
CHAPTER 9

Ricci Curvature Comparison

In this chapter we shall prove some of the fundamental results for manifolds
with lower Ricci curvature bounds. Two important techniques will be developed:
Relative volume comparison and weak upper bounds for the Laplacian of distance
functions. With these techniques we shall show numerous results on restrictions of
fundamental groups of such spaces and also present a different proof of the estimate
for the first Betti number by Bochner.

We have already seen how variational calculus can be used to obtain Myers’
diameter bounds and also how the Bochner technique can be used. In the 50s
Calabi discovered that one has weak upper bounds for the Laplacian of distance
function given lower Ricci curvature bounds even at points where this function isn’t
smooth. However, it wasn’t until around 1970, when Cheeger and Gromoll proved
their splitting theorem, that this was fully appreciated. Around 1980, Gromov ex-
posed the world to his view of how volume comparison can be used. The relative
volume comparison theorem was actually first proved by Bishop in [13]. At the
time, however, one only considered balls of radius less than the injectivity radius.
Later, Gromov observed that the result holds for all balls and immediately put it to
use in many situations. In particular, he showed how one could generalize the Betti
number estimate from Bochner’s theorem using only topological methods and vol-
ume comparison. Anderson then refined this to get information about fundamental
groups. One’s intuition about Ricci curvature has generally been borrowed from
experience with sectional curvature. This has led to many naive conjectures that
haven proven to be false through the construction of several interesting examples of
manifolds with nonnegative Ricci curvature. On the other hand, much good work
has also come out of this, as we shall see. The reason for treating Ricci curvature
before the more advanced results on sectional curvature is that we want to break
the link between the two. The techniques for dealing with these two subjects, while
similar, are not the same.

1. Volume Comparison

1.1. The Fundamental Equations. Throughout this section, assume that
we have a complete Riemannian manifold (M, g) of dimension n. Furthermore, we
are given a point p ∈ M and with that the distance function r (x) = d (x, p) .
We know that this distance function is smooth on the image of the interior of the
segment domain. In analogy with the fundamental equations for the metric:

(1) L∂r
g = 2Hessr,

(2) (∇∂r
Hessr) (X,Y ) + Hess2r (X,Y ) = −R (X, ∂r, ∂r, Y ) ,

we also have a similar set of equations for the volume form.
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266 9. RICCI CURVATURE COMPARISON

Proposition 39. The volume form dvol and Laplacian ∆r of r are related by:

(tr1) L∂r
dvol = ∆rdvol,

(tr2) ∂r∆r + (∆r)2

n−1 ≤ ∂r∆r + |Hessr|2 = −Ric (∂r, ∂r) .

Proof. The way to establish the first equation is by first selecting orthonormal
1-forms θi. The volume form is then given by

dvol = θ1 ∧ · · · ∧ θn.

As with the metric g, we also have that dvol is parallel. Next observe that(
L∂r

θi
)
(X) = ∂r

(
θi (X)

)− θi (L∂r
X)

= ∂r

(
θi (X)

)− θi (∇∂r
X) + θi (∇X∂r)

=
(∇∂r

θi
)
(X) + θi (∇X∂r) .

This shows that

L∂r
dvol = L∂r

(
θ1 ∧ · · · ∧ θn

)
=

∑
θ1 ∧ · · · ∧ L∂r

θi ∧ · · · ∧ θn

=
∑

θ1 ∧ · · · ∧ ∇∂r
θi ∧ · · · ∧ θn

+
∑

θ1 ∧ · · · ∧ θi ◦ ∇·∂r ∧ · · · ∧ θn

= ∇∂r

(
θ1 ∧ · · · ∧ θn

)
+ tr (∇·∂r) θ1 ∧ · · · ∧ θn

= ∇∂r
dvol + tr (∇·∂r) dvol

= ∆rdvol.

To establish the second equation we take traces in (2). Thus we select an
orthonormal frame Ei, set X = Y = Ei and sum over i. We can in addition assume
that ∇∂r

Ei = 0. We already know that
n∑

i=1

R (Ei, ∂r, ∂r, Ei) = Ric (∂r, ∂r) .

On the left hand side we get
n∑

i=1

(∇∂r
Hessr) (Ei, Ei) =

n∑
i=1

∂rHessr (Ei, Ei)

= ∂r∆r

and
n∑

i=1

Hess2r (Ei, Ei) =
n∑

i=1

g (∇Ei
∂r,∇Ei

∂r)

=
n∑

i,j=1

g (∇Ei
∂r, g (∇Ei

∂r, Ej) Ej)

=
n∑

i,j=1

g (∇Ei
∂r, Ej) g (∇Ei

∂r, Ej)

= |Hessr|2
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Finally we need to show that

(∆r)2

n− 1
≤ |Hessr|2 .

To this end we also assume that E1 = ∂r. Then

|Hessr|2 =
n∑

i,j=1

(g (∇Ei
∂r, Ej))

2

=
n∑

i,j=2

(g (∇Ei
∂r, Ej))

2

≤ 1
n− 1

(
n∑

i=2

g (∇Ei
∂r, Ei)

)2

=
1

n− 1
(∆r)2 .

The inequality

|A|2 ≤ 1
k
|tr (A)|2

for a k × k matrix A is a direct consequence of the Cauchy-Schwarz inequality

|(A, Ik)|2 ≤ |A|2 |Ik|2
= |A|2 k,

where Ik is the identity k × k matrix. �

If we use the polar coordinate decomposition g = dr2 + gr and let dvoln−1 be
the standard volume form on Sn−1 (1) , then we have that

dvol = λ (r, θ) dr ∧ dvoln−1,

where θ indicates a coordinate on Sn−1. If we apply (tr1) to this version of the
volume form we get

L∂r
dvol = L∂r

(λ (r, θ) dr ∧ dvoln−1)
= ∂r (λ) dr ∧ dvoln−1

as both L∂r
dr = 0 and L∂r

dvoln−1 = 0. We can therefore simplify (tr1) to

∂rλ = λ∆r.

In constant curvature k we know that

gk = dr2 + sn2
k (r) ds2

n−1,

thus the volume form is

dvolk = λk (r) dr ∧ dvoln−1

= snn−1
k (r) dr ∧ dvoln−1,

this conforms with the fact that

∆r = (n− 1)
sn′

k (r)
snk (r)

,

∂r

(
snn−1

k (r)
)

= (n− 1)
sn′

k (r)
snk (r)

snn−1
k (r) .



268 9. RICCI CURVATURE COMPARISON

1.2. Volume Estimation. With the above information we can prove the es-
timates that are analogous to our basic comparison estimates for the metric and
Hessian of r assuming lower sectional curvature bounds (see chapter 6).

Lemma 34. (Ricci Comparison Result) Suppose that (M, g) has Ric ≥ (n− 1)·k
for some k ∈ R. Then

∆r ≤ (n− 1)
sn′

k (r)
snk (r)

,

dvol ≤ dvolk,

where dvolk is the volume form in constant sectional curvature k.

Proof. Notice that the right-hand sides of the inequalities correspond exactly
to what one would get in constant curvature k.

For the first inequality, we use that

∂r∆r +
(∆r)2

n− 1
≤ − (n− 1) · k

dividing by n− 1 and using λk this gives

∂r

(
∆r

n− 1

)
+

(
∆r

n− 1

)2

≤ −k = ∂r (λk) + (λk)2

Separation of variables then yields:

∂r
∆r

n−1

k +
(

∆r
n−1

)2 ≤
∂rλk

k + (λk)2
.

Thus
F (λ (r)) ≤ F (λk (r)) ,

where F is the antiderivative of 1
λ2+k

satisfying limλ→∞ F (λ) = 0. Since F has
positive derivative we can conclude that λ (r) ≤ λk (r) .

For the second inequality we now know that

∂rλ ≤ (n− 1)
sn′

k (r)
snk (r)

λ

while

∂rλk = (n− 1)
sn′

k (r)
snk (r)

λk.

