaching of mathematics? 

The feeling has been, well, what we need to do is to teach some pure ma
thematics and let the other people apply it. And the great difficulty with this 
is that you lose your students. You are asking them - and it is one of the 
many different ways in which we ask them to do something like this - we 
are asking them for delayed clarification. We do this over and over again. 

'Why do I have to learn this?' 
'Well, you will see, you are going to need it. That discipline needs it. 

Maybe this will become clear to you later.' 'Why do I have to learn this?' 
'Because it is going to be on the test.' 
'But, how does that tie in?' 
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'Well, ok, you need this for another subject, you need it for a job that you 
may have. You may need it for intelligent citizenship. You may need it to 
get ahead. 

But right now, you need it because of the test. This test is going to allow 
you to get into a good college, and that college then will allow you to get the 
good job and become an intelligent citizen and get ahead.' 

So the gratification is always delayed. 
What do I think? I don't think you can motivate very many students by 

the beauty of mathematics alone without seeing the usefulness. 

3. INTER-RELATIONSHIPS 

It is very natural for some people to think that, look, the existing system 
created me and I am a success, so obviously that's the best possible system. I 
don't know the extent to which that is true. I suspect but can't prove that al
most any way that you had taught me mathematics I would have become a 
mathematician, simply because I liked the subject so much and I learnt and 
investigated it on my own in various ways no matter what anybody said or 
what they did. 

According to my father's diaries I used to be looking for patterns in 
things that I did not understand already when I was five years old or some
thing like that. So there was an instinct there. But how did I make the transi
tion into being also interested in the connection between mathematics and 
the rest of the world? 

I can remember one particular incident which happened at the supper ta
ble when I was a senior in high school. My father asked me a question. He 
didn't usually worry much about what I was doing in school and didn't ask 
about it, but he said to me: 'What are you studying in physics right now?' I 
said: Well, currently what came up is the subject of adhesion and of cohe
sion - that is substances sticking together. And he said: "Well, what is that?" 
I said: "Well, one of them is where one substance sticks to itself and the 
other one is where the substance sticks to another one." And I said: "I can't 
remember which is which." He said: "Well, I know," and he proceeded to 
tell me. I said: "You never studied physics, how do you know that?" He said: 
"Well, I don't know any physics, but I know Latin." Now that was a hit be
low the belt, because I had also studied Latin all the way through high school 
and was pretty good at it. But it had never occurred to me that you could use 
subjects on each other. That was not part of my education. Nobody had ever 
said that you can figure out which is adhesion and which is cohesion because 
'co' means together (it's 'cum') and 'ad' means one to the other, next to 
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each other or towards each other, so adhesion is two different substances and 
cohesion is the same substance. 

That was a real eye opener, and it was at that point that I started thinking 
hard about how in fact different subjects were related to each other, rather 
than just trying to be good at each one. You start thinking about what the 
relation between them is, and how they affect each other. And it is at that 
point that I certainly began wondering, why didn't we ever talk about how 
mathematics is related to everything else? This was relating physics to Latin, 
so how is everything else related to everything else? So that was a key inci
dent to take me in that particular direction. 

Throughout my career - certainly throughout much of it - I maintained 
some interest in education. I got my PhD in 1951, so more than a half a cen
tury ago - and went to work at Bell Labs, and eventually, of course, after 35 
years of this, I retired. I had struggled for decades with the fact that I was 
interested both in mathematical research and in mathematics education. I 
wore those two hats in different official capacities and yet I had to wear 
those two hats on the same head. And I struggled with the consistency be
tween these two. And the consistency between these two hinges tremen
dously on an understanding of what applications of mathematics are really 
all about. And that was our business in Bell Labs. 

4. THE NEW MATHS 

In the 1950s we all experienced the excitement engendered by Sputnik 
and by the competition for outer space that gripped our leaders, and we de
cided we needed more students getting good at mathematics and science. 
The New Maths was bom. I had been a student as an undergraduate of Ed 
Begle who founded the School Mathematics Study Group in 1958, and Al 
Tucker of Princeton was one of its chief advisors. 

And so in the winter of 57/58, when they formed the first team to start 
working on SMSG -the School Mathematics Study Group - they remem
bered me, and they said, well, let's give it a try, and see whether this "takes" 
. And so I was invited back to Yale where I had been an undergraduate, and 
where the first four-week summer session of the School Mathematics Study 
Group began. 

A major aim of SMSG was to make sense of school mathematics - as we 
said before. To anchor an apparently endless series of apparently isolated 
tricks to a structure within which these tricks become realizations of a small 
number of important mathematical principles. That was what SMSG was all 
about. 
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People have criticized the new maths a lot and have said it was a failure. I 
don't think that it was a failure - at least not in my terms. Mathematics as a 
percentage of all college majors reached an all time historical high in 1970 
which was the peak of people coming out of the wave of New Maths. 

It was - as I recall the figure - close to 5% of all college majors in 1970. 
Now mathematics as a major is back down to less than 1%. 

It was the quality of what they were learning in terms of the understand
ing, making sense, that I think attracted so many students into mathematics. 

Now, the great trouble is, when it comes to applications and to the use
fulness of mathematics, that when we taught it we taught it without making 
sense - only this time we taught it without making sense in two ways rather 
than one. That is, we didn't try to make sense out of the mathematics that 
turned out to be involved, and we also didn't make sense of the external 
situation to which we claimed we were applying the mathematics . So it was 
twice as bad as what we were doing before. 

You know, the typical event in a calculus course is: Today we are going 
to study the centre of mass, or moment of inertia or something.' What are 
they? Well, here are the formulae. What do the formulas mean? We don't 
know, it doesn't matter, just do the calculus. Worse than that, go further 
along: 'Ok, students, today we are going to study the Coriolis effect. Con
sider the following partial differential equation.' And then you go ahead and 
work with that equation. So what does it mean? What do the variables mean? 
How do you know it's right? What did you keep and what did you throw 
away in writing down that equation? 

So the reason that the teaching of applications at that time often was so 
bad, was that people didn't bother to understand them as well as not bother
ing to understand the mathematics. My feeling was that when we turned to
wards teaching the usefulness of mathematics, teaching the modelling was 
needed in order to make sense of the application, and that combined with 
making sense of the mathematics would then produce a first rate curriculum. 

In teaching modelling, there are obviously two things that you have to do, 
very basic kinds of questions. You have to take some models that have been 
created and have been known to be successful and students have to study 
those models, and understand what makes them work, and think about what 
went into their creation and the way they were formulated and their success. 

Also, students have to take situations for themselves and start creating 
models of those situations, make decisions of what you have to keep and 
what you can afford to ignore, and how you are going to test whether you 
really succeeded. Find something that needs to be done, bite off a piece that 
you think you can chew - and then chew it. And incidentally, find out if you 
have succeeded. A very basic question that you have to answer is: which of 
these two aspects of teaching modelling do you do first? 
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The same kind of question was asked years ago about learning computer 
programming. You have to read other people's programs and see why they 
worked, and you also have to create programs on your own and make mis
takes and learn from them. 

How do you balance those two? Research on just understanding the sim
plest aspects of this question has been begun, for example by Jerry Lege, 
where you begin to study the effects of each of these activities, of looking at 
other people's models and the effects of creating some of your own. So, we 
need a research base we don't have, but which is in the process of beginning 
to be created. 

5. PROBLEM FORMULATION 

When is problem formulation over? When have you finished in fact the 
key stage of problem solving? And the answer is: When you get to the point 
where the mathematics itself is familiar. So that's a moving target - as we 
hope - as our students get older and better, they know more and more 
mathematics, and there is less and less that you have to do in formulating 
before you get to the point at which it's routine. But the really exciting part 
of problem formulation is over at the moment that you have got to familiar 
mathematics. When we have done this we translate it back to the real world 
and what we now have is a theory of the idealized question. And then you 
carry out the mathematics that is indicated. 

After that's done, comes one of the key points - now comes the reality 
check. Do we believe what's being said? Are the results practical, are the 
answers reasonable, are the consequences acceptable? If yes, the real world 
problem solving has been successful. Our next job, namely to communicate 
with potential users, is both difficult and extraordinarily important. 

If I can go back to my earlier existence for just a minute, one of the hard
est things that I had to do at Bell Labs was to work with everybody on expo
sition, as my bosses had worked with me when I first came. People have to 
learn to write things down in such a way that the person who needs to under
stand what's being said can do so. It's just amazing to me how many people 
will do an interesting piece of work and get it all down in their head and 
their notebook, and then be utterly unwilling to write it down for the public 
in such a way that somebody else can understand it. It's absolutely no good 
to do a piece of work, get it all neatly written down in your head or in your 
notebook, and be unable to communicate to anyone else as to what it is that 
you have done. So certainly people who are going to do quantitative, struc
tural, systematic - i.e. mathematical work on their jobs have got to learn to 
explain what they have done. 
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6. PROBLEM SOLVING 

Polya was a tremendous educator. I was very fortunate to know him and 
know him very fairly well. It's a very amusing sideline that our birthdays 
were exactly 40 years apart. The analysis and the ideas that he contributed 
towards good teaching were phenomenal. It is also true that he was very in
terested in applications and did a lot with them. For example, if you look at 
his little book on mathematical methods in science which is absolutely gor
geous, this is a book that he wrote specifically to use with teachers to give 
them a good feeling for how mathematics is used in science in their grade, 
but he is always very careful to stop while the subject is still beautiful and 
before it gets hard. He will do the particular pieces which are particularly 
nice. And then the next piece that one has to do in going further into the un
derstanding of the subject gets harder, and he stops and goes on to something 
else. Well, of course, it becomes an exciting course for teachers and there 
are plenty of beautiful things that you can do without getting into a mess. 

I think that is a little wrong. I have taught that little book a number of 
times, and I always insist on doing a few messy things that go beyond what's 
in the book because I want the teachers to understand that while there is a lot 
of beauty here, and a lot of lovely ways of getting understanding, sometimes 
you've got to work harder than that, and I want them to have seen it. 

The role of technology is really very large. Technology has the possibil
ity of making certain subjects possible. For example, there are many con
cepts related to data analysis and to understanding what a set of data is trying 
to tell you. Often, to get the understanding that you want, you need to proc
ess more numbers than you have time to do. The pedagogic problem is the 
following: Suppose, you have a thousand numbers and you need to know 
what the structure of that set looks like. By the time the class can agree on 
what this is, they have long since forgotten why they were interested in the 
problem. And so technology has made it possible to teach certain subjects 
and to get involved in some things which are very interesting and very im
portant - you just couldn't do them without technology. 

Technology has made certain things more necessary, that is, for example, 
in understanding what goes on in computers and connecting them with their 
applications, you need to think much harder about discrete mathematics, you 
need to think much harder about what an algorithm is, and what you expect 
from success than you had ever needed to look at before. 

Technology has certainly also changed the relative importance of various 
topics. As we have said, it has made some topics more important - it has 
made other topics less important. I know that there is a lot of disagreement 
about this but it is just true that the technique of division isn't as important as 
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it was before we had the way in which everybody now does it. And it simply 
isn't worth as much time as it used to have. 

But probably the biggest thing that technology has done is to change the 
image and the practice of mathematics itself. Mathematicians have never 
really admitted how they practice their subject. We show students lovely 
results and interesting developments, and they don't necessarily fmd out how 
difficult it was to get all of these things, and the thing that the technology has 
done is to force us to come out in the open with unspeakable practices that 
we used to indulge in with our doors closed and our blinds drawn, and which 
nobody ever knew about and that is - we experiment. Our job is not just: 
'here is a problem - solve it' or 'here is a theorem - prove it'. Our job also 
is: 'here is a situation, can you figure out what the hell is going on?' 

This is experimental work. And what technology has done is to return, af
ter an absence of maybe a hundred or two hundred years, return mathematics 
back into the full spectrum of science. It is also an experimental subject and 
we do experiments to fmd out what's going on, and then we try to see 
whether we are right or not. And we are now in a position where it is re
spectable to admit this. 

1. THE OXFORD SEMINARS 

I know mostly about what goes on in the United States and don't claim to 
try to do things thoroughly as far as the world is concerned. I couldn't possi
bly do that. The Oxford Seminars began in 1968. Now let me describe what 
the Oxford Seminars were. People from private industry or from government 
owned industry in the British Isles could bring difficult problems, in classi
cal applied mathematics typically, that is mathematical physics problems -
on which they needed help. And they and some professors and some gradu
ate students at Oxford would spend a week together, no cell phones, no inter
ruptions, no nothing. They lived together for a week and worked on those 
problems. 

What I was told is, that about a third of those problems led to complete 
solutions to the enormous satisfaction of the chemical industry, or transmis
sion, or various others. About a third of the problems had partial solutions 
and on about a third of them they got nowhere, and incidentally a number of 
graduate students got very good jobs -which is nothing to be sneezed at. The 
reports of the Oxford Seminars reflected back on how modeling is or is not 
done in education. Because this was a brand new direction. The method of 
presentation of applied mathematics in secondary and tertiary education has 
on the whole changed very little changed since 30 years ago. When the ma
jority of mathematicians went on to teach in traditional ways at school or 
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university, the training they received was not too bad. But more and more 
are seeking jobs outside teaching, and are looking for jobs in industry, com
merce etc., where they will be expected to use their mathematical expertise 
to solve problems which are of interest to the engineers, scientists, and oth
ers around them. 

The employers complained bitterly that we produce many graduates who 
are incapable of this. I would like to quote a pen portrait of the typical 
mathematics graduate: 'He is good at solving problems, but not so hot at 
formulating. The graduate is not particularly good at planning his work nor 
at making a critical evaluation of it when completed.' 

The evidence from schools, universities and the employers leads one to 
the conclusion that we must look again at the teaching of applications of 
mathematics at all levels. This could well involve the consideration of new 
situations outside science to which mathematics can be applied - but this was 
England after all. But this should also include new stimulating treatments of 
scientific topics. At the moment in many cases too much emphasis is put on 
the elegance of the solution and too little on the significance in relation to 
the original problem. Too little time is spent on developing a model from a 
real situation. 

The Oxford Seminars were very early, but the early efforts were very 
similar in the United States. Oxford had a recognized influence on what hap
pened at the Claremont Colleges in California, which were one of the very 
early practitioners of modelling in the United States. 

8. NEGLECTED TOPICS IN MATHEMATICS EDU
CATION 

People are always interested in how to predict, and prediction is one of 
the most nearly impossible as well as one of most interesting things that you 
can do if you think you may be good at it. I was in a position to try it. 

I realized that topics in the mathematical sciences that we at Bell Labs 
found to be particularly important, but which our current and future employ
ees were very unlikely to have learnt in school, were very fine candidates for 
future importance. What I found by the time I got to Bell Lab in the 50s and 
from there on is, that there were two things that were very much in the fore
front of research which people typically did not learn - one was the subject 
of data analysis and the other was the subject of discrete mathematics. I felt 
that if those were so important to the work of what was then the huge unified 
Bell System, that those were things that really ought to be kept in mind for 
the friture of education - because, by god, they were important. Certainly in 
the fifty years that I have been involved, those two subjects have grown tre-
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mendously. Several of the topics in data analysis that were invented at Bell 
Labs after I got there have now found their way into elementary school! 

One of our problems is that we do teach some successful data analysis in 
elementary school, and you have to figure out how to keep it alive until you 
get to college because it is so difficult to get data analysis used in the high 
school curriculum. I didn't mean to go off onto that tangent - but as people 
will learn as they listen to me, my talk consists entirely of tangents. 

9. TEACHING MODELLING 

So, I came back in thinking about how do we get to the teaching of mod
elling. I think that is so tremendously important because more students will 
stick with us if we have this kind of mathematics. We have to teach our 
mathematics in such a way that it keeps people together as long as possible, 
so that no matter what background you come from you have the longest pos
sible time in which the directions that you would like to go in, and the capa
bilities that you have, can show themselves. 

So its very natural to ask yourself what aspects of mathematics do every
body have to learn, will be good for everyone to be good at. Everybody has 
to use mathematics in everyday life, and everybody has to understand how 
mathematics relates to the rest of the world that they live in. And so model
ling can become a unifying force, it can be something that if you spend time 
on it early and often, it helps to keep the kids together. And the longer you 
can keep them together the better it is for our society. We can't afford to be a 
place where you decide at the end of 4th grade what somebody's future is 
going to be. You want to provide experiences that everybody should have, so 
that everybody can be kept together just as long as possible - and modelling 
is one of the subjects that allows you to do that. We want to get additional 
topics that are important for modelling, we want to get modelling itself, into 
the curriculum. We have been working on trying to show samples of curric
ula that take modelling much more seriously than we have in the past, and 
finding out how successful they are with how many students and how well 
this works in motivating kids and keeping them interested. 

The major difficulty that is often cited is that if you are going to model 
phenomena from outside of mathematics, you of course, as we have said be
fore, have to understand those phenomena. This requires people who teach 
mathematics to understand things that they normally are not required to un
derstand. But if you say to yourself, iook, my intention is that some of the 
time is to be spent on the kids learning how to model,' then you can find 
loads and loads of subject matter areas where they know all about the subject 
involved, and they can indeed practice modelling. Modelling as an activity 
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doesn't have to be learned in areas which the teacher and the students don't 
understand! 

Maybe we can think of the possibility that society will get sick and tired 
of the stone-walling against modelling at school level. Maybe society might 
decide that traditional mathematics is simply not worth being taught every 
year to everybody, and they might choose to use some of the time for real 
world problem formulating and problem solving. This might contain lots of 
different important and interesting mathematics. 

Suppose this were to happen - that is one seriously tries to say *0k, you 
don't want to let us into traditional courses, very well, we will try to set up 
some new different courses in mathematical modelling.' 

Now what would a curriculum look like? How would you educate teach
ers for this? How would you interact and connect with traditional mathemat
ics? How would you connect with statistics and science and computer sci
ence? How would you convince a skeptical world that you had succeeded 
with something important, that is, how would you assess the students in this 
new subject? 

If I were at your wonderful meeting in Dortmund, I would be listening 
for ideas, no, I would be pestering you for ideas. And so it is probably a very 
good thing that I am not there. Thank you very much! 
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EPISTEMOLOGY AND MODELLING -
OVERVIEW 

Jere Confrey^ 
Washington University in St. Louis, USA, Email: jconfrey@wustledu 

Abstract: This section introduces the issues of epistemology, including how to relate 
modeling and mathematical growth, the implications of complexity, and the 
limitations of the approach. 

1. INTRODUCTION 

Modelling emerges as a major theme in mathematics education from sev
eral perspectives. It seems a natural historical and evolutionary descendant 
of constructivism, and includes central connections among disciplines, de
velops the importance of multiple representational systems, and incorporates 
elements of students' prior knowledge, strategies, representations, inscrip
tions, and reflections. Modelling can highlight fundamental issues from a 
socio-cultural point of view by emphasizing iterative and emergent devel
opment of complex ideas, subject to critical discussion and judgment, and 
honed through interactions. The strongest arguments for modelling are based 
on the view that it will be advantageous for the development of student 
thinking. Many papers in this section try to unpack this perspective, from an 
epistemological point of view. 

Many mathematics curricular initiatives have valued the use of situations 
in mathematics education (realistic maths, didactical engineering, etc.). 
Supporting this orientation is the view that drawing on situations strengthens 
relationships among mathematics and (1) students' prior knowledge, (2) 
their knowledge outside of schooling, and (3) their subsequent applications 
of mathematics to other contexts. However, modelling's value to students 
goes beyond inviting them more effectively to enter mathematics or prepar-
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ing them to draw connections beyond the mathematical arena. ModelUng-
based changes in epistemology can permeate instruction during the whole of 
the course of mathematics education. This section's authors illustrate a wide 
range of impacts on instructional programs and learning. 

Two contrasting positions provide a useful heuristic for considering the 
role of modelling in mathematics education: (1) advocating modelling for 
mathematics—modelling as one of a number of means to demonstrate views 
and uses of mathematics, and (2) supporting mathematics for modelling— 
mathematics viewed as a tool critical to the modelling enterprise. The for
mer, should be recognized and valued, especially as a transition strategy for 
reform and change. However, authors in this section examine the more en
compassing perspective that mathematics acts as a tool for building models. 
Within this perspective it is still important to attend to the place for learning 
the skills and concepts of mathematics, developing structures, and develop
ing multiple methods of proof. To be clear, the group did not call for a "wa
tered down" view of mathematics, but rather for a more flexible and substan
tial foundation that can support stronger uses of mathematical prediction, 
explanation, and justification. 

For some, modelling is breathing new life into the ideas of mathematical 
literacy, and should affect mathematics as taught to a broad cross-section of 
students. This perspective also argues that more people must understand how 
mathematics transforms the modelling process, shapes the claims that can 
and should be made, and influences societal resources and conceptions. 
Scholars increasingly speak of the need to unpack the black boxes of choices 
and decisions, based on mathematical models, which shape human enter
prises but are otherwise inaccessible to citizens' critical understanding. Fi
nally, in addition to considering the epistemology of mathematics as taught 
through modelling, it is important to explore how that vision might be real
ized in relation to particular strategies in instruction. Three key issues arise 
that merit thoughtful attention: (1) How can one relate student modelling 
activity and mathematical growth? (2) What epistemological ramifications 
result from intensified use of complexity? (3) What are the limitations of this 
point of view? Each contribution addresses these issues in different ways. 

2. PAPER SUMMARIES 

The plenary by Confrey and Maloney set the stage for addressing issues 
of student modelling and instructional growth. We presented modelling as a 
process of transforming an indeterminate situation to a determinate one, (the 
model), emphasizing a key role for inquiry and reasoning in the process of 
using technology. Inquiry stimulates the process of transformation; reason
ing permits one to use the known structures and tools of mathematics to ere-
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ate and justify a set of key artifacts. Epistemologically we stressed that the 
artifacts (observations, measurements, interactions, indicators and descrip
tors) are the data by which the model is assessed, and that the student looks 
through the model to recognize salient, explanatory, or predictable patterns 
in his/her world. Student investigation of a spring with a motion detector 
illustrated the potential of a single modelling task to provide appropriate 
content at different levels of student mathematical sophistication. This sug
gests that modelling provides an effective means to differentiate instruction 
and to manage heterogeneity. 

Arzarello, Pezzi, and Robutti, in discussing how real and Active motions 
support students' interpretations of graphs, further illustrate how modelling 
activity may evolve from the personal to the imagined to the abstract. Their 
description of cognitive activity comprises a complex evolution, starting in 
bodily experience; continuing with the evocation of the just-lived experience 
through gestures and words; developing further by connecting it with the 
data representation, and culminating with the use of algebraic language to 
record the relationships among the quantities involved in the experiment. In 
this work, modelling permeates the development of mathematical thought. 

Lehrer's invited paper articulates the teaching of modelling as promoting 
students' progressive mastery of expert and complex inscriptions. His theory 
of modelling successively incorporates physical and mechanical models, rep
resentations, syntactical systems, and, finally, hypothetical-deductive and 
emergent systems. His summary states key epistemological assumptions: 
"...challenges include recognizing that models edit, rather than copy, the 
world. Models amplify phenomena by specifying relationships that one 
might not have otherwise considered, [and] suggest qualities of the world to 
modelers. One must learn to look through the model into the world." Further 
he recognizes a key role of competition or comparison of models: judgments 
of the quality of a model "...rely on entertaining alternative models. 
...[WJithout opportunity to invent and revise models, this epistemic quality 
is largely hidden from view." (this volume, p. 160) The process, refinement, 
and critique of modelling will be needed to bring to the foreground the epis
temological changes, implied by the approach. 

Gravemeijer identifies a concept of emergent modelling wherein, instead 
of trying to concretize abstract mathematical knowledge, the objective is to 
try to help students model their own "informal mathematical activity" (this 
volume. Chapter 3.1.2). Following the work of Latour and Lehrer and 
Schauble, he discusses a "cascade of inscriptions of a chain of signification." 
Like Confrey and Maloney's transformational process, and Arzarello et al.'s 
sequence of graphing experiences, Gravemeijer emphasizes the role of pro
gressively reorganizing situations. One can suggest that all three of these 
authors recognize that modelling permits complexity into the classroom, to 
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be treated as leading to successive reorganization of content, to account for 
varied aspects of the problem. This can change the classroom dynamics, re
placing the quest for "truth" by more nuanced views of shades of meaning, 
successive approximations, and continuous reassessment and review. 

Lesh and Yoon articulate principles for designing model-eliciting activi
ties, which include refinement and revision in the problems, the expression 
of current and changing beliefs, and developing proficiency with sharable 
and reusable tools. For them, models draw on conceptual systems, rely on a 
variety of representational systems, and involve intermediate design cycles. 
It is of particular importance that these aspects of modelling lead to methods 
of research and assessment that encourage greater participation among stu
dents and bring forth a diversity of approaches. 

StraBer contributes another perspective, key to how mathematics is ex
perienced in this complex world. He recognizes the dilemma that with in
creasing automation, the role of mathematics seems to hide, yet people si
multaneously argue for its importance in a technological society. He traces 
how technologies of selling leave sellers only keying in unit prices or identi
fication codes, but that in non-routine or breakdown situations mathematics' 
essential character reemerges. His argues the importance of professional 
situations which entail a dialectic between concrete and abstract, and, in 
classrooms exploring these relationships in a demystifying manner. 

Finally, Hanna and Jahnke demonstrate a role for modelling even with 
respect to proving, that most sacred of mathematical activities. They show 
that mathematical justifications can be used as a form of explanation, and 
can draw upon familiar ideas from, for example, physics, such as balance 
and centers of gravity. Then, these "tools" can be a means to generate proofs 
for geometric theorems. This leads to the use of a physical system to repre
sent and manipulate a non-physical, mental system such as geometry. 

These papers provide state-of-art analyses of epistemological issues un
derlying modelling, and argue that modelling benefits the student and more 
accurately portrays the role of mathematics in technology and society. They 
do not simply assert the global value of the approach, but rather provide ex
amples and analyses of how it played out in everyday instructional settings, 
and will require careful and explicit attention to describing changes in stu
dent thought over time. 

^ Valued contributions to a discussion that formed a basis for the introduction to the chapter 
were provided by: Mich^le Artaud, Mich^le Artigue, Ferdinando Arzarello, Stephen (Sen) 
Campbell, Jere Confrey, Koeno Gravemeijer, Gila Hanna, Eva Jablonka, Niels Jahnke, Gab-
riele Kaiser, Susan Lander McNab, Katie Makar, Alan Maloney, Geoffrey Roulet, Ralph 
Schwarzkopf, Heinz Steinbring, Rudolf StraBer, Marji van den Heuvel-Panhuizen, Wim Van 
Dooren, Igor Vemer. 
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MODELLING BODY MOTION: 
AN APPROACH TO FUNCTIONS USING 
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Abstract: The paper presents an approach to modelUng in secondary schools where 
technological instruments are used for measuring and modelling motion ex
periences. In all cases one or more sensors measure various quantities and are 
connected to a calculator. In some examples we study pupils (9-th grade) 
who run in the class and see the Cartesian representation of their movement 
produced by a sensor in real time. In others, pupils (11-13-th grade) go on 
switchbacks or other similar merry-go-rounds and use instruments to measure 
some quantities (speed, acceleration, pressure), which are recorded on graphs 
and tables. In both cases, pupils discuss what has happened and interpret the 
collected data. Within a general Vygotskian frame, the authors use different 
complementary tools to analyse the situations: the embodied cognition by 
Lakoff and NMez, the instrumental approach by Rabardel, the definition of 
concept by Vergnaud. In particular the role of the perceptual-motor activity 
in the conceptualisation of mathematics through modelling is stressed. 

1. THE THEORETICAL FRAMEWORK 

It is well known that pupils have difficulties in conceptualising the func
tion concept. According to the current research, their difficulties concentrate 
in interpreting graphs, particularly those in which a variable is time-
dependent, as for example space-time or velocity-time graphs. In fact, two 
main misinterpretations have been pointed out in the literature. One is the 
graph-as-picture interpretation, in which students expect the graph to be a 
picture of the phenomenon described. In kinematics, this can result in the 
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students interpreting a graph of space versus time as if it were a road map, 
with the horizontal axis representing one direction of the motion rather than 
representing the passage of time (Clement, 1989). Another common misin
terpretation is the slope/height confusion, in which students use the height of 
the graph at one point, when they should use the slope of the line tangent to 
the graph at a point, and vice-versa. 

To overcome such difficulties, we have designed a teaching project whe
re the function concept can be approached within suitable experience fields 
(Boero et al., 1995b) so that its meaning can be built up by students in a pro
per way. To this end, we use a motion sensor and a symbolic-graphic calcu
lator, with which students create graphs and number tables to model 
different kinds of motion (either of their body or of other objects). The di
dactical aim of the teaching experiment is the construction of the concept of 
function as a tool for modelling motion. Our particular goal with these ac
tivities is that the students can reach competencies in describing mathemati
cally a function, both from a global and a local point of view, starting from 
their perceptions and experiences with the sensor. At a more advanced level, 
they can use such competencies to interpret more complex situations, e.g. the 
motion on a switchback. 

The research aim is the analysis of students' cognitive processes involved 
in the construction of meanings for the mathematical objects, through model
ling representations. Specifically, our investigations focus on their mental 
dynamics while they interpret the different representations of data (tables, 
graphs) in order to grasp their meaning with respect to the concrete experi
ment of motion. This analysis is made by the observation of all the students' 
activities, including their gestures, language, and interactions with the in
struments. 

Hence our research can be framed within the challenge of Issue 1 of the 
Discussion Document (see Blum et al. on p. 515). Specifically, it makes 
some contribution to the following questions: 
- What are the processes of modelling? What is meant by or involved in 

each? 
- What is the meaning and role of abstraction, formalisation and generali

sation in applications and modelling? 
- How much extra-mathematical context must be familiar and understood 

to undertake applications and modelling? 
The general framework of our research is Vygotskian: the emphasis is on 

the social construction of knowledge and on the semiotic mediation given by 
cultural artefacts (Bartolini Bussi et al., 1999). The social dimension is given 
by the recourse to the 'mathematical discussion', orchestrated by the teacher 
(Bartolini Bussi, 1996); the artefacts are represented by the symbolic-graphic 
calculators, by the sensors and by the switchbacks. 
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To describe the crucial cognitive aspects of pupils' learning processes in 
interaction with technological instruments, we use three analysis tools: 
- The embodied cognition approach by Lakoff & Nunez (2000) (see also: 

Arzarello, 2000a; Arzarello et al. 2003); 
- The instrumental analysis by Rabardel (1995) and others (Artigue, 2001, 

Verillonetal., 1995); 
- The definition of concept given by G.Vergnaud (1990)\ in particular the 

notion of operating invariant. 
We think it is possible to integrate the instrumental approach with new 

results from cognitive science, in particular embodied cognition. These two 
approaches help us to analyse the students' activities from a new point of 
view. In fact, if the instrumental approach can give us a framework to ana
lyse the use of technologies by students, in terms of schemes of use, it is not 
sufficient for interpreting their mental activities, especially during the con
ceptualisation processes. On the other hand, cognitive science is perfectly 
aimed to study pupils' mental activities; however, its approach to conceptu
alisation processes in mathematics focuses on some fundamental aspects but 
does not explain all of the theoretical and symbolic features of the mathe
matical thinking. Hence we find it useful to embed our analysis within the 
framework of Vergnaud's definition of concept. 

2. THE TEACfflNG EXPERIMENTS 

A main problem for students who are requested to interpret graphs or 
numerical tables (which model situations) regards their static features (see 
Kieran, 1994; Boero et al., 1995a), which risk blocking their mental dynam
ics, hence inhibiting a fruitful exploration (Boero et al., 1995b). In fact, to 
cognitively grasp the meaning of a function one needs complex dynamic ac
tivities; for example so called Active motion (Talmy, 1996), produced when 
the subject interprets a graph in a dynamic and oriented way, as if it were 
produced by a moving trajector. Such an activity can be observed through 
the words and gestures of subjects (see Lakoff & Nunez, 2000, pp. 31 and 
37). From this point of view it is interesting to observe how a graph is gener
ated on the screen of a graphic calculator, which represents data on-line 
measured by a sensor (CBR )̂. The observer looks at a genuinely oriented 
generation of the points in time, which is a sensibly different experience 
from perceiving a graph given in a holistic way. Such a dynamic graph is 
easier to interpret by subjects, when compared with a static one. This is the 
starting point for our first working hypothesis: suitable fields of experience 
(see Boero et al., 1995a) where students experience real and Active motions, 
can support pupils while interpreting graphs. Such a field is our "Real data in 
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real time", where pupils live some concrete experience (e.g., running); in the 
meanwhile some data are relived by an on-line measurement tool and repre
sented in real time on the screen of a graphic calculator. Successively, pupils 
are asked to interpret the graphs and tables on the screen, exploiting what 
these mean with respect to their lived experience. In the end they are asked 
to analyse some of their specific features and to represent them using suit
able algebraic language. Our second working hypothesis is that body, lan
guage, and instruments mediate and support the transition of students from 
the perceptual facts to the symbolic representation, e.g. the algebraic one: in 
fact they can stimulate the production of an intense cognitive activity, which 
is marked by rich language and gesturing activity, for example with produc
tion of grounding metaphors. The purpose of our proposal is to describe the 
development of students' cognitive activities from bodily (e.g. perceptual, 
kinetic,..) to theoretical features. In such a development a crucial point is the 
genesis of the meaning for mathematical objects through modelling activities 
exploiting temporal explorations towards their just past experience and an
ticipating hypothesis and conjectures. Words and gestures reveal crucial in
sights within this activity; in particular language provides students with a 
fruitful cognitive activity based on their just lived kinetic and visual experi
ences. This genetic process allows students: (i) to produce a mathematical 
sense for the graphs they see on the screen and (ii) to start and support their 
transition to the algebraic register. For a wider discussion see the Research 
Forum at PME 27 (Nemirowski et al., 2003). 

The teaching experiment is organised as a long-term intervention of ac
tivities during the year, each activity lasting for two-three one hour class ses
sions, and possibly including some open air activity, e.g. going on 
switchbacks in a funfair. During the sessions the students work in groups of 
three-four pupils and they use the tools of the activity (e.g. a measure in
strument or a graphic calculator or a sheet of paper). In each activity they 
have to answer some questions on a working proposal form, related to the 
construction of the meaning of a mathematical object. The researcher, who is 
present during the activity has the role of observer (she records everything 
with a video-camera) and guides the final discussion. 

3. SOME EXAMPLES OF MODELLING ACTIVI
TIES 

3J Example 1 

The experiment, organised by O. Robutti, consists in a sequence of acti
vities scheduled as follows: 
1. Analysing a graph and answering some questions about the points and 
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their co-ordinates; 
2. measuring the length of objects with different tools (ruler, meter, ...) and 

finding regularities; 
3. representing data in tables or graphs using a graphic calculator (a TI92, 

by Texas Instruments); 
4. collecting time and distance data by using a sensor of position and ana

lysing them on the graph and in the table of the calculator screen (Fig. 
3.1.1-1); 

5. constructing models of a phenomenon, knowing the rate of change of a 
quantity vs. time; 

6. measuring data of a variable quantity vs. time and modelling the phe
nomenon. 
Each activity is divided into three parts: in the first, the students (in small 

groups) explore a situation (using a proper tool or by paper and pencil); in 
the second the groups answer some written questions which ask them to 
useA)uild suitable data representations (tables, graphs) to interpret the situa
tion in a mathematical way (within a pencil and paper or calculator environ
ment); in the thkd and final part, the students participate in a class discus
sion, guided by a researcher. 

3.2 Example 2 

In our students' schools mathematics and physics are both taught by the 
same teacher. The idea here is to design activities within the pupils' field of 
experience "Real data in real time" and to use sensors to collect data on 
some physical quantities (speed, acceleration, pressure) while riding on a 
switchback or some similar machine, and then to use graphical and numeri
cal representations to discuss the model so obtained. The goal is for pupils to 
enter more and more deeply into the physical concepts experienced while 
going on the machines, using the mediation of the mathematical model rep
resented on the screen of the computer. The experiment is conceived with 
the same philosophy as that above, but requires more mathematical knowl
edge: in fact pupils are 2 - 3 years older than in the previous case. This part 
of the experiment has been designed by G. Pezzi and his equipe in Faenza. 
Fig. 3.1.1-1 (next page) shows the sensor-kit organised to measure the 
physical quantities (courtesy of Texas Instruments): the kit is assembled in a 
bag, which can be fastened to the experimenter's body or directly to the ma
chine. Fig. 3.1.1-3 illustrates one of the machines (the Thunder Sierra): it is a 
switchback with a height difference of 32.5 m, whose structure and interest
ing aspects are sketched in Fig. 3.1.1-2. 

Using pressure measures, a profile of the road has been drawn. Moreover 
an accelerometer has been used to record data concerning the acceleration of 
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the coach: the diagrams (Fig. 3.1.1-4) have been obtained using the program 
Graphical Analysis 3.0, using the smoothing function in order to eliminate 
the noise from the acceleration graphics. 

B 
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Figure 3.1.1-1. Sensor kit Figure 3.1.1-2. Structure of Thunder Sierra 

Figure 3.1.1-4. Measurements on board Sierra 

Figure 3.1.1-3. Thunder Sierra 

4. SOME PARTIAL CONCLUSIONS 

The written protocols of all the students show that most of them have 
good linguistic production and a flexible co-ordination among different reg
isters: verbal, graphical, algebraic. Moreover there is an interesting genesis 
of the mathematical concepts through metaphors, Active motion and manag
ing of the inner times (Varela, 1999; Arzarello et al., 2001). We can observe 
this intense cognitive activity through their gestures and linguistic produc
tions. 

It is interesting to observe that the students' cognitive activity passes 
through a complex evolution, which starts with their bodily experience; goes 
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on with the evocation of the just lived experience through gestures and 
words; continues by connecting it with the data representation; and culmi
nates with the use of algebraic language to write down the relationships be
tween the quantities involved in the experiment. The recalling process has a 
double nature: from the one side words and gestures start the generative ac
tion function towards a suitable representation of what they have done (i.e. 
with tables, graphs, functions); from the other side, it allows a meaningful 
interiorisation of their experience. In fact, there is dialectic between mathe
matical concepts (for example, a function), and their representations (for ex
ample, its graph), which develops through the generative action function 
supported by language and gestures. 

Some didactical conclusions can be drawn from our experience and may 
possibly be confirmed by the research, which is going on in the meanwhile, 
a) The approach to functions in the school often inhibits or curtails experi
ences that encourage the productions of fictive motions schema. For exam
ple, the graphs in books and exercises generally have a static and holistic 
aspect. But new technology allows teachers to design experiences where 
graphs can be presented in a dynamical and genetic way. b) Using grounding 
metaphors seems to facilitate such functions as the generative and generalis
ing ones, which can support students in the transition to a meaningful man
aging of algebraic language. Li fact metaphors are based on common cogni
tive activities that all people can do. However, grounding metaphors may be 
not always appreciated in the class of mathematics, since they have not a 
rigorous flavour. On the contrary, encouraging their production by students 
can facilitate the understanding of formal aspects of mathematics. As a by
product, our findings suggest that a genetic structure appears in the way 
metaphors are produced, which intertwines deeply with inner times of pu
pils. Their cognitive activity shows a continuous dynamic movement from 
the present to the past (their lived experience) and to the future (the hypothe
sis or the de-timed sentences). The analysis of connections between inner 
times, rhythms and metaphors reveals investigations in Mathematics Edu
cation as a promising field from the point of view of research (genesis of 
mathematical objects), as well as practice (which cognitive activities can the 
teacher encourage to facilitate pupils' understanding of mathematics?). 
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Abstract: This chapter discusses the relation between 'emergent modelling' and 
'mathematical modelling'. The former that has its roots in RME theory consti
tutes the main theme of this chapter. It is argued that mathematical modelling 
requires a preceding learning process, since it requires abstract mathematical 
knowledge to construe a mathematical model. The emergent-modelling design 
heuristic offers a means for shaping a series of modelling tasks that may foster 
the development of that abstract mathematical knowledge. The emergent-
modelling heuristic is illustrated with an instructional sequence on data analy
sis. 

1. INTRODUCTION 

Students often seem to have difficulties with applying the mathematics 
they have learned. This problem may be described in various ways. One may 
describe it, for instance, in terms of mathematical modelling: The problem 
solver has to translate the given contextual problem into a mathematical 
problem to make it assessable for mathematical tools and procedures. In do
ing so, he or she construes a 'mathematical model' of the situation. In pri
mary-school mathematics, solving word problems, offers a typical example 
of this type of modelling (Verschaffel, Greer, & De Corte, 2002). This mod
elling process can also be described as 'abstraction'. It may be useful to note, 
however, that abstraction, or abstracting, may refer to two very different 
situations, (a) situations that concern the activity of solving a given problem, 
and (b) situations that concern the long-term process of developing more 
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abstract mathematical knowledge. In the former case students have to put 
more formal, abstract knowledge to use by making connections between the 
problem situation and that abstract knowledge. Here one often speaks of 're
duction', or, 'cutting bonds with everyday-life reality'. In the latter case, that 
of the long-term process, however, the central activity is that of 'construc
tion \ We may link the latter to the notion of 'emergent modelling' - which 
will be the topic of this contribution. 

2. EMERGENT MODELLING 

In contrast with the observed problems of students with mathematical 
modelling, there are also many reports that students are very inventive and 
successful when asked to solve novel, engaging, contextual problems. We 
may mention in this respect, the work of Lesh (Lesh & Harel, 2003) on 
model-eliciting activities, where the activity of the students is not so much 
that of applying mathematical ideas but of developing new mathematical 
ideas. The emergent modelling approach taps into the same potential, but 
with a focus on long-term learning processes, in which a model develops 
from an informal, situated model into a more sophisticated model. These 
emergent models are seen as originating from activity in, and reasoning 
about situations. From this perspective, the process of constructing models is 
one of progressively reorganizing situations. The model and the situation 
being modeled co-evolve and are mutually constituted in the course of mod
elling activity. 

Although emergent modelling is an activity of the students, the term 
emergent modelling has it roots in the description of an instructional design 
heuristic within the domain-specific instruction theory for realistic mathe
matics education (RME). The 'emergent-modelling' design heuristic (Grave-
meijer, 1999) was initially developed as an alternative for the common use 
of what we may call 'didactical models', manipulative materials and visual 
models that are meant to make abstract mathematics more accessible for the 
students. Especially at the primary and lower secondary level, manipulative 
materials and visual models are typically used as embodiments of mathe
matical concepts and objects in mathematics education. The problem with 
this kind of models, however, is that external representations do not come 
with intrinsic meaning. From a constructivist perspective, it may be argued 
that the meaning of external representations is dependent on the knowledge 
and understanding of the interpreter. This implies that in order to interpret 
these models correctly, students should already have at their disposal, the 
knowledge and understanding that is to be conveyed by the concrete models 
(Cobb, Yackel, & Wood, 1992). 
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The emergent-modelling design heuristic tries to circumvent this di
lemma, by aiming at a dynamic process of symbolizing and modelling, 
within which the process of symbolizing and the development of meaning 
are reflexively related. The idea is that students start with modelling their 
own informal mathematical activity. Then, in the process that follows, the 
character of the model should change for the students. The model of their 
informal mathematical activity is expected to gradually develop into a model 
for more formal mathematical reasoning. In its latter form, the model may 
function in a manner as was intended for the didactical models, but now as a 
model that is rooted in the experiential knowledge of the students. 

Mark that the model we are referring to is more an overarching concept 
than one specific model. In practice, *the model' in the emergent-modelling 
heuristic is actually shaped as a series of consecutive sub-models that can be 
described as a cascade of inscriptions or a chain of signification. From a 
more global perspective, these sub-models can be seen as various manifesta
tions of the same model. So when we speak of a shift in the role of the model 
in the following, we are talking about 'the model' on a more general level. 
On a more detailed level, this transition may encompass various sub-models 
that gradually take on different roles. 

The label 'emergent' refers both to the character of the process by which 
models emerge within RME, and to the process by which these models sup
port the emergence of formal mathematical ways of knowing. According to 
the emergent-modelling design heuristic, the model first comes to the fore as 
a model o/the students' situated informal strategies. Then, over time the 
model gradually takes on a life of its own. The model becomes an entity in 
its own right and starts to serve as a model for more formal, yet personally 
meaningful, mathematical reasoning. 

In relation to this, we can discern four different types or levels of activity 
(Gravemeijer, 1999): 
1. activity in the task setting, in which interpretations and solutions depend 

on understanding of how to act in the setting 
2. referential activity, in which models-of refer to activity in the setting de

scribed in instructional activities 
3. general activity, in which models-for derive their meaning from a 

framework of mathematical relations 
4. formal mathematical reasoning, which is no longer dependent on the 

support of models-for mathematical activity. 

These four levels of activity illustrate that models are initially tied to ac
tivity in specific settings and involve situation-specific imagery; at the refer
ential level, models are grounded in students' understandings of paradig
matic, experientially real settings. General activity begins to emerge as the 
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students start to reason about the mathematical relations that are involved. 
As a consequence, the model looses its dependency on situation-specific im
agery, and gradually develops into a model that derives its meaning from the 
framework of mathematical relations that the students construe in the proc
ess. The transition from model-of to model-for coincides with a progression 
from informal to more formal mathematical reasoning that is interwoven 
with the creation of some new mathematical reality - consisting of mathe
matical objects (Sfard, 1991) within a framework of mathematical relations. 
Thus, the model-of/model-for transition is not tied to specific manifestations 
of the model, instead, it relates to the student's thinking, within which 
'model-of refers to an activity in a specific setting or context, and 'model 
for' to a framework of mathematical relations.' 

3. DATA ANALYSIS AS AN EXAMPLE 

The emergent-modelling heuristic is elaborated in various research pro
jects on a variety of topics. We will take one of those research projects to 
illustrate the emergent modelling with a concrete example. This example 
concerns a teaching experiment on data analysis, carried out by Cobb, 
Gravemeijer, McClain and Konold in a 7th-grade classroom in Nashville 
(USA) (see Cobb, 2002). Our point of departure was, that although user-
friendly data analysis software packages may seem to be the self-evident 
accessories for exploratory data analysis, this is only true for experienced 
data analysts, and not for students who still have to learn about data analysis. 
In order to be able to use such software in a proficient manner, one has to be 
able to anticipate what kind information one might be able to deduct from a 
certain way of representing the data. Working with such data analysis soft
ware packages therefore rather signifies an end point of the intended learning 
process, than a means of supporting it. We therefore turned to designing 
software tools that can be used for exploratory data analysis on an elemen
tary level. In fact, these so-called 'minitools' are so designed, that they can 
support a process of progressive mathematization by which conventional 
statistical concepts and representations are reinvented. What is especially 
aimed for, is that the activity of structuring data sets with the minitools will 
foster a process by which the students come to view data sets as entities that 
are distributed within a space of possible values. 

The visualizations offered by the minitools can be seen as manifesta
tions of the same overarching model, which we may be describe as a graphi
cal representation of the distribution of the data values. 
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Figure 3.L2-L The life span of two brands of batteries. 

The starting point is in visualizing the measures, or magnitudes, that con
stitute the data set. With minitool 1, magnitude-value bars (Fig. III. 1.2-1) are 
introduced, where each value bar signifies a single measure. This tool has 
various tool options that can be used when analyzing data sets, such as a ver
tical value bar to mark certain values, or to split the data set, and various op
tions for sorting the data. 

One of the first tasks concerns the comparison to the life spans of two 
brands of batteries. Though Cell and Always Ready. The lif-span measures 
often batteries of each brand are presented as value bars in the minitool (Fig. 
3.1.2-1). When confronted with this problem, the 7^ -̂grade students intro
duced the term 'consistency' to argue that they 'would rather have a consis
tent battery (...) than one that you just have to try to guess'.We may interpret 
this argument as referring to the shape of the distribution, which is visible in 
the way the endpoints of the value bars are distributed in regard to the axis. 
In relation to this, we may speak of a graphical representation of the distribu
tion as a model o/a set of measures. 

In the discussions on distributions represented by value bars, the students 
started to focus on the end points of value bars. As a consequence, these end 
points came to signify the lengths of the corresponding value bars for them. 
This allowed for the introduction of a line plot as a more condense (local) 
model, that leaves out the value bars, and only keeps the end points (Fig. 
3.1.2-2 next page). 

In Minitool 2 various tool options are made available to help the student 
structure the distribution of data points on a line plot. One of the tool options 
partitions a set of data points into four quartiles. The corresponding inscrip
tion is in principle similar to the conventional box plot (see Fig. 3.1.2-3 next 
page). 
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Figure 3.1.2-2. Data on the speeds of cars before and after a speed trap 

While working with the second minitool, the students started to use the 
term 'hill' to denote the shape of the distribution. They did so for the first 
time when they discussed the effect of a speed trap on the basis of data on 
the speeds of cars before and after the speed trap (see Fig. 3.1.2-2). One of 
the students used the following argumentation: 'If you look at the graphs and 
look at them like hills, then for the before group the speeds are spread out 
and more than 55, and if you look at the after graph, then more people are 
bunched up close to the speed limit which means that the majority of the 
people slowed down close to the speed limit.' 
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Figure 3.1.2-3. Four equal groups as precursor for the box plot. 

Eventually the students started to use the four-equal-groups display of the 
second mintool to reason about shape and density. The distance between two 
vertical bars that mark a quartile were interpreted as indicating how much 
the data are 'bunched up'. Moreover, the median started to function as an 



3.1.2. EMERGENT MODELLING 143 

indicator of 'where the hill is', for unimodal distributions. Finally, the stu
dents started to treat distributions as entities with certain characteristics. In 
this regard, we may describe the four-equal groups display as a graphical 
representation of the distribution that started to function as a model for rea
soning about distributions. 

In the sequence, the model initially comes to the fore as a model ofdi set 
of measures. At first, the density-function aspect is rather implicit, although 
the shape of a sorted magnitude-value-bar graph of minitool 1 can be inter
preted as signifying variation in density. Gradually, however, density comes 
more to the foreground, and in this manner, the model can become a model 
for reasoning about various types of distributions. Not only does the distribu
tion become an entity with certain characteristics, but the students also begin 
to see relations between these characteristics. The normal distribution can be 
taken as a typical example; the students may learn eventually that a normal 
distribution is symmetrical, and that as a consequence, mean, median, mode, 
and midrange coincide. 

4. CONCLUSION 

We started this chapter with the observation that students experience dif
ficulties when they are expected to apply the mathematics they know, but are 
good at tackling applied problems, if they feel challenged to invent novel 
solutions. We believe that we can resolve this paradox by using emergent 
modelling to shape mathematics education that prepares students for mathe
matical modelling. The emergent-modelling instructional design heuristic is 
based on the idea of sequencing modelling tasks in order to support a long 
term process of 'abstraction-as-construction', within which students con
strue mathematical knowledge that is grounded in their earlier informal ex
perience, and which is meaningful, and applicable. In addition, the implied 
modelling activity familiarizes them with a mathematical approach to every
day-life situations. In this sense, modelling serves both as an instructional 
goal and as a means of helping students reinvent mathematics, and preparing 
them for 'applications' and 'modelling'. 
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Abstract: This paper discusses the complementary roles of modelling and proof. The two 
are inseparably linked, and the authors argue that this should be reflected in 
teaching. Two examples are discussed. The first describes a teaching unit us
ing arguments from statics to prove geometrical theorems, the second dis
cusses the role of thought experiments in general and a specific thought ex
periment for deriving Pick's formula. 

1. MODELLING AS A VALUABLE TOOL IN 
TEACHING PROOF 

With today's stress on teaching mathematics as a coherent, reasoned ac
tivity and on communicating its elegance and power, teachers are increas
ingly being encouraged to focus on the explanation of mathematical con
cepts, and students are being asked to justify the steps in their problem-
solving. This would seem to be precisely the right classroom climate in 
which to make use of proof, not only as the ultimate form of mathematical 
justification, but also as an explanatory tool. 

It is well known, however, that not every valid proof of a conjecture pro
vides satisfying reasons why the conjecture is true. Lideed, mathematicians, 
mathematics teachers, philosophers of mathematics, and mathematics educa
tion researchers have all come to distinguish between proofs that explain and 
proofs that do not (Blum, & Kirsch, 1991; Hanna, & Jahnke, 1993; Hersh, 
1993; Mancosu, 2001; Rav, 1999; Rota, 1997; Thurston, 1994). For this rea
son, there is a need to identify the types of proof that can best make clear 
why a conjecture is true. 
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Unfortunately there is no single account of what makes a proof explana
tory, or even of what mathematical explanation is. The great variety of crite
ria has been the subject of recent explorations in the philosophy of mathe
matics (Mancosu et al., 2005; Manin, 1998; Rav, 1999; Rota, 1997). In any 
case, what might suffice as an explanation among mathematicians is quite 
different from what would be desired as an explanation in school mathemat
ics. 

Clearly, an explanatory proof in school mathematics, as in any other con
text, must be one that not only demonstrates the truth of its assertions, but 
also helps one understand why the assertions are true. The aim of such a 
proof is always to bring to light underlying relationships that place its asser
tions in a broader mathematical context. In the classroom, however, an ex
planatory proof must rely upon the more limited mathematical knowledge of 
students and make use of the properties of objects best known to them. 

A number of different methods have been employed to this end, such as 
the judicial use of visualisations (Hanna, 1990), explorations with dynamic 
software (de Villiers, 2002), pencil-and-paper proofs appropriate to the cog
nitive development of the student (Tall, 1998), or the use of arguments from 
physics (Hanna, & Jahnke, 2(X)2). The present paper will explore further the 
use of arguments from physics, looking in particular at the light it sheds on 
the relationship between proving and modelling. 

The following example will help explain how the use of arguments from 
physics can provide both a proper deductive proof of a theorem and greater 
insight into why the theorem is true (Hanna, & Jahnke, 2002; Polya, 1981; 
Uspinskii, 1961). Ideas from physics that are already familiar to students, 
such as the concepts of balancing objects and of the centre of gravity, are 
presented as tools. The students are then prompted to use these tools to prove 
a geometrical theorem. That is, students are encouraged to build a mathe
matical proof by taking as postulates one or more principles of physics. 

Let us take as postulates the following three principles of statics: 
PI: The uniqueness of the centre of gravity (each system of masses has 
one and only one centre of gravity). 
P2: The lever principle (the centre of gravity of any two masses lies on 
the straight line joining the masses, and its distances from the masses are 
inversely proportional to them). 
P3: The principle of substitution (if any two individual masses are re
placed by a single mass equal to the sum of the two masses and posi
tioned at the centre of gravity of the two masses, then the location of the 
centre of gravity of the total system of masses remains unchanged). 

These three principles can then be used in proving the following geomet
rical theorem: 
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The medians of a triangle intersect at a single point and on each median 
this point is located two-thirds of the way from the vertex. The point of 
intersection is the centre of gravity of the triangle, or the centroid. 

This rather simple proof proceeds as follows. Consider the vertices of the 
triangle as loaded with equal masses of unit weight and connected by rigid 
weightless rods. The centre of gravity of any side is the midpoint of that side 
(by PI and P2). Therefore the unit masses at its ends can be replaced by a 
mass of weight 2 at its midpoint (by P3) without altering the centre of grav
ity of the entire triangle. If we then connect this midpoint with the third ver
tex to form a median, we can conclude that the centre of gravity of the whole 
triangle must lie on this median, and by P2 the median must be divided in 
the ratio 2:1 (Fig. 3.1.3-1 and 3.1.3-2). Since this construction can be re
peated with the other two sides, the three medians must meet in one and the 
same point, the centre of gravity. Of course this proof can be extended to the 
more general Ceva theorem, of which this centroid theorem is a corollary. 

z 7 
Figure 3.1.3-L Triangle with equal masses at 

the vertices, A, B and C 
Figure 3 J.3-2. Masses at A and B are moved 

to the midpoint F of AB. 

The fact that this proof deals with abstractions from physical objects (unit 
masses) does not make it any less of a deductive proof. It is not an induction 
based upon an experiment or series of experiments, but rather draws logical 
implications from the three stated postulates. It is more compelling to stu
dents than a purely geometric proof, however, because the initial postulates, 
coming as they do from statics, appeal to physical intuition. This has the ad
vantage of increasing the plausibility of the conclusion in their eyes. 

One can regard this proof as a very useful application of modelling, in 
which the system of masses serves as a model of the triangle. It is true that 
modelling often has to do with creating a non-physical representation of a 
physical system. 

These non-physical representations are of interest primarily because, 
once calibrated, they can be manipulated to represent states of the physical 
system that are impossible or too expensive to study directly. So it is perhaps 
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more common for a physical system to be modelled and a non-physical one 
to be the model. 

But this assignment of roles is arbitrary, or rather it is function of which 
system, the physical or the non-physical, is more easily manipulated and 
which is the subject of study. When a physical system is used in the class
room to help convey an understanding of a geometric relationship, as in the 
proof above, the usual situation is reversed: the physical system is the model, 
and it is the geometric relationship that is being modelled. The physical sys
tem is the one that is easiest for students to grasp and to manipulate in their 
minds, while it is the non-physical system, in this case the geometric rela
tionship, that is the real subject of study and the one the teacher is eager to 
convey. 

Thus teaching mathematical proof using physical principles is a success
ful use of modelling, and in fact can be complemented in the classroom, 
where appropriate, by the actual manipulation of physical objects. This way 
of teaching proof has some similarity to the use of "reality-related" proofs 
(Blum, 2003). Whereas reality-related proofs are meant to be informal, how
ever, a proof using principles from physics, such as the proof above, may enjoy 
the same degree of rigour as any other deductive proof. 

By definition, a deductive proof of a theorem is a sequence of steps that 
shows, using accepted rules of inference, that the theorem is a logical conse
quence of a set of premises (postulates or axioms). Such an argument is no 
less legitimate and compelling mathematically if the initial postulates happen 
to come from physics. At the same time, the physical context, appealing as it 
does to intuition, has the advantages of making the plausibility of the conclu
sion more readily apparent (Hanna, & Jahnke, 2002; Uspenskii, 1961), of 
offering more appeal to the students, and of fostering better mathematical 
understanding. 

The median theorem mentioned above has been actually the subject of 
two teaching experiments carried out in an Ontario school with Grade 12 
students. The research sought to determine the extent to which arguments 
from physics might make the proof explanatory. Indeed, the vast majority of 
students did find that the physical arguments helped them understand why 
the theorems were true. Typical comments were: "the physical arguments 
helped because they provide the visual aspect" and "Help understanding of 
why they are true... mainly because we know that the whole centre of grav
ity thing is true from real life experience" (Hanna, DeBruyn, Sidoli, & Lo-
mas, 2002). These experiments as well as experiences with Grade 9 students 
in Germany showed that the necessary concepts from physics are known and 
well understood by a majority of students. 
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2. THOUGHT EXPERIMENTS: THE COMPLE
MENTARY ROLES OF MODELLING AND 
PROOF 

The use of concepts and arguments from physics in mathematical proofs 
is valuable to students not only because of a possible gain in intuitiveness. It 
also provides them with the important new insight that one can look at one 
and the same statement from different points of view. Li mathematics and 
science, as in everyday life, there may be different explanations for the same 
situation, every explanation starting from different premises and exhibiting 
new aspects of the statement being considered. 

In the teaching of proof it is well known that it is often just as demanding 
to identify the premises from which one can derive a certain statement as it 
is to find the chain of logical steps - the proof itself - leading from the prem
ises to the statement. If students are working within a domain already famil
iar to them, one in which they have gained a certain degree of experience, 
setting up premises is simply an act of selection. The students might say to 
themselves 'This theorem is about angles in a circle, so what do we know 
about this topic?", and try to remember what theorems they have already 
proved concerning angles in a circle. Selecting known truths from a limited 
domain is the classical paradigm of proving in the classroom, in geometry 
and in other fields of mathematics. 

In general, however, identifying adequate premises for a proof of a 
statement is most often a more open-ended and creative act, and the entire 
process, encompassing this creative act and the subsequent rigorous proof, is 
in fact the same as that involved in modelling. Examining the situation in 
more detail, as we do below, shows that an argument can be made that prov
ing itself is an example of modelling. 

When proving a statement we have to do two things: (1) find the "right 
premises" and (2) devise the chain of deductive steps leading from the prem
ises to the statement. Looking only at the completed proof, however, the first 
activity is presumed to have been done akeady, or to lie outside of mathe
matics, and it is the second activity, the chain of deductive steps, that is seen 
as the interesting one, the one that matters. Thus the second of these two ac
tivities has become most closely associated with the notion of proof, while 
the first activity has been downplayed. 

In a real-life situation, on the other hand, the relationship is exactly the 
other way around. What then matters most is setting up the premises, which 
is exactly what in the applied sciences is called modelling. Only after we 
have built a model can we go on to perform inferences within it, that is, to 
move on to the second activity of constructing chains of deductive steps. 
Necessary as it is, the applied scientist takes this manipulation of the model 
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for granted, and thus in this context it is the second activity that is down
played. 

Of course it is stressed in the theory of modelling that modelling is a cir
cular or spiral process of setting up a model, drawing conclusions, modifying 
the model, drawing conclusions, and so on. However, the same is true for the 
creation of a proof by practicing mathematicians. Proving, far from being 
limited to the chain of deductions one sees in the finished product, is a spiral 
process of selecting a set of premises, drawing conclusions, modifying the 
set of premises, drawing conclusions, and so on. 

It is only under an artificial division of labour, therefore, that modelling 
and proving appear to be separate activities. They are inseparably linked, in 
fact, and this should be reflected in teaching. Unfortunately, though, teachers 
often have the idea that there is a deep gap between modelling and proof. 
One day they work on applied problems, the next they do rigorous proof. 
Because of the complementary relationship between proving and modelling, 
however, the approach of using arguments from physics in mathematical 
proof deserves a position of special importance in the teaching of proof. 

An especially concise form and a paradigm for the complementary rela
tion of modelling and proving is what physicists have called a "thought ex
periment" C'Gedankenexperiment") since Galileo's times. It is a concept 
with which every student should be confronted, because thought experiments 
embody the most elegant use of arguments from physics in mathematical 
proofs. 

As an example, we present in concluding our paper a thought experiment 
recently devised by Christian Blatter (1997) from the Federal Technical 
University of Zurich (ETHZ) to prove a famous theorem of Georg Pick 
(1859 - 1942). The theorem is suitable for the early secondary level. Pick's 
theorem is as follows: 

Let P be a simple lattice polygon, i.e. a polygonal Jordan domain in the 
plane whose vertices have integer coordinates. Then, its area m(P) is 
given by 

m(P) = /+V2"l 
where / denotes the number of points in the interior of P and b the num
ber of points on its boundary. 

The formula gives the area as multiples of the unit square. Thus, the area 
can be determined by simply counting the numbers of points in the interior 
and on the boundary of P. In Figure 3 we have / = 16 and Zi = 11, therefore, 
m(P)=16 + " / 2 - l = 2 0 + V2. 

There are numerous proofs of Pick's area theorem. In one of them the 
area of P is dissected into minimal triangles, and then Euler's polyhedron 
formula is applied (see Aigner, & Ziegler, 2002). Blatter's thought expert-
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ment using an argument from physics runs as follows (Aigner, & Ziegler, 
2003). We assume that at time ^ = 0 a unit of heat is concentrated at each 
lattice point of the plane. This heat will be distributed over the whole plane 
by heat conduction so that at time r = oo the heat is equally distributed on the 
plane with density 1. Therefore, the area m(P) is equal to the amount of heat 
in the interior of P, 

Figure 3.1.3-3. Pick's area theorem 

In the following we do not need to make any assumption about how heat 
conduction works, and we do not use differential equations. The only as
sumption is that an equal amount of heat will flow from every point in every 
direction, i.e. that the lattice point situation is rotationally symmetric. 

Now, where does the heat in the interior of P come from? First of all, we 
consider an edge of the polygon and observe that the lattice points lie sym
metrical to its midpoint M. 

Therefore, to every point Q on one side of the edge belongs a point Q* on 
the other side lying symmetrical to M. Thus Q and Q' will send an equal 
amount of heat across the edge of the polygon from different sides. Thus the 
total heat flux across the edge is 0. This implies that the heat in the interior 
of P comes only from the lattice points inside of P and from the points on its 
boundary. Each inner point contributes heat of amount 1, whereas each point 
on the boundary sends heat into the polygon proportionally to the interior 
angle of which the point is the vertex. To calculate the sum of the interior 
angles we walk along the boundary in, say, the counter-clockwise direction. 
A lattice point on the boundary which is not a vertex sends half its heat into 
the interior. The heat coming from a vertex is half minus the turning angle of 
the boundary at that vertex, measured in units of 2;r. The sum of all turning 
angles for a simple polygon is one full turn, and, from this follows Pick's 
formula. 

The specific merit of this thought experiment is that it gives every term in 
Pick's formula a clear and intuitively plausible interpretation. This is espe
cially true for the b/2 and the mysterious -7. Thus one could think about pre
senting this thought experiment as an enrichment activity after one has 
treated Pick's theorem in a purely geometrical fashion. As we said, no spe-
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cial knowledge about heat conduction is required. 
As suggested in this paper, the careful identification of premises, includ

ing the search for alternative premises, as well as the use of principles from 
physics, are examples of potentially successful uses of modelling and should 
play a greater part in the teaching of proof than has been the case. 
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Abstract: Across a wide spectrum of disciplines and forms of investigation, scientists 
invent and revise models. Although central to scientific practice, models can
not simply be imported into classrooms. Instead, pedagogy must be designed 
so that students can come to understand natural systems by inventing and re
vising models of these systems. Considering theories of analogical develop
ment, we suggest rooting first experiences of modeling in resemblance -
physical microcosms - and in inscription - children's drawings and related 
writings. From these starting points, we seek to stretch inscription into mathe-
matization, so that children describe natural systems by recourse to mathe
matical systems and structures. Engagement in these practices has epistemic 
consequences, fundamentally altering how children view the natural world. 

1. INTRODUCTION 

Across a wide spectrum of disciplines and forms of investigation, sci
entists invent and revise models. Scientific ideas derive their pov êr from the 
models that instantiate them, and theories change as a result of efforts to in
vent, revise, and debate the qualities of competing models. Models are not 
only assemblies of ideas, but also mobilize a wider network of representa
tional forms, institutions, material means, and specialized ways of talking 
(e.g., Bazerman, 1988; Latour, 1999; Pickering, 1995). Hence, we consider 
model-based reasoning and associated forms of practice as constituting the 
epistemic core of coming to understand natural systems. Our approach to 
understanding the growth and development of this form of reasoning is 
rooted in pedagogical design; we work with teachers to craft classroom ecol-
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ogies that cultivate model-based reasoning across grades and years of 
schooling, and then study the practices and outcomes that result (Lehrer & 
Schauble, 2005). Among the desirable outcomes is an appreciation of the 
epistemic grounds of modeling. In this brief paper, we first describe an ap
proach to pedagogy rooted in developmental theory and then outline a typol
ogy of models that we find useful to support growth and development of 
children's reasoning (see also, Lehrer & Schauble, 2006). 

2. DEVELOPMENTAL ORIGINS OF MODELLING 
IN RESEMBLANCE 

When thinking about the developmental roots for modeling, we find it 
useful to recall that at its most basic level, a model is an analogy. A familiar 
set of objects and relations stands in for a less familiar set of objects and re
lations. For example, the Bohr model metaphorically renders the atom's nu
cleus as the sun and its electrons as planets, with attendant implications of 
force and orbital paths. Familiarity also exacts a price: Analogies are not 
mere copies, so it is a matter of test to determine which aspects and relations 
of the more familiar system are pertinent for understanding the new system. 
Hence, one informational resource for pedagogical design is research that 
considers how analogical reasoning develops. 

Gentner and Toupin (1986) suggest that there is a continuum in corre
spondence between familiar and less familiar systems. These range from lit
eral similarity (copy) to pure relational structure. The most accessible corre
spondences for children are literally similar: A stands in for B because it re
sembles B in some way. For example, when we asked first graders to use 
springs, dowels, Styrofoam'^^, and other materials to build a model that 
"works like your elbow," the children's initial constructions copied percep
tually salient features. The first-graders used round foam balls to simulate 
the "bumps" in their elbow joints and Popsicle sticks to simulate fingers, 
even though neither of these features captured anything about the way the 
elbow functions. However, resemblance served an important developmental 
role: It appeared to bridge the gap between form and function. Resemblance 
supported the very idea of representation - that is, that hardware originally 
designed for other purposes could be re-assembled and re-purposed to repre
sent an elbow. It helped persuade classmates that there was something el
bow-like about their assemblies, yet as students encountered range of motion 
and related constraints, these resemblances were eventually eliminated as 
unnecessary for persuading classmates about "good" models. Over the 
course of a few lessons, the ground of legitimate correspondence shifted 
away from resemblance toward satisfying constraints. This shift from literal 



3.L4. A DEVELOPMENTAL APPROACH 155 

similarity to mapping relations is a hallmark of analogical reasoning, accord
ing to Centner's theory. Children's appreciation of the epistemic grounds of 
modeling appeared to be affected significantly by these experiences. During 
follow-up interviews, most suggested that models were not copies of reality. 
Instead, first-graders talked about how models edit reality to focus on the 
way things work. One even consoled a researcher who asked about the ap
parent lack of complete fidelity of the child's hardware model to an elbow 
by assuring him that "it's only a model." 

The shift from literal similarity to analogical mapping of systems of rela
tion sets the stage for mathematical expression. Mathematical models encap
sulate the structure of natural systems, although the correspondence between 
mathematical systems and natural systems is always subject to some uncer
tainty. Kline (1980) referred to this process as the mathematization of nature, 
and it forms the cornerstone of our efforts to introduce modeling to children. 
For example, in our studies, thkd-grade children who first built physical 
models of elbows went on to explore relationships between the position of a 
load and the point of attachment of the tendon in a more complex elbow 
model. The model treated the arm as a third-class lever, with the elbow act
ing as the fulcrum. Students expressed the torque of the system mathemati
cally as product of effort (supplied by the biceps) and distance (from elbow 
to point of attachment of biceps on the forearm). This mathematical descrip
tion served not only as a summarization but also as a point of departure for 
further investigation. If distance and effort were related, how might different 
points of attachment trade off effort and range of motion? In our view, look
ing at nature through the lens of a model is an important hallmark of model-
based reasoning. Models do not simply describe. They also suggest new 
avenues of vision. 

3. A TYPOLOGY OF MODELS BASED ON ANA
LOGIC AL MAPPING 

Considering models as forms of analogy suggests prospective develop
mental pathways based on types of mappings between models and natural 
system. In our view, each kind of mapping represents an interpretative stance 
governed by intentions and purposes of modelers, not solely by the qualities 
of the models. Models, like all symbols and representations, have external 
features and qualities, but their status as a model relies on interpretation, 
rendering any typology of models approximate. For example, one might 
suggest that a pendulum is a model system for periodic motion. Yet, for 
most, the pendulum simply swings back and forth and does not stand in for 
anything other than itself. 
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3.1 Physical Microcosms 
Mechanical models of the solar system, terraria, and model airplanes in

tentionally resemble the systems they are intended to represent, albeit at dif
ferent scale. They are microcosms of natural systems, so physical models 
often prove apt entry points to practices of modeling. For example, one class 
of first-graders observed that in one comer of the schoolyard, a pile of toma
toes was changing from week to week. The onset of winter slowed change to 
a standstill, so students sought a way to continue their study. Compost col
umns were the means that they pursued to hold nature within their grasp. 
Children's choices of materials to include in the columns included moldy 
fruit, dirt and leaves, but also gum wrappers and stray pieces of Styrofoam 
packing material that they observed in the vicinity. Over time children's 
questions and interpretations were guided less by resemblance and more by 
systems of relation (e.g.. How did moisture affect decomposition? Was mold 
alive?). Nonetheless, resemblance was critical for surmounting the initial 
hurdle of ensuring that the compost columns were accepted by all as legiti
mate models of the process occurring outside the walls of the school. Hence, 
physical microcosms afford early entree to modeling via literal similarity, 
but they also typically provoke questions about relational structure as stu
dents consider what to include in a model system and why, and how to mod
ify the model to account for new observations and data. 

Although we have emphasized their role as starting points for modelling, 
microcosms are not merely "school stuff." In social studies of science, "ir
ruptions" of objects into researchers' investigations have been essential to 
the pursuit of "modem" science (Latour, 1993). Partnership between arti
facts and person has pedagogical implications. Consider, for example, sixth 
graders who conducted field studies of aquatic systems and then attempted to 
design a sustainable system in a one-gallon jar. Students initially regarded 
this task as unproblematic, to be solved by merely copying the elements 
(substrate, plants, animals) found in a nearby pond into their jar. To their 
surprise, sustainable systems proved elusive, and unexpected events, such as 
algal blooms and rapid increase in bacterial populations, transformed stu
dents' understandings of the functioning of aquatic systems and spurred new 
lines of inquiry. Resistances like these from the material world contribute to 
what Pickering (1995) describes as a "mangle of practice." No model speci
fies instmmentation and measurement in sufficient detail to prescribe prac
tice, and this was a late-dawning but important insight for the sixth-graders 
attempting to design sustainable ecologies. 

3.2 Representational Description 
Models are typically expressed as systems of representation. Latour 
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(1999) suggests that systems of scientific representation (Latour calls them 
inscriptions) share properties that make them especially well suited for mo
bilizing cognitive and social resources in the service of establishing the plau
sibility of claims. The pedagogical challenge, then, is to support children's 
use and understanding of representation. Long before they arrive at school 
children have some appreciation of the representational qualities of pictures, 
scalemodels, and video representations. Emerging symbolic capacities are 
the foundation for engaging children in the invention and revision of systems 
of inscription - ways of representing - the natural world. This form of activ
ity parallels that of the scientific community, notwithstanding significant 
differences in the worlds of scientists and children. In instruction, we attempt 
to place students in a position to invent inscriptions - to visually denote thek 
commitments and conjectures about how a system functions - and to com
pare and contrast the affordances and constraints of different systems of in
scription. Our rationale is that systems of representation do not simply com
municate thought; they also shape it (Olson, 1994). For example, when third-
grade children invented maps of their school's playground, initial maps were 
drawings of favorite pieces of playground equipment (Lehrer & Pritchard, 
2002). As children shared their maps with classmates, they saw the need to 
take a less local view of the space. They then invented competing ways of 
representing distance and direction, and origin and scale. Contrasting their 
tentative maps provided children with a venue to re-consider the meanings of 
place and space and to re-create the playground symbolically, as a mathe
matical (polar coordinate) system. 

It is important that children have repeated and extended opportunities to 
model. These same third-graders later attempted to describe the growth of 
plants. Each child grew his or her own plant. Children initially represented 
change by drawings and by pressed plant silhouettes. These reUed on percep
tual resemblance and mediated the later development of inscriptions that 
were further removed from phenomena. For example, plant silhouettes were 
supplemented by measurements and displays to create other descriptions of 
change, such as graphs depicting changing ratios (e.g., change in height to 
change in time). Yet measures and graphs did not simply overwrite or some
how incorporate silhouettes. Instead, silhouettes participated in a system of 
what Latour (1999) calls "circulating reference" (p. 72), in which they per
formed an important indexical function of relating measures and graphs to 
events in the world (the actual growth of the plants). This cascade of inscrip
tions transformed the conceptual terrain, so that students began to pose new 
questions about the plants. For example, while comparing plant root growth 
to shoot growth, students invoked their new technologies of display to argue 
both for and against the claim that roots grow like shoots. Mathematical de
scription provoked new ways of seeing nature. 
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3.3 Syntactical Models 
We just noted that representational systems often have their start in fun

damental symbolic capacities of pretense or imitation and in basic inscrip-
tional capacities, such as drawing. As representational systems stretch from 
resemblance into structural relations, they seem to begin to alter their charac
ter. In particular, they often summarize the essential functioning of a system 
but bear little resemblance to the system being modeled. For example, ani
mal behaviors, such as food preference, can be investigated via a repeated 
process of flipping a coin to answer questions such as, are choices inten
tional, or simply a matter of chance? Note that one must &st establish the 
correspondence between a model of chance, such as a coin flip, and events in 
the world. For example, a group of fifth-grade students investigated changes 
in the distribution over time of a collection of plants. During the course of 
their investigations, they sought to explore what might occur if they grew the 
plants again. What might be the shape of the data on the same day of growth 
if conditions were the same? Because they could not actually grow the plants 
again, students explored the behavior of repeated sampling of the collection 
as a stand-in for repeated growth. Yet the relation of the repeated process of 
sampling to the repetition of growth under the same conditions was purely a 
matter of structural isomorphy. 

3.4 Emergent Models 
Emergent models impose a further restriction on mapping between model 

and world: Relations between objects produce emergent behaviors that are 
not apparent in the description of either the object or the relation. For exam
ple, the value of a stock on the market emerges from the independent deci
sions of thousands or millions of investors. Resnick (1994) suggest that peo
ple often find emergent models implausible or even contradictory because 
they believe that complex systems must be orchestrated centrally. A com
mon example (in the United States) contrasts evolutionary theory to intelli
gent design. It is difficult for people to believe that the watchmaker is blind. 
Penner (2000), who investigated these issues with middle school students, 
concluded that there are three challenges for developing appreciation of this 
form of modeling: (a) recognizing that there may not be a single cause (e.g., 
a central authority), (b) distinguishing between aggregate and individual lev
els of analysis, and (c) tracing the consequences of perturbations at the micro 
level to behavior at the macro level. Students often treat emergent levels as if 
they were hierarchies of inheritance, attributing properties of the individuals 
to the aggregate (Wilensky & Resnick, 1999). Chi (2005) further suggests 
that students may make ontological errors, confusing emergent systems with 
others that allow for more direct correspondences between model behaviors 
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and world behaviors. Our explorations of emergence have been limited to 
introducing children to the mathematics of distribution. We rely on contexts 
of repeated measurement, because these contexts support viewing distribu
tion as emerging from the collective activity of individual agent-measurers. 
Working in these contexts, children trace agent-level actions into the level of 
distribution (e.g., outliers might result from a measurer using a nonstandard 
method of measure). Moreover, descriptions of collective activity (the distri
bution) are readily distinguished from those of individual agent-measurers 
(the measures). Hence, some of the epistemic challenges noted by Penner 
(2000) and by Chi (2005) may be surmounted in some circumstances. 

New modeling tools have been developed that may well afford more ac
cess to emergent modeling. What was once the province of differential equa
tions can now be described by programming languages that allow models to 
be constructed as ensembles of independent agents acting in parallel, accord
ing to a comparatively simple set of relations Moreover, these forms of ac
tivity can be distributed across different types of computational media to 
model processes such as the spread of disease (Wilensky & Stroup, 1999). 

4. SUMMARY 

Modeling presents a series of epistemic challenges that we have sought to 
make visible and approachable by designing pedagogy informed by theories 
of the development of analogical reasoning. These challenges include recog
nizing that models edit, rather than copy, the world. Models amplify phe
nomena by specifying relationships that one might not have otherwise con
sidered, so models suggest qualities of the world to modelers. One must 
learn to look through the model into the world. Our students have pointed 
out another challenge: How does knowing in mathematics relate to knowing 
in science? For example, when third-grade students represented constant ra
tios of the lengths of the sides of a rectangle (e.g., the long side is twice the 
short side), lines on the Cartesian plane constituted a closed system. That is, 
a line represented all possible rectangles with sides in a particular ratio, even 
those that students had not constructed. But when they later considered ratios 
of mass to volume (i.e., density), there was great consternation. Some stu
dents noticed that objects composed of what appeared to be the same mate
rial were not all represented on the same line. Eventually, they concluded 
that the most likely explanation was measurement error. Yet as one third-
grade student put it, it was also possible that the objects were really made of 
different materials, and that would require a separate line for each. She con
cluded that they could not know for sure - a recognition of the fundamental 
uncertainty underlying scientific conclusions. 

This recognition is an example of perhaps the greatest epistemic chal-
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lenge, model competition. How does one judge the quality of a model? Such 
judgments rely on entertaining alternative models, so that without opportu
nity to invent and revise models, this epistemic quality is largely hidden 
from view. Unfortunately, it is our impression that school students are gen
erally taught the virtues of particular models of nature. Competitors are ei
ther edited out of view in the interests of instructional efficiency, or perhaps 
even more provocatively, are recast as quaint relics of bygone eras, with 
their vital intellectual ferment evacuated. Students are taught models, or at 
least a model, but modeling remains hidden. Without opportunities to play 
modeling games from the beginning of education in mathematics and sci
ence, we fear that most students will reduce models to recipes—without ever 
understanding why and how they are generated, how they support claims and 
argument, and how they constitute explanations in reply to genuine ques
tions. 

REFERENCES 
Bazerman, C. (1988). Shaping written knowledge: The genre and activity of the experimental 

article in science, Madison: University of Wisconsin Press. 
Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some miscon

ceptions are robust. The Journal of the Learning Sciences, 14,161-199. 
Center, D., & Toupin, C. (1986). Systematicity and surface similarity in the development of 

analogy. Cognitive Science, 10, 277-300. 
Kline, M. (1980). Mathematics: The loss of certainty. Oxford: Oxford University Press. 
Latour, B. (1993). We have never been modem, Cambridge, MA: Harvard University Press. 
Latour, B. (1999). Pandora's hope: Essays on the reality of science studies, London: Cam

bridge University Press. 
Lehrer, R., & Pritchard, C. (2002). SymboUzing space into being. In K. Gravemeijer, R. 

Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolization, modelling and tool use in 
mathematics education, (pp. 59-86). Dordrecht, Netherlands: Kluwer Academic Press. 

Lehrer, R., & Schauble, L. (2005). Developing modeling and argument in the elementary 
grades. In T. Romberg, & T. P. Carpenter (Eds.), Understanding mathematics and science 
matter, (pp. 29-53). Mahwah, NJ: Lawrence Erlbaum Associates. 

Lehrer, R., & Schauble, L. (2006). Cultivating model-based reasoning in science education. In 
R. Keith Sawyer (Ed.), Cambridge Handbook of the Learning Sciences (pp. 371-387). 
Cambridge: Cambridge University Press. 

Olson, D. R. (1994). The world on paper: The conceptual and cognitive implications of writ
ing and reading. New York: Cambridge University Press. 

Penner, D. E. (2000). Explaining systems: Investigating middle school students' understand
ing of emergent phenomena. Journal of Research in Science Teaching, 37, 784-806. 

Pickering, A. (1995). The mangle of practice: Time, agency, and science. Chicago: University 
of Chicago Press. 

Resnick, M. (1994). Turtles, termites, and traffic jams: Explorations in massively parallel 
microworlds, Cambridge, MA: MIT Press. 

Wilensky, U., & Stroup, W. (1999). Learning through participatory simulations: Network-
based design for systems learning in classrooms. Computer Supported Collaborative 
Learning Conference, Stanford University, California. 



Chapter 3.1.5 

WHAT IS DISTINCTIVE IN (OUR VIEWS 
ABOUT) MODELS & MODELLING 
PERSPECTIVES ON MATHEMATICS PROBLEM 
SOLVING, LEARNING, AND TEACHING? 

Richard Lesh and Caroline Yoon 
Indiana University, Bloomington, Indiana, USA, 
Email: ralesh@indiana.edu I csyoon@indiana.edu 

Abstract: What is the nature of typical problem-solving situations where elementary-but-
powerfiil mathematical constructs and conceptual systems are needed for suc
cess beyond school in a technology-based age of information? What kind of 
"mathematical thinking" is emphasized in these situations? What does it mean 
to "understand" the most important ideas and abilities that are needed in the 
preceding situations? How do these competencies develop? What can be done 
to facilitate development? How can we document and assess the most impor
tant achievements that are needed: (i) for informed citizenship, or (ii) for suc
cessful participation in the increasingly wide range of professions that are be
coming heavy users of mathematics, science, and technology? 

1. INTRODUCTION 

The preceding questions are among the most significant that have shaped 
the models & modelling perspectives that are described in this paper. But, 
our views also were influenced strongly by the following observations which 
involve issues of equity as much as content quality. 

