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Electrical Con2. Electrical Conduction in Metals
and Semiconductors

Electrical transport through materials is a large
and complex field, and in this chapter we cover
only a few aspects that are relevant to practi-
cal applications. We start with a review of the
semi-classical approach that leads to the con-
cepts of drift velocity, mobility and conductivity,
from which Matthiessen’s Rule is derived. A more
general approach based on the Boltzmann trans-
port equation is also discussed. We review the
conductivity of metals and include a useful col-
lection of experimental data. The conductivity of
nonuniform materials such as alloys, polycrys-
talline materials, composites and thin films is
discussed in the context of Nordheim’s rule for
alloys, effective medium theories for inhomoge-
neous materials, and theories of scattering for thin
films. We also discuss some interesting aspects
of conduction in the presence of a magnetic field
(the Hall effect). We present a simplified analy-
sis of charge transport in semiconductors in a high
electric field, including a modern avalanche the-
ory (the theory of “lucky” drift). The properties
of low-dimensional systems are briefly reviewed,
including the quantum Hall effect.
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A good understanding of charge carrier transport and
electrical conduction is essential for selecting or devel-
oping electronic materials for device applications. Of
particular importance are the drift mobility of charge
carriers in semiconductors and the conductivity of con-
ductors and insulators. Carrier transport is a broad field
that encompasses both traditional ‘bulk’ processes and,
increasingly, transport in low dimensional or quantized
structures. In other chapters of this handbook, Bara-
novskii describes hopping transport in low mobility
solids such as insulators, Morigaki deals with the electri-
cal properties of amorphous semiconductors and Gould
discusses in detail conduction in thin films. In this chap-

ter, we outline a semi-quantitative theory of charge
transport suitable for a wide range of solids of use to
materials researchers and engineers. We introduce theo-
ries of “bulk” transport followed by processes pertinent
to ultra-fast transport and quantized transport in lower
dimensional systems. The latter covers such phenomena
as the Quantum Hall Effect, and Quantized Conduc-
tance and Ballistic Transport in Quantum Wires that has
potential use in new kinds of devices. There are many
more rigorous treatments of charge transport; those by
Rossiter [2.1] and Dugdale [2.2] on metals, and and
Nag [2.3] and Blatt [2.4] on semiconductors are highly
recommended.
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20 Part A Fundamental Properties

2.1 Fundamentals: Drift Velocity, Mobility and Conductivity

Basic to the theory of the electronic structure of solids
are the solutions to the quantum mechanical prob-
lem of an electron in a periodic potential known as
Bloch waves. These wavefunctions are traveling waves
and provide the physical basis for conduction. In the
semi-classical approach to conduction in materials, an
electron wavepacket made up of a superposition of Bloch
waves can in principle travel unheaded in an ideal crys-
tal. No crystal is ideal, however, and the imperfections
cause scattering of the wavepacket. Since the interaction
of the electron with the potential of the ions is incorpo-
rated in the Bloch waves, one can concentrate on the
relatively rare scattering events which greatly simplifies
the theory. The motion of the electrons between scat-
tering events is essentially free (with certain provisos
such as no interband transitions) subject only to external
forces, usually applied electric or magnetic fields. A the-
ory can then be developed that relates macroscopic and
measurable quantities such as conductivity or mobil-
ity to the microscopic scattering processes. Principle in
such a theory is the concept of mean free time τ which
is the average time between scattering events. τ is also
known as the conductivity relaxation time because it rep-
resents the time scale for the momentum gained from an
external field to relax. Equivalently, 1/τ is the average
probability per unit time that an electron is scattered.

There are two important velocity quantities that must
be distinguished. The first is the mean speed u or ther-
mal velocity vth which as the name implies is the average
speed of the electrons. u is quite large being on the
order of

√
3kBT/m∗

e ≈ 105 m/s for electrons in a nonde-
generate semiconductor and

√
2EF/m∗

e ≈ 106 m/s for
electrons in a metal, where kB is Boltzmann’s constant,
T is the temperature, EF is the Fermi energy of the metal,
and m∗

e is the electron effective mass. The distance an
electron travels between scattering events is called the
free path. It is straightforward to show that the average
or mean free path for an electron is simply � = uτ . The
second velocity is the mean or drift velocity vd (vari-
ables in boldface are vectors) which is simply the vector
average over the velocities of all N electrons,

vd = 1

N

N∑

i=1

vi . (2.1)

With no external forces applied to the solid, the electron
motion is random and thus the drift velocity is zero.
When subject to external forces like an electric field,
the electrons acquire a net drift velocity. Normally, the

magnitude of the drift velocity is much smaller than u
so that the mean speed of the electron is not affected to
any practical extent by the external forces. An exception
is charge transport in semiconductors in high electric
fields, where |vd| becomes comparable to u.

The drift velocity gives rise to an electric current. If
the density of electrons is n then the current density Je
is

Je = −envd (2.2)

where e is the fundamental unit of electric charge. For
the important case of an applied electric field E, the solu-
tions of the semi-classical equations give a drift velocity
that is proportional to E. The proportionality constant is
the drift mobility µe

vd = −µe E . (2.3)

The drift mobility might be a constant or it might depend
on the applied field (usually only if the field is large).
Ohm’s Law defines the conductivity σ of a material
J = σ E resulting in a simple relation to the drift mobility

σ = enµe . (2.4)

Any further progress requires some physical theory of
scattering. A useful model results from the simple as-
sumption that the scattering randomizes the electron’s
velocity (taking into proper account the distribution of
electrons and the Pauli Exclusion Principle). The equa-
tion of motion for the drift velocity then reduces to
a simple form

dvd

dt
= F(t)

m∗
e

− vd

τ
, (2.5)

where F(t) is the sum of all external forces acting on
the electrons. The effect of the scattering is to intro-
duce a frictional term into what otherwise would be just
Newton’s Law. Solutions of (2.5) depend on F(t). In
the simplest case of a constant applied electric field, the
steady-state solution is trivial,

vd = −eEτ

m∗
e

. (2.6)

The conductivity and drift mobility can now be related
to the scattering time [2.5],

µe = eτ/m∗
e and σ = ne2τ/m∗

e . (2.7)

More sophisticated scattering models lead to more ac-
curate but more complicated solutions.
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Ns = Concentration of scatters

� = u τ

Scatterer S

Scatterer S

u

Electron

Scattering

Fig. 2.1 Scattering of an electron from a scattering cen-
ter. The electron travels a mean distance � = uτ between
collisions

The simple expression (2.7) can be used to ex-
plain qualitative features of conduction in materials once
a physical origin for the scattering is supplied. For any
scattering site, the effective area is the scattering cross-
section S as depicted in Fig. 2.1. The scattering cross
section is related to the mean free path since the vol-
ume S� must contain one scattering center. If there are
NS scattering centers per unit volume then

� = 1

SNS
, (2.8)

or, rewriting in terms of τ ,

τ = 1

SNSu
. (2.9)

Once the cross-section for each physically relevant
scattering mechanism is known then the effect on the
scattering time and conductivity is readily calculated.

An overly restrictive assumption in the above
analysis is that the electron’s velocity is completely ran-
domized every time it is scattered. On the other hand,
suppose that ν collisions are required to completely de-
stroy the directional velocity information. That is only
after an average of ν collisions do all traces of correla-
tion between the initial and the final velocities disappear.
The effective mean free path �eff traversed by the elec-
tron until its velocity is randomized will now be larger
than �; to first order �eff = ν�. �eff is termed the effective
or the conduction mean free path. The corresponding

Scattering center

θ = Angle of Scatteringθ

vx = 1

x

Fig. 2.2 An electron moving in the x-direction becomes
scattered though an angle θ with respect to the original
direction

effective scattering cross section is

Seff = 1

NS�eff
. (2.10)

The expressions for mobility and conductivity become

µ = eντ

m∗
e

= eν�

m∗
e u

= e�eff

m∗
e u

= e

m∗
e uNsSeff

(2.11)

and

σ = e2ντ

m∗
e

= e2nν�

m∗
e u

= e2n�eff

m∗
e u

= e2n

m∗
e uNsSeff

.

(2.12)

Suppose that in a collision the electron is scattered at
an angle θ to its original direction of travel as shown in
Fig. 2.2. It is convenient to introduce a quantity Sθ (θ),
called the differential scattering cross section, defined so
that 2π sin θSθ dθ represents the probability of scattering
at an angle between θ and θ + dθ with respect to the
original direction. If the magnitude of the velocity is not
changed then the fractional change in component of the
velocity along the original direction is 1− cos θ. The
average number of collisions ν required to randomize
the velocity is then

ν = 1

〈1− cos θ〉 , (2.13)

where the average is given by

〈1− cos θ〉 =

π∫

0
(1− cos θ) Sθ (θ) sin θ dθ

π∫

0
Sθ (θ) sin θ dθ

. (2.14)

The effective cross sectional area Seff is then

Seff = 2π

π∫

θm

(1− cos θ) Sθ (θ) sin θ dθ . (2.15)
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22 Part A Fundamental Properties

As an example, consider conduction electrons scattering
from charged impurities in a nondegenerate semicon-
ductor where small angle deviations predominate. The
differential cross section for coulombic scattering from
a charged impurity center with charge +Ze is

Sθ (θ) = 16k2

u4
×

1

θ4
; k = Ze2

4πεm∗
e

, (2.16)

where k = Ze2/4πε0εrm∗
e and εr is the relative permit-

tivity of the semiconductor. Let rm be the maximum
effective radius of action for the impurity at which the
minimum scattering angle occurs θm. Then the integral
in (2.15) evaluates to

Seff = 2πk2

u4 ln

(
1+ r2

mu4

k2

)
. (2.17)

In a nondegenerate semiconductor, the equipartition the-
orem links velocity to temperature, m∗

e u2/2 = 3kT/2, so

that u ∝ T 1/2. Thus,

Seff = A

T 2 ln
(

1+ BT 2
)

, (2.18)

where A and B are constants. The drift mobility due to
scattering from ionized impurities becomes

µI = e

m∗
e uSeff NI

∝ 1

T 1/2

T 2

A ln(1+ BT 2)

1

NI

≈ CT 3/2

NI
, (2.19)

where NI is the density of ionized impurities and C
is a new constant. At low temperatures where lattice
scattering is insignificant, we expect µI ∝ T 3/2/NI for
nondegenerate semiconductors.