In addition the metrics g and gk agree at p. Thus also the volume forms agree at
p. This means that

lim
r→0

(λ− λk) = 0,

∂r (λ− λk) ≤ (n− 1)
sn′

k (r)
snk (r)

(λ− λk) .

Whence the volume form inequality follows. �

Our first volume comparison gives the obvious upper volume bound coming
from our upper bound on the volume density.
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Lemma 35. If (M, g) has Ric ≥ (n− 1) · k, then

volB (p, r) ≤ v (n, k, r) ,

where v (n, k, r) denotes the volume of a ball of radius r in the constant-curvature
space form Sn

k .

Proof. Above, we showed that in polar coordinates around p we have

dvol ≤ dvolk.

Thus

volB (p, r) =
∫

segp∩B(0,r)

dvol

≤
∫

segp∩B(0,r)

dvolk

≤
∫

B(0,r)

dvolk

= v(n, k, r).

�

With a little more technical work, the above absolute volume comparison result
can be improved in a rather interesting direction. The result one obtains is referred
to as the relative volume comparison estimate. It will prove invaluable in many
situations throughout the rest of the text.

Lemma 36. (Relative Volume Comparison, Bishop-Cheeger-Gromov, 1964-1980)
Suppose (M, g) is a complete Riemannian manifold with Ric ≥ (n− 1) · k. Then

r → volB(p, r)
v(n, k, r)

is a nonincreasing function whose limit is 1 as r → 0.

Proof. We will use exponential polar coordinates. The volume form λ(r, θ)dr∧
dθ for (M, g) is initially defined only on some star-shaped subset of

TpM = Rn = (0,∞)× Sn−1,

but we can just set λ = 0 outside this set. The comparison density λk is defined on
all of Rn for k ≤ 0 and on B

(
0, π/

√
k
)

for k > 0. We can likewise extend λk = 0

outside B
(
0, π/

√
k
)
. Myers’ theorem says that λ = 0 on Rn−B

(
0, π/

√
k
)

in this

case. So we might as well just consider r < π/
√

k when k > 0.
The ratio of the volumes is

volB(p,R)
v(n, k,R)

=

∫ R

0

∫
Sn−1 λdr ∧ dθ∫ R

0

∫
Sn−1 λkdr ∧ dθ

,

and we know that
0 ≤ λ(r, θ) ≤ λk(r, θ) = snn−1

k (r)

everywhere.
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Differentiation of this quotient with respect to R yields

d

dR

(
volB(p,R)
v(n, k,R)

)

=

(∫
Sn−1 λ (R, θ) dθ

) (∫ R

0

∫
Sn−1 λk (r, θ) dr ∧ dθ

)
(v(n, k,R))2

−
(∫

Sn−1 λk (R, θ) dθ
) (∫ R

0

∫
Sn−1 λ (r, θ) dr ∧ dθ

)
(v(n, k,R))2

= (v(n, k,R))−2 ·
∫ R

0

[(∫
Sn−1

λ (R, θ) dθ

)
·
(∫

Sn−1
λk (r, θn−1) dθ

)
−

(∫
Sn−1

λk (R, θ) dθ

)(∫
Sn−1

λ (r, θ) dθ

)]
dr.

So to see that

R → volB(p,R)
v(n, k,R)

is nonincreasing, it suffices to check that

∫
Sn−1 λ (r, θ) dθ∫

Sn−1 λk (r, θ) dθ
=

1
ωn−1

∫
Sn−1

λ (r, θ)
λk (r, θ)

dθ

is nonincreasing. This follows from

∂r

(
λ (r, θ)
λk (r, θ)

)
=

λk∂rλ− λ∂rλk

λ2
k

≤
λk (n− 1) sn′

k(r)
snk(r)λ− λ (n− 1) sn′

k(r)
snk(r)λk

λ2
k

= 0.

�

1.3. Maximal Diameter Rigidity. Given Myers’ diameter estimate, it is
natural to ask what happens if the diameter attains it maximal value. The next
result shows that only the sphere has this property.

Theorem 62. (S. Y. Cheng, 1975) If (M, g) is a complete Riemannian manifold
with Ric ≥ (n− 1)k > 0 and diam = π/

√
k, then (M, g) is isometric to Sn

k .
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Figure 9.1

Proof. Fix p, q ∈ M such that d(p, q) = π/
√

k. Define r(x) = d(x, p), r̃(x) =
d(x, q). We will show that

(1) r + r̃ = d(p, x) + d(x, q) = d(p, q) = π/
√

k, x ∈ M .
(2) r, r̃ are smooth on M − {p, q}.
(3) Hessr = (sn′

k/snk) ds2
n−1 on M − {p, q}.

(4) g = dr2 + sn2
kds2

n−1.
We know that (3) implies (4) and that (4) implies M must be Sn

k .
Proof of (1): The triangle inequality shows that

d(p, x) + d(x, q) ≥ π/
√

k,

so if (1) does not hold, we can find ε > 0 such that (see Figure 9.1)

d(p, x) + d(x, q) = 2 · ε +
π√
k

= 2 · ε + d(p, q).

Then the metric balls B(p, r1), B(q, r2), and B(x, ε) are pairwise disjoint, when
r1 ≤ d(p, x), r2 ≤ d(q, x) and r1 + r2 = π/

√
k. Thus,

1 =
volM
volM

≥ volB(x, ε) + volB(p, r1) + volB(q, r2)
volM

≥ v(n, k, ε)

v
(
n, k, π√

k

) +
v(n, k, r1)

v
(
n, k, π√

k

) +
v(n, k, r2)

v
(
n, k, π√

k

)
=

v(n, k, ε)

v
(
n, k, π√

k

) + 1,

which is a contradiction.
Proof of (2): If x ∈ M − {q, p}, then x can be joined to both p and q by

segments σ1, σ2. The previous statement says that if we put these two segments
together, then we get a segment from p to q through x. Such a segment must be
smooth, and thus σ1 and σ2 are both subsegments of a larger segment. This implies
from our characterization of when distance functions are smooth that both r and
r̃ are smooth at x ∈ M − {p, q}.
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Proof of (3): We have r(x) + r̃(x) = π/
√

k, thus ∆r = −∆r̃. On the other
hand,

(n− 1)
sn′

k(r(x))
snk(r(x))

≥ ∆r(x)

= −∆r̃(x)

≥ −(n− 1)
sn′

k(r̃(x))
snk(r̃(x))

= −(n− 1)
sn′

k

(
π√
k
− r(x)

)
snk

(
π√
k
− r(x)

)
= (n− 1)

sn′
k(r(x))

snk(r(x))
.

This implies,

∆r = (n− 1)
sn′

k

snk

and

−(n− 1)k = ∂r(∆r) +
(∆r)2

n− 1
≤ ∂r(∆r) + |Hessr|2
≤ −Ric(∂r, ∂r)
≤ −(n− 1)k.

Hence, all inequalities are equalities, and in particular

(∆r)2 = (n− 1)|Hessr|2.
Recall that this gives us equality in the Cauchy-Schwarz inequality |A|2 ≤ k (trA)2 .
Thus A = trA

k Ik. In our case we have restricted Hessr to the (n− 1) dimensional
space orthogonal to ∂r so on this space we obtain:

Hessr =
∆r

n− 1
gr

=
sn′

k

snk
gr.

�

We have now proved that any complete manifold with Ric ≥ (n − 1) · k > 0
has diameter ≤ π/

√
k, where equality holds only when the space is Sn

k . A natural
perturbation question is therefore: Do manifolds with Ric ≥ (n − 1) · k > 0 and
diam ≈ π/

√
k, have to be homeomorphic or diffeomorphic to a sphere?

For n = 2, 3 this is true, when n ≥ 4, however, there are counterexamples. The
case n = 2 will be settled later, while n = 3 goes beyond the scope of this book
(see [85]). The examples for n ≥ 4 are divided into two cases: n = 4 and n ≥ 5.

