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Charge Transp9. Charge Transport in Disordered Materials

This chapter surveys general theoretical concepts
developed to qualitatively understand and to
quantitatively describe the electrical conduction
properties of disordered organic and inorganic
materials. In particular, these concepts are applied
to describe charge transport in amorphous and
microcrystalline semiconductors and in conjugated
and molecularly doped polymers. Electrical
conduction in such systems is achieved through
incoherent transitions of charge carriers between
spatially localized states. Basic theoretical ideas
developed to describe this type of electrical
conduction are considered in detail. Particular
attention is given to the way the kinetic coefficients
depend on temperature, the concentration of
localized states, the strength of the applied
electric field, and the charge carrier localization
length. Charge transport via delocalized states in
disordered systems and the relationships between
kinetic coefficients under the nonequilibrium
conditions are also briefly reviewed.
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Many characteristics of charge transport in disordered
materials differ markedly from those in perfect crys-
talline systems. The term “disordered materials” usually
refers to noncrystalline solid materials without perfect
order in the spatial arrangement of atoms. One should
distinguish between disordered materials with ionic
conduction and those with electronic conduction. Dis-
ordered materials with ionic conduction include various
glasses consisting of a “network-formers” such as SiO2,
B2O3 and Al2O3, and of “network-modifiers” such as
Na2O, K2O and Li2O. When an external voltage is ap-
plied, ions can drift by hopping over potential barriers in
the glass matrix, contributing to the electrical conduction
of the material. Several fascinating effects have been ob-
served for this kind of electrical conduction. One is the
extremely nonlinear dependence of the conductivity on
the concentration of ions in the material. Another beau-
tiful phenomenon is the so-called “mixed alkali effect”:
mixing two different modifiers in one glass leads to an
enormous drop in the conductivity in comparison to that

of a single modifier with the same total concentration of
ions. A comprehensive description of these effects can
be found in the review article of Bunde et al. [9.1]. Al-
though these effects sometimes appear puzzling, they
can be naturally and rather trivially explained using rou-
tine classical percolation theory [9.2]. The description of
ionic conduction in glasses is much simplified by the in-
ability of ions to tunnel over large distances in the glass
matrix in single transitions. Every transition occurs over
a rather small interatomic distance, and it is relatively
easy to describe such electrical conductivity theoreti-
cally [9.2]. On the other hand, disordered systems with
electronic conduction have a much more complicated
theoretical description. Transition probabilities of elec-
trons between spatially different regions in the material
significantly depend not only on the energy parameters
(as in the case of ions), but also on spatial factors such as
the tunnelling distance, which can be rather large. The
interplay between the energy and spatial factors in the
transition probabilities of electrons makes the develop-
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ment of a theory of electronic conduction in disordered
systems challenging. Since the description of electronic
conduction is less clear than that of ionic conduction, and
since disordered electronic materials are widely used for
various device applications, in this chapter we concen-
trate on disordered materials with the electronic type of
electrical conduction.

Semiconductor glasses form one class of such mater-
ials. This class includes amorphous selenium, a-Se and
other chalcogenide glasses, such as a-As2Se3. These
materials are usually obtained by quenching from the
melt. Another broad class of disordered materials, inor-
ganic amorphous semiconductors, includes amorphous
silicon a-Si, amorphous germanium a-Ge, and their al-
loys. These materials are usually prepared as thin films
by the deposition of atomic or molecular species. Hy-
drogenated amorphous silicon, a-Si:H, has attracted
much attention from researchers, since incorporation
of hydrogen significantly improves conduction, mak-
ing it favorable for use in amorphous semiconductor
devices. Many other disordered materials, such as hy-
drogenated amorphous carbon (a-C:H) and its alloys,
polycrystalline and microcrystalline silicon are similar
to a-Si:H in terms of their charge transport properties.
Some crystalline materials can also be considered to
be disordered systems. This is the case for doped crys-
tals if transport phenomena within them are determined
by randomly distributed impurities, and for mixed crys-
tals with disordered arrangements of various types of
atoms in the crystalline lattice. In recent years much re-
search has also been devoted to the study of organic
disordered materials, such as conjugated and molecu-
larly doped polymers and organic glasses, since these
systems has been shown to possess electronic proper-
ties similar to those of inorganic disordered materials,
while they are easier to manufacture than the latter
systems.

There are two reasons for the great interest of re-
searchers in the conducting properties of disordered
materials. On the one hand, disordered systems repre-
sent a challenging field in a purely academic sense. For
many years the theory of how semiconductors perform
charge transport was mostly confined to crystalline sys-
tems where the constituent atoms are in regular arrays.
The discovery of how to make solid amorphous mater-
ials and alloys led to an explosion in measurements of
the electronic properties of these new materials. How-
ever, the concepts often used in textbooks to describe
charge carrier transport in crystalline semiconductors
are based on an assumption of long-range order, and so
they cannot be applied to electronic transport in disor-

dered materials. It was (and still is) a highly challenging
task to develop a consistent theory of charge transport
in such systems. On the other hand, the explosion in
research into charge transport in disordered materials
is related to the various current and potential device
applications of such systems. These include the appli-
cation of disordered inorganic and organic materials in
photovoltaics (the functioning material in solar cells),
in electrophotography, in large-area displays (they are
used in thin film transistors), in electrical switching
threshold and memory devices, in light-emitting diodes,
in linear image sensors, and in optical recording de-
vices. Readers interested in the device applications of
disordered materials should be aware that there are nu-
merous monographs on this topic: the literature on this
field is very rich. Several books are recommended (see
[9.3–12]), as are numerous review articles referred to in
these books.

In this chapter we focus on disordered semiconduc-
tor materials, ignoring the broad class of disordered
metals. In order to describe electronic transport in
disordered metals, one can more or less successfully
apply extended and modified conventional theoretical
concepts developed for electron transport in ordered
crystalline materials, such as the Boltzmann kinetic
equation. Therefore, we do not describe electronic
transport in disordered metals here. We can recom-
mend a comprehensive monograph to interested readers
(see [9.13]), in which modern concepts about conduction
in disordered metals are presented beautifully.

Several nice monographs on charge transport in dis-
ordered semiconductors are also available. Although
many of them were published several years ago (some
even decades ago), we can recommend them to the in-
terested reader as a source of information on important
experimental results. These results have permitted re-
searchers the present level of understanding of transport
phenomena in disordered inorganic and organic mater-
ials. A comprehensive collection of experimental data
for noncrystalline materials from the books specified
above would allow one to obtain a picture of the modern
state of experimental research in the field.

We will focus in this chapter on the theoretical de-
scription of charge transport in disordered materials,
introducing some basic concepts developed to describe
electrical conduction. Several excellent books already
exist in which a theoretical description of charge trans-
port in disordered materials is the main topic. Among
others we can recommend the books of Shklovskii and
Efros [9.14], Zvyagin [9.15], Böttger and Bryksin [9.16],
and Overhof and Thomas [9.17]. There appears to be
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a time gap in which comprehensive monographs on the
theoretical description of electrical conduction in disor-
dered materials were not published. During this period

some new and rather powerful theoretical concepts were
developed. We present these concepts below, along with
some more traditional ones.

9.1 General Remarks on Charge Transport in Disordered Materials

Although the literature on transport phenomena in dis-
ordered materials is enormously rich, there are still
many open questions in this field due to various prob-
lems specific to such materials. In contrast to ordered
crystalline semiconductors with well-defined electronic
energy structures consisting of energy bands and en-
ergy gaps, the electronic energy spectra of disordered
materials can be treated as quasi-continuous. Instead of
bands and gaps, one can distinguish between extended
and localized states in disordered materials. In an ex-
tended state, the charge carrier wavefunction is spread
over the whole volume of a sample, while the wave-
function of a charge carrier is localized in a spatially
restricted region in a localized state, and a charge car-
rier present in such a state cannot spread out in a plane
wave as in ordered materials. Actually, localized elec-
tron states are known in ordered systems too. Electrons
and holes can be spatially localized when they occupy
donors or acceptors or some other impurity states or
structural defects in ordered crystalline materials. How-
ever, the localized states usually appear as δ-like discrete
energy levels in the energy spectra of such materials.
In disordered semiconductors, on the other hand, en-
ergy levels related to spatially localized states usually
fill the energy spectrum continuously. The energy that
separates the extended states from the localized ones in
disordered materials is called the mobility edge. To be
precise, we will mostly consider the energy states for
electrons in the following. In this case, the states above
the mobility edge are extended and the states below the
edge are localized. The localized states lie energetically
above the extended states for holes. The energy region
between the mobility edges for holes and electrons is
called the mobility gap. The latter is analogous to the
band gap in ordered systems, although the mobility gap
contains energy states, namely the spatially localized
states. Since the density of states (DOS), defined as the
number of states per unit energy per unit volume, usu-
ally decreases when the energy moves from the mobility
edges toward the center of the mobility gap, the energy
regions of localized states in the vicinity of the mobility
edges are called band tails. We would like to emphasize
that the charge transport properties depend significantly

on the energy spectrum in the vicinity and below the
mobility edge (in the band tails). Unfortunately this en-
ergy spectrum is not known for almost all disordered
materials. A whole variety of optical and electrical in-
vestigation techniques have proven unable to determine
this spectrum. Since the experimental information on
this spectrum is rather vague, it is difficult to develop
a consistent theoretical description for charge transport
ab initio. The absence of reliable information on the
energy spectrum and on the structures of the wavefunc-
tions in the vicinity and below the mobility edges can
be considered to be the main problem for researchers at-
tempting to quantitatively describe the charge transport
properties of disordered materials.

An overview of the energy spectrum in a disordered
semiconductor is shown in Fig. 9.1. The energy levels
εv and εc denote the mobility edges for the valence and
conduction bands, respectively. Electron states in the
mobility gap between these energies are spatially local-
ized. The states below εv and above εc can be occupied
by delocalized holes and electrons. Some peaks in the
DOS are shown in the mobility gap, which can be created
by some defects with particularly high concentrations.
Although there is a consensus between researchers on
the general view of the DOS in disordered materials,
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Fig. 9.1 Density of states of a noncrystalline semiconductor
(schematic); εv and εc correspond to mobility edges in the
conduction band and the valence band, respectively
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the particular structure of the energy spectrum is not
known for most disordered systems. From a theoretical
point of view, it is enormously difficult to calculate this
spectrum.

There are several additional problems that make the
study of charge transport in disordered materials more
difficult than in ordered crystalline semiconductors. The
particular spatial arrangements of atoms and molecules
in different samples with the same chemical composition
can differ from each other depending on the preparation
conditions. Hence, when discussing electrical conduc-
tion in disordered materials one often should specify
the preparation conditions. Another problem is related
to the long-time relaxation processes in disordered sys-
tems. Usually these systems are not in thermodynamic
equilibrium and the slow relaxation of the atoms toward
the equilibrium arrangement can lead to some changes
in electrical conduction properties. In some disordered
materials a long-time electronic relaxation can affect the
charge transport properties too, particularly at low tem-
peratures, when electronic spatial rearrangements can be
very slow. At low temperatures, when tunneling electron
transitions between localized states dominate electri-
cal conduction, this long-time electron relaxation can
significantly affect the charge transport properties.