Why do students who do not have histories of getting A's on tests and 
coursework often do exceptionally well beyond school? How can people be 
identified whose exceptional abilities do not fit the narrow and shallow band 
of abilities emphasized on existing textbooks and standardized tests? For 
example, when Purdue University's Gender Equity in Engineering Project 
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assessed students using tasks that were designed to be simulations of ''real 
life" problem solving situations, and when care has been taken to assess a 
broader range of understandings and abilities than those emphasized in tra
ditional textbooks and tests, a broader range of students naturally emerged 
as having extraordinary potential. Furthermore, because such abilities were 
previously unrecognized, many of these students come from populations that 
are highly under represented in fields that emphasize mathematics, science, 
and technology. 

Such observations generally are considered to be "common knowledge" 
among leaders in future-oriented fields ranging from aeronautical engineer
ing to business management - where new levels and types of "mathematical 
thinking" are used in problem solving and decision making. But, these ob
servations seldom make it clear what kind of instructional goals and experi
ences should be emphasized to help decrease mismatches between: (i) the 
narrow band of mathematical understandings and abilities that are empha
sized in mathematics classrooms and tests, and (ii) those that are needed for 
success beyond school in the 21̂ ^ century. 

Many people assume that students simply need more practice with ideas 
and abilities that have been considered to be "basics" in the past. Others as
sume that different levels and types of understandings need to be developed 
- such as understandings that emphasize graphics-based or computation-
based representational media. Still others assume that completely new topics 
and ideas (such as those associated with complexity theory, discrete mathe
matics, systems theory, or computational modelling) need to replace old con
ceptions of "basics." In this paper, our goal is not to resolve such issues. 
Our tentative answers have been given in a number of recent publications 
including Beyond Constructivism: Models & Modelling Perspectives on 
Mathematics Problem Solving, Learning & Teaching (Lesh & Doerr, 2003) 
and a special issue on models & modelling in the International Journal for 
Research on Mathematical Thinking & Learning (Lesh, 2003). The goal of 
this paper is simply to clarify some of the most important characteristics of 
what we refer to as models & modelling perspectives on mathematics prob
lem solving, learning, and teaching. 

2. POSSIBLE MISCONCEPTIONS TO DISMISS 

Before describing foundations of our models & modelling perspectives, it 
is useful to dismiss several possible misconceptions. First, we are not advo
cating an "applied" mathematics courses - where traditional methods of in
struction are used to teach about mathematical topics that someone considers 
to be "applied" (as opposed to "pure"). Instead, our perspectives are similar 
to those emphasized by John Dewey when he argued that the educational 
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goal of making science practical is significantly different to making practice 
scientific. For example, in other publications (Lesh & Yoon, 2003a), we pre
sented evidence showing why significantly different kinds of knowledge and 
processes tend to be emphasized depending on whether instructional activi
ties are designed to: (i) guide students along (necessarily narrow) conceptual 
paths toward a textbook's (or teacher's) idealized portrayal of the meaning 
of a given idea, or (ii) put students in situations where they repeatedly ex
press, test, and revise their own ways of thinking about the relevant concepts 
and conceptual systems. That is, mathematizing reality is significantly dif
ferent than realizing mathematics - by pointing out applications of ideas and 
skills that are introduced. 

Of course, such distinctions are not likely to seem significant to anybody 
who naively accepts the cliche: It took brilliant mathematicians hundreds of 
years to develop most of the most powerful concepts in the elementary 
mathematics curriculum. It's not realistic to expect average ability children 
or adolescents to come up with such concepts in a few months or weeks - or 
during single problem solving episodes. ... Models & modelling perspec
tives reject the notion that only a few exceptionally brilliant students are ca
pable of developing significant mathematical concepts unless step-by-step 
guidance is provided by a teacher. Our research is filled with transcripts of 
model-eliciting activities in which the models (and conceptual tools) that 
students develop for making sense of the situations also result in significant 
developments of underlying constructs or conceptual systems (Lesh & Do-
err, 2003). In fact, if the goal of instruction is to make significant changes in 
a student's underlying ways of thinking about important mathematical sys
tems, then virtually the only way to induce significant conceptual change is 
to engage students in situations where they express > test > revise (or reject) 
their current ways of thinking. 

Model-eliciting activities, as their name implies, are problem solving ac
tivities that elicit a model. That is, their solutions require students to express 
their current ways of thinking (i.e., their relevant models) in forms that are 
tested and refined multiple times. So, final solutions involve not only model 
development but also the development of constructs and conceptual systems 
that the models embody. 

Principles for designing model-eliciting activities include the following, 
(i) Students must be engaged in problem solving activities in which they 
clearly recognize the need to revise or refine their current ways of thinking 
about the situation, (ii) Students must be challenged to express their current 
understandings in forms that they themselves can test and revise multiple 
times, (iii) The conceptual tools that students develop should be expected to 
be sharable (with others) and re-useable (beyond the immediate situation) 
beyond the specific situations in which they were developed (Lesh, et. al.. 
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2001). When these conditions are satisfied, our claim is that: If the models 
involve mathematically significant concepts, then model development tends 
to involve significant forms of concept development; and, development often 
is achievable by students who have been labeled average or below-average 
in ability - as measured on traditional school tests and tasks. 

3, WHAT KIND OF MATHEMATICAL ABILITIES 
ARE EMPHASIZED IN MODEL-ELICITING AC
TIVITIES? 

According to models & modelling perspectives on mathematics, problem 
solving, learning, and teaching, "thinking mathematically" is about expres
sion - interpretation, description, explanation, communication, argumenta
tion, and construction - at least as much as it is about computation or deduc
tion. And, mathematical interpretation is about quantification, dimensionali-
zation, coordinatization, and systematization - or, in general, imposing struc
ture on experience - as least as much as it is about deriving or extracting 
meaning from information that is presumed to be given. Therefore, when we 
ask what mathematics student have mastered, it is important to ask what 
kinds of situations they can describe at least as much as we ask what kind of 
data processing they can do. That is, mathematics learners and problem sol
vers are model developers at least as much as they are information proces
sors; and, because models are the tools that mathematicians use to interpret 
experience, powerful, sharable, and reuseable models are among the most 
important cognitive objectives of mathematics instruction. 

What is the nature of these models? First, models usually draw on con
cepts and conceptual systems from a variety of disciplines or textbook topic 
areas. Second, models usually are expressed using a variety of interacting 
representational media - each of which emphasize and de-emphasize some
what different meanings of the underlying concepts and conceptual systems. 
Third, for models that are relevant to a given problem solving situation, most 
relevant constructs and conceptual systems are at intermediate stages of de
velopment. Fourth, model development usually involves a series of design 
cycles which involve different ways of filtering, organizing, and interpreting 
"givens" and "goals" in learning or problem solving situations. Primitive 
versions of a given model (or conceptualization) tend to be based on less 
refined and less complex relational/organizational systems; and unstable sys
tems tend to: (i) notice only the most salient relationships and information in 
the problem situation, filtering out other important but less striking charac
teristics; and/or (ii) neglect to notice model-reality mismatches, thus impos-
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ing subjective and unwarranted relationships or interpretations based on "a 
priori" assumptions. 

In general however, research on models & modelling has shown that the 
understandings and abilities that are critical for success in model-eliciting 
activities are similar to those that are emphasized in fields such as engineer
ing or business management when expert job interviewers describe charac
teristics of students who are most sought-after in job interviews following 
the completion of their academic degree programs. That is, successful stu
dents are those who: (i) have histories of being able to make sense of com
plex systems, (ii) work well and communicate meaningfully within diverse 
teams of specialists, (iii) are skillful at planning, monitoring, and assessing 
progress within complex multi-stage projects; and, (iv) adapt rapidly to con
tinually evolving conceptual technologies. ... Consequently, when we inves
tigate the nature of mathematical problem solving situations that occur in 
future-oriented fields that are heavy users of mathematics, science, and tech
nology, capabilities that emerge as being especially important are associated 
with the following problem characteristics. 

• The mathematical products students need to produce generally involve 
more than easy-to-score answers to pre-mathematized questions. 

• The products that are needed also usually involve sharable and re-useable 
conceptual tools (and underlying constructs and conceptual systems). 

• The "problem solver" often is not simply an isolated individual. Instead, 
the "problem solver" often consists of a team of diverse specialists - who 
use a variety of rapidly evolving technical tools, and who represent a va
riety of different practical and theoretical perspectives. 

• Because solutions involve the development of complex artifacts (or con
ceptual tools), design processes usually involve a series of iterative de
velopment > testing > revising cycles in which a variety of different ways 
of thinking about givens, goals, and possible solution steps are iteratively 
expressed, tested, and revised - or rejected. 

• The context often involves too little time, too few resources, and conflict
ing goals (such as goals that are related to costs and benefits, complete
ness and simplicity, or quality and timeliness). Therefore, relevant ways 
of thinking usually draw on constructs and conceptual systems that come 
from a variety of disciplines and topic areas. 

For people who are unfamiliar with the kind of mathematical thinking 
that is emphasized when groups of specialists use a variety of powerful tech
nical tools to work on complex multi-stage projects, it often appears that the 
need for mathematical thinking surely must decrease (or become easier). 
Don't tools and colleagues do some of the work for you? Don't complex or 
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multi-stage projects enable you to focus on only a single component or stage 
of work that is needed? ... In reality, tools and colleagues tend to create as 
many conceptual challenges as they eliminate; and, complex multi-stage pro
jects tend to emphasize the need for higher-order understandings and abili
ties (Lesh, 2001). 

4, MODELS & MODELLING VIEWS OF MATHE
MATICS, PROBLEM SOLVING LEARNING & 
TEACHING 

In mathematics education research, it is common to characterize problem 
solving as a process of getting from givens to goals when the path is not ob
vious. 

• The starting point is well defined. The relevant data are expressed in 
mathematical form; and, there seldom exist several plausible mathemati
cal descriptions of relevant relations, actions, patterns or regularities (so 
that strengths and weaknesses of alternatives need to be considered). In 
other words, the mathematical description of the situation is not problem
atic. 

• The desired end point is to produce some clearly specified type of mathe
matical "answer" - even though the purpose for which this answer is 
needed usually is not known. That is, it is not part of a tool whose useful
ness needs to be verified outside the world of mathematics. 

• The "problem" is simply to find a set of legal moves to get from "givens" 
to "goals" by moving along a path never needs to leave the world of 
mathematics. 

Rather than being interested in "problem solving" for its own sake, mod
els & modelling perspectives are interested in the development of meaning 
and usefiilness for powerful mathematical concepts or conceptual systems. 
So, we focus on problems with the following characteristics. 

• The situation to be understood involves some type of mathematically in
teresting system - which often (but not always) exists outside the world 
of mathematics. So, the most problematic aspects of tasks often involve 
developing useful ways to think about (describe, explain, interpret) rele
vant relationships, patterns, and regularities - or givens, goals, and possi
ble solution paths - so that relevant mathematical tools can be used. 

• The product that needs to be produced is not like a point (e.g., an answer 
such as "12 feet"). Instead, it is a complex artifact or a conceptual tool 



3.1.5, WHAT IS DISTINCTIVE IN M& M PERSPECTIVES 167 

(such as a spreadsheet with graphs) that needs to be developed for use in 
a variety of structurally similar situations. 
Development processes generally involve a series of express>text>revise 
"modelling cycles" (see Fig. 3.1,5-1) in which alternative ways of think
ing are gradually sorted out, integrated, refmed, or elaborated - or re
jected. Consequently, solution processes tend to resemble genetic inheri
tance trees that describe the evolution of a community of conceptual sys
tems - rather than progress along a conceptual path. 

^ 
Test 

^ 

Real Life Problem 
Solving Situadon 1 

Conceptual 1 
Tool 

Mathematical 
Model 

Design Mathematical 
Result 

Derive or 
Devefop 

Figure 3.1.5-1. A Single Model Development Cycle 

When traditional problem solving is characterized as getting from (pre-
mathematized) givens to (mathematical) goals, then solution paths generally 
do not require students to leave the world of mathematics. So, solutions in
volve only moving from the upper right hand box to the lower right hand 
box in Fig. 3.1.5-1. Such problems can be thought of quarter-cycle activities. 

Because of the nature of model-eliciting activities, it has been necessary 
to reconceptualize or redefine many popular heuristics and strategies to 
make them suitable for: (a) non-answer-giving stages of problem solving, (b) 
processes that are content-dependent, (c) solution paths involving multiple 
modelling cycles, and (d) conceptual models based on unstable organiza
tional/relational (as well as procedural) systems. 

(b) The Nature of Learners and Problem Solvers: In mathematics educa
tion research, it is common to characterize "problem solvers" as information 
processors - where "processing" generally emphasizes computation, and 
where "information" consists of pre-quantified data. But, in model-eliciting 
activities, data processing usually accounts for only a small portion of most 
problem solving episodes. Instead, the modelling cycles that problem solvers 
go through generally involve systematically rethinking the nature of givens, 
goals, and relevant solutions steps - or patterns & relationships that are at
tributed to surface-level data. Therefore, the most significant things that are 
being analyzed and transformed (or processed) are students' own ways of 
thinking about givens and goals - and patterns and regularities that are at
tributed to (rather than being deduced from) the information that is available. 

Just as in more mature modem sciences, learning sciences are finding it 
necessary to recognize that most of the "subjects" (e.g., developing knowl-
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edge of students, or teachers, or learning communities) involve complex sys
tems. Therefore, it has become necessary for theory development to move 
beyond machine-based metaphors and factory-based models to account for 
pattern and regularities in behavior. To develop models of students' behav
iors in model-eliciting activities, models & modelling perspectives have 
moved away from industrial age machine metaphors (hardware), and beyond 
computer-age metaphors (software) toward metaphors grounded in an age of 
biotechnologies (wetware). In particular, the development of knowledge is 
viewed to be less like the construction of a machine or a computer program, 
and more like the evolution of a community of living, adapting, and continu
ally evolving biological systems. For example, even within the thinking of 
isolated problem solvers, solutions to model-eliciting activities tend to in
volve communities of competing conceptual systems - and conceptual evolu
tions occur best when Darwinian factors such as diversity, selection, propa
gation, and conservation come into play. This is one reason why we often 
investigate problem solving where students work in teams. We use group-
individual comparisons in much the same way that other researchers use ex
pert-novice comparisons - or comparisons of gifted students to average abil
ity students. In doing this, we go beyond emphasizing the mind in society 
(and the mind of society) to also emphasize societies of mind (Lesh & Yoon, 
2003). 

(c) The Nature of Useful Mathematics: In mathematics education re
search, it is common to assume that learning to solve "real life" problems 
involves three steps: 

1. First, students should learn prerequisite ideas and skills (in decontextual-
ized situations). 

2. Next, students should learn certain problem-solving processes & heuris
tics in order to be able to use their ideas and skills effectively, as well as 
certain metacognitive processes, habits of mind, values, attitudes and be
liefs (about the nature of mathematics, mathematical abilities, and prob
lem solving) that facilitate decisions about when, where, and how to use 
these processes and heuristics. 

3. Finally (if time permits), students should learn to use the preceding ideas, 
skills, processes and heuristics in messy "real life" situations. 

Such views treat ideas, skills, heuristics, metacognitive processes, values, 
attitudes, and beliefs, as separate entities. In contrast, models & modelling 
perspectives considers models as including heuristics, metacognitive proc
esses, values, attitudes, and beliefs which are inseparable from the constructs 
and conceptual systems they embody, all of which develop in parallel and 
interactively. They are not learned in isolation, they are learned as part of 
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larger conceptual systems; and they are not learned in the abstract, they are 
learned in context - for specific purposes. It is only later that underlying ab
stractions are sorted out, isolated, analyzed, expressed using a single repre
sentational media, and integrated into elegant theories. In fact, even when 
students achieve sophisticated understandings of mathematical concepts, 
their thinking generally continues to organize knowledge around experience 
at least as much as around abstractions. That is, even ideas that are not logi
cally connected often are psychologically connected because they have been 
used together in some familiar situation. Furthermore, just like the concep
tual systems they embody, these metacognitive functions, values, attitudes, 
beliefs, and heuristics also vary in productivity from one situation to the 
next. A metacognitive function that is productive at one moment may be 
counter-productive at another moment. Therefore, no fixed, final, or inflexi
ble profile of characteristics is likely to be productive across all circum
stances. On the contrary, the best problem solving personality that a student 
can develop is one that can be adapted to suit changing circumstances. 

(d) The Nature of Useful Problem Solving Strategies & Heuristics: 
When traditional mathematics education research treats problem solving as 
being about getting from givens to goals when the path is not immediately 
obvious (or it is blocked), heuristics usually have been thought of as being 
answers to the question: What can you do when you are stuck? But in 
model-eliciting activities, students seldom are stuck in the sense of having no 
ideas that are relevant to the situation. In fact, during early stages of stu
dents' work, several half-formulated (often logically incompatible) concep
tualizations often operate simultaneously, each suggesting half-formulated 
solution procedures and/or alternative ways to select, filter, interpret, relate, 
organize, or synthesize information. Our instructional objective is to help 
average ability students use ideas that they do have, not to function better in 
situations in which they have none. In fact, many of the strategies and tech
niques that "good problem solvers" use to attack problems when they are 
"stuck" often are counter-productive when students work on model-eliciting 
activities. To identify what kinds of strategies might work, we treat substan
tive problem solving processes (or heuristics) developmentally, just as we 
treat the underlying constructs and conceptual systems they are associated 
with. For example, we ask: What are primitive understandings of heuristics 
like 'look for a similar problem", ''draw a picture", or "clearly identify the 
givens and goals ". 

During model-eliciting activities, the most beneficial decisions are sel
dom procedural; What shall I do next? In fact, students and groups who are 
preoccupied with "doing" (especially during early stages of solution at
tempts) typically do not do well compared with their peers (Lesh & Zawo-
jewski, 2003). This is because solutions are constructed by gradually orga-
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nizing, integrating, and differentiating unstable conceptual systems - in con
trast to "arriving at answers" by linking together stable procedural systems 
(such as the condition-action rules associated with most information process
ing models of cognition). Therefore, finding a useful way to think about the 
situation (i.e., relationships among "givens," or interpretations of "givens" or 
"goals.") tends to be more important than rushing ahead to find a way to do 
it - or get from (prematurely conceived) "givens" to "goals." 

In model-eliciting activities, many of the most effective activities facili
tating solution attempt function not so much to help the problem solver am
plify his/her problem solving abilities as they do to help the problem solver 
minimize cognitive characteristics associated with the use of unstable con
ceptual models. Consequently, the most important heuristics and strategies 
tend to be those dealing with: (i) how deficiencies in various models are de
tected, (ii) how to minimize the debilitating influences associated with the 
use of unstable conceptual models., (iii) how successively more complex and 
refined models are gradually constructed, and (iv) how competing interpreta
tions are differentiated, reconciled, and/or integrated. 
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EVERYDAY INSTRUMENTS: 
ON THE USE OF MATHEMATICS 

Rudolf Strasser 
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Abstract: Starting from a historical case study on weighing and pricing, the paper shows 
the growing integration of mathematics in instruments used in the workplace 
and on an everyday basis. Consequences for the teaching and learning of 
applications and modelling in vocational and general education are drawn -
with special respect to the use of technology in mathematics. 

!• POSITION IN THE ICMI STUDY ON APPLICA
TIONS AND MODELLING 

This paper points to some aspects of applications and modelling of 
mathematics, which are closely linked to the first issue of the study entitled 
'epistemology'. The case study in section 2 looks into an everyday situation 
(and the way it was / is normally lived during the last century and today). In 
doing so, a perspective on how mathematics is involved, sometimes also 
hidden in everyday situations is described - not only from the point of view 
of the 'normal' citizen, but also from the perspective of the professional user 
of the tools deeply involved in the situation. As a consequence of the case 
study, the conclusive remarks in section 3 do not only comment on episte-
mology, but elaborate some positions on the use of technology linked to ap
plying / modelling (with the help of) mathematics and on issues related to 
professional use of mathematics and the teaching / learning of mathematics 
for professional use ('technical / vocational' education and training). The 
conclusions can also be read as ideas on the issue of "technological impacts" 
on applications and modelling in mathematics education. 
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2. CASE STUDY: A SHORT HISTORY OF HOW TO 
WEIGH AND PRICE 

To make my position understandable, I present a historical case on the 
way mathematics was and is used (see also Strasser, 2002). I analyse the 
standard procedures of weighing and pricing in small and medium busi
nesses and show the growing implementation of mathematics into various 
workplace tools (either material or organisational). The case study looks into 
a 'standard' everyday situation: weighing some three kilos of potatoes and 
telling the price of this merchandise. 

2.1 Weighing 1: traditionally 

In the past and even nowadays in marketplaces and old-fashioned shops, 
weighing was done with a pair of beam scales and normed weights (see Fig. 
3.1.6-1; all illustrations courtesy of BIZERBA, one of the biggest producers 
of balances in Germany). 

Figure 3.1.6-1. Traditional beam 

The goods were placed in one scale and normed weights into the other (in 
complicated cases also into the one containing goods) to have the beam 
completely balanced. The weight of the goods can be read off the balance, 
adding and/or subtracting the weight in the respective scales. The price was 
then calculated separately (either mentally or in writing on a sheet of paper) 
by multiplying the unit price of the merchandise with the weight read from 
the beam scales. As for the mathematics involved, we see the partitioning of 
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the weight according to the weights available, addition (and subtraction) to 
calculate the overall weight and a proportional model for the pricing. 

Figure 3. J.6-2. Analogous weighing 

2.2 Weighing 2: analogously 

In Germany, since 1924, this way of weighing & pricing was slowly re
placed by the introduction of a different analogous type of balance, in Ger
many called "Neigungsschaltwaage" (also: "Facherkopf-Waage", a name 
related to the form of the balance; see Fig. 3.1.6-2 above). This type of bal
ance still uses a simple proportional model. The partitioning and adding of 
weights was done "automatically" by the balance because the hand of the 
balance would move to the right proportionally to the weight of the mer
chandise - indicating the total weight on top of the scale. In addition, the 
pricing by multiplication was taken over by this new artefact: the price could 
be read off the scale at the correct place of the hand indicated by the unit 
price. The correct reading of prices and eventually adding the price of whole 
units of weight were therefore the only essential competences the seller 
should have. Mathematical "interpolation" was necessary in case of very 
large, very small or odd prices not on the hand and scale of the balance. Fol
lowing information from BIZERB A, around 70% of the prices read off these 
balances were incorrect. Nevertheless, this type of artefact was widely used 
in Germany, until the 1980s at least. 
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2,3 Weighing 3: digitally 

Nowadays, especially in larger shops and supermarkets, you would find 
digital balances (see Fig. 3.1.6-3 below) which directly offer prices for the 
merchandise put onto them with printouts of prices to be pasted to the goods 
- if the shop ever sells goods which are not pre-packed. The proportional 
model is still in use but hidden from the perception of the buyer. Reading 
weights and prices has become easy, while interpolation of large and small 
prices is unnecessary. "Odd" prices (like the "famous" 3.99 $ or DM) have 
only come into use with these balances or pre-packed merchandise. 

Figure S. 1.6-3. Weighing & pricing digitally 

What is left to be done by the seller or the buyer is keying in either the 
unit price or an identification number or symbol for the goods to be pur
chased. Normally, addition of several goods and identification of the indi
vidual seller is done automatically. Mathematics travels up the professional 
hierarchy to managers who decide on (quantity) discounts and special offers 
while (programmers of) computerised systems for checking the flow of 
goods in a company are responsible for a constant and realistic flow of in
formation on the cash balance and economic success of the company. 

2.4 Using Instruments and Mathematics 

Looking back to the case described above, the most evident fact is the 
disappearance of mathematics from everyday perception - at least from the 
perception of the actual buyers and sellers. In fact, the mathematical ingredi-
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ents of the situation of weighing and pricing (addition/subtraction of 
weights, calculation and addition of prices) are progressively turned into al
gorithms, automated and integrated into machines or "artefacts" (see below). 
Mathematics is hidden from the notice of those involved in the activity of 
weighing and pricing. If the situation (for the seller in most cases: the job) 
runs smoothly and routinely without unfamiliar and unforeseen events (to
day, the worst case would be the breakdown of the electricity supply), practi
tioners tend to rely on well-known routines for repetitive problems. 

More generally, the routines are implemented in tools (like machines for 
calculating, scales to read, charts to fill etc., i.e. "primary" artefacts accord
ing to Wartofsky, 1979, p. 20Iff). Difficulties when using mathematics tend 
to be simplified, if not totally avoided, by algorithms and routine activity 
flows. Book-keeping with its longstanding formalised set of concepts and 
practices (like discount and increase, recording of transactions by means of 
accounts, double entry book-keeping etc.) can serve as an additional illustra
tion of how complicated workplace practices are made routine by "simple" 
algorithms which do not call for mathematical competences. As long as the 
workplace does not present unexpected situations, these instruments (for the 
concept of "instruments" as an entity made up of artefacts and 'utilisation 
schemes', in the French original: "schemes d'utilisation" see Rabardel, 1995, 
more recently: Rabardel & Samur9ay, 2001) go unrecognised and hide the 
mathematics they incorporate. Nevertheless it would be wrong to state that 
mathematics disappears altogether or becomes less important socially. On 
the contrary: the third phase of the weighing clearly shows the growing so
cial importance of mathematics. 

Is there a chance of "rediscovering" mathematics in the situations domi
nated by instruments hiding mathematics? Recent research on mathematics 
in vocational contexts offers a somewhat deceiving answer to this question. 
It is only in non-routine and non-standard situations, when usual practices 
fail or do not cover the situation to be faced at the workplace (the "break
downs" or unfamiliar situations), that (even qualified) practitioners go back 
to unfamiliar, maybe innovative procedures. "They apply a fragment of pro
fessional knowledge, a half-remembered rule from school mathematics or a 
novel, though generally unsuccessful, use of a familiar tool" (Noss et al., 
1998, p. 14; also Magajna, 1998; for the non-understanding of workplace 
mathematics cf. Hogan, 1996, p. 288 or Hogan & Morony, 2000). Here 
again the artefacts show up as one way to somehow manage non-routine 
problems. On the other hand, the "banking mathematics study" (cf. Noss & 
Hoyles, 1996) shows that computers and finely tuned software can even be 
used to offer a micro-world for exploring non-routine, unusual situations - if 
vocational training and education is explicitly targeted in this way. 
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To my knowledge, the problems of the disappearance of mathematics 
from societal perception for the 'ordinary citizen' up to now have only been 
studied in a very general way. Consequences of the implementation and in
tegration of mathematics into ever more sophisticated instruments have not 
been analysed. 

3. CONSEQUENCES FOR THE ICMI STUDY 

At a general level, the above case study could caution, if not immunise 
against a too optimistic view on the societal appreciation of mathematics 
because mathematical knowledge is so widely used socially. Application of 
and modelling with the help of mathematics gradually disappears from so
cietal perception by being hidden into ever more sophisticated instruments 
(artefacts together with standard utilisation schemes). Even if the range of 
applications of mathematics is growing at a breath-taking pace, this very de
velopment does not guarantee a growing social / political support for the 
teaching and learning of mathematics. 

From the case study above, it is obvious that the last issue of the ICMI-
study (entitled 'technological impacts') has to be considered not only as a 
means to enhance the "students' modelling abilities and to enrich the stu
dents' experience of ... applications and modelling". Technology in itself is 
a major issue (a potential and a problem) for teaching and learning of 
mathematics because its use as everyday and professional instruments deeply 
changes the scope and way mathematics is used in society. Taking this into 
account, the ICMI-study could also look into issues like 
• the role of mathematics in 'black boxes' created by technology, 
• ideas on how / to what extent black boxes should be opened / 'de-

greyed', 
• how advanced technology can help to better understand the socially hid

den mathematics. 
For the teaching and learning of mathematics in institutionalised con

texts, 'general' education can only offer global mathematical concepts (like 
proportionality) to understand the vast diversity of instruments used in soci
ety. 'General' education will neither be able to study all the mathematical 
concepts used in the instruments available nor can it offer an analysis aiming 
at a deep and complete understanding of all black boxes using mathematics. 
As a consequence, the choice of mathematical concepts to be studied by 
every citizen is of utmost importance and has to be researched by Didactics 
of Mathematics. 

In terms of application of and modelling with the help of mathematics, 
'vocational / technicaV education (i.e.: education aiming at a defined area of 
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work-related professional practice) faces an alternative which can be clearly 
identified: If vocational education only aims at the *production' of workers 
who know which button to press in a given, pre-defined situation, no (!!) 
mathematics must be taught to these workers. The present, and even more so 
the future instruments will embody all the mathematics needed to operate the 
machines (and the situation). It could be considered a waste of time and 
money, it would be over-skilling the workers if they would be trained to un
derstand the mechanisms built into the machines they handle (not control!). 

There is a different picture of the worker handling the sophisticated in
struments of today's (and future) workplaces: If the employer is / may be 
forced into looking for a qualified workforce which is able to control the 
highly integrated technology used in the workplace, it may be a good idea to 
have a workforce which knows about the concepts and algorithms built into 
the tools used in the workplace. Some of these concepts and algorithms are 
definitely of mathematical nature and can only be understood and compe
tently controlled using mathematical knowledge. 

Especially 'modem' information and communication technology (ICT) 
plays an ambivalent role in this complicated game: On the one hand, it can 
be used to hide the built-in mechanisms, to speed up the disappearance of 
mathematics from societal perception. On the other hand, when used in 
simulation modes, information and communication technology can be the 
first and best choice to better understand the role of mathematics when it is 
applied to model a situation. 
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AUTHENTICITY AND GOALS - OVERVIEW 

Peter Galbraith^ 
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Abstract: This chapter samples a spectrum of views, informed by selected papers, and by 
input from a discussion involving participants from nine countries. It hence of
fers the reader an opportunity to engage with the diversity of thoughts ex
pressed on these topics, and does not purport to attempt a definitive synthesis. 

1. INTRODUCTION 

Goals and authenticity are in practice inseparable, as the degree to which 
a task or problem meets the purposes for which it is designed is a measure of 
its validity from that perspective. Two broad theoretical conceptualisations 
can be identified in curricular implementation: referred to by Julie (this vol
ume) as modelling as vehicle and modelling as content. In the former, real 
world problems are used to motivate and provide a basis for the development 
of particular mathematical content, and the needs of this curricular mathe
matics dictate the selection of problems to address. In the latter, developing 
the capacity of students to address problems located in the external world, 
and to evaluate the quality of their solutions are pre-eminent goals. Of course 
it is possible for a modelling program to embrace both versions to various 
degrees. However it appears that individuals, by and large, appear to identify 
themselves with one or other priority, and it is useful to bear this in mind 
when reading the contents of this section. 

Papers included present alternative emphases, and issues raised are com
plemented by contributions from a discussion group featuring participants 
from nine countries. Three major themes emerged within the discussion -
modelling at different levels of education; difficulties in the modelling proc
ess; and task selection. The following is representative of the range of view
points expressed, rather than attempting an impossible consensus. 
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Modelling at different levels of education: At school level mathematical 
modelling is a way of bridging the gap from reality to mathematics. On the 
one hand it is possible for children to use daily life experiences to understand 
mathematics, and on the other developing modelling competencies becomes 
a way to understand the world of reality, and to place mathematics in culture. 
At university level development of modelling competencies is more associ
ated with learning to use mathematics as a tool. 

Bridging the gap from mathematics to reality is very important, and we 
need to ask how this is affected by the age range - are younger children in
volved in mathematical modelling doing the same generic things as older 
students? Since mathematical modelling is important from the beginning 
there are implications for teacher education at all levels - asking what 
mathematics is, developing critical thinking as a basis for citizens to take a 
stand on issues, and so on. 

Difficulties in the modelling process: Challenges to authenticity occur 
when portraying modelling as representative of the real world: for example, 
what is transferable; what can be discovered through manipulating models; 
how to avoid stereotypical models. Developing an ability to choose relevant 
information, and to look for missing data are important, as is a model viewed 
as an accountable personal construct of a problem situation. 

A workable teaching and learning scaffolding process is needed: e.g. how 
to start the modelling process validly and proceed, and how to develop and 
maintain a proper balance with the use of technology. Mathematical model
ling implies we learn something new in or about mathematics, and to model 
a new situation can complicate the view of the mathematics behind it. This 
raises learning and teaching issues concerning approach and purpose, and of 
course for the setting of valid goals that are also feasible for a given context. 
Task selection: Here the question of authenticity becomes very significant. 
There is a need to ask of a potential task: Is it worth it? Does it really help us 
reach our goals? It is important to introduce real world modelling tasks, and 
in general realistic problems involve at least two models developed incre
mentally. Two aspects raised here are: the importance of using models based 
on experience (influenced by student background); and motivation e.g. look
ing to the world and to other disciplines for knowledge and problems. 

It is central that choice of task should be consistent with avowed purpose. 
For example, if applications and modelling is included in mathematics edu
cation to attain goals such as 'students will experience school mathematics 
as useful for solving problems in real life outside the classroom' then stu
dents, to some extent, need to encounter tasks that are close parallels to 
comparable problem situations encountered outside the mathematics class
room. This issue is taken up in several of the papers that comprise this sec
tion. 
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2. PAPER SUMMARIES 

Palm identifies goals that place value on learning and experiences located 
outside the classroom; including the development of application skills, a 
broadened conception of mathematics, and motivational benefits. He follows 
implications of these choices for the selection of teaching problems, infer
ring the need to include close simulations of real life situations. An authentic 
task is then one in which the situation described in the task (an event from 
real life that has occurred or may well occur) is truthfully described, and the 
conditions under which the task solving takes place in the real situation, are 
simulated with some reasonable fidelity in the school setting. For this pur
pose he proposes a modelling framework as a kind of operational blueprint: 
event - question - purpose - information/data - presentation ~ solution 
strategies, circumstances, solution requirements. This is essentially consis
tent with structures found in the various modelling diagrams that over time 
have served as guides to the solution process. Palm goes on to address the 
important subject of effectiveness, stressing that it is not enough to show that 
current practices have failed to achieve certain goals - there is a need for 
empirical evidence of the positive impact of authentic applications. 

Jablonka draws attention to covert assumptions and values that permeate 
practice. She notes that different purposes result in different models of the 
'same' reality, and taking note of inequalities that exist within and between 
countries, it is easy to imagine that problem contexts may reflect or advocate 
a lifestyle, which does not connect with many students' realities. In educa
tion mathematical practices are re-contextualised for purposes of encultur-
ation, so that the selection of examples for applications and modelling has 
political content, and the resulting curriculum has social implications. 

This means that identifying a core curriculum (and by implication an 
agreed set of core goals) for applications and modelling within general edu
cation is problematic. For if defined in terms of contexts, then given differ
ences in cultural settings and between groups of students, it cannot be as
sumed that the same problems would be relevant to all. So the issue of goal 
setting reverts to time and place, and authentic (actual, not imitated, not false 
or adulterated) mathematical modelling takes place, when students and 
teachers are bona fide engaging in a modelling or application activity about 
an issue relevant to them or to thek community. 

In contrast to the modelling as content approaches of Palm and Jablonka 
Bonotto adopts an approach more akin to a modelling as vehicle perspective, 
in looking for modelling to motivate students with everyday life contexts but 
also 'Ho look for contexts that are experientially real for the students and can 
be used as starting points for progressive mathematization'' (Gravemeijer, 
1999, p. 158). In this approach everyday-life experience and formal mathe-
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matics, are not seen as two disjunctive and independent entities, but rather a 
process of gradual growth is aimed for, in which formal mathematics comes 
to the fore as a natural extension of the student's experiential reality. For 
Bonotto, goal realisation is the extent to which this process is deemed suc
cessful, authentic tasks are those that provide vehicles of safe conduct to this 
end, and she introduces an active duality into mathematics - real world link
ages. Besides "mathematizing everyday experience" it is necessary to be 
**everydaying mathematics" In the classroom this can be implemented by 
encouraging students to analyze 'mathematical facts' embedded in appropri
ate 'cultural artefacts'; e.g. supermarket bills, bottle and can labels, a weekly 
TV guide. So the emphasis is on uncovering mathematics rather than on un
covering solutions to problem situations. Nevertheless this approach and 
those driven by the modelling as content perspective share overlapping sym
pathies. In this approach students are still expected to approach a problem as 
a situation to be mathematized, not primarily to apply ready-made solution 
procedures - the primary objective being to make sense of the problem. And 
in practice, moving back and forth between interpreting the problem and re
viewing procedures or results, are processes consistent with similar iterative 
procedures celebrated within the modelling as content philosophy. 

Schwarzkopf also examines word problem solving, noting that this in
volves interplay between two very different framings, namely "everyday-
understandings" of a problems real-world context and "mathematical" fram
ings. This interplay is complex in nature, because within different framings, 
participants are acting in different ways concerning the relevance of facts, 
the meaning of assertions, the acceptance of statements, rules for correct rea
soning, and many other aspects. From this viewpoint the complexity of solv
ing word problems originates from the classroom interaction and not from 
the ''internal" structure of the task. The author reported the reconstruction 
of a variety of framings, drawing on very different and contradictory under
standings of the task, and goes on to argue that the different framings raise 
problematic issues for interpretation, solution, and classroom interaction. By 
implication authenticity is strongly influenced by how well these respective 
components are orchestrated. 

Together the papers and workshop comment cover substantial territory, 
while reflecting the interests, perspectives, and priorities of participants and 
authors. This section hence offers the reader an opportunity to engage with 
the diversity of thoughts and issues expressed by fellow scholars and practi
tioners, with the recognition that not all of the important matters associated 
with authenticity and goals have been (or can be) explored in this selection. 

^ Valued contributions to the discussion that formed a basis for this introduction to the chapter 
were provided by: Salett Biembengut, Morten Blomhoj, George Ekol, Djordje Kadijevik, 
Akio Matsuzaki, Susan McNab, Jarmila Novotna, Torulf Palm, Jacques Treiner. 
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Abstract: In this contribution we want to discuss some classroom activities, whose over
all aim is to change pupils' conceptions and beliefs of the role of real-world 
knowledge in mathematical classrooms activities, and to develop in them a 
positive disposition toward more realistic mathematical modelling. These ac
tivities make extensive use of cultural artefacts that could prove to be useful 
instruments in creating a new tension between school mathematics and the real 
world with its incorporated mathematics. 

1. INTRODUCTION 

In common teaching practice the habit of connecting mathematics class
room activities with everyday-Hfe experience is still substantially delegated 
to word problems. But besides representing the interplay between formal 
mathematics and reality, word problems are often the only means of provid
ing students with a basic sense experience in mathematisation and mathe
matical modelling. Recent researches have documented that the practice of 
word problem solving in school mathematics promotes in students the exclu
sion of realistic considerations and a "suspension" of sense-making, and 
rarely reaches the idea of mathematical modelling and mathematisation (see 
Verschaffel et al., 2000, for a review of these studies). Several studies point 
to two reasons for this lack of use of everyday-life knowledge: textual fac
tors relating to the stereotypical nature of the most frequently used textbook 
problems, and presentational or contextual factors associated with practices, 
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environments and expectations related to the classroom culture of mathe
matical problem solving. Furthermore the use of stereotyped problems and 
the accompanying classroom climate relate to teachers' beliefs about the 
goals of mathematics education. 

This indicates a difference in views on the function of word problems in 
mathematics education. Researchers relate word problems to problem solv
ing and applications, while student-teachers (and probably teachers in gen
eral) see word problems as nothing more, and nothing less, than exercises in 
the four basic operations which also have a justification and suitable place 
within the teaching of mathematics, though certainly not that of favouring 
mathematical modelling (Blum & Niss, 1991). 

If we wish to establish situations of realistic mathematical modelling, in 
the sense of "both real-world based and quantitatively constrained sense-
making" (Reusser & Stebler, 1997), in problem-solving activities, we have 
to: i) change the type of activity aimed at creating interplay between the real 
world and mathematics towards more realistic and less stereotyped problem 
situations; ii) change students' conceptions of beliefs about and attitudes to
wards mathematics (this means changing teachers' conceptions, beliefs and 
attitudes as well); and iii) change classroom culture by establishing new 
classroom socio-mathematical norms. 

In this contribution we want to discuss how these changes can be realised 
at primary school level through classroom activities related more easily to 
the experiential world of the student, and consistent with a sense-making 
disposition. They make extensive use of cultural artefacts that could prove to 
be useful instruments in creating a new tension between school mathematics 
and the real world with its incorporated mathematics. We will show how 
suitable cultural artefacts and interactive teaching methods can play a ftm-
damental role in this process. 

2. CONNECTIONS BETWEEN CLASSROOM 
ACTIVITIES AND THE REAL WORLD 

The connection between real world and classroom mathematics is not 
easy because the two contexts differ significantly. Just as mathematics prac
tice in and out of school differs so does mathematics learning. Masingila et 
al. (1996) outlined three key differences between in- and out-of-school prac
tices (goals of the activity, conceptual understanding, and flexibility in deal
ing with constraints). In out-of-school mathematics practice in particular, 
people may generalise procedures within one context but may not be able to 
generalise to another since problems tend to be context specific. Generaliza
tion, which is an important goal in school mathematics and an important as-



3.2.1. HOW TO REPLACE WORD PROBLEMS 187 

pect of the mathematisation process, is not usually a goal in out-of-school 
mathematics. 

Although the specificity of both contexts is recognised, we think that the 
conditions that often make out of school learning more effective can and 
must be re-created, at least partially, in classroom activities. Indeed, while 
there may be some inherent differences between the two contexts, these can 
be reduced by creating classroom situations that promote learning processes 
closer to those arising from out-of-school mathematics practices. On the 
other hand the relationship between mathematics and the real world has al
ways been both intricate and intriguing, as much complicated as interesting 
to deal with, and maybe we will never be able to analyse it completely and 
thoroughly. As a joke, we might say that it is a relationship of 'hate and love' 
since mathematics, although receiving nourishment from the real world, de
taches from it as soon as possible, due to its special nature, only to come 
back to real experience in due time to pick up new problems and examples 
or to find new applications. As to didactics, the fact that this relationship is 
sometimes denied and at other times stressed, without any explanation of the 
reasons for these choices, makes it difficult for students to know whether or 
not it is permissible for them to exploit their everyday knowledge in ap
proaching mathematical problems (Bonotto, 2001). 

According to the Realistic Mathematics Education perspective we think 
that progressive mathematisation should lead to algorithms, concepts and 
notations that are rooted in a learning history which starts with students' in
formal experientially real knowledge. In our approach everyday-life experi
ence and formal mathematics, despite their specific differences, are not seen 
as two disjunctive and independent entities. Instead, a process of gradual 
growth is aimed for, in which formal mathematics comes to the fore as a 
natural extension of the student's experiential reality. The idea is not only to 
motivate students with everyday-life contexts but also ''to look for contexts 
that are experientially real for the students and can be used as starting 
points for progressive mathematisation" (Gravemeijer, 1999, p. 158). 

We stress that the process of bringing "the real world into mathematics" 
by starting from a student's everyday-life experience, is fundamental in 
school practice for the development of new mathematical knowledge. How
ever it turns out to be necessary, but not sufficient, to foster for example a 
positive attitude towards mathematics, intended both as an effective device 
to know and critically interpret reality, and as a fascinating thinking activity. 
We contend that these educational objectives can only be completely ful
filled if students and teachers can bring mathematics into reality. In other 
words, besides "mathematising everyday experience" it is necessary to be 
"everydaying mathematics" (Bonotto, 2001). This can be implemented in a 
classroom by encouraging students to analyse ' mathematical facts' embed-



188 Chapter 3.2.1 

ded in appropriate 'cultural artefacts'; there is indeed a great deal of mathe
matics embedded in everyday life. 

The cultural artefacts we have introduced into classroom activities, e.g. 
supermarket bills, bottle and can labels, railway schedules, a cover of a ring 
binder, a weekly TV guide (see Bonotto, 2001; Bonotto & Basso, 2001; Bo-
notto, 2003), are concrete materials which children typically meet in real-life 
situations. We have therefore offered the opportunity of making connections 
between the mathematics incorporated in real-life situations and school 
mathematics, which although closely related, are governed by different laws 
and principles. These artefacts are relevant to children; they are meaningful 
because they are part of their real life experience, offering significant refer
ences to concrete situations. This enables children to keep their reasoning 
processes meaningful and to monitor their inferences. 

We believe that immersing students in situations which can be related to 
their own direct experience and are more consistent with a sense-making 
disposition, allows them to deepen and broaden their understanding of the 
scope and usefulness of mathematics as well as learning ways of thinking 
mathematically that are supported by mathematising situations. This allows 
students to become involved in mathematics and to break down their concep
tions of a remote body of knowledge. Obviously, usefulness and its perva
sive character are just two of the many facets of mathematics that do not en
tirely capture its special character, relevance and cultural value; nonetheless 
these two elements can be usefully exploited from the teaching point of 
view. 

3. ON THE USE OF CULTURAL ARTEFACTS IN 
CLASSROOM ACTIVITIES 

The use of cultural artefacts in our classroom activities has been articu
lated in various stages, with different educational and content objectives. 

First, the dual nature of the artefacts, that is belonging to the world of 
everyday life and to the world of symbols, to use Freudenthal's expression, 
allows movement from situations of normal use to the underlying mathe
matical structure and vice versa, in agreement with 'horizontal mathematisa-
tion' (Treffers, 1987). For example using a receipt, which is poor in words 
but rich in implicit meanings, overturns the usual buying and selling problem 
situation, which is often rich in words but poor in meaningful references 
(Bonotto, 2001). 

But these artefacts may also become real ''mathematising tools" with 
some modification, e.g. removing some data that are present in the artefacts 
(Bonotto, 2001); in this way we can create new mathematical goals and pro-
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vide students with a basic experience in mathematical modelling. In this new 
role, the cultural artefacts can be used as motivating stepping-stones to 
launch new mathematical knowledge, through the particular learning proc
esses that Freudenthal (1991) defines as 'prospective learning' or 'anticipa
tory learning'. We think that this type of learning is better enhanced by a 
'rich context' as outlined by Freudenthal, that is a context which is not only 
the application area but also a source for learning mathematics. The cultural 
artefacts and classroom activities we introduce are part of this type of con
text. These experiences have also favoured the type of learning "retrospec
tive " that occurs when old notions are recalled in order to be considered at a 
higher level and within a broader context, a process typical of adult mathe
maticians. This different use of the artefacts also makes it possible to carry 
out 'vertical mathematisation\ from concept to concept. 

The use of suitable artefacts allows the teacher to propose many ques
tions, remarks, and culturally and scientifically interesting inquiries. The 
activities and connections that can be made depend, of course, on the stu
dents' scholastic level. These artefacts may contain different codes, percent
ages, numerical expressions, and different quantities with their related units 
of measure, and hence are connected with other mathematical concepts and 
also other disciplines (chemistry, biology, geography, astronomy, etc.). It 
could be said that the artefacts are related to mathematics (and other disci
plines) as far as one is able to make these relationships. Furthermore we ask 
children to select other cultural artefacts from their everyday life, to identify 
the embedded mathematical facts, to look for analogies and differences (e.g. 
different number representations), to generate problems (e.g. discover rela
tionships between quantities). In other words children should be encouraged 
to recognise a great variety of situations as mathematical situations, or more 
precisely "mathematisable" situations. In this way children are offered nu
merous opportunities to become acquainted with mathematics and to change 
their attitude towards mathematics, in contrast with the traditional classroom 
curriculum. 

Besides the use of suitable cultural artefacts discussed above, the teach
ing/learning environment designed and implemented in our classroom activi
ties is characterised by; i) the application of a variety of complementary, 
integrated and interactive instructional techniques (involving childrens' own 
written descriptions of the methods they use, individual and class discus
sions, and the drafting of a text by the whole class); and ii) an attempt to es
tablish a new classroom culture through new socio-mathematical norms. 

Regarding the first point, most of the lessons follow an instructional 
model consisting in the following sequence of classroom activities: a) a short 
introduction to the class as a whole; b) an individual written assignment 
where students explain the reasoning followed and strategy applied; c) a fi-
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nal whole-class discussion. We consider that the interactivity of these in
structional techniques is essential because of the opportunities to induce re
flection as well as cognitive and meta-cognitive changes in students. This 
process may be very important for teachers also, since it enables them to 
recognise and analyse individual reasoning processes that are not always 
explicit (corresponding to the individual written report). In the collective 
discussion, comparing different answers and strategies, noting children's 
first attempts at generalizing, and taking account of further remarks made 
during discussion, leads to collectively drawing up a text aimed at socializa
tion of the knowledge acquired, which completes the activity. 

As far as the second point is concerned, we expect students to approach a 
problem as a situation to be mathematised, not primarily to apply ready-
made solution procedures. This does not mean that knowledge of solution 
procedures plays no part, but the primary objective is to make sense of the 
problem. In practice, it is often a matter of shuttling back and forth between 
interpreting the problem and reviewing possible procedures or results. At the 
same time, the teacher is expected to encourage students to use their own 
methods, exploring their usefulness and soundness with regard to the prob
lem. The teacher should stimulate students to articulate and reflect on their 
personal beliefs, misconceptions and problem-solving strategies. Other pos
sible strategies for solving the same problem when it appears next are em
phasised, and students are encouraged to make comparisons between strate
gies. 

4. DISCUSSIONS AND OPEN PROBLEMS 

In this contribution we discuss some teaching experiences based on the 
use of suitable cultural artefacts, interactive teaching methods, and the intro
duction of new socio-mathematical norms. According to the results we can 
say that, contrary to the practice of word-problem solving in school mathe
matics, children did not ignore the relevant, plausible, and familiar aspects of 
reality, nor did they exclude real-world knowledge from their observation 
and reasoning. As found in previous studies, children exhibit flexibility in 
their reasoning processes by exploring different strategies, often sensitive to 
the context and quantities involved. Children were therefore able to resort to 
realistic considerations that are both real world based and quantitatively con
strained sense making, in the sense of realistic mathematical modelling. 

We do not suggest that the classroom activities described here are a pro
totype for all classroom activities related to mathematics, although in agree
ment with Verschaffel et al. (1999, p. 226), we think that ''the development 
of mathematical problem-solving, skills, beliefs, and attitudes should not 
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emanate from a specific part of the curriculum but should permeate the en
tire curriculum ", for example by following both a ''mixing approach " and 
an "integrated approach" (Blum SclSiiss, 1991). 

We do believe however that by enacting some of these experiences, chil
dren are offered an opportunity to change their beliefs about, and attitudes 
towards school mathematics. Immersing students in situations more relatable 
to their direct experience and more consistent with sense-making, provides a 
means to deepen and broaden their understanding of the scope and useful
ness of mathematics as well as learning ways of thinking mathematically that 
are supported by mathematising situations. Furthermore in this way we can 
design better opportunities for children to develop mathematical knowledge 
that is wider than they would develop outside of school, but that also pre
serves the focus on meaning found in everyday situations. Using appropriate 
cultural artefacts, which students can understand, analyse, and interpret, we 
can present mathematics as a means of interpreting and understanding real
ity. Teaching students to interpret critically the reality they live in, to under
stand its codes and messages so as not to be excluded or misled should be an 
important goal for compulsory education. 

As we have already had occasion to emphasise, the usefulness and perva
sive character of mathematics are merely two of its many facets and can not 
by themselves capture its very special character, relevance, and cultural 
value; nonetheless we deem that these two elements can be usefully ex
ploited from the teaching point of view because they can change the com
mon behaviour and attitude held both by teachers and pupils. 

For a real possibility to implement this kind of classroom activities, there 
also needs to be a radical change on the part of teachers. They have to try: i) 
to modify their attitude to mathematics that is influenced by the way it was 
learned; ii) to revise their beliefs about the role of everyday knowledge in 
mathematical problem solving; iii) to see mathematics incorporated into the 
real world as a starting point for mathematical activities in the classroom, 
thus revising their current classroom practice, and iv) to investigate the 
mathematical ideas and practices of the cultural, ethnic, linguistic communi
ties of their pupils. Only in this way can a different classroom culture be at
tained. 

Finally a teacher has to be ready to create and manage open situations, 
that are continuously transforming and of which he/she cannot foresee the 
fmal evolution or result. As a matter of fact, these situations are sensitive to 
the social interactions that are established, to the students attitudes, reactions, 
their ability to ask questions, to find links between school and extra-school 
knowledge; hence the teacher has to be able to modify along the way the 
content objectives of the lesson. A teacher has to be (and to feel), very strong 
and qualified both on the mathematical content and on the educational objec-
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tives that are potentially contained in these artefacts. A lesson cannot be 
prepared in advance in all of these aspects; it requires planning for various 
'branches' to be drawn together through a process whose management is 
quite demanding. In accord with Blum & Niss (1991) and Verschaffel et al. 
(1999), we deem that the effective establishment of a learning environment 
like the one described here makes very high demands on the teacher, and 
therefore requires revision and change in teacher training, both initially and 
through in-service programs. 
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Abstract: The criteria for relevance of modelling and applications vary with the educa
tional goals and the cultural context. But the competence of judging quantita
tive information and of evaluating mathematical models is a key competence 
that is linked to all levels of goals in a diversity of contexts. It is suggested that 
different mathematical practices should be distinguished and analysed in order 
to develop a curriculum, which aims at developing this competence. 

1. DIFFERENT WORLDS - DIFFERENT MODELS 

Mathematical modelling is a purposeful activity; different purposes may 
result in different mathematical models of the "same" reality. 'The relation
ship between applications and modeUing and the world we live in" (cf. the 
section Epistemology in the discussion document) varies, depending on the 
socio-cultural and economic context of the "we" and on our life-styles, ca
reers and political standpoints. Different perceptions of a problem and thus 
different criteria for what constitutes an acceptable solution may arise in al
most any situation. For example, if the problem of a bank employee, who 
has to advise a client (aided by a software package), is the comparison of 
financing offers for a mortgage, for the manager of the bank this is a prob
lem of profitability, and for the customer it is one of planning her personal 
finances; minimizing production costs need not minimise energy consump
tion; modelling traffic flow or parking space design will not reduce the 
amount of cars. 
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Introducing applications or modelling into mathematics teaching always 
means introducing social context, no matter whether this aims at teaching 
formal mathematics via modelling, at dealing with relevant applications, or 
at teaching modelling. 

It is informative to look at the collection of contexts used in the examples 
from the research studies presented at the International Study Conference 
(pubUshed in the Pre-Conference Volume (Blum & Henn, 2004)). These ex
amples are from personal everyday practices and from professional prac
tices, in which mathematics is used. The progression to professional prac
tices, as reflected in the transition from simple to more advanced modelling 
tasks, implies a change of perspective from consumer to producer. 

Examples from everyday life comprise: filling a swimming pool; light in
tensity needed for reading; cooling rates of coffee (of green tea or of com 
soup); planning bus trips for senior citizens or students; distances given on 
road signs; shaking hands at birthday parties; buying dishes in restaurants; 
comparing discount percentages; life spans of batteries; taxi prices; dealing 
with supermarket bills; railway schedules; bank accounts; savings and loans. 
Some examples deal with a mathematical analysis of cultural artefacts, such 
as shapes of ice cream, of hats and umbrellas, of churches, modem bridges 
and airport buildings, of dress designs by Sonia Delaunay and the surface of 
a Porsche. It is easy to imagine that these contexts reflect or advocate a life
style, which is not that of the majority of the students' families. 

Professional practices from which the examples are taken include: de
signing a 3-question survey, reducing the noise of an aeroplane to a given 
limit, locating a water reservoir, seismic exploration of oil and gas, data 
analysis and dynamical systems models in biology, optimising traffic flow, 
designing a road to limit speeding, selling dishes in restaurants, measuring 
land, or optimising a relay race. 

Two examples presented at the study conference deal with an analysis of 
faimess (in ranking of Commonwealth games performance and of students' 
assessment) and one refers to statistics of supposedly rising crimes. These 
examples differ from all the others in that they do not simulate an out-of-
school mathematical practice in the classroom as authentic as possible, but 
aim at evaluating a practice in which mathematics is used by others. This 
aim resembles more that of quantitative literacy. 

The contexts chosen for application and modelling are not arbitrary, but 
depend on the educational goals. In mathematics education mathematical 
practices (e.g. of university mathematicians, of computer scientists, of engi
neers, biologists, economists, statisticians, of computer users, of skilled 
manual workers, of consumers) are recontextualised for the purpose of en-
culturation. Mathematics is a highly specialised activity that consists of a 
range of practices, some of which employ sophisticated tools and sign sys-
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terns. The recontextualisation of parts of those practices establishes the 
school subject mathematics as it is defined in curriculum documents. The 
process involves decisions about what areas of knowledge are to be selected 
from which practices, about how these areas are to be related within school 
mathematics and to other school subjects and what the relation to the every
day knowledge of the students should be. The selection of examples for in
troducing applications and modelling is a political decision and the resulting 
curriculum has social implications. 

Skovsmose (2004) draws attention to the fact that power can be executed 
through the mathematics curriculum by establishing relationships to out-of-
school practices, both by referring to and by ignoring distinct practices. He 
distinguishes the practices of constructers (who maintain and develop 
knowledge), of operators of mathematical technology, of consumers and of 
the "disposable". In these terms the application tasks in TIMSS and PISA 
refer to practices of operators and consumers (cf. Jablonka, 2000, Gellert & 
Jablonka, 2002), the examples from everyday life listed above as well. 

2. RECONTEXTUALISATION AND AUTHENTI
CITY 

Bernstein (1996, p.46) argues that pedagogic discourse cannot be identi
fied with any of the discourses it transmits. From this point of view "authen
tic" examples of mathematical modelling and applications, if enacted in a 
classroom or included in an assessment, are by definition a simulation; au
thenticity and large-scale assessment turn out to be an inherent contradiction. 

The effects of recontextualisation are well known: many students face a 
problem when trying to solve typical mathematical "word problems" that are 
found in textbooks and tests all over the world. These tasks are not easily to 
be identified as clearly belonging either to the everyday practical context, 
which would suggest using everyday knowledge, or to the academic context, 
which would reveal that they are to be solved mathematically. Even though 
the problem situations are realistic, the questions to be answered often are 
not questions a person involved in the situation would ask. It is not possible 
anymore for the learner to evaluate the solution of the problems from a prac
tical point of view; everyday knowledge turns out to be an insufficient base 
for solving the contextualised problems because the mathematical solution 
has a structure that differs from any practical solution. Generalisability and 
formalisation is the achievement of mathematics and not of common sense 
and practical wisdom. However, the students are expected to believe that 
behaving mathematically in those situations would be in the elaboration of 



196 Chapter 3,2,2 

practical interests. Palm (this volume. Chapter 3.2.3) assumes and provides 
some empirical evidence that a clear statement of the purpose of a practical 
task mitigates the difficulties students face. 

Recontextualisation also causes a transformation of the unmediated dis
courses found in out-of-school practices of mathematical modelling, even 
though a modelling perspective overcomes the philosophy of naive realism 
encapsulated in traditional word problems. In many modelling problems that 
are processed and designed for the classroom, the original practice is not 
visible anymore. Who are the people modelling a catwalk, a running ele
phant, or the digestion process of sheep? In teaching materials the examples 
often are presented as narratives from the perspective of a person acting in a 
problem situation. So, for example, a problem from traffic engineering is 
turned into a story of two adolescents (named Kim and Robert), who want to 
count cars in a street ("James Street") in order to model traffic flow to in
form a decision about a pedestrian crossing (Rouncefield, 1993). Such a re
contextualisation is based on the assumption that it eases identification with 
the protagonists on the side of the students. However, in this example, the 
fact that this question does not resemble the perspective of the pedestrian is 
concealed in the narrative, as is the fact that the solution method can be gen
eralised and is not valid only for "James Street" (for an analysis of examples 
see Jablonka, 2001). This implicit pedagogy effects how the students think 
about mathematical modelling and applications. It would be more sensible to 
introduce a meta-discourse on the nature of mathematics that helps to differ
entiate between different practices of using mathematics. 

However, authentic (i.e. actual, not imitated, not false or adulterated) 
mathematical modelling takes place, when students and teachers are bona 
fide engaging in a modelling or application activity about an issue relevant to 
them or to their conmiunity. 

Gutstein (in press) reports from teaching a seventh-grade mathematics 
class in K-8 school of 800 students in a working-class, Mexican immigrant 
community in Chicago. In "real-world projects", which often emerged from 
students' own questions, mathematics is used as a principal analytical tool to 
investigate social justice issues. One project, for example, involved compar
ing the cost of one B-2 bomber (about $2.1 billion, with all development 
costs) to a four-year scholarship at a prestigious university, and to find out 
for how many years the money for one bomber would pay for four-year 
scholarships for the whole graduating class (assuming constant costs and 
annual number of students). In another project students discussed an article 
about a report that analysed mortgage rejection rates in relation to the race of 
the applicants in metropolitan areas in the USA. 

Since such activities frequently include judgement of quantitative infor
mation and evaluation of underlying mathematical models, the critical analy-
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sis of authentic texts forms a part of such genuine modelling activities. This 
involves not only mathematical (conceptual) understanding, but also contex
tual knowledge, political awareness and judgements based on values. Engag
ing in genuine mathematical modelling activities leaves the decision about 
the problems to be dealt with to the teachers and students and thus goes 
against standardisation. 

3. IDENTIFYING A CORE CURRICULUM 

On the whole, a focus on modelling and applications decreases the over
lap in curriculum within and across countries. The desirable competencies of 
distinct groups of people who are engaged in various cultural practices and 
who live in "different worlds" will be expressed differently (cf. Niss, 2003). 
Identifying a core curriculum in applications and modelling that aims at con
tributing to general education (cf. Blum et al., 2002, Issue 5a) would not be 
desirable if this were done in terms of contexts to be dealt with. Given the 
differences in cultural context as well as between groups of students, it can
not be assumed that the same problems would be relevant to all, though a list 
of issues of a world-wide political and social relevance (such as environ
mental problems, migration, economic inequality, technology of weapons) 
could be produced. But these can come into conflict with local priorities. 

However, as it has been argued in this paper, a key competence is to be 
able to make judgements about models and quantitative information pro
duced by others (cf. also Blum et al., 2002, Issue 5c). This competence is 
linked to the goal of identifying and understanding the role that mathematics 
plays in the world. It is conceivable to approach this goal by identifying and 
describing types of mathematical models in terms of the different practices 
in which they emerge. The mathematical models dealt with in the classroom 
could then be chosen as representative examples. This issue does not address 
a "small size" of the mathematics curriculum (cf. Usiskin, 1999), such as the 
problems for one lesson or a single unit or chapter, it is rather about the ef
fect of the school experience until the end of compulsory education. 

To achieve this, further epistemological analysis and empirical research 
of mathematical practices that exist in "the world we live in" and in the 
worlds others live or lived in, seems to be necessary. An essential assump
tion here is that mathematics consists of a variety of activities that occur 
within distinct domains in which mathematics is used and that these activi
ties are associated with specific perceptions of mathematical knowledge. A 
universal description of the process of mathematical modelling falls short of 
the varying methodological standards, criteria for validation and evaluation 
that are relevant in different contexts. The criteria used in selecting fields for 
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applying mathematics and in defining what is considered a solution are ex
ternal to mathematics and thus reflection should not be restricted to meth
odological considerations. A problem solution by means of mathematical 
modelling embodies the interests, aims and associated values of the social 
and technological practice, in which it is embedded. Perrenet and Morsche 
(Blum & Henn, 2004, p. 215) give an example of what a "social reflection" 
of a modelling activity might include. It should take the various interests of 
the actors (such as technology producers, users, regulators and advisors) into 
account as well as the evolution of the problem and the intended and con
comitant consequences (see also Jablonka, 1999). 

Practices in which mathematics is used can be analysed, for example, 
alongside the dimensions of (i) mathematical methods and styles of reason
ing, (ii) the degree of mathematisation, (iii) the tools (such as calculators, 
software and tables) employed, and (iv) the explicitness and degree of justi
fication of the rules that regulate the application of mathematics. 

Different mathematical methods are associated with different cultures 
concerning the expectations regarding the assumptions, the goals and under
lying methodologies. For example, it is obvious that results gained from 
models based on genetic algorithms differ from those obtained from tradi
tional optimisation methods, or that deterministic and probabilistic ap
proaches are different. 

Many research and development practices show a high degree of mathe
matisation. There is, for example, a substantial development in algorithms 
and software tools in research fields penetrated by mathematical language, 
such as mathematical ecology, systems biology or molecular modelling. A 
problem with including "authentic" examples of these practices in the school 
curriculum is caused by the fact that the technological transformation of aca
demic mathematical knowledge is a process embedded in a highly special
ised division of labour. The transformation is mediated by several disciplines 
(resulting in software development) and the mathematics involved is in gen
eral too sophisticated. There is a lack of studies and descriptive accounts that 
provide examples and explain the principles of these applications. 

In terms of justification of the rules that regulate the application of 
mathematics one can, for example, distinguish ad-hoc-models and models 
based on a theory, or distinguish models in terms of consistency, connec
tivity, complexity and comprehensiveness. Increasing computing power en
ables more detailed calculations with fewer theoretical assumptions. Ideally, 
mathematics is conceived as an activity, the practices of which tend to make 
explicit the principles of their regulation. However, the assumptions on 
which mathematical models are based often remain implicit. Frequently the 
ways in which data were gathered and measured cannot be reconstructed. 
Practices in which the use of mathematics highly depends on mathematical 
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technology tend to show a low degree of clarity of rules. This may be a con
sequence of the high degree of mathematisation (cf. Keitel, 1993). 

To distinguish and further analyse different mathematical practices (in
cluding their history) helps clarifying the "relationship between appUcations 
and modelling and the world we live in", as it was phrased in the discussion 
document for the ICMI Study Conference. This could form a starting point 
for developing a "core curriculum" in applications and modelling that aims 
at contributing to general education. Mathematical modelling is always em
bedded in a social practice and thus it is, in the end, not possible to promote 
goals and a collection of examples of mathematical modelling and appUca
tions without, at the same time, (implicitly) promoting a social practice. 

Given the amount of available modelling and application problems and 
materials - for different types and levels of mathematics education and at 
different levels of authenticity - the purpose and the desirable outcomes of 
mathematical modeUing and application activities should be addressed and 
the socio-political stakes of mathematical modelling and applications should 
be taken seriously. 
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FEATURES AND IMPACT OF THE AUTHENTI
CITY OF APPLIED MATHEMATICAL SCHOOL 
TASKS 

TorulfPalm 
Department of Mathematics Umed University, Sweden, Email: Torulf.Palm@math.umu.se 

Abstract: In this paper the issue of the authenticity of appUed mathematical school tasks 
is discussed. The paper includes a description of a framework for reflection, 
analysis and development of authentic tasks. Its possible uses are exemplified 
by two studies. One of the studies is an analysis of in what way and to what 
extent the applied tasks included in the national assessments in Finland and 
Sweden are, or are not, authentic. In the second example the framework is 
used in a study of the impact of authenticity on the students' sense making in 
word problem solving. 

1. INTRODUCTION 

There are several reasons for the inclusion of applications and modelling 
in mathematics education (for a review of the arguments presented in the 
literature on mathematics education see Blum & Niss, 1991). The reasons 
include the possibilities of the use of applications and modelling to (1) facih-
tate the learning of necessary skills for being able to use (and critically ex
amine the use of) mathematics outside the mathematics classroom and (2) 
facilitate the development of an experience of school mathematics as useful 
and powerful for solving meaningful task situations in real life outside the 
mathematics classroom, which could provide motivation for and relevance 
of mathematical studies as well as facilitate the development of a compre
hensive picture of mathematics that includes applications and modelling. 

To attain the goals inherent in these reasons it is likely that some features 
of the applications may be crucial. For example, the learning of being able to 
use mathematics in real life situations beyond school would be facilitated by 
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being confronted with tasks that require the competencies needed for solving 
problems in life outside school and that respect the features and conditions 
of out-of-school task situations. To acquire a picture of mathematics that 
includes applications and modelling, and to develop the experience that 
mathematics is useful and powerful in out-of-school situations for motiva
tional reasons is probably facilitated by meeting and solving tasks that are 
experienced as important instances of applications in life beyond school. 
Thus, for the applications included in the learning environment to function 
as faciUtators for attaining these goals it is likely that a significant proportion 
of them would have to be close simulations of important real life situations 
in which the application of mathematics can play an important role. Li other 
words, it is likely that they would have to be authentic. 

However, the applications in mathematics education, sometimes also 
called mathematical word problems, have been criticized on the basis that a 
too large proportion of them lack these important features, which is argued 
to have contributed to a lack of fulfilment of the described learning goals. 
Boaler (1994) and Cooper & Dunne (2000) argue that many word problems 
are pseudo-realistic and show how students are required to think differently 
than in out-of-school situations when solving such tasks. For example. Coo
per & Dunne (2000, p.35) exemplify how students are required to make 
some considerations of the real situation described in a task, but not too 
much. Many studies have shown that it is common that students use solution 
strategies in their word problem solving that do not even include the consid
eration of the realities of the real world situations described in the word 
problems (for an overview of such studies see Verschaffel, Greer, & De 
Corte, 2000). According to Boaler (1994) and Nesher (1980) indeed the stu
dents have not formed the belief that their skills learned in school mathemat
ics are useful in life beyond school. In addition, according to Gerofsky 
(1996) and Sowder (1989) students do not even like word problems. 

Based on this introduction it seems that concerning the attainment of im
portant goals of applications and modelling in mathematics education the 
concept of authenticity may play a significant role. But claims aimed at hav
ing an impact on mathematics education practice do best accompanied by 
empirical evidence convincingly showing its importance. It is often not 
enough to show that goals have not been attained by current education prac
tice. Thus, for widespread acceptance and strong possibilities of influencing 
practice there is a need for a strong evidence base for claims of the impact 
(or non-impact) of the authenticity of mathematical applications on impor
tant educational goals. It should also be acknowledged that developing au
thentic mathematical applications, especially for higher levels of mathemat
ics, is not unproblematic and require considerable reflection and time. 
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2. A FRAMEWORK FOR AUTHENTICITY 

It should be noted that the term authenticity with respect to assessment 
and tasks is being used with very different meanings in the education litera
ture. For a review of different meanings of this concept see (Palm, 2002). In 
this paper the term authentic task refers to a task in which the situation de
scribed in the task including a question or assignment, i.e. the figurative con
text (Clarke & Helme, 1998), is a situation from real life outside mathemat
ics itself that has occurred or that might very well happen. In addition, the 
task situation is truthfully described and the conditions under which the task 
solving takes place in the real situation are simulated with some reasonable 
fidelity in the school situation. 

For efficiency in the critical examination and development of tasks that 
mirror this definition, for the purposes of classroom instruction, textbook 
development and assessments as well as for research purposes, it is useful to 
operationalize such a definition into a more specified description of its 
meaning on a more fine-grained level. Such a description is provided in 
(Palm, 2002). The underlying idea behind this framework for authenticity is 
the construct of simulation. The constituents of the framework are a set of 
aspects of real life task situations, which can be simulated with more or less 
fidelity, and a discussion of the affective dimension in relation to the simula
tion of real life task situations. The aspects are included in the framework on 
the basis that a strong argumentation may be offered that their simulations 
can have an impact on the extent to which students, when dealing with word 
problems, may engage in the mathematical activities attributed to the real 
situations that are simulated. The proposed aspects are the Event, Question, 
Purpose, Information/data, Presentation, Solution strategies. Circumstances 
and Solution requirements. In addition, there are also subaspects appurtenant 
to some of the aspects. In the framework, the aspects are described, exempli
fied and argued for. In the discussion of the affective dimension the affective 
domain is described and its importance is stressed. It is also argued that sig
nificant engagement in the figurative contexts, and consistency between the 
students' actions in the school situations and in the situations that are simu
lated, are enhanced when the simulated situations are experienced as familiar 
and meaningful. 
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3. THE FRAMEWORK IN USE 

3.1 An analysis of tasks 

Thus, this framework for authenticity of mathematical appUcations may 
be used for the analysis and development of authentic tasks and may serve as 
a basis for a discussion of the constitution of school tasks that are intended to 
emulate out-of-school task situations. One example of its possible uses is the 
analysis of Finnish and Swedish national assessments for upper secondary 
school in which the framework was used as a tool for describing in what way 
and to what extent the applications in the assessments could be considered 
authentic or not (Palm & Burman, 2004). 

The analysis showed, for example, that about 50 % of the applied tasks 
were considered to both describe an event that might occur in real life be
yond school and include a question that really might be posed in that event. 
About 25 % of the tasks also possessed the quality that the information /data 
given in the task was the same as in some corresponding real life task situa
tion to such a degree that it required the same mathematics for its solution as 
would have been required to solve the task in the simulated situation. When 
also the similarity in the availability of external tools between the assess
ment situation and the real-world task situations was considered, 20 % of the 
tasks were judged to simulate these four aspects with such fidelity that the 
same mathematics would be required by the assessment tasks and the simu
lated real world situations. 

3.2 A study of the impact of authenticity 

The framework may also be used for research on the impact of authentic
ity, which will be exemplified in this section. The background for the study 
is the conclusion drawn from a number of studies in the 80's and 90's that 
students from different countries from different parts of the world have ten
dencies to neglect an appropriate use of common sense knowledge of the 
world in their word problem solving and provide solutions that are inconsis
tent with the realities of the 'real' situations described in the tasks (Verschaf-
fel et al., 2000). The reasons for these tendencies are argued to be the preva
lent school culture in which the students' actions are situated. 

However, studies have indicated that a difference in the working condi
tions, such as the requirement of making a telephone call to place an order 
(DeFranco & Curcio, 1997), having available concrete materials such as 
planks, a saw and a meter stick (Reusser & Stebler, 1997), or working with 
the tasks under the heading of another school subject (Saljo & Wyndhamn, 
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1993) can have a positive influence on the proportion of students providing 
solutions consistent with the realities of the figurative contexts. 

However, such working conditions go beyond many classroom resources 
and may be difficult to uphold on a regular basis. Therefore, using the 
framework for authenticity (Palm, 2002) a study was designed to investigate 
the impact of task authenticity on students' use of real world knowledge in 
their solutions to word problems, with the restriction that a higher degree of 
authenticity has to be accomplished within the frames of the practicalities of 
normal classroom procedures (Palm, 2002). 

Guided by the aspects of real life task situations included in the frame
work a higher degree of authenticity was achieved through a more thorough 
and true description of the 'real' situations described in the word problems 
used in earlier studies presented in the research literature (see e.g. Verschaf-
fel et al., 2000). Two versions, one more authentic and one less authentic 
version, of six word problems divided in three different categories of word 
problems, were randomly administered to 160 students. The students pro
vided written responses, but in addition, all students were interviewed to 
gather additional information. The results of the study show that authentic
ity, even under the restrictive constraints of normal classroom resources, can 
affect students' tendencies to effectively use their real world knowledge in 
the solutions to word problems. The students who were faced with the more 
authentic task variants both provided written solutions that were consistent 
with the realities of the 'real' situations described in the tasks and activated 
their knowledge of the 'real' situations, whether or not it affected their writ
ten solutions, in a significantly higher proportion of the tasks (it is to be 
noted however that even if the students working with the more authentic task 
variants provided a higher proportion of 'realistic' responses some of these 
more authentic tasks still yielded a large proportion of 'unrealistic' re
sponses). It was also concluded from the interviews that the main reasons for 
providing solutions that are inconsistent with the situations described in the 
word problems were the students' frequent use of what may be called super
ficial solution strategies and their beliefs about mathematical word problem 
solving. These strategies and beliefs have been developed in an education 
including many encounters with pseudo-realistic tasks. 

An example of a pair of word problems included in the study is Examples 
1 and 2 (below). Example 2 is considered to simulate the aspects in the 
framework to a larger extent than Example 1. For example, the consideration 
in the task development of the aspect Purpose resulted in a clarification of 
the purpose of the task solving in Example 2 by making the students order 
the buses by filling in an ordering form. A clear purpose of the task solving 
would be known in a corresponding out-of-school situation and can be im
portant since the appropriateness of the answer may be dependent on if the 
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answer to the question is to be used directly to order the buses, or if it is to 
be used to form the basis of a decision on the number of buses to order, 
which may involve other considerations as well. In addition, a clear purpose 
may facilitate a focus on the figurative context instead of on the social con
text of a school situation. The inclusion of the order form is similar to the 
requirement of a telephone call in the study by DeFranco & Curcio (1997), 
but without the difficulties with practical resources. 
Example 1: 

360 students will go by bus on a school trip. Each bus can hold 48 stu
dents. 

How many buses are required? 
Example 2: 

All students in the school will the 15* of May go on a school trip to
gether. You have decided that everyone will go by bus, and that you shall 
order the buses. You have seen in the student namelists that there are 360 
students in the school. Your teacher said that you can order the buses from 
Swebus, and that each bus can hold 48 students. 

Fill in the note below, which you are going to send to Swebus to order 
the buses. 

Swebus - Bus order 

Your name: 
School: 
Date of the trip: 
Number of buses to order: 
Other requirements: 

Of the students who were faced with the task variant in example 1, 75 % 
provided the answer 8 buses or gave a realistic comment to why their answer 
made sense. Of the students who dealt with the more authentic task variant 
in example 2, 95 % provided the answer 8 buses, which was considered to be 
consistent with the described situation in the task. 

4. SUMMARY AND CONCLUDING REMARKS 

To sum up, there are important learning goals in mathematics education 
which attainments may be facilitated by the use of applications and by stu
dents' engagement in modelling activities. In addition, there are reasons to 
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believe that the authenticity of these appUcations can faciUtate the attainment 
of some of these goals. 

However, it is of great significance that claims about the impact (or non
impact) of authenticity can be corroborated by empirical evidence. To assist 
in the development of authentic tasks, for both instructional and research 
purposes, a framework specifying the meaning of authentic tasks on a fine
grained level has been suggested. This framework can also be helpful in 
structuring the studies and the information gathered from them to achieve a 
more comprehensive picture of the impact of authenticity. The possible uses 
of the framework in research studies have been exemplified. Together with 
other research these studies contribute to our understanding of the use and 
impact of authentic mathematical applications. 

However, the available body of research on the impact of authenticity is 
far from sufficient, which influences the practitioners working in mathemat
ics education. Developing tasks that simulate important aspects of meaning
ful out-of-school task situations with high fidelity takes a great deal of time, 
effort and money. Today many teachers, textbook writers and professional 
assessment developers spend a lot of work trying to develop such tasks, mo
tivated by the belief that their effort is worthwhile. Others do not share this 
belief and therefore not this direction in their work. Due to the lack of evi
dence decisions are many times forced to be based on assumptions. A more 
extensive body of research about the consequences of the authenticity of 
mathematical applications is needed so practitioners will have better possi
bilities to base their decisions about task development on empirical evidence 
grounded in scientific research. This would allow a more efficient use of 
available resources and better opportunities for developing efficient learning 
environments. 

REFERENCES 

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applica
tions, and links to other subjects -• State, trends and issues in mathematics instruction. Edu
cational Studies in Mathematics, 22, 37-68. 

Boaler, J. (1994). When Do Girls Prefer Football to Fashion? An Analysis of Female Under-
achievement in Relation to "Realistic" Mathematics Contexts. British Educational Re
search Journal, 20(5), 551-664. 

Clarke, D. J., & Helme, S. (1998). Context as Construction. In O. Bjorkqvist (Ed.), Mathe
matics Teaching from a Constructivist Point of View (pp. 129-147). Vasa, Finland: Faculty 
of Education, Abo Akademi University. 

Cooper, B., & Dunne, M. (2000). Social Class, Sex and Problem-solving. Buckingham Phila
delphia: Open University Press. 



208 Chapter 3,2,3 

DeFranco, T. C , & Curcio, F. R. (1997). A division problem with remainder embedded 
across two contexts: Children's solutions in restrictive vs. real-world settings. Focus on 
Learning Problems in Mathematics, 19(2), 58-72. 

Gerofsky, S. (1996). A Linguistic and Narrative View of Word Problems in Mathematics 
Education. For the Learning of Mathematics, 16(2), 36-45. 

Nesher, P. (1980). The Stereotyped Nature of School Word Problems. For the Learning of 
Mathematics, 7,41-48. 

Palm, T. (2002). The realism of mathematical school tasks - Features and consequences. 
Ume^ University, Ume^, Sweden. 

Palm, T., & Burman, L. (2004). Reality in mathematics assessment: An analysis of task-
reality concordance in Finnish and Swedish national assessments. Nordic Studies in 
Mathematics Education, 9(3). 

Reusser, K., & Stebler, R. (1997). Realistic mathematical modeling through the solving of 
performance tasks. Paper presented at the the Seventh European Conference on Learning 
and Instruction, Athens, Greece. 

Sowder, L. (1989). Searching for Affect in the Solution of Story Problems in Mathematics. In 
D. B. McLeod & V. M. Adams (Eds.), Affect and Mathematical Problem Solving: A New 
Perspective. New York: Springer-Verlag. 

Salj5, R., & Wyndhamn, J. (1993). Solving everyday problems in the formal setting: An em
pirical study of the school as context for thought. In S. Chaiklin & J. Lave (Eds.), Under
standing practice: Perspectives on activity and context (pp. 327-342). Cambridge: Cam
bridge University Press. 

Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse, The 
Netherlands: Swets & Zeitlinger Publishers. 



Chapter 3.2.4 

ELEMENTARY MODELLING IN MATHEMA
TICS LESSONS: THE INTERPLAY BETWEEN 
"REAL-WORLD" KNOWLEDGE AND 
"MATHEMATICAL STRUCTURES" 

Ralph Schwarzkopf 
Department of Mathematics, lEEM, University of Dortmund, Germany, 
Email: ralph. Schwarzkopf®math, uni-dortmund.de 

Abstract: Whereas many investigations analyse the strategies of students working on 
word problems in interviews and tests, empirical investigations on the associ
ated classroom interactions are rarely represented in mathematics education. 
The goal of the present study is to understand interaction processes in mathe
matics lessons of early grades, dealing with modelling and solving word prob
lems. This paper assumes theories of symbolic interaction to analyse these in
teraction processes within the qualitative research paradigm. 

1. INTRODUCTION 

Solving word problems surely demands the construction of an adequate 
interplay between the "real-world" and "mathematics" (Blum et al., 2002, p. 
265). From a theoretical point of view, this interplay is often described as a 
"circle of modelling" (De Corte et al., 2000, p. 134), but empirical studies 
on the students' "problems with problems" (Saljo & Wyndhamn, 1997) have 
led to the conclusion, that many students do not follow this concept of solv
ing word problems. Whereas early investigations on this topic concluded that 
the students' solutions are surprisingly senseless, newer publications focus 
more and more on the "rationality" of the students' solving strategies, devel
oped within the culture of mathematics classrooms (Reusser & Stebler, 
1997; Saljo & Wyndhamn, 1997; Voigt, 1998). In other words: The students 
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do not follow the logic of problem solving but they follow the logic of class
room culture. Hence, the interaction in mathematics lessons becomes an im
portant focus of interest to understand the difficulties in word problem solv
ing. 

The present paper is based on first results of an empirical study that fol
lows this discussion. The goal of the study is a better understanding of how 
"components of modelling" (Blum et al., 2002, p. 270), are involved in proc
esses of solving word problems within everyday classroom interaction. How 
can we describe from a theoretical point of view the interplay between the 
real-world and mathematics, realised in everyday mathematics classroom 
interaction? 

2. THEORETICAL FRAMEWORK 

The author follows the interpretative paradigm, focusing in this paper on 
theories of symbolic interactionism and ethnomethodology to analyse the 
organisation of meanings in interaction processes (Yackel, 2000). 

2.1 Aspects of Symbolic Interactionism: Framings 

Within classroom interaction, the participants construct their individual 
sense of the content of the interaction process by participation. They do this 
within their framing of the situation (Krummheuer, 1992). Roughly speak
ing, the framing of the situation gives a context for the individual to interpret 
the interaction, and is responsible for his/her decisions about rational acting. 

Solving word problems demands an interplay between at least two very 
different framings, namely "everyday-understandings" of the problem's real-
world context and "mathematical" framings. This interplay is complex in 
nature, because within different framings the participants are acting in dif
ferent ways concerning the relevance of facts, the meaning of assertions, the 
acceptance of statements, rules for correct reasoning and many other aspects. 
Hence, solving word problems demands framings that are not only different, 
but often contradictory concerning their rules for rational acting. One goal of 
the present investigation is to reconstruct the changes of rationality within 
processes of solving word problems in teaching and learning situations. In 
other words to ask: How do the participants combine their knowledge(s) that 
are constructed within different framings? 

