
CHAPTER 10

Convergence

In this chapter we will give an introduction to several of the convergence ideas
for Riemannian manifolds. The goal is to understand what it means for a sequence
of Riemannian manifolds, or more generally metric spaces, to converge to a space.
In the first section we develop the weakest convergence concept: Gromov-Hausdorff
convergence. We then go on to explain some of the elliptic regularity theory we
need for some of the later developments that use stronger types of convergence. In
section 3 we develop the idea of norms of Riemannian manifolds. This is a concept
developed by the author in the hope that it will make it easier to understand
convergence theory as a parallel to the easier Hölder theory for functions (as is
explained in section 2.) At the same time, we also feel that it has made some parts of
the theory more concise. In this section we examine some stronger convergence ideas
that were developed by Cheeger and Gromov and study their relation to the norms
of manifolds. These preliminary discussions will enable us in subsequent sections to
establish the convergence theorem of Riemannian geometry and its generalizations
by Anderson and others. These convergence theorems contain the Cheeger finiteness
theorem stating that certain very general classes of Riemannian manifolds contain
only finitely many diffeomorphism types.

The idea of measuring the distance between subspaces of a given space goes
back to Hausdorff and was extensively studied in the Polish and Russian schools of
topology. The more abstract versions we use here seem to begin with Shikata’s proof
of the differentiable sphere theorem. In Cheeger’s thesis, the idea that abstract
manifolds can converge to each other is also evident. In fact, as we shall see below,
he proved his finiteness theorem by showing that certain classes of manifolds are
precompact in various topologies. After these two early forays into convergence
theory it wasn’t until Gromov bombarded the mathematical community with his
highly original approaches to geometry that the theory developed further. He
introduced a very weak kind of convergence that is simply an abstract version
of Hausdorff distance. The first use of this new idea was to prove a group-theoretic
question about the nilpotency of groups with polynomial growth. Soon after the
introduction of this weak convergence, the earlier ideas on strong convergence by
Cheeger resurfaced. There are various conflicting accounts on who did what and
when. Certainly, the Russian school, notably Nikolaev and Berestovskii, deserve a
lot of credit for their work on synthetic geometry, which could and should have been
used in the convergence context. It appears that they were concerned primarily
with studying generalized metrics in their own right. By contrast, the western
school studied convergence and thereby developed an appreciation for studying
Riemannian manifolds with little regularity, and even metric spaces.
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294 10. CONVERGENCE

1. Gromov-Hausdorff Convergence

1.1. Hausdorff Versus Gromov Convergence. At the beginning of the
twentieth century, Hausdorff introduced what we call the Hausdorff distance be-
tween subsets of a metric space. If (X, d) is the metric space and A,B ⊂ X, then
we define

d (A,B) = inf {d (a, b) : a ∈ A, b ∈ B} ,

B (A, ε) = {x ∈ X : d (x,A) < ε} ,

dH (A,B) = inf {ε : A ⊂ B (B, ε) , B ⊂ B (A, ε)} .

Thus, d (A,B) is small if some points in these sets are close, while the Hausdorff
distance dH (A,B) is small iff every point of A is close to a point in B and vice
versa. One can easily see that the Hausdorff distance defines a metric on the closed
subsets of X and that this collection is compact when X is compact.

We shall concern ourselves only with compact metric spaces and proper metric
spaces. The latter have by definition proper distance functions, i.e., all closed balls
are compact. This implies, in particular, that the spaces are separable, complete,
and locally compact.

Around 1980, Gromov extended this concept to a distance between abstract
metric spaces. If X and Y are metric spaces, then an admissible metric on the
disjoint union X  Y is a metric that extends the given metrics on X and Y. With
this we can define the Gromov-Hausdorff distance as

dG−H (X,Y ) = inf {dH (X,Y ) : admissible metrics on X  Y } .

Thus, we try to put a metric on X  Y such that X and Y are as close as possible
in the Hausdorff distance, with the constraint that the extended metric restricts to
the given metrics on X and Y. In other words, we are trying to define distances
between points in X and Y without violating the triangle inequality.

Example 53. If Y is the one-point space, then

dG−H (X,Y ) ≤ radX

= inf
y∈X

sup
x∈X

d (x, y)

= radius of smallest ball covering X.

Example 54. By defining d (x, y) = D/2, where diamX, diamY ≤ D and
x ∈ X, y ∈ Y we see that

dG−H (X,Y ) ≤ D/2.

Let (M, dG−H) denote the collection of compact metric spaces. We shall study
this class as a metric space in its own right. To justify this we must show that only
isometric spaces are within distance zero of each other.

Proposition 42. If X and Y are compact metric spaces with dG−H (X,Y ) = 0,
then X and Y are isometric.

Proof. Choose a sequence of metrics di on X  Y such that the Hausdorff
distance between X and Y in this metric is < i−1. Then we can find (possibly
discontinuous) maps

Ii : X → Y, where di (x, Ii (x)) ≤ i−1,

Ji : Y → X, where di (y, Ji (y)) ≤ i−1.
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Using the triangle inequality and that di restricted to either X or Y is the given
metric d on these spaces yields

d (Ii (x1) , Ii (x2)) ≤ 2i−1 + d (x1, x2) ,

d (Ji (y1) , Ji (y2)) ≤ 2i−1 + d (y1, y2) ,

d (x, Ji ◦ Ii (x)) ≤ 2i−1,

d (y, Ii ◦ Ji (y)) ≤ 2i−1.

We construct I : X → Y and J : Y → X as limits of these maps in the same
way the Arzela-Ascoli lemma is proved. For each x the sequence (Ii (x)) in Y has
an accumulation point since Y is compact. As in the Arzela-Ascoli lemma select
a dense countable set A ⊂ X. Using a diagonal argument select a subsequence Iij

such that Iij
(a) → I (a) for all a ∈ A. The first inequality now shows that I is

distance decreasing on A. In particular, it is uniformly continuous and therefore
has a unique extension to a map I : X → Y, which is also distance decreasing. In
a similar fashion we also get a distance decreasing map J : Y → X.

The last two inequalities imply that I and J are inverses to each other. It then
follows that both I and J are isometries. �

Both symmetry and the triangle inequality are easily established for dG−H .
Thus, (M, dG−H) is a pseudometric space, and if we consider equivalence classes of
isometric spaces it becomes a metric space. In fact, as we shall see, this metric space
is both complete and separable. First we show how spaces can be approximated by
finite metric spaces.

Example 55. Let X be compact and A ⊂ X a finite subset such that every
point in X is within distance ε of some element in A, i.e., dH (A,X) ≤ ε. Such sets
A are called ε-dense in X. It is then clear that if we use the metric on A induced by
X, then also dG−H (X,A) ≤ ε. The importance of this remark is that for any ε > 0
we can in fact find such finite subsets of X, since X is compact.

Example 56. Suppose we have ε-dense subsets

A = {x1, . . . , xk} ⊂ X,

B = {y1, . . . , yk} ⊂ Y,

with the further property that

|d (xi, xj)− d (yi, yj)| ≤ ε, 1 ≤ i, j ≤ k.

Then dG−H (X,Y ) ≤ 3ε. We already have that the finite subsets are ε-close to the
spaces, so by the triangle inequality it suffices to show that dG−H (A,B) ≤ ε. For
this we must exhibit a metric d on A  B that makes A and B ε-Hausdorff close.
Define

d (xi, yi) = ε,

d (xi, yj) = min
k
{d (xi, xk) + ε + d (yj , yk)} .

Thus, we have extended the given metrics on A and B in such a way that no points
from A and B get identified, and in addition the potential metric is symmetric. It
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then remains to check the triangle inequality. Here we must show

d (xi, yj) ≤ d (xi, z) + d (yj , z) ,

d (xi, xj) ≤ d (yk, xi) + d (yk, xj) ,

d (yi, yj) ≤ d (xk, yi) + d (xk, yj) .

It suffices to check the first two cases as the third is similar to the second. In the
first one we can assume that z = xk. Then we can find l such that

d (yj , xk) = ε + d (yj , yl) + d (xl, xk) .

Hence,

d (xi, xk) + d (yj , xk) = d (xi, xk) + ε + d (yj , yl) + d (xl, xk)
≥ d (xi, xl) + ε + d (yj , yl)
≥ d (xi, yj) .

For the second case select l,m with

d (yk, xi) = d (yk, yl) + ε + d (xl, xi) ,

d (yk, xj) = d (yk, ym) + ε + d (xm, xj) .

Then, using our assumption about the comparability of the metrics on A and B, we
have

d (yk, xi) + d (yk, xj) = d (yk, yl) + ε + d (xl, xi) + d (yk, ym) + ε + d (xm, xj)
≥ d (xk, xl) + d (xl, xi) + d (xk, xm) + d (xm, xj)
≥ d (xi, xj) .

Example 57. Suppose Mk = S3/Zk with the usual metric induced from S3 (1) .
Then we have a Riemannian submersion Mk → S2 (1/2) whose fibers have diameter
2π/k → 0 as k → ∞. Using the previous example, we can therefore easily check
that Mk → S2 (1/2) in the Gromov-Hausdorff topology.

One can similarly see that the Berger metrics
(
S3, gε

) → S2 (1/2) as ε → 0.
Notice that in both cases the volume goes to zero, but the curvatures and diameters
are uniformly bounded. In the second case the manifolds are even simply connected.
It should also be noted that the topology changes rather drastically from the sequence
to the limit, and in the first case the elements of the sequence even have mutually
different fundamental groups.

Proposition 43. The “metric space” (M, dG−H) is separable and complete.

Proof. To see that it is separable, first observe that the collection of all finite
metric spaces is dense in this collection. Now take the countable collection of all
finite metric spaces that in addition have the property that all distances are rational.
Clearly, this collection is dense as well.

To show completeness, select a Cauchy sequence {Xn} . To show convergence
of this sequence, it suffices to check that some subsequence is convergent. Select a
subsequence {Xi} such that dG−H (Xi, Xi+1) < 2−i for all i. Then select metrics
di,i+1 on Xi  Xi+1 making these spaces 2−i-Hausdorff close. Now define a metric
di,i+jon Xi  Xi+j by

di,i+j (xi, xi+j) = min
{xi+k∈Xi+k}

{
j−1∑
k=0

d (xi+k, xi+k+1)

}
.
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We have then defined a metric d on Y =  iXi with the property that in this metric
dH (Xi, Xi+j) ≤ 2−i+1. This metric space is not complete, but the “boundary” of
the completion is exactly our desired limit space. To define it, first consider

X̂ = {{xi} : xi ∈ Xi and d (xi, xj) → 0 as i, j →∞} .

This space has a pseudometric defined by

d ({xi} , {yi}) = lim
i→∞

d (xi, yi) .

Given that we are only considering Cauchy sequences {xi} , this must yield a metric
on the quotient space X, obtained by the equivalence relation

{xi} ∼ {yi} iff d ({xi} , {yi}) = 0.

Now we can extend the metric on Y to one on X  Y by declaring

d (xk, {xi}) = lim
i→∞

d (xk, xi) .

Using that dH (Xj , Xj+1) ≤ 2−j , we can for any xi ∈ Xi find a sequence {xi+j} ∈ X̂
such that xi+0 = xi and d (xi+j , xi+j+1) ≤ 2−j . Then we must have d (xi, {xi+j}) ≤
2−i+1. Thus, every Xi is 2−i+1-close to the limit space X. Conversely, for any given
sequence {xi} we can find an equivalent sequence {yi} with the property that
d (yk, {yi}) ≤ 2−k+1 for all k. Thus, X is 2−i+1-close to Xi. �

From the proof of this theorem we get the useful information that Gromov-
Hausdorff convergence can always be thought of as Hausdorff convergence. In other
words, if we know that Xi → X in the Gromov-Hausdorff sense, then after possibly
passing to a subsequence, we can assume that there is a metric on X  ( iXi)
in which Xi Hausdorff converges to X. With such a selection of a metric, it then
makes sense to say that xi → x, where xi ∈ Xi and x ∈ X. We shall often use this
without explicitly mentioning a choice of ambient metric on X  ( iXi) .

There is an equivalent way of picturing convergence. For a compact metric
space X, let C (X) denote the continuous functions on X, and L∞ (X) the bounded
measurable functions with the sup-norm (not the essential sup-norm). We know
that L∞ (X) is a Banach space. When X is bounded, we construct a map X →
L∞ (X) , by sending x to the continuous function d (x, ·) . This is usually called the
Kuratowski embedding when we consider it as a map into C (X) . From the triangle
inequality, we can easily see that this is in fact a distance-preserving map. Thus,
any compact metric space is isometric to a subset of some Banach space L∞ (X) .
The important observation now is that two such spaces L∞ (X) and L∞ (Y ) are
isometric if the spaces X and Y are Borel equivalent (there exists a measurable
bijection). Also, if X ⊂ Y, then L∞ (X) sits isometrically as a linear subspace
of L∞ (Y ) . Now recall that any compact metric space is Borel equivalent to some
subset of [0, 1] . Thus all compact metric spaces X are isometric to some subset of
L∞ ([0, 1]) . We can then define

dG−H (X,Y ) = inf dH (i (X) , j (Y )) ,

where i : X → L∞ ([0, 1]) and j : Y → L∞ ([0, 1]) are distance-preserving maps.
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1.2. Pointed Convergence. So far, we haven’t really dealt with noncompact
spaces. There is, of course, nothing wrong with defining the Gromov-Hausdorff
distance between unbounded spaces, but it will almost never be finite. In order
to change this, we should have in mind what is done for convergence of functions
on unbounded domains. There, one usually speaks about convergence on compact
subsets. To do something similar, we first define the pointed Gromov-Hausdorff
distance

dG−H ((X,x) , (Y, y)) = inf {dH (X,Y ) + d (x, y)} .