It is fortunate that, despite these problems, some
general transport properties of disordered semiconduc-
tors have been established. Particular attention is usually
paid to the temperature dependence of the electrical
conductivity, since this dependence can indicate the un-
derlying transport mechanism. Over a broad temperature
range, the direct current (DC) conductivity in disordered
materials takes the form

σ = σ0 exp

[
−

(
∆(T )

kBT

)β
]

, (9.1)

where the pre-exponential factor σ0 depends on the un-
derlying system and the power exponent β depends on
the material and also sometimes on the temperature
range over which the conductivity is studied; ∆(T ) is
the activation energy. In many disordered materials, like
vitreous and amorphous semiconductors, σ0 is of the or-
der of 102 –104 Ω−1cm−1. In such materials the power
exponent β is close to unity at temperatures close to
and higher than the room temperature, while at lower
temperatures β can be significantly smaller than unity.
In organic disordered materials, values of β that are
larger than unity also have been reported. For such
systems the value β ≈ 2 is usually considered to be
appropriate [9.18].

Another important characteristic of the electrical
properties of a disordered material is its alternating
current (AC) conductivity measured when an external
alternating electric field with some frequency ω is ap-
plied. It has been established in numerous experimental
studies that the real part of the AC conductivity in most
disordered semiconductors depends on the frequency
according to the power law

Re σ(ω) = Cωs , (9.2)

where C is constant and the power s is usually smaller
than unity. This power law has been observed in nu-
merous materials at different temperatures over a wide
frequency range. This frequency dependence differs
drastically from that predicted by the standard kinetic
theory developed for quasi-free charge carriers in crys-
talline systems. In the latter case, the real part of the AC
conductivity has the frequency dependence

Re σ(ω) = ne2

m

τ

1+ω2τ2 , (9.3)

where n is the concentration of charge carriers, e is
the elementary charge, m is the effective mass and τ

is the momentum relaxation time. Since the band elec-
trons in crystalline semiconductors usually have rather
short momentum relaxation times, τ ≈ 10−14 s, the con-
tribution of charge carriers in delocalized states to the
AC conductivity usually does not depend on frequency
at ω � τ−1. Therefore, the observed frequency depen-
dence described by (9.2) should be ascribed to the
contribution of charge carriers in localized states.

One of the most powerful tools used to study the
concentrations of charge carriers and their mobilities
in crystalline semiconductors is the provided by mea-
surements of the Hall constant, RH. Such measurements
also provide direct and reliable information about the
sign of the charge carriers in crystalline materials. Un-
fortunately, this is not the case for disordered materials.
Moreover, several anomalies have been established for
Hall measurements in the latter systems. For example,
the sign of the Hall constant in disordered materials
sometimes differs from that of the thermoelectric power,
α. This anomaly has not been observed in crystalline
materials. The anomaly has been observed in liquid and
solid noncrystalline semiconductors. Also, in some ma-
terials, like amorphous arsenic, a-As, RH > 0, α < 0,
while in many other materials other combinations with
different signs of RH and α have been experimentally
established.

In order to develop a theoretical picture of the trans-
port properties of any material, the first issues to clarify
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are the spectrum of the energy states for charge carri-
ers and the spatial structure of such states. Since these
two central issues are yet to be answered properly for
noncrystalline materials, the theory of charge transport
in disordered systems should be considered to be still in
its embryonic stage.

The problem of deducing electron properties in a ran-
dom field is very complicated, and the solutions obtained
so far only apply to some very simple models. One
of them is the famous Anderson model that illustrates
the localization phenomenon caused by random disor-
der [9.19]. In this model, one considers a regular system
of rectangular potential wells with randomly varying
depths, as shown schematically in Fig. 9.2. The ground
state energies of the wells are assumed to be randomly
distributed over the range with a width of W . First,
one considers the ordered version of the model, with
W equal to zero. According to conventional band the-
ory, a narrow band arises in the ordered system where
the energy width depends on the overlap integral I
between the electron wavefunctions in the adjusting

Space

Energy

Fig. 9.2 Anderson model of disorder potential

ε

g (ε)

Fig. 9.3 Density of states in the Anderson model. Hatched
regions in the tails correspond to spatially localized states

wells. The eigenstates in such a model are delocal-
ized with wavefunctions of the Bloch type. This is
trivial. The problem is to find the solution for a fi-
nite degree of disorder (W �= 0). The result from the
Anderson model for such a case is described as fol-
lows. At some particular value for the ratio W/(zI ),
where z is the coordination number of the lattice, all
electron states of the system are spatially localized.
At smaller values of W/(zI ) some states in the outer
regions of the DOS are localized and other states in
the middle of the DOS energy distribution are spa-
tially extended, as shown schematically in Fig. 9.3.
This is one of the most famous results in the trans-
port theory of disordered systems. When considering
this result, one should note the following points. (i)
It was obtained using a single-electron picture without
taking into account long-range many-particle interac-
tions. However, in disordered systems with localized
electrons such interactions can lead to the localization
of charge carriers and they often drastically influence
the energy spectrum [9.14]. Therefore the applicability
of the single-electron Anderson result to real systems
is questionable. (ii) Furthermore, the energy structure
of the Anderson model shown in Fig. 9.3 strongly con-
tradicts that observed in real disordered materials. In
real systems, the mobility gap is located between the
mobility edges, as shown in Fig. 9.1, while in the An-
derson model the energy region between the mobility
edges is filled with delocalized states. Moreover, in
one-dimensional and in some two-dimensional systems,
the Anderson model predicts that all states are local-
ized at any amount of disorder. These results are of
little help when attempting to interpret the DOS scheme
in Fig. 9.1.

A different approach to the localization problem is
to try to impose a random potential V (x) onto the band
structure obtained in the frame of a traditional band
theory. Assuming a classical smoothly varying (in space)

a) b) c)

Fig. 9.4a–c Disorder potential landscape experienced by a charge
carrier (a). Regions with energies below some given energy level
Ec are colored black. In frame (b) this level is very low and there
is no connected path through the system via black regions. In frame
(c) the level Ec corresponds to the classical percolation level
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potential V (x) with a Gaussian distribution function

F(V ) = 1

ε0
√

2π
exp

(
− V 2

2ε2
0

)
, (9.4)

one can solve the localization problem using the classi-
cal percolation theory illustrated in Fig. 9.4. In Fig. 9.4a,
an example of a disorder potential experienced by elec-
trons is shown schematically. In Fig. 9.4b and Fig. 9.4c
the regions below a given energy level Ec are colored
black. In Fig. 9.4b this level is positioned very low, so
that regions with energies below Ec do not provide a con-
nected path through the system. In Fig. 9.4c an infinite
percolation cluster consisting only of black regions ex-
ists. The Ec that corresponds to the first appearance of
such a connected path is called the classical percolation
level [9.14]. Mathematically soluving the percolation
problem shows that the mobility edge identified with the
classical percolation level in the potential V (x) is shifted
with respect to the band edge of the ordered system by
an amount ξε0, where ξ ≈ 0.96 towards the center of the
bandgap [9.15]. A similar result, though with a different
constant ξ , can be obtained via a quantum-mechanical
treatment of a short-range potential V (x) of white-noise
type [9.20]. As the amplitude ε0 of the random potential
increases the band gap narrows, while the conduction
and valence bands become broader. Although this result
is provided by both limiting models – by the classical
one with a long-range smoothly varying potential V (x)
and by the quantum-mechanical one with a short-range
white-noise potential V (x) – none of the existing theories
can reliably describe the energy spectrum of a disordered
material and the properties of the charge carrier wave-
functions in the vicinity of the mobility edges, in other
words in the energy range which is most important for
charge transport.

The DC conductivity can generally be represented
in the form

σ = e
∫

µ(ε)n(ε)dε , (9.5)

where e is the elementary charge, n(ε)dε is the con-
centration of electrons in the energy range between ε

and ε+ dε and µ(ε) is the mobility of these electrons.
The integration is carried out over all energies ε. Under
equilibrium conditions, the concentration of electrons
n(ε)dε is determined by the density of states g(ε) and
the Fermi function f (ε), which depends on the position
of the Fermi energy εF (or a quasi-Fermi energy in the
case of the stationary excitation of electrons):

n(ε) = g(ε) f (ε) , (9.6)

where

f (ε) = 1

1+ exp
(

ε−εF
kBT

) . (9.7)

Here T is the temperature and kB is the Boltzmann
constant.

The Fermi level in almost all known disordered
semiconductors under real conditions is situated in the
mobility gap – in the energy range which corresponds
to spatially localized electron states. The charge carrier
mobility µ(ε) in the localized states below the mobil-
ity edge is much less than that in the extended states
above the mobility edge. Therefore, at high tempera-
tures, when a considerable fraction of electrons can be
found in the delocalized states above the mobility edge,
these states dominate the electrical conductivity of the
system. The corresponding transport mechanism under
such conditions is similar to that in ordered crystalline
semiconductors. Electrons in the states within the en-
ergy range of the width, of the order kBT above the
mobility edge, dominate the conductivity. In such a case
the conductivity can be estimated as

σ ≈ eµcn(εc)kBT , (9.8)

where µc is the electron mobility in the states above
the mobility edge εc, and n(εc)kBT is their concen-
tration. This equation is valid under the assumption
that the typical energy scale of the DOS function g(ε)
above the mobility edge is larger than kBT . The posi-
tion of the Fermi level in disordered materials usually
depends on temperature only slightly. Combining (9.6)–
(9.8), one obtains the temperature dependence of the DC
conductivity in the form

σ = σ0 exp

(
− ∆

kBT

)
, (9.9)

described by (9.1) with β = 1 and constant activation
energy, which is observed in most disordered semicon-
ductors at high temperatures.

In order to obtain the numerical value of the conduc-
tivity in this high-temperature regime, one needs to know
the density of states in the vicinity of the mobility edge
g(εc), and also the magnitude of the electron mobility µc
in the delocalized states above εc. While the magnitude
of g(εc) is usually believed to be close to the DOS value
in the vicinity of the band edge in crystalline semicon-
ductors, there is no consensus among researchers on the
magnitude of µc. In amorphous semiconductors µc is
usually estimated to be in the range of 1 cm2/V s to
10 cm2/V s. Unfortunately, there are no reliable theo-
retical calculations of this quantity for most disordered
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materials. The only exception is provided by so-called
mixed crystals, which are also sometimes called crys-
talline solid solutions. In the next section we describe the
theoretical method which allows one to estimate µc in

such systems. This method can be extended to other dis-
ordered materials, provided the statistical properties of
the disorder potential, essential for electron scattering,
are known.

9.2 Charge Transport in Disordered Materials via Extended States

The states with energies below εv and above εc in disor-
dered materials are believed to possess similar properties
to those of extended states in crystals. Various exper-
imental data suggest that these states in disordered
materials are delocalized states. However, traditional
band theory is largely dependent upon the system having
translational symmetry. It is the periodic atomic struc-
ture of crystals that allows one to describe electrons and
holes within such a theory as quasi-particles that exhibit
behavior similar to that of free particles in vacuum, al-
beit with a renormalized mass (the so-called “effective
mass”). The energy states of such quasi-particles can
be described by their momentum values. The wavefunc-
tions of electrons in these states (the so-called Bloch
functions) are delocalized. This means that the proba-
bility of finding an electron with a given momentum
is equal at corresponding points of all elementary cells
of the crystal, independent on the distance between the
cells.

