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Electronic Pro8. Electronic Properties of Semiconductor Interfaces

In this chapter we investigate the electronic
properties of semiconductor interfaces. Semi-
conductor devices contain metal–semiconductor,
insulator–semiconductor, insulator–metal and/or
semiconductor–semiconductor interfaces. The
electronic properties of these interfaces de-
termine the characteristics of the device. The
band structure lineup at all these interfaces is
determined by one unifying concept, the con-
tinuum of interface-induced gap states (IFIGS).
These intrinsic interface states are the wave-
function tails of electron states that overlap
the fundamental band gap of a semiconduc-
tor at the interface; in other words they are
caused by the quantum-mechanical tunnel-
ing effect. IFIGS theory quantitatively explains
the experimental barrier heights of well-
characterized metal–semiconductor or Schottky
contacts as well as the valence-band offsets of
semiconductor–semiconductor interfaces or
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semiconductor heterostructures. Insulators are
viewed as semiconductors with wide band gaps.

In his pioneering article entitled Semiconductor Theory
of the Blocking Layer, Schottky [8.1] finally explained
the rectifying properties of metal–semiconductor con-
tacts, which had first been described by Braun [8.2],
as being due to a depletion of the majority carri-
ers on the semiconductor side of the interface. This
new depletion-layer concept immediately triggered
a search for a physical explanation of the barrier
heights observed in metal–semiconductor interfaces,
or Schottky contacts as they are also called in order
to honor Schottky’s many basic contributions to this
field.

The early Schottky–Mott rule [8.3, 4] proposed that
n-type (p-type) barrier heights were equal to the dif-
ference between the work function of the metal and
the electron affinity (ionization energy) of the semi-
conductor. A plot of the experimental barrier heights
of various metal–selenium rectifiers versus the work
functions of the corresponding metals did indeed re-
veal a linear correlation, but the slope parameter was
much smaller than unity [8.4]. To resolve the failure of

the very simple and therefore attractive Schottky–Mott
rule, Bardeen [8.5] proposed that electronic interface
states in the semiconductor band gap play an essen-
tial role in the charge balance at metal–semiconductor
interfaces.

Heine [8.6] considered the quantum-mechanical tun-
neling effect at metal–semiconductor interfaces and
noted that for energies in the semiconductor band gap,
the volume states of the metal have tails in the semi-
conductor. Tejedor and Flores [8.7] applied this same
idea to semiconductor heterostructures where, for ener-
gies in the band-edge discontinuities, the volume states
of one semiconductor tunnel into the other. The continua
of interface-induced gap states (IFIGS), as these evanes-
cent states were later called, are an intrinsic property of
semiconductors and they are the fundamental physical
mechanism that determines the band-structure lineup at
both metal–semiconductor contacts and semiconductor
heterostructures: in other words, at all semiconductor
interfaces. Insulator interfaces are also included in this,
since insulators may be described as wide-gap semi-
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Fig. 8.1 Schematic energy-band diagrams of metal–
semiconductor contacts and semiconductor heterostruc-
tures. WF: Fermi level; ΦBn: barrier height; Wv and Wc:
valence-band maximum and conduction-band minimum,
respectively; ∆Wv and ∆Wc: valence- and conduction-
band offset, respectively; i and b: values at the interface
and in the bulk, respectively; r and l: right and left side,
respectively

conductors. Figure 8.1 shows schematic band diagrams
of an n-type Schottky contact and a semiconductor
heterostructure.

The IFIGS continua derive from both the valence-
and the conduction-band states of the semiconduc-
tor. The energy at which their predominant character
changes from valence-band-like to conduction-band-
like is called their branch point. The position of the
Fermi level relative to this branch point then deter-
mines the sign and the amount of the net charge in the
IFIGS. Hence, the IFIGS give rise to intrinsic interface
dipoles. Both the barrier heights of Schottky contacts
and the band offsets of heterostructures thus divide up
into a zero-charge-transfer term and an electric-dipole
contribution.

From a more chemical point of view, these interface
dipoles may be attributed to the partial ionic character of
the covalent bonds between atoms right at the interface.
Generalizing Pauling’s [8.8] electronegativity concept,

the difference in the electronegativities of the atoms in-
volved in the interfacial bonds also describes the charge
transfer at semiconductor interfaces. Combining the
physical IFIGS and the chemical electronegativity con-
cept, the electric-dipole contributions of Schottky barrier
heights as well as those of heterostructure band offsets
vary proportional to the difference in the electronega-
tivities of the metal and the semiconductor and of the
two semiconductors, respectively. The electronegativi-
ties of the Group IV elemental and the IV–IV, III–V, and
II–VI compound semiconductors are almost equal, since
the elements that constitute these semiconductors are all
placed in the middle of the Periodic Table. Hence, the
IFIGS dipole terms of the respective semiconductor het-
erostructures will be small and may be neglected [8.9].
The valence-band offsets of nonpolar, of lattice-matched
and of metamorphic heterostructures should thus equal
the difference between the branch-point energies of the
semiconductors in contact.

The theoreticians appreciated Heine’s IFIGS con-
cept at once. The initial reluctance of most experi-
mentalists was motivated by the observation that the
predictions of the IFIGS theory only marked upper lim-
its for the barrier heights observed with real Schottky
contacts [8.10]. Schmitsdorf et al. [8.11] finally re-
solved this dilemma. They found a linear decrease in
the effective barrier height with increasing ideality fac-
tors for their Ag/n-Si(111) diodes. Such behavior has
been observed for all of the Schottky contacts investi-
gated so far. Schmitsdorf et al. attributed this correlation
to patches of decreased barrier heights and lateral di-
mensions smaller than the depletion layer width [8.12].
Consequently, they extrapolated their plots of effective
barrier height versus ideality factor to the ideality factor
determined by the image-force or Schottky effect [8.13]
alone; in this way, they obtained the barrier heights of the
laterally homogeneous contacts. The barrier heights of
laterally uniform contacts can also be determined from
capacitance–voltage measurements (C/V ) and by ap-
plying ballistic-electron-emission microscopy (BEEM)
and internal photoemission yield spectroscopy (IPEYS).
The I/V , C/V, BEEM, and IPEYS data agree within the
margins of experimental error.