Here we take as usual the infimum over all Hausdorff distances and in addition
require the selected points to be close. The above results are still true for this
modified distance. We can then introduce the Gromov-Hausdorff topology on the
collection of proper pointed metric spaces M∗ = {(X,x, d)} in the following way:
We say that

(Xi, xi, di) → (X,x, d)

in the pointed Gromov-Hausdorff topology if for all R, the closed metric balls(
B̄ (xi, R) , xi, di

)→ (
B̄ (x,R) , x, d

)
converge with respect to the pointed Gromov-Hausdorff metric.

1.3. Convergence of Maps. We shall also have recourse to speak about
convergence of maps . Suppose we have

fk : Xk → Yk,

Xk → X,

Yk → Y .

Then we say that fk converges to f : X → Y if for every sequence xk ∈ Xk

converging to x ∈ X we have that fk (xk) → f (x) . This definition obviously
depends in some sort of way on having the spaces converge in the Hausdorff sense,
but we shall ignore this. It is also a very strong kind of convergence for if we
assume that Xk = X, Yk = Y, and fk = f, then f can converge to itself only if it
is continuous.

Note also that convergence of functions preserves such properties as being dis-
tance preserving or submetries.

Another useful observation is that we can regard the sequence of maps fk as
one continuous map

F : ( iXi) → Y  ( iYi) .

The sequence converges iff this map has an extension

X  ( iXi) → Y  ( iYi) ,

in which case the limit map is the restriction to X. Thus, a sequence is convergent
iff the map

F : ( iXi) → Y  ( iYi)

is uniformly continuous.
A sequence of functions as above is called equicontinuous, if for every ε > 0

there is an δ > 0 such that

fk (B (xk, δ)) ⊂ B (fk (xk) , ε)
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for all k and xk ∈ Xk. A sequence is therefore equicontinuous if, for example, all
the functions are Lipschitz continuous with the same Lipschitz constant. As for
standard equicontinuous sequences, we have the Arzela-Ascoli lemma:

Lemma 45. An equicontinuous family fk : Xk → Yk, where Xk → X, and
Yk → Y in the (pointed) Gromov-Hausdorff topology, has a convergent subsequence.
When the spaces are not compact, we also assume that fk preserves the base point.

Proof. The standard proof carries over without much change. Namely, first
choose dense subsets

Ai =
{
ai
1, a

i
2, . . .

} ⊂ Xi

such that the sequences {
ai

j

}→ aj ∈ X.

Then also, A = {aj} ⊂ X is dense. Next, use a diagonal argument to find a
subsequence of functions that converge on the above sequences. Finally, show that
this sequence converges as promised. �

1.4. Compactness of Classes of Metric Spaces. We now turn our atten-
tion to conditions that ensure convergence of spaces. More precisely we want some
good criteria for when a collection of (pointed) spaces is precompact (i.e., closure
is compact).

For a compact metric space X, define the capacity and covering as follows

Cap (ε) = CapX (ε) = maximum number of disjoint
ε

2
-balls in X,

Cov (ε) = CovX (ε) = minimum number of ε-balls it takes to cover X.

First, we observe that Cov (ε) ≤ Cap (ε) .To see this select disjoint balls B
(
xi,

ε
2

)
,

then consider the collection B (xi, ε). In case the latter do not cover X there ex-
ists x ∈ X − ∪B (xi, ε) . This would imply that B

(
x, ε

2

)
is disjoint from all of the

balls B
(
xi,

ε
2

)
. Thus showing that the former balls do not form a maximal disjoint

family.
Another important observation is that if two compact metric spaces X and Y

satisfy dG−H (X,Y ) < δ, then it follows from the triangle inequality that:

CovX (ε + 2δ) ≤ CovY (ε) ,

CapX (ε) ≥ CapY (ε + 2δ) .

With this information we can now characterize precompact classes of compact met-
ric spaces.

Proposition 44. (M. Gromov, 1980) For a class C ⊂ (M, dG−H) , the follow-
ing statements are equivalent:

(1) C is precompact, i.e., every sequence in C has a subsequence that is conver-
gent in (M, dG−H) .

(2) There is a function N1 (ε) : (0, α) → (0,∞) such that CapX (ε) ≤ N1 (ε)
for all X ∈ C.

(3) There is a function N2 (ε) : (0, α) → (0,∞) such that CovX (ε) ≤ N2 (ε)
for all X ∈ C.
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Proof. (1) ⇒ (2): If C is precompact, then for every ε > 0 we can find
X1, . . . , Xk ∈ C such that for any X ∈ C we have that dG−H (X,Xi) < ε

4 for some
i. Then

CapX (ε) ≤ CapXi

(ε

2

)
≤ max

i
CapXi

(ε

2

)
.

This gives a bound for CapX (ε) for each ε > 0.
(2) ⇒ (3) Use N2 = N1.
(3) ⇒ (1): It suffices to show that C is totally bounded, i.e., for each ε > 0 we

can find finitely many metric spaces X1, . . . , Xk ∈ M such that any metric space
in C is within ε of some Xi in the Gromov-Hausdorff metric. Since

CovX

(ε

2

)
≤ N

(ε

2

)
,

we know that any X ∈ C is within ε
2 of a finite subset with at most N

(
ε
2

)
elements

in it. Using the induced metric we think of these finite subsets as finite metric
spaces. Next, observe that

diamX ≤ 2δCovX (δ)

for any fixed δ. This means that these finite metric spaces have no distances that
are bigger than εN

(
ε
2

)
. The metric on such a finite metric space then consists of a

matrix (dij) , 1 ≤ i, j ≤ N
(

ε
2

)
, where each entry satisfies dij ∈

[
0, εN

(
ε
2

)]
. From

among all such finite metric spaces it is then possible to select a finite number of
them such that any of the matrices (dij) is within ε

2 of one matrix from the finite
selection of matrices. This means that the spaces are within ε

2 of each other. We
have then found the desired finite collection of metric spaces. �

As a corollary we can also get a precompactness theorem in the pointed cate-
gory.

Corollary 30. A collection C ⊂ M∗ is precompact iff for each R > 0 the
collection

{B (x,R) : B (x,R) ⊂ (X,x) ∈ C} ⊂ (M, dG−H)

is precompact.

Using the relative volume comparison theorem we can now show

Corollary 31. For any integer n ≥ 2, k ∈ R, and D > 0 we have that the
following classes are precompact:

(1) The collection of closed Riemannian n-manifolds with Ric ≥ (n− 1) k and
diam ≤ D.

(2) The collection of pointed complete Riemannian n-manifolds with Ric ≥
(n− 1) k.

Proof. It suffices to prove (2). Fix R > 0. We have to show that there can’t
be too many disjoint balls inside B (x,R) ⊂ M. To see this, suppose B (x1, ε) , . . . ,
B (x�, ε) ⊂ B (x,R) are disjoint. If B (xi, ε) is the ball with the smallest volume,
we have

� ≤ volB (x,R)
volB (xi, ε)

≤ volB (xi, 2R)
volB (xi, ε)

≤ v (n, k, 2R)
v (n, k, ε)

.

This gives the desired bound. �
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It seems intuitively clear that an n-dimensional space should have Cov (ε) ∼
ε−n as ε → 0. In fact, the Minkowski dimension of a metric space is defined as

dimX = lim sup
ε→0

log Cov (ε)
− log ε

.

This definition will in fact give the right answer for Riemannian manifolds. Some
fractal spaces might, however, have nonintegral dimension. Now observe that

v (n, k, 2R)
v (n, k, ε)

∼ ε−n.

Therefore, if we can show that covering functions carry over to limit spaces, then
we will have shown that manifolds with lower curvature bounds can only collapse
in dimension.

Lemma 46. Let C (N (ε)) be the collection of metric spaces with Cov (ε) ≤
N (ε) . Suppose N is continuous. Then C (N (ε)) is compact.

Proof. We already know that this class is precompact. So we only have to
show that if Xi → X and CovXi

(ε) ≤ N (ε) , then also CovX (ε) ≤ N (ε) . This
follows easily from

CovX (ε) ≤ CovXi
(ε− 2dG−H (X,Xi)) ≤ N (ε− 2dG−H (X,Xi)) ,

and
N (ε− 2dG−H (X,Xi)) → N (ε) as i →∞.

�

2. Hölder Spaces and Schauder Estimates

First, we shall define the Hölder norms and Hölder spaces. We will then briefly
discuss the necessary estimates we need for elliptic operators for later applications.
The standard reference for all the material here is the classic book by Courant and
Hilbert [30], especially chapter IV, and the thorough text [44], especially chapters
1-6. A more modern text that also explains how PDE’s are used in geometry,
including some of the facts we need, is [90], especially vol. III.

2.1. Hölder Spaces. Let us fix a bounded domain Ω ⊂ Rn. The bounded
continuous functions from Ω to Rk are denoted by C0

(
Ω, Rk

)
, and we use the

sup-norm, denoted by
‖u‖C0 = sup

x∈Ω
|u (x)| ,

on this space. This makes C0
(
Ω, Rk

)
into a Banach space. We wish to generalize

this so that we still have a Banach space, but in addition also take into account
derivatives of the functions. The first natural thing to do is to define Cm

(
Ω, Rk

)
as the functions with m continuous partial derivatives. Using multi-index notation,
we define

∂iu = ∂i1
1 · · · ∂in

n u =
∂lu

∂ (x1)i1 · · · ∂ (xn)in
,

where i = (i1, . . . , in) and l = |i| = i1 + · · ·+ in. Then the Cm-norm is

‖u‖Cm = sup
x∈Ω

|u (x)|+
∑

1≤|i|≤m

sup
Ω

∣∣∂iu
∣∣ .
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This norm does result in a Banach space, but the inclusions

Cm
(
Ω, Rk

) ⊂ Cm−1
(
Ω, Rk

)
do not yield closed subspaces. For instance, f (x) = |x| is in the closure of

C1 ([−1, 1] , R) ⊂ C0 ([−1, 1] , R) .

To accommodate this problem, we define for each α ∈ (0, 1] the Cα-pseudonorm
of u : Ω → Rk as

‖u‖α = sup
x,y∈Ω

|u (x)− u (y)|
|x− y|α .

When α = 1, this gives the best Lipschitz constant for u.
Define the Hölder space Cm,α

(
Ω, Rk

)
as being the functions in Cm

(
Ω, Rk

)
such that all mth-order partial derivatives have finite Cα-pseudonorm. On this
space we use the norm

‖u‖Cm,α = ‖u‖Cm +
∑
|i|=m

∥∥∂iu
∥∥

α
.

If we wish to be specific about the domain, then we write

‖u‖Cm,α,Ω .

We can now show

Lemma 47. Cm,α
(
Ω, Rk

)
is a Banach space with the Cm,α-norm. Furthermore,

the inclusion
Cm,α

(
Ω, Rk

) ⊂ Cm,β
(
Ω, Rk

)
,

where β < α is always compact, i.e., it maps closed bounded sets to compact sets.

Proof. We only need to show this in the case where m = 0; the more general
case is then a fairly immediate consequence.

First, we must show that any Cauchy sequence {ui} in Cα
(
Ω, Rk

)
converges.

Since it is also a Cauchy sequence in C0
(
Ω, Rk

)
we have that ui → u ∈ C0 in the

C0-norm. For fixed x �= y observe that

|ui (x)− ui (y)|
|x− y|α → |u (x)− u (y)|

|x− y|α .

As the left-hand side is uniformly bounded, we also get that the right-hand side is
bounded, thus showing that u ∈ Cα.

Finally select ε > 0 and N so that for i, j ≥ N and x �= y

|(ui (x)− uj (x))− (ui (y)− uj (y))|
|x− y|α ≤ ε.

If we let j →∞, this shows that

|(ui (x)− u (x))− (ui (y)− u (y))|
|x− y|α ≤ ε.

Hence ui → u in the Cα-topology.
Now for the last statement. A bounded sequence in Cα

(
Ω, Rk

)
is equicontin-

uous so the inclusion
Cα

(
Ω, Rk

) ⊂ C0
(
Ω, Rk

)
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is compact. We then use

|u (x)− u (y)|
|x− y|β

=
( |u (x)− u (y)|

|x− y|α
)β/α

· |u (x)− u (y)|1−β/α

to conclude that
‖u‖β ≤ (‖u‖α)β/α · (2 · ‖u‖C0)1−β/α

.

Therefore, a sequence that converges in C0 and is bounded in Cα, also converges
in Cβ , as long as β < α ≤ 1. �

2.2. Elliptic Estimates. We now turn our attention to elliptic operators. We
shall consider equations of the form

Lu = aij∂i∂ju + bi∂iu = f,

where aij = aji. The operator is called elliptic if the matrix
(
aij

)
is positive definite.

Throughout we assume that all eigenvalues for
(
aij

)
lie in some interval

[
λ, λ−1

]
,

λ > 0, and that the coefficients are bounded∥∥aij
∥∥

α
≤ λ−1,∥∥bi

∥∥
α
≤ λ−1.

Let us state without proof the a priori estimates, usually called the Schauder esti-
mates, or elliptic estimates, that we shall need.

Theorem 70. Let Ω ⊂ Rn be an open domain of diameter ≤ D and K ⊂ Ω
a subdomain such that d (K, ∂Ω) ≥ δ. Moreover assume α ∈ (0, 1) , then there is a
constant C = C (n, α, λ, δ,D) such that

‖u‖C2,α,K ≤ C
(
‖Lu‖Cα,Ω + ‖u‖Cα,Ω

)
,

‖u‖C1,α,K ≤ C
(
‖Lu‖C0,Ω + ‖u‖Cα,Ω

)
.