The above semiquatitative description is sufficient to
understand the basic principles of conduction. A more
rigorous approach involves solving the Boltzmann
charge transport equation and is addressed in Sect. 2.6.

2.2 Matthiessen’s Rule

In general, the conduction electron whether in a metal
or in a semiconductor can be scattered by a number
of mechanisms, such as lattice vibrations, impurities,
lattice defects such as dislocations, grain boundaries, va-
cancies, surfaces, or any other deviation from a perfectly
periodic lattice. All these scattering processes increase
the overall resistivity of the substance by reducing the
mean scattering time. The relation between the types of
scattering and the total scattering time can be obtained
by considering scattering from lattice vibrations and im-

Impurity and its lattice deformation

τI

τL

Fig. 2.3 Scattering from lattice vibrations alone with
a mean scattering time τL, and from impurities alone with
a mean scattering time τI

purities as shown in Figure 3.1. We define two mean free
times τL and τI: τL is the mean free time considering only
scattering from lattice vibrations (phonons) and τI is the
mean free time considering only collisions with impu-
rities. In a small unit of time dt, the total probability
of scattering (dt/τ) is simply the sum of the probabil-
ity for phonon scattering (dt/τL) and the probability for
impurity scattering (dt/τI), and thus

1

τ
= 1

τL
+ 1

τI
. (2.20)

We have assumed that neither τL nor τI is affected by the
presence of the other scattering mechanism, that is each
type of scattering is independent. The above expression
can be generalized to include all types of independent
scattering yielding

1

τ
=

∑

i

1

τi
, (2.21)

where τi is the mean scattering time considering the
ith scattering process alone. Since the drift mobility
is proportional to τ , (2.21) can be written in terms of
the drift mobilities determined by the various scattering
mechanisms. In other words,

1

µd
=

∑

i

1

µi
(2.22)
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Electrical Conduction in Metals and Semiconductors 2.3 Resistivity of Metals 23

where µi is the drift mobility limited just by the ith
scattering process. Finally, since the resistivity is in-
versely proportional to the drift mobility, the relation for
resistivity is

ρ =
∑

i

ρi (2.23)

where ρi is the resistivity of the material if only the
ith scattering process were active. Equation (2.23) is
known as Matthiessen’s rule. For nearly perfect, pure

crystals the resistivity is dominated by phonon scatter-
ing ρT. If impurities or defects are present, however,
there are an additional resistivities ρI from the scatter-
ing off the impurities and ρD from defect scattering,
and ρ = ρT +ρI +ρD.

Matthiessen’s rule is indispensable for predicting the
resistivities of many types of conductors. In some cases
like thin films, the rule is obeyed only approximately,
but it is nonetheless still useful for an initial (often quite
good) estimate.

2.3 Resistivity of Metals

2.3.1 General Characteristics

The effective resistivity of a metal, by virtue of
Matthiessen’s rule, is normally written as

ρ = ρT +ρR , (2.24)

where ρR is called the residual resistivity and is due to
the scattering of electrons by impurities, dislocations,
interstitial atoms, vacancies, grain boundaries and so
on. The residual resistivity shows very little tempera-
ture dependence whereas ρT is nearly linear in absolute
temperature. ρT will be the main resistivity term for
many good-quality, pure, crystalline metals. In classi-
cal terms, we can take the thermal vibrations of a lattice
atom with mass M as having a mean kinetic energy
KE of (1/2)Ma2ω2, where a and ω are the amplitude
and frequency of the vibrations. This mean KE must
be of the order of kT so that the amplitude a ∝ T 1/2.
Thus the electron scattering cross section S = πa2 ∝ T .
Since the mean speed of conduction electron in a metal
is the Fermi speed and is temperature independent,
µ ∝ τ ∝ 1/S ∝ T−1, and hence the resistivity ρ ∝ T .
Most nonmagnetic pure metals obey this relationship
except at very low temperatures. Figure 2.4 shows the
resistivity of Cu as a function of temperature where
above ≈ 100 K, ρ ∝ T .

Frequently, the resistivity vs. temperature behavior
of pure metals can be empirically represented by a power
law of the form,

ρ = ρ0

(
T

T0

)n

, (2.25)

where ρ0 is the resistivity at the reference tempera-
ture, T0, and n is a characteristic index that best fits
the data. For the nonmagnetic metals, n is close to
unity whereas it is close to 2 for the magnetic metals
Fe and Ni [2.5]. Figure 2.5 shows ρ vs. T for various

metals. Table 2.1 summarizes the values ρ0 and n for
various metals.

As apparent from Fig. 2.4, below ≈ 100 K, the ρ ∝ T
behavior fails, and ρ ∝ T 5. The reason is that, as the tem-
perature is lowered, the scattering by phonons becomes
less efficient, and it takes many more collisions to fully
randomize the initial velocity of the electron. The mean
number of collisions ν required the randomize the ve-
locity scales with T−2 [2.5], and at low temperatures,
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Fig. 2.4 The resistivity of copper from low to high temperatures
(near its melting temperature, 1358 K) on a log–log plot. Above
about 100 K, ρ ∝ T , whereas at low temperatures, ρ ∝ T 5, and at
the lowest temperatures ρ approaches the residual resistivity ρR. The
inset shows the ρ vs. T behavior below 100 K on a linear plot. (ρR

is too small to see on this scale.) After [2.5]
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Fig. 2.5 The resistivities of various metals as a function of
temperature above 0 ◦C. Tin melts at 505 K, whereas nickel
and iron go through a magnetic-to-nonmagnetic (Curie)
transformation at about 627 K and 1043 K, respectively.
The theoretical behavior (ρ ∝ T ) is shown for reference.
After [2.5]

the concentration nphonon of phonons increases as T 3.
Thus,

σ ∝ ντ ∝ ν

nphonon
∝ T−2

T 3 ∝ T−5 (2.26)

which explains the low-temperature ρ − T behavior in
Fig. 2.4. The low temperature ρ ∝ T 5 and high temper-
ature ρ ∝ T regimes are roughly separated by the Debye
temperature TD. For T > TD we expect ρ ∝ T , and For
T < TD we expect ρ ∝ T 5.

In the case of metals with impurities and for alloys,
we need to include the ρR contribution to the overall
resistivity. For T > TD, the overall resistivity is

ρ ≈ AT +ρR , (2.27)

where A is a constant, and the AT term in (2.27) arises
from scattering from lattice vibrations. Normally, ρR
has very little temperature dependence, and hence very
roughly ρ vs. T curves shift to higher values as ρR is
increases due to the addition of impurities, alloying or
cold working the sample (mechanical deformation that
generates dislocations) as illustrated for Cu–Ni alloys
in Fig. 2.6.

Resistivity vs. temperature behavior of nearly all
metals is characterized by the temperature coefficient of
resistivity (TCR) α0 which is defined as the fractional
change in the resistivity per unit temperature increase at
the reference temperature T0, i. e.

α0 = 1

ρ0

(
dρ

dT

)

T=T0

, (2.28)

where ρ0 is the resistivity at the reference temper-
ature T0, usually at 273 K (0 ◦C) or 293 K (20 ◦C),
dρ = ρ−ρ0 is the change in the resistivity due to a small
increase, dT = T − T0, in temperature. Assuming that
α0 is temperature independent over a small range from
T0 to T , we can integrate (2.28), which leads to the well
known equation,

ρ = ρ0[1+α0(T − T0)] . (2.29)

Equation (2.29) is actually only valid when α0 is con-
stant over the temperature range of interest which
requires (2.27) to hold. Over a limited temperature range
this will usually be the case. Although it is not obvious
from (2.28), we should, nonetheless, note that α0 de-
pends on the reference temperature, T0 by virtue of ρ0
depending on T0.

It is instructive to mention that if ρ ≈ AT as we
expect for an ideal pure metal, then α0 = T−1

0 . If we
take the reference temperature T0 as 273 K (0 ◦C), then
α0 should ideally be 1/(273 K) or 3.66 × 10−3 K−1. Ex-
amination of a0 for various metals shows that ρ ∝ T
is not a bad approximation for some of the familiar
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Temperature (K)

  T
ρ

  I
ρ

  cwρ

Fig. 2.6 Resistivities of annealed and cold-worked (de-
formed) copper containing various amounts of Ni (given
in atomic percentages) versus temperature
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Table 2.1 Resistivities at 293 K (20 ◦C) ρ0 and thermal co-
efficients of resistivity α0 at 0–100 ◦C for various metals.
The resistivity index n in ρ = ρ0(T/T0)n is also shown. Data
was compiled from [2.6, 7]

Metal ρ0(n�m) n α0 × 10−3 (K−1)

Aluminium, Al 26.7 1.20 4.5

Barium, Ba 600 1.57

Beryllium, Be 33 1.84 9

Bismuth, Bi 1170 0.98 4.6

Cadmium, Cd 73 1.16 4.3

Calcium, Ca 37 1.09 4.57

Cerium, Ce 854 1.35 8.7

Cesium, Cs 200 1.16 4.8

Cromium, Cr 132 1.04 2.14

Cobalt, Co 63 1.80 6.6

Copper, Cu 16.94 1.15 4.3

Gallium, Ga 140

Gold, Au 22 1.11 4

Hafnium, Ha 322 1.20 4.4

Indium, In 88 1.40 5.2

Iridium, Ir 51 1.17 4.5

Iron, Fe 101 1.73 6.5

Lead, Pb 206 1.13 4.2

Lithium, Li 92.9 1.23 4.35

Magnesium, Mg 4.2 1.09 4.25

Molybdenum, Mo 57 1.26 4.35

Nickel, Ni 69 1.64 6.8

Niobium, Nb 160 0.80 2.6

Osmium, Os 88 1.10 4.1

Palladium, Pd 108 0.96 4.2

Platinum, Pt 105.8 1.02 3.92

Potassium, K 68 1.38 5.7

Rhodium, Rh 47 1.21 4.4

Rubidium, Rb 121 1.41 4.8

Ruthenium, Ru 77 1.15 4.1

Silver, Ag 16.3 1.13 4.1

Sodium, Na 47 1.31 5.5

Strontium, Sr 140 0.99 3.2

Tantalum, Ta 135 1.01 3.5

Tin, Sn 126 1.4 4.6

Titanium, Ti 540 1.27 3.8

Tungsten, W 54 1.26 4.8

Vanadium, V 196 1.02 3.9

Zinc, Zn 59.6 1.14 4.2

Zirconium, Zr 440 1.03 4.4

pure metals used as conductors, e.g. Cu, Al, Au,
but fails badly for others, such as indium, antimony

and, in particular, the magnetic metals, e.g. iron and
nickel.