Example 46. (Anderson, 1990) For n = 4 consider metrics on I × S3 of the
form

dr2 + ϕ2σ2
1 + ψ2(σ2

2 + σ2
3).
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If we define

ϕ (r) =
{

sin(ar)
a r ≤ r0,

c1 sin(r + δ) r ≥ r0,

ψ (r) =
{

br2 + c r ≤ r0,
c2 sin(r + δ) r ≥ r0,

and then reflect these function in r = π/2 − δ, we get a metric on CP 2�C̄P 2. For
any small r0 > 0 we can now adjust the parameters so that ϕ and ψ become C1 and
generate a metric with Ric ≥ (n− 1). For smaller and smaller choices of r0 we see
that δ → 0, so the interval I → [0, π] as r0 → 0. This means that the diameters
converge to π.

Example 47. (Otsu, 1991) For n ≥ 5 we only need to consider standard doubly
warped products:

dr2 + ϕ2 · ds2
2 + ψ2ds2

n−3

on I × S2 × Sn−3. Similar choices for ϕ and ψ will yield metrics on S2 × Sn−2

with Ric ≥ n− 1 and diameter → π.

In both of the above examples we actually only constructed C1 functions ϕ,ψ
and therefore only C1 metrics. The functions are, however, concave and can easily
be smoothed near the break points so as to stay concave. This will not change the
values or first derivatives much and only increase the second derivative in absolute
value. Thus the lower curvature bound still holds.

2. Fundamental Groups and Ricci Curvature

We shall now attempt to generalize the estimate on the first Betti number we
obtained using the Bochner technique to the situation where one has more general
Ricci curvature bounds. This requires some knowledge about how fundamental
groups are tied in with the geometry.

2.1. The First Betti Number. Suppose M is a compact Riemannian man-
ifold of dimension n and M̃ its universal covering space. The fundamental group
π1 (M) acts by isometries on M̃. Recall from algebraic topology that

H1 (M, Z) = π1 (M) / [π1 (M) , π1 (M)] ,

where [π1 (M) , π1 (M)] is the commutator subgroup. Thus, H1 (M, Z) acts by deck
transformations on the covering space

M̃/ [π1 (M) , π1 (M)]

with quotient M. Since H1 (M, Z) is a finitely generated Abelian group, we know
that the set of torsion elements T is a finite normal subgroup. We can then consider
Γ = H1 (M, Z) /T as acting by deck transformations on

M̄ = M̃/ [π1 (M) , π1 (M)] /T.

Thus, we have a covering π : M̄ → M with a torsion free and Abelian Galois group
of deck transformations. The rank of the torsion-free group Γ is clearly equal to

b1 (M) = dimH1 (M, R) .

Next recall that any finite-index subgroup of Γ has the same rank as Γ. So if we can
find a finite-index subgroup that is generated by elements that can be geometrically
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controlled, then we might be able to bound b1. To this end we have a very interesting
result.

Lemma 37. (M. Gromov, 1980) For fixed x ∈ M̄ there exists a finite-index
subgroup Γ′ ⊂ Γ that is generated by elements γ1, . . . , γm such that

d (x, γi (x)) ≤ 2 · diam (M) .

Furthermore, for all γ ∈ Γ′ − {1} we have

d (x, γ (x)) > diam (M) .

Proof. First we find a finite-index subgroup that can be generated by elements
satisfying the first condition. Then we modify this group so that it also satisfies
the second condition.

For each ε > 0 let Γε be the group generated by

{γ ∈ Γ : d (x, γ (x)) < 2diam (M) + ε} ,

and let πε : M̄ → M̄/Γε denote the covering projection. We claim that for each
z ∈ M̄ we have

d (πε (z) , πε (x)) < diam (M) + ε.

Otherwise, we could find z ∈ M̄ such that

d (x, z) = d (πε (z) , πε (x)) = diam (M) + ε.

Now, we can find γ ∈ Γ such that d (γ (x) , z) ≤ diam (M) , but then we would have

d (πε (γ (x)) , πε (x)) ≥ d (πε (z) , πε (x))− d (πε (z) , πε (γ (x))) ≥ ε,

d (x, γ (x)) ≤ d (x, z) + d (z, γ (x)) ≤ 2diam (M) + ε.

Here we have a contradiction, as the first line says that γ /∈ Γε, while the second
line says γ ∈ Γε.

Note that compactness of M̄/Γε shows that Γε ⊂ Γ has finite index.
Now observe that there are at most finitely many elements in the set

{γ ∈ Γ : d (x, γ (x)) < 3diam (M)} ,

as Γ acts discretely on M̄. Hence, there must be a sufficiently small ε > 0 such that

{γ ∈ Γ : d (x, γ (x)) < 2diam (M) + ε} = {γ ∈ Γ : d (x, γ (x)) ≤ 2diam (M)} .

Then we have a finite-index subgroup Γε of Γ generated by

{γ ∈ Γ : d (x, γ (x)) ≤ 2diam (M)} = {γ1, . . . , γm} .

We shall now modify these generators until we get the desired group Γ′.
First, observe that as the rank of Γε is b1, we can assume that

{
γ1, . . . , γb1

}
are linearly independent and generate a subgroup Γ′′ ⊂ Γε of finite index. Next,
we recall that only finitely many elements γ in Γ′′ lie in

{γ ∈ Γ : d (x, γ (x)) ≤ 2diam (M)} .

We can therefore choose{
γ̃1, . . . , γ̃b1

} ⊂ {γ ∈ Γ : d (x, γ (x)) ≤ 2diam (M)}
with the following properties (we use additive notation here, as it is easier to read):

(1) span {γ̃1, . . . , γ̃k} ⊂ span {γ1, . . . , γk} has finite index for all k = 1, . . . , b1.
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(2) γ̃k = l1k · γ1 + · · ·+ lkk · γk is chosen such that lkk is maximal in absolute
value among all elements in

Γ′′ ∩ {γ ∈ Γ : d (x, γ (x)) ≤ 2diam (M)} .

The group Γ′ generated by
{
γ̃1, . . . , γ̃b1

}
clearly has finite index in Γ′′ and

hence also in Γ. The generators lie in

{γ ∈ Γ : d (x, γ (x)) ≤ 2diam (M)} ,

as demanded by the first property. It only remains to show that the second property
is also satisfied. The see this, let

γ = m1 · γ̃1 + · · ·+ mk · γ̃k

be chosen such that mk �= 0. If d (x, γ (x)) ≤ diam (M) , then we also have that

d
(
x, γ2 (x)

) ≤ d (x, γ (x)) + d
(
γ (x) , γ2 (x)

)
= 2d (x, γ (x))
≤ 2diam (M) .

Thus,
γ2 ∈ Γ′′ ∩ {γ ∈ Γ : d (x, γ (x)) ≤ 2diam (M)} ,

and also,

γ2 = 2m1 · γ̃1 + · · ·+ 2mk · γ̃k

=
k−1∑
i=1

ni · γi + 2mk · lkk · γk.

But this violates the maximality of lkk, as we assumed mk �= 0. �

With this lemma we can now give Gromov’s proof of

Theorem 63. (S. Gallot and M. Gromov, 1980) If M is a Riemannian manifold
of dimension n such that Ric ≥ (n− 1) k and diam (M) ≤ D, then there is a
function C

(
n, k ·D2

)
such that

b1 (M) ≤ C
(
n, k ·D2

)
.

Moreover, limε→0 C (n, ε) = n.In particular, there is ε (n) > 0 such that if k ·D2 ≥
−ε (n) , then b1 (M) ≤ n.

Proof. First observe that for k > 0 there is nothing to prove, as we know that
b1 = 0 from Myers’ theorem.

Suppose we have chosen a covering M̄ of M with torsion-free Abelian Galois
group of deck transformations Γ =

〈
γ1, . . . , γb1

〉
such that for some x ∈ M̄ we have

d (x, γi (x)) ≤ 2diam (M) ,

d (x, γ (x)) > diam (M) , γ �= 1.

Then we clearly have that all of the balls B
(
γ (x) , diam(M)

2

)
are disjoint. Now set

Ir =
{
γ ∈ Γ : γ = l1 · γ1 + · · ·+ lb1 · γb1 , |l1|+ · · ·+ |lb1 | ≤ r

}
.

