
CHAPTER 2

Curvature

With the comforting feeling that there are indeed a variety of Riemannian
manifolds out there, we shall now immerse ourselves in the theory. In this chapter
we confine ourselves to infinitesimal considerations. The most important and often
also least understood object of Riemannian geometry is the connection and its
function as covariant differentiation. We shall give a motivation of this concept
that depends on exterior and Lie derivatives (The basic definitions and properties
of Lie derivatives are recaptured in the appendix). It is hoped that this makes the
concept a little less of a deus ex machina. Covariant differentiation, in turn, gives
us nice formulae for exterior derivatives, Lie derivatives, divergence and much more
(see also the appendix). It is also important in the development of curvature which
is the central theme of Riemannian geometry. The idea of a Riemannian metric
having curvature, while intuitively appealing and natural, is for most people the
stumbling block for further progress into the realm of geometry.

In the third section of the chapter we shall study what we call the fundamen-
tal equations of Riemannian geometry. These equations relate curvature to the
Hessian of certain geometrically defined functions (Riemannian submersions onto
intervals). These formulae hold all the information that we shall need when com-
puting curvatures in new examples and also for studying Riemannian geometry in
the abstract.

Surprisingly, the idea of a connection postdates Riemann’s introduction of the
curvature tensor. Riemann discovered the Riemannian curvature tensor as a second-
order term in the Taylor expansion of a Riemannian metric at a point, where co-
ordinates are chosen such that the zeroth-order term is the Euclidean metric and
the first-order term is zero. Lipschitz, Killing, and Christoffel introduced the con-
nection in various ways as an intermediate step in computing the curvature. Also,
they found it was a natural invariant for what is called the equivalence problem in
Riemannian geometry. This problem, which seems rather odd nowadays (although
it really is important), comes out of the problem one faces when writing the same
metric in two different coordinates. Namely, how is one to know that they are
the same or equivalent. The idea is to find invariants of the metric that can be
computed in coordinates and then try to show that two metrics are equivalent if
their invariant expressions are equal. After this early work by the above-mentioned
German mathematicians, an Italian school around Levi-Civita, Ricci, Bianchi et
al. began systematically to study Riemannian metrics and tensor analysis. They
eventually defined parallel translation and through that clarified the use of the con-
nection. Hence the name Levi-Civita connection for the Riemannian connection.
Most of their work was still local in nature and mainly centered on developing
tensor analysis as a tool for describing physical phenomena such as stress, torque,
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22 2. CURVATURE

and divergence. At the beginning of the twentieth century Minkowski started de-
veloping the geometry of space-time with the hope of using it for Einstein’s new
special relativity theory. It was this work that eventually enabled Einstein to give
a geometric formulation of general relativity theory. Since then, tensor calculus,
connections, and curvature have become an indispensable language for many theo-
retical physicists.

Much of what we do in this chapter carries over to the semi-Riemannian setting.
The connection and curvature tensor are generalized without changes. But the
formulas for divergence and Ricci curvature do require some modifications. The
thing to watch for is that the trace of an operator has a slightly different formula
in this setting (see exercises to chapter 1).

1. Connections

1.1. Directional Differentiation. First we shall introduce some important
notation. There are many ways of denoting the directional derivative of a function
on a manifold. Given a function f : M → R and a vector field Y on M we will use
the following ways of writing the directional derivative of f in the direction of Y

∇Y f = DY f = LY f = df(Y ) = Y (f).

If we have a function f : M → R on a manifold, then the differential df :
TM → R measures the change in the function. In local coordinates, df = ∂i(f)dxi.
If, in addition, M is equipped with a Riemannian metric g, then we also have
the gradient of f , denoted by gradf = ∇f , defined as the vector field satisfying
g(v,∇f) = df(v) for all v ∈ TM . In local coordinates this reads, ∇f = gij∂i(f)∂j ,
where gij is the inverse of the matrix gij (see also the next section). Defined in this
way, the gradient clearly depends on the metric. But is there a way of defining a
gradient vector field of a function without using Riemannian metrics? The answer
is no and can be understood as follows. On Rn the gradient is defined as

∇f = δij∂i(f)∂j =
n∑

i=1

∂i (f) ∂i.

But this formula depends on the fact that we used Cartesian coordinates. If instead
we had used polar coordinates on R2, say, then we mostly have that

∇f = ∂x (f) ∂x + ∂y (f) ∂y

�= ∂r (f) ∂r + ∂θ (f) ∂θ,

One rule of thumb for items that are invariantly defined is that they should sat-
isfy the Einstein summation convention, where one sums over identical super- and
subscripts. Thus, df = ∂i (f) dxi is invariantly defined, while ∇f = ∂i (f) ∂i is not.
The metric g = gijdxidxj and gradient ∇f = gij∂i (f) ∂j are invariant expressions
that also depend on our choice of metric.

1.2. Covariant Differentiation. We now come to the question of attaching
a meaning to the change of a vector field. In Rn we can use the standard Cartesian
coordinate vector fields to write X = ai∂i. If we think of the coordinate vector
fields as being constant, then it is natural to define the covariant derivative of X
in the direction of Y as

∇Y X =
(∇Y ai

)
∂i = d

(
ai
)
(Y ) ∂i.
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Thus we measure the change in X by measuring how the coefficients change. There-
fore, a vector field with constant coefficients does not change. This formula clearly
depends on the fact that we used Cartesian coordinates and is not invariant under
change of coordinates. If we take the coordinate vector fields

∂r =
1
r

(x∂x + y∂y)

∂θ = −y∂x + x∂y

that come from polar coordinates in R2, then we see that they are not constant.
In order to better understand what is happening we need to find a coordinate

independent definition of this change. This is done most easily by splitting the
problem of defining the change in a vector field X into two problems.

First, we can measure the change in X by asking whether or not X is a gradient
field. If iXg = θX is the 1-form dual to X, i.e., (iXg) (Y ) = g (X,Y ) , then we know
that X is locally the gradient of a function if and only if dθX = 0. In general, the
2-form dθX therefore measures the extend to which X is a gradient field.

Second, we can measure how a vector field X changes the metric via the Lie
derivative LXg. This is a symmetric (0, 2)-tensor as opposed to the skew-symmetric
(0, 2)-tensor dθX . If F t is the local flow for X, then we see that LXg = 0 if and
only if F t are isometries (see also chapter 7). If this happens then we say that X
is a Killing field . Lie derivatives will be used heavily below. The results we use are
standard from manifold theory and are all explained in the appendix.

In case X = ∇f is a gradient field the expression L∇fg is essentially the Hessian
of f. We can prove this in Rn were we already know what the Hessian should be.
Let

X = ∇f = ai∂i,

ai = ∂if,

then

LX

(
δijdxidxj

)
= (LXδij) + δijLX

(
dxi

)
dxj + δijdxiLX

(
dxj

)
= 0 + δij

(
dLX

(
xi

))
dxj + δijdxi

(
dLX

(
xj

))
= δij

(
dai

)
dxj + δijdxidaj

= δij

(
∂kai

)
dxkdxj + δijdxi

(
∂kaj

)
dxk

= ∂kaidxkdxi + ∂kaidxidxk

=
(
∂kai + ∂ia

k
)
dxidxk

= (∂k∂if + ∂i∂kf) dxidxk

= 2 (∂i∂kf) dxidxk

= 2Hessf.
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From this calculation we can also quickly see what the Killing fields on Rn should
be. If X = ai∂i, then X is a Killing field iff ∂kai + ∂ia

k = 0. This shows that
∂j∂kai = −∂j∂ia

k

= −∂i∂ja
k

= ∂i∂kaj

= ∂k∂ia
j

= −∂k∂ja
i

= −∂j∂kai.

Thus we have ∂j∂kai = 0 and hence
ai = αi

jx
j + βi

with the extra conditions that
αi

j = ∂ja
i = −∂ia

j = −αj
i .

The angular field ∂θ is therefore a Killing field. This also follows from the fact that
the corresponding flow is matrix multiplication by the orthogonal matrix[

cos (t) − sin (t)
sin (t) cos (t)

]
.

More generally one can show that the flow of the Killing field X is

F t (x) = exp (At) x + tβ,

A =
[
αi

j

]
,

β =
[
βi

]
.

In this way we see that a vector field on Rn is constant iff it is a Killing field
that is also a gradient field.

The important observation we can make on Rn is that

Proposition 3. The covariant derivative in Rn is given by the implicit for-
mula:

2g (∇Y X,Z) = (LXg) (Y,Z) + (dθX) (Y,Z) .

Proof. Since both sides are tensorial in Y and Z it suffices to check the
formula on the Cartesian coordinate vector fields. Write X = ai∂i and calculate
the right hand side

(LXg) (∂k, ∂l) + (dθX) (∂k, ∂l) = DXδkl − g (LX∂k, ∂l)− g (∂k, LX∂l)
+∂kg (X, ∂l)− ∂lg (X, ∂k)− g (X, [∂k, ∂l])

= −g (Lai∂i
∂k, ∂l)− g

(
∂k, Laj∂j

∂l

)
+∂kal − ∂la

k

= −g
(− (

∂kai
)
∂i, ∂l

)− g
(
∂k,− (

∂la
j
)
∂j

)
+∂kal − ∂la

k

= +∂kal + ∂la
k + ∂kal − ∂la

k

= 2∂kal

= 2g
((

∂kai
)
∂i, ∂l

)
= 2g (∇∂k

X, ∂l) .

�
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Since the right hand side in the formula for ∇Y X makes sense on any Rie-
mannian manifold we can use this to give an implicit definition of the covariant
derivative of X in the direction of Y . This covariant derivative turns out to be
uniquely determined by the following properties.

Theorem 1. (The Fundamental Theorem of Riemannian Geometry) The as-
signment X → ∇X on (M, g) is uniquely defined by the following properties:

(1) Y → ∇Y X is a (1, 1)-tensor:

∇αv+βwX = α∇vX + β∇wX.

(2) X → ∇Y X is a derivation:

∇Y (X1 + X2) = ∇Y X1 +∇Y X2,

∇Y (fX) = (DY f) X + f∇Y X

for functions f : Rn → R.
(3) Covariant differentiation is torsion free:

∇XY −∇Y X = [X,Y ] .

(4) Covariant differentiation is metric:

DZg (X,Y ) = g (∇ZX,Y ) + g (X,∇ZY ) .

Proof. We have already established (1) by using that

(LXg) (Y,Z) + (dθX) (Y,Z)

is tensorial in Y and Z. This also shows that the expression is linear in X. To check
the derivation rule we observe that

LfXg + dθfX = fLXg + df · θX + θX · df + d (fθX)
= fLXg + df · θX + θX · df + df ∧ θX + fdθX

= f (LXg + dθX) + df · θX + θX · df + df · θX − θX · df
= f (LXg + dθX) + 2df · θX .

Thus

2g (∇Y (fX) , Z) = f2g (∇Y X,Z) + 2df (Y ) g (X,Z)
= 2g (f∇Y X + df (Y ) X,Z)
= 2g (f∇Y X + (DY f) X,Z)

To establish the next two claims it is convenient to do the following expansion
also known as Koszul’s formula.

2g (∇Y X,Z) = (LXg) (Y,Z) + (dθX) (Y,Z)
= DXg (Y,Z)− g ([X,Y ] , Z)− g (Y, [X,Z])

+DY θX (Z)−DZθX (Y )− θX ([X,Y ])
= DXg (Y,Z)− g ([X,Y ] , Z)− g (Y, [X,Z])

+DY g (X,Z)−DZg (X,Y )− g (X, [Y,Z])
= DXg (Y,Z) + DY g (Z,X)−DZg (X,Y )

−g ([X,Y ] , Z)− g ([Y,Z] , X) + g ([Z,X] , Y ) .
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We then see that (3) follows from

2g (∇XY −∇Y X,Z) = DY g (X,Z) + DXg (Z, Y )−DZg (Y,X)
−g ([Y,X] , Z)− g ([X,Z] , Y ) + g ([Z, Y ] , X)
−DXg (Y,Z)−DY g (Z,X) + DZg (X,Y )
+g ([X,Y ] , Z) + g ([Y,Z] , X)− g ([Z,X] , Y )

= 2g ([X,Y ] , Z) .

And (4) from

2g (∇ZX,Y ) + 2g (X,∇ZY ) = DXg (Z, Y ) + DZg (Y,X)−DY g (X,Z)
−g ([X,Z] , Y )− g ([Z, Y ] , X) + g ([Y,X] , Z)
+DY g (Z,X) + DZg (X,Y )−DXg (Y,Z)
−g ([Y,Z] , X)− g ([Z,X] , Y ) + g ([X,Y ] , Z)

= 2DZg (X,Y ) .