Frequently we are given α0 at a temperature T0,
and we wish to use some other reference temperature,
say T0′, that is, we wish to use ρ0′ and α0′ for ρ0 and α0
respectively in (2.29) by changing the reference from T0
to T0′. Then we can find α1 from α0,

α′
0 = α0

1+α0(T ′
0 − T0)

and ρ = ρ′
0

[
1+α′

0

(
T − T ′

0

)]
. (2.30)

For example, for Cu α0 = 4.31 × 10−3 K−1 at T0 = 0 ◦C,
but it is α0 = 3.96 × 10−3 K−1 at T0 = 20 ◦C. Table 2.1
summarizes α0 for various metals.

2.3.2 Fermi Electrons

The electrical properties of metals depend on the behav-
ior of the electrons at the Fermi surface. The electron
states at energies more than a few kT below EF are
almost fully occupied. The Pauli exclusion principle re-
quires that an electron can only be scattered into an
empty state, and thus scattering of deep electrons is
highly suppressed by the scarcity of empty states (scat-
tering where the energy changes by more than a few kT
is unlikely). Only the electrons near EF undergo scatter-
ing. Likewise, under the action of an external field, only
the electron occupation near EF is altered. As a result,
the density of states (DOS) near the Fermi level is most
important for the metal electrical properties, and only
those electrons in a small range ∆E around EF actually
contribute to electrical conduction. The density of these
electrons is approximately g(EF)∆E where g(EF) is the
DOS at the Fermi energy. From simple arguments, the
overall conductivity can be shown to be [2.5]

σ = 1

3
e2v2

Fτg(EF) , (2.31)

where vF is the Fermi speed and τ is the scattering time of
these Fermi electrons. According to (2.31), what is im-
portant is the density of states at the Fermi energy, g(EF).
For example, Cu and Mg are metals with valencies I and
II. Classically, Cu and Mg atoms each contribute 1 and 2
conduction electrons respectively into the crystal. Thus,
we would expect Mg to have higher conductivity. How-
ever, the Fermi level in Mg is where the top tail of the
3p-band overlaps the bottom tail of the 3s band where
the density of states is small. In Cu, on the other hand,
EF is nearly in the middle of the 4 s band where the den-
sity of states is high. Thus, Mg has a lower conductivity
than Cu.
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a)

b)
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Fig. 2.7a,b Simplified energy band diagrams around EF

for copper (a) and nickel (b)

The scattering time τ in (2.31) assumes that the scat-
tered electrons at EF remain in the same energy band as,

for example, in Cu, whose simplified energy band dia-
gram around EF is shown in Fig. 2.7a. In certain metals,
there are two different energy bands that overlap at EF.
For example, in Ni, 3d and 4s bands overlap at EF as
shown in Fig. 2.7b. An electron can be scattered from
the 4s to the 3d band and vice versa. Electrons in the 3d
band have very low drift mobilities and effectively do
not contribute to conduction so that only g(EF) of the 4s
band operates in (2.31). Since 4s to 3d band is an addi-
tional scattering mechanism, by virtue of Matthiessen’s
rule, the effective scattering time τ for the 4s band elec-
trons is shortened and hence σ from (2.31) is smaller.
Thus, Ni has poorer conductivity than Cu.

Equation (2.31) does not assume a particular density
of states model. If we now apply the free electron model
for g(EF), and also relate EF to the total number of
conduction electrons per unit volume n, we would find
that the conductivity is the same as that in the Drude
model, that is

σ = e2nτ

me
. (2.32)

2.4 Solid Solutions and Nordheim’s Rule

In an isomorphous alloy of two metals, i. e. a binary
alloy which forms a binary substitutional solid solu-
tion, an additional mechanism of scattering appears, the
scattering off solute phase atoms. This scattering con-
tributes to lattice scattering, and therefore increases the
overall resistivity. An important semi-empirical equa-
tion which can be used to predict the resistivity of an
alloy is Nordheim’s rule. It relates the impurity part of
the resistivity ρI to the atomic fraction X of solute atoms
in a solid solution via

ρI = CX(1− X) , (2.33)

where the constant C is termed the Nordheim coefficient
and represents the effectiveness of the solute atom in
increasing the resistivity. Nordheim’s rule was originally
derived for crystals. Combining Nordheim’s rule with
Matthiessen’s rule (2.23), the resistivity of an alloy of
composition X should follow

ρ = ρmatrix +CX(1− X) , (2.34)

where ρmatrix is the resistivity of the matrix due to scat-
tering from thermal vibrations and from other defects,
in the absence of alloying elements.

Nordheim’s rule assumes that the solid solution has
the solute atoms randomly distributed in the lattice.
For sufficiently small amounts of impurity, experiments
show that the increase in the resistivity ρI is nearly
always simply proportional to the impurity concentra-
tion X, that is, ρI ∝ X. For dilute solutions, Nordheim’s
rule predicts the same linear behavior, that is, ρI = CX
for X � 1.

Originally the theoretical model for ρI was de-
veloped by Nordheim [2.8] by assuming that the
solute atoms simply perturb the periodic potential and
thereby increase the probability of scattering. Quan-
tum mechanical calculations for electron scattering
within a single band, such as the s-band, at EF show
that

ρI ∝ g(EF)V 2
scatter X(1− X) , (2.35)

where g(EF) is the DOS at EF, and Vscatter is matrix
element for scattering from one wavefunction to another
at the Fermi surface in the same band, which for an
s-band is

Vscatter = 〈
ψ∗

s |∆V |ψs
〉
, (2.36)
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Table 2.2 Nordheim coefficients (at 20 ◦C) for dilute alloys
obtained from ρi = CX and X < 1 at.%. Note: For many
isomorphous alloys, C may be different at higher concen-
trations; that is, it may depend on the composition of the
alloy [2.7, 9]. Maximum solubility data from [2.10]

Solute in solvent Nordheim Maximum
(element in coefficient solubility at
matrix) (n�m) 25 ◦C (at.%)

Au in Cu matrix 5500 100

Mn in Cu matrix 2900 24

Ni in Cu matrix 1250 100

Sn in Cu matrix 2900 0.6

Zn in Cu matrix 300 30

Cu in Au matrix 450 100

Mn in Au matrix 2410 25

Ni in Au matrix 790 100

Sn in Au matrix 3360 5

Zn in Au matrix 950 15

where ∆V is the difference between the potentials as-
sociated with solvent and solute atoms, and ψs is the
wavefunction of an electron in the s-band at EF. It is
clear that C is only independent of X if g(EF) and Vscatter
remain the same for variousX which may not be true.
For example, if the effective number of free electrons
increases with X, EF will be shifted higher, and C will
not be constant.

Table 2.2 lists some typical Nordheim coefficients
for various additions to copper and gold. The value of
the Nordheim coefficient depends on the type of solute
and the solvent. A solute atom that is drastically differ-
ent in size to the solvent atom will result in a bigger
increase in ρI and will therefore lead to a larger C. An
important assumption in Nordheim’s rule in (2.33) is
that the alloying does not significantly vary the number
of conduction electrons per atom in the alloy. Although
this will be true for alloys with the same valency, that
is, from the same column in the Periodic Table (e.g.,
Cu–Au, Ag–Au), it will not be true for alloys of differ-
ent valency, such as Cu and Zn. In pure copper, there is
just one conduction electron per atom, whereas each Zn
atom can donate two conduction electrons. As the Zn
content in brass is increased, more conduction electrons
become available per atom. Consequently, the resistivity
predicted by (2.34) at high Zn contents is greater than the
actual value because C refers to dilute alloys. To get the
correct resistivity from (2.34) we have to lower C, which
is equivalent to using an effective Nordheim coefficient
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Fig. 2.8 Electrical resistivity versus composition at room
temperature in Cu–Au alloys. The quenched sample
(dashed curve) is obtained by quenching the liquid, and
it has the Cu and Au atoms randomly mixed. The resistiv-
ity obeys the Nordheim rule. On the other hand, when the
quenched sample is annealed or the liquid slowly cooled
(solid curve), certain compositions (Cu3Au and CuAu) re-
sult in an ordered crystalline structure in which Cu and Au
atoms are positioned in an ordered fashion in the crystal
and the scattering effect is reduced

Ceff that decreases as the Zn content increases. In other
cases, for example, in Cu–Ni alloys, we have to increase
C at high Ni concentrations to account for additional
electron scattering mechanisms that develop with Ni ad-
dition. Nonetheless, the Nordheim rule is still useful for
predicting the resistivities of dilute alloys, particularly
in the low-concentration region.

In some solid solutions, at some concentrations of
certain binary alloys, such as 75% Cu–25% Au and 50%
Cu–50% Au, the annealed solid has an orderly struc-
ture; that is, the Cu and Au atoms are not randomly
mixed, but occupy regular sites. In fact, these compo-
sitions can be viewed as a pure compound – like the
solids Cu3Au and CuAu. The resistivities of Cu3Au and
CuAu will therefore be less than the same composition
random alloy that has been quenched from the melt.
As a consequence, the resistivity ρ versus composition
X curve does not follow the dashed parabolic curve
throughout; rather, it exhibits sharp falls at these special
compositions, as illustrated Fig. 2.8. The effective me-
dia approximation may be used as an effective tool to
estimate the resistivities of inhomogeneous media.
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2.5 Carrier Scattering in Semiconductors

At low electric fields, ionized impurity scattering and
phonon scattering predominate. Other types of scattering
include carrier-carrier scattering, inter-valley scattering,
and neutral impurity scattering; these may generally be
ignored to a first approximation.

For phonon scattering, both polar and non-polar
phonon scattering should be considered. In polar scatter-
ing, short wavelength oscillations of atoms on different
sub-lattices vibrating out of phase produce an effec-
tive dipole moment proportional to the bond polarity.
Since such vibrational modes are optically active (since
this dipole moment can interact with an incident elec-
tromagnetic field), this type of lattice scattering is
usually referred to as polar optical phonon scatter-
ing. Since a sub-lattice is necessary for optical modes,
this scattering mechanism is not present in elemental
semiconductors such as Si, Ge, or diamond.

