
CHAPTER 5

Geodesics and Distance

We are now ready to introduce the important concept of a geodesic. This will
help us define and understand Riemannian manifolds as metric spaces. One is
led quickly to two types of “completeness”. The first is of standard metric com-
pleteness, and the other is what we call geodesic completeness, namely, when all
geodesics exist for all time. We shall prove the Hopf-Rinow Theorem, which asserts
that these types of completeness for a Riemannian manifold are equivalent. Using
the metric structure we can define metric distance functions. We shall study when
these distance functions are smooth and show the existence of the smooth distance
functions we worked with earlier. In the last section we give some metric charac-
terizations of Riemannian isometries and submersions. We also classify complete
simply connected manifolds of constant curvature; showing that they are the ones
we have already constructed in chapters 1 and 3.

The idea of thinking of a Riemannian manifold as a metric space must be
old, but it wasn’t until the early 1920s that first Cartan and then later Hopf and
Rinow began to understand the relationship between extendability of geodesics and
completeness of the metric. Nonetheless, both Gauss and Riemann had a pretty
firm grasp on local geometry, as is evidenced by their contributions: Gauss worked
with geodesic polar coordinates and also isothermal coordinates, Riemann was able
to give a local characterization of Euclidean space as the only manifold whose
curvature tensor vanishes. Surprisingly, it wasn’t until Klingenberg’s work in the
1950s that one got a thorough understanding of the maximal domain on which
one has geodesic polar coordinates in side complete manifolds. This work led to
the introduction of the two terms injectivity radius and conjugate radius. Many
of our later results will require a detailed analysis of these concepts. The metric
characterization of Riemannian isometries wasn’t realized until the late 1930s with
the work of Myers and Steenrod. Even more surprising is Berestovskii’s much more
recent metric characterization of Riemannian submersions.

Another important topic that involves geodesics is the variation of arclength
and energy. In this chapter we only develop the first variation formula. This is used
to show that curves that minimize length must be geodesics if they are parametrized
correctly.

We are also finally getting to results where there is going to be a significant dif-
ference between the Riemannian setting and the semi-Riemannian setting. Mixed
partials and geodesics easily generalize. However, as there is no norm of vectors
in the semi-Riemannian setting we do not have arclength or distances. Neverthe-
less, the energy functional does make sense so we can still obtain a variational
characterization of geodesic as critical points for the energy functional.
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112 5. GEODESICS AND DISTANCE

1. Mixed Partials

So far we have only worked out the calculus for functions on a Riemannian
manifold and have seen that defining the gradient and Hessian requires that we use
the metric structure. We are now going to study maps into Riemannian manifolds
and how to define meaningful derivatives for such maps. The simplest example is
to consider a curve γ : I → M on some interval I ⊂ R. We know how to define the
derivative γ̇, but not how to define the acceleration in such a way that it also gives
us a tangent vector to M. A similar but slightly more general problem is that of
defining mixed partial derivatives

∂2γ

∂ti∂tj

for maps γ with several real variables. As we shall see, covariant differentiation
plays a crucial role in the definition of these concepts. In this section we only
develop a method that covers second partials. In the next chapter we shall explain
how to calculate higher order partials as well. This involves a slightly different
approach that is not needed for the developments in this chapter.

Let γ : Ω → M, where Ω ⊂ Rm. As we usually reserve xi for coordinates on M
we shall use ti or s, t, u as coordinates on Ω. The first partials

∂γ

∂ti

are simply defined as the velocity field of ti → γ
(
t1, ..., ti, ..., tm

)
where the remain-

ing coordinates are fixed. We wish to define the second partials so that they also
lie TM as opposed to TTM. In addition we shall also require the following two
natural properties:

(1) ∂2γ
∂ti∂tj = ∂2γ

∂tj∂ti ,

(2) ∂
∂tk g

(
∂γ
∂ti ,

∂γ
∂tj

)
= g

(
∂2γ

∂tk∂ti ,
∂γ
∂tj

)
+ g

(
∂γ
∂ti ,

∂2γ
∂tk∂tj

)
.

The first is simply the equality of mixed partials and is similar to assuming that
the connection is torsion free. The second is a Leibniz or product rule that is
similar to assuming that the connection is metric. Like the Fundamental Theorem
of Riemannian Geometry, were we saw that the key properties of the connection
in fact also characterized the connection, we can show that these two rules also
characterize how we define second partials. More precisely, if we have a way of
defining second partials such that these two properties hold, then we claim that
there is a Koszul type formula:

2g

(
∂2γ

∂ti∂tj
,

∂γ

∂tk

)
=

∂

∂ti
g

(
∂γ

∂tj
,

∂γ

∂tk

)
+

∂

∂tj
g

(
∂γ

∂tk
,
∂γ

∂ti

)
− ∂

∂tk
g

(
∂γ

∂ti
,

∂γ

∂tj

)
.

This formula is established in the proof of the next lemma.

Lemma 6. (Uniqueness of mixed partials) There is at most one way of defining
mixed partials so that (1) and (2) hold.
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Proof. First we show that the Koszul type formula holds if we have a way of
defining mixed partials such that (1) and (2) hold:

∂

∂ti
g

(
∂γ

∂tj
,

∂γ

∂tk

)
+

∂

∂tj
g

(
∂γ

∂tk
,
∂γ

∂ti

)
− ∂

∂tk
g

(
∂γ

∂ti
,

∂γ

∂tj

)
= g

(
∂2γ

∂ti∂tj
,

∂γ

∂tk

)
+ g

(
∂γ

∂tj
,

∂2γ

∂ti∂tk

)
+g

(
∂2γ

∂tj∂tk
,
∂γ

∂ti

)
+ g

(
∂γ

∂tk
,

∂2γ

∂tj∂ti

)
−g

(
∂2γ

∂tk∂ti
,

∂γ

∂tj

)
− g

(
∂γ

∂ti
,

∂2γ

∂tk∂tj

)
= g

(
∂2γ

∂ti∂tj
,

∂γ

∂tk

)
+ g

(
∂γ

∂tk
,

∂2γ

∂tj∂ti

)
+g

(
∂γ

∂tj
,

∂2γ

∂ti∂tk

)
− g

(
∂2γ

∂tk∂ti
,

∂γ

∂tj

)
+g

(
∂2γ

∂tj∂tk
,
∂γ

∂ti

)
− g

(
∂γ

∂ti
,

∂2γ

∂tk∂tj

)
= 2g

(
∂2γ

∂ti∂tj
,

∂γ

∂tk

)
.

Next we observe that if we have a map γ : Ω → M, then we can always add an
extra parameter tn+1 to get a map γ̄ : Ω× (−ε, ε) → M with the property that

∂γ̄

∂tn+1
|p = v ∈ TpM,

where v ∈ TpM is any vector and p is any point in the image of γ. Using k = n + 1
in the Koszul type formula at p, then shows that ∂2γ

∂ti∂tj is uniquely defined as our
extension is independent of how mixed partials are defined. �

We can now give a local coordinate definition of mixed partials. As long as the
definition gives us properties (1) and (2), the above lemma shows that we have a
coordinate independent definition.

Note also that if two different maps γ1, γ2 : Ω → M agree on a neighborhood
of a point in the domain, then the right hand side of the Koszul type formula will
give the same answer for these two maps. Thus there is no loss of generality in
assuming that the image of γ lies in a coordinate system.

Theorem 9. (Existence of mixed partials) It is possible to define mixed partials
in a coordinate system so that (1) and (2) hold.

Proof. We assume that we have γ : Ω → U ⊂ M where U is a coordinate
neighborhood. Furthermore, assume that the parameters in use are called s and t.
This avoids introducing more indices than necessary. Finally write γ =

(
γ1, ..., γn

)
using the coordinates. The velocity in the s direction is given by

∂γ

∂s
=

∂γi

∂s
∂i
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so we can make the suggestive calculation

∂

∂t

∂γ

∂s
=

∂

∂t

(
∂γi

∂s
∂i

)
=

∂

∂t

∂γi

∂s
∂i +

∂γi

∂s

∂

∂t
(∂i) .

To make sense of ∂
∂t (∂i) we define

∂X

∂t
|p = ∇γ̇(t)X,

where γ (t) = p and X is a vector field defined in a neighborhood of p. With that
in mind we have

∂

∂t

∂γ

∂s
=

∂2γk

∂t∂s
∂k +

∂γi

∂s
∇ ∂γ

∂t
∂i

=
∂2γk

∂t∂s
∂k +

∂γi

∂s

∂γj

∂t
∇∂j

∂i

=
∂2γk

∂t∂s
∂k +

∂γi

∂s

∂γj

∂t
Γk

ji∂k

Thus we define

∂2γ

∂t∂s
=

∂2γk

∂t∂s
∂k +

∂γi

∂s

∂γj

∂t
Γk

ji∂k

=
(

∂2γk

∂t∂s
+

∂γi

∂s

∂γj

∂t
Γk

ji

)
∂k

Since ∂2γl

∂t∂s is symmetric in s and t by the usual theorem on equality of mixed
partials and the Christoffel symbol Γk

ji is symmetric in i and j we see that (1) holds.
To check the metric property (2) we use that the Christoffel symbols satisfy

the metric property

∂kgij = Γki,j + Γkj,i.

With that in mind we calculate

∂

∂t
g

(
∂γ

∂s
,
∂γ

∂u

)
=

∂

∂t

(
gij

∂γi

∂s

∂γj

∂u

)
=

∂gij

∂t

∂γi

∂s

∂γj

∂u
+ gij

∂2γi

∂t∂s

∂γj

∂u
+ gij

∂γi

∂s

∂2γj

∂t∂u

= gij

(
∂2γi

∂t∂s
+

∂γk

∂s

∂γl

∂t
Γi

kl

)
∂γj

∂u
+ gij

∂γi

∂s

(
∂2γj

∂t∂u
+

∂γk

∂u

∂γl

∂t
Γj

kl

)
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+
∂gij

∂t

∂γi

∂s

∂γj

∂u
− gij

∂γk

∂s

∂γl

∂t

∂γj

∂u
Γi

kl − gij
∂γi

∂s

∂γk

∂u

∂γl

∂t
Γj

kl

= g

(
∂2γ

∂t∂s
,
∂γ

∂u

)
+ g

(
∂γ

∂s
,

∂2γ

∂t∂u

)
+

∂gij

∂t

∂γi

∂s

∂γj

∂u
− ∂γk

∂s

∂γl

∂t

∂γj

∂u
Γkl,j − ∂γi

∂s

∂γk

∂u

∂γl

∂t
Γj

kl,i

= g

(
∂2γ

∂t∂s
,
∂γ

∂u

)
+ g

(
∂γ

∂s
,

∂2γ

∂t∂u

)
+∂kgij

∂γk

∂t

∂γi

∂s

∂γj

∂u
− ∂γi

∂s

∂γk

∂t

∂γj

∂u
Γki,j − ∂γi

∂s

∂γj

∂u

∂γk

∂t
Γkj,i

= g

(
∂2γ

∂t∂s
,
∂γ

∂u

)
+ g

(
∂γ

∂s
,

∂2γ

∂t∂u

)
.

�

In case M ⊂ N it is often convenient to calculate the mixed partials in N first
and then project them onto M . For each p ∈ M we use the orthogonal projection
projM : TpN → TpM. The next proposition shows that this is a valid way of
calculating mixed partials.

Proposition 16. (Mixed partials in submanifolds) If γ : Ω → M ⊂ N and
∂2γ

∂ti∂tj ∈ TpN is the mixed partial in N , then

projM

(
∂2γ

∂ti∂tj

)
∈ TpM

is the mixed partial in M.

Proof. Let ḡ be the Riemannian metric in N and g its restriction to the
submanifold M. We know that ∂2γ

∂tj∂ti ∈ TN satisfies

2ḡ

(
∂2γ

∂ti∂tj
,

∂γ

∂tk

)
=

∂

∂ti
ḡ

(
∂γ

∂tj
,

∂γ

∂tk

)
+

∂

∂tj
ḡ

(
∂γ

∂tk
,
∂γ

∂ti

)
− ∂

∂tk
ḡ

(
∂γ

∂ti
,

∂γ

∂tj

)
.

As ∂γ
∂ti ,

∂γ
∂tj , ∂γ

∂tk ∈ TM this shows that

2ḡ

(
∂2γ

∂ti∂tj
,

∂γ

∂tk

)
=

∂

∂ti
g

(
∂γ

∂tj
,

∂γ

∂tk

)
+

∂

∂tj
g

(
∂γ

∂tk
,
∂γ

∂ti

)
− ∂

∂tk
g

(
∂γ

∂ti
,

∂γ

∂tj

)
.

Next use that ∂γ
∂tk ∈ TM to alter the left hand side to

2ḡ

(
∂2γ

∂ti∂tj
,

∂γ

∂tk

)
= 2g

(
projM

(
∂2γ

∂ti∂tj

)
,

∂γ

∂tk

)
.