Furthermore, if Ω has smooth boundary and u = ϕ on ∂Ω, then there is a constant
C = C (n, α, λ,D) such that on all of Ω we have

‖u‖C2,α,Ω ≤ C
(
‖Lu‖Cα,Ω + ‖ϕ‖C2,α,∂Ω

)
.

One way of proving these results is to establish them first for the simplest
operator:

Lu = ∆u = δij∂i∂ju.

Then observe that a linear change of coordinates shows that we can handle operators
with constant coefficients:

Lu = ∆u = aij∂i∂ju.

Finally, Schauder’s trick is that the assumptions about the functions aij imply that
they are almost constant locally. A partition of unity type argument then finishes
the analysis.

The first-order term doesn’t cause much trouble and can even be swept under
the rug in the case where the operator is in divergence form:

Lu = aij∂i∂ju + bi∂iu = ∂i

(
aij∂ju

)
.

Such operators are particularly nice when one wishes to use integration by parts,
as we have ∫

Ω

(
∂i

(
aij∂ju

))
h = −

∫
Ω

aij∂ju∂ih
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when h = 0 on ∂Ω. This is interesting in the context of geometric operators, as the
Laplacian on manifolds in local coordinates looks like

Lu = ∆gu

=
1√

detgij

∂i

(√
detgij · gij · ∂ju

)
.

The above theorem has an almost immediate corollary.

Corollary 32. If in addition we assume that
∥∥aij

∥∥
Cm,α ,

∥∥bi
∥∥

Cm,α ≤ λ−1,
then there is a constant C = C (n,m,α, λ, δ,D) such that

‖u‖Cm+2,α,K ≤ C
(
‖Lu‖Cm,α,Ω + ‖u‖Cα,Ω

)
.

And on a domain with smooth boundary,

‖u‖Cm+2,α,Ω ≤ C
(
‖Lu‖Cm,α,Ω + ‖ϕ‖Cm+2,α,∂Ω

)
.

The Schauder estimates can be used to show that the Dirichlet problem always
has a unique solution.

Theorem 71. Suppose Ω ⊂ Rn is a bounded domain with smooth boundary,
then the Dirichlet problem

Lu = f,

u|∂Ω = ϕ

always has a unique solution u ∈ C2,α (Ω) if f ∈ Cα (Ω) and ϕ ∈ C2,α (∂Ω) .

Observe that uniqueness is an immediate consequence of the maximum princi-
ple. The existence part requires a bit more work.

2.3. Harmonic Coordinates. The above theorem makes it possible to in-
troduce harmonic coordinates on Riemannian manifolds.

Lemma 48. If (M, g) is an n-dimensional Riemannian manifold and p ∈ M,
then there is a neighborhood U � p on which we can find a harmonic coordinate
system

x =
(
x1, . . . , xn

)
: U → Rn,

i.e., a coordinate system such that the functions xi are harmonic with respect to the
Laplacian on (M, g) .

Proof. First select a coordinate system y =
(
y1, . . . , yn

)
on a neighborhood

around p such that y (p) = 0. We can then think of M as being an open subset of
Rn and p = 0. The metric g is written as

g = gij = g (∂i, ∂j) = g

(
∂

∂yi
,

∂

∂yj

)
in the standard Cartesian coordinates

(
y1, . . . , yn

)
. We must then find a coordinate

transformation y → x such that

∆xk =
1√

detgij

∂i

(√
detgij · gij · ∂jx

k
)

= 0
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To find these coordinates, fix a small ball B (0, ε) and solve the Dirichlet problem

∆xk = 0
xk = yk on ∂B (0, ε)

We have then found n harmonic functions that should be close to the original coor-
dinates. The only problem is that we don’t know if they actually are coordinates.
The Schauder estimates tell us that

‖x− y‖C2,α,B(0,ε) ≤ C

(
‖∆(x− y)‖Cα,B(0,ε) +

∥∥∥(x− y)|∂B(0,ε)

∥∥∥
C2,α,∂B(0,ε)

)
= C ‖∆y‖Cα,B(0,ε) .

If matters were arranged such that

‖∆y‖Cα,B(0,ε) → 0 as ε → 0,

then we could conclude that Dx and Dy are close for small ε. Since y does form
a coordinates system, we would then also be able to conclude that x formed a
coordinate system.

Now we just observe that if y were chosen as exponential Cartesian coordinates,
then we would have that ∂kgij = 0 at p. The formula for ∆y then shows that ∆y = 0
at p. Hence, we have

‖∆y‖Cα,B(0,ε) → 0 as ε → 0.

Finally recall that the constant C depends only on an upper bound for the diameter
of the domain aside from α, n, λ. Thus,

‖x− y‖C2,α,B(0,ε) → 0 as ε → 0.

�

One reason for using harmonic coordinates on Riemannian manifolds is that
both the Laplacian and Ricci curvature tensor have particularly nice formulae in
such coordinates.

Lemma 49. Let (M, g) be an n-dimensional Riemannian manifold and suppose
we have a harmonic coordinate system x : U → Rn. Then

(1) ∆u = 1√
detgst

∂i

(√
detgst · gij · ∂ju

)
= gij∂i∂ju.

(2) 1
2∆gij + Q (g, ∂g) = −Ricij = −Ric (∂i, ∂j) . Here Q is some universal

analytic expression that is polynomial in the matrix g, quadratic in ∂g, and a de-
nominator term depending on

√
detgij .
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Proof. (1) By definition, we have that

0 = ∆xk

=
1√

detgst
∂i

(√
detgst · gij · ∂jx

k
)

= gij∂i∂jx
k +

1√
detgst

∂i

(√
detgst · gij

)
· ∂jx

k

= gij∂iδ
k
j +

1√
detgst

∂i

(√
detgst · gij

)
· δk

j

= 0 +
1√

detgst

∂i

(√
detgst · gik

)
=

1√
detgst

∂i

(√
detgst · gik

)
.

Thus, it follows that

∆u =
1√

detgst
∂i

(√
detgst · gij · ∂ju

)
= gij∂i∂ju +

1√
detgst

∂i

(√
detgst · gij

)
· ∂ju

= gij∂i∂ju.

(2) Recall that if u is harmonic, then the Bochner formula for ∇u is

∆
(

1
2
|∇u|2

)
= |Hessu|2 + Ric (∇u,∇u) .

Here the term |Hessu|2 can be computed explicitly and depends only on the metric
and its first derivatives. In particular,

1
2
∆g

(∇xk,∇xk
)− ∣∣Hessxk

∣∣2 = Ric
(∇xk,∇xk

)
.

Polarizing this quadratic expression gives us an identity of the form

1
2
∆g

(∇xi,∇xj
)− g

(
Hessxi,Hessxj

)
= Ric

(∇xi,∇xj
)
.

Now use that

∇xk = gij∂jx
k∂i = gik∂i

to see that g
(∇xi,∇xj

)
= gij . We then have

1
2
∆gij − g

(
Hessxi,Hessxj

)
= Ric

(∇xi,∇xj
)
,

which in matrix form looks like

1
2
[
∆gij

]− [
g
(
Hessxi,Hessxj

)]
=

[
gik

] · [Ric (∂k, ∂l)] ·
[
glj

]
.

This is, of course, not the promised formula. Instead, it is a similar formula for
the inverse of (gij) . One can now use the matrix equation [gik] · [gkj

]
=

[
δj

i

]
to
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conclude that

0 = ∆
(
[gik] · [gkj

])
= [∆gik] · [gkj

]
+ 2

[∑
k

g
(∇gik,∇gkj

)]
+ [gik] · [∆gkj

]
= [∆gik] · [gkj

]
+ 2 [∇gik] · [∇gkj

]
+ [gik] · [∆gkj

]
Inserting this in the above equation yields

[∆gij ] = −2 [∇gik] · [∇gkl
] · [glj ]− [gik] · [∆gkl

] · [glj ]

= −2 [∇gik] · [∇gkl
] · [glj ]

−2 [gik] · [g (
Hessxk,Hessxl

)] · [glj ]

−2 [gik] · [gks
] · [Ric (∂s, ∂t)] ·

[
gtl

] · [glj ]

= −2 [∇gik] · [∇gkl
] · [glj ]− 2 [gik] · [g (

Hessxk,Hessxl
)] · [glj ]

−2 [Ric (∂i, ∂j)] .

Each entry in these matrices then satisfies

1
2
∆gij + Qij (g, ∂g) = −Ricij ,

Qij = −2
∑
k,l

g
(∇gik,∇gkl

) · glj

−2
∑
k,l

gik · g
(
Hessxk,Hessxl

) · glj .

�

It is interesting to apply this formula to the case of an Einstein metric, where
Ricij = (n− 1) kgij. In this case, it reads

1
2
∆gij = − (n− 1) kgij −Q (g, ∂g) .

This formula makes sense even when gij is only C1,α. Namely, multiply by some
test function, integrate, and use integration by parts to obtain a formula that uses
only first derivatives of gij . If now gij is C1,α, then the left-hand side lies in Cα; but
then our elliptic estimates show that gij must be in C2,α. This can be continued
until we have that the metric is C∞. In fact, one can even show that it is analytic.
We can therefore conclude that any metric which in harmonic coordinates is a weak
solution to the Einstein equation must in fact be smooth. We have obviously left
out a few details about weak solutions. A detailed account can be found in [90,
vol. III].

3. Norms and Convergence of Manifolds

We shall now explain how the Cm,α norm and convergence concepts for func-
tions generalize to Riemannian manifolds. We shall also see how these ideas can be
used to prove various compactness and finiteness theorems for classes of Riemannian
manifolds.
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3.1. Norms of Riemannian Manifolds. Before defining norms for mani-
folds, let us discuss which spaces should have norm zero. Clearly Euclidean space
is a candidate. But what about open subsets of Euclidean space and other flat man-
ifolds? If we agree that all open subsets of Euclidean space also have norm zero,
then any flat manifold becomes a union of manifolds with norm zero and should
therefore also have norm zero. In order to create a useful theory, it is often best to
have only one space with zero norm. Thus we must agree that subsets of Euclidean
space cannot have norm zero. To accommodate this problem, we define a family of
norms of a Riemannian manifold, i.e., we use a function N : (0,∞) → (0,∞) rather
than just a number. The number N (r) then measures the degree of flatness on the
scale of r, where the standard measure of flatness on the scale of r is the Euclidean
ball B (0, r) . For small r, all flat manifolds then have norm zero; but as r increases
we see that the space looks less and less like B (0, r) , and therefore the norm will
become positive unless the space is Euclidean space.

For the precise definition, suppose A is a subset of a Riemannian n-manifold
(M, g) . We say that the Cm,α-norm on the scale of r of A ⊂ (M, g):

‖A ⊂ (M, g)‖Cm,α,r ≤ Q,

if we can find charts

ϕs : B (0, r) ⊂ Rn ←→ Us ⊂ M

such that
(n1) Every ball B

(
p, 1

10e−Qr
)
, p ∈ A is contained in some Us.

(n2) |Dϕs| ≤ eQ on B (0, r) and
∣∣Dϕ−1

s

∣∣ ≤ eQ on Us.
(n3) r|j|+α

∥∥Djgs··
∥∥

α
≤ Q for all multi indices j with 0 ≤ |j| ≤ m.

(n4)
∥∥ϕ−1

s ◦ ϕt

∥∥
Cm+1,α ≤ (10 + r) eQ.

Here gs·· is the matrix of functions of metric coefficients in the ϕs coordinates
regarded as a matrix on B (0, r) .

First, observe that we think of the charts as maps from the fixed space B (0, r)
into the manifold. This is in order to have domains for the functions which do not
refer to M itself. This simplifies some technical issues and makes it more clear that
we are trying to measure how different the manifolds are from the standard objects,
namely, Euclidean balls. The first condition says that we have a Lebesgue number
for the covering of A. The second condition tells us that in the chosen coordinates
the metric coefficients are bounded from below and above (in particular, we have
uniform ellipticity for the Laplacian). The third condition gives us bounds on
the derivatives of the metric. The fourth condition is included to ensure that the
bounds for the metric in individual coordinates don’t vary drastically in places
where coordinates overlap. This last condition can be eliminated in many cases.
We shall give another norm concept below that does this.

It will be necessary on occasion to work with Riemannian manifolds that are
not smooth. The above definition clearly only requires that the metric be Cm,α in
the coordinates we use, and so there is no reason to assume more about the metric.
Some of the basic constructions, like exponential maps, then come into question,
and indeed, if m ≤ 1 these items might not be well-defined. We shall therefore have
to be a little careful in some situations.

When it is clear from the context where A is, we shall merely write ‖A‖Cm,α,r ,

or for the whole space, ‖(M, g)‖Cm,α,r or ‖M‖Cm,α,r . If A is precompact in M, then
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it is clear that the norm is bounded for all r. For unbounded domains or manifolds
the norm might not be finite.

Example 58. Suppose (M, g) is a complete flat manifold. Then ‖(M, g)‖Cm,α,r

= 0 for all r ≤ inj (M, g) . In particular, ‖(Rn, can)‖Cm,α,r = 0 for all r. We shall
later see that these properties characterize flat manifolds and Euclidean space.