Non-polar phonon scattering comes from long
wavelength oscillations in the crystal, involving small
displacements of tens to thousands of atoms. The wave-
length depends on the material and its elastic properties.
Such modes are very similar to sound vibrations and
are thus referred to as acoustic modes. The associated
atomic displacements correspond to an effective built-in
strain, with local change in the lattice potential, causing
carrier scattering known as deformation potential acous-
tic phonon scattering. Since the change in potential is
relatively small, the scattering efficiency is relatively low
as compared with polar optical phonon scattering.

Each scattering process contributes to the drift mo-
bility according to Matthiessen’s rule

1

µe
=

∑

i

1

µi
(2.37)

as discussed in Sect. 2.3 above. Figure 2.9 shows the con-
tributions of each scattering process for n-type ZnSe –
a material used in optoelectronic devices. At room tem-
perature, polar optical phonon scattering and ionized
impurity scattering dominate. These processes depend
on the carrier concentration. The curve for ionized impu-
rity scattering decreases markedly with increasing car-
rier concentration owing to the increasing concentration
of ionized donors that supply these carriers. The ionized
impurity scattering mobility is roughly inversely propor-
tional to the concentration of ionized impurities. How-
ever, as the carrier concentration increases, as in a degen-
erate semiconductor, the average energy per carrier also
increases (i. e., carriers move faster on average) and thus
carriers are less susceptible to being scattered from the
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Fig. 2.9 Dependence of electron mobility on carrier con-
centration for ZnSe at 77 K [2.11]
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Fig. 2.10 Dependence of electron mobility on temperature
and doping for ZnSe [2.11]

ionized impurity centers. In contrast, the polar phonon
scattering rate is determined by the number of partic-
ipating phonons which depends on the thermal energy
available to create a given quantized vibrational mode.
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The temperature dependence of the mobility may
be estimated by considering the effect of temperature
on ionized impurity and phonon scattering and combin-
ing these mechanisms using Matthiessen’s rule. Phonon
scattering increases strongly with increasing tempera-
ture T due to the increase in the number of phonons
resulting in a T−3/2 dependence for the polar phonon
mobility. For ionized impurity scattering, increasing the
temperature increases the average carrier velocity and
hence increases the carrier mobility for a set concentra-
tion of ionized impurities. Once a temperature is reached

such that impurity ionization is complete, the ionized im-
purity based carrier mobility can be shown to increase
with temperature T as approximately, T+3/2. At low
temperatures, the mobility is basically determined by
ionized impurity scattering and at high temperatures by
phonon scattering leading to a peaked curve. Invoking
the previous discussions for the dependence of the total
mobility on carrier concentration, it is clear that the peak
mobility will depend on the doping level, and the peak
location will shift to higher temperatures with increased
doping as shown in Fig. 2.10.

2.6 The Boltzmann Transport Equation

A more rigorous treatment of charge transport requires
a discussion of the Boltzmann Transport Equation.
The electronic system is described by a distribution
function f (k, r, t) defined in such a way that the num-
ber of electrons in a six-dimensional volume element
d3kd3r at time t is given by 1

4π−3 f (k, r, t)d3kd3r.
In equilibrium, f (k, r, t) depends only on energy and
reduces to the Fermi distribution f0 where the prob-
ability of occupation of states with momenta +k
equals that for states with −k, and f0(k) is sym-
metrical about k = 0, giving no net charge transport.
If an external field acts on the system (i. e., non-
equilibrium), the occupation function f (k) will become
asymmetric in k-space. If this non-equilibrium dis-
tribution function f (k) is completely specified and
appropriate boundary conditions supplied, the electronic
transport properties can be completely determined by
solving the steady state Boltzmann transport equa-
tion [2.12]

v ·∇r f + k̇ ·∇k f =
(

∂ f

∂t

)

c
(2.38)

where,

1. v ·∇r f represents diffusion through a volume el-
ement d3r about the point r in phase space due to
a gradient ∇r f ,

2. k̇ ·∇k f represents drift through a volume element
d3k about the point k in phase space due to a gra-
dient ∇k f (for example, � k̇ = e

(
E+ 1

c v × B
)

in the
presence of electric and magnetic fields)

3. (∂ f/∂t)c is the collision term and accounts for the
scattering of electrons from a point k (for exam-
ple, this may be due to lattice or ionized impurity
scattering).

Equation (2.38) may be simplified by using the
relaxation time approximation

(
∂ f

∂t

)

c
= ∆ f

τ
= − f − f0

τ
(2.39)

which is based on the assumption that for small changes
in f carriers return to equilibrium in a characteristic
time τ , dependent on the dominant scattering mech-
anisms. Further simplifications of (2.38) using (2.39)
applicable for low electric fields lead to a simple equa-
tion connecting the mobility µ to the average scattering
time 〈τ〉

µ ∼= e〈τ〉
m∗ . (2.40)

The details of calculations may be found in various ad-
vanced textbooks, for example Bube [2.13], Blatt [2.4].
The average scattering time may be calculated as-
suming a Maxwell-Boltzmann distribution function and
a parabolic band

〈τ〉 = 2

3kBT

∞∫

0
τ(E)E3/2 e−E/kBT dE

∞∫

0
E1/2 e−E/kBT dE

. (2.41)

Quantum mechanical perturbation theory can be used
to calculate the carrier scattering rate for different pro-
cesses i, giving,

τi (E) = aE−α , (2.42)

where a and α are constants and E is the electron energy.
Substituting (2.42) into (2.41) gives

< τi >= 4aΓ (5/2−α)

3π1/2(kBT )α
(2.43)

in terms of the gamma function Γ . Using this ap-
proach, the expressions for the mobility for the case
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of lattice and impurity scattering may be easily
found

µL ∝ 4e

m∗√9πkB
T− 3

2 , (2.44)

µI ∝ 8ek3/2
B NI

m∗√π
T+ 3

2 , (2.45)

where NI is the concentration of ionized impurities.

2.7 Resistivity of Thin Polycrystalline Films

Two new dominant scattering mechanisms must be con-
sidered in polycrystalline thin films – scattering by grain
boundaries and scattering at the surface. The scattering
by grain boundaries is schematically shown in Fig. 2.11.
As a first approximation, the conduction electron may be
considered free within a grain, but becomes scattered at
the grain boundary. Its mean free path �grains is therefore
roughly equal to the average grain size d. If λ = �crystal
is the mean free path of the conduction electrons in the
single crystal, then according to Matthiessen’s rule

1

�
= 1

�crystal
+ 1

�grains
= 1

λ
+ 1

d
. (2.46)

a)

b)

Grain 1

Grain 2

Grain boundary

Fig. 2.11 (a) Grain boundaries cause electron scattering and
therefore add to the resistivity according to Matthiessen’s
rule. (b) For a very grainy solid, the electron is scattered
from grain boundary to grain boundary, and the mean free
path is approximately equal to the mean grain diameter

The resistivity is inversely proportional to the mean free
path which means the resistivity of the single crys-
tal ρcrystal ∝ 1/λ and resistivity of the polycrystalline
sample ρ ∝ 1/�. Thus,

ρ

ρcrystal
= 1+

(
λ

d

)
. (2.47)

Figure 2.12 clearly demonstrates that even simple con-
siderations agree well with experimental data. However,
in a more rigorous theory we have to consider a num-
ber of effects. It may take more than one scattering at
a grain boundary to totally randomize the velocity so
that we need to calculate the effective mean free path
that accounts for how many collisions are needed to
randomize the velocity. There is a possibility that the
electron may be totally reflected back at a grain bound-
ary (bounce back). Let σ be the conductivity of the
polycrystalline (grainy) material and σcrystal be the con-
ductivity of the bulk single crystal. Suppose that the
probability of reflection at a grain boundary is R. If d is
the average grain size (diameter) then the two conduc-
tivities may be related using the Mayadas and Shatzkes

35
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0 0.05 0.01 0.015 0.02 0.025

Resistivity (n� m)

1/d (1/µm)

Fig. 2.12 Resistivity of Cu polycrystalline film vs. recip-
rocal mean grain size (diameter), 1/d. Film thickness
D = 250–900 nm does not affect the resistivity. The
straight line ρ = 17.8 nΩ m+ (595 nΩ nm)(1/d) [2.14]
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formula [2.15]

σ

σcrystal
= 1− 3

2
β +3β2 −3β3 ln

(
1+ 1

β

)

where β = λ

d

(
R

1− R

)
, (2.48)

which in 0.1 < β < 10, approximates to

ρ

ρcrystal
≈ 1+1.34β . (2.49)

For copper typically R values are 0.24–0.40, and some-
what a smaller R for Al. Equation (2.49) for a Cu
film with R ≈ 0.3 predicts ρ/ρcrystal ≈ 1.20 for roughly
d ≈ 3λ or a grain size d ≈ 120 nm since in the bulk
crystal λ ≈ 40 nm. Tellier et al. [2.17] have given ex-
tensive discussions of grain boundary scattering limited
resistivity of thin films.