This shows that projM
(

∂2γ
∂ti∂tj

)
is the correct mixed partial in M. �

We shall use this way of calculating mixed partials in several situations below.
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2. Geodesics

We can now define the acceleration of a curve γ : I → M by the formula

γ̈ =
d2γ

dt2
.

In local coordinates this becomes

γ̈ =
d2γk

dt2
∂k +

dγi

dt

dγj

dt
Γk

ij∂k.

A C∞ curve γ : I → M is called a geodesic if γ̈ = 0. If γ is a geodesic, then
the speed |γ̇| = √

g (γ̇, γ̇) is constant, as

d

dt
g (γ̇, γ̇) = 2g (γ̈, γ̇) = 0.

So a geodesic is a constant-speed curve, or phrased differently, it is parametrized
proportionally to arc length. If |γ̇| ≡ 1, one says that γ is parametrized by arc
length.

If r : U → R is a distance function, then we know that for ∂r = ∇r we have
∇∂r

∂r = 0. The integral curves for ∇r = ∂r are therefore geodesics. Below we
shall develop a theory for geodesics independently of distance functions and then
use this to show the existence of distance functions.

Geodesics are fundamental in the study of the geometry of Riemannian mani-
folds in the same way that straight lines are fundamental in Euclidean geometry. At
first sight, however, it is not even clear that there are going to be any nonconstant
geodesics to study on a general Riemannian manifold. In this section we are go-
ing to establish that every Riemannian manifold has many non-constant geodesics.
Informally speaking, we can find a unique one at each point with a given tangent
vector at that point. However, the question of how far it will extend from that
point is subtle. To deal with the existence and uniqueness questions, we need to
use some information from differential equations.

In local coordinates on U ⊂ M the equation for a curve to be a geodesic is:

0 = γ̈

=
d2γk

dt2
∂k +

dγi

dt

dγj

dt
Γk

ij∂k

Thus, the curve γ : I → U is a geodesic if and only if the coordinate components
γk satisfy:

γ̈k(t) = −γ̇i(t)γ̇j(t)Γk
ji|γ(t)

for k = 1, . . . , n. Because this is a second-order system of differential equations,
we expect an existence and a uniqueness result for the initial value problem of
specifying value and first derivative, i.e.,

γ (0) = q,

γ̇ (0) = γ̇i (0) ∂i|q.
But because the system is nonlinear, we are not entitled to expect that solutions
will exist for all t.

The precise statements obtained from the theory of ordinary differential equa-
tions are a bit of a mouthful, but we might as well go for the whole thing right
off the bat, since we shall need it all eventually. Still working in our coordinate
situation, we get the following facts:
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Theorem 10. (Local Uniqueness) Let I1 and I2 be intervals with t0 ∈ I1∩I2, if
γ1 : I1 → U and γ2 : I2 → U are geodesics with γ1(t0) = γ2(t0) and γ̇1(t0) = γ̇2(t0),
then γ1|I1∩I2 = γ2|I1∩I2 .

Theorem 11. (Existence) For each p ∈ U and v ∈ Rn, there is a neighborhood
V1 of p, a neighborhood V2 of v, and an ε > 0 such that for each q ∈ V1 and w ∈ V2,
there is a geodesic γq,w : (−ε, ε) → U with

γ(0) = q,

γ̇(0) = wi∂i|q.
Moreover, the mapping

(q, w, t) → γq,w(t)

is C∞ on V1 × V2 × (−ε, ε).

It is worthwhile to consider what these assertions become in informal terms.
The existence statement includes not only “small-time” existence of a geodesic with
given initial point and initial tangent, it also asserts a kind of local uniformity for
the interval of existence. If you vary the initial conditions but don’t vary them
too much, then there is a fixed interval (−ε, ε) on which all the geodesics with the
various initial conditions are defined. Some or all may be defined on larger intervals,
but all are defined at least on (−ε, ε).

The uniqueness assertion amounts to saying that geodesics cannot be tangent
at one point without coinciding. Just as two straight lines that intersect and have
the same tangent (at the point of intersection) must coincide, so two geodesics with
a common point and equal tangent at that point must coincide.

Both of the differential equations statements are for geodesics with image in a
fixed coordinate chart. By relatively simple covering arguments these statements
can be extended to geodesics not necessarily contained in a coordinate chart. Let
us begin with the uniqueness question:

Lemma 7. (Global Uniqueness) Let I1 and I2 be open intervals with t0 ∈ I1∩I2,
if γ1 : I1 → M and γ2 : I2 → M are geodesics with γ1(t0) = γ2(t0) and γ̇1(t0) =
γ̇2(t0), then γ1|(I1∩I2) = γ2|(I1∩I2).

Proof. Define

A = {t ∈ I1 ∩ I2 : γ1(t) = γ2(t), γ̇1(t) = γ̇2(t)}.
Then t0 ∈ A. Also, A is closed in I1∩I2 by continuity of γ1, γ2, γ̇1, and γ̇2. Finally,
A is open, by virtue of the local uniqueness statement for geodesics in coordinate
charts: if t1 ∈ A, then choose a coordinate chart U around γ1(t1) = γ2(t1). Then
(t1 − ε, t1 + ε) ⊂ I1 ∩ I2 and γi|(t1−ε,t1+ε) both have images contained in U . The
coordinate uniqueness result then shows that γ1|(t1−ε,t1+ε) = γ2|(t1−ε,t1+ε), so that
(t1 − ε, t1 + ε) ⊂ A. �

The coordinate-free global existence picture is a little more subtle. The first,
and easy, step is to notice that if we start with a geodesic, then we can enlarge its
interval of definition to be maximal. This follows from the uniqueness assertions:
If we look at all geodesics γ : I → M, 0 ∈ I, γ(0) = p, γ̇(0) = v, p and v fixed,
then the union of all their domains of definition is a connected open subset of R on
which such a geodesic is defined. And clearly its domain of definition is maximal.
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The next observation, also straightforward, is that if K̂ is a compact subset
of TM , then there is an ε > 0 such that for each (q, v) ∈ K̂, there is a geodesic
γ : (−ε, ε) → M with γ(0) = q and γ̇(0) = v. This is an immediate application of
the local uniformity part of the differential equations existence statement together
with the usual covering-of-compact-set argument.

The next point to ponder is what happens when the maximal domain of defini-
tion is not all of R. For this, let I be a connected open subset of R that is bounded
above, i.e., I has the form (−∞, b), b ∈ R or (a, b), a, b ∈ R. Suppose γ : I → M is a
maximal geodesic. Then γ(t) must have a specific kind of behavior as t approaches
b : If K is any compact subset of M, then there is a number tK < b such that if
tK < t < b, then γ(t) ∈ M −K. We say that γ leaves every compact set as t → b.

To see why γ must leave every compact set, suppose K is a compact set it
doesn’t leave, i.e., suppose there is a sequence t1, t2, . . . ∈ I with lim tj = b and
γ(tj) ∈ K for each j. Now |γ̇(tj)| is independent of j, since geodesics have constant
speed. So {γ̇(tj) : j = 1, . . .} lies in a compact subset of TM , namely,

K̂ = {vq : q ∈ K, v ∈ TqM, |v| ≤ |γ̇|}.
Thus there is an ε > 0 such that for each vq ∈ K̂, there is a geodesic γ : (−ε, ε) → M
with γ(0) = q, γ̇(0) = v. Now choose tj such that b− tj < ε/2. Then γq,v patches
together with γ to extend γ: beginning at tj we can continue γ by ε, which takes
us beyond b, since tj is within ε/2 of b. This contradicts the maximality of I.

One important consequence of these observations is what happens when M
itself is compact:

Lemma 8. If M is a compact Riemannian manifold, then for each p ∈ M and
v ∈ TpM , there is a geodesic γ : R → M with γ(0) = p, γ̇(0) = v. In other words,
geodesics exist for all time.

A Riemannian manifold where all geodesics exist for all time is called geodesi-
cally complete.

A slightly trickier point is the following: Suppose γ : I → M is a geodesic and
0 ∈ I, where I is a bounded connected open subset of R. Then we would like to
say that for q ∈ M near enough to γ(0) and v ∈ TqM near enough to γ̇(0) there is
a geodesic γq,v with q, v as initial position and tangent, respectively, and with γq,v

defined on an interval almost as big as I. This is true, and it is worth putting in
formal language:

Lemma 9. Suppose γ : [a, b] → M is a geodesic on a compact interval. Then
there is a neighborhood U in TM of γ̇(0) such that if v ∈ U, then there is a geodesic

γv : [a, b] → M

with γ̇v(0) = v.

Proof. Subdivide the interval a = b0 < b1 < · · · < bk = b in such a way that
we have neighborhoods Vi of γ̇ (bi) where any geodesic γ : [bi, bi + ε) → M with
γ̇ (bi) ∈ Vi is defined on [bi, bi+1] . Using that the map (t, v) → γv (t) is continuous,
where γ is the geodesic with γ̇ (0) = v we can select a new neighborhood U0 ⊂ V0

of γ̇ (b0) such that γ̇v (b1) ∈ V1 for v ∈ U0. Next select U1 ⊂ U0 so that γ̇v (b2) ∈ V2

for v ∈ U1 etc. In this way we get the desired neighborhood U = Uk−1 in at most
k steps. �
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(1, 0)

Figure 5.1

Figure 5.2

All this seems a bit formal, pedantic and perhaps abstract as well, in the
absence of explicitly computed examples. First, one can easily check that geodesics
in Euclidean space are straight lines. Using this observation it is simple to give
examples of the above ideas by taking M to be open subsets of R2 with its usual
metric.

Example 28. In the plane R2 minus one point, say R2 − {(1, 0)} the unit
speed geodesic from (0, 0) with tangent (1, 0) is defined on (−∞, 1) only. But nearby
geodesics from (0, 0) with tangents (1 + ε1, ε2), ε1, ε2 small, ε2 �= 0, are defined on
(−∞,∞). Thus maximal intervals of definition can jump up in size, but, as already
noted, not down. See also Figure 5.1.

Example 29. On the other hand, for the region

{(x, y) : |xy| < 1},
the curve t → (t, 0) is a geodesic defined on all of R that is a limit of unit speed
geodesics t → (t, ε), ε → 0, each of which is defined only on a finite interval(−1

ε , 1
ε

)
. Note that as required, the endpoints of these intervals go to infinity (in

both directions). See also Figure 5.2.

The reader should think through these examples and those in the exercises very
carefully, since geodesic behavior is a fundamental topic in all that follows.

Example 30. We think of the spheres (Sn(r), can) = Sn
r−2 as being in Rn+1.

The acceleration of a curve γ : I → Sn(r) can be computed as the Euclidean ac-
celeration projected onto Sn(r). Thus γ is a geodesic iff γ̈ is normal to Sn(r).
This means that γ̈ and γ should be proportional as vectors in Rn+1. Great circles
γ(t) = a cos(αt) + b sin(αt), where a, b ∈ Rn+1, |a| = |b| = r, and a ⊥ b, clearly
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have this property. Furthermore, since γ(0) = a ∈ Sn(r) and γ̇(0) = αb ∈ TaSn(r),
we see that we have a geodesic for each initial value problem.

We can easily picture great circles on spheres as depicted in Figure 5.3. Still, it
is convenient to have a different way of understanding this. For this we project the
sphere orthogonally onto the plane containing the equator. Thus the north and south
poles are mapped to the origin. As all geodesics are great circles, they must project
down to ellipses that have the origin as center and whose greater axis has length r.
Of course, this simply describes exactly the way in which we draw three-dimensional
pictures on paper.

Example 31. We think of Sn
−r−2 as a hypersurface in Minkowski space R1,n.

In this case the acceleration is still the projection of the acceleration in Minkowski
space. In Minkowski space the acceleration in the usual coordinates is the same as
the Euclidean acceleration. Thus we just have to find the Minkowski projection onto
the hypersurface. By analogy with the sphere, one might guess that the hyperbolae
γ(t) = a cosh(αt) + b sinh(αt), a, b ∈ R1,n, |a|2 = −r2, |b|2 = r2, and a ⊥ b all in
the Minkowski sense, are our geodesics. And indeed this is true.

This time the geodesics are hyperbolae. Drawing several of them on the space
itself as seen in Minkowski space is not so easy. However, as with the sphere we
can resort to the trick of projecting hyperbolic space onto the plane containing the
last n coordinates. The geodesics there can then be seen to be hyperbolae whose
asymptotes are straight lines through the origin. See also Figure 5.4.
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Example 32. On a Lie group G with a left-invariant metric one might suspect
that the geodesics are the integral curves for the left-invariant vector fields. This in
turn is equivalent to the assertion that ∇XX ≡ 0 for all left-invariant vector fields.
But our Lie group model for the upper half plane does not satisfy this. However, we
did show in chapter 3 that ∇XX = 1

2 [X,X] = 0 when the metric is bi-invariant and
X is left-invariant. Moreover, all compact Lie groups admit bi-invariant metrics
(see exercises to chapter 1).