Mönch [8.14] found that the barrier heights of lat-
erally homogeneous Schottky contacts as well as the
experimentally observed valence band offsets of semi-
conductor heterostructures agree excellently with the
predictions of the IFIGS-and-electronegativity theory.
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8.1 Experimental Database

8.1.1 Barrier Heights of Laterally
Homogeneous Schottky Contacts

I/V Characteristics
The current transport in real Schottky contacts occurs via
thermionic emission over the barrier provided the dop-
ing level of the semiconductor is not too high [8.15]. For
doping levels larger than approximately 1018 per cm3,
the depletion layer becomes so narrow that tunnel or
field emission through the depletion layer prevails.
The current–voltage characteristics then become ohmic
rather than rectifying.

For thermionic emission over the barrier, the
current–voltage characteristics may be written as (see,
for example, [8.14])

Ite = AA∗
RT 2 exp

(
−Φeff

Bn/kBT
)

exp(e0Vc/nkBT )

× [1− exp(−e0Vc/kBT )] , (8.1)

where A is the diode area, A∗
R is the effective Richard-

son constant of the semiconductor, and kB, T, and e0 are
Boltzmann’s constant, the temperature, and the elec-
tronic charge, respectively. The effective Richardson
constant is defined as

A∗
R = 4πe0kBm∗

n

h3
= AR

m∗
n

m0
, (8.2)

where AR = 120 A cm−2 K−2 is the Richardson con-
stant for thermionic emission of nearly free electrons
into vacuum, h is Planck’s constant, and m0 and m∗

n are
the vacuum and the effective conduction-band mass of
electrons, respectively. The externally applied bias Va di-
vides up into a voltage drop Vc across the depletion layer
of the Schottky contact and an IR drop at the series resis-
tance Rs of the diode, so that Vc = Va − IRs. For ideal
(intimate, abrupt, defect-free, and, above all, laterally
homogeneous) Schottky contacts, the effective zero-bias
barrier height Φeff

Bn equals the difference Φhom
Bn −δΦ0

if be-
tween the homogeneous barrier height and the zero-bias
image-force lowering (see [8.14])

δΦ0
if = e0

[
2e2

0 Nd

(4π)2ε2∞εbε
3
0

(
e0

∣∣∣V 0
i

∣∣∣− kBT
)]1/4

,

(8.3)

where Nd is the donor density, e0|V 0
i | is the zero-bias

band bending, ε∞ and εb are the optical and the bulk di-
electric constant, respectively, and ε0 is the permittivity

of vacuum. The ideality factor n describes the voltage
dependence of the barrier height and is defined by

1−1/n = ∂Φeff
Bn/∂e0Vc . (8.4)

For real diodes, the ideality factors n are generally found
to be larger than the ideality factor

nif =
(

1− δΦ0
if

4e0|V 0
i |

)−1

, (8.5)

which is determined by the image-force effect only.
The effective barrier heights and the ideality factors

of real Schottky diodes fabricated under experimentally
identical conditions vary from one specimen to the next.
However, the variations of both quantities are correlated,
and the Φeff

Bn values become smaller as the ideality factors
increase. As an example, Fig. 8.2 displays Φeff

Bn versus
n data for Ag/n-Si(111) contacts with (1 × 1)i- unrecon-
structed and (7 ×7)i-reconstructed interfaces [8.11]. The
dashed and dash-dotted lines are the linear least-squares
fits to the data points. The linear dependence of the effec-
tive barrier height on the ideality factor may be written
as

Φeff
Bn = Φnif

Bn −ϕp(n −nif ) , (8.6)

where Φnif
Bn is the barrier height at the ideality factor

nif . Several conclusions may be drawn from this rela-
tion. First, the Φeff

Bn −n correlation shows that more than

0.75
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0.63
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Effective barrier height (eV)

Ideality factor

(1 × 1)i
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Nd = 1 × 1015 cm–3

T = 293 Κ

Fig. 8.2 Effective barrier heights versus ideality factors de-
termined from I/V characteristics of Ag/n-Si(111)-(7 × 7)i

and -(1 × 1)i contacts at room temperature. The dashed and
dash-dotted lines are the linear least-squares fits to the data.
After [8.11]
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one physical mechanism determines the barrier heights
of real Schottky contacts. Second, the extrapolation of
Φeff

Bn versus n curves to nif removes all mechanisms
that cause a larger bias dependence of the barrier height
than the image-force effect itself from consideration.
Third, the extrapolated barrier heights Φnif

Bn are equal to
the zero-bias barrier height Φhom

Bn − δΦ0
if of the laterally

homogeneous contact.
The laterally homogeneous barrier heights obtained

from Φeff
Bn versus n curves to nif are not necessarily

characteristic of the corresponding ideal contacts. This
is illustrated by the two data sets displayed in Fig. 8.2,
which differ in the interface structures of the respective
diodes. Quite generally, structural rearrangements such
as the (7 × 7)i reconstruction are connected with a redis-
tribution of the valence charge. The bonds in perfectly
ordered bulk silicon, the example considered here, are
purely covalent, and so reconstructions are accompanied
by electric Si+∆q−Si−∆q dipoles. The Si(111)-(7 × 7)
reconstruction is characterized by a stacking fault in
one half of its unit mesh [8.16]. Schmitsdorf et al. [8.11]
quantitatively explained the experimentally observed re-
duction in the laterally homogeneous barrier height of
the (7 × 7)i with regard to the (1 × 1)i diodes by the
electric dipole associated with the stacking fault of the
Si(111)-7 × 7 reconstruction.