Scattering from the film surfaces must also be in-
cluded in any resistivity calculation. It is generally
assumed that the scattering from a surface is partially
inelastic, that is the electron loses some of the veloc-
ity gained from the field. The inelastic scattering is
also called nonspecular. (If the electron is elastically re-
flected from the surface just like a rubber ball bouncing
from a wall, then there is no increase in the resistivity.)
If the parameter p is the fraction of surface collisions
which are specular (elastic) and if the thickness of film D
is greater than λ, and σbulk = 1/ρbulk, than in accor-
dance with Fuchs-Sondheimer equation [2.18, 19] the
conductivity σ of the film is

σ

σbulk
= 1− 3λ

8D
(1− p) , (λ/D > 1) . (2.50)

If D is much shorter than �,

σ

σbulk
= 3D

4λ

[
ln

(
λ

D

)
+0.423

]

× (1+2p) , (λ/D � 1) . (2.51)

For purely nonspecular (inelastic) scattering, an approx-
imate estimate can be obtained from

ρ

ρbulk
≈ 1+ 3

8

(
λ

D

)
. (2.52)

Figure 2.13 shows the resistivity of thin polycrystalline
Cu films as a function of film thickness. From (2.50), for
sufficiently small thicknesses, ρ is inversely proportional
to the thickness D, which is what is observed experimen-
tally in Fig. 2.13. The saturation at higher thicknesses is
mostly due to scattering on grain boundaries.
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bulk

ρ

Fig. 2.13 Resistivity of Cu polycrystalline film versus film
thickness D. The resistivity is mostly controlled by the sur-
face scattering, and annealing does not significantly affect
the resistivity while it reduces the crystallinity [2.16]

For elastic or specular scattering p = 1 and there
is no change in the conductivity. The value of p de-
pends on the film preparation method (e.g. sputtering,
epitaxial growth etc.) and the substrate on which the film
has been deposited. Table 2.3 summarizes the resistivi-
ties of thin Cu and Au gold films deposited by various
preparation techniques. Notice the large difference be-
tween the Au films deposited on a noncrystalline glass
substrate and on a crystalline mica substrate. Such differ-
ences between films are typically attributed to different
values of p. The p-value can also change (increase)
when the film is annealed. Obviously, the polycrys-
tallinity of the film will also affect the resistivity as
discussed above. Typically, most epitaxial thin films,
unless very thin (D � �), deposited onto heated crys-
talline substrates exhibit highly specular scattering with
p = 0.9−1.

It is generally very difficult to separate the effects
of surface and grain boundary scattering in thin poly-
crystalline films; the contribution from grain boundary
scattering is likely to exceed that from the surfaces. In
any event, both contributions, by Matthiessen’s general
rule, increase the overall resistivity. Figure 2.12 shows
an example in which the resistivity ρfilm of thin Cu poly-
crystalline films is due to grain boundary scattering, and
thickness has no effect (D was 250 nm – 900 nm and
much greater than λ). The resistivity ρfilm is plotted
against the reciprocal mean grain size 1/d, which then
follows the expected linear behavior in (2.49). On the
other hand, Fig. 2.13 shows the resistivity of Cu films as
a function of film thickness D. In this case, annealing
(heat treating) the films to reduce the polycrystallinity
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Table 2.3 Resistivities of some thin Cu and Au films at room temperature. PC: Polycrystalline film; RT is room tempera-
ture; D = film thickness; d = average grain size. At RT for Cu, λ = 38–40 nm, and for Au λ = 36–38 nm. Data selectively
combined from various sources, including [2.14, 16, 20–22].

Film D (nm) d (nm) ρ(n�m) Comment

Cu films (polycrystalline)

Cu on TiN, W and TiW [2.14] > 250 186 21 CVD (chemical vapor deposition).

45 32 Substrate temperature 200 ◦C, ρ depends

on d not D = 250–900 nm

Cu on 500 nm SiO2 [2.20] 20.5 35 Thermal evaporation, substrate at RT

37 27

Cu on Si (100) [2.16] 52 38 Sputtered Cu films. Annealing at 150 ◦C

100 22 has no effect. R ≈ 0.40 and p ≈ 0

Cu on glass [2.21] 40 50 As deposited

40 29 Annealed at 200 ◦C

40 25 Annealed at 250 ◦C

All thermally evaporated and PC

Au films

Au epitaxial film on mica 30 25 Single crystal on mica. p ≈ 0.8, specular

scattering

Au PC film on mica 30 54 PC. Sputtered on mica. p is small

Au film on glass 30 70 PC. Evaporated onto glass. p is small,

nonspecular scattering

Au on glass [2.22] 40 8.5 92 PC. Sputtered films. R = 0.27–0.33

40 3.8 189

does not significantly affect the resistivity because ρfilm
is controlled primarily by surface scattering, and is given

by (2.52). Gould in Chapt. 29 provides a more advanced
treatment of conduction in thin films.

2.8 Inhomogeneous Media. Effective Media Approximation

The effective media approximation (EMA) attempts to
estimate the properties of inhomogeneous mixture of
two or more components using the known physical prop-
erties of each component. The general idea of any EMA
is to substitute for the original inhomogeneous mixture
some imaginary homogeneous substance – the effective
medium (EM) – whose response to an external exci-
tation is the same as that of the original mixture. The
EMA is widely used for investigations of non-uniform
objects in a variety of applications such as compos-
ite materials [2.23,24], microcrystalline and amorphous
semiconductors [2.25–28], light scattering [2.29], con-
ductivity of dispersed ionic semiconductors [2.30] and
many others.

Calculations of the conductivity and dielectric
constant of two component mixtures are reviewed
by Reynolds and Hough [2.31] and summarized by

Rossiter [2.1]. For such a mixture we assume that the
two components α and β are randomly distributed in
space with volume fractions of χα and χβ = 1−χα.
The dielectric properties are described by an effective
permittivity εeff given by the ratio

εeff = 〈D〉 / 〈E〉 , (2.53)

where 〈E〉 is the average electric field and 〈D〉 is the aver-
age displacement field. The displacement field averaged
over a large volume may be calculated from

〈D〉 = 1

V

∫

V

Ddv = 1

V

⎛

⎜
⎝

∫

Vα

Ddv+
∫

Vβ

Ddv

⎞

⎟
⎠

= χα 〈Dα〉+χβ

〈
Dβ

〉
, (2.54)
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Table 2.4 Mixture rules for randomly oriented particles

Factors in (2.58)

Particle shape Mixture rule A ε∗ References

Spheres
εeff −εβ

εeff +2εβ

= χα

εα −εβ

εα +2εβ

1
3 ε2 [2.32–36]

Spheres
εeff −εβ

3εβ

= χα

εα −εβ

εα +2εβ

1
3 ε2 [2.37]

Spheres χα

εα −εeff

εα +2εeff
+χβ

εβ −εeff

εβ f +2εeff
= 0 1

3 εeff [2.38]

Spheres
εeff −εβ

3εeff
= χα

εα −εβ

εα +2εβ

1
3 εeff [2.39]

Spheroids εeff = εβ + χα

3 (1−χα)

3∑

n=1

εα −εeff

1+ A
(

εα
εeff

−1
) A ε2 [2.40]

Spheroids εeff = εβ + χα

3

3∑

n=1

εα −εeff

1+ A
(

εα
εeff

−1
) A εeff [2.41]

Lamellae ε2
eff = 2

(
εαχα −εβχβ

)−εeff

εα
χα

+ εβ
χβ

0 εeff [2.38]

Rods 5ε3
eff +

(
5ε′

p −4εp

)
ε2

eff−
−

(
χαε2

α +4εαεβ +χβε2
β

)
−εαεβεp = 0 1

2 εeff [2.42]

where
1

ε′
p

= χα

εβ

+ χβ

εα

and

1

εp
= χα

εα

+ χβ

εβ

where 〈Dα〉 and
〈
Dβ

〉
are the average displacements

fields inside regions of the respective components and
Vα and Vβ are their volumes. Likewise the electric field
is given by

〈E〉 = χα 〈Eα〉+χβ

〈
Eβ

〉
. (2.55)

From (2.53) one gets

εeff = εβ + (
εα − εβ

)
χα fα (2.56)

or

(εeff − εα) χα fα + (
εeff − εβ

)
χβ fβ = 0 (2.57)

where εα and εβ are the permittivities of the components
and fα = 〈Eα〉 / 〈E〉 and fβ = 〈

Eβ

〉
/ 〈E〉 are so-called

field factors. The choice between (2.56) and (2.57) de-
pends on particle geometry. Equation (2.56) is better
when the particles of component are dispersed in a con-
tinuous medium β. Equation (2.57) is preferred when
the particle size of the two components is of the same
order of magnitude.

The field factors can be calculated analytically only
for phase regions with special specific geometries.
The field factor for ellipsoids is given by (Strat-
ton [2.43])

fα =
3∑

i=1

cos2 αi

1+ Ai
(

εα

ε∗ −1
) (2.58)

where αi are the angles between the ellipsoid axes
and the applied field and Ai depends upon the ax-
ial ratios of the ellipsoids subject to the condition
that

3∑

i=1

Ai = 1 .

For a spheroid, A2 = A3 = A and A1 = 1−2A. For
a random orientation of spheroids cos2 α1 = cos2 α2 =
cos2 α3 = 1

3 . For the case of long particles with aligned
axes cos2 α1 = cos2 α2 = 1

2 and cos2 α3 = 0. The val-
ues of parameters entering (2.58) can be found in
Table 2.4 which shows a set of mixture rules, i. e.
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Table 2.5 Mixture rules for partially oriented particles

Particle shape Formula Factors in (2.58) References

A ε∗ cosα1 = cosα2 cosα3

Parallel cylinders
εeff −εβ

εeff +εβ

= χα

εα −εβ

εα +εβ

1
2 ε2

1
2 0 [2.35, 36]

Parallel cylinders χα

εα −εeff

εα +εeff
+χβ

εβ −εeff

εβ +εeff

1
2 εeff

1
2 0 [2.38]

Parallel lamellae
(with two axes randomly ori-
ented)

ε2
eff = εαχα +εβχβ

εα
χα

+ εβ
χβ

0 εeff
1
2 0 [2.38]

Lamellae with all axes aligned
(current lines are perpendicular
to lamellae planes)

1

εeff
= χα

εα

+ χβ

εβ

0 εeff 0 1 [2.44]

Lamellae with all axes aligned
(current lines are parallel to
lamellae planes)

εeff = εαχα +εβχβ 0 εeff 1 0 [2.45, 46]

Spheroids with all axes aligned
(current lines are parallel to one
of the axes)

εeff = εβ + χα

(
εα −εβ

)

1+ A
(

εα
εβ

−1
) A ε2 0 1 [2.47]

Spheroids with all axes aligned
(current lines are parallel to one
of the axes)

εeff

εβ

= 1+ χα
(

εα
εβ

−1
)−1 + Aχβ

A ε2 0 1 [2.48]

Table 2.6 Conductivity / resistivity mixture rules

Particle shape Formula Commentary

Lamellae with all axes aligned
(current lines are perpendicular to lamellae
planes)

ρeff = χαρα +χβρβ Resistivity mixture rule: ρα and ρβ are the resistivities
of two phases and ρeff is the effective resistivity of
mixture

Lamellae with all axes aligned
(current lines are parallel to lamellae planes)

σeff = χασα +χβσβ Conductivity mixture rule: σα and σβ are the con-
ductivities of two phases and σeff is the effective
conductivity of mixture

Small spheroids (α-phase) in medium
(β-phase)

ρeff = ρβ

(
1+ 1

2 χα

)

(1−χα)
ρα > 10ρβ

Small spheroids (α-phase) in medium
(β-phase)

ρeff = ρβ

(1−χα)

(1+2χα)
ρα < 0.1ρβ

a set of formulae allowing one to calculate εeff for
some specific cases (such as spheres, rods, lamel-
lae, etc.). The presence of some degree of orientation
somewhat simplifies the calculations as shown in the
Table 2.5.