Note that for γ ∈ Ir we have

B

(
γ (x) ,

diam (M)
2

)
⊂ B

(
x, r · 2diam (M) +

diam (M)
2

)
.
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All of these balls are disjoint and have the same volume, as γ acts isometrically.
We can therefore use the relative volume comparison theorem to conclude that the
cardinality of Ir is bounded from above by

volB
(
x, r · 2diam (M) + diam(M)

2

)
volB

(
x, diam(M)

2

) ≤
v
(
n, k, r · 2diam (M) + diam(M)

2

)
v
(
n, k, diam(M)

2

) .

This shows that

b1 ≤ |I1|

≤
v
(
n, k, 2diam (M) + diam(M)

2

)
v
(
n, k, diam(M)

2

) ,

which gives us a general bound for b1. To get a more refined bound we have to use
Ir for larger r. If r is an integer, then

|Ir| = (2r + 1)b1 .

The upper bound for |Ir| can be reduced to

v
(
n, k, r · 2diam (M) + diam(M)

2

)
v
(
n, k, diam(M)

2

) ≤ v
(
n, k,

(
r · 2 + 1

2

)
D
)

v
(
n, k, D

2

)

=

∫ (r·2+ 1
2 )D

0

(
sinh(

√−kt)√−k

)n−1

dt

∫ 1
2 D

0

(
sinh(

√−kt)√−k

)n−1

dt

=
∫ (r·2+ 1

2 )D
√−k

0 sinhn−1 (t) dt∫ 1
2 D

√−k

0
sinhn−1 (t) dt

= 2n

(
r · 2 +

1
2

)n

+ · · · ≤ 5n · rn,

where in the last step we assume that D
√−k is very small relative to r. If b1 ≥ n+1,

this cannot be larger than |Ir| = (2r + 1)b1 when r = 5n. Thus select r = 5n and
the assume D

√−k is small enough that∫ (r·2+ 1
2 )D

√−k

0 sinhn−1 (t) dt∫ 1
2 D

√−k

0
sinhn−1 (t) dt

≤ 5n · rn

in order to force b1 ≤ n. �

Gallot’s proof of the above theorem uses techniques that are sophisticated gen-
eralizations of the Bochner technique.

2.2. Finiteness of Fundamental Groups. One can get even more informa-
tion from these volume comparison techniques. Instead of considering just the first
homology group, we can actually get some information about fundamental groups
as well.
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For our next result we need a different kind of understanding of how funda-
mental groups can be represented.

Lemma 38. (M. Gromov, 1980) For a Riemannian manifold M and x̃ ∈ M̃, we
can always find generators {γ1, . . . γm} for the fundamental group Γ = π1 (M) such
that d (x, γi (x)) ≤ 2diam (M) and such that all relations for Γ in these generators
are of the form γi · γj · γ−1

k = 1.

Proof. For any ε ∈ (0, inj (M)) choose a triangulation of M such that adja-
cent vertices in this triangulation are joined by a curve of length less that ε. Let
{x1, . . . , xk} denote the set of vertices and {eij} the edges joining adjacent vertices
(thus, eij is not necessarily defined for all i, j). If x is the projection of x̃ ∈ M̃,
then join x and xi by a segment σi for all i = 1, . . . , k and construct the loops

σij = σieijσ
−1
j

for adjacent vertices. Now, any loop in M based at x is homotopic to a loop in the
1-skeleton of the triangulation, i.e., a loop that is constructed out of juxtaposing
edges eij . Since eijejk = eijσ

−1
j σjejk such loops are the product of loops of the

form σij . Therefore Γ is generated by σij .
Now observe that if three vertices xi, xj , xk are adjacent to each other, then

they span a 2-simplex �ijk. Thus, we have that the loop σijσjkσki = σijσjkσ−1
ik is

homotopically trivial. We claim that these are the only relations needed to describe
Γ. To see this, let σ be any loop in the 1-skeleton that is homotopically trivial. Now
use that σ in fact contracts in the 2-skeleton. Thus, a homotopy corresponds to a
collection of 2-simplices �ijk. In this way we can represent the relation σ = 1 as a
product of elementary relations of the form σijσjkσ−1

ik = 1.
Finally, use discreteness of Γ to get rid of ε as in the above case. �

A simple example might be instructive here.

Example 48. Consider Mk = S3/Zk; the constant-curvature 3-sphere divided
out by the cyclic group of order k. As k → ∞ the volume of these manifolds goes
to zero, while the curvature is 1 and the diameter π

2 . Thus, the fundamental groups
can only get bigger at the expense of having small volume. If we insist on writing
the cyclic group Zk in the above manner, then the number of generators needed goes
to infinity as k →∞. This is also justified by the next theorem.

For numbers n ∈ N, k ∈ R, and v,D ∈ (0,∞) , let M (n, k, v,D) denote the
class of compact Riemannian n-manifolds with

Ric ≥ (n− 1) k,

vol ≥ v,

diam ≤ D.

We can now prove:

Theorem 64. (M. Anderson, 1990) There are only finitely many fundamental
groups among the manifolds in M (n, k, v,D) for fixed n, k, v,D.

Proof. Choose generators {γ1, . . . , γm} as in the lemma. Since the number of
possible relations is bounded by 2m3

, we have reduced the problem to showing that
m is bounded. We have that d (x, γi (x)) ≤ 2D. Fix a fundamental domain F ⊂ M̃
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that contains x, i.e., a closed set such that π : F → M is onto and volF = volM.
One could, for example, choose the Dirichlet domain

F =
{

z ∈ M̃ : d (x, z) ≤ d (γ (x) , z) for all γ ∈ π1 (M)
}

.

Then we have that the sets γi (F ) are disjoint up to sets of measure 0, all have the
same volume, and all lie in the ball B (x, 4D) . Thus,

m ≤ volB (x, 4D)
volF

≤ v (n, k, 4D)
v

.

In other words, we have bounded the number of generators in terms of n,D, v, k
alone. �

Another related result shows that groups generated by short loops must in fact
be finite.

Lemma 39. (M. Anderson, 1990) For fixed numbers n ∈ N, k ∈ R, and v,D ∈
(0,∞) we can find L = L (n, k, v,D) and N = N (n, k, v,D) such that if M ∈
M (n, k, v,D) , then any subgroup of π1 (M) that is generated by loops of length
≤ L must have order ≤ N.

Proof. Let Γ ⊂ π1 (M) be a group generated by loops {γ1, . . . , γk} of length
≤ L. Consider the universal covering π : M̃ → M and let x ∈ M̃ be chosen such
that the loops are based at π (x) . Then select a fundamental domain F ⊂ M̃ as
above with x ∈ F. Thus for any γ1, γ2 ∈ π1 (M) , either γ1 = γ2 or γ1 (F ) ∩ γ2 (F )
has measure 0.

Now define U (r) as the set of γ ∈ Γ such that γ can be written as a product of at
most r elements from {γ1, . . . , γk} . We assumed that d (x, γi (x)) ≤ L for all i, and
thus d (x, γ (x)) ≤ r ·L for all γ ∈ U (r) . This means that γ (F ) ⊂ B (x, r · L + D).
As the sets γ (F ) are disjoint up to sets of measure zero, we obtain

|U (r)| ≤ volB (x, r · L + D)
volF

≤ v (n, k, r · L + D)
v

.

Now define

N =
v (n, k, 2D)

v
+ 1,

L =
D

N
.

If Γ has more than N elements we get a contradiction by using r = N as we would
have

v (n, k, 2D)
v

+ 1 = N

≤ |U (N)|
≤ v (n, k, 2D)

v
.

�
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3. Manifolds of Nonnegative Ricci Curvature

In this section we shall prove the splitting theorem of Cheeger-Gromoll. This
theorem is analogous to the maximal diameter theorem in many ways. It also has
far-reaching consequences for compact manifolds with nonnegative Ricci curvature.
For instance, we shall see that S3×S1 does not admit any complete metrics with zero
Ricci curvature. One of the critical ingredients in the proof of the splitting theorem
is the maximum principle for continuous functions. These analytical matters will
be taken care of in the first subsection.