Conversely, if we have a covariant derivative ∇̄Y X with these four properties,
then

2g (∇Y X,Z) = (LXg) (Y,Z) + (dθX) (Y,Z)
= DXg (Y,Z) + DY g (Z,X)−DZg (X,Y )

−g ([X,Y ] , Z)− g ([Y,Z] , X) + g ([Z,X] , Y )
= g

(∇̄XY,Z
)

+ g
(
Y, ∇̄XZ

)
+ g

(∇̄Y Z,X
)

+ g
(
Z, ∇̄Y X

)
−g

(∇̄ZX,Y
)− g

(
X, ∇̄ZY

)
+ g

(∇̄ZX,Y
)− g

(∇̄XZ, Y
)

−g
(∇̄XY,Z

)
+ g

(∇̄Y X,Z
)− g

(∇̄Y Z,X
)

+ g
(∇̄ZY,X

)
= 2g

(∇̄Y X,Z
)

showing that ∇Y X = ∇̄Y X. �

Any assignment on a manifold that satisfies (1) and (2) is called an affine
connection. If (M, g) is a Riemannian manifold and we have a connection which in
addition also satisfies (3) and (4), then we call it a Riemannian connection. As we
just saw, this connection is uniquely defined by these four properties and is given
implicitly through the formula

2g (∇Y X,Z) = (LXg) (Y,Z) + (dθX) (Y,Z) .

Before proceeding we need to discuss how ∇Y X depends on X and Y. Since
∇Y X is tensorial in Y, we see that the value of ∇Y X at p ∈ M depends only on
Y |p. But in what way does it depend on X? Since X → ∇Y X is a derivation, it is
definitely not tensorial in X. Therefore, we can not expect that (∇Y X) |p depends
only on X|p and Y |p. The next two lemmas explore how (∇Y X) |p depends on X.

Lemma 1. Let M be a manifold and ∇ an affine connection on M. If p ∈ M ,
v ∈ TpM, and X,Y are vector fields on M such that X = Y in a neighborhood
U � p, then ∇vX = ∇vY.

Proof. Choose λ : M → R such that λ ≡ 0 on M − U and λ ≡ 1 in a
neighborhood of p. Then λX = λY on M. Thus

∇vλX = λ(p)∇vX + dλ(v) ·X(p) = ∇vX
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since dλ|p = 0 and λ(p) = 1. In particular,

∇vX = ∇vλX

= ∇vλY

= ∇vY

�

For a Riemannian connection we could also have used the Koszul formula to
prove this since the right hand side of that formula can be localized. This lemma
tells us an important thing. Namely, if a vector field X is defined only on an open
subset of M , then ∇X still makes sense on this subset. Therefore, we can use
coordinate vector fields or more generally frames to compute ∇ locally.

Lemma 2. Let M be a manifold and ∇ an affine connection on M . If X is a
vector field on M and γ : I → M a smooth curve with γ̇(0) = v ∈ TpM , then ∇vX
depends only on the values of X along γ, i.e., if X ◦ γ = Y ◦ γ, then ∇γ̇X = ∇γ̇Y .

Proof. Choose a framing {Z1, . . . , Zn} in a neighborhood of p and write Y =∑
αi·Zi, X =

∑
βiZi on this neighborhood. From the assumption that X◦γ = Y ◦γ

we get that αi ◦ γ = βi ◦ γ. Thus,

∇vY = ∇vαiZi

= αi(p)∇vZi + Zi(p)dαi(v)

= βi(p)∇vZi + Zi(p)dβi(v)
= ∇vX.

�

This shows that ∇vX makes sense as long as X is prescribed along some curve
(or submanifold) that has v as a tangent.

It will occasionally be convenient to use coordinates or orthonormal frames with
certain nice properties. We say that a coordinate system is normal at p if gij |p = δij

and ∂kgij |p = 0. An orthonormal frame Ei is normal at p ∈ M if ∇vEi(p) = 0 for
all i = 1, . . . , n and v ∈ TpM. It is an easy exercise to show that such coordinates
and frames always exist.

1.3. Derivatives of Tensors. The connection, as we shall see, is incredibly
useful in generalizing many of the well-known concepts (such as Hessian, Laplacian,
divergence) from multivariable calculus to the Riemannian setting.

If S is a (0, r)- or (1, r)-tensor field, then we can define a covariant derivative
∇S that we interpret as a (0, r + 1)- or (1, r + 1)-tensor field. (Remember that a
vector field X is a (1, 0)-tensor field and ∇X is a (1, 1)-tensor field.) The main idea
is to make sure that Leibniz’ rule holds. So for a (1, 1)-tensor S we should have

∇X (S(Y )) = (∇XS)(Y ) + S(∇XY ).

Therefore, it seems reasonable to define ∇S as

∇S(X,Y ) = (∇XS)(Y )
= ∇X (S(Y ))− S(∇XY ).

In other words
∇XS = [∇X , S] .
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It is easily checked that ∇XS is still tensorial in Y.
More generally, define

∇S(X,Y1, . . . , Yr) = (∇XS)(Y1, . . . , Yr)

= ∇X(S(Y1, . . . , Yr))−
r∑

i=1

S(Y1, . . . ,∇XYi, . . . , Yr).

Here ∇X is interpreted as the directional derivative when applied to a function,
while we use it as covariant differentiation on vector fields.

A tensor is said to be parallel if ∇S ≡ 0. In (Rn, can) one can easily see that
if a tensor is written in Cartesian coordinates, then it is parallel iff it has constant
coefficients. Thus ∇X ≡ 0 for constant vector fields. On a Riemannian manifold
(M, g) we always have that ∇g ≡ 0 since

(∇g)(X,Y1, Y2) = ∇X (g(Y1, Y2))− g(∇XY1, Y2)− g(Y1,∇XY2) = 0

from property (4) of the connection.
If f : M → R is smooth, then we already have ∇f defined as the vector field

satisfying
g(∇f, v) = Dvf = df(v).

There is some confusion here, with ∇f now also being defined as df. In any given
context it will generally be clear what we mean. The Hessian Hessf is defined as the
symmetric (0, 2)-tensor 1

2L∇fg. We know that this conforms with our definition on
Rn. It can also be defined as a self-adjoint (1, 1)-tensor by S (X) = ∇X∇f. These
two tensors are naturally related by

Hessf (X,Y ) = g(S(X), Y ).

To see this we observe that d (θ∇f ) = 0 so

2g(S(X), Y ) = 2g (∇X∇f, Y )
= (L∇fg) (Y,Z) + d (θ∇f ) (Y,Z)
= 2Hessf (X,Y ) .

The trace of S is the Laplacian, and we will use the notation ∆f = tr(S). On
Rn this is also written as ∆f = div∇f . The divergence of a vector field, divX, on
(M, g) is defined as

divX = tr(∇X).

In coordinates this is
tr(∇X) = dxi (∇∂i

X) ,

and with respect to an orthonormal basis

tr(∇X) =
n∑

i=1

g (∇ei
X, ei) .

Thus, also
∆f = tr(∇(∇f)) = div(∇f).

In analogy with our definition of divX we can also define the divergence of a
(1, r)-tensor S to be the (0, r)-tensor

(divS) (v1, . . . , vr) = tr (w → (∇wS) (v1, . . . , vr)) .
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For a (·, r)-tensor field S we define the second covariant derivative ∇2S as the
(·, r + 2)-tensor field(∇2

X1,X2
S
)
(Y1, . . . , Yr) = (∇X1 (∇S)) (X2, Y1, . . . , Yr)

= (∇X1 (∇X2S)) (Y1, . . . , Yr)−
(∇∇X1X2S

)
(Y1, . . . , Yr) .

With this we get the (0, 2) version of the Hessian of a function defined as

∇2
X,Y f = ∇X∇Y f −∇∇XY f

= ∇Xg (Y,∇f)− g (∇XY,∇f)
= g (Y,∇X∇f)
= g (S (X) , Y ) .

The second covariant derivative on functions is symmetric in X and Y . For more
general tensors, however, this will not be the case. The defect in the second co-
variant derivative not being symmetric is a central feature in Riemannian geometry
and is at the heart of the difference between Euclidean geometry and all other
Riemannian geometries.

From the new formula for the Hessian we see that the Laplacian can be written
as

∆f =
n∑

i=1

∇2
Ei,Ei

f.

2. The Connection in Local Coordinates

In a local coordinate system the metric is written as g = gijdxidxj . So if
X = ai∂i and Y = bj∂j are vector fields, then

g (X,Y ) = gija
ibj .

We can also compute the dual 1-form θX to X by:

θX = g (X, ·)
= gijdxi (X) dxj (·)
= gija

idxj .

The inverse of the matrix [gij ] is denoted
[
gij

]
. Thus we have

δi
j = gikgkj .

The vector field X dual to a 1-form ω = αidxi is defined implicitly by

g (X,Y ) = ω (Y ) .

In other words we have

θX = gija
idxj = αjdxj = ω.

This shows that

gija
i = αj .
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In order to isolate ai we have to multiply by gkj on both sides and also use the
symmetry of gij

gkjαj = gkjgija
i

= gkjgjia
i

= δk
i ai

= ak.

Therefore

X = ai∂i

= gijαj∂i.

The gradient field of a function is a particularly important example of this con-
struction

∇f = gij∂jf∂i,

df = ∂jfdxj .

We now go on to find a formula for ∇Y X in local coordinates

∇Y X = ∇bi∂i
aj∂j

= bi∇∂i
aj∂j

= bi∂i

(
aj

)
∂j + biaj∇∂i

∂j

= bi∂i

(
aj

)
∂j + biajΓk

ij∂k

where we simply expanded the term ∇∂i
∂j in local coordinates. The first part of

this formula is what we expect to get when using Cartesian coordinates in Rn. The
second part is the correction term coming from having a more general coordinate
system and also a non-Euclidean metric. Our next goal is to find a formula for Γk

ij

in terms of the metric. To this end we can simply use our defining implicit formula
for the connection keeping in mind that there are no Lie bracket terms. On the left
hand side we have

2g (∇∂i
∂j , ∂l) = 2g

(
Γk

ij∂k, ∂l

)
= 2Γk

ijgkl,

and on the right hand side(
L∂j

g
)
(∂i, ∂l) + dθ∂j

(∂i, ∂l) = ∂jgil + ∂i

(
θ∂j

(∂l)
)− ∂l

(
θ∂j

(∂i)
)

= ∂jgil + ∂igjl − ∂lgji.

Multiplying by glm on both sides then yields

2Γm
ij = 2Γk

ijδ
m
k

= 2Γk
ijgklg

lm

= (∂jgil + ∂igjl − ∂lgji) glm.
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Thus we have the formula

Γk
ij =

1
2
glk (∂jgil + ∂igjl − ∂lgji)

=
1
2
gkl (∂jgil + ∂igjl − ∂lgji)

=
1
2
gklΓij,k

The symbols

Γij,k =
1
2

(∂jgik + ∂igjk − ∂kgji)

= g (∇∂i
∂j , ∂k)

are called the Christoffel symbols of the first kind, while Γk
ij are the Christoffel

symbols of the second kind. Classically the following notation has also been used{
k

ij

}
= Γk

ij ,

[ij, k] = Γij,k

so as not to think that these things define a tensor. The reason why they are
not tensorial comes from the fact that they may be zero in one coordinate system
but not zero in another. A good example of this comes from the plane where the
Christoffel symbols are zero in Cartesian coordinates, but not in polar coordinates:

Γθθ,r =
1
2

(∂θgθr + ∂θgθr − ∂rgθθ)

= −1
2
∂r

(
r2

)
= −r.

In fact, it is always possible to find coordinates around a point p ∈ M such
that

gij |p = δij ,

∂kgij |p = 0.

In particular,

gij |p = δij ,

Γk
ij |p = 0.

The covariant derivative is then computed exactly as in Euclidean space

∇Y X|p =
(∇bi∂i

aj∂j

) |p
= bi (p) ∂i

(
aj

) |p∂j |p.
The torsion free property of the connection is equivalent to saying that the

Christoffel symbols are symmetric in ij as

Γk
ij∂k = ∇∂i

∂j

= ∇∂j
∂i

= Γk
ji∂k.
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The metric property of the connection becomes

∂kgij = g (∇∂k
∂i, ∂j) + g (∂i,∇∂k

∂j)
= Γki,j + Γkj,i.