The author will argue, that the wide-spread idea of "translation" between 
the language of the real-world and the language of mathematics is not ade
quate to describe the complexity of solving word problems within mathe-
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matical teaching and learning processes. For this, it might be helpful to give 
a short example from the empirical conduct of the author's study. 

3. AN EXAMPLE FROM A FOURTH GRADE CLASS 

In the following, the question presented shall be illustrated by analysing a 
process of word problem solving. The data are taken from the regular 
mathematics lessons of a fourth grade class of primary school (10 year old) 
students in Germany. Within this lesson, the teacher confronts the students 
with the following task, taken from their mathematics textbook (see Fig. 
3.2.4-1). 

On the motorway from 
GieBen to Dortmund: 

On further signs there are the 
kilometres information: 
Dortmund 151 143 135 132 
Hagen 135 127 119 116 
Siegen 56 48 40 37 
Calculate in all cases the 
difference 
a) Between Dortmund and Hagen 
b) Between Dortmund and Siegen. 

Figure 3,2.4-1, On the motorway 

At the beginning of the lesson, the participants discuss some real-world 
aspects, giving a context for the task (first episode). Afterwards, the teacher 
makes a sketch of the motorway and the given signs on the blackboard. The 
students then do the calculation and observe that they lead to two results 
only. At the end of the lesson, the teacher wants the children to explain this 
constancy (second episode). 

From the expert's point of view, this task may be very easy. The children 
would only have to "translate" from mathematics into the rest of the world, 
understanding the calculated differences between the given numbers to be 
the distances between the assigned cities. But, taking processes of teaching 
and learning in classrooms seriously, it is important that "... social interac
tion is a process that forms human conduct, rather than simply a setting in 
which human conduct takes place" (Yackel, 2001, p. 11). Hence, from the 
author's point of view, the complexity of solving word problems originates 
from the classroom interaction and not from the "internal" structure of the 
task. Within the discussed lesson for example, the author reconstructed at 
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least five different framings, even if only two of them can be illustrated in 
the present paper. All of these framings are self-dynamical, i.e. they draw 
very different and contradictory understandings of the task. The framings 
involve more than simply different languages, and the organisation of the 
solution process can't be done by translations. In other words the word prob
lem becomes complex due to the process of solving within the interaction 
process. Taking the process of teaching and learning itself as the matter of 
research, the author proposes a theoretical point of view to understand this 
complexity of solving word problems within classroom interaction. 

3.1 First Episode 

The teacher asks the students to read the word problem. Afterwards, the 
children are asked to discuss their first impressions. This is the answer of 
Werner: 

W They are on the motorway from Giefien to Dortmund, [,„] 
And then they see this blue sign. And then that there are still 
157 kilometres left to Dortmund, 

Werner tells a short story about some people ("they") who drive on the 
motorway and read the given sign of the word task. These people use the 
sign in a way that is typical for acting in the real-world: they read the dis
tance on the sign, to find out how many kilometres they will still have to 
drive until they reach Dortmund. Obviously, the required calculation of the 
word problem is not relevant within this story: Who would subtract in eve
ryday life the numbers given on signs on the motorway? 

A few seconds later, the teacher picks up the story of Werner as follows: 

T Okay, Werner found out, where the car drivers are. He al
ready told us, but some of you were talking so I would like to 
hear it again. Where are they driving, or if you are in the car, 
where are you driving? [,„] 

By her reaction, the teacher shows herself satisfied with the story of 
Werner as an adequate rationality for interpreting the task. Furthermore, she 
wants the children to imagine that they are the drivers on the motorway. 
Hence, the context-giving story of Werner becomes an officially required 
framing through the reaction of the teacher. In the ongoing lesson, the 
teacher tries several times to re-activate this "story-bound-framing". 
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3.2 Second Episode 

This episode deals with an explanation for the observed constant calcula
tion results. In advance, a sketch v^as made on the blackboard and the chil
dren solved the calculations. It is already clear that there are only two results 
for the calculation, and this observation is marked within the sketch by verti
cal lines in some of the signs (see Fig. 3.2.4-2). 

The sketch shows a part of the motorway and all of the signs given in the 
word problem. Some arrows painted below the motorway illustrate the direc
tion of "the" car on its way from GieBen to Dortmund. 

[45] 
Do 132 
Ha 116 
Si 37 1 

1 £"^^3 1 
Do 135 
Ha 119 
Si 40 

[45] 
Do 143 
Ha 127 

1 Si 48 1 

[45: 
Do 151 
Ha 135 

1 Si 56 

| l6 

95 

1 t45] 
Dol57| | i6 
Ha 141 1 

1 Si 621 ^̂  

Figure 3.2.4-2. The way from GieBen to Dortmund 

This sketch is compatible with the story-bound-framing of the word prob
lem: one can imagine cars passing the signs and the drivers reading them to 
inform themselves about the distance left to reach Dortmund. But regarding 
the sketch concerning the observed phenomenon, it is rarely helpful, for the 
positions of the cities are not illustrated. Hence, the real-world meaning of 
the results, namely the distances between the cities, cannot be found in the 
sketch. Nevertheless, the sketch becomes important for the ongoing lesson. 

At the beginning of this episode, the teacher demands reasons for the 
constant results: 

[,„] Is there any reason for this? We are driving on the mo
torway and see the blue signs. It has to be like this. Just look: 
You are driving by car (points along the motorway on the 
blackboard) read the signs and if you calculate this then the 
difference between these cities (points at **Do" and "Ha" on 
the most right sign) noted on the signs is equal why? 
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On the one hand, she stresses the story-bound-framing as an adequate 
point of view to produce arguments. Pointing at the sketch is compatible 
with the rationality of the story - one can imagine passing and reading the 
signs while driving on the motorway. On the other hand, the teacher stresses 
the calculations and their constant results. This seems to be strange within 
the required framing, because the story - probably bound to the real-world 
experiences of the children - doesn't give any motivation for the drivers to 
calculate the differences. Briefly speaking, the rationality of the real-world 
has changed, and the students have to create a new framing, with new, yet 
unknown rules for rational acting, that may provide rationality for the calcu
lations. 

However, the student Anja is able to construct a relation between the cal
culated results and the given sketch in the following way: 

A [...] Well I think the signs are all standing in the same dis
tance to each other and if they are standing in this same dis
tance then the numbers are of that kind that it is exactly equal. 

In her explanation, Anja uses some empirical properties of the sketch - in 
fact, the signs painted on the blackboard have nearly the same distances, so 
she fulfils the teacher's demand concerning the logic of classroom culture. 
Anja uses the sketch to build an alternative sense for the numbers given in 
the signs on the motorway. According to this interpretation, one could name 
her underlying framing a "sketch-bound" one. The rationality within this 
framing is different from the children's experiences within the real-world, 
but it is compatible with the children's social experiences of demands of the 
teacher - if the teacher stresses the importance of the sketch, the sketch must 
show the required reason. 

The lesson ends with an adequate reasoning, based on more interventions 
by the teacher. Due to space restrictions of this paper, these episodes can't be 
discussed here. 

4. THE INTERPLAY BETWEEN THE REAL-WORLD 
AND MATHEMATICS 

In the above episodes, two framings, leading to different horizons of un
derstanding of the word problem, can be reconstructed: 

The story-bound-framing leads to a realistic understanding of the given 
information, but not to an adequate interpretation of the calculation task. 

Within the sketch-bound-framing it is possible to interpret the mathe
matical differences as distances in the real-world. But the empirical proper-
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ties of the sketch are taken as reality and the interpretation leads to distances 
between the signs. 

Within both framings, the real-world concept "distance" is the main con
cept needed to understand the context of the word problem. But the framings 
differ in their rational acting with this concept. Within the story-bound-
framing, there is no need to calculate distances - one can read the interesting 
distances from the signs. Within the sketch-bound-framing, the only impor
tant distances are given by the empirical properties of the sketch on the 
blackboard. The interaction process becomes complex, because both ration
alities are very strong on the one hand, but on the other hand they are not 
compatible with the mathematical background of the word problem. 

Although the reconstructed framings lead to different understandings of 
the word problem, they also have something in common: Within the fram
ings, the word problem is somehow empirically enriched. For example, the 
story is about people driving on the motorway and the sketch allows us to 
imagine the motorway itself - this context is constructed within the interac
tion process and is not given by the task. But this empirical enrichment 
doesn't lead to a structural understanding of the task, because neither the 
story nor the sketch focuses on the distances that are important for under
standing the calculations - there is no rationality to focus on the distances 
between the cities. In other words the empirical enrichment restricts the 
mathematical structure of the word problem. 

From the author's point of view, the contrary would be necessary for an 
adequate interplay between mathematics and the real-world: The main de
mand to solve a word problem is to find a balance between empirically re
stricting the "visible" real-world to mathematically relevant aspects, and at 
the same time to structurally enrich the real-world by "invisible" mathe
matical structures. For this structural enrichment, problem solvers often have 
to change their understanding of the word problem's real-world context. In 
the example given above, the students' real-world experience (driving on the 
motorway and reading the signs) is not helpful, because it leads to the 
changing distances between the car and the cities, assigned by the motor
way-signs. But from a mathematical point of view, explaining the constant 
differences, the numbers on the signs divide the motorway into the static 
distances between the signs and the cities. This meaning of the signs differs 
from their meaning in the children's real-world experiences. Hence, the par
ticipants can't find an adequate reason for the constant results by translating 
their knowledge from the real-world to mathematics because, roughly speak
ing, the intention of a translation is to replace words of one language by 
words from another language, while trying to reproduce the original mean
ing. That is a translator searches for different words with the same meaning, 
but the demand for the children is contrary to that intention, for they would 
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have to change the meanings of the numbers on the signs. Using language of 
theories of symbolic interaction: the students have to modulate their fram
ings (Krummheuer, 1992) in order to find a new structural meaning for the 
numbers on the signs, changing their empirical, story-bound rationality. 

Briefly speaking, the ongoing project works on these modulations of 
framings that allow the construction of an adequate interplay between the 
real-world and mathematics. Do teachers and students manage to find a bal
ance between empirically restricting and structurally enriching the context of 
word problems, and if they do, how can we understand these processes from 
a theoretical point of view? 
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Abstract: Descriptions of levels of modelling activity ranging from basic technical skills 
to philosophical, and even ethical, considerations have been developed. These 
analytical efforts serve to provide guidelines for the teaching/learning and as
sessment of modelling. 

In this overview, we consider how modelling competencies may be char
acterized, using a framework of three levels of modelling activity that we 
label implicit modelling (in which the student is essentially modelling with
out being aware of it), explicit modelling (in which attention is drawn to the 
modelling process), and critical modelling (whereby the roles of modelling 
within mathematics and science, and within society, are critically examined). 

1. IMPLICIT MODELLING 

As pointed out by Usiskin (this volume. Chapter 3.3.5), much of what is 
done in standard mathematics curricula, even at the elementary stage, can be 
characterized as modelling even though it is not acknowledged as such. 

1.1 Arithmetical operations as models 
The core of the modelling process comprises setting up a correspondence 

between some aspect of a real-world situation and a mathematical structure, 
carrying out appropriately motivated operations within that structure, and 
interpreting the results of those operations back in the real-world context. 
This frame is applicable, in principle, to the solution of the simplest of word 
problems involving a single operation. A judgment is required whether or 
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not the operation provides an appropriate model for the situation described. 
This fundamental insight is masked in typical traditional teaching which 
omits instructive counterexamples where the superficially appropriate opera
tion turns out, on deeper reflection, to be inappropriate (for several exam
ples, see Usiskin, this volume. Chapter 3.3.5). As a result, when researchers 
have posed such counterexamples to students, the dominant response is to 
apply the superficially indicated operation as an implicit model that is inap
propriate (see Verschaffel et al., 2000 for a comprehensive review of this 
research). 

The damaging effects of concealing from students the nature of what they 
are doing, by (a) ignoring complexity without motivating this simplification, 
and (b) not using counterexamples, can be seen particularly strikingly in the 
documentation of the "illusion of linearity" (De Bock et al., this volume. 
Chapter 3.3.3). Similar remarks apply throughout the curriculum (Usiskin, 
this volume. Chapter 3.3.5). At the most extreme, the teaching of probability 
is particularly ill-served by pretending that the world organizes itself cleanly 
in alignment with the elements of probabilistic modelling, such as 
equiprobable events and statistical independence. 

In general, modelling demands a balance between idealized simplifica
tion and precision (Singer, this volume. Chapter 3.3.2), which can be seen 
very clearly, for example, in the application of geometry to real-life prob
lems. There is a fundamental difference, of course, between the student who 
ignores the complexity of real-world situations through blind conformity 
with the rules of a didactical contract, and the mathematician or scientist 
who mindfully simplifies in the course of modelling. 

1.2 Competencies for implicit modelling 

The set of competencies expected within the view of the curriculum that 
leaves modelling implicit, and how it is typically implemented, corresponds 
to what Hatano has labelled "routine expertise", defined as "simply being 
able to complete school mathematics exercises quickly and accurately with
out (much) understanding" (Hatano, 2003, p. xi). It is, of course, desirable 
that students should be able to associate a wide range of situations with the 
arithmetical schemes relating to the basic operations and proportionality 
(Usiskin, this volume, Chapter 3.3.5). However, such a program clearly does 
not go far enough. The pervasive "illusion of linearity" (De Bock et al., this 
volume, Chapter 3.3.3) may be interpreted as the result of students achieving 
routine expertise in the solution of stereotyped problems involving propor
tionality. Their "expertise" is routine to the extreme extent that it is clear that 
even their apparent understanding reflected in correct answers on such prob
lems is illusory, since it cannot withstand slight perturbation. 
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2. EXPLICIT MODELLING 

The deliberate introduction of examples of models, together with the 
concepts and terminology of modelling as a generic process, have become 
part of mainstream curricula in many countries (see the series of books ema
nating from the biennial International Conferences on the Teaching of 
Mathematical Modelling and Applications (ICTMA), Part 6 of this volume). 
The core description of the modelling process, mentioned above, has been 
elaborated in a variety of versions such as that presented by Blomh0j and 
Jensen (this volume. Chapter 2.2) (and see Part 1 of this volume). 

2.1 Competencies for explicit modelling 
Houston (this volume. Chapter 3.3.4) describes a number of very detailed 

and explicit analyses of the phases of modelling that provide useful frame
works for teaching and assessment. He argues for the power of such schemes 
for providing detailed profiles of students' strengths and weaknesses across 
the many subprocesses of the modelling process. Clearly these schemes are 
useful for constructing targeted assessment items. 

As is the case generally, it is easy to assess aspects of modelling that can 
be reduced to routine expertise. However, as pointed out by De Bock et al. 
(this volume, Chapter 3.3.3) modelling, by its nature, implies adaptive exper
tise. Moreover, as acknowledged by Houston, modelling - as an authentic 
part of mathematical practice - is typically a group activity. In general, we 
may suggest that the elements of modelling that are inherently social, such as 
the goals of the modelling, the resources available in terms of other people, 
tools, and distributed information, debate about alternative models, and 
communication of an interpretation of the model to a target audience lie out
side the scope of standard forms of assessment which are closed "in terms of 
time, in terms of information, in terms of activity, in terms of social interac
tion, in terms of communication" (Verschaffel et al., 2000, p. 72). 

By contrast, there have been notable examples of attempts to assess and 
teach modelling expertise in ways that transcend those limitations - typi
cally, with assessment closely integrated with the teaching. As a pioneering 
example dating from the 1980s, in a small-scale and rather short-lived pro
ject in Northern Ireland (in which both Houston and Greer were involved), 
students were able to opt for an alternative A-level course in mathematics 
which included a year-long project under the supervision of their teacher that 
could be either an investigation in pure mathematics or a modelling exercise 
(Greer and McCartney, 1989). Assessment was carried out holistically on the 
basis of the report written by the student. Other exemplary endeavors include 
the series of modules developed by the Shell Centre at Nottingham (Swan et 
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al., 1987 - 9/2000), the very extensive work of Lesh and others associated 
with him (e.g. Lesh & Doerr, 2003), and some important design experiments 
(e.g. Verschaffel et al., 1999, and see Verschaffel et al., 2000, Chapter 6 for 
other examples). 

3. CRITICAL MODELLING 

3.1 The place of modelling within the mathematics cur
riculum 

As strongly argued by Blomhoj and Jensen (this volume. Chapter 2.2), 
any adequate description of what it means to be mathematically competent 
must include modelling competency. Efforts to include modelling as a core 
part of mathematical curricula have succeeded in some countries, not with
out problems and resistance (De Lange, 1996; Keitel, 1993). From our point 
of view, modelling is the linlc between the "two faces" of mathematics, 
namely as a means of describing aspects of the physical and social worlds, 
and as a set of autonomous formal structures. Understanding this relationship 
is fundamental to the understanding of mathematics, unless it is to be re
duced to a formal game like chess. 

Singer (this volume. Chapter 3.3.2) discusses how developments of the 
twentieth century have forced reconsideration of the nature of mathematical 
descriptions of our physical and mental worlds. As she comments (p. 234) 
"All we can do ... is model". Clearly, it would be unrealistic to introduce 
students too early to the philosophical complexity of these arguments. Nev
ertheless, it is not unrealistic (as Usiskin (this volume. Chapter 3.3.5) argues) 
to lay the groundwork early for understanding fundamental principles of 
modelling and development of a modelling disposition. 

3.2 Teaching about the role of modelling in society 
If modelling of social, as well as physical, phenomena, is accepted as a 

core part of learning mathematics, it has major benefits and ramifications. In 
particular, as argued in our plenary talk (Verschaffel, Mukhopadhyay, and 
Greer, this volume. Chapter 2.6) it potentiates authentic links between school 
mathematics and the lived experience of students. Growing recognition of 
the societal importance of mathematics education is reflected in recent pol
icy statements such as that of the Programme for International Student As
sessment (PISA) (Henning and Keune, this volume. Chapter 3.3.1, and see 
Part 1). 

There are fundamental issues in the use of modelling for social phenom
ena. As Jablonka (2003) points out, any such use must be qualified by con-



3.3.0, MODELIING COMPETENCIES - OVERVIEW 223 

sideration of the diversity of people's lives, their practices, experiences, 
goals - in general, culture, Skovsmose uses the term "the formatting power 
of mathematics" to refer to the subtle, and mostly undetected, ways in which 
mathematics does not just reflect our view of the world, but also helps to 
shape it, so that "when part of reality becomes modelled and remodelled, 
then this process also influences reality itself (Skovsmose, 2000, p. 5). Most 
people uncritically "consume" the products of mathematical modelling, 
without having any understanding of the models used, the assumptions on 
which they are based, or the general concept of modelling itself. 

3.3 Competencies for critical modelling 
Blomhoj and Jensen (this volume. Chapter 2.2) provide a very 

comprehensive view of what mathematical competency entails, in which 
modelling competency is one component (others particularly relevant to 
modelling are communicating and tool use). They emphasize the importance 
of developing a critical attitude towards all parts of the modelling process. 
Moreover, as they point out, mathematical competency further entails a 
judgmental conception of the application of mathematics, its historical 
development, and the nature of mathematics as a subject area. 

Henning and Keune (this volume. Chapter 3.3.1) discuss some recent 
PISA examples in which attempts are made to probe students' ability to cri
tique the models under discussion. Arguably, a major failing of mathematics 
education has been that people in general are unaware of the nature and as
sumptions of models that affect their lives. 

4. CONCLUSIONS 

Modelling should be developed through a coherent curricular strand, be
ginning in the earliest years, and recognizing its crucial role in the develop
ment of an appropriate mathematical disposition (Verschaffel, 2002). As 
such, the development of modelling competencies is too complex to be fitted 
within a simple model of sequential stages. Several of the themes visited 
above testify to this complexity, and to the dialectical nature of tool use in 
linking experience to formal mathematics through a variety of activities 
within designed environments. 

By its nature, modelling demands adaptive expertise and is typically a 
social activity, and its vulnerability to impoverished forms of teaching and 
assessment that do not reflect these core aspects should be resisted. More
over, modelling is often situated in social and political contexts and learning 
to model should go beyond the merely technical aspects to address its human 
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purposes (Blomhoj and Jensen, this volume, Chapter 2.2; Mukhopadhyay 
and Greer, 2001; Verschaffel et al., this volume, Chapter 2.6). 
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Abstract: The concept of a competence-oriented approach towards modelling is exam
ined and a level-oriented description of modelling competencies introduced. 
The characteristic abilities associated with each level are listed and some illus
trative examples are provided. The level-oriented description is related to the 
concept of mathematical literacy and briefly compared with other descriptions 
of modelling competence. 

1. COMPETENCE-ORIENTED APPROACH 

In this paper we follow Weinert's (2001) definition of competence as the 
sum of available or leamable abilities and skills together with willingness to 
solve upcoming problems and to act responsibly and critically concerning 
the solution. Klieme et al. (2003), reporting on the development of national 
educational standards in the Federal Republic of Germany, suggest that we 
expect education, through the learning processes involved, to provide indi
viduals with the abilities necessary to act independently and responsibly in 
society. 

If you look at the teaching and learning of modelling there are at least 
two possible approaches. One approach aims at describing necessary abili
ties, skills and attitudes of students. Results gained from this approach are 
called component descriptions. On the other hand, the examination of com
petencies in terms of complexity of modelling processes results in level de
scriptions. Klieme et al. (2003, p. 61) call these two types of description 
"Komponentenmodelle" and "Stufenmodelle". Here we follow these distinc-
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tions between a list of abilities, skills and attitudes (components) and the ex
amination of different levels of these abilities, skills and attitudes, consider
ing these two perspectives as complementary means for the description of 
modelling competencies. 

2. COMPONENT-ORIENT DESCRIPTIONS OF 
MODELLING COMPETENCIES 

Following a definition of the term modelling competences by MaaB 
(2004), we include in the term modelling competences those abilities, skills, 
attitudes that are important for the modelling process and the willingness of 
students to deploy them. Similarly, Blum (2002) defined modelling compe
tence as the ability to structure, mathematize, interpret and solve problems 
and, in addition, the ability to work with mathematical models, validate the 
models, analyze them critically and assess models and their results, commu
nicate the models and observe and self-adjustingly control the modelling 
process. 

3, LEVEL-ORIENTED DESCRIPTION OF MODEL
LING COMPETENCIES 

Here we introduce a level-oriented description of the development of 
modelling competencies, characterized in three levels: 

Level 1: Recognition and understanding of modelling 
Level 2: Independent modelling 
Level 3: Meta-reflection on modelling 

Competence, as a theoretical construct, cannot be observed directly. One 
can only observe students' behaviour and actions as they solve problems, for 
example. Competence is understood here as a measurable variable, in the 
sense that level of competence can be inferred by observing the behaviour of 
students. 

In a pilot study (Henning & Keune, 2004; Henning et al., 2004; Keune et 
al., 2004) students' behaviour was observed as they worked on modelling 
problems, with the goal of reaching conclusions concerning their levels of 
modelling competencies. The theoretical assumption here was that at the first 
level procedures and methods can be recognized and understood, as a pre
requisite to being able to independently solve problems at the second level. 
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Conscious solving of problems in the sense of this paper requires, accord
ingly, knowledge of the procedure. Furthermore, the authors make the as
sumption that meta-reflection on modelling would at the very least require 
both familiarity with modelling and personal experience. 

Within this perspective the levels of modelling competencies could be 
considered as one dimension of at least three dimensions in which a model
ling activity takes place, the other two being level of complexity (contexts, 
methods, technical skills), and educational level. 

4. CHARACTERISTIC ABILITIES 

Level 1 - Recognize and understand modelling 
Characterized by the abilities to recognize and describe the modelling 

process, and to characterize, distinguish, and localize phases of the model
ling process. 

Level 2 - Independent modelling 
Characterized by the abilities to analyze and structure problems, abstract 

quantities, adopt different perspectives, set up mathematical models, work 
on models, interpret results and statements of models, and validate models 
and the whole process. 

Pupils who have reached this second level are able to solve a problem in
dependently. Whenever the context or scope of the problem changes, then 
pupils must be able to adapt their model or to develop new solution proce
dures in order to accommodate the new set of circumstances that they are 
facing. 

Level 3 - Meta-reflection on modelling 
Characterized by the abilities to critically analyze modelling, formulate 

the criteria of model evaluation, reflect on the purposes of modelling, and 
reflect on the application of mathematics. 

At this third level of competency, the overall concept of modelling is 
well understood. Furthermore, the ability to critically judge and recognize 
significant relationships has been developed. Consideration concerning the 
part played by models within various scientific areas of endeavour as well as 
their utilization in science in general is present. This implies that finished 
models are examined and any inferences drawn from them evaluated 
(Jablonka, 1996), while at the same time criteria for model evaluation are 
scrutinized (Henning & Keune, 2002). 
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5. MATHEMATICAL LITERACY AND MODEL
LING COMPETENCIES 

The Programme for International Student Assessment (PISA) gives a 
precise definition of the term mathematical literacy as "an individual's ca
pacity to identify and understand the role that mathematics plays in the 
world, to make well-founded mathematical judgements and to engage in 
mathematics, in ways that meet the needs of that individual's current and 
future life as a constructive, concerned and reflective citizen." (Organization 
for Economic Co-operation and Development (OECD), 1999, p. 41). The 
concept of mathematical literacy connects the development of mathematical 
structures with the treatment of realistic tasks. This connection can be con
sidered as analyzing, assimilating, interpreting and validating a problem - in 
short, modelling. Within this perspective modelling competencies form a 
part of mathematical literacy and the examination of modelling competen
cies are helpful in clarifying the mathematical literacy of students. 

For example, in the work of Haines et al. (2001) a component-oriented 
approach to modelling skills is applied. They distinguish between modelling 
competences and skills based on the phases of the modelling process, which 
also affords a framework for assessment (Houston, this volume, Chapter 
3.1.4). 

Based on the work of Niss (1999, 2003), Blomh0j & Jensen (this volume, 
Chapter 2.2) characterize modelling competences within three dimensions. 
According to them, the competences acquired by students can vary in terms 
of "technical level", "radius of action" and "degree of coverage". 

Our level-oriented description of modelling can be considered as another 
perspective on modelling competencies. It can be used as a descriptive, nor
mative and meta-cognitive aid when assessing student performance, plan
ning lessons, and selecting teaching contents. 

6. EXAMPLES 

The following three examples for assessing level of modelling competen
cies are based on PISA study examples (OECD, 2003) which have been re
formulated. 
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WATERTANK 

During a math class students are asked to describe a watertank as it is 
filled. The tank is one meter wide, empty at the beginning and is filled with 
one liter of water per second. The students receive further informations from 
the teacher as to the shape and measurements of the tank. 

Here you see one student's results. He sketched the tank of water and de
picted in a graph how the water-level changed over time. 

Height 

\ / 
V Watertank 

Time 

Al) How could the student have established the course of the graph? 

A2) Are there other informations which the student did not use? 

The teacher judges that the results so far are good and encourages the 
student to find a formula for calculating the water-level. 

A3) What steps would the student have to take in order to set up a formula 
for calculating the water-level? 

Figure 3.3. J-L Watertank 

While solving the water tank problem the students have to demonstrate 
their ability to recognize that the water tank as depicted is a compound ob
ject, that material thickness does not play a role in the solution of the prob
lem, that a qualitative graphical model is used and that the quantitative data 
given are not used in the model. These are abilities situated at level one in 
terms of our description. 

The second example is appropriate for assessing competencies from the 
second level (set up and work with models). 
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SCHOOL PARTY 

It has been announced that a famous band is going to play in the gym at a 
school party in our school. Almost all the students from your school and 
many students from neighboring schools would like to come to the concert. 
From the organizers of the party you receive the task of calculating the 
maximium possible number of spectators for the gym. 

Bl) Plan how you will proceed with solving the problem and write out the 
steps needed for the solution. 

B2) Complete the task which the organizers gave you. If any details are 
missing, figure them out by estimating. 

The organizers would like you to show your work to the heads of the 
school in a short presentation. 

B3) Make up a sheet of key points which you would like to tell the heads of 
the school. 

Figure 3.3.1-2. School party 

The third example is based on the PISA study problem entitled: "Rising 
Crimes" and has been reformulated to assess competencies at level three. 

ALARM SYSTEMS 

Every year the police record statistics of the number of house-burglaries 
in their city. From these statistics a manufacturer of alarm systems has 
picked out the following years. 

year 

number of crimes 

1960 

110 

1965 

200 

1970 

330 

1975 

480 

1980 

590 

1984 

550 

The manufacturer has used this data to make the following statement in 
his advertisements; Every 10 years the number of burglaries doubles or 
tribles! Buy an alarm system now before your house is robbed too! 

CI) Is the first sentence of the advertising slogan correct? Support your 
answer. 

C2) Why could the manufacturer have specifically chosen this data 
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Imagine that your parents work for the police and tell you that the police 
aren't going to record these statistics in the future. 

C4) Explaine briefly the advantages/disadvantages of this type of statistics. 

Figure 3.3. J-3, Alarm systems 

In this problem pupils are asked to demonstrate their ability to reflect 
critically on the modelling process and its use in a real world application. 
Furthermore, they are tested on their ability to evaluate the use of models in 
general. When considering models and the modelling process, one must be 
incessantly aware of the possible misuse of mathematics, as well as the so
cial relevance of models, their interpretations, and the predictions that they 
can make. 

7. CONCLUSION 

A level-oriented description of modelling competencies has been pre
sented and compared with other descriptions of modelling competencies, and 
it has been put into the framework of mathematical literacy. Important issues 
for further research are the examination of the level-orientated description at 
different educational levels and the role of the context of the modelling 
tasks. 
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MODELLING BOTH COMPLEXITY AND 
ABSTRACTION: A PARADOX? 

Mihaela Singer 
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Abstract: Do we need models in explaining the outer world and the self? What types of 
models might be helpful in school to explain both complexity and abstraction? 
What level of representation is appropriate? What dimensions of training 
should be focused on in constructing an inquiry-based learning? How could 
these dimensions be reflected in developing students' competencies? Analys
ing the dual relationship between complexity and abstraction, the study pro
poses some strategies to enhance learning in a model-building environment. 

!• DO WE NEED MODELS? BETWEEN UNCER
TAINTY AND INCOMPLETENESS 

In 1927, Werner Heisenberg formulated the Uncertainty Principle: The 
more precisely the position of a particle is determined, the less precisely its 
momentum is known at this instant, and vice versa. 

In 1931, Kurt Godel proved the Incompleteness Theorem: Any logical 
deductive system, within which arithmetic can be developed, is essentially 
incomplete. 

With these two claims, our wonderful logical world broke down into in
finitely many pieces. The Uncertainty Principle says that we cannot make a 
measurement with enough precision and this is not happening because of the 
imperfection of our instruments - that would be too simple. Rather, it is hap
pening because, given the quantum structure of matter, the measurement it
self is affecting the state of the system we are trying to measure. The Incom
pleteness Theorem says that within any given branch of mathematics there 
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would always be some propositions that could not be proven either true or 
false using the axioms of that mathematical branch itself We might be able 
to prove every conceivable statement about numbers within a system by go
ing outside the system in order to come up with new rules and axioms but, in 
doing so, we will only create a larger system with its own unprovable state
ments. The implication is that all logical systems of any complexity are in
complete. 

Metaphorically speaking, the Uncertainty Principle is saying that we can
not measure our physical world; the Incompleteness Theorem is saying that 
we cannot totally understand our mental world. All what we can do is ... to 
model. We think in models. Models lead us to build representations of real
ity in order to explain that reality. Models are necessary for many reasons: 
they help us concentrate more closely on some specific aspects, simplifying 
reality; they offer various perspectives in analysing an entity; they permit us 
to emphasise specific aspects, or, conversely, to have a general overview of a 
given phenomenon; they afford abstraction by neglecting or reducing dimen
sions of entities, or by including entities in various classes and categories. 
Some models are preferred because they better explain a phenomenon, oth
ers because they reflect a dominant way of thinking at a specific time and 
place, others because they permit a number of applications that are otherwise 
difficult or impossible. Models are the vehicles through which we build the 
understanding of our material and immaterial worlds. 

2, WHAT TYPES OF MODELS? BETWEEN COM
PLEXITY AND ABSTRACTION 

Mathematics learning is difficult because it aims to achieve an increase in 
complexity. At the same time, it is difficult because it aims to achieve an in
crease in abstractness. These two tendencies are paradoxically contradictory. 
The following example from geometry will explain this assertion. Consider a 
geometrical point: it has no dimension; it is the simplest geometrical figure. 
A more complex figure, having one dimension, is a line. The next stage of 
complexity is represented by geometrical plane figures, which have two di
mensions, and the fourth, by the solids - the three-dimensional shapes. There 
is no doubt: passing from the geometrical point to the 3-D space, we are fac
ing an increase in complexity, and the construction of the axiomatic geome
tries carefully followed this way of development. But let's change the per
spective: the 3-D space is the space we live in, it is the most familiar one; in 
this space we can move from right to left (and vice-versa), back and forth, or 
up and down - it has three dimensions. Imagine a space whose beings could 
only move from right to left (and vice-versa), or back and forth. These be-
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ings, moving on a plane, might look like Z , or like D, or like O , etc. (e.g. 
Abbot, 1884). Prisoners of their space, these beings could not move up and 
down - their space has only two dimensions. Imagine another space in which 
the motion is possible in only one direction, namely a line - this space has 
only one dimension. In building these representations, we are gradually in
creasing the distance from the concrete level; we are building more complex 
... abstractions. The point is the most abstract representation we can imag
ine; it has no dimension, no motion inside. How can we build both complex
ity and abstraction in the child's mind, while avoiding this construction be
coming paradoxically contradictory? Through developing patterns, the hu
man mind is able to work with both abstraction and complexity. To make 
this ability functional in children, it is necessary to be aware of the critical 
aspects, to make them explicit, then to incorporate them in adequate training 
procedures, making it possible to internalise the contextual coherence. Neu-
roscience findings show that the brain works by encoding environmental 
information into specific representations in the cortex, followed by decoding 
the representations into specific commands for the sensory-motor system 
(e.g. Quartz & Sejnowski, 1997). An efficient learning should help to de
velop the representational power of the mind, and this representational 
power - fiandamental for developing competencies - is increased when 
pathways of building abstraction interact with pathways of developing com
plexity. 

While complexity implies an increase in dimensionality, abstraction im
plies neglecting or grouping dimensions in order to concentrate on a higher 
level of generality. Moreover, complexity supposes an analysis on a small 
scale - with a lot of details interacting with one each other (e.g. Bar-Yam, 
1997; Singer, 2003), while abstraction supposes an analysis on a large scale 
- with a mostly focussed perspective. 

As I previously stressed, models are vehicles for building both abstrac
tion and complexity. In training students, we could make more explicit these 
two aspects of modelling by differentiating between models and simulations. 
Models seek to explain complex systems through abstracting characteristics, 
while simulations seek to describe situations by offering rich multi-sensory 
stimuli that try to recreate the complexity of the situation. As Schwartz 
(1998) underlines, given this difference in purpose, the makers of models 
seek to limit the complexity of their products so as to make the underlying 
causal and/or structural mechanisms more salient. In contrast, designers of 
simulations tend to incorporate as much of the richness and complexity of 
the referent as possible to make the simulation a rich perceptual experience. 
In the educational context, this significant difference in goals points to quite 
different roles for models and simulations. In the elementary grades, the em
phasis is on having the students exposed to a variety of phenomena. For ex-
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ample, simulations are helpful in checking a large number of particular 
cases, with the purpose of training the ability to discover patterns. Secondary 
students, on the other hand, need to learn more about correlations and under
lying causes, without the overlay of complexity that can so readily make 
them unable to select the essential. Both models and simulations could be 
used as interactive tools to provide evidence of how changing a parameter 
might influence the components of a system. 

3. WHAT LEVEL OF REPRESENTATION? BE
TWEEN CONCRETE AND ABSTRACT 

Lesh and Doerr (2003) define models as conceptual systems that are ex
pressed using external notation systems and are used to construct, describe, 
or explain the behaviours of other systems. As conceptual systems, models 
could have a physical concrete representation or could be abstract. What is 
the relationship between these two categories of systems during the period of 
schooling in terms of levels of abstraction? Abstracting is a developmental 
process supposing a gradual progression from operating with concrete ob
jects to operating with symbols and symbol systems. Constructing abstrac
tion implies reorganising previous knowledge by incorporating it within new 
systems, which are hierarchically structured. The progression in abstraction 
of the mathematical concepts learned during school and the progression in 
abstraction of the models for those could be seen as non-linear functions of 
time. Fig. 3.3,2-1 represents two generic curves for these functions and their 
interaction. 

Time^ 

Primary Lower Upper Posi 

second aiy secondary secondary 

Figure 3.3.2-1. The progression in abstraction for systems of knowledge and for the models 
used to facilitate their understanding 
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The mathematical conceptual systems are "slowly" progressing in ab
straction over time, but are "strongly" progressing in complexity. As a con
sequence, in primary grades, the models used by the teacher and the models 
developed by the students have to be concrete, they have to allow and stimu
late manipulative activities. Later on, in order to tackle the increasing com
plexity of the concepts to be learned, more abstract models that simplify 
some characteristics of the phenomena under study might be brought into the 
teaching and learning practice. 

The human mind uses models to make sense of other systems. Models 
are basic instruments for understanding the world we live in. Consequently, 
the training for building models has to start very early in school (e.g. 
Usiskin, 2005). It supposes two main components: offering powerful models 
for learning (powerful representations for the concepts the child has to inter
nalise) and coaching the child in modelling, starting with the simplest prob
lems. Even more, in consensus with the previous sections, to optimise learn
ing, the teacher should develop exploratory model-building environments. 
From this perspective, it is significant to identify those models - powerful 
representational devices - that are able to foster learning. To enhance their 
efficiency, the models for teaching and learning should track the develop
ment of skills from concrete sensory-motor actions to abstractions. Instruc
tion in a model-building environment that follows a gradual progression of 
abstracting creates conditions for transferring knowledge and understanding 
within the purpose of building new knowledge. 

4. WHAT IS THE GOAL? AN APPLICATION: 
MODELLING THE PRACTICE OF COMPRE
HENSIVE LEARNING 

A correct building up of abstraction in students' minds supposes automa
tised access to fundamental basic elements of that abstraction - a kind of a 
proto-history of abstraction as a dynamic process. The dynamics of this 
process are not a simple progression; on the contrary, there are pitfalls, gaps, 
and discontinuities, as well as spurts, jumps and smooth transitions. Studies 
focused on the way skills are developed in children and adults show discon
tinuity, rather than a simple cumulative or progressive process. Spurts and 
regressions are frequently recorded, until the acquisition of a skill moves to a 
steady state. Even in the steady state, there are fluctuations (e.g. Fisher & 
Yan, 2002). With optimal support, the pattern of individual evolution of a 
skill shows a non-linear progressive variation. Such a variation is generically 
represented in Fig. 3.3.2-2.a. 
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Following classroom observations and other research (Singer, 2001, 
2003), it seems that, to optimise the process of mastering a specific skill, the 
training should offer a variation of tasks that mirror the skill development 
and cover a range around the hypothetical optimal non-linear evolution. To 
be more specific, it is necessary to systematically reinforce the lower levels 
of a skill and, at the same time, tasks belonging to higher levels might be 
introduced. An adequate dosage of these anticipatory tasks challenges the 
development, contributing to the emergence of an over-learning phenome
non. Fig. 3.3.2-2.b offers a representation for the range covered by an ade
quate training aiming to optimise the development of a specific skill. 

Time 

Figure 3.3.2-2.: a) Pattern of variation in developing a skill; 
b) Pattern of variation in organising the content of training 

An example might give a better idea about the range of training while 
learning a new concept. The example is excerpted from a lesson on solving 
linear inequations in grade 9 (15 - 16 years old). The starting point was the 
following problem: 

Two taxis companies have the following offers: 
QUICK TAXI Initial cost 6 € plus 1.3 € per 1km. 
SPEED TAXI Initial cost 3 € plus 1.9 € per 1km. 
What is the best choice for a journey of: a) 3 km? b) 10 km? 

Snapshots into the classroom activities show the next sequences: 
The teacher invited the students to work in groups with the following 

purposes: to discuss how the problem could be solved (brainstorming, with
out any suggestions from the teacher); to identify the mathematical objects 
involved in the task; to explore ways to solve the problem by examining par
ticular cases and analogous situations; to express the data using variables. In 
this phase, the focus is on manipulating and evoking. 
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In the next sequence, the students adopted various ways to solve the 
problem. Some found an appropriate model for the problem (as a linear ine
quation), some guessed and checked the solutions by trial and error on par
ticular cases, some used graphic representation for the functions discovered 
during the study. Based on the students' observations, the teacher discussed 
the degree of generality of each solution. In this phase, the focus is on the 
passages between concrete and abstract. 

Next, the students checked the results obtained in the previous phases, 
analysed and described the behaviours of the two functions brought to atten
tion during the problem-solving process, and expressed their connections in 
mathematical terms. In this phase, the focus is on the complexity of the 
mathematical phenomena involved. 

The context was then extended by varying some parameters. In this idea, 
the teacher used the same problem to devise other tasks connected with ana
lysing the variation of a linear function, such as "What would happen if the 
two companies double the starting costs/ increase the costs per kilometre by 
0.5 €?". The students were stimulated to vary some data and to analyse the 
results, and then, to devise their own new problems that could be solved us
ing similar patterns. In this phase, the focus is on anticipating further devel
opments. 

In the lesson described above, while the majority of the tasks were con
centrated at the standard level, there were some in the proximal vicinity, 
some grounded in previous levels - supposed already internalised - and oth
ers, anticipatory, belonging to the future levels intended to be reached by the 
students. As with progressing in developing a skill, the core of the tasks, in 
number and structure, moves from the previous basic levels to the antici
pated levels. The process of abstracting followed two interacting pathways, 
one from the external environment to internal representation and the other 
from concrete objects to standard symbolic representation, passing through 
various unconventional symbolic representations. The complexity of infor
mation acquired through learning is added to this developmental pattern that 
underlies the progression in abstracting. 

5. WHAT ARE THE BENEFITS? OPENING THE 
WAY TO BUILD COMPETENCIES 

It might be argued that one of the most important outcomes of a model-
building learning environment is the self-development of competencies. 
Competencies can be defined as structured sets of knowledge and skills ac
quired through learning, which allow the identifying and solving of problems 
that are characteristic for a certain field of activity, in a variety of contexts 
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(Singer, 1999). In the attempt to model ill-structured real-life problems, the 
students might develop the following general competencies in mathematics: 
• Identifying relationships among the mathematical concepts 
• Interpreting quantitative, qualitative, structural and contextual data in

cluded in mathematical statements 
• Using algorithms and mathematical concepts to characterise a given 

situation locally or globally 
• Expressing the quantitative or qualitative mathematical features of a con

textual situation 
• Analysing problem situations to discover strategies to optimise solutions 
• Generalising properties by modifying the original context or by improv

ing or generalising algorithms. 

In order to be developed in students, these competencies might be par
ticularized at each specific grade and level. What is to unravel, from the per
spective of this article, is that complexity and abstraction interact in develop
ing each competence because they are deeply involved in building the 
mathematical knowledge. On the one hand, this knowledge embodies both 
complexity and abstraction and, on the other hand, acquiring them implies 
modelling both complexity and abstraction. A model-building learning envi
ronment is the way to solve the paradox. 
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Abstract: First, we summarise some studies on students' overuse of the linear model 
when solving problems in various domains of mathematics, showing to what 
extent they are led by routine behaviour in mathematical modelling. Second, 
we discuss a teaching experiment that aimed at enabling 8* graders to adap-
tively choose between a linear, a quadratic or a cubic model while solving ge
ometry problems. The results show that, after the experiment, the students ap
plied the linear model less automatically, but tended to switch back and forth 
between applying it either "everywhere" or "nowhere", indiscriminately. 

1. INTRODUCTION 

Contemporary reform documents and curricula in most countries more or 
less explicitly assume that one of the most important goals of mathematics 
education is that students gain the competence to make sense of everyday-
life situations and complex systems stemming from our modem society, 
which can be called "modelling competencies". In this chapter, we argue 
why such modelling competences necessarily imply that students have adap
tive rather than routine expertise. Hatano (2003, p. xi) describes adaptive 
expertise as "the ability to apply meaningfully learned procedures flexibly 
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and creatively" and opposes it to routine expertise, i.e. "simply being able to 
complete school mathematics exercises quickly and accurately without 
(much) understanding". 

The adaptive level of competency refers to a modelling process wherein 
the mathematical interpretation of a problem, the selection of an appropriate 
model, and/or the interpretation of the result is not straightforward or trivial 
and wherein solutions may involve several modelling cycles in which de
scriptions, explanations and predictions are gradually refined, revised or re
jected (Lesh & Doerr, 2003; Niss, 2001; Verschaffel et al , 2000). A non-
adaptive problem-solving process goes directly from superficial elements in 
the text to computations, without passing through a "situation model" of the 
problem context (Nesher, 1980; Verschaffel et al., 2000). It involves only 
routine computational expertise combined with cue-spotting, and thus does 
not constitute modelling in any real or deep sense. For instance, an elemen
tary school pupil who immediately solves the following problem "Pete lives 
at a distance of 9 km from school and Ann lives at a distance of 5 km from 
school how far do they live from each other?'' by either adding (9 + 5 = 14 
km) or subtracting ( 9 - 5 = 4 km) the two given numbers (without acknowl
edging the possibility of other alternatives), demonstrates routine expertise, 
whereas a pupil who, after having generated, explored and compared differ
ent mathematical models, answers that the solution can be any number be
tween (9 + 5 =) 14 km and (9 - 5 =) 4 km demonstrates adaptive expertise. 

This chapter focuses on one of the clearest examples of non-adaptive mod
elling behaviour, namely students' tendency to over-rely on the proportional or 
linear model when solving mathematical problems. Numerous documents and 
research reports on a wide variety of mathematical domains, and dealing 
with students of diverse ages, mention this tendency to routinely apply the 
proportional model irrespective of the mathematical model(s) appropriate to 
the problem situation. For example, many upper secondary students routinely 
answer the following unfamiliar probabilistic problem "The probability of 
getting a six in 1 roll with a die is 1/6. What is the probability of getting at 
least one six in 2 rolls?'' by applying the direct proportionality model (2 x 
1/6 = 2/6). Adaptive expertise for such a problem could consist of writing 
down all possibilities that can occur in 2 die rolls and counting all cases 
where there is at least a six. Doing this would unmask the inappropriateness 
of the dkect proportionality model and lead the student to a correct answer. 
Empirical evidence for students' overgeneralisation of the linear model in 
the domain of probability can be found in Van Dooren et al. (2003), 

Recent research (Van Dooren et al., 2(X)5; Verschaffel et al., 2000) has 
shown that current mathematics instruction practices can encourage students 
to acquire (at least initially) a routine expertise instead of an adaptive one. 
Accordingly, students tend to overgeneralize the validity and relevance of 
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some well-trained schemes, and begin to transfer them to settings to which 
they are neither relevant nor valid. In this respect, the linear model seems to 
have a special status because it is prominently present in students' minds. Van 
Dooren et al. (2005) analyzed 2"̂  to 8**̂  graders' solutions of linear and non
linear arithmetic problems (e.g., ''Ellen and Kim are running around a track. 
They run equally fast but Ellen started later. When Ellen has run 5 rounds, 
Kim has run 15 rounds. When Ellen has run 30 rounds, how many has Kim 
run?'''), in order to determine when the tendency to routinely apply the linear 
model originates and how it develops with students' increasing age and educa
tional experience. It was found that the skills to correctly solve linear problems 
considerably increased with age, from 53% correct answers on this type of prob
lems in 3̂ ^ grade to 93% in 8* grade. Most learning gains were made between 
3^ and 5* grade. In addition, it was shown that the tendency to overrely on lin
ear methods in non-linear situations developed remarkably parallel with these 
emerging proportional reasoning skills. In 3̂ ^ grade, 30% of a series of non
linear problems were erroneously solved linearly, and this tendency increased 
considerably until 51% in 5* grade (and decreased afterwards to 22% in 8*̂  
grade). This inverted U-shaped evolution of the unwarranted linear answers was 
found for all non-linear problems, but there were some minor differences ac
cording to the specific form of non-linearity in the mathematical structure im
plicit in the problems. It can be concluded that students - while they acquire 
linear reasoning skills by being trained in solving "typical"' linearity problems -
start to overgeneraUse linear models and learn to apply them on the basis of su
perficial problem characteristics. This tendency was already present in the T^ 
grade, increased up to Grade 5, before slightly decreasing from Grade 6 to 8. 

In the next paragraphs, we focus on the routine application of proportion
ality in one specific case. Students, and even adults, tend to think that if the 
lengths of a figure are multiplied by factor r to produce a similar figure, the 
area and volume will also be multiplied by factor r, whereas areas and vol
umes are, respectively, multiplied by / and ? (National Council of Teachers 
of Mathematics, 1989; Tiemey et al., 1990). 

2. IN SEARCH OF THE ROOTS OF STUDENTS' 
IMPROPER PROPORTIONAL REASONING IN 
GEOMETRY 

In recent years, the geometrical misconception that the area and volume 
of a figure enlarge r times when a figure is enlarged r times, has been exten
sively studied. In a series of experimental studies by De Bock et al. (1998, 
2002b), large groups of 12 - 16-year old students were administered paper-
and-pencil tests with proportional and non-proportional word problems 
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about lengths, perimeters, areas and volumes of different types of figures. 
For example, they used the following non-proportional item about the area 
of a square: "Farmer Carl needs approximately 8 hours to manure a square 
piece of land with a side of 200 m. How many hours would he need to ma
nure a square piece of land with a side of 600 m?" The vast majority of stu
dents (i.e. more than 90% of the 12-year olds and more than 80% of the 16-
year olds) failed on this type of problem because of their alarmingly strong 
tendency to routinely apply linear methods. Even with considerable support 
(such as the request to make a drawing of the problem situation before solv
ing the problem or the provision of a ready-made drawing on plain or 
squared paper), only very few students made the shift to correct, non-linear 
responses. It was found that the request to make a drawing was often ne
glected and the ready-made drawings were seldom effectively used. In cases 
when students made a drawing, this was often of a low representational qual
ity and therefore not helpful for finding the correct solution. The only ex
perimental manipulation that had some meaningful impact on students' re
sponses was rephrasing the missing-value problems to a so-called compari
son format (e.g., for the earlier mentioned item: 'Today, farmer Carl ma
nured a square piece of land. Tomorrow, he has to manure a square piece of 
land with a side being three times as big. How much more time would he 
approximately need to manure this piece of land?"). In this study, the num
ber of correct answers increased from 23% in the group that received miss
ing-value problems to 41% in the group that received comparison problems. 
When, as a consequence of the provided help in these studies, students dis
covered that some of the problems are not linear, remarkably they sometimes 
started to apply non-linear methods to linear problems too. These students 
replaced one type of routine behaviour ("proportionality anywhere") by an
other one ("proportionality nowhere"), but didn't show any sign of adaptive 
expertise. 

While the previous studies showed to what extent students' routine use of 
linearity is affected by various characteristics of the task, they did not pro
vide adequate information about the thinking processes and modelling com
petency underlying students' improper proportional reasoning. Therefore, De 
Bock et al. (2002a) made a shift in their research methodology from collec
tively testing large groups of 12-16-year old students to individual in-depth 
interviews with a limited number of students. During these interviews, stu
dents' solution processes were revealed through a number of well-specified 
questions by the interviewer with respect to one single non-linear application 
problem, as well as through their reactions to subsequent (increasingly 
stronger) forms of help. This research revealed both students' inclination 
towards routine problem solving as well as conceptual shortcomings and 
misconceptions: 
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The majority of the students used a proportional model in a spontaneous, 
almost intuitive way (in the sense of Fischbein, 1987) being unaware of 
their choice for a proportional model, while others really were convinced 
that linear functions are applicable "everywhere" or for this situation in 
particular; 
Many students showed particular shortcomings in their geometrical 
knowledge (e.g., the misbelief that the concept of area only applies to 
regular figures, or that a similarly enlarged figure is not necessarily 
enlarged to the same extent in all dimensions); 
Many students had inadequate habits, beliefs and attitudes towards solv
ing mathematical word problems in a school context (for example, the 
belief that drawings are not helpful, or that the first solution is always the 
best), which proved to be a fertile soil for a superficial or deficient mod
elling process. These factors often prevented students from unmasking 
their proportional solution as inadequate, and discovering the correct so
lution to the problem. 

3. TEACHING FOR ADAPTIVE EXPERTISE 

The next stage of the research program involved the design, implementa
tion, and evaluation of a learning environment aimed at enabling students to 
adaptively choose between a linear, quadratic and cubic model in the context 
of enlargements and reductions of geometrical figures. 

A series of 10 one-hour experimental lessons was created for use with 13 
- 14-year old students. In the development of the lesson series, the results 
and the conclusions of the earlier studies discussed above were taken into 
account. Moreover, the development of the learning environment was 
strongly inspired by (1) the principles of realistic mathematics education 
(e.g., Gravemeijer, 1994): using realistic problem situations aimed at chal
lenging students' mathematical (mis)conceptions and beliefs, rediscovery of 
mathematical notions; (2) building on students' informal knowledge, instruc
tional techniques that enhance higher-order thinking (e.g., articulation and 
reflection); and (3) using multiple representations of the learning contents. 
The following topics were successively addressed: recognizing and con
structing similar figures/objects, proportional relations and their properties, 
linear growth of the lengths and perimeter in similar figures, quadratic 
growth of the area and cubic growth of the volume. The lesson series ended 
with an integrative project about the "Life and Work of the Gnomes" 
(Poortvliet & Huygen, 1976), in which all learnt contents could be applied in 
an attractive, challenging and authentic context. Examples of learning activi-
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ties from the experimental lessons (as well as a more extensive description 
of the results of this study) can be found in Van Dooren et al. (2004). The 
learning gains were assessed by means of a word problem test consisting of 
proportional and non-proportional items. This test was administered before 
the intervention (pretest), after the intervention (posttest), and three months 
afterwards (retention test). 

A group of eighteen 13-14-year old students followed the experimental 
lessons. A significant improvement in students' performances on the non-
proportional items was observed from pretest (29.2%) to posttest (61.1%). 
This was followed by a non-significant decrease in the performances from 
posttest to retention test (to 50.0% correct answers). Contrary to the results 
for the non-proportional items, the score of the students on the proportional 
items decreased from 83.3% correct answers on the pretest to 58.3% on the 
posttest, and went further down from posttest to retention test (although not 
significantly) to 52.8%. An additional qualitative analysis of the answers 
revealed first of all that on the pretest, about 70% of all the solutions on the 
non-proportional items could indeed be characterized as linear. This number 
of unwarranted linear answers strongly decreased in the posttest to about 
18%, while in the retention test, the percentage raised again to about 30%. 
But students who no longer applied linear solutions to solve non-linear prob
lems, did not always perform better than before. In the posttest and retention 
test they made errors in applying non-linear solutions on these non-linear 
problems (such as confusing area and volume, just taking the square of one 
of the given numbers). The qualitative analysis also confirmed the overgen-
eralisation effect: while on the pretest only 13% of all the solutions to linear 
items could be characterised as an application of non-linear strategies, this 
number raised to 36% on the posttest and retention test. A careful analysis of 
the videotapes of the experimental lessons supported these conclusions. Cer
tain observations indicated that non-linear relations and the effect of 
enlargements on area and volume remained intrinsically difficult and coun
terintuitive for many students. For example, there were students who at the 
same time understood that the area of a square increases 4 times if the sides 
are doubled in length (since the enlargement of the area goes "in two dimen
sions"), while they had difficulty in understanding why this does not hold for 
the perimeter (which also increases in two "directions"). 

We can hardly argue that the lesson series achieved its goal. After the 
lessons, the students still experienced serious difficulties in knowing which 
model they should use in which situation. Although the dominance of the 
linear model was broken, many students still continued to rely on superficial 
cues (such as key words or phrases in the problem statement) to decide 
which mathematical operations to apply. Such a process is far removed from 
the envisaged adaptive modeling process, in which every phase of the mod-
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eling cycle is adequately and thoroughly worked through. The experimental 
lessons were unable to develop in the students a deeper understanding of 
proportionality and non-proportionality, and a disposition to switch adap-
tively between proportional and non-proportional models in accordance with 
the problem situation. 

4. CONCLUSION 

The different studies that were briefly reported in this chapter have em
pirically demonstrated that students routinely rely on linear models and that 
this routine behaviour leads them to fail on problems that cannot be appro
priately modelled linearly. The question arises why the linear model is so pre
dominant in students' minds. Both psychological and educational factors 
seem to be at the roots of this phenomenon. First, linear models have a 
strongly intuitive nature and are - from early childhood on - omnipresent in 
our everyday-life experience. Second, the effect is doubtlessly exacerbated 
by usual traditional teaching, giving no attention to ideas of modelling but 
grouping problems together with similar solution methods, seldom using 
counterexamples for contrast, assuming an unnaturally "cleaned-up" world, 
sticking to "easy" numbers, etc. 

By its very nature, mathematical modelling requires adaptive expertise. It 
involves a fluent and flexible selection of mathematical models related to 
different aspects of a real situation and not the automatic application of par
ticular well-trained computational schemes in a straightforward way. Con
versely, the modelling approach - as a key part of a real mathematical dispo
sition - can promote adaptive expertise in a diversity of learners. Once more, 
the results of the reported studies made clear that the application of a model
ling perspective can hardly be reached by means of an experimental manipu
lation or a short-term intervention, but needs a long-term and maintaining 
strategy (Blum & Niss, 1991; Lesh & Doerr, 2003; Verschaffel et al., 2000). 
In this respect, it might be appropriate to introduce the modelling perspective 
much earlier in the child's education (see, e.g., Usiskin, this volume, Chapter 
3.3.5) in order to prevent - rather than remedy - routine behaviour and to 
continue this preventive effort throughout the mathematics curriculum. 

REFERENCES 

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling applica
tions, and link to other subjects - State, trends and issues in mathematics education. Edu
cational Studies in Mathematics 22, 37-68. 



248 Chapter 3,3.3 

De Bock, D., Van Dooren, W., Verschaffel, L., & Janssens, D. (2002a). Improper use of lin
ear reasoning: An in-depth study of the nature and irresistibiUty of secondary school stu
dents' errors. Educational Studies in Mathematics 50, 311-334. 

De Bock, D., Verschaffel, L., & Janssens, D. (1998). The predominance of the linear model in 
secondary school pupils' solutions of word problems involving length and area of similar 
plane figures. Educational Studies in Mathematics 35, 65-83. 

De Bock, D., Verschaffel, L., & Janssens, D. (2002b). The effects of different problem pres
entations and formulations on the illusion of linearity in secondary school students. Mathe
matical Thinking and Learning 4{\\ 65-89. 

Fischbein, E. (1987). Intuition in Science and Mathematics: An Educational Approach. 
Dordrecht: D. Reidel. 

Gravemeijer, K. (1994). Developing Realistic Mathematics Education. Utrecht, The Nether
lands: Freudenthal Institute. 

Hatano, G. (2003). Foreword. In A. J. Baroody, & A. Dowker (Eds.), The Development of Arithme
tic Concepts and Skills (pp. xi-xiii). Mahwah, NJ: Lawrence Erlbaum Associates. 

Lesh, R., & Doerr, H.M. (Eds.). (2003). Beyond Constructivism. Models and Modeling Per
spectives on Mathematical Problem Solving, Learning and Teaching. Mahwah, NJ: Law
rence Erlbaum Associates. 

National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards 
for School Mathematics. Reston, VA: Author. 

Nesher, P. (1980). The stereotyped nature of school word problems. For the Learning of 
Mathematics 7(1), 41-48. 

Niss, M. (2001). Issues and problems of research on the teaching and learning of applications 
and modelling. In J.F. Matos, W. Blum, S.K. Houston, & S.P. Carreira (Eds.), Modelling 
and Mathematics Education. ICTMA 9: Applications in Science and Technology (pp. 72-
89). Chichester: Ellis Horwood. 

PoortvUet, R., & Huygen, W. (1976). Leven en Werken van de Kabouter. [Life and Work of 
the Gnomes]. Houten: Holkema <& Warendorf. 

Tiemey, C, Boyd, C, & Davis, G. (1990). Prospective primary teachers' conceptions of area. 
Proceedings of the 14th Conference of the International Group for the Psychology of 
Mathematics Education, Vol. 2 (pp. 307-314). Oaxtepex, Mexico. 

Van Dooren, W., De Bock, D., Depaepe, F., Janssens, D., & Verschaffel, L. (2003). The illu
sion of linearity: Expanding the evidence towards probabilistic reasoning. Educational 
Studies in Mathematics 53, 113-138. 

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2004). Remedy
ing secondary school students' illusion of linearity: A teaching experiment aiming at 
conceptual change. Learning and Instruction 14(5), 485-501. 

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not eve
rything is proportional: Effects of problem type and age on propensities for over-
generalization. Cognition and Instruction 23(1), 57-86. 

Verschaffel, L., Greer, B., & De Corte, E. (2000). Making Sense of Word Problems. Lisse, 
The Netherlands: Swets & Zeitlinger. 



Chapter 3.3.4 

ASSESSING THE "PHASES" OF 
MATHEMATICAL MODELLING 

Ken Houston 
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Abstract: The seven-phase modelling cycle is well known and has been used success
fully for over twenty years as a heuristic for teaching modelling. Assessment 
methods used over this period are reviewed and current research that investi
gates the use of multiple choice questions to assess the individual phases is re
ported. 

1. INTRODUCTION 

The seven phases or stages of the modelling cycle are often given as: 

Table 3.3.4-1. Phases of the modelling cycle (Penrose, 1978) 

1. specify the real problem 
3. Specify the math problem 
5. Interpret the math solution 
7a. Revise 

2. Create a mathematical model 
4. Solve the math problem 
6. Validate the model 
7b. Report 

In the ten-year period centred on 1980, many UK institutions of higher 
education were beginning to include mathematical modelling in their under
graduate programmes. The biennial series of International Conferences on 
the Teaching of Mathematical Modelling and Applications (ICTMA) was 
getting under way and lecturers were telling war stories and writing about 
their new courses. In Section 2, two of these early courses are described and 
their assessment criteria are mapped to the seven phases of the modelling 
cycle. By the early 1990s, people were becoming more concerned to estab
lish the reliability and validity of their assessment instruments and work by a 



250 Chapter 3,3 A 

UK Assessment Research Group (ARG) is reported in Section 3. Ten years 
later some members of ARG were developing and testing methods of "mi
cro-assessment" - the use of multiple choice questions in assessing model
ling abilities. This work and some advantages are described in Section 4. 

2. HOLISTIC ASSESSMENT 

In this section two of the papers presented at the first ICTMA conference 
held in 1983 at Exeter and published in Berry, Burghes, Huntley, James and 
Moscardini (1984) are reviewed. The mathematical modelling movement 
was well under way and the organisers of ICTMA-1 believed it was time for 
proponents to get together for an international discussion. This review will 
give the reader some insights into the state of the art of assessing mathemati
cal modelling at that time. The emphasis was on "assessing the whole thing" 
although most authors did recognise that the different phases of the model
ling cycle, taken in groups, should be apportioned different fi-actions of the 
total mark, with the details of the apportionment reflecting the importance 
attributed to each group by the particular author. 

Hall (1984), in his paper The Assessment of Modelling Projects, suggests 
that the modelling skills of students should be assessed in three groups -
Content, Presentation dind Drive. The details of Hall's three groups are given 
in Table 3.3.4-2, with their mapping to the phases of the cycle, which are 
given in Table 3.3.4-1. 

Hall (1984, p. 145) writes, "The first group collects together the more 
technical aspects of modelling, the second is concerned with the written pro
ject itself while the third allows for originality and management." 
Item 6 implies that "desired objectives" are specified so that the modeller 
knows what is to be achieved by manipulating "the mathematical expres
sions", but it is interesting that Hall did not mention explicitly phase 3: 
"Specify the mathematical problem". And items 10 and 11, Hall's "ability" 
items that allow for originality and for research, must be present to enable 
the enterprise to make any headway at all. 

Table 3.3.4-2. Hall's items and their mapping to the Phases 

Hairs items 
Content 
1. Ability to handle and make sense of natural or experimental data 
2. Determination of variables and parameters which describe observa

tion 
3. Recognition of patterns in data and in processes 
4. Generation of mathematical expressions to summarize observations 

Phases 

1 
2 

2 
2 
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Hall's items 
5. Ability to set up a model representing the system and relating its 

significant variables 
6. Technical ability to manipulate the mathematical expressions of the 

model to achieve desired objectives 
Presentation 
7. Representation and interpretation of data 
8. Translation of information into and out of pictorial form 
9. Ability to communicate clearly, especially in writing 
Drive 
10. Ability to identify situation and to formulate problems 
11. Abihty to consult books etc. for additional techniques or information 
12. Understanding of when to change a model, method or objective in 

discussing a problem 
13. Recognition of what constitutes a solution - evaluation of success of 

models 
14. Ability to work effectively in a group 

Phases 
2 

3 and 4 

7b 
7b 
7b 

1 and 3 
1 and 4 

7a 

5 and 6 

1 thru 7 

The number of items that map to phase 2 is an indicator of the complex 
nature of the task: "create a mathematical model". It has long been recog
nised that this is the most difficult phase of the cycle, involving making as
sumptions to simplify the situation, identifying variables and parameters and 
determining relationships between them. 

The Presentation items make it clear that "communicating results" has 
always been an essential component of modelling, while item 14, "ability to 
work effectively in a group", indicated that modelling was usually thought of 
as a group activity. This is still the case, but the difficulties associated with 
assessing the working of a group and attributing individual marks to the 
members of a group have led many teachers to abandon group projects as 
high stakes assessments such as are found in the final year of a programme. 
Group working is a feature of "the way of life" of a professional mathemati
cian and so should be part of a student's learning experience, and many 
teachers include this in the early years. The skills of good communication 
and effective group work are desirable graduate attributes and therefore help 
to make modelling an excellent curriculum device for preparing students for 
employment. This idea is explored fiilly by Challis and Houston (2000) and 
by Challis, Gretton, Neill and Houston (2002). The assessment of these skills 
has been the subject of much reflection and research, some of which is de
scribed below. 

Hall also suggests a product model for combining the marks awarded to 
the three groups, rather than an addition model. This was an interesting in
novation that did not catch on, probably because a zero score for one group 
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would result in a zero score overall, thus negating the (possibly) good work 
in the other groups. A similar idea has been proposed again more recently by 
Gibbs (2001). In his suggestion, in di product model for combining marks 
certain assessment tasks are scored " 1 " if they are satisfactory or "0" if they 
are not. The idea here is that these tasks are "course requirement" tasks and 
the omission of just one task results in failure to meet all the learning out
comes. They are included (a) to ensure that the student tackles them and (b) 
to provide a vehicle for detailed formative assessment comments. Gibbs sug
gests elsewhere (Gibbs and Simpson, 2002) that "feedback without grades 
[on tasks that are * course requirements'] has a more positive impact on sub
sequent performance than grades, or even than feedback and grades com
bined." 

The paper by Berry and Le Masurier (1984) is the second to be reviewed. 
These authors describe a module called Mathematical Models and Methods 
offered to students by the Open University in the UK. Despite this title, stu
dents were indeed required to engage in modelling in addition to studying 
models and methods. Modelling was assessed using two written assignments, 
the first of which, by concentrating only on phases 1 to 3, was to ensure that 
the student had started work and was progressing in a direction likely to 
achieve success. The second assignment contributed 80% and required all of 
the phases. The published marking scheme is arranged in six groups of items 
and probably relates more closely to the seven phases than Hall's items. This 
is not unexpected since it was the Open University that first proposed the 
seven-phase cycle (Penrose, 1978). The items used are given in Table 3.3.4-
3 with the mapping to the phases. 

Table 3.3.4-3. Berry and Le Masurier's items and their mapping to the Phases 

Berry and Le Masurier's items 
Abstract 
1. Statement of the problem to include both the starting point and 

the actual conclusion reached 
2. Significance of problem 
3. Sources of data 
Formulation 

4. Assumptions 
5. SimpHfications 
6. Important features 
Initial model 

7. Variables defined 
8. Model (following on from assumptions) and its solution 
9. Interpretation of solution and criticism of initial model 

Phases 

1 

1 
4 and/or 6 

2 
2 
2 

2 
2 and 4 
5 and 6 



3.3.4, ASSESSING THE 'THASES " OF MA TH MODELLING 253 

Berry and Le Masurier^s items 
\Data 
10. How collected 
11. Relevance of data 
12. Presentation of data (e.g. diagrams, graphs, etc.) 
Revisions to the model 
13. Revised models based on criticism 
14. Interpretation and criticism of revised models 
15. Criticism of final model 
Conclusions 
16. Brief summary of the main results of the modelling 

Phases 

4 and/or 6 
4 and/or 6 

7b 

7a 
5 and 6 

6 

7b 

Items 3, 10, and 11, which relate to the source, collection and relevance 
of data could map to either or both of the "solve" and "validate" phases, de
pending on the nature of the problem and the models developed. Each of 
items 9 and 14 include both the "interpretation" and "validation" phases. 
Later developments, described below, indicate that it is more desirable to 
separate these into two items. 

3. DEVELOPING ROBUST ASSESSMENT CRITE
RIA FOR PRO JECTS 

About a decade later a number of university teacher/researchers formed 
an ad hoc group, the UK Assessment Research Group (ARG), to review the 
assessment schemes currently in use for the assessment of undergraduate 
project work in mathematics. A product of this work was a set of robust cri
teria-based assessment procedures. A by-product was the development of an 
extremely effective means of peer-assisted professional development in as
sessment. The ARG story is told by Haines and Houston (2001) and this pa
per contains references to the four reports written by ARG and published in 
limited print runs, and other pertinent publications by the Group. Much of 
the thinking and products of ARG are included in the resource pack Mathe
matics Teaching and Learning - Sharing Innovative Practices (Haines and 
Dunthome, 1996). 

The assessment criteria developed for the "modeling" aspects of model
ling projects comprise 11 items which can be mapped very closely to phases 
1 to 6 and 7a of the modelling cycle, and 9 items dedicated to written reports 
(phase 7b). Since many courses also required students to report in other me
dia such as an oral presentation or a poster, items suitable for these activities 
were also developed and tested. The great importance attached to good 
communication skills is emphasised by the attention given to phase 7b. As-
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sessment criteria were also developed for projects in pure mathematics, sta
tistics, and historical/educational investigations. Table 3.3.4-4 gives the 
ARG items for modelling and written communication, with the mapping to 
the 7 phases. 

Each should be prefixed by "The student..." 

Table 3.3.4-4. ARG's items and their mapping to the Phases 

1 ARG Items 
Modelling 
1. States objectives of task 
2. Identifies the main features of the task 
3. Makes simphfying assumptions 
4. Identifies possible variables of interest 
5. Explores relationships and develops a mathematical model 
6. States the mathematical problem 
7. Finds solution 
8. Interprets solution 
9. Validates solution 
10. Shows evidence of research 
11. Demonstrates initiative, determination, flair 

Communication skills (written) 
12. Gives a free standing abstract or summary of the report 
13. Gives an introduction to the report 
14. Structures the report logically 
15. Makes the structure of the report verbally expHcit 
16. Demonstrates a command of the appropriate written language 
17. Complements logical structure with visual presentation and layout 
18. Makes appropriate use of references and appendices 
19. Gives a concluding section in the main report 
20. Gives a well reasoned evaluation 

Phases 

1 
2 
2 
2 

2 
3 
4 
5 
6 
2 

l t o 6 
and 7a 

7b 
7b 
7b 
7b 
7b 
7b 
7b 
7b 
7b 1 

In the ARG publications each item has a short descriptor which effec
tively describes a "good performance"; these are omitted here. In use, each 
item would be scored from "0" (not shown) to "4" (high) on an integer scale 
and a teacher's ability to make a reliable judgement of a score is enhanced 
through professional development and experience. These item scores can 
then be combined or used in a suitable way to give a holistic score for the 
project. "A suitable way" is one that reflects the intended learning outcomes 
of the module, and different teachers may wish to give more or less weight 
to particular items at different times or in different contexts. 
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4. MICRO ASSESSMENT 

Recently Haines, Crouch and Davis (2000) published a seminal paper on 
developing and testing multiple choice questions (MCQs) that examine most 
of the phases individually. This initial work was extended by Haines, Crouch 
and Davis (2001), Haines, Crouch and Fitzharris (2003), Haines and Crouch 
(2001), Houston and Neill, (2003a, 2003b) and Izard, Haines, Crouch, Hous
ton and Neill (2003). 

MCQs were written to test eight modelling skills of a student, which map 
to the earlier phases. Details are given in Table 3.3.4-5. 

Table 3.3,4-5. MCQ-tested abilities and their mapping to the Phases 

Modelling abilities 
1. Making simplifying assumptions 
2. Clarifying the goal 
3. Formulating the problem 
4. Assigning variables, parameters and constants 
5. Formulating mathematical statements 
6. Selecting a model 
7. Interpreting graphical representations 
8. Relating back to the real situation 

Phases 
1 and 2 
1 and 2 
2 and 3 
2 and 3 

3 
2 
5 

5 

The evidence of this research suggests very strongly that it would be 
beneficial, when teaching modelling, to spend some time practising these 
skills one at a time. Thus a number of exercises concentrating only on, for 
example, "making simplifying assumptions" could be given to students, and 
so on. Students tended to score least well on "clarifying the goal" an on "se
lecting a model" from a list of possible equations. Matching an equation to a 
graph and vice versa proved difficult. 

5. CONCLUSIONS 

Assessment criteria used over a twenty-year period have been reviewed 
and mapped to the seven phases of the modelling cycle. The recent work on 
micro-assessment of individual phases suggests that it is beneficial to teach 
modelling, not only holistically but also through a detailed study of the dif
ferent phases, giving students critical feedback at all times. 
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Abstract: Mathematical modelling begins in the early primary grades even though the 
language and ideas of mathematical modelling are not employed. The conmion 
arithmetic operations are mathematical models for various counting and meas
ure situations found in the real world. These models parallel the theoretical 
properties of the operations and provide the basis for more sophisticated 
mathematical models found in algebra, geometry, analysis, and statistics. The 
advantages of drawing attention early in instruction to modelling acts involv
ing arithmetic operations are outlined. 

1. INTRODUCTION 

As illustrated in this volume, mathematical modelling is predominantly 
treated as an advanced topic to be introduced in courses at the tertiary or, to 
an increasing extent, secondary level of instruction. These courses typically 
assume that the learner has little or no experience in mathematical model
ling, and start from scratch, with definitions of what is meant by a mathe
matical model and some broad description of the process (e.g., Meerschaert, 
1993). The definitions of mathematical model and the modelling process, 
however, do not require mathematics at the secondary or tertiary level. Li-
deed, the process is often described in such a way that makes mathematical 
modelling synonymous with what might be termed real-world problem solv
ing in the sense of a problem being a situation for which the solver has no 
algorithm (e.g., Dossey et al., 2002). This similarity suggests that modelling 
might begin as early as other mathematical problem solving, namely at the 
primary level, but in the literature one finds very little discussion of the 
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broad principles of modelling in the context of primary school. For example, 
Blum (1991), in a clear and concise overview of the subject, notes a number 
of real-world examples of modelling using arithmetic: genetics, rates of in
terest, price index, income tax, elections, and musical scales. In each case, 
however, other mathematical topics are listed along with arithmetic, and 
when the aims of mathematical modelling are summarized in a table (p. 16), 
it seems as if there is no place for mathematical modelling in the curriculum 
before the lower secondary level. 

With these practices, we make modelling seem as if it is an advanced and 
relatively obscure idea. Yet mathematical models are often implicitly used in 
primary and secondary mathematics classrooms, though the concepts and 
language of modelling are absent and though scarcely any attention is given 
to discrimination training to enable students to distinguish cases in which 
operations furnish appropriate (at some level of precision) or inappropriate 
models for described situations. I argue here that applications of the four ba
sic operations of arithmetic can be re-conceptualised as simple modelling 
exercises, with considerable benefits. 

2. MODELS INVOLVING ADDITION 

If you have 3 cookies and I have 5 cookies, then together we have 8 
cookies, a result students find first by counting. This type of situation is so 
conunon that we give it and its generalization to x cookies and y cookies 
through addition little thought. If A and B are discrete finite sets with N(A) 
= a and N(B) = b, then N(AuB) = a + b (where AuB is the union of the 
sets). This is as fundamental as the commutative or any other property of the 
operation. Throughout the world, this real-world model is used to teach stu
dents basic addition facts. Later, because of the ubiquity of such situations, 
students are asked to memorize answers when x and y are small whole num
bers, and to learn algorithms for obtaining answers when x and y are large 
whole numbers. 

After students apply the mathematical model of addition to answer cer
tain counting problems involving small whole numbers, they are asked to 
apply the same model to situations such as populations in which the numbers 
are larger (and the answer cannot be found quickly by counting), to financial 
situations where the numbers are often written as decimals, and to recipes or 
probabilities where the numbers are written as fractions. But the language 
and the limitations of the model are seldom described. Students become so 
accustomed to the model that they apply it where it does not apply, to situa
tions like the following: 
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1. Carl has 5 friends and Georges has 6 friends. Carl and Georges decide to 
give a party together. They invite all their friends. All friends are present. 
How many friends are there at the party? (Verschaffel et al., 2000, p. 19). 

2. The price of a chair is reduced 20% on sale, and then its sale price is re
duced by 10%. What is the total reduction? 

3. A cup of milk is added to a cup of popcorn. How many cups of the mix
ture will result? (Davis & Hersh, 1981, p. 71) 

4. What will be the temperature of water in a container if you pour 1 jug of 
water at SO"" F and 1 jug of water at 40'' F into it? (Nesher, 1980, 
p. 46) 
The resolution of the incorrect application is different in each of these 

situations but is similar to the resolution of more advanced models. To re
solve (1), we refine the model to encompass situations in which there is 
overlap: N(AuB) = N(A) + N(B) - N(AnB) (where AnB is the intersection 
of the sets). For (2), though we could use a generalization of this refined 
model (the percent reduction is 10% + 20% - 10%-20%), the situation is 
more insightfully viewed as involving multiplicative models. A reduction of 
20% is equivalent to a size change or scale factor of 80%. Then the situation 
calls for the application of scale factors of 80% and 90%, for a total multipli
cative change of 80%-90%, or 72%, a reduction of 28%. The resolutions of 
(3) and (4) are more complex, and must take into account the chemistry and 
physics, respectively, of the situations. 

In geometry, the model is generalized to determine the total length of 
segments placed end to end, as in calculating perimeter. It is applied to de
termine the measure of the angle formed by the outer rays of two adjacent 
angles, the area of the union of disjoint planar regions, and the volume of the 
union of disjoint 3-dimensional solids. In these situations, the property may 
be called Angle Addition or an Additive Property of Area or an Additive 
Property of Volume. In combinatorics or probability, the model is typically 
identified as a Fundamental Counting Principle. Researchers in mathematics 
education have called this model the Putting-Together Model for Addition or 
Part-Part-Whole. 

Thus, through all of schooling in mathematics, this single core model 
appears, but its appearance is disguised in various forms and quite different 
settings. For this reason, to most students, these applications do not share a 
commonality, so the student misses an extraordinarily important point: A 
fundamental reason for all students to learn addition is the ubiquity of impor
tant applications of the Putting-Together Model. 

The Putting-Together Model by no means encompasses all of the applica
tions in which addition of numbers is involved. Indeed, Davis and Hersh 
(1981, p. 74) declare 'There is and there can be no comprehensive systema-
tization of all the situations in which it is appropriate to add". Suppose a 
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temperature of -4° C were to increase by 15° C. We find the answer by the 
addition -4 + 15 = 11. This addition can be interpreted as a putting-together 
situation only if one stretches the idea of putting together. It is easier to think 
of this as the same mathematical model applied to a different set of situa
tions, those involving slides or shifts. In fact, in most textbooks, the geomet
ric idea of slides is used to reinforce or to determine the rules for addition of 
positive and negative numbers. Students see the geometry as a device or rule 
to obtain sums and do not realize that, through this process, addition is again 
a model for a set of real situations. We call it the Slide Model of Addition: If 
a slide x is followed by a slide y, the result is a slide x+y. This model ac
counts for applications of complex number and vector addition but its study 
begins in late primary or early secondary school. 

3. MODELS INVOLVING SUBTRACTION 

Two models for subtraction have long been in the literature, namely 
take-away (if a quantity y is taken away from an original quantity x, the 
quantity left is x - y) and comparison (the quantity x - y tells how much y is 
less than the quantity x). In English, the two most common names for the 
answer ("remainder" for a take-away situation, "difference" for a compari
son) reflect the different feels that these models have to the user. These 
models are first encountered in small whole-number situations but later ex
tended to all positive numbers and, later, real numbers, and to the geometry 
of length, area, and volume. Comparison has its own special cases: change 
and directed error, and (with the help of absolute value) undirected error and 
distance on the number line. Thus, as with the addition models, these models 
appear in different forms and settings, so that the learner does not usually 
realize the common features. 

Some books treat the Putting-Together Model for Addition and the Take-
Away Model for Subtraction within a single model scheme: Part-Part-
Whole. In the same way, the Slide Model for Addition can be related to the 
Comparison Model for Subtraction within a single model scheme: Start-
Shift-Finish. This amalgamation of models parallels the usual relationship 
between addition and subtraction in mathematical theory (a - b = c if and 
only if a = c + b), where subtraction is defined in terms of addition and is not 
treated by itself. The other way of defining subtraction in terms of addition 
(a - b = a + -b), which students encounter when subtracting positive and 
negative numbers, also is interpretable in terms of models for the operations. 
A situation in which a temperature of 10° goes down T can be viewed as 
Addition Shift 10 + (~7) or as a Subtraction Shift (a new model) 10 - 7. Thus 
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we see that there is a structure to the common models of addition and sub
traction that parallels the (pure) mathematical theory of these operations. 

4. MODELS INVOLVING MULTIPLICATION 

Whereas the counting of real objects is almost universally present in the 
learning of addition facts, multiplication tends to be defined initially as re
peated addition and multiplication "facts" are often memorized by students 
with no real world situation to check them against, even though multiplica
tion models rich and important situations. The lack of connection with the 
real world results in many children lacking the development of multiplica
tive reasoning patterns (e.g., see Harel & Confrey, 1994). 

One way of categorizing the classes of situations which model, or are 
modeled by, multiplication is by the units of the quantities being multiplied. 
Multiplication by a scalar covers a class of applications grouped as the Size 
Change Model of Multiplication: When a quantity x is multiplied by a scalar 
k, k > 0, then the product kx is k times the size of the original. Scalar multi
plication includes among its applications the "part o f situations resulting 
from wanting to find a fraction or a percent of a quantity, the "times as 
many" situations resulting from wanting to enlarge a quantity by a certain 
factor, and the size change transformations in geometry that result in similar 
figures. Discounts, taxes, simple interest, scale models, expansions, and con
tractions all fall under this framework. By viewing multiplication by -1 as 
changing direction through 180°, the geometry can be extended to explain 
multiplication by negative numbers. This further extends to the view of mul
tiplication by the complex number z as combining a size change of |z| with a 
rotation of Arg(z). Repeatedly multiplying by different scalars explains the 
multiple discount problem mentioned earlier as an application of putting-
together addition. Repeatedly multiplying by the same scalar leads to dis
crete models of exponentiation such as are used in the calculation of com
pound interest. 

Multiplication by a quantity with a unit also covers a broad class of ap
plications. One type in this class fits the Area Model of Multiplication: The 
area of a rectangle with length x units and width y units is xy square units. 
The discrete version is sometimes used as a check of an answer to a multi
plication fact: The number of elements in a rectangular array with x rows 
and y columns is xy. The volume of a rectangular solid extends this model to 
three dimensions. 