3.1. The Maximum Principle. We shall try to understand how one can
assign second derivatives to (distance) functions at points where the function is not
smooth. In chapter 11 we shall also discuss generalized gradients, but this theory
is completely different and works only for Lipschitz functions.

The key observation for our development of generalized Hessians and Laplacians
is

Lemma 40. If f, h : (M, g) → R are C2 functions such that f(p) = h(p) and
f(x) ≥ h(x) for all x near p, then

∇f (p) = ∇h (p) ,

Hessf |p ≥ Hessh|p,
∆f(p) ≥ ∆h(p).

Proof. If (M, g) ⊂ (R, can), then the theorem is simple calculus. In general,
We can take γ : (−ε, ε) → M to be a geodesic with γ(0) = p, then use this
observation on f ◦ γ, h ◦ γ to see that

df(γ̇(0)) = dh(γ̇(0)),
Hessf (γ̇ (0) , γ̇ (0)) ≥ Hessh (γ̇ (0) , γ̇ (0)) .

This clearly implies the lemma if we let v = γ̇(0) run over all v ∈ TpM . �

This lemma implies that a C2 function f : M → R has Hessf |p ≥ B, where B
is a symmetric bilinear map on TpM (or ∆f(p) ≥ a ∈ R), iff for every ε > 0 there
exists a function fε(x) defined in a neighborhood of p such that

(1) fε(p) = f(p).
(2) f(x) ≥ fε(x) in some neighborhood of p.
(3) Hessfε|p ≥ B − ε · g|p (or ∆fε(p) ≥ a− ε).

Such functions fε are called support functions from below . One can analogously
use support functions from above to find upper bounds for Hessf and ∆f . Support
functions are also known as barrier functions in PDE theory.

For a continuous function f : (M, g) → R we say that: Hessf |p ≥ B (or
∆f(p) ≥ a) iff there exist smooth support functions fε satisfying (1)-(3). One also
says that Hessf |p ≥ B (or ∆f(p) ≥ a) hold in the support or barrier sense. In PDE
theory there are other important ways of defining weak derivatives. The notion
used here is guided by what we can obtain from geometry.

One can easily check that if (M, g) ⊂ (R, can), then f is convex if Hessf ≥ 0
everywhere. Thus, f : (M, g) → R is convex if Hessf ≥ 0 everywhere. Using this,
one can easily prove
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Theorem 65. If f : (M, g) → R is continuous with Hessf ≥ 0 everywhere,
then f is constant near any local maximum. In particular, f cannot have a global
maximum unless f is constant.

We shall need a more general version of this theorem called the maximum
principle. As stated below, it was first proved for smooth functions by E. Hopf in
1927 and then later for continuous functions by Calabi in 1958 using the idea of
support functions. A continuous function f : (M, g) → R with ∆f ≥ 0 everywhere
is said to be subharmonic. If ∆f ≤ 0, then f is superharmonic.

Theorem 66. (The Strong Maximum Principle) If f : (M, g) → R is continu-
ous and subharmonic, then f is constant in a neighborhood of every local maximum.
In particular, if f has a global maximum, then f is constant.

Proof. First, suppose that ∆f > 0 everywhere. Then f can’t have any local
maxima at all. For if f has a local maximum at p ∈ M , then there would exist a
smooth support function fε(x) with

(1) fε(p) = f(p),
(2) fε(x) ≤ f(x) for all x near p,
(3) ∆fε(p) > 0.

Here (1) and (2) imply that fε must also have a local maximum at p. But this
implies that Hessfε(p) ≤ 0, which contradicts (3).

Next just assume that ∆f ≥ 0 and let p ∈ M be a local maximum for f . For
sufficiently small r < inj(p) we therefore have a function f : (B(p, r), g) → R with
∆f ≥ 0 and a global maximum at p. If f is constant on B(p, r), then we are done,
otherwise, we can assume (by possibly decreasing r) that f (x) �= f(p) for some

x ∈ S(p, r) = {x ∈ M : d(p, x) = r}.
Then define

V = {x ∈ S(p, r) : f(x) = f(p)}.
Our goal is to construct a smooth function h = eαϕ − 1 such that

h < 0 on V,

h (p) = 0,
∆h > 0 on B̄ (p, r) .

This function is found by first selecting an open disc U ⊂ S (p, r) that contains V.
We can then find ϕ such that

ϕ (p) = 0,

ϕ < 0 on U,

∇ϕ �= 0 on B̄ (p, r) .

In an appropriate coordinate system
(
x1, . . . , xn

)
we can simply assume that

U lies in the lower half-plane: x1 < 0 and then let ϕ = x1 (see also Figure 9.2).
Lastly, choose α so big that

∆h = αeαϕ(α|∇ϕ|2 + ∆ϕ) > 0 on B(p, r).

Now consider the function f̄ = f + δh on B(p, r). Provided δ is very small, this
function has a local maximum in the interior B(p, r), since

f̄(p) = f (p)
> max

{
f (x) + δh (x) = f̄(x) : x ∈ ∂B(p, r)

}
.
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Figure 9.2

On the other hand, we can also show that f̄ has positive Laplacian, thus giving a
contradiction with the first part of the proof. To see that the Laplacian is positive,
select fε as a support function from below for f at q ∈ B (p, r) . Then fε + δh is a
support function from below for f̄ at q. The Laplacian of this support function is
estimated by

∆ (fε + δh) (p) ≥ −ε + δ∆h (p) ,

which for given δ must become positive as ε → 0. �
A continuous function f : (M, g) → R is said to be linear if Hessf ≡ 0 (i.e.,

both of the inequalities Hessf ≥ 0, Hessf ≤ 0 hold everywhere). One can easily
prove that this implies that

(f ◦ γ) (t) = f (γ (0)) + αt

for each geodesic γ. This implies that

f ◦ expp(x) = f(p) + g(vp, x)

for each p ∈ M and some vp ∈ TpM . In particular f is C∞ with ∇f |p = vp.
More generally, we have the concept of a harmonic function. This is a continu-

ous function f : (M, g) → R with ∆f = 0. The maximum principle shows that if M
is closed, then all harmonic functions are constant. On incomplete or complete open
manifolds, however, there are often many harmonic functions. This is in contrast
to the existence of linear functions, where ∇f is necessary parallel and therefore
splits the manifold locally into a product where one factor is an interval. It is an
important fact that any harmonic function is C∞ if the metric is C∞. Using the
above maximum principle we can reduce this to a standard result in PDE theory
(see also chapter 10).

Theorem 67. (Regularity of harmonic functions) If f : (M, g) → R is contin-
uous and harmonic in the weak sense, then f is smooth.

Proof. We fix p ∈ M and a neighborhood Ω around p with smooth boundary.
We can in addition assume that Ω is contained in a coordinate neighborhood. It is
now a standard fact from PDE theory that the following Dirichlet boundary value
problem has a solution:

∆u = 0,
u|∂Ω = f |∂Ω.

Moreover, such a solution u is smooth on the interior of Ω. Now consider the two
functions u − f and f − u on Ω. If they are both nonpositive, then they must
vanish and hence f = u is smooth near p. Otherwise one of these functions must be
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p
r

q1
q2

q3 …

Figure 9.3

positive somewhere. However, as it vanishes on the boundary and is subharmonic
this implies that it has an interior global maximum. The maximum principle then
shows that the function is constant, but this is only possible if it vanishes. �

3.2. Rays and Lines. We will work only with complete and noncompact
manifolds in this section. A ray r(t) : [0,∞) → (M, g) is a unit speed geodesic such
that

d (r(t), r(s)) = |t− s| for all t, s ≥ 0.

One can think of a ray as a semi-infinite segment or as a segment from r(0) to
infinity. A line �(t) : R → (M, g) is a unit speed geodesic such that

d(γ(t), γ(s)) = |t− s| for all t, s ∈ R.