3. The Metric Structure of a Riemannian Manifold

The positive definite inner product structures on the tangent space of a Rie-
mannian manifold automatically give rise to a concept of lengths of tangent vectors.
From this one can obtain an idea of the length of a curve as the integral of the length
of its velocity vector field. This is a direct extension of the usual calculus concept
of the length of curves in Euclidean space. Indeed, the definition of Riemannian
manifolds is motivated from the beginning by lengths of curves. The situation is
turned around a bit from that of Rn, though: On Euclidean spaces, we have in
advance a concept of distance between points. Thus, the definition of lengths of
curves is justified by the fact that the length of a curve should be approximated
by sums of distances for a fine subdivision (e.g., a fine polygonal approximation).
For Riemannian manifolds, there is no immediate idea of distance between points.
Instead, we have a natural idea of (tangent) vector length, hence curve length, and
we shall use the length-of-curve idea to define distance between points. The goal
of this section is to carry out these constructions in detail.

First, recall that a mapping γ : [a, b] → M is a piecewise C∞ curve if γ is
continuous and if there is a partition a = a1 < a2 < . . . < ak = b of [a, b] such that
γ|[ai,ai+1] is C∞ for i = 1, . . . , k−1. Occasionally it will be convenient to work with
curves that are merely absolutely continuous. A curve γ : [a, b] → Rn is absolutely
continuous if the derivative exists almost everywhere and γ (t) = γ (a)+

∫ t

a
γ̇ (s) ds.

If F : Rn → Rn is a diffeomorphism, then we see that also F ◦ γ is absolutely
continuous. Thus it makes sense to work with absolutely continuous curves in
smooth manifolds.

Let γ : [a, b] → M be a piecewise C∞ (or merely absolutely continuous) curve
in a Riemannian manifold. Then the length �(γ) is defined as follows:

�(γ) =
∫ b

a

|γ̇(t)| dt =
∫ b

a

√
g (γ̇(t), γ̇(t))dt.

It is clear from the definition that the function t → |γ̇(t)| is integrable in the
Riemann (or Lebesgue) integral sense, so �(γ) is a well-defined finite, nonnegative
number. The chain and substitution rules show that �(γ) is invariant under repara-
metrization. A curve γ : [a, b] → M is said to be parametrized by arc length if
�(γ|[a,t]) = t − a for all t ∈ [a, b], or equivalently, if |γ̇(t)| = 1 at all smooth points
t ∈ [a, b]. A curve γ : [a, b] → M such |γ̇(t)| > 0 wherever it is smooth can be
reparametrized by arc length without changing the length of the curve. To see this
consider

s = ϕ(t) =
∫ t

a

|γ̇(τ)| dτ.

Thus ϕ is strictly increasing on [a, b], and the curve γ ◦ ϕ−1 : [0, �(γ)] → M has
tangent vectors of unit length at all points where it is smooth. A slightly stickier,
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and often ignored, point is what happens to curves that have stationary points. We
can still construct the integral:

s = ϕ(t) =
∫ t

a

|γ̇(τ)| dτ,

but we can’t find a smooth inverse to ϕ if γ̇ is zero somewhere. We can, however,
find a curve σ : [0, �(γ)] → M such that

γ (t) = (σ ◦ ϕ) (t) = σ (s) .

To ensure that σ is well-defined we just have to check that γ (t1) = γ (t2) if ϕ (t1) =
ϕ (t2) . The latter equality, however, implies that |γ̇| = 0 (almost everywhere) on
[t1, t2] so it does follow that γ (t1) = γ (t2) . We now need to check that σ has unit
speed. This is straightforward at points where γ̇ �= 0, but at the stationary points
for γ it is not even clear that σ is differentiable. In fact it need not be if γ has
a cusp-like singularity. The set of trouble points is the set of critical values for ϕ
so it is at least a set of measure zero (this is simply Sard’s theorem for functions
R → R). This shows that we can still define the length of σ as

� (σ) =
∫ �(γ)

0

|σ̇| ds

and that σ is parametrized by arclength. In this way we have constructed a gen-
eralized reparametrization of γ, that is parametrized by arclength. Note that even
if we start with a smooth curve γ the reparametrized curve σ might just be ab-
solutely continuous. It is therefore quite natural to work with the larger class of
absolutely continuous curves. Nevertheless, we have chosen to mostly stay with the
more mundane piecewise smooth curves as they suffice for developing the theory
Riemannian manifolds.

We are now ready to introduce the idea of distance between points. First, for
each pair of points p, q ∈ M we define the path space

Ωp,q = {γ : [0, 1] → M : γ is piecewise C∞ and γ(0) = p, γ(1) = q}.
We can then define the distance d(p, q) between points p, q ∈ M as

d(p, q) = inf{�(γ) : γ ∈ Ωp,q}.
It follows immediately from this condition that d(p, q) = d(q, p) and d(p, q) ≤
d(p, r) + d(r, q). The fact that d(p, q) = 0 only when p = q will be established
below. Thus, d( , ) satisfies all the properties of a metric.

As for metric spaces, we have various metric balls defined via the metric

B (p, r) = {x ∈ M : d (p, x) < r} ,

B̄ (p, r) = D (p, r) = {x ∈ M : d (p, x) ≤ r} .

More generally, we can define the distance between subsets A,B ⊂ M as

d (A,B) = inf {d (p, q) : p ∈ A, q ∈ B} .

With this we then have

B (A, r) = {x ∈ M : d (A, x) < r} ,

B̄ (A, r) = D (A, r) = {x ∈ M : d (A, x) ≤ r} .

The infimum of curve lengths in the definition of d(p, q) can fail to be re-
alized. This is illustrated, for instance, by the “punctured plane” R2 − {(0, 0)}
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(–1, 0) (0, 0) (1, 0)

Figure 5.5

with the usual Riemannian metric of R2 restricted to R2 − {(0, 0)}. The distance
d((−1, 0), (1, 0)) = 2, but this distance is not realized by any curve, since every
curve of length 2 in R2 from (−1, 0) to (1, 0) passes through (0, 0) (see Figure 5.5).
In a sense that we shall explore later, R2−{(0, 0)} is incomplete. For the moment,
we introduce some terminology for the cases where the infimum d(p, q) is realized.

A curve σ ∈ Ω(p, q) is a segment if �(σ) = d(p, q) and σ is parametrized
proportionally to arc length, i.e., |σ̇| is constant on the set where σ is smooth.

Example 33. In Euclidean space Rn , segments according to this definition
are straight line segments parametrized with constant speed, i.e. curves of the form
t → p + t · v. In Rn, each pair of points p, q is joined by a segment t → p + t(q − p)
that is unique up to reparametrization.

Example 34. In S2(1) segments are portions of great circles with length ≤ π.
(We assume for the moment some basic observations of spherical geometry: these
will arise later as special cases of more general results.) Every two points are joined
by a segment, but there may be more than one segment joining a given pair if the
pair are far enough apart, i.e., each pair of antipodal points is joined by infinitely
many distinct segments.

Example 35. In R2 − {(0, 0)}, as already noted, not every pair of points is
joined by a segment.

Later we shall show that segments are always geodesics. Conversely, geodesics
are segments if they are short enough; precisely, if γ is a geodesic defined on an
open interval containing 0, then γ|[0,ε] is a segment for all sufficiently small ε > 0.
Furthermore, we shall show that each pair of points in a Riemannian manifold
can be joined by at least one segment provided that the Riemannian manifold is
complete as a metric space in the metric just defined. This result explains what
is “wrong” with the punctured plane. It also explains why spheres have to have
segments between each pair of points: compact spaces are always complete in any
metric compatible with the (compact) topology.

Some work needs to be done before we can prove these general statements. To
start with, let us dispose of the question of compatibility of topologies.

Theorem 12. The metric topology obtained from the distance d( , ) on a Rie-
mannian manifold is the same as the manifold topology.

Proof. Fix p ∈ M and a coordinate neighborhood U of p such that xi (p) = 0.
We assume in addition that gij |p = δij . On U we have the given Riemannian metric
g and also the Euclidean metric g0 defined by

g0 (∂i, ∂j) = δij .
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Thus g0 is constant and equal to g at p. Finally we can after possibly shrinking U
also assume that

U = Bg0 (p, ε)
= {x ∈ U : dg0 (p, x) < ε}
=

{
x ∈ U :

√
(x1)2 + · · ·+ (xn)2 < ε

}
.

Thus the Euclidean distance is

dg0 (p, x) =
√

(x1)2 + · · ·+ (xn)2.

For x ∈ U we can compare these two metrics as follows: There are continuous
functions: λ, µ : U → (0,∞) such that if v ∈ TxM, then

λ (x) |v|g0
≤ |v|g ≤ µ (x) |v|g0

.

Moreover, λ (x) , µ (x) → 1 as x → p.
Now let c : [0, 1] → M be a curve from p to x ∈ U.
1: If c is a straight line in the Euclidean metric, then it lies in U and

dg0 (p, x) = �g0 (c)

=
∫ 1

0

|ċ|g0
dt

≥ 1
max µ (c (t))

∫ 1

0

|ċ|g dt

=
1

max µ (c (t))
�g (c)

≥ 1
max µ (c (t))

dg (p, x) .

2: If c lies entirely in U then

�g (c) =
∫ 1

0

|ċ|g dt

≥ (min λ (c (t)))
∫ 1

0

|ċ|g0
dt

≥ (min λ (c (t))) dg0 (p, x) .

3: If c leaves U, then there will be a smallest t0 such that c (t0) /∈ U, then

�g (c) ≥
∫ t0

0

|ċ|g dt

≥ (min λ (c (t)))
∫ t0

0

|ċ|g0
dt

≥ (min λ (c (t))) ε

≥ (min λ (c (t))) dg0 (p, x) .

By possibly shrinking U again we can now guarantee that min λ ≥ λ0 > 0 and
max µ ≤ µ0 < ∞. We have then proven that

dg (p, x) ≤ µ0dg0 (p, x)
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and

λ0dg0 (p, x) ≤ inf �g (c)
= dg (p, x) .

Thus the Euclidean and Riemannian distances are comparable on a neighbor-
hood of p. This shows that the metric topology and the manifold topology (coming
from the Euclidean distance) are equivalent. It also shows that p = q if d (p, q) = 0.

Finally note that

lim
x→p

dg (p, x)
dg0 (p, x)

= 1

since λ (x) , µ (x) → 1 as x → p. �

Just as compact Riemannian manifolds are automatically geodesically com-
plete, this theorem also shows that such spaces are metrically complete.

Corollary 2. If M is a compact manifold and g is a Riemannian metric on
M , then (M,dg) is a complete metric space, where dg is the Riemannian distance
function determined by g.

Let us relate these new concepts to our distance functions from chapter 2.

Lemma 10. Suppose r : U → R is a smooth distance function and U ⊂ (M, g)
is open, then the integral curves for ∇r are segments in (U, g) .

Proof. Fix p, q ∈ U and let γ(t) : [0, b] → U be a curve from p to q. Then

�(γ) =
∫ b

0

|γ̇|dt

=
∫ b

0

|∇r| · |γ̇|dt

≥
∫ b

0

|g (∇r, γ̇)| dt

≥
∣∣∣∣∣
∫ b

0

d (r ◦ γ) dt

∣∣∣∣∣
= |r(q)− r(p)| .

Here the first inequality is the Cauchy-Schwarz inequality. This shows that

d (p, q) ≥ |r (q)− r (p)| .
If we choose γ as an integral curve for ∇r, i.e., γ̇ = ∇r ◦ γ, then equality holds in
the Cauchy-Schwarz inequality and d (r ◦ γ) > 0. Thus

�(γ) = |r(q)− r(p)| .
This shows that integral curves must be segments. Notice that we only considered
curves in U , and therefore only established the result for (U, g) and not (M, g). �

Example 36. Let M = S1 × R and U =
(
S1 − {ei0}) × R. On U we have

the distance function u(θ, x) = θ, θ ∈ (0, 2π). The previous lemma shows that any
curve γ(t) = (eit, r0), t ∈ I, where I does not contain 0 is a segment in U . If,
however, the length of I is > π, then such curves can clearly not be segments in M .
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The functional distance dF between points in a manifold is defined as

dF (p, q) = sup{|f(p)− f(q)| : f : M → R has |∇f | ≤ 1 on M}.
This distance is always smaller than the arclength distance. One can, however,

show as before that it generates the standard manifold topology. In fact, after we
have established the existence of smooth distance functions, it will become clear
that the two distances are equal provided p and q are sufficiently close to each other.

4. First Variation of Energy

In this section we shall study the arclength functional

� (γ) =
∫ 1

0

|γ̇| dt,

γ ∈ Ωp,q

in further detail. The minima, if they exist, are pre-segments. That is, they have
minimal length but we are not guaranteed that they have the correct parametriza-
tion. We also saw that in some cases suitable geodesics minimize this functional.
One problem with this functional is that it is invariant under change of parame-
trization. Minima, if they exist, therefore do not come with a fixed parameter. This
problem can be overcome, at the expense of geometric intuition, by considering the
energy functional

E (γ) =
1
2

∫ 1

0

|γ̇|2 dt,

γ ∈ Ωp,q.