The same formulae can be used to calculate the
conductivity of mixtures by substituting the appropri-
ate conductivity σ for ε. For some special cases, the
mixture rules of Table 2.5 lead to very simple formulae
which allows one to calculate the conductivity of inho-
mogeneous alloys with those specific geometries. These
mixture rules are summarized in Table 2.6.

The most general approach to calculating the effec-
tive dielectric permittivity comes from

εeff = ε2

⎛

⎝1−χα

1∫

0

G(L)

t − L
dL

⎞

⎠ (2.59)

where t = ε2/(ε2 − ε1) and G(L) is the spectral func-
tion which describes the geometry of particles. The
advantage of the spectral representation is that it
distinguishes between the influence of geometrical
quantities and that of the dielectric properties of the
components on the effective behavior of the sys-
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Table 2.7 Mixture rules and corresponding spectral functions G(L)

Mixture rule by Bruggemann [2.38]: χα

εα −εeff

εα +2εeff
+χβ

εβ −εeff

εβ f +2εeff
= 0

G(L) = 3χα −1

2χα

δ(L)Θ(3χα −1)+ 3

4πχαL

√
(L − L−) (L+ − L)Θ(L − L−)Θ(L+ − L)

where L+/− = 1

3

(
1+χα ±2

√
2χα −2χ2

α

)

Mixture rule by Maxwell-Garnett [2.49]:
εeff −εβ

εeff +2εβ

= χα

εα −εβ

εα +2εβ

G(L) = δ

(
L − 1−χα

3

)

Mixture rule by Looyenga [2.50]: ε
1/3
eff = χαε1/3

α +χβε
1/3
β

G(L) = χ2
αδ(L)+ 3

√
3

2π

(

χ2
β

∣∣∣∣
L −1

L

∣∣∣∣
1/3

+χαχβ

∣∣∣∣
L −1

L

∣∣∣∣
2/3

)

Mixture rule by Monecke [2.51]: εeff = 2
(
χαεα +χβεβ

)2 +εαεβ

(1+χα) εα + (2−χα) εβ

G(L) = 2χα

1+χα

δ(L)+ 1−χα

1+χα

δ

(
L − 1+χα

3

)

Mixture rule for hollow sphere equivalent by Bohren and Huffman [2.52]

εeff = εα

(3−2 f ) εβ +2 f εα

f εβ + (3− f ) εα

G(L) = 2

3− f
δ(L)+ 1− f

3− f
δ

(
L − 3− f

3

)

where f = 1− r3
i

r3
o

and ri/o is the inner/outer radius of the sphere

tem. Although the spectral function G(L) is generally
unknown for an arbitrary two-phase composite, it’s
analytically known or can be numerically derived

for any existing mixture rule. Examples of spectral
functions and corresponding solutions are shown in
Table 2.7.

2.9 The Hall Effect

The Hall effect is closely related to the phenomenon of
conductivity and is observed as the occurrence of a volt-
age appearing across a conductor carrying an electric
current in a magnetic field. The schematic of the ex-
periment is shown in the Fig. 2.14. The effect is often
characterized by the Hall coefficient

RH = Ey

Jx Bz
, (2.60)

where Ey is the Hall effect electric field in
the y-direction, Jx is the current density in the

Fig. 2.14 Hall effect for ambipolar conduction. The mag-
netic field Bz is out of the plane of the paper. Both electrons
and holes are deflected toward the bottom surface of the
conductor and so the Hall voltage depends on the relative
mobilities and concentrations of electrons and holes

x-direction and Bz is magnetic field in the z-
direction.
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The Hall effect for ambipolar conduction in a sam-
ple where there are both negative and positive charge
carriers, e.g. electrons and holes in a semiconductor,
involves not only the concentrations of electrons and
holes, n and p respectively, but also the electron and hole
drift mobilities, µe and µh. In the first approximation,
the Hall coefficient can be calculated in the following
way. Both charge carriers experience a Lorentz force
in the same direction since they are drifting in the op-
posite directions but of course have opposite signs as
illustrated in Fig. 2.14. Thus, both holes and electrons
accumulate near the bottom surface. The magnitude of
the Lorentz force, however, will be different since the
drift mobilities and hence drift velocities will be dif-
ferent. Once equilibrium is reached, there should be no
current flowing in the y-direction as we have an open cir-
cuit. The latter physical arguments lead to the following
Hall coefficient [2.5],

RH = pµ2
h −nµ2

e

e (pµh +nµe)
2

or RH = p−nb2

e (p+nb)2 , (2.61)

where b = µe/µh.
It is clear that the Hall coefficient depends on both

the drift mobility ratio and the concentrations of holes
and electrons. For p > nb2, RH will be positive and
for p < nb2, it will be negative. Note that the car-
rier concentration is not zero when the Hall coefficient
is zero but rather n/p = (µh/µe)2. As an example,
Fig. 2.15 shows the dependence of Hall coefficient vs.
electron concentration for a single crystal silicon. The
calculations are based on (2.61) and the law of mass
action

n p = n2
i , (2.62)

where ni is the electron concentration in the intrinsic
semiconductor.

In the case of monopolar conduction, e.g. conduction
in metals or in doped semiconductors, (2.61) reduces
to

RH = − 1

en
, (for n 
 p) (2.63)

or

RH = 1

e p
, (for p 
 n) . (2.64)

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6
0.01 0.1 1 10

(eni)RH

n /ni

1.14

1/3

0.17

Fig. 2.15 Normalized Hall coefficient versus normalized
electron concentration plot for single-crystal silicon. The
values 0.17, 1.14 and 0.33 shown are the n/ni values
when the magnitude R reaches maxima and zero re-
spectively. In single-crystal silicon, ni = 1.5 × 1010 cm−3,
µe = 1350 cm2V−1s−1 and µh = 450 cm2V−1s−1

Therefore, (considering as an example a n-type semi-
conductor where σ = neµn) one can write

µH = σ

ne
= −σ RH (2.65)

which provides a simple expression for determining the
electron mobility known as the Hall mobility. Note, how-
ever, that the Hall mobility may differ from the drift
mobility discussed in the previous sections. The differ-
ence arises from the carriers in a semiconductor having
a distribution of energies. An average is used to de-
scribe the effect of carriers occupying different allowed
states. (This is distinct from the earlier discussions of
mobility where it was assumed that all the carriers have
the same mean free time between collisions.) To in-
clude this, it is necessary to use a formal analysis based
on the Boltzmann transport equation, as discussed in
Sect. 2.6. If we express the averaging of the carriers
with energy E and distribution function f (E), we can
write the energy-averaged τ(E) (i. e., 〈τ〉) as:

〈τ〉 =
∫

τ(E) f (E)dE
∫

f (E)dE
(2.66)

and the energy-averaged τ2 (i. e., 〈τ2〉) as:

〈τ〉 =
∫

τ2(E) f (E)dE
∫

f (E)dE
. (2.67)

The rigorous analysis [2.12] shows that the Hall mobility
µH in terms of the drift mobility µd is

µH = rH ×µd , (2.68)
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Electrical Conduction in Metals and Semiconductors 2.10 High Electric Field Transport 37

where rH is the Hall factor given by the ratio

rH = 〈τ2〉
〈τ〉2 . (2.69)

The magnitude of the Hall factor will depend on the
magnitude of the scattering mechanisms that contribute
to τ , but usually at low magnetic fields, rH ≈ 1 and the
two mobilities are identical.

2.10 High Electric Field Transport

The previous sections focused on carrier transport in
weak electric fields where the energy gained by carriers
from the field is lost to the lattice through collisions with
phonons or ionized impurities. However at higher fields,
the efficiency of collision mechanisms diminishes and
the carrier system contains more energy than the lattice.
The carriers are then called hot with effective tempera-
tures Te for electrons and Th for holes. In this case, the
drift velocity no longer obeys Ohm’s law, and becomes
non-linear in the applied field with a clear tendency
to saturation due to the appearance of a new dissipa-
tion mechanism involving optical phonon generation.
Figure 2.16 shows the drift velocity saturation for both
electrons and holes in Si and electrons in GaAs; GaAs
shows a region of electron velocity overshoot and then
negative differential resistivity due to inter-valley scat-
tering, i. e., the transfer of electrons from the Γ minimum
to the L conduction band minimum.

Solving the Boltzmann transport equation by anal-
ogy with (2.6, 2.7) the mobility may be defined as

µ = e 〈τ(Te)〉
m∗ , (2.70)

where e is electron charge and m∗
e is the effective mass

and 〈τ(Te)〉 is the mean free time which now strongly de-

108
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102 103 104 105 106

Drift velocity (cm/s)

Electric field (V/cm)

GaAs (Electrons)

Si
(Electrons)

Si (Holes)

GaAs (Holes)

T = 300K

Fig. 2.16 Dependence of carrier drift velocity on electric
field for GaAs and Si [2.53]

pends on Te. Therefore, the high-field mobility is related
to the low field mobility µ0 by

µ = µ0

(
Te

T

)β

, (2.71)

where β depends on electric field and scattering mech-
anisms. Thus, in order to determine the dependence of
the mobility on electric field, the dependence of the
effective carrier temperature on field is required. This
may be found by using the time-dependent Boltzmann
transport equation. Suppose that F is the field, then for
non-degenerate conditions with Te 
 T

Te

T
∝ F− 2

2β−1 (2.72)

and hence

µ(E) ∝ µ0 F− 2
2β−1 . (2.73)

For acoustic phonon scattering, β = −3/2 and the drift
mobility shows no saturation, increasing with field
as F1/4. Saturation in the drift velocity may be achieved
only when β → ∞ due to optical phonon scattering
where large energy changes are involved. The satu-
ration velocity vs (related to the saturation mobility
as vs = Fµs) may be calculated using the energy and
momentum rate equations for optical phonon scattering:

d 〈E〉
dt

= eFvs − Eop

τe
(2.74)

d 〈m∗vs〉
dt

= eF − m∗vs

τm
(2.75)

where Eop is the optical phonon energy, τe and τm are the
energy and momentum relaxation times, respectively. At
steady state and for not extremely high fields, one may
assume that τe ≈ τm. (It is worth noting that at the high-
est electric fields τe > τm and may lead to the appearance
of avalanche, as discussed in Sect. 2.11). Therefore, the
solution of (2.74, 2.75) is

vs =
(

Eop

m∗

)1/2

. (2.76)

in agreement with the experimental values shown
in Fig. 2.16.
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38 Part A Fundamental Properties

2.11 Avalanche

At very high electric field (in the range 2 × 105 V/cm or
larger) a new possibility appears: a carrier may have ki-
netic energy in excess of the binding energy of a valence
electron to its parent atom. In colliding with an atom,
such a carrier can break the covalent bond and produce
an electron-hole pair. This process is called impact ion-
ization and is characterized by the impact ionization
coefficient α (αe for electrons and αh for holes). The re-
leased electrons and holes may, in turn, impact ionize
more atoms producing new electron-hole pairs. This pro-
cess is called avalanche and is characterized by the mul-
tiplication factor, M which is the ratio of number of col-
lected carriers to the number of initially injected carriers.