Patches of reduced barrier height with lateral di-
mensions smaller than the depletion layer width that
are embedded in large areas of laterally homogeneous
barrier height is the only known model that explains
a lowering of effective barrier heights with increasing
ideality factors. In their phenomenological studies of
such patchy Schottky contacts, Freeouf et al. [8.12]
found that the potential distribution exhibits a saddle
point in front of such nanometer-size patches of reduced
barrier height. Figure 8.4 explains this behavior. The
saddle-point barrier height strongly depends on the volt-
age drop Vc across the depletion layer. Freeouf et al.
simulated the current transport in such patchy Schot-
tky contacts and found a reduction in the effective
barrier height and a correlated increase in the ideal-
ity factor as they reduced the lateral dimensions of the
patches. However, they overlooked the fact that the bar-
rier heights of the laterally homogeneous contacts may
be obtained from Φeff

Bn versus n plots, by extrapolating
to nif .

C/V Characteristics
Both the space charge and the width of the depletion lay-
ers at metal–semiconductor contacts vary as a function
of the externally applied voltage. The space-charge the-

1.0

0.5

0
1.0

0.5

0

–0.2

0.2
0x/zdep

z/zdep

V/V0
i

Fig. 8.3 Calculated potential distribution underneath and
around a patch of reduced interface potential embedded
in a region of larger interface band-bending. The lateral
dimension and the interface potential reduction of the patch
are set to two tenths of the depletion layer width zdep and
one half of the interface potential of the surrounding region

ory gives the variation in the depletion layer capacitance
per unit area as (see [8.14])

Cdep = {
e2

0εbε0 Nd/2
[
e0

(∣∣V 0
i

∣∣− Vc
)− kBT

]}1/2
.

(8.7)

The current through a Schottky diode biased in the
reverse direction is small, so the IR drop due to the
series resistance of the diode may be neglected. Con-
sequently, the extrapolated intercepts on the abscissa of
1/C2

dep versus Va plots give the band bending e0|V 0
i |

at the interface, and together with the energy dis-
tance Wn = WF − Wcb from the Fermi level to the
conduction band minimum in the bulk, one obtains
the flat-band barrier height Φfb

Bn ≡ Φhom
Bn = e0|V 0

i |+ Wn
which equals the laterally homogeneous barrier height
of the contact.

As an example, Fig. 8.4 displays the flat-band barrier
heights of the same Ag/n-Si(111) diodes that are dis-
cussed in Fig. 8.2. The dashed and dash-dotted lines are
the Gaussian least-squares fits to the data from the diodes
with (1 × 1)i and (7 × 7)i interface structures, respec-
tively. Within the margins of experimental error the peak
C/V values agree with the laterally homogeneous bar-
rier heights obtained from the extrapolations of the I/V
data shown in Fig. 8.2. These data clearly demonstrate
that barrier heights characteristic of laterally homoge-
neous Schottky contacts can be only obtained from I/V
or C/V data from many diodes fabricated under identical
conditions rather than from a single diode. However, the
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Fig. 8.4 Histograms of flat-band barrier heights deter-
mined from C/V characteristics of Ag/n-Si(111)-(7 × 7)i

and -(1 × 1)i contacts at room temperature. The data were
obtained with the same diodes discussed in Fig. 8.2. The
dashed and dash-dotted lines are the Gaussian least-squares
fits to the data. After [8.11]

effective barrier heights and the ideality factors vary as
a function of the diode temperature. Hence, effective bar-
rier heights and ideality factors evaluated from the I/V
characteristics for one and the same diode recorded at
different temperatures are also suitable for determining
the corresponding laterally homogeneous barrier height
(see [8.14]).

Ballistic-Electron-Emission Microscopy
In ballistic-electron-emission microscopy (BEEM)
[8.18], a tip injects almost monoenergetic electrons into
the metal film of a Schottky diode. These tunnel-injected
electrons reach the semiconductor as ballistic electrons
provided that they lose no energy on their way through
the metal. Hence, the collector current Icoll is expected
to set in when the ballistic electrons surpass the metal–
semiconductor barrier; in other words, if the voltage Vtip
applied between tip and metal film exceeds the local po-
tential barrier Φloc

Bn (z)/e0. Bell and Kaiser [8.19] derived
the square law

Icoll(z) = R∗ Itip

[
e0Vtip −Φloc

Bn (z)
]2

(8.8)

for the BEEM Icoll/Vtip characteristics, where Itip is
the injected tunnel current. BEEM measures local bar-
rier heights; most specifically, the saddle-point barrier
heights in front of nanometer-sized patches rather than
their lower barrier heights right at the interface.

BEEM is the experimental tool for measuring spatial
variations in the barrier height on the nanometer-scale.

15

10

5

0
1.1 1.2 1.3 1.4

BEEM barrier height (eV)

Probability (%)

Pd/n-6H-SiC
T = 293 K

Fig. 8.5 Histograms of local BEEM barrier heights of two
Pd/n-6H-SiC(0001) diodes with ideality factors of 1.06
(gray solid bars) and 1.49 (empty bars). The data were ob-
tained by fitting the square law (8.8) to 800 BEEM Icoll/Vtip

spectra each. Data from Im et al. [8.17]

The local barrier heights are determined by fitting rela-
tion (8.8) to measured Icoll/Vtip characteristics recorded
at successive tip positions along lateral line scans. Fig-
ure 8.5 displays histograms of the local BEEM barrier
heights of two Pd/n-6H-SiC(0001) diodes [8.17]. The
diodes differ in their ideality factors, 1.06 and 1.49,
which are close to and much larger, respectively, than
the value nif = 1.01 determined solely by the image-
force effect. Obviously, the nanometer-scale BEEM
histograms of the two diodes are identical although
their macroscopic ideality factors and therefore their
patchinesses differ. Two important conclusions were
drawn from these findings. First, these data suggest
the existence of two different types of patches, intrin-
sic and extrinsic ones. The intrinsic patches might be
correlated with the random distributions of the ion-
ized donors and acceptors which cause nanometer-scale
lateral fluctuations in the interface potential. A few
gross interface defects of extrinsic origin, which es-
cape BEEM observations, are then responsible for
the variations in the ideality factors. Second, Gaus-
sian least-squares fits to the histograms of the local
BEEM barrier heights yield peak barrier heights of
1.27±0.03 eV. Within the margins of experimental er-
ror, this value agrees with the laterally homogeneous
value of 1.24±0.09 eV which was obtained by extrap-
olation of the linear least-squares fit to a Φeff