This functional measures the total kinetic energy of a particle traveling along γ
with the speed dictated by γ. We start by showing that these two functionals have
the same minima.

Proposition 17. If σ ∈ Ωp,q is a constant speed curve that minimizes � :
Ωp,q → [0,∞), then σ also minimizes E : Ωp,q → [0,∞). Conversely if σ ∈ Ωp,q

minimizes E : Ωp,q → [0,∞), then σ also minimizes � : Ωp,q → [0,∞).

Proof. The Cauchy-Schwarz inequality for functions tells us that

� (γ) =
∫ 1

0

|γ̇| · 1dt

≤
√∫ 1

0

|γ̇|2 dt

√∫ 1

0

12dt

=

√∫ 1

0

|γ̇|2 dt

=
√

2E (γ),

with equality holding iff |γ̇| = c · 1 for some constant c, i.e., γ has constant speed.
In case γ is only absolutely continuous this inequality still holds. Moreover, when
equality holds the speed is constant wherever it is defined. Let σ ∈ Ωp,q be a
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constant speed curve that minimizes � and γ ∈ Ωp,q. Then

E (σ) =
1
2

(� (σ))2

≤ 1
2

(� (γ))2

≤ E (γ) ,

so σ also minimizes E.
Conversely let σ ∈ Ωp,q minimize E and γ ∈ Ωp,q. If γ does not have con-

stant speed we can without changing its length reparametrize it to an absolutely
continuous curve γ̄ that has constant speed almost everywhere. Then

� (σ) ≤
√

2E (σ)

≤
√

2E (γ̄)
= � (γ̄)
= � (γ) .

�

Our next goal is to show that minima of E must be geodesics. To do this
we have to develop the first variation formula for energy. A variation of a curve
γ : I → M is a family of curves γ̄ : (−ε, ε) × [a, b] → M, such that γ̄ (0, t) = γ (t)
for all t ∈ [a, b] . We say that such a variation is piecewise smooth if it is continuous
and we can partition [a, b] in to intervals [ai, ai+1] , i = 0, ...,m − 1, in such a way
that γ̄ : (−ε, ε)× [ai, ai+1] → M is smooth. Thus the curves t → γs (t) = γ̄ (s, t) are
all piecewise smooth, while the curves s → γ̄ (s, t) are smooth. The velocity field
for this variation is the field ∂γ̄

∂t which is well-defined on each interval [ai, ai+1] . At
the break points ai, there are two possible values for this field; a right derivative
and a left derivative:

∂γ̄

∂t+
|(s,ai) =

∂γ̄|[ai,ai+1]

∂t
|(s,ai),

∂γ̄

∂t−
|(s,ai) =

∂γ̄|[ai−1,ai]

∂t
|(s,ai).

The variational field is defined as ∂γ̄
∂s . This field is well-defined everywhere. It is

smooth on each (−ε, ε)× [ai, ai+1] and continuous on (−ε, ε)× I. The special case
where a = 0, b = 1, γ̄ (s, 0) = p and γ̄ (s, 1) = q for all s is of special importance as
all of the curves γs ∈ Ωp,q. Such variations are called proper variations of γ.

Lemma 11. (The First Variation Formula) Let γ̄ : (−ε, ε) × [a, b] → M be a
piecewise smooth variation, then

dE (γs)
ds

= −
∫ b

a

g

(
∂2γ̄

∂t2
,
∂γ̄

∂s

)
dt + g

(
∂γ̄

∂t−
,
∂γ̄

∂s

)∣∣∣∣
(s,b)

− g

(
∂γ̄

∂t+
,
∂γ̄

∂s

)∣∣∣∣
(s,a)

+
m−1∑
i=1

g

(
∂γ̄

∂t−
− ∂γ̄

∂t+
,
∂γ̄

∂s

)∣∣∣∣
(s,ai)

.
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Proof. It suffices to prove the formula for smooth variations as we can oth-
erwise split up the integral into parts that are smooth:

E (γs) =
∫ b

a

∣∣∣∣∂γ̄

∂t

∣∣∣∣2 dt

=
m−1∑
i=0

∫ ai+1

ai

∣∣∣∣∂γ̄

∂t

∣∣∣∣2 dt

and apply the formula to each part of the variation.
For a smooth variation γ̄ : (−ε, ε)× [a, b] → M we have

dE (γs)
ds

=
d

ds

1
2

∫ b

a

g

(
∂γ̄

∂t
,
∂γ̄

∂t

)
dt

=
1
2

∫ b

a

∂

∂s
g

(
∂γ̄

∂t
,
∂γ̄

∂t

)
dt

=
∫ b

a

g

(
∂2γ̄

∂s∂t
,
∂γ̄

∂t

)
dt

=
∫ b

a

g

(
∂2γ̄

∂t∂s
,
∂γ̄

∂t

)
dt

=
∫ b

a

∂

∂t
g

(
∂γ̄

∂s
,
∂γ̄

∂t

)
dt−

∫ b

a

g

(
∂γ̄

∂s
,
∂2γ̄

∂t2

)
dt

= g

(
∂γ̄

∂s
,
∂γ̄

∂t

)∣∣∣∣b
a

−
∫ b

a

g

(
∂γ̄

∂s
,
∂2γ̄

∂t2

)
dt

= −
∫ b

a

g

(
∂γ̄

∂s
,
∂2γ̄

∂t2

)
dt + g

(
∂γ̄

∂s
,
∂γ̄

∂t

)∣∣∣∣
(s,b)

− g

(
∂γ̄

∂s
,
∂γ̄

∂t

)∣∣∣∣
(s,a)

.

�

We can now completely characterize the local minima for the energy functional.

Theorem 13. (Characterization of local minima) If γ ∈ Ωp,q is a local mini-
mum for E : Ωp,q → [0,∞), then γ is a smooth geodesic.

Proof. The assumption guarantees that

dE (γs)
ds

= 0

for any proper variation of γ. The trick now is to find appropriate variations. In
fact, if V (t) is any vector field along γ (t) , i.e., V (t) ∈ Tγ(t)M, then there is a
variation so that V (t) = ∂γ

∂s |(0,t). One such variation is gotten by declaring that
the variational curves s → γ (s, t) are geodesics with ∂γ

∂s |(0,t) = V (t) . As geodesics
vary nicely with respect to the initial data this variation will be as smooth as V is.
Finally, if V (a) = 0 and V (b) = 0, then the variation is proper.
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Using such a variational field the first variation formula at s = 0 only depends
on γ itself and the variational field V

dE (γs)
ds

|s=0 = −
∫ b

a

g (γ̈, V ) dt + g

(
dγ

dt−
(b) , V (b)

)
− g

(
dγ

dt+
(a) , V (a)

)
+

m−1∑
i=1

g

(
dγ

dt−
(ai)− dγ

dt+
(ai) , V (ai)

)

= −
∫ b

a

g (γ̈, V ) dt +
m−1∑
i=1

g

(
dγ

dt−
(ai)− dγ

dt+
(ai) , V (ai)

)
.

We now specify V further. First select V (t) = λ (t) γ̈ (t) , where λ (ai) = 0
at the break points ai where γ might not be smooth, and also λ (a) = λ (b) = 0.
Finally assume that λ (t) > 0 elsewhere. Then

0 =
dE (γs)

ds
|s=0

= −
∫ b

a

g (γ̈, λ (t) γ̈) dt

= −
∫ b

a

λ (t) |γ̈|2 dt.

Since λ (t) > 0 where γ̈ is defined it must follow that γ̈ = 0 at those points. Thus
γ is a broken geodesic. Next select a general variational field V such that

V (ai) =
dγ

dt−
(ai)− dγ

dt+
(ai) ,

V (a) = V (b) = 0

and otherwise arbitrary, then we obtain

0 =
dE (γs)

ds
|s=0

=
m−1∑
i=1

g

(
dγ

dt−
(ai)− dγ

dt+
(ai) , V (ai)

)

=
m−1∑
i=1

∣∣∣∣ dγ

dt−
(ai)− dγ

dt+
(ai)

∣∣∣∣2 .

This forces
dγ

dt−
(ai) =

dγ

dt+
(ai)

and hence the broken geodesic has the same velocity from the left and right at the
places where it is potentially broken. Uniqueness of geodesics then shows that γ is
a smooth geodesic. �

This also shows:

Corollary 3. (Characterization of segments) Any piecewise smooth segment
is a geodesic.

While this result shows precisely what the local minima of the energy functional
must be it does not guarantee that geodesics are local minima. In Euclidean space
all geodesics are minimal as they are the integral curves for globally defined distance
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functions: u (x) = v · x, where v is a unit vector. On the unit sphere, however, no
geodesic of length > π can be locally minimizing. Since such geodesics always form
part of a great circle, we see that the complement of the geodesic in the great
circle has length < π. This shows that the geodesic can’t be an absolute minimum.
However, we can also easily construct a variation where the nearby curves are all
shorter. We shall spend much more time on these issues in the subsequent sections
as well as the next chapter. Certainly much more work has to be done before we
can say more about when geodesics are minimal. The above proof does, however,
tell us that a geodesic γ ∈ Ωp,q is always a stationary point for E : Ωp,q → [0,∞),
in the sense that

dE (γs)
ds

|s=0 = 0

for all proper variations of γ.

5. The Exponential Map

For a tangent vector v ∈ TpM , let γv be the unique geodesic with γ (0) = p
and γ̇(0) = v, and [0, �v) the nonnegative part of the maximal interval on which γ
is defined. Notice that γαv(t) = γv(αt) for all α > 0 and t < �αv. In particular,
�αv = α−1�v. Let Op ⊂ TpM be the set of vectors v such that 1 < �v, so that γv(t)
is defined on [0, 1]. Then define the exponential map at p by

expp : Op → M

expp(v) = γv(1).

In the exercises to this chapter we have a problem that elucidates the relationship
between the just defined exponential map and the Lie group exponential map in-
troduced earlier. In Figure 5.6 we have shown how radial lines in the tangent space
are mapped to radial geodesics in M via the exponential map. The “homogeneity
property” γv(t) = γtv(1) shows that expp (tv) = γv (t). Given that, it is natural to
think of expp(v) in a polar coordinate representation: From p ones goes “distance”
|v| in the direction v/ |v|. This gives the point expp(v), since γv/|v|(|v|) = γv(1).

The individual expp maps can be combined to form a map exp :
⋃

Op → M by
setting exp |Op

= expp. This map exp is also called the exponential map.
The standard theory of ordinary differential equations that we have already

discussed tells us that the set O =
⋃

Op is open in TM and that exp : O → M is
smooth. In addition Op ⊂ TpM is open, and expp : Op → M is also smooth. It is
an important property that expp is in fact a local diffeomorphism around 0 ∈ TpM .
The details of this are given in the following:
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Proposition 18. If p ∈ M , then
(1)

D expp : T0(TpM) → TpM

is nonsingular at the origin of TpM . Consequently expp is a local diffeomorphism.
(2) Define E : O → M ×M by E(v) = (π(v), exp v), where π(v) is the base

point of v, i.e., v ∈ Tπ(v)M . Then for each p ∈ M and with it the zero vector,
0p ∈ TpM ,

DE : T(p,0p)(TM) → T(p,p)(M ×M)

is nonsingular. Consequently, E is a diffeomorphism from a neighborhood of the
zero section of TM onto an open neighborhood of the diagonal in M ×M .

Proof. The proofs of both statements are an immediate application of the
inverse function theorem, once a crucial observation has been made. This obser-
vation is as follows: Let I0 : TpM → T0TpM be the canonical isomorphism, i.e.,
I0(v) = d

dt (tv)|t=0. Now we recall that if v ∈ Op, then γv(t) = γtv(1) for all
t ∈ [0, 1]. Thus,

D expp(I0(v)) =
d

dt
expp(tv)|t=0

=
d

dt
γtv(1)|t=0

=
d

dt
γv(t)|t=0

= γ̇v(0)
= v.

In other words D expp ◦I0 is the identity map on TpM . This shows that D expp is
nonsingular. The second statement of (1) follows from the inverse function theorem.

The proof of (2) is again an exercise in unraveling tangent spaces and identifi-
cations. The tangent space T(p,p)(M ×M) is naturally identified with TpM ×TpM .
The tangent space T(p,0p)(TM) is also naturally identified to TpM × T0p

(TpM) �
TpM × TpM .

We know that E takes (p, v) to
(
p, expp (v)

)
. Note that varying p is just the

identity in the first coordinate, but something unpredictable in the second. While
if we fix p and vary v in TpM , then the first coordinate is fixed and we simply have
expp (v) in the second coordinate. This explains what the differential DE|(p,0p) is.
If we consider it as a linear map TpM ×TpM → TpM ×TpM, then it is the identity
on the first factor to the first factor, identically 0 from the second factor to the
first, and the identity from the second fact to the second factor as it is D expp ◦I0p

.
Thus it looks like [

I 0
∗ I

]
which is clearly nonsingular.