In calculating the area of a rectangle, we may think of its length as acting 
across its width. By summing many rectangles and taking a limit, the area 
model generalizes to give the area interpretation of direct integrals in calcu-
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lus. When one factor is a rate (as in the formula distance = rate x time, or 
total cost = number of items x unit cost), then the rate acts across the other 
quantity. This describes the Acting Across or Rate Factor Model of Multipli
cation: When a rate x of unit 1 per unit 2 acts across a quantity y of unit 2, 
the total is xy unit 1. 

A student equipped with these multiplicative models is far more likely to 
understand why, when y = kx, y varies directly as x, or why the total number 
of students in a school can be found by multiplying the average number of 
students per grade by the number of grades. Unfortunately, many students 
often know multiplication only as repeated addition, and they consequently 
find it difficult to find any real world explanation or use of multiplication of 
fractions, decimals, or positive and negative numbers. Yet multiplication is 
taught, and knowledge of multiplication is required of all students, because 
of the ubiquity of important applications of various models of multiplica
tion. 

5. MODELS INVOLVING DIVISION 

The mathematics education literature has long distinguished two models 
for division: partitive (or partition) and quotitive (or measurement). Suther
land (1947) divided these into six different categories. Two of these catego
ries, ratio (partition) and rate (measurement), are found in an analysis of op
erations by Usiskin and Bell (1983) and, with the other models mentioned 
here, applied in materials for early secondary school students (University of 
Chicago School Mathematics Project, 2002). The ratio model applies when x 
and y are quantities with the same units, where x/y tells how many y's are in 
X (or what part of y that x is). The rate model applies when x and y are quan
tities with different units, where x/y is the amount of quantity x per quantity 
y. In this conception, ratios are scalars, while rates are unitized quantities. 

In the measurement model described in the literature, the divisor is most 
often a rate, as when there are 18 cookies and 2 cookies per child are to be 
served, and we wish to know how many children can be served, or when one 
has $18 to spend on items that are $2 each and one wants to know how many 
items can be bought. But most people mentally change the rate to a simple 
quantity; 2 cookies per child becomes 2 cookies, and $2 each becomes $2, 
and then the problem is reduced to a ratio division. 

Multiplication and division are theoretically related as addition and sub
traction are, so, correspondingly, their models can be grouped together. The 
Rate Model of Division and the Rate Factor Model for Multiplication are 
related by the definition of division a -r b = c if and only if a = c • b, as are 
the Ratio Model of Division and the Size Change Model of Multiplication. 
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Like addition and subtraction, many other classes of situations are modeled 
by multiplication and division (Greer, 1992). 

6. THE IMPORTANCE OF EARLY EXPOSURE TO 
MODELLING IDEAS 

When no language of modelling and models to describe the applications 
of arithmetic is present, it becomes more difficult for children to apply 
arithmetic than it ought to be. Given a word problem with certain given 
numbers, operations are performed on those numbers without a solid base 
underlying the selection of the operation. Moreover, the lack of systemic 
exposure to counterexamples renders students vulnerable to problems in 
which linguistic or other cues suggest an inappropriate operation, as thor
oughly documented and analysed in Verschaffel et al. (2000) and illustrated 
for illusory applications of proportionality by De Bock et al. (this volume. 
Chapter 3.3.3). 

Models of the operations give a basis for applying mathematics; they are 
the postulates that connect mathematics to the world of real and fanciful 
problems. The properties of (applied) models of the operations should be 
treated as we do the (theoretical) properties of the operations. When models 
for arithmetic operations act as postulates, the theorems are statements de-
ducible from the models. A very large number of examples of theorems of 
this sort exist, within which models involving single operations are com
bined within more complex models. For example, we can combine models 
for addition and multiplication to explain why some situations lead to linear 
models of the form y = mx + b or Ax + By = C. We can use the Rate Model 
for Division and the Comparison Model for Subtraction to explain why the 
formula for slope involves two subtractions and a division. With models for 
exponentiation in arithmetic, we can derive exponential models. And, just as 
importantly, we can examine why models in some circumstances are de
scriptive and not necessarily causal, as is often the case when linear regres
sion is used to obtain equations of lines to fit data. And on and on. 

It seems worthy of a study of applications and modelling in mathematics 
education to consider the contributions that discussions of models of arith
metic operations and other primary school content do make, could make, and 
should make in the development of the skills and concepts necessary to be a 
competent user of mathematics. While there may be pitfalls in taking the 
modelling perspective seriously in early schooling (Verschaffel, 2002), they 
are heavily outweighed by the advantages. 
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Abstract: These five chapters address important issues on mathematics teaching and 
learning. They include, amongst others, how Applications and Modelling help 
students learn mathematics in ways that result in a deep and holistic under
standing; are central to the development of Mathematical Literacy, and; are en
riched by the creative use of technology. 

1. INTRODUCTION 

Mathematics has long had a large slice of curriculum time in every coun
try, mainly because of its perceived utility^ in solving problems that people 
face in some other school subjects, and in life and work. We teach and we 
learn mathematics to develop: 
• a powerful toolkit of mathematical strategies, concepts and skills, and 
• competency in using it to tackle problems from the "real world" or as 

Henry Pollak (1979), a pioneer in this area, has suggested, the "rest of 
the world". 
Modelling competence is essential for such problem solving and much of 

this book is about how it develops with appropriate teaching. In these five 
chapters we focus on the benefits that flow the other way - the contributions 
of modelling activities to the development of other mathematical competen
cies. 

What are these other mathematical competencies? 
As with other complex activities, there are many descriptions of mathe

matical performance; they have much in common but each has a different 
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emphasis, particularly on the centrality they give to modelling. The Danish 
KOM model (KOM, 2002), described in Chapter 2.2 of this volume, identi
fies eight competencies of two types: (a) asking and answering mathematical 
questions (which requires mathematical thinking, problem tackling, model
ing, and reasoning) and (b) dealing with mathematical language (through 
representation, symbols and formalism, communicating, and tools). The US 
National Council of Teachers of Mathematics (NCTM, 2000) also identifies 
two types of mathematical competencies: content (number and operations, 
algebra, geometry, measurement, data analysis and probability) and proc
esses (problem solving, reasoning and proof, communication, connections, 
representation). The U.S. National Research Council (NRC, 2001) identifies 
five "interwoven and interdependent" strands of mathematical proficiency: 
conceptual understanding, procedural fluency, strategic competence, adap
tive reasoning, and productive disposition. The complementary UK Tomlin-
son (2004) and Smith (2004) reports stress respectively the importance of 
"functional mathematics" and of "mathematics: for its own sake; for the 
knowledge economy; for science, technology and engineering; for the work
place; and for the citizen". These analyses all envisage the same range of 
mathematical practices that, developed in classrooms, will help students to 
learn mathematics in ways that result in deep understanding and the ability 
to use mathematics where it matters. 

Characteristic of all these schemes of classification is a much broader 
view of "doing mathematics" than is shown in most traditional curricula. 
Each places emphasis on mathematical processes. In sharp and deliberate 
contrast, most school programs, most teachers and parents, and most official 
"high-stakes" school examinations treat mathematics as only the grammar 
and syntax of mathematical language, and often only a small procedural sub
set of these. The broader view requires that students engage with mathemat
ics as a connected whole, not just as a succession of separate topics, chap
ters, and formulas. Time, of course, makes teaching sequential; in contrast, 
the multiple connections that are essential to a robust understanding of 
mathematics do not arise naturally - they require learning activities specifi
cally designed to develop them. 

Mathematical models of authentic situations do this well. They reveal 
more readily than do artificial textbook problems that, to be effective, 
mathematics must be approached holistically rather than as an accumulation 
of bits and pieces of de-contextualized knowledge. Although the develop
ment of mathematical expertise has traditionally been approached by de
composing problems into component skills that are taught separately, evi
dence from many sources (e.g. Schoenfeld, 1992, de Corte et al., 1996) 
shows that this is not an effective way to build expertise. In "doing mathe
matics" the whole is much more than the sum of the parts. Neither is it easier 
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to learn in fragments. "It is harder, not easier, to understand something bro
ken down into all the precise little rules than to grasp it as a whole" 
(Thurston, 1990). 

In considering applications and modelling in relation to other mathemati
cal competencies, it is important to distinguish two different types of appli
cation, shown in Fig. 3.4.0-1 (due to Malcolm Swan, see Chapter 3.4.1). 

various math tools 

various appitcations 

illustrative applications active modelling 

Figure 3.4.0-1. Goal types for applications 

Most curricula offer illustrative applications] there the focus is on a spe
cific mathematical topic, showing the various practical domains where it can 
be useful and practising its use in those contexts. The student has no doubt as 
to the mathematics to be used - it is the topic just taught. In contrast, in ac
tive modelling the focus is on the practical situation and understanding it bet
ter. Usually, a variety of mathematical tools will be useful for different as
pects of the analysis. (This is a good indication as to the real goal.) Choos
ing and using tools appropriately is a major part of the challenge to the stu
dent. Both types of activity are important in learning mathematics. Both pro
vide connections between mathematics and practical situations. However 
only active modelling, as opposed to learning models, involves the full range 
of mathematical competencies. Modelling is all about applied power. 

Thus context-based mathematical modelling provides ideal settings to 
blend content and process so as to produce flexible mathematical compe
tence. The iterative self-correcting cycle of asking questions, using tools, 
producing answers, and then asking new questions helps students develop 
the cognitive connections required to understand mathematics as a discipline. 
Concrete, contextualized models can be especially effective as a glue that 
binds together in the minds of students the many abstract and otherwise dis
connected facets of mathematics. 

Another complementary role played by modelling in developing mathe
matical competence is enhancing student motivation. Students confronted 
with appealing applications and models will learn, from direct experience, 
convincing answers to the universal question that plagues mathematics 
teachers everywhere: "Where am I going to use this?" 

Although connecting mathematics to authentic contexts helps make 
mathematics meaningful, it demands delicate balance. On the one hand, con
textual details camouflage broad patterns that are the essence of mathemat-
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ics; on the other hand, these same details offer associations that are critically 
important for many students' long-term learning. Few can doubt that the tra
dition of de-contextualized mathematics instruction has failed the many stu
dents who leave high school with neither the usable mathematical skills nor 
the quantitative confidence required for today's society. The tradition of 
formal mathematics, used mainly as a 'gatekeeper' to future academic study, 
leaves many able students both innumerate and undereducated. However, 
when the traditional symbol-intensive curriculum is anchored in authentic 
applications and modelling by the students, many will reveal aptitude for 
mathematics that was previously undeveloped. A diverse curriculum featur
ing both abstract and applied mathematics can help break the rigidity of tra
ditional expectations and enable more students to achieve higher levels of 
mathematical competence. In this chapter we discuss how, with appropriate 
teaching, modelling competence can support the development of other 
mathematical competencies in the learning process. 

2. PAPER SUMMARIES 

Applications and Modelling for Mathematics is structured in five chap
ters. After this introduction. Swan, Turner and Yoon describe, analyse, and 
provide examples on ways modelling encourages the asking and the answer
ing of mathematical questions, and how it promotes the use of mathematical 
language. They highlight the fact that, in modelling situations, students de
velop mathematical expertise based on an integrated field of knowledge, 
make multiple connections both within and outside mathematics, and not 
only reinforce their mathematical understanding but also develop new 
mathematical knowledge. The third chapter is on Mathematical Literacy. 
Steen and Turner describe what ML means, the kinds of problem it involves 
and how it is developed, along with an outline of some contentious issues. In 
the fourth chapter, Antonius, Haines, Jensen and Niss discuss the pattern of 
classroom activities needed, and the roles of the teacher, in supporting the 
learning of other mathematical competencies through modelling and applica
tions. The fifth chapter explores uses and possibilities of various technolo
gies in mathematical modelling while it focuses on the development of other 
mathematical competencies. Pead provides multiple examples from the sec
ondary school level while Ralph describes a university modelling program 
that is technology-centred. 

We conclude this overview by drawing attention to a few of the key 
questions that need further research in depth, and associated development: 
• In what ways do concrete applications and active modelling build under

standing of mathematical concepts? 
• How far do the extended chains of reasoning involved in modelling real 



3.4.0. APPLICA TIONS AND MODELLING FOR MA THEMA TICS 271 

situations encourage students to improve the reliability of their technical 
skills in mathematics? 

• How far does modelling improve the performance of students in pure 
mathematical problem solving, and in which aspects? 

• How can typical mathematics teachers be enabled to effectively help 
their students in their classroom to learn to handle real world problems? 

• In what ways can technology help enough with all these goals, so as to 
encourage teachers and schools to make the necessary investments 

• How can mathematical literacy be 'sold' to teachers and to school sys
tems, as a prime goal of mathematics education? 
Reliable answers to these questions will need warrants for their generality 

from replication in many parallel but diverse projects and school systems 
(Burkhardt & Schoenfeld, 2003). 
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Abstract: This chapter illustrates how Applications and Modelling promote the learning 
of mathematics by developing the student's mathematical language and her 
use of tools, and by developing the learner's capacity to ask and answer ques
tions in, with, and about mathematics. 

1. INTRODUCTION 

Modelling activities offer such powerful means of developing mathe
matical understanding and retaining mathematical knowledge that a number 
of projects have placed modelling at the centre of the mathematics curricu
lum. In the US, for example, the Applications Based Reform in Secondary 
Education project (ARISE, 1999) developed a high school mathematics cur
riculum based entirely on models and modelling. The University of Chicago 
School Mathematics Project (UCSMP, 1999) is built on the belief that mod
elling helps to develop ability both in pure and applied mathematics. In these 
projects mathematics educators have developed a vision of the teaching and 
learning of mathematics, where the teacher and the student travel freely be
tween pure and applied mathematics - so much so that there is little distinc
tion between the two. Around the world there are other examples of this ap
proach, notably Realistic Mathematics Education (RME) from the Freuden-
thal Institute. 
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In this chapter we outUne and illustrate how modelling promotes the 
learning of mathematics. Some examples from the Shell Centre's Numeracy 
through Problem Solving materials (NTPS, 1987-89) are used to show how 
core mathematical tools, both concepts and skills, can be developed through 
modelling activities. From the work of Lesh et al. (2002), we draw examples 
to illustrate how modelling promotes the development of mathematical abili
ties that are traditionally ignored in elementary texts, and yet are a core 
component of the mathematical activity done in both mathematics research 
in math-heavy fields like engineering and business, and in tackling everyday 
life problems. 

It is our theme here that an effective way to promote the growth of 
mathematical competencies is to forge strong and explicit connections be
tween mathematical knowledge on the one hand, and the contexts within 
which that knowledge can be used on the other. We must recognise the im
portance of giving students the opportunity to think about and make use of 
the mathematical features of their surroundings. Such a goal can be power
fully approached through a mixture (see Chapter 3.4.0) of active modelling 
and illustrative applications - or mathematising reality and realising 
mathematics respectively. 

We will discuss and illustrate the two groups of the KOM framework: 
dealing with mathematical language and tools (this includes representing, 
using symbols, formalism and communicating) dind'asking and answering 
questions in, with, and about mathematics' (this includes modelling as well 
as mathematical thinking, tackling problems and reasoning). 

2. MODELLING DEVELOPS MATHEMATICAL 
LANGUAGE AND TOOLS 

In the 1980's, the Shell Centre for Mathematical Education and a UK ex
amination board developed the curriculum and assessment scheme on Nu
meracy through Problem Solving (NTPS, 1987-89), built around five mod
ules: Design a Board Game, Produce a Quiz Show, Plan a Trip, Be a Paper 
Engineer and Be a Shrewd Chooser, Though primarily aimed at developing 
mathematical literacy (see Chapter 3.4.2), they also show how modelling 
activities can promote representing, symbols and formalism, and tools com
petences. 

Example 3.4,1-1: Learning to be pro-active with algebra 
In Be a Paper Engineer, students design pop-up cards in various ways, as in 
the example illustrated in Fig. 3.4.1-1. In this type of design, the fold lines 
are parallel and one piece is glued to the base of the card. The design func-
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tions correctly if the card pops up when it is opened flat on the table and if 
the interior piece folds only along the designated lines and becomes com
pletely concealed within the base of the card as it is closed. 

Fop- up Card 
Design a pop-up card by sticking piece 
onto the base as shown below. 

C\ d 

Figure 3,4.1-1. Pop-up card instructions 

In exploring such designs, students formulate general laws such as: 
• for the card to shut properly: a-b = d-c, 
• for the card to open to 180°: a-¥b > c^d, 
• for the interior not to 'stick out': base length > 2(a+c) or > 2(b+d), 

Students generate equations and inequations in different forms and ex
plore whether or not these are equivalent. A necessary and sufficient set is 
derived. More complex constructions (such as when the fold lines of the 
piece stuck on are not parallel) result in more advanced relationships. 

Example 3,4,1-2: Understanding of the binomial distribution 
In the Great Horse Race (Fig. 3.4.1-2) every student can make progress, 

including many who would normally have great difficulty with the binomial 
distribution of probabilities. All quickly recognise that Horse 1 is not a good 
bet. 

A few have the misconception that because there are two dice, higher 
numbered horses will move more rapidly. Even they, through playing the 
game, soon realise that horses in the middle will move faster because "there 
are more ways of making 7 than 11 or 12". Most will enumerate these "1-1-6, 
2-h5, 3+4..."; some initially miss that 4-1-3 etc is different from 3+4 until the 
teacher suggests two different coloured dice. More advanced students con
sider the effect the length of the track on the likely outcome. This game thus 
proves an effective (and quick) stimulus to concept formation. Furthermore 
if every student colours the squares covered by each horse, they obtain a fre-
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quency distribution. When these are displayed around the classroom, stu
dents have an immediate visual of the variability of sample data. If the 
teacher enters these data in a spreadsheet, the frequency distribution of the 
totals will provide a better fit to the theoretical probabilities than will those 
of individual students. 

The Great Horse Race Rules 

1. Put the horses on their starting positions, 1 to 12. 
2. Each player chooses a different horse. 

If there are only a few players, then each can choose 
two or three horses. The remaining horses are still in 
the race but no one owns them. 

3. Roll two dice and add the scores. 
4. The horse with that number moves one square forward. 
5. The first horse past the finish wins. 

Figure 3.4.1-2. Instructions for the Great Horse Race 

When students work on modelling tasks, they express their thoughts in a 
variety of representations, such as words, diagrams, tables, spreadsheets, 
equations and graphs. Indeed, many "real world" mathematics problems be
gin with information provided in a variety of representations. Mathematisers 
utilise different representational media throughout the solution process to 
highlight structural nuances in the mathematical system being developed. 
Since any representational medium will highlight some aspects of the struc
ture, while obscuring others, students who engage in modelling activities 
develop the ability to switch back and forth between different representa
tional media - referred to as "translation skills" by Burkhardt (1981) and 
"representational fluency" by Lesh et al. (1987). 

In contrast, most textbook problems rarely require students to use more 
than one representation at a time. Students tend to work almost exclusively 
within a symbolic representation. Since these textbook problems do not call 
for students to examine the same mathematical structure in different repre
sentations, students are less likely to gain the insight that is obtained through 
seeing different aspects of the structure in this way. For example, they may 
correctly work an equation algebraically by applying rules of symbolic ma
nipulation without ever seeing the same equation being expressed graphi
cally, and may consequently not realise that solving an equation corresponds 
to finding the intersection point of two function graphs. 
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Modelling thus provides the opportunity for (or even demands) the explo
ration of alternative representations of problem situations. Representational 
fluency is developed in that part of the modelling cycle where students forge 
links between the real world context and the mathematical expression of the 
kernel of the problem. This process develops a deeper connected understand
ing of the representations themselves, and of their interrelationships. A real
ising mathematics approach illustrates how a particular mathematical tool or 
technique represents features of some real world situation. As part of a 
mathematising reality modelling approach, the student can propose and ex
plore alternative representations, or the teacher can present a variety of pos
sible representations for students to use. Working with different representa
tions facilitates reflection on, and evaluation of, alternative solutions with 
respect to the problem context. 

Example 3,4.1-3: Using a spatial representation in a solution strategy. 
In the process of designing a league tournament for 22 teams, from Prob

lems with Patterns and Numbers (Shell Centre, 1984), some students wanted 
to know how many matches would be involved. Some began listing the pair
ings (AvB, AvC, AvD, ...) in an organised list. The student shown (Figure 
3.4.1-3), however, used the link between a spatial and algebraic representa
tion to rapidly generate and generalise the solution 

(4 
c 
0 

F 

OC O E r 

Figure 3.4.1-3. Student work 

Example 3A. 1-4: Using graphical representation in a solution strategy 
The Ffestiniog Railway task, from The Language of Functions and 

Graphs (Swan et al., 1985), is an example of a substantial real-life problem 
that requires simple arithmetic, reliably sustained through long chains of rea
soning. Fig. 3.4.1-4 provides the instructions for this task. 
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The Ffestiniog Railway 

This railway is one of the most famous in Wales. 
Your task is to devise a workable timetable. 

There are six stations along the track. 
The line is single track, with two passing places. 
Three steam trains travel back and forth along the line. 
The journey from Porthmadog to Blaenau Ffestiniog takes 
65 minutes (including stops). 
There is a ten-minute stop at each end of the line. 
Intermediate stops are very short and may be neglected 
when timetabling. 
Trains should depart at regular intervals. 
All trains start and end the day at Porthmadog. 
The first train leaves Porthmadog at 9.00am. 
The last train returns to Porthmadog by 5.00pm. 

2 miles 

1.25 miles 

4.25 miles 

4.75 miles 

1.25 miles 

— Porthmadog 

—Minffordd 

— Pem-hyn 

— Tan-y-Bwlch 

—Tanygrisiau 

—Blaenau Ffestiniog 

Figure 3.4.1-4. Instructions for devising a timetable 

Though various approaches can succeed, students found that the most 
elegant and effective approach used a graphical solution process. Students 
constructed a distance-time graph showing the three trains, deduced from 
this the location of necessary passing places and read off times that the train 
stops at various stations, thus constructing a timetable. This was then com
pared with the timetable used by the railway company. 

Li general, by exploring links and relationships between different repre
sentations, students develop a better understanding of the problem itself and 
develop and refine potentially useful models. By evaluating the relative 
strengths of different representations, students deepen their understanding of 
the mathematics that might be useful in modelling situations. Modelling thus 
facilitates the development of competencies in the use of symbolic and for
mal mathematical systems. Powerful opportunities arise for students to 
strengthen their understanding of such systems by: 
• forging connections between contexts and the formal mathematical ex

pressions related to those contexts; 
• motivating the study of applications of abstract mathematical formula

tions. 
Once again, both the realising mathematics and the mathematising reality 

approaches provide these opportunities. 
Modelling requires good communication, both with others and with one

self. As students interact, they refine their own thinking. Li struggling to sort 
out what they need to say, they begin to sort out what they understand. 
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Each phase of the modeUing process is helped by group discussions. As 
students formulate problems, discussion can enable them to distinguish the 
relevant and the irrelevant and to construct relationships between variables. 
They may then 'brainstorm' alternative solution ideas together, and may help 
each other interpret, critique and validate solutions. Throughout, talk clari
fies the connections between the shared mathematical knowledge and the 
external context, and activates cognition. 

The ability to communicate mathematically includes: 
• the capacity to hear, understand and interpret the communications of 

others; 
• the capacity to formulate mathematical descriptions and to articulate 

these in writing or verbally in ways that may be understood by others. 
These communication abilities develop with practice, and students need 

to be given opportunities to interpret the mathematical reasoning of others, 
and to express their own thinking, in speech and writing. Modelling activi
ties provide these opportunities. 

3. MODELLING PROMOTES THE ASKING AND 
ANSWERING OF MATHEMATICAL QUESTIONS 

A rich modelling situation provides opportunities for both asking and an
swering questions. In a previous ICMI Study on The Teaching and Learning 
of Mathematics at the University Level, Ottesen (2001, p. 344) writes: "..., 
students learn to ask certain types of questions that can only be answered by 
means of mathematics, as well as types of questions that can only be posed 
by means of mathematics". Examples of student modelling work (MDM4U, 
2002) in an Ontario mathematics course, that Suurtamm and Roulet (this 
volume. Chapter 5.2) describe, demonstrate that students are motivated by 
asking questions and searching for answers. 

Mason, Burton and Stacey (1982) in their book Thinking Mathematically 
provide innumerable concrete applications which prompt the reader to raise 
mathematical questions. The experimental nature of the situations prompts 
the reader to make conjectures that can be explored further and proved or 
disproved. 

Modelling is a powerful promoter of meaning and understanding in 
mathematics. When presented with problems set in some real world context, 
students formulate questions about the context and think about the useful
ness of their mathematical knowledge to investigate the questions. They are 
inmiediately encouraged to connect their mathematical knowledge with the 
external context. Mathematical thinking is promoted, and reasoning skills are 
exercised, as students seek to make those connections. 
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Modelling encourages reasoning through the complementary processes of 
simplification and elaboration. Simplification involves: analysing the ele
ments of a problem situation; identifying features that are more or less im
portant; making assumptions that might assist in making the problem more 
amenable to analysis; identifying sub-problems; breaking the problem down 
to its essential components; expanding components and looking for suitable 
representations to help clarify and explore the selected components and to 
work towards a useful mathematisation of the problem; and defining a clear 
way of approaching the problems to be solved. Elaboration works through 
reviewing and refining the initial outcomes of modelling, to enable progress 
towards further development of a more complete model and more generally 
applicable solution to the original problem. These processes engage the stu
dent in long chains of reasoning. 

The defining of appropriate measures is central to mathematics. The fol
lowing task (Burkhardt, 2004) provides great opportunities for discussing the 
merits and weaknesses of alternative measures. 

Example 3,4,1-5: Comparing alternative measures 

Our school has to select a girl for the long jump at the regional championship. Three girls 
are in contention. We have a school jump-off. Their results, in metres, are given below: 

Elsa 

3.25 

3.95 

4.28 

2.95 

3.66 

3.81 

Use 

3.55 

3.88 

3.61 

3.97 

3.75 

3.59 

Olga 

3.67 

3.78 

3.92 

3.62 

3.85 

3.73 

Hans says "Olga has the longest average. She should go to the championship" 
Do you think Hans is right? Explain your reasoning. 

Figure 3.4.1-5. Comparing alternative measures 

In the TMSS video lesson (TIMSS, n.d.) on which this task is based, the 
students are prompted to calculate the mean length of jump for each girl and 
to use that for selection. (Olga wins, despite having shorter longest jumps 
than either of the others) The teacher moves on without comment! There is 
no discussion of other measures, their strengths and weaknesses. Is this good 
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mathematics? What does this divorce from reality do for the image of 
mathematics among students? 

Example 3.4.1-6: Learning to aggregate unlike quantities and to define 
complex phenomena operationally 

Jn many practical situations the variables represent unlike quantities and 
the student is challenged to look for ways to handle them. 

hi one problem (Lesh et al., in press) students are required to sort eight
een players into three equal volleyball teams. They are given the following 
information to incorporate into their model: 
• The players' heights in feet and inches (a one-dimensional spatial quan

tity). 
• The players' vertical leap in inches (a measure of displacement). 
• The players' times for 40 metre dash trials (this is the only set of quanti

ties where a lower value is more desirable). 
• The players' serve results (a success rate out of ten attempts). 
• The players' spike results (the outcome of five spike attempts). 
• The coach's comments for each player (qualitative information). 
Such a variety of quantities is rarely encountered in most school mathemati
cal textbooks problems. Listead, typical mathematics exercises will usually 
require students to operate on only one kind of quantity. However, the Vol
leyball problem is representative of many "real world" problems that do not 
involve only pre-mathematised quantities that have already been converted 
into a uniform type of element, but also include an assortment of unlike 
quantities that need to be integrated into a common model. To sort the play
ers into three equal teams, students need to operationally define what "equal 
teams" means. One of the typical ways that students do this is to make the 
sum total of each teams' players abilities rank scores as similar as possible. 
However, using this measure, they often find that one team does not have 
any good servers, and is thus disadvantaged. To deal with this situation stu
dents revise their initial operational definition of "equal teams" from being 
"equal composite rank scores", to one that each team contains a similar as
sortment of players of different strengths. Students are exploring different 
definitions of "optimal". The practice of operationally defining phenomena 
is not only called for in "real world" problems. "Pure" mathematical re
search depends heavily on defining measures of concepts like "smoothness", 
"connectedness", and "denseness" of numbers, functions, and other mathe
matical objects. However, most elementary textbook problems only require 
students to deal with clearly defined mathematical phenomena, thus disal
lowing students the opportunity to engage in the mathematical practice of 
defining them themselves. 
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4. CONCLUDING REMARKS 

In modelling, students experience concrete embodiments of new mathe
matical concepts. Because of the interdependence of various parts of the 
model, students quickly realise that careless mathematical work that remains 
unchecked can result in a lot of additional work. Students practice working 
with mathematical skills and tools to generate mathematical representations, 
to handle estimations, approximations, error analysis, to work reliably 
through the long chains of reasoning that the modelling process involves, to 
check the consistency of their solutions, to communicate using mathematical 
language, etc.. 

In modelling situations, a student develops mathematical expertise based 
on an integrated field of knowledge. The student exercises multiple connec
tions both within and outside mathematics. In mathematics the connections 
overcome the topic classifications that are introduced by the curriculum. The 
National Council of Teachers of Mathematics in its Principles and Stan
dards for School Mathematics (NCTM, 2000) lists connections as one of its 
process standards: "They (students) see mathematical connections in the rich 
interplay among mathematical topics, in contexts that relate mathematics and 
other subjects, and in their own interests and experience". 

Although modelling is one of the mathematical competencies that stu
dents must develop, it in turn promotes and supports the development of 
other mathematical competencies. Thus by providing mathematical model
ling experiences, students will not only reinforce their acquired mathemati
cal knowledge but will also develop new mathematical knowledge. The it
erative self-correcting cycle of asking questions, using mathematical tools, 
producing answers, and then asking new questions helps students develop 
the cognitive connections between product and process required to under
stand mathematics as a discipline. 
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Abstract: Mathematical literacy has received increasing attention in many countries over 
the last few years. This is partly driven by concerns of employers that too 
many students leave school unable to function mathematically at the level 
needed in the modem world of work. Further, it is increasingly recognised 
that people can only tackle many of the challenges of modem life effectively if 
they are mathematically literate in key areas. Planning in personal finance, as
sessment of risk, design in the home or on the computer screen, and critical 
appraisal of the flood of statistical information from advertising, politicians 
and the press - these are just a few of the domains where mathematics is an es
sential tool in sensible decision making, not just an exotic luxury. Mathemati
cal literacy, like literacy in language, is empowering. 

1. WHAT DO WE MEAN BY MATHEMATICAL 
LITERACY? 

The term and its variants are used in a variety of ways^ alongside other 
terms with overlapping meanings - quantitative literacy, numeracy, func
tional mathematics, quantitative reasoning and more, are all used. Here we 
shall mainly call it mathematical literacy (ML), focussing on the core idea: 

Mathematical literacy is the capacity to make effective use of mathemati
cal knowledge and understanding in meeting challenges in everyday life. 

In contrast, mathematics in school largely continues the legacy of Euclid, 
Newton, and Euler - a school-based, "scholastic" discipline of major impor
tance conveying the basic ideas of geometry, algebra, and calculus. It also 
equips a minority of students well for their chosen specialised professions -
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in mathematics, physics, and traditional engineering. Valuable as this may 
be, and it is of immense and irreplaceable value, a central goal of schooling 
in the modem age must be to prepare all students for life in an increasingly 
technological society. That is what ML is all about: mathematics acting in 
the daily lives of citizens. 

In this respect, school mathematics does not look so good. Most adults 
use little of the mathematics they first learned in secondary school in their 
every day lives. Much of that mathematics could be useful for mathematical 
literacy but the additional modelling skills that would make it so are not cov
ered in most curricula. 

Here we shall summarise key developments in recent years, including re
cent thinking in the US, described in Mathematics and Democracy: the case 
for quantitative literacy (Steen, 2002), and the suggestions in the UK Gov
ernment Tomlinson report (2004) thai functional mathematics should be at 
the core of learning for all, with additional specialist mathematics for stu
dents who want more. Of particular note is the OECD's Program for Inter
national Student Assessment (PISA, n.d.). This is important because it repre
sents an international consensus on mathematical literacy. The PISA test in
strument, while its exclusively short items are not "cutting edge", is a big 
step forward. It complements the narrower view of mathematics embodied in 
the Third International Mathematics and Science Study (TIMSS, n.d.), which 
devotes little serious attention to applications, and none to modelling or 
other non-routine problem solving. In PISA's definition (OECD, 2003, p. 
24): 

Mathematics literacy is an individual's capacity to identify and under
stand the role that mathematics plays in the worlds to make well-founded 
mathematical judgments and to use and engage with mathematics in 
ways that meet the needs of that individuaVs life as a constructive, con
cerned and reflective citizen 

This broader conception looks at the life circumstances, contexts and 
needs of an individual, and considers the importance of their capacity to en
gage with and use mathematics in those life contexts. It involves recognising 
mathematical features of phenomena in the world around us, making judg
ments about those phenomena informed by mathematical understanding, and 
generally using mathematics as a tool for dealing with the phenomena. 

The above definitions, and other variations on them, all convey three im
portant ideas. First, ML is much more than arithmetic or basic skills. Sec
ond, ML requires something quite different from traditional school mathe
matics. Third, ML is inseparable from its contexts. In this respect ML is 
more like writing than like algebra, more like speaking than like history. ML 
has no special math content of its own, but finds appropriate content for the 
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context. Moreover, like writing and speaking, the standard of excellence 
increases with the sophistication and importance of the issue being analyzed. 
Mathematics plays a parallel role in mathematical literacy to that of language 
in literacy^. 

Unlike teachers of language, most mathematics teachers rarely try to link 
mathematics lessons to the everyday lives of then* students who, conse
quently, don't expect it. Making ML a reality in most classrooms will need a 
revised 'classroom contracf^, supported by new and well-engineered class
room materials and professional development support - a major challenge 
for design and development. 

In the rest of this section, we shall: 
• outline the characteristics of a 'good ML problem'; 
• discuss what mathematical literacy looks like as it develops; 
• touch on some areas of controversy. 

Then, in the next section, we shall discuss how teachers and curricula 
may develop ML in the classroom as part, along with other modelling and 
applications, of the learning of other mathematical competencies. 

2. WHAT KINDS OF PROBLEM? 

Exemplification clarifies meaning so, after this general discussion of 
mathematical literacy and its curriculum implications, we offer a few exam
ples of the kinds of task that one would expect students to tackle in curricu
lum and assessment that is focussed on ML. We begin with some assessment 
tasks - always good way to communicate learning goals, since they are brief 
and specific. For practical reasons, PISA uses a mixture of multiple choice 
and short answer items (OECD, 2003, pp. 57-92), illustrated by these first 
two tasks: 

Example 3.4.2-1: Rock Concert 

For a rock concert a rectangular field of size 100 m by 50 m was reserved 
for the audience. The concert was completely sold out and the field was full 
with all the fans standing. Which one of the following is likely to be the best 
estimate of the total number of people attending the concert? I 

2000, 5000, 20000*, 50000, 100000 

Example 3.4.2-2: Robberies 

A TV reporter showed the graph below and said: 'The graph shows that 
there is a huge increase in the number of robberies from 1998 to 1999." | 
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520 —{ 
Nrariberof 
lobbents per year 

Figure 3.4.2-1. Graph of the number of robberies per year 

Do you consider the reporter's statement to be a reasonable interpretation 
of the graph? Give an explanation to support your answer. 

Of course, ML assessment or curriculum can and should have much more 
substantial and extended tasks than these. The Numeracy through Problem 
Solving (NTPS, 1987-89) modules provide examples of areas that motivate 
students to remarkably good, extended reasoning - for many students, work 
of much higher standard than then* usual formal mathematics. The flavour is 
given by examples in the previous chapter and by Design a Board Game, 
Students begin a design process by critiquing and improving a number of 
badly-designed games. Both mathematical and non-mathematical faults are 
considered; the clarity of the rules, the fairness and interest of the game, the 
geometry of the board design and so on. 

Example 3.4,2-3: Snakes and Ladders 

Read the description of a game given in Fig. 3.4.2-2, then answer the 
questions below. 

This is a game for two players. You 
will need a coin and two counters. 

Rules 
• Take it in turns to toss the coin. 

If it is heads, move your counter 2 
places forward. 
If it is tails, move your counter 1 
place forward. 

• If you reach the foot of a ladder, you 
must go up it. 
If you reach the head of a snake, you 
must go down it. 

• The winner is the first player to reach 
'HNISH'. 

Figure 3.4.2-2. Description of a game 
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Questions: 
1. Suppose you start by tossing a head, then a tail, then a head. Where is 

your counter now? 
List and describe all the faults you notice with the board. 

The goal here was to check that the student understands the basic princi
ples of board game design, notably that the board and the rules must work 
together, and can apply a careful logical analysis. As in many well-enginee
red complex tasks, there is a 'ramp' of difficulty - some of the faults are 
harder to find than others. 

At the end of each NTPS module there were written examinations at two 
levels. Standard and Extension, to assess how far the student can transfer the 
skills and insights they have developed in doing the three-week module to 
less- or more-distant contexts. 

What are the general principles for task types for ML? Typical ML chal
lenges involve real data, non-routine procedures, and complex reasoning, yet 
often require only relatively elementary mathematics. In contrast, school 
mathematics problems feature increasingly abstract concepts using simpli
fied numbers, straightforward procedures and stylised applications. 

Whereas school mathematics stresses elementary uses of sophisticated 
mathematics, mathematical literacy focuses on sophisticated uses of (of
ten) elementary mathematics. 

Steen and Forman (2001) have summarised the characteristics of good ML 
problems as part of a list of "Principles of Best Practice" and we have 
adapted them for this book: 

High quality mathematical tasks are authentic, intricate, interesting, and 
powerful 

Authentic: they portray common contexts and honest problems; employ 
realistic data, often incomplete or inconsistent; meet expectations of users 
of mathematics; use realistic input and output; and, above all, reflect the 
integrity of both mathematics and the domain of application. 

Intricate: they expect students to identify the right questions to ask; re
quire more than substitution into formulas; employ multi-step procedures 
and chains of reasoning; stimulate thinking that is cognitively complex; 
confront students with incomplete (or inconsistent) information; and 
demonstrate the value of teamwork. 
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Interesting: touch on areas of interest to students; appeal to a large num
ber of students; they offer multiple means of approach; invite many 
variations and extensions; and provide horizontal linkages to diverse ar
eas of life and work. 

Powerful: they encourage and connect graphical, numerical, symbolic, 
verbal, and technological approaches; offer vertical integration from ele
mentary ideas to advanced topics; propel students to more advanced 
mathematics; expand students' views of mathematics, its value and uses; 
demonstrate the importance of mathematics in the modem high perform
ance work place, and in everyday life. 

This book contains many examples of tasks that qualify as ML. 

3. PATHWAYS TO MATHEMATICAL LITERACY 

How do we recognise progress in ML? Essentially, students tackle more 
complex problems, in contexts less familiar to them, using more powerful 
mathematics - but only where it pays off in greater insight and/or more ef
fective action. What is the micro-structure of this development? 

PISA has investigated and described growth in mathematical literacy by 
focussing on a set of mathematical competencies that are based on the KOM 
framework. Li conformity with the approach taken by PISA to report levels 
of proficiency in reading following the first round of assessment in 2000 
(OECD 2001), the PISA project has developed and published six described 
levels of mathematical literacy (OECD 2004). A clear progression through 
these levels is apparent in the way in which the individual mathematical 
competencies specified in the PISA mathematics framework (OECD 2003) 
play out as mathematical literacy levels increase. They describe the stages of 
development, in increasing order, of the various competencies as: 
• Thinking and reasoning: Follow direct instructions and take obvious ac

tions; use direct reasoning and literal interpretations; make sequential de
cisions, interpret and reason from different information sources; employ 
flexible reasoning and some insight; use well developed thinking and rea
soning skills; use advanced mathematical thinking and reasoning. 

• Communication: follow explicit instructions; extract information and 
make literal interpretations; produce short communications supporting in
terpretations; construct and communicate explanations and argument; 
formulate and communicate interpretations and reasoning; formulate pre
cise communications. 
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• Modelling: apply simple given models; recognise, apply and interpret 
basic given models; make use of different representational models; work 
with explicit models, and related constraints and assumptions; develop 
and work with complex models; reflect on modelling processes and out
comes; conceptualise and work with models of complex mathematical 
processes and relationships; reflect on, generalise and explain modelling 
outcomes. 

• Problem posing and solving: handle direct and explicit problems; use 
direct inference; use simple problem solving strategies; work with con
straints and assumptions; select, compare and evaluate appropriate prob
lem solving strategies; investigate and model with complex problem 
situations. 

• Representation: handle familiar and direct information; extract informa
tion from single representations; interpret and use different representa
tions; select and integrate different representations and link them to real 
world situations; make strategic use of appropriately linked representa
tions; link different information and representations and translate flexibly 
among them. 

• Using symbolic, formal and technical language and operations: apply 
routine procedures; employ basic algorithms, formulae, procedures and 
conventions; work with symbolic representations; use symbolic and for
mal characterisations; mastery of symbolic and formal mathematical op
erations and relationships. 

Like all models of problem solving, this model of stages is informative 
rather than definitive. For example, a given person will be at different 
stages, depending on the complexity, unfamiliarity, and technical demands 
of the problem they are tackling. Nevertheless such stages are characteristic 
of growth in these various competencies. They also provide a useful point 
from which further research may be directed to generating greater refine
ment in describing development in mathematical literacy. 

4. CONTENTIOUS ISSUES 

Chicken or egg - which comes first? 
Many people believe that skills must precede applications and that once 

learned, mathematical skills can be applied whenever needed (in practice, for 
many students, in a future that never arrives). This is a false dichotomy. 
Considerable evidence about the associative nature of learning suggests that 
the skills-first approach works imperfectly, at best. For many students, skills 
learned free of context are skills devoid of meaning and utility. To be useful. 
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skills must be taught and learned in settings that are both meaningful and 
memorable. One may observe that Pure Mathematics: 
• grows vertically; 
• climbs the ladder of abstraction to reveal, from sufficient height, common 

patterns in seemingly different things - abstraction is what gives mathe
matics its power, enabling methods derived in one context to be applied 
in others. 

Mathematical literacy, on the other hand: 
• grows horizontally; 
• makes multiple connections, the core of understanding; 
• clings to specifics in each context; 
• marshals all relevant aspects of setting and context in order to reach con

clusions that are reliable in practice. 
Across contexts, ML shows the pay-off of abstraction - that the same 
mathematical tools can be powerful in a wide range of different areas. 

Will ML undermine "real mathematics"? 
Sceptics fear that modelling, if encouraged, will replace rigour and proof 

in mathematics classrooms. There are many legitimate reasons to ensure that 
reasoning and proof do not disappear from school mathematics. Students 
need to learn that justification is a distinctive part of mathematics; that proof 
is more than plausibility or confirmation; that among the levels of convinc
ing argument, mathematical proof alone yields certainty; and that the rigor of 
mathematical proof makes lengthy chains of logical argument reliable. Al
though mathematical modelling rarely emphasizes formal proof, it does em
phasise the value of: 
• accuracy at the end of a long chains of inference and calculation; 
• justifying findings, especially their applicability in relation to the prob

lem context; 
• explaining reasoning to team-mates and teachers; 
• presenting conclusions coherently. 

Through these means, modelling both demonstrates and rehearses the 
importance of rigorous logical argument. 

Who should teach ML? 
Many argue that mathematical literacy must be learned in context, while 

others believe that only mathematics teachers have the preparation and in
centive to focus on it. The issue is complex. Since you can only model situa
tions you already understand at least qualitatively, everyday life contexts are 
the obvious place for students to learn active modelling with mathematics. 
Teachers of the students' first language (English teachers in the Anglophone 
world) have long used everyday life problems as contexts for student work 
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in their classrooms; ML asks mathematics teachers to do the same. For 
many this is a new challenge, needing good teaching materials and profes
sional development support. 

Ideally, students would also develop ML in other subjects - in history 
and geography, in economics and biology, in agriculture and culinary arts, 
and in social studies. Because contexts needing ML are ubiquitous, opportu
nities abound to teach it across the curriculum — in reading maps, designing 
art projects, understanding rules of grammar, analyzing scientific data, and 
interpreting legal evidence. Only by repeatedly using diverse aspects of ML 
in real contexts will students develop the habits of mind of a numerate citi
zen. Thus mathematics teachers should not, and can not, bear the entire bur
den of helping students become numerate. Like literacy, mathematical liter
acy is everyone's responsibility. 

But do students understand other school subject areas well enough to 
model them autonomously? It is usually enough of a challenge to learn mod
els in physics or economics - which is an important but very different proc
ess. Experience suggests that mathematical literacy across the curriculum 
will only happen if students first learn to model familiar practical problems 
in mathematics lessons. Cross-curricular teaching is an ideal, often tried but 
rarely sustained in schools; it only works when approached 'from both 
sides'. 

If ML is to become a reality, it will probably depend on mathematics 
teachers carrying prime responsibility, with other subjects building on the 
foundations so laid. Perhaps, following a suggestion in the report Making 
Mathematics Count (Smith, 2004), mathematics should be seen as two sub
jects: mathematical literacy as the gatekeeper subject^ for all students, and 
additional^ specialist mathematics for those who want it for their future in
terests as scientists or traditional engineers - or simply find mathematics in
teresting enough to want further study. In some countries, English Language 
and English Literature are two subjects related in much the same way. 

Is this mathematics? 
ML is neither an expanded list of topics to be added to the mathematics 

curriculum nor is it just the basic skills part of a traditional mathematics pro
gram. Many basic mathematical skills (e.g., number sense and operations, 
proportional reasoning, estimation, logic, data analysis) are essential for ML 
- but so too are other concepts not much emphasized in school mathematics 
curricula (e.g., computer tools, statistical inference, mathematical communi
cation). The open-ended thinking required to diagnose problems or to make 
decisions relies heavily on "newly useful" areas such as combinatorics, sta
tistics, and geometry. In contrast, algebra and calculus, dominant features of 
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today's curriculum, are used outside of school more as tools for calculation 
than as tools for reasoning, and only by specialists in certain fields. 

Some worry that modelling problems are a time-consuming distraction 
that typically use relatively routine mathematical tools. While this may be an 
accurate description of some weaker programs, good modelling problems 
require a sophistication and precision that can push even the best students to 
attain mathematical results well beyond those achieved by most students in 
today's classrooms. As they secure a broad foundation of examples and con
crete mathematics, students engaged in modelling build lasting connections 
between mathematics and the world in which they live. This grounding in 
specifics will lead naturally to subsequent generalizations and abstractions. 
Modelling parallels good pedagogy by moving from the specific to the gen
eral and from the concrete to the abstract. 

^ In some contexts and some nations, these terms are used narrowly to mean just "basic skills" 
- arithmetic plus a bit more. This is a corruption of the terms, just as literacy means much 
more than spelling, granmiar and syntax. These skills are necessary but far from sufficient. 

^ The original definition, now often distorted, of the term numeracy - in the 1959 Crowther 
Report. 

^ The classroom contract is the agreement, usually unspoken and implicit, between teacher 
and students as to what each will do, what roles they will play, in the classroom. (The 
French, who first articulated the idea (Brousseau, 2003,p.24), call it the 'didactic contract' 
but in English 'didactic' is used to describe a specific, teaching style - lecturing that brooks 
no argument. That is the reverse of what we need here, or in any classroom focussed on 
learning.) 

^ Much more justifiable, as a universal requirement meeting a universal need, than current 
secondary mathematics which few adults can use in their lives beyond education. 

^ If it is offered as an alternative, it will surely remain the prestige track, with ML becoming a 
*sink' subject, taken only by weak students, while the well-qualified adult population re
mains innumerate. 



Chapter 3.4.3 

CLASSROOM ACTIVITIES AND THE TEACHER 

Soeren Antonius, Chris Haines, Tomas H0jgaard Jensen and Mogens Niss 
with Hugh Burkhardt 
University of Southern Denmark, Denmark, Email: soeren.antonius@dig.sdu.clk / 
City University, London, UK, Email: c.r.haines@city.ac.uk/ 
Danish University of Education, Denmark, Email: thje@dpu.dk / 
Roskilde University, Denmark, Email: mn@mmf.ruc.dk 

Abstract: In this section we discuss a broad range of classroom activities, and of teaching 
style, that are required to produce the benefits that modeling can provide to the 
student learning mathematics. We discuss support for teachers and the shortage 
of good modeling tasks that need to be developed into effective curriculum ma
terials. 

1. INTRODUCTION 

The development of performance in modeUing processes^ requires a 
much richer range of learning activities than the explanation-example-
exercises 'ritual' that dominates traditional imitative curricula, and class
rooms. These activities are similar to those needed for non-routine problem 
solving in pure mathematics and so, through them, students (and teachers) 
develop many other mathematical competencies. In previous chapters we 
have demonstrated that modelling provides concrete embodiments of 
mathematical concepts, develops reliable computation and checking, devel
ops multiple connections inside and outside mathematics, and so on. In this 
section we discuss the broader range of classroom activities, and of teaching 
style, that this requires. What about support for teachers? There is a shortage 
of good modelling tasks that have been developed into effective curriculum 
materials. These need to offer sufficient support for typical teachers, who are 
mostly inexperienced in teaching modelling, without undermining student 
autonomy. Since most teachers are used to working with very supportive 
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teaching materials, even in the familiar curriculum, few will do well in new 
and challenging teaching without similarly detailed support. Professional 
development activity will also be important, particularly in the early stages 
of teaching modelling. 

2. THE PATTERN OF CLASSROOM ACTIVITIES 

Among the characteristic differences from a traditional mathematics 
classroom, we have seen that students: 

• spend much more time on each, more-substantial problem; 
• discuss mathematics with each other; 
• explore alternative solution pathways; 
• choose appropriate mathematical 'tools' to employ; 
• carry through extended chains of reasoning, reliably; 
• use checking strategies to get their analyses technically correct; 
• interpret and evaluate the reasonableness of arguments and solutions; 
• explain both results and reasoning to others. 

Overall, students take much more responsibility for their work and their 
solutions. (This is, of course, what they will need to do in life and work). 
This is a major shift in the beliefs of most students and teachers about the 
nature of "doing mathematics", and thus of the implicit 'classroom contract' 
of mutual expectations. 

The diversity of applications and modelling activities in schools, colleges 
and universities is considerable. Their variety and complexity can be consid
ered as follows: 

• Tasks in mathematics and applications are shorter activities, often 
within a single lesson. Many are familiar in standard curricula: in the 
primary school tasks related to lengths, areas, volumes or to data collec
tion, representation and analysis; in the secondary school, dealing with 
word problems and other illustrative applications; in further and higher 
education, short modelling exercises. Many of these will rightly be illus
trative applications but active modelling is vital. At every level they 
should include smaller tasks on mathematising, handling the mathemat
ics, and the other modelling processes, as well as more substantial prob
lems like the following: 
Area of a Porsche asks the students to estimate the surface area of a car 
"for budgetting the paint shop". It is useful in showing alternative ap
proaches and the model improvement process; 
Dead girl presents the stopping distance problem in a dramatic context -
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at different speeds, how far will a car travel before being able to stop 
when someone steps out into the road; 
Bus trip takes a different approach - it describes alternative answers un
der differing conditions for transporting a number of school children 
from one place to another. The social context also becomes important, 
introduced in contrast (Verschaffel et al., 2000) with the usual approach 
to word problems. 

• Investigations are longer activities that may extend over periods from 
two or three classes to two or three weeks. The Numeracy through Prob
lem Solving modules are well-supported examples of this kind of active 
modelling for secondary school. 

• Projects are even more complex activities, extending over weeks or 
months, usually addressing a broader problem embedded in the real 
world. Yatzy Oil Rig (de Bock & Roelens, 1993) deals with the move
ment of an oil rig from its construction site down the River Scheldt to 
Rotterdam through hazards of overhead power cables, depth contours for 
the river bed, tidal variations and logistics. 

• Dissertations, usually in the university sector, develop over periods up to 
one year. The subjects may be quite general, e.g. on cartography and 
conformal maps, with the direction of the work and the outcomes very 
much dependent on the student and on the supervisor. 

• Class/lecture demonstrations are usually led by the teacher or lecturer, 
though the best examples involve the students in active roles. They are 
often physical demonstrations of mathematical models either in a labora
tory situation or on a larger scale using everyday materials showing that 
models work. In a modelling cycle description they validate the model. 
In Walking the plank a scaffold plank is marked off in quarters along its 
length. It is then extended from the stage towards the audience. Partici
pants from the audience come to the stage and counterbalance the dem
onstrator as he/she walks the plank. There has to be discussion and inter
action during the activity on the number of children needed to balance 
the demonstrator. Strict safety measures need to be put in place. (Haines 
&LeMasurier, 1986) 

Dimensional Analysis (for example, Giordano & Weir, 1991) is an ex
tremely powerful, and neglected, technique in modelling and applications. It 
provides a way to introduce quite difficult physical models to those without 
a strong background in science and applied mathematics. For example, the 
motion of a simple pendulum can be discussed in terms of the physical quan
tities mass, length and time leading to the usual formula for its period. Simi
larly it is easy to establish that the wind force on a van travelling on a mo
torway or across a high bridge is proportional to the square of the speed at 
which the van is being driven. These two introductory models have been 
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used to enthuse and engage pupils at upper secondary and undergraduate 
levels with some success. 

For investigations, projects and dissertations it is usual for there to be a 
formal reporting stage; sometimes this is also done for shorter tasks in 
schools but more informally. Reporting methods include written reports 
(Berry & Davies, 1996), oral presentations (Crouch & Le Masurier, 1996) 
and posters (Berry & Houston, 1995). 

Group work contributes significantly to the engagement of students, in
creasing motivation, and leading to better understanding of both the real 
world context and the mathematical concepts and techniques required for 
success. Recent work (for example, Ikeda & Stephens, 2001), has shown 
significant improvements in performance where discussion between mem
bers of the group takes place at the outset. 

Assessment that recognises student achievement in applications and 
modelling has led to the development of innovative practices including: 
teacher assessment; self- and peer assessment; written reports; posters and 
oral presentations (Haines & Dunthome, 1996). In addition, written exami
nations on specific project areas can assess students' ability to transfer their 
understanding and skills to less- or more-remote situations. They can also 
meet concerns about plagiarism. Preparing for such examinations brings 
challenging issues of transfer into the classroom. 

3. TASKS AND TEACHING MATERIALS 

The choice of mathematical tasks for students to tackle, in the classroom 
and in assessment, epitomises any curriculum. In the previous sections we 
have summarised and exemplified the essential characteristics of good mod
elling tasks, and illustrative applications. There are further examples of good 
tasks throughout this book. 

The emphasis in teaching differs for the different types of task. Modelling 
can only be taught through a teaching approach that is investigative and stu
dent-centred, with the teacher playing largely consultative rather than direc
tive roles. Illustrative applications, including stylised word problems, can be 
taught in traditional teacher-centred ways (as it largely has been) - though 
they too benefit from the same broadening of teaching style, which develops 
students' ability to work independently on less-routine tasks. While there is 
plenty of teaching material for teacher-centred teaching, there is still surpris
ingly little that offers detailed support for the greater challenges of teaching 
modelling. As in the early days of teaching problem solving within mathe
matics, much of the available material provides good problems with only 
general guidance on teaching strategies. While this may be sufficient for in-
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novative teachers with some experience, it is not enough support for typical 
teachers who are new to teaching modelling. 

The first fully-engineered materials for teaching modelling in schools 
were provided in the 1960s by Unified Sciences and Mathematics for Ele
mentary Schools (USMES), the pioneering US project from the Education 
Development Center; even so, these provided rather general guidance and 
proved too challenging for most teachers. In the 1980's, the Shell Centre 
developed the much more supportive Numeracy through Problem Solving 
(NTPS) materials for lower secondary students, with an associated public 
examination. 

The materials that have most directly and effectively addressed the de
velopment of other mathematical competencies through modelling have been 
developed over many years by the team at the Freudenthal Institute (FI). 
Their Realistic Mathematics Education program (RME) is based on emer
gent modelling, where students develop mathematical concepts through the 
modelling process, much as discussed in this chapter - but with well-
engineered teaching material. 

In recent years in both the UK and the US, the curriculum has again nar
rowed its focus, so investigative activities of any kind are rare. However, the 
current interest in mathematical literacy offers some hope of further pro
gress, and the development of more well-engineered teaching materials to 
support typical teachers at all levels. They are sorely needed. 

4. MODES OF WORKING IN THE CLASSROOM 

These can be analysed in various ways. Basically, students can work in
dividually or in groups; however, this dichotomy covers a multitude of im
portant variations. There is a substantial literature on group working; here 
we have space for only a few comments. 

Berry and Houston (2004, p. 36) use the concept mathematical working 
styles to capture how students work in modelling courses for undergraduates. 
It is a three-dimensional concept with the following components: the role of 
IT-tools; working with representations; and a sequence of actions that forms 
the approach to solving the problem. Ferri (2004, p. 47) uses the concept 
mathematical thinking styles and defines it as the way in which an individual 
prefers to present, to understand and to think through mathematical facts and 
connections by certain internal imaginations and/or external representations^. 
This has several elements organised in five stimuli strands: environmental 
(sound, light, temperature, school- and room-design), emotional (motivation, 
persistence, responsibility, need for structure), sociological (self-work, pair-
work, team-work, adult support, varied), physiological (perceptual, intake. 
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time, mobility), and psychological (global/analytical, hemisphericity, impul
sive/reflective). 

We shall focus on the sociological stimuli specified in the following 
question: What kind of interpersonal working modes can be observed in the 
classroom when students are working with modelling? 

Individual work is (even when students sit in groups) the most common 
working style for traditional teacher-guided instruction. Students listen to the 
teacher, take notes, ask questions which the teacher answers, and do exer
cises. They also solve routine word problems at school and/or at home, 
which are later assessed by the teacher. 

Group work seems to be an appropriate mode of working for modelling 
problems. Groups can be formed by the students themselves or by the 
teacher. They can be randomly or deliberately formed and may be homoge
neous (group members have similar capabilities) or heterogeneous in com
position. Groups may function in a variety of ways. 

• Groups are formed and dissolved constantly. If a student has a problem, 
he/she tries to form a group (with another student) or tries to be admitted 
to an existing group in order solve this specific problem. When the job is 
done, the group is dissolved. 

• The group functions as a pleasant sociological environment. Students 
small-talk - not about mathematical problems, but in parallel to their in
dividual work. The group seems not to be a learning facilitator, but one 
should not neglect the fact that these environmental factors can play a 
significant role for some students' learning process (cf the environ
mental stimuli). 

• The group members work parallel to each other, on the same problems, 
but approaches, methods and results are constantly discussed, negotiated 
and checked in order to reach an agreement. Sometimes an agreement is 
reached, sometimes not (Matsuzaki, 2004) which could mean that differ
ent answers to the same problem are produced. This way of functioning 
involves the risk that a student, who is less able, un-motivated, frivolous, 
or lazy, can become a 'passenger' and not takes any responsibility for 
the group work. 

• The problem is split into sub-problems and distributed to (or by) the 
group members in such a way that each group member is responsible for 
a specific part, and the complete answer to the problem is composed 
from the individual contributions. This is often the case with major prob
lems and project work. It forces students to collaborate. The outcome is 
highly dependent on each student's work. If just one student fails, the 
work will not be completed in time. 

Note that in all these cases individual work is also involved; as in every-



3.4.3. CLASSROOM ACTIVITIES AND THE TEACHER 301 

day life, the balance between different modes of working is important. 
Most students seem to prefer working collaboratively when modelling. 

As in everyday life, discussions are often helpful when tackling more com
plex problems. When one student is stuck, another may be able to supply a 
suggestion, which a third may be able to elaborate. In this, the teacher acts as 
a guide, asking questions to promote thinking and leaming^ The group can 
do more than the sum of group members' contributions. 

Group work can also be seen as a way of entering a landscape of investi
gation (Alr0 & Skovsmose, 2003). This landscape is explored by a particular 
form of student-student and student-teacher relationship, and the theoretical 
background for this way of working and communicating is specified in the 
so-called Inquiry-Co-operation Model. 

Group work is not unproblematic, however. If the group work relies on 
each group member, the work may fall apart if just one member is absent 
one day, or if he/she is not able to do his/her job. This may cause frustration 
and irritation, and these are just some of the problems that the group must be 
able to deal with. Group-work also raises the question of fairness; the out
come is highly dependent on the group members' willingness and ability to 
co-operate. The ability to co-operate in groups is not inherent in students; it 
has to be learned (Laborde, 1994). 

5, THE ROLES OF THE TEACHER 

When learning mathematical modelling, the traditional teacher's role as 
the prime source of explanation, demonstration and correct answers is no 
longer appropriate. The teacher can no longer micro-manage the students' 
thinking or they will not develop the strategic capabilities that are at the cen
tre of modelling; guidance remains essential but it, too, must focus on strate
gic questions (Shell Centre, 1984), with: 

• More metacognitive prompts: "What have you tried?", "What did you 
find?", "What are you going to try next?", "What will that tell you?". 

• Some prompts focused on specific strategies: "Have you looked at some 
specific cases?", "Did you see any patterns that you recognize?", "It may 
help if you represent this in a different way", "Have you tried to check 
that using another method?" 

• Little detailed guidance: "Isn't that the difference of two squares?", 
"Why don't you try a linear fit?", "That's wrong". 

Developing the mathematics 
While students work on a modelling problem, their main objective is to 

produce an interesting and useful analysis and report, not to develop particu-
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lar mathematical techniques. The mathematics is used as a tool to facilitate 
this process and is not seen as an end in itself. These are appropriate priori
ties. 

The teacher can, however, use the many opportunities provided by the 
v^ork to motivate the learning of mathematical techniques in a more explicit 
way. This section offers suggestions, taken from the Numeracy through 
Problem Solving (NTPS) modules, as to how this can be achieved without 
destroying the essential flow of the modelling activity. 

How and when may mathematical topics be introduced? 
Mathematical activity may be initiated by either the student or by the 

teacher. For example: 
A student may become aware of the need to acquire a particular skill in 

order to complete her consumer report. "What is the best way to present this 
data?" "Should I draw a pie chart, bar chart or what?" This kind of situation 
can lead to an invaluable learning experience because the student wants to 
know something. Such opportunities occur rather unpredictably. Also, if you 
have a large class, it is unwise to spend a great deal of time helping one per
son. One approach is to ask to the student to describe the problem to the 
whole class and invite help and advice from other students. 

The teacher may wish to use some ideas from the problem to support a 
more intensive piece of work on a particular topic. Today, we are going to 
look at the topic of ratio, using the shopping surveys you carried out. Which 
type of chocolate gives you the most for your money?' Do not expect stu
dents to use, autonomously, mathematics that they have only recently been 
taught. There is a gap, typically of several years, between first * learning' a 
skill and being able to use it with flexibility and fluency. Students will tend 
only to use skills that they have mastered. (There is evidence that this "few 
year gap" can be reduced - it requires a more 'rounded' approach to learn
ing, with a variety of applications and non-routine problem solving to sup
plement and give meaning to technical exercises.) 

Before, during or after - a timing dilemma 
Teacher-initiated work on mathematical techniques related to the theme 

may occur before, during, or after the modelling itself Each has advantages 
and drawbacks. 

• Before: "I'll give them some practice at drawing pie charts now, so that 
they will be more inclined to use them later on, when they begin work 
on the module." This timing has the advantage that the student will, if all 
goes well, have the technique polished and ready to be used, but it seems 
artificial to learn a new technique just before you need for it. Students 
soon assume that the 'problem' is an illustrative application - merely a 
vehicle for practising the new technique, rather than developing their 
modelling competency. 
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• During: "They seem to be having difficulty in organising their data. 
We'll take a break from this module for a few lessons and do some work 
on this, together using data that I'll provide". This timing allows you to 
respond to needs as they arise. But, if students always expect you to pro
duce the method or solution when the going gets difficult, you under
mine autonomy. If such teaching is done too often then the work on the 
module will drag on too long and become boring. 

• After. "When we have finished the problem, we will look at the tech
niques we have used in greater depth." This does not threaten student 
autonomy, and working on the module may motivate and enable them to 
perceive the value of techniques when they are taught. However, stu
dents may still not be able to use techniques autonomously unless they 
are given further opportunities to select and apply them in other model
ling contexts. 

Whatever you decide at each stage, it is important to be vigilant about 
sustaining the students' strategic control of their work; it is too easy to allow 
them to revert to the imitative role that the traditional curriculum encour
ages. If the balance of support is inappropriate for modelling, the students 
soon lose the feeling of 'ownership' of the problem to the teacher and revert 
to the traditional passive, imitative role that inhibits learning of all kinds. 

Steen and Forman's "Principles of Best Practice" (2001) summarise all 
this, and is adapted here. 

Effective teachers of modelling employ pedagogy that is: 

Active: 
• Encourage students to explore a variety of strategies. 
• Stimulate discussion of available data in relation to what is being asked. 
• Require students to seek out missing information needed to solve prob

lems. 
• Make hands-on use of concrete materials. 

Student-centered: 
• Focus on problems that students see as relevant and interesting. 
• Help students learn to work with others. 
• Developed strong technical communication skills among students. 
• Provide opportunities for students to use their own knowledge and ex

perience. 

Contextual: 
• Ask students to engage problems first in context, then with mathematical 

formalities. 
• Suggest resources that might provide additional information. 
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• Require that students verify the reasonableness of solutions in the context 
of the original problem. 

• Encourage students to see connections of mathematics to work and life. 

This book illustrates these principles from work in various countries on 
the teaching of modelling. The published proceedings of the series of bien
nial ICTMA conferences (ICTMA) are also an important source of examples 
and analysis of the development of this field. 

6. HOW MUCH GUIDANCE? 

This question is at the heart of the teaching of modelling - indeed of all 
non-routine problem solving. However, as noted above, there are specific 
issues when other mathematical competencies are a learning goal. If the 
teacher allows students to select their own skills to deploy, then they are 
likely to choose only those with which they are most familiar and secure. 
They will tend to avoid the more challenging and difficult ideas, even when 
imitatively fluent"̂ . On the other hand, if the teacher tells students which 
mathematical techniques to use, then the teacher removes the strategic de
mand and the problems become exercises in using the given techniques. 

We illustrate this issue with two complementary case studies of class
room 'trajectories' starting from the same very broad task statement: 

Which means of transport is the best? 
They show that, while teachers face important strategic decisions, the 

situation does not need to be so polarised. The teacher doesn't have to 
choose between allowing complete strategic freedom and none. It is possible 
to manage the process so that students begin by tackling problems unaided, 
then compare advantages and disadvantages of the approaches and strategies 
used, and then refine these into more powerful methods or introduce new 
methods in a tentative 'maybe this will help' manner. In this way the teacher 
acts as a co-constructor of the mathematics. Some of the examples above 
show how this can be done - and the kind of support that helps teachers. 

However, the constraints that the teachers applies through the initial 
problem is important. Here the first teacher takes a more open approach than 
the second. In the analysis we focus on two issues: 

• How is the teacher dealing with the balance between mathematical mod
elling as a goal in itself, and as a means to develop some of the other 
mathematical competencies? 

• What opportunities for the teacher does the approach offer, and what ob
stacles and difficulties does it carry with them? 

First classroom trajectory 
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This comes from an experimental two-year teaching programme in a 
Danish upper secondary school (Jensen, to appear). The mathematics teach
ing was guided by the KOM set of mathematical competencies. The class
room activity structure enabled students to get experience with all aspects of 
the mathematical modelling process. 

In the first phase of the work the teacher 
• made the mathematical competencies explicit, but emphasised modelling; 
• gave a list of interesting openly-formulated problem areas to choose 

from. 

Within the task statement above, the students chose to focus on the fol
lowing question: 

What is the average use of energy in moving x people from one floor to 
another using respectively a staircase, an escalator and a lift? Which option 
uses the most? 

This focus was much narrower than what the teacher had in mind - com
paring cars, trains, planes etc from various perspectives: time; price; pollu
tion. 

The students continued the detailed specification of the problem by fo
cusing on the relation between the height of the stairs of a staircase and the 
effectiveness of the use of energy in the leg muscles. However, after some 
discussion with the teacher, the physiology involved was deemed too de
manding, so they simplified the problem to calculating the difference in po
tential energy between being on the two floors. The lift was dealt with satis
factorily, but the escalator turned out to be a real mathematisation challenge. 
How can one make a mathematical representation of the way a group of 
people enter and leave an escalator, the number of people on the escalator at 
a certain time and the use of energy this adds up to? 

Modelling vs. other mathematics: In this case the teacher had a clearly 
specified focus: to develop the students modelling competency. It turned out 
that several other mathematical competencies were also used during the pro
ject, not least among these communication (through the negotiations in the 
problem specification and mathematisation processes) and problem tackling 
(through struggling with both formulating and solving the model problem). 
However, because of the openness of the task, one could not ensure the use 
of specific mathematical topics (Blomhoj & Jensen, 2003). For that, the 
teacher must take more control, reducing student autonomy. 

Opportunities and obstacles: This teaching style helped the teacher to 
create an open, trustful and mutually supportive atmosphere in the class
room. This came from being honest about his role as mediator between the 
goals of the curriculum and the autonomous interests of the students. The 
second opportunity follows from this. The teacher helped develop modelling 
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competency directly: Here is a goal - go for it, and I will help you! There 
seemed to be three difficult issues for the teacher to deal with: 

• The demands, both personal and mathematical, of this style of teaching; 
• the general difficulty of competency-guided teaching, not least due to the 

students' problems in grasping the essence of the different competencies. 
• The distribution of time among the different projects and the various 

more teacher-controlled modes of teaching taking place. 

Second classroom trajectory 
In this example, the initial task was more closely specified by the teacher: 

''Which is the best means of transport in the metropolitan area of Copen
hagen amongst bicycle, bus, car, metro, or train for an individual living 
and working in this area? 
It is up to you to specify the conditions for answering this question, in
cluding what ''best" means, and what assumptions are being made. You 
have all four lesson-hours per week (plus homework time) for three 
weeks at your disposal " 

The students tackled this task in five groups of 3 - 5, each of which made 
its own specification. Then each group consulted the teacher, who had to 
approve the specification and the approach chosen, bearing in mind the 
mathematical tractability at their level, the time frame at their disposal, and 
information and data to be identified and collected. As the teacher wanted to 
give the students as much independence as possible, she did not share her 
deliberations on these matters with the students; she made her own assess
ment of the task, the capabilities of the students in each group, and her op
portunities to provide guidance at crucial points. 

One group of students decided to keep a dual view of the term "besf, be
cause they found that both "time consumption" and "cost" were objective 
functions of relevance. They wanted to be able to look at the trade-off be
tween the two, should they find (as they assumed) that different means of 
transport would be optimal. 

At first this group wanted to tackle a well-defined simple problem: to se
lect two points, A and B, in the Copenhagen area and then look at all realis
tic routes between the two for cars and bicycles, and at all the public trans
port options connecting small neighbourhoods of A and B, respectively. 
However, the teacher thought that this would not be challenging enough in 
mathematical terms - just comparison of a few costs and riding times. The 
work would be nearly all data collection - reading of time-tables, perhaps 
taking measurements etc. This educational challenge was not sufficient, so 
the teacher urged the group to specify its task in a different way. 
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Thus prompted, the group decided to narrow its task down to comparing 
transport by car with transport by public buses, but without specifying the 
points of departure and arrival. They did so by modelling the average cost 
and duration of car rides per km during rush hours and "quiet hours", respec
tively, taking into account the average number of stoplights per km and the 
expected waiting time at stoplights at different hours. Similarly, they used 
the official timetables of buses to compute the average fare and duration of a 
bus ride per km. In order to do all this they collected data samples of dis
tance data and the places of stoplights, and they collected information from 
the traffic offices of the city of Copenhagen concerning the waiting times at 
different categories of stoplights in the city. They also attempted to model 
the time costs entailed by deceleration and acceleration at stoplights. 

At the end of the second week, their model was almost complete, and 
conclusions were about to be drawn with regard to the main question. The 
teacher then asked students to improve the model by analysing the sensitivity 
of the model and its conclusions to inaccuracies and uncertainties in the data 
and assumptions made. This led students to pursue the effects of errors by 
means of interval arithmetic, a technique to which their teacher gave the 
group a brief introduction. Students finished their work by producing a 
poster, and defended this at an oral "poster session". 

Modelling vs. other mathematics: In this trajectory, the teacher had a 
clear vision of the goals of the modelling activities: 

• fostering students' competence in mathematical modelling in highly 
messy and blurred real world contexts; 

• the making of decisions, idealisations, simplifications, and improve
ments; 

• the collection of appropriate data (a primary goal); but also 
• to activate, in the modelling process, mathematical knowledge and skills 

that they could deal with but at the edge of these students' ability. 

Thus the project stimulated students' activation and consolidation, to dif
ferent degrees, of the entire spectrum of mathematical competencies, as well 
as specific subject matter knowledge and skills. The emphasis was on the 
competencies of problem tackling, representation, communication and above 
all, of course, modelling. This teacher achieved this balance by guidance at a 
few crucial points so as to ensure that their work would be mathematically 
relevant and challenging, and relevant to the initial questions. 

Opportunities and obstacles: As usual, the most significant challenge to 
the teacher is to strike a proper balance between student autonomy and 
teacher intervention. Too little feedback from the teacher can cause frustra
tion and insecurity with the students - the teacher had to provide inputs to 
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students that allowed them to take responsibility for their own work but also 
helped them over hurdles and decisions that were likely to carry them astray. 

Achieving this balance presents every teacher of modelling with formi
dable demands. The Steen-Forman Principles of Best Practice (2001) has a 
useful list of pitfalls to avoid: 

• Selecting tasks in order to cover mathematics rather than to explore and 
solve interesting problems. 

• Overlooking interesting or challenging mathematics that lies embedded 
beneath the surface of many "real-world" examples. 

• Imposing unwarranted structure on a contextually rich problem in the 
interest of ensuring appropriate mathematical coverage. 

• Believing that complex problems require sophisticated mathematics and 
that there is something wrong with solutions that use elementary tech
niques. 

• Choosing tasks that fail to help students prepare for higher achievement 
in mathematics. 

• Presenting tasks in the form of mathematics worksheets, thereby steriliz
ing the context of everything that makes it problematic. 

• Lacking conceptual continuity and intellectual growth in the sequencing 
of tasks in which mathematical activities are embedded. 

• Failing to bring mathematical closure (including concepts, vocabulary, 
methods, generalizations) at the conclusion of an open-ended project. 

• Not allowing sufficient reflection on the process of mathematical model
ing. 

In addition to reflective experience of supervising and guiding the proc
esses involved, teachers also need a deep understanding of many different 
kinds of subject matter that allows them to predict the possible obstacles and 
outcomes of different paths students may follow. This requires new kinds of 
teacher decisions and interventions. The teacher has to be able to live with 
uncertainty, continually gathering and processing information about the state 
and development of each student, and making appropriate decisions on in
tervention. This is a mathematics teacher competence that cannot be ac
quired by means of pre-service preparation only. It has to be developed in 
service, but the seeds should be planted in pre-service education. 

comprehension, formulation, transformation, interpretation, evaluation and communication, 
through cycles of improvement from an initial simple model. 

^ c.f. learning styles of Dunn & Dunn (1998). 
^ In this way, group work is one way of giving substance to Vygotsky's zone of proximal 

development. 
^ Treilibs (1979) for example, invited 120 very able 17-18 year old students to solve a variety 

of mathematical problems set in realistic contexts. None used algebra. 
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Abstract: This chapter focuses on the use of technologies in learning mathematics 
through modelling and applications. In the limited space available, we have 
chosen to concentrate, in the first part of the discussion, on some important 
uses of computer software to stimulate modelling development at the secon
dary level. In the second part of the discussion, at the tertiary level, we present 
an innovative mathematics program that makes extensive use of technologies 
and that has a core in applications and modelling. 

1. INTRODUCTION 

In mathematics there exists a substantial choice of technologies, and new 
alternatives are being developed every day. For some of these the entry fee -
the time and effort spent learning the system - can be substantial. With mod
elling applications, this goes beyond simply learning how to operate the 
software but requires the user to learn a new set of concepts, terms and rep
resentations. The cognitive load should not be underestimated, however 
friendly the user interface. While this may contribute to competencies in the 
representing and symbols sectors of modelling, concepts that are too proprie
tary or esoteric are unlikely to be further built upon. Here we discuss the use 
of generic applications such as spreadsheets, computer algebra systems, and 
programming - where the entry fee is repaid in transferable, accredited in
formation and communication technology skills. We also consider applets, 
learning objects, and microworlds, which achieve very low entry fees but 
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often only have a narrow, fixed mathematical context. In the last part, we 
highlight a university program in which students develop mathematical con
cept knowledge using technologies and through applications and modelling. 

2. MODELLING WITH TECHNOLOGIES IN 
SCHOOLS 

We begin by considering the uses of spreadsheets, graphing tools, dy
namic geometry software, applets, learning objects, and micro worlds. 

The dominant use of spreadsheets in schools is for data analysis and 
graphing. Their wide use arises because teachers of many different disci
plines have become familiar with them. Thus students are able to carry their 
knowledge of the technology to different classes. Spreadsheets can be used 
for a class of tasks that combines problem tackling with modelling, for ex
ample, optimising within constraints. Fig. 3.4.4-1, is taken from Mathemat
ics Assessment Resource Service project Developing Problem Solving: Op
timising (MARS, 2002-04). It is developed to engage 11-14 year-old stu
dents into a deeper understanding of the concept of area and for them to ex
plore alternative approximations. They are not expected to solve this analyti
cally. The intention is that they calculate the area for a given number of 
floors and fmd the optimum by a systematic search. A spreadsheet is ideal 
for this as it reduces the amount of calculation, and encourages a systematic 
approach for calculating the total area - although having to work on paper 
might offer an incentive to adopt a more efficient search strategy. 

Your task is to design a tower that meets the following constraints: 
• The outside measurement will be 10 metres by 10 metres. 
• The tower will have a number of floors. 
• The more floors there are, the thicker the walls will have to be. 
• The walls have to be 0.1 metres thick for every floor in the building 

(so if there are 5 floors, the walls must be 0.5 metres thick). 
How many floors should you make the tower in order to have the greatest 
possible total floor area in the whole building? 

Figure 3.4.4-1. Tower design 

Many of the tasks used by the MARS project were prototyped using a 
spreadsheet. The following example Fig. 3.4.4-2 is actually an Excel spread
sheet used during the trialling of Developing Problem Solving - Making 
Models, 
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Hiii Walking 
Phil has invented the following colculator for hill wolkin^^. 

Type distances into his calculator and see how long the walk takes, 

Horizontal distance walked (/?) 1 I kilometres 

Vertical height climbed (i^) I 1000 I metres 

Total time needed for the walk (/) j 03 :35 I hours; mins 

Figure 3.4.4-2. Hill Walking 

The student can change the two shaded boxes and see the resuh - the rest 
of the spreadsheet is "protected" and the formulae are hidden. While this was 
replaced with a slicker, professionally programmed version for the finished 
product, producing similar materials is well within the grasp of a reasonably 
IT-savvy teacher (or student), given a few technical tips. The exercise here is 
for students to interact with the model and try and re-create it (either descrip
tively or as a formula, depending on their age/ability). In other words, one of 
the aims of the modelling situation is for the student to develop an under
standing of formulating mathematically. The main challenge here is to tackle 
the problem systematically - many students will type in random values, al
ways change both numbers, or fail to keep records. 

There are also statistical softwares developed specifically for the class
room. Suurtamm and Roulet (this volume. Chapter 5.2), discuss an Ontario 
modelling course 'Mathematics of Data Management' that is built around a 
major modelling project. Examples of student projects (MDM4U, 2002) 
show use of spreadsheets and a dynamical statistical software (Fathom, n.d.). 

Numerous educational graphing tools address the shortcomings of the 
business chart-oriented facilities of spreadsheets (for example, GT, n.d.). 
There is, however, a tendency towards "creeping featurism" and such pack
ages offer more features than a typical teacher would ever use. On the other 
hand, some of these features can engage a creative student. Producing a 
graph tediously by hand - or using an inappropriate, presentation-focussed 
tool - could cause graphs to be seen as static illustrations, a poorly under
stood part of "writing up" the exercise. The applications discussed below 
use animation and interaction to reinforce understanding of the underlying 
representation and symbol/formalism competencies; forge links with other 
representations and to make plotting and dynamically changing graphs cen
tral to the modelling process. 
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Traffic (Swan et al., 1985) uses the computer to provide a visual link be
tween abstract representations and 'real-world' situations. Here, students see 
an animation of cars driving along a road. Every second, a "photograph" of 
the road is taken and these are shown side-by-side. Finally, the photos, as 
shown in Fig. 3.4.4-3, are "morphed" into a distance-time graph. 
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Figure 3.4.4-3. Traffic 

Graphing software can be used interactively to improve students' under
standing of a representation - for example, it is usually possible to animate 
the graph of a function by interactively varying one of the parameters. For 
example. Fig. 3.4.4-4 shows a screen from Coypu (Coypu, n.d.) 

m y^oltt 

Figure 3.4.4-4. Coypu 
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The activity is to visually fit a line of the form y=Ae^ to a series of data 
points showing the voltage of a discharging capacitor. A has been chosen and 
fixed - now as the mouse is dragged K is calculated so that the line passes 
through the pointer, giving the user a strong "tactile" impression of how K 
changes the shape of the graph. 

Students can now learn and apply geometry by using one of the engaging 
dynamic environments such as the Geometric Supposer (GSupposer, n.d.), 
Cabri geometre (Cabri, n.d.) or The Geometer's Sketchpad (GSP, n.d.). 
Field-tested classroom activities for most school levels are available on the 
product websites, which also provide links to other sites dedicated to the use 
of the dynamic software. The range of topics that are listed in their publica
tions underline the importance of visual representations for many learners 
across the mathematics curriculum. 

Applets, learning objects and microworlds are all web-based activities. In 
general an applet is a small, limited-functionality piece of software often 
designed to be embedded in a web page in very much the same way as a pic
ture or video. A learning object is a self contained instructional component 
that can be used in different learning contexts. In mathematics applets and 
learning objects usually focus on a specific mathematical concept. The best 
learning objects are designed to engage the learner in some activity or game 
and from there to progress through levels of conceptual development. Mi
croworlds are intended to be little worlds in which a student explores alter
natives, develops and tests conjectures while discovering properties and facts 
about this world. Some of these have been expanded to allow students to 
interact with classmates or with other students connected to the web. (The 
terms applet, learning object, and micro world are widely but not universally 
used with these meanings.) 

A search of the web using 'mathematics applets' produces a list of sev
eral substantial collections. Fig. 3.4.4-5 shows an example from the Freuden-
thal Institute's site (WisWeb, n.d.). It illustrates Dijkstra's algorithm for 
finding the shortest distance between nodes on a connection graph. 
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Figure 3.4.4-5. Dijkstra's algorithm 

For other examples of sites that contain extensive references of mathe
matics applets see, at the school level (JavaMath, n.d.), and at the post sec
ondary level (Mathematics Archives, n.d.). 

The website (Brock-a, n.d.) provides examples of learning objects de
signed and implemented by university mathematics students. In FireFire the 
user develops the concept of trigonometric ratios, and in Parabola Games 
the learner explores the roles that parameters play in alternative formulations 
of a parabola. Examples of repositories of mathematics learning objects are 
Merlot and the National Science, Mathematics, Engineering and Technology 
Education Digital Library (NSDL, n.d.). 

In the UK and in the mid/late 1980s, a large range of "microworld"-type 
software was produced by projects such as the ITMA group and SMILE 
(SMILE, n.d.). One challenge to the incorporation of such "small software" 
into everyday teaching has been the migration of computers from the regular 
classroom into the "IT Suite". The recent popularity of "electronic white
boards" has seen a reversal of this and may allow a renaissance of the app-
let/microworld. 

3. TECHNOLOGY AND MODELLING IN A UNI
VERSITY MATHEMATICS PROGRAM 

It is a little hard to imagine a group of first year university mathematics 
students choosing on their own initiative to spend hours of time on mathe
matics projects. But this kind of effort is what the faculty are regularly see-
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ing in the new MICA program at Brock University. MICA stands for 
Mathematics Integrated with Computers and Applications (Brock-b, n.d.). It 
is a "hands on" approach to the teaching of mathematics that has engendered 
a remarkable change in the level of engagement of the students. In the con
text of this new program, we will look at some of the issues, rewards and 
problems that arise when introducing technology into undergraduate mathe
matics and when implementing applications and modelling into a set of core 
courses. 