This shows that the Christoffel symbols completely determine the derivatives of the
metric.

Just as the metric could be used to give a formula for the gradient in local
coordinates we can use the Christoffel symbols to get a local coordinate formula for
the Hessian of a function. This is done as follows

2Hessf (∂i, ∂j) = (L∇fg) (∂i, ∂j)
= D∇fgij − g (L∇f∂i, ∂j)− g (∂i, L∇f∂j)

= gkl (∂kf) (∂lgij)

+g
(
L∂i

(
gkl (∂kf) ∂l

)
, ∂j

)
+g

(
∂i, L∂j

(
gkl (∂kf) ∂l

))
= (∂kf) gkl (∂lgij)

+∂i

(
gkl (∂kf)

)
glj

+∂j

(
gkl (∂kf)

)
gil

= (∂kf) gkl (∂lgij)

+ (∂i∂kf) gklglj + (∂j∂kf) gklgil

+
(
∂ig

kl
)
(∂kf) glj +

(
∂jg

kl
)
(∂kf) gil

= 2∂i∂jf

+ (∂kf)
((

∂ig
kl
)
glj +

(
∂jg

kl
)
gil + gkl (∂lgij)

)
To compute ∂ig

jk we note that

0 = ∂iδ
j
l

= ∂i

(
gjkgkl

)
=

(
∂ig

jk
)
gkl + gjk (∂igkl)

Thus we have

2Hessf (∂i, ∂j) = 2∂i∂jf

+ (∂kf)
((

∂ig
kl
)
glj +

(
∂jg

kl
)
gil + gkl (∂lgij)

)
= 2∂i∂jf

+ (∂kf)
(−gkl∂iglj − gkl∂jgli + gkl (∂lgij)

)
= 2∂i∂jf − gkl (∂iglj + ∂jgli − ∂lgij) ∂kf

= 2
(
∂i∂jf − Γk

ij∂kf
)
.

3. Curvature

Having now developed the idea of covariant derivatives and explained their
relation to the classical concepts of gradient, Hessian, and Laplacian, one might
hope that somehow these concepts carry over to tensors. As we have seen, this is
true with one important exception, namely, the most important tensor for us, the
Riemannian metric g. This tensor is parallel and therefore has no gradient, etc.
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Instead, we think of the connection itself as a sort of gradient of the metric. The
next question then is, what should the Laplacian and Hessian be? The answer is,
curvature.

Any connection on a manifold gives rise to a curvature tensor. This operator
measures in some sense how far away the connection is from being our standard
connection on Rn, which we assume is our canonical curvature-free, or flat, space. If
we are on a Riemannian manifold, then it is possible to take traces of this curvature
operator to obtain various averaged curvatures.

3.1. The Curvature Tensor. We shall work exclusively in the Riemannian
setting. So let (M, g) be a Riemannian manifold and ∇ the Riemannian connection.
The curvature tensor is a (1, 3)-tensor defined by

R(X,Y )Z = ∇2
X,Y Z −∇2

Y,XZ

= ∇X∇Y Z −∇Y∇X −∇[X,Y ]Z

= [∇X ,∇Y ] Z −∇[X,Y ]Z.

on vector fields X,Y, Z. Of course, it needs to be proved that this is indeed a tensor.
Since both of the second covariant derivatives are tensorial in X and Y, we need
only check that R is tensorial in Z. This is easily done:

R (X,Y ) fZ = ∇2
X,Y (fZ)−∇2

Y,X (fZ)

= f∇2
X,Y (Z)− f∇2

Y,X (Z)

+
(∇2

X,Y f
)
Z − (∇2

Y,Xf
)
Z

+ (∇Y f)∇XZ + (∇Xf)∇Y Z

− (∇Xf)∇Y Z − (∇Y f)∇XZ

= f
(∇2

X,Y (Z)−∇2
Y,X (Z)

)
= fR (X,Y ) Z.

Notice that X,Y appear skew-symmetrically in R(X,Y )Z, while Z plays its
own role on top of the line, hence the unusual notation. One could also write
RX,Y Z. Using the metric g we can change this to a (0, 4)-tensor as follows:

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

The variables are now treated on a more equal footing, which is also justified by
the next proposition.

Proposition 4. The Riemannian curvature tensor R(X,Y, Z,W ) satisfies the
following properties:

(1) R is skew-symmetric in the first two and last two entries:

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = R(Y,X,W,Z).

(2) R is symmetric between the first two and last two entries:

R(X,Y, Z,W ) = R(Z,W,X, Y ).

(3) R satisfies a cyclic permutation property called Bianchi’s first identity:

R(X,Y )Z + R(Z,X)Y + R(Y,Z)X = 0.

(4) ∇R satisfies a cyclic permutation property called Bianchi’s second identity:

(∇ZR) (X,Y ) W + (∇XR) (Y,Z) W + (∇Y R) (Z,X) W = 0.
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Proof. The first part of (1) has already been established. For part two of (1)
observe that [X,Y ] is the unique vector field defined by

DXDY f −DY DXf −D[X,Y ]f = 0.

In other words, R(X,Y )f = 0. This is the idea behind the calculations that follow:

g(R(X,Y )Z,Z) = g(∇X∇Y Z,Z)− g(∇Y∇XZ,Z)− g(∇[X,Y ]Z,Z)
= DXg(∇Y Z,Z)− g(∇Y Z,∇XZ)

−DY g(∇XZ,Z) + g(∇XZ,∇Y Z)− 1
2
D[X,Y ]g(Z,Z)

=
1
2
DXDY g(Z,Z)− 1

2
DY DXg(Z,Z)− 1

2
D[X,Y ]g(Z,Z)

= 0.

Now (1) follows by polarizing the identity R (X,Y, Z, Z) = 0 in Z.
Part (3) is proved using the torsion free property of the connection. We intro-

duce some special notation. Let T be any mapping with 3 vector field variables
and values that can be added. Summing over cyclic permutations of the variables
gives us a new map

ST (X,Y, Z) = T (X,Y, Z) + T (Z,X, Y ) + T (Y,Z,X)

that is invariant under cyclic permutations. Note that T doesn’t have to be a
tensor. As an example we can use T (X,Y, Z) = [X, [Y,Z]] and observe that the
Jacobi identity for vector fields says:

S [X, [Y,Z]] = 0.

For the proof of (3) we have

SR(X,Y )Z = S∇X∇Y Z −S∇Y∇XZ −S∇[X,Y ]Z

= S∇Z∇XY −S∇Z∇Y X −S∇[X,Y ]Z

= S∇Z (∇XY −∇Y X)−S∇[X,Y ]Z

= S [X, [Y,Z]]
= 0.

Part (2) is a combinatorial consequence of (1) and (3):

R (X,Y, Z,W ) = −R (Z,X, Y,W )−R (Y,Z,X,W )
= R (Z,X,W, Y ) + R (Y,Z,W,X)
= −R (W,Z,X, Y )−R (X,W,Z, Y )

−R (W,Y,Z,X)−R (Z,W, Y,X)
= 2R (Z,W,X, Y ) + R (X,W, Y, Z) + R (W,Y,X,Z)
= 2R (Z,W,X, Y )−R (Y,X,W,Z)
= 2R (Z,W,X, Y )−R (X,Y, Z,W ) ,

which implies 2R (X,Y, Z,W ) = 2R (Z,W,X, Y ).
Now for part (4). We use again the cyclic sum notation and in addition that

R (X,Y ) Z = [∇X ,∇Y ] Z −∇[X,Y ]Z,
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(∇ZR) (X,Y ) W = ∇Z (R (X,Y ) W )−R (∇ZX,Y ) W

−R (X,∇ZY ) W −R (X,Y )∇ZW

= [∇Z , R (X,Y )]W −R (∇ZX,Y ) W −R (X,∇ZY ) W.

Keeping in mind that we only do cyclic sums over X,Y, Z and that we have the
Jacobi identity for operators:

S [∇X , [∇Y ,∇Z ]] = 0

we obtain

S (∇XR) (Y,Z) W = S [∇X , R (Y,Z)]W −SR (∇XY,Z) W −SR (Y,∇XZ) W

= S [∇X , [∇Y ,∇Z ]]W −S
[∇X ,∇[Y,Z]

]
W

−SR (∇XY,Z) W −SR (Y,∇XZ) W

= −S
[∇X ,∇[Y,Z]

]
W −SR (∇XY,Z) W + SR (∇Y X,Z) W

= −S
[∇X ,∇[Y,Z]

]
W −SR ([X,Y ] , Z) W

= −S
[∇X ,∇[Y,Z]

]
W −S

[∇[X,Y ],∇Z

]
W + S∇[[X,Y ],Z]W

= S
[∇[X,Y ],∇Z

]
W −S

[∇[X,Y ],∇Z

]
W

= 0.

�

Notice that part (1) is related to the fact that ∇ is metric, i.e.,

d (g(X,Y )) = g(∇X,Y ) + g(X,∇Y ),

while part (3) follows from ∇ being torsion free, i.e.,

∇XY −∇Y X = [X,Y ].

Example 20. (Rn, can) has R ≡ 0 since ∇∂i
∂j = 0 for the standard Cartesian

coordinates.

More generally for any tensor field S of type (·, r) we can define the curvature
as the new (·, r) tensor field

R (X,Y ) S = ∇2
X,Y S −∇2

Y,XS.

Again one needs to check that this is indeed a tensor. This is done in the same way
we checked that R (X,Y ) Z was tensorial in Z. Clearly, R (X,Y ) S is also tensorial
and skew symmetric in X and Y.

From the curvature tensor R we can derive several different curvature concepts.

3.2. The Curvature Operator. First recall that we have the space Λ2M of
bivectors. If ei is an orthonormal basis for TpM, then the inner product on Λ2

pM
is such that the bivectors ei ∧ ej , i < j will form an orthonormal basis. The inner
product that Λ2M inherits in this way is also denoted by g. Alternatively, we can
define the inner product g on Λ2

pM using

g (x ∧ y, v ∧ w) = g (x, v) g (y, w)− g (x,w) g (y, v)

= det
(

g (x, v) g (x,w)
g (y, v) g (y, w)

)
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and then extend it by linearity to all of Λ2
pM. It is also useful to interpret bivectors

as skew symmetric maps. This is done by the formula:

(v ∧ w) (x) = g (w, x) v − g (v, x) w.

With this definition we have a Bianchi or Jacobi type identity:

(x ∧ y) (z) + (y ∧ z) (x) + (z ∧ x) (y) = 0.

From the symmetry properties of the curvature tensor we see that R actually
defines a symmetric bilinear map

R : Λ2M × Λ2M → R

R (X ∧ Y, V ∧W ) = R (X,Y,W, V ) .

Note the reversal of V and W ! The relation

g (R (X ∧ Y ) , V ∧W ) = R (X ∧ Y, V ∧W )

therefore defines a self-adjoint operator R : Λ2M → Λ2M . This operator is called
the curvature operator . It is clearly just a different manifestation of the curvature
tensor. The switch between Z and W is related to our definition of the next
curvature concept.

3.3. Sectional Curvature. For any v ∈ TpM let

Rv(w) = R(w, v)v : TpM → TpM

be the directional curvature operator . This operator is also known as the tidal force
operator. The latter name accurately describes in physical terms the meaning of
the tensor. The above conditions imply that this operator is self-adjoint and that
v is always a zero eigenvector. The normalized quadratic form

sec(v, w) =
g(Rv(w), w)

g(v, v)g(w,w)− g(v, w)2

=
g(R(w, v)v, w)
g (v ∧ w, v ∧ w)

=
g (R (v ∧ w) , v ∧ w)

(area�(v, w))2

is called the sectional curvature of (v, w). Since the denominator is the square of
the area of the parallelogram {tv + sw : 0 ≤ t, s ≤ 1}, we can easily check that
sec(v, w) depends only on the plane π = span{v, w}. One of the important rela-
tionships between directional and sectional curvature is the following observation
by Riemann.

Proposition 5. (Riemann, 1854) The following properties are equivalent:
(1) sec(π) = k for all 2-planes in TpM .
(2) R(v1, v2)v3 = k (v1 ∧ v2) (v3) for all v1, v2, v3 ∈ TpM .
(3) Rv(w) = k · (w − g(w, v)v) = k · prv⊥(w) for all w ∈ TpM and |v| = 1.
(4) R (ω) = k · ω for all ω ∈ Λ2

pM.