Now, the inverse function theorem gives (local) diffeomorphisms via E of neigh-
borhoods of (p, 0p) ∈ TM onto neighborhoods of (p, p) ∈ M ×M . Since E maps
the zero section of TM diffeomorphically to the diagonal in M ×M and the zero
section is a properly embedded submanifold of TM , it is easy to see that these local
diffeomorphisms fit together to give a diffeomorphism of a neighborhood of the zero
section in TM onto a neighborhood of the diagonal in M ×M . �
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All this formalism with the exponential maps yields some results with geometric
meaning. First, we get a coordinate system around p by identifying TpM with Rn

via an isomorphism, and using that the exponential map expp : TpM → M is a
diffeomorphism on a neighborhood of the origin. Such coordinates are called normal
(exponential) coordinates at p. They are unique up to how we choose to identify
TpM with Rn. Requiring this identification to be a linear isometry gives uniqueness
up to an orthogonal transformation of Rn. Later in the chapter we show that they
are indeed normal in the sense that the Christoffel symbols vanish at p.

The second item of geometric interest is the following idea: Thinking about S2

and great circles (which we know are geodesics), it is clear that we cannot say that
two points that are close together are joined by a unique geodesic. On S2 there
will be a short geodesic connection, but there will be other, long ones, too. What
might be hoped is that points that are close together would have a unique “short”
geodesic connecting them. This is exactly what (2) in the proposition says! As
long as we keep q1 and q2 near p, there is only one way to go from q1 to q2 via a
geodesic that isn’t very long, i.e., has the form expq1

tv, v ∈ Tq1M , with |v| small.
This will be made more useful and clear in the next section, where we show that
such short geodesics in fact are segments.

Suppose N is an embedded submanifold of M . The normal bundle of N in
M is the vector bundle over N consisting of the orthogonal complements of the
tangent spaces TpN ⊂ TpM.

TN⊥ = {v ∈ TpM : p ∈ N, v ∈ (TpN)⊥ ⊂ TpM} .

So for each p ∈ N , TpM = TpN ⊕ (TpN)⊥ is an orthogonal direct sum. Define
the normal exponential map exp⊥ by restricting exp to O ∩ TN⊥ so exp⊥ : O ∩
TN⊥ → M . As in part (2) of the previous proposition, one can show that D exp⊥

is nonsingular at 0p, p ∈ N . Then it follows that there is an open neighborhood U
of the zero section in TN⊥ on which exp⊥ is a diffeomorphism onto its image in
M . Such an image exp⊥(U) is called a tubular neighborhood of N in M , because if
N is a curve in R3 it looks like a solid tube around the curve.

6. Why Short Geodesics Are Segments

In the previous section, we saw that points that are close together on a Rie-
mannian manifold are connected by a short geodesic, and by exactly one short
geodesic in fact. But so far, we don’t have any real evidence that such short
geodesics are segments. In this section we shall prove that short geodesics are seg-
ments. Incidentally, several different ways of saying that a curve is a segment are
in common use: “minimal geodesic,” “minimizing curve,” “minimizing geodesic,”
and even “minimizing geodesic segment.”

The precise result we want to prove in this section is this:

Theorem 14. Suppose M is a Riemannian manifold, p ∈ M, and ε > 0 is
such that

expp : B (0, ε) → U ⊂ M

is a diffeomorphism onto its image in M . Then U = B (p, ε) and for each v ∈
B (0, ε), the geodesic γv : [0, 1] → M defined by

γv(t) = expp(tv)

is the unique segment in M from p to expp v.
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On U = expp(B(0, ε)) we have the function r(x) = | exp−1
p (x)|. That is, r

is simply the Euclidean distance function from the origin on B(0, ε) ⊂ TpM in
exponential coordinates. We know that∇r = ∂r = 1

r (xi∂i) in Cartesian coordinates
on TpM . The goal here is to establish:

Lemma 12. (The Gauss Lemma) On (U, g) the function r satisfies ∇r = ∂r,
where ∂r = D expp(∂r).

Let us see how this implies the Theorem.

Proof of Theorem. First observe that in B(0, ε) the integral curves for ∂r

are the line segments γ(s) = s · v
|v| of unit speed. The integral curves for ∂r on

U are therefore the unit speed geodesics γ(s) = exp
(
s · v

|v|
)
. Thus the Lemma

implies that r is a distance function on U . This shows that among curves from p to
q = exp(x) in U − {p}, the geodesic from p to q is the shortest curve, furthermore,
it has length < ε. In particular, U ⊂ B (p, ε) . To see that this geodesic is a segment
in M , we must show that any curve that leaves U has length > ε. Suppose we have
a curve γ : [0, b] → M from p to q that leaves U. Let a ∈ [0, b] be the largest value
so that γ (a) = p. Then γ|[a,b] is a shorter curve from p to q. Next let t0 ∈ (a, b)
be the first value for which γ(t0) /∈ U . Then γ|(a,t0) lies entirely in U − {p} and is
shorter than the original curve. We now see

�
(
γ|(a,t0)

)
=

∫ t0

a

|γ̇| dt

=
∫ t0

a

|∇r| · |γ̇| dt

≥
∫ t0

a

dr (γ̇) dt

= r (γ (t0))− r (γ (a))
= ε,

since r(p) = 0 and the values of r converge to ε as we approach ∂U . Thus γ is not
a segment from p to q.

Finally we have to show that B (p, ε) = U. We already have U ⊂ B (p, ε) .
Conversely if q ∈ B (p, ε) then it is joined to p by a curve of length < ε. The above
argument then shows that this curve lies in U. Whence B (p, ε) ⊂ U. �

Proof of Gauss Lemma. We select an orthonormal basis for TpM and in-
troduce Cartesian coordinates. These coordinates are then also used on B (p, ε) via
the exponential map. Denote these coordinates by (x1, . . . , xn) and the coordinate
vector fields by ∂1, . . . , ∂n. Then

r2 = (x1)2 + · · ·+ (xn)2,

∂r =
1
r
xi∂i.

To show that this is the gradient for r(x) on (M, g), we must prove that dr(v) =
g(∂r, v). We already know that

dr =
1
r
(x1dx1 + · · ·+ xndxn),

but we have no knowledge of g, since it is just some abstract metric.
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We prove that dr(v) = g(∂r, v) by using suitable vector fields in place of v. In
fact we are going to use Jacobi fields for r. Let us start with v = ∂r. The right
hand side is 1 as the integral curves for ∂r are unit speed geodesics. The left
hand side is also quickly computed to be 1. Next we take a rotation vector field
J = −xi∂j + xj∂i, i, j = 2, . . . , n, i < j. In dimension 2 this is simply the angular
field ∂θ. We immediately see that the left hand side vanishes: dr (J) = 0. For the
right hand side we first note that J really is a Jacobi field as L∂r

J = [∂r, J ] = 0.
Using that ∇∂r

∂r = 0 we then get

∂rg(∂r, J) = g(∇∂r
∂r, J) + g(∂r,∇∂r

J)
= 0 + g(∂r,∇∂r

J)
= −g(∂r,∇J∂r)

= −1
2
DJg(∂r, ∂r)

= 0.

Thus g(∂r, J) is constant along geodesics emanating from p. Next observe that

|g(∂r, J)| ≤ |∂r||J |
= |J |
≤ ∣∣xi

∣∣ |∂j |+
∣∣xj

∣∣ |∂i|
≤ r (x) (|∂i|+ |∂j |)

Continuity of D expp shows that ∂i, ∂j are bounded on B (p, ε) . Thus |g(∂r, J)| → 0
as r → 0. This shows that g(∂r, J) = 0. Finally we observe that any vector v is a
linear combination of ∂r and rotation vector fields. This proves the claim. �

There is an equivalent statement of the Gauss Lemma asserting that

expp : B (0, ε) → B (p, ε)

is a radial isometry :

g
(
D expp(∂r), D expp(v)

)
= gp (∂r, v)

on TpM . A careful translation process of the previous proof shows that this is
exactly what we have proved.

The next corollary is also an immediate consequence of the above theorem and
its proof.

Corollary 4. If x ∈ M and ε > 0 is such that expx : B (0, ε) → B (p, ε) is
defined and a diffeomorphism, then for each δ < ε,

expx(B(0, δ)) = B(x, δ),

and
expx(B̄(0, δ)) = B̄(x, δ).

7. Local Geometry in Constant Curvature

Let us restate what we have done in this chapter so far. Given p ∈ (M, g) we
found coordinates near p using the exponential map such that the distance function
r(x) = d(p, x) to p has the formula

r(x) =
√

(x1)2 + · · ·+ (xn)2.
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Furthermore, we showed that ∇r = ∂r. By calculating each side in the formula in
coordinates we get ∑

i,j

1
r
gijxj∂i = ∇r = ∂r =

1
r
xi∂i.

After equating the coefficients of these vector fields we obtain the following curious
relationship between the coordinates and the metric coefficients∑

j

gijxj = xi

which is equivalent to ∑
j

gijx
j = xi.

This relationship, as we shall see, fixes the behavior of gij around p up to first order
and shows that the coordinates are normal in the sense used in chapter 2.

Lemma 13.

gij = δij + O
(
r2

)
.

Proof. The fact that gij |p = δij follows from taking one partial derivative on
both sides of the above relation

δi
k = ∂kxi

= ∂k

∑
j

gijx
j

= (∂kgij) xj + gij∂kxj

= (∂kgij) xj + gik.

As xj (p) = 0, the claim follows. The fact that ∂kgij |p = 0 comes about by taking
two partial derivatives on both sides

0 = ∂l∂kxi

= ∂l

(
(∂kgij) xj

)
+ ∂lgik

= (∂l∂kgij) xj + ∂kgij∂lx
j + ∂lgik

= (∂l∂kgij) xj + ∂kgil + ∂lgik.

Evaluating at p then gives us

∂kgil|p + ∂lgik|p = 0.

Now combine this with the relations for the Christoffel symbols of the first kind:

∂igkl = Γik,l + Γil,k,

Γij,k =
1
2

(∂jgik + ∂igjk − ∂kgji)
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to get

Γkl,i|p =
1
2

(∂kgil|p + ∂lgik|p − ∂igkl|p)

= −1
2
∂igkl|p

= −1
2

(Γik,l|p + Γil,k|p)

=
1
4

(∂lgik|p + ∂kgil|p)
= 0

which is what we wanted to prove. �

In polar coordinates around p any Riemannian metric therefore has the form

g = dr2 + gr

where gr is a metric on Sn−1. The Euclidean metric looks like

δij = dr2 + r2ds2
n−1,

where ds2
n−1 is the canonical metric on Sn−1. Since these two metrics agree up to

first order we obtain

lim
r→0

gr = lim
r→0

(
r2ds2

n−1

)
= 0,

lim
r→0

(
∂rgr − 2

r
gr

)
= lim

r→0

(
∂r

(
r2ds2

n−1

)− 2
r

(
r2ds2

n−1

))
= 0.

As
∂rgr = 2Hessr

this translates into

lim
r→0

(
Hessr − 1

r
gr

)
= 0.

This can also be seen by computing the Hessian of 1
2r2 at p. Just note that this

function has a critical point at p. Thus the coordinate formula for the Hessian is
independent of the metric and must therefore be the identity map at p.

Theorem 15. (Riemann, 1854) If a Riemannian n-manifold (M, g) has con-
stant sectional curvature k, then every point in M has a neighborhood that is iso-
metric to an open subset of the space form Sn

k .

Proof. We use polar coordinates around p ∈ M and the asymptotic behavior
of gr and Hessr near p that was just established. We shall also use the fundamental
equations that were introduced in chapter 2. On the same neighborhood we can
also introduce a metric of constant curvature k

g̃ = dr2 + sn2
k (r) ds2

n−1,

Hessg̃r =
sn′

k (r)
snk (r)

g̃r.

Since the curvature is k for both of these metrics we see that Hessg̃r and Hessgr
solve the same equation when evaluated on unit parallel fields perpendicular to ∂r.
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Note, however, that g and g̃ most likely have different parallel fields X and X̃:

∂r (Hessgr (X,X))−Hess2gr (X,X) = −sec (X, ∂r) = −k,

lim
r→0

(
Hessgr (X,X)− 1

r

)
= 0,

∂r

(
Hessg̃r

(
X̃, X̃

))
−Hess2g̃r

(
X̃, X̃

)
= −sec

(
X̃, ∂r

)
= −k,

lim
r→0

(
Hessrg̃

(
X̃, X̃

)
− 1

r

)
= 0,

Hence

Hessgr (X,X) = Hessg̃r
(
X̃, X̃

)
=

sn′
k (r)

snk (r)
.

This shows that

Hessgr =
sn′

k (r)
snk (r)

gr

When evaluating on Jacobi fields instead we see that both gr and sn2
k (r) ds2

n−1

solve the equation

∂rgr = 2
sn′

k (r)
snk (r)

gr,

lim
r→0

gr = 0.

This shows that
g = dr2 + sn2

k (r) ds2
n−1.