During the two years of intensive development of MICA, faculty sought 
to create a modem mathematics program that would foster creativity, and the 
mastery of mathematical concepts and their applications, while making the 
best possible use of modem technologies. 

The seed of the program was planted twenty years ago when students in a 
half-course in applied calculus were placed in weekly Maple (Maple, n.d.) 
labs (Muller, 2001). This meant that not nearly as much time in lectures had 
to be spent on calculations, thereby leaving more time to discuss and develop 
the concepts of calculus and their applications. Furthermore laboratories pro
vided opportunities for students to explore mathematical concepts using mul
tiple representations, even before they were introduced in class. 

Ironically, it became clear that students in this service course were having 
a richer mathematical experience than the mathematics majors because, for 
example. Maple allowed them to explore families of functions and more re
alistic applications, while majors were restricted to the small number of ex
amples that could be calculated by hand. Consequently, the first year calcu
lus course for majors was rewritten to incorporate Maple and the interactive 
CD-Rom csillQd Journey Through Calculus, developed by Ralph (1999). 

The central challenge of any mathematics program is to create an envi
ronment in which students become intemally directed and personally in
vested in moving themselves along the long road to mastery. The problem 
with traditional undergraduate mathematics programs in this regard is that, if 
students try to take the initiative in creating and investigating problems and 
applications of their own devising, they quickly come up against difficulties 
that they cannot handle with purely analytical tools. For this reason, tradi
tional programs must be very tightly choreographed around the applications 
and modelling that can be solved by hand. 

Technology can offset the rigidity of a traditional mathematics program 
by providing students with access to an endless supply of problems and ap
plications that can be investigated both computationally and analytically. It 
enables students to engage in a new level of creative discovery. It also plays 
a role in preparing students for new concepts by placing them in a situation 
where they naturally raise the question before being shown the result This 
principle is fundamental to the MICA philosophy. 
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We start by looking at one component that will make or break a techno
logically oriented curriculum - the computer laboratory activities and as
signments. The importance and difficulty of creating superb, friendly and yet 
challenging computer laboratory activities and assignments for mathematics 
courses cannot be overstated. The art of writing a good lab is to get the 
maximum mathematical punch with the minimum amount of programming 
while providing a clear framework within which the student can confidently 
develop the software to be employed in the mathematical investigation. Here 
are some of the faculty's experience in making effective lab activities: 
• Build a parameter into any mathematics done in the lab. The best labora

tory activities involve exploring a mathematical problem that shows in
teresting different behaviours across a range of parameter values. En
courage students to explore and give qualitative descriptions of the phe
nomena they are seeing. 

• Make all computer activities syntax explicit. Mathematics students 
should not spend time thinking about computer syntax as nothing will 
frustrate students faster than not knowing which computer command to 
use. 

• Encourage students to make conjectures and then write programs to test 
their conjectures. 

• Reward students for making attractive self-contained, user-friendly inter
faces for their programs - they then become personally committed to the 
creation of good programs. 

When the activities are scheduled in a laboratory, with each student at their 
own computer, get sufficient expert staff In courses where students are writ
ing programs, experience has shown that there should be a minimum of one 
assistant for every 15 students. 

The second issue of concern is the nature of the student's programming 
environment. This is particularly important because the MICA program re
quires no previous programming experience. Initially, first year students 
were given a half-course in the Java language (JAVA, n.d.). They found the 
syntax of the language so formidable that it overwhelmed the mathematical 
content - the entry fee was too great. To overcome this difficulty, the pro
gramming course was dropped, the programming language changed to Vis
ual Basic.net (VB.net, n.d.) and the necessary programming was introduced 
into the first MICA course. The vast majority of the first year students pick 
up the language and graphics quickly (in three weeks). 

The MICA mathematics program is built around a sequence of unique 
courses that emphasize the creative investigation, application, use, and pres
entation of mathematics using computers. In the limited space available we 
have chosen to provide some detail and reflection on the first MICA course 
only. 
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As students do not have experience in raising open-ended mathematical 
questions, the first part of the course describes two interesting areas of 
mathematics for student investigation. Examples are prime numbers and the 
Collatz conjecture. The purpose is to give the students a fertile arena for rais
ing sensible conjectures that they can test by writing programs. The class is 
divided into small groups and asked to raise any interesting questions they 
can think of about in the areas investigated. For this session to work, the tone 
of the classroom has to be absolutely nonjudgmental so that all speculations 
are equally welcome. Conjectures are written on the board and are discussed. 
Special attention is paid to the feasibility of testing them, within the stu
dents' current level of programming skills. Each student is then asked to 
make a unique conjecture and then to write a program to test it. They hand in 
a functioning program and a full written report on their conjecture and what 
they found. The program's interface is expected to be self-explanatory, visu
ally attractive and extremely user-friendly. It is truly unfortunate that these 
students have gone their whole intellectual life and have rarely been asked to 
raise a mathematical question. When this process is first initiated in class 
there is a certain "stiffness". But after a while the conjectures begin to come 
quickly and it turns out that students do indeed have a great capacity for rais
ing interesting questions. 

The goal of the second part of the course is very specific - to create a 
functioning encoding and decoding program based on RSA encryption that 
"spies" can use in the field. Students are taken through the theory of modular 
arithmetic, Euclid's algorithm for the greatest common divisor, the group of 
integers modulo n and Fermat's little theorem. They write programs that en
capsulate each topic in preparation for the theory and coding of the full RSA 
algorithm. 

The course then explores discrete and continuous dynamical systems. For 
example students write programs to exhibit the cobweb diagram and output 
the numerical data for the logistic equation. This done, the lectures are given 
right in the laboratory, with each student at their own computer, so that they 
can instantly use their own programs to verify the theory being developed in 
class. It is a very exciting way to teach this material. 

The centerpiece of this course is the student's final project. Students 
work in pairs and select an area to work on. What they choose tends to indi
cate their major interest. Pure mathematics majors choose to explore and test 
conjectures. Students interested in applications and modelling choose areas 
that intersect other disciplines. Future teachers develop learning objects that 
create an environment for a learner to explore a mathematical concept. This 
final project has many of the characteristics of a modelling exercise. Stu
dents select an area that is of interest to them. They research it and determine 
those properties that are central and those that are secondary for its computer 
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modelling. They develop a model for its programming. They have to work 
with great care - computer programming is unforgiving. They cycle through 
the process as they find that the results are not what they anticipated. And 
they communicate their results in an interactive environment. This last step 
is far more demanding than writing a report as the model must be robust. 
The quality and depth of the projects generally exceed the faculty's expecta
tions. Students become very engaged in this work and the final projects are 
often elaborate, fascinating and a pleasure to mark. Examples of some of the 
more outstanding projects can be found on the Department's web site 
(Brock-a, n.d.). 

The MICA program uses technology not only to reify and reinforce the 
learning of theoretical ideas but also to allow students to explore applications 
and modelling, that are well outside the usual boundaries of a traditional 
mathematics program. The act of writing a computer program promotes 
learning because it puts the student in a feedback loop where they are con
stantly checking to see if the output from their program agrees with the theo
retically predicted values. Students quickly discover that it is virtually im
possible to write such a program without first understanding its mathemati
cal content. In this way, students are pushed passed a cursory understanding 
of the material to a new level of mastery. Finally, it should be noted that 
there is something very personal about writing programs. Students take con
siderable pride in writing robust programs with user friendly interfaces. 
Their level of engagement and enthusiasm for the MICA program has made 
all of the effort spent in its creation entirely worthwhile. 

4. CONCLUDING REMARKS 

Technologies impact many areas of mathematics education and their ef
fective use requires new approaches by both teachers and students. Tech
nologies challenge the hierarchical views of student access to mathematics 
as they allow students to work with mathematical concepts which are tradi
tionally seen as too difficult for them. Technologies also challenge the view 
that applications and modelling can only be introduced after the student has 
developed all the required mathematical knowledge. Technologies in 
mathematics are evolving so that a single software application allows users 
access to multiple representations (for example numeric, graphic, and alge
braic), and to several areas of mathematics (for example geometry, probabil
ity, and algebra) which are traditionally separated in the curriculum. In this 
way technologies can provide multiple connections in mathematics, support
ing a student's holistic development of mathematical understanding. 
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MODELLING PEDAGOGY - OVERVIEW 
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Abstract: Applications and modelling are an indispensable part of basic experiences 
students must have in mathematics lessons. Traditional teaching forms, con
tents of curricula, and methods of assessment often stand in the way of this 
goal. 

1. BASIC EXPERIENCES 

Following Heinrich Winter, the well-known German mathematics educa
tor, three basic experiences are necessary in order that mathematics lessons 
will convey general education principles on every school level (Winter, 
2004). 

(BE 1) To realise in a specific way, and to understand phenomena in the 
world around us, which we are and should be concerned with. (Funda
mental contributions of mathematics towards acquiring important knowl
edge about our world). 

(BE 2) To learn about and to understand mathematical issues represented in 
language, symbols, pictures, and formulas as intellectual creations, as a 
deductively ordered world of its own kind. ("Inner world of mathemat
ics", mathematics shows that a rigorous science is possible). 

(BE 3) To acquire problem-solving (heuristic) skills by analysis of tasks 
which go beyond mathematics. (Mathematics as a school of thought). 

Mathematics proves to be an inexhaustible pool of mathematical models, 
which allow us to understand better the world around us. However, for con
crete examples, both of the two other basic experiences play central roles. 
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especially when the important demand for interconnectedness according to 
the spiral principle is taken seriously. For example, "problem solving" (Pol-
lak: "Here is the problem, solve it") is inherent to BE 3. On the other hand, 
"modelling"(Pollak: "Here is a situation, think about it, find out what the 
problem should be") relates to BE 1. The deductive aspect of mathematics 
(Pollak: "Here is a theorem, prove it") belongs again to BE 2. In any case, 
applications and modelling are an indispensable part of the Basic Ex
periences of Winter and thus contribute to conveying a balanced image of 
mathematics in school at every level. These basic experiences also set goals 
for teaching applications and modelling. To reach these goals an adequate 
Modelling Pedagogy is necessary, which includes adequate problems, ade
quate teaching methods and instructional modes, adequate tools and ade
quate modes of assessment. 

Teaching affects the image that students will take with them into their fu
ture life as responsible citizens and future decision makers. This image 
should contain both the beauty and the functionality of mathematics. But 
applications of mathematics in other fields should not be studied for its own 
purpose alone. Reflecting on what relates mathematics with the rest of the 
world is indispensable, ethical issues of mathematical actions have to be 
highlighted, and students have to be sensitised for it (Skovsmose, 1989). 

2. THE REALITY IN SCHOOLS 

Unfortunately, as a rule, reality-oriented teaching on applications outside 
mathematics is covered only to a limited extent in teaching although there is 
a long-standing agreement on the importance of creating relations between 
realistic situations and mathematics teaching. 

Many 'real' problems in mathematics teaching are only mathematical 
problems 'in disguise' and not genuine real (life) problems. For the students 
'uncovering' these problems 'in disguise' is reduced to finding out the algo
rithms that have been hidden by the teacher, and immediately 'real' mathe
matics takes over. True modelling, involving the transition from reality to 
mathematics, mathematical analysis, and the transfer back of the results into 
the real situation is rarely discussed seriously - students are not sensitised for 
the adequacy of the argumentation. 

Curricula packed with teaching content, and traditional teaching methods 
(especially prevailing teacher-centred approaches), are further conditions 
that hinder applications and modelling. Finally, assessment methods affect 
possibilities for applications and modelling: Centralized assessment for final 
examinations or even tests at the end of each school year often reduce teach-
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ing to mindless drill and practice of procedures and calculation techniques. 
Often, teaching can only be described as "teaching for the test". 

3. APPLICATIONS AND MODELLING AT ALL 
LEVELS 

Mathematical modelling is the mutual fertilization of mathematics and 
the rest of the world (Pollak, 1979). Through modelling, students are enabled 
to build a bridge between mathematics as a tool to understand better the 
world around them, and mathematics as abstract structure. For this, suitable 
teaching situations are indispensable. Lyn English (2003) demands "rich 
learning experiences", i.e. authentic situations, chances for own exploration, 
multiple possibilities for interpretations, and social competence to take up 
the responsibility for one's own model up to communicating it to other stu
dents. Teachers are often reluctant to include mathematical modelling in 
their teaching. Katja MaaB (2006) points out that the complete modelling 
process is time-consuming and difficult. She also shows, however, that mod
elling activities can be started successfully in a normal teaching situation. 
Further positive examples for integrating applications and modelling into 
teaching are presented in this section. Chapman (Chapter 3.5.1) investigates 
the strategies of a sample of teachers teaching mathematical modelling; 
Lingefjard (Chapter 3.5.2) discusses the Swedish reality courses in mathe
matical modelling in teacher education; Matsuzaki (Chapter 3.5.5) presents a 
video-taped case study of cooperative mathematical modelling. 

Students should not be spared the difficulties and effort related to appli
cations and modelling, including important activities such as data collection 
(sampling), writing reports on the work done, and justifying and defending 
the results. Often group work is an appropriate working style. 

The vertical interconnectedness from primary to tertiary level is indis
pensable: One cannot start early enough with simple modelling examples. 
An excellent example how such a teaching can be integrated already at pri
mary level is the mathelOOO project of the Dortmund group of researchers 
around G. N. Mliller and E. Ch. Wittmann (Wittmann, 2001). This project 
shows the importance of interactions, between development and design of 
curricula, teacher education and assessment, where the last especially de
pends on the educational policy of the "decision makers" of a country. 

For assessment methods, (which include applications and modelling) 
there are proposals and concrete experiences (see Section 3.7 of this vol
ume). Excellent approaches have been developed by Peter Galbraith (see for 
example Galbraith, this Volume, Chapter 2.5). 
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4. THE ROLE OF COMPUTERS 

Today's available computer technology can contribute in a special way to 
aid in the learning process, and is equally helpful and important for all three 
BEs. Here, I am thinking especially about dynamic geometry software 
(DGS) and computer algebra systems (CAS). Firstly, the computer is a pow
erful tool to aid in modelling and simulation, therefore related to BE 1. Sec
ondly, the computer can positively influence the generation of adequate ba
sic concepts ("Grundvorstellungen") of mathematical ideas - especially 
through dynamical visualisations - and therefore contributes to BE 2. Lastly, 
the computer furthers heuristic-experimental work in problem solving, thus 
contributing to BE 3. 

Recent experiences with using computers in teaching indicate that the 
currently widely accepted aims of mathematics education (such as learning 
to solve problems, getting to know heuristic strategies, concept formation, 
proving, mathematizing) are still fully valid when computers are used. More 
than that, using computers can help to reach these aims better (Henn, 1998). 
Two chapters of this section deal with questions around the role of com
puters in mathematical modelling. Stefan HuBmann (Chapter 3.5.3) develops 
a concept of technology-based open learning arrangements, and Djordje 
Kadijevich (Chapter 3.5.4) discusses standards of computer-based model
ling. 
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Abstract: Modelling in the mathematics classroom is discussed based on the thinking 
and practice of a sample of exemplary high school mathematics teachers. 
These teachers held conceptions of mathematics, word problems and problem 
solving that placed importance on real world connections and influenced the 
creation of a classroom culture to support modelling. Their teaching strategies 
that allowed students to develop flexibility to engage in modelling are high
lighted. 

1. INTRODUCTION 

Word problems, in a broad sense, are an integral aspect of school mathe
matics. They can be used as a basis for application and a basis of integrating 
the real world in the learning of mathematics. They can motivate students to 
understand the importance of mathematics concepts, and help students to 
develop their creative, critical and problem solving abilities. Verschaffel 
(2002) described their goals as "to bring reality into the mathematics class
room, to create occasions for learning and practising the different aspects of 
applied problem solving, without the practical ... inconveniences of direct 
contact with the real world situation [p. 65]." Traditional word problems and 
traditional instruction, however, have been critiqued for not accomplishing 
these goals in a meaningful or effective way. For example, there is concern 
expressed about suspension of sense making (Schoenfeld, 1991; Verschaffel, 
Greer, & DeCorte, 2000) by students when working with contextual prob-
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lems, particularly in connecting school mathematics and reality. One way 
that has been promoted to improve the situation is incorporating a modelling 
approach in designing and dealing with word problems. For example, Greer 
(1997) proposed a conception of word problems that calls for mathematical 
modelling that takes the real world knowledge into account. Boaler (2001) 
showed that a modelling approach encouraged the development of a range of 
important practices in addition to knowledge situations. Verschaffel (2002) 
provided evidence to support the importance and feasibility of applying the 
modelling perspective successfully in mathematics education for all students. 
However, whether or how modelling gets implemented in the classroom will 
depend on the teacher. 

Research on the mathematics teacher suggests that an understanding of 
teacher thinking/beliefs/conceptions and practice (e.g., Thompson, 1992) is 
important to improve the teaching of mathematics. This paper is based on a 
study of teachers' thinking and practice that relate to their teaching of word 
problems, in a broad sense. The focus here addresses the question: In the 
context of courses not based on a modelling and application curriculum, 
what is the thinking of teachers who include modelling in their teaching and 
what pedagogical strategies do they use that facilitate modelling? 

2. RESEARCH PROCESS 

This paper is based on data from a larger study on teacher thinking in 
teaching word problems. The focus here is on six experienced junior high 
[JH] and senior high [SH] school teachers who participated in the study and 
integrated modelling in their teaching. They were from local schools and 
considered to be exemplary mathematics teachers in their school systems. 

Data sources consisted of open-ended interviews of, for example, the 
teachers' thinking about mathematics, problem solving and word problems 
and their experiences with teaching word problems; of classroom observa
tions and discussions of their actual instructional behaviors during lessons 
involving word problems; and of role-play to capture the nature of their 
thinking in a different mode. The overall goal for the data was to capture 
what the teachers did, how they did it, and their thinking behind it. Role-play 
scenarios allowed the teachers to act out a situation, for example, presenting 
a word problem to a class of students. Interview questions were framed in 
different ways including a phenomenological context to allow the teachers to 
share their way of thinking and to describe their behaviors as lived experi
ences (i.e., stories of actual events). 

The researcher and two research assistants, working independently, re
viewed the data to identify attributes of the teachers' thinking and actions 
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that were characteristic of their perspectives of teaching word problems. 
These attributes were grouped into themes and validated by comparison of 
findings by the three reviewers and triangulation among the different data 
sources. Modelling became a focus as one of the emerging themes and was 
then elaborated on by scrutinizing the data for situations that conveyed it. 

3. MODELLING IN THE TEACHERS' CLASS
ROOMS 

The teachers' courses that formed the basis of this study were framed by 
the official mathematics curriculum, implemented in 1997-2000, that does 
not explicitly emphasize modelling as a topic. However, "the program ra
tionale and philosophy" section of the curriculum document explains that 
students will be expected to apply mathematical knowledge to non-routine, 
real-life problems. It also mentions the critical skill of using mathematics to 
find solutions to real-life situations and the need for connections, which il
lustrate the subject's usefialness in solving problems, describing and model
ling real-world phenomena, and applying mathematical thinking and model
ling to solve problems that arise in other disciplines. Unlike the teachers who 
interpreted and implemented this curriculum in a traditional way that routi-
nized applications and problem solving, the teachers in this study incorpo
rated practices in their teaching that mirrored the philosophy of the curricu
lum. However, most of these practices predated this curriculum and included 
situations with aspects peculiar to modelling. 

Modelling was reflected in the teachers' practices for problem solving 
and the use of problems with real or realistic situations for students to de
velop and apply mathematical models. Problem solving activities included 
understanding an existing model, constructing a new model, and applying a 
model to solve a problem in a non-mathematical field. Problems used in 
these activifies were not typically open-ended from a real-world perspective 
but were often approached as if they were. Following are three examples of 
modelling-oriented tasks the teachers assign to students: 
i. As part of the topic of similar triangles, students work in groups to find the 

height of tall objects in the schoolyard that they cannot measure directly, 
e.g., the flagpole, a tree, and the school building where it is the tallest, 

ii. Students are asked to bring a spoon to class. The task is for the student to 
draw a top, front and side view of the spoon, locate these views in a coor
dinate plane, and determine the equations of the curves in each view. This 
task is assigned as part of a grade 12 curve-sketching unit. 
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iii. Students work in pairs, choose a doughnut, a Vernier calliper, and grid 
paper and are asked to find the volume of the doughnut as part of the 
grade 12 topic of volume of revolution about the x-axis of various curves. 

4. INFLUENCES ON MODELLING PEDAGOGY 

The teachers held conceptions about mathematics, word problems, and 
problem solving that placed importance on the real world in a way that im
plied the need for modelling in learning mathematics. For example, their 
conceptions of mathematics included: "Mathematics is a discipline that seeks 
to understand our world and as a study, it focuses on analyzing things and 
quantifying things and looking for logical appearances on things and is a 
subject that continues to grow, as society demands that it grows. ... I just see 
it as a way to understand our world" [SH3]. "Mathematics is a language of 
patterns, but it isn't just discovering the patterns on their own. It's actually 
being able to articulate them, to mathematize them, and then to use these 
articulated patterns as tools. Well, then, to see these patterns repeated in the 
world and having the mathematization handy so that you can impose it on 
that next pattern that you see" [SHI]. "Mathematics is ... a logical, rational 
way for us to deal with the things that we do in our world" [JH3]. 

The teachers conceptualized word problems as being most valuable and 
meaningful when they are located in the world in terms of actual or realistic 
situations. For example, "In the real world, people ... build bridges and 
buildings and fly planes and they do all kinds of things that use mathematical 
knowledge and those are problems that need to be solved ... problems that 
relate to the world" [SH3]. "I want the problem to be as much as possible, 
real-world problems and not contrived things that nobody cares about" 
[SH4]. "Real-world context is an optimal condition for situations to be a 
problem ... [The problem] starts with the real world, but then forces you to 
do or encourages you to go to some kind of mathematical world where 
mathematical rules apply and then go back and correct your world" [SH6]. 
The teachers also viewed word problems as being most valuable and mean
ingful when: "The solver has to impose a structure on the problem to create 
the solution" [SHI]. "The problem makes you see things differently" [SH3]. 
"The problem should be one, which captures their attention, invites them, 
intrigues them and prods them to want to solve it" [SH2]. 

Finally, these teachers conceptualized problem solving as a thinking 
process and a life skill. "[Students must] have some kind of mathematical 
images, models, or lenses, which will help them to interpret the data in some 
kind of form that will help them organize all this information in the problem 
and ultimately start come up with some kind of solution. ... They have to 
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learn how to unfold their models on the situations, ... to draw them out in 
the appropriate situations. ... They have to understand when they read a 
problem, they look for clues in the problem, which will link up with mathe
matical models that they already know, or mathematical tools that they can 
use, to translate that problem into the model" [SHI]. "Problem solving is a 
skill you have to use throughout your life, so we have to ... teach problem 
solving in our mathematics classrooms so that we can have students truly 
believe and truly feel that they have a skill that is something they are going 
to use for the rest of their lives, a life long skill" [JH3]. 

These conceptions were instrumental in influencing the teachers' choices 
of tasks and pedagogical approaches that favored modelling in their teach
ing. 

5. STRATEGIES THAT SUPPORT MODELLING 

The following is representative of the teachers' pedagogical perspective: 
"Focusing on problem solving strategies ... encouraging the kids without 
doing the thinking for them ... questioning, supporting children as they are 
doing the work ... There are times when we need to do work as a large class 
and ... times when you will break them off or vice-versa or start in small 
groups and bring to large group, but that the focus is for kids to become 
problem solvers, not solvers of this type of problem" [SH2]. Only selected 
aspects of the teachers' teaching are discussed here. The focus is on two 
strategies that seem to be important in creating a classroom climate for stu
dents to engage in modelling. These strategies were common to all of the 
teachers but each teacher differed in how he or she executed them. The fol
lowing are abbreviated examples of what these strategies look like. 

Strategy 1: Learning about problem solving. There was a meta-cognitive 
focus in the teachers' teaching in terms of getting students to learn about 
problem solving as in the following examples: 

Example 1: Variations of this approach were used by the SH teachers. 
Students are presented with a word problem framed in a real-world context 
to which they can relate. They work in small groups to try to solve the prob
lem on their own. More importantly, they are required to analyze their proc
ess by considering, e.g., what did they do, why did they use that method, 
why/how did it work, how did they make sense of the problem, how did they 
make sense of the solution. The teacher's role while students work in groups 
includes circulating and listening to "how are they developing the strategies 
that they are going to use and try and get some clues on what they under
stand" [SH4]. After a specified time, students share their solutions or how 
far they got and how they perceived the process. The teacher helps them to 
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unpack the process they went through to identify their heuristics and, if nec
essary, discusses what could be a more "sophisticated solution"[SHl] in 
terms of a mathematical model, i.e., students are helped to see how the con
text suggests particular mathematical models or procedures. This process is 
repeated for a few problems. The result of this activity is a set of questions 
that reflect students' understanding of approaching contextual problems, for 
example: What does the problem mean to you? What mathematical tool can 
you use? Does the tool work? Does the result make sense? How does your 
solution compare to others? The meaning of the problem and whether the 
results make sense, both require examining them in relation to the real-world 
context. This allows for multiple interpretations and solutions for a problem. 

Example 2: This teacher [JH3] describes her approach that was validated 
during the classroom observations: "I present situations where the students 
can learn a structure for doing the problem solving. ... [Students work in 
groups to solve the problem, however, one student in each group takes on the 
role of observer.] ... They look at the process that is going on to solve the 
problems.... They [also] are looking at how the actual group interaction oc
curs so they do become a good cooperative learning group and they support 
each other in that group. ... The students who are the observers, I take them 
aside and I talk to them separate from the rest of the class. So they have a 
little bit more information about what they need to observe than the group 
they are observing. I ask them to look for what kinds of things are happening 
in the groups ... that promotes the process of reaching the answer to the 
problem ... [and] that are hindering them from reaching a solution. ... I ask 
them to listen to the kinds of questions that are being asked in the group. ... 
What kind of an approach they use for the problem solving. Is there some 
kind of an organized process? ... Do they read all of the problem at once? 
Do they go back and reread the problem? ... What is their initial plan? ... Do 
they go back and check if the answer was reasonable? ... [Each student gets 
a turn at being observer. There is a whole class discussion after each round 
of observations.] ... They [students] keep a record of it [the list of things that 
come up] initially, and then we go back and we go through and review and 
refme and then eventually we come up with a list that is a list of what are the 
steps that we need to use for problem solving." The teacher usually organ
izes the list into categories, such as, "understand the problem, decide on a 
strategy, try the strategy and check for reasonableness." 

Example 3: This teacher [JH2] gets students to reflect on the assumptions 
they bring to the problem, then, to examine the assumptions that are in the 
problem and to look ahead to what the possible solutions could be in inter
preting the problem. His goal is to get students to visualize or think about 
what the possible answers could look like. His initial example to discuss as
sumptions is: "A tree at the side of the road broke off and fell across the 
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road. The road was 20 meters in width. How long do you think the tree is?" 
He asks students what they consider to be an answer. The initial response is 
usually 20 meters. He then leads a discussion on the assumptions about the 
different possibilities of how a tree falls and the implication for the solution. 
This process is repeated for other word problems and forms part of the ap
proach for dealing with future problems. 

Strategy 2: Integrating word problems in course. The teachers generally 
integrated word problems throughout the course and not treat them as an iso
lated topic in the course. For example, they would use word problems or 
real-world situations to start, develop and end each mathematics topic. The 
following is an abbreviated version of one teacher's [SH3] approach for 
teaching systems of linear equations that reflects this integration. 

SH3 asks students to collect pictures of graphs that intersect and repre
sent real-life situations from any source other than a mathematics textbook. 
In a whole-class setting, each student shows his or her picture and talks 
about what the graph represents, what it means when graphs intersect, what 
the intersection shows, and why the intersection is important. SH3 then as
signs the problem: "You have a part-time job in sales. Is it better to have a 
straight commission of 7% on the sales you make or a fixed weekly salary of 
$250 plus 2% commission on the sales you make?" Students are required to 
consider the problem based on their real-life constraints and to solve it in any 
way they can. The next class starts with sharing and discussion of the stu
dents' solutions to the problem. SH3 poses questions about how the problem 
could be solved graphically, how the point of intersection is useful to the 
analysis and solution of the problem, and the relevance of solving systems of 
two linear equations to the students' real-life experiences. This leads to an 
exploration of intersecting lines using the graphing calculator. It begins with 
students returning to the graphs they had collected and, for graphs involving 
two intersecting straight lines, to work in groups to set up the equations for 
each set of lines using data they read off the graphs. Following this, SH3 
facilitates a whole-class discussion of the meaning of the algebraic represen
tations in the context of the applications and why they are useful. After 
working in groups to investigate different approaches to solve systems of 
equation, each student is required to make up a word problem that can be 
solved with the method he or she explored in his or her group. After classes 
in which each group teaches the method it explored to the other groups, stu
dents are assigned "to bring in real-world word problems that they find else 
where, other than the textbook, to talk about how they use or can use sys
tems" [SH3]. 

The two preceding strategies represent behaviors by the teachers that al
lowed students to develop flexibility to engage in modelling and application 
in a meaningful way in a course that is not explicitly about modelling and 
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application. These teachers have learned through experience how to help 
students to overcome their initial resistance to think for themselves. Thus, 
their students learnt to embrace their pedagogical approaches and became 
highly motivated to work with non-routine problems in non-routine ways. 

In conclusion, then, the paper suggests that the nature of teachers' think
ing is important in creating a classroom culture to support modelling. It illus
trates how teachers are able to implement strategies that allow students to 
experience modelling in a meaningful way in regular mathematics courses, 
thus supporting the view that modelling can and should be part of them. 

Note: This paper is based on a research project funded by the Social Sciences and Humanities 
Research Council of Canada. 
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MATHEMATICAL MODELLING IN TEACHER 
EDUCATION -
NECESSITY OR UNNECESSARILY 

Thomas Lingefjard 
University of Gothenburg, Sweden, Email: thomas.IingeJjard@pedgu.se 

Abstract: Although mathematical modelling provides excellent opportunities to teach and 
learn mathematics, many departments of mathematics hesitate to develop and 
teach courses in mathematical modelling, I build this statement on a survey I 
did, in which I was communicating the obstacles and possibilities in mathemati
cal modelling, with all different departments of mathematics and/or mathemat
ics education in Sweden. 

1. INTRODUCTION 

The mathematics curriculum changes slowly, regardless if we speak 
about the intended curriculum, the implemented curriculum, or the attained 
or realized curriculum. The curriculum in any mathematics classroom is 
powerfully constrained by the school culture. Sometimes it takes a driving 
force from outside school to change the mathematics curriculum, like for 
instance technology. The vivacious advances in technology that has taken 
place during the last decades has called both for appropriate changes in the 
mathematics curriculum as well as in the teaching of mathematics. 

Mathematical modelling is an example of how a subject can become pos
sible - or at least easier - to teach early in school because of the technical 
evolution around us. Mathematical modelling is furthermore an interdiscipli
nary subject bringing together mathematics and many other fields, where it 
is possible to illustrate how mathematics is used in products and processes 
all around us. 



334 Chapter 3.5.2 

Nevertheless, it was not until the middle of 1990 when the term mathe
matical modelling started to appear explicitly in the Swedish curriculum. As 
a matter of fact, it became visible both in the curriculum for compulsory 
school and for the gymnasium about the same time. 

The importance of mathematical models has increased in the age of in
formation society. Everything that happens inside a computer is the result of 
a mathematical model, as one example. It is important that this area is ac
knowledged in mathematics education. (Skolverket, 1997, p. 19) 

The school in its teaching of mathematics should aim to ensure that pu
pils: 

• develop their ability to design, fme-tune and use mathematical models, as 
well as critically assess the conditions, opportunities and limitations of 
different models, (English version of the Swedish curriculum for the 
gymnasium, 2000, p. 61.) 

• develop their knowledge of how mathematics is used in information 
technology, as well as how information technology can be used for solv
ing problems in order to observe mathematical relationships, and to in
vestigate mathematical models. (English version of the Swedish curricu
lum for the gymnasium, 2000, p. 61.) 

It is somewhat ironical that the topic of mathematical modelling has been 
in the focus of research in mathematics education for much longer than it has 
been mentioned explicitly in the curriculum. Many researchers and mathe
matics educators have addressed the benefits and obstacles of teaching, 
learning, and assessing mathematical modelling (Engel, 1968; Pollak, 1970; 
Mason, 1988; Blum & Niss, 1989; De Lange, 1996; Noss & Hoyles, 1996; 
Lingefjard, 2000; Ottesen, 2001; Lingefjard, 2002a; Lingefjard, 2002b, Do-
err & English, 2003; Holmquist & Lingefjard, 2003). 

2. TEACHER EDUCATION 

During the nineties all education systems in Sweden have changed to a 
decentralized system with goal- and achievement-oriented structures, and 
with national authorities as evaluating systems on different levels. The par
liament decides which universities and university colleges that may exist. 
There are 34 at the moment. The government decides which degrees that are 
going to be established. The National Agency for Higher Education decides 
which universities that have the right to issue a certain degree. The universi
ties have freedom to arrange e.g. the teacher education within the frame 
given through the regulation for the degree. At present time, teacher educa-
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tion programs in mathematics are given at 26 geographically different 
places. Some of these are within large universities, others within small 
community college universities or situated at local branches of large univer
sities. 

If exposure and training is a significant factor in teachers strategic deci
sions about what topic to emphasize and teach in school, then it might be 
expected that, compared to experience teachers for whom technology and 
mathematical modelling may represent an intrusion into established practice, 
newly graduating teachers would be better prepared and more likely to teach 
mathematical modelling and use modem technology when doing so. In order 
to find out if courses in mathematical modelling actually were given and 
managed at the 26 different departments, I decided to undertake a small sur
vey in the spring of 2003. Faculty members at departments of mathematics, 
departments of mathematics education, and at departments of education, as 
well as general administrators, were given the possibility to answer to the 
following questions: 

Do you, and your department, organize and arrange a course or courses in 
mathematical modelling for prospective teachers? 

• If Yes. What training in mathematics and mathematics educations is 
needed for a future mathematics teacher, so that she or he will be able to 
teach mathematical modelling with the help of modem technology? 

• If No. Since you, and your department, at present time do not teach the 
prospective teachers mathematical modelling, what are the major reasons 
not to do so? 

The survey was sent by e-mail to all the faculty members at the 26 differ
ent campuses who, according to their web pages, were involved in mathe
matics education. In addition I also mailed the same questions to administra
tors that I considered would have some insights over the content in their pro
grams. Within two weeks I received about 200 answers, some short and con
cise like "No, we don't", others more elaborating on the subject, and some 
even sending me course materials, syllabus, and web page addresses where I 
could see how the course was organized and examined, and so forth. All 
universities, or their equivalents, responded and many of the responding fac
ulty members were interested in participating in a discussion about the sur
vey, its purpose and result. 

Even if the response rate was good, the results were disappointing. Four 
universities could answer yes: we give a course in mathematical modelling, 
although two of them offered the course in mathematical modelling as an 
eligible or voluntary course that only some few students chose to follow. 
Two more universities were planning courses in mathematical modelling that 
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should start in the fall of 2003. The remaining 20 departments did not offer 
any course in mathematical modelling. The main argument from the faculty 
at these sites was that the curriculum was too crowded, the students should 
first study algebra; calculus; discrete mathematics; geometry; linear algebra; 
statistics, and so forth. The underlying argument often showed to be the lack 
of insight in mathematical modelling among the faculty staff, the feeling that 
mathematical modelling by nature is an interdisciplinary subject, and there
fore not "real mathematics". Another argument was that mathematical mod
elling often involves technology, which is considered to be "unfair" and 
"fuzzy" mathematics by many "hard mathematicians". 

It is important to acknowledge that the opinion about mathematical mod
elling not being pure mathematical is true. Mathematical modelling is not a 
precise body of mathematical knowledge in the same way that calculus or 
linear algebra is. Mathematical modelling is a process, and as most processes 
it has a variety of definitions. Mathematical modelling can be seen as using a 
complex web of knowledge related to different branches of mathematics, in 
order to solve an applied problem by mathematical methods. Mathematical 
modelling also needs translating abstract solutions to concrete reality; it then 
travels outside the domain of mathematics. This is probably one major rea
son why many mathematics departments believe that mathematical model
ling is less useful than other branches of mathematics in the preparation of 
teachers of mathematics. 

Ottesen (2001, pp. 337 - 338) argues why mathematical modelling could 
be seen as a way to learn more mathematics. Blum and Niss (1989, p. 5) de
fine five arguments termed: formative, critical, practical, cultural, and in
strumental. The instrumental argument is similar to what Ottesen advocates 
for: 

Assist students' acquisition and understanding of mathematical concepts, 
notions, methods, results and topics, either to give a fuller body to them, 
or to provide motivation for the study of certain mathematical disciplines, 
(p. 5) 

In my communication with mathematicians and mathematics educators 
throughout the survey, I used another argument that might often be left out. 
Mathematical modelling can be used as a way to summarize and assess the 
mathematical competencies the students possess. Let me give a short exam
ple. 
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3. THE CATWALK PROBLEM 

Bob Speiser presented the catwalk problem in a research seminar (spring 
2002) at Gothenburg University, and a colleague and I decided to use it in a 
modelling course in the fall of 2002. One aspect of this problem is that it 
tests how much calculus students actually know or understands. Speiser and 
his colleagues have tried the problem with college students as well as high 
school students. We decided that it could also be used with students who 
have taken several courses in calculus, and designed a study inspired by, and 
partly similar to the one Speiser and his colleagues reported on. 

Basic calculus is a way to study change and motion. In the catwalk prob
lem, one challenge is to build connections between local rates of change and 
total changes, based on real-world data. The problem was originally de
signed to expose some of the complexity inherent in the use of mathematics 
to examine motion. Work on this problem by college calculus students has 
been reported in three papers by Speiser and Walter (1994a, 1994b, 1996). 

The problem is illustrated by a series of photographs that there is not 
space enough to reproduce here in full. The photographs consist of 24 frames 
of a single cat, entitled Cat in Walk Changing to a Gallop. Eadweard Muy-
bridge made the photos in 1880, by using 24 cameras that were activated 
successively at intervals of 0.031 second. They show the cat against a back
ground grid, composed of lines spaced 5 centimeters apart. Every tenth line 
is darker. The 24 photographs show the cat over a total time of action of 0.71 
second. We gave our students copies of the photos, the information de
scribed above, and asked them to construct one or two mathematical models 
describing how the cat moved over that time period. They were specifically 
asked to answer the following two questions: How fast is the cat moving in 
Frame 10? How fast is the cat moving in Frame 20? Fig. 3.5.2-1 illustrates 
two consecutive frames out of the 24. 

^s::zr^* ,Ĵ l'y;;:V ;̂;;.:-;-M,v .'̂ . 

Figure 3.5.2-1. catwalk 



338 Chapter 3.5.2 

In the modelling class at Gothenburg University, only 2 students out of 
fifteen in the class managed to reason analogical to the calculus they had 
studied. Most of the others created mathematical models (with the help of 
technology) that were unable to give a good description of the transforming 
from walk to gallop in frame 10. The two successful students plotted the 
movement versus time in a xy-diagram first and measured the change in 
slope in frame 10 and frame 24 by a ruler. By that basic approach, they knew 
a good approximation to the answer before they started to construct a 
mathematical model for the catwalk. The calculus needed for this procedure 
is taught already at the Swedish gymnasium level. The catwalk problem 
proved to be an excellent tool to illuminate how different concepts of calcu
lus connect and how important it is not to forget the basics. After the course, 
the students who were technology oriented in their problem solving ap
proach and who got lost in their mathematical models, had to admit that they 
had forgotten the most basic way of measuring the speed of change. 

With excerpts from this study which I do not have enough space to fully 
report on in this paper, and by using these arguments - that student's con
ceptions and misconceptions in calculus, as well as their beliefs about calcu
lus, can be lifted up to the surface by mathematical modelling exercises - I 
managed to convince a handful of the mathematicians I communicated with 
in the survey that it could be both useful and interesting to give a course on 
mathematical modelling in their teacher training program. The problem was 
of course that they in general do not have faculty members who master the 
necessary technology as or is prepared to create or find enough challenging 
and complex problems at the right level. 

4. DISCUSSION AND CONCLUSION 

To create, maintain, and sustain a course in mathematical modelling is 
indeed a difficult task. Even if university teachers are interested in the sub
ject, there are many different hurdles to pass. There is competition from 
other branches of mathematics, branches that are considered to be more 
"natural" in a teaching training program. There is a need of university teach
ers who master appropriate use of modem technology. There is a substantial 
demand of skills needed for both mastering a variety of problems and sub
jects, as well as procedures for handling the teaching and assessment of the 
mathematical modelling process. 

Nevertheless, if one is able to overcome all these hurdles and difficulties 
along the way, there are rewards waiting along the way. One major benefit 
will come from a better understanding of what the students actually under
stands of the mathematics they have studied. Many students in the mathe-
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matical modelling classes I have studied seem to have forgotten many topics, 
even those studied at the gymnasium level, many of the students introduced 
and defended contradictory ideas despite their records of satisfactory 
mathematical achievement. These results challenge many of the foundations 
of how prospective mathematics teachers are taught and assessed. The find
ings I have done can be seen as supporting the position that prospective 
mathematics teachers for the secondary grades may not need more mathe
matics courses as much as they need different learning experiences. Such 
experiences should engage them in reasoning and in constructing mathe
matical models, in assessing the extent to which a mathematical argument is 
valid, and in developing, comparing, and evaluating alternative solution 
processes. 

It is clear that the progress of computing technology is far from ended. 
We can expect the calculator of tomorrow to know as much as and maybe 
more than what the computer software of today does. And courses in 
mathematical modelling are important for prospective mathematics teachers 
as well as for other students who study mathematics. It is obvious that teach
ers of courses on mathematical modelling must pay great attention to they 
way they set up, conduct, and grade their assessments. With technology, it is 
sometimes very easy, much too easy, for students to provide answers, some
times even the correct answer, without really understanding what the prob
lem is about. Without assessment situations that make use of the technology 
and involve the students in critical thinking about what the technology offers 
in terms of possibilities and solutions, we may very well create students who 
are dependent on technology and not critical and insightful users of it. 
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Abstract: Self regulated learning and technology-based open learning environ
ments show much interdependence. Illustrated by an example of a 
learning environment dealing with integral calculus, we look at the 
question to what extent the use of computers support independent con
cept formation and actually increases the educational value of mathe
matics teaching. 

1. INTRODUCTION 

Two of the areas within mathematics teaching that have changed a lot 
over the past years are self-regulated learning and the use of the computer. 
These developments have been pushed forward and promoted by the demand 
for an education that enables human beings to understand the role of mathe
matics in the world, and to use mathematics in order to respond to the de
mands of the present and future life. Special emphasis is no longer placed on 
the knowledge of rules and calculation routines, but on building up mathe
matical competences such as problem-solving, modelling, reasoning and 
concept formation. Therefore, there is a demand that pupils receive the op
portunity to deal with relevant and reality-oriented problems during math-
ematic lessons. 

This shift of emphasis could be significantly promoted by purposeful 
computer use and by strong emphasis on self-regulated forms of learning. In 
comparison with traditional education, it is possible for example, to solve 



342 Chapter 3,5.3 

tedious arithmetical routines virtually by the push of a computer button, and 
to visualize effortlessly complex data and facts. With this capacity it is pos
sible to experience the role of mathematics in the world with reality-
orientated problems in an exemplary way. Free space is created that can en
able the shaping of real situations, the solving of complex problems, and the 
presentation of suitable arguments. As a result of learning processes, these 
process-based skills are now equated with the previously preferred content-
based skills. This belief that mathematics is a process implies the fortifica
tion of mathematics teaching so that lessons are increasingly orientated to
wards the learner, and therefore self-regulated forms of learning are neces
sary. Heinrich Winter formulated the growing task of mathematics in the 
form of three basic experiences ("Grunderfahrungen") that the learners 
should be able to experience (see this volume, Chapter 3.5.0). 

2. A LEARNING ARRANGEMENT FOR INTEGRAL 
CALCULUS 

In this section a learning arrangement for integral calculus is introduced, 
based on the basic experiences of Winter, and additionally process related 
competencies are built to complement content related ones. 

2.1 Intentional problems 
Cornerstones of this concept are open, complex and reality-oriented prob

lems, so-called intentional problems, which are dealt with by self-organized 
groups. Special designations mean that these problems are problem-based 
and structure-oriented. Problem-based means in this context that the prob
lems build the orientation for the learning process, and through them the 
content and process oriented competencies are developed. When something 
is problem-oriented it means that the usual lesson sequence, with the phases 
introduction, formulation, retention, and practice in the common teaching 
style is irrelevant - the organization of these phases is the learners' business. 
They work the problem out together in different groups, secure their results 
through documentation in so-called research journals, and create examples 
and the necessary practice material either alone or with the help of a teacher. 

The creation of examples and exercises are oriented in the &st step 
through the different context of each problem, and the individual's prior 
knowledge, but this kind of productive practice also aims towards structural 
aspects of mathematics. The structure of the examples and exercises build 
the size and the content of the net of concepts that must be built in order to 
solve the problem successfully. 
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This independent discovery and exploration of specific mathematical 
structures, typical for each subject area, by each learner characterizes the 
intentional problems that are structure-oriented (HuBmann, 2004). 

With such independence comes discussion that in common lessons is 
more or less ignored. Furthermore, it goes beyond the independence that is 
induced through the use of open tasks, being influenced by the organization 
that is open as well. Litentional problems allow exactly this independent 
concept formation. The ideas cannot develop, however, if they are not in
cluded in the problem as a possibility, and this property is described by the 
attribute "intentional". The intention with respect to the integral-concept is 
the introduction of the central concepts and ideas of integral calculus. This 
includes the building of a wide field of conceptions of the integral, the 
knowledge of different integral ideas, the development of some first calcula
tion rules, and a basic idea of the fundamental theorem of calculus. The cen
tral conceptions are those of cumulation and balancing, and different integral 
ideas are, for instance, not restricted to the Riemann-Integral. Litegral as
pects include, for example, the area aspect or the mean value aspect. 

Altogether, the students received three problems of which two will be in
troduced here (HuBmann, 2002). One of the situations deals with a female 
lorry driver who was checked by the police and during this normal check, 
the shown speedometer chart was observed (Fig. 3.5.3-1). 

# 

i i f If Mr: : :: r ,. 

3 \\ 

Figure 3.5.3-1. Speedometer chart 

The period between 8 am and 9 am obviously raises questions. The driver 
claims that she took a break during that time, but the police remain sceptical. 

The second situation illustrates the growth of girls and boys until the age 
of 18 (Fig. 3.5.3-2). Li which time segments are the girls taller (or smaller) 
than the boys? For this task the students are given the diagram and - on re
quest ~ the terms. 
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Figure 3.5.3-2. The growth of girls and boys 

The following term KB describes the body heights of the boys: 

KB(X):= 

-0.0973-x^ +1.8312-x'-11.407-x +28.4909 0<jc<6 
0.00017733 •e'' +4.92845 6<jc<8.5 

-0.243877 • x' + 4.84906 • x - 7.7548 8.5 < JC < 14 
23 
160 

(jc-i8r 14<A:<18 

Intentional problems are not simply a line up of different interesting 
problems for the opening up of a mathematical context, but are with regard 
to the central terms related to each other. As single problems, they show the 
different facets of an idea or refer to special aspects. As a whole, they all 
contain the essence of each term. The abstraction of the concrete by recogni
tion of structural common grounds and differences leads the learners towards 
general sustainable concepts. 

2.2 Self regulating of the learning processes 
Concerning the underlying learning theory, this conceptual approach is 

based upon a constructive paradigm; hence, the assumption that learning is a 
self-regulated activity which cannot be controlled from the outside but which 
can be encouraged at best. As a result, the pupils have to receive diverse op
portunities to activate own experiences, to study with the help of their inter
ests, to use their own speech, in order to decide the topic and much more 
(Steffe & Gale, 1995). Of course, each institutional general condition is an 
obstacle, but it is still possible to give responsibility to the learners. Goals 
that are prescribed from the outside are "only" documentation, reflection and 
presentation of the problem, and the mathematical theory. 

Since the degree of self-adjustment is different from person to person, in
dividual support for the learners is required, which is organized through the 
build-up of a dialogical communication structure between teachers and pu-
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pils, and which is, at the same time, characteristic of an open lesson organi
zation (Ruf & Gallin, 1999; Hefendehl-Hebeker, 2004). Central aspects of 
this dialogical principle are the confidence in the learner's efficiency, and 
the concentration on the ideas and products made by the students. With this 
in place the right balance between the learner's construction and the 
teacher's instruction is found, and becomes the key for successful learning 
and teaching. 

2.3 Use of computers 
The conception of the learning arrangement calls for the computer as an 

integrative component; i.e. that it can always be used as a tool. The use of 
the computer promises long-term relief of calculating-skills, promotes the 
construction of procedural competencies, and makes Winter's basic experi
ences possible. The computer - as it is used here - intensifies cognitive abili
ties and skills like saving, organizing, comparing and distinguishing, so that 
abilities like mathematising, interpreting and concluding can be used, deep
ened and can be qualitatively trained (BE 1). Furthermore, it displays think
ing processes through iconic and symbolical visualizations and supports with 
it the conception (BE 2). It also allows, in connection with the problems, 
heuristic approaches (BE 3), all referring to a lesson arrangement that sup
ports self-controlled learning. 

3. SELF-REGULATED CONCEPT FORMATION 
THROUGH COMPUTERS 

The central aim of this learning arrangement is the construction of a sus
tainable understanding of the integral concept. For this, the problems require 
the construction as necessary, and are responsible for an adequate input at 
the beginning of the learning process. By using some parts of a typical learn
ing process within this arrangement as an example, the computer's role will 
be reflected within concept formation (HuBmann, 2002). 

Most of the pupils tried to start the topic by using the problem about the 
growth of the respective sexes. The given graphs and terms continue with the 
existing knowledge of differential calculus. They use this knowledge in or
der to reverse the differentiation as an action in order to transfer size in 
growth, with which they develop a first idea of anti-derivatives. For that, 
they do not immediately study the given complicated terms as a whole, but 
they first subdivide them into simple types of functions. They differentiate 
linear, square, and cubic functions, and then they put them together with the 
help of addition and subtraction to obtain the given terms. The computer as a 
calculator-menial enables the learners to explore and experiment many dif-
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ferent possibilities. As the topic is "Introduction to Integral Calculus", the 
learners also experiment with the command "integral" and they detect that 
the algorithm of this command does what the students have learned about 
reversing the differentiation. They vary their terms, and the symbolic arith
metic ability of the computer allows them to formulate first rules that they 
assume lie behind the "black box" of the integral. They link the monomial to 
polynomial functions and develop first ideas about the sum-rule and the fac
tor-rule of integral calculus. The provision of manifold possibilities for a 
symbolic manipulation of terms provides as a result, not only a contribution 
to the third, but especially to the second basic experience. 

This symbolic manipulation with the computer, however, also shows the 
limits of this first idea. The second sub-function showing the male graph 
cannot be described with the help of the anti-derivative as a closed term. The 
computer outputs a term, which still consists of an integral. In fact, this term 
can be plotted but it is not clear what the computer actually calculates. This 
is a special feature of intentional problems. They contain barriers and irrita
tions that make the subject reflect the developed concepts, and that make the 
subject change it if necessary. This would not be possible here without the 
use of the technology. As far as that goes, the CAS' contribution to Winter's 
second basic experience goes beyond the many possibilities of visualization. 

The change of conceptions is first carried out by changing to another 
problem - and for this the speedometer offers the greatest motivation. The 
pupils try to find out whether the driver lied, for which purpose, it is neces
sary to determine the distance covered during the missing period of time. 
The speed-time-diagram and the over-all distance that is recorded in the 
speedometer are useful clues for that. The activation of the coherence of 
speed, time and distance is not difficult for the learners, who form sums of 
products and generate a timeline, which becomes more and more detailed. 
The more detailed the axis is, the more exact are the results, so you can esti
mate the upper limit if you argue in favour of the woman, and the lower limit 
if you think the woman made an error. Here, this intentional problem offers 
possibilities to develop the integral as generalized sums of products in terms 
of a Riemann-Integral, particularly with the construction of the conceptions 
of the area aspect. The input of a spreadsheet can probably simplify the 
arithmetic here, however this does not justify the use of a computer. In re
gard to the transfer of the process towards general operations, the use of a 
spreadsheet is clearly more effective, because the spreadsheet supports the 
development of the central idea of cumulation. 

The values that were determined in this way, differ, however, so much 
that consideration of accuracy is called for. Many pupils enlarge the display 
window of their CAS with the objective of increasing the amount of the 
small boxes under the graph, in order to obtain a more precise value for the 
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distance. This procedure does not reduce the inaccuracy however, for while 
the number of small boxes increases, the respective amount in the examined 
area remains constant. This example hints at risks that are connected with the 
use of a computer as a builder of concepts. The emerging display of the 
visualisations has to be reflected upon very critically, and this usually re
quires the assistance of the teacher. Accordingly, the teacher is also essential 
during the self-regulated learning in such a learning arrangement. 

The use of a spreadsheet, however, allows for an increase in exactness. 
Through the integration of new staging points as rows in the spreadsheet, 
and through viewing the effect on the sum that is built from the individual 
products of time and speed, the experience of cumulation can be demon
strated. These values are finite sums. 

The next step, which is to understand the integral as a limiting value of 
the sums of products, is only partly practicable with the computer, and dis
sociation from the technology is necessary here. A non-critical view and too 
close proximity to the technology can be counterproductive. The boys espe
cially, often show behaviour while working with a computer that can be de
scribed as trial-and-error-conception - one experiments as long as something 
suitable appears on the screen. Even though this strategy is often successful, 
it also often prevents the pupils from thinking about the subject, and it has 
just a little in common with notions of digital competence. Lack of compe
tence distinguishes itself, among other things, by not using the computer in a 
suitable situation. 

After the pupils have experienced the ideas of cumulation and of limiting 
value of the sums of products by using the idea of the area aspect, they usu
ally try to implement the developed algorithm into the computer, in order to 
determine rapidly the limiting value of the sums of products of any func
tions. This takes place with self-selected examples, mostly by using the men
tioned trial-and-error conception. A successful use of this method is very 
promising, but problems are also noticeable. Any real numbers can be in
serted into the lower boundary of the sum, and this creates a productive basis 
for discussion, in case different learners get varying results. Nevertheless, 
the threat, in regard to the build up of singular concepts that are not sustain
able, is also obvious. Here, it is the teacher's duty to identify possible mis
conceptions in a timely way, and to integrate them into the discussion proc
esses of the group. 

With this result and the conceptional change, many learners return again 
to the problem about the "gender growth", determine respective anti-
derivatives, comprehensible approximations, and display them diagrammati-
cally. The resulting picture again has the function of a productive irritation^ 
even though it first causes disappointment when the students look at it for 
the first time (Fig. 3.5.3-3). 
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Figure 3.5.3-3.The growth of the boys - What happens? 

Different from expectations, the sub-functions do not build a steady 
graph. What has happened? The reason is that there exists no one-to-one cor
respondence, and for this the students invent the term of a ''zero-anti-
derivative''. This means the anti-derivative, whose constant is zero while 
integrating. This function - a pupil mentioned - "has to be shifted high and 
low until it fits." 

Here, visualisation also initiates ideas and conceptions, from which sus
tainable notions arise. With the help of these two extracts, it is possible to 
identify two - in the sense of the constructivist paradigm - central tasks of 
the technology that supports independent concept formation. On the one 
hand, it is thQ function of construction by contributing to building ideas, and 
on the other hand, there is iht function of irritation by initiating a change of 
concept. These are two aspects that help to emphasize the special status of 
the use of technology for the development of independent conception during 
mathematic lessons. 
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Abstract: Despite its unquestionable educational value, mathematical modelling has had 
so far mostly a marginal role in everyday mathematics education. To over
come such an inappropriate state, we should help mathematics educators real
ize the full power of computer-based mathematical modelling, develop suit
able standards of such a modelling, and ensure their proper utilization. 

1. INTRODUCTION 

Even when computers are available, mathematics teachers rarely use 
them in their educational practice, probably because they do not have 
(enough) knowledge and skill related to what can be achieved by using these 
tools (see Manoucherhri, 1999). It seems that most mathematics educators 
do not realize the full power of computer-based mathematical modelling and, 
because of that, the wider inclusion of modelling in everyday mathematics 
education is simply not attainable (Kadijevich, 2004). How may this state be 
improved? First, there is a tendency for the standardization of technology-
based mathematics education.̂  Second, contrary to most mathematical 
courses at upper secondary and tertiary levels with more or less known con
tent and teaching method, such courses on modelling may (and probably do) 
considerably differ from institution to institution. We may thus develop suit
able standards of computer-based modelling^ and ensure their proper utiliza
tion. By doing this, we should achieve a better coordination among different 
perspectives on the reality of modelling (see Fig. 3.5.4-1). 
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Figure 3.5.4-1. Coordinating perspectives on the reality of modelling 
(adapted from Blum et al., 2002) 

2. REALIZING THE FULL POWER OF 
COMPUTER-BASED MODELLING 

While modelling in general empowers a modelar's thinking and learning, 
computer-based modelling amplifies this empowerment through utilizing 
computers as versatile mindtools. 

Instead of developing adequate mental models mirroring the presented 
conceptual models, students often memorize these conceptual models to use 
them in school or academic settings, while they exploit their mental models 
in informal (everyday) settings (e.g. Vinner, 1983; Greca & Moreira, 2000). 
According to Ibid, as presented in Fig. 3.5.4-2, mental models can incre
mentally be developed in the direction of the desired conceptual models 
through explicitly-taught modelling (developing formal mathematical mod
els and testing, refining or upgrading already built models). 

/"me/ual models N̂ 
\ 

-modelling-^, 

Figure 3.5.4-2. From mental models to conceptual models through modelling 

Although the use of a sophisticated device and the transition from tool 
(impersonal device) to instrument (personal device) is achieved through a 
long process of instrumental genesis (Trouche, 2003; Guin et al., 2005), the 
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use of computers as mindtools (Jonassen, 2000), expanding our mental func
tion^, can indeed be achieved in computer-supported modelling. Consider, 
for example, the utilization of Microsoft Excel and its various add-ins like 
SimTools (for simulations and iterative processes'^) and RISKOptimizer (for 
simulation with optimization^) that enables very sophisticated modelling.^ 

3. DEVELOPING SUITABLE STANDARDS OF 
COMPUTER-BASED MODELLING 

Bearing in mind the outcome of educational research relevant to model
ling^, one may propose the following five standards of computer-based mod
elling in the upper secondary and tertiary levels of mathematics education 
(derived from Kadijevich, 2003). 
• Recognize a humanistically-oriented context of modelling. Realize that, 

no matter how mathematically good a model may be, the applied data 
quantifications may be arbitrary, the selected optimization criteria subjec
tive, and the chosen applications questionable. Be aware that the devel
oped models just give decision makers additional information to help 
them become better informed, and that it is always a human who decides 
on the course of action and takes full responsibility for its consequences. 

• Present modelling as a complex process. Present several incrementally-
developed models concerning the same real life situation. Realize the 
complexity of modelling arising from interplay among modelling steps, 
and from interactions among modelling actors whose ways of thinking, 
values, attitudes, preferences etc. may be quite diverse. Be aware that the 
development of an institutionalized model may require very much more 
time and effort than the development of a prototype model. 

• Use modelling to empower thinking and learning. Be aware of existing 
mental models and desired conceptual models. Help students realize the 
validity and possible limitations of their mental models. Help students in
crementally develop their mental models in the direction of the desired 
conceptual models by means of modelling. Use modelling to promote 
better understanding. 

• Recognize and empower cognitive, metacognitive and affective issues of 
modelling. Be aware that modelling is based on a demanding interplay of 
modelar's cognitive, metacognitive and affective domains. Help students 
carry out matematizations (clarify a real problem, generate variables, se
lect variables, and set up conditions) appropriately and confidently. Help 
them set up those conditions that enable an easy (easier) solution to the 
mathematical problem. Help them evaluate models critically.^ Promote 
positive affective contexts about mathematics and the problem domain. 
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• Use computers as mindtoolsfor modeling. Apply able tools such as Casio 
ClassPad, Microsoft Excel or Texas Instruments Derive.^ Avoid, when
ever possible, the "black box" view of the applied tool, by giving or re
quiring conceptual and procedural explanations of the performed actions 
and calculations. Require students to solve tasks involving routine calcu
lations, conceptual conclusions and links between procedural and con
ceptual knowledge, not limiting them to a particular technological tool. 
View computers as tools that expand our mental function. ̂ ° 

Like the ISTE standards of educational technology, each of these or other 
agreed standards may be described by a list of suitable indicators mirroring 
the sentences used in its initial description. 

4. ENSURING A PROPER UTILIZATION OF STAN
DARDS OF COMPUTER-BASED MODELLING 

Teachers may be aware of current teaching ideas, may believe that they 
have implemented them in day-to-day teaching, but the real practice of such 
reformers may not substantially differ from everyday practice of those 
viewed as non-reformers (see NCES, 1999; p. 124).̂ ^ To avoid a discrepancy 
between intended and implemented standards of computer-based modelling, 
pre-service and in-service professional development of mathematics teachers 
should successfully deal with various critical issues. One of them is related 
to realizing the full power of computer-based modelling. The other three are 
summarized below. 
• Selecting basic indicators for the official standards. Let us suppose that 

we utilize 8 modelling standards comprising 30 indicators. Many teach
ers, especially those less-experienced and not so technology-minded, may 
find these indicators quite demanding. Thus they may base their teaching 
practice just upon several basic indicators, still bearing in mind the 
broader context.^^ Utilizing an opportunity to select one's own indicators 
is particularly advantageous to those involved in teacher professional de
velopment as they can focus on issues that are subject to change (see 
Kadijevich, 2002). 

• Making the selected indicators alive. Just as learning through multimedia 
design can be beneficial to students in many ways, resulting in better 
understanding of and more interest in mathematical, didactic and techno
logical issues (see Kadijevich & Haapasalo, 2004), so should (future) 
mathematics teachers become designers of multimedia lessons.^^ Because 
the suggested or targeted set of professional, psychological or didactic 
guidelines may be too demanding to be implemented successfully^" ,̂ a 
multimedia project instructor should encourage project participants to 
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choose their own subsets of these guidelines and help them implement 
these subsets successfully. 
Reinforcing the context of the official standards. Having in mind the ad
vantages of Web-based professional development for mathematics teach
ers (Shotsberger, 1999), a critical, balanced and well-designed imple
mentation of modelling standards should be achieved through such a 
support.Educational institutions and professional organizations ought 
thus to maintain Web sites where continuing computer-based modelling 
experiences are provided. Such a requirement is in accord with Kilpatrick 
(2003) who underlines that to improve the practice of mathematics teach
ing, we need "the creation of new forms of continuous professional de
velopment" (p. 326). 

5. CLOSING REMARKS 

As regards modelling pedagogy, Blum et al. (2002, p. 164) call for "ap
propriate pedagogical principles and strategies for the development of appli
cations and modelling courses and their teaching". There is no doubt that the 
presented standards considerably help us define and successfully utilize such 
principles and strategies. Although good modelling standards will not guar
antee good modelling practice and expected educational outcomes, they 
would - primarily applied as a useful framework not as a dogmatic recipe -
confidently help us spread the agreed modelling philosophy, recruit its fol
lowers among skilled and open-minded educators, manage their professional 
development, and assess the effects of educational outcomes enabling ade
quate further steps. Researchers in the modelling community may thus focus 
on an elaboration of these standards involving issues of assessment and 
teacher's professional development as well as on their adjustments to differ
ent educational levels. Research may also empirically focus on critical vari
ables that influence (future) utilization of such standards. To achieve this 
end, it may refine the approach of Kadijevich et al. (2005) who examined 
mathematics teachers' interest to achieve educational technology standards 
in terms of then* computer attitudes and of the professional support, concern
ing these standards, that they received during their pre-service professional 
development. 
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HOW MIGHT WE SHARE MODELS THROUGH 
COOPERATIVE MATHEMATICAL 
MODELLING? FOCUS ON SITUATIONS BASED 
ON INDIVIDUAL EXPERIENCES 

Akio Matsuzaki 
Junior High & Senior High School at Komaba, University of Tsukuba, Japan, 
Email: makio @sakura. cc. tsukuba. acjp 

Abstract: The focus of this chapter is on models which are made and shared by model
lers through cooperative mathematical modelling, and to consider their poten
tial for advancing process. I see changes to models as one of the transitional 
factors in mathematical modelling. For able-to-be-shared models, it is neces
sary to have close-to-common situations for students as a means for advancing 
process. In this case, a teacher's indication would be to emphasize the sharing 
of situations for each of the students. For not-able-to-be-shared models, it is 
considered that students should try to share their respective situations, even if 
their associated models are unable to be shared. Through sharing their respec
tive situations students may be able to agree to adopt some common represen
tations of those situations. 

1. INTRODUCTION 

Schemas of mathematical modelling involve advanced processes based on 
ideal mathematical modelling (c.f. Blum, 1985), in which several models are 
generated and revised through the processes. I describe 'facts' of mathemati
cal modelling as variables in transition (Stillman & Galbraith, 1998) because 
variables, which structure problems, change through problem solving. When 
several modellers carry out mathematical modelling together, modelling in
teraction, seen as generating and revising models, is important in modelling 
pedagogy. In this study I adopted cooperative paired learning as a research 
setting, and drew up the following two research questions: 'How might mod-
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els be made and shared in the case of cooperative paired learning?' and 
'What could be considered influences on the process of making and sharing 
models?* 

The aims of this study are to follow the development of models which are 
made and shared by students through cooperative mathematical modelling, 
and to inquire concerning influences that help in advancing this process. I 
would see changes in models as one of the transitional aspects of interest in 
mathematical modelling, and additionally focus on situations based on each 
modeller's learning or living experiences. Feedback is required on the origi
nal situations involving real models in terms of a schema for mathematical 
modelling. The definition of the situations is in terms of pictures that are 
imaged or recollected based on individual learning or living experiences. 
One of the findings in my prior research was that the situations of individual 
modellers had strong effects on mathematical modelling (Matsuzaki, 2004). 

2. CASE STUDY 

In this research setting students are required to undertake cooperative 
paired learning and communicate using a think-aloud method. A video-taped 
case study session took place on two occasions - 52:37 minutes and 49:10 
minutes respectively. The subjects were 10th grade female students (Meg & 
Yoshi), and data referred to in this paper are protocols of the students' con
versations and descriptions recorded on their worksheets. 

2.1 Deciding Some Variables 
At first the teacher presented an open problem: *How much brightness is 

needed to read a book?' One of the students suggested some 'variables' 
from reading sentences of a problem (Fig. 3.5.5-1). 

desk miniature bulb dry batteries 
books electricity human 

Figure 3.5.5-1. Variables suggested by Yoshi 

At that time the teacher asked them to discuss the Variables' together, be
cause they remembered the lighting in theh* own rooms, which differed from 
each other. 



3.5.5, COOPERATIVE MATHEMATICAL MODELLING 359 

[Protocols (1)] First Occasion: 
11:24 Teacher What situations did you image? 
11:30 Yoshi My own.. .1 don't read books often. I imaged when I read books. 
11:43 Teacher Where? Put it more clearly? 
11:46 Yoshi My own desk in my room. 

For the students a common situation was needed to solve the problem co
operatively, and they decided on the following five artefacts: chair, desk, a 
fluorescent tube, worksheet, and themselves. (These are common 'variables' 
from each student's selection). They were now visualizing in a laboratory 
situation, and discussed methods of measurement to solve their problem. 

2.2 Measurement of the Real Data 
The students used a tape measure and an illuminometer to measure bright

ness (Fig. 3.5.5-2). A fluorescent tube is different from a miniature bulb and 
has greater length. They looked into this point and measured several types of 
brightness ( 0 , l - 0 , 3 in Fig. 3.5.5-3). Here the figure of the laboratory room 
in which the research has been implemented is common to the real model 
generated by the students. (The laboratory room is a common situation for 
the students because they are now in this room.) 

[Protocols (2)] The First Occasion: 
38:33 Meg We'll investigate brightness at the centre & the end of a fluorescent tube. 
38:38 Yoshi The centre & the end.... 
38:46 Meg The centre of a fluorescent tube is brighter than at the end 

0 Hen 

Figure 3.5.5-2. Dluminometer Figure 3.5.5-3. Model of laboratory room 

The teacher asked the students about the relationship between brightness 
and distance from ceiling. Here variables are brightness and distance meas
ured at the centre of a fluorescent tube (Fig. 3.5.5-4). The students said that 
these data could be used to find a formula for brightness. 

[Protocols (3)] The First Occasion: 
52:16 Teacher What will you do with this data? 
52:22 Meg I want to develop a formula, develop a formula! 
52:25 Teacher Really? 
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52:27 
52:30 

Meg Yes... .Can you find a formula? 
Yoshi A formula for brightness! 

distance brightness 

(D*ir *"-' 
center i g \Z^^ 

§Q ^ \ & 0 0 

Q , 9 b o 

VOO — — ^ 0 ^ 

Figure 3.5.5-4. Real data Figure 3.5.5-5. Idea of approximation 

2.3 Finding Functions that Fit the Real Data 
The students plotted the distance from the centre of the tube on the x-

axis, and the brightness on the );-axis, and plotted five points in order to ex
plore the relationship between brightness and distance. Then Meg said she 
expected that x is inversely proportional to y. The teacher asked why the re
lationship was inversely proportional, but neither student could provide a 
reason. So the teacher asked them to confirm the relationships between x and 

[Protocols (4)] The Second Occasion: 
Draw a line now, Meg? What did you draw, Yoshi? 
I think this is inverse proportion. 
I would draw a line, but.... 
I think that it would be also inverse proportion. 
Is it inverse proportion? 
Yeŝ  

Meg raised an example of an experiment in her science classroom, and 
explained how the data were treated. She explained the method of approxi
mation of the data by drawing a line of the best fit (Fig. 3.5.5-5). 

08:51 
08:55 
08:57 
08:58 
08:59 
09:00 

Teacher 
Meg 
Yoshi 
Meg 
Teacher 
Yoshi 

i tr,0 j 

I 

to 1̂0 8 o <?o n»o "^ ' ™ ; r " ^ r ' V TO t̂ '̂ K̂  

Figure 3.5.5-6. Approximation by proportion Figure 3.5.5-7. Approximation by inverse 
proportion 

Here is an experiment with a common situation, because they attended 
the same science classroom. However the ways they approximated the pre-
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sent data were different: Meg approximated the data by a line (Fig. 3.5.5-6) 
and Yoshi approximated them by a curve (Fig. 3.5.5-7). These graphs are 
both mathematical models generated from a measured data set arising from 
variables on real models. So the teacher asked the students to decide whether 
the relationship was proportion or inverse proportion. Trying to answer the 
question, the students devised the idea of 'combining' proportion and inverse 
proportion instead of deciding between proportion and inverse proportion. 

[Protocols (5)] The Second Occasion: 
10:02 Meg & Yoshi I would combine proportion with inverse proportion. 
10:03 Teacher Oh, combine them? What do you mean? 
10:05 Meg I would combine proportion whose gradient is negative with in

verse proportion. 
(Some lines omitted) 

11:58 Yoshi If we match out of data to other data, the relationship would be 
inverse proportion....? 

12:01 Meg Let's match all the data, shall we? 

The Students obtained the following two equations from their data: 
Qf) 000 

(I) y = -200x + 20,800, (II) y = ^^^^^^ 
X 

They equated the one with the other (Fig. 3.5.5-8) and got the answer x = 
4, 100. 

§0000 
- 2oox -f ^otfoo z 

-> ^0 OXL^f-?od*©0xz. 9oc>o 0 

(PC ̂  (go; ( a : - 4 ; > 0 

Figure 3.5.5-8. Mathematical Workprocess 

Solving a quadratic equation is a common situation when 'combining' 
ideas generated by two equations. Here the 'variables' are the two equations 
situated in a mathematical model, and the answers situate a mathematical 
result. Although the students were able to solve the above simultaneous 
equations by their 'combine' idea, they were unable to interpret their answer, 
as they didn't understand what the answer meant in the real world context. 

[Protocols (6)] The Second Occasion: 
22:38 Yoshi x indicates the distance from ceiling. 
22:39 Meg We combined two equations....What did we answer to? 
22:44 Yoshi Proportion and inverse proportion.... 
22:47 Meg What's this answer!? 
23:01 Meg It's so wrong.... 
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23:05 Yoshi x indicates the distance from ceiling, isn't it? 
23:13 Yoshi x indicates the distance from floor, isn't it? (Laughing) 
23:17 Meg Why did we get the answer jc = 4? 

2.4 Revising Approximate Functions 
The teacher asked the students again whether the relationship was one of 

simple proportion or inverse proportion, and instructed them to express their 
images of 'combine' on the worksheets. 

[Protocols (7)] The Second Occasion: 
I can't combine the graphs.... 
Inverse proportion until one position, and proportion from one position. 
Did you do it? 
No! 
There are several patterns.... 
One half of them is a curve, and another half is a line. 
I don't know.... 
This part is inverse proportion, but in this part I can draw a straight line. 

Meg drew another 'in-between' graph that took a middle position between 
a proportion graph and an inverse proportion graph (Fig. 3.5.5-9). On the 
other hand, Yoshi drew a graph that simply connected the proportion part to 
an inverse proportion part (Fig. 3.5.5-10). For these different images of 
'combine', the teacher asked the students to develop an agreed common 
opinion. They had previously drawn several functions in divided domains in 
their mathematics classroom, but in this case they found it too difficult to 
represent the combined graph by a formula, because they couldn't recollect 
such a representation. So they focused on treatment of the data again. 

25:02 
25:06 
25:10 
25:11 
25:14 
25:16 
25:19 
25:21 

Meg 
Meg 
Teacher 
Meg 
Yoshi 
Meg 
Meg 
Yoshi 

4 « o ^ 

Figure 3.5.5-9. Graphs drawn by Meg 

V '^ 

Ih ?i-, | f t • ^ ittk 

Figure 3.5.5-10. Graphs drawn by Yoshi 

[Protocols (8)] The Second Occasion: 
35:44 Teacher Meg, did you say something about measurement error about these val

ues? 
35:49 Meg Yes.... 
35:50 Teacher What do you think about it? 
35:54 Yoshi It must be error, but.... 
35:55 Meg If this value is an error, the relationship is one of inverse proportion. 

Do you think so? 



35:59 
36:23 
36:25 
36:27 
36:29 
36:31 

Yoshi 
Yoshi 
Meg 
Teacher 
Meg 
Yoshi 
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Yes! (Some Unes omitted) 
Unn...It's fiimiy. I've never seen such graphs (̂ Combined' Graphs). 
Such graphs are funny. 
It's OK? Is this a result? 
Yes.. ..But I think that it is difficult for us to make a formula. 
To make a formula is difficult. 

Finally the students agreed the relationship was one of inverse proportion 
because they confirmed the equations by using a first set of data that they 
had measured from the end of a fluorescent tube again (Fig. 3.5.5-10). Both 
of them said the relationships must also be inverse proportion in the case of 
the centre of a fluorescent tube, provided they took out the data that they had 
recorded in error. 

3. DISCUSSION 

In this study's research setting, the students are required to tackle a prob
lem together. In this part, I discuss identifying the able-to-be-shared models 
and not-able-to-be-shared models from the perspective of changing vari
ables: able-to-be-shared models can be used in cases of changing or modify
ing models based on common variables. Not-able-to-be-shared models are 
evident when students use different variables or cannot see how to bridge 
their differences through adopting some common representation of the situa
tion being modelled. 

3.1 Able-to-be-Shared Models for Each of the Students 
Able-to-be-shared models are seen in the Idealization & Mathematical 

Work processes. At first the model shared in the Idealization process is used 
in deciding some 'variables' (see 2.1). Each student spoke the same keyword 
'reading' recollected from the open problem (see also [protocols (1)]). The 
'reading' situations recollected by each individual student were not the same 
'reading' situation, because they each recollected reading in their own home, 
and so would consider different 'variables'. So the students have set com
mon situations to solve the problem cooperatively, and this common situa
tion is based on a laboratory room (see Fig. 3.5.5-3). Secondly the model 
shared in the Mathematical Work process is seen to be finding functions that 
fit the real data (see 2.3). Simultaneous equations are one of the available 
mathematical models, and the students got mathematical results by solving a 
quadratic equation derived from simultaneous equations (see Fig. 3.5.5-8). 
Here both students used the 'combine' idea (see also [protocols (5)]) of solv
ing two equations simultaneously. It is necessary for able-to-be-shared mod
els to be close to common situations for both students, and in this case a 
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teacher's directions would put emphasis on promoting a sharing of the situa
tions for the students. 

3.2 Not-able-to-be-Shared Models for Each of the Stu
dents 

Not-able-to-be-shared models were seen in the Mathematization & refin
ing mathematical models processes. At first, these models are seen in a 
mathematization process in finding functions that fit the real data (see 2.3). 
The students recollected 'science classroom' situations when fitting the real 
data. Although these situations involved common variables, the graphs used 
by each student were different (see Fig. 3.5.5-6 & Fig. 3.5.5-7). Secondly, 
not-able-to-be-shared models are seen in refining mathematical models, in 
revising approximate functions (see 2.4). In this process, involving recol
lected common situations, the use of 'combine' ideas is indicated by solving 
two equations simultaneously. So the teacher confirmed this 'combine' idea 
to the students by drawing graphs (see Fig. 3.5.5-9 & Fig. 3.5.5-10). It was 
found at first that neither student could agree on a common representation 
that would allow them to move forward based on the different graphs that 
each had drawn (see also [protocols (8)]). These graphs are themselves re
fined models, and these refining processes are promoted by the teacher's 
indications. Here 'combine' ideas are shared for each of the students, since 
these ideas are now included earlier. This shows that it is not only common 
models or situations that are sometimes unable to be shared. So the teacher 
needs to help students to identify those aspects which are capable of being 
shared, and those that are not. In this case study, the teacher's feedback indi
cation was effective in helping the students to decide what could be shared 
and so helped students to agree on a model that worked for them. 
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Abstract: Implementation and practice of mathematical modelling and applications has 
obviously many definitions, depending on whose definition we use. No book 
is large enough to give a fair view of what it might mean around the world. 
This chapter will nevertheless try to illuminate different definitions and views 
on both theory and practise. 

1. INTRODUCTION 

To assemble a chapter which can adequately summarize and interpret the 
complexities connected with the vast field of implementation and practise of 
mathematical modelling and applications and at the same time try to incor
porate different views expressed by people from around the world is, evi
dently, a vastly difficult and overwhelming task. I would like to ensure all 
readers of this chapter, that any mistake or extraordinary decision I have 
done in my interpretation and realization of these views is exclusively mine. 

The word implementation stands for realization, to accomplish, to intro
duce. Our working group, which met three times during the Dortmund con
ference, made a huge effort to accomplish an overall agreement about what 
implementation and practise of mathematical modelling and applications 
might mean in different countries at different educational levels and espe
cially for the participators in the implementation and practice group. It 
would be an overstatement to claim that we succeeded. Nevertheless, we did 
agree about the fact that our part of the final Study Volume should address 
good and convincing examples, possible to accept and interpret by "normal" 
teachers in "normal" classrooms to correspond satisfactory with prescribed 
curriculum at any level. We also found a mutual understanding about the 
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need to give insight in views from different countries and from different con
textual approaches. 

Our discussions tried very hard to penetrate and interpret especially the 
following open questions from the Discussion Document. 

To what extent do teaching practices within applications and modelling 
courses draw on general theories of human development and/or learning? 
What criteria are most helpful in selecting methods and approaches sug
gested by such theories? 
What criteria can be used to choose (e.g. between individual and group 
activity) the most desirable option at a particular point within an applica
tions and modelling teaching segment? 
We added another question, imminent from the growing notion that the 

process of implementation and practise must exist elsewhere than just in the 
teaching. 

Where does modelling take place, apart from the various class rooms at 
various levels? 
The four papers, which were selected to represent and mirror this variety 

of opinions, are a small but well-balanced selection of views on what im
plementation and practice might represent in different contexts. They also 
reflect the importance to focus at both theoretical and practical levels to in
form future research (by researchers) and implementation (for teachers and 
administrators). Only one of the papers addresses the fact that many model
ling problems on an advanced level quite often require advanced technology 
for handling the modelling process, a fact that for a time might exclude this 
kind of experience in some countries. 

2. PAPER SUMMARIES 

There is no doubt that we humans use a lot of mathematical reasoning 
when we perform all kinds of everyday life routines and actions. But do we 
observe and acknowledge our daily life mathematics? In Chapter 3.6.1, 
Michele Artaud (France) illustrates the way mathematics often is hidden in 
everyday life practises and how difficult it might be to see it. Her theoretical 
approach is essentially based on the "anthropological approach" in the didac
tics of mathematics. The basic concept of the anthropological approach is 
that of praxeology (Chevallard, 1999), a meta-theoretical construct used to 
model what is involved in mathematical as well as other human activities. A 
praxeology consists, abstractly, of a class of similar tasks which can be exe
cuted by applying a set of techniques, situated in and enabled by a larger sys
tem called technology, and with an overarching discourse of justification and 
regulation of practise (theory). The "anthropological" part exists in the pri-
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macy of tasks understood as "requirements for human action to achieve 
rather precise goals". 

Through an illustrative and useful example with a wooden floor whose 
floor-boards are laid on backing strips with an angle of 45 or 60 degrees, 
Artaud illustrates the interplay between the different stages in the praxeol-
ogy, and concludes that mathematical modelling is an exceptional way to 
illuminate and highlight the mathematics which so often is implicit in the 
real world, something we all must strive for making through for our students. 

Many mathematical techniques and conceptual considerations we use in 
daily life are imprecise and rough approximations. In Chapter 3.6.2, Wilfried 
Herget and Marlene Torre-Skoumal (Germany) illustrate how a real world 
modelling task change the view of mathematics as a precise and accurate 
subject into the reality of imprecise estimations and inaccurate measuring 
methods. The underlying theme of their chapter is based upon the philoso
phy of letting students experience mathematical situations, so well-defined 
by Henry Pollack: 

The heart of applied mathematics is the injunction "Here is a situation; 
think about it. 'The heart of our usual mathematics teaching, on the other 
hand, is: "Here is a problem; solve it" or "Here is a theorem; prove it." 
We have very rarely, in mathematics, allowed the student to explore a 
situation for himself and find out what the right theorem to prove or the 
right problem to solve might be. (PoUak, 1970) 
Herget and Torre-Skoumal try their modelling situations and exercises 

with primarily secondary students, although other targets for open-ended 
discussions are invited to give opinions. The open-ended problems or situa
tions are introduced with an image of a physical object and the modelling 
exercise is how to measure for instance the size of a giant shoe or the volume 
of air in a hot-air balloon. How would you consider the challenge to make a 
qualified guess on the latter question? How precise would you consider it 
important to be? A throughout discussion about how different students at 
different mathematical levels might solve the problems is presented. 

Are there mathematical branches that are more suitable and even more 
incentive for implementation of modelling and applications than others? Is 
possibly probability and statistics such a natural domain for fostering 
mathematical modelling competences? Eva Lakoma's (Poland) Chapter 
3.6.3 about teaching probability and statistics, illustrates the steps students 
has to go through when facing a real world phenomena and simplifying this 
phenomena into a mathematical model. The process of creating mathemati
cal models, posing hypothesis and verifying conjectures is her personal list 
of aims for mathematics education. Lakoma guides us through an experi
ment: A phenomena from the world of sports, namely competing with shoot
ing a basketball through a basketball basket. When analyzing students' ex-
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plorations, she highlights four main steps of the process of students' thinking 
and acting: discovering and formulating of a problem; constructing a model 
of 'rear phenomenon; analysing the model; interpreting results obtained 
from the model with the *reaV situation. These steps are further discussed 
and illuminated through other examples from stochastics (arbitrary for prob
ability and statistics). Lakoma claims that probability and statistics give stu
dents natural motivation to develop their competency of mathematical mod
elling. 