Lemma 41. If p ∈ (M, g), then there is always a ray emanating from p. If M
is disconnected at infinity then (M, g) contains a line.

Proof. Let p ∈ M and consider a sequence qi → ∞. Find unit vectors
vi ∈ TpM such that:

σi(t) = expp(tvi), t ∈ [0, d(p, qi)]

is a segment from p to qi. By possibly passing to a subsequence, we can assume
that vi → v ∈ TpM (see Figure 9.3). Now

σ(t) = expp(tv), t ∈ [0,∞),

becomes a segment. This is because σi converges pointwise to σ by continuity of
expp, and thus

d(σ(s), σ(t)) = lim d(σi(s), σi(t)) = |s− t|.
A complete manifold is connected at infinity if for every compact set K ⊂ M

there is a compact set C ⊃ K such that any two points in M −C can be joined by
a curve in M −K. If M is not connected at infinity, we say that M is disconnected
at infinity .

If M is disconnected at infinity, we can obviously find a compact set K and
sequences of points pi → ∞, qi → ∞ such that any curve from pi to qi must pass
through K. If we join these points by segments σi : (−ai, bi) → M such that
ai, bi → ∞, σi(0) ∈ K, then the sequence will subconverge to a line (see Figure
9.4). �
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Figure 9.4

Example 49. Surfaces of revolution dr2 + ϕ2(r)ds2
n−1, where ϕ : [0,∞) →

[0,∞) and ϕ̇(t) < 1, ϕ̈(t) < 0, t > 0, cannot contain any lines. These manifolds
look like paraboloids.

Example 50. Any complete metric on Sn−1×R must contain a line, since the
manifold is disconnected at infinity.

Example 51. The Schwarzschild metric on S2×R2 does not contain any lines.
This will also follow from our main result in this section.

Theorem 68. (The Splitting Theorem, Cheeger-Gromoll, 1971): If (M, g)
contains a line and has Ric ≥ 0, then (M, g) is isometric to a product (H ×R, g0 +
dt2).

The proof is quite involved and will require several constructions. The main
idea is to find a distance function r : M → R (i.e. |∇r| ≡ 1) that is linear (i.e.
Hessr ≡ 0). Having found such a function, one can easily see that M = U0 × R,
where U0 = {r = 0} and g = dt2 + g0. The maximum principle will play a key
role in showing that r, when it has been constructed, is both smooth and linear.
Recall that in the proof of the maximal diameter theorem we used two distance
functions r, r̃ placed at maximal distance from each other and then proceeded to
show that r + r̃ = constant. This implied that r, r̃ were smooth, except at the
two chosen points, and that ∆r is exactly what it is in constant curvature. We
then used the rigidity part of the Cauchy-Schwarz inequality to compute Hessr.
In the construction of our linear distance function we shall do something similar.
In this situation the two ends of the line play the role of the points at maximal
distance. Using this line we will construct two distance functions b± from infinity
that are continuous, satisfy b++b− ≥ 0 (from the triangle inequality), ∆b± ≤ 0, and
b++b− = 0 on the line. Thus, b++b− is superharmonic and has a global minimum.
The minimum principle will therefore show that b+ + b− ≡ 0. Thus, b+ = −b− and

0 ≥ ∆b+ = −∆b− ≥ 0,
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which shows that both of b± are harmonic and therefore C∞. We then show that
they are actually distance functions (i.e., |∇b±| ≡ 1). Finally we can conclude that

0 = ∇b±(∆b±) +
(∆b±)2

n− 1
≤ ∇b±(∆b±) + |Hessb±|2
= |Hessb±|2
≤ −Ric(∇b±,∇b±) ≤ 0.

This establishes that |Hessb±|2 = 0, so that we have two linear distance functions
b± as desired.

The proof proceeds through several results some of which we will need later.

3.3. Laplacian Comparison.

Lemma 42. (E. Calabi, 1958) Let r(x) = d(x, p), p ∈ (M, g). If Ric(M, g) ≥ 0,
then

∆r(x) ≤ n− 1
r(x)

for all x ∈ M.

Proof. We know that the result is true whenever r is smooth. For any other
q ∈ M , choose a unit speed segment σ : [0, �] → M with σ(0) = p, σ(�) = q. Then
the triangle inequality implies that rε(x) = ε+d(σ(ε), x) is a support function from
above for r at q. If all these support functions are smooth at q, then

∆rε(q) ≤ n− 1
rε(q)− ε

=
n− 1

r(q)− ε

≤ n− 1
r(q)

+ ε · 2(n− 1)
(r(q))2

for small ε, and hence ∆r(q) ≤ n−1
r(q) in the support sense.

Now for the smoothness. Fix ε > 0 and suppose rε is not smooth at q. Then
we know that either

(1) there are two segments from σ (ε) to q, or
(2) q is a critical value for expσ(ε) : seg (σ (ε)) → M.

Case (1) would give us a nonsmooth curve of length � from p to q, which we
know is impossible. Thus, case (2) must hold. To get a contradiction out of this,
we show that this implies that expq has σ (ε) as a critical value.

Using that q is critical for expσ(ε), we find a Jacobi field J (t) : [ε, �] → TM

along σ|[ε,�] such that J (ε) = 0, J̇ (ε) �= 0 and J (�) = 0 (see chapter 6). Then
also J̇ (�) �= 0 as it solves a linear second order equation. Running backwards from
q to σ (ε) then shows that expq is critical at σ (ε). This however contradicts that
σ : [0, �] → M is a segment. �

By a similar analysis, we can prove

Lemma 43. If (M, g) is complete and Ric(M, g) ≥ (n− 1)k, then any distance
function r(x) = d(x, p) satisfies:

∆r(x) ≤ (n− 1)
sn′

k(r(x))
snk(r(x))

.
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This lemma together with the maximum principle allows us to eliminate the
use of relative volume comparison in the proof of Cheng’s diameter theorem.

As in the other proof, consider r̃(x) = d(x, q), r(x) = d(x, p), where d(p, q) =
π/
√

k. Then we have r + r̃ ≥ π/
√

k, and equality will hold for any x ∈ M − {p, q}
that lies on a segment joining p and q. On the other hand, the above lemma tells
us that

∆(r + r̃) ≤ ∆r + ∆r̃

≤ (n− 1)
√

k cot(
√

kr(x)) + (n− 1)
√

k · (
√

kr̃(x))

≤ (n− 1)
√

k cot(
√

kr(x)) + (n− 1)
√

k cot
(√

k

(
π√
k
− r(x)

))
= (n− 1)

√
k(cot(

√
kr(x)) + cot(π −

√
kr(x))) = 0.

So r + r̃ is superharmonic on M − {p, q} and has a global minimum on this set.
Thus, the minimum principle tells us that r + r̃ = π/

√
k on M . The proof can now

be completed as before.

3.4. Busemann Functions. For the rest of this section we fix a complete
noncompact Riemannian manifold (M, g) with nonnegative Ricci curvature. Let
γ : [0,∞) → (M, g) be a unit speed ray, and define

bt(x) = d(x, γ(t))− t.

Proposition 40. (1) For fixed x, the function t → bt(x) is decreasing and
bounded in absolute value by d(x, γ(0)).

(2) |bt(x)− bt(y)| ≤ d(x, y).
(3) ∆bt(x) ≤ n−1

bt+t everywhere.

Proof. (2) and (3) are obvious, since bt(x)+t is a distance function from γ(t).
For (1), first observe that the triangle inequality implies

|bt(x)| = |d(x, γ(t)− t| = |d(x, γ(t))− d(γ(0), γ(t))| ≤ d(x, γ(0)).

Second, if s < t then

bt(x)− bs(x) = d(x, γ(t))− t− d(x, γ(s)) + s

= d(x, γ(t))− d(x, γ(s))− d(γ(t), γ(s))
≤ d(γ(t), γ(s))− d(γ(t), γ(s)) = 0.