The field dependence of the impact ionization coef-
ficient, at least over the limited fields where avalanche

5.5

4.5

3.5

2.5

1.5

0.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Log (ionization coefficient)

1/F (cm/MV)

H: Holes
E: Electrons

Si(1.1 eV)

E

Si(1.1 eV)

H
InP (1.42 eV)

E
InP (1.42 eV)

H
GaInP (2.0 eV)

a-Se (2.1 eV)

H

E

E

GaP (2.27 eV)

AlGaAs (2.0 eV)

E
a-Se (2.1 eV)

E
GaN
(3.4 eV)

E

a-Si:H
(1.7 eV)

Fig. 2.17 Semilogarithmic plot of the dependence of the impact ion-
ization coefficient on the reciprocal field for not only a-Se and a-Si:H,
but also for various crystalline semiconductors for comparison; H in-
dicates holes and E electrons. The y-axis is a base-10 logarithm of α

in which α is in 1/cm. Data for a-Si:H from [2.54]; a-Se electrons
and holes from [2.55]; a-Se holes from [2.56], from which αh was ob-
tained by reanalyzing their multiplication data. Data for crystalline
semiconductors are for GaP [2.57]; GaInP (Ga0.52In0.48P) [2.58];
Al0.60Ga0.40As, [2.59]; InP, [2.60]; Si, [2.61]; GaN (calculation
only), [2.62]. Solid circle: Electrons in a-Se [2.55]; Solid square:
electrons in a-Si:H [2.54]; Open circle: holes in a-Se [2.55]; Open
square: holes in a-Se [2.63]

is observed, is usually modeled by experimentalists by
using

α = A exp

[
−

(
B

F

)n]
, (2.77)

where F is the field A, B, n are constants that depend on
the semiconductor material properties such as the E-k
electronic structure, phonon energies and spectra, scat-
tering mechanisms and so on. The constant B has been
semiquantitatively argued to depend on Eg/τ where Eg
is the bandgap and 1/τ is the phonon scattering rate;
higher bandgap semiconductors tend to have steeper
slopes on log α vs. 1/F plots and the log α vs. 1/F
curve tends to shift to higher fields. Typically, it has
been found that n ≈ 1 at low fields and n ≈ 2 for high
fields. Figure 2.17 shows experimental data for a variety
of materials over a wide range of electric fields.

The origin of (2.77) in its simple n = 1 form lies in
Shockley’s [2.64] lucky electron model. When a carrier
moves a distance z down-stream (along the field) without
being scattered, it gains an energy eFz. An unlucky car-
rier is scattered so frequently that its eFz never reaches
the threshold ionization energy EI for impact ionization.
On the other hand, a lucky electron is a ballistic elec-
tron that avoids scattering for a substantial distance, and
hence is able to build its eFz to reach EI and thereby
cause impact ionization. If λ is the mean free path of
collisions, then Shockley’s model gives

α = eF

EI
exp

(
− EI

eλF

)
. (2.78)

The main problem with the Shockley model is that there
are just not enough ballistic electrons to cause sufficient
impact ionizations to explain the experiments. A better
model was developed by Baraff [2.65] who numerically
solved the Boltzmann transport equation for a simple
parabolic band and energy independent mean free path to
provide a relationship between α and F in terms of four
parameters, that is, threshold energy for impact ioniza-
tion, mean free path associated with ionizations, optical
phonon energy, and mean free path for optical phonon
scattering. Baraff’s theory served experimentalists quite
well in terms of comparing their results even though the
model was not intuitive and was limited in terms of its
assumptions and applicability to real semiconductors.

Impact ionization theory in crystalline solids only
reached an acceptable level of confidence and under-
standing in the 1980s and 1990s with the development of
the lucky-drift model by Ridley [2.66] and its extension

Part
A

2
.1

1



Electrical Conduction in Metals and Semiconductors 2.12 Two-Dimensional Electron Gas 39

by Burt [2.67], and Mackenzie and Burt [2.68]. The latter
major advancement in the theory appeared as the lucky
drift (LD) model, and it was based on the realization
that at high fields, hot electrons do not relax momen-
tum and energy at the same rates. Momentum relaxation
rate is much faster than the energy relaxation rate. An
electron can drift, being scattered by phonons, and have
its momentum relaxed, which controls the drift velocity,
but it can still gain energy during this drift. Stated dif-
ferently, the mean free path λE for energy relaxation is
much longer than the mean free path λ for momentum
relaxation.

In the Mackenzie and Burt [2.68] version of the
LD model, the probability P(E) that a carrier attains
an energy E is given by,

P(E) = exp

⎛

⎝−
E∫

0

dE′

eFλ(E′)

⎞

⎠+
E∫

0

dE1

eFλ(E1)

× exp

⎛

⎝−
E1∫

0

dE′

eFλ(E′)

⎞

⎠

× exp

⎛

⎜
⎝−

E∫

E1

dE′

eFλE(E′)

⎞

⎟
⎠ , (2.79)

where as mentioned above λ is the mean free path asso-
ciated with momentum relaxing collisions and λE is the
mean energy relaxation length associated with the en-
ergy relaxing collisions. The first term is the Shockley
lucky electron probability, i. e. the electron moves bal-
listically to energy E. The second term is the lucky drift
probability term which is composed of the following:
the electron first moves ballistically to some interme-
diate energy E1 (0 < E1 < E) from where it begins its
lucky drift to energy EI; hence the integration over all
possible E1. The impact ionization coefficient can then

readily be evaluated from

α = eFP(EI)
EI∫

0
P(E)dE

. (2.80)

The model above is based on a hard threshold ionization
energy EI, that is, when a carrier attains the energy EI,
ionization ensues. The model has been further refined
by the inclusion of soft threshold energies which repre-
sent the fact the ionization does not occur immediately
when the carrier attains the energy EI, and the carrier
drifts further to gain more energy than EI before impact
ionization [2.69–71].

Assuming λ and λE are energy independent, which
would be the case for a single parabolic band in the crys-
talline state, (2.79) and (2.80) can be solved analytically
to obtain

α = 1

λ
×

λ
λE

exp
( −EI

eFλE

)+ (
λ
λE

)2 exp
(−EI

eFλ

)

1− exp
( −EI

eFλE

)− (
λ
λE

)2
[
1− exp

(−EI
eFλ

)] .

(2.81)

For λE > λ, and in the “low field region”, where typi-
cally (αλ) < 10−1, or x = EI/eFλ > 10, (2.81) leads to
a simple expression for α,

α =
(

1

λE

)
exp

(
− EI

eFλE

)
. (2.82)

For crystalline semiconductors, one typically also as-
sumes that λE depends on the field F, λ and the optical
phonon energy �ω as

λE = eFλ2

2�ω
coth

(
�ω

2kT

)
. (2.83)

As the field increases, λE eventually exceeds λ, and
allows lucky drift to operate and the LD carriers to reach
the ionization energy.

It is worth noting that the model of lucky drift is suc-
cessfully used not only for crystalline semiconductors
but to amorphous semiconductors [2.72].

2.12 Two-Dimensional Electron Gas

Heterostructures offer the ability to spatially engineer
the potential in which carriers move. In such struc-
tures having layers deposited in the z-direction, when
the width of a region with confining potential tz < λdB,
the de Broglie electron wavelength, electron states be-
come stationary states in that direction, retaining Bloch
wave character in the other two directions (i. e., x- and

y-directions), and is hence termed a 2-D electron gas
(2DEG). These structures are notable for their extremely
high carrier mobility.

High mobility structures are formed by selectively
doping the wide bandgap material behind an initially un-
doped spacer region of width d as shown in Fig. 2.18a.
Ionization and charge transfer leads to carrier build-up
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Fig. 2.18 (a) Doping profile for a selectively doped 2DEG
heterostructure. The S1 is a narrow bandgap material ad-
jacent to the heterointerface. The S2 is selectively doped
wide-bandgap material including an initially undoped
spacer region of width d. (b) Conduction energy band struc-
ture for a selectively doped 2DEG heterostructure. The
equilibrium band bending (through Poisson’s equation) in
the well region results from the equalization of the ionized
donor concentration in the wide-bandgap material and the
2DEG concentration adjacent to the heterointerface. When
the associated interfacial field is sufficiently strong, carriers
are confined within λdB and electron states are quantized
into the sub-bands E0 and E1 [2.73]

in the low potential region of narrow bandgap mater-
ial adjacent to the hetero-interface. The equilibrium
band bending (i. e., through Poisson’s equation) in the
well region, as shown in Fig. 2.18b, results from the
equalization of ionized donor concentration in the wide
bandgap material and 2DEG concentration adjacent to
the heterointerface. When the associated interfacial field
is sufficiently strong, carriers are confined within λdB
and electron states are quantized into sub-bands (i. e.,
E0 and E1), as shown in Fig. 2.18b.