Bn versus n
plot to nif . The nanometer-scale BEEM histograms and
the macroscopic I/V characteristics thus provide iden-
tical barrier heights of laterally homogeneous Schottky
contacts.
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Internal Photoemission Yield Spectroscopy
Metal-semiconductor contacts show a photoelectric re-
sponse to optical radiation with photon energies smaller
than the width of the bulk band gap. This effect is caused
by photoexcitation of electrons from the metal over the
interfacial barrier into the conduction band of the semi-
conductor. Experimentally, the internal photoemission
yield, which is defined as the ratio of the photoinjected
electron flux across the barrier into the semiconductor
to the flux of the electrons excited in the metal, is meas-
ured as a function of the energy of the incident photons.
Consequently, this technique is called internal photoe-
mission yield spectroscopy (IPEYS). Cohen et al. [8.21]
derived that the internal photoemission yield varies as
a function of the photon energy �ω as

Y (�ω) ∝
(
�ω−ΦIPEYS

Bn

)2 /
�ω . (8.9)

Patches only cover a small portion of the metal–
semiconductor interface, so the threshold energy
ΦIPEYS

Bn will equal the barrier height Φhom
Bn of the later-

ally homogeneous part of the contact minus the zero-bias
image-force lowering δΦ0

if .
In Fig. 8.6, experimental [Y (�ω) ·�ω]1/2 data for

a Pt/p-Si(001) diode [8.20] are plotted versus the en-
ergy of the exciting photons. The dashed line is the
linear least-squares fit to the data. The deviation of the
experimental [Y (�ω) ·�ω]1/2 data towards larger values
slightly below and above the threshold is caused by the
shape of the Fermi–Dirac distribution function at finite
temperatures and by the existence of patches with barrier
heights smaller and larger than Φhom

Bn .

8.1.2 Band Offsets
of Semiconductor Heterostructures

Semiconductors generally grow layer-by-layer, at
least initially. Hence, core-level photoemission spec-
troscopy (PES) is a very reliable tool and the
one most widely used to determine the band-
structure lineup at semiconductor heterostructures.
The valence-band offset may be obtained from the
energy positions of core-level lines in X-ray pho-
toelectron spectra recorded with bulk samples of
the semiconductors in contact and with the inter-
face itself [8.22]. Since the escape depths of the
photoelectrons are on the order of just 2 nm, one
of the two semiconductors must be sufficiently thin.
This condition is easily met when heterostructures
are grown by molecular beam epitaxy (MBE) and
PE spectra are recorded during growth interrupts.

0.03

0.02

0.01

0.00
0.25 0.30 0.35 0.40

[Y (hω) × hω]1/2

Photon energy (eV)

Pt/p-Si(001)
Na = 8 × 1015 cm–3

T = 50 K

Fig. 8.6 Spectral dependence of the internal photoemis-
sion yield

√
Y (�ω) ·�ω of a Pt/p-Si(001) diode versus the

photon energy of the exciting light. The dashed line is the
linear least-squares fit to the data for photon energies larger
than 0.3 eV. Data from Turan et al. [8.20]

The valence-band discontinuity is then given by (see
Fig. 8.7)

∆Wv = Wvir − Wvil = Wi(nrlr)− Wi(nlll)

+[Wvbr − Wb(nrlr)]− [Wvbl − Wb(nlll)] ,

(8.10)

where nrlr and nlll denote the core levels of the semi-
conductors on the right (r) and the left (l) side of the
interface, respectively. The subscripts i and b charac-
terize interface and bulk properties, respectively. The

z

W

Bulkleft Interface Bulkright

Wvbl – Wb(nlll)

Wvbr – Wb(nrlr)Wi (nl ll)

Wi (nrlr)

Wvir

Wvil
∆Wv

Fig. 8.7 Schematic energy band diagram at semiconductor
heterostructures. Wvb and Wvi are the valence-band maxima
and Wb(nl) and Wi(nl) are the core levels in the bulk and at
the interface, respectively. The subscripts l and r denote the
semiconductors on the right and the on the left side of the
interface. ∆Wv is the valence-band offset. The thin dashed
lines account for possible band-bending from space-charge
layers
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energy difference Wi(nrlr)− Wi(nlll) between the core
levels of the two semiconductors at the interface is deter-
mined from energy distribution curves of photoelectrons
recorded during MBE growth of the heterostructure. The
energy positions Wvbr − Wb(nrlr) and Wvbl − Wb(nlll)
of the core levels relative to the valence-band maxima

in the bulk of the two semiconductors are evaluated
separately.

Another widely used technique for determining band
offsets in heterostructures is internal photoemission
yield spectroscopy. The procedure for evaluating the
IPEYS signals is the same as described in Sect. 8.1.1.

8.2 IFIGS-and-Electronegativity Theory

Because of the quantum-mechanical tunneling effect,
the wavefunctions of bulk electrons decay exponentially
into vacuum at surfaces or, more generally speaking, at
solid–vacuum interfaces. A similar behavior occurs at
interfaces between two solids [8.6,7]. In energy regions
of Schottky contacts and semiconductor heterostructures
where occupied band states overlap a band gap, the
wavefunctions of these electrons will tail across the in-
terface. The only difference to solid–vacuum interfaces
is that the wavefunction tails oscillate at solid–solid in-
terfaces. Figure 8.8 schematically explains the tailing
effects at surfaces and semiconductor interfaces. For the
band-structure lineup at semiconductor interfaces, only
the tailing states within the gap between the top va-
lence and the lowest conduction band are of any real
importance since the energy position of the Fermi level
determines their charging state. These wavefunction tails
or interface-induced gap states (IFIGS) derive from the
continuum of the virtual gap states (ViGS) of the com-
plex semiconductor band structure. Hence, the IFIGS
are an intrinsic property of the semiconductor.

a)

b)

Metal, Semiconductor Vacuum z

ψ ψ*

ψ ψ*

Metal, Semiconductor Semiconductor z

Fig. 8.8a,b Wavefunctions at clean surfaces (a) and at
metal–semiconductor and semiconductor–semiconductor
interfaces (b) (schematically)

The IFIGS are made up of valence-band and
conduction-band states of the semiconductor. Their net
charge depends on the energy position of the Fermi
level relative to their branch point, where their character
changes from predominantly donor- or valence band-
like to mostly acceptor- or conduction band-like. The
band-structure lineup at semiconductor interfaces is thus
described by a zero-charge-transfer term and an electric
dipole contribution.