�

This proposition shows that the family of functions {bt}t≥0 forms a pointwise
bounded equicontinuous family that is also pointwise decreasing. Thus, bt must
converge to a distance-decreasing function bγ satisfying

|bγ(x)− bγ(y)| ≤ d(x, y),
|bγ(x)| ≤ d(x, γ(0)),

and
bγ(γ(r)) = lim bt(γ(r)) = lim(d(γ(r), γ(t))− t) = −r.

This function bγ is called the Busemann function for γ and should be interpreted
as a distance function from “γ(∞).”
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Figure 9.5

Figure 9.6

Example 52. If M = (Rn, can), then all Busemann functions are of the form

bγ(x) = γ(0)− γ̇(0) · x
(see Figure 9.5).

The level sets b−1
γ (t) are called horospheres . In (Rn, can) these are obviously

hyperplanes.
Given our ray γ, as before, and p ∈ M , consider a family of unit speed segments

σt : [0, �t] → (M, g) from p to γ(t). As when we constructed rays, this family must
subconverge to some ray γ̃ : [0,∞) → M , with γ̃(0) = p. A ray coming from such a
construction is called an asymptote for γ from p (see Figure 9.6). Such asymptotes
from p need not be unique.

Proposition 41. (1) bγ(x) ≤ bγ(p) + bγ̃(x).
(2) bγ(γ̃(t)) = bγ(p) + bγ̃(γ̃(t)) = bγ(p)− t.

Proof. Let σi : [0, �i] → (M, g) be the segments converging to γ̃. To check
(1), observe that

d(x, γ(s))− s ≤ d(x, γ̃(t)) + d(γ̃(t), γ(s))− s

= d(x, γ̃(t))− t + d(p, γ̃(t)) + d(γ̃(t), γ(s))− s

→ d(x, γ̃(t))− t + d(p, γ̃(t)) + bγ(γ̃(t)) as s →∞.

Thus, we see that (1) is true provided that (2) is true. To establish (2), we notice
that

d(p, γ(ti)) = d(p, σi(s)) + d(σi(s), γ(ti))
for some sequence ti →∞. Now, σi(s) → γ̃(s), so we obtain

bγ(p) = lim(d(p, γ(ti))− ti)
= lim(d(p, γ̃(s)) + d(γ̃(s), γ(ti))− ti)
= d(p, γ̃(s)) + lim(d(γ̃(s), γ(ti))− ti)
= s + bγ(γ̃(s))
= −bγ̃(γ̃(s)) + bγ(γ̃(s)).

�
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Figure 9.7

We have now shown that bγ has bγ(p) + bγ̃ as support function from above at
p ∈ M .

Lemma 44. If Ric(M, g) ≥ 0, then ∆bγ ≤ 0 everywhere.

Proof. Since bγ(p) + bγ̃ is a support function from above at p, we only need
to check that ∆bγ̃(p) ≤ 0. To see this, observe that the functions

bt(x) = d(x, γ̃(t))− t

are actually support functions from above for bγ̃ at p. Furthermore, these functions
are smooth at p with

∆bt(p) ≤ n− 1
t

→ 0 as t →∞.

�
Now suppose (M, g) has Ric ≥ 0 and contains a line γ(t) : R → M . Let b+

be the Busemann function for γ : [0,∞) → M, and b− the Busemann function for
γ : (−∞, 0] → M . Thus,

b+(x) = lim
t→+∞(d(x, γ(t))− t),

b−(x) = lim
t→+∞(d(x, γ(−t))− t).

Clearly,
b+(x) + b−(x) = lim

t→+∞(d(x, γ(t)) + d(x, γ(−t))− 2t),

so by the triangle inequality(
b+ + b−

)
(x) ≥ 0 for all x.

Moreover, (
b+ + b−

)
(γ(t)) = 0

since γ is a line (see Figure 9.7).
This gives us a function b+ + b− with ∆(b+ + b−) ≤ 0 and a global minimum

at γ(t). The minimum principle then shows that b+ + b− = 0 everywhere. In
particular, b+ = −b− and ∆b+ = ∆b− = 0 everywhere.

To finish the proof of the splitting theorem, we still need to show that b± are
distance functions, i.e. |∇b±| ≡ 1. To see this, let p ∈ M and construct asymptotes
γ̃± for γ± from p. Then consider

b±t (x) = d(x, γ̃±(t))− t,

and observe:

b+
t (x) ≥ b+(x)− b+ (p) = −b−(x) + b− (p) ≥ −b−t (x)
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with equality holding for x = p. Since both b±t are smooth at p with unit gradient,
we must therefore have that ∇b+

t (p) = −∇b−t (p). Then also, b± must be differen-
tiable at p with unit gradient. We have therefore shown (without using that b± are
smooth from ∆b± = 0) that b± are everywhere differentiable with unit gradient.
The result that harmonic functions are smooth can now be invoked and the proof
is finished as explained in the beginning of the section.

3.5. Structure Results in Nonnegative Ricci Curvature. The splitting
theorem gives several nice structure results for compact manifolds with nonnegative
Ricci curvature.

Corollary 26. Sp × S1 does not admit any Ricci flat metrics when p = 2, 3.

Proof. The universal covering is Sp × R, As this space is disconnected at
infinity any metric with nonnegative Ricci curvature must split. If the original
metric is Ricci flat, then after the splitting, we will get a Ricci flat metric on Sp.
If p ≤ 3, such a metric must also be flat. But we know that Sp, p = 2, 3 do not
admit any flat metrics. �

When p ≥ 4 it is not known whether Sp admits a Ricci flat metric.

Theorem 69. (Structure Theorem for Nonnegative Ricci Curvature, Cheeger-
Gromoll, 1971) Suppose (M, g) is a compact Riemannian manifold with Ric ≥ 0.
Then the universal cover (M̃, g̃) splits isometrically as a product N ×Rp, where N
is a compact manifold.

Proof. By the splitting theorem, we can write M̃ = N × Rp, where N does
not contain any lines. Observe that if

γ(t) = (γ1(t), γ2(t)) ∈ N × Rp

is a geodesic, then both γi are geodesics, and if γ is a line, then both γi are also lines
unless they are constant. Thus, all lines in M̃ must be of the form γ(t) = (x, σ(t)),
where x ∈ N and σ is a line in Rp.

If N is not compact, then it must contain a ray γ(t) : [0,∞) → N . If π : M̃ →
M is the covering map, then we can consider c(t) = π ◦ (γ(t), 0) in M . This is of
course a geodesic in M, and since M is compact, there must be a sequence ti →∞
such that ċ(ti) → v ∈ TxM for some x ∈ M, v ∈ TxM . Choose x̃ ∈ M̃ such that
π(x̃) = x, and consider lifts γi(t) : [−ti,∞) → M̃ of c(t + ti), where Dπ(γ̇i(0)) =
ċ(ti) and γi(0) → x̃. On the one hand, these geodesics converge to a geodesic
γ̂ : (−∞,∞) → M̃ with γ̂(0) = x̃. On the other hand, since Dπ(γ̇(ti)) = ċ(ti),
there must be deck transformations gi ∈ π1(M) such that gi ◦ γ(t + ti) = γi(t).
Thus, the γis are rays and must converge to a line. From our earlier observations,
this line must be in Rp. The deck transformations gi therefore map γ̇(t+ ti), which
are tangent to N , to vectors that are almost perpendicular to N . This, however,
contradicts the following property for isometries on M̃.

Let F : M̃ → M̃ be an isometry, e.g., F = gi. If �(t) is a line in M̃, then F ◦ �

must also be a line in M̃ . Since all lines in M̃ lie in Rp and every vector tangent to
Rp is the velocity of some line, we see that for each c ∈ N we can find F1 (c) ∈ N
such that

F : {c} × Rp → {F1 (c)} × Rp.