3.2. Convergence of Riemannian Manifolds. Now for the convergence
concept that relates to this new norm. As we can’t subtract manifolds, we have to
resort to a different method for defining this. If we fix a closed manifold M, or more
generally a precompact subset A ⊂ M, then we say that a sequence of functions on
A converges in Cm,α, if they converge in the charts for some fixed finite covering
of coordinate patches. This definition is clearly independent of the finite covering
we choose. We can then more generally say that a sequence of tensors converges in
Cm,α if the components of the tensors converge in these patches. This then makes
it possible to speak about convergence of Riemannian metrics on compact subsets
of a fixed manifold.

A sequence of pointed complete Riemannian manifolds is said to converge in
the pointed Cm,α topology (Mi, pi, gi) → (M,p, g) if for every R > 0 we can find
a domain Ω ⊃ B (p,R) ⊂ M and embeddings Fi : Ω → Mi for large i such that
Fi (Ω) ⊃ B (pi, R) and F ∗

i gi → g on Ω in the Cm,α topology. It is easy to see that
this type of convergence implies pointed Gromov-Hausdorff convergence. When
all manifolds in question are closed, then we have that the maps Fi are diffeo-
morphisms. This means that for closed manifolds we can speak about unpointed
convergence. In this case, convergence can therefore only happen if all the mani-
folds in the tail end of the sequence are diffeomorphic. In particular, we have that
classes of closed Riemannian manifolds that are precompact in some Cm,α topology
contain at most finitely many diffeomorphism types.

A warning about this kind of convergence is in order here. Suppose we have
a sequence of metrics gi on a fixed manifold M. It is possible that these metrics
might converge in the sense just defined, without converging in the traditional sense
of converging in some fixed coordinate systems. To be more specific, let g be the
standard metric on M = S2. Now define diffeomorphisms Ft coming from the flow
corresponding to the vector field that is 0 at the north and south poles and otherwise
points in the direction of the south pole. As t increases, the diffeomorphisms will
try to map the whole sphere down to a small neighborhood of the south pole. The
metrics F ∗

t g will therefore in some fixed coordinates converge to 0 (except at the
poles). They can therefore not converge in the classical sense. If, however, we pull
these metrics back by the diffeomorphisms F−t, then we just get back to g. Thus
the sequence (M, gt) , from the new point of view we are considering, is a constant
sequence. This is really the right way to think about this as the spaces

(
S2, F ∗

t g
)

are all isometric as abstract metric spaces.

3.3. Properties of the Norm. Let us now consider some of the elementary
properties of norms and their relation to convergence.

Proposition 45. If A ⊂ (M, g) is precompact, then
(1) ‖A ⊂ (M, g)‖Cm,α,r =

∥∥A ⊂ (
M,λ2g

)∥∥
Cm,α,λr

for all λ > 0.

(2) The function r → ‖A ⊂ (M, g)‖Cm,α,r is continuous and converges to 0 as
r → 0.
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(3) Suppose (Mi, pi, gi) → (M,p, g) in Cm,α. Then for a precompact domain
A ⊂ M we can find precompact domains Ai ⊂ Mi such that

‖Ai‖Cm,α,r → ‖A‖Cm,α,r for all r > 0

When all the manifolds are closed, we can let A = M and Ai = Mi.

Proof. (1) If we change the metric g to λ2g, then we can change the charts
ϕs : B (0, r) → M to

ϕλ
s (x) = ϕs

(
λ−1x

)
: B (0, λr) → M.

Since we scale the metric at the same time, the conditions n1-n4 will still hold with
the same Q.

(2) Suppose, as above, we change the charts

ϕs : B (0, r) → M

to
ϕλ

s (x) = ϕs

(
λ−1x

)
: B (0, λr) → M,

without changing the metric g. If we assume that

‖A ⊂ (M, g)‖Cm,α,r < Q,

then
‖A ⊂ (M, g)‖Cm,α,λr ≤ max

{
Q + |log λ| , Q · λ2

}
.

Denoting
N (r) = ‖A ⊂ (M, g)‖Cm,α,r ,

we therefore obtain

N (λr) ≤ max
{
N (r) + |log λ| , N (r) · λ2

}
.

By letting λ = ri

r , where ri → r, we see that this implies

lim supN (ri) ≤ N (r) .

Conversely, we have that

N (r) = N

(
r

ri
ri

)
≤ max

{
N (ri) +

∣∣∣∣log
r

ri

∣∣∣∣ , N (ri) ·
(

r

ri

)2
}

.

So

N (r) ≤ lim inf N (ri)

= lim inf max

{
N (ri) +

∣∣∣∣log
r

ri

∣∣∣∣ , N (ri) ·
(

r

ri

)2
}

.

This shows that N (r) is continuous. To see that N (r) → 0 as r → 0, just observe
that any coordinate system around a point p ∈ M can, after a linear change,
be assumed to have the property that the metric gij = δij at p. In particular
|Dϕ|p| =

∣∣Dϕ−1|p
∣∣ = 1. Using these coordinates on sufficiently small balls will

therefore give the desired charts.
(3) We fix r > 0 in the definition of ‖A ⊂ (M, g)‖Cm,α,r. For the given A ⊂ M,

pick a domain Ω ⊃ A such that for large i we have embeddings Fi : Ω → Mi with
the property that: F ∗

i gi → g in Cm,α on Ω. Define Ai = Fi (A) .
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For Q > ‖A ⊂ (M, g)‖Cm,α,r , choose appropriate charts ϕs : B (0, r) → M
covering A, with the properties n1-n4. Then define charts in Mi by

ϕi,s = Fi ◦ ϕs : B (0, r) → Mi.

Condition n1 will hold just because we have Gromov-Hausdorff convergence. Con-
dition n4 is trivial. Conditions n2 and n3 will hold for constants Qi → Q, since
F ∗

i gi → g in Cm,α. We can therefore conclude that

lim sup ‖Ai‖Cm,α,r ≤ ‖A‖Cm,α,r .

On the other hand, for large i and Q > ‖Ai‖Cm,α,r , we can take charts ϕi,s :
B (0, r) → Mi and then pull them back to M by defining ϕs = F−1

i ◦ϕi,s. As before,
we then have

‖A‖Cm,α,r ≤ Qi,

where Qi → Q. This implies

lim inf ‖Ai‖Cm,α,r ≥ ‖A‖Cm,α,r ,

and hence the desired result. �

3.4. Compact Classes of Riemannian Manifolds. We are now ready to
prove the result that is our manifold equivalent of the Arzela-Ascoli lemma. This
theorem is essentially due to J. Cheeger, although our use of norms makes the
statement look different.

Theorem 72. (Fundamental Theorem of Convergence Theory) For given Q >
0, n ≥ 2, m ≥ 0, α ∈ (0, 1], and r > 0 consider the class Mm,α(n,Q, r) of complete,
pointed Riemannian n-manifolds (M,p, g) with ‖(M, g)‖Cm,α,r ≤ Q. Mm,α(n,Q, r)
is compact in the pointed Cm,β topology for all β < α.

Proof. We proceed in stages. First, we make some general comments about
the charts we use. We then show that M = Mm,α(n,Q, r) is pre-compact in
the pointed Gromov-Hausdorff topology. Next we prove that M is closed in the
Gromov-Hausdorff topology. The last and longest part is then devoted to the
compactness statement.

Setup: First fix K > Q. Whenever we select an M ∈ M, we shall assume
that it comes equipped with an atlas of charts satisfying n1-n4 with K in place
of Q. Thus we implicitly assume that all charts under consideration belong to
these atlases. We will consequently only prove that limit spaces (M,p, g) satisfy
‖(M, g)‖Cm,α,r ≤ K. But as K was arbitrary, we still get that (M,p, g) ∈M.

(1) Every chart ϕ : B(0, r) → U ⊂ M ∈M satisfies
(a) d(ϕ(x1), ϕ(x2)) ≤ eK |x1 − x2|
(b) d(ϕ(x1), ϕ(x2)) ≥ min{e−K |x1 − x2|, e−K(2r − |x1| − |x2|)}.

Here, d is distance measured in M, and | · | is the usual Euclidean norm.
The condition |Dϕ| ≤ eK , together with convexity of B(0, r), immediately

implies the first inequality. For the other, first observe that if any segment from x1

to x2 lies in U , then |Dϕ−1| ≤ eK implies, that

d(ϕ(x1), ϕ(x2)) ≥ e−K |x1 − x2|.
So we may assume that ϕ(x1) and ϕ(x2) are joined by a segment σ : [0, 1] → M
that leaves U . Split σ into σ : [0, t1) → U and σ : (t2, 1) → U such that σ(ti) /∈ U .
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Then we clearly have

d(ϕ(x1), ϕ(x2)) = L(σ) ≥ L(σ|[0,t1)) + L(σ|(t2,1])

≥ e−K(L(ϕ−1 ◦ σ|[0,t1)) + L(ϕ−1 ◦ σ|(t2,1]))

≥ e−K(2r − |x1| − |x2|).
The last inequality follows from the fact that ϕ−1 ◦σ(0) = x1 and ϕ−1 ◦σ(1) = x2,
and that ϕ−1 ◦ σ(t) approaches the boundary of B(0, r) as t ↗ t1 or t ↘ t2.

(2) Every chart
ϕ : B(0, r) → U ⊂ M ∈M,

and hence any δ-ball δ = 1
10e−Kr in M can be covered by at most N balls of radius

δ/4. Here, N depends only on n, K, r.
Clearly, there exists an N(n,K, r) such that B(0, r) can be covered by at most

N balls of radius e−K ·δ/4. Since ϕ : B(0, r) → U is a Lipschitz map with Lipschitz
constant ≤ eK , we get the desired covering property.

(3) Every ball B(x, � · δ/2) ⊂ M can be covered by ≤ N � balls of radius δ/4.
For � = 1 we just proved this. Suppose we know that B(x, � · δ/2) is covered

by B(x1, δ/4), . . . , B(xN� , δ/4). Then

B(x, � · δ/2 + δ/2) ⊂ ∪B(xi, δ).

Now each B(xi, δ) can be covered by ≤ N balls of radius δ/4, and hence B(x, (� +
1)δ/2) can be covered by ≤ N ·N � = N �+1 balls of radius δ/4.

(4) M is precompact in the pointed Gromov-Hausdorff topology.
This is equivalent to asserting, that for each R > 0 the family of metric balls

B(p,R) ⊂ (M,p, g) ∈M
is precompact in the Gromov-Hausdorff topology. This claim is equivalent to show-
ing that we can find a function N(ε) = N(ε,R,K, r, n) such that each B(p,R) can
contain at most N(ε) disjoint ε-balls. To check this, let B(x1, ε), . . . , B(xs, ε) be
a collection of disjoint balls in B(p,R). Suppose that

� · δ/2 < R ≤ (� + 1)δ/2.

Then

volB(p,R) ≤ (N (�+1)) · (maximal volume of
δ

4
-ball)

≤ (N (�+1)) · (maximal volume of chart)

≤ N (�+1) · enK · volB(0, r)
≤ V (R) = V (R,n,K, r).

As long as ε < r each B(xi, ε) lies in some chart ϕ : B(0, r) → U ⊂ M whose
preimage in B(0, r) contains an e−K · ε-ball. Thus

volB(pi, ε) ≥ e−2nKvolB(0, ε).

All in all, we get

V (R) ≥ volB(p,R)

≥
∑

volB(pi, ε)

≥ s · e−2nK · volB(0, ε).
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Thus,
s ≤ N(ε) = V (R) · e2nK · (volB(0, ε))−1.

Now select a sequence (Mi, gi, pi) in M. From the previous considerations
we can assume that (Mi, gi, pi) → (X, d, p) converge to some metric space in the
Gromov-Hausdorff topology. It will be necessary in many places to pass to subse-
quences of (Mi, gi, pi) using various diagonal processes. Whenever this happens, we
shall not reindex the family, but merely assume that the sequence was chosen to
have the desired properties from the beginning. For each (Mi, pi, gi) choose charts

ϕis : B(0, r) → Uis ⊂ Mi

satisfying n1-n4. We can furthermore assume that the index set {s} = {1, 2, 3, 4, · · · }
is the same for all Mi, that pi ∈ Ui1, and that the balls B (pi, � · δ/2) are cov-
ered by the first N � charts. Note that these N � charts will then be contained in
B̄

(
pi, � · δ/2 + [eK + 1]δ

)
. Finally, for each � the sequence B̄ (pi, � · δ/2) converges

to B̄ (p, � · δ/2) ⊂ X, so we can choose a metric on the disjoint union

Y� =

(
B̄ (p, � · δ/2)

∐( ∞∐
i=1

B̄ (pi, � · δ/2)

))
such that

pi → p,

B̄ (pi, � · δ/2) → B̄ (p, � · δ/2)

in the Hausdorff distance inside this metric space.
(5) (X, d, p) is a Riemannian manifold of class Cm,α with norm ≤ K.
Obviously, we need to find bijections

ϕs : B(0, r) → Us ⊂ X

satisfying n1-n4. For each s, consider the maps

ϕis : B(0, r) → Uis ⊂ Y�′

for some fixed �′ >> �. From 1 we have that this is a family of equicontinuous maps
into the compact space Y�′ . The Arzela-Ascoli lemma shows that this sequence must
subconverge (in the C0 topology) to a map

ϕs : B(0, r) ⊂ Y�′

that also has Lipschitz constant eK . Furthermore, the inequality

d(ϕ(x1), ϕ(x2)) ≥ min{e−K |x1 − x2|, e−K(2r − |x1| − |x2|)}
will also hold for this map, as it holds for all the ϕis maps. In particular, ϕs

is one-to-one. Finally, since Uis ⊂ B̄ (pi, �
′) and B̄ (pi, �

′) Hausdorff converges to
B̄ (p, �′) ⊂ X, we see that

ϕs(B(0, r)) = Us ⊂ X.