Strictly speaking, the traditional band theory fails in
the absence of translational symmetry – for disordered
systems. Nevertheless, one still assumes that the charge
carriers present in delocalized states in disordered ma-
terials can be approximately described by wavefunctions
with a spatially homogeneous probability of finding
a charge carrier with a given quasi-momentum. As for
crystals, one starts from the quasi-free particle picture
and considers the scattering effects in a perturbation
approach following the Boltzmann kinetic description.
This description is valid if the de Broglie wavelength of
the charge carrier λ = �/p is much less than the mean
free path l = vτ , where τ is the momentum relaxation
time and p and v are the characteristic values of the
momentum and velocity, respectively. This validity con-
dition for the description based on the kinetic Boltzmann
equation can also be expressed as �/τ � ε, where ε is
the characteristic kinetic energy of the charge carriers,
which is equal to kBT for a nondegenerate electron gas
and to the Fermi energy in the degenerate case. While
this description seems valid for delocalized states far
from the mobility edges, it fails for energy states in the
vicinity of the mobility edges. So far, there has been

no consensus between the theorists on how to describe
charge carrier transport in the latter states. Moreover, it
is not clear whether the energy at which the carrier mo-
bility drops coincides with the mobility edge or whether
it is located above the edge in the extended states. Nu-
merous discussions of this question, mostly based on
the scaling theory of localization, can be found in spe-
cial review papers. For the rest of this section, we skip
this rather complicated subject and instead we focus on
the description of charge carrier transport in a semicon-
ductor with a short-range random disorder potential of
white-noise type. This seems to be the only disordered
system where a reliable theory exists for charge carrier
mobility via extended states above the mobility edge.
Semiconductor solid solutions provide an example of a
system with this kind of random disorder [9.20–25].

Semiconductor solid solutions AxB1−x (mixed crys-
tals) are crystalline semiconductors in which the sites
of the crystalline sublattice can be occupied by atoms
of two different types, A and B. Each site can be oc-
cupied by either an A or a B atom with some given
probability x between zero and unity. The value x is of-
ten called the composition of the material. Due to the
random spatial distributions of the A and B atoms, lo-
cal statistical fluctuations in the composition inside the
sample are unavoidable, meaning that mixed crystals
are disordered systems. Since the position of the band
edge depends on the composition x, these fluctuations
in local x values lead to the disorder potential for elec-
trons and holes within the crystal. To be precise, we will
consider the influence of the random potential on a con-
duction band electron. Let Ec(x) be the conduction band
minimum for a crystal with composition x. In Fig. 9.5
a possible schematic dependence Ec(x) is shown. If the
average composition for the whole sample is x0, the lo-
cal positions of the band edge Ec(x) fluctuate around
the average value Ec(x0) according to the fluctuations
of the composition x around x0. For small deviations in
composition ∆x from the average value, one can use the
linear relation

Ec(x0 +∆x) = Ec(x0)+α∆x , (9.10)
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Fig. 9.5 Schematic dependence of the conduction band
edge εc on composition x in a mixed crystal AxB1−x

where

α = dEc(x)

dx

∣∣∣∣
x=x0

. (9.11)

If the deviation of the concentration of A atoms from its
mean value in some region of a sample is ξ(r) and the
total concentration of (sub)lattice sites is N , the devia-
tion of the composition in this region is ∆x = ξ(r)/N ,
and the potential energy of an electron at the bottom of
the conduction band is

V (r) = α
ξ(r)

N
. (9.12)

Although one calls the disorder in such systems a “short-
range” disorder, it should be noted that the consideration
is valid only for fluctuations that are much larger than the
lattice constant of the material. The term “short-range”
is due to the assumption that the statistical properties
of the disorder are absolutely uncorrelated. This means
that potential amplitudes in the adjusting spatial points
are completely uncorrelated to each other. Indeed, it
is usually assumed that the correlation function of the
disorder in mixed crystals can be approximated by a
white-noise correlation function of the form〈

ξ(r)ξ(r ′)
〉 = x(1− x)Nδ(r −r ′) . (9.13)

The random potential caused by such compositional
fluctuations is then described by the correlation func-
tion [9.20]〈

V (r)V (r ′)
〉 = γδ(r −r ′) (9.14)

with

γ = α2

N
x(1− x) . (9.15)

Charge carriers in mixed crystals are scattered by com-
positional fluctuations. As is usual in kinetic descriptions
of free electrons, the fluctuations on the spatial scale of
the order of the electron wavelength are most efficient.
Following Shlimak et al. [9.23], consider an isotropic
quadratic energy spectrum

εp = p2

2m
, (9.16)

where p and m are the quasi-momentum and the effec-
tive mass of an electron, respectively. The scattering rate
for such an electron is

νp = 2π

�

∑
q

〈∣∣Vq
∣∣2

〉 (
1− cos ϑq

)
δ
(
εp − εp−q

)
,

(9.17)

where ϑq is the scattering angle and〈∣∣Vq
∣∣2

〉
= 1

Ω

∫
d3r exp (iqr) 〈V (r)V (0)〉 . (9.18)

The quantity Ω in this formula is the normalization vol-
ume. Using the correlation function (9.14), one obtains
the relation〈∣∣Vq

∣∣2
〉
= α2x(1− x)

ΩN
, (9.19)

which shows that the scattering by compositional
fluctuations is equivalent to that by a short-range po-
tential [9.23]. Substituting (9.19) into (9.17) one obtains
the following expression for the scattering rate [9.20]

νp = α2x(1− x)m p

π�4 N
. (9.20)

This formula leads to an electron mobility of the fol-
lowing form in the framework of the standard Drude
approach [9.20, 23]

µC = π3/2

2
√

2

e�4 N

α2x(1− x)m5/2(kBT )1/2 . (9.21)

Very similar formulae can be found in many recent pub-
lications (see for example Fahy and O’Reily [9.26]). It
has also been modified and applied to two-dimensional
systems [9.27] and to disordered diluted magnetic semi-
conductors [9.28].

It would not be difficult to apply this theoretical
description to other disordered systems, provided the
correlation function of the disorder potential takes the
form of (9.14) with known amplitude γ . However, it
is worth emphasizing that the short-range disorder of
white-noise type considered here is a rather simple
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model that cannot be applied to most disordered ma-
terials. Therefore, we can conclude that the problem of
theoretically describing charge carrier mobility via de-
localized states in disordered materials is still waiting to
be solved.

In the following section we present the general con-
cepts developed to describe electrical conduction in
disordered solids at temperatures where tunneling tran-
sitions of electrons between localized states significantly
contribute to charge transport.

9.3 Hopping Charge Transport in Disordered Materials
via Localized States

Electron transport via delocalized states above the
mobility edge dominates the electrical conduction of dis-
ordered materials only at temperatures high enough to
cause a significant fraction of the charge carriers fill these
states. As the temperature decreases, the concentration
of the electrons described by (9.9) decreases exponen-
tially and so their contribution to electrical conductivity
diminishes. Under these circumstances, tunneling tran-
sitions of electrons between localized states in the band
tails dominate the charge transport in disordered semi-
conductors. This transport regime is called hopping
conduction, since the incoherent sequence of tunneling
transitions of charge carriers resembles a series of their
hops between randomly distributed sites. Each site in this
picture provides a spatially localized electron state with
some energy ε. In the following we will assume that the
localized states for electrons (concentration N0) are ran-
domly distributed in space and their energy distribution
is described by the DOS function g(ε):

g(ε) = N0

ε0
G

(
ε

ε0

)
, (9.22)

where ε0 is the energy scale of the DOS distribution.
The tunneling transition probability of an electron

from a localized state i to a localized state j that is lower
in energy depends on the spatial separation rij between
the sites i and j as

νij (r) = ν0 exp

(
−2rij

α

)
, (9.23)

where α is the localization length, which we assume
to be equal for sites i and j. This length determines the
exponential decay of the electron wavefunction in the lo-
calized states, as shown in Fig. 9.6. The pre-exponential
factor ν0 in (9.23) depends on the electron interaction
mechanism that causes the transition. Usually it is as-
sumed that electron transitions contributing to charge
transport in disordered materials are caused by interac-
tions of electrons with phonons. Often the coefficient
ν0 is simply assumed to be of the order of the phonon

α

εi

εjrij

Fig. 9.6 Hopping transition between two localized states i
and j with energies of εi and ε j , respectively. The solid and
dashed lines depict the carrier wavefunctions at sites i and
j, respectively; α is the localization radius

frequency (≈ 1013 s−1), although a more rigorous ap-
proach is in fact necessary to determine ν0. This should
take into account the particular structure of the electron
localized states and also the details of the interaction
mechanism [9.29, 30].

When an electron transits from a localized state i to
a localized state j that is higher in energy, the transi-
tion rate depends on the energy difference between the
states. This difference is compensated for by absorbing
a phonon with the corresponding energy [9.31]:

νij (r, εi , ε j ) = ν0 exp

(
−2rij

a

)

× exp

(
−ε j − εi +

∣∣ε j − εi
∣∣

2kBT

)
.

(9.24)

Equations (9.23) and (9.24) were written for the case
in which the electron occupies site i whereas site j is
empty. If the system is in thermal equilibrium, the occu-
pation probabilities of sites with different energies are
determined by Fermi statistics. This effect can be taken
into account by modifying (9.24) and adding terms that
account for the relative energy positions of sites i and
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j with respect to the Fermi energy εF. Taking into ac-
count these occupation probabilities, one can write the
transition rate between sites i and j in the form [9.31]

νij = ν0 exp

(
−2rij

a

)

× exp

(
−|εi − εF|+ ∣∣ε j − εF

∣∣+ ∣∣ε j − εi
∣∣

2kBT

)
.

(9.25)

Using these formulae, the theoretical description of
hopping conduction is easily formulated. One has to
calculate the conductivity provided by transition events
(the rates of which are described by (9.25)) in the man-
ifold of localized states (where the DOS is described by
(9.22)).

9.3.1 Nearest-Neighbor Hopping

Before presenting the correct solution to the hopping
problem we would like to emphasize the following. The
style of the theory for electron transport in disordered
materials via localized states significantly differs from
that used for theories of electron transport in ordered
crystalline materials. While the description is usually
based on various averaging procedures in crystalline sys-
tems, in disordered systems these averaging procedures
can lead to extremely erroneous results. We believe that
it is instructive to analyze some of these approaches
in order to illustrate the differences between the de-
scriptions of charge transport in ordered and disordered
materials. To treat the scattering rates of electrons in
ordered crystalline materials, one usually proceeds by
averaging the scattering rates over the ensemble of scat-
tering events. A similar procedure is often attempted
for disordered systems too, although various textbooks
(see, for instance, Shklovskii and Efros [9.14]) illustrate
how erroneous such an approach can be in the case of
disordered materials.

Let us consider the simplest example of hopping
processes, namely the hopping of an electron through
a system of isoenergetic sites randomly distributed in
space with some concentration N0. It will be always as-
sumed in this chapter that electron states are strongly
localized and the strong inequality N0α

3 � 1 is ful-
filled. In such a case the electrons prefer to hop between
the spatially nearest sites and therefore this transport
regime is often called nearest-neighbor hopping (NNH).
This type of hopping transport takes place in many real
systems at temperatures where the thermal energy kBT
is larger than the energy scale of the DOS. In such sit-

uations the energy-dependent terms in (9.24) and (9.25)
do not play any significant role and the hopping rates
are determined solely by the spatial terms. The rate of
transition of an electron between two sites i and j is de-
scribed in this case by (9.23). The average transition rate
is usually obtained by weighting this expression with the
probability of finding the nearest neighbor at some par-
ticular distance rij , and by integrating over all possible
distances:

〈ν〉 =
∞∫

0

drν0

× exp

(
−2r

α

)
4πr2 N0 exp

(
−4π

3
r3 N0

)
≈ πν0 N0α

3 . (9.26)

Assuming that this average hopping rate describes the
mobility, diffusivity and conductivity of charge carriers,
one apparently comes to the conclusion that these quan-
tities are linearly proportional to the density of localized
states N0. However, experiments evidence an exponen-
tial dependence of the transport coefficients on N0.