In a more chemical approach, the charge trans-
fer at semiconductor interfaces may be related to the
partly ionic character of the covalent bonds at inter-
faces. Pauling [8.8] described the ionicity of single
bonds in diatomic molecules by the difference between
the electronegativities of the atoms involved. The bind-
ing energies of core-level electrons are known to depend
on the chemical environment of the atoms or, in other
words, on the ionicity of their chemical bonds. Figure 8.9
displays experimentally observed chemical shifts for
Si(2p) and Ge(3d) core levels induced by metal adatoms

0.5

0.0

–0.5

–1 10

Adatom-induced core-level shift (eV)

Electronegativity difference Xm–Xs

Si(111)
Si(001)
Ge(111)
Ge(001) Au

Ag

SnIn

Cs

Fig. 8.9 Chemical shifts of Si(2p) and Ge(3d) core levels
induced by metal adatoms on silicon and germanium sur-
faces, respectively, as a function of the difference Xm − Xs

in the metal and the semiconductor electronegativities in
Pauling units. After [8.14]
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on silicon and germanium surfaces as a function of the
difference Xm − Xs between the Pauling atomic elec-
tronegativity of the metal and that of the semiconductor
atoms. The covalent bonds between metal and substrate
atoms still persist at metal–semiconductor interfaces, as
ab-initio calculations [8.23] have demonstrated for the
example of Al/GaAs(110) contacts. The pronounced
linear correlation of the data displayed in Fig. 8.9 thus
justifies the application of Pauling’s electronegativity
concept to semiconductor interfaces.

The combination of the physical IFIGS and the
chemical electronegativity concept yields the barrier
heights of ideal p-type Schottky contacts and the
valence-band offsets of ideal semiconductor heterostruc-
tures as

ΦBp = Φ
p
bp − SX (Xm − Xs) (8.11)

and

∆Wv = Φ
p
bpr −Φ

p
bpl + DX (Xsr − Xsl) , (8.12)

respectively, where Φ
p
bp = Wbp − Wv(Γ ) is the energy

distance from the valence-band maximum to the branch
point of the IFIGS or the p-type branch-point energy.
It has the physical meaning of a zero-charge-transfer
barrier height. The slope parameters SX and DX are
explained at the end of this section.

The IFIGS derive from the virtual gap states
of the complex band structure of the semiconduc-
tor. Their branch point is an average property of the
semiconductor. Tersoff [8.24,27] calculated the branch-
point energies Φ

p
bp of Si, Ge, and 13 of the III–V

and II–VI compound semiconductors. He used a lin-
earized augmented plane-wave method and the local
density approximation. Such extensive computations
may be avoided. Mönch [8.28] applied Baldereschi’s
concept [8.29] of mean-value k-points to calculate
the branch-point energies of zincblende-structure com-
pound semiconductors. He first demonstrated that the
quasi-particle band gaps of diamond, silicon, germa-
nium, 3C-SiC, GaAs and CdS at the mean-value k-point
equal their average or dielectric band gaps [8.30]

Wdg = �ωp/
√

ε∞ −1 , (8.13)

where �ωp is the plasmon energy of the bulk valence
electrons. Mönch then used Tersoff’s Φ

p
bp values, calcu-

lated the energy dispersion Wv(Γ )− Wv(kmv) of the top-
most valence band in the empirical tight-binding approx-
imation (ETB), and plotted the resulting branch-point
energies Wbp−Wv(kmv) = Φ

p
bp+[Wv(Γ )−Wv(kmv)]ETB

at the mean-value k-point kmv versus the widths of
the dielectric band gaps Wdg. The linear least-squares

Table 8.1 Optical dielectric constants, widths of the di-
electric band gap, and branch-point energies of diamond-,
zincblende- and chalcopyrite-structure semiconductors and
of some insulators

Semiconductor ε∞ Wdg(eV) Φ
p
bp(eV)

C 5.70 14.40 1.77

Si 11.90 5.04 0.36a

Ge 16.20 4.02 0.18a

3C-SiC 6.38 9.84 1.44

3C-AlN 4.84 11.92 2.97

AlP 7.54 6.45 1.13

AlAs 8.16 5.81 0.92

AlSb 10.24 4.51 0.53

3C-GaN 5.80 10.80 2.37

GaP 9.11 5.81 0.83

GaAs 10.90 4.97 0.52

GaSb 14.44 3.8 0.16

3C-InN – 6.48 1.51

InP 9.61 5.04 0.86

InAs 12.25 4.20 0.50

InSb 15.68 3.33 0.22

2H-ZnO 3.72 12.94 3.04b

ZnS 5.14 8.12 2.05

ZnSe 5.70 7.06 1.48

ZnTe 7.28 5.55 1.00

CdS 5.27 7.06 1.93

CdSe 6.10 6.16 1.53

CdTe 7.21 5.11 1.12

CuGaS2 6.15 7.46 1.43

CuInS2 6.3* 7.02 1.47

CuAlSe2 6.3* 6.85 1.25

CuGaSe2 7.3* 6.29 0.93

CuInSe2 9.00 5.34 0.75

CuGaTe2 8.0* 5.39 0.61

CuInTe2 9.20 4.78 0.55

AgGaSe2 6.80 5.96 1.09

AgInSe2 7.20 5.60 1.11

SiO2 2.10 3.99c

Si3N4 3.80 1.93c

Al2O3 3.13 3.23c

ZrO2 4.84 ≈ 3.2c

HfO2 4.00 2.62c

∗ε∞ = n2, a[8.24], b[8.25], c[8.26]

fit to the data of the zincblende-structure compound
semiconductors [8.28]

Φ
p
bp= 0.449 · Wdg−[Wv(Γ )−Wv(kmv)]ETB , (8.14)
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indicates that the branch points of these semiconductors
lie 5% below the middle of the energy gap at the mean-
value k-point. Table 8.1 displays the p-type branch-point
energies of the Group IV elemental semiconductors, of
SiC, and of III–V and II–VI compound semiconductors,
as well as of some insulators.