A simple diagonal argument yields that we can pass to a subsequence of (Mi, gi, pi)
having the property that ϕis → ϕs for all s. In this way, we have constructed
(topological) charts

ϕs : B(0, r) → Us ⊂ X,

and we can easily check that they satisfy n1. Since the ϕs also satisfy 1(a) and
1(b), they would also satisfy n2 if they were differentiable (equivalent to saying that
the transition functions are C1). Now the transition functions ϕ−1

is ◦ ϕit approach
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ϕ−1
s ◦ ϕt, because ϕis → ϕs. Note that these transition functions are not defined

on the same domains, but we do know that the domain for ϕ−1
s ◦ ϕt is the limit of

the domains for ϕ−1
is ◦ ϕit, so the convergence makes sense on all compact subsets

of the domain of ϕ−1
s ◦ ϕt. Now,

‖ϕ−1
is ◦ ϕit‖Cm+1,α ≤ (10 + r) eK ,

so a further application (and subsequent passage to subsequences) of Arzela-Ascoli
tells us that

‖ϕ−1
s ◦ ϕt‖Cm+1,α ≤ (10 + r) eK ,

and that we can assume ϕ−1
is ◦ ϕit → ϕ−1

s ◦ ϕt in the Cm+1,β topology. This then
establishes n4. We now construct a compatible Riemannian metric on X that
satisfies n2 and n3. For each s, consider the metric gis = gis·· written out in its
components on B(0, r) with respect to the chart ϕis. Since all of the gis·· satisfy n2
and n3, we can again use Arzela-Ascoli to insure that also gis·· → gs·· on B(0, r) in
the Cm,β topology to functions gs·· that also satisfy n2 and n3. The local “tensors”
gs·· satisfy the right change of variables formulae to make them into a global tensor
on X. This is because all the gis·· satisfy these properties, and everything we want
to converge, to carry these properties through to the limit, also converges. Recall
that the rephrasing of n2 gives the necessary C0 bounds and also shows that gs·· is
positive definite. We have now exhibited a Riemannian structure on X such that
the

ϕs : B(0, r) → Us ⊂ X

satisfy n1-n4 with respect to this structure. This, however, does not guarantee that
the metric generated by this structure is identical to the metric we got from X
being the pointed Gromov-Hausdorff limit of (Mi, pi, gi). However, since Gromov-
Hausdorff convergence implies that distances converge, and we know at the same
time that the Riemannian metric converges locally in coordinates, it follows that
the limit Riemannian structure must generate the “correct” metric, at least locally,
and therefore also globally.

(6) (Mi, pi, gi) → (X, p, d) = (X, p, g) in the pointed Cm,β topology.
We assume that the setup is as in 5, where charts ϕis, transitions ϕ−1

is ◦ ϕit,
and metrics gis·· converge to the same items in the limit space. First, let us agree
that two maps F1, F2 between subsets in Mi and X are Cm+1,β close if all the
coordinate compositions ϕ−1

s ◦ F1 ◦ ϕit, ϕ−1
s ◦ F2 ◦ ϕit are Cm+1,β close. Thus, we

have a well-defined Cm+1,β topology on maps from Mi to X. Our first observation
is that

fis = ϕis ◦ ϕ−1
s : Us → Uis,

fit = ϕit ◦ ϕ−1
t : Ut → Uit

“converge to each other” in the Cm+1,β topology. Furthermore,

(fis)∗gi|Uis
→ g|Us

in the Cm,β topology. These are just restatements of what we already know. In
order to finish the proof, we construct maps

Fi� : Ω� =
�⋃

s=1

Us → Ωi� =
�⋃

s=1

Uis
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that are closer and closer to the fis, s = 1, . . . , � maps (and therefore all fis) as
i → ∞. We will construct Fi� by induction on � and large i depending on �. For
this purpose we shall need a partition of unity (λs) on X subordinate to (Us). We
can find such a partition, since the covering (Us) is locally finite by choice, and we
can furthermore assume that λs is Cm+1,β .

For � = 1 simply define Fi1 = fi1.
Suppose we have Fi� : Ω� → Ωi� for large i that are arbitrarily close to fis, s =

1, . . . , � as i → ∞. If U�+1 ∩ Ω� = ∅, then we just define Fi�+1 = Fi� on Ωi�, and
Fi�+1 = fi�+1 on U�+1. In case U�+1 ⊂ Ω�, we simply let Fi�+1 = Fi�. Otherwise,
we know that Fi� and fi�+1 are as close as we like in the Cm+1,β topology as i →∞.
So the natural thing to do is to average them on U�+1. Define Fi�+1 on U�+1 by

Fi�+1(x)

= ϕi�+1 ◦
(( ∞∑

s=�+1

λs(x)

)
· ϕ−1

i�+1 ◦ fi�+1(x) +

(
�∑

s=1

λs(x)

)
· ϕ−1

i�+1 ◦ Fi�(x)

)
= ϕi�+1 ◦ (µ1(x) · ϕ−1

i�+1 ◦ fi�+1(x) + µ2(x) · ϕ−1
i�+1 ◦ Fi�(x)).

This map is clearly well-defined on U�+1, since µ2(x) = 0 on U�+1 − Ω�. Moreover,
as µ1(x) = 0 on Ω� it is a smooth Cm+1,β extension of Fi�. Now consider this map
in coordinates

ϕ−1
i�+1 ◦ Fi�+1 ◦ ϕ�+1(y) =

(
µ1 ◦ ϕ�+1(y)

) · ϕ−1
�+1 ◦ fi�+1 ◦ ϕ�+1(y)

+
(
µ2 ◦ ϕ�+1(y)

) · ϕ−1
i�+1 ◦ Fi� ◦ ϕ�+1(y)

= µ̃1(y)F1(y) + µ̃2(y)F2(y).

Then

‖µ̃1F1 + µ̃2F2 − F1‖Cm+1,β = ‖µ̃1(F1 − F1) + µ̃2(F2 − F1)‖Cm+1,β

≤ ‖µ̃2‖k+1+β · ‖F2 − F1‖Cm+1,β .

This inequality is valid on all of B(0, r), despite the fact that F2 is not defined on
all of B(0, r), since

µ̃1 · F1 + µ̃2 · F2 = F1

on the region where F2 is undefined. By assumption

‖F2 − F1‖Cm+1,β → 0 as i →∞,

so Fi�+1 is Cm+1,β-close to fis, s = 1, . . . , � + 1 as i →∞.
Finally we see that the closeness of Fi� to the coordinate charts shows that it

is an embedding on all compact subsets of the domain. �

Corollary 33. The subclasses of Mm,α(n,Q, r), where the elements in addi-
tion satisfy diam ≤ D, respectively vol ≤ V , are compact in the Cm,β topology. In
particular, they contain only finitely many diffeomorphism types.

Proof. We use notation as in the fundamental theorem. If diam(M, g, p) ≤
D, then clearly M ⊂ B (p, k · δ/2) for k > D · 2/δ. Hence, each element in
Mm,α(n,Q, r) can be covered by ≤ Nk charts. Thus, Cm,β-convergence is actually
in the unpointed topology, as desired.

If instead, volM ≤ V, then we can use part 4 in the proof to see that we can
never have more than

k = V · e2nK · (volB(0, ε))−1
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disjoint ε-balls. In particular, diam ≤ 2ε · k, and we can use the above argument.
Finally, compactness in any Cm,β topology implies that the class cannot contain

infinitely many diffeomorphism types. �

Corollary 34. The norm ‖A ⊂ (M, g)‖Cm,α,r for compact A is always realized
by some charts ϕs : B(0, r) → Us satisfying n1-n4, with ‖(M, g)‖Cm,α,r in place of
Q.

Proof. Choose appropriate charts

ϕQ
s : B(0, r) → UQ

s ⊂ M

for each Q > ‖(M, g)‖Cm,α,r, and let Q → ‖(M, g)‖Cm,α,r. If the charts are chosen
to conform with the proof of the fundamental theorem, we will obviously get some
limit charts with the desired properties. �

Corollary 35. M is a flat manifold if ‖(M, g)‖Cm,α,r = 0 for some r, and
M is Euclidean space with the canonical metric if ‖(M, g)‖Cm,α,r = 0 for all r > 0.

Proof. The proof works even if m = α = 0. As in the previous corollary
and part (1) of the theorem, M can be covered by charts ϕ : B(0, r) → U ⊂ M
satisfying

(a) d(ϕ(x1), ϕ(x2)) ≤ eQ|x1 − x2|
(b) d(ϕ(x1), ϕ(x2)) ≥ min{e−Q|x1 − x2|, e−Q(2r − |x1| − |x2|)}.

for each Q > 0. By letting Q → 0, we can then use Arzela-Ascoli to find a covering
of charts such that

(a) d(ϕ(x1), ϕ(x2)) ≤ |x1 − x2|
(b) d(ϕ(x1), ϕ(x2)) ≥ min{|x1 − x2|, (2r − |x1| − |x2|)}.

This shows that the maps ϕ are locally distance preserving and injective. Hence
they are distance preserving maps. This shows that they are also Riemannian
isometries. This finishes the proof. �

3.5. Alternative Norms. Finally, we should mention that all properties of
this norm concept would not change if we changed n1-n4 to say

(n1’) Us has Lebesgue number f1(n,Q, r).
(n2’) |Dϕs|,

∣∣Dϕ−1
s

∣∣ ≤ f2(n,Q).
(n3’) r|j|+α · ‖∂jgs··‖α ≤ f3(n,Q), 0 ≤ |j| ≤ m.
(n4’) ‖ϕ−1

s ◦ ϕt‖Cm+1,α ≤ f4(n,Q, r).
As long as the fis are all continuous, f1(n, 0, r) = 0, and f2(n, 0) = 1. The

key properties we want to preserve are continuity of ‖(M, g)‖ with respect to r,
the fundamental theorem, and the characterization of flat manifolds and Euclidean
space.

Another interesting thing happens if in the definition of ‖(M, g)‖Cm,α,r we let
m = α = 0. Then n3 no longer makes sense, because α = 0, but aside from that,
we still have a C0-norm concept. Note also that n4 is an immediate consequence
of n2 in this case. The class M0(n,Q, r) is now only precompact in the pointed
Gromov-Hausdorff topology, but the characterization of flat manifolds is still valid.
The subclasses with bounded diameter, or volume, are also only precompact with
respect to the Gromov-Hausdorff topology, and the finiteness of diffeomorphism
types apparently fails. It is, however, possible to say more. If we investigate the
proof of the fundamental theorem, we see that the problem lies in constructing
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the maps Fik : Ωk → Ωik, because we now have convergence of the coordinates
only in the C0 (actually Cα, α < 1) topology, and so the averaging process fails as
it is described. We can, however, use a deep theorem from topology about local
contractibility of homeomorphism groups (see [35]) to conclude that two C0-close
topological embeddings can be “glued” together in some way without altering them
too much in the C0 topology. This makes it possible to exhibit topological embed-
dings Fik : Ω ↪→ Mi such that the pullback metrics (not Riemannian metrics)
converge. As a consequence, we see that the classes with bounded diameter or vol-
ume contain only finitely many homeomorphism types. This is exactly the content
of the original version of Cheeger’s finiteness theorem, including the proof as we
have outlined it. But, as we have pointed out earlier, Cheeger also considered the
easier to prove finiteness theorem for diffeomorphism types given better bounds on
the coordinates.

Notice that we cannot easily use the fact that the charts converge in Cα(α < 1).
But it is possible to do something interesting along these lines. There is an even
weaker norm concept called the Reifenberg norm which is related to the Gromov-
Hausdorff distance. For a metric space (X, d) we define the n-dimensional norm on
the scale of r as

‖(X, d)‖n
r =

1
r

sup
p∈X

dG−H (B (p, r) , B (0, r)) ,

where B (0, R) ⊂ Rn. The the r−1 factor insures that we don’t have small distance
between B (p, r) and B (0, r) just because r is small. Note also that if (Xi, di) →
(X, d) in the Gromov-Hausdorff topology then

‖(Xi, di)‖n
r → ‖(X, d)‖n

r

for fixed n, r.
For an n-dimensional Riemannian manifold one sees immediately that

lim
r→0

‖(M, g)‖n
r → 0 = 0.

Cheeger and Colding have proven a converse to this (see [25]). There is an ε (n) > 0
such that if ‖(X, d)‖n

r ≤ ε (n) for all small r, then X is in a weak sense an n-
dimensional Riemannian manifold. Among other things, they show that for small
r the α-Hölder distance between B (p, r) and B (0, r) is small. Here the α-Hölder
distance dα (X,Y ) between metric spaces is defined as the infimum of

log max

{
sup

x1 �=x2

d (F (x1) , F (x2))
(d (x1, x2))

α , sup
y1 �=y2

d
(
F−1 (y1) , F−1 (y2)

)
(d (y1, y2))

α

}
,

where F : X → Y runs over all homeomorphisms. They also show that if (Mi, gi) →
(X, d) in the Gromov-Hausdorff distance and ‖(Mi, gi)‖n

r ≤ ε (n) for all i and small
r, then (Mi, gi) → (X, d) in the Hölder distance. In particular, all of the Mis have
to be homeomorphic (and in fact diffeomorphic) to X for large i.

This is enhanced by an earlier result of Colding (see [29]) stating that for a
Riemannian manifold (M, g) with Ric ≥ (n− 1) k we have that ‖(M, g)‖n

r is small
iff and only if

volB (p, r) ≥ (1− δ) volB (0, r)
for some small δ. Relative volume comparison tells us that the volume condition
holds for all small r if it holds for just one r. Thus the smallness condition for the
norm holds for all small r provided we have the volume condition for just some r.
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4. Geometric Applications

We shall now study the relationship between volume, injectivity radius, sec-
tional curvature, and the norm.