Proof. (2) ⇒ (3) ⇒ (1) are easy. For (1) ⇒ (2) we introduce the multilinear
maps:

Rk(v1, v2)v3 = k (v1 ∧ v2) (v3) ,

Rk (v1, v2, v3, v4) = kg ((v1 ∧ v2) (v3) , v4) .
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The first observation is that these maps behave exactly like the curvature tensor in
that they satisfy properties 1, 2, and 3 of the above proposition. Now consider the
map

T (v1, v2, v3, v4) = R (v1, v2, v3, v4)−Rk (v1, v2, v3, v4)

which also satisfies the same symmetry properties. Moreover, the assumption that
sec = k implies

T (v, w,w, v) = 0

for all v, w ∈ TpM. Using polarization w = w1 + w2 we get

0 = T (v, w1 + w2, w1 + w2, v)
= T (v, w1, w2, v) + T (v, w2, w1, v)
= 2T (v, w1, w2, v)
= −2T (v, w1, v, w2) .

Using properties 1 and 2 of the curvature tensor we now see that T is alternating
in all four variables. That, however, is in violation of Bianchi’s first identity unless
T = 0, which is exactly what we wish to prove.

To see why (2) ⇒ (4), choose an orthonormal basis ei for TpM ; then ei ∧ ej ,
i < j, is a basis for Λ2

pM. Using (2) we see that

g (R (ei ∧ ej) , et ∧ es) = R(ei, ej , es, et)
= k · (g(ej , es)g(ei, et)− g(ei, es)g(ej , et))
= k · g (ei ∧ ej , et ∧ es) .

But this implies that

R (ei ∧ ej) = k · (ei ∧ ej) .

For (4) ⇒ (1) just observe that if {v, w} are orthogonal unit vectors, then

k = g (R (v ∧ w) , v ∧ w) = sec (v, w) .

�

A Riemannian manifold (M, g) that satisfies either of these four conditions for
all p ∈ M and the same k ∈ R for all p ∈ M is said to have constant curvature k.
So far we only know that (Rn, can) has curvature zero. In chapter 3 we shall prove
that dr2 + sn2

k(r)ds2
n−1 has constant curvature k. When k > 0, recall that these

represent
(
Sn

(
1√
k

)
, can

)
, while when k < 0 we still don’t have a good picture

yet. A whole section in chapter 3 is devoted to these constant negative curvature
metrics.

3.4. Ricci Curvature. Our next curvature is the Ricci curvature, which
should be thought of as the Laplacian of g.
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The Ricci curvature Ric is a trace of R. If e1, . . . , en ∈ TpM is an orthonormal
basis, then

Ric(v, w) = tr (x → R (x, v) w)

=
n∑

i=1

g (R (ei, v) w, ei)

=
n∑

i=1

g (R (v, ei) ei, w)

=
n∑

i=1

g (R (ei, w) v, ei) .

Thus Ric is a symmetric bilinear form. It could also be defined as the symmetric
(1, 1)-tensor

Ric(v) =
n∑

i=1

R (v, ei) ei.

We adopt the language that Ric ≥ k if all eigenvalues of Ric(v) are ≥ k. In (0, 2)
language this means more precisely that Ric (v, v) ≥ kg (v, v) for all v. If (M, g)
satisfies Ric(v) = k · v, or equivalently Ric(v, w) = k · g(v, w), then (M, g) is said to
be an Einstein manifold with Einstein constant k. If (M, g) has constant curvature
k, then (M, g) is also Einstein with Einstein constant (n− 1)k.

In chapter 3 we shall exhibit several interesting Einstein metrics that do not
have constant curvature. Three basic types are

(1) (Sn(1)× Sn(1), ds2
n + ds2

n) with Einstein constant n− 1.
(2) The Fubini-Study metric on CPn with Einstein constant 2n + 2.
(3) The Schwarzschild metric on R2 × S2, which is a doubly warped product

metric: dr2 + ϕ2(r)dθ2 + ψ2(r)ds2
2 with Einstein constant 0.

If v ∈ TpM is a unit vector and we complete it to an orthonormal basis
{v, e2, . . . , en} for TpM, then

Ric (v, v) = g (R (v, v) v, v) +
n∑

i=2

g (R (ei, v) v, ei) =
n∑

i=2

sec (v, ei) .

Thus, when n = 2, there is no difference from an informational point of view
in knowing R or Ric. This is actually also true in dimension n = 3, because if
{e1, e2, e3} is an orthonormal basis for TpM, then

sec (e1, e2) + sec (e1, e3) = Ric (e1, e1) ,

sec (e1, e2) + sec (e2, e3) = Ric (e2, e2) ,

sec (e1, e3) + sec (e2, e3) = Ric (e3, e3) .

In other words: ⎡⎣ 1 0 1
1 1 0
0 1 1

⎤⎦⎡⎣ sec (e1, e2)
sec (e2, e3)
sec (e1, e3)

⎤⎦ =

⎡⎣ Ric (e1, e1)
Ric (e2, e2)
Ric (e3, e3)

⎤⎦ .

Here, the matrix has det = 2, therefore any sectional curvature can be computed
from Ric. In particular, we see that

(
M3, g

)
is Einstein iff

(
M3, g

)
has constant

sectional curvature. The search for Einstein metrics should therefore begin in di-
mension 4.
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3.5. Scalar Curvature. The last curvature quantity we wish to mention is
the scalar curvature:

scal = tr (Ric) = 2 · trR.

Notice that scal depends only on p ∈ M and is therefore a function, scal : M → R.
In an orthonormal basis e1, . . . , en for TpM we have

scal = tr (Ric)

=
n∑

j=1

g (Ric (ej) , ej)

=
n∑

j=1

n∑
i=1

g (R (ei, ej) ej , ei)

=
n∑

i,j=1

g (R (ei ∧ ej) , ei ∧ ej)

= 2
∑
i<j

g (R (ei ∧ ej) , ei ∧ ej)

= 2trR
= 2

∑
i<j

sec (ei, ej) .

When n = 2 we see that scal(p) = 2 · sec(TpM). In chapter 3 we shall show that
when n = 3 there are metrics with constant scalar curvature that are not Einstein.
When n ≥ 3 there is also another interesting phenomenon occurring related to
scalar curvature.

Lemma 3. (Schur, 1886) Suppose that a Riemannian manifold (M, g) of di-
mension n ≥ 3 satisfies one of the following two conditions:

a) sec(π) = f(p) for all 2-planes π ⊂ TpM, p ∈ M .
b) Ric(v) = (n− 1) · f(p) · v for all v ∈ TpM, p ∈ M .
Then in either case f must be constant. In other words, the metric has constant

curvature or is Einstein, respectively.

Proof. It clearly suffices to show (b), as the conditions for (a) imply that (b)
holds. To show (b) we need the important identity:

dscal = 2div (Ric) .

Let us see how this implies (b). First we have

dscal = dtr (Ric)
= d (n · (n− 1) · f)
= n · (n− 1) · df.
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On the other hand

2div (Ric) (v) = 2
∑

g ((∇ei
Ric) (v) , ei)

= 2
∑

g ((∇ei
((n− 1) f · I)) (v) , ei)

= 2
∑

g ((n− 1) (∇ei
f) v, ei) + 2

∑
g ((n− 1) f (∇ei

I) (v) , ei)

= 2 (n− 1) g
(
v,

∑
(∇ei

f) ei

)
= 2 (n− 1) g (v,∇f)
= 2 (n− 1) df (v) .

Thus, we have shown that n · df = 2 · df, but this is impossible unless n = 2 or
df ≡ 0 (i.e., f is constant). �

Proposition 6.

dtr (Ric) = 2div (Ric) .

Proof. The identity is proved by a long and uninspired calculation that uses
the second Bianchi identity. Choose a normal orthonormal frame Ei at p ∈ M, i.e.,
∇Ei|p = 0, and let W be a vector field such that ∇W |p = 0. Using the second
Bianchi identity

(dtr (Ric)) (W ) (p) = DW

∑
g (Ric (Ei) , Ei)

= DW

∑
g (R (Ei, Ej) Ej , Ei)

=
∑

g (∇W (R (Ei, Ej) Ej) , Ei)

=
∑

g ((∇W R) (Ei, Ej) Ej , Ei)

= −
∑

g
((∇Ej

R
)
(W,Ei) Ej , Ei

)
−

∑
g ((∇Ei

R) (Ej ,W ) Ej , Ei)

= −
∑(∇Ej

R
)
(W,Ei, Ej , Ei)−

∑
(∇Ei

R) (Ej ,W,Ej , Ei)

=
∑(∇Ej

R
)
(Ej , Ei, Ei,W ) +

∑
(∇Ei

R) (Ei, Ej , Ej ,W )

= 2
∑(∇Ej

R
)
(Ej , Ei, Ei,W )

= 2
∑

∇Ej
(R (Ej , Ei, Ei,W ))

= 2
∑

∇Ej
g (Ric (Ej) ,W )

= 2
∑

∇Ej
g (Ric (W ) , Ej)

= 2
∑

g
(∇Ej

(Ric (W )) , Ej

)
= 2

∑
g
((∇Ej

Ric
)
(W ) , Ej

)
= 2div (Ric) (W ) (p) .

�
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Corollary 1. An n (> 2)-dimensional Riemannian manifold (M, g) is Ein-
stein iff

Ric =
scal
n

g.

3.6. Curvature in Local Coordinates. As with the connection it is some-
times convenient to know what the curvature tensor looks like in local coordinates.
We first observe that if X = αi∂i, Y = βj∂j , Z = γk∂k, then we can write

R (X,Y ) Z = αiβjγkRl
ijk∂l,

Rl
ijk∂l = R (∂i, ∂j) ∂k.

Using the definition of R we see that

Rl
ijk∂l = R (∂i, ∂j) ∂k

= ∇∂i
∇∂j

∂k −∇∂j
∇∂i

∂k

= ∇∂i

(
Γs

jk∂s

)−∇∂j

(
Γt

ik∂t

)
= ∂i

(
Γs

jk

)
∂s + Γs

jk∇∂i
∂s

−∂j

(
Γt

ik

)
∂t − Γt

ik∇∂j
∂t

= ∂i

(
Γl

jk

)
∂l − ∂j

(
Γl

ik

)
∂l

+Γs
jkΓl

is∂l − Γt
ikΓl

jt∂l

=
(
∂iΓl

jk − ∂jΓl
ik + Γs

jkΓl
is − Γs

ikΓl
js

)
∂l.

So
Rl

ijk = ∂iΓl
jk − ∂jΓl

ik + Γs
jkΓl

is − Γs
ikΓl

js.

This coordinate expression can also be used, in conjunction with the properties of
the Christoffel symbols, to prove all of the symmetry properties of the curvature
tensor. The formula clearly simplifies if we are at a point p where Γk

ij |p = 0

Rl
ijk|p = ∂iΓl

jk|p − ∂jΓl
ik|p.

If we use the formulas for the Christoffel symbols we can evidently get an
expression for Rl

ijk that depends on the metric gij and its first two derivatives.

4. The Fundamental Curvature Equations

In this section we are going to study how curvature comes up naturally in the
investigation of certain types of functions. This will lead us to various formulae
that make it possible to calculate the curvature tensor on all of the rotationally
symmetric and doubly warped product metrics from chapter 1. With this informa-
tion we can then exhibit the above mentioned examples. This will be accomplished
in the next chapter.

4.1. Distance Functions. The functions we wish to look into are distance
functions. As we don’t have a concept of distance yet, we will say that r : U → R,
where U ⊂ (M, g) is open, is a distance function if |∇r| ≡ 1 on U . Distance
functions are therefore simply solutions to the Hamilton-Jacobi equation

|∇r|2 = 1.

This is a nonlinear first-order PDE and can be solved by the method of characteris-
tics see e.g. [5]. For now we shall assume that solutions exist and investigate their
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Figure 2.1

properties. Later, when we have developed the theory of geodesics, we shall show
the existence of such functions and also show that their name is appropriate.

Example 21. On (Rn, can) define r(x) = |x−y|. Then r is smooth on Rn−{y}
and has |∇r| ≡ 1. If we have two different points {y, z}, then

r(x) = d (x, {y, z}) = min{d(x, y), d(x, z)}
is smooth away from {y, z} and the hyperplane {x ∈ Rn : |x − y| = |x − z|}
equidistant from y and z.