In other words we have found a coordinate system on a neighborhood around p ∈ M
where the metric is the same as the constant curvature metric. �

8. Completeness

One of the foundational centerpieces of Riemannian geometry is the Hopf-
Rinow theorem. This theorem states that all concepts of completeness are equiv-
alent. This should not be an unexpected result for those who have played around
with open subsets of Euclidean space. For it seems that in these examples, ge-
odesic and metric completeness break down in exactly the same places. As with
most foundational theorems, the proof is slightly intricate.

Theorem 16. (H. Hopf-Rinow, 1931) The following statements are equivalent:
(1) M is geodesically complete, i.e., all geodesics are defined for all time.
(2) M is geodesically complete at p, i.e., all geodesics through p are defined for

all time.
(3) M satisfies the Heine-Borel property, i.e., every closed bounded set is com-

pact.
(4) M is metrically complete.

Proof. (1) ⇒ (2), (3) ⇒ (4) are trivial.
(4) ⇒ (1) Recall that every geodesic γ : [0, b) → M defined on a maximal

interval must leave every compact set if b < ∞. This violates metric completeness
as γ(ti), ti → b is a Cauchy sequence.

(2) ⇒ (3) Consider expp : TpM → M . It suffices to show that

expp

(
B(0, r)

)
= B(p, r)
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R

x qp

Figure 5.7

for all r (note that ⊂ always holds). Consider

I = {r : exp(B(0, r) = B(p, r)}.
(i) We have already seen that I contains all r close to zero.
(ii) I is closed: Let ri ∈ I converge to r and select q ∈ B(p, r) and qi ∈ B(p, ri)
converging to q. We can find vi ∈ B(0, ri) with qi = expp(vi). Then (vi) will
subconverge to some v ∈ B(0, r). Continuity of expp then implies that expp(v) = q.
(You should think about why it is possible to choose the qi’s.)
(iii) I is open: We show that if R ∈ I, then R+ε ∈ I for all small ε . First, choose
a compact set K that contains B(p,R) in its interior. Then fix ε > 0 such that all
points in K of distance ≤ ε can be joined by a unique geodesic segment. Given

q ∈ B(p,R + ε)−B(p,R)

select for each δ > 0 a curve γδ : [0, 1] → M with

γδ(0) = p,

γδ(1) = q,

L(γδ) ≤ d(p, q) + δ.

Suppose tδ is the first value such that γδ(tδ) ∈ ∂B(p,R). If x is an accumulation
point for γδ(tδ), then we must have that

R + d(x, q) = d(p, x) + d(x, q) = d(p, q).

Now choose a segment from q to x and a segment from p to x of the form
expp(tv), see also Figure 5.7. These two geodesics together form a curve from p
to q of length d(p, q). Hence, it is a segment. Consequently, it is smooth and by
uniqueness of geodesics is the continuation of expp(tv), 0 ≤ t ≤ 1+ ε

|γ̇| . This shows
that q ∈ expp

(
B (0, R + ε)

)
.

Statements (i), (ii), and (iii) together imply that I = [0,∞), which is what we
wanted to prove. �

From part (ii) of (2) ⇒ (3) we get the additional result:

Corollary 5. If M is complete in any of the above ways, then any two points
in M can be joined by a segment.
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Corollary 6. Suppose M admits a proper (preimages of compact sets are
compact) Lipschitz function f : M → R. Then M is complete.

Proof. We establish the Heine-Borel property. Let C ⊂ M be bounded and
closed. Since f is Lipschitz the image f (C) is also bounded. Thus f (C) ⊂ [a, b]
and C ⊂ f−1 ([a, b]) . As f is proper the preimage f−1 ([a, b]) is compact. Since C
is closed and a subset of a compact set it must itself be compact. �

This corollary makes it easy to check completeness for all of our examples.
In these examples, the distance function can be extended to a proper continuous
function on the entire space.

From now on, virtually all Riemannian manifolds will automatically be assumed
to be connected and complete.

9. Characterization of Segments

In this section we will try to determine when a geodesic is a segment and then
use this to find a maximal domain in TpM on which the exponential map is an
embedding. These issues can be understood through a systematic investigation
of when distance functions to points are smooth. All Riemannian manifolds are
assumed to be complete in this section.

9.1. The Segment Domain. Fix p ∈ (M, g) and let r(x) = d(x, p). We know
that r is smooth near p and that the integral curves for r are geodesics emanating
from p. Since M is complete, these integral curves can be continued indefinitely
beyond the places where r is smooth. These geodesics could easily intersect after
some time, thus they don’t generate a flow on M, but just having them at points
where r might not be smooth helps us understand why r is not smooth at these
places. We know from chapter 2 that another obstruction to r being smooth is
the possibility of conjugate points (we use the notation conjugate points instead of
focal point for distance functions to a point).

To clarify matters we introduce some terminology: The segment domain is

seg(p) =
{
v ∈ TpM : expp(tv) : [0, 1] → M is a segment

}
.

The Hopf-Rinow Theorem implies that M = expp(seg(p)). We see that seg(p) is a
closed star-shaped subset of TpM . The star “interior” of seg(p) is

seg0 (p) = {sv : s ∈ [0, 1), v ∈ seg(p)}.
We shall show below that this set is in fact the interior of seg(p), but this requires
that we know the set is open. We start by proving

Proposition 19. If x ∈ expp(seg0(p)), then it joined to p by a unique segment.
In particular expp is injective on seg0 (p) .

Proof. To see this note that there is a segment σ : [0, 1) → M with σ(0) =
p, σ(t0) = x, t0 < 1. Therefore, if σ̂ : [0, t0] → M is another segment from p to x,
we could construct a nonsmooth segment

γ(s) =
{

σ̂(s), s ∈ [0, t0],
σ(s), s ∈ [t0, 1],

and we know that this is impossible. �
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On the image Up = expp(seg0(p)) we can define ∂r = D expp(∂r), which is, we
hope, the gradient for

r(x) = d(x, p) = | exp−1
p (x)|.

From our earlier observations we know that r would be smooth on Up with gra-
dient ∂r if we could show that expp : seg0(p) → Up is a diffeomorphism. This
requires in addition to injectivity that the map is nonsingular and seg0(p) is open.
Nonsingularity is taken care of in the next lemma.

Lemma 14. expp : seg0(p) → Up is nonsingular everywhere, or, in other words,
D expp is nonsingular at every point in seg0(p).

Proof. If expp is singular somewhere, then we can find v such that expp

is singular at v and nonsingular at all points tv, t ∈ [0, 1). We claim that v /∈
seg0(p). As γ (t) = expp (tv) is an embedding on [0, 1] we can find neighborhoods
U around [0, 1)v ⊂ TpM and V around γ ([0, 1)) ⊂ M such that expp : U → V
is a diffeomorphism. Note that v /∈ U and γ (1) /∈ V. If we take a tangent vector
w ∈ TvTpM, then we can extend it to a Jacobi field J on TpM, i.e., [∂r, J ] = 0.
Next J can be pushed forward via expp to a vector field, also called J, that also
commutes with ∂r on V . If D expp |vw = 0, then

lim
t→1

J |exp(tv) = lim
t→1

D expp (J) |exp(tv) = 0.

In particular, we see that D expp is singular at v iff expp (v) is a conjugate point
for r. This characterization of course assumes that r is smooth on a region that has
expp (v) as a accumulation point.

The fact that
lim
t→1

g (J, J) |exp(tv) ↘ 0 as t → 1

implies that there must be a sequence of numbers tn → 1 such that
∂rg (J, J)
g (J, J)

|exp(tnv) → −∞ as n →∞.

Now use the first fundamental equation evaluated on the Jacobi field J

∂rg (J, J) = 2Hessr (J, J)

to conclude that Hessr satisfies
Hessr (J, J)

g (J, J)
|exp(tnv) → −∞ as n →∞.

If we assume that v ∈ seg0(p), then γ(t) = expp(tv) is a segment on some
interval [0, 1 + ε], ε > 0. Choose ε so small that r̃(x) = d(x, γ(1 + ε)) is smooth on
a ball B(γ(1 + ε), 2ε) (which contains γ(1)). Then consider the function

e(x) = r(x) + r̃(x).

From the triangle inequality, we know that

e(x) ≥ 1 + ε = d(p, γ(1 + ε))

Furthermore, e(x) = 1+ε whenever x = γ(t), t ∈ [0, 1+ε]. Thus, e has an absolute
minimum along γ(t) and must therefore have nonnegative Hessian at all the points
γ(t). On the other hand,

Hesse (J, J)
g (J, J)

|exp(tnv) =
Hessr (J, J)

g (J, J)
|exp(tnv) +

Hessr̃ (J, J)
g (J, J)

|exp(tnv) →
n→∞ −∞
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since Hessr̃ is bounded in a neighborhood of γ(1) and the term involving Hessr
goes to −∞ as n →∞. �

We have now shown that expp is injective and has nonsingular differential on
seg0(p). Before showing that seg0(p) is open we characterize elements in the star
“boundary” of seg0(p) as points that fail to have one of these properties.

Lemma 15. If v ∈ seg(p)− seg0(p), then either
(1) ∃w (�= v) ∈ seg(p) : expp(v) = expp(w), or
(2) D expp is singular at v.

Proof. Let γ(t) = expp(tv). For t > 1 choose segments

σt(s) : [0, 1] → M,

σt(0) = p,

σt(1) = γ(t).

Since we have assumed that γ : [0, t] is not a segment for t > 1 we see that σ̇t(0) is
never proportional to γ̇(0). Now choose tn → 1 such that σ̇tn

(0) → w ∈ TpM . We
have that

�(σtn
) = |σ̇tn

(0)| → �(γ|[0,1]) = |γ̇(0)|,
so |w| = |γ̇ (0)| . Now either w = γ̇(0) or w �= γ̇(0). In the latter case, we note
that w is not a positive multiple of γ̇ (0) since |w| = |γ̇ (0)| . Therefore, we have
found the promised w from (1). If the former happens, we must show that D expp

is singular at v. If, in fact, D expp is nonsingular at v, then expp is an embedding
near v. Thus,

σ̇tn
(0) → v = γ̇(0),

expp(σ̇tn
(0)) = expp(tnγ̇(0)),

implies σ̇tn
(0) = tn · v, showing that γ is a segment on some interval [0, tn], tn > 1.

This, however, contradicts our choice of γ. �
Notice that in the first case the gradient ∂r on M becomes undefined at x =

expp(v), since it would be either D expp(v) or D expp(w), while in the second case
the Hessian of r becomes undefined, since it is forced to go to −∞ along certain
fields. Finally we show

Proposition 20. seg0(p) is open.

Proof. If we fix v ∈ seg0(p), then there is going to be a neighborhood V
around v on which expp is a diffeomorphism onto its image. If vi ∈ V converge to
v, then we know that D expp is also nonsingular at vi. Now assume that wi ∈ seg(p)
satisfy

expp(vi) = expp(wi).
In case wi has an accumulation point w �= v, we get v /∈ seg0(p). Hence wi → v,
showing that wi ∈ V for large i. As expp is a diffeomorphism on V this implies that
wi = vi. Thus we have shown that vi ∈ seg0(p). �

All of this implies that r(x) = d(x, p) is smooth on the open and dense subset
Up − {p} ⊂ M and in addition that it is not smooth on M − Up.

The set seg(p)− seg0(p) is called the cut locus of p in TpM . Thus, being inside
the cut locus means that we are on the region where r is smooth. Going back to
our characterization of segments, we have
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Corollary 7. Let γ : [0,∞) → M be a geodesic with γ(0) = p. If

cut(γ̇(0)) = max{t : γ|[0,t] is a segment},
then r is smooth at γ(t), t < cut(γ̇(0)), but not smooth at x = γ(cut(γ̇(0))). Fur-
thermore, the failure of r to be smooth at x is because expp : seg(p) → M either
fails to be one-to-one at x or has x as a critical value.

9.2. The Injectivity Radius. The largest radius ε for which

expp : B(0, ε) → B(p, ε)

is a diffeomorphism is called the injectivity radius inj(p) at p. If v ∈ seg(p)−seg0(p)
is the closest point to 0 in this set, then we have that inj(p) = |v|. It turns out that
such v can be characterized as:

Lemma 16. (Klingenberg): Suppose v ∈ seg(p)− seg0(v) and that |v| = inj(p).
Then either

(1) there is precisely one other vector w with

expp(w) = expp(v),

and it is characterized by
d

dt
|t=1 expp(tw) = − d

dt
|t=1 expp(tv),

or
(2) x = expp (v) is a critical value for expp : seg(p) → M .
In the first case there are exactly two segments from p to x = expp(v), and they

fit smoothly together at x to form a geodesic loop.

Proof. Suppose x is a regular value for expp : seg(p) → M and that γ1, γ2 :
[0, 1] → M are segments from p to x = expp(v). If γ̇1(1) �= −γ̇2(1), then we
can find w ∈ TxM such that g(w, γ̇1(1)), g(w, γ̇2(1)) < 0, i.e., w forms an angle
> π

2 with both γ̇1(1) and γ̇2(1). Next select c (s) with ċ (0) = w. As D expp is
nonsingular at γ̇i(0) there are unique curves vi (s) ∈ TpM with vi (0) = γ̇i (0) and
D expp (vi (s)) = c (s) (see also Figure 5.8). But then the curves t → expp (tvi (s))
have length

|vi| = d (p, c (s))
< d (p, x)
= |v| .