First let us see what exponential coordinates can do for us. Let (M, g) be a
Riemannian manifold with |secM | ≤ K and injM ≥ i0. On B (0, i0) we have from
chapter 6 that

max
{∣∣D expp

∣∣ , ∣∣D exp−1
p

∣∣} ≤ exp (f (n,K, i0))

for some function f (n,K, i0) that depends only on the dimension, K, and i0. More-
over, as K → 0 we have that f (n,K, i0) → 0. This implies

Theorem 73. For every Q > 0 there exists r > 0 depending only on i0 and
K such that any complete (M, g) with |secM | ≤ K, injM ≥ i0 has ‖(M, g)‖C0,r ≤
Q. Furthermore, if (Mi, pi, gi) satisfy injMi ≥ i0 and |secMi| ≤ Ki → 0, then
a subsequence will converge in the pointed Gromov-Hausdorff topology to a flat
manifold with inj ≥ i0.

The proof follows immediately from our previous constructions.
This theorem does not seem very satisfactory, because even though we have

assumed a C2 bound on the Riemannian metric, we get only a C0 bound. To get
better bounds under the same circumstances, we must look for different coordinates.
Our first choice for alternative coordinates uses distance functions, i.e., distance
coordinates.

Lemma 50. Given a Riemannian manifold (M, g) with inj ≥ i0, |sec| ≤ K,
and p ∈ M , then the distance function d(x) = d(x, p) is smooth on B (p, i0) , and
the Hessian is bounded in absolute value on the annulus B (p, i0)−B (p, i0/2) by a
function F (n,K, i0) .

Proof. From chapter 6 we know that in polar coordinates
√

Kcot
(√

Kr
)

gr ≤ Hessd ≤
√

Kcoth
(√

Kr
)

gr.

Thus, we get the desired estimate as long as r ∈ (i0/2, i0) . �

Now fix (M, g), p ∈ M, as in the lemma, and choose an orthonormal basis
e1, . . . , en for TpM . Then consider the geodesics γi(t) with γi(0) = p, γ̇i(0) = ei,
and together with those, the distance functions

di(x) = d

(
x, γi

(
i0 ·

(
4
√

K
)−1

))
.

These distance functions will then have uniformly bounded Hessians on B(p, δ), δ =

i0 ·
(
8
√

K
)−1

. Define

ϕ(x) = (d1(x), . . . , dn(x))

and recall that gij = g (∇di,∇dj).

Theorem 74. (The Convergence Theorem of Riemannian Geometry) Given
i0, K > 0, there exist Q, r > 0 such that any (M, g) with

inj ≥ i0,

|sec| ≤ K
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has ‖(M, g)‖C1,r ≤ Q. In particular, this class is compact in the pointed Cα topology
for all α < 1.

Proof. The inverse of ϕ is our potential chart. First, observe that gij(p) =
δij , so the uniform Hessian estimate shows that |Dϕp| ≤ eQ on B (p, ε) and∣∣∣(Dϕp

)−1
∣∣∣ ≤ eQ on B (0, ε) , where Q, ε depend only on i0,K. The proof of the

inverse function theorem then tells us that there is an ε̂ > 0 depending only on Q,n
such that ϕ : B(0, ε̂) → Rn is one-to-one. We can then easily find r such that

ϕ−1 : B(0, r) → Up ⊂ B(p, ε)

satisfies n2. The conditions n3 and n4 now immediately follow from the Hessian
estimates, except, we might have to increase Q somewhat. Finally, n1 holds since
we have coordinates centered at every p ∈ M . �

Notice that Q cannot be chosen arbitrarily small, as our Hessian estimates
cannot be improved by going to smaller balls. This will be taken care of in the next
section by using a different set of coordinates. This convergence result, as stated,
was first proven by M. Gromov. The reader should be aware that what Gromov
refers to as a C1,1-manifold is in our terminology a manifold with ‖(M,h)‖C0,1,r <
∞, i.e., C0,1-bounds on the Riemannian metric.

Using the diameter bound in positive curvature and Klingenberg’s estimate for
the injectivity radius from chapter 6 we get

Corollary 36. (J. Cheeger, 1967) For given n ≥ 1 and k > 0, the class of
Riemannian 2n-manifolds with k ≤ sec ≤ 1 is compact in the Cα topology and
consequently contains only finitely many diffeomorphism types.

A similar result was also proven by A. Weinstein at the same time. The hy-
potheses are the same, but Weinstein only showed that the class contained finitely
many homotopy types.

Our next result shows that one can bound the injectivity radius provided that
one has lower volume bounds and bounded curvature. This result is usually referred
to as Cheeger’s lemma. With a little extra work one can actually prove this lemma
for complete manifolds. This requires that we work with pointed spaces and also
to some extent incomplete manifolds as it isn’t clear from the beginning that the
complete manifolds in question have global lower bounds for the injectivity radius.

Lemma 51. (J. Cheeger, 1967) Given n ≥ 2 and v,K ∈ (0,∞) and a compact
n-manifold (M, g) with

|sec| ≤ K,

volB (p, 1) ≥ v,

for all p ∈ M , then injM ≥ i0, where i0 depends only on n,K, and v.

Proof. The proof goes by contradiction using the previous theorem. So as-
sume we have (Mi, gi) with injMi → 0 and satisfying the assumptions of the lemma.
Find pi ∈ Mi such that injpi

= inj (Mi, gi) , and consider the pointed sequence
(Mi, pi, ḡi), where ḡi = (injMi)−2gi is rescaled so that

inj(Mi, ḡi) = 1,

|sec(Mi, ḡi)| ≤ (inj(Mi, gi))
2 ·K = Ki → 0.
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The two previous theorems, together with the fundamental theorem, then implies
that some subsequence of (Mi, pi, ḡi) will converge in the pointed Cα, α < 1, topol-
ogy to a flat manifold (M,p, g).

The first observation about (M,p, g) is that inj(p) ≤ 1. This follows because
the conjugate radius for (Mi, ḡi) ≥ π/

√
Ki →∞, so Klingenberg’s estimate for the

injectivity radius implies that there must be a geodesic loop of length 2 at pi ∈ Mi.
Since (Mi, pi, ḡi) → (M,p, g) in the pointed Cα topology, the geodesic loops must
converge to a geodesic loop in M based at p of length 2. Hence, inj(M) ≤ 1.

The other contradictory observation is that (M, g) = (Rn, can). Recall that
volB(pi, 1) ≥ v in (Mi, gi), so relative volume comparison shows that there is a
v′(n,K, v) such that volB(pi, r) ≥ v′ · rn, for r ≤ 1. The rescaled manifold (Mi, ḡi)
therefore satisfies volB(pi, r) ≥ v′ · rn, for r ≤ (inj(Mi, gi))−1. Using again that
(Mi, pi, ḡi) → (M,p, g) in the pointed Cα topology, we get volB(p, r) ≥ v′ · rn for
all r. Since (M, g) is flat, this shows that it must be Euclidean space.

This last statement requires some justification. Let M be a complete flat man-
ifold. As the elements of the fundamental group act by isometries on Euclidean
space, we know that they must have infinite order (any isometry of finite order is
a rotation around a point and therefore has a fixed point). Therefore, if M is not
simply connected, then there is an intermediate covering M̂ :

Rn → M̂ → M,

where π1

(
M̂

)
= Z. This means that M̂ looks like a cylinder. Hence, for any p ∈ M̂

we must have

lim
r→∞

volB (p, r)
rn−1

< ∞.

The same must then also hold for M itself, contradicting our volume growth as-
sumption. �

This lemma was proved with a more direct method by Cheeger. We have in-
cluded this, perhaps more convoluted, proof in order to show how our convergence
theory can be used. The lemma also shows that the convergence theorem of Rie-
mannian geometry remains true if the injectivity radius bound is replaced by a
lower bound on the volume of 1-balls. The following result is now immediate.

Corollary 37. (J. Cheeger, 1967) Let n ≥ 2, Λ, D, v ∈ (0,∞) be given. The
class of closed Riemannian n-manifolds with

|sec| ≤ Λ,

diam ≤ D,

vol ≥ v

is precompact in the Cα topology for any α ∈ (0, 1) and in particular, contains only
finitely many diffeomorphism types.

This convergence theorem can be generalized in another interesting direction,
as observed by S.-h. Zhu.

Theorem 75. Given i0, k > 0, there exist Q, r depending on i0, k such that any
manifold (M, g) with

sec ≥ −k2,

inj ≥ i0
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satisfies ‖(M, g)‖C1,r ≤ Q.

Proof. It suffices to get a Hessian estimate for distance functions d(x) =
d(x, p). We have, as before, that

Hessd(x) ≤ k · coth(k · d(x))gr.

Conversely, if d(x0) < i0, then d(x) is supported from below by f(x) = i0−d(x, y0),
where y0 = γ(i0) and γ is the unique unit speed geodesic that minimizes the distance
from p to x0. Thus, Hessd(x) ≥ Hessf at x0. But

Hessf ≥ −k · coth(d(x0, y0) · k)gr = −k · coth(k(i0 − r(x0)))gr

at x0. Hence, we have two-sided bounds for Hessd(x) on appropriate sets. The
proof can then be finished as before. �

This theorem is interestingly enough optimal. Consider rotationally symmetric
metrics dr2 + f2

ε (r)dθ2, where fε is concave and satisfies

fε(r) =
{

r for 0 ≤ r ≤ 1− ε,
3
4r for 1 + ε ≤ r.

These metrics have sec ≥ 0 and inj ≥ 1. As ε → 0, we get a C1,1 manifold with a
C0,1 Riemannian metric (M, g). In particular, ‖(M, g)‖C0,1,r < ∞ for all r. Limit
spaces of sequences with inj ≥ i0, sec ≥ k can therefore not in general be assumed
to be smoother than the above example.

With a more careful construction, we can also find gε with

gε(r) =
{

sin r for 0 ≤ r ≤ π
2 − ε,

1 for π
2 ≤ r.

Then the metric dr2 + g2
ε(r)dθ2 satisfies |sec| ≤ 4 and inj ≥ 1

4 . As ε → 0, we get
a limit metric that is C1,1. So while we may suspect (this is still unknown) that
limit metrics from the convergence theorem are C1,1, we prove only that they are
C0,1. In the next section we shall show that they are in fact C1,α for all α < 1.

5. Harmonic Norms and Ricci curvature

To get better estimates on the norms, we must use some more analysis. The
idea of using harmonic coordinates for similar purposes goes back to [33]. In [57]
it was shown that manifolds with bounded sectional curvature and lower bounds
for the injectivity radius admit harmonic coordinates on balls of an a priori size.
This result was immediately seized by the geometry community and put to use in
improving the theorems from the previous section. At the same time, Nikolaev
developed a different, more synthetic approach to these ideas. For the whole story
we refer the reader to Greene’s survey in [45]. Here we shall develop these ideas
from a different point of view initiated by Anderson.

5.1. The Harmonic Norm. We shall now define another norm, called the
harmonic norm and denoted

‖A ⊂ (M, g)‖harm
Cm,α,r .

The only change in our previous definition is that condition n4 is replaced by the
requirement that ϕ−1

s : Us → Rn be harmonic with respect to the Riemannian
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metric g on M. Recall that this is equivalent to saying that for each j

1√
detgst

∂i

(√
detgst · gij

)
= 0

We can use the elliptic estimates to compare this norm with our old norm.
Namely, recall that in harmonic coordinates ∆ = gij∂i∂j , conditions n2 and n3
insure that these coefficients are bounded in the required way. Therefore, if u :
U → R is any harmonic function, then we get that on compact subsets K ⊂ U ∩Us,

‖u‖Cm+1,α,K ≤ C ‖u‖Cα,U .

Using a coordinate function ϕ−1
t as u then shows that we can get bounds for the

transition functions on compact subsets of their domains. Changing the scale
will then allow us to conclude that for each r1 < r2, there is a constant C =
C (n,m,α, r1, r2) such that

‖A ⊂ (M, g)‖Cm,α,r1
≤ C ‖A ⊂ (M, g)‖harm

Cm,α,r2
.

We can then show the harmonic analogue to the fundamental theorem.

Corollary 38. For given Q > 0, n ≥ 2, m ≥ 0, α ∈ (0, 1], and r >
0 consider the class of complete, pointed Riemannian n-manifolds (M,p, g) with
‖(M, g)‖harm

Cm,α,r ≤ Q. This class is closed in the pointed Cm,α topology and compact
in the pointed Cm,β topology for all β < α.

The only issue to worry about is whether it is really true that limit spaces
have ‖(M, g)‖harm

Cm,α,r ≤ Q. But one can easily see that harmonic charts converge to
harmonic charts. This is also discussed in the next proposition.

Proposition 46. (M. Anderson, 1990) If A ⊂ (M, g) is precompact, then:
(1) ‖A ⊂ (M, g)‖harm

Cm,α,r =
∥∥A ⊂ (

M,λ2g
)∥∥harm

Cm,α,λr
for all λ > 0.

(2) The function r → ‖A ⊂ (M, g)‖harm
Cm,α,r is continuous. Moreover, when m ≥

1, it converges to 0 as r → 0.
(3) Suppose (Mi, pi, gi) → (M,p, g) in Cm,α and in addition that m ≥ 1. Then

for A ⊂ M we can find precompact domains Ai ⊂ Mi such that

‖Ai‖harm
Cm,α,r → ‖A‖harm

Cm,α,r

for all r > 0. When all the manifolds are closed, we can let A = M and Ai = Mi.