Let us look therefore at the correct solution to the
problem. This solution is provided in the case considered
here, N0α

3 � 1, by percolation theory (see, for instance,
Shklovskii and Efros [9.14]). In order to find the trans-
port path, one connects each pair of sites if the relative
separation between the sites is smaller than some given
distance R, and checks whether there is a continuous
path through the system via such sites. If such a path
is absent, the magnitude of R is increased and the pro-
cedure is repeated. At some particular value R = Rc,
a continuous path through the infinite system via sites
with relative separations R < Rc arises. Various math-
ematical considerations give the following relation for
Rc [9.14]:

4π

3
N0 R3

c = Bc , (9.27)

where Bc = 2.7±0.1 is the average number of neighbor-
ing sites available within a distance of less than Rc. The
corresponding value of Rc should be inserted into (9.23)
in order to determine kinetic coefficients such as the mo-
bility, diffusivity and conductivity. The idea behind this
procedure is as follows. Due to the exponential depen-
dence of the transition rates on the distances between
the sites, the rates for electron transitions over distances
r < Rc are much larger than those over distances Rc.
Such fast transitions do not play any significant role as
a limiting factor in electron transport and so they can
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Rc

Fig. 9.7 A typical transport path with the lowest resistance.
Circles depict localized states. The arrow points out the
most “difficult” transition, with length Rc

be neglected in calculations of the resistivity of the sys-
tem. Transitions over distances Rc are the slowest among
those that are necessary for DC transport and hence such
transitions determine the conductivity. The structure of
the percolation cluster responsible for charge transport
is shown schematically in Fig. 9.7. The transport path
consists of quasi-one-dimensional segments, each con-
taining a “difficult” transition over the distance ≈ Rc.
Using (9.23) and (9.27), one obtains the dependence
of the conductivity on the concentration of localization
sites in the form

σ = σ0 exp

(
− γ

αN1/3
0

)
, (9.28)

where σ0 is the concentration-independent pre-
exponential factor and γ = 1.73±0.03. Such arguments
do not allow one to determine the exponent in the kinetic
coefficients with an accuracy better than a number of the
order of unity [9.14]. One should note that the quantity
in the exponent in (9.28) is much larger than unity for
a system with strongly localized states when the inequal-
ity N0α

3 � 1 is valid. This inequality justifies the above
derivation. The dependence described by (9.28) has been
confirmed in numerous experimental studies of the hop-
ping conductivity via randomly placed impurity atoms
in doped crystalline semiconductors [9.14]. The drastic
difference between this correct result and the erroneous
one based on (9.26) is apparent. Unfortunately, the be-

lief of many researchers in the validity of the procedure
based on the averaging of hopping rates is so strong that
the agreement between (9.28) and experimental data is
often called occasional. We would like to emphasize
once more that the ensemble averaging of hopping rates
leads to erroneous results. The magnitude of the aver-
age rate in (9.26) is dominated by rare configurations
of very close pairs of sites with separations of the order
of the localization length α. Of course, such pairs allow
very fast electron transitions, but electrons cannot move
over considerable distances using only these close pairs.
Therefore the magnitude of the average transition rate is
irrelevant for calculations of the hopping conductivity.
The correct concentration dependence of the conductiv-
ity is given by (9.28). This result was obtained under
the assumption that only spatial factors determine tran-
sition rates of electrons via localized states. This regime
is valid at reasonably high temperatures.

If the temperature is not as high and the ther-
mal energy kBT is smaller than the energy spread
of the localized states involved in the charge trans-
port process, the problem of calculating the hopping
conductivity becomes much more complicated. In this
case, the interplay between the energy-dependent and
the distance-dependent terms in (9.24) and (9.25) de-
termines the conductivity. The lower the temperature,
the more important the energy-dependent terms in the
expressions for transition probabilities of electrons in
(9.24) and (9.25) become. If the spatially nearest-
neighboring sites have very different energies, as shown
in Fig. 9.8, the probability of an upward electron transi-
tion between these sites can be so low that it would be
more favorable for this electron to hop to a more dis-
tant site at a closer energy. Hence the typical lengths of

Energy

Spatial coordinate

εF

1
2

Fig. 9.8 Two alternative hopping transitions between oc-
cupied states (filled circles) and unoccupied states. The
dashed line depicts the position of the Fermi level. Tran-
sitions (1) and (2) correspond to nearest-neighbor hopping
and variable-range hopping regimes, respectively
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electron transitions increase with decreasing tempera-
ture. This transport regime was termed “variable-range
hopping”. Next we describe several useful concepts
developed to describe this transport regime.

9.3.2 Variable-Range Hopping

The concept of variable-range hopping (VRH) was put
forward by Mott (see Mott and Davis [9.32]) who con-
sidered electron transport via a system of randomly
distributed localized states at low temperatures. We start
by presenting Mott’s arguments. At low temperatures,
electron transitions between states with energies in the
vicinity of the Fermi level are most efficient for transport
since filled and empty states with close energies can only
be found in this energy range. Consider the hopping con-
ductivity resulting from energy levels within a narrow
energy strip with width 2∆ε symmetric to the Fermi
level shown in Fig. 9.9. The energy width of the strip
useful for electron transport can be determined from the
relation

g(εF) ·∆ε ·r3(∆ε) ≈ 1 . (9.29)

This criterion is similar to that used in (9.27), although
we do not care about numerical coefficients here. Here
we have to consider the percolation problem in four-
dimensional space since in addition to the spatial terms
considered in Sect. 9.3.1 we now have to consider the
energy too. The corresponding percolation problem for
the transition rates described by (9.25) has not yet been
solved precisely. In (9.29) it is assumed that the energy
width 2∆ε is rather small and that the DOS function g(ε)
is almost constant in the range εF ±∆ε. One can obtain

εg(  )

ε

εF2∆ε

Fig. 9.9 Effective region in the vicinity of the Fermi level
where charge transport takes place at low temperatures

the typical hopping distance from (9.29) as a function of
the energy width ∆ε in the form

r(∆ε) ≈ [g(εF)∆ε]−1/3 , (9.30)

and substitute it into (9.24) in order to express the typical
hopping rate

ν = ν0 exp

(
−2[g(εF)∆ε]−1/3

α
− ∆ε

kBT

)
. (9.31)

The optimal energy width ∆ε that provides the maxi-
mum hopping rate can be determined from the condition
dν/d∆ε = 0. The result reads

∆ε =
(

2kBT

3g1/3(εF)

)3/4

. (9.32)

After substitution of (9.32) into (9.31) one obtains Mott’s
famous formula for temperature-dependent conductivity
in the VRH regime

σ = σ0 exp

[
−

(
T0

T

)1/4
]

, (9.33)

where T0 is the characteristic temperature:

T0 = β

kBg(εF)α3
. (9.34)

Mott gave only a semi-quantitative derivation of (9.33),
from which the exact value of the numerical constant β

cannot be determined. Various theoretical studies in 3-D
systems suggest values for β in the range β = 10.0 to
β = 37.8. According to our computer simulations, the
appropriate value is close to β = 17.6.

Mott’s law implies that the density of states in
the vicinity of the Fermi level is energy-independent.
However, it is known that long-range electron–electron
interactions in a system of localized electrons cause
a gap (the so-called Coulomb gap) in the DOS in the
vicinity of the Fermi energy [9.33,34]. The gap is shown
schematically in Fig. 9.10. Using simple semiquantita-
tive arguments, Efros and Shklovskii [9.33] suggested
a parabolic shape for the DOS function

g(ε) = η κ3

e6 (ε− εF)2 , (9.35)

where κ is the dielectric constant, e is the elementary
charge and η is a numerical coefficient. This result was
later confirmed by numerous computer simulations (see,
for example, Baranovskii et al. [9.35]). At low temper-
atures, the density of states near the Fermi level has
a parabolic shape, and it vanishes exactly at the Fermi
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energy. As the temperature rises, the gap disappears (see,
for example, Shlimak et al. [9.36]).

As we have seen above, localized states in the vicin-
ity of the Fermi energy are the most useful for transport
at low temperatures. Therefore the Coulomb gap es-
sentially modifies the temperature dependence of the
hopping conductivity in the VRH regime at low temper-
atures. The formal analysis of the T -dependence of the
conductivity in the presence of the Coulomb gap is sim-
ilar to that for the Mott’s law discussed above. Using the
parabolic energy dependence of the DOS function, one
arrives at the result

σ = σ0 exp

⎡
⎣−

(
T̃0

T

)1/2
⎤
⎦ (9.36)

with T̃0=β̃e2/(καkB), where β̃ is a numerical coefficient.
Equations (9.33) and (9.36) belong to the most fa-

mous theoretical results in the field of variable-range
hopping conduction. However these formulae are usu-
ally of little help to researchers working with essentially
noncrystalline materials, such as amorphous, vitreous
or organic semiconductors. The reason is as follows.
The above formulae were derived for the cases of either
constant DOS (9.33) or a parabolic DOS (9.36) in the en-
ergy range associated with hopping conduction. These
conditions can usually be met in the impurity band of
a lightly doped crystalline semiconductor. In the most
disordered materials, however, the energy distribution of
the localized states is described by a DOS function that
is very strongly energy-dependent. In amorphous, vit-
reous and microcrystalline semiconductors, the energy
dependence of the DOS function is believed to be expo-

εg(  )

ε

εF2∆ε

Fig. 9.10 Schematic view of the Coulomb gap. The insert
shows the parabolic shape of the DOS near the Fermi level

nential, while in organic materials it is usually assumed
to be Gaussian. In these cases, new concepts are needed
in order to describe the hopping conduction. In the next
section we present these new concepts and calculate the
way the conductivity depends on temperature and on the
concentration of localized states in various significantly
noncrystalline materials.

9.3.3 Description of Charge-Carrier Energy
Relaxation and Hopping Conduction
in Inorganic Noncrystalline Materials

In most inorganic noncrystalline materials, such as vitre-
ous, amorphous and polycrystalline semiconductors, the
localized states for electrons are distributed over a rather
broad energy range with a width of the order of an elec-
tronvolt. The DOS function that describes this energy
distribution in such systems is believed to have a purely
exponential shape

g(ε) = N0

ε0
exp

(
− ε

ε0

)
, (9.37)

where the energy ε is counted positive from the mobility
edge towards the center of the mobility gap, N0 is the to-
tal concentration of localized states in the band tail, and
ε0 determines the energy scale of the tail. To be precise,
we consider that electrons are the charge carriers here.
The result for holes can be obtained in an analogous way.
Values of ε0 in inorganic noncrystalline materials are be-
lieved to vary between 0.025 eV and 0.05 eV, depending
on the system under consideration.