This implies that expp is not one-to-one on seg0(p), a contradiction. �
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10. Riemannian Isometries

We are now ready to explain the key properties of Riemannian isometries.
Much of theory is local, so we shall not necessarily assume that the Riemannian
manifolds being investigated are complete. After this thorough discussion of Rie-
mannian isometries we classify all complete simply connected Riemannian manifolds
of constant sectional curvature.

10.1. Local Isometries. We say that a map F : (M, g) → (N, ḡ) is a local
Riemannian isometry if for each p ∈ M the differential DFp : TpM → TF (p)N is a
linear isometry. A special and trivial example of such a map is a local coordinate
system ϕ : U → Ω ⊂ Rn where we use the induced metric g on U and its coordinate
representation gijdxidxj on Ω.

Proposition 21. Let F : (M, g) → (N, ḡ) be a local Riemannian isometry.
(1) F maps geodesics to geodesics.
(2) F ◦ expp (v) = expF (p) ◦DFp (v) if expp (v) is defined. In other words

Op ⊂ TpM
DF−→ OF (p) ⊂ TF (p)N

expp ↓ expF (p) ↓
M

F−→ N

(3) F is distance decreasing.
(4) If F is also a bijection, then it is distance preserving.

Proof. (1) The first property is completely obvious. We know that geodesics
depend only on the metric and not on any given coordinate system. However, a
local Riemannian isometry is locally nothing but a change of coordinates.

(2) If expp (v) is defined, then t → expp (tv) is a geodesic. Thus also t →
F

(
expp (tv)

)
is a geodesic. Since

d

dt
F

(
expp (tv)

) |t=0 = DF

(
d

dt
expp (tv) |t=0

)
= DF (v) ,

we have that F
(
expp (tv)

)
= expF (p) (tDF (v)) . Setting t = 1 then proves the

claim.
(3) This is also obvious as F must preserve the length of curves.
(4) Both F and F−1 are distance decreasing so they must both be distance

preserving. �

This proposition quickly yields two important results for local Riemannian
isometries.

Proposition 22. (Uniqueness of Riemannian Isometries) Let F,G : (M, g) →
(N, ḡ) be local Riemannian isometries. If M is connected and F (p) = G (p) , DFp =
DGp, then F = G on M.

Proof. Let

A = {x ∈ M : F (x) = G (x) , DFx = DGx} .
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We know that p ∈ A and that A is closed. Property (2) from the above proposition
tells us that

F ◦ expx (v) = expF (x) ◦DFx (v)

= expG(x) ◦DGx (v)

= G ◦ expx (v) ,

if x ∈ A. Since expx maps onto a neighborhood of x it follows that some neighbor-
hood of x also lies in A. This shows that A is open and hence all of M as M is
connected. �

Proposition 23. Let F : (M, ḡ) → (N, g) be a Riemannian covering map.
(M, ḡ) is complete if and only if (N, g) is complete.

Proof. Let γ : (−ε, ε) → N be a geodesic with γ (0) = p and γ̇ (0) = v. For
any p̄ ∈ F−1 (p) there is a unique lift γ̄ : (−ε, ε) → M, i.e., F ◦γ̄ = γ, with γ̄ (0) = p̄.
Since F is a local isometry, the inverse is locally defined and also an isometry. Thus
γ̄ is also a geodesic.

If we assume N is complete, then γ and also γ̄ will exist for all time. As all
geodesics in M must be of the form γ̄ this shows that all geodesics in M exist for
all time.

If, conversely, we suppose that M is complete, then γ̄ can be extended to be
defined for all time. Then F ◦ γ̄ is a geodesic defined for all time that extends γ.
Thus N is geodesically complete. �

Lemma 17. Let F : (M, g) → (N, ḡ) be a local Riemannian isometry. If M is
complete, then F is a Riemannian covering map.

Proof. Fix q ∈ N and assume that expq : B (0, ε) → B (q, ε) is a diffeomor-
phism. We claim that F−1 (B (q, ε)) is evenly covered by the sets B (p, ε) where
F (p) = q. Completeness of M guarantees that expp : B (0, ε) → B (p, ε) is defined
and property (2) that

F ◦ expp (v) = expq ◦DFp (v)
for all v ∈ B (0, ε) ⊂ TpM. As expq : B (0, ε) → B (q, ε) and DFp : B (0, ε) →
B (0, ε) are diffeomorphisms it follows that F ◦ expp : B (0, ε) → B (q, ε) is a dif-
feomorphism. Thus each of the maps expp : B (0, ε) → B (p, ε) and F : B (p, ε) →
B (q, ε) are diffeomorphisms as well. Finally we need to make sure that

F−1 (B (q, ε)) =
⋃

F (p)=q

B (p, ε) .

If x ∈ F−1 (B (q, ε)) , then we can join q and F (x) by a unique geodesic γ (t) =
expq (tv) , v ∈ B (0, ε) . Completeness of M again guarantees a geodesic σ : [0, 1] →
M with σ (1) = x and DFx (σ̇ (1)) = γ̇ (1) . Since F ◦ σ is a geodesic with the same
initial values at t = 1 as γ we must have F (σ (t)) = γ (t) for all t. As q = γ (0) we
have therefore proven that F (σ (0)) = q and hence that x ∈ B (σ (0) , ε) . �

If S ⊂ Iso (M, g) is a set of isometries, then the fixed point set of S is defined
as those points in M that are fixed by all isometries in S

Fix (S) = {x ∈ M : F (x) = x for all F ∈ S} .

While the fixed point set for a general set of diffeomorphisms can be quite com-
plicated, the situation for isometries is much more manageable. A submanifold
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N ⊂ (M, g) is said to be totally geodesic if for each p ∈ N a neighborhood of
0 ∈ TpN is mapped into N via the exponential map expp . This means that geo-
desics in N are also geodesics in M and conversely that any geodesic in M which
is tangent to N at some point must lie in N for a short time.

Proposition 24. Let S ⊂ Iso (M, g) be a set of isometries, then each connected
component of the fixed point set is a totally geodesic submanifold.

Proof. Let p ∈ Fix (S) and consider the subspace V ⊂ TpM that is fixed by
the linear isometries DFp : TpM → TpM, where F ∈ S. Note that each such F
fixes p so we know that DFp : TpM → TpM. If v ∈ V, then t → expp (tv) must be
fixed by each of the isometries in S as the initial position and velocity is fixed by
these isometries. Thus expp (tv) ∈ Fix (S) as long as it is defined. This shows that
expp : V → Fix (S) .

Next let ε > 0 be chosen so that expp : B (0, ε) → B (p, ε) is a diffeomorphism.
If q ∈ Fix (S) ∩ B (p, ε) , then the unique geodesic γ : [0, 1] → B (p, ε) from p to q
has the property that its endpoints are fixed by each F ∈ S. Now F ◦ γ is also a
geodesic from p to q which in addition lies in B (p, ε) as the length is unchanged.
Thus F ◦ γ = γ and hence γ lies in Fix (S) ∩B (p, ε) .

Thus we have shown that expp : V ∩B (0, ε) → Fix (S)∩B (p, ε) is a bijection.
This establishes the lemma. �

10.2. Constant Curvature Revisited. We just saw that isometries are
uniquely determined by their differential. What about the existence question?
Given any linear isometry L : TpM → TqN, is there an isometry F : M → N
such that DFp = L? If we let M = N, this would in particular mean that if π
is a 2-plane in TpM and π̃ a 2-plane in TqM, then there should be an isometry
F : M → M such that F (π) = π̃. But this would imply that M has constant
sectional curvature. The above problem can therefore not be solved in general. If
we go back and inspect our knowledge of Iso(Sn

k ), we see that these spaces have
enough isometries so that any linear isometry L : TpS

n
k → TqS

n
k can be extended

to a global isometry F : Sn
k → Sn

k with DFp = L. In some sense these are the only
spaces with this property, as we shall see.

Theorem 17. Suppose (M, g) is a Riemannian manifold of dimension n and
constant curvature k. If M is simply connected and L : TpM → TqS

n
k is a linear

isometry, then there is a unique local Riemannian isometry called the monodromy
map F : M → Sn

k with DFp = L. Furthermore, this map is a diffeomorphism if
(M, g) is complete.

Before giving the proof, let us look at some examples.

Example 37. Suppose we have an immersion Mn → Sn
k . Then F will be one

of the maps described in the theorem if we use the pullback metric on M . Such
maps can fold in wild ways when n ≥ 2 and need not resemble covering maps in
any way whatsoever.

Example 38. If U ⊂ Sn
k is a contractible bounded open set with ∂U a smooth

hypersurface, then one can easily construct a diffeomorphism F : M = Sn
k −{pt} →

Sn
k − U . Near the missing point in M the metric will necessarily look pretty awful,

although it has constant curvature.
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Example 39. If M = RPn or (Rn − {0}) /antipodal map, then M is not
simply connected and does not admit an immersion into Sn

k .

Example 40. If M is the universal covering of the constant curvature sphere
with a pair of antipodal point removed S2−{±p} , then the monodromy map is not
one-to-one. In fact it must be the covering map M → S2 − {±p} .

Corollary 8. If M is a closed simply connected manifold with constant-
curvature k, then k > 0 and M = Sn. Thus, Sp × Sq, CPn do not admit any
constant curvature metrics.

Corollary 9. If M is geodesically complete and noncompact with constant
curvature k, then k ≤ 0 and the universal covering is diffeomorphic to Rn. In
particular, S2 × R2 and Sn × R do not admit any geodesically complete metrics of
constant curvature.

Now for the proof of the theorem. A different proof of the case where M is
complete is developed in the exercises to this chapter.

Proof. We know that M can be covered by sets Uα such that each Uα admits
a Riemannian embedding Fα : Uα → Sn

k . Furthermore, if q ∈ Uα, q̄ ∈ Sn
k and

L : TqUα → Tq̄S
n
k is a linear isometry, then there is a unique Fα such that Fα (q) = q̄

and DFα|p = L.
The construction of F now proceeds in the same way one does analytic continu-

ation on simply connected domains. We fix base points p ∈ M, p̄ ∈ Sn
k and a linear

isometry L : TpM → Tp̄S
n
k . Next let x ∈ M be an arbitrary point. If γ : [0, 1] → M

is a curve from p to x, then we can cover it by a string of sets Uα0 , ..., Uαk
, where

p ∈ Uα0 , x ∈ Uαk
, and γ (ti) ∈ Uαi

∩ Uαi+1 . Define F on Ua0 so that F (p) = p̄
and DFp = L. Then define F |Uαi+1

successively such that it agrees with F |Uαi
and

DF |Uαi
at γ (ti) . This defines F uniquely on all of the sets Uαi

and hence also at
x. If we covered γ by a different string of sets, then uniqueness of isometries tell
us that we have to get the same answer along γ as we assume that F (p) = p̄ and
DFp = L. If we used a different path γ̄ which was also covered by the same string
of sets Uαi

we would clearly also end up with the same answer at x. Finally we
use that M is simply connected to connect any two paths γ0, γ1 from p to x by a
family of paths H (s, t) such that each γs (t) = H (s, t) is a path from p to x. If
Fγs

is the map we obtain near x by using the path γs, then we have just seen that
Fγs

(x) is fixed as long as s is so small that all the curves are covered by the same
string of sets. This shows that s → Fγs

(x) is locally constant and hence that F (x)
is well-defined by our construction.

If M is complete we know that F has to be a covering map. As Sn
k is simply

connected it must be a diffeomorphism. �

We can now give the classification of complete simply connected Riemannian
manifolds with constant curvature. This result was actually proven before the
issues of completeness were completely understood. Killing first proved the result
assuming in effect that the manifold has an ε > 0 such that for all p the map
expp : B (0, ε) → B (p, ε) is a diffeomorphism. Hopf then realized that it was
sufficient to assume that the manifold was geodesically complete. Since metric
completeness immediately implies geodesic completeness this is clearly the best
result one could have expected at the time.
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Corollary 10. (Classification of Constant Curvature Spaces, Killing, 1893
and H. Hopf, 1926) If (M, g) is a connected, geodesically complete Riemannian
manifold with constant curvature k , then the universal covering is isometric to Sn

k .

This result shows how important the completeness of the metric is. A large
number of open manifolds admit immersions into Euclidean space of the same di-
mension (e.g., Sn×Rk) and therefore carry incomplete metrics with zero curvature.
Carrying a complete Riemannian metric of a certain type, therefore, often implies
various topological properties of the underlying manifold. Riemannian geometry at
its best tries to understand this interplay between metric and topological properties.