(4) ‖A ⊂ (M, g)‖harm
Cm,α,r = supp∈A ‖{p} ⊂ (M, g)‖harm

Cm,α,r .

Proof. Properties (1) and (2) are proved as for the regular norm. For the
statement that the norm goes to zero as the scale decreases, just solve the Dirichlet
problem as we did when existence of harmonic coordinates was established. Here
it was necessary to have coordinates around every point p ∈ M such that in these
coordinates the metric satisfies gij = δij and ∂kgij = 0 at p. If m ≥ 1, then it is
easy to show that any coordinates system around p can be changed in such a way
that the metric has the desired properties.

(3) The proof of this statement is necessarily somewhat different, as we must
use and produce harmonic coordinates. Let the set-up be as before. First we show
the easy part:

lim inf ‖Ai‖harm
Cm,α,r ≥ ‖A‖harm

Cm,α,r .
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To this end, select Q > lim inf ‖Ai‖harm
Cm,α,r . For large i we can then select charts

ϕi,s : B (0, r) → Mi with the requisite properties. After passing to a subsequence,
we can make these charts converge to charts

ϕs = limF−1
i ◦ ϕi,s : B (0, r) → M.

Since the metrics converge in Cm,α, the Laplacians of the inverse functions must
also converge. Hence, the limit charts are harmonic as well. We can then conclude
that ‖A‖harm

Cm,α,r ≤ Q.
For the reverse inequality

lim sup ‖Ai‖harm
Cm,α,r ≤ ‖A‖harm

Cm,α,r ,

select Q > ‖A‖harm
Cm,α,r . Then, from the continuity of the norm we can find ε > 0

such that also ‖A‖harm
Cm,α,r+ε < Q. For this scale, select charts

ϕs : B (0, r + ε) → Us ⊂ M

satisfying the usual conditions. Now define

Ui,s = Fi (ϕs (B (0, r + ε/2))) ⊂ Mi.

This is clearly a closed disc with smooth boundary

∂Ui,s = Fi (ϕs (∂B (0, r + ε/2))) .

On each Ui,s solve the Dirichlet problem

ψi,s : Ui,s → Rn,

∆gi
ψi,s = 0,

ψi,s = ϕ−1
s ◦ F−1

i on ∂Ui,s.

The inverse of ψi,s, if it exists, will then be a coordinate map B (0, r) → Ui,s. On the
set B (0, r + ε/2) we can now compare ψi,s ◦Fi ◦ϕs with the identity map I. Note
that these maps agree on the boundary of B (0, r + ε/2) . We know that F ∗

i gi → g
in the fixed coordinate system ϕs. Now pull these metrics back to B

(
0, r + ε

2

)
and refer to them as g (= ϕ∗

sg) and gi (= ϕ∗
sF

∗
i gi) . In this way the harmonicity

conditions read ∆gI = 0 and ∆gi
ψi,s ◦ Fi ◦ ϕs = 0. In these coordinates we have

the correct bounds for the operator

∆gi
= gkl

i ∂k∂l +
1√

detgi

∂k

(√
detgi · gkl

i

)
∂l

to use the elliptic estimates for domains with smooth boundary. Note that this is
where the condition m ≥ 1 becomes important, so that we can bound

1√
detgi

∂k

(√
detgi · gkl

i

)
in Cα. The estimates then imply∥∥I − ψi,s ◦ Fi ◦ ϕs

∥∥
Cm+1,α ≤ C

∥∥∆gi

(
I − ψi,s ◦ Fi ◦ ϕs

)∥∥
Cm−1,α

= C ‖∆gi
I‖Cm−1,α .
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However, we have that

‖∆gi
I‖Cm−1,α =

∥∥∥∥ 1√
detgi

∂k

(√
detgi · gkl

i

)∥∥∥∥
Cm−1,α

→
∥∥∥∥ 1√

detg
∂k

(√
detg · gkl

)∥∥∥∥
Cm−1,α

= ‖∆gI‖Cm−1,α = 0.

In particular, we must have∥∥I − ψi,s ◦ Fi ◦ ϕs

∥∥
Cm+1,α → 0.

It is now evident that ψi,s must become coordinates for large i. Also, these
coordinates will show that ‖Ai‖harm

Cm,α,r < Q for large i.

(4) Since there is no transition function condition to be satisfied in the definition
of ‖A‖harm

Cm,α,r , it is obvious that

‖A ∪B‖harm
Cm,α,r = max

{
‖A‖harm

Cm,α,r , ‖B‖harm
Cm,α,r

}
.

This shows that the norm is always realized locally. �
5.2. Ricci Curvature and the Harmonic Norm. The most important

feature about harmonic coordinates is that the metric is apparently controlled by
the Ricci curvature. This is exploited in the next lemma, where we show how one
can bound the harmonic C1,α norm in terms of the harmonic C1 norm and Ricci
curvature.

Lemma 52. (M. Anderson, 1990) Suppose that a Riemannian manifold (M, g)
has bounded Ricci curvature |Ric| ≤ Λ. For any r1 < r2, K ≥ ‖A ⊂ (M, g)‖harm

C1,r2
,

and α ∈ (0, 1) we can find C (n, α,K, r1, r2,Λ) such that

‖A ⊂ (M, g)‖harm
C1,α,r1

≤ C (n, α,K, r1, r2,Λ) .

Moreover, if g is an Einstein metric Ric = kg, then for each integer m we can find
a constant C (n, α,K, r1, r2, k,m) such that

‖A ⊂ (M, g)‖harm
Cm+1,α,r1

≤ C (n, α,K, r1, r2, k,m) .

Proof. We just need to bound the metric components gij in some fixed har-
monic coordinates. In these coordinates we have that ∆ = gij∂i∂j . Given that
‖A ⊂ (M, g)‖harm

C1,r2
≤ K, we can conclude that we have the necessary conditions on

the coefficients of ∆ = gij∂i∂j to use the elliptic estimate

‖gij‖C1,α,B(0,r1)
≤ C (n, α,K, r1, r2)

(
‖∆gij‖C0,B(0,r2)

+ ‖gij‖Cα,B(0,r2)

)
.

Now use that
∆gij = −2Ricij − 2Q (g, ∂g)

to conclude that

‖∆gij‖C0,B(0,r2)
≤ 2Λ ‖gij‖C0,B(0,r2)

+ Ĉ ‖gij‖C1,B(0,r2)
.

Using this we then have

‖gij‖C1,α,B(0,r1)
≤ C (n, α,K, r1, r2)

(
‖∆gij‖C0,B(0,r2)

+ ‖gij‖Cα,B(0,r2)

)
≤ C (n, α,K, r1, r2)

(
2Λ + Ĉ + 1

)
‖gij‖C1,B(0,r2)

.
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For the Einstein case we can use a bootstrap method, as we get C1,α bounds on
the Ricci tensor from the Einstein equation Ric = kg. Thus, we have that ∆gij is
bounded in Cα rather than just C0. Hence,

‖gij‖C2,α,B(0,r1)
≤ C (n, α,K, r1, r2)

(
‖∆gij‖Cα,B(0,r2)

+ ‖gij‖Cα,B(0,r2)

)
≤ C (n, α,K, r1, r2, k) · C · ‖gij‖C1,α,B(0,r2)

.

This gives C2,α bounds on the metric. Then, of course, ∆gij is bounded in C1,α,
and thus the metric will be bounded in C3,α. Clearly, one can iterate this until one
gets Cm+1,α bounds on the metric. �

Combining this with the fundamental theorem gives a very interesting com-
pactness result.

Corollary 39. For given n ≥ 2, Q, r,Λ ∈ (0,∞) consider the class of Rie-
mannian n-manifolds with

‖(M, g)‖harm
C1,r ≤ Q,

|Ric| ≤ Λ.

This class is precompact in the pointed C1,α topology for any α ∈ (0, 1) . Moreover,
if we take the subclass of Einstein manifolds, then this class is compact in the Cm,α

topology for any m ≥ 0 and α ∈ (0, 1) .

We can now prove our generalizations of the convergence theorems from the
last section.

Theorem 76. (M. Anderson, 1990) Given n ≥ 2 and α ∈ (0, 1) , Λ, i0 > 0,
one can for each Q > 0 find r (n, α,Λ, i0) > 0 such that any complete Riemannian
n-manifold (M, g) with

|Ric| ≤ Λ,

inj ≥ i0

satisfies ‖(M, g)‖harm
C1,α,r ≤ Q.

Proof. The proof goes by contradiction. So suppose that there is a Q > 0
such that for each i ≥ 1 there is a Riemannian manifold (Mi, gi) with

|Ric| ≤ Λ,

inj ≥ i0,

‖(Mi, gi)‖harm
C1,α,i−1 > Q.

Using that the norm goes to zero as the scale goes to zero, and that it is con-
tinuous as a function of the scale, we can for each i find ri ∈

(
0, i−1

)
such that

‖(Mi, gi)‖harm
C1,α,ri

= Q. Now rescale these manifolds: ḡi = r−2
i gi. Then we have that

(Mi, ḡi) satisfies

|Ric| ≤ r2
i Λ,

inj ≥ r−1
i i0,

‖(Mi, ḡi)‖harm
C1,α,1 = Q.
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We can then select pi ∈ Mi such that

‖pi ∈ (Mi, ḡi)‖harm
C1,α,1 ∈

[
Q

2
, Q

]
.

The first important step is now to use the bounded Ricci curvature of (Mi, ḡi)
to conclude that in fact the C1,γ norm must be bounded for any γ ∈ (α, 1) . Then we
can assume by the fundamental theorem that the sequence (Mi, pi, ḡi) converges in
the pointed C1,α topology, to a Riemannian manifold (M,p, g) of class C1,γ . Since
the C1,α norm is continuous in the C1,α topology we can conclude that

‖p ∈ (M, g)‖harm
C1,α,1 ∈

[
Q

2
, Q

]
.

The second thing we can prove is that (M, g) = (Rn, can) . This clearly violates
what we just established about the norm of the limit space. To see that the limit
space is Euclidean space, recall that the manifolds in the sequence (Mi, ḡi) are
covered by harmonic coordinates that converge to harmonic coordinates in the
limit space. In these harmonic coordinates the metric components satisfy

1
2
∆ḡkl + Q (ḡ, ∂ḡ) = −Rickl.

But we know that
|−Ric| ≤ r−2

i Λḡi

and that the ḡkl converge in the C1,α topology to the metric coefficients gkl for
the limit metric. We can therefore conclude that the limit manifold is covered by
harmonic coordinates and that in these coordinates the metric satisfies:

1
2
∆gkl + Q (g, ∂g) = 0.

The limit metric is therefore a weak solution to the Einstein equation Ric = 0 and
must therefore be a smooth Ricci flat Riemannian manifold. It is now time to use
that: inj (Mi, ḡi) → ∞. In the limit space we have that any geodesic is a limit
of geodesics from the sequence (Mi, ḡi) , since the Riemannian metrics converge in
the C1,α topology. If a geodesic in the limit is a limit of segments, then it must
itself be a segment. We can then conclude that as inj (Mi, ḡi) → ∞ any finite
length geodesic must be a segment. This, however, implies that inj (M, g) = ∞.
The splitting theorem then shows that the limit space is Euclidean space. �

From this theorem we immediately get

Corollary 40. (M. Anderson, 1990) Let n ≥ 2 and Λ, D, i ∈ (0,∞) be given.
The class of closed Riemannian n-manifolds satisfying

|Ric| ≤ Λ,

diam ≤ D,

inj ≥ i

is precompact in the C1,α topology for any α ∈ (0, 1) and in particular contains only
finitely many diffeomorphism types.

Notice how the above theorem depended on the characterization of Euclidean
space we obtained from the splitting theorem. There are other similar characteri-
zations of Euclidean space. One of the most interesting ones uses volume pinching.
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5.3. Volume Pinching. The idea is to use the relative volume comparison
theorem rather than the splitting theorem. We know from the exercises to chapter
9 that Euclidean space is the only space with

Ric ≥ 0,

lim
r→∞

volB (p, r)
ωnrn

= 1,

where ωnrn is the volume of a Euclidean ball of radius r. This result has a very
interesting gap phenomenon associated with it, when one assumes the stronger
hypothesis that the space is Ricci flat.

Lemma 53. (M. Anderson, 1990) For each n ≥ 2 there is an ε (n) > 0 such
that any complete Ricci flat manifold (M, g) that satisfies

volB (p, r) ≥ (ωn − ε) rn

for some p ∈ M is isometric to Euclidean space.

Proof. First observe that on any complete Riemannian manifold with Ric ≥ 0,
relative volume comparison can be used to show that

volB (p, r) ≥ (1− ε) ωnrn

as long as

lim
r→∞

volB (p, r)
ωnrn

≥ (1− ε) .

It is then easy to see that if this holds for one p, then it must hold for all p. Moreover,
if we scale the metric to

(
M,λ2g

)
, then the same volume comparison still holds,

as the lower curvature bound Ric ≥ 0 can’t be changed by scaling.
If our assertion were not true, then we could for each integer i find Ricci flat

manifolds (Mi, gi) with

lim
r→∞

volB (pi, r)
ωnrn

≥ (
1− i−1

)
,

‖(Mi, gi)‖harm
C1,α,r �= 0 for all r > 0.

By scaling these metrics suitably, it is then possible to arrange it so that we have
a sequence of Ricci flat manifolds (Mi, qi, ḡi) with

lim
r→∞

volB (qi, r)
ωnrn

≥ (
1− i−1

)
,

‖(Mi, ḡi)‖harm
C1,α,1 ≤ 1,

‖qi ∈ (Mi, ḡi)‖harm
C1,α,1 ∈ [0.5, 1] .