What do we know about mathematical modelling activities at different 
work places? In the fourth and final Chapter 3.6.4, Geoff Wake (United 
Kingdom) asks himself why it is that although mathematical models loom 
large in accounts of workers' activities there has been so little emphasis on 
what we can learn about mathematical modelling from workplace based re
search and the implications we can draw for the teaching and learning of 
mathematics in schools is yet not well developed. 

Li this chapter, we are given the possibility to follow the modelling work 
by two different workers, namely Alice (office worker) and Alan (railway 
signal engineer/designer). Both these two professionals use sophisticated 
mathematical models to carry out their duties according to "industry stan
dard". Alice build her spreadsheet models to calculate the agreed measure 
"debtor days" in order to be able to communicate the performance level of 
the company within the company. Alan is in the security business, he over
looks calculations by other workers of where speed restrictions indicators 
and other signals should be placed along railway tracks so that train drivers 
might respond safely. 

Wake demonstrates that neither Alice nor Alan have freedom in the way 
they set up their mathematical models and that their day-to-day activity in 
their companies often is focused on interpretation of the results of their ap
plication of the model. So Alice and Alan do really not control their own 
models, instead it is as if the models often control them. This is possibly a 
normal situation in industries, offices or private enterprises. 
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SOME CONDITIONS FOR MODELLING TO 
EXIST IN MATHEMATICS CLASSROOMS 
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Abstract: The first section of the discussion document, "Rationale for the Study" (Blum 
et al., 2002), mentions on the one hand that there exists a lot of works in 
mathematics education centered on applications and modelling and, on the 
other hand, that these works have had little effect on what happens in class
rooms. The purpose of the present paper is to propose some explanations of 
this phenomenon by considering conditions for modelling to exist in mathe
matics classrooms. 

1. AN EXAMPLE: LAYING A WOODEN FLOOR 

Let us consider Mrs. Smith: she has just bought a new house and she 
wants to lay a wooden floor in the living room, a rectangular room whose 
dimensions are 6 m x 5 m. She has chosen a "Point de Hongrie" wooden 
floor, that is, a wooden floor whose floor-boards are laid on backing strips 
with an angle of 45 or 60 degrees (see Fig. 3.6.1-1). 

Figure 3.6.1-1. "Point de Hongrie" wooden floor 
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After a quite intense reflection, she decides to take an angle of 60 de
grees. Unfortunately, in the technical book she has, only the case of the 45 
degrees angle is treated, the author saying that in this case, if L is the length 
of the boards and E the distance between two backing strips, then E = L/>/2 
= L/1,414 or L = 1,414 X E. Given that the door is on the 6 m dimension side 
and that she wants a whole number of rows there, she decides to set E at 
30 cm. To know the measure of L, she takes a sheet of her daughter's paper 
and, after some trials with pieces of wood, she draws the following picture 
(Fig. 3.6.1-2) in real size and then measures the length of the floor-board, 
finding L = 59,8 cm. 

Figure 3.6.1-2. 

When her daughter Leila arrives, she recognizes a problem she has just 
studied at school. While drawing a little picture (see beside), she explains 
that there is a right-angled triangle with L as the hypotenuse and E as the 
adjacent side of the angle of 60 degrees (Fig. 3.6.1-3). She calculates then: 

cos 60° = E/L 
0,5 = E/L 

L = 2E = 60 cm. 

Figure 3.6.1-3. 
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As in the previous example, mathematics is often implicitly involved in 
described practices (such as the one found by Mrs. Smith in the book) and 
therefore it is not seen that practices are produced with mathematics 
(Chevallard, 1988). This can explain why making links between these appar
ently "non mathematical" practices and mathematics is often not likely to 
happen. This is a very important point to which we are coming later. Let us 
first introduce some theoretical frameworks that will be useful for identify
ing conditions for modelling to exist in classrooms. 

2. MODELLING IN MATHEMATICAL AND DI
DACTIC PRAXEOLOGIES 

For many years now, mathematics teaching and learning activities have 
been studied in France within the theoretical framework of the Anthropo
logical Theory of Didactics (ATD) as created by Yves Chevallard (Cheval
lard, 1991, 1999, and 2002). In this approach, two main aspects are consid
ered. The first one regards what is learnt and taught and is modelled in terms 
of mathematical praxeologies. The second one concerns learning and teach
ing activities as such and is modelled in terms of didactic praxeologies. The 
concept of praxeology allows one to describe and analyse the gist of human 
activity, be it mathematical or not. More precisely, a praxeology consists of 
four main components: a number of types of tasks, that is what one has to do 
(e.g. solve quadratic equations, teach Pythagoras' theorem, etc.); with each 
type of tasks, a technique which provides a way to achieve tasks of the given 
type (e.g. a way to solve effectively quadratic equations); for every tech
nique, a technology, that is a "discourse"^ able to justify, explain, and "gen
erate" the technique; and finally, a theory, that is a discourse that plays the 
same role towards technology that technology does towards technique, and 
makes it possible to interpret techniques and set up technological descrip
tions and proofs. 

In the previous example, we could identify a mathematical type of tasks, 
T, "in a right-angled triangle calculate the hypotenuse L when an angle a 
and the adjacent side to the angle E are known". The technique that Leila 
brings into play is to write that cos a = E/L, to calculate cos a; to write L = 
£/cosaand then to calculate E/cosa. The technology is based on technologi
cal elements such as the definition of cos a in a right-angled triangle. 

Praxeology always arises as an answer A to a question Q: when, like in 
the example of laying a floor, question Qissi non mathematical one, the an
swer A, if including mathematics, is a mixed mathematical praxeology, that 
is a praxeology in which mathematics is mingled with the "real world area" 
that can be other academic science^. In our example for instance, one must 
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know what backing string, floor-board, a "Point de Hongrie" wooden floor 
are as well as knowing about the cosine of an angle in a right-angled trian
gle. 

Modelling is then a process which allows coming from the initial ques
tion 2 to a mathematical question (2M to which an answer AM will be pro
duced - this answer could be well-known and mathematical praxeology is 
then brought into play or might be produced by using didactical praxeology 
(Artaud, 1993, 1994). In our case, Q is: "For a "point de Hongrie" wooden 
floor, what is the length of a floor-board when the distance between two 
backing strips is 30 cm and the angle that the floor-boards make with the 
backing strips is 60 degrees?". The process of modelling brought into play 
by Mrs. Smith and her daughter introduces the mathematical question Q^ 
"How do you calculate the hypotenuse of a right-angled triangle when an 
angle a is of 60 degrees and the side adjacent to the angle measures 30 cm?" 
of which the answer A^ is given by the above-described mathematical 
praxeology. 

This above-mentioned process of modelling is also valid in mathematics: 
The geometric situation could be for instance modelled in an analytical or in 
an algebraic way. It is then of great interest to enlarge the sense of modelling 
to mathematical situations (Chevallard, 1985, 1989a&b; Bolea, Bosch, & 
Gascon, 2003). 

In the ATD, the teacher is considered as the director of the study process 
the students carry out, a process which is structured along six dimensions or 
didactic moments: the moment of the first encounter, the exploratory mo
ment, the technical moment, the technological-theoretical moment, the insti-
tutionalisation moment, and the evaluation moment. These six moments are 
six types of tasks that allows one to describe the teacher's practice in terms 
of didactic praxeologies. A didactic praxeology is constructed by a person 
when he or she studies a mathematical organisation or helps others to study 
it. According to Chevallard, each one of the six moments of the study proc
ess has a specific function essential to the successful completion of this 
process (Chevallard, 1999, p. 250-255) quoted by Bolea, Bosch, and Gascon 
(2003): 

ThQ first moment of study is that of iht first encounter with the organisa
tion O at stake. Such an encounter can take place in several ways, al
though one kind of encounter or "re-encounter", that is inevitable unless 
one remains on the surface of (9, consists of meeting O through at least 
one of the types of tasks TJ that constitutes it. [...] The second moment 
concerns the exploration of the type of tasks Ti and elaboration of a tech
nique Ti relative to this type of tasks. [...] The third moment of the study 
consists of the constitution of the technological-theoretical environment 
[0/0] relative to z;. In a general way, this moment is closely interrelated 
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to each of the other moments. [...] The fourth moment concerns the 
technical work, which has at the same time to improve the technique 
making it more powerful and reUable (a process which generally involves 
a refinement of the previously elaborated technique), and develop the 
mastery of its use. [...] The fifth moment involves the institutionalisation, 
the aim of which is to identify what the elaborate mathematical organisa
tion "exactly" is. [...] The sixth moment entails the evaluation, which is 
linked to the institutionalisation moment [...]. In practice, there is always 
a moment when a balance has to be struck, since this moment of reflec
tion when one examines the value of what is done, is by no means an in
vention of the School, but is in fact on a par with the "breathing space" 
intrinsic to every human activity. 

It is clear that a "complete" realisation of the six moments of the study 
process must give rise to the creation of a mathematical praxeology that goes 
beyond the simple resolution of a single mathematical task. It leads to the 
creation (or re-creation) of at least the first main elements of a local mathe
matical praxeology, that is a praxeology which included several types of 
tasks and techniques structured around a technological discourse. 

3. CONDITIONS FOR MODELLING TO EXIST IN 
MATHEMATICS CLASSROOMS 

From the teaching point of view, on the one hand, modelling seems a 
well-adapted means for achieving emergence of mathematical praxeologies 
that is for realizing at least part of the moment of iht first encounter, the ex
ploratory moment, the technical moment, the technological-theoretical mo
ment. On the other hand, in which way modelling will be treated in didactic 
praxeologies would be an important condition for modelling being a part of 
pupils' topos, that is types of tasks that pupils have to do on their own, with
out a teacher's help. An important point then is that for existing in students' 
topos, modelling kinds of tasks must be explicitly outlined in types of tasks 
around which mixed mathematical praxeologies have to be made. "Calculate 
magnitude g related to system S" is for instance such a modelling type of 
tasks: an undergraduate level technique consists for instance in determining 
a functional relation between magnitude g and other known magnitudes re
lated to system S and then calculate the value of the function. When class
rooms are observed, specimens of this type of task are solved, but the type of 
tasks itself is not in the mathematical praxeology studied. 

If real world situations or other science situations are used for mathe
matical praxeology to arise these must not be seen like a dressing up which 
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must be get rid of quickly as a real part of the process of study and of what 
to study, then in the institutionalisation moment, the teacher has to institu
tionalise not only the mathematical praxeology itself but the whole mixed 
praxeology. In this way, some modelling practices will live explicitly in 
mathematics classrooms and will be in pupils' topos. This point is a very 
important one because in most situations mathematics is only implicit. As 
seen in the above example of laying a floor, real world situations to be stud
ied are considered in the real world as non mathematical: if somebody has to 
lay a "Point de Hongrie" wooden floor, he or she will decide that, in fact, an 
angle of 45 degrees is of better effect; or that Mrs. Smith's graphical tech
nique is sufficient (and in practice, few small corrections will be made when 
actually laying the floor-boards). It is sometimes difficult to recognize that 
mathematics is relevant when analyzing such real world situations. In this 
respect, speaking of applications of mathematics contributes to obscuring the 
modelling that has to be done: this leads for instance to thinking that teach
ing a mathematical answer AM and solving some problems in which AM is 
brought into play will be sufficient because there will then exist for students 
an ability to transfer. 

For being effectively realized in classrooms, previous conditions need to 
be supported by academic mathematicians, and on this point mathematicians 
are somehow ambivalent. In effect, the situation of mathematicians' com
munity is well described by Verdania Masanja in her invited conference at 
ICTM2 in Greece: 

As a consequence of the new approach to mathematics, pure mathemati
cians drifted away from applications and saw no need to collaborate with 
other scientists, even their traditional neighbours, and the physicists. On 
the other hand, application of the highly abstract modem mathematics 
could not be easily visualised by the traditional users of mathematics. 
The period 1930's to 1970's saw a divergence within mathematics itself 
and between mathematics and other applied sciences. Mathematics be
came more inward looking, and the distinction between pure and applied 
mathematics became much more pronounced. (Masanja, 2002, p. 3) 

At least in some European countries, pure mathematicians exert strong 
influence on mathematics teachers and on applied mathematicians. On the 
one hand then, applied mathematicians' work includes modelling, but this 
part of their work is not emphasized; on the other hand, the majority of what 
mathematics teachers have studied in their own studies is pure mathematics. 
This situation is very far from that which was prevailing in France as well as 
in Europe when mathematics teaching was being developed: mathematics 
teachers had to know how to teach pure mathematics (arithmetic, geometry) 
and mixed mathematics (mechanics, art of fortification, topography, pyro-
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technics, etc.) and mathematicians such as Descartes, Pascal, Huygens, or 
Newton took care of mixed mathematics (Artaud, 1989, or Artaud, 1999). 

Social and political conditions and didactic conditions are both important. 
To develop robust didactic praxeologies using modelling that allow con
structions of some mathematical praxeologies, and for these to exist in class
rooms depends on conditions that are outside of schools: the mathemati
cians' discourse on what mathematics is, is one of these conditions. 

4. THE DIDACTIC TRANSPOSITION OF MODEL
LING TASKS 

The above development is predicated on the point of view that modelling 
tasks must be transposed into the "usual" mathematical teaching, the eco
logical conditions of which will then be modified as mentioned above. There 
is another way to transpose modelling tasks into classrooms: this consists of 
creating a new didactic system, mathematical modelling teaching. 

It is perhaps easier for this other way of transposition to occur as it allows 
us to avoid consideration of the prevailing relationship between mathematics 
and modelling. 

On the other hand, if mathematical modelling teaching is added to the or
dinary didactical system, then the teaching process must be accorded extra 
time. This would be difficult to obtain in the general teaching system; mod
elling could perhaps be provided for students who are supposed to need it, 
such as engineering students for instance. 

Modelling is nevertheless an excellent method by which to make obvious 
the mathematics that is implicit in the real world; and it is therefore very im
portant for all students. 
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Abstract: In this paper some unusual open-ended problems are presented, which have 
been "tried and tested" in secondary school. The main focus is not on calcula
tion but rather on all the steps necessary before the calculations can begin. 
"Here is a situation. Think about it!" (Henry Pollak) Such exercises are indis
pensable toward the introduction of skills inherent in mathematical modelling 
where the emphasis is not on algorithmic procedures but rather on the higher 
order skills of translation, interpretation, and evaluation of the real life prob
lem in terms of the mathematical model and its solution(s). 

1. HERE IS A SITUATION ~ THINK ABOUT IT! 

In the minds of the masses, "Doing Math means calculating". True, but 
this is certainly not the whole story. There is far more to mathematics than 
"mere" calculation! In this paper, some unusual open-ended problems will 
be presented which we successfully used in secondary school. In these tasks, 
calculating is not at the forefront, but rather all the thinking and planning 
skills necessary before the calculations can begin. "Here is a situation. Think 
about it!" (Henry Pollak) In the following exercise a newspaper article de
picting a giant shoe is used as a starting point. "What size is this giant shoe?" 
Everyone seems to find a task like this rather unusual, and it is always in
triguing to hear the different ways of solving the problem. 
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The person who fits this giant shoe must have enormous feet! 
Antal Annus, a 73-year-old shoemaker from the Hungarian village of 
Csanadap^ca, is depicted here, proudly presenting his hitherto most 
impressive "^creation". To this very day, we still do not know whether he 
really made the shoe for one of his customers. 

o 

Figure 3.6.2-1. What size is this giant shoe? 

2. MANY DIFFERENT WAYS OF SOLVING THE 
PROBLEM 

The standard approach is to use an object in the picture as an estimator or 
yardstick, e.g., the man's glasses, his head, the width of the apron he is wear
ing, etc. It is quite easy to measure these things, both in the picture and in 
reality. A few simple calculations suffice to give us the length of the shoe. 
Once we have obtained the length of the shoe, however, we still do not know 
its real size! Have you ever thought about the relationship between the 
length of a shoe and the various parameters indicating a shoe's size? This 
could well turn out to be an interesting research project! 

A colleague came up with another idea about how to solve the problem at 
hand. "A shoe is about the same length as a human face!" Assuming 42 to be 
the standard size shoe in Europe, we simply have to do our sums, providing 
the relationship shoe length to shoe size is linear. A school girl came up with 
another fascinating solution. Imagine that we turn the shoe at 90 degrees 
around the man's naval, we will then discover that the shoe is a little smaller 
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than the man. If the man is about 1.70 m tall then the shoe must be approxi
mately 1.5 m in length. Two students who conveyed their idea very clearly 
using body language put forth another possible solution: If we imagine the 
man in real life with his arms stretched out, he spans at least the length of the 
shoe. In the case of an average-sized human, this would be about 1.60 m. In 
reality, therefore, the shoe is approximately 1.5 m in length. 

How reliable, however, are the different approaches to the problem? The 
results lie somewhere between 1 m and 2 m, so how accurate are in fact the 
various measurements and estimates? In the end, a critical comparison of 
each method might well reveal a slight difference but we still haven't come 
up with "the right solution"! 
Finally, our task is to look at the relationship between normal shoe sizes and 
the length of the foot, in centimetres. Where do we start? One way would be 
to collect data by measuring various shoes. (Measuring big and small shoes 
lends itself well to homework since there are bound to be some "giants" and 
"dwarves" in the family and neighbourhood!) Another possibility, one which 
is rather unusual in math lessons, would be to make some enquiries in local 
shoe shops. If we are lucky, we might fmd some data on the shoe boxes 
themselves. Finally, we will get the type of relationship normal shoe sizes <-> 
length of the foot in centimetres and some respective formula. 

3. VERY PRECISE ... AND VERY ROUGH! 

Math lessons are typically characterised by precision. For example, if 
three sides of a rectangular box are 3 cm, 5 cm, and 7 cm respectively (and 
precisely, of course!), then fmd the volume of the box. But this obsession 
becomes an exercise in futility the moment mathematics becomes involved 
with "the rest of the world". There, most of the numbers which crop up are 
only approximately correct. This is inevitable and unavoidable! Likewise, 
the results are only rough estimates. 

In our lessons, therefore, one of our tasks, indeed obligations, should be 
to bridge the gap between these two different worlds: the world of accuracy 
so typical of mathematics, and that of lack of precision in the rest of the 
world. This is imperative because both worlds are important and both are 
indispensable. How can we possibly learn the true value of the precision and 
certainty of mathematics if we have not yet learnt that, in the "rest of the 
world", this precision and reliability is something which is very difficult to 
achieve? On the other hand, one can only learn to cope well with this inaccu
racy and blatant lack of precision if one has learned to exploit the many pos
sibilities offered by the very precise field of mathematics. 
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4. A PICTURE TELLS A STORY OF (WELL OVER) 
1,000 WORDS! 

How is it then possible to bridge the gap between mathematics and the 
"rest of the world"? How do we carefully and sensitively introduce the 
young student to the uncertain world of mathematical modelling? At this 
point we propose a very special method: setting tasks mostly based on rather 
unusual newspaper cuttings that we are apt to call "Pictorial Problems" or 
"Picture Mathematics". Many tasks based on real-life situations are often far 
too cluttered with text to be truly effective for the young mathematics stu
dent. This is where a picture, supplemented by the students' general knowl
edge and imagination, comes in handy: "A picture can indeed say far more 
than a thousand words!" 

&vVi& 3027 

How many 
litres of air 
does this 
hot-air balloon 
hold? 

Figure 3.6.2-2. The hot-air balloon 

How many litres of air does this hot-air balloon hold? 
At first, of course, to solve this task a model of the hot-air balloon should 

be made as accurately as possible, with the help of an object that is easy to 
describe. The wider the range of mathematical instruments available, the 
more instruments can be used to solve this task. 

In a Calculus course, the interpretation of the set task would be based on 
rotated solids. Modem pocket calculators, with built-in programmes for re
gression analysis, have no limits whatsoever with regard to the type of func-
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tion used. Indeed students left to their own resources showed untiring efforts 
in their quest for the "best" approximation. At the tender age of 15, 9̂*̂  grad
ers were researching how to calculate volumes of revolution using a com
puter algebra system, although not fully understanding, of course, why such 
a procedure of integrating the squares of functions between two parameters 
and multiplying by n would be an effective method of approximating a vol
ume since this topic formally comes later in their mathematical experience. 

Other students were satisfied with much simpler solutions. They simply 
looked at familiar geometrical shapes in their model building kit and selected 
something suitable. 

For example, one model of the balloon is made of the upper section using 
the shape of a hemisphere and the lower part is then made using a cylindrical 
cone. Another model consists of "chiselling" the balloon into a hemisphere, 
a frustrum of a cone for the middle section, and then a cone. In both cases 
the person in the photo is used as a yardstick. Other solutions may use even 
simpler models of the balloon: Let us take a big sphere as a suitable substi
tute, or even a cube - and it works, indeed! 

When taking measurements we are obviously very much aware of how 
inaccurate these values are. There is little point in making note of the figures 
which appear after the decimal point as shown on the pocket calculator. 
Some calculations using upper and lower values should be made arriving at 
an "interval of tolerance" as an answer. Finally we obtain for the total vol
ume of the balloon roughly 7,000 cubic meters. 

5. DIFFERENT WAYS BUT COMMON IDEAS 

Let us now itemize the steps inherent in the process of seeking solutions 
to these examples: 
• "Real world" mathematics remains the focal point for the duration of the 

activity until a solution is reached - the problems do not exist merely as 
a desperate attempt to superimpose a real world problem on analytical 
techniques previously learned. 

• The facts are analyzed and the mathematically relevant details are filtered 
out while the perhaps interesting, but irrelevant information (for the so
lution's sake) is laid aside. 

• An appropriate object is chosen to serve as a yardstick for the necessary 
measurements which have to be made in the solution process. 

• Necessary simplifications are performed. 
• The interesting measurements are taken from the picture; through the 

measurement process one is constantly conscious of the unavoidable 
element of uncertainty yielded through the approximations. 
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• Common knowledge is activated, e.g., how tall is an average person, do 
body parts exist in certain proportions, etc. If necessary, information 
from other sources will be obtained. 

• The relationship between the chosen yardstick and the measurements ob
tained will be mathematically defined and refined. 

• A suitable mathematical model and methodology for the solution of the 
problem will emerge from this process, as opposed to students being 
handed pre-conceived ones. The students may choose the model they 
feel is most suitable, i.e., they must choose the model themselves. 

• Technology allows for solutions previously denied students until much 
later in their mathematical development, or not at all. 

• This entire process is guided and enlightened by fundamental mathemati
cal considerations, strategies and concepts, which make a solution possi
ble. 

• Throughout this process other questions or ideas emerge, mathematical or 
otherwise, which can then be expanded upon, time permitting. 

A discussion of these examples highlights the essential aspects of the 
process of mathematical modelling. In mathematics education knowledge and 
skills are necessary pre-requisites which assist us in various stages of the 
process, but to accomplish the entire task at hand, certain central ideas or 
concepts are necessary, namely the concepts of measurement, approxima
tion, and linearization. 

All of the above is in accordance with Freudenthal's view of mathematics 
(Freudenthal, 1968) - 'mathematizing' as the activity of looking for prob
lems and solving them, by organizing all the information you have about this 
problem situation and then choosing and using suitable mathematical tools. 

When using these "picture mathematics" exercises, the role of the teacher 
in the classroom changes from being mainly the disseminator of information 
to becoming a moderator or facilitator of knowledge. The teacher must care
fully consider the various methodologies chosen by the students, and gently 
guide and direct their efforts in their quest for a solution. (For example, the 
most common error for wide discrepancies of approximations was incorrect 
handling of units, e.g., incorrectly changing cm^ into m ,̂ or m^ into liters, 
etc.) Furthermore, the teacher should encourage discussion and reflection on 
the various strategies employed, and point out the central concepts and ideas 
contained in the various solutions. Now more than ever expertise is needed 
in handling information overflow, performing thorough research, discerning 
the important from the unimportant and the correct from the questionable. 
Good communication skills are required in order to make the procedures and 
processes accessible to others. Lastly, all of the incorporated and integrated 
information should lead to a higher level of knowledge. 
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6. MODELLING AS A CENTRAL THEME 

Nowadays, tasks requiring pure technical calculation can be solved with 
the help of a calculator or computer software. Consequently, more demand
ing activities are gaining importance, e.g., the analysis of problems affecting 
the "real world", i.e., mathematical modelling. It is to the child's benefit to 
discover the "discomforts" of uncertainty in mathematics as early as possi
ble. For students as well as for teachers the shift from problem solving (one 
correct answer) to mathematical modelling (multi-solution paths leading to 
approximate answers each with possible limitations or potential for exten
sion) requires a new set of teaching and learning skills - symbolizing data, 
cleverly translating the task into the language of mathematics, i.e., into a 
mathematical model, the internal treatment of this problem in the field of 
mathematics right up to its solution(s) possibly with the aid of technology, 
and finally, a deliberate interpretation and critical examination of the results 
obtained. "Has our original question really been answered? How accurate 
and how reliable is the result? How applicable are my results to other (new) 
situations?" Thus using carefiilly selected examples, the typical process of 
mathematical modelling may become a central theme in the classroom, in
cluding both modelling methods and the accuracy of the mathematics in
volved, of course without losing sight of the discrepancy between the 
mathematical model and reality. 

?• ASSESSMENT OF MODELLING TASKS 

We all know that in good classroom practice assessment is a natural by
product of the classroom experience and should be a celebration of achieve
ment. In using such activities for assessment purposes we recommend, there
fore, a criteria-based assessment that is defined fi-om the sub-tasks them
selves. Since in these open-ended tasks "many roads lead to Rome", the fo
cus of the assessment should be uppermost on the selection of the path and 
the markers that the student has set up along the way to ensure a secure jour
ney toward the goal. Considerations as criteria should therefore be - Com
munication: To what degree has the student used tables, diagrams, graphs, 
etc. as aids in defining the problem? Has the student used correct mathemati
cal notation and terminology throughout the activity? {Yes, this is still very 
important, perhaps now more than ever, the need for correct and clear com
munication.) The Model: What has the student used as a yardstick, and is it 
well justified? Has the student taken into account all vital variables to the 
problem? Does the model suit the problem - how well does it fit the prob
lem? Mathematical Content: Are the calculations correct and justified? Were 
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formulas correctly applied? Evaluation: To what extent has the student 
evaluated the meaningfulness of the approximations obtained from the 
model in light of the real life problem? Has the student considered limita
tions of the model, or possible extensions and applications of it? 
The assessment of such activities can provide students with opportunities 
and rewards for carrying out mathematics without time limitations of tests 
and exams and their accompanying stresses. Furthermore it can provide the 
student who has difficulty performing well on traditional exams a sense of 
success and achievement in this subject. Hence, the emphasis in this kind of 
assessment should be on good mathematical writing and thoughtful reflec
tion. 

8. CARRY ON COLLECTING AND COMPILING 

Additional information and many further examples are available under 
Herget (2000, 2002), Herget, Jahnke, & Kroll (2001) and Herget & Klika 
(2003). But, dear colleagues, you will surely find up-to-date pictures, per
haps even in your local newspaper, featuring events which are of interest to 
the pupils, and are closely related to their world. 
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Abstract: The competency of mathematical modelling of real phenomena is a necessary 
component of mathematical literacy for all, strongly needed in education of 
today's and future society. This article considers the main aspects of a process 
of learning mathematical modelling, according to student's cognitive devel
opment, discussed from the perspective of probability and statistics education. 

1. INTRODUCTION 

Recent transformations in all fields of our lives, especially wide use of 
information and communication technology, cause mathematical knowledge 
to be necessary in every domain to an extent as never before. It implies ur
gent need of a new mathematical literacy for all (Noss, 1997). One of its 
indispensable components is the competency of mathematical modelling of 
real phenomena. The process of developing this competency in students' 
minds is complex and requires recognition of its nature from epistemological 
perspective. In this article I will present some remarks to the main research 
questions concerning the process of learning mathematical modelling: How 
to teach mathematical modelling for all? How to help students to learn 
mathematical modelling? How to recognise symptoms of students' compe
tencies in this field? What are natural ways of thinking accompanying a 
process of mathematical modelling? I will consider these problems from the 
perspective of probability and statistics (for brevity called stochastics) edu
cation, a field of mathematics that seems to be natural for learning mathe
matical modelling. In discussion of the questions above I will refer to my 
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research studies on the nature of a process of stochastics learning (Lakoma, 
1990,2000,2002,2003). 

2. MATHEMATICAL EDUCATION IN THE DIGI
TAL ERA 

Great progress in science and technology, rapid extension of information 
technology, widespread access to information, changes of standards of eve
ryday life - all these transformations imply strong demand of people who are 
able to handle new circumstances rather than behave typically in routine 
situations. Thus, the main goal of today's education is to equip students with 
an operative knowledge and key competencies, which will create a base for 
further learning and acting, according to actual social and professional de
mands and potentialities. Regarding mathematical literacy for all, instead of 
exposure to formal structure of mathematics, which used to be the educa
tional standard in the past, it is necessary today to treat mathematics as a 
language for communication and as a tool for predictions and explanations 
of reality (Freudenthal, 1983). In order to understand real phenomena, stu
dents should be able to describe, simplify, and distinguish their essential 
features - this is mathematical modelling. From this base students can make 
predictions and conclusions, generalise and justify them (mathematical rea
soning), and apply them to practice or to present and explain to other people 
(mathematical communication). It is important to enable students to develop 
a deep understanding of mathematical concepts and to create their own 
mathematics in these three aspects. Learning mathematics means developing 
these aspects, which involve students' creativity and are embodied into real 
contexts, which are interesting to students (Freudenthal, 1983; Sierpinska & 
Kilpatrick, 1998). Instead of transmitting definitions of concepts of mathe
matical theory, and showing their simple applications, ^orwrng student's 
ability to create mathematical models of real phenomena, posing hypotheses 
and verifying them by means of mathematical tools will be essential aims of 
mathematical education. These goals are possible to achieve when there is an 
opportunity to stimulate students' initiative and to let them learn in accor-
dance with their actual cognitive development. The activating style of teach
ing: promoting didactical methods which involve interactions among stu
dents and co-operation in small groups, is appropriate at every stage of edu
cation and seems to be especially effective for students who are going to be 
users of mathematics in their professional lives where relations of mathemat
ics to reality are natural and it is therefore necessary to be exposed to this in 
the learning process (Lakoma, 1990, 2000). Usually in the process of prob
lem solving it is necessary to make some trials and to gain experience, which 
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can then be a point of departure for mathematical reasoning. Using new 
technology can enhance this important stage of the process of mathematics 
learning (Laughbaum, 2000). 

3. MODELLING AS A COMPONENT OF MATHE
MATICAL LITERACY FOR ALL 

Davis and Hersh (1981) distinguish two principal elements of functional 
use of mathematics: dealing with data, which characterises the power of 
mathematical symbols, and applying mathematical models, which reflects 
the formatting power of mathematics. Although the notion of a model occurs 
in mathematics in various connotations, one definition may be common to 
all meanings: a model of a given object is another object, which is not iden
tical with it, but it in some respect is similar, to such a degree that it can be 
used for some purposes in place of what it stands for. This indicates two 
basic features of a model: ability to imitate an original object and helpfulness 
in predicting results of acting on this object. Investigations in a model should 
provide information about the original object. Thus, the notion of a model 
can be described even more concisely: M is a model of an object O, since 
observing M makes possible to get to know something about O. It stresses 
that a model is not the same as what it models and that usually there are 
many models for any given object; which of these models is suitable, very 
much depends on what we intend to do with it. In the process of teaching, a 
sense of creating and exploring a model is best motivated in situations that 
do not come from ready-made mathematical tasks, but are connected with 
real phenomenon. Observations of a learning process show that modelling is 
naturally developed when there is a need to solve a problem. 

What is a natural way to lead from observation of a phenomenon to solu
tion of a problem connected with that phenomenon? 

Observations of a phenomenon lead us to questions and to formulate a 
problem. In order to find answers to these questions, we present the phe
nomenon in an idealized way, as simple as possible, regarding its most im
portant aspects, abandoning everything insignificant fi'om the viewpoint of 
the posed questions. From this we build a model of the phenomenon, in or
der to solve the problem. When analysing students' explorations of real phe
nomena, we can distinguish four main steps of the process of students' think
ing and acting: discovering and formulating of a problem; constructing a 
model of 'real' phenomenon; analysing the model; interpreting results ob
tained from the model with the 'real' situation. This process arises directly 
from student's common sense thinking while considering simple problems as 
well as more advanced ones. Mathematical models used by students are usu-
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ally as simple as possible, have a local character and a strong explanatory 
value. These are the local models. This observation can be the groundwork 
for a holistic approach to mathematics teaching. What is essential is the gen
eral way of reasoning and acting, which can be developed in unique ways at 
every level of mathematics learning (Lakoma, 1990, 2000, 2003). Classes of 
problems, and suitable tools usefial for solving them, change depending on 
the level of education. Information technology becomes helpful here, shift
ing an emphasis from calculation into reasoning, and the development of 
mathematical thinking (Lakoma, 2002, 2003). 

4. MODELLING IN STOCHASTICS EDUCATION 

Previous research on students' stochastic reasoning (Lakoma, 1990, 
2000) indicates that natural ways of developing main stochastic concepts are 
closely connected with considering real random situations and modelling 
concrete random phenomena. We can recognise the following steps of a 
process of a students' natural reasoning: a), exploring a situation involving 
randomness; b). formulating a problem; c). creating a local model of the 
phenomenon under consideration; d). analysing the mathematical model in 
order to solve the problem; e). comparing solutions obtained using the 
model with results of observations of the random phenomenon. In order to 
present students' natural ways of modelling and reasoning during the process 
of solving probabilistic problems, the following situation will be analysed. 
Students are asked to consider the following game: 

Two boys - Jack and Mark - try to score at a basketball target. They both 
have the same frequencies of success: 50%. They decided to play a game: 
each will throw the ball until he fails to score. When one fails, the other 
takes over the throwing. The first who scores a hit is a winner. Jack al
ways starts first. What are chances for winning for these boys? Do you 
think the game is fair? 
Recording individual scores and communicating this in percentage form 

is a common way of presenting a "free throw percentage" of a basketball 
player. Thus, the situation described above seems to be "a real situation" for 
students. 

a).-b). Exploring situations involving randomness and formulating a 
problem 

Initially, students' behaviour is to try to understand what is going on, 
what the rules of this game are. They find it helpftil to make experiments and 
to observe their results. How to get a good simulation of this game and under 
what conditions? What does "frequency 50%" mean? How do the rules of 
this game influence the chances of players? 

c). Creating a local model of the real phenomenon under consideration 
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Students usually try to understand this game by making a simple, rough 
model: a Monte Carlo simulation - throwing a ball to the basket is replaced 
by throwing for example a coin by turns and recording results. They realise 
that they are not able to predict "for sure" results of this game. They find it 
useful to confront empirical results with theoretical considerations and by 
recognising characteristic features of the game and considering the random 
mechanism theoretically, they build a more sophisticated model. 

Students realise that the situation is not symmetrical, the game is not fair: 
- "This game is not fair because the first has a better chance. If he hits 

the other has not even got a chance to try! Let them throw at the same time. " 
- "If the r^ player scores, the 2"^ player has no chance so the game is un
fair. The game is fair if the r^ misses then the 2"^ gets an equal chance. " -
"This game is not fair because the r^ player always takes from the whole 
stake and the 2"^ always from the rest. The 2"^ player always has to wait for 
his turn in order to throw a ball. "- "The r* guy who starts is directing the 
probability. But mathematically it will maybe turn out that their chances are 
equal, showing that our thinking is wrong. This game may never end. " 

For students, "a fair game" means a game with symmetrical situations for 
both players and with even chances of winning. Students often refer to the 
concept of symmetry. Drawing a game-board for the simulation usually is 
accompanied by this reasoning. Fig. 3.6.3-1 shows game-boards created by 
13 year old students. Such constructions are developed at the stage which 
precedes drawing the graph presented in Fig. 3.6.3-2. They turn out to be 
even more natural in students' reasoning than this graph. 

Drawing graphical representations of random mechanisms is usually ac
companied by expressing its rules. 

Slft'̂ T fif^T 

^o~^ 
Figure 3.6.3-1. Game-boards 

One of the students pointed out the very essence of the rules of this game 
as follows: 
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-"Both players throw a ball with chance 50%, which is 1/2. From start-
when Jack hits, he obtains one point, if not, he transmits the ball to his op
ponent's hands. And the opponent - Mark - when he hits he obtains one 
point, if not, he transmits the ball to his opponent's hands, and so on - by 
turns - until... it never ends!? " 

Figure 3.6.3-2. Graph of the game 

Many students draw a tree diagram of the game. They quickly realise that 
such a tree is infinite, and they easily transform this model to the graph 
shown in Fig. 3.6.3-2, if they fmd it useful for further explorations. 

d). Analysing the mathematical model in order to solve the problem 
In order to calculate chances of winning the game, students try to dis

cover some regularities of the constructed model: 
- "The tree can continue theoretically to the infinity. Here Mark tries, he 

fails - with a chance one half. Jack tries again .... and this is as if the game 
begins again! One half of one half of a chance of the second boy - this is as 
if he starts to play again. " 

This student was able to grasp the fact of infinite number of possible out
comes in recursive way. He also solved the equation: 

1 -1 

Another local model (Fig. 3.6.3-3) - "Sharing a pizza" step by step ac
cording to the chances of the players, also allows one to find recursion and to 
compose an appropriate equation. This model relates more to the concept of 
expected value (in sense of Ch. Huygens, 1657) than to the concept of prob
ability. 

1 If 1 
X = — + — —X 

2 2 I 2 

3 
— X-

4 

Figure 3.6.3-3. "Sharing a pizza" 
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Students are able to notice regularity in this model: 
-"Area for the first player is at each stage of this game twice bigger than 

area for the second player. Thus the whole area of Jack is twice bigger than 
the area of Mark. Jack has chance Vj and Mark Vj. " 

During analysis of this reasoning, we find two parallel ways of thinking: 
comparing chances of both players and, as result of these comparisons, cal
culating chances. Many students, trying to formulate an equation, use simul
taneously both geometrical representations. When calculating chances of 
winning, they use geometrical and algebraic (an equation) models. Reason
ing simultaneously in two or more models turns out to be more convincing 
for students. It seems that they not only convince each other, working to
gether in small groups, but they also convince themselves during their rea
soning. 

e). Comparing solutions obtained using the model with results of obser
vations of the random phenomenon. 

After an analysis of a model, students gather experimental frequencies of 
results again, repeating some experiments, and compare them with theoreti
cal chances. They check whether their model is appropriate. 

In spite of models based on the concept of expected value, students also 
make considerations on the basis of comparing empirical and theoretical 
frequencies. It seems to be sufficient to replace real throws of a coin by dis
tributing a number of trials exactly according to chances of results. 

4̂  k'^'^tk^^'^f''^'^ 
Figure 3.6.3-4. Observing regularities 

This model we call idealized simulation, it bases on the idea of Arthur 
Engel's Probabilistic Abacus. However, it is not often created originally by 
students. They prefer just to share a unit among states in the graph or the 
tree, and to approximate successively theoretical frequencies of winning 
(Fig. 3.6.3-4: author's age 15; Polish text "etc.+l over [4 times previous 
one]"). 

Students calculate it easily "by hand" or by preparing simple program in 
order to obtain theoretical frequencies at successive stages of the game: 

1->B:0->A:0->D:A + 0.5B -^ A : 0.5B -^ C : D + 0.5C -> D: 0.5C -^ B: D 
Another local model - presenting the random mechanisms by matrix of 

probabilities of transitions in the graph, belongs to models having for stu
dents a strong explanatory value. Raising the transition matrix to successive 
powers leads to probabilities of winning. In this case information technology 
allows learners to focus on developing their conceptual thinking instead of 
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carrying out difficult calculations. Reasoning, presented here, is common for 
learners independently of their age, and is connected with their actual stage 
of understanding stochastic concepts. 

5. FINAL REMARKS 

Analysis of students' reasoning became a base for developing a holistic 
approach to stochastics teaching: the Local Models Approach (Lakoma, 
2000). Its ideas are implemented in school practice for students of age 10 -
19 (Lakoma a.o., 1996 - 2001, 2002 - 2004). Observing learning shows that 
stochastics gives students natural motivation to develop their competency of 
mathematical modelling. During the process of mathematics learning stu
dents should be equipped with various local models, which are available to 
them and are not too abstract. When solving concrete problems, students do 
not often understand the need for generalization and are often not able to 
appreciate the beauty of a global model. It will come later. What is funda
mental is learning the unique style of thinking and acting necessary in the 
process of mathematical modelling. 
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CONSIDERING WORKPLACE ACTIVITY FROM 
A MATHEMATICAL MODELLING 
PERSPECTIVE 

Geoff Wake 
University of Manchester, U.K., Email: geojf.wake@manchester.ac.uk 

Abstract: In recent years researchers investigating the mathematical activity of workers 
have highlighted how this is historically and culturally situated and conse
quently school mathematics often seems to provide inadequate preparation for 
the workplace. Here I draw on two case studies to illustrate how worker activ
ity might be (re-)interpreted from a mathematical modelling perspective and 
suggest that such an approach may usefiilly be developed to inform future cur
riculum development in terms of mathematical modelling. 

1. INTRODUCTION 

Mathematics educators often turn to the world of work to attempt to un
derstand how the mathematics used by workers might inform design of fu
ture curricula. Some, particularly early, studies sought to identify appropri
ate mathematical content by noting its use, or required understanding, across 
a range of different workplaces, and, perhaps by necessity, used frameworks 
that rely on what might be considered 'formal' or 'academic' mathematical 
content to organise findings. Other, particularly more recent, studies have 
used theoretical frameworks, such as Cultural Historical Activity Theory 
(see for example Engestrom & Cole, 1997), with researchers adopting the 
role of ethnographers, to explore more fully the richness of workplace 
mathematical activity and how this may be better understood by taking into 
account how it is culturally and historically situated as part of a community 
of practice (see for example Lave, 1988). 
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As might be expected mathematical models, modelling and applications 
are at the centre of much of the activity of workers as often this is focused on 
solving problems, but perhaps more often on monitoring and measuring 
workplace routines and output. However, although mathematical models 
loom large, implicitly if not always explicitly, in accounts of workers' activi
ties there has, as yet, been little emphasis on what we can learn about 
mathematical modelling from workplace based research and the implications 
we can draw for the teaching and learning of mathematics in schools have 
not been well developed. 

2. MATHEMATICAL ACTIVITY IN WORKPLACES 

Much recent research in the field of the use of mathematics in the work
place has been strongly influenced by ideas of situated cognition which at its 
most extreme suggests that mathematical understanding and competence 
cannot be separated from the socio-cultural setting in which it is constructed. 
At first sight this seems an attractive proposition: for example, it perhaps 
allows one to take account, to some extent, of the apparent lack of visibility 
of mathematics to workers. The more comprehensive theoretical framework 
of Cultural Historical Activity Theory (CHAT) draws attention to other as
pects of the workplace and how these mediate the activity of workers. Per
haps most easily visible to researchers, and often significant in coming to 
understand the activity of workers, are 'instruments', including often idio-
syncratically developed artefacts, which mediate the actions of workers so 
that they, as individuals and teams, successfully achieve the outcomes re
quired of them. Often these artefacts can be used successfully by workers 
without recourse to mathematical thought or understanding. However, 
CHAT also draws our attention to other influences that mediate the activities 
of workers: the 'rules', 'community' and 'division of labour' of workplaces 
are often most pertinent in shaping and forming day-to-day workplace rela
tionships and activity. 

Other analyses have led researchers to develop constructs that take ac
count of the situated nature of the mathematics they have observed in work
places whilst bridging to the perhaps more familiar mathematics of educa
tion and academic communities. These include: 

• the idea of situated abstraction (Pozzi et al, 1998), which allows one to 
understand how workers may develop a generalised mathematical under
standing, but within the situational context of their work, using a dis
course other than that of standard/formal mathematics but which may be 
mapped to this; 
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• general mathematical competences, (Williams et al, 1999, Wake & Wil
liams, 2000) which were developed from a mathematics education stand 
point to attempt to take account of common ways that workers might 
bring together coherent bodies of mathematical knowledge, skills and 
models, for example when "handling experimental data graphically"; 

• techno-mathematical literacies (Kent et al, 2004) which are currently 
being developed to assist understanding of how mathematics in work
places is not only very much grounded in day-to-day workplace activity 
but is also often highly integrated and dependent on the use of modem 
technologies. 

These constructs whilst not always referring explicitly to ideas associated 
with modelling do, often by implication, suggest that mathematical model
ling and mathematical models are central to the activity of workers. To in
form discussion of what such activity might look like I will illustrate, by ne
cessity very briefly, mathematical activity that was investigated as part of a 
research project 'Using College Mathematics in Understanding Workplace 
Practice'^ The project and research methodology is described in detail in the 
final project report (Wake & Williams, 2001). 

3. MATHEMATICAL MODELS AND MODELLING IN 
WORKPLACES 

In one case study we investigated the work of a finance office worker, 
Alice, whose activity included computing performance data in a medium-
sized retail company selling power tools to customers operating in construc
tion (CON) and engineering (ENG) sectors. One industry-standard measure, 
"debtor days", that Alice calculates is used as an indicator of how long cus
tomers take to settle their accounts. Fig. 3.6.4-1 shows a screenshot of Al
ice's spreadsheet, which she built from scratch and which she uses to calcu
late "debtors days", for the two sectors into which customers have been clas
sified. 

During a workplace visit by a researcher and two students undertaking a 
pre-vocational course in Business Studies, Alice explained that she takes as 
data the most recent three month's sales. She totals these (row 12) and di
vides by the number of working weeks (in this case she takes this to be 
eleven and a half which takes into account breaks for the Christmas and New 
Year holidays) and multiplies this by fifty-two (row 14), "Because there are 
fifty-two weeks in a year". At this point Alice is not concerned to give mean
ing to the figure calculated as this is just a sub-step on the way to calculating 
the final indicator. The researcher and students, however, tried to give 
meaning to this figure as this turned out to be important to them in allowing 
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them to eventually come to an understanding of the final measure, "debtor 
days". 

• . 
'DEBTORDAYS ibebtora'/Sdeg>ag3 ' 72^21 

177j225fl6i 

43^51 73.73 77 J66' 

1" 

Figure 3.6.4-1. Spreadsheet developed to calculate "debtor days" 

Agreement was reached that this "gives you what that [sector] would 
have sold in the whole year, if things stayed the same"; in effect then this 
figure gives a measure of "sales" for the year. Attention now turned to the 
measure "debtors" (row 16): this is the total outstanding debt for the sector 
and as it includes sales tax (VAT) of 17.5% this is deducted in row 18 by 
dividing by a factor of 1.175. Finally the measure "debtor days" can be cal
culated (row 20) using the figures previously found: this is given by ("debt
ors (less sales tax)"/sales)-365. Alice described this as "the average number 
of days it takes a customer to pay us", but the researcher had a problem with 
understanding this idea of "average" particularly when an actual statistical 
average could have been calculated using the raw data available. To try to 
make sense of the measure he suggested, "Perhaps I should try it with some 
numbers. So if I was owed, a hundred pounds and the total turnover for the 
year was two hundred pounds that would give me a half times 365, giving 
me half the year which is about..." Suddenly he was enlightened, "It's not 
actually the number of days it's taking people to pay is it, it's just a [indica
tor of this]". 

As a second illustration we turn to just one aspect of the work of a rail
way signal engineer/designer. This worker, Alan, checks calculations made 
by other workers of where signals and speed restriction indicators should be 
placed along railway tracks so that train drivers can respond safely. He ex
plained in detail to a researcher accompanied by three students on a pre-
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vocational engineering course this aspect of his work. Fig. 3.6.4-2 shows an 
illustration from a training manual he used to explain the calculations he car
ries out. Alan summarised the problem as, "What's the minimum distance 
for the approaching line speed - say 60 miles per hour - how far back do we 
have to position that (signal A) so the driver can safely stop at this signal (B) 
and not run through." Crucial to the calculations he performs is the idea of 
average gradient. 

signal A M 

UP MAIN -> ^ 

signal B 

MAXIMUM LINE SPEED 60 MPH 

220 

600^ 

400 

> t ^ 
600^ 

- ^^^ -
400^ ->! 

SECTION 

X-A 

A-B 

B-Y 

TOTALS 

DISTANCE IN 
YARDS 

600 

600 

400 

1600 

GRADIENT 

1 
220 

L 
1 

400 

RISE 
(YDS) 

(DIST * 
GRAD) 

FALL (YDS) 

(DIST* GRAD) 

2.73 

. 

1.00 

3.73 1 

1600 = 428.95 THERFORE AVERAGE GRADIENT=_1. FALLING 
3.73 429 

Figure 3.6.4-2, Training manual example calculation of average gradient. 

At a later stage the researcher and students re-created the calculations 
that would be carried out to find the spacing between these signals. Although 
the training manual example (Fig. 3.6.4-2) shows considerable detail of how 
to calculate an average gradient the students struggled to make sense of this 
with one student suggesting, "you start adding them together ... adding the 
gradients together and divide by two". Having calculated the average gradi
ent Alan then uses a Table such as that illustrated in Fig. 3.6.4-3 to look up 
the distance required between warning and stop signals. For the training ex
ample of 1 in 429 falling for trains with a maximum speed of 60 mph a dis-
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tance of 1435 (yards) would be used. Alan explained that he always errs on 
the side of safety and as a gradient of 1 in 429 falling lies between the level 
and 1 in 200 falling, it is safer to take the value associated with the gradient 
of 1 in 200 falling. 
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Figure 3.6.4-3. Table used to give stopping distances for trains travelling at various speeds for 
a range of typical average gradients 

4. DISCUSSION AND CONCLUSION 

It is clear that the brief descriptions of the mathematical activity of two 
different workers outlined here exhibit features that might be understood by 
reference to the constructs of situated abstraction, general mathematical 
competences or techno-mathematical literacies referred to previously. It is 
equally clear that they also exhibit features of mathematical modelling, 
which I would like to explore in a little greater detail. To assist with this it is 
useful to have an overview of aspects of the modelling process (see, for ex
ample, Blum, 1992) as illustrated by the schema in Fig. 3.6.4-4. This depicts 
the various constituent processes of mathematical modelling whilst also in
dicating that to develop an appropriate model it is often necessary to go 
round the modelling loop more than once. In each case described here the 
worker is clearly working with a mathematical model of reality: in each case 
this is "industry standard" with important meaning in the workplace. Alice, 
the finance worker built her spreadsheet (Fig. 3.6.4-1) to calculate the agreed 
measure "debtor days" which has meaning to her and others including the 
company's directors, who use it to make decisions about how the company is 
performing. In developing the spreadsheet, Alice carefully took account of 
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factors pertinent to her real world ensuring that the resulting mathematical 
model / measure was able to be ultimately interpreted in the standard way. 

Setup 
model 

observe 

indentify 
the 

problem 

validate 

^ 
C^ 

r ^ 

Analyse 

I J 

Figure 3.6.4-4. Mathematical modelling cycle 

Alice's day-to-day activity, however, does not usually require her to un
dertake such modelling activity; rather she (and others) receive the outputs 
from her spreadsheet and are required to interpret these, taking into account 
their vast wealth of work process knowledge (for example, why variation 
between sectors, or at different times of the year, might be expected). In the 
case of the railway worker, Alan, he too is working with an agreed "industry 
standard" model of average gradient. Although his calculations could also be 
automated by the programming of a spreadsheet, he chooses each time to 
carry out the calculation from scratch using the agreed procedure (Fig. 3.6.4-
2). To reach the final answer to his problem he uses the results of his calcu
lation of average gradient to look up the spacing between signals in a table 
(Fig. 3.6.4-3). To Alan this has become procedural: he knows that if values 
for the gradient he has calculated are not given in the table he uses the clos
est value given that is a safer case (that is, he chooses the value "to the right" 
of where the calculated gradient lies). Alan knows that in reality the signals 
may be placed further apart, but never closer, than his calculated value, as 
the warning signal has to be placed in a position that allows train drivers 
good visibility of it. 

These two examples of workers' mathematical activity suggest, therefore, 
that workers may be expected to use standard or accepted mathematical 
models and are required to be able to interpret data that these produce draw
ing on a rich contextual background that is part of their everyday life at 
work. Even when Alice developed her spreadsheet to calculate "debtor 
days", with all the flexibility that a blank spreadsheet allowed, she worked 
towards the standard model drawing on the data that she had collected for 
this purpose. 
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These examples suggest that workers do not have freedom in how they 
set up their mathematical models, rather that they have to organise numerical 
data in such a way that they can arrive at a model that is familiar or standard 
in their industry, and that their day-to-day activity is often focused on inter
pretation of the results of their application of these models. Our research 
suggests that, when explaining to others the mathematical models that they 
use, or perhaps when attempting to make sense of new mathematical models 
themselves, workers, whilst requiring a deep understanding of the workplace 
context, also need to be able to draw on a range of strategies, such as consid
ering simple cases or extreme values, to help them in effect make sense of 
the mathematics of others (for further discussion of this see Wake & Wil
liams, 2003). 

It would seem that there is a need for further research, perhaps accompa
nied by further analysis of existing data, focussed on mathematical model
ling, and the application and use of mathematical models in the workplace. 
This needs to be supported by sensitive curriculum development that ex
plores how such workplace activity could be better supported by curriculum 
specification and mathematical activities designed for use in classrooms at 
all levels. 

REFERENCES 

Blum, W. (1992). Applications and modelling I mathematics teaching. In Niss, M., Blum, W., 
& Huntley, I. (Eds.), Teaching Mathematical Modelling and Applications. Chichester: 
Ellis Horwood Publishing. 

Engestrom, Y., & Cole, M. (1997). Situated cognition in search of an agenda. In Whitson, 
J.A., & Kirshner, D. (Eds.), Situated cognition: social, semiotic, and psychological per
spectives, Hillsdale, N.J.: Lawrence Erlbaum Associates. 

Kent, P., Hoyles C , Noss R., & Guile, D. (2004). Techno-mathematical Literacies in Work
place Activity, Paper presented to International Seminar on Learning and Technology at 
Work. London: Institute of Education. From www.lonklab.ac.uk/kscope/ltw/seminar.htm. 

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cam
bridge: Cambridge University Press. 

Pozzi, S., Noss, R., & Hoyles, C. (1998). Tools in Practice, Mathematics in Use. Educational 
Studies in Mathematics, 36, 105-122. 

Wake, G. D., & Williams, J. S. (20(X)). Mathematics in pre-vocational courses. In A. Bessot, 
& J. Ridgeway (Eds.), Education for Mathematics in the workplace. Dordrecht: Kluwer. 

Wake, G.D., & Williams J.S. (2001). Using College Mathematics in Understanding Work
place Practice. Manchester: University of Manchester. 

Wake, G.D., & Williams, J.S. (2003). Using Workplace Practice to Inform Curriculum De
sign. In S.J. Lamon, W.A. Parker, & S.K.Houston (Eds.), Mathematical modelling a way 
of life. Chichester: Ellis Horwood Publishing. 

^ This project was supported by a grant from the Leverhulme Trust to the University of Man
chester. 



Section 3.7 

ASSESSMENT AND EVALUATION 

Edited by Peter Galbraith 



Chapter 3.7.0 

ASSESSMENT AND EVALUATION - OVERVIEW 

Peter Galbraith^ 
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Abstract: This chapter samples issues that continue to challenge the theory and practice 
of assessment and evaluation. The contributions of selected papers are com
plemented by comments drawn from participants in a working group represen
tative of nine national contexts. The contributions are significant for their di
versity, but some issues of longstanding continue to emerge. 

1. INTRODUCTION 

Assessment continues as a major issue - because it is challenging to con
duct, and because it is a potent driver of curriculum change. Internationally 
items with applications and modelling relevance are found within TIMSS 
and PISA testing programs; at the national level several countries have in
troduced curricula with applications and modelling as specified components; 
universities and colleges continue to search for richer assessment practices 
within modelling oriented subjects; and there is a continuing demand for 
new problems and more incisive means of establishing competence at all 
levels of education. All these issues are represented in the present section, 
where emphases raised within the selected papers are complemented by in
put from a targeted discussion involving representatives from nine countries, 
who addressed issues of assessment across all levels of education. 

Elementary school level. In the elementary school, teaching and assess
ment must together reward both effort and progress. As many primary teach
ers are afraid of mathematics, and teacher interest is variable, large differ
ences in practical issues emerge e.g. how much time is allocated or actually 
utilised for project work. There are major differences between countries and 
there is a continuing challenge to identify, exemplify, and communicate 
good practices that are both successful and feasible within a given context. 
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Secondary school level. Stimulating project type experiences continue to 
be developed. For example in one initiative, students put on "mathematics 
glasses" to describe a modelling situation. They work for 4 weeks, with each 
student producing a poster, and being allocated 5 minutes to describe their 
work, with the teacher asking a common set of questions about each poster. 
In another approach children decide what to do with situations involving a 
range of mathematical procedures. They present activities and discussion at a 
school conference (as well as submitting written work), where other children 
participate and ask questions, with teachers providing feedback. This process 
has been welcomed by the school community, to which teachers of other 
subjects, and the headmaster, have attributed a change of school atmosphere. 

Undergraduate level. In one first year program, students work on model
ling problems throughout the course, and write a report for the group on their 
solutions, followed by an end of term oral exam. They have 20 minutes to 
describe their project work, during which examiners challenge students to 
reflect on different parts of the modelling process - the oral exam is essential 
in gauging the level and quality of student reflection. The three days needed 
for the oral examinations, are built into the overall structure of the course. 
An undergraduate modelling based Physics course involves students work
ing in groups on topics chosen on the basis of interest e.g. hydrodynamics, 
refrigeration. They design experiments to display essentials for their chosen 
topic, and report by oral presentation and poster. As no lectures/theory are 
presented formally students need assistance to proceed. In the second semes
ter the students identify where and how their chosen phenomena appear (e.g. 
in industry), how people deal with it, where it is hidden if appropriate. This 
involves conducting interviews, and the final product is a 20-page report. 

The above examples illustrate ongoing activity in the area of assessment 
of mathematical modelling. They reinforce the judgment that assessment of 
modelling performance needs to be part of a complete package, integrated 
into the teaching timetable as a central part of the whole curriculum. 

The influence of politics and culture cannot be ignored in deciding what 
can be attempted or accomplished in regards to assessment practices, and 
this featured strongly in group comment. For example, in some national set
tings where even tertiary students are used to the teacher telling everything, 
it becomes important to monitor what happens when students express them
selves freely between themselves. Elsewhere there are problems with avail
ability of materials, including places where technology is unavailable. In 
some countries the climate and culture of education is changing, so that for 
example, when instead of centrally controlled curricula, content emphasis is 
placed in the hands of a headmaster, it depends how this freedom is used. 
When schools can now decide how or what to teach given that some minimal 
standard is reached, this on the one hand potentially opens the door for ap-



3.7,0. ASSESSMENT AND EVALUATION- OVERVIEW 407 

plications and modelling initiatives. However when schools are simultane
ously paid according to the number of students attending, parents must be 
convinced of the worth of programs. So messages need to be clear about 
what students (in undertaking applications and modelling work) are able to 
achieve successfully. It is clear that great diversity continues to exist among 
contexts in which applications and modelling are being implemented - and 
the associated assessment needs imply a range of practices both established 
and new. A challenge is to obtain and maintain integrity and practicality 
among this diversity. 

2. PAPER SUMMARIES 

Turner identifies items within the OECD's Programme for International 
Student Assessment (PISA), which value the ability of students to use 
mathematical skills to meet real-life challenges. Noting that students from 
different countries perform disparately on such items, PISA might be in
strumental in promoting increasing interest in how modelling-related learn
ing tasks influence achievement. A second issue concerns the level of com
plexity and difficulty of modelling activities. Within the item set (for PISA 
2003) those with no modelling demand proved markedly easier than those 
that involved modelling, items involving only interpretation or reflection 
phases of the modelling cycle were of intermediate difficulty, while items 
requiring students to construct or manipulate a model were the most diffi
cult. We need to ask, what kinds of instructional activities promote facility 
with such items, and ultimately with more extensive modelling activities? 

Antonius notes that while modelling has had a central position in Danish 
curricula at upper secondary level for 15 years, the final examination still 
consists of traditional written and oral components. He describes a project 
examination trial in which part of the centrally designed project is based on 
an open modelling problem. Students work on the project in class and at 
home, can ask advice from their teacher, discuss work with peers, and use 
technology. Each student must write an individual report. Teachers note that 
iess able' students obtain better results in the project examination compared 
with the traditional written examination, whereas 'gifted' students receive 
approximately the same mark. However eight required competences were 
assessed at a higher level in the project examination than in the traditional 
written examination. Questions that arise concerning the authenticity of the 
assessment include: Has the student written the report herself/himself, and 
does the student understand what is written? Constant 'monitoring' by 
teachers and an oral defence of project work by students are seen as of cen
tral importance here in authenticating the assessment. 
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Vos notes that within the Netherlands RME-based curriculum, assess
ment has proved problematic, as it does not require students to apply their 
skills practically. The author researched whether grade 8 students were im
proving their abilities to apply mathematics in practical situations, noting 
that in designing alternative assessment for applied mathematics and model
ling, formats such as observation, interviews and portfolios have proved la
bour and cost-intensive, with reliability in coding responses also an issue. 
Results on TIMSS items with application content suggested that Dutch stu
dents in 2000 had not gained practical competencies in mathematics relative 
to those attained in 1995, and the author suggests the null result may be at
tributed to continuing conservative teaching and assessment practices. 

Haines and Crouch seek to create items that provide information on com
ponent skills of modelling. Tasks cannot always be identified with specific 
stages of the modelling cycle, but rather are often concerned with the transi
tion between two or more stages: for example moving from the real world to 
the model, specifying the model, choosing variables, constructing equations, 
moving from mathematics to the real world. Processes involving transitions 
between the real and mathematical worlds are demonstrably difficult for stu
dents, and to explore these dimensions a selection of multiple choice items 
have been constructed, tested, and analysed. Robust items have been identi
fied and further development is taking place. 

Lege provides the only paper concerned with the evaluation of modelling 
programs as distinct from issues associated with assessing student perform
ance. Two sets of junior secondary school students were introduced to 
mathematical modelling over a three week period using contrasting instruc
tional approaches: (a) having students examine examples of previously-
constructed models, and (b) actively engaging them in modelling a problem 
for themselves. Assessment involved a new contextual situation, but re
flected the same structure as the curricular approach in how it was presented 
to the respective groups. The group that learned about modelling by "doing" 
outperformed the group that learned by studying examples on four perform
ance goals - two related to modelling, and two related to model structures. 

In summary this section offers a selection of snapshots covering a spec
trum of issues that are persistent and significant within the domain of as
sessment. A challenge is to distil the substantial experience and expertise 
available, as a basis for the progression of this crucial element in enhancing 
the successful implementation of applications and modelling in education. 

' Valued contributions to the discussion that formed a basis for this introduction to the chapter 
were provided by: Salett Biembengut, Morten Blomhoj, George Ekol, Djordje Kadijevik, 
Akio Matsuzaki, Susan McNab, Jarmila Novotna, Torulf Palm, Jacques Treiner. 
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MODELLING BASED PROJECT EXAMINATION 

S0ren Antonius 
Danish Institute for Upper Secondary Education, University of Southern Denmark, 
Email: sa@ceus.dk 

Abstract: In this article I present a case study of a project examination trial in one of 
the upper secondary education programmes in Denmark. I shall give some 
empirical support to the argument that this project examination can be seen as 
valid not only in relation to modelling but in relation to all mathematical 
competences. 

1. INTRODUCTION 

For 15 years modelling has had a central position in the Danish curricula 
in mathematics on upper secondary level. But teaching does not yet reflect 
goals and intentions. One of the reasons is probably that the final examina
tion still consists of a traditional written examination with a number of inde
pendent, standardised, pre-structured and rather closed tasks, and an oral ex
amination in which the student is supposed to define and explain certain con
cepts, prove certain theorems etc. Much can be said of these tests, but they 
are definitely not suitable for assessing open modelling, and what is not as
sessed tends to disappear from teaching. 

A project examination trial was launched for a general course in mathe
matics on upper secondary level in 1999. The projects are prepared centrally 
and distributed to students on a CD. The first part of the projects consists of 
fakly traditional tasks, but the second part is based on an open modelling 
problem. Students work for 3 weeks with the projects - not full time, but in 
15 math-lessons. They can use the teacher as a guide, and they can discuss 
problems with peers. They are also allowed to work on the project at home. 
All kinds of information technologies are allowed, including CAS. Each stu
dent must write his own report. 
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The teacher and an external examiner assess the report, but before decid
ing on a mark the student has to 'defend' the report in an oral test of 10 min
utes. In that respect this trial is different from the Victoria-projects in Austra
lia (Barnes et al., 2000). The oral defence is supposed to eliminate or reduce 
authentication problems. During the oral defence the teacher and the external 
examiner ask questions to certain parts of the report, which the student must 
be able to make an account for. Finally the teacher and the external examiner 
decide on a mark. 

I should add that project examination substitutes the traditional written 
examination. There is no additional written test, and this also distinguishes 
the Danish trial from the Victoria-projects. In this respect the trial is - as far 
as I know - unique for a general course on upper secondary level, which 
prepares students for university studies \ 

2. RESEARCH DESIGN 

I have used quantitative as well as qualitative approaches in my research. 
The main focus has been on students' and teachers' (examiners') attitude to 
the project trial, but in order to make a comparison I have also collected in
formation on the traditional written examination. Part of my empirical inves
tigations is a case study of one specific class of students working with the 
project examination in May-June 2002.1 have made classroom observations 
during the 3 weeks of project work, and I have been present at the oral de
fence. Additionally, I have conducted a student inquiry based on a question
naire for the class after having finished the reports. Finally, I have inter
viewed four students and the teacher after the oral defence. 

3. PROJECT MARKS VERSUS MARKS IN TRADI
TIONAL WRITTEN EXAM 

Students in project examination make considerably better results than 
students in the traditional written examination. The average mark in the pro
ject trial was for the May - June 2002 examination 7.9, and the correspond
ing average for the traditional written examination was 6.9, cf. Tab. 3.7.1-1. 
According to teachers particularly 'less able' students make better results in 
project examination than they would have done in the traditional written ex
amination, whereas 'gifted' students make approximately the same (top) 
mark, as they would have made in the traditional examination. 

But this does not automatically imply that project examination promotes 
learning to a higher degree than the traditional examination. However, I do 
think that this is the case. The reason for this position is not the marks, but 
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the fact that students work with meaningful problems and that they use much 
more time than they would have done in the traditional written examination. 
According to the questionnaire students work 15 lessons at school and in 
average 20 hours at home with the reports. But when observing students 
work I do not find that 'less able' students are those, who profit the most 
from project examination as regards to learning. Some 'less able' students 
work very isolated and do not use the teacher as a guide, and my observa
tions suggest that 'gifted' students are better at handling the chaotic project 
work in a constructive way. Therefore the question of who is profiting most 
from project examination may have 'opposite' answers if seen from a learn
ing perspective than if seen from the perspective of marks. 

Table 3.7.1-L Marks in project examination, in traditional written examination, and in the 
school based written assessment. May - June 2002 , average and standard deviation 
Number of students / average mark / standard deviation N_ £ s 
Project examination 208 7̂ 9 2.05 
Traditional written exam. 1549 6.9 2.50 
School based written mark 165 7.7 1.69 

4. PROJECT MARKS VERSUS WRITTEN SCHOOL 
BASED MARKS 

The distribution of the project marks is different from the distribution of 
the marks in the traditional written examination. But it appears that there is 
not much difference between the average of project marks and the average of 
written marks given in the school based assessment, cf. Tab. 3.7.1-1. The 
latter is given by the teacher alone, based on student activity in the class
room, homework assignments and small diagnostic tests from the very be
ginning to the end of the course. 

The fact that all students are given a written school based mark makes it 
possible to do a simple linear regression analysis of the relation between the 
project mark (y) and the written school based mark (x). The estimated re
gression line is >̂  = 1.366 + 0.839JC, which implies the following expected 
project marks given a specific written school based mark. 

Table 3.7.1-2. Expected project marks given a specific written school based mark 
Written school based mark 3 5 6 7 8 9 10 
Expected project mark 3.9 5.6 6.4 7.2 8.1 8.9 9.8 

11 
10.6 

It appears from Tab. 3.7.1-2 that a student can expect almost the same 
project mark as he has attained in the school based assessment. The regres
sion line is not far from y = x. The ^value of a test of the hypothesis 'inter
section = 0' is 2.347 and the p-value is 0.02, which indicates moderate sig-
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nificance. The ^value of the hypothesis 'slope = 1' is 2.176 and the/?-value 
is 0.03, which also indicates moderate significance. 
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Figure 3.7.1-1. Scatter plot: Project marks versus written school based mark, May-June 2002 

The consistency between the written school based mark and the project 
mark can easily be explained. First of all, project marks as well as school 
based marks are based on the teacher's assessment. Secondly these marks 
are based on the same activities, e.g. students collaborating with peers, using 
CAS and using the teacher as a guide. They do so in the ongoing teaching 
practice and they do so in project examination. 

The consistency can be seen as a token of validity. If we assume that the 
teacher is the best to know what the student has deserved (Watson 2001), 
and that this knowledge is expressed in the teacher's school based mark, the 
fact that the student can expect almost the same project mark as he has at
tained in the school based assessment indicates that the project assessment is 
fair. 

However, it appears from Fig. 3.7.1-1 that the actual project mark may 
differ from the expected mark by ± 3. A student who has been given the 
school based mark 8 may attain the project mark 5. A similar student may 
attain the project mark 11. How are these residuals to be interpreted? Part of 
the variation is due to random errors. Marking is ultimately (radically) sub
jective according to Matos (2000), who also characterises the whole assess
ment process as arbitrary. In that respect the residuals can be seen as lack of 
reliability: The actual mark is to some extent random. 

But the residuals may be due to other explanatory variables. Teachers and 
students explain the residuals by referring to students' commitment to the 
project work. Some students put a lot of effort into the project examination. 



5.7.7. MODELLING BASED PROJECT EXAMINATION 413 

They work concentrated at school and at home, and they make use of all le
gal support from peers, teacher and family. On the other hand, some students 
work very un-concentrated - at least in the beginning of the project period -
and some lose concentration during the 3 week long project period. Li that 
respect the residuals indicate validity of the project assessment: It pays to 
make an effort. It would be interesting to test a regression model, which in
cludes an ^j^(7r^-variable. Unfortunately my research was not designed to 
take this question into account. 

5. COMPETENCES 

Being a final examination the question of educational goals becomes cru
cial. It is a question of validity: do we value educational values? The ques
tion can be analysed in relation to the Danish KOM-project and the compe
tences: 1) mathematical thinking, 2) mathematical argumentation, 3) model
ling, 4) problem posing and solving, 5) representation, 6) symbols and for
malism, 7) communication, and 8) aids and tools (Niss & Jensen 2002). An 
appropriate final examination form should give students the possibility to 
demonstrate all competences, and examiners must be able to detect and as
sess all competences. 

To address this problem I asked this question to examiners: To what ex
tent have the competences been made the basis of your assessment? The 
question was given to examiners at the project examination and to examiners 
at the traditional written examination as well. I split the 'aids and tools'-
competence in three technology competences: a competence in using a 
graphic calculator, a competence in using advanced math-IT (e.g. CAS), and 
a competence in using other sorts of IT (e.g. Word), and I added two non-
mathematical competences: personal competence (independence, initiative, 
commitment, responsibility etc.) and social competence (openness, sociabil
ity, ability to collaborate etc.). The question could for each of the compe
tences be answered on a 4-points scale from 'no importance' with numerical 
value 0 to 'much importance' with numerical value 3. The average values 
are shown in Tab. 3.7.1-3. 

Table 3.7.1-3. [To what extent have the following competences been made the basis of your 
assessment? 0: not at all, 1: little importance, 2: some importance, and 3: much importance. 
Average values. May - June 2002 examinations] 
Competences 

Mathematical thinking 

Problem posing and solving 

Modelling 

Project exam. 
n = 20 examin. 

2.35 

2.30 

2.35 

Traditional exam, 
n = 11 examin. 

2.00 

2.55 

1.70 

P"Values for test of 
equal expectations 

0.13 

0.25 

0.01 
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Competences 

Mathematical argumentation 

Representation 

Symbols and formalism 

Communication 

Graphic calculator 

Advanced math-IT 

Other sorts of IT 

Personal competence 

Social competence 

Project exam, 
n = 20 examin. 

1.68 

2.05 

1.85 

2.10 

1.70 

2.05 

1.55 

2.15 

1.00 

Traditional exam, 
n = 11 examin. 

1.38 

1.89 

1.60 

1.56 

1.78 

0.75 

0.50 

1.78 

-

p-values for test of 
equal expectations 

0.42 

0.51 

0.35 

0.02 

0.83 

0.00 

0.00 

0.18 

-

I find the results interesting in two ways. They suggest that the compe
tences generally are made the basis of the assessment at a higher level in 
project examination than in the traditional written examination, and the dif
ferences are for some competences statistically significant (modelling, com
munication, advanced math-IT and other sorts of IT). The different compe
tences seem to be more visible in project examination. This could be due to 
the fact that the examination product is more extensive in project examina
tion than in the traditional examination, since it includes a written report and 
an oral presentation. In the traditional written examination there is only writ
ten answers with no possibility of exercising 'control of understanding'. 

The second interesting result is that the average competence-values for 
project examination vary less than the values for the traditional written ex
amination. The different competences seem to be visible on a more uniform 
level in project examination than in traditional written examination. This 
gives some empirical evidence for the analytical statement in the KOM-
report: "Projects can (...) be used to assess the complete spectrum of 
mathematical competences (...)." (Niss & Jensen, 2002, p. 128f, my transla
tion) In that respect project examination has a high degree of validity. Pro
ject examination seems to reflect all educational goals, not only modelling 
goals. I am fully aware of the fact that this does not exhaust the question of 
validity; there reminds at least the question of how a student's profile of 
competences is being detected, characterised and assessed in a project ex
amination - in absolute terms or relative to goals and intentions. 

6. AUTHENTICATION PROBLEMS 

A central issue is the question of authentication. As stated by Stephens & 
McCrae (1995) this question can be divided into two: Has the student written 
the report himself, and does the student understand what is written? These 
two questions represent two forms of cheating. 
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In principle a student can order a project report from outside, or he can 
copy the report written by a student from a different school doing the same 
examination. Technology makes it possible to transmit project reports easily 
from one part of the country to another part. It happens that a student, who 
has been progressing very slowly and with great difficult, suddenly ends up 
with a complete and brilliant report. Such incidents cause suspicion, but it is 
almost impossible to prove this kind of crib. However, I believe that crib is a 
small problem quantitatively speaking. The teacher follows the project work 
as a guide during the whole period, he is constantly in dialogue with stu
dents, and this 'monitoring' has definitely a preventing effect. 

Not understanding what is written in the report is a different way of 
cheating. It is not illegal to cheat this way, but it represents in my opinion a 
more serious problem, partly because it happens more often, partly because 
it is the student himself who is being cheated to believe that he understands 
the meaning of what he has written, and partly because the oral defence of 
10 minutes is not enough to check whether the student really understands. 
The conversation during the oral defence is fragmented into small bits of a 
short 'teacher question' followed by an even shorter 'student answer', some
times by just repeating a sentence in the report. The student response can be 
characterised as 'guess what the teacher is thinking'. There is no time for a 
genuine dialogue^. 

7. CONCLUSION 

I find that the statistical analysis gives some evidence of validity of pro
ject examination. The assessment is valid because the student can expect a 
project mark on the same level as the school based mark given by the 
teacher, assuming that the teacher is the best to know. The validity would be 
improved if the 'residuals' could be explained by an ejferr-variable. 

Project examination can also be seen as valid in regards to competences. 
The results indicate that the competences are made the basis of the assess
ment on a rather uniform level. Project examination can be used to assess 
modelling, but modelling competence will not dominate the other compe
tences. 

Authentication problems are being taken care of. 10 minutes of oral de
fence is not enough to reveal whether the student understands what is written 
in the report or not. Consequently the oral test will be extended to 30 min
utes from 2005. 

Of course, this does not close the question of assessment. I have not ad
dressed problems such as assessment criteria (are they transparent and do 
they ensure reliability), and fairness (concerning sex and 'less able'/'gifted' 
students). But the results so far are promising. 
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Abstract: There is much reported research on experiences of learners of mathematical 
modeUing and apphcations. In this paper we discuss contextual frameworks 
for such learning and associated teaching together with developmental re
search concerned with establishing a widely applicable mathematical model
ling continuum. 

1. PROCESS FRAMEWORKS 

Mathematical modeUing and applications in an undergraduate context are 
a feature of a wide range of disciplines apart from mathematics and, given a 
wider definition, occur at all levels and in all sectors of education and be
yond. This wider definition would include posing and solving open-ended 
questions, quantitative tasks linked to real problems, and engaging in applied 
problem solving generally. There are dedicated courses in mathematical 
modelling, but wherever modelling and applications occur, activities associ
ated with them have the potential to enhance students' performance in 
mathematics, for mathematical modelling seems to provide a promising ter
ritory to explore the question of learning as an activity where students' give 
meaning to ideas, problems [and] mathematical and non-mathematical con
cepts (Matos, 1998, p. 26). 
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Various teaching and learning paradigms for mathematical modelling 
have been developed, including: 
A Holistic approaches in which students learn through experience of 

complete case studies. They might be through modelling problems 
that admit simple and straightforward outcomes and progressing 
through to more difficult situations. They could also be single in
stances of complex situations requiring extensive in-depth analysis. 
This approach focuses on specific applications and relies on experi
ence of process and expertise being transferred from one application 
to the next. 

B The teaching of mathematical modelling by defining, and examining 
in detail, processes and stages through which the modeller passes. 
This approach focuses on process and could distance the learner 
from specific applications. 

This paper focuses on B; both A and B emphasise engagement in the 
mathematical modelling activity in contrast to the common practice in higher 
education where modelling may involve the presentation and critical analysis 
of particular models within the normal lecture programme. 

Mathematical modelling may be described and defined as a cyclic proc
ess in which real world problems are abstracted, mathematised, solved and 
evaluated in order passing through six stages: real world problem statement; 
formulating a model; solving mathematics; interpreting solutions; evaluating 
a solution; refining the model, before reconsidering the real world problem 
statement again and repeating the cycle. Often a seventh stage is included: 
the writing of an appropriate report after stage five. That modelling activities 
can be viewed in terms of staged cyclic processes does not mean that suc
cessful mathematical modellers inevitably exhibit this behaviour. Galbraith 
& Stillman (2001) report that during the modelling activity in schools, there 
is continual referencing back to the real world context at several stages of the 
modelling cycle and not simply following stage 5: evaluating a solution, or 
stage 6: refining the model. 

The many different elements and characterisations of modelling and ap
plications also include: open ended questions, mathematising situations, 
simulations, word problems and applied problem solving, wherever they oc
cur. Processes used in these characterisations may also be stages in a cyclic 
process. 

Sometimes tasks in mathematical modelling and applications, whilst 
clearly located within a modelling cycle, cannot always be identified with 
specific stages of the cycle but rather are concerned with the transition be
tween two or more stages. In their study of modelling behaviours amongst 
new undergraduates, Haines, Crouch & Fitzharris (2003) used short model
ling tasks in multiple choice format concerned with: moving from the real 
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world to the model, specifying the model, specifying variables, constructing 
equations, moving from mathematics to the real world, graphical informa
tion interpreted in the real world, using mathematics linked to the real 
world. 

Noting the importance of linking knowledge and moving freely between 
the real world and the mathematical world, and the continual referencing 
between them, descriptors of students' modelling behaviour can be classified 
(Tab. 3.7.2-1). Teaching and learning paradigms such as A and B above, 
stages within a modelling cycle and behavioural process descriptors (Tab. 
3.7.2-1) could be appropriately applied to mathematical modelling and ap
plications at different educational stages and levels (Fig. 3.7.2-1). 

Table 3.7.2-L Broad descriptors of mathematical modelling behaviour 
Process a 

Process b 

Process c 

Evidence of taking into account the relationship between 
the mathematical world and the real world input to the 
model 
Some limited evidence of the above, such as 

(i) mentions having thought about the model, but 
little evidence that this has been done, or 

(ii) has obviously thought about the model, but 
lacks knowledge of the real world and/or 
mathematics to solve the problem effectively 

(i) No evidence that the relationship between the 
mathematical world and the real world input to 
the model has been taken into account, nor that 
a modelling perspective has been adopted, or 

(ii) The problem has been looked at simply in real 
world terms, or entirely in terms of reasoning 
or maths (according to its position in a model
ling cycle) without reference to the needs of the 
model nor to the interface between maths and 
the real world 

2. MODELLING EXPERTISE CONTINUUM 

The development in students, of expertise and associated skills in 
mathematical modelling implies the existence of a continuum. One would 
expect that, in the context of investigations, open ended questions and pro
jects in schools, a level of competence to be achieved would be at a certain 
level that reflects both the complexity of the situation considered and the 
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processes through which the pupil passes in reaching a solution to the prob
lem. That level for school applications would appear in other sectors, so that 
for example, the processes could be considered to be the same for pre-
university students (Fig. 3.7.2-1) but the level and the complexity involved 
would be higher. These several overlapping continua, one for each level or 
sector, would collectively contribute to a single overall continuum (Fig. 
3.7.2-2). It is reasonable to postulate the existence of a continuum of exper
tise in general terms, as there is anecdotal and experiential evidence of a 
range of achievement amongst modellers. 

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6 ... stage 

postgraduate • • 

undergraduate 

pre-i 

school 

Figure 3.7.2-1. Mathematical modelling at most levels can be described as a staged process. 
The stage descriptor is common across all levels. Some project or investigational activities 

might not cover all stages. 

To evaluate a modeller, or related learning, in applications of mathemat
ics it would be necessary to establish an achievement scale with descriptors 
of behaviour appropriate to modelling and/or applied problem solving. 

In their research Haines, Crouch & Fitzharris (2003) used twelve multi
ple-choice questions previously devised for base-level assessment of model
ling skills. It is clear that composite questionnaires can provide a snapshot of 
students' skills at key developmental stages without carrying out a complete 
modelling exercise. Houston & Neill (2003) constructed six more, parallel, 
questions and these, with an additional four questions were subject to exten
sive testing in the United Kingdom. Present analysis (Izard et al., 2003), in
dicates that the 22 questions are robust and that they could contribute to an 
overall modelling rating scale of achievement (Fig. 3.7.2-2). They cover: 
real world to the model, specifying the model, specifying variables, con
structing equations, mathematics to the real world, graphs to the real world, 
using mathematics. These items do not address the full range of modelling 
skills, for they do not, as yet, cover solving mathematics, refining a model 
and reporting. More research is needed on the applicability of items such as 
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these at different levels. Mostly novice undergraduates in various disciplines 
in the United Kingdom provided the data in these studies, but some data 
from more experienced modellers, final year students and research students, 
is included. Schools in Europe and in Asia are interested in applying these 
questionnaires. 

n D D n 
D • • 

school 

pre-university 

H H ^ B I H ^ I H ^ I undergraduate 
^ » ^ » . . . . ^^ ^^ . ^ . ^ post-
^H ^ 1 ^ 1 ^ 1 ^ 1 ^ 1 ^ 1 graduate 

• 

Mathematical modelling continuum of expertise 

Figure 3.7.2-2. Structure of a mathematical modelling expertise continuum. Behaviours in 
school for example, might be qualitatively the same as in other sectors, but differ substantially 

in terms of acquired expertise 

3. NOVICE AND EXPERT BEHAVIOURS IN 
MATHEMATICAL MODELLING 

Successful mathematical modelling and applications problem solving in
volves an ability to move between the real world and the mathematical 
world, bearing both in mind. The modeller-problem solver needs to consider 
the real world problem and decide how to mathematise it, deciding which 
aspects of the real world are relevant and which not - a process of abstrac
tion - and deciding what mathematical principles and techniques to bring to 
bear, even when technology is used to apply them (Kent & Noss, 2000). The 
solution also needs to be checked against the reality provided by the applica
tions context and modified if necessary. These processes involving transi
tions, between the real world and the mathematical world are demonstrably 
difficult for students and similar experiences are reported in a classroom 
context (Christiansen, 2001). These difficulties could arise because, despite 
the fact that formal education gives practice in thinking about topics in a de-
contextualised way leading to a greater abiUty to abstract (Galotti, 1994), in 
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abstraction and decontextualisation the rich connections that often provide 
motivation for the subject are lost. 