It is worth noting that arguments in favor of a purely
exponential shape for the DOS in the band tails of
inorganic noncrystalline materials described by (9.37)
cannot be considered to be well justified. They are
usually based on a rather ambiguous interpretation of
experimental data. One of the strongest arguments in
favor of (9.37) is the experimental observation of the
exponential decay of the light absorption coefficient for
photons with an energy deficit ε with respect to the en-
ergy width of the mobility gap (see, for example, Mott
and Davis [9.32]). One should mention that this argu-
ment is valid only under the assumption that the energy
dependence of the absorption coefficient is determined
solely by the energy dependence of the DOS. However,
in many cases the matrix element for electron excitation
by a photon in noncrystalline materials also strongly
depends on energy [9.14, 37]. Hence any argument for
the shape of the DOS based on the energy dependence
of the light absorption coefficient should be taken very
cautiously. Another argument in favor of (9.37) comes
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from the measurements of dispersive transport in time-
of-flight experiments. In order to interpret the observed
time dependence of the mobility of charge carriers, one
usually assumes that the DOS for the band tail takes
the form of (9.37) (see, for example, Orenstein and
Kastner [9.38]). One of the main reasons for such an
assumption is probably the ability to solve the problem
analytically without elaborate computer work.

In the following we start our consideration of the
problem by also assuming that the DOS in a band tail of
a noncrystalline material has an energy dependence that
is described by (9.37). This simple function will allow
us to introduce some valuable concepts that have been
developed to describe dynamic effects in noncrystalline
materials in the most transparent analytical form. We
first present the concept of the so-called transport en-
ergy, which, in our view, provides the most transparent
description of the charge transport and energy relaxation
of electrons in noncrystalline materials.

The Concept of the Transport Energy
The crucial role of a particular energy level in the hop-
ping transport of electrons via localized band-tail states
with the DOS described by (9.37) was first recognized
by Grünewald and Thomas [9.39] in their numerical
analysis of equilibrium variable-range hopping conduc-
tivity. This problem was later considered by Shapiro
and Adler [9.40], who came to the same conclusion as
Grünewald and Thomas, namely that the vicinity of one
particular energy level dominates the hopping transport
of electrons in the band tails. In addition, they achieved
an analytical formula for this level and showed that its
position does not depend on the Fermi energy.

Independently, the rather different problem of
nonequilibrium energy relaxation of electrons by hop-
ping through the band tail with the DOS described by
(9.37) was solved at the same time by Monroe [9.41]. He
showed that, starting from the mobility edge, an elec-
tron most likely makes a series of hops downward in
energy. The manner of the relaxation process changes
at some particular energy εt, which Monroe called the
transport energy (TE). The hopping process near and be-
low TE resembles a multiple-trapping type of relaxation,
with the TE playing a role similar to the mobility edge.
In the multiple-trapping relaxation process [9.38], only
electron transitions between delocalized states above the
mobility edge and the localized band-tail states are al-
lowed, while hopping transitions between the localized
tail states are neglected. Hence, every second transi-
tion brings the electron to the mobility edge. The TE
of Monroe [9.41] coincides exactly with the energy

level discovered by Grünewald and Thomas [9.39] and
by Shapiro and Adler [9.40] for equilibrium hopping
transport.

Shklovskii et al. [9.42] have shown that the same
energy level εt also determines the recombination and
transport of electrons in the nonequilibrium steady state
under continuous photogeneration in a system with the
DOS described by (9.37).

It is clear, then, that the TE determines both equi-
librium and nonequilibrium and both transient and
steady-state transport phenomena. The question then
arises as to why this energy level is so universal that
electron hopping in its vicinity dominates all transport
phenomena. Below we derive the TE by considering
a single hopping event for an electron localized deep in
the band tail. It is the transport energy that maximizes
the hopping rate as a final electron energy in the hop,
independent of its initial energy [9.43]. All derivations
below are carried out for the case kBT < ε0.

Consider an electron in a tail state with energy εi .
According to (9.24), the typical rate of downward hop-
ping of such an electron to a neighboring localized state
deeper in the tail with energy ε j ≥ εi is

ν↓(εi ) = ν0 exp

(
−2r(εi)

α

)
, (9.38)

where

r(ε) ≈
⎡
⎣4π

3

∞∫
εi

g(x)dx

⎤
⎦

−1/3

. (9.39)

The typical rate of upward hopping for such an electron
to a state less deep in the tail with energy ε j ≤ εi is

ν↑(εi , δ) = ν0 exp

[
−2r(εi − δ)

α
− δ

kBT

]
, (9.40)

where δ = εi −ε j ≥ 0. This expression is not exact. The
average nearest-neighbor distance, r(εi −δ), is based on
all states deeper than εi − δ. For the exponential tail,
this is equivalent to considering a slice of energy with a
width of the order ε0. This works for a DOS that varies
slowly compared with kBT , but not in general. It is
also assumed for simplicity that the localization length,
α, does not depend on energy. The latter assumption
can be easily jettisoned at the cost of somewhat more
complicated forms of the following equations.

We will analyze these hopping rates at a given tem-
perature T , and try to find the energy difference δ that
provides the fastest typical hopping rate for an electron
placed initially at energy εi . The corresponding energy
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difference, δ, is determined by the condition

dν↑(εi , δ)

dδ
= 0 . (9.41)

Using (9.37), (9.39) and (9.40), we find that the hopping
rate in (9.40) has its maximum at

δ = εi −3ε0 ln
3ε0(4π/3)1/3 N1/3

0 α

2kBT
. (9.42)

The second term in the right-hand side of (9.42) is called
the transport energy εt after Monroe [9.41]:

εt = 3ε0 ln
3ε0(4π/3)1/3 N1/3

0 α

2kBT
. (9.43)

We see from (9.42) that the fastest hop occurs to the
state in the vicinity of the TE, independent of the ini-
tial energy εi, provided that εi is deeper in the tail than
εt; in other words, if δ ≥ 0. This result coincides with
that of Monroe [9.41]. At low temperatures, the TE εt
is situated deep in the band tail, and as the tempera-
ture rises it moves upward towards the mobility edge.
At some temperature Tc, the TE merges with the mo-
bility edge. At higher temperatures, T > Tc, the hopping
exchange of electrons between localized band tail states
becomes inefficient and the dynamic behavior of elec-
trons is described by the well-known multiple-trapping
model (see, for instance, Orenstein and Kastner [9.38]).
At low temperatures, T < Tc, the TE replaces the mo-
bility edge in the multiple-trapping process [9.41], as
shown in Fig. 9.11. The width, W , of the maximum of the
hopping rate is determined by the requirement that near
εt the hopping rate, ν↑(εi, δ), differs by less than a factor
of e from the value ν↑(εi, εi − εt). One finds [9.42]

W = √
6ε0kBT . (9.44)

For shallow states with εi ≤ εt, the fastest hop (on aver-
age) is a downward hop to the nearest spatially localized
state in the band tail, with the rate determined by (9.38)
and (9.39). We recall that the energies of electron states
are counted positive downward from the mobility edge
towards the center of the mobility gap. This means that
electrons in the shallow states with εi ≤ εt normally hop
into deeper states with ε > εi, whereas electrons in the
deep states with εi > εt usually hop upward in energy
into states near εt in the energy interval W , determined
by (9.44).

This shows that εt must play a crucial role in those
phenomena, which are determined by electron hopping
in the band tails. This is indeed the case, as shown in
numerous review articles where comprehensive theo-
ries based on the concept of the TE can be found (see,

tε

iε

ε

δ

εg(  )

Fig. 9.11 Hopping path via the transport energy. In the left frame, the
exponential DOS is shown schematically. The right frame depicts the
transport path constructed from upward and downward hops. The
upward transitions bring the charge carrier to sites with energies
close to the transport energy εt

for instance, Shklovskii et al. [9.42]). We will consider
only one phenomenon here for illustration, namely the
hopping energy relaxation of electrons in a system with
the DOS described by (9.37). This problem was studied
initially by Monroe [9.41].

Consider an electron in some localized shallow en-
ergy state close to the mobility edge. Let the temperature
be low, T < Tc, so that the TE, εt, lies well below the
mobility edge, which has been chosen here as a refer-
ence energy, ε = 0. The aim is to find the typical energy,
εd(t), of our electron as a function of time, t. At early
times, as long as εd(t) < εt, the relaxation is governed
by (9.38) and (9.39). The depth εd(t) of an electron in
the band tail is determined by the condition

ν↓ [εd(t)] t ≈ 1 . (9.45)

This leads to the double logarithmical dependence
εd(t) ∝ ε0 ln[ln(ν0t)]+C, where constant C depends on
ε0, N0, α in line with (9.38) and (9.39). Indeed, (9.38)
and (9.45) prescribe the logarithmic form of the time
dependence of the hopping distance, r(t), and (9.37)
and (9.39) then lead to another logarithmic dependence
εd [r(t)] [9.41]. At the time

tC ≈ ν−1
0 exp

(
3ε0

kBT

)
(9.46)

the typical electron energy, εd(t), approaches the TE εt,
and the style of the relaxation process changes. At t > tc,
every second hop brings the electron into states in the
vicinity of the TE εt from where it falls downward in
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energy to the nearest (in space) localization site. In the
latter relaxation process, the typical electron energy is
determined by the condition [9.41]

ν↑ [εd(t), εt] t ≈ 1 , (9.47)

where ν↑ [εd(t), εt] is the typical rate of electron hop-
ping upward in energy toward the TE [9.41]. This
condition leads to a typical energy position of the re-
laxing electron at time t of

εd(t) ≈ 3ε0 ln [ln (ν0t)]− ε0

[
8/

(
N0α

3
)]

. (9.48)

This is a very important result, which shows that in
a system where the DOS has a pure exponential energy
dependence, described by (9.37), the typical energy of
a set of independently relaxing electrons would drop
deeper and deeper into the mobility gap with time. This
result is valid as long as the electrons do not interact with
each other, meaning that the occupation probabilities of
the electron energy levels are not taken into account.
This condition is usually met in experimental studies
of transient processes, in which electrons are excited by
short (in time) pulses, which are typical of time-of-flight
studies of the electron mobility in various disordered ma-
terials. In this case, only a small number of electrons are
present in the band tail states. Taking into account the
huge number of localized band tail states in most disor-
dered materials, one can assume that most of the states
are empty and so the above formulae for the hopping
rates and electron energies can be used. In this case the
electron mobility is a time-dependent quantity [9.41].
A transport regime in which mobility of charge carriers
is time-dependent is usually called dispersive transport
(see, for example, Mott and Davis [9.32], Orenstein and
Kastner [9.38], Monroe [9.41]). Hence we have to con-
clude that the transient electron mobility in inorganic
noncrystalline materials with the DOS in the band tails
as described by (9.37) is a time-dependent quantity and
the transient electrical conductivity has dispersive char-
acter. This is due to the nonequilibrium behavior of the
charge carriers. They continuously drop in energy during
the course of the relaxation process.

In some theoretical studies based on the Fokker–
Planck equation it has been claimed that the maximum
of the energy distribution of electrons coincides with
the TE εt and hence it is independent of time. This state-
ment contradicts the above result where the maximum
of the distribution is at energy εd(t), given by (9.48).
The Fokker–Planck approach presumes the diffusion of

charge carriers over energy. Hence it is invalid for de-
scribing the energy relaxation in the exponential tails, in
which electron can move over the full energy width of
the DOS (from a very deep energy state toward the TE)
in a single hopping event.