10.3. Metric Characterization of Maps. As promised we shall in this sec-
tion give some metric characterizations of Riemannian isometries and Riemannian
submersions. For a Riemannian manifold (M, g) we let the corresponding metric
space be denoted by (M,dg) or simply (M,d) if only one metric is in play. It is
natural to ask whether one can somehow recapture the Riemannian metric g from
the distance dg. If for instance v, w ∈ TpM, then we would like to be able to com-
pute g(v, w) from knowledge of dg. One way of doing this is by taking two curves
α, β such that α̇(0) = v and β̇(0) = w and observe that

|v| = lim
t→0

d (α(t), α(0))
t

,

|w| = lim
t→0

d (β(t), β(0))
t

,

cos ∠ (v, w) =
g (v, w)
|v| |w| = lim

t→0

d (α(t), β(t))
t

.

Thus, g can really be found from d given that we use the differentiable structure
of M. It is perhaps then not so surprising that many of the Riemannian maps
we consider have synthetic characterizations, that is, characterizations that involve
only knowledge of the metric space (M,d) .

Before proceeding with our investigations, let us introduce a new type of coordi-
nates. Using geodesics we have already introduced one set of geometric coordinates
via the exponential map. We shall now use the distance functions to construct dis-
tance coordinates . For a point p ∈ M fix a neighborhood U � p such that for each
x ∈ U we have that B (q, inj(q)) ⊃ U. Thus, for each q ∈ U the distance function
rq(x) = d (x, q) is smooth on U − {q} . Now choose q1, . . . , qn ∈ U − {p} , where
n = dimM . If the vectors ∇rq1(p), . . . ,∇rqn

(p) ∈ TpM are linearly independent,
the inverse function theorem tells us that ϕ = (rq1 , . . . , rqn

) can be used as coordi-
nates on some neighborhood V of p. The size of the neighborhood will depend on
how these gradients vary. Thus, an explicit estimate for the size of V can be gotten
from bounds on the Hessians of the distance functions. Clearly, one can arrange
for the gradients to be linearly independent or even orthogonal at any given point.

We just saw that bijective Riemannian isometries are distance preserving. The
next result shows that the converse is also true.

Theorem 18. (Myers-Steenrod, 1939) If (M, g) and (N, ḡ) are Riemannian
manifolds and F : M → N a bijection, then F is a Riemannian isometry if F is
distance-preserving, i.e., dḡ (F (p), F (q)) = dg (p, q) for all p, q ∈ M.

Proof. Let F be distance-preserving. First let us show that F is differentiable.
Fix p ∈ M and let q = F (p). Near q introduce distance coordinates (rq1 , . . . , rqn

)
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and find pi such that F (pi) = qi. Now observe that

rqi
◦ F (x) = d (F (x), qi)

= d (F (x), F (pi))
= d (x, pi) .

Since d (p, pi) = d (q, qi) , we can assume that the qis and pis are chosen such that
rpi

(x) = d (x, pi) are smooth at p. Thus, (rq1 , . . . , rqn
) ◦ F is smooth at p, showing

that F must be smooth at p.
To show that F is a Riemannian isometry it suffices to check that |DF (v)| = |v|

for all tangent vectors v ∈ TM. For a fixed v ∈ TpM let γ(t) = expp(tv). For small
t we know that γ is a constant speed segment. Thus, for small t, s we can conclude

|t− s| · |v| = dg (γ(t), γ(s)) = dḡ (F ◦ γ(t), F ◦ γ(s)) ,

implying

|DF (v)| =
∣∣∣∣d (F ◦ γ)

dt

∣∣∣∣
t=0

= lim
t→0

dḡ (F ◦ γ(t), F ◦ γ(0))
|t|

= lim
t→0

dg (γ(t), γ(0))
|t|

= |γ̇(0)|
= |v| .

�

Our next goal is to find a characterization of Riemannian submersions. Un-
fortunately, the description only gives us functions that are C1, but there doesn’t
seem to be a better formulation. Let F : (M, ḡ) → (N, g) be a function. We call
F a submetry if for every p ∈ M we can find r > 0 such that for each ε ≤ r we
have F (B (p, ε)) = B (F (p) , ε) . Submetries are locally distance-nonincreasing and
therefore also continuous. In addition, we have that the composition of submetries
(or Riemannian submersions) are again submetries (or Riemannian submersions).
We can now prove

Theorem 19. (Berestovski, 1995) If F : (M, ḡ) → (N, g) is a surjective sub-
metry, then F is a C1 Riemannian submersion.

Proof. Fix points q ∈ N and p ∈ M with F (p) = q. Then select distance
coordinates (r1, . . . , rk) around q. Now observe that all of the ris are Riemannian
submersions and therefore also submetries. Then the compositions ri ◦ F are also
submetries. Thus, F is C1 iff all the maps ri ◦ F are C1. Therefore, it suffices to
prove the result in the case of functions r : (U ⊂ M, g) → ((a, b) , can).

Let x ∈ M . By restricting r to a small convex neighborhood of x, we can
assume that the fibers of r are closed and that any two points in the domain are
joined by a unique geodesic. We now wish to show that r has a continuous unit
gradient field ∇r. We know that the integral curves for ∇r should be exactly the
unit speed geodesics that are mapped to unit speed geodesics by r. Since r is
distance-nonincreasing, it is clear that any piecewise smooth unit speed curve that
is mapped to a unit speed geodesic must be a smooth unit speed geodesic. Thus,
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these integral curves are unique and vary continuously to the extent that they exist.
To establish the existence of these curves we use the submetry property. First fix
p ∈ M and let γ(t) : [0, r] → (a, b) be the unit speed segment with γ(0) = r(p). Let
Ut denote the fiber of r above γ(t). Now select a unit speed segment γ̄ : [0, r] →
M with γ̄(0) = p and γ(r) ∈ Ur. This is possible since r(B(p, ε)) = B(γ(0), ε). It
is now easy to check, again using the submetry property, that γ(t) = r ◦ γ̄(t), as
desired. �

11. Further Study

There are many textbooks on Riemannian geometry that treat all of the basic
material included in this chapter. Some of the better texts are [19], [20], [41], [56]
and [73]. All of these books, as is usual, emphasize the variational approach as
being the basic technique used to prove every theorem. To see how the variational
approach works the text [68] is also highly recommended.

12. Exercises

(1) Assume that (M, g) has the property that all geodesics exist for a fixed
time ε > 0. Show that (M, g) is geodesically complete.

(2) A Riemannian manifold is said to be homogeneous if the isometry group
acts transitively. Show that homogeneous manifolds are geodesically com-
plete.

(3) Assume that we have coordinates in a Riemannian manifold so that g1i =
δ1i. Show that x1 is a distance function.

(4) Let γ be a geodesic in a Riemannian manifold (M, g) . Let g′ be another
Riemannian metric on M with the properties: g′ (γ̇, γ̇) = g (γ̇, γ̇) and
g′ (X, γ̇) = 0 iff g (X, γ̇) = 0. Show that γ is also a geodesic with respect
to g′.

(5) Show that if we have a vector field X on a Riemannian manifold (M, g)
that vanishes at p ∈ M, then for any tensor T we have LXT = ∇XT at p.
Conclude that the Hessian of a function is independent of the metric at a
critical point. Can you find an interpretation of LXT at p?

(6) Show that any Riemannian manifold (M, g) admits a conformal change(
M,λ2g

)
, where λ : M → (0,∞) , such that

(
M,λ2g

)
is complete.

(7) On an open subset U ⊂ Rn we have the induced distance from the Rie-
mannian metric, and also the induced distance from Rn. Show that the
two can agree even if U isn’t convex.

(8) Let N ⊂ (M, g) be a submanifold. Let ∇N denote the connection on N
that comes from the metric induced by g. Define the second fundamental
form of N in M by

II (X,Y ) = ∇N
XY −∇XY

(a) Show that II (X,Y ) is symmetric and hence tensorial in X and Y.
(b) Show that II (X,Y ) is always normal to N.
(c) Show that II = 0 on N iff N is totally geodesic.
(d) If RN is the curvature tensor for N, then

g (R(X,Y )Z,W ) = g
(
RN (X,Y )Z,W

)
−g (II(Y,Z), II (X,W )) + g (II(X,Z), II (Y,W )) .
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(9) Let f : (M, g) → R be a smooth function on a Riemannian manifold.
(a) If γ : (a, b) → M is a geodesic, compute the first and second deriva-

tives of f ◦ γ.
(b) Use this to show that at a local maximum (or minimum) for f the

gradient is zero and the Hessian nonpositive (or nonnegative).
(c) Show that f has everywhere nonnegative Hessian iff f ◦ γ is convex

for all geodesics γ in (M, g) .
(10) Let N ⊂ M be a submanifold of a Riemannian manifold (M, g) .

(a) The distance from N to x ∈ M is defined as

d (x,N) = inf {d (x, p) : p ∈ N} .

A unit speed curve σ : [a, b] → M with σ (a) ∈ N,σ (b) = x, and
� (σ) = d (x,N) is called a segment from x to N. Show that σ is also
a segment from N to any σ (t) , t < b. Show that σ̇ (a) is perpendicular
to N.

(b) Show that if N is a closed subspace of M and (M, g) is complete,
then any point in M can be joined to N by a segment.

(c) Show that in general there is an open neighborhood of N in M where
all points are joined to N by segments.

(d) Show that d (·, N) is smooth on a neighborhood of N and that the in-
tegral curves for its gradient are the geodesics that are perpendicular
to N.

(11) Compute the cut locus on a square torus R2/Z2.
(12) Compute the cut locus on a sphere and real projective space with the

constant curvature metrics.
(13) In a metric space (X, d) one can measure the length of continuous curves

γ : [a, b] → X by

� (γ) = sup
{∑

d (γ (ti) , γ (ti+1)) : a = t1 ≤ t2 ≤ · · · ≤ tk−1 ≤ tk = b
}

.

(a) Show that a curve has finite length iff it is absolutely continuous.
Hint: Use the characterization that γ : [a, b] → X is absolutely
continuous if and only if for each ε > 0 there is a δ > 0 so that∑

d (γ (si) , γ (si+1)) ≤ ε provided
∑ |si − si+1| ≤ δ.

(b) Show that this definition gives back our previous definition for smooth
curves on Riemannian manifolds.

(c) Let γ : [a, b] → M be an absolutely continuous curve whose length
is d (γ (a) , γ (b)) . Show that γ = σ ◦ ϕ for some segment σ and
reparametrization ϕ.

(14) Show that in a Riemannian manifold,

d
(
expp (tv) , expp (tw)

)
= |t| · |v − w|+ O

(
t2
)
.

(15) Assume that we have coordinates xi around a point p ∈ (M, g) such
that xi (p) = 0 and gijx

j = xi. Show that these must be exponential
coordinates. Hint: Define

r =
√

(x1)2 + · · ·+ (xn)2

and show that it is a smooth distance function away from p, and that the
integral curves for the gradient are geodesics emanating from p.
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(16) If N1, N2 ⊂ M are totally geodesic submanifolds, show that each compo-
nent of N1 ∩ N2 is a submanifold which is totally geodesic. Hint: The
potential tangent space at p ∈ N1 ∩N2 should be TpN1 ∩ TpN2.

(17) Show that for a complete manifold the functional distance is the same as
the distance. What about incomplete manifolds?

(18) Let γ : [0, 1] → M be a geodesic such that expγ(0) is regular at all tγ̇ (0) ,
for t ≤ 1. Show that γ is a local minimum for the energy functional. Hint:
Show that the lift of γ via expγ(0) is a minimizing geodesic in a suitable
metric.

(19) Show, using the exercises on Lie groups from chapters 1 and 2, that on a
Lie group G with a bi-invariant metric the geodesics through the identity
are exactly the homomorphisms R → G. Conclude that the Lie group
exponential map coincides with the exponential map generated by the
bi-invariant Riemannian metric. Hint: First show that homomorphisms
R → G are precisely the integral curves for left invariant vector fields
through e ∈ G.

(20) Repeat the previous exercise assuming that the metric is a bi-invariant
semi-Riemannian metric. Show that the matrix group Gln (R) of invertible
n × n matrices admits a bi-invariant semi-Riemannian metric. Hint: for
X,Y ∈ TIGln (R) define

g (X,Y ) = −tr (XY ) .

(21) Construct a Riemannian metric on the tangent bundle to a Riemannian
manifold (M, g) such that π : TM → M is a Riemannian submersion and
the metric restricted to the tangent spaces is the given Euclidean metric.

(22) For a Riemannian manifold (M, g) let FM be the frame bundle of M.
This is a fiber bundle π : FM → M whose fiber over p ∈ M consists of
orthonormal bases for TpM. Find a Riemannian metric on FM that makes
π into a Riemannian submersion and such that the fibers are isometric to
O (n) .

(23) Show that a Riemannian submersion is a submetry.
(24) (Hermann) Let f : (M, ḡ) → (N, g) be a Riemannian submersion.

(a) Show that (N, g) is complete if (M, ḡ) is complete.
(b) Show that f is a fibration if (M, ḡ) is complete i.e., for every p ∈ N

there is a neighborhood p ∈ U such that f−1 (U) is diffeomorphic to
U × f−1 (p) . Give a counterexample when (M, ḡ) is not complete.