A simple phenomenological model of Schottky con-
tacts with a continuum of interface states and a constant
density of states Dis across the semiconductor band gap
yields the slope parameter [8.31, 32]

SX = AX/
[
1+

(
e2

0/εiε0

)
Disδis

]
, (8.15)

where εi is an interface dielectric constant. The pa-
rameter AX depends on the electronegativity scale
chosen and amounts to 0.86 eV/Miedema-unit and
1.79 eV/Pauling-unit. For Dis → 0, relation (8.15)
yields SX → 1 or, in other words, if no interface-induced
gap states were present at the metal–semiconductor in-
terfaces one would obtain the Schottky–Mott rule. The
extension δis of the interface states may be approxi-
mated by their charge decay length 1/2qis. Mönch [8.32]
used theoretical Dmi

gs and qmi
gs data for metal-induced gap

states (MIGS), as the IFIGS in Schottky contacts are
traditionally called, and plotted the (e2

0/ε0)Dmi
gs /2qmi

gs
values versus the optical susceptibility ε∞ −1. The
linear least-squares fit to the data points yielded [8.32]

AX/SX −1 = 0.1 · (ε∞ −1)2 , (8.16)

where the reasonable assumption εi ≈ 3 was made.
To a first approximation, the slope parameter DX

of heterostructure band offsets may be equated with
the slope parameter SX of Schottky contacts, since the
IFIGS determine the intrinsic electric-dipole contribu-
tions to both the valence-band offsets and the barrier
heights. Furthermore, the Group IV semiconductors and
the elements constituting the III–V and II–VI compound
semiconductors are all placed in the center columns of
the Periodic Table and their electronegativities thus only
differ by up to 10%. Consequently, the electric-dipole
term DX · (Xsr − Xsl) may be neglected [8.9], so that
(8.12) reduces to

∆Wv ∼= Φ
p
bpr −Φ

p
bpl (8.17)

for practical purposes.

8.3 Comparison of Experiment and Theory

8.3.1 Barrier Heights of Schottky Contacts

Experimental barrier heights of intimate, abrupt, clean
and (above all) laterally homogeneous Schottky con-
tacts on n-Si and n-GaAs as well as n-GaN, and the
three SiC polytypes 3C, 6H and 4H are plotted in
Figs. 8.10 and 8.11, respectively, versus the differ-
ence in the Miedema electronegativities of the metals
and the semiconductors. Miedema’s electronegativi-
ties [8.33, 34] are preferred since they were derived
from properties of metal alloys and intermetallic com-
pounds, while Pauling [8.8] considered covalent bonds
in small molecules. The p- and n-type branch-point
energies, Φp

bp = Wbp − Wv(Γ ) and Φn
bp = Wc − Wbp, re-

spectively, add up to the fundamental band-gap energy
Wg = Wc − Wv(Γ ). Hence, the barrier heights of n-type
Schottky contacts are

Φhom
Bn = Φn

bp + SX (Xm − Xs) . (8.18)

The electronegativity of a compound is taken as the ge-
ometric mean of the electronegativities of its constituent
atoms.

First off all, the experimental data plotted in
Figs. 8.10 and 8.11 clearly demonstrate that the different

experimental techniques, I/V , BEEM, IPEYS and PES,
yield barrier heights of laterally homogeneous Schottky
contacts which agree within the margins of experimental
error.

Second, all experimental data are quantitatively ex-
plained by the branch-point energies (8.14) and the slope
parameters (8.16) of the IFIGS-and-electronegativity
theory. As was already mentioned in Sect. 8.1.1, the
stacking fault, which is part of the interfacial Si(111)-
(7×7)i reconstruction, causes an extrinsic electric dipole
in addition to the intrinsic IFIGS electric dipole. The lat-
ter one is present irrespective of whether the interface
structure is reconstructed or (1 × 1)i-unreconstructed.
The extrinsic stacking fault-induced electric dipole
quantitatively explains the experimentally observed bar-
rier height lowering of 76±2 meV.

Third, the IFIGS lines in Figs. 8.11a and 8.11b were
drawn using the branch-point energies calculated for
cubic 3C-GaN and 3C-SiC, respectively, since relation
(8.12) was derived for zincblende-structure compounds
only. However, the Schottky contacts were prepared
on wurtzite-structure 2H-GaN and not just on cu-
bic 3C-SiC but also on its hexagonal polytypes 4H
and 6H . The good agreement between the experimen-
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Fig. 8.10a,b Barrier heights of laterally homogeneous
n-type silicon (a) and GaAs Schottky contacts (b) ver-
sus the difference in the Miedema electronegativities
of the metals and the semiconductors. The and