Some difficulties are undoubtedly due to students being new to mathe
matical modelling or applications problem solving. In this sense, such nov
ices will perform poorly when compared to experts. This seems to be due to 
novices having a restricted and poorly structured knowledge base, making it 
hard for them to know which information is relevant, how to classify the 
problem, and which techniques and procedures to apply (Sternberg, 1997). 
Crouch & Haines (2003) review reported research that contrasts novice ex
pert behaviours in a variety of contexts including mathematics, physics and 
medicine. Such novice behavioural descriptors are often recognised in new 
undergraduates whose degrees require them to do mathematical modelling, 
whilst some of the expert descriptors are recognised amongst more experi
enced undergraduates in later years and even more in research students. 

To improve understanding of the modelling and applications capability of 
new undergraduates, Crouch & Haines (2(X)3) looked at the correlations be
tween nine descriptors of student behaviour: processes used in solving (Tab. 
3.7.2-1), credit attracted, ease of understanding the question, whether prob
lem was regarded as real world, whether problem was interesting, whether 
problem was located in mathematics as a discipline, time taken to choose 
answer, ease of making the choice, confidence in their choice. Amongst their 
reported research outcomes are: 
• Given contextual differences in applications and diversity amongst stu

dents it is imperative that they understand and identify with the problems, 
especially as novices think they have understood them when they have 
not 

• When faced with practical real world problems students are less likely to 
succeed 

• Anxiety amongst students faced with problems regarded as located in 
mathematics 

• Weak knowledge base and a lack of experience in abstraction cause diffi
culties in the transition from real world to mathematical world. 

• Expert behaviours are more in evidence when solving mathematics and 
interpreting solutions 

• Some novices exhibit aspects of expert behaviours at particular stages of 
the modelling cycle 

• There is more evidence of engagement and interest at the transition from 
the mathematical model to the real world than vice versa. 

The development of expertise, including a structured and organized 
knowledge base, takes some time to develop, needing strong teaching and 
learning structures with motivated practice on suitable tasks with defined 
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and appropriate learning goals. Students also need to be engaged in the tasks 
and to get appropriate feedback. Moving to expertise in modelling involves 
building on this basis to develop appropriate knowledge and skills (Niss, 
2001). 

4. CONCLUDING REMARKS AND FURTHER RE
SEARCH 

The foregoing discussion indicates that further research is required on the 
defining processes employed in mathematical modelling and applications, 
not simply in an abstract sense but also from the point of view of those new 
to such tasks when compared to those whose expertise is better developed; 
differential processes might also be present. Useful preliminary work has 
been done on the establishment of a rating scale for mathematical modelling 
which appears to meet some requirements for evaluating and monitoring 
achievement at the transition stages between the real world and the mathe
matical world. A comprehensive scale should be achievable. In order to un
derstand more fully, how novices develop into experts it would be helpful to 
define concise descriptors of such behaviours specifically focused on 
mathematical modelling and applications. 
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"TO MODEL, OR TO LET THEM MODEL?" 
THAT IS THE QUESTION! 

Jerry Lege 
Department of Mathematics, California State University, Fullerton, USA, 
Email: glege@fullerton.edu 

Abstract: Two sets of students with weak content skills and no prior experience were 
introduced to mathematical modelling. Contrasting instructional approaches 
were used - exposure to a variety of models, versus constructing the model 
themselves. Both groups demonstrated understanding of aspects of modelling 
and model structures. The students actively modelling the situation statistically 
out-performed the other group on four evaluation parameters. 

1. INTRODUCTION 

In introducing students to mathematical modelling for the first time, 
which teaching approach would more effectively convey the complexities 
and subleties of the work involved - having students examine instances of 
previously-constructed models, or actively engaging them in modelling a 
situation for themselves? This research question established the basis for a 
comparative case study, and is the focus of attention for this paper. 

The term 'mathematical modelling' is used interchangeably to describe 
or interpret two related types of activity: translating the real world into 
mathematical terms (Gravemeijer, 1997) for the purpose of solving a prob
lem or analyzing a situation (Dossey, 1996), and the various steps associ
ated with accomplishing that goal (often called the 'Modelling Process'). 
The following operational definition for a mathematical model was used: 
".. .a mathematical construct designed to study a particular real-world system 
or phenomenon. We include graphical, symbolic, simulation and experi
mental constructs." (Giardano et al., 1997, p. 34) 
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However, because these terms are familiar enough to mathematics educa
tors, and for the sake of simplicity with respect to the participants in the 
study, the statements that "Modelling is the process of making a mathemati
cal model." and "A model is the product formed by engaging in mathemati
cal modelling." were not seen as circular reasoning, but rather a way of 
clearly distinguishing between the two activities - one as process, the other 
as product. Additionally, the method of evaluation assumes that the learning 
that takes place from those two activities is disjoint, although the author 
makes no such claim. 

2. EXPERIMENTAL DESIGN 

Two high schools having similar economic and ethnic make-ups were 
found in an inner-city school district near New York City, with each site 
containing one group of participating students. A course called Foundation 
Math, offered to all 9^-grade students deemed "not-ready" for Algebra 1, 
was identified, standardizing the age and ability level of the participating 
students. Two teachers and three class sections of students from one school, 
and two teachers and two class sections from the other school, agreed to par
ticipate in the study. The study took a total of three weeks to complete both 
curriculum and assessment phases, with students predominantly working in 
pairs and having access to four-function calculators at all times. 

The curriculum phase did not actively teach students about modelling. 
Rather, it created an environment in which students explored the contextual 
problem of planning a vacation trip. The two groups received very different 
exposures to how mathematical modelling could be used to understand and 
optimize the situation. The dissimilar curricular approaches, to be detailed in 
3., were the only experimental differences between the two groups of stu
dents. When the curriculum phase was finished, students in both groups took 
two identical assessments that were based on a different situation - that of 
determining the best rap artist. The first assessment had a task structure simi
lar to the curriculum which one group of students experienced, while the 
second was similar to the curriculum which the other group experienced. 
Details about those assessments are also provided in 3. 

Both student groups were evaluated with respect to two sets of perform
ance goals that were developed for the study. The performance goals were 
drafted with consideration for what might be accomplished by the participat
ing students in the anticipated exposure time, but also reflected the learning 
that ideally would take place in each curricular approach. Twenty "Perform
ance Goals for the Assessment of Modelling" were used to evaluate the first 
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assessment. A brief description of each of those performance goals is pro
vided in Table 3.7.3-1: 

Table 3.7.3-1. Description of performance goals for assessing modelling 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Description 

Approach modelling systematically 

Show modelling as dynamic activity 

Use creative/unusual approaches 

Define the problem 

Separate useful/irrelevant informa

tion 

Use contextual knowledge not given 

Use planning behaviors 

Clarifying/simplifying assumptions 

Use an organizing representation 

Use sub-models & links 

No. 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Description 

Define objects and relationships clearly 

Stay with the plan previously made 

Use appropriate mathematics to de

scribe 

Perform calculations correctly 

Report how assumptions, results re

lated 

Interpret results within the context 

Check whether the model makes sense 

Test validity of predictions made 

Refine/extend the original situation 

Identify strengths/limitations of model 

They reflected the open-ended modelling approach that one group of stu
dents had received. The modelling performance goals included overall con
siderations for modelling in a procedural way, as a dynamic activity, and 
with a potential for applying creative or unusual approaches. There were 
also specific goals related to stages of the Modelling Process, including the 
problem definition, the organization and planning, the execution (building 
the model), and evaluation. 

Twenty "Performance Goals for the Assessment of Model Structures" 
were used to evaluate the second assessment. They reflected the curricular 
approach taken by the group of students that learned about modelling in a 
more structured environment. Those goals involved general themes of prob
lem identification, simplification, model construction and calculations, and 
evaluation and revision, but focused on understanding when, and why, some
thing was done. A brief description of each performance goal related to as
sessing model structures is provided in Table 3.7.3-2: 

Table 3.7.3-2. Description of performance goals for assessing model structures 

No. 

1 

2 

Description 

Identify the main features 

Know if/when clarifying is needed 

No. 

II 

12 

Description 

Know how mathematics supports 

model 

Explain connection between model 

parts 
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No. 

3 

4 

5 

6 

7 

8 

9 

10 

Description 

Connect problem to real situation 

Identify assumptions that were made 

Distinguish types of assumptions 

Spot inappropriate/unnecessary info. 

Know when given information is 

insufficient 

Explain how assumption can sim

plify or when one should be made 

Recognize real features from model 

Verify calculations inherent in model 

No. 

13 

14 

15 

16 

17 

18 

19 

20 

Description 

Vary quantity through a range of val

ues 

Identify model refinement stages 

Explain changes made in refinement 

Determine inherent limitations 

Determine whether model makes 

sense 

Know whether model is sensitive to a 

given quantity or initial condition 

Interpret solution in context 

Identify when an inference is valid 

For each performance goal, a [0..5] rubric scale was developed so that 
individual students could be monitored on their relative abilities in the spe
cific performance goals, as well as report a cumulative score that would re
flect overall performance, even if not interpretable on a normative scale. 
Three judges were employed to score the student work. Initially, they dis
cussed how to interpret the rubrics, reached an understanding of what the 
descriptors meant to them collectively, and then assigned scores on each 
goal for every student separately. In the case of variability among the scores, 
the median was reported when the range of scores differed was one, and the 
mean (rounded to the nearest integer) was reported when the range was 
greater than that. 

The statistical analysis of the data concentrated on several specific areas. 
First, the mean scores would identify those performance goals which could 
be demonstrated easily (or not), and skills either present at the beginning of 
the study or promoted as a result of participation in the study. Second, the 
total score would be used to indicate a relative degree of difficulty in demon
strating overall performance in modelling versus an understanding of model 
structures. Third, a comparison-of-means statistical analysis would reveal if 
either student group performed significantly better overall, and would iden
tify plausible knowledge and skills that are better supported by each curricu-
lar approach. 

3. CURRICULUM AND ASSESSMENT TOOLS 

The curricular problem of planning a vacation gave students eleven cities 
to choose as destinations, with activities, lodging and dining options, all with 
associated costs. They had an allocated amount of money to budget, poten-
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tial schedule conflicts with certain activities, and a constraint of having to 
visit one particular city for two days and one night. Both groups of students 
were provided an overview page which contained the problem description, 
information about the cost for renting a car, the fuel economy rating and ex
pected cost for gasoline purchases, and the posted speeds along various 
roads. They were also given other handouts that contained a description of 
the Modelling Process, a map showing the major roads in the region, a chart 
of driving distances along various roads, the fees to be charged along spe
cific toll roads, bridges and tunnels, and details about activities, lodging and 
restaurants that were available by city. The stated problem was to: "Build a 
model for this situation - in this case, a description of exactly where you're 
going, what you're going to do, how much it's going to cost you, and how 
you arrived at your decision." (Lege, 2003, p. 239) 

Students in the first group explored the problem by examining a sequence 
of five activities, each containing several models that described facets of the 
situation. The activities were designed to explore the following themes (in 
order): Is it possible to build such a model that is conflict-free! What con
straints exist on the problem? How might a 'best' model be determined? 
What features will a reasonably good model have? Can the reasonably good 
model be improved further (and if so, how)? The models all had the form of 
tables of information, containing brief descriptions of the thinking that moti
vated the development of the model, the approach taken in response to that 
thinking, clearly stated assumptions made for the model, and all calculations 
completed. Students would have to answer questions that served a variety of 
purposes, including reproducing the calculations that were provided, ex
plaining why decisions were made or things done in a particular way, com
paring current models to previous ones encountered, and opportunities for 
the students to make decisions independently. The content of those ques
tions, the student-student and group-teacher interactions, and the level to 
which students were actively engaged in the study were the factors which 
shaped the students' understanding of modelling via a critical examination of 
the structure of completed models. 

Students in the second group explored the same problem by actively 
working on it as a task. They were provided several organizers for structur
ing the task, which helped students monitor their progress in completing the 
work and structured the thinking and decisions made in modelling the situa
tion. One organizer was a blank schedule to record the city to be visited each 
day of the vacation period, the desired activities to do, and the costs for those 
activities, meals and lodging. A second organizer was to give students an 
additional copy of the map, a highlighter pen, and the suggestion that they 
mark the route along which they intended to travel. A third organizer re
corded the miles traveled along the various route segments, and the costs 
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incurred from tolls - either roadways, bridges or tunnels. The final organizer 
categorized the costs on a daily basis, so that students would have a record of 
all costs in one location, and could quickly determine if they were over 
budget. The efforts made in building their own model of this situation, com
bined with the same types of classroom dynamics and their level of engage
ment, gave students their understanding of model structures via actively (and 
successfully) modelling a real-world situation. 

The assessment involved a new contextual situation, but contained the 
same structure as the curricular problem in how it was initially presented. 
Students were introduced to a mild argument among some friends about 
whom the best rap artist was. They were provided musical industry charts 
(both single hits and albums) that were current, a year old, and even five 
years old. They were also given lists of all the albums that each artist had 
released, and the year in which the first and last albums were made. All of 
this given information was reviewed with the students, before the first as
sessment was actually begun, as a way of familiarizing them with the con
textual situation. The first assessment simply asked students to make a 
mathematical model of the situation for themselves, consistent with how the 
second group of students had explored their curriculum. Students worked on 
the problem over two consecutive class periods, and were encouraged to be 
as detailed as they could in their work. The models that were produced were 
holistically evaluated with respect to the "Performance Goals for the As
sessment of Modelling" - each group's model was examined through twenty 
different lenses for evidence of goals being met, and to what degree. 

After that task was completed, students were then provided a second as
sessment which was consistent with how the first group of students had ex
plored their curriculum. A series of models were presented, and specific 
questions were asked to which students needed to respond. The questions 
were written in such a way that the primary evidence for evaluating specific 
"Performance Goals for the Assessment of Model Structures" came from the 
elicited response to particular questions. Additionally, each set of responses 
was reviewed again to see if evidence of having met any goals could be 
found in unexpected locations. 

4. RESULTS 

Based on the means of the reported scores, a large percentage of students 
were able to demonstrate understanding of aspects of modelling on about 
half of the performance goals. This suggests that many of the "students could 
define a problem, discriminate between useful and irrelevant information, 
utilize a representation structure, work with defined objects, adhere to some 
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kind of plan, mathematize the situation, perform calculations correctly 
and/or interpret the results in a manner consistent with their model." (Lege, 
2003, p. 157) Similarly, a large percentage of students were able to demon
strate an understanding of specific details about model structures related to 
thirteen of the twenty performance goals. Summarily, this means that "stu
dents could identify main features, recognize when a problem reflects a 
situation, identify assumptions, distinguish between types of assumptions, 
determine when information is unnecessary or insufficient, explain how an 
assumption can simplify a situation, recognize features of a context from a 
model, explain the relationship between the mathematics used and assump
tions made, explain the connection between disparate parts of a model, rec
ognize refinement stages, determine limitations, and/or recognize valid in
ferences." (Lege, 2003, p. 157) 

It was also the case that students' mean cumulative score for the model 
structure goals was approximately 12.5 points higher than the mean cumula
tive score for the modelling goals, whereas the standard deviations were ap
proximately the same. It is uncertain whether that difference in performance 
is due to the type of assessment used (specific questions versus holistic 
evaluation of modelling work), the demand for detail required by the rubrics, 
the degree of difficulty between the two sets of performance goals, or 
whether students do acquire understanding of model structures more quickly 
(perhaps because it is structured). More research is needed to provide a plau
sible explanation for this result, assuming that it is not simply a coincidence. 

In comparing the overall performance, there was no statistical differ
ence between the two student groups. However, the second group (the one 
that learned about modelling by just "doing it") significantly outperformed 
the first group (the one that had learned by looking at examples) on four per
formance goals - two related to modelling, and two related to model struc
tures. One of the modelling goals was concerned with the use of sub-models, 
especially for organizing thinking about the model. Most students in the first 
group primarily constructed models based on a single consideration, whereas 
students in the second group tended to cycle through the Modelling Process 
more than once by varying the key assumption, and in an attempt to incorpo
rate all their efforts, would link those models together with some kind of se
lection criteria. The other modelling goal that produced significantly differ
ent results was related to accuracy on mathematical calculations. Students in 
the first group tended to use the given information on chart rankings to cre
ate formulas like 'Total of All Current and Previous Weeks' Rankings" -
formulas which required calculations. Students in the second group tended 
toward models like "Most Albums Released" or "Most Years in the Busi
ness", which only required counting. 
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The first of the model structure goals in which a significant difference ex
isted between the two student groups was the ability to recognize the contex
tual features that are inherent in a model. The assessment required students 
to interpret a score of '0', which reflected how many times the artist ap
peared in the singles charts on the first three handout pages. The first group 
tended to focus on the artist - not popular, didn't get many votes, or not 
ranked as high - while the second group tended to concentrate on the fact 
that the songs were not popular or there hadn't been any released prior to the 
date the chart was made. The second model structure goal in which there 
was a significant difference between the two groups related to determining 
limitations that are inherent in a model. Students in the first group contained 
many answers that addressed ancillary issues - "lack of given information, 
perceived errors in having scores of '0' , calls for conclusions that agreed 
with their personal opinions, and excellent answers to some other question 
which was not asked." (Lege, 2003, p. 162) Students in the second group 
used answers that targeted the restrictive information used, suggested better 
sources of information upon which to base the prediction, and critiqued the 
process used in the original model. 

In all four of the performance goals in which the second group of stu
dents significantly outperformed the first group, it may be the case that those 
students had more experience within the contextual situation used. But it 
could also be argued that the additional sense-making exhibited by them, and 
the quality of the responses provided by them, was supported by being ac
tively engaged in modelling the curricular problem. 
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Abstract: Several test items from the OECD's Programme for International Student As
sessment (PISA) are now in the public domain. Some of these incorporate 
elements of modelling. This paper highlights a selection of those items, shows 
some interesting student outcomes such as gender differences and item diffi
culty, and poses some questions about the implications of these items for 
school mathematics. 

1. BACKGROUND 

The OECD's Programme for International Student Assessment is an on
going collaborative project among OECD member countries and an increas
ing number of non-OECD countries, designed to measure how well 15-year-
old students nearing the end of compulsory schooling are prepared to meet 
the challenges of today's knowledge societies. The resulting data will be of 
interest to educational policy makers in participating countries, and have the 
potential to promote debate among educational researchers and others and to 
contribute useful information to educational reform processes. 

The nature of the assessment material used and the constructs being 
tested through PISA are quite broad. For details the reader is referred to the 
most recent framework document (OECD, 2003). PISA uses a 'literacy' ori
entation that is intended to extend well beyond simple curricular knowledge, 
to the ability of students to use their knowledge and skills to meet real-life 
challenges. This provides the possibility of a strong link with ideas about 
applications and modelling in mathematics. 
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The PISA Mathematics tests used in both 2000 and 2003 were pencil and 
paper tests. The mathematics items have been presented in a mixture of for
mats including multiple-choice, short constructed-response (for example re
quiring students to carry out a brief calculation), and more open constructed-
response items (involving, for example, students writing an explanation of 
some kind). A number of PISA Mathematics items have been released into 
the public domain and published by the OECD. Several of these released 
items involve mathematical modelling, or at least elements of the modelling 
process. 

2. SOME SELECTED PISA ITEMS 

PISA Mathematics items can be found in three OECD publications. The 
first set (OECD, 20(X)) comprised 14 items (including coding guides and 
some commentary) from the field trial conducted in 1999 in preparation for 
the first round of testing in 2000. The second set (OECD, 2002) comprised 
11 items from the PISA 2000 Main Study. A further set comprising 27 items 
from the field trial conducted in 2(X)2, were published to accompany the 
PISA 2003 Assessment Framework (OECD, 2003). The OECD will release 
39 PISA 2003 items in December 2004. 

Sample questions coming from four PISA units, each with obvious mod
elling elements, are presented here. The first is from the PISA 2000 test. The 
other four are from the PISA 2003 field trial, items that were not included in 
the final item selection for PISA 2003. Each of the items is reproduced, and 
some data are presented showing certain aspects of student performance. 
Note, however, that this is in no sense a random selection of items represent
ing a broader class, so any generalisations can only be very limited. The pur
pose, rather, is to highlight item features and to facilitate discussion of some 
important issues. 

2.1 Continent Area 

This item demands some spatial insight, and requires students to come up 
with a geometric model and to use that model together with suitable calcula
tions involving scale to estimate an area. 

Responses to this item (see Fig. 3.7.4-1, next page) were coded according 
to the geometric model students used to estimate the area (modelling the 
shape as a square, circle, using multiple simple shapes, or by any other 
method). Full credit was awarded for any method that resulted in an ap
proximation in a specified range (12 000 000 - 18 000 000 sq km). Partial 
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credit was awarded to responses that used an appropriate method, but where 
the result was outside the specified range. 

This proved to be a relatively difficult item, indeed an average across 
OECD countries of only about 9.6% of students obtained full credit for the 
item, placing it as the third most difficult item in the PISA 2000 set. An av
erage of 19.5% of students obtained partial credit, and about 20% of students 
obtained no credit. On average, students from Canada and UK did best on 
this item. 

Below is a map of Antarctica 

Kkxneler O 200 

Estimate the area of Antarctica using the map scale. 

Show your working out and explain how you made your estimate. 
(You can draw over the map if it helps you with your estimation). 

Figure SJA-L Sample item - Continent Area 

About half of students given this item omitted it. Open constructed-
response items such as this typically have relatively high omission rates, and 
the very high omission rates for this item are another indication of item diffi
culty. OECD countries with particularly high omission rates for the item 
(above 60%) were Greece, Italy, Korea, Mexico, Poland and Spain. Those 
with relatively low rates of omission (below 40%) were Australia, Austria, 
Belgium, Canada, Finland, New Zealand, Switzerland, UK and the lowest of 
all USA. Boys found the item easier than girls in all OECD countries except 
New Zealand. Li several countries the margin was quite large. 
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2.2 Rock Concert 

The second sample item, shown in Fig. 3.7.4-2, also involves spatial in
sight. For this item, students need to decide on a suitable model to quantify 
the amount of space occupied by a human, then perform an appropriate cal
culation to estimate how many people would fit into a given space. 

For a rock concert a rectangular field of size 100 m by 50m was reserved 
for the audience. The concert was completely sold out and the field was 
full with all the fans standing. 

Which one of the following is likely to be the best estimate of the total 
number of people attending the concert? 

A 2000 
B 5000 
C 20 000 
D 50 000 
E 100 000 

Figure 3.7.4-2. Sample item - Rock Concert 

The difficulty of this item is close to the average of items used in the 
field trial. An average of about 26% of students answered the item correctly 
(response 'C'). Students from Japan and the Netherlands did relatively well, 
and students from USA, Mexico and Greece did relatively poorly. Response 
'B' was chosen by 49% of students. 

Omission rates were very low (2% on average), which is typical for mul
tiple-choice items such as this. Boys found the item easier than girls in about 
two-thirds of countries. The international average percent correct was 24% 
for girls and 28% for boys. 

2.3 Twisted Building 

The item Twisted Building', shown in Fig. 3.7.4-3 (next page), also in
volves spatial insight and geometric modelling. It invites students to make 
some realistic assumptions about the height of the ground floor of the build
ing described, and the height of each floor above, leading to an estimate of 
the total height of the building. 

Responses to this item were coded according to the explanation given, 
which exposed the modelling the student had used to estimate the total 
height of the building. Full credit was awarded for a method that led to an 
approximation in a specified range (50 m to 90 m). Partial credit was 
awarded to responses that assumed 20 floors rather than 21, but used an oth
erwise appropriate method. 
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This item is somewhat more difficult than the average of items used in 
the field trial. An average of about 15.7% of students obtained full credit for 
the item, about 9.5% of students obtained partial credit, and about 28.6% of 
students obtained no credit. On average, students from the Netherlands did 
best on this item (44% full credit, 21% partial credit). Students in the USA 
and Mexico did particularly poorly (relative to other OECD countries). 

In modern architecture, buildings often have unusual shapes. The picture 
shows a computer model of a 'twisted building' and a plan of the ground 
floor. The compass points show the orientation of the building. 

The ground floor of the building contains the main entrance and has room 
for shops. Above the ground floor there are 20 storeys containing apart
ments. 

The plan of each storey is similar to the plan of the ground floor, but each 
has a slightly different orientation from the storey below. The cylinder 
contains the elevator shaft and a landing on each floor. 

Estimate the total height of the building, in metres. 

Explain how you found your answer. 

Figure 3.7.4-3. Sample item - Twisted Building 

About 46.3% of students omitted this item (an open constructed-response 
item). OECD countries with particularly high omission rates for the item 
(above 60%) were Greece, Italy, Japan, Portugal and Spain. Those with rela
tively low rates (below 30%) were Austria, Belgium, Canada, the Nether
lands and Switzerland. Boys found the item easier than girls in all but seven 
participating countries. The difference was extreme in Japan and Italy. In 
New Zealand the item strongly favoured girls. 
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2.4 Heartbeat 

In this question (see Fig. 3.7.4-4, next page), students are given a model 
that combines algebra and words. Students need to understand and interpret 
the model and the surrounding text. The interpretation required proved to be 
very difficult indeed, in fact this question was one of the most difficult in the 
set of field trial items. Full credit was awarded to students giving either 40 or 
41 as their answer. On average, only about 12.8% of students answered the 
item correctly. 

For health reasons people should limit their efforts, for instance during sports, 
in order not to exceed a certain heartbeat frequency. 

For years the relationship between a person's recommended maximum heart 
rate and the person's age was described by the following formula: 

Recommended maximum heart rate = 220 - age. 

Recent research showed that this formula should be modified slightly. The new 
formula is as follows: 

Recommended maximum tieart rate = 208 - (0.7 x age). 

A newspaper article states: ''A result of using the new formula instead of the 
old one is that the recommended maximum number of heartbeats per minute 
for young people decreases slightly and for old people it increases slightly". 

From with age onwards does the recommended maximum heart rate increase 
as a result of the introduction of the new formula? Show your work. 

Figure 3.7.4-4. Sample item - Heartbeat, Question 1 

Omission rates were very high (53.6% on average). OECD countries with 
relatively low rates (below 40%) were Canada, Korea, the Netherlands and 
USA. Hong Kong also had a very low omission rate. Countries with rela
tively high omission rates (above 70%) were Italy and the Slovak Republic. 
The international average percent correct was 11.9% for girls and 13.8% for 
boys, hi other words, a large overall gender gap was not apparent for this 
item, though there was a large gap in favour of boys in Canada, Japan and 
Korea. 

A second question, shown in Fig. 3.7.4-5 (next page), was asked in rela
tion to the same stimulus. In this case, students are required to modify the 
given algebraic model so that it satisfies an additional condition. 

Full credit was awarded to responses giving a formula that is the equiva
lent of multiplying the formula for recommended maximum heart rate by 
80%. On average, only about 13% of students answered this item correctly, 
making it of similar difficulty to the previous question. Countries in which 
students tended to do relatively well on this item (above 20% correct) were 
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Belgium, Denmark, Hong Kong, New Zealand, the Russian Federation, 
Switzerland and Scotland. 

The formula recommended maximum heart rate = 208 - (0.7 x age) is also 
used to determine when physical training is most effective. Research has 
shown that physical training is most effective when the heartbeat is at 80% of 
the recommended maximum heart rate. 

Write down a formula for calculating the heart rate for most effective physical 
training, expressed in terms of age. 

Figure 3.7.4-5. Sample item - Heartbeat, Question 2 

Omission rates were again very high (60% on average). Countries with 
relatively low omission rates (below 40%) were Hong Kong, Indonesia, the 
Netherlands and Scotland. Italy had an extremely high omission rate 
(79.8%). Boys found the item easier than girls in about two-thirds of coun
tries. The international average percent correct was 11.9% for girls and 
14.2% for boys. In three countries (Czech Republic, Italy and Scotland) the 
item strongly favoured boys. 

3. DISCUSSION 

A number of interesting issues arise from these examples. First is the ex
tent to which those responsible for curriculum and instruction in different 
OECD countries value the kinds of mathematical thinking that underpins 
these tasks. Tasks involving modelling certainly reflect the importance PISA 
places on applying one's knowledge to solving the problems confronted in 
various lifetime contexts. One strand of thought would say that these are the 
most highly valued kinds of tasks, and that there should be more of them in 
the PISA tests. This might have the effect of encouraging participating coun
tries to incorporate such activities more extensively into school curriculum, 
but perhaps would happen only if the benefits of doing so were evident. To 
what extent has empirical evidence demonstrating the benefit of inclusion of 
modelling and applications activities in the mathematics classroom been 
produced and disseminated? What are the implications for national curricu
lum among participating countries of including items such as these in the 
PISA test instruments? It is clear that students from some countries routinely 
do relatively well on such items, and others do relatively poorly. It remains 
to be seen to what extent PISA might be instrumental in promoting increas
ing interest in modelling-related learning tasks. 
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A second issue is the level of complexity of the mathematical modelling 
activities that 15-year-old students can cope with. It seems to be rather low. 
What is it that makes these items so difficult? Which elements relate to gen
der differences? The nature of the item context can have an influence on dif
ficulty, and this can impact differentially on girls and boys. The kind of 
thinking demanded by the different phases of the modelling process certainly 
has an impact on difficulty. When looking at the full PISA 2003 item set, 
items with no modelling demand were on average markedly easier than those 
that involved modelling. Items involving only the interpretation or reflection 
phases of the modelling cycle were of intermediate difficulty. Items requir
ing students to come up with a model (such as Continent Area, Rock Con
cert, or Twisted Building), or to manipulate a given model (such as Heart
beat) were, as would be expected, the most difficult. Breaking the modelling 
process down into its component parts seems a strategy that at least can 
make modelling accessible to a wider range of students. 

Third, what kinds of instructional activities might promote facility with 
items such as these, and in the longer term with more extensive modelling 
activities? How can teachers be more effectively empowered to explore and 
promote the mathematical thinking underlying these tasks, and what kinds of 
teaching and learning activities will be most effective in facilitating this kind 
of mathematical thinking among 15-year-old students? These are empirical 
questions, however it might be reasonable to expect the following: first, that 
good modelling behaviour can itself be modelled by teachers - students can 
be taught to model by example; second, that structured modelling experi
ences, including exposure to the separate components of the modelling proc
ess as well as guided exposure to 'full-blown' modelling activities, would be 
part of an effective teaching process for mathematical modelling; and third, 
including applications and modelling tasks in assessment activities, espe
cially in high-stakes assessment, will encourage both teachers and students 
to take modelling more seriously. 
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Abstract: In the Netherlands, since 1993 the mathematics core curriculum for junior 
secondary schools states that students should develop skills for using and ap
plying mathematics in practical situations. For monitoring purposes, a trend 
study was carried out using mathematical hands-on tasks in a laboratory-like 
environment. The study revealed that this kind of alternative, practical assess
ment can have a satisfying curricular validity, higher than written tests based 
on the same curriculum. However, comparability of test results (between stu
dents, schools, etc) depends on the uniformity of test circumstances. 

1. INTRODUCTION 

Three decades ago Hans Freudenthal and his colleagues started to trans
form the mathematics curriculum in the Netherlands with a treatise, known 
as Realistic Mathematics Education (RME). In 1993, a common core cur
riculum based on RME for Dutch junior secondary schools was legislated. 
This curriculum emphasized data modelling and interpreting, visual 3D Ge
ometry, approximation and rules of thumb, the use of calculators and com
puters. The approach to the subject was more practical and investigational, 
being described by three keywords: applications, skills and coherence. As a 
result, chapters of Dutch mathematics textbooks start with real life situa
tions, in which mathematics is used and applied, instead of ending with 
these. 
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National assessment was adjusted to the new content approach. Gener
ally, test items in the RME-based curriculum describe an appealing daily life 
situation, often with authentic photos to enliven imagination. The test items 
contain modelling activities, requiring students to mathematize the context 
(e.g. into a graph), apply mathematical skills to use the model adequately 
(e.g. derive a solution from the graph), interpret the mathematical answer in 
its context, and reflect upon the methodology used. 

The new, RME-based curriculum was considerably different from the 
prior curriculum. A large exercise was undertaken to introduce secondary 
school mathematics teachers to the new content and its approach. Many 
workshops on the new curriculum were organized by the curriculum devel
opers, and by teacher training institutes. Also, the national exams were 
adapted to the new intended curriculum. Nevertheless, the introduction went 
hand-in-hand with a dilution of the initial ideals. One of the observed weak 
points in the dissemination of the curriculum was that the assessment prac
tice remained of the written form and did not require students to apply their 
skills practically, as in small investigation projects. Therefore, a study was 
designed in which students were tested on their skills to use mathematics in 
practice, in a laboratory environment. Its objective was to investigate 
whether, in the years following the introduction of the new curriculum, grade 
8 students were indeed improving their abilities to apply mathematics in 
practical situations. The study also served as an empirical study to investi
gate what valid and reliable alternative assessment methods can be used to 
monitor the implementation of a RME-based curriculum. 

2. INNOVATING MATHEMATICS ASSESSMENT 

When measuring student achievement in mathematics for a large popula
tion, in many cases, paper-and pencil tests have been used. However, these 
tests have come under debate, as they cannot evaluate all practical compe
tencies from an intended mathematics curriculum. Attempts to alter assess
ment methods have been made, defining criteria for alternative assessment, 
such as: (a) testing through open questions and for higher order skills, (b) 
being open to a range of methods or approaches, (c) making students dis
close their own understanding, (d) allowing students to undertake practical 
work, (e) asking for performances and products, (f) being as an activity 
worthwhile for students' learning, and (g) integrating real-life situations and 
several subjects (Niss, 1993). 

In this section, I will concentrate on alternative assessment for applied 
mathematics and modelling at a nation-wide scale, for example, to monitor 
curriculum developments. In this area of study, a number of issues have 
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emerged. First, formats such as observation, interviews and portfolio have 
shown to be labor- and cost-intensive. Second, the interpretation of students' 
answers can result in unreliable data because of inconsistencies between ex
aminers (Kitchen & Williams, 1993) Especially the coding of borderline an
swers (which are neither totally correct nor totally incorrect) is conditional to 
the coders' background (e.g. coding experience, subject matter knowledge, 
teaching experience, etc). Despite obvious disadvantages, nation-wide alter
native assessments of mathematics have been carried out. For example, 
countries participating within the Third International Mathematics and 
Science Study (TIMSS) had to administer a standard written test at grade 8 
level (students at the age of approx. 14 year). However, participating coun
tries could opt to administer additionally an alternative assessment, as a 
complement to the written test. This TIMSS Performance Assessment con
sisted of practical investigative tasks in science and mathematics (for a full 
description, see Harmon et al., 1997). The test was developed from the edu
cational vision that seeks coherence between procedural, declarational and 
conditional cognition. Students were expected to investigate systematically, 
being provided with a practical context (manipulatives and instruments). 
They were tested through open-ended tasks like: designing and executing an 
experiment, observing and describing observations, looking for regularities, 
explaining and predicting measurements, etc. The test provided students with 
a worksheet that guided them through the tasks. Students had to record their 
answers on the sheet, and hand in products (lumps of plasticine, cut-out 
models, etc.). The use of manipulatives was considered very appropriate as 
these help students to better understand the context of the question. Instead 
of describing real life situation in words, the equipment offered the context 
directly into students' hands. Especially second language learners and stu
dents with lower reading abilities were expected to gain from these circum
stances. 

In 1995, the test was administered in 21 countries, amongst which the 
Netherlands. The test raised questions on reliability and international compa
rability of its results; in the international report a league table of countries 
was avoided. However, in the Netherlands, the test was judged as being very 
valid in light of the new RME-based curriculum, to such an extent that the 
test was replicated in 2000 (Vos, 2002). Trend results would allow to moni
tor the implementation of the RME-based curriculum. Moreover, a replica
tion could give experience in analyzing issues on validity, reliability and 
comparability of alternative assessments. 

In 1995, the TIMSS Performance Assessment was administered to a ran
dom sample of Dutch grade 8 students (n = 437 from 49 secondary schools). 
In 2000, the test was replicated at a slightly smaller scale because of finan
cial constraints (n = 234 from 27 secondary schools). The research questions 
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were 1. To what extent is there a trend between 1995 and 2000 in the 
mathematics achievement of Dutch grade 8 students on the TIMSS Perform-
ance Assessment? and 2. What opportunities and obstacles do exist in large-
scale mathematics assessment using hands-on tasks? 

3. VALIDITY 

Validity of a test can be established in various ways. For the TMSS Per
formance Assessment in the Netherlands, an expert appraisal was carried out 
to establish the curricular validity of the test with respect to the Dutch RME-
based intended mathematics curriculum for junior secondary schools. Six 
experts from a variety of mathematics education institutes were invited to 
assess the test items. Their appraisal showed that eight out of twelve tasks 
matched well with the intended mathematics curriculum (Vos, 2002). The 
other four tasks were from biology, physics and chemistry, or a hybrid of 
disciplines. These tasks were maintained in the test, but were not considered 
relevant for the measurement of mathematics achievement. Below are the 
eight tasks, which were considered to match well with the intended RME-
based curriculum for grade 8. 
• The task Dice is related to probability. 
• The task Calculator is related to discovering patterns in numbers. 
• The task Folding is related to symmetry and spatial abilities. 
• The task Around the Bend is related to scale drawing and finding geomet

rical rules: which rectangles can go around a cardboard bend? 
• The task Packaging is related to measuring and the design of nets: how to 

pack four ping-pong balls in different ways? 
• The task Rubberband covers the topic of tables, graphs and extrapolation: 

with given ten washers to hang on a rubber band, can you estimate how 
far the rubber band will stretch if you would have twelve? 

• The task Shadows is related to geometrical transformations. 
• The task Plasticine asks for problem solving heuristics in combinatorics. 

In hindsight, we should have consulted a sample of students on the valid
ity of the test. Anecdotal evidence said that students especially loved the 
tasks Around the Bend, Folding and Plasticine. One observer noted that stu
dents, walking out of the testing session, said they did not feel as having 
completed a mathematics test; instead, they had produced something worth
while. 

Validity of a test can also be checked through an assessment grid, for ex
ample the grid designed for assessment of modelling and applying mathe
matics, as in Kitchen & Williams (1993). The grid contained the following 
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assessment categories: mathematizing, rewriting (generalizing and simplify
ing), interpreting, and reflecting. All test items were allocated to one of these 
categories. If appropriate, an item could be fitted into two categories, but 
then the weight of that item would be spread. Two curriculum experts were 
asked to categorize the test items independently. Their inter-rater score was 
87% and their average results are reported in Table 3.7.5-1. For comparison, 
a standard written RME-based test for the same level of schooling was ana
lyzed through the same procedure: the Afsluitingstoets Basisvorming 1999 
(Final test for the core curriculum 1999), developed by the Centraal Instituut 
Toetstontwikkeling (National Institute for Educational Measurement). The 
TIMSS Performance Assessment showed a better spread over the grid, with 
a stronger emphasis on mathematizing than the RME-based control test. Of
ten, in written tests, an item already readily states the mathematical formula, 
which models the context (and thus, these items do not require mathematiz
ing). Also, the skill to reflect is better covered in the TIMSS Performance 
Assessment. As a result, the TIMSS Performance Assessment can be consid
ered valid on its spread of required modelling activities. 

Table 3.7.5-1. Percentage of test items in each modelling category, comparison between the 
TIMSS Performance Assessment and a standard, written RME-based test. 

TIMSS Perform. Assessment 
Standard RME-based test 

Mathematize 
35 
19 

Rewrite 
Generalize Simplify 

20 14 
25 13 

Interpret 
16 
38 

Reflect 
15 
6 

4. RELIABILITY 

Reliability of test data depends on a number of issues. First, uniform test 
conditions must be created. In the TIMSS Performance Assessment, tests 
administrators traveled from the testing center to the schools with a large 
box containing all test materials and an abundance of supplies. To ensure 
uniform procedures throughout the measurement, the administrators were 
trained in how to set up the laboratory environment in an ordinary classroom 
(even if the school had no laboratory), how to introduce the test to the stu
dents, how to communicate with students during the testing session, etc. 

Alternative assessments contain open-ended questions, and when testing 
at a large scale, students' answers need to be interpreted and transformed 
into a code, which can be entered into a database. The reliability of these 
data depends largely on the evaluation of students' answers. Students' an
swers must be interpreted in such a way, that the resulting code is independ
ent of the coder. In the TIMSS Performance Assessment, coders were trained 
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during a one-day workshop on the application of the codes. To verify inter
pretation differences between coders, two different coders coded a system
atic sub-sample of 10% of students' responses independently. In this way, 
the inter-coder agreement was an indicator of the reliability of coding. This 
agreement was calculated as the percentage of items on which the two cod
ers agreed with their codes. Li the 1995 administration, the agreement on the 
correctness code ranged between 52% and 100%. The lowest percentage was 
reached on one item (from the task Shadows), where the coders only agreed 
on 52% of students' answers. In the international protocols, no limits were 
set for the inter-coder agreement, but in hindsight, 52% should have been 
considered as too low to yield reliable results. 

At the onset of the repeat study in the Netherlands in 2000, it was clear 
that if ever a trend was to be measured, the data needed to be consistent 
throughout the measurement, but also comparable in time. Therefore, it was 
decided to check through other means than the inter-coder agreement. Com
parability could be affected, for example because the 2000 measurement was 
carried with slightly different laboratory equipment. One example will illus
trate how small equipment differences can have a multiplier effect on stu
dents' performance. In the task Shadows a torch is used. The torch used in 
1995 gave a vague shadow, while the torch of 2000 gave a sharper edge to 
the shadow. The latter made student's measurements easier giving them 
more time for remaining items. 

Table 3.7.5-2. TIMSS Performance Assessment Mathematics tasks, 
Netherlands: reUabihty, comparability between years, and results. 

Task 
(number of items) 

Dice (6) 

Calculator (7) 

Folding (4) 

Around the bend (8) 

Packaging (3) 

Rubberband (7) 

Shadows (6) 

Plasticine (8) 

Reliability 
Cronbach Alpha 
1995 2000 

(n=437) (n=234) 

0.50 

0.71 

0.83 

0.59 

0.61 

0.58 

0.64 

0.85 

0.64 

0.68 

0.76 

0.62 

0.65 

0.39 

0.61 

0.78 

1995-1999 Trend 

comparability 

P(x') 

0.77 

0.99 

0.53 

1.00 

0.28 

0.00 

0.01 

0.00 

1995 and 2000 in the 

Students' 
achievement results 
1995 2000 

(n=437) (n=234) 

77(3) 

62(4) 

73(4) 

68(3) 

52(4) 
— 

— 

— 

74(4) 

60(5) 

77(5) 

70(4) 

58(5) 

— 

Note. — Dashes indicate omitted results, which did not satisfy the comparability test. 

Standard deviations are shown in parentheses. 

To detect unreliable and incomparable results, two statistical tests were 
carried out (Vos, 2002). The results are shown in Table 3.7.5-2. First, for 
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each task, Cronbach's alpha was calculated for 1995 and 2000 separately. 
Results higher than 0.5 were considered acceptable. On this test, the task 
Rubberband failed. Second, a x^"test was carried out. The outcomes, indi
cated by their significance p(x )̂» indicated the probability that answer pat
terns were comparable. Values lower than 0.05 were considered as indicators 
of unequal testing circumstances in 1995 and 2000. As a result of the tests, 
and to avoid distortions of the trend measurement, tasks with questionable 
data were eliminated: Rubberband, Shadows and Plasticine, 

5. RESULTS 

Five mathematics tasks (28 items) remained suitable for analysis. The 
achievement of Dutch students on the Performance Assessment in 1995 and 
its repeat in 2000 is given in Table 3.7.5-2. For each task, the average per
centage of correct scores on the items is calculated. Compared to 1995, the 
achievement results did not show significant changes on these tasks. On each 
mathematics task, the shifts were statistically insignificant. The average per
centage correct on all five mathematics tasks in 1995 was 66 (not included in 
Table 3.7.5-2), which did not differ significantly from the average score cor
rect of 68 in 2000. The results showed that Dutch students in 2000 had not 
gained practical competencies in mathematics since 1995, despite the in
creased emphasis on these competencies in the RME-based curriculum. This 
answers the first research question. The null-trend could be caused by the 
classroom practice, in which students never encounter tasks in a laboratory 
environment. In classroom practice, hands-on tasks are lacking, as the as
sessment practice stuck with a paper-and-pencil format, in which students 
only read texts about real-life contexts. Despite curricular intentions, tests 
offering students tangible real-life contexts (through projects, or through 
manipulatives) are still rare in the Netherlands. 

The project also showed, that testing conditions need to be well con
trolled, for example by minimizing differences between schools and between 
measurements from different years. Small changes in equipment can destroy 
valuable data. Also, it is important to have different coders, who can code 
and re-code students' answers at different stages in time. However, provided 
these conditions, alternative mathematics assessment in a laboratory envi
ronment is feasible at a large scale. Reliability of data is to be scrutinized 
closely, but the high validity of the test will compensate for this. This an
swers the second research question. 

Finally, anecdotal evidence showed that the TIMSS Performance Assess
ment was an eye-opener to many mathematics teachers. During the testing 
sessions, they observed the tasks and how their students coped with these. 
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Some teachers admitted that they had never thought mathematics could be 
tested in a laboratory environment. They associated manipulatives with 'fun 
mathematics' as used on the day before holidays. Now, the assessment con
text created a serious atmosphere. As such, the TIMSS Performance As
sessment could be used as exemplary curriculum material, not only in the 
Netherlands. If laboratory-based tests are part of national exams, then teach
ers who 'teach to the test' might better implement a mathematics curriculum 
based on modelling and applications. 
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Abstract: This chapter is the result of the reflections on contributions presented by the 
participants of the Primary Education Modelhng Group during the ModelUng 
and AppUcation Study conference held in Dortmund, Germany in February, 
2004. The material presented by the group participants gives opportunity for 
some brief considerations regarding the day-to-day school life of children and 
for the presentation of modelling procedures for use in primary education, as 
well as it invites reflections on the possibility of these procedures becoming 
school practices in light of the level of training of the majority of teachers. 

1. DAY-TO-DAY SCHOOLING 

In everyday life, children perceive their envh-onment, obtain information 
and select from it, compare it to what they already know, and after assimila
tion, confer significance to the various scenarios that surround them. The 
child is always interactively researching everything within his grasp. His 
imagination surpasses the limits of the image, leading him to create symbols 
or objects and to form ideas, giving form, color and sense to the world in 
which he lives. 

This complex process peculiar to the human mind passes basically 
through three stages, which can be described as those of perception, com
prehension and signification. This means that each sensation or perception 
that the child takes in from his environment generates imagination and ideas 
in his mind that, starting from the comprehension that he already has, may be 
transformed into significance, a mental model that results into understanding 
(Kovacs, 1997). Mental models, or representations of the world of which he 
belongs, have an ever- increasing capacity to express and reproduce, in vari-
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ous ways. This means that the child creates and re-creates models in his 
mind that can allow him to establish ways of being and acting (Sacks, 1995). 

Li most cases, children are inserted into the knowing and doing of things. 
However, when they end up going to a formal schooling, concerns about 
rules, convention and program curricula result in the fact that there is not 
enough time left to stimulate creative and imaginative talents. The teaching 
of mathematics, for example, frequently leads children to respond to specific 
questions (generally arithmetic questions) in a certain standard way, without 
considering the amount of information that they have already received from 
the outside world, much less their particular capacities. This contributes to 
passivity and inhibition on the part of the child in his resolution of signifi
cant questions, becoming an obstacle especially when learning mathematics. 

Several studies show that during the grade school years children tend to 
apply strategies in a superficial way when solving problems, leaving out 
their knowledge of the real world. Among the reasons for this, Bonotto 
(2004) points to textual factors related to stereotypical problems in the text
books associated with classroom practices which contribute to this dissocia
tion between school mathematics and the mathematics applied to various, 
day-to-day situations. A lot of empirical data points to the fact that teacher 
education courses in various countries do not foster consistent or sufficiently 
encompassing education in the future teacher, one which would enable the 
use of alternative practices in the classroom in accordance with the socio-
cultural reality in which they perform (Palm, 2004). 

Currently, in most countries, curriculum reforms and their accompanying 
documentation more or less explicitly assume that one of the most important 
objectives in mathematical education is to help students acquire the ability to 
develop and use mathematical models as a means of making sense out of 
day-to-day situations, which leads to making sense of the complex systems 
that make up modem society (Blum, 2002). The purpose is not only to moti
vate students by daily 'contextualizing', but also to create conditions in 
which they can learn to research, and come to comprehend the significance 
of what they are studying. Research shows that the use of applications and 
mathematical modelling in teaching can enable students to learn and develop 
abilities for making use of mathematics outside of the classroom and further, 
it provides motivation for studies that are relevant to mathematics (Biem-
bengut, 2004). 

Both curricula reform and research confirm that although mathematical 
modelling has been shown to be an advantageous strategy for the student' 
academic formation, it is hardly adopted in most countries, and even less in 
the primary school. The justification of many teachers is that they do not feel 
able to deal with the situations or questions posed by children in the daily 
education practice, or that they do not feel able to explore the links between 
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curricular and extra-curricular knowledge. 

2. PROCEDURES IN PRIMARY EDUCATION 

In the process of perceiving a real context, understanding and explaining 
by means of a language or system of signals, followed by external descrip
tion or representation, one can recognize the same mental processes that are 
used to construct what has been perceived. That is to say, in making a model 
of an observed phenomenon or in using a model for understanding or solving 
something, one can identify the three phases of the cognitive process: per
ception, comprehension and model-signification. In these terms, modelling 
procedures in primary education are synthesized into three phases that will 
be called perception and apprehension, comprehension and explanation and 
signification and modelling. These procedures can be adapted at any level of 
teaching in the course of the academic year, with some or all curriculum sub
jects. Furthermore, these procedures can be realized in flexible phases in a 
circular, give and take process. 

1̂^ phase: Perception and Apprehension 

This first phase seeks to stimulate the perception and interest of children 
with material and artifacts that illustrate the environment. The idea is to 
promote activities that involve them with nature (beauty, harmony) and with 
other participants and symbols that they already know in this context, as well 
as to sharpen observation and attention towards things that are as yet unper-
ceived. This means that this context has value as a model or something that 
motivates them, at another time, in the learning of mathematics. This is the 
phase in which children seek to inform themselves from the context in ques
tion and obtain the greatest number of facts (Gravenmejer; Winter apud 
Schwarzkopf, 2004). Although perception is not the only source of knowl
edge, it is without doubt essential to the first description of the environment 
that surrounds them, allowing children to decode, effect representations and 
furthermore, to deal with new situations, visualizing the occurrence of phe
nomena, and judging and comprehending something in this respect. 

T^ phase: Comprehension and Explanation 

In this phase, we seek to promote activities that allow children to go be
yond images already learned, leading them to conceive other images and to 
delineate symbols, stimulating association of ideas and comprehension. It 
consists of teaching children to understand the real world in a quantitative 
sense and leading them towards using mathematical symbols as a means of 
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representing things that they observe and find interesting. Based on ideas 
that they akeady have about comparison or measurements, for example, it 
comes to be a means of teaching mathematical concepts symbols that are as 
yet unknown. What is important is that it is a 'back and forth' process among 
the materials and artifacts that surround the students and that they can handle 
or observe the mathematical symbols. Mathematics needs to be learned and 
understood as another language, another way of representing, visualizing, 
comprehending and communicating. If mathematics is learned as a language, 
or rather if the materials or artifacts can be described in mathematical lan
guage, and vice-versa, then there is a better chance that the children will not 
reject them, especially during the later phases of teaching (van den Heuvel-
Panhuizen, 2004). In accordance with the level of education of the child, ac
tivities that integrate other areas of knowledge may contribute. In this way, 
children do not disconnect mathematics from reality, while comprehension 
of unknown facts is facilitated, by means of a process that assimilates such 
knowledge or reduces it to already familiar facts (Bonotto, 2004). 

3̂ ^ phase: Signification and Modelling 

At this phase, the child should recognize both the materials that surround 
him and accumulate mathematical symbols and concepts, based on previous 
knowledge and available references (mathematical or otherwise). According 
to Steinbring (1999), symbols are necessary to the process of knowledge but 
a referent context is required in order for these symbols to be understood and 
interpreted. Learning is a circular process of construction of relations be
tween these functional components of knowledge. Building relationships 
between symbols and a referent context requires the creation of a sub-
adjacent conception (mathematical), which provides integration of the 
knowledge within a theoretical structure (Schwarzkopf, 2004). Thus this 3*̂^ 
phase, the most challenging, consists of sharpening the child's creative sense 
in solving questions or making representations of some material in terms of a 
model. The goal here is that children be encouraged to reorganize a variety 
of situations, capable of being translated into mathematical language, which 
permits them to inform themselves in detail about mathematics and the pos
sibilities of using it to learn more about the complexities of the real world 
outside of a school context. 

3. POSSIBILITIES OF MODELLING AND APPLI
CATIONS 

In an ongoing research (cf. Biembengut, 2005) the above procedures 
were applied for two consecutive years, in an experimental phase, with 2 
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classes (70 children) from the 2̂ ^ grade in 2001, and with the same children 
in the 3°̂  grade (64 children) in 2002, in primary education. One of the ac
tivities developed with children from the 3"̂^ grade was the growth of plants. 
The mathematical content to be taught was the system of linear measure
ment. As such, in the 1̂^ phase the children were taken to the school's garden 
to observe the plants around them to explain what they perceived, knew and 
felt. Next, a container of earth was distributed to each group of two children 
in order to plant com or beans. The containers were kept in a place suitable 
for growing plants, to which the children had easy access in order to care for 
them and accompany the development of their respective plants. Li the 2°^ 
phase, during the germination period, the children were taught, among other 
programmatic contents, linear measurement. As soon as the plants started to 
grow, each group of children took daily measurements of their plant and re
corded data in table form. Li the 3̂ ^ phase, they represented their respective 
data on graph paper, obtaining graphic representation of the linear growth of 
the plant in relation to time. Next, it was proposed to the children that they 
compare their data and graphic representations with each other. Most of the 
children verified that the growth data and graphic representations of each 
plant did not coincide, but that the graphic representations seemed alike - in 
the form of the letter 's ' . Even without formalizing a 'logistical growth 
model', the activities developed allowed the children: to observe and inter
pret symbols and their significance; to relate, integrate and represent data 
from external means and to comprehend the environment conceptually. 

4. CONCLUSION 

In the primary school, where the mathematical syllabus (elementary 
arithmetic and geometry) can be richly and lively applied to the universe of 
children, it is not difficult to plan activities that make children to understand 
mathematical contexts and to play with the mathematical language. Empiri
cal research has shown that curiosity and comprehension in children in re
gard to the environment in which they live can be strongly stimulated. By 
formalizing or representing different events or information perceived and by 
elaborating particular categories such as, for example, symbols and mes
sages, most of the children exhibited gradual advancement in their ability to 
understand and respond to the activities proposed. This affected both evalua
tion of what they know and what they do not know. Thus, children gifted 
with a sharpened sense of imagination can dare to look for solutions and may 
find effective means for predicting the course of events that occur around 
them (Bonotto, 2004). 

It is worth noting here that knowledge flourishes to the degree in which 
different events or perceived information can be represented by means of 
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symbols and messages. Thus mathematical modelling in primary education 
can contribute to this 'flourishing' since the activities involved in the process 
can lead the child to understand a situation or context and get to know the 
mathematical language that allows him or her to describe, represent and 
solve a real-life situation or context and to interpret/validate the result within 
this same context. 

This means that the teacher is in control of various areas that make up the 
school curriculum, and has the means of facilitating various levels of expres
sion (linguistics, mathematics, technological artistic) and feels capable of 
modifying objectives and classroom content along the way. It is also positive 
that teacher is going to deal with a significant number of children from dis
tinctly different sociological and cultural realities, all of who require the 
general education that is necessary and sufficient for taking part in the envi
ronment in which they live. But the teacher has to be aware of this: changing 
the beliefs, conceptions and attitudes of teachers is essential to turn mathe
matical modelling a natural practice of teaching. 
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POSSIBILITIES FOR, AND OBSTACLES TO 
TEACHING APPLICATIONS AND MODELLING 
IN THE LOWER SECONDARY LEVELS 

Toshikazu Ikeda 
Yokohama National University, Yokohama, Japan, Email: ikeda@ed.ynu.ac.jp 

Abstract: Reports on teaching applications and modelling in eight countries dealt with 
similar arguments regarding obstacles, each with a different emphasis. The fol
lowing four obstacles are seem to be common across eight countries in which 
applications and modelling are located within the national curriculum; "Teach
ers' perceptions of mathematics", "Teachers' understanding of modelling", "A 
lack of adequate textbooks and curricular modelling tasks", "A lack of ade
quate assessment, and of modelling tasks in central examinations". 

1. INTRODUCTION 

Many issues emerge in the context of applications and modelling at the 
lower secondary level. For example, reasons for teaching applications and 
modelling; approaches to teaching applications and modeling; obstacles to 
teaching applications and modelling. Because of space restrictions, this 
document focuses on the issue of obstacles. 

It seems there exist a variety of obstacles to teaching applications and 
modelling in different countries around the world. This document samples 
experiences within eight countries that exemplify general aspects of the issue 
of obstacles, and summarizes some general features of the reports from these 
countries. 
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2. EIGHT CASE STUDIES 

Obstacles to teaching applications and modelling in the eight countries 
are described as follows. 

2.1 Gabrieie Kaiser (Germany) 

Being able to apply mathematics competently is an accepted overall aim 
of German mathematics teaching. The question as to why applications and 
modelling examples do not gain the same importance in other domains as 
they have within didactic discussions, can be approached from various points 
of view: 
(1) The system: Mathematics teaching is dominated by a subject-based un

derstanding of theory, and this implies a partial and predominantly sub
ject-based implicit didactic. The lesson structure follows the subject 
structure, which means, if put into concrete terms, that the lessons start 
from general concepts and phrases and then continue with general con
clusions. 

(2) The teacher: Empirical research has made it clear that the perceptions of 
mathematics, held by mathematics teachers, are dominated by an under
standing of mathematics as a logical and consistent construction of 
thinking. The notions of usefulness and applications of mathematics play 
a minor role in the perceptions of mathematics and in the learning of 
mathematics as well. 

(3) The student: Empirical studies have demonstrated that the mathematical 
beliefs of most students are dominated by an understanding of mathe
matics as an accumulation of knowledge. The higher the age-group, the 
lower the importance of application-based mathematical beliefs. 

2.2 Hugh Burkhardt (England) 

In England, everyone talks of the importance of being able to use 
mathematics. However, in most lower secondary school classroooms, few 
applications are actually taught, and there is no modelling. 

Reasons for this include: (1) An inward-looking view of mathematics on 
the part of specialist mathematics teachers, focussing on the concepts and 
procedural skills of pure mathematics. Applications, where they exist, are 
mainly seen as concept reinforcement. (2) The political emphasis on 'basic 
skills' for weak students and schools. While the recent focus on "functional 
mathematics" may change this, it could again degenerate into just 'basic 
skills'. (3) The belief that you have to learn skills before you can apply them 
leads to indefinite postponement of work on solving non-routine problems of 
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any kind. Change will be difficult because many teachers have no experience 
of the teaching skills needed, and regard non-routine problems as 'unfair'. (4) 
The 1989 National Curriculum for mathematics and its tests introduced a 
view of mathematics as a checklist of narrowly-defmed skills. (5) 'High 
stakes' testing at ages 7, 11, 14, 16 and 18 affects the future of every teacher 
and student. It leads to teaching that focusses on those fragments of mathe
matical performance that are tested - you cannot do applications, let alone 
modelling, this way. (6) TIMSS has focussed on pure mathematics - this 
may be mitigated by PISA. 

All of these factors reflect a traditional approach, nationally and interna
tionally. Indeed, over the last 20 years, things have become worse, rather 
than better, in England. 

2.3 Florence Mihaela Singer (Romania) 

The most pre-eminent obstacle is the theoretical orientation of the teacher 
training pre-service and in-service programs. Their content is focused on a 
highly theoretical level of mathematics, with a very low emphasis on aspects 
connected with teaching methodology, and even lower on applications and 
modelling. 

With regard to learning, there is a discontinuity at the transition from 
primary to lower secondary education. This discontinuity is generated, on 
the one hand, by different teaching expectations: the primary teachers teach 
a number of subjects, while the lower secondary teachers teach only mathe
matics. On the other hand, it is compromised by the dual system of initial 
teacher training: primary teachers are trained in colleges/high schools and 
are more pedagogically oriented than subject oriented; while the lower sec
ondary teachers graduate at university level, with a very low emphasis on the 
psychological and sociological aspects of teaching and learning. 

This discontinuity is also manifested at the level of curriculum interpreta
tion. While the written curriculum recommends a progressive development 
following a unifying system of objectives, content, and learning activities, 
the teaching practice lags far behind this; due to insufficient training pro
grams being provided to support the curriculum reform process. 

2.4 Christine Suurtamm (Canada) 

In Canada, although each province is responsible for its own educational 
system, there are many similarities in the mathematics curricula. Most prov
inces have a curriculum and curriculum resources that would support appli
cations and modelling in the lower secondary level. Mathematics educators 
in Canada realize that students at this age level often need to see the rele-
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vance of mathematics and mathematical modelling helps them to make con
nections. 

Teachers are encouraged to present students with a mathematical prob
lem first and then to develop mathematical ideas through the process of 
problem solving. However, in practice, many teachers tend to use applica
tions, modelling, and problem solving as examples of uses of mathematics 
once the mathematical concepts are taught. Some of the obstacles to full im
plementation of mathematical modelling are teachers' understandings of 
modelling, their view of mathematics, and their inexperience in doing 
mathematical modelling themselves. However, teachers are moving along 
the continuum as further professional development engages teachers in 
mathematical modelling activities. 

2.5 Jarmila Novotna (Czech Republic) 

The main reason for using applications and modelling in mathematics 
education in my country is always teaching mathematics, not teaching appli
cations and modelling only. Two problematic issues are as follows. 

Difficulties in choosing appropriate problems 
Characteristics of problems suitable for applications and modelling at the 

lower secondary level include: (1) Minimal mathematical background re
quired. (2) Tasks should stimulate both manual and intellectual activities. (3) 
Tasks need to provide for the modelling of situations either in reality or in 
the minds of the students. (4) Tasks should challenge students to create their 
own models or introduce new interesting situations to be solved. 

Difficulties with the language appropriate for applications and modelling 
There is still much work to be done to better understand the role of lan

guage in the theoretical-experimental domain of modelling for identifying 
epistemological obstacles. For example, relations between language and 
point of view, and between mathematical language and change of strategy. 

2.6 Pauline Vos (Mozambique) 

In Mozambique (as in many other countries, especially in lesser devel
oped countries) applications and modelling are not perceived as an important 
part of the mathematics curriculum. The first obstacle is the existing curricu
lum, which has a strong enforcing role on what is taught in Mozambican 
mathematics education. Secondly, the national exams (at the end of grades 5, 
7, 10, and 12) are an obstacle, as they do not contain any applications or 
modelling items. Another obstacle is the predominantly deductive approach 
used in mathematics education, whereby students are trained to memorize 
definitions and algorithms, resulting in little understanding, short-term reten-
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tion, and low motivation. A further obstacle is the large number of 
un(der)qualified teachers. More than 80% of the mathematics teachers are 
un(der)qualified, and their insecurity makes them hold firmly to old routines. 

From a political perspective, a general belief seems to be that if students 
know the definitions and can carry out the algorithms, they will be able to 
apply them. There are some thoughts on making the curriculum more practi
cal, but few people have an idea as to what this means, and what the curricu
lum would consequently look like. 

2,7 Koeno Gravemeijer (Netherlands) 

Experiences in the Netherlands suggest that a lack of adequate teacher 
enhancement, textbooks, and assessment can be a serious obstacle, even if 
applications and modeling are mandated, and exemplary tasks are developed. 
Applications and - to some lesser extent - modelling were central traits of 
the curriculum reform of the early 1990's. However, the government did not 
facilitate much in-service teacher enhancement, and as a consequence, 
teachers seem to have developed a rather limited image of the innovation. 
The adage, 'learning mathematics by doing mathematics', seems to have 
been translated into, 'independently working on textbook problems'. In addi
tion, the new textbooks were not innovative enough to alter this view. In 
such a setting, challenging problems interrupt the smooth flow of the les
sons, so textbook authors started to make those tasks less demanding at the 
request of teachers. This eventually has resulted in textbooks full of contex
tual problems that are divided into a series of simple sub questions that in 
fact obscure the intended applications or modelling for the students. In addi
tion, our conjecture is that the individual help that teachers offer tends to 
adjust to the expressed needs of the students, who ask for instrumental direc
tions - a tendency that seems to be in tune with the instrumental character of 
customary forms of assessment. 

2*8 Toshikazu Ikeda (Japan) 

Most teachers use applications and modelling as examples of uses of 
mathematics once mathematical concepts have been taught. More process-
oriented modelling tasks need to be developed, and mandated for implemen
tation in classroom teaching. 

In terms of practice, there seem to be three dominant obstacles. First is 
the influence of entrance examinations, in which modelling tasks hardly ap
pear. The second is concerned with the development of modelling tasks and 
the use of technology - there are still too few modelling tasks that students 
really want to attempt to solve, and technology is not popular in Japan. The 
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third is concerned with the behef and confidence of teachers. Modelling 
makes teaching more open and complex, and teachers have little experience 
in modelling. Further, principals of schools don't encourage teachers to un
dertake modelling in their classroom teaching, and therefore, teachers don't 
want to tackle modelling and applications. 

3. SUMMARY 

All of the eight reports raised similar issues regarding obstacles, with dif
ferent emphases. Focussing on the treatment of obstacles to applications and 
modelling in mathematics curriculum, three situations can be identified. 
First is that applications and modelling are not perceived as an important 
part of the mathematics curriculum. For example in Mozambique, the fol
lowing belief was expressed, "a general thought seems to be: if students 
know the definitions and can carry out the algorithms, they will be able to 
apply these." 

Second is the opposite situation in which applications and modelling are 
(officially) a central attribute of a curriculum. Canada and the Netherlands 
(curriculum reform of the early 1990's) seem to belong to this category. 
However it is suggested that implementation falls somewhat short of the in
tention for a variety of reasons associated principally with teacher practices 
and priorities. Reports from other countries suggest a third (intermediate) 
category, in which applications and modelling are located in the national 
curriculum, but their role is not central. Within the latter two categories, the 
following four obstacles seem to be common. 

1. Teachers' perceptions of mathematics. 2.Teachers' understanding of 
modelling. 3. A lack of adequate textbooks, and adequate modelling tasks. 4. 
A lack of adequate assessment methods, and modelling tasks suitable for 
central examinations. 

The following suggestion from the Netherlands is especially meaningful. 
"Experiences in the Netherlands suggest that a lack of adequate teacher en
hancement, textbooks, and assessment can be a serious obstacle, even if ap
plications and modeling are mandated, and exemplary tasks are developed." 
Teacher education appears to be the central, and most commonly recognized, 
issue to address in the future. 
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UPPER SECONDARY PERSPECTIVES ON 
APPLICATIONS AND MODELLING 

Gloria Stillman^ 
Address: University of Melbourne, Melbourne, Australia, Email: g.stillman@unimelb.edu.au 

Abstract: Several issues raised in this study are of heightened importance at the upper 
secondary level. There are many tensions at this level of schooling contribut
ing to a reluctance by teachers to teach mathematics by modelling and a 
scepticism by many students that modelling is central to their mathematical 
learning. Several of these tensions are raised as the issues are discussed in 
this chapter. The challenge is for modelling to be seen as an essential embed
ded element of mathematics, mathematics teaching and assessment whether 
students are in academic, technical or general education courses. 

1. INTRODUCTION 

Upper secondary perspectives are pertinent to the issues raised in this 
study because the final schooling years are in most instances the last chance 
mathematics teachers have any influence on students' mathematical compe
tencies or attitudes towards mathematics. Students' beliefs are the source of 
their attitudes and it is difficult once students pass through the formation 
ages of 13 or 14 to influence these. There is also some scepticism by stu
dents about the relevance of modelling activities due to too many teachers at 
this level placing too much emphasis on the mathematical, rather than the 
modelling, aspects. Furthermore, the senior secondary level is often the first 
time tertiary mathematics educators really care about what secondary teach
ers teach in school and what students learn. 

At the upper secondary level, especially in some European countries (Ar-
taud, 2004), there is a strong bias against mathematical modelling as the 
prevalent attitude is that high level mathematics is what is important. How
ever, the upper secondary curriculum is ripe for modelling as it is function 
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driven, as aptly demonstrated by the work of Azarello, Pezzi, and Robutti 
(2004). Pre-calculus in the United States of America, for example, is about 
functions. The curricula in other countries are also ripe for including model
ling but when this is attempted or suggested it can be seen by some as mess
ing up functions. In Italy modelling is present in technical schools not ly-
cees. Modelling is not seen as culturally noble. As mathematics educators we 
need to convince people of the cultural aspects of mathematical modelling -
it is part of mathematics and therefore culturally relevant otherwise there 
will be modelling only in technical schools. In other countries such as Can
ada (Roulet & Suurtanmi, 2004) and Australia (Stillman, 2001, 2004) secon
dary school mathematics curriculum documents in particular provinces and 
states have called for classroom practices involving both modelling and ap
plications for some time. Actual practice varies. The new Ontario mathemat
ics curriculum (Ontario Ministry of Education, 2000), for example, calls for 
modelling activities and the development of knowledge via investigations 
and modelling. In general there has been a move to more active learning but 
very limited investigation and modelling except for one course, Year 12 
Mathematics for Data Management. This has been a relative success with 
modelling (usually with the aid of technology) taking a significant place in 
the classroom in contrast to the implementation of the new curriculum in the 
remainder of the secondary curriculum. In Alberta, applied mathematics is 
unique to the upper secondary school. Modelling is incorporated into the 
curriculum which is project based. In contrast to Artaud's findings in 
Europe, Chapman sees the key to success as teacher training to take teachers 
past their own fear to see mathematical modelling for its potential use as a 
pedagogical approach. Chapman (2004) "suggests that teachers' conceptions 
of mathematics, word problems and problem solving are important factors in 
creating a classroom culture to support modelling and application" (p. 70). 

2. TASK AUTHENTICITY 

The issue of task authenticity is difficult. For a task to be authentic for a 
student it must be part of the culture of the student who is not necessarily 
scholastic or even rational at this age. Two perspectives to authenticity form 
the basis of the teacher's dilemma of how to address this. Firstly, there is 
objective authenticity that comes from the real world. Secondly, there is sub
jective authenticity that comes from the situation being modelled being au
thentic to the modeller. For learning processes in classrooms this dilemma is 
complicated by the tasks being done in an institution. They are usually, 
though not always (see e.g., Clatworthy & Galbraith, 1989), imported into 
the classroom. Transformation into a classroom problem then becomes an 
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issue for authenticity. Palm and Burman (2004) have demonstrated that it is 
possible to analyse the authenticity of tasks used in national assessments at 
this level using a framework (Palm, 2002) for developing, analysing, and 
reflecting on task authenticity. The degree of task authenticity needed is de
pendent on mathematical goals. Teachers at this level might feel more con
strained in this regard as the heightened sense of duty to prepare students for 
final assessments and tertiary entrance influences the extent of task authen
ticity. For those teachers who break from this, designing of the didactical 
experience involves choosing suitable modelling situations. Not every situa
tion has to be real nor are all real situations good models for this level. There 
is also the risk that students may come to believe that all that is real is good 
and all that is theoretical is bad. Furthermore, with real world models it is 
important that we sensitise students to the assumptions we make in real 
world situations - a point taken up by Jablonka (2004). 

3. MODELLING COMPETENCY 

Modelling is a life skill (Lakoma, 2004), if not "a way of life" (Lamon, 
Parker & Houston, 2003, p. ix), and at the upper secondary level the sense of 
responsibility to focus on this is heightened. There is a strong possibility that 
students will need to use this life skill sooner rather than later. At this level, 
social phenomena can be viewed from a more global perspective and the 
issues dealt with broader. However, the goal of development of a skill-set for 
life conflicts with preparation for tertiary mathematics. It is difficult for 
teachers to negotiate this. In general rather than academic education courses, 
mathematics is taught by modelling. This raises the dichotomy for main
stream classes: Are we teaching mathematics or are we teaching modelling? 
If the focus is said to be teaching modelling, then the argument is that too 
much time is spent on modelling at the expense of mathematics. We have to 
have strategies for teaching mathematics by modelling. We need to think 
about these two positions in a different way - a symbolic constructive way. 
When teaching mathematics by modelling we need to use a multi
dimensional approach by beginning with many ways that are initially paral
lel but then converge. In the curriculum there are many critical mathematical 
points along the way. We need to build a network around these points. 

4. APPROPRIATE BALANCE 

Questions about the appropriate balance in the curriculum between 
mathematical activities and applications and modelling activities stem from 
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an incorrect metaphor. Instead, applications and modelling activities should 
be seen as embedded within mathematics and then together the two become 
an effective lens for describing and analysing the real world. Teaching func
tion, for example, as a set definition has to be linked to something very use
ful. This in turn provides a better understanding of reality as exemplified by 
the work of Azarello, Pezzi, and Robutti (2004). Otherwise, the teaching of 
applications and modelling becomes the teaching of something foreign or 
impure in mathematics. However, teaching upper secondary mathematics 
without modelling and applications is just the same as visiting a museum 
where the exhibits are mathematical objects such as a group or a matrix. 

It is important that applications and modelling not be seen merely as il
lustrating mathematical concepts but also as a means of deriving them. 
Mathematical concepts can be derived from the real world and then students 
are able to re-invest what they have learnt in the classroom back into the real 
world situation. This is the essence of a conceptual rather than an applied 
modelling approach. 

5. ASSESSMENT 

High-stakes assessment at the upper secondary-tertiary interface is often 
seen as an unresolved problem for the infusion of modelling into the secon
dary curriculum at this level as other imperatives are uppermost in the minds 
of teachers and students driven by the demands and whims of an external 
examination regime in many education systems across the world. Alterna
tively, high-stakes assessment can be seen "as a rare opportunity" 
(Burkhardt, 2004, p. 57) as "professional development activities built around 
high-stakes assessment are usually powerful, in that: They are taken up by 
most teachers, not just the enthusiasts" (p. 58). There are, however, ongoing 
tensions between advocates of centrally set external examinations to grade, 
compare, and rank students for tertiary entrance and those advocating more 
innovative approaches more compatible with modelling such as project 
examination (e.g., Antonius, 2004). The latter approach replaces, rather than 
supplements, the traditional external examination. Issues not fully resolved 
in more innovative assessment practices include difficulty of defining mod
elling competencies (although some progress has been made in this area, 
e.g., Henning & Keune, 2004; Lege, 2004), validity of teacher judgements in 
such assessments if used, and difficulty of evaluating or verifying the as
sessment. Authentic evaluation of current upper secondary assessment prac
tices, traditional or innovative, is advocated through the use of longitudinal 
studies to supplement existing studies at this level (e.g., Stillman, 2002) so 
future planning and policy can be based on actualities not myths. 
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6. TECHNOLOGY 

Technology use in upper secondary mathematics classes can be instru
mental in deepening rather than limiting students' mathematical understand
ing. Technology allows more authentic modelling situations; however, 
Strasser (2004) warns this will not be an enriching experience if the model
ling is done only by hiding the mathematics into "black boxes" as commonly 
happens with sophisticated workplace instruments. He cautions against tak
ing too optimistic a view. Enlightening students of the contents of "black 
boxes" whenever possible is strongly advocated (e.g., Kadijevich, 2004). 
Another concern is the apparent tension between the goals of students be
coming more effective modellers through technology use (Kutzler, 2000) 
and the enrichment of mathematics by using authentic examples tractable 
with technology at this level. Azarello, from his research with other col
leagues (Azarello, Pezzi, & Robutti, 2004), sees connecting technology to a 
real situation as essential allowing students to develop their "cognitive ac
tivities from bodily (e.g., perceptual, kinetic) to theoretical features" (p. 25) 
typical of learning through motor-perceptors. Use of communication tech
nology such as the worldwide web presents further opportunities for promot
ing modelling on the world stage. It allows the possibility of worldwide 
communication of suitable mathematical modelling examples at this level 
and the professional enrichment of teachers by their being able to communi
cate with others about what is happening at this schooling level in other 
places. In addition the dissemination of research results to others research
ing applications and modelling at the upper secondary level is facilitated. 
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Abstract: This paper deals with the role of learning mathematics in context at tertiary 
level using modelling and applications, integrating technology and changing 
assessment practices. This opens interesting research issues. 

1. INTRODUCTION 

We are convinced of the importance of extending the applications and 
modelling approach to mathematics at tertiary level. This report shows why. 

We concentrate our contribution on the following set of questions: the 
role of learning in context at tertiary level, the importance of modelling and 
applications in training mathematicians as well as all kind of university stu
dents, the role of technology, best assessment practices and research issues 
arising in this field from the educational point of view. We quote also some 
cases which have special interest for implementing modelling experiences in 
university courses and list some references which may be consulted by the 
readers. 

Let us mention that in the previous ICMI Study on the Teaching and 
Learning of Mathematics at University Level the whole meeting held in Sin
gapore was devoted to this level and some relevant contributions to our topic 
were already made (Holton, 2001). From this publication we will quote some 
papers, but we refer the reader to the proceedings for further general views 
and examples on university mathematics. 
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2. LEARNING IN CONTEXT AT TERTIARY LEVEL 

All mathematization processes, and modelling in particular, start from 
real world problems and end in checking if the model's results answer, in a 
satisfactory way, the initial problem. This is why context is important for our 
considerations. 

Learning in context at university level has shown to be a fruitful aca
demic strategy either for providing motivation and interest or for engaging 
students in real world problems. There is no need to say that choosing a cor
rect context is a critical matter since context depends on the area where stu
dents are involved (engineering, architecture, social sciences, life sci
ences,...). Context must have a real meaning for the students and not to re
quire knowledge that students are not familiar with. Experiences show that, 
usually, one obtains better responses and achievements when dealing with 
modelling and applications within suitable contexts than when delivering 
lectures in a more abstract setting. 

3. ON THE ROLE OF APPLICATIONS AND MODEL
LING IN THE TRAINING OF MATHEMATICIANS 

University students, oriented towards mathematics, may benefit from 
learning modelling procedures. These are important aspects of the mathe
matics training. For example all graduates need to understand principles, 
techniques and applications of basic areas like statistics, operations research 
or computing. Student may choose to become involved in applied mathemat
ics, but even in the case of a pure mathematics orientation they may find mo
tivations and orientations when following a course on modelling. Through 
learning modelling, they may understand how many mathematical concepts 
and structures originated and about their applications outside math. 

Of course, if students consider the possibility of becoming teachers (at 
any level) then some background on applications and modelling will be of 
great interest for their future role, as we will discuss later. In any case, mod
elling and applications may serve future mathematicians for the development 
of mathematical thinking, fostering creativity and intuition. 

The MCM (The Mathematical Contest in Modelling) and the ICM (The 
Interdisciplinary Contest in Modelling) organized by COMAP (The Consor
tium for Maths and its Applications) have been a growing worldwide experi
ences where many mathematics students are involved, showing their interest 
in this field (see http://www.comap.com/undergraduate/contests/mcm). 
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4. ON THE ROLE OF APPLICATIONS AND MODEL
LING IN MATHEMATICS AS A SERVICE SUBJECT 

When one faces the design of mathematics courses where mathematics is 
a service subject there is a need to connect the mathematics program with the 
examples and applications that belong to the university study hosting such 
courses. The main concern about this need of connections is firstly to pro
vide motivation for learning mathematics, and arise the interest in these con
ditions. Instead of answering to the chilling question "what is all this stuff 
good for?" is to start topics by presenting concrete applied problems. Not to 
go into difficult modelling questions but explain appropriate applications 
(Krantz, 1993). Later, these connections may also facilitate the competency 
of applying mathematics to a concrete field of interest, improving the capac
ity of mathematization when facing specific problems. 

In some university studies like engineering, biology, physics, chemistry, 
etc. maintain an old tradition in requiring quite a high level of mathematics 
having their students know the importance of mastering some mathematics 
for following their own training. In other fields like social sciences, design, 
architecture, etc., the quantity of mathematics needed or required depends on 
the aims of the study. 

Let us conclude this part by mentioning some examples of illuminating 
actions of promoting the role of applied mathematics and modelling in ma
thematical courses for non-mathematicians. Among these are the English 
LTSN (Learning and Teaching Support Network) engineering case studies 
(see http://mathstore.ac.uk), the HELM project http://www.lboro.ac.uk/-
research/helm. 

5. TECHNOLOGY, MODELLING AND APPLICA
TIONS 

Among the Information Technologies (IT) we find today a wide range of 
interesting programs and devices that may facilitate mathematical modelling 
and, in particular, its learning. Sophisticated calculators with high numerical 
and graphical capabilities, advanced mathematical software (Mathematica, 
MuPad, SciLab, Matlab, Maple, Derive,...), graphing programs (CAD, Ca-
bri. Geometer's Sketchpad, Cinderella,...), statistics software (APSS, 
SASS,...), Internet,... constitute interesting materials to be used to make 
either more advanced modelling (without the numerical and visual limita
tions of the recent past) or more professional projects. IT engender a profes
sional approach to work because while secondary level software and calcula
tors are teaching-oriented, university level IT can be used as professional 
tools. 
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In a web environment students may find new experiences in learning, in 
including multimedia elements in their projects (Kadijevich, 2002b), in shar
ing improved interactions with experts, in accessing significant information, 
etc., bearing in mind critical attitudes towards Internet's contents and fight
ing against plagiarism of projects. 

An interesting example of applied mathematics and technology is, e.g., 
the robots competitions made by computer science students in many differ
ent universities (Technion-Israel Institute of Technology, Universitat 
Politecnica de Catalunya,...) where it is necessary to integrate multidiscipli-
nary skills developing a remarkable acquisition of spatial skills, program
ming techniques, use of computers algebra systems, etc. in order to build and 
control robots making concrete performances, Industrial-directed modelling 
courses and computer-based modelling activities are also interesting model
ling courses related to technological issues. 

There are also interesting uses of technology in quantitative literacy 
courses on statistics (e.g., the course "Chance" at Dartmouth initiated in the 
90's. the Web site "Chance and Data in the News", The Chance Web site, 
etc.) as well as in many other university studies like economics, political sci
ences, pedagogy, linguistics, (e.g. in automatic translation). 

6. ASSESSMENT BASED UPON MEASURING COM
PETENCIES IN MODELLING AND APPLICATIONS 

Teaching on modelling and applications opens an excellent opportunity 
for revising the traditional assessment of coursework and written examina
tions and go into the fruitful collection of good assessment practices that 
have been implemented at tertiary level: open tasks, project-portfolios, pro
ject development, journal writing, group project work, comprehension tests, 
self-assessment, interactive testing in the web, achievement tests, attitude 
questionnaires, interviews. There has been a lot of progress in developing 
and evaluating robust methods for assessing all kinds of student project work 
and associated communication skills, e.g., the work done in UK by the As
sessment Research Group (Haines & Houston, 2001). Another tool which we 
can mention is FLAG (Field-Tested Learning Assessment Guide) a Web site 
offer developed by NISE (National Institute for Science Education at Uni
versity of Wisconsin-Madison) where well designed assessment materials 
are available (Ridgway, Swam and Burkhardt, 2001). 