Figure 2.19 shows the contributions of component
scattering mechanisms to the low temperature mobility
of a 2DEG formed at a Ga0.70Al0.3As-GaAs heteroint-
erface, as a function of the electron gas density. As for
bulk samples, the most important mechanism limiting
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Fig. 2.19 Dependence of 2DEG electron mobility on
carrier concentration for a Ga0.70Al0.3As-GaAs hetero-
structure [2.73]

the low temperature mobility is ionized impurity scat-
tering, except at high electron densities, where so-called
alloy disorder scattering is significant. Ionized impurity
scattering may be further broken down into scattering
from ionized impurities that are with the GaAs quantum
well, known as background impurities, those beyond the
spacer region, termed remote impurity scattering. For
high purity growth, the unintentional background im-
purity concentration can be kept to very low limits and
impurity scattering based mobility values are then dic-
tated by remote impurity scattering. Since carriers in the
well are only weakly scattered by the tail field of these
remote Coulomb centers, the mobility of such 2DEG
systems can be orders of magnitude higher than bulk
samples. The temperature dependence of the electron
mobility for such a system is shown in Fig. 2.20. No-
tice how, similar to bulk sample, increasing temperature
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Fig. 2.20 Dependence of 2DEG electron mobility on tem-
perature for a Ga0.70Al0.3As-GaAs heterostructure [2.73]

increases the phonon population such that for the ex-
ample shown, above about 100 K, polar optical phonon
scattering controls the mobility.

Figure 2.21 shows the dependence of the 2DEG mo-
bility on the spacer width. Two competing factors are
active – for narrow spacer widths, the transfer efficiency
of carriers to the GaAs well is high and so a lower remote
doping concentration is sufficient to provide for a given
constant 2DEG concentration, but since the Coulomb
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Fig. 2.21 Dependence of 2DEG electron mobility on spacer
width for a Ga0.70Al0.3As-GaAs heterostructure [2.73]

scatters are so close to the 2DEG, they scatter very ef-
ficiently and limit the mobility. On the other hand, for
large spacer widths, carrier transfer efficiency is quite
poor requiring higher remote doping to supply the given
2DEG concentration; however, being relatively far away
each of the scattering centers are less effective at low-
ering the mobility, but given their high concentration,
the net effect is still a decrease in the mobility at large
spacer widths as seen in the figure.

2.13 One Dimensional Conductance

In the case where carriers are confined within regions
of width Lx , L y < λdB in two directions x and y, re-
spectively, the electron energy in those two directions
become quantized with quantum numbers nx and ny, re-
spectively. In the third direction z, electrons travel as
Bloch waves with energy that may be approximated by

�
2k2

z /2m∗ giving an expression for the total energy E of
the so-called 1-D electron system or quantum wire as:

E(nx, ny, nz) = �
2π2

2m∗

(
n2

x

L2
x

+ n2
y

L2
y

)

+ �
2k2

z

2m∗ . (2.84)
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The associated electron wavefunctions are:

Ψ (x, y, z) = 1

2
√

Lx L y Lz
sin

(
nxπx

Lx

)

× sin

(
nyπy

L y

)
eikz z . (2.85)

Using these equations, one can readily derive an expres-
sion for the density of states per unit energy range:

DOS = 2 × 2

(
Lz

2π

) (∇kz E
)−1

= 2Lz

h

√
m∗

2(E − Enx ,ny )
. (2.86)

In order to evaluate the conductance of this quantum
wire, consider the influence of a weak applied poten-
tial V . Similar to the case for bulk transport the applied
field displaces the Fermi surface and results in a change
in the electron wave-vector from k0 (i. e., with no ap-
plied potential) to kV (i. e., when the potential is applied).
When V is small compared with the electron energy:

k0 =
√

2m∗(E − Enx ,ny )

�2
, (2.87)

kV = k0

√

1+ eV

E − Enx ,ny

≈ k0

(

1+ 1

2

eV

E − Enx ,ny

)

. (2.88)

This leads to establishing a current density J in the wire

J = 2e2 (DOS)
√

(EF − Enx ,ny )√
2m∗ . (2.89)

Which may be simplified to the following expressions
for J and the current flowing in the wire for a given
quantum state E{nx ,ny}, I

Jnx ,ny = 2e2VLz

h
and Inx ,ny = 2e2V

h
. (2.90)

The expression for the conductance through one channel
corresponding to a given quantum state {nx , ny} is then
given by

Gnx ,ny = Inx ,ny

V
= 2e2

h
. (2.91)

Notice how the conductance is quantized in units of
e2/h with each populated channel contributing equally
to the conductance – moreover, this is a fundamental
result, being independent of the material considered.
In practice, deviations from this equation can occur
(although generally less than 1%) owing to the finite-
ness of real nanowires and impurities in or near the
channel, influencing the conductivity and even result-
ing in weak localization. Generally, unlike both bulk
and 2DEG systems, ionized impurity scattering is sup-
pressed in nanowires. The main reason for this is that
an incident electron in a quantum state {nx ,ny} travel-
ing along the wire with wave-vector kz{nx ,ny}, can not
be elastically scattered into any states except those in
a small region of k-space in the vicinity of – kz{nx , ny}.
Such a scattering event involves a large change in mo-
mentum of ≈ 2kz{nx ,ny} and thus, the probability of
such events is very small. As a result, the mean free
path and mobility of carriers in such quantum wires are
substantially increased.

The nature of carrier transport in quantum wires de-
pends on the wire dimensions (i. e., length LWire and
diameter dWire) as compared with the carrier mean free
path, lCarrier. When lCarrier 
 LWire, dWire the only po-
tential seen by the carriers is that associated with the
wire walls, and carriers exhibit wavelike behavior, being
guided through the wire as if it were a waveguide without
any internal scattering. Conversely, if dWire � λDeBroglie,
only a few energy states in the wire are active, and in the
limit of an extremely small waveguide, only one state or
channel is active, analogous to a single mode waveguide
cavity – this case is termed quantum ballistic transport.
In the limit, lCarrier � LWire, dWire, scattering dominates
transport throughout the wire – with numerous scattering
events occurring before a carrier can traverse the wire
or move far along its length. In such a case the transport
is said to be diffusive. As discussed previously, ionized
impurity and lattice scattering contribute to lCarrier, with
lCarrier decreasing with increasing temperature due to
phonon scattering. For strong impurity scattering, this
may not occur until relatively high temperatures. In the
intermediate case of LWire 
 lCarrier 
 dWire and where
dWire � λDeBroglie scattering is termed “mixed mode”
and is often called quasi-ballistic.

2.14 The Quantum Hall Effect

The observation of, and first explanation for the Hall
Effect in a 2DEG by von Klitzing et al. [2.74], won
them a Nobel Prize. As shown in Fig. 2.22 the Hall re-

sistivity exhibits plateaus for integer values of h/e2,
independent of any material dependent parameters. This
discovery was later shown to be correct to a precision
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of at least one part in 107, enabling extremely accu-
rate determinations of the fine structure constant (i. e.,
α = (µ0ce2/2h) ≈ 1/137) and a fundamental resistance
standard to be established.

For the six point Hall geometry used (as shown
in the insert to Fig. 2.18), one can define the Hall re-
sistivity ρxy = g1VH,y/Ix and longitudinal resistivity
ρxx = g2VL,x/Ix where g1 and g2 are geometric con-
stants related to the sample geometry. These resistivities
are related to corresponding conductivities through the
conductivity and resistivity tensors

ρxy = σxy

σ2
xx +σ2

xy
,

ρxx = σxx

σ2
xx +σ2

xy
,

ρyx = −ρxy ,

ρyy = ρxx . (2.92)

Starting from a classical equation of motion for electrons
in an electric field Ex , magnetic field Bz , and defin-
ing the cyclotron frequency ωc = eBz/m∗, the velocities
perpendicular to the applied magnetic field can be de-
duced as

vx = Ex

Bx
sin ωct and vy = Ex

Bx
(cos ωct −1)

(2.93)

with the time averaged velocities

〈vx〉 = Ex

Bx
and

(
vy

) = Ex

Bx
(2.94)

leading to Hall and longitudinal resistivities of

σxx = σyy = 0 and σxy = −σyx = Nse

Bz
, (2.95)

where NS is the areal electron concentration. Below,
a quantum approach is used to establish a relationship
for the electron concentration Ns. Note that the motion
of the electrons in the crossed fields are quantized with
allowed levels termed Landau levels En :

En =
(

n + 1

2

)
�ωc + g∗µB Bz + εz , (2.96)

where n is the quantum number describing the particular
Landau Level, g∗ is the Landé factor, µB is the Bohr
magneton and g∗µB Bz is the spin magnetic energy, and
Ez is the energy associated with the z-motion of the
carriers. xy-plane carrier motion is characterized by the
cyclotron energy term Exy,

Exy = �
2k2

xy

2m∗
e

=
(

n + 1

2

)
�ωc . (2.97)

Following this description and noting that the motion
of electrons in the xy-plane may be expressed in terms
of wavefunctions of the harmonic oscillator using the
Landau gauge of the vector potential [0, xBz, 0], we
may write the density of states per unit area, DOSA as:

DOSA = m∗
eωcLx L y

2π�
. (2.98)

Since the degeneracy of each Landau level is one (i. e.,
since they are single spin states), this enables one to
find Ns assuming Landau state filling up to the pth level
(for integer p):

Ns = m∗
eωc p

2π�
. (2.99)

Using the definition of the cyclotron frequency gives the
final form

Ns = peBz

�
(2.100)

which may be used to rewrite the previous expressions
for Hall and longitudinal resistivity

ρxx = ρyy = 0 and ρxy = −ρyx = h

pe2
. (2.101)
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Fig. 2.22 Hall voltage VH and voltage drop across elec-
trodes VPP as a function of gate voltage Vg at 1.5 K, when
B = 18 T. Source-drain current is 1 µA. Insert shows plan
view of a device with length 400 µm, width 50 µm and an
interprobe separation of 130 µm [2.74]
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Equation (2.101) shows that Hall resistivity is quan-
tized in units of h/pe2 whenever the Fermi energy lies
between filled Landau levels. Consistent with obser-
vation, the result is independent of the semiconductor
being studied. Although this model provides an excel-

lent basis for understanding experiments, understanding
the details of the results (i. e., in particular the existence
of a finite width for the Hall effect plateaus and zero
longitudinal resistance dips) requires a more complete
treatment involving so-called localized states.
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