, , , and symbols differentiate the data from
I /V , BEEM, IPEYS, and PES measurements, respec-
tively. The dashed and the dash-dotted lines are the
linear least-squares fits to the data from diodes with
(1 × 1)i-unreconstructed and (7 × 7)i-reconstructed inter-
faces, respectively. The solid IFIGS lines are drawn
with SX = 0.101 eV/Miedema-unit and Φ

p
bp = 0.36 eV for

silicon (a) and with SX = 0.08 eV/Miedema-unit and
Φ

p
bp = 0.5 eV for GaAs (b). After [8.14]

tal data and the IFIGS lines indicates that the p-type
branch-point energies are rather insensitive to the spe-
cific bulk lattice structure of the semiconductor. This
conclusion is further justified by the band-edge discon-
tinuities of the semiconductor heterostructures, which
were experimentally observed and are discussed in
Sect. 8.3.2, and by the band-edge offsets of 3C/2H
homostructures that were calculated for various semi-
conductors [8.35–39].
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Fig. 8.11a,b Barrier heights of laterally homogeneous
n-type GaN(0001) (a) and 3C-, 4H-, and 6H-SiC Schottky
contacts (b) versus the difference in the Miedema elec-
tronegativities of the metals and the semiconductors. (a):
The , , and symbols differentiate the data from I /V ,
BEEM, IPEYS, and PES measurements, respectively. The
solid IFIGS line is drawn with SX = 0.29 eV/Miedema-unit
and Φ

p
bp = 2.37 eV. (b): The , , and symbols differ-

entiate data of 4H-, 6H- and 3C-SiC Schottky contacts,
respectively. The solid IFIGS lines are drawn with the band
gaps of the polytypes minus Φ

p
bp = 1.44 eV of cubic 3C-SiC

and SX = 0.24 eV/Miedema-unit. After [8.14]

8.3.2 Band Offsets
of Semiconductor Heterostructures

In the bulk, and at interfaces of sp3-coordinated semi-
conductors, the chemical bonds are covalent. The
simplest semiconductor–semiconductor interfaces are
lattice-matched heterostructures. However, if the bond
lengths of the two semiconductors differ then the inter-
face will respond with tetragonal lattice distortions. Such
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Fig. 8.12a,b Valence band offsets at nonpolar (110)-
oriented (a) and metamorphic semiconductor heterostruc-
tures (b) versus the difference between the p-type
branch-point energies of the semiconductors in contact.
After [8.14]

pseudomorphic interfaces are under tensile or compres-
sive stress. If the strain energy becomes too large then
it is energetically more favorable to release the stress by
the formation of misfit dislocations. Such metamorphic
interfaces are almost relaxed.

In contrast to isovalent heterostructures, the chem-
ical bonds at heterovalent interfaces require special
attention, since interfacial donor- and acceptor-type
bonds may cause interfacial electric dipoles [8.40]. No
such extrinsic electric dipoles will exist normal to non-
polar (110) interfaces. However, polar (001) interfaces
behave quite differently. Acceptor bonds or donor bonds
normal to the interface would exist at abrupt heterostruc-
tures. But, for reasons of charge neutrality, they have to
be compensated by a corresponding density of donor
bonds and acceptor bonds, respectively. This may be
achieved by an intermixing at the interface which, on

the other hand, causes extrinsic electric dipoles. Their
components normal to the interface will add an ex-
trinsic electric-dipole contribution to the valence-band
offset. In the following, only nonpolar, lattice-matched
isovalent, and metamorphic heterostructures will be dis-
cussed.

The valence-band offsets at nonpolar, in other words
(110)-oriented, heterostructures of compound semicon-
ductors should equal the difference in the branch-point
energies of the two semiconductors in contact pro-
vided the intrinsic IFIGS electric-dipole contribution
can be neglected, see relation (8.17). Figure 8.12a dis-
plays respective experimental results for diamond- and
zincblende-structure semiconductors as a function of
the difference in the branch-point energies given in Ta-
ble 8.1. The dashed line clearly demonstrates that the
experimental data are execellently explained by the the-
oretical branch-point energies or, in other words, by the
IFIGS theory.

As an example of lattice-matched and isovalent het-
erostructures, Fig. 8.13 shows valence-band offsets for
Al1−xGaxAs/GaAs heterostructures as a function of
the alloy composition x. The IFIGS branch-point en-
ergies of the alloys were calculated assuming virtual
Al1−xGax cations [8.28], and were found to vary lin-
early as a function of composition between the values
of AlAs and GaAs. More refined first-principles calcu-
lations yielded identical results [8.41, 42]. Figure 8.13
reveals that the theoretical IFIGS valence-band offsets
fit the experimental data excellently.

Figure 8.12b displays valence-band offsets for meta-
morphic heterostructures versus the difference in the
branch-point energies of the two semiconductors. The

0.6

0.4

0.2

0.0
0.0 0.5 1.0

Composition x

Valence-band offset (eV)

IFIGS theory

Al1–xGaxAs/GaAs

Fig. 8.13 Valence band offsets of lattice-matched and iso-
valent Al1−xGaxAs/GaAs heterostructures as a function of
alloy composition x. After [8.14]
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dashed line indicates that the experimental results are
again excellently described by the theoretical IFIGS
data. This is true not only for heterostructures between
cubic zincblende- and hexagonal wurtzite-structure
compounds but also for wurtzite-structure Group III
nitrides grown on both cubic 3C- and hexagonal 6H-
SiC substrates. These observations suggest the following
conclusions. First, all of the heterostructures considered
in Fig. 8.12b are only slightly (if at all) strained, al-
though their lattice parameters differ by up to 19.8%.
Second, the calculations of the IFIGS branch-point
energies assumed zincblende-structure semiconductors.
These values, on the other hand, reproduce the experi-
mental valence band offsets irrespective of whether the
semiconductors have zincblende, wurtzite or, as in the
case of 6H-SiC, another hexagonal-polytype structure.
These findings again support the conclusion drawn from
the GaN and SiC Schottky barrier heights in the previous
section, that the IFIGS branch-point energies are rather
insensitive to the specific semiconductor bulk lattice
structure.