3. MANIFOLDS OF NONNEGATIVE RICCI CURVATURE 289

This implies that F must be of the form F = (F1, F2), where F1 : N → N is an
isometry and F2 : N × Rp → Rp. In particular, the tangent bundles TN and TRp

are preserved by DF. �

This theorem also gives a strong structure for π1(M). Consider the group G of
isometries on N that are split off by the action of π1 (M) on M̃ = N × Rp. Since
N is compact and G acts discretely on N we see that it is finite. The kernel of the
homomorphism π1 (M) → G is then a finite index subgroup that acts discretely
and cocompactly on Rp. Such groups are known as crystallographic groups and are
fairly well understood. It is a theorem of Bieberbach that any group of isometries
Γ ⊂ Iso (Rp) that is discrete and cocompact must contain a rank p Abelian group
Zp of finite index. This structure comes from the exact sequence

1 → Rp → Iso (Rp) → O (p) → 1,

where the map Iso (Rp) → O (p) is the assignment that takes the isometry Ox + v
to O. If we restrict this short exact sequence to Γ we see that the kernel is an
Abelian subgroup of Rp which acts discretely. This shows that it must be of the
form Zq where q ≤ p. If q < p, then the action of Zq leaves the q-dimensional
subspace V = span {Zq} invariant and therefore fixes the orthogonal complement.
This shows that the action can’t be cocompact. Finally we also note that the image
in O (p) is discrete and hence finite. (For more details see also [34], [96]). Note
that there are non-discrete actions of Zn on R for any n ≥ 1. To see this simply
take real numbers α1, ..., αn that are linearly independent over Q and use these as
a basis for the action. Note, however, that all orbits of this action are dense so it
is not a discrete action.

We can now prove some further results about the structure of compact mani-
folds with nonnegative Ricci curvature.

Corollary 27. Suppose (M, g) is a complete, compact Riemannian manifold
with Ric ≥ 0. If M is K(π, 1), i.e., the universal cover is contractible, then the
universal covering is Euclidean space and (M, g) is a flat manifold.

Proof. We know that M̃ = Rp × C, where C is compact. The only way in
which this space can be contractible is if C is contractible. But the only compact
manifold that is contractible is the one-point space. �

Corollary 28. If (M, g) is compact with Ric ≥ 0 and has Ric > 0 on some
tangent space TpM , then π1(M) is finite.

Proof. Since Ric > 0 on an entire tangent space, the universal cover cannot
split into a product Rp ×C, where p ≥ 1. Thus, the universal covering is compact.

�

Corollary 29. If (M, g) is compact and has Ric ≥ 0, then b1(M) ≤ dimM =
n, with equality holding iff (M, g) is a flat torus.

Proof. We always have a surjection

h : π1(M) → H1 (M, Z) ,

that maps loops to cycles. The above mentioned structure result for the fundamen-
tal groups shows that we have a finite index subgroup Zp ⊂ π1(M) with p ≤ n. The
image h (Zp) ⊂ H1 (M, Z) is therefore also of finite index. This shows that the rank
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of the torsion free part of H1 (M, Z) must be ≤ p. In case b1 = n, we must have
that p = n as h (Zp) otherwise couldn’t have finite index. This shows in addition
that

h|Zn : Zn → H1 (M, Z)

has trivial kernel as the image otherwise couldn’t have finite index. Thus M̃ = Rn

as p was the dimension of the Euclidean factor. Consequently M is flat. We now
observe that the kernel of

h : π1(M) → H1 (M, Z)

has to be a finite subgroup as it does not intersect the finite index subgroup Zn ⊂
π1(M). Since all isometries on Rn of finite order have a fixed point we have shown
that the inclusion Zn ⊂ π1(M) is an isomorphism. This shows that M is a torus. �

The penultimate result is a bit stronger than simply showing that H1 (M, R) =
0 as we did using the Bochner technique. The last result is equivalent to Bochner’s
theorem, but the proof is quite a bit different.

4. Further Study

The adventurous reader could consult [47] for further discussions. Anderson’s
article [2] contains the finiteness results for fundamental groups mentioned here
and also some interesting examples of manifolds with nonnegative Ricci curvature.
For the examples with almost maximal diameter we refer the reader to [3] and [74].
It is also worthwhile to consult the original paper on the splitting theorem [27]
and the elementary proof of it in [37]. We already mentioned in chapter 7 Gallot’s
contributions to Betti number bounds, and the reference [40] works here as well.
The reader should also consult the articles by Colding, Perel’man, and Zhu in [50]
to get an idea of how rapidly this subject has grown in the past few years.

5. Exercises

(1) With notation as in the first section:

dvol = λdr ∧ dvoln−1.

Show that µ = λ
1

n−1 satisfies

∂2
rµ ≤ − µ

n− 1
Ric (∂r, ∂r) ,

µ (0, θ) = 0,
lim
r→0

∂rµ (r, θ) = 1.

This can be used to show the desired estimates for the volume form as
well.

(2) Assume the distance function r = d (·, p) is smooth on B (p,R) . If in our
usual polar coordinates

Hessr =
sn′

k (r)
snk (r)

gr,

then all sectional curvatures on B (p,R) are equal to k.
(3) Show that if (M, g) has Ric ≥ (n− 1) k and for some p ∈ M we have

volB (p,R) = v (n, k,R) , then the metric has constant curvature k on
B (p,R) .
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(4) Let X be a vector field on a Riemannian manifold and consider Ft (p) =
expp (tX|p) .
(a) For v ∈ TpM show that J (t) = DFt (v) is a Jacobi field along t →

γ (t) = exp (tX) with the initial conditions J (0) = v, J̇ (0) = ∇vX.
(b) Select an orthonormal basis ei for TpM and let Ji (t) = DFt (ei) .

Show that

(det (DFt))
2 = det (g (Ji (t) , Jj (t))) .

(c) Show that as long as det (DFt) �= 0 it satisfies

d2(det (DFt))
1
n

dt2
≤ − (det (DFt))

1
n

n
Ric (γ̇, γ̇) .

Hint: Use that any n× n matrix satisfies (tr (A))2 ≤ ntr (A∗A) .
(5) Show that a complete manifold (M, g) with the property that

Ric ≥ 0,

lim
r→∞

volB (p, r)
ωnrn

= 1,

for some p ∈ M, must be isometric to Euclidean space.
(6) (Cheeger) The relative volume comparison estimate can be generalized as

follows: Suppose (M, g) has Ric ≥ (n− 1) k and dimension n.
(a) Select points p1, . . . , pk ∈ M. Then the function

r →
vol

(⋃k
i=1 B (pi, r)

)
v (n, k, r)

is nonincreasing and converges to k as r → 0.
(b) If A ⊂ M, then

r →
vol

(⋃
p∈A B (p, r)

)
v (n, k, r)

is nonincreasing. To prove this, use the above with the finite collec-
tion of points taken to be very dense in A.

(7) The absolute volume comparison can also be slightly generalized. Namely,
for p ∈ M and a subset Γ ⊂ TpM of unit vectors, consider the cones
defined in polar coordinates:

BΓ (p, r) = {(t, θ) ∈ M : t ≤ r and θ ∈ Γ} .

If RicM ≥ (n− 1) k, show that

volBΓ (p, r) ≤ volΓ ·
∫ r

0

(snk (t))n−1
dt.

(8) Let G be a compact connected Lie group with a bi-invariant metric. Use
the results from this chapter to prove
(a) If G has finite center, then G has finite fundamental group.
(b) A finite covering of G looks like G′×T k, where G′ is compact simply

connected, and T k is a torus.
(c) If G has finite fundamental group, then the center is finite.

(9) Show that a compact Riemannian manifold with irreducible restricted
holonomy and Ric ≥ 0 has finite fundamental group.
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(10) Let (M, g) be an n-dimensional Riemannian manifold that is isometric
to Euclidean space outside some compact subset K ⊂ M, i.e., M −K is
isometric to Rn−C for some compact set C ⊂ Rn. If Ricg ≥ 0, show that
M = Rn. (In chapter 7 we gave two different hints for this problem, here
is a third. Use the splitting theorem.)

(11) Show that if Ric ≥ n− 1, then diam ≤ π, by showing that if d (p, q) > π,
then

ep,q (x) = d (p, x) + d (x, q)− d (p, q)
has negative Laplacian at a local minimum.