From what we already know, we can then extract a subsequence that converges in
the Cm,α topology to a Ricci flat manifold (M, q, g). In particular, we must have
that metric balls of a given radius converge and that the volume forms converge.
Thus, the limit space must satisfy

lim
r→∞

volB (q, r)
ωnrn

= 1.

This means that we have maximal possible volume for all metric balls, and thus the
manifold must be Euclidean. This, however, violates the continuity of the norm in
the C1,α topology, as the norm for the limit space would then have to be zero. �
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Corollary 41. Let n ≥ 2, −∞ < λ ≤ Λ < ∞, and D, i0 ∈ (0,∞) be given.
There is a δ = δ

(
n, λ · i20

)
such that the class of closed Riemannian n-manifolds

satisfying

(n− 1) Λ ≥ Ric ≥ (n− 1) λ,

diam ≤ D,

volB (p, i0) ≥ (1− δ) v (n, λ, i0)

is precompact in the C1,α topology for any α ∈ (0, 1) and in particular contains only
finitely many diffeomorphism types.

Proof. We use the same techniques as when we had an injectivity radius
bound. Observe that if we have a sequence (Mi, pi, ḡi) where ḡi = k2

i gi, ki → ∞,
and the (Mi, gi) lie in the above class, then the volume condition now reads

volBḡi
(pi, i0 · ki) = kn

i volBgi
(pi, i0)

≥ kn
i (1− δ) v (n, λ, i0)

= (1− δ) v
(
n, λ · k−2

i , i0 · ki

)
.

From relative volume comparison we can then conclude that for r ≤ i0 ·ki and very
large i,

volBḡi
(pi, r) ≥ (1− δ) v

(
n, λ · k−2

i , r
) ∼ (1− δ) ωnrn.

In the limit space we must therefore have

volB (p, r) ≥ (1− δ) ωnrn for all r.

This limit space is also Ricci flat and is therefore Euclidean space. The rest of the
proof goes as before, by getting a contradiction with the continuity of the norms. �

5.4. Curvature Pinching. Let us now turn our attention to some applica-
tions of these compactness theorems. One natural subject to explore is that of
pinching results. Recall that we showed earlier that complete constant curvature
manifolds have a uniquely defined universal covering. It is natural to ask whether
one can in some topological sense still expect this to be true when one has close to
constant curvature. Now, any Riemannian manifold (M, g) has curvature close to
zero if we multiply the metric by a large scalar. Thus, some additional assumptions
must come into play.

We start out with the simpler problem of considering Ricci pinching and then
use this in the context of curvature pinching below. The results are very simple
consequences of the convergence theorem we have already presented.

Theorem 77. Given n ≥ 2, i, D ∈ (0,∞) , and λ ∈ R, there is an ε =
ε (n, λ,D, i) > 0 such that any closed Riemannian n-manifold (M, g) with

diam ≤ D,

inj ≥ i,

|Ric− λg| ≤ ε

is C1,α close to an Einstein metric with Einstein constant λ.

Proof. We already know that this class is precompact in the C1,α topology
no matter what ε we choose. If the result were not true, we could therefore find
a sequence (Mi, gi) → (M, g) that converges in the C1,α topology to a closed
Riemannian manifold of class C1,α, where in addition, |Ricgi

− λgi| → 0. Using
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harmonic coordinates as usual we can therefore conclude that the metric on the
limit space must be a weak solution to

1
2
∆g + Q (g, ∂g) = −λg.

But this means that the limit space is actually Einstein, with Einstein constant λ,
thus, contradicting that the spaces (Mi, gi) were not close to such Einstein metrics.

�

Using the compactness theorem for manifolds with almost maximal volumes we
see that the injectivity radius condition could have been replaced with an almost
maximal volume condition. Now let us see what happens with sectional curvature.

Theorem 78. Given n ≥ 2, v,D ∈ (0,∞) , and λ ∈ R, there is an ε =
ε (n, λ,D, i) > 0 such that any closed Riemannian n-manifold (M, g) with

diam ≤ D,

vol ≥ v,

|sec− λ| ≤ ε

is C1,α close to a metric of constant curvature λ.

Proof. In this case we first observe that Cheeger’s lemma gives us a lower
bound for the injectivity radius. The previous theorem then shows that such metrics
must be close to Einstein metrics. We now have to check that if (Mi, gi) → (M, g) ,
where |secgi

− λ| → 0 and Ricg = (n− 1) λg, then in fact (M, g) has constant
curvature λ. To see this, it is perhaps easiest to observe that if

Mi � pi → p ∈ M,

then we can use polar coordinates around these points to write gi = dr2 + gr,i

and g = dr2 + gr. Since the metrics converge in C1,α, we certainly have that gr,i

converge to gr. Using the curvature pinching, we conclude from chapter 6 that

sn2
λ+εi

(r) ds2
n−1 ≤ gr,i ≤ sn2

λ−εi
(r) ds2

n−1,

where εi → 0. In the limit we therefore have

sn2
λ (r) ds2

n−1 ≤ gr ≤ sn2
λ (r) ds2

n−1.

This implies that the limit metric has constant curvature λ. �

It is interesting that we had to go back and use the more geometric estimates for
distance functions in order to prove the curvature pinching, while the Ricci pinching
could be handled more easily with analytic techniques using harmonic coordinates.
One can actually prove the curvature result with purely analytic techniques, but
this requires that we study convergence in a more general setting where one uses
Lp norms and estimates. This has been developed rigorously and can be used to
improve the above results to situations were one has only Lp curvature pinching
rather than the L∞ pinching we use here (see [79], [80], and [32]).

When the curvature λ is positive, some of the assumptions in the above the-
orems are in fact not necessary. For instance, Myers’ estimate for the diameter
makes the diameter hypothesis superfluous. For the Einstein case this seems to
be as far as we can go. In the positive curvature case we can do much better. In
even dimensions, we already know from chapter 6, that manifolds with positive
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curvature have both bounded diameter and lower bounds for the injectivity radius,
provided that there is an upper curvature bound. We can therefore show

Corollary 42. Given 2n ≥ 2, and λ > 0, there is an ε = ε (n, λ) > 0 such
that any closed Riemannian 2n-manifold (M, g) with

|sec− λ| ≤ ε

is C1,α close to a metric of constant curvature λ.

This corollary is, in fact, also true in odd dimensions. This was proved by
Grove-Karcher-Ruh in [49]. Notice that convergence techniques are not immedi-
ately applicable because there are no lower bounds for the injectivity radius. Their
pinching constant is also independent of the dimension.

Also recall the quarter pinching results in positive curvature than we proved in
chapter 6. There the conclusions were much weaker and purely topological. In a
similar vein there is a nice result of Micaleff-Moore in [66]stating that any manifold
with positive isotropic curvature has a universal cover that is homeomorphic to the
sphere. However, this doesn’t generalize the above theorem, for it is not necessarily
true that two manifolds with identical fundamental groups and universal covers are
homotopy equivalent.

In negative curvature some special things also happen. Namely, Heintze has
proved that any complete manifold with −1 ≤ sec < 0 has a lower volume bound
when the dimension ≥ 4 (see also [46] for a more general statement). The lower
volume bound is therefore an extraneous condition when doing pinching in negative
curvature. Unlike the situation in positive curvature, the upper diameter bound is,
however, crucial. See, e.g., [48] and [38] for counterexamples.

This leaves us with pinching around 0. As any compact Riemannian manifold
can be scaled to have curvature in [−ε, ε] for any ε, we do need the diameter bound.
The volume condition is also necessary, as the Heisenberg group from the exercises
to chapter 3 has a quotient where there are metrics with bounded diameter and
arbitrarily pinched curvature. This quotient, however, does not admit a flat metric.
Gromov was nevertheless able to classify all n-manifolds with

|sec| ≤ ε (n) ,

diam ≤ 1

for some very small ε (n) > 0. More specifically, they all have a finite cover that is
a quotient of a nilpotent Lie group by a discrete subgroup. For more on this and
collapsing in general, the reader can start by reading [39].

6. Further Study

Cheeger first proved his finiteness theorem and put down the ideas of Ck con-
vergence for manifolds in [21]. They later appeared in journal form [22], but not all
ideas from the thesis were presented in this paper. Also the idea of general pinching
theorems as described here are due to Cheeger [23]. For more generalities on con-
vergence and their uses we recommend the surveys by Anderson, Fukaya, Petersen,
and Yamaguchi in [45]. Also for more on norms and convergence theorems the sur-
vey by Petersen in [50] might prove useful. The text [47] should also be mentioned
again. It was probably the original french version of this book that really spread
the ideas of Gromov-Hausdorff distance and the stronger convergence theorems to a
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wider audience. Also, the convergence theorem of Riemannian geometry, as stated
here, appeared for the first time in this book.

We should also mention that S. Peters in [77] obtained an explicit estimate
for the number of diffeomorphism classes in Cheeger’s finiteness theorem. This
also seems to be the first place where the modern statement of Cheeger’s finiteness
theorem is proved.

7. Exercises

(1) Find a sequence of 1-dimensional metric spaces that Hausdorff converge to
the unit cube [0, 1]3 endowed with the metric coming from the maximum
norm on R3. Then find surfaces (jungle gyms) converging to the same
space.

(2) C. Croke has shown that there is a universal constant c (n) such that any
n-manifold with inj ≥ i0 satisfies volB (p, r) ≥ c (n) · rn for r ≤ i0

2 . Use
this to show that the class of n-dimensional manifolds satisfying inj ≥ i0
and vol ≤ V is precompact in the Gromov-Hausdorff topology.

(3) Develop a Bochner formula for Hess
(

1
2g (X,Y )

)
and ∆1

2g (X,Y ) , where
X and Y are vector fields with symmetric ∇X and ∇Y. Discuss whether
it is possible to devise coordinates where Hess (gij) are bounded in terms
of the full curvature tensor. If this were possible we would be able to get
C1,1 bounds for manifolds with bounded curvature. It is still an open
question whether this is possible.

(4) Show that in contrast with the elliptic estimates, it is not possible to find
Cα bounds for a vector field X in terms of C0 bounds on X and divX.

(5) Define Cm,α convergence for incomplete manifolds. On such manifolds
define the boundary ∂ as the set of points that lie in the completion but
not in the manifold itself. Show that the class of incomplete spaces with
|Ric| ≤ Λ and inj (p) ≥ min {i0, i0 · d (p, ∂)} , i0 < 1, is precompact in the
C1,α topology.

(6) Define a weighted norm concept. That is, fix a positive function ρ (R) , and
assume that in a pointed manifold (M,p, g) the distance spheres S (p,R)
have norm ≤ ρ (R) . Prove the corresponding fundamental theorem.

(7) Suppose we have a class that is compact in the Cm,α topology. Show that
there is a function f (r) depending on the class such that ‖(M, g)‖Cm,α,r ≤
f (r) for all elements in this class, and also, f (r) → 0 as r → 0.

(8) The local models for a class of Riemannian manifolds are the types of
spaces one obtains by scaling the elements of the class by a constant
→ ∞. For example, if we consider the class of manifolds with |sec| ≤ K
for some K, then upon rescaling the metrics by a factor of λ2, we have the
condition |sec| ≤ λ−2K, as λ → ∞, we therefore arrive at the condition
|sec| = 0. This means that the local models are all the flat manifolds.
Notice that we don’t worry about any type of convergence here. If, in this
example, we additionally assume that the manifolds have inj ≥ i0, then
upon rescaling and letting λ → ∞ we get the extra condition inj = ∞.
Thus, the local model is Euclidean space. It is natural to suppose that
any class that has Euclidean space as it only local model must be compact
in some topology.
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Show that a class of spaces is compact in the Cm,α topology if when
we rescale a sequence in this class by constants that → ∞, the sequence
subconverges in the Cm,α topology to Euclidean space.

(9) Consider the singular Riemannian metric dt2 + (at)2 dθ2, a > 1, on R2.
Show that there is a sequence of rotationally symmetric metrics on R2

with sec ≤ 0 and inj = ∞ that converge to this metric in the Gromov-
Hausdorff topology.

(10) Show that the class of spaces with inj ≥ i and
∣∣∣∇kRic

∣∣∣ ≤ Λ for k =

0, . . . , m is compact in the Cm+1,α topology.
(11) (S.-h. Zhu) Consider the class of complete or compact n-dimensional

Riemannian manifolds with

conj.rad ≥ r0,

|Ric| ≤ Λ,

volB (p, 1) ≥ v.

Using the techniques from Cheeger’s lemma, show that this class has a
lower bound for the injectivity radius. Conclude that it is compact in the
C1,α topology.

(12) Using the Eguchi-Hanson metrics from the exercises to chapter 3 show
that one cannot in general expect a compactness result for the class

|Ric| ≤ Λ,

volB (p, 1) ≥ v.

Thus, one must assume either that v is large as we did before or that there
a lower bound for the conjugate radius.

(13) The weak (harmonic) norm ‖(M, g)‖weak
Cm,α,r is defined in almost the same

way as the norms we have already worked with, except that we only insist
that the charts ϕs : B (0, r) → Us are immersions. The inverse is therefore
only locally defined, but it still makes sense to say that it is harmonic.
(a) Show that if (M, g) has bounded sectional curvature, then for all

Q > 0 there is an r > 0 such that ‖(M, g)‖weak
C1,α,r ≤ Q. Thus, the

weak norm can be thought of as a generalized curvature quantity.
(b) Show that the class of manifolds with bounded weak norm is pre-

compact in the Gromov-Hausdorff topology.
(c) Show that (M, g) is flat iff the weak norm is zero on all scales.