8.3.3 Band-Structure Lineup
at Insulator Interfaces

The continuing miniaturization of complementary
metal–oxide–semiconductor (CMOS) devices requires
gate insulators where the dielectric constants (κ) are
larger than the value of the silicon dioxide conven-
tionally used. At present, the high-κ insulators Al2O3,
ZrO2, and HfO2 are being intensively studied. Insula-
tors may be considered to be wide-gap semiconductors.
Hence, relations (8.11) and (8.12) also apply to insulator
Schottky contacts and heterostructures. Unfortunately,
the branch-point energies of these insulators cannot
be obtained from relation (8.14) since it is valid for
zincblende-structure compound semiconductors only.
However, the experimental band offsets reported for
SiO2, Si3N4, Al2O3, and HfO2 heterostructures may
be plotted as a function of the branch-point energies of
the respective semiconductors [8.26]. Figure 8.14a re-
veals that the valence-band offsets become smaller with
increasing branch-point energy of the semiconductors.
Moreover, the data points reported for the many different
SiO2 heterostructures studied indicate a linear depen-
dence for the valence-band offsets on the branch-point
energy of the semiconductors, which may be written as

∆Wv = ϕvbo

[
Φ

p
bp(ins)−Φ

p
bp(sem)

]
, (8.19)

since the valence band offsets of insulator homostruc-
tures will definitely vanish. Such a linear relationship
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Fig. 8.14 (a) Valence band offsets of SiO2, Si3N4, Al2O3

and HfO2 heterostructures versus the p-type branch-point
energies of the respective semiconductors. (b) n-type barrier
heights of SiO2 Schottky contacts versus the difference be-
tween electronegativities of the metal and SiO2. The dashed
line is the linear least-squares fit to the data points. The
solid IFIGS line is drawn with Φn

bp = 5 eV (Wg = 9 eV) and
SX = 0.77 eV/Miedema-unit (ε∞ = 2.1). After [8.25]

can also be adopted for the Al2O3, HfO2 and Si3N4
heterostructures, where less experimental results are
available. Hence, the data displayed in Fig. 8.14a pro-
vide a means of determining the branch-point energies
Φ

p
bp(ins) of SiO2, Si3N4, and the high-κ oxides Al2O3

and HfO2. The dashed lines in Fig. 8.14a are the lin-
ear least-squares fits to the respective data points.
The experimental slope parameters ϕvbo range from
1.16 to 1.23 for HfO2 and SiO2 heterostructures,
respectively, while relation (8.12) predicts ϕvbo = 1
provided that the electric dipole term DX · (Xsr − Xsl)
vanishes. However, as well-established as this simpli-
fying assumption is for the classical semiconductor
heterostructures discussed in Sect. 8.3.2, it has ques-
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tionable validity for the insulators considered here
since they are much more ionic. Hence, the difference
ϕvbo −1 may be attributed to intrinsic electric-dipole
layers at these insulator–semiconductor interfaces. The
p-type branch-point energies Φ

p
bp of the insulators ob-

tained from the linear least-squares fits are displayed in
Table 8.1.

The reliability of these branch-point energies may
be checked by, for example, analyzing barrier heights
of respective insulator Schottky contacts. Such data are

only available for SiO2. Figure 8.14b displays the bar-
rier heights of SiO2 Schottky contacts as a function of
the electronegativity difference Xm − XSiO2 , where the
electronegativity of SiO2 is estimated as 6.42 Miedema-
units. The linear least-squares fit

ΦBn = (4.95±0.19)+ (0.77±0.10)

× (Xm − XSiO2 )[eV] (8.20)

to the experimental data agrees excellently with the
prediction from the IFIGS-and-electronegativity theory.

8.4 Final Remarks

The local density approximation to density functional
theory (LDA-DFT) is the most powerful and widely used
tool in theoretical studies of the ground-state properties
of solids. However, excitation energies such as the width
of the energy gaps between the valence and conduction
bands of semiconductors cannot be correctly obtained
from such calculations. The fundamental band gaps of
the elemental semiconductors C, Si and Ge as well as of
the III–V and II–VI compounds are notoriously under-
estimated by 25 to 50%. However, it became possible to
compute quasi-particle energies and band gaps of semi-
conductors from first principles using the so-called GW
approximation for the electron self-energy [8.43, 44].
The resulting band gap energies agree to within 0.1 to
0.3 eV with experimental values.

For some specific metal–semiconductor contacts, the
band-structure lineup was also studied by state-of-the-art
ab-initio LDA-DFT calculations. The resulting LDA-
DFT barrier heights were then subjected to a-posteriori
corrections which consider quasi-particle effects and, if
necessary, spin-orbit interactions and semicore-orbital
effects. However, comparison of the theoretical results
with experimental data gives an inconsistent picture.
The mean values of the barrier heights of Al- and
Zn/p-ZnSe contacts, which were calculated for differ-
ent interface configurations using ab-initio LDA-DF
theory and a-posteriori spin-orbit and quasi-particle cor-
rections [8.45, 46], agree with the experimental data to
within the margins of experimental error. The same
conclusion was reached for Al/Al1−xGaxAs Schottky

contacts [8.47]. However, ab-initio LDA-DFT barrier
heights of Al-, Ag-, and Au/p-GaN contacts [8.48,49], as
well as of Al- and Ti/3C-SiC(001) interfaces [8.50,51],
strongly deviate from the experimental results.

As already mentioned, ab-initio LDF-DFT va-
lenc band offsets of Al1−xGaxAs/GaAs heterostruc-
tures [8.41, 42] reproduce the experimental results
well. The same holds for mean values of LDF-DFT
valence-band offsets computed for different interface
configurations of GaN- and AlN/SiC heterostruc-
tures [8.52–56].

The main difficulty which the otherwise extremely
successful ab-initio LDF-DFT calculations encounter
when describing semiconductor interfaces is not the
precise exchange-correlation potential, which may be
estimated in the GW approximation, but their remark-
able sensitivity to the geometrical and compositional
structure right at the interface. This aspect is more
serious at metal–semiconductor interfaces than at het-
erostructures between two sp3-bonded semiconductors.
The more conceptual IFIGS-and-electronegativity the-
ory, on the other hand, quantitatively explains not only
the barrier heights of ideal Schottky contacts but also
the valence-band offsets of semiconductor heterostruc-
tures. Here again, the Schottky contacts are the more
important case, since their zero-charge-transfer barrier
heights equal the branch-point energies of the semicon-
ductors, while the valence-band offsets are determined
by the differences in the branch-point energies of the
semiconductors in contact.
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