In the equilibrium conditions, when electrons in the
band tail states are provided by thermal excitation from
the Fermi energy, a description of the electrical con-
ductivity can easily be derived using (9.5)–(9.7) [9.39].
The maximal contribution to the integral in (9.5) comes
from the electrons with energies in the vicinity of the
TE εt, in an energy range with a width, W , described
by (9.44). Neglecting the temperature dependence of the
pre-exponential factor, σ0, one arrives at the temperature
dependence of the conductivity:

σ ≈ σ0 exp

(
− 2r(εt)

B−1/3
c α

− εF − εt

kBT

)
, (9.49)

where coefficient Bc ≈ 2.7 is inserted in order to take
into account the need for a charge carrier to move over
macroscopic percolation distances in order to provide
low-frequency charge transport.

A very similar theory is valid for charge transport in
noncrystalline materials under stationary excitation of
electrons (for example by light) [9.42]. In such a case,
one first needs to develop a theory for the steady state
of the system under stationary excitation. This the-
ory takes into account various recombination processes
for charge carriers and provides their stationary con-
centration along with the position of the quasi-Fermi
energy. After solving this recombination problem, one
can follow the track of the theory of charge transport
in quasi-thermal equilibrium [9.39] and obtain the con-
ductivity in a form similar to (9.49), where εF is the
position of the quasi-Fermi level. We skip the corre-
sponding (rather sophisticated) formulae here. Interested
readers can find a comprehensive description of this sort
of theory for electrical conductivity in the literature (see,
for instance, Shklovskii et al. [9.42]).

Instead, in the next section we will consider a very
interesting problem related to the nonequilibrium en-
ergy relaxation of charge carriers in the band tail states.
It is well known that at low temperatures, T ≤ 50 K, the
photoconductivities of various inorganic noncrystalline
materials, such as amorphous and microcrystalline semi-
conductors, do not depend on temperature [9.44–46].
At low temperatures, the TE εt lies very deep in the
band tail and most electrons hop downward in energy,
as described by (9.38) and (9.39). In such a regime, the
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photoconductivity is a temperature-independent quan-
tity determined by the loss of energy during the hopping
of electrons via the band-tail states [9.47]. During this
hopping relaxation, neither the diffusion coefficient D
nor the mobility of the carriers µ depend on tempera-
ture, and the conventional form of Einstein’s relationship
µ = eD/kBT cannot be valid. The question then arises
as to what the relation between µ and D is for hopping
relaxation. We answer this question in the following
section.

Einstein’s Relationship for Hopping Electrons
Let us start by considering a system of nonequilib-
rium electrons in the band tail states at T = 0. The
only process that can happen with an electron is its hop
downward in energy (upward hops are not possible at
T = 0) to the nearest localized state in the tail. Such
a process is described by (9.37)–(9.39). If the spatial
distribution of localized tail states is isotropic, the prob-
ability of finding the nearest neighbor is also isotropic
in the absence of the external electric field. In this case,
the process of the hopping relaxation of electrons resem-
bles diffusion in space. However, the median length of
a hop (the distance r to the nearest available neighbor),
as well as the median time, τ = ν−1

↓ (r), of a hop [see
(9.38)] increases during the course of relaxation, since
the hopping process brings electrons deeper into the tail.
Nevertheless, one can ascribe a diffusion coefficient to
such a process [9.42]:

D(r) = 1

6
ν↓(r)r2 . (9.50)

Here ν↓(r)r2 replaces the product of the “mean free
path” r and the “velocity” r ·ν↓(r), and the coefficient
1/6 accounts for the spatial symmetry of the problem.
According to (9.37)–(9.39) and (9.50), this diffusion
coefficient decreases exponentially with increasing r and
hence with the number of successive electron hops in the
relaxation process.

In order to calculate the mobility of electrons during
hopping relaxation under the influence of the electric
field, one should take into account the spatial asymmetry
of the hopping process due to the field [9.47, 48]. Let us
consider an electron in a localized state at energy ε. If an
external electric field with a strength F is applied along
direction x, the concentration of tail states available to
this hopping electron at T = 0 (in other words those that
have energies deeper in the tail than ε) is [9.47]

N(ε, x) = N(ε)

(
1+ eFx

ε0

)
, (9.51)

where

N(ε) =
∞∫
ε

g(ε)dε = N0 exp

(
− ε

ε0

)
. (9.52)

It was assumed in the derivation of (9.51) that eFx � ε0.
Due to the exponential dependence of the hopping

rate on the hopping length r, the electron predominantly
hops to the nearest tail state among the available states
if r � α, which we assume to be valid. Let us calculate
the average projection 〈x〉 on the field direction of the
vector r from the initial states at energy ε to the near-
est available neighbor among sites with a concentration
N(ε, x) determined by (9.51). Introducing spherical co-
ordinates with the angle θ between r and the x-axis, we
obtain [9.48]

〈x〉 =
2π∫

0

dφ

π∫
0

dθ sin θ

×

∞∫
0

[dr · r3 cos(θ) · N(ε, r cos θ)]

× exp

⎡
⎣−

2π∫
0

dφ

π∫
0

dθ sin θ

×

r∫
0

dr ′r ′2N (ε, r ′ cos θ)

⎤
⎦ . (9.53)

Substituting (9.51) for N(ε, r cos θ), calculating the in-
tegrals in (9.53) and omitting the second-order terms

(
eN−1/3(ε)F

ε0

)2

� 1 , (9.54)

we obtain

〈x〉 = eFN−2/3(ε)

3ε0

Γ (5/3)

(4π/3)2/3 , (9.55)

where Γ is the gamma-function and N(ε) is determined
by (9.52). Equation (9.55) gives the average displace-
ment in the field direction of an electron that hops
downward from a state at energy ε to the nearest avail-
able neighbor in the band tail. The average length 〈r〉 of
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such a hop is

〈r〉 =
∞∫

0

dr4πr3 N(ε) exp

[
−4π

3
N(ε)r3

]

=
(

4πN(ε)

3

)−1/3

Γ

(
4

3

)
. (9.56)

One can ascribe to the hopping process a mobility

µ = v

F
= 〈x〉 ν (〈r〉)

F

= eN−2/3(ε) ν (〈r〉)
3ε0

Γ (5/3)

(4π/3)2/3
(9.57)

and a diffusion coefficient

D = 1

6
〈r〉2 ν (〈r〉)

= 1

6
N−2/3(ε) ν (〈r〉) Γ 2(4/3)

(4π/3)2/3
. (9.58)

Expressions (9.57) and (9.58) lead to a relationship
between µ and D of the form

µ = 2Γ (5/3)

Γ 2(4/3)

e

ε0
D ≈ 2.3

e

ε0
D . (9.59)

This formula replaces the Einstein’s relationship
µ = eD/kBT for electron hopping relaxation in the
exponential band tail. Several points should be noted
about this result. First of all, one should clearly real-
ize that (9.59) is valid for nonequilibrium energy-loss
relaxation in which only downward (in energy) transi-
tions between localized states can occur. This regime
is valid only at low temperatures when the TE εt is
very deep in the band tail. As the temperature increases,
the upward hops become more and more efficient
for electron relaxation. Under these circumstances, the
relation between µ and D evolves gradually with ris-
ing temperature from its temperature-independent form
at T = 0 to the conventional Einstein’s relationship,
µ = eD/kBT [9.50, 51]. Secondly, one should realize
that (9.59) was derived in the linear regime with respect
to the applied field under the assumption that eFx � ε0.
According to (9.55), the quantity 〈x〉 is proportional to
N−2/3(ε) = N−2/3

0 exp [2ε/(3ε0)], in other words it in-
creases exponentially during the course of the relaxation
toward larger localization energies ε. This means that
for deep localized states in the band tail, the condition
eFx � ε0 breaks down. The boundary energy for appli-
cation of the linear theory depends on the strength of the
electric field, F. As F decreases, this boundary energy

drops deeper into the tail. However, for any F, there
is always a boundary energy in the tail below which
the condition eFx � ε0 cannot be fulfilled and where
nonlinear effects play the decisive role in the hopping
conduction of charge carriers. In the next section we
show how one can describe these nonlinear effects with
respect to the applied electric field.

Nonlinear Effects in Hopping Conduction
Transport phenomena in inorganic noncrystalline ma-
terials, such as amorphous semiconductors, under the
influence of high electric fields are the foci for intensive
experimental and theoretical study. This is due to obser-
vations of strong nonlinearities in the dependencies of
the dark conductivity [9.11,52,53], the photoconductiv-
ity [9.49] and the charge carrier drift mobility [9.54–56]
on the field for high electric fields. These effects are most
pronounced at low temperatures, when charge transport
is determined by electron hopping via localized band tail
states (Fig. 9.12).

Whereas the field-dependent hopping conductivity
at low temperatures has always been a challenge to
describe theoretically, theories for the temperature de-
pendence of the hopping conductivity in low electric
fields have been successfully developed for all of the
transport regimes discussed: for the dark conductiv-
ity [9.39], for the drift mobility [9.41], and for the
photoconductivity [9.42]. In all of these theories, hop-
ping transitions of electrons between localized states
in the exponential band tails play a decisive role, as
described above in (9.37)–(9.59).
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Fig. 9.12 Dependence of the photoconductivity in a-Si:H
on the electric field at different temperatures [9.49]

Part
A

9
.3



Charge Transport in Disordered Materials 9.3 Hopping Charge Transport in Disordered Materials via Localized States 179

Shklovskii [9.57] was the first to recognize that a
strong electric field plays a similar role to that of tem-
perature in hopping conduction. In order to obtain the
field dependence of the conductivity σ(F ) at high fields,
Shklovskii [9.57] replaced the temperature T in the well-
known dependence σ(T ) for low fields by a function
Teff (F ) of the form

Teff = eFα

2kB
, (9.60)

where e is the elementary charge, kB is the Boltzmann
constant, and α is the localization length of electrons
in the band tail states. A very similar result was ob-
tained later by Grünewald and Movaghar [9.58] in
their study of the hopping energy relaxation of elec-
trons through band tails at very low temperatures and
high electric fields. The same idea was also used by
Shklovskii et al. [9.42], who suggested that, at T = 0,
one can calculate the field dependence of the stationary
photoconductivity in amorphous semiconductors by re-
placing the laboratory temperature T in the formulae of
the low-field finite-temperature theory by an effective
temperature Teff (F) given by (9.60).