Example 22. More generally if M ⊂ Rn is a submanifold, then it can be shown
that

r(x) = d(x,M) = inf{d(x, y) : y ∈ M}
is a distance function on some open set U ⊂ Rn. If M is an orientable hypersurface,
then we can see this as follows. Since M is orientable, we can choose a unit normal
vector field N on M . Now “coordinatize” Rn as x = tN + y, where t ∈ R, y ∈ M .
In some neighborhood U of M these “coordinates” are actually well-defined. In
other words, there is some function ε(y) : M → (0,∞) such that any point in

U = {tN + y : y ∈ M, |t| < ε(y)}
has unique coordinates (t, y). We can now define r(x) = t on U or r(x) = d(x,M) =
|t| on U −M . Both functions will then define distance functions on their respective
domains. Here r is usually referred to as the signed distance to M , while f is just
the regular distance. Figure 2.1 shows some pictures of the level sets of a distance
function together with the orthogonal trajectories that form the integral curves for
the gradient of the distance function.

Example 23. On I ×M, where I ⊂ R, is an interval we have metrics of the
form dr2 +gr, where dr2 is the standard metric on I and gr is a metric on {r}×M
that depends on r. In this case the projection I ×M → I is a distance function.
Special cases of this situation are rotationally symmetric metrics, doubly warped
products, and our submersion metrics on I × S2n−1.

Lemma 4. Given r : U → I ⊂ R, then r is a distance function iff r is a
Riemannian submersion.
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Proof. In general, we have dr (v) = g (∇r, v) , so Dr (v) = dr (v) ∂t = 0 iff
v ⊥ ∇r. Thus, v is perpendicular to the kernel of Dr iff it is proportional to ∇r.
For such v = α∇r we have that

Dr (v) = αDr (∇r) = αg (∇r,∇r) ∂t.

Now ∂t has length 1 in I, so

|v| = |α| |∇r| ,
|Dr (v)| = |α| |∇r|2 .

Thus, r is a Riemannian submersion iff |∇r| = 1 �

Before continuing we need some simplifying notation. A distance function
r : U → R is fixed and U ⊂ (M, g) is an open subset of a Riemannian manifold.
The gradient ∇r will usually be denoted by ∂r = ∇r. The ∂r notation comes
from our warped product metrics dr2 + gr. The level sets for r are denoted Ur =
{x ∈ U : r (x) = r} , and the induced metric on Ur is gr. In this spirit ∇r, Rrare
the Riemannian connection and curvature on (Ur, gr). The (1, 1) version of the
Hessian of r is denoted by S (·) = ∇·∂r, i.e., Hessr (X,Y ) = g (S (X) , Y ) . S stands
for second derivative or shape operator or second fundamental form, depending on
the point of view of the observer. The last two terms are more or less synonymous
and refer to the shape of (Ur, gr) in (U, g) ⊂ (M, g). The idea is that S = ∇∂r

measures how the induced metric on Ur changes by computing how the unit normal
to Ur changes.

Example 24. Let M ⊂ Rn be an orientable hypersurface, N the unit normal,
and S the shape operator defined by S (v) = ∇vN for v ∈ TM. If S ≡ 0 on M
then N must be a constant vector field on M, and hence M is an open subset of the
hyperplane

H = {x + p ∈ Rn : x ·Np = 0},
where p ∈ M is fixed. As an explicit example of this, recall our isometric immersion
or embedding (Rn−1, can) → (Rn

, can) from chapter 1 defined by

(x1, . . . , xn−1) → (γ(x1), x2, . . . , xn−1),

where γ is a unit speed curve γ : R → R2. In this case,

N = (N(x1), 0, . . . , 0)

is a unit normal, where N(x1) is the unit normal to γ in R2. We can write this as

N = (−γ̇2(x1), γ̇1(x1), 0, . . . , 0)

in Cartesian coordinates. So

∇N = −d(γ̇2)∂1 + d(γ̇1)∂2

= −γ̈2dx1∂1 + γ̈1dx1∂2

= (−γ̈2∂1 + γ̈1∂2)dx1.

Thus, S ≡ 0 iff γ̈1 = γ̈2 = 0 iff γ is a straight line iff M is an open subset
of a hyperplane. The shape operator therefore really captures the idea that the
hypersurface bends in Rn, even though Rn−1 cannot be seen to bend inside itself.
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We have seen here the difference between extrinsic and intrinsic geometry. In-
trinsic geometry is everything we can do on a Riemannian manifold (M, g) that
does not depend on how (M, g) might be isometrically immersed in some other
Riemannian manifold. Extrinsic geometry is the study of how an isometric immer-
sion (M, g) → (N, gN ) bends (M, g) inside (N, gN ). Thus, the curvature tensor
on (M, g) measures how the space bends intrinsically, while the shape operator
measures extrinsic bending.

4.2. Curvature Equations. We are now ready to establish our first funda-
mental equation.

Theorem 2. (The Radial Curvature Equation) If U ⊂ (M, g) is an open set
and r : U → R a distance function, then

∇∂r
S + S2 = −R∂r

.

Proof. We proceed by straightforward computation. If X is a vector field on
U , then

(∇∂r
S)(X) + S2(X) = ∇∂r

(S(X))− S(∇∂r
X) + S(S(X))

= ∇∂r
∇X∂r −∇∇∂r X∂r +∇∇X∂r

∂r

= ∇∂r
∇X∂r −∇∇∂r X−∇X∂r

∂r

= ∇∂r
∇X∂r −∇[∂r,X]∂r.

In order for this to equal −R(X, ∂r)∂r we only need to check what happened to
−∇X∇∂r

∂r. However, as ∂r = ∇r is unit, we see that for any vector field Y on U :

g(∇∂r
∂r, Y ) = Hessr (∂r, Y )

= Hessr (Y, ∂r)
= g(∇Y ∂r, ∂r)

=
1
2
DY g(∂r, ∂r)

=
1
2
DY 1 = 0.

In particular, ∇∂r
∂r = S(∂r) = 0 on all of U . �

This result tells us two things: First, that ∂r is always a zero eigenvector for
S and secondly how certain “radial curvatures” relate to the Hessian of r. The
Hessian of a generic function cannot, of course, exhibit such predictable behavior
(namely, being a solution to a PDE). It is only geometrically relevant functions
that behave so nicely.

The second and third fundamental equations are also known as the Gauss equa-
tions and Codazzi-Mainardi equations, respectively. They will be proved simulta-
neously but stated separately. For a vector we use the notation for decomposing it
into normal and tangential components to Ur:

v = tan v + norv
= v − g (v, ∂r) ∂r + g (v, ∂r) ∂r.

Theorem 3. (The Tangential Curvature Equation)

tan R(X,Y )Z = Rr(X,Y )Z − (S (X) ∧ S (Y )) (Z) ,

g (R(X,Y )Z,W ) = gr (Rr(X,Y )Z,W )− II(Y,Z)II (X,W ) + II(X,Z)II (Y,W ) .
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Here X,Y, Z,W are tangent to the level sets Ur and

II (U, V ) = Hessr (U, V ) = g (S (U) , V )

is the classical second fundamental form.

Theorem 4. (The Normal or Mixed Curvature Equation)

g (R(X,Y )Z, ∂r) = g(−(∇XS)(Y ) + (∇Y S)(X), Z)
= − (∇XII) (Y,Z) + (∇Y II) (X,Z) .

where X,Y, Z are tangent to the level sets Ur.

Proof. The proofs hinge on the important fact that if X,Y are vector fields
that are tangent to the level sets Ur, then:

∇r
XY = tan(∇XY )

= ∇XY − g (∇XY, ∂r) ∂r

= ∇XY + g(S(X), Y )∂r

= ∇XY + II(X,Y )∂r

Here the first equality is a consequence of the uniqueness of the Riemannian con-
nection on (Ur, gr). One can check either that tan(∇XY ) satisfies properties 1-4 of
a Riemannian connection or alternatively that it satisfies the Koszul formula. The
latter task is almost immediate. The second and fourth equality are obvious. The
third follows as Y ⊥ ∂r implies

0 = ∇Xg(Y, ∂r)
= g(∇XY, ∂r) + g(Y, S(X)),

whence
g(S(X), Y ) = −g(∇XY, ∂r).

Both of the curvature equations are now verified by calculating R(X,Y )Z using

∇XY = ∇r
XY − g(S(X), Y ) · ∂r.

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= ∇X(∇r
Y Z − g(S(Y ), Z) · ∂r)−∇Y (∇r

XZ − g(S(X), Z) · ∂r)
−∇r

[X,Y ]Z + g(S([X,Y ]), Z) · ∂r

= ∇X∇r
Y Z −∇Y∇r

XZ −∇r
[X,Y ]Z

−∇X (g(S(Y ), Z) · ∂r) +∇Y (g(S(X), Z) · ∂r) + g(S([X,Y ]), Z) · ∂r

= Rr(X,Y )Z − g (S (X) ,∇Y Z) · ∂r + g(S(Y ),∇XZ) · ∂r

−g(S(Y ),∇XZ) · ∂r + g(S(X),∇Y Z) · ∂r

−g(∇XS(Y ), Z) · ∂r + g(∇Y S(X), Z) · ∂r + g(S([X,Y ]), Z) · ∂r

−g(S(Y ), Z)S(X) + g(S(X), Z)S(Y )
= Rr(X,Y )Z − (S(X) ∧ S(Y )) (Z)

+g (−(∇XS)(Y ) + (∇Y S)(X), Z) · ∂r

This establishes the first part of each formula. The second parts follow from using
the definitions of the involved concepts. �
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The three fundamental equations give us a way of computing curvature tensors
by induction on dimension. More precisely, if we know how to do computations
on Ur and also how to compute S, then we can compute anything on U . We shall
clarify and exploit this philosophy in subsequent chapters.

Here we confine ourselves to some low dimensional observations. Recall that
the three curvature quantities sec, Ric, and scal obeyed some special relationships
in dimensions 2 and 3. Curiously enough this also manifests itself in our three
fundamental equations.

If M has dimension 1, then there aren’t too many distance functions. Our
equations don’t even seem to apply here since the level sets are points. This is
related to the fact that R ≡ 0 on all 1 dimensional spaces.

If M has dimension 2, then any distance function r : U ⊂ M → R has 1-
dimensional level sets. Thus Rr ≡ 0 and the three vectors X,Y and Z are propor-
tional. Our equations therefore reduce to the single equation:

∇∂r
S + S2 = −R∂r

.

Actually, since S(∂r) = 0, we know that S depends only on its value on a unit vector
v ∈ TUr thus S (v) = αv, where α = trS = ∆r. The radial curvature equation can
therefore be reduced to:

∂r(∆r) + (∆r)2 = −sec(TpM).

To be even more concrete, we have that gr on Ur can be written: gr = ϕ2(r, θ)dθ2;
so

g = dr2 + ϕ2(r, θ)dθ2,

and since

ϕ∂rϕ =
1
2
∂rg (∂θ, ∂θ)

= g (∇∂r
∂θ, ∂θ)

= g (S (∂θ) , ∂θ)

= α |∂θ|2
= αϕ2,

we have

trS =
∂rϕ

ϕ
,

implying

−sec(TpM) =
∂2

rϕ

ϕ
.

When M has dimension 3, the level sets of r are 2-dimensional. The radial
curvature equation therefore doesn’t reduce, but in the other two equations we
have that one of the three vectors X,Y, Z is a linear combination of the other two.
We might as well assume that X ⊥ Y and Z = X or Y . So, if {X,Y, ∂r} repre-
sents an orthonormal framing, then the complete curvature tensor depends on the
quantities: g(R(X, ∂r)∂r, Y ), g(R(X, ∂r)∂r, X), g(R(Y, ∂r)∂r, Y ), g(R(X,Y )Y,X),
g(R(X,Y )Y, ∂r), g(R(Y,X)X, ∂r). The first three quantities can be computed from
the radial curvature equation, the fourth from the tangential curvature equation,
and the last two from the mixed curvature equation.
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In the special case where M3 = R3, R = 0, the tangential curvature equation
is particularly interesting:

sec(TpUr) = Rr (X,Y, Y,X)
= g(S(X), X)g(S(Y ), Y )− g(S(X), Y )g(S(X), Y )
= detS

This was Gauss’s wonderful observation! namely, that the extrinsic quantity detS
for Ur is actually the intrinsic quantity, sec(TpUr).

Finally, in dimension 4 everything reaches its most general level. We can start
with an orthonormal framing {X,Y, Z, ∂r}, and there will be twenty curvature
quantities to compute.

5. The Equations of Riemannian Geometry

In this section we shall investigate the connection between the metric tensor and
curvature. This is done by using the radial curvature equation together with some
new formulae. Having established these fundamental equations, we shall introduce
some useful vector fields that make it possible to see how the curvature influences
the metric in some unexpected ways.