To find a variety of theoretical aspects of assessment as well as many 
practical cases we recommend (Niss, 1993), a volume which originated from 
the ICMI Study dedicated to research on assessment. 
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7. RESEARCH AND LEARNING BY MODELLING AT 
THE UNIVERSITY LEVEL 

There are two different aspects concerning research that we need to men
tion. On one side, research in mathematics education has shown that the 
success of the modelling approach in mathematics at tertiary level does exist. 
For example one of the finding that we can recall here is that there is scien
tific evidence that student learn better in context. Thus the emphasis on con
text, on applied problems, on mathematization of the real world, etc., may be 
a positive step towards learning success. 

On the other side, the so-called research approach to learning has shown 
to be a valuable strategy. When students are involved in open questions, in 
exploratory tasks, on finding data, etc., they become more interested and 
more involved. In this direction applications and modelling at tertiary level 
offers an excellent framework for research oriented activities like project 
based education. Such projects give also the opportunity to be integrated 
with other disciplinary projects in architecture, engineering, social sciences, 
etc. Stimulating initiatives (many of them on engineering education) have 
been recently made (see, e.g., (Perrenet, 2000), http://anaw3.ana.anc.dk/fak-
tekn/fins.htm), e.g., in Technische Universiteit Eindhoven, Universiteit 
Twente, Aalborg University, Roskilde University, Technion-Israel Institute 
of Technology, etc. To assure a high educational quality of university teach
ers we will need to provide adequate training to those entering the profes
sion. Moreover we will need to explore new iniciatives in life-long-leaming. 

REFERENCES 

Crouch, R.M., & Haines, C.R. (2003). Do you know which students are good mathematical 
modellers? Some research developments. Technical Report No.83, Department of Physics, 
Astronomy and Mathematics, University of Hertfordshire. Hatfield: University of Hert
fordshire. 

Crouch, R.M., & Haines, C.R. (2003). Mathematical modelling: transitions between the real 
world and the mathematical model. International Journal of Mathematics Education in 
Science and Technology, accepted for pubhcation 16.9.03. 

DeLong, M., & Winter, D. (2002). Learning to teach & teaching to learn Mathematics. Re
sources for professional development. MAA Notes #57. 

Galbraith, P.L., & Haines, C.R. (1998). Disentangling the nexus: attitudes to mathematics and 
technology in a computer learning environment. Educational Studies in Mathematics, 36, 
275-290. 

Galbraith, P.L., & Haines, C.R, (2000). Mathematics-Computing Attitude Scales. Monographs 
in Continuing Education. London: City University. 

Haines, C.R., & Crouch, R.M. (2003). Ability and competence frameworks for mathematical 
modelling and applications. In H.-W. Henn, & W. Blum (Eds.), ICMI Study 14: Applica-



474 Chapter 4.4 

tions and Modelling in Mathematics Education, (pp. 103-108). Dortmund: University of 
Dortmund. 

Haines, C.R., & Dunthome, S. (Eds.). (1996). Mathematics Learning and Assessment: Shar
ing Innovative Practices. London: Arnold, (with video). 

Haines, C.R., & Houston, K. (2001). Assessing student project work. In (Holton, 2001, pp. 
431-442). 

Heuvel-Panhizen, M. van den (2003). The didactical use of models in reahstic mathematics 
education: An example from a longitudinal trajectory on percentage. Educational Studies 
in Mathematics, 54{\), 9-36. 

Holton, D. (Ed.) (2001). The Teaching and learning of Mathematics at University Level: An 
ICMI Study. Dordrecht: Kluwer Academic Publishers. 

Houston, K. (2001). Assessing undergraduate mathematics students. In (Holton, 2001, pp. 
407-422). 

Izard, J., Haines, C.R., Crouch, R., Houston, K., & Neill, N. (2003). Assessing the impact of 
teaching modelling: some implications. In S.J.Lamon, W.A.Parker, & S.K.Houston (Eds.), 
Mathematical Modelling: A way of life: ICTMAll, (pp. 165-178). Chichester: Ellis Hor-
wood. 

Kadijevich, D. (2002a). Four critical issues of applying educational technology standards to 
professional development of mathematics teachers. Proceedings of the 2nd ICTM. Crete, 
Greece: University of Crete. 

Kadijevich, D. (2002b). Developing multimedia lessons in the pre-service development of 
mathematics teachers. In Mendez-Vilas, A., Gonzales, J.A.M., & Solo de Zaldivar, I. 
(Eds.), Proceedings ICTE2002, Vol I (pp. 460-463). Badajoz : CECT de la J. Extremadu-
ra. 

Krantz, S.G. (1993). How to teach mathematics. A personal perspective. American Mathe
matical Society. 

Niss, M. (Ed.). (1993). Investigations into Assessment in Mathematics Education - An ICMI 
Study. Dordrecht: Kluwer Academic Publishers. 

Perrenet, J.C, Bonhuijs, P.A.J., & Smits, J.G.M.M. (2000)The Suitability of Problem-based 
Learning for Engineering Education, Theory and Practice. Teaching in Higher Education, 
5(3), 345-358. 

Ridgway, J., Swann, M., & Burkhardt, H. (2001). Assessing mathematical thinking via flag. 
In (Holton, 2001, pp. 423-430). 

Shotsberger, P.G. (1999). The INSTRUCT Project: Web Professional Development for 
Mathematics Teachers. Journal of Computers in Mathematics and Science Teaching, 
75(1), 49-60. 
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ing group had already some e-mail exchanges in order to fix a collection of issues to be 
faced. We had a fruitful discussion about them during the ICMI Study and afterwards. In 
this final report I have tried to sum up our main conclusions. 
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Abstract: To discuss mathematical modelling in teacher education requires simplifica
tions of both the concept of modelling as well as of the concept teacher educa
tion. Although there seems to be major obstacles and reluctance to implement 
mathematical modelling into teacher educations, there are several good exam
ples of what can be done and of what has been done. 

1. INTRODUCTION 

During the Study conference in Dortmund, February 2004, several of the 
participants were teacher educators and a handful of the contributions were 
based on teacher education experiences. Consequently, there were plenty of 
occasions to explore different opinions on the concept of mathematical mod
elling and teacher education during the study conference. There was an 
overall agreement that although national curricula around the world might 
propose recommendations towards the use of mathematical modelling and 
applications in teacher education, the perspectives offered on how they could 
be realized are in general not well developed. The emphasis is mostly on the 
rhetoric level and does not define the program of study or the pathways to 
achieving mathematical modelling standards in teacher education. 

The issue of mathematical modelling in teacher education calls for a 
definition: Who are really the "teacher educators?" Teacher education is not 
a coherent body of mutual principles, policies, rules and regulations, and 
content. Not between countries, and not even within countries. To address a 
group of professionals as "teacher educators" is an indistinguishable term, 
which very well might address people from quite different areas or branches 
like psychology, general pedagogy, mathematics and mathematics education. 
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The term teacher education also conceal a variety of levels like pre
school, elementary, middle, lower secondary, secondary, and upper secon
dary. In Northern Europe and possibly elsewhere, we define a school level 
by the name gymnasium. In Sweden this corresponds to grade 10 - 12. All 
together the rubric Mathematical modelling in Teacher education involves a 
vast variety of directions, levels, programs, content, context, and so on - all 
with different emphasizes on the scale from pedagogy and methods to rigor 
mathematics. 

Consequently, just a short chapter can not address all these differences, 
obstacles and possibilities. Both generalizations and simplifications are nec
essary in order to actually arrive to some mutual agreement or understand
ing. The group decided that the phrase modelling normally means "real 
word problems" or "real world situations" both at the elementary and secon
dary level of teacher education, with the difference that such situations or 
problems often requires technology for proceeding through the modelling 
process in the training of prospective secondary mathematics teachers. 

In the call for contributions to the ICMI Study on Applications and Mod-
elling in Mathematics Education, it was stated that mathematics teacher edu
cation programmes rarely include orientations to modelling, and the use of 
the modelling process in mathematics courses. One obstacle towards such 
an implementation could be the limited mathematics background of primary 
school student teachers and the limited time available for mathematics in 
their education. But relevant preparation is rare also for prospective secon
dary teachers of mathematics, as demonstrated by several papers and discus
sions at the conference. Another obstacle could very well be that mathe
matical modelling often requires the use of technology, something many 
mathematicians and mathematics educators who are engaged in teacher 
preparation, might be reluctant to use. 

As reported by Lingeflard in Chapter 3.5.2 in this volume, the situation 
of mathematical modelling in the training of teachers is a complex situation 
and even if there are national curriculum texts like the Swedish compulsory 
and gymnasium curriculum, which emphasizes mathematical modelling and 
teaching of applied problems throughout grades 1 - 1 2 , teacher education 
might very well be slow and resistant to follow. This fact is connected to the 
reality that Mathematical modelling is not a body of mathematical 
knowledge in the same way tha t Calculus or Differential Equa
tions are, but ra ther a small collection of general principles which 
experience nevertheless has proved to be helpful in the process of 
appljdng mathematical know-how to analyze problems tha t arise 
in various non-mathematical disciplines. 
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2. THE SITUATION OF MODELLING IN TEACHER 
EDUCATION 

A review of available literature on modelling, technology and teacher 
preparation, highlight the notion that effective infusion of modelling in 
schools will take place if some form of modelling is provided for teachers in 
the course of their preparation. According to Barron and Goldman (1994), 
the notion of technology's use as a cognitive tool which engages students in 
authentic and challenging modelling tasks should become one of the foci of 
teacher education. Knapp and Glenn (1996) argued that effective modelling 
with the aid of technological tools could enhance teaching and learning and 
therefore should be an integral constituent of teacher education programs. 
According to them, the key component in fostering change is for teacher 
educators to illustrate appropriate modelling activities and technology use in 
classroom and curricula, and for future teachers to have frequent opportuni
ties to practice using mathematical modelling and technology as both the 
learning and teaching means. Hoffmann (1996) argued that schools of 
teacher education can better prepare teachers if university education faculty 
use modelling and technology throughout the teachers' own education. 

The findings of research conducted by Thomas and colleagues (1996), as 
well as Wildmer and Amburgey (1994), substantiate the proposition that 
training of teachers in the use of technology should incorporate modelling by 
instructors in all their courses. Moreover, they specifically suggest that the 
technological training of teachers should be incorporated in content related 
assignments. A number of other research studies have documented the im
portance of modelling and demonstration of technology assisted instruction 
in the context of subject matter preparation of future teachers (Please see the 
reference list of Lingeflard in Chapter 3.5.2 of this volume). See also Chap
ter 2.4 of Doerr in this volume. 

Several participants at the Dortmund conference also claimed that teach
ing modelling and using technology in mathematics instruction requires a 
body of knowledge that is specialized in nature. This knowledge includes 
pedagogical presentations of mathematical concepts using appropriate soft
ware, and problem posing and questioning techniques that motivate produc
tive use of modelling and technology within the learning environment. 
There was no doubt about the fact that use of modelling and technology in 
instruction with the purpose of enriching students' mathematical learning is 
valued by future teachers if they are convinced of their impact on their own 
learning of the content. Therefore, in order for modelling to become a part of 
a teacher's functioning and practice, experiences provided for them in the 
course of their own mathematics learning should assist them in constructing 
an image of the teaching and learning that is enhanced by modelling. 
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The process of education of teachers with the aim of learning mathemati
cal modelling with use of technology should be viewed as a gradual process 
achieved over a long period of time. The relevant knowledge required of 
mathematics teachers can not be met as the result of exposure to modelling 
and different technological tools in just one generic course in instructional 
technology. Instead, modelling and technology should take place within both 
the teachers' content and methods courses. This, in turn, call for collabora
tive efforts, joint planning, and a shared vision of mathematical modelling as 
something useful, beneficial, and valuable in mathematics and mathematics 
methods courses. 

3. GOOD EXAMPLES FROM LITERATURE 

Although the progress of mathematical modelling within teacher educa
tion has been slow, it is not because of lack of resources. Within the English 
speaking community, the ICTMA books content a vastly rich source of good 
examples for different levels and programs in teacher education (for a full 
list of all ICTMA books, see Bibliography in Part 6 of this Volume). The 
books are so far always a selection of papers that has been prepared for and 
presented at the ICTMA conference. Nevertheless, it was not until the vol
ume Mathematical Modelling Courses from 1987, when a section labelled 
Modelling and Schools was entered. The volume Applications and Model
ling in Learning and Teaching Mathematics from 1989 has two interesting 
sections for teacher education, namely applications and modelling at the 
lower secondary level as well as applications and modelling at the upper 
secondary and the tertiary level, together with an emphasis on the fundamen
tal reasons for teaching mathematical modelling and on assessment. The 
volume Teaching of Mathematical Modelling and Applications, published in 
1991, also contains sections on how to teach modelling at the lower secon
dary, upper secondary and tertiary levels. 

In 1993 the volume contained the sections General and Philosophy, New 
Topics and Tools, Case Studies, and Curriculum and Assessment. Assess
ment seemed to be the major theme of the sixth ICTMA conference. I con
sider several of the articles under each category to be useful in teacher edu
cation, especially when talking about the objectives to why teach mathemati
cal modelling. The volume in 1997, Teaching and Learning Mathematical 
Modelling, has under the section Tertiary courses at least two articles on 
courses in mathematical modelling for teacher education. The use of tech
nology in the modelling process also started to be a more frequently dis
cussed topic in the ICTMA books by the end of the 1990's. 
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The 8* ICTMA conference lead to the volume Mathematical Modelling, 
Teaching and Assessment in a Technology-Rich World, with obviously many 
papers concerning the effect on learning and teaching when processing 
mathematical modelling with the aid of technology. I do not exaggerate 
when I claim that each of the papers in this volume could be discussed in 
teacher education, at some level, for some prospective mathematics teachers. 

From this volume and on, each ICTMA volume contents articles, per
spectives, and ideas that easily correspond with mathematics teacher educa
tion at different levels. Sometimes the ideas and problems naturally need to 
be slightly changed or altered and/or translated. 

EXAMPLE 1 

For the interested elementary teacher, or elementary teacher educator, 
there is a whole section in the 11* ICTMA book, called Modelling in the 
Elementary school, and I'm especially fond in the so called Tractor problem 
on page 26 (Lamon, 2003). 
• When the framer drives this tractor from one end of the field to the other, 

will both wheels cover the same distance? 
The text is accompanying by a sketch of a tractor with large rear wheels 

and small front wheels. What is especially interesting with this problem is 
that it essentially describes a situation and gives no particularly hints about 
how to proceed. 

EXAMPLE 2 

For the more advanced prospective elementary or middle school teacher 
in mathematics or for the corresponding mathematics educator, I like to rec
ommend a modelling problem which I have used with quite some success in 
my own teaching. It originates from an idea initiated by Joao Filipe Matos in 
the 8* ICTMA book (pp. 21 - 27). Matos' paper is about the discussion of 
group of students in the 10* grade around a log glass and I have for the most 
occasions transformed the problem into a quite similar problem about an 
hourglass. Imagine an hourglass constructed by two identical conical vessels 
united by their vertices where a small tube is inserted and through which the 
sand is pouring when the hourglass is put upside down. 

Given the volume and height of each conical vessel, as well as the drain
ing velocity through the tube, teacher students can be asked many different 
questions that require them to set up a model of the situation: 
• How fast is the "sand mountain" in the lower conical vessel growing? 
• How is this speed connected to the draining velocity? 
• How would you grade the walls of the hourglass two conical parts so that 

the elapsed time can be readable from both vessels? 
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After my students have done this as an exercise during class hours, or as 
a take-home assignment, I usually distribute Matos article and let the stu
dents discuss similarities and differences between the way they and the way 
Matos' students solved this modelling task. 

EXAMPLE 3 

The idea for this problem was presented at the 9* ICTMA conference. I 
must admit that John Masons plenary lecture gave me so many inspiring 
ideas, that I haven't used all of them yet. Nevertheless, I do have used the 
problem of a tilted Coca-Cola can and of the moving centre of gravity when 
a Coca-Cola can is emptied. I have addressed the following questions to sev
eral prospective secondary teachers of mathematics (Linge^ard, 2002a, p. 
77-78). Please note that the first thing the students have to do is to control if 
the given set of information is realistic: 
• Imagine a regular full Coca-Cola can. The European can hold 0.33 litres 

of liquid, and if drilling a small hole in the bottom of the can and tear off 
the top flap, the Coca-Cola begins to flow out at the rate of 0.5 cmVsec. 
The can is positioned and the hole drilled in a way that enables all the 
Coca-Cola to flow out. 

• The centre of gravity of the system (can + Coca-Cola), which at the be
ginning is located at the centroid of the can, gradually moves downward 
and returns to its central position when the can is empty. 

• Construct a mathematical model that describes this movement of the cen
tre of gravity over time. Illustrate the model with a diagram, and try to 
calculate the lowest possible position of the centre of gravity in the Coca-
Cola can as accurately as possible. 

• When containing a certain amount of Coca-Cola or a similar liquid, the 
can may be balanced on the bottom edge (see Fig. 4.5-1). For what 
amount of Coca-Cola is this performance possible? 

Figure 4.5-1, The balance of a tilted Coca-Cola can. 
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The fact that the centre of gravity moves when a canister is emptied is a 
challenging and engaging concept for teacher students. I claim that this is a 
most engaging problem, and that students who are working on the process of 
creating a mathematical model will most likely be engaged in stimulating 
discussions, moving their mathematical knowledge forward. The problem 
can be given with any sort of canister, but only certain cans can be tilted. 
The article is available online from Teaching mathematics and its Applica
tions. 

EXAMPLE 4 

The following example was published and discussed in the 10* ICTMA 
book. It covers a more realistic problem compared to many other problems, 
at the same time as the very situation becomes more complex and difficult to 
model. But the authors claim some success with using this problem, in a 
modelling course for prospective secondary teachers. 

A modelling situation (from Edwards & Hamson, 1996, pp. 110-111, 
with our additions and modifications). 

X 
A 

% 
B 

Figure 4.5-2. The pollution of a sea 

Fig. 4.5-2 represents a small lake. Although the lake is receiving and los
ing water in different ways, we simplify the situation and say that water 
flows in through stream A and out through stream B. 
At a certain time of the day, as a result of a road accident, a petrol truck 
overturns and spills a toxic chemical into the stream A at position X. 
Thirty minutes later the police and emergency services have brought the 
situation under control, and an unknown amount z (m^) of the toxic 
chemical has leaked into the lake. 

Develop a mathematical model that you can use to predict the concen
tration of the pollutant in the lake at any time and use it to estimate (for a 
range of possible initial pollution amounts z): 
a) The maximum pollution level in the lake and the time at which the 

maximum is reached. 
b) The time it will take for the pollution to fall below the safe level of 

0,05%. 
c) How will your results be affected if a constant rain starts at the same 

time as the accident? The rain covers the whole geographic area. 
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EXAMPLE 5 

I will end this small survey of problems used in mathematical modelling 
courses in teacher education by addressing another source of modelling ex
amples. The problem concern measuring the heart's cardiac output of a per
son taken in for hospital care and reveals some of the mathematics hidden 
behind machines and procedures in everyday life (Linge^ard, 2002b). The 
measuring of cardiac output involves a lot of advanced mathematical con
cepts, such as integrals, differential equations, logarithms, etcetera. The car
diac output problem, and how teacher students act when modelling it, was 
published in The International Journal of Computers for Mathematical 
Learning. This journal can also be reached online. 

So the resources in terms of problems and described experiences are 
there for you - you just have to reach out and get it! 
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MOVING THE CONTEXT OF MODELLING TO 
THE FOREFRONT: PRESERVICE TEACHERS' 
INVESTIGATIONS OF EQUITY IN TESTING 

Katie Makar and Jere Confrey 
University of Queensland, Australia, Email: k.niakar@uq.edu.au / Washington University in 
St. Louis, U.S.A., Email: jconfrey@wustl.edu 

Abstract: Prospective math and science teachers were engaged in interpretation and 
analysis of testing data with the innovative statistical software Fathom'^^. 
Armed with a few basic statistical concepts, their ability to model complex is
sues was correlated with their personal engagement in the process and context 
at the forefront of the modelling activity. 

1. INTRODUCTION 

Modelling activities often neglect a major purpose of modelling: to gain 
insight into a problem context. Commonly, modelling instruction develops 
students' modelling skills first, and then gives them opportunities to apply 
these skills to situations. The major focus is on modelling; the context is 
secondary. In contrast, we chose to move the context to the forefront, assist
ing learners in using modelling as a tool for inquiry. 

A major challenge to widespread use of modelling and applications in 
secondary schools is teachers' unfamiliarity with it. For teachers to use in
novative practices with students, they must have experiences with such prac
tices as learners. We designed a study where prospective secondary mathe
matics and science teachers could gain experience modelling in a compelling 
context. The study was conducted during a course on assessment and data 
analysis at the University of Texas. Many of these teachers plan to teach in 
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Texas where there is significant controversy over the effects of high states 
testing on educational equity. 

Our purpose of bringing the context to the forefront of modelling experi
ences for prospective teachers was three-fold. First, we believed that learners 
who engaged in statistical inquiry with a compelling purpose would gain a 
deeper understanding of data analysis and modelling. Second, we were con
cerned about ways we saw schools interpret data from statewide tests and the 
strategies they used to raise test scores, often at the expense of under-
performing students (Confrey & Makar, 2005); alternatively when testing is 
properly used, it can help ensure learning opportunities for all students. By 
heightening teachers' awareness of the context of accountability, we hoped 
they would be more sensitive to equity issues in testing and advocate for 
more equitable and systemic strategies for improving test scores in their 
schools. Finally, we were interested in strengthening mathematics and sci
ence teachers' knowledge of statistics, experience with modelling and in
quiry, and facility with technology. Our aim was to provide them first-hand 
experience using a student-centered software tool to strengthen their under
standing of basic statistical concepts in a context that would be valuable to 
them as professionals, and to help them understand the opportunities and 
challenges of including modelling experiences for their own students. This 
paper examines preservice teachers' data modelling; other aspects of the 
study are published elsewhere (Confrey, Makar, & Kazak, 2004; Makar & 
Confrey, under review). 

2. BACKGROUND AND STUDY CONTEXT 

The subjects in the study were eighteen prospective math and science 
teachers with varying backgrounds in statistics (half had no previous statis
tics coursework) enrolled in a course on assessment developed by the au
thors, and organized into three parts: an introduction to high stakes testing, 
classroom assessment, and concepts of central tendency and distribution us
ing hands-on activities and explorations; association and basic linear regres
sion including an opportunity to teach these topics at a local high school; and 
guided data inquiries culminating in an independent inquiry. 

We assumed that the process of modelling in a relevant, complex setting 
would promote a richer conception of the statistical concepts of variation, 
distribution, and data comparisons. Content also included descriptive statis
tics, linear regression, and informal inferential reasoning (conditional state
ments, null hypothesis, sampling distributions). The purpose was for teach
ers to use these tools to bring to light issues of equity in testing rather than 
cover a complete course in statistics. The prospective teachers discussed how 
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a particular statistical model could highlight an important issue in interpret
ing test scores. The concept of distribution was a key component of discus
sions, not as mathematical objects, but as tools for inquiry and debate. 

The data analysis software used in the course, Fathom™ (Finzer, 2001), 
was designed for high school and tertiary students to learn statistics by doing 
it, and was software that the prospective teachers could later use with their 
own students. Fathom was central to allowing the teachers to experience sta
tistical inquiry as learners before employing inquiry-based instruction. 
Unlike most statistical packages that act as a black box (data in, results out). 
Fathom is a dynamic statistical package that allows for a more visual, less 
formal approach to data analysis. Users can quickly create linked graphs, 
developing inferential reasoning by checking hunches without formal statis
tical tests. For example, if economically disadvantaged students are selected 
(Fig. 5.1-1, bar graph) in a graph of authentic data from a local middle 
school, these same students' data are highlighted in another graph (dot plot) 
showing their mathematics scores on the Texas Assessment of Academic 
Skills (TAAS). This display shows test performance widely distributed for 
economically disadvantaged students, countering assumptions that students 
from low socio-economic backgrounds do poorly in school. 
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Figure 5A-L Student mathematics scores on TAAS with 
economically disadvantaged students highlighted 

The prospective teachers had multiple opportunities to create conjectures, 
interpret data relationships, and develop facility with features of the software 
in shorter semi-structured inquiries throughout the semester. At the end of 
the course, they conducted a three-week, independent inquiry into a specific 
area of interest in testing and accountability related to equity. Topics of eq
uity, diversity and assessment were major objectives in the teacher prepara
tion program, so this task related directly to what was expected of prospec
tive teachers. In addition to their oral presentations and written reports, re
search data included a prepost test of statistical concepts, video-taped data 
investigations, classroom discussions and observations, and artifacts col
lected from their self-designed data-based inquiry. 
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3. RESULTS AND DISCUSSION 

This section will look at relevant class activities, results of pre-post tests 
in statistical content, and the relationship between the context of the teach
ers' modelling experience and their facility to create statistical models. 

The context of equity in testing was uncomfortable for these prospective 
teachers. Since this was a major course theme, they were frequently asked to 
consider their own tacit beliefs through discussions and reflection papers. 
Initially, discussions were met with silence or safe statements repeating 
claims of class readings. Issues of race were especially marginalized or 
avoided. Many of the prospective teachers revealed strong stereotypes that 
they struggled to both articulate and overcome. In comparing gender per
formance on a mathematics test, for example, statements like "Well, boys 
are better than girls at math, right?" revealed one such stereotype. Overall, 
they struggled to see that these hidden stereotypes, through socialization or 
underestimation of ability, could lessen opportunities for girls or minorities 
to have access for advanced coursework in mathematics. 

In this heated context, statistical modelling tools provided an analytic en
vironment to deepen conversation about controversial issues. By diverting 
challenges from personal beliefs about race, gender, and economic status to 
the ability of a model to address these ideas, emotional tensions were low
ered. Many of the teachers who were themselves members of a racial minor
ity group were keenly aware of the issues and found voice in having the 
tools and opportunity to examine questions of burning interest to them. 

The prospective teachers showed improved understanding of statistical 
concepts between the pretest at the beginning of the course and the posttest 
at the end (tn = 10.8, p < 0.01), likely as a result of class instruction and mul
tiple experiences interpreting data. Performance on the post-test is one 
measure of understanding, but the teachers' modelling ability in practice was 
of greater interest. We report on the teachers' project presentations and 
document factors showing an impact on their success in creating robust 
models as evidence for their findings. We also report the difficulty they had 
combining inquiry, data analysis, and articulating issues in equity. For ex
ample, many teachers regressed to comparing simple percentages or display
ing data tables in then* projects, while in structured settings (prepost test, in
terviews) they demonstrated greater facility with statistical concepts. This 
suggested to us the importance of engaging in open-ended investigations 
multiple times to develop confidence integrating these skills. 

Three aspects of the inquiry projects were investigated to determine what 
factors may have correlated with the quality of the prospective teachers' 
models: statistical content knowledge (post-test), quality of model developed 
in conducting a short investigation with the software, and level of personal 
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engagement with their inquiry topic. With regard to the first aspect, it was 
conjectured that the content knowledge of the teachers would be a major fac
tor in their ability to develop a robust statistical model to support their find
ings. Surprisingly, there was no correlation (r = 0.04) between performance 
on the post-test and model quality. This suggests that statistical understand
ing, beyond a basic level, did not explain differences in their modelling abil
ity in a complex context. 

At the end of the course, the prospective teachers conducted a semi-
structured investigation of test data using Fathom; all of the teachers demon
strated proficiency with using the software during these interviews. We 
wondered whether model quality for the open-ended inquiry project could be 
predicted from the quality of model developed as evidence for the semi-
structured investigation. Correlation between model-quality for the semi-
structured investigation in Fathom and the open-ended inquiry project, how
ever, was not significant (r = 0.29, p = 0.24). This suggests that model qual
ity in a well-structured problem does not necessarily transfer to an ill-
structured problem context (Makar & Confrey, under review). 

Finally, the choice of topic and engagement with the project was investi
gated as a factor in the quality of the teachers' models. Topics included the 
effects of small student subgroups, issues race or class, political issues (e.g. 
school funding), comparison studies (e.g. urban vs. suburban districts), and 
school case studies. Although no systematic differences were found between 
choice of topic and the quality of model constructed, there was a significant 
relationship between the level of engagement in the inquiry project and the 
quality of the model (r = 0.58, p = 0.01). Overall, those prospective teachers 
who were less personally engaged in the topic were less likely to make use 
of powerful statistical concepts involving variation and distribution in their 
models, relying instead on tables, summary statistics, and static displays in 
presenting their findings. The results suggest that for some teachers, regard
less of previous statistical experience, the opportunity to investigate data 
with a compelling question stimulated stronger uses of statistical modelling. 
This is particularly poignant in the cases of three minority women who in
vestigated very personal issues related to their own race, and developed 
some of the highest quality models in the class even though they had among 
the lowest scores on the statistics posttest. The evidence provided by these 
cases is an indication that strong personal engagement with the equity topic 
was a potent motivator for them to use more sophistocated statistical tools in 
their inquiry. 
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4. CONCLUSION 

In this paper, we showed how the interaction of a compelling context, 
software-based modelling experiences with authentic data, and statistical 
content knowledge enabled teachers to enhance their understanding of all 
three of these areas. As with many projects on modelling, we struggled in 
creating a balance between contextual factors and technical ones. A major 
value of selecting the context of equity in student achievement is that the 
prospective teachers had many strong, tacit beliefs about the issue. In this 
context, the statistical tools gave the teachers a way to objectively explore 
some of those unspoken beliefs, make them more public, revise them, and 
hear the opinions of others. The complexity and relevance of the modelling 
context provided the mutual benefit of providing teachers a deeper under
standing of statistical concepts as they developed a critical eye towards iden
tifying equity issues in school testing. 

Usually in school mathematics, the activity of modelling is a way to high
light a mathematical topic. The context being modeled is irrelevant to this 
process. The modeler usually has no personal stake in the context and little 
interest in gaining insight into it. In an environment where the context was 
on the forefront of the modelling, the introduction of statistics embedded in 
the process of better understanding the context was more natural and the 
context diverted attention away from teachers' fears of modelling and statis
tics. This kept the focus on equity while statistical concepts were being em
ployed as tools to investigate claims of bias or difference between student 
subgroups. One could say that the purpose of modelling is to describe com
plex phenomenon, the context for which the model is meant to provide in
sight. We offer this study as a contrasting case to many approaches to mod
elling in mathematics where the use of context gives relevance, motivation 
and purpose to the pursuit of mathematics. 
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MODELLING IN ONTARIO: SUCCESS IN 
MOVING ALONG THE CONTINUUM 

Christine Suurtamm and Geoffrey Roulet 
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Abstract: From the research presented on mathematical modelHng at ICMI-Study 14, it 
appears that modelling is occurring in isolated cases in classrooms around the 
world. In Ontario, Canada, however, modelling is embedded as a system-wide 
focus in secondary school mathematics education. This paper discusses the de
velopment and implementation of modelling in the province and describes the 
"levers" that make the development and implementation of a modelling cur
riculum possible and the "barriers" and challenges that are being addressed. 

1. INTRODUCTION 

Several research papers presented at the ICMI-Study 14 Conference on 
Modelling and Applications, show that, internationally, modelling is happen
ing in isolated cases. A number of the papers report activities in particular 
classrooms that were sites for focussed research (Burkhardt, 2004; Kaiser & 
MaaB, 2006; Lege, 2004). In Ontario, Canada, we have moved beyond this 
with progress to a system-wide focus. Modelling, presented in the Ontario 
curriculum as the core activity of the inquiry process by which mathematics 
is to be developed, occurs, to some degree, in all secondary (ages 14-18 
years) classrooms in the province. Modelling as a curriculum focus has had 
strong support from the leadership of the mathematics education community 
as well as the Ministry of Education through official curriculum statements 
and the provision of professional development and teaching resources. Many 
teachers embrace the idea of modelling activities in their courses, but the 
implementation process has some difficulties. It is important to explore the 
"levers" for change, the "barriers" presented, and the methods that have 
shown some success in overcoming barriers (Burkhardt, 2004). 
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2. EVOLUTION OF THE CURRICULUM 

Over the past two decades, secondary school mathematics curriculum 
guidelines in Ontario, Canada (Ontario Ministry of Education [OME], 1985, 
1999, 2000) have suggested that classroom practices should involve both 
modelling and applications. The introductory "process components" section 
of the 1985 curriculum guideline (OME) contained sections titled "Applica
tions" and "Mathematical Models", and asserted that "applications shall be 
interspersed throughout the program" (OME, 1985, p. 19). Moreover the 
document suggested a movement away from the traditional lesson and unit 
sequence of "pure" mathematics study followed by applications (Hersee, 
1987) to one in which "skills and concepts should be related from the begin
ning, to their applications" (p. 18). To that end, the guideline presented a six 
step modelling sequence: problem identification, production of a simplified 
real model, translation into mathematics, manipulation of the mathematical 
model, re-interpretation and testing in the real setting, and possibly refine
ment through a repeat of the cycle. This picture of modelling mirrored and 
expanded upon schemes presented by others arguing for mathematical mod
elling as part of the school curriculum (Blum & Niss, 1989; Galbraith, 1987; 
Hersee, 1987; Swetz & Hartzler, 1991). 

The 1985 guideline, however, was critiqued for its failure to carry the 
progressive messages of its introductory pages into the list of content objec
tives for the courses, and it was predicted that this disconnect would lead to 
limited adoption of modelling and applications (Baumgart, 1985; Pravica, 
1983). To some extent these fears were borne out for, ten years after the new 
curriculum's introduction "there was little evidence to suggest that teachers 
were making problem solving a focus of their lessons" (Haimes, 1996, p. 
26). Applications were still appearing as end-of-unit activities, explored after 
isolated study of the related mathematical concepts. 

Although the individual content objectives of the 1985 mathematics cur
riculum did not specifically call for modelling, the vision of the curriculum 
as a call for problem solving, as well as new paradigms of teaching and 
learning, inspired several creative teachers to design activities that began 
with rich problems and engaged students in mathematical investigation. 
These starting points generated the need for the creation of models, setting 
the stage for new mathematics learning via an emerging inquiry approach 
(Clark, 1995; Dewey, 1994; Montesanto & Zimmer, 1994). Coupled with 
this, a growing group of leading teachers elaborated on the curriculum's 
brief mention of technology, and began employing calculator and computer 
based graphing utilities to support the exploration of functions and the mod
elling of natural phenomena (Ontario Association for Mathematics Educa
tion, 1998; Roulet, 1994). Taken together, the innovative activities and use 
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of technology created a growing phenomenon across the province and the 
1985 - 1999 experience meant that Ontario had a group of mathematics edu
cators with classroom experience in modelling who were committed and 
willing to lead the development and implementation of modelling activities. 

In 1996 the Ministry of Education announced its intention to revise the 
secondary school curricula and as the initial step in this process commissio
ned the writing of a background research paper. This paper reiterated the 
need to move from a traditional curriculum pattern, where "applications or 
problems are placed at the end of a sequence or unit and are addressed after 
students have developed skill in the particular solution methods to be em
ployed" (Roulet, 1997, p. 3), to a "problems-first" structure. In this proposed 
curriculum, units of study would begin "with an investigation of a problem 
setting and through a modelling activity develop" (p. 3) new (for the stu
dents) mathematical concepts and procedures. The ideas expressed in the 
background paper reflected the 1985-1999 work that had been done to pro
mote applications and modelling by leaders in the mathematics education 
community. Further, for this round of curriculum reform the government 
chose a curriculum writing team largely populated by educators who had 
been developing classroom modelling activities and employing technology 
in the spirit of the 1985 guideline's introductory pages. The final version of 
the curriculum reflects the views held by this distinct group of mathematics 
educators. 

The mathematics guidelines issued by the Ontario Ministry of Education 
(1999, 2000) present a curriculum that focuses on modelling, the use of 
technology, conmiunication in mathematics, learning through inquiry, and 
the use of investigations in which students explore new problems in unfamil
iar settings. These curriculum documents move significantly beyond the pre
vious versions by not only addressing modelling and investigations in the 
introductory text, but by also reinforcing these themes within the statement 
of the specific course expectations. For example, students in grade 9 will 
"use algebraic modelling as one of several problem-solving strategies in 
various topics in the course" (OME, 1999, p. 11) and those in grade 11 will 
"determine, through investigation, the periodic properties of various models 
of sinusoidal functions drawn from a variety of applications" (OME, 2000, 
p. 24). In accomplishing such tasks, students will "collect, organize, and ana
lyse data, using appropriate techniques and technology" (OME, 1999, p. 21). 
Investigations, modelling, applications, and the use of graphing calculators 
and computers are now required classroom experiences. 
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3. IMPLEMENTATION 

As the new curriculum was brought forward, the Ministry of Education sup
ported implementation through the provision of resources, professional de
velopment, and financial support for the creation of new textbooks and the 
purchase of the necessary technology. Significant efforts were made to assist 
teachers in the use of technology and the implementation of modelling ac
tivities. Yet, these supports did not necessarily address the conflict between 
the new curriculum's image of mathematics and the vision of many teachers 
in the field. Consequently, many teachers adapted the activities and incorpo
rated them into their existing pedagogical practices. Hence, in many cases, 
mathematical activity was more closely aligned with "application" of previ
ously studied concepts and procedures rather than "modelling" (Roulet & 
Suurtamm, 2004). 

Although adoption of modelling occurred in most courses by some teach
ers; one setting, a new Grade 12 Mathematics for Data Management course 
(OME, 2000, p. 48) has witnessed teachers readily adopting and implement
ing modelling as a focus of instruction. In this course, students define a prob
lem that they would like to explore; determine how they would investigate 
the problem; collect or find the necessary data; analyze the data and present 
the findings. Ontario mathematics curricula had never before presented such 
large tasks to students or required teachers to think about how to support 
their pupils as they tackle such wide-ranging projects. As well, mathematics 
topics such as: statistics, iteration, database organization, flowcharting, 
graph theory, networks, and coding appeared anew or in greater depth than 
in previous Ontario curricula. Because much of the course content and peda
gogical approach was new for teachers, this course received extensive sup
port through the creation of resources and professional development oppor
tunities (Brock University; Dalrymple & Dilena, 2002; Roulet, 2002; Statis
tics Canada). 

To meet the challenges of the new content and pedagogical approach of 
this course, teachers attended professional development workshops. These 
workshops provided experiences of exploring new content through model
ling activities, reflecting what teachers could be doing with their own stu
dents. Since the content was unfamiliar to the teachers, they had the positive 
experience and saw the value of learning through modelling. This, in turn, 
had a strong impact on their own pedagogical approach in teaching the 
course. Furthermore, as teachers engaged in new learning with their students, 
and explored problems together, teaching and learning became a reciprocal 
process (Simon, 1995). As others have noted, when teachers, themselves, 
develop new mathematical knowledge through investigations, and when 
their epistemological views are challenged, the implementation of modelling 
is enhanced (Makar & Confrey, 2004; Roulet & Suurtamm, 2004). 
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4. CONCLUSION 

There are several "levers" that helped to support the development and 
implementation of modelling in Ontario as well as several "barriers" to meet. 
One of the major challenges is that of confronting teachers' conceptions of 
mathematics (Roulet, 1998; Roulet & Suurtamm, 2004; Suurtamm, 2004). In 
fact, changing beliefs about what mathematics is and how to teach it requires 
new and different experiences, for changes in official curriculum documents 
do not necessarily result in changed teacher practice (Makar & Confrey, 
2004). Since teachers often teach in ways that they were taught, they need to 
personally develop an understanding of new mathematical concepts through 
the processes of investigation and modelling for it to have meaning for them. 

Several factors help to support the development and implementation of 
modelling in Ontario and to overcome some of the challenges. Since 1980 
the vision of a modelling curriculum has been shared and nurtured by the 
leadership of the mathematics education community and supported by the 
Ontario Ministry of Education. The 1985 guideline that invited teachers to 
develop mathematical inquiry and modelling provided fertile ground for ex
perimentation to occur. Further to this, the extensive period of exposure and 
gestation during which teachers developed and shared new ideas allowed 
momentum to build. As well, professional development that engaged teach
ers in new mathematics learning through problem solving and modelling 
activities helped to ground teachers in new pedagogical approaches. Thus, 
positive progress on both the official intended curriculum and implemented 
curriculum has been possible because of the synergy generated by a common 
vision that is imbedded in curriculum documents, is supported by the provi
sion of technology, professional development and resources; and is experi
enced by teachers as they themselves engage in mathematical inquiry. 
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IMPLEMENTATION CASE STUDY: 
SUSTAINING CURRICULUM CHANGE 
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Abstract: An Australian study is being undertaken into influences on the sustaining of 
curriculum change designed to place real-world mathematical applications and 
modelling centrally within mainstream senior secondary mathematics curricula. 
Conditions that impeded or sustained this curriculum change in two Australian 
are currently being investigated. Findings from the implementation in one of the 
states are presented. 

1. INTRODUCTION 

According to Niss (2001, p. 85), "It is still the case, in general interna
tional terms, that genuine and extensive applications and modelling perspec
tives and activities continue to be scarce in the everyday practice of mathe
matical education." In Australia each state has its own education system with 
distinctive curriculum and assessment policies. Several Australian states 
have attempted to include these topics more centrally within their curricula. 
An on-going study described in Stillman (2004) is being conducted into the 
implementation of applications and mathematical modelling curricula in two 
states (Victoria and Queensland) where the path of curriculum change has 
been different with markedly different outcomes. McBeath (1995) points out 
that "much of the literature [on educational change] recognises the variabil
ity and liquidity of individual situations, and the difficulty of determining a 
single model to suit all." Even in reforms, with the same focus such as im
plementing mathematical modelling curricula at the upper secondary level, 
"it must also be [recognised that] the dynamics of each innovation" are 
unique; however, some of the lessons learnt in such implementations, 
whether successful or not, will be of benefit to planners in other systems. 
Some findings from the Victorian case study are presented here. 
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Research into, and knowledge about, applications and mathematical 
modelling within the informed conmiunity has reached a state of maturity 
where it has akeady been demonstrated that these approaches are possible at 
the senior secondary level, their inclusion is defensible and interesting case 
studies with teacher enthusiasts show they work. Now it is important that we 
move on and look more globally at why there is still a difficulty sustaining 
applications and mathematical modelling centrally within mainstream cur
ricula in many countries. To do this we need to look more broadly at educa
tional change not just within mathematics. 

2. BACKGROUND 

The changes to the post compulsory mathematics curriculum in Victoria 
came with the reform of secondary schooling at this level as a result of the 
Blackburn Report (1985). The Higher School Certificate Course Description 
for mathematics (VISE, 1985) included special emphasis on students becom
ing familiar with the basic steps of mathematical modelling but this was just 
one of a proliferation of mathematics courses and certificates existing at this 
level at the time. In 1986, the document. Future Directions in Post Compul
sory Schooling, foreshadowed that in the curriculum redesign there would be 
only one certificate for all students and there would be a mix of school, 
moderated and external assessments in all subjects - a break from the tradi
tional formal written response external examinations that existed. 

In mathematics, an innovative curriculum (VCAB, 1988) incorporating 
"problem-solving and modelling activities...intended to provide students 
with experience in using their mathematical knowledge in creative ways to 
solve non-routine problems" (p. 24) and investigative projects which could 
be "an extended mathematical modelling exercise to solve a real-world prob
lem" (p. 27) commenced formal implementation by a limited number of 
schools and education providers in 1989. This was "a significant attempt to 
promote the teaching of mathematical modelling and investigations in 
schools" (Stacey, 2001, p. 47) through the formal assessment of problem 
solving and modelling in high-stakes assessment. State-wide implementation 
began in 1990 at Year 11 and Year 12 in 1991. 

Four centrally designed Common Assessment Tasks (CATs) were intro
duced for Year 12. An Investigative Project on a centrally determined theme 
and a Challenging Problem selected from centrally set problems were under
taken over 4 weeks and 2 weeks, respectively. The latter task was part of a 
problem solving and modelling work requirement. Both tasks were initially 
school assessed using centrally developed criteria contributing 50% of the 
final result. The other two tasks were end of year examinations. At the end 
of 1992 the Challenging Problem was eliminated as a common assessment 
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task due to "concerns over authentication of student work" and the tendency 
of such concerns "to erode the credibility of the assessment of problem solv
ing" (VCAB, 1993, p. i). 

Throughout the decade following its introduction the investigative as
pects of the mathematics curriculum, and consequently the scope for model
ling, became more restricted (McCrae, Dowsey, & Stephens, 1998), contrib
uting less and less to final assessment. These changes were needed "refine
ments to optimise economies of implementation and the demands on student 
and teacher time" as well as "to increase confidence in the authorship of stu
dent work" (Barnes, Clarke, & Stephens, 2000, p. 647). Changes to the Vic
torian Certificate of Education (VCE) (BOS, 1999) implemented in 2000, 
where teachers set their own school assessed coursework with only sug
gested themes and data sets being provided by the central authority, led all 
but to the demise of modelling in many schools. According to Stacey (2001), 
these changes signalled the end of "a bold experiment of assessment driven 
change and a real focus of problem solving and modelling" (p. 48) in the 
senior curriculum. The revised Mathematics Study Design (VCAA, 2005) to 
take effect in 2006 is not reversing this trend although it remains "an under
lying principle of the Mathematics study that all students will engage" in 
mathematical activities that include "situations which require investigative, 
modelling or problem solving approaches" (p. 7). 

3. THE STUDY 

Following an examination of extant curriculum documents and materials 
from the 1980s onwards, purposeful samples of 6 key curriculum figures 
[KCG] (e.g., members of expert advisory committees or curriculum 
managers for the statutory board), 6 teachers in key implementation roles 
[KTG] (e.g., as seconded project officers for the statutory board, state or 
regional chairs of verification panels) and 6 classroom teachers [CTG] were 
selected and participants interviewed using tailored semi-structured inter
view schedules. All were asked about their experiences during the change 
and subsequently and about their beliefs regarding conditions that promoted 
or hindered the introduction and ongoing use of mathematical applications 
and modelling in upper secondary classrooms in the state. Practising teachers 
were also asked about the impact of the changing role of applications and 
modelling in the various mathematics Study Designs on their teaching and 
assessment practices. Classroom artefacts (e.g., tasks) typifying their current 
practice in the area of mathematical applications, and modelling at the upper 
secondary level were also collected. 

A grounded theory approach to data analysis was taken using the 
reformulated method of Strauss and Corbin (1990). Data were analysed 
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using NUD.IST software (QSR, 1997) to identify central ideas and represent 
ttiese as fully defined categories. The identification of influences on change 
and conditions impeding and sustaining curriculum change in this area was 
the goal of this analysis. 

4. SUSTAINING IMPLEMENTATION 

A number of possible influences on whether the change in the Victorian 
curriculum would be able to be sustained were investigated. These included 
(a) how teachers were positioned as professionals by the implementing au
thority and implementation model used (e.g., externally induced change with 
participant involvement); (b) pressures from conservative political groups 
(e.g., general public, parents, teachers, academics); (c) considerations of dis
cipline oriented versus whole curriculum approach to curriculum change 
(e.g., system-wide assessment requirements); and (d) changes in society 
(e.g., desire for equity with respect to socio-economic status). Two of the 
major conditions that threatened the ability of the Victorian system to sustain 
the change were (a) the extent of the change and (b) the pace of the change. 

The extent of this change was "massive" on several levels. Initially, only 
three subject disciplines including mathematics were involved in the new 
curriculum design trials in a few schools but when the new VCE was imple
mented state-wide all subject disciplines came on board at the same time 
firstly in Year 11 then Year 12. Thus the change was system-wide and it was 
to be "a curriculum structure and framework that would apply in all areas but 
would be common" [KCG2; i.e, person no. 2 of the researcher selected Key 
Curriculum Group]. This had implications for in-servicing of teachers about 
the practicalities of the change and the rationale for it, the amount and cost 
of resources and support needed, and the accessibility of those resources or 
supporting mechanisms for teachers once the change began. For example, a 
university course on mathematics and modelling designed to update and re
new the mathematical knowledge of teachers of the new VCE mathematics 
was instigated at the request of the Victorian government. Unfortunately, its 
major impact was limited to the two years before the VCE was fully imple
mented as there were "very big groups until the VCE came in.... The people 
who prepared early were well prepared but the people who didn't realise 
what was going to hit them were actually too busy.... they couldn't come 
because they were too busy doing the VCE" [KCG6]. The system wide 
change also meant solutions to issues arising (e.g., authenticity of student 
work or comparability of teacher assessed work) could not be solved only 
within a particular discipline. All discipline areas had to address issues or the 
whole system remained threatened. "We were basically told that maths had 
got it right and it was working well. They weren't upset about us but they 
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were a bit worried about the cheating in the other areas...Maths was okay, 
but the others were having to look at what they were doing. And suddenly it 
was all gone, no more of this extended stuff, everything had to be done in 
class in a few periods and all this extended stuff went" [KTG5; i.e., person 
no. 5 of the researcher selected Key Teacher Group]. 

Within the mathematics curriculum itself the extent of change expected 
was enormous with various interviewees describing it as "a radical change" 
[CTGl; i.e., person no. 1 of the researcher selected Classroom Teacher 
Group; CTG6], "a revolution" [KTG5], "a huge shock" [KTG4], a need to 
"shift ground" [CTG2], "a big challenge" [CTG5], "the biggest change" 
[KTG6] and "in many ways it was so very progressive change" [KCG3]. Li a 
sense there was a need for teachers to spend some time "re-constructing 
what they think mathematics is" [KCG3] as this was the type of debate that 
informed the changes. 'There was the relevance question, but that was ad
dressed not just through problem solving, but also through investigations that 
other people were proposing as being a valid way of doing mathematics but 
there was also a sense that we were trying to have students be mathemati
cians and that was the message that the modellers were bringing to the dis
cussion. Let's engage students in being mathematicians and in doing mathe
matics, not just regurgitating other people's maths" [KCGl]. And this 
change was to be central to the curriculum and "all of the kids are going to 
do problem solving and modelling" [KCGl] not just some. There was also 
"a real re-conceptualisation of the curriculum" [KCG3] as initially there was 
a quite different curriculum structure of subjects based on one particular area 
of mathematics similar to curricula in the United States. It was "very broken 
down into specific areas of study as opposed to what we have always had 
which is a more integrated approach in our curriculum" [KTG6]. In addition, 
teachers' judgements now were to play a vital role in high stakes assessment. 
"A state wide verification model meant that every teacher was involved in a 
discussion with other teachers and a chair. So there was clearly a big payoff 
in time to reflect upon and talk about what was a good CAT" [KCG5]. How
ever, for teachers who focussed on "delivering a course to get the results for 
their students" it had to be seen that "the time spent doing the mathematics 
[in these tasks was] paying off in covering and deepening understanding of 
key content that the students will later be examined on" [KCG5]. 

The pace of the change to the curriculum in Victoria also threatened its 
sustainability. Radical change needed time to evolve and allow expectations 
for changed practice to develop so there was a lasting change in the culture 
of the teaching profession and a genuine renewal of practice. However, 
"there was never sufficient allowance made for the fact that the teachers 
really did need a couple of years to get used to it" [KTG3]. The implementa
tion of the mathematics curriculum was into review almost as soon as it be-
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gan. The chair of the Review of the Mathematics Study Design in 1991 is 
reported as having said, 'These sorts of seismic changes take ten years. Vic
toria is moving faster than any other state has thought of moving and proba
bly faster than it should safely be" [KCG5]. Thus, "the normal process of 
trying something, finding out what is not so crash hot and then refining it 
progressively never got applied to the version 1 of the VCE. And I do think 
if we'd had time to go through that process, not responding to the political 
elements discussion, people not getting so absolutely nervous about it, some 
of those things would have been developed in a much more sustainable way 
without the need to make radical interventions" [KCG3]. 
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Abstract: Learners' and teachers' engagement with the mathematical modelHng of social 
issues is the focus of this chapter. It is contended that the mathematical model
ling behaviour of both learners and teachers is dominated by mathematical 
modelling as a vehicle for "entry into mathematics". This, it is suggested miti
gates against the development of a "mathematical temper". It is reconmiended 
that more emphasis be placed on mathematical modelling "as content" which 
would open windows of opportunity to deal with social issues in school 
mathematics. 

1. INTRODUCTION 

It is widely accepted that school mathematics curricula across the world 
do not vary much and have more similarities than differences. With differing 
emphases and purposes Mathematical Modelling is a feature of the school 
mathematics curriculum of most countries. In South Africa the intended in
corporation of mathematical modelling in school mathematics is captured in 
both the Mathematics and Mathematical Literacy syllabi for the last three 
years of schooling. For Mathematics it is stated that "An important purpose 
of Mathematics in the Further Education and Training band is the establish
ment of proper connections between Mathematics as a discipline and the ap
plication of Mathematics in real-world contexts." (Department of Education, 
2003(a), p. 10). Similar intentions are expressed in the curriculum for 
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Mathematical Literacy as evidenced in the following statement "Mathemati
cal Literacy will develop the use of basic mathematical skills in critically 
analysing situations and creatively solving everyday problems." (Department 
of Education, 2003 (b), p. 9). Explicitly mathematical modelling must be 
utilised as a mechanism to contribute towards the goal of general education 
stated as the development of "a participating citizen in a developing democ
racy [who has] a critical stance with regard to mathematical arguments pre
sented in the media and other platforms." (Department of Education, 2003 
(b), p. 9). This, it can be argued, requires that in their school mathematical 
experiences learners engage with the modelling of issues of social import. 
Concommitant with this requirement is an imperative, amongst others, that 
prospective and practising teachers be prepared to incorporate the intricasies 
of the mathematical modelling of social phenomena in their teaching and 
that classroom teaching experiments be conducted to provide empirical evi
dence of the possibilities on how instruction can proceed to make the in
tended expression of the curriculum desire a reality. It is within this impera
tive that this chapter is situated. 

2. THEORETICAL COMMENT 

Since at least the late 1960's and early 1970's there has been debate 
about how mathematical modelling should be handled in teaching situations. 
Problem presentation, the purpose of modelling teaching and contextual au
thenticity are the most important issues around which the debate revolves. 
Central to the debate is whether mathematical modelling should be used as a 
vehicle for the development of mathematics or treated as content in and of 
itself. A common notion associated with mathematical modelling as a vehi
cle is that mathematics should be represented in some context. The purpose 
for embedding mathematics in context is not the construction of mathemati
cal models per se but rather the use of contexts and mathematical models as 
a mechanism for the learning of mathematical concepts, procedures, conjec
turing and, at times, developing context-driven justifications for obtained 
conjectures. Mathematical modelling as content entails the construction of 
mathematical models of natural and social phenomena without the prescrip
tion that certain mathematical concepts, procedures or the like should be the 
outcome of the model-building process. It also entails the scrutiny, dissec
tion, critique, extension and adaptation of existing models with the view to 
come to grips with the underlying mechanisms of mathematical model con
struction and the assessment and evaluation of constructed mathematical 
models. Regarding problem presentation in the modelling-as-vehicle view 
the problem is stated in the language of some reality situation and the 
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mathematics to be applied is obtained from the cues and clues. In the model
ling-as-content view the reality situation is the starting point and the mathe
matical problem has to be constructed. This characterization of the mathe
matical modelling debate is, of course, an idealization and it is best to regard 
the two views as the extremities of a continuum. The authenticity, in the 
sense of how professional and adept applied mathematicians and modellers 
first encounter a problem situation to be mathematically treated, of problems 
decreases as there is movement from the modelling-as-content pole. The 
classroom teaching experiment related to learners engagement with mathe
matical modelling and the engagement of practising teachers with it were 
more towards modelling-as-content pole. 

3. A TEACfflNG EXPERIMENT IN A SOUTH AF-
RICAN SCHOOL 

For the most part of schooling in South Africa, modelling was limited to 
very basic word problems. De Villiers (1994, p. 34) describes the traditional 
status quo in South Africa as follows: 

The secondary school curriculum has traditionally focused almost exclu
sively on developing pupils' manipulative skills (e.g. simplifying, factor
izing, solving equations, differentiation, etc.). This focus was in part due 
to the pervasive belief among teachers (and curriculum developers?) that 
such technical skills were essential prerequisites for problem solving 
and mathematical modelling, and therefore had to be mastered. 

In order to gauge the South African learners' use of modelling strategies 
a teaching experiment was conducted with Grade 10 learners. They were 
given a situation dealing with a social issue that was highlighted in various 
media in South Africa. The situation they were confronted with was: 

In a developing country like South Africa, there are many remote villages 
where people do not have access to safe, clean water and are dependent 
on nearby streams or rivers for their water supply. With the recent out
break of cholera in these areas, untreated water from these streams and 
rivers has become dangerous for human consumption. Suppose you were 
asked to determine the site for a water reservoir and purification plant so 
that it would be the same distance away from four remote villages. 
Where would you recommend the building of this plant? 

The learners had experiences with Geometer's Sketchpad and were sup
plied with a pre-constructed diagram, both on paper and on the computer. 
Rather than immediately starting with Sketchpad (a dynamic geometry soft-
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ware), the learners were asked to attempt to find a solution on their own, us
ing any previous knowledge. 

All of the learners "guessed" a solution somewhere in the "middle" of the 
quadrilateral, but none could find an adequate solution. More importantly, 
very few of them tried to test their suspicion of "somewhere in the middle". 
This extract below from an interview with one learner (see below) was typi
cal of several interviews. 

R: Where do you think that we should build the reservoir? 

L: .. .don't know ... all we are only given is this diagram ... 

R: Do you think that you will be able to find the most suitable point? 
You can use any method you know, to do so. 

L: I don't know sir ... this is too difficult... please don't interview me 
(pleading) 

R: Are you saying that you cannot find any way of solving this prob
lem? 

L: I can't ... I'm not so good in maths ... maybe at the centre here 
(pointing to the middle of the quadrilateral). 

The learners seemed to feel that this type of question was not within their 
ability to solve and in some cases the learners explicitly said that this was 
because this type of question had never been taught or asked of them and 
thus displayed a "learned helplessness'' that is, a hesitancy to attempt unfa
miliar problems. The hesitancy of the learners to deal with seemingly unfa
miliar problems is aptly sunmiarized by a learner's comment that: "We 
didn't do this in class before ... / can't do itr 

The verification strategy a few learners resorted to was construction and 
measurement. As one learner asserted after offering a guess that the reservoir 
be placed in the middle **It's easy to understand"' and "Ya ... can I measure 
with my rulerT However, after finding that the measurement strategy con
tradicted the conjecture the solution path was discarded without searching 
for an alternative strategy. 

Another finding that stands out was the learners' lack of discussion and 
reference to the situation at hand. Options such as the cost of building four 
smaller reservoirs closer to each village, that villages may have been of dif
ferent sizes or the topography of the landscape did not feature in their delib
erations and that therefore finding the 'ideal' position, using the concurrency 
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of perpendicular bisectors, would have not been an entirely appropriate solu
tion. (Mudaly, 2004, p. 178). 

4. TEACHERS' MATHEMATICAL MODELLING 
WORK 

A broad research project on teacher behaviour when engaged in mathe
matical modelling is the subject of discussion in this section. Data were sys
tematically collected on teachers' work in mathematical modelling teacher 
inservice courses. Li these courses the situations for which teachers were 
required to develop models for over the years were: A salary system to bring 
about equity based on the principle of "equal pay for equal work" taking into 
account years of service, promotion criteria and qualifications; the Human 
Development Index and other social indexes such as a community develop
ment index; school enrolment projections and garbage accumulation. The 
normal qualitative data analysis techniques were followed (Julie, 2002(a); 
Julie, 2(X)2(b); Julie, 2003). The data comprise of observations and video-
recordings of teachers at work; the rough work that was produced during the 
model construction process; the final reports on the models, formal and in
formal interview conversations and post-activity questionnaires. The analy
sis rendered three major findings related to teacher mathematical modelling 
behaviour. Firstly, the model-as-vehicle paradigm dominated model-
construction activity. This is seen as the search for a formula to describe the 
situation under investigation. For example, one teacher described her experi
ences with the salary scale activity in the open-ended questionnaire as fol
lows: 

It was a struggle to understand the problem. The many principles, vari
ables had your head spinning. We started by trying to get a formula from 
the table - excited! Oh...the equation/formula does not satisfy all the 
conditions... Decide first to work with one post level only to simplify the 
problem - point of departure gets a ceiling - highest position and highest 
number of years in post level. Build other formulae around the norm. 

This notion of the existence of a formula that can be found from the data 
dominated most of both the initial collective and individual deliberations. 
The formula-seeking behaviour dominated over the situation-analysis. Es
sentially there is nothing wrong with this behaviour. The division of ap
proaches to modelling into empirical modelling - fitting formulae to data ~ 
and axiomatic - developing a model from a set of assumptions - requires 
knowledgeability of formula-seeking. However, this fixatedness on formula-
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seeking mitigates against in-depth discussion and consideration of the nature 
of the social issues involved. 

Secondly, the teachers' work was driven by an immediate perceived us
ability. When constructing models practising teachers seem to express pref
erence for models which were relevant to their immediate work circum
stances. Consider the excerpt of fieldnotes made during teachers' engage
ment with the school enrolment model. 

The teachers had to particularise a model for planning the supply for 
mathematics teachers to their schools based on the number of pupils at 
their school and a school enrolment model provided by Gould (1993). 
They presented their particularisations to the class. At the end of the 
presentations we engaged in a conversation around their work and the 
experiences with the activity. Mr K started the discussion and he said: 
"This was one of the first pieces of work I did where I can see how I can 
use it in my situation. We know that the number of teachers for a year is 
determined by using the enrolment of the year before. Now I can actually 
use this model at school and we can determine the number of teachers a 
few years in advance." 

This contrasts with the data on teachers' reaction to the model building 
activity on a garbage collection activity where they had to construct a model 
related to the accumulation of plastic bags against school fences. A similar 
discussion on their experiences with this activity produced nothing about the 
usability of the models that the teachers developed. What engages teachers 
and what not is a complex issue. Immediacy in terms of what I can use in my 
situation as it is currently is emerging as a facet of teacher behaviour in 
mathematical model construction. 

Lastly, teachers in their modelling work seem to settle for elementary 
mathematical work and premature closure. One of the rationales for the lob
bying for the inclusion of modelling and applications in school mathematics 
is that it will play an activating role. Modelling and applications will, in ad
dition to its usability features, be a catalyst for thinking about mathematics 
that learners (and teachers) did not think about before. In dealing with the 
Human Development Index (HDI) teachers were requested to extend the 
HDI by adding a fourth factor, satisfaction with the government of the day, 
to the HDI. They came up with 

L.Expec. + lEducindex+GDP index 
HDI = 

4 
The teachers were contend to simply work with the categories involved 

in the HDI. Although their discussion included references to fair taxation; 
domestic production and increase in domestic production, they only doubled 
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the education component of the index and view this as equivalent to a fourth 
factor. The teachers remained as near as possible to the model that was stud
ied and their extension of the model was confined to same categories con
tained in the HDL Furthermore, the teachers only used elementary mathe
matics. Although the HDI appears on the surface to be a simple weighted 
additive model, there is much deeper mathematics underlying the eventual 
model. Premature closure also occurred with the garbage accumulation ac
tivity. This activity can lead to mathematics in stocks and flows. The seeds 
of such a development are discemable in a group of teachers' description of 
their model. They wrote: 

We can say the Accumulation (Apb) is the proportion of learners that lit
ter, times the proportion of the community that, multiplied by the amount 
of days and times the amount of plastic bags used per day gives the total 
accumulation 

Although the above description can be faulted, the seeds for moving this 
description and the resultant model to the mathematics involved in stocks 
and flows as formulated by Bartholomew (1976, p. 162) is clearly observ
able. Nowhere in the teachers' deliberations, even during informal discus
sions, were anything said or done which would point that this kind of 
mathematics was activated. Teachers seem to be fixated on what they per
ceive the task at hand to be and hence resolving this perceived task is for 
them the point of closure. 

5. DISCUSSION AND CONCLUSION 

The mathematical modelling work of learners and teachers were related 
to above. What come through are similarities between the learners' and 
teachers' modelling work with social issues. Firstly, both learners and teach
ers pay scant attention to in-depth qualitative discussions regarding the is
sues at hand. There appears to be an urgency to get to the mathematics. This 
contrasts sharply with mathematical modelling practice in, for example in
dustry, where "successful industrial mathematicians ... requke a high degree 
of communication skills in several forms - speaking, writing, and listening -
and ... business interactions often continue over a long period of time, so 
that clear exchanges of information and ideas are crucial." (SIAM, 2001). 
Secondly, there is the issue of premature closure after finding a first sup
posed solution. In terms of the traditional modelling cycle, there is no return 
to the reality situation for consideration and reflection of the aptness of the 
obtained mathematical solution nor were there attempts to extend the 
mathematics underpinning the appropriate seeds obtained for such extension. 
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We argue that this behaviour is structured by current school mathematics 
practice characterized by the dominance of mathematical modelling as a ve
hicle. The search for a formula in the teachers' situation and the offering of 
measurement as the preferred justification strategy for the conjectured solu
tion by the learners attest to this dominance of modelling as a vehicle. Un
critically it is assumed that this modelling as a vehicle will satisfy the reali
sation of the expressed ideal of sensibly dealing with social issues in the 
mathematical curriculum. This is not necessarily the case particularly if the 
incorporation of social issues in school mathematics is ostensibly the only 
way which to address the development of a mathematical temper - a spirit of 
dealing rationally with the desirable and undesirable effects mathematical 
installations in society. There is no doubt that this realisation can only be 
effected through mathematics programmes which aim at developing mathe
matical modelling as content. After all, it is during the engagement with 
mathematical modelling as content that windows of opportunities are opened 
for dealing with social issues. 

REFERENCES 

Bartolomew, D. J. (1976). The control of the grade structure in a university. In Andrews, J. G. 
& McLone, R. R. (Eds.), Mathematical Modelling. London: The Butterworth Group. 

Department of Education (2003a). The National Curriculum Statement: Mathematics. Preto
ria: Government Printers. 

Department of Education (2003b). The National Curriculum Statement: Mathematical Liter
acy. Pretoria: Government Printers. 

De Villiers, M. (1994). The role of technology in mathematical modelling. Pythagoras, 
55(12). 

Gould, E. (1993). Enrolments. International Review of Education, 59(4), 319-332. 
Julie, C. (2003). Work moments in Mathematical Modelling by Practising Mathematics 

Teachers With No Prior Experience of Mathematical Modelling and Applications. New 
Zealand Journal of Mathematics, 32 (Supplementary Issue), 117-124. 

Julie, C. (2002a). The Activity System of School-Teaching Mathematics and Mathematical 
Modelling. For the Learning of Mathematics, 22(3) (November), 29-37 

Julie, C. (2002b). Making relevance relevant in mathematics teacher education. In Vakalis, I., 
Hughes-Hallett, D., Kourouniotis, C., Quinney, D., & Tzanakis, C. (Eds), Proceedings of 
the 2nd International Conference on the Teaching of Mathematics at the undergraduate 
level, July 1-6. University of Crete, Hersonissos, Crete, Greece: CD-ROM published by 
Wiley PubUshers. 

Mudaly, V. (2004). The Role of Sketchpad as a Modelling tool in Secondary Schools. Unpub
lished doctoral dissertation. University of KwaZulu-Natal, Natal, South Africa. 

SIAM (2001). The SIAM Report on Mathematics in Industry. From 
http://www.siam.Org/mii/node5.html#SECTION00041000000000000000 



Part 6 

BIBLIOGRAPHY 



Part 6 

BIBLIOGRAPHY 

The following bibliography contains some basic references (in English lan
guage) published on the topic Modelling and Applications in Mathematics 
Education in recent years, most of them generated by ICMI and ICTMA ac
tivities. 

1. Proceedings of the ICTMA Conference Series 

Berry, J. et al. (Eds.). (1984). Teaching and Applying Mathematical Model
ling. Chichester: Ellis Horwood. 

Berry, J. et al, (Eds.). (1986). Mathematical Modelling Methodology, Mod
els and Micros. Chichester: Ellis Horwood. 

Berry, J. et al. (Eds.). (1987). Mathematical Modelling Courses, Chichester: 
Ellis Horwood. 

Blum, W. et al. (Eds.). (1989). Applications and Modelling in Learning and 
Teaching Mathematics. Chichester: Ellis Horwood. 

deLange, J. et al. (Eds.). (1993). Innovation in Maths Education by Model
ling and Applications. Chichester: Ellis Horwood. 

Galbraith, P. et al. (Eds.). (1998). Mathematical Modelling - Teaching and 
Assessing in a Technology-Rich World. Chichester: Ellis Horwood. 

Haines, Ch. et. al. (Eds.). (2006). Mathematical Modelling (ICTMA 12): En
gineering and Economics. Chichester: Ellis Horwood. 

Houston, S.K. et al. (Eds,). (1997), Teaching and Learning Mathematical 
Modelling. Chichester: Albion Pub, 

Lamon, S. J,, Parker, W. A., & Houston, S. K. (Eds.). (2003), Mathematical 
Modelling: A Way of Life. Chichester: Ellis Horwood. 

Matos, J. F. et al. (Eds.). (2001). Modelling and Mathematics Education: 
ICTMA-9. Chichester: Ellis Horwood. 



514 Part 6 

Niss, M., Blum, W., & Huntley, I. (Eds.). (1991). Teaching of Mathematical 
Modelling and Applications. Chichester: Ellis Horwood. 

Sloyer, C , Blum, W., & Huntley, I. (Eds.). (1995). Advances and?QYspQC-
tives in the Teaching of Mathematical Modelling an Applications. York-
lyn: Water Street Mathematics. 

Ye, Q., Blum, W., Houston, S., K., Jiang, Q. (2003). Mathematical Model
ling in Education and Culture: ICTMA 10. Chichester: Ellis Horwood. 

2. Proceedings and survey articles of the ICME Confer
ence Series 

Bell, M. (1983). Materials Available Worldwide for Teaching Applications 
of Mathematics at the School Level. In Zweng, M. et al. (Eds.), Pro
ceedings of the Fourth International Congress on Mathematical Educa
tion, (pp. 252-267). Boston: Birkhauser. 

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, mod
elling, applications, and links to other subjects - state, trends and issues 
in mathematics instruction. Educational Studies in Mathematics 22(1), 
37-68. 

Blum, W., Galbraith, P., & Christiansen, I. (Eds.). (2001). Mathematical 
Modelling - Papers from ICME-9, Part 1. Teaching Mathematics and its 
Applications, 20(3). 

Blum, W., Niss, M., & Huntley, I. (Eds.). (1989). Modelling, Applications 
and Applied Problem Solving - Teaching Mathematics in a Real Context. 
Chichester: Ellis Horwood. 

Breiteig, T., Huntley, I., & Kaiser-MeBmer, G. (Eds.). (1993). Teaching and 
Learning Mathematics in Context. Chichester: Ellis Horwood. 

Burkhardt, H. (Ed.). (1983). An International Review of Applications in 
School Mathematics. Ohio: ERIC. 

Galbraith, P., Blum, W., & Christiansen, I. (Eds.). (2002). Mathematical 
Modelling - Papers from ICME-9, Part 2. Teaching Mathematics and its 
Applications, 21(2). 

Houston, K. (Ed.). (2005). Applications and Modelling in the Teaching and 
Learning of Mathematics - Papers from ICME-10. Teaching Mathemat
ics and its Applications, 24(2/3). 

PoUak, H. O. (1979). The Interaction between Mathematics and Other 
School Subjects. In UNESCO (Ed.), New Trends in Mathematics Teach
ing IV, (pp. 232-24S).?ms. 



6. BIBLIOGRAPHY 515 

3. ICMI Study 14 Publications 

Blum, W. et. al., (2002). ICMI Study 14: Applications and Modelling in 
Mathematics Education - Discussion Document. Educational Studies in 
Mathematics, 57(1/2), 149-171. 

Henn, H.-W. & Blum, W. (Eds.). (2002). ICMI Study 14: Applications and 
Modelling in Mathematics Education. Dortmund: University of Dort
mund. 

4. Some further publications on modelling & applica
tions 

Blomhoj, M., & Jensen, T.H. (2003). Developing mathematical modelling 
competence: Conceptual clarification and educational planning. Teaching 
Mathematics and its Applications 22(3), 123-139. 

Boaler, J. (2002). Experiencing School Mathematics. Traditional and reform 
approaches to teaching and their impact on student learning. Mahwah, 
NJ: Erlbaum. 

Boyce, W. E. (Ed.). (1981). Case Studies in Mathematical Modeling. Bos
ton: Pitman Ad. Pub. 

Burghes, D., Galbraith, P., Price, N., & Sherlock, A. (1996). Mathematical 
Modelling. Upper Saddle River, NJ: Prentice-Hall. 

Burghes, D., Huntley, I. , & McDonald, J. (1982). Applying Mathematics - A 
Course in Mathematical Modelling. Chichester: Ellis Horwood. 

Burkhardt, H. (1981). The Real World and Mathematics. Glasgow: Blackie 
and Son. 

Bushaw, D. et al. (Eds.). (1980). A Sourcebook of Applications of School 
Mathematics. Reston: NCTM. 

Clements, R. et al. (Eds.). (1988). Selected Papers on the Teaching of Ma
thematics as a Service Subject. Berlin/Heidelberg/New York: Springer. 

COMAP (1997-1998). Mathematics: Modeling Our World. Cincinnati: 
South-Western Publishing Company. 

De Lange, J. (1996). Using and Applying Mathematics in Education. In 
Bishop, A. et al. (Eds.), International Handbook of Mathematics Educa
tion V.l, (pp. 49-97). Dordrecht: Kluwer Acad. Pub. 

Edwards, D., & Hamson, M. (1996). Mathematical Modelling Skills. Basing
stoke, Hampshire, UK: MacMillan Press Ltd. 

Galbraith, P., & Clathworthy, N. (1990). Beyond Standard Models - Meet
ing the Challenge of Modelling. Educational Studies in Mathematics 
27(2), 137-163. 

Giordano, F. P., Weir, M. D., & Fox, W. P. (1997). A First Course in Mathe
matical Modelling. Pacific Grove: Brooks. 



516 Part 6 

Howson, G. et al. (Eds.). (1988). Mathematics as a Service Subject. Cam
bridge: Cambridge University Press. 

Huntley, I., & James, G. (Eds.). (1990). Mathematical Modelling - A Source 
Book of Case Studies. Oxford: Oxford University Press. 

Kaiser, G.: Mathematical Modelling in School - Examples and Experiences. 
In Henn, H.-W., & Kaiser, G. (Eds.). (2005), Mathematikunterricht im 
Spannungsfeld von Evolution und Evaluation. Festbandfur Werner Blum, 
(pp. 99-108). Hildesheim: Franzbecker. 

Kaiser, G., Blomhoj, M., & Sriraman, B. (Eds.). (2006). Mathematical Mod
elling and Applications: Empirical and Theoretical Perspectives. ZentraU 
blattfur Didaktik der Mathematik, 38(2). 

Kaiser, G., & Willander, T. (2005). Development of Mathematical Literacy 
- results of an empirical study. Teaching Mathematics and its Applica
tions, 24(2-3), 48-60. 

Klamkin, M. S. (Ed.). (1987). Mathematical Modelling: Classroom Notes in 
Applied Mathematics. Philadelphia: SIAM. 

Klaoudatos, N., & Papastavridis, S. (2004). Context Orientated Teaching. 
Teaching Mathematics and its Applications, 23(4), 155-164. 

Lesh, R. A., & Doerr, H. (Eds.). (2003). Beyond Constructivism: Models and 
Modelling Perspectives on Mathematics Problem Solving, Learning, and 
Teaching. Mahwah: Lawrence Erlbaum. 

Lesh, R., & Harel, G. (2003). Problem solving, modelling, and local concep
tual development. Mathematical Thinking and Learning, 5, 157-190. 

Lingefjard, T. (2002). Mathematical modeling for preservice teachers: A 
problem from anesthesiology. International Journal of Computers for 
Mathematical Learning, 7, 117-143. 

MAA, & NCTM (Eds.) (1980). A Sourcebook of Applications of School 
Mathematics. Reston: NCTM. 

Niss, M. (1987). Applications and Modelling in the Mathematics Curriculum 
- State and Trends. Int. J. for Math. Ed. in Science and Technology 18, 
487-505. 

Niss, M. (1992). Applications and Modelling in School Mathematics - Di
rections for Future Development. In Wirszup, I., & Streit, R. (Eds), De
velopment in School Mathematics Education Around the World V.3, (pp. 
346-361). Reston: NCTM. 

Niss, M. (2001/ Issues and Problems of Research on the Teaching and 
Learning of Applications and Modelling. In Matos, J. F. et al. (Eds.), 
Modelling and Mathematics Education: ICTMA-9, (pp. 72-88). Chiches
ter: Ellis Horwood. 

Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics 
and school mathematic. Cambridge - New York - Oakleigh: Cambridge 
University Press. 



6. BIBLIOGRAPHY 517 

OECD (Ed.) (1999/ Measuring Student Knowledge and Skills - A New 
Framework for Assessment, Paris: OECD. 

Pollak, H. O. (1997). Solving Problems in the Real World. In Steen, L. A. 
(Ed.), Why Nymbers Count: Quantitative Literacy for Tomorrow's Ameri
ca, (pp. 91-105). New York: The College Board. 

Pozzi, S., Noss, R., & Hoyles, C. (1998). Tools in Practice, Mathematics in 
Use. Educational Studies in Mathematics 36(2) 105-122. 

Sharron, S. (Ed.). (1979). Applications in School Mathematics, NCTM Year
book Reston: NCTM. 

Skovmose, O. (1994). Towards a Philosophy of Critical Mathematics Edu
cation. Dordrecht: Kluwer. 

Sriraman, B., Kaiser, G., & Blomhoj, M. (Eds.). (2006). Modelling Perspec
tives from around the World. Zentralblatt fur Didaktik der Mathematik, 
38(3). 

Stillman, G., & Galbraith, P. (1998). Applying Mathematics With Real 
World Connections: Metacognitive Characteristic of Secondary Students. 
Educational Studies in Mathematics 36(2), 157-195. 

Swetz, F., & Hartzler, J. (Eds.). (1991). Mathematical Modelling in the Sec
ondary School Curriculum. Reston: NCTM. 

Verschaffel, L., Greer, B., & De Corte, E. (2000). Making Sense of Word 
Problems. Lisse: Swets&Zeitlinger. 



INDEX 

abstraction 234, 396 
application 10 
arithmetic operations 257 
artefacts 188 
assessment 23, 81, 249, 385, 405, 

420,426,441,466,472, 
498 

authenticity 19, 195, 201,464 
autonomy 49 

B 
bacteria growth problem 74 
basic experiences 321 
beliefs 20, 100,326 
brightness problem 358 

catwalk problem 337 
centre of gravity problem 146 
classroom activities 296, 375 
Coca-cola can problem 480 
competency 12, 45, 225, 413 
complexity 84, 234 
context 194,470 
continent area problem 434 
critical modelling 222 
curriculum 465, 492,497, 505 
curve fitting 81, 360 
curves 38 

D 
daily life 37, 38 
data analysis 140, 487 
debtor-days problem 397 
design 40 
diagnosis 83 
dynamic geometry software 313 

emergent modelling 138 
emergent models 158 
epistemology 17, 153 
equity 486 
evaluation 23, 105 
explicit modelling 221 

fair-game problem 390 
framings 210 
function concept 129 

giant shoe problem 380 
goals5, 19,181,504 
graphic calculator 131 
graphing tools 311 
growth problem 343 

H 
heartbeat problem 438 
hot-air balloon problem 382 

I 
ICME 29 
ICTMA 29, 478 
implementation 22, 367, 491, 497 
implicit modelling 219 
inquiry 58 
instruments 35, 171, 396 
integral calculus 342 
intentional problems 342 
issue 15 

K 
KOM project 46 



520 INDEX 

M 
mathematical competence 21, 47, 

267, 290 
mathematical literacy 285, 389 
model / modelling 4, 8 
model-eliciting activities 163 
modelling competency 12, 20, 48, 

103,225,241,421,427, 
465 

modelling course 71,417 
modelling cycle 4, 36, 48, 67, 72, 

167,249,383,401,418 
modelling pedagogy 21, 303, 328, 

351 
modelling process 18 
motion problem 60, 129 

N 
new maths 113 

O 
objects 35 
obstacles 457, 476,491 
open-end problems 379 
Oxford seminars 117 

R 
railway-signal problem 398 
real world 8 
realistic mathematics education 

138,187,441 
recontextualisation 195 
representation 156, 236, 279 
resemblance 154 
rock concert problem 436 

sea-pollution problem 481 
self regulated learning 341 
sense-making 90, 186 
service subject 471 
sharing-pizza problem 392 
slinky problem 60 
social issues 94, 503 
speedometer problem 343 
spreadsheet 310, 397 
statistics 486 
stochastics education 390 
subject matter knowledge 71 
switchback 133 
syllabusitis 46 

pedagogical knowledge 74 
physical microcosms 156 
Pick's theorem 150 
PISA 83, 228, 286,433 
polygons 38 
polyhedra problem 37 
praxeology 373 
probabilistic situation 71 
problem 8 
problem formulation 115 
problem solving 116,161, 276 
project 297, 473 
project examination 409 
proof/proving 145 
proportional reasoning 243 

teacher education 69, 333, 475, 
485, 494 

teacher's role 301 
teachers knowledge 70 
teaching materials 298 
technology 24, 57, 309, 341, 349, 

467,471,477 
test reliability 445 
test validity 444 
TIMSS 286,443 
traffic safety 51 
training of mathematicians 470 
transport problem 304 
twisted building problem 436 



INDEX 521 

V 
vacation-trip problem 426 
vocational education 176 

W 
water-reservoir problem 505 
weighing problem 172 
wooden floor problem 371 
word problems 11, 80, 89, 185, 

202, 209, 325 
working modes 299 
workplace 172,395 



NEW ICMI STUDY SERIES 

1. M. Niss (ed.), Cases of Assessment in Mathematics 
Education. An ICMI Study. 1992 (The 6* ICMI Study) 0-7923-2089-1 HB 

2. M. Niss (ed.), Investigations into Assessment in Mathematics 
Education. An ICMI Study. 1992 (The 6* ICMI Study) 0-7923-2095-6 HB 

3. G. Hanna (ed.), Towards Gender Equity in Mathematics 0-7923-3921-5 HB 
Education. An ICMI Study. 1996 (The 7* ICMI Study) 0-7923-3922-3 PB 

4. A. Sierpinska and J. Kilpatrick (eds.). Mathematics Education 
as a Research Domain: A Search for Identity. An ICMI Study. 0-7923-4599-1 HB 
1998 (The 8* ICMI Study) 0-7923-4600-9 PB 

5. C. Mammana and V. Villani (eds.). Perspectives on the 
Teaching of Geometry for the 2 l" Century. An ICMI Study. 0-7923-4990-3 HB 
1998 (The 9* ICMI Study) 0-7923-4991-1 PB 

6. J. Fauvel and J. van Maanen (eds.). History in Mathematics 0-7923-6399-X HB 
Education. The ICMI Study. 2000 (The 10* ICMI Study) 1 -4020-0942-9 PB 

7. D. Holton (ed.). The Teaching and Learning of Mathematics at 0-7923-7191-7 HB 
University Level. An ICMI Study. 2001 (The 11* ICMI Study) 1 -4020-0072-3 PB 

8. K. Stacey, H. Chick and M. Kendal (eds.) The Future of the 
Teaching and Learning of Algebra: The 12* ICMI Study. 2004 1 -4020-8130-8 HB 

9. F.K.S. Leung, K.-D. Graf and F.J. Lopez-Real (eds.) 
Mathematics Education in Different Cultural Traditions- A 
Comparative Study of East Asia and the West: The 13* ICMI 0-387-29722-7 HB 
Study. 2006 

10. W. Blum, P. L. Galbraith, H.-W. Henn, and M. Niss (eds.), 0-387-29820-7 HB 
Modelling and Applications in Mathematics Education: The 
14th ICMI Study. 2007 

Information on the ICMI Study program and on the resulting publications, including Studies 
1 to 5, can be obtained at www.mathunion.org/ICMI/ or by contacting the ICMI Secretary-
General, whose email address is available on the ICMI website. 



Printed in the USA 