It is easy to understand why the electric field plays
a role similar to that of temperature in the energy relax-
ation of electrons. Indeed, in the presence of the field,
the number of sites available at T = 0 is significantly
enhanced in the field direction, as shown in Fig. 9.13.
Hence electrons can relax faster at higher fields. From
the figure it is apparent that an electron can increase its
energy with respect to the mobility edge by an amount
ε = eFx in a hopping event over a distance x in the di-
rection prescribed by the electric field. The process is
reminiscent of thermal activation. The analogy becomes
tighter when we express the transition rate for this hop
as

ν = ν0 exp

(
−2x

α

)
= ν0 exp

(
− 2ε

eFα

)

= ν0 exp

(
− ε

kBTeff (F)

)
, (9.61)

where Teff (F) is provided by (9.60).
This electric field-induced activation at T = 0 pro-

duces a Boltzmann tail to the energy distribution
function of electrons in localized states as shown by
numerical calculations [9.59,60]. In Fig. 9.12, the field-
dependent photoconductivity in a-Si:H is shown for
several temperatures [9.49]. If we compare the pho-
toconductivity at the lowest measured temperature,

0

0

ε

g(  )ε

g(  )ε

ε

x

F

eFx

Fig. 9.13 Tunneling transition of a charge carrier in the
band tail that is affected by a strong electric field. Upon
traveling the distance x, the carrier acquires the energy
eFx, where F is the strength of the electric field, and e is
the elementary charge

T = 20 K in Fig. 9.12, with the low-field photocon-
ductivity at T = Teff = eFα

2kB
as measured by Hoheisel

et al. [9.44] and by Stradins and Fritzsche [9.45],
we come to the conclusion that the data agree quan-
titatively if one assumes that the localization length
α = 1.05 nm [9.42], which is very close to the value
α ≈ 1.0 nm found for a-Si:H from independent esti-
mates [9.11]. This comparison shows that the concept
of the effective temperature based on (9.60) provides
a powerful tool for estimating transport coefficient non-
linearity with respect to the electric field using the
low-field results for the temperature dependencies of
such coefficients.

However, experiments are usually carried out not at
T = 0 but at finite temperatures, and so the question of
how to describe transport phenomena in the presence of
both factors, finite T and high F, arises. By studying the
steady state energy distribution of electrons in numer-
ical calculations and computer simulations [9.59, 60],
as well as straightforward computer simulations of the
steady-state hopping conductivity and the transient en-
ergy relaxation of electrons [9.61], the following result
was found. The whole set of transport coefficients can
be represented by a function with a single parameter
Teff (F, T )

Teff (F, T ) =
[

Tβ +
(

γ
eFα

kB

)β
]1/β

, (9.62)

where β ≈ 2 and γ is between 0.5 and 0.9 depending
on which transport coefficient is considered [9.61]. We
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are aware of no analytical theory that can support this
numerical result.

To wrap up this section we would like to make the
following remark. It is commonly claimed in the scien-
tific literature that transport coefficients in the hopping
regime should have a purely exponential dependence
on the applied electric field. The idea behind such state-
ments seems rather transparent. Electric field diminishes
potential barriers between localized states by an amount
∆ε = eFx, where x is the projection of the hopping ra-
dius on the field direction. The field should therefore
diminish the activation energies in (9.24) and (9.25) by
this amount, leading to the term exp(eFx/kBT ) in the ex-
pressions for the charge carrier mobility, diffusivity and
conductivity. One should, however, take into account
that hopping transport in all real materials is essentially
described by the variable-range hopping process. In such
a process, as discussed above, the interplay between spa-
tial and energy-dependent terms in the exponents of the
transition probabilities determine the conduction path.
Therefore it is not enough to solely take into account
the influence of the strong electric field on the activation
energies of single hopping transitions. One should con-
sider the modification of the whole transport path due to
the effect of the strong field. It is this VRH nature of the
hopping process that leads to a more complicated field
dependence for the transport coefficients expressed by
(9.60)–(9.62).

We have now completed our description of elec-
tron transport in inorganic disordered materials with
exponential DOS in the band tails. In the next section
we tackle the problem of charge transport in organic
disordered materials.

9.3.4 Description of Charge Carrier Energy
Relaxation and Hopping Conduction
in Organic Noncrystalline Materials

Electron transport and energy relaxation in disordered
organic solids, such as molecularly doped polymers,
conjugated polymers and organic glasses, has been the
subject of intensive experimental and theoretical study
for more than 20 years. Although there is a wide ar-
ray of different disordered organic solids, the charge
transport process is similar in most of these materials.
Even at the beginning of the 1980s it was well under-
stood that the main transport mechanism in disordered
organic media is the hopping of charge carriers via
spatially randomly distributed localized states. Binary
systems like doped polymeric matrices provide canoni-
cal examples of disordered organic materials that exhibit

the hopping transport mechanism. Examples include
polyvinylcarbazole (PVK) or bis-polycarbonate (Lexan)
doped with either strong electron acceptors such as trini-
trofluorenone acting as an electron transporting agent, or
strong electron donors such as derivatives of trypheny-
lamine of triphenylmethane for hole transport [9.62,63].
To avoid the need to specify whether transport is carried
by electrons or holes each time, we will use a general
notation of “charge carrier” below. The results are valid
for both types of carrier – electrons or holes. Charge car-
riers in disordered organic materials are believed to be
strongly localized [9.18,62–64]. The localization centers
are molecules or molecular subunits, henceforth called
sites. These sites are located in statistically different en-
vironments. As a consequence, the site energies, which
are to great extent determined by electronic polarization,
fluctuate from site to site. The fluctuations are typically
on the order of 0.1 eV [9.65]. This is about one order
of magnitude larger than the corresponding transfer in-
tegrals [9.65]. Therefore carrier wavefunctions can be
considered to be strongly localized [9.65].

As discussed above, the crucial problem when de-
veloping a theoretical picture for hopping transport is
the structure of the energy spectrum of localized states,
DOS. It is believed that, unlike inorganic noncrystalline
materials where the DOS is believed exponential, the en-
ergy dependence of the DOS in organic disordered solids
is Gaussian (see Bässler [9.18] and references therein),

g(ε) = N0

ε0
√

2π
exp

(
− ε2

2ε2
0

)
, (9.63)

where N0 is the total concentration of states and ε0 is
the energy scale of the DOS. The strongest evidence in
favor of such an energy spectrum in disordered organic
materials is the ability to reproduce the observed experi-
mentally temperature dependence of the carrier mobility
and that of hopping conductivity assuming the Gaussian
DOS in computer simulations [9.18, 66]. It has been
observed in numerous experimental studies [9.67–73]
that the temperature dependence of the drift mobility
of charge carriers in disordered organic solids takes the
form

µ ∝ exp

[
−

(
T0

T

)2
]

(9.64)

with a characteristic temperature T0, as shown in
Fig. 9.14a. Computer simulations and theoretical cal-
culations [9.65, 66, 74, 75] with the Gaussian DOS
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described by (9.63) give a dependence of the form

µ ∝ exp

[
−

(
C

ε0

kBT

)2
]

, (9.65)

where C is a numerical coefficient. Computer simula-
tions [9.65,66] give a value C ≈ 0.69 for this coefficient,
and analytical calculations [9.74, 75] predict a similar
value of C ≈ 0.64. Equation (9.65) is often used to de-
termine the parameter ε0 of the DOS from experimental
measurements of the ln(µ) versus (1/T )2 dependences
(see, for example, Ochse et al. [9.71]).

One may wonder whether the theoretical description
of hopping conduction and carrier energy relaxation in
a system with a Gaussian DOS (9.63) should differ sig-
nificantly from the theory described above for disordered
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Fig. 9.14a,b Temperature dependence of the zero-field
mobility in organic semiconductors. Experimental data
(a): (1) di-p-tolylphenylamine containing (DEASP)-
traps [9.69]; (2) (BD)-doped polycarbonate [9.70];
(3) (NTDI)-doped poly(styrene) [9.68]; (4) (BD)-doped
TTA/polycarbonate [9.72]. Theoretical results (b) were
obtained via (9.73)

systems with a purely exponential DOS (9.37). The an-
swer to this question is yes. The reason becomes clear
if one considers the behavior of a single charge carrier
in an empty system. In an empty system with an expo-
nential DOS, a charge carrier always (on average) falls
downward in energy if kBT < ε0 [see (9.45)–(9.48)], and
its mobility continuously decreases with time; however,
in a system with a Gaussian DOS, a particular energy
level ε∞ determines the equilibrium energy position of
a charge carrier. When it is located at some site with high
energy in the Gaussian DOS, the charge carrier first hops
via localized states so that its average energy εd(t) de-
creases until it achieves the energy level ε∞ after some
typical time period τrel. At times t < τrel the behavior
of the carrier qualitatively resembles that seen for the
purely exponential DOS. The downward hops are then
replaced by relaxation hops that send the carrier up-
ward to the transport energy, and the carrier mobility at
t < τrel decreases with time. However, in contrast with
the case for the exponential DOS, in a Gaussian DOS
the carrier mobility becomes time-independent after a
time τrel, when the average carrier energy reaches the
level ε∞. At t > τrel, the dispersive transport regime with
time-dependent carrier mobility is replaced by a quasi-
equilibrium so-called “Gaussian transport” regime, in
which the spatial spreading of the carrier packet with
time can be described by the traditional diffusion picture
with a time-independent diffusion coefficient.

The peculiarity of the hopping energy relaxation
of charge carriers in a system with a Gaussian DOS
described above makes it easier to describe charge trans-
port at times t > τrel than in the case of the exponential
DOS. In the latter case, only the presence of a sig-
nificant number of carriers in a quasi Fermi level can
make kinetic coefficients such as mobility, diffusivity
and conductivity time-independent and hence conven-
tionally measurable and discussible quantities. In the
case of the Gaussian DOS, these kinetic coefficients are
not time-dependent at times t > τrel. Moreover, in diluted
systems one can calculate these coefficients by consid-
ering the behavior of a single charge carrier. This makes
theoretical considerations of electrical conductivity in
organic disordered solids with a Gaussian DOS much
easier than when considering inorganic noncrystalline
materials with an exponential DOS. Let us now calcu-
late ε∞, τrel and µ in disordered organic solids with a
Gaussian DOS.

Computer simulations [9.66] and analytical calcu-
lations [9.74, 75] show that the mean energy of the
independently hopping carriers, initially distributed ran-
domly over all states in the Gaussian DOS, decreases
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with time until it approaches the thermal equilibrium
value

ε∞ =

[ ∞∫
−∞

ε exp
(
− ε

kBT

)
g(ε)dε

]
[ ∞∫

−∞
exp

(
− ε

kBT

)
g(ε)dε

] = − ε2
0

kBT
.

(9.66)

The time τrel required to reach this equilibrium is of key
importance in the analysis of experimental data [9.65],
since at t < τrel the carrier mobility decreases with
time (dispersive transport) until it reaches its equilib-
rium, time-independent value at t ≈ τrel. It has been
established by computer simulations that τrel strongly
depends on temperature [9.18]:

τrel ∝ exp

[(
B

ε0

kBT

)2
]

(9.67)

with B ≈ 1.07. Given that the same hopping processes
determine both µ and τrel, researchers were puzzled for
many years by the fact that they had different coefficients
B and C (in other words they have different temperature
dependencies) [9.65]. Below we show how to calculate
both quantities – µ and τrel – easily, and we explain their
temperature dependencies (obtained experimentally and
by computer simulations as expressed by (9.64), (9.65)
and (9.67)).

Our theoretical approach is based on the concept of
transport energy (TE), introduced in Sect. 9.3.3, where it
was calculated for the exponential DOS given by (9.37).
Literally repeating these calculations with the Gaussian
DOS, given by (9.63), we obtain the equation [9.76,77]

exp

(
x2

2

)⎡
⎢⎢⎣

x√
2∫

−∞
exp(−t2)dt

⎤
⎥⎥⎦

4/3

=
[
9(2π)1/2 N0α

3
]−1/3 kBT

ε0
. (9.68)

If we denote the solution of (9.68) as X t(N0α
3, kBT/ε0),

then the transport energy in the Gaussian DOS is equal
to

εt = ε0 · X t

(
N0α

3, kBT/ε0

)
. (9.69)

Charge carriers perform thermally activated transitions
from states with energies below the TE, εt, to the states
with energies close to that of the TE [9.76]. Charge car-
riers hop downward in energy from states with energies

above the TE to the spatially nearest sites with rates
determined by (9.38) and (9.39).