Recall from the end of the last section that we arrived at a very nice formula
for the relationship between the metric and curvature on a surface, namely, if
g = dr2 + ϕ2(r, θ)dθ2, then ∂2

rϕ = −sec · ϕ. This formula can be used not only to
compute curvatures from knowledge of the metric, but also in reverse to conclude
things about the metric from the curvature. This relationship, which is classical for
surfaces, will be generalized in this section to manifolds of any dimension and then
extensively used throughout the entire text as a universal tool for understanding
the relationship between the metric and curvature.

5.1. The Coordinate-Free Equations. We need to introduce an ad hoc
concept for Hessians and symmetric bilinear forms on Riemannian manifolds. If
B (X,Y ) is a symmetric (0, 2)-tensor and L (X) the corresponding self-adjoint
(1, 1)-tensor defined via

g (L (X) , Y ) = B (X,Y ) ,

then the square of B is the symmetric bilinear form corresponding to L2

B2 (X,Y ) = g
(
L2 (X) , Y

)
= g (L (X) , L (Y )) .

Note that this symmetric bilinear form is always nonnegative, i.e., B2 (X,X) ≥ 0
for all X.

Proposition 7. If we have a smooth distance function r : (U, g) → R and
denote ∇r = ∂r, then

(1) L∂r
g = 2Hessr,

(2) (∇∂r
Hessr) (X,Y ) + Hess2r (X,Y ) = −R (X, ∂r, ∂r, Y ) ,

(3) (L∂r
Hessr) (X,Y )−Hess2r (X,Y ) = −R (X, ∂r, ∂r, Y ) .

Proof. (1) is simply the definition of the Hessian.
To prove (2) and (3) we use that ∇∂r

∂r = 0 and perform virtually the same
calculations that were used for the radial curvature equation. Keep in mind that
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∇X∂r = S (X) is the self-adjoint operator corresponding to Hessr.

(∇∂r
Hessr) (X,Y ) = ∂rHessr (X,Y )−Hessr (∇∂r

X,Y )−Hessr (X,∇∂r
Y )

= ∂rg (∇X∂r, Y )− g
(∇∇∂r X∂r, Y

)− g (∇X∂r,∇∂r
Y )

= g (∇∂r
∇X∂r, Y )− g

(∇∇∂r X∂r, Y
)

+g (∇X∂r,∇∂r
Y )− g (∇X∂r,∇∂r

Y )
= g (R (∂r, X) ∂r, Y )− g (∇∇X∂r

∂r, Y )
= −R (X, ∂r, ∂r, Y )− g (∇Y ∂r,∇X∂r)

= −R (X, ∂r, ∂r, Y )−Hess2r (X,Y ) .

(L∂r
Hessr) (X,Y ) = ∂rHessr (X,Y )−Hessr ([∂r, X] , Y )−Hessr (X, [∂r, Y ])

= ∂rg (∇X∂r, Y )− g
(∇[∂r,X]∂r, Y

)− g (∇X∂r, [∂r, Y ])

= g (∇∂r
∇X∂r, Y )− g

(∇[∂r,X]∂r, Y
)

+g (∇X∂r,∇∂r
Y )− g (∇X∂r,∇∂r

Y −∇Y ∂r)
= g (R (∂r, X) ∂r, Y ) + g (∇X∂r,∇Y ∂r)

= −R (X, ∂r, ∂r, Y ) + Hess2r (X,Y ) .

�
The first equation shows how the Hessian controls the metric. The second

and third equations give us control over the Hessian if we have information about
the curvature. These two equations are different in a very subtle way. The third
equation is at the moment the easiest to work with as it only uses Lie derivatives and
hence can be put in a nice form in an appropriate coordinate system. The second
equation is ultimately more useful, but requires that we find a way of making it
easier to interpret.

In the next two sections we shall see how appropriate choices for vector fields
can give us a better understanding of these fundamental equations.

5.2. Jacobi Fields. A Jacobi field for a smooth distance function r is a
smooth vector field J that does not depend on r, i.e., it satisfies the Jacobi equation

L∂r
J = 0.

This is a first order linear PDE, which can be solved by the method of character-
istics. To see how this is done we locally select a coordinate system

(
r, x2, ..., xn

)
where r is the first coordinate. Then J = ar∂r + ai∂i and the Jacobi equation
becomes:

0 = L∂r
J

= L∂r

(
ar∂r + ai∂i

)
= ∂r (ar) ∂r + ∂r

(
ai
)
∂i.

Thus the coefficients ar, ai have to be independent of r as already indicated. What
is more, we can construct such Jacobi fields knowing the values on a hypersurface
H ⊂ M where

(
x2, ..., xn

) |H is a coordinate system. In this case ∂r is transverse to
H and so we can solve the equations by declaring that ar, ai are constant along the
integral curves for ∂r. Note that the coordinate vector fields are themselves Jacobi
fields. Jacobi fields satisfy a more general second order equation, also known as the
Jacobi Equation:

∇∂r
∇∂r

J = −R (J, ∂r) ∂r,
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since

−R (J, ∂r) ∂r = R (∂r, J) ∂r

= ∇∂r
∇J∂r −∇J∇∂r

∂r −∇[∂r,J]∂r

= ∇∂r
∇J∂r

= ∇∂r
∇∂r

J.

This is a second order equation and must therefore have more solutions than the
above first order equation. This equation will be studied further in chapter 3 for
rotationally symmetric metrics and for general Riemannian manifolds in chapter 6.

If we evaluate equations (1) and (3) on Jacobi fields we obtain

(1) ∂r (g (J1, J2)) = 2Hessr (J1, J2) ,
(3) ∂r (Hessr (J1, J2))−Hess2r (J1, J2) = −R (J1, ∂r, ∂r, J2) .

As we now only have directional derivatives we have a much simpler version of the
fundamental equations. Therefore, there is a much better chance of predicting how
g and Hessr change depending on our knowledge of Hessr and R respectively.

This can be reduced a bit further if we take a product neighborhood Ω =
(a, b)×H ⊂ M such that r (t, z) = t. On this product the metric has the form

g = dr2 + gr

where gr is a one parameter family of metrics on H. If J is a vector field on H,
then there is a unique extension to a Jacobi field on Ω = (a, b)×H. First observe
that

Hessr (∂r, J) = g (∇∂r
∂r, J) = 0,

gr (∂r, J) = 0.

Thus we only need to consider the restrictions of g and Hessr to H. By doing this
we obtain

∂rg = ∂rgr = 2Hessr
The fundamental equations can therefore be written as

(1) ∂rgr = 2Hessr,
(3) ∂rHessr −Hess2r = −R (·, ∂r, ∂r, ·) .

There is a sticky point that is hidden in (3). Namely, how to extract information
from R and pass it on to the Hessian. As we usually make assumptions about the
sectional curvature we should try to rewrite this term. This can be done as follows:

R (X, ∂r, ∂r, X) = sec (X, ∂r)
(
g (X,X) g (∂r, ∂r)− (g (X, ∂r))

2
)

= sec (X, ∂r) g (X − g (X, ∂r) ∂r, X − g (X, ∂r) ∂r)
= sec (X, ∂r) gr (X,X) .

So if we evaluate (3) on a Jacobi field J we obtain

∂r (Hessr (J, J))−Hess2r (J, J) = −sec (J, ∂r) gr (J, J) .

This means that (1) and (3) are coupled as we have not eliminated the metric from
(3). The next subsection shows how we can deal with this by evaluating on different
vector fields.

Nevertheless, we have reduced (1) and (3) to a set of ODEs where r is the
independent variable along the integral curve for ∂r through p.
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5.3. Parallel Fields. A parallel field for a smooth distance function is a vector
field X such that:

∇∂r
X = 0.

This is, like the Jacobi equation, a first order linear PDE and can be solved in a
similar manner. There is, however, one crucial difference: Parallel fields are almost
never Jacobi fields.

If we evaluate g on a pair of parallel fields we see that

∂rg (X,Y ) = g (∇∂r
X,Y ) + g (X,∇∂r

Y ) = 0.

This means that (1) is not simplified by using parallel fields. The second equation,
on the other hand, now looks like

∂r (Hessr (X,Y )) + Hess2r (X,Y ) = −R (X, ∂r, ∂r, Y ) .

If we rewrite this in terms of sectional curvature we obtain as above

∂r (Hessr (X,X)) + Hess2r (X,X) = −sec (X, ∂r) gr (X,X) .

But this time we know that gr (X,X) is constant in r as X is parallel. We can even
assume that g (X, ∂r) = 0 and g (X,X) = 1 by first projecting X onto H and then
scaling it. Therefore, (2) takes the form

∂r (Hessr (X,X)) + Hess2r (X,X) = −sec (X, ∂r)

on unit parallel fields that are orthogonal to ∂r. In this way we really have decoupled
the equation for the Hessian from the metric. This allows us to glean information
about the Hessian from information about sectional curvature. Equation (1), when
rewritten using Jacobi fields, then gives us information about the metric from the
information we just obtained about the Hessian using parallel fields.

5.4. Conjugate Points. In general, we might think of the curvatures R∂r
as

being given. They could be constant or merely satisfy some inequality. We then
wish to investigate how the curvature influences the metric. Equation (1) is linear.
Thus the metric can’t blow up in finite time unless the Hessian also blows up.
However, if we assume that the curvature is bounded, then equation (2) tells us
that, if the Hessian blows up, then it must be decreasing in r, hence it can only go
to −∞. Going back to (1), we then conclude that the only degeneration which can
occur along an integral curve for ∂r, is that the metric stops being positive definite.
We say that the distance function r develops a conjugate, or focal, point along this
integral curve if this occurs. Below we have some pictures of how conjugate points
can develop. Note that as the metric itself is Euclidean, these singularities exist
only in the coordinates, not in the metric.
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Figure 2.2

It is worthwhile investigating equations (2) and (3) a little further. If we rewrite
them as

(2) (∇∂r
Hessr) (X,X) = −R (X, ∂r, ∂r, X)−Hess2r (X,X) ,

(3) (L∂r
Hessr) (X,X) = −R (X, ∂r, ∂r, X) + Hess2r (X,X) ,

then we can think of the curvatures as representing fixed external forces, while
Hess2r describes an internal reaction (or interaction). The reaction term is always
of a fixed sign and, it will try to force Hessr blow up in finite time. If, for instance
sec ≤ 0, then L∂r

Hessr is positive. Therefore, if Hessr is positive at some point,
then it will stay positive. On the other hand, if sec ≥ 0, then ∇∂r

Hessr is negative,
forcing Hessr to stay nonpositive if it is nonpositive at a point.

In chapters 6, 7, 9, and 11 we shall study and exploit this in much greater
detail.

6. Some Tensor Concepts

In this section we shall collect together some notational baggage that is needed
from time to time.

6.1. Type Change. The inner product structure on the tangent spaces to a
Riemannian manifold makes it possible to view tensors in different ways. We saw
this with the Hessian and the Ricci tensor. This is nothing but the elementary
observation that a bilinear map can be interpreted as a linear map when one has
an inner product present.

If, in general, we have an (s, t)-tensor T, we view it as a section in the bundle

TM ⊗ · · · ⊗ TM︸ ︷︷ ︸
s times

⊗ T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
t times

Then given a Riemannian metric g on M, we can make it into an (s− k, t + k)-
tensor for any k ∈ Z such that both s−k and t+k are nonnegative. Abstractly, this
is done as follows: On a Riemannian manifold TM is naturally isomorphic to T ∗M ;
the isomorphism is given by sending v ∈ TM to the linear map (w → g (v, w)) ∈
T ∗M. Using this isomorphism we can therefore replace TM by T ∗M or vice versa
and thus change the type of the tensor.
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At a more concrete level what happens is this: We select a frame E1, . . . , En

and construct the coframe σ1, . . . , σn. The vectors and covectors (in T ∗M) can be
written as

v = viEi = σi (v)Ei,

ω = αjσ
j = ω (Ej) σj .

The tensor T can now be written as

T = T i1···is
j1···jt

Ei1 ⊗ · · · ⊗Eis
⊗ σj1 ⊗ · · · ⊗ σjt .

Now we need to know how we can change Ei into a covector and σj into a vector.
As before, the dual to Ei is the covector w → g (Ei, w) , which can be written as

g (Ei, w) = g (Ei, Ej) σj (w) = gijσ
j (w) .

Conversely, we have to find the vector v corresponding to the covector σj . The
defining property is

g (v, w) = σj (w) .

Thus, we have
g (v,Ei) = δj

i .

If we write v = vkEk, this gives

gkiv
k = δj

i .

Letting gij denote the ijth entry in the inverse of (gij) , we therefore have

v = viEi = gijEi.

Thus,

Ei → gijσ
j ,

σj → gijEi.

Note that using Einstein notation properly will help keep track of the correct way
of doing things as long as the inverse of g is given with superscript indices. With
this formula one can easily change types of tensors by replacing Es with σs and
vice versa. Note that if we used coordinate vector fields in our frame, then one
really needs to invert the metric, but if we had chosen an orthonormal frame, then
one simply moves indices up and down as the metric coefficients satisfy gij = δij .

Let us list some examples:
The Ricci tensor: We write the Ricci tensor as a (1, 1)-tensor: Ric (Ei) = Ricj

iEj ;
thus

Ric = Rici
j · Ei ⊗ σj .

As a (0, 2)-tensor it will look like

Ric = Ricjk · σj ⊗ σk = gi
jiRick · σj ⊗ σk,

while as a (2, 0)-tensor acting on covectors it will be

Ric = Ricik · Ei ⊗Ek = gijRick
j · Ei ⊗ Ek.

The curvature tensor: We start with the (1, 3)-curvature tensor R (X,Y ) Z,
which we write as

R = Rl
ijk · El ⊗ σi ⊗ σj ⊗ σk.
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As a (0, 4)-tensor we get

R = Rijkl · σi ⊗ σj ⊗ σk ⊗ σl

= Rs
ijkgsl · σi ⊗ σj ⊗ σk ⊗ σl,

while as a (2, 2)-tensor we have:

R = Rkl
ij · Ek ⊗ El ⊗ σi ⊗ σj

= Rl
ijsg

sk · Ek ⊗ El ⊗ σi ⊗ σj .

Here, however, we must watch out, because there are several different ways of doing
this. We choose to raise the last index, but we could also have chosen any other
index, thus yielding different (2, 2)-tensors. The way we did it gives essentially the
curvature operator.

6.2. Contractions. Contractions are simply traces of tensors. Thus, the con-
traction of a (1, 1)-tensor T = T i

j · Ei ⊗ σj is simply its trace:

C (T ) = trT = T i
i .

If instead we had a (0, 2)-tensor T, then we could, using the Riemannian structure,
first change it to a (1, 1)-tensor and then take the trace

C (T ) = C
(
Tij · σi ⊗ σj

)
= C

(
Tikgkj · Ek ⊗ σj

)
= Tikgki.

In this way the Ricci tensor becomes a contraction:

Ric = Rici
j · Ei ⊗ σj

= Rkj
ik · Ei ⊗ σj

= Rj
iksg

sk · Ei ⊗ σj ,

or

Ric = Ricij · σi ⊗ σj

= gklRiklj · σi ⊗ σj ,

which after type change can be seen to give the same expressions. The scalar
curvature can be expressed as:

scal = tr (Ric)

= Rici
i

= Ri
iksg

sk

= Ricikgki

= Rijklg
jkgil.

Again, it is necessary to be careful to specify over which indices one contracts in
order to get the right answer.

Note that the divergence of a (1, k)-tensor S is nothing but a contraction of the
covariant derivative ∇S of the tensor. Here one contracts against the new variable
introduced by the covariant differentiation.
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6.3. Norms of Tensors. There are several conventions in Riemannian geom-
etry for how one should measure the norm of a linear map. Essentially, there are
two different norms in use, the operator norm and the Euclidean norm. The former
is defined for a linear map L : V → W between inner product spaces as

|L| = sup
|v|=1

|Lv|

The Euclidean norm, in contrast, is given by

|L| =
√

tr (L∗ ◦ L) =
√

tr (L ◦ L∗),

where L∗ : W → V is the adjoint. Despite the fact that we use the same notation for
these norms, they are almost never equal. If, for instance, L : V → V is self adjoint
and λ1 ≤ · · · ≤ λn the eigenvalues of L counted with multiplicities, then the oper-

ator norm is: max {|λ1| , |λn|} , while the Euclidean norm is
√

λ2
1 + · · ·+ λ2

n. The
Euclidean norm also has the advantage of actually coming from an inner product:

〈L1, L2〉 = trL1 ◦ L∗
2 = trL2 ◦ L∗

1.

As a general rule we shall always use the Euclidean norm.
It is worthwhile to see how the Euclidean norm of some simple tensors can

be computed on a Riemannian manifold. Note that this computation uses type
changes to compute adjoints and contractions to take traces.

Let us start with a (1, 1)-tensor T = T i
j · Ei ⊗ σj . We think of this as a linear

map TM → TM . Then the adjoint is first of all the dual map T ∗ : T ∗M → T ∗M,
which we then change to T ∗ : TM → TM. This means that

T ∗ = T j
i · σi ⊗ Ej ,

which after type change becomes

T ∗ = T k
l gljgki · Ej ⊗ σi.

Finally,
|T |2 = T i

jT
k
l gljgki.

If the frame is orthonormal, this takes the simple form of

|T |2 = T i
jT

j
i .

For a (0, 2)-tensor T = Tij · σi ⊗ σj we first have to change type and then proceed
as above. In the end one gets the nice formula

|T |2 = TijT
ij .

6.4. Positional Notation. A final remark is in order. Many of the above
notations could be streamlined even further so as to rid ourselves of some of the
notational problems we have introduced by the way in which we write tensors in
frames. Namely, tensors TM → TM (section of TM ⊗ T ∗M) and T ∗M → T ∗M
(section of T ∗M ⊗ TM) seem to be written in the same way, and this causes some
confusion when computing their Euclidean norms. That is, the only difference
between the two objects σ ⊗ E and E ⊗ σ is in the ordering, not in what they
actually do. We simply interpret the first as a map TM → TM and then the
second as T ∗M → T ∗M, but the roles could have been reversed, and both could be
interpreted as maps TM → TM. This can indeed cause great confusion.

One way to at least keep the ordering straight when writing tensors out in
coordinates is to be even more careful with our indices and how they are written
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down. Thus, a tensor T that is a section of T ∗M ⊗ TM ⊗ T ∗M should really be
written as

T = Ti
j
k · σi ⊗ Ej ⊗ σk.

Our standard (1, 1)-tensor (section of TM ⊗ T ∗M) could therefore be written

T = T i
j · Ei ⊗ σj ,

while the adjoint (section of T ∗M ⊗ TM) before type change is

T ∗ = Tk
l · σk ⊗ El

= T i
jgkig

lj · σk ⊗ El.

Thus, we have the nice formula

|T |2 = T i
jTi

j .

In the case of the curvature tensor one would normally write

R = Rl
ijk · El ⊗ σi ⊗ σj ⊗ σk,

and when changing to the (2, 2) version we have

R = Rkl
ij · Ek ⊗ El ⊗ σi ⊗ σj

= Rl
ijsg

sk · Ek ⊗ El ⊗ σi ⊗ σj .

It is then clear how to keep track of the other (2, 2) versions by writing

Ri
jk

l = Rist
ugjsgktglu.

Nice as this notation is, it is not used consistently in the literature, probably
due to typesetting problems. It would be convenient to use it, but in most cases one
can usually keep track of things anyway. Most of this notation can of course also
be avoided by using invariant (coordinate-free) notation, but often it is necessary
to do coordinate or frame computations both in abstract and concrete situations.

To this we can add yet another piece of notation that is often seen. Namely, if
S is a (1, k)-tensor written in a frame as:

S = Si
j1···jk

· Ei ⊗ σj1 ⊗ · · · ⊗ σjk ,

Then the covariant derivative is a (1, k + 1)-tensor that can be written as

∇S = Si
j1···jk,jk+1

· Ei ⊗ σj1 ⊗ · · · ⊗ σjk ⊗ σjk+1 .

The coefficient Si
j1···jk,jk+1

can be computed via the formula

∇Ejk+1
S = DEjk+1

(
Si

j1···jk

) · Ei ⊗ σj1 ⊗ · · · ⊗ σjk

+Si
j1···jk

· ∇Ejk+1

(
Ei ⊗ σj1 ⊗ · · · ⊗ σjk

)
,

where one must find the expression for

∇Ejk+1

(
Ei ⊗ σj1 ⊗ · · · ⊗ σjk

)
=

(
∇Ejk+1

Ei

)
⊗ σj1 ⊗ · · · ⊗ σjk

+Ei ⊗
(
∇Ejk+1

σj1
)
⊗ · · · ⊗ σjk

· · ·
+Ei ⊗ σj1 ⊗ · · · ⊗

(
∇Ejk+1

σjk

)
by writing each of the terms

(
∇Ejk+1

Ei

)
,
(
∇Ejk+1

σj1
)

, . . . ,
(
∇Ejk+1

σjk

)
in terms

of the frame and coframe and substitute back into the formula.
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7. Further Study

It is still too early to give useful references. In the upcoming chapters we shall
mention several other books on geometry that the reader might wish to consult. At
this stage we shall only list the authoritative guide [60]. Every differential geometer
must have a copy of these tomes, but their effective usefulness has probably passed
away. In a way, it is the Bourbaki of differential geometry and should be treated
as such.

8. Exercises

(1) Show that the connection on Euclidean space is the only affine connection
such that ∇X = 0 for all constant vector fields X.

(2) If F : M → M is a diffeomorphism, then the push-forward of a vector
field is defined as

(F∗X) |p = DF
(
X|F−1(p)

)
.

Let F be an isometry on (M, g) .
(a) Show that F∗ (∇XY ) = ∇F∗XF∗Y for all vector fields.
(b) If (M, g) = (Rn, can) , then isometries are of the form F (x) = Ox+b,

where O ∈ O (n) and b ∈ Rn. Hint: Show that F maps constant
vector fields to constant vector fields.

(3) Let G be a Lie group. Show that there is a unique affine connection such
that ∇X = 0 for all left invariant vector fields. Show that this connection
is torsion free iff the Lie algebra is Abelian.

(4) Show that if X is a vector field of constant length on a Riemannian man-
ifold, then ∇vX is always perpendicular to X.

(5) For any p ∈ (M, g) and orthonormal basis e1, . . . , en for TpM, show that
there is an orthonormal frame E1, . . . , En in a neighborhood of p such
that Ei = ei and (∇Ei) |p = 0. Hint: Fix an orthonormal frame Ēi near

p ∈ M with Ēi (p) = ei. If we define Ei = αj
i Ēj , where

[
αj

i (x)
]
∈ SO (n)

and αj
i (p) = δj

i , then this will yield the desired frame provided that the
Dek

αj
i are appropriately prescribed.

(6) (Riemann) As in the previous problem, but now show that there are co-
ordinates x1, . . . , xn such that ∂i = ei and ∇∂i = 0 at p. These conditions
imply that the metric coefficients satisfy gij = δij and ∂kgij = 0 at p.
Such coordinates are called normal coordinates at p. Show that in normal
coordinates g viewed as a matrix function of x has the expansion

g =
n∑

i,j=1

gijdxidxj

=
n∑

i=1

dxidxi

+
∑

i<j,k<l

Rijkl

(
xidxj − xjdxi

) (
xkdxl − xldxk

)
+ o

(
|x|2

)
,
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where Rijkl = g (R (∂i, ∂j) ∂k, ∂l) (p) . In dimension 2 this formula reduces
to

g = dx2 + dy2 + R1212 (xdy − ydx)2 + o
(
x2 + y2

)
= dx2 + dy2 − sec (p) (xdy − ydx)2 + o

(
x2 + y2

)
.

(7) Let M be an n-dimensional submanifold of Rn+m with the induced metric
and assume that we have a local coordinate system given by a parame-
trization xs

(
u1, ..., un

)
, s = 1, ..., n + m. Show that in these coordinates

we have:
(a)

gij =
n+m∑
s=1

∂xs

∂ui

∂xs

∂uj
.

(b)

Γij,k =
n+m∑
s=1

∂xs

∂uk

∂2xs

∂ui∂uj
.

(c) Rijkl depends only on the first and second partials of xs.
(8) Show that Hessf = ∇df.
(9) Let r be a distance function and S (X) = ∇X∂r the (1, 1) version of the

Hessian. Show that

L∂r
S = ∇∂r

S,

L∂r
S + S2 = −R∂r

.

How do you reconcile this with what happens for the fundamental equa-
tions for the (0, 2)-version of the Hessian?