Now that we have clarified the relaxation kinetics
of charge carriers in the Gaussian DOS, it is easy to
calculate the relaxation time τrel and the drift mobility
µ. We consider the case ε∞ < εt < 0, which corre-
sponds to all reasonable values of material parameters
N0α

3 and kBT/ε0 [9.76]. The energy relaxation of most
carriers with energies ε in the interval ε∞ < ε < εt
occurs via a multiple trapping-like process, well de-
scribed in the literature (see, for example, Orenstein
and Kastner [9.38] or Marschall [9.78]). Below εt the
average energy of the carriers ε(t) moves logarithmi-
cally downward with time t. States above ε(t) achieve
thermal equilibrium with states at εt at time t, while
states below ε(t) have no chance at time t to exchange
carriers with states in the vicinity of εt. Hence the oc-
cupation of those deep states does not correspond to
the equilibrium one, being determined solely by the
DOS of the deep states. The system reaches thermal
equilibrium when the time-dependent average energy
ε(t) achieves the equilibrium level ε∞, determined by
(9.66). This happens at t = τrel. Since the relaxation
of carriers occurs via thermal activation to the level
εt, the relaxation time τrel is determined by the time
required for activated transitions from the equilibrium
level ε∞ to the transport energy εt. Hence, accord-
ing to (9.40) and (9.47), τrel is determined by the
expression

τrel = ν−1
0 exp

[
2r(εt)

α
+ εt − ε∞

kBT

]
. (9.70)

From (9.68)–(9.70) it is obvious that the activation en-
ergy of the relaxation time depends on the parameters
N0α

3 and kBT/ε0. Hence, generally speaking, this de-
pendence cannot be represented by (9.67) and, if at
all, the coefficient B should depend on the magnitude
of the parameter N0α

3. However, numerically solving
(9.68)–(9.70) using the value N0α

3 = 0.001, which was
also used in computer simulations by Bässler [9.18,65],
confirms the validity of (9.67) with B ≈ 1.0. This re-
sult is in agreement with the value B ≈ 1.07 obtained
from computer simulations [9.18, 65]. A way to de-
scribe the temperature dependence of the relaxation
time τrel by (9.67) is provided by the strong temper-
ature dependence of ε∞ in the exponent in (9.70),
while the temperature dependencies of the quantities εt
and r(εt) in (9.70) are weaker and they almost cancel
each other out. However, if N0α

3 = 0.02, the relax-
ation time is described by (9.67) with B ≈ 0.9. This
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shows that (9.67) can only be considered to be a good
approximation.

Now we turn to the calculation of the carrier drift
mobility µ. We assume that the transition time ttr nec-
essary for a carrier to travel through a sample is longer
than τrel, and hence the charge transport takes place
under equilibrium conditions. As described above, ev-
ery second jump brings the carrier upward in energy to
the vicinity of εt, and is then followed by a jump to
the spatially nearest site with deeper energy, determined
solely by the DOS. Therefore, in order to calculate the
drift mobility µ, we must average the hopping transi-
tion times over energy states below εt, since only these
states are essential to charge transport in thermal equi-
librium [9.77, 80]. Hops downward in energy from the
level εt occur exponentially faster than upward hops to-
wards εt. This means that one can neglect the former in
the calculation of the average time 〈t〉. The carrier drift
mobility can be evaluated as

µ ≈ e

kBT

r2(εt)
〈t〉 , (9.71)

where r(εt) is determined via (9.39), (9.63), (9.68) and
(9.69). The average hopping time takes the form [9.80]

〈t〉 =
⎡
⎣ εt∫
−∞

g(ε)dε

⎤
⎦

−1

×

εt∫
−∞

ν−1
0 g(ε)

× exp

(
2r(εt)B1/3

c

a
+ εt − ε

kBT

)
dε , (9.72)

where Bc ≈ 2.7 is the percolation parameter. This nu-
merical coefficient is introduced into (9.72) in order to
warrant the existence of an infinite percolation path over
the states with energies below εt. Using (9.63), (9.68),
(9.69), (9.71) and (9.72), one obtains the following re-
lation for the exponential terms in the expression for the
carrier drift mobility:

ln

[
µ/

(
er2(εt)ν0

kBT

)]

= −2

⎡
⎢⎣4

√
π

3Bc
N0α

3

X t/
√

π∫
−∞

exp(−t2)dt

⎤
⎥⎦

−1/3

− X tε0

kBT
− 1

2

(
ε0

kBT

)2

. (9.73)

It is (9.73) that determines the dependence of the carrier
drift mobility on the parameters N0α

3 and kBT/ε0.
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Fig. 9.15 Concentration dependence of the drift mobility
evaluated from (9.73) (solid line), and the depen-
dence observed experimentally (circles) for TNF/PE and
TNF/PVK [9.79]

In Fig. 9.14b, the dependence of the drift mobil-
ity on the temperature at N0α

3 = 0.01 is depicted for
several values of ε0. The sensitivity of the mobility
to temperature is clear from this picture. Comparison
of these dependencies with experimental measurements
of ln(µ) versus (1/T )2 [some are shown in Fig. 9.14a]
provides information on the energy scale, ε0, of the
DOS (see, for example, Bässler [9.18] and Ochse
et al. [9.71]).

In Fig. 9.15, the dependence of the drift mobility
on N0α

3 is shown for kBT/ε0 = 0.3. Experimental data
from Gill [9.81] are also shown in the figure. It is clear
that the slope of the mobility exponent as a function of
(N0α

3)−1/3 given by the theory described above agrees
with the experimental data. At a very low concentration
of localized states, N0, when the probability of carrier
tunneling in space dominates the transition rate in (9.24),
charge carriers hop preferentially to the nearest spatial
sites. In this regime of nearest-neighbor hopping, the
concentration dependence of the drift mobility is de-
scribed by (9.28), as illustrated by the dashed line in
Fig. 9.15.
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So far we have discussed the drift mobility of charge
carriers under the assumption that the concentration of
charge carriers is much less than that of the localized
states in the energy range relevant to hopping transport.
In such a case one can assume that the carriers perform
independent hopping motion and so the conductivity can
be calculated as the product

σ = enµ , (9.74)

where n is the concentration of charge carriers in the
material and µ is their drift mobility. If, however,
the concentration n is so large that the Fermi energy
at thermal equilibrium or the quasi-Fermi energy at
stationary excitation is located significantly higher (en-
ergetically) than the equilibrium energy ε∝, a more
sophisticated theory based on the percolation approach
is required [9.82]. The result obtained is similar to that
given by (9.49).

9.4 Concluding Remarks

Beautiful effects have been observed experimentally by
studying the charge transport in disordered organic and
inorganic materials. Among these, the transport coeffi-
cients in the hopping regime show enormously strong
dependencies on material parameters. The dependence
of the charge carrier mobility on the concentration of lo-
calized states N0 (Fig. 9.15) spreads over many orders
of magnitude, as does its dependence on the tempera-
ture T (Fig. 9.14) and on the (high) electric field strength
F (Fig. 9.12). Such strong variations in physical quan-
tities are typical, say, in astrophysics, but they are not
usual in solid state physics. This makes the study of
the charge transport in disordered materials absolutely
fascinating. The strong dependencies of kinetic coeffi-
cients (like drift mobility, diffusivity and conductivity)
in disordered materials on various material parameters
makes these systems very attractive for various device
applications. Since they are relatively inexpensive to
manufacture too, it is then easy to understand why dis-
ordered organic and inorganic materials are of enormous
interest for various technical applications.

These materials also provide a purely academic
challenge with respect to their transport phenomena.
While traditional kinetic theories developed for crys-
talline materials are largely dependent on the systems
having translational symmetry, there is no such symme-
try in disordered materials. However, we have shown
in this chapter that it is still possible to develop a re-
liable theoretical approach to transport phenomena in
disordered materials. Particularly interesting is the hop-
ping transport regime. In this regime, charge carriers
perform incoherent tunneling jumps between localized
states distributed in space and energy. The enormously
strong (exponential) dependence of the transition rates
on the distances between the sites and their energies call
for a completely new set of ideas compared to those
for crystalline solids. Conventional transport theories
based on the averaging of transition rates lead to ab-

surd results if applied to hopping transport in disordered
materials. One can use ideas from percolation theory in-
stead to adequately describe charge transport. One of the
most important ideas in this field is so-called variable-
range hopping (VRH) conduction. Although the rate of
transitions between two localized states is a product of
exponential terms that are separately dependent on the
concentration of localized states N0, the temperature of
the system T , and also on the field strength F (for high
field strengths), it is generally wrong to assume that
the carrier drift mobility, diffusivity or conductivity can
also be represented as the product of three functions that
are separately dependent on N0, T and F. Instead one
should search for a percolation path that takes into ac-
count the exponential dependences of the hopping rates
on all of these parameters simultaneously. Such a pro-
cedure, based on strong interplay between the important
parameters in the exponents of the transition rates, leads
to very interesting and (in some cases) unexpected re-
sults, some of which were described in this chapter.
For example, it was shown that the effect of a strong
electric field on transport coefficients can be accounted
for by renormalizing the temperature. Most of the ideas
discussed in this chapter were discussed in the early
works of Mott and his coauthors (see, for example, Mott
and Davis [9.32]). Unfortunately, these ideas are not yet
known to the majority of researchers working in the field
of disordered materials. Moreover, it is often believed
that transport phenomena in different disordered ma-
terials need to be described using different ideas. Mott
based his ideas, in particular the VRH, mostly on in-
organic glassy semiconductors. Most of the researchers
that are studying amorphous inorganic semiconductors
(like a-Si:H) are aware of these ideas. However, new re-
searchers that are working on more modern disordered
materials, such as organic disordered solids and dye-
sensitized materials, are often not aware of these very
useful and powerful ideas developed by Mott and his
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followers that can be used to describe charge transport
in inorganic disordered systems. In this chapter we have
shown that the most pronounced charge transport effects
in inorganic and organic disordered materials can be
successfully described in a general manner using these
ideas.

Although we have presented some useful ideas for
describing charge transport in disordered systems above,
it is clear that the theoretical side of this field is still
embyonic. There are still no reliable theories for charge
transport via extended states in disordered materials. Nor
are there any reliable theoretical descriptions for the spa-
tial structure of the localized states (DOS) in organic and
inorganic noncrystalline materials. All of the theoretical
concepts presented in this chapter were developed us-
ing very simple models of localization centers with a
given energy spectrum that are randomly distributed in

space. No correlations between the spatial positions of
the sites and the energies of the electronic states at these
sites were considered here. Some theoretical attempts to
account for such correlations can be found in the litera-
ture, although the correlations have not been calculated
ab initio: instead they are inserted into a framework
of model assumptions. This shows how far the field of
charge transport in disordered materials is from a desir-
able state. Since these materials are already widely used
in various technical applications, such as field transistor
manufacture, light-emitting diodes and solar cells, and
since the sphere of such applications is increasing, the
authors are optimistic about the future of research in this
field. The study of fundamental charge transport prop-
erties in disordered materials should develop, leading
us to a better understanding of the fundamental charge
transport mechanisms in such systems.
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