(10) Let (M, g) be oriented and define the Riemannian volume form dvol as
follows:

dvol (v1, . . . , vn) = det (g (vi, ej)) ,

where e1, . . . , en is a positively oriented orthonormal basis for TpM.
(a) Show that if v1, . . . , vn is positively oriented, then

dvol (v1, . . . , vn) =
√

det (g (vi, vj)).

(b) Show that the volume form is parallel.
(c) Show that in positively oriented coordinates,

dvol =
√

det (gij)dx1 ∧ · · · ∧ dxn.

(d) If X is a vector field, show that

LXdvol = div (X) dvol.

(e) Conclude that the Laplacian has the formula

∆u =
1√

det (gij)
∂k

(√
det (gij)gkl∂lu

)
.

Given that the coordinates are normal at p we get as in Euclidean
space that

∆f (p) =
n∑

i=1

∂i∂if.
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(11) Let (M, g) be a oriented Riemannian manifold with volume form dvol as
above.
(a) If f has compact support, then∫

M

∆f · dvol = 0.

(b) Show that

div (f ·X) = g (∇f,X) + f · divX.

(c) Show that

∆ (f1 · f2) = (∆f1) · f2 + 2g (∇f1,∇f2) + f1 · (∆f2) .

(d) Establish the integration by parts formula for functions with compact
support:∫

M

f1 ·∆f2 · dvol = −
∫

M

g (∇f1,∇f2) · dvol.

(e) Conclude that if f is sub- or superharmonic (i.e., ∆f ≥ 0 or ∆f ≤ 0)
then f is constant. (Hint: first show ∆f = 0; then use integration by
parts on f ·∆f .) This result is known as the weak maximum principle.
More generally, one can show that any subharmonic (respectively
superharmonic) function that has a global maximum (respectively
minimum) must be constant. For this one does not need f to have
compact support. This result is usually referred to as the strong
maximum principle.

(12) A vector field and its corresponding flow is said to be incompressible if
divX = 0.
(a) Show that X is incompressible iff the local flows it generates are

volume preserving (i.e., leave the Riemannian volume form invariant).
(b) Let X be a unit vector field X on R2. Show that ∇X = 0 if X is

incompressible.
(c) Find a unit vector field X on R3 that is incompressible but where

∇X �= 0.
(13) Let X be a unit vector field on (M, g) such that ∇XX = 0.

(a) Show that X is locally the gradient of a distance function iff the
orthogonal distribution is integrable.

(b) Show that X is the gradient of a distance function in a neighborhood
of p ∈ M iff the orthogonal distribution has an integral submanifold
through p. Hint: It might help to show that LXθX = 0.

(c) Find X with the given conditions so that it is not a gradient field.
Hint: Consider S3.

(14) Given an orthonormal frame E1, . . . , En on (M, g) , define the structure
constants ck

ij by [Ei, Ej ] = ck
ijEk. Then define the Γs and Rs by

∇Ei
Ej = Γk

ijEk,

R (Ei, Ej) Ek = Rl
ijkEl

and compute them in terms of the cs. Notice that on Lie groups with left-
invariant metrics the structure constants can be assumed to be constant.
In this case, computations simplify considerably.
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(15) There is yet another effective method for computing the connection and
curvatures, namely, the Cartan formalism. Let (M, g) be a Riemannian
manifold. Given a frame E1, . . . , En, the connection can be written

∇Ei = ωj
iEj ,

where ωj
i are 1-forms. Thus,

∇vEi = ωj
i (v)Ej .

Suppose now that the frame is orthonormal and let ωi be the dual coframe,
i.e., ωi (Ej) = δi

j . Show that the connection forms satisfy

ωj
i = −ωi

j ,

dωi = ωj ∧ ωi
j .

These two equations can, conversely, be used to compute the connection
forms given the orthonormal frame. Therefore, if the metric is given by
declaring a certain frame to be orthonormal, then this method can be very
effective in computing the connection.

If we think of
[
ωj

i

]
as a matrix, then it represents a 1-form with values

in the skew-symmetric n × n matrices, or in other words, with values in
the Lie algebra so (n) for O (n) .

The curvature forms Ωj
i are 2-forms with values in so (n) . They are

defined as
R (·, ·) Ei = Ωj

iEj .

Show that they satisfy

dωj
i = ωk

i ∧ ωj
k + Ωj

i .

When reducing to Riemannian metrics on surfaces we obtain for an
orthonormal frame E1, E2 with coframe ω1, ω2

dω1 = ω2 ∧ ω1
2,

dω2 = −ω1 ∧ ω1
2,

dω1
2 = Ω1

2,

Ω1
2 = sec · dvol.

(16) Show that a Riemannian manifold with parallel Ricci tensor has constant
scalar curvature. In chapter 3 it will be shown that the converse is not
true, and also that a metric with parallel curvature tensor doesn’t have
to be Einstein.

(17) Show that if R is the (1, 3)-curvature tensor and Ric the (0, 2)-Ricci tensor,
then

(divR) (X,Y, Z) = (∇XRic) (Y,Z)− (∇Y Ric) (X,Z) .

Conclude that divR = 0 if ∇Ric = 0. Then show that divR = 0 iff the
(1, 1) Ricci tensor satisfies:

(∇XRic) (Y ) = (∇Y Ric) (X) for all X,Y.
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(18) Let G be a Lie group with a bi-invariant metric. Using left-invariant fields
establish the following formulas. Hint: First go back to the exercises to
chapter 1 and take a peek at chapter 3 where some of these things are
proved.
(a) ∇XY = 1

2 [X,Y ] .
(b) R (X,Y ) Z = 1

4 [Z, [X,Y ]] .
(c) g (R (X,Y ) Z,W ) = − 1

4 (g ([X,Y ] , [Z,W ])) . Conclude that the sec-
tional curvatures are nonnegative.

(d) Show that the curvature operator is also nonnegative by showing
that:

g

(
R

(
k∑

i=1

Xi ∧ Yi

)
,

(
k∑

i=1

Xi ∧ Yi

))
=

1
4

∣∣∣∣∣
k∑

i=1

[Xi, Yi]

∣∣∣∣∣
2

.

(e) Show that Ric (X,X) = 0 iff X commutes with all other left-invariant
vector fields. Thus G has positive Ricci curvature if the center of G
is discrete.

(f) Consider the linear map Λ2g → [g, g] that sends X ∧ Y to [X,Y ] .
Show that the sectional curvature is positive iff this map is an isomor-
phism. Conclude that this can only happen if n = 3 and g = su (2) .

(19) It is illustrative to use the Cartan formalism in the above problem and
compute all quantities in terms of the structure constants for the Lie
algebra. Given that the metric is bi-invariant, it follows that with respect
to an orthonormal basis they satisfy

ck
ij = −ck

ji = ci
jk.

The first equality is skew-symmetry of the Lie bracket, and the second is
bi-invariance of the metric.

(20) Suppose we have two Riemannian manifolds (M, gM ) and (N, gN ) . Then
the product has a natural product metric (M ×N, gM + gN ) . Let X be
a vector field on M and Y one on N, show that if we regard these as
vector fields on M × N, then ∇XY = 0. Conclude that sec (X,Y ) = 0.
This means that product metrics always have many curvatures that are
zero.

(21) Suppose we have two distributions E and F on (M, g), that are orthogonal
complements of each other in TM. In addition, assume that the distribu-
tions are parallel i.e., if two vector fields X and Y are tangent to, say, E,
then ∇XY is also tangent to E.
(a) Show that the distributions are integrable.
(b) Show that around any point in M there is a product neighborhood

U = VE × VF such that (U, g) = (VE × VF , g|E + g|F ) , where g|E
and g|F are the restrictions of g to the two distributions. In other
words, M is locally a product metric.

(22) Let X be a parallel vector field on (M, g) . Show that X has constant
length. Show that X generates parallel distributions, one that contains X
and the other that is the orthogonal complement to X. Conclude that lo-
cally the metric is a product with an interval (U, g) =

(
V × I, g|TV + dt2

)
.
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(23) For 3-dimensional manifolds, show that if the curvature operator in diag-
onal form looks like ⎛⎝ α 0 0

0 β 0
0 0 γ

⎞⎠ ,

then the Ricci curvature has a diagonal form like⎛⎝ α + β 0 0
0 β + γ 0
0 0 α + γ

⎞⎠ .

Moreover, the numbers α, β, γ must be sectional curvatures.
(24) The Einstein tensor on a Riemannian manifold is defined as

G = Ric− scal
2
· I.

Show that G = 0 in dimension 2 and that divG = 0 in higher dimensions.
This tensor is supposed to measure the mass/energy distribution. The
fact that it is divergence free tells us that energy and momentum are
conserved. In a vacuum, one therefore imagines that G = 0. Show that
this happens in dimensions > 2 iff the metric is Ricci flat.

(25) This exercise will give you a way of finding the curvature tensor from the
sectional curvatures. Using the Bianchi identity show that

−6R (X,Y, Z,W ) =
∂2

∂s∂t

∣∣∣∣
s=t=0

{R (X + sZ, Y + tW, Y + tW,X + sZ)

−R (X + sW, Y + tZ, Y + tZ,X + sW )} .

(26) Using polarization show that the norm of the curvature operator on Λ2TpM
is bounded by

|R|p| ≤ c (n) |sec|p
for some constant c (n) depending on dimension, and where |sec|p denotes
the largest absolute value for any sectional curvature of a plane in TpM.

(27) We can artificially complexify the tangent bundle to a manifold: TCM =
TM ⊗ C. If we have a Riemannian structure, we can extend all the ac-
companying tensors to this realm. The metric tensor, in particular, gets
extended as follows:

gC (v1 + iv2, w1 + iw2) = g (v1, w1)− g (v2, w2) + i (g (v1, w2) + g (v2, w1)) .

This means that a vector can have complex length zero without being
trivial. Such vectors are called isotropic. Clearly, they must have the
form v1 + iv2, where |v1| = |v2| and g (v1, v2) = 0. More generally, we can
have isotropic subspaces, i.e., those subspace on which gC vanishes. If,
for instance, a plane is generated by two isotropic vectors v1 + iv2 and
w1 + iw2, where v1, v2, w1, w2 are orthogonal, then the plane is isotropic.
Note that one must be in dimension ≥ 4 to have isotropic planes. We now
say that the isotropic curvatures are positive, if “sectional” curvatures on
isotropic planes are positive. This means that if v1 + iv2 and w1 + iw2

span the plane and v1, v2, w1, w2 are orthogonal, then

0 < R (v1 + iv2, w1 + iw2, w1 − iw2, v1 − iv2) .
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(a) Show that the expression R (v1 + iv2, w1 + iw2, w1 − iw2, v1 − iv2) is
always a real number.

(b) Show that if the original metric is strictly quarter pinched, i.e., all
sectional curvatures lie in an open interval of the form

(
1
4k, k

)
, then

the isotropic curvatures are positive.
(c) Show that if the sum of the two smallest eigenvalues of the origi-

nal curvature operator is positive, then the isotropic curvatures are
positive.

(28) Consider a Riemannian metric (M, g). Now scale the metric by mul-
tiplying it by a number λ2. Then we get a new Riemannian manifold(
M,λ2g

)
. Show that the new connection and (1, 3)-curvature tensor re-

main the same, but that sec, scal, and R all get multiplied by λ−2.
(29) For a (1, 1)-tensor T on a Riemannian manifold, show that if Ei is an

orthonormal basis, then

|T |2 =
∑

|T (Ei)|2 .

(30) If we have two tensors S, T of the same type (r, s), r = 0, 1, define the
inner product

g (S, T )
and show that

DXg (S, T ) = g (∇XS, T ) + g (S,∇XT ) .

If S is symmetric and T skew-symmetric show that g (S, T ) = 0.
(31) Recall that complex manifolds have complex tangent spaces. Thus we

can multiply vectors by
√−1. As a generalization of this we can define an

almost complex structure. This is a (1, 1)-tensor J such that J2 = −I.
Show that the Nijenhuis tensor:

N (X,Y ) = [J (X) , J (Y )]− J ([J (X) , Y ])− J ([X,J (Y )])− [X,Y ]

is indeed a tensor. If J comes from a complex structure then N = 0, con-
versely Newlander&Nirenberg have shown that J comes from a complex
structure if N = 0.

A Hermitian structure on a Riemannian manifold (M, g) is an almost
complex structure J such that

g (J (X) , J (Y )) = g (X,Y ) .

The Kähler form of a Hermitian structure is

ω (X,Y ) = g (J (X) , Y ) .

Show that ω is a 2-form. Show that dω = 0 iff ∇J = 0. If the Kähler form
is closed, then we call the metric a Kähler metric.




