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Dielectric Res10. Dielectric Response

Nearly all materials are dielectrics, and the
measurement of their dielectric response is a very
common technique for their characterisation.
This chapter is intended to guide scientists and
engineers through the subject to the point where
they can interpret their data in terms of the
microscopic and atomistic dynamics responsible
for the dielectric response, and hence derive useful
information appropriate to their particular needs.
The focus is on the physical concepts underlying
the observed behaviour and is developed from
material understandable by an undergraduate
student. Emphasis is placed on the information
content in the data, and the limits to be placed on
its interpretation are clearly identified.

Generic forms of behaviour are identified
using examples typical of different classes of
material, rather than an exhaustive review of
the literature. Limited-range charge transport is
included as a special item. The theoretical concepts
are developed from a basic level up to the ideas
current in the field, and the points where these
are controversial have been noted so that the
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readers can choose for themselves how far to rely
on them.

Nearly all materials are dielectrics, that is they do not
exhibit a direct-current (DC) conductivity on the macro-
scopic scale, but instead act as an electrical capacitance
i. e. they store charge. The measurement of the di-
electric response is noninvasive and has been used for
material characterisation throughout most of the 20th
century, and consequently a number of books already ex-
ist that cover the technique from various points of view.
Those that have stood the test of time are Debye [10.1],
Smyth [10.2], McCrum et al. [10.3], Daniels [10.4],
Bordewijk and Bottcher [10.5], and Jonscher [10.6].
These texts cover the subject in terms of the basic
physics [10.1, 5], the material properties [10.2–4], and
the electrical features [10.6]. An introduction to the wide
range of dielectric response measurements that are un-
dertaken can be obtained by referring to the proceedings

publication of the International Discussion Meeting on
Relaxations in Complex Systems [10.7]. In view of the
enormous range of properties and materials covered by
the topic it is not feasible or desirable to attempt to review
the whole field in a chapter such as this. Instead the topic
is approached from the viewpoint of a researcher who,
having measured the dielectric spectrum (i. e. frequency-
dependent complex permittivity) of a material sample,
wishes to know what information can be taken from
the measurements. Along the way the limits on the in-
formation content and the problems (and controversies)
associated with the microscopic and molecular-scale in-
terpretation will be identified. Emphasis will be placed
on the physical concepts involved, but inevitably there
will be some mathematical expressions whose features I
aim to place in as simple a physical context as possible.
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188 Part A Fundamental Properties

10.1 Definition of Dielectric Response

10.1.1 Relationship to Capacitance

Stated simply the dielectric response of a material is
its response to an electric field within it. Let us start in
the simplest way with some basic macroscopic defini-
tions. Imagine that we have a flat slab of our material of
thickness d with electrodes of area A on each opposing
surface, and we apply a potential difference between op-
posing sides (Fig. 10.1). Since the material is a dielectric
our system is a capacitor and electric charges ±Q will
be stored on the surfaces between which the potential
difference V is applied with Q given by

Q = CV , (10.1)

where C is the capacitance of the system. For the sample
geometry considered C is given by the expression

C = (ε0εr A)/d . (10.2)

Here the factor ε0 is a fundamental constant termed the
permittivity of free space (ε0 = 8.854 × 10−12 F m−1)
and εr is the permittivity of the material relative to that
of free space and hence is termed the relative permittiv-
ity. Of course it is a pure number, which is a material
property that contains information about the way the
material responds to the application of the potential dif-
ference. Since however, the replacement of our sample
by a vacuum yields a capacitance given by

C = (ε0 A)/d , (10.3)

i. e. εr = 1, the information about the response of the
material to the electric field is contained in a factor χ,

Areas A

+Q

–Q

d

Fig. 10.1 A schematic representation of a dielectric in the
form of a parallel-sided slab of surface area A and thick-
ness d that has acquired surface charges +Q and −Q
as a result of a potential difference applied across it.
After [10.8]

which is called the susceptibility of the material and is
given by

χ = ε0(εr −1) . (10.4)

Noting that the electric field for the parallel electrode
geometry described is given by E = V/d and that the
electrostatic flux density (electric displacement field) D
within the material is D = Q/A, allows (10.1) and (10.2)
to be transformed into the familiar constitutive relation-
ship,

D = ε0εr E = εo E+χE (10.5)

which is valid irrespective of the geometry. Here the
response of the material has been explicitly separated out
in the form of an additive term that is called the electric
polarisation P, which has dimensions of charge/area or
more familiarly electric dipole moment density (electric
dipole moment/volume), and is given by

P = χE . (10.6)

An electric dipole occurs when electric charges of op-
posite polarity are separated in space and the magnitude
of the dipole moment is given by µ = δr, where δ is
the magnitude of the charge and r is the separation vec-
tor. The connection between P as defined above and
the dipole moment density can be easily seen once it is
recognised that the separation of the charges ±Q by the
inter-electrode separation d constitutes a macroscopic
dipole moment of magnitude Qd contained within the
volume Ad. The definition of the polarisation as the
dipole moment density makes it clear that the dielec-
tric response to an electric field relates to the generation
of a net dipole per unit volume in the material. In most
cases the dielectric has a zero net dipole moment in the
absence of an applied electric field and the action of the
electric field is to produce one. Some materials such as
electrets [10.9] and ferroelectrics lack a centre of sym-
metry, however, and possess a nonzero polarisation in
the absence of an electric field. Therefore the defini-
tion of the polarisation P in (10.6) that is applicable to
all cases is that P is the change in net dipole moment
density produced by the applied field.

10.1.2 Frequency-Dependent Susceptibility

The outline given above has been written as if the elec-
tric field within the material was a static field ( f = 0)
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Dielectric Response 10.1 Definition of Dielectric Response 189

but (10.6) is equally valid if the field oscillates with a cir-
cular frequency ω (ω = 2π f , where f is the frequency
in Hertz). In this case (10.6) becomes

P(ω) = χ(ω)E(ω) , (10.7)

where E(ω) = E0 exp (iωt).
The fundamental reason for the dependence of P(ω)

upon the frequency of the alternating-current (AC) field,
as in (10.7), can be envisaged by constructing a general
picture of the way that a material responds to an electric
field. Let us imagine that we have our material in ther-
mal equilibrium in the absence of an electric field and
we switch on a constant field at a specified time. The
presence of the electric field causes the generation of
a net dipole moment density (or change in one already
existing). This alteration in the internal arrangement of
positive and negative charges will not be instantaneous.
Instead it will develop according to some equation of
motion appropriate to the type of charges and dipole
moments that are present. Consequently some time will
be required before the system can come into equilibrium
with the applied field. Formally this time will be infinity
(equivalent to an AC frequency of zero), but to all in-
tents and purposes we can regard the system as coming
into equilibrium fairly rapidly after some relevant time
scale, τ , with the polarisation approaching the static
value P = P(0) for t � τ . If now we think of the elec-
tric field as reversing sign before equilibrium is reached,
as is the case for an AC field at a time t = 1/4 f after it is
switched on, it is clear that the polarisation will not have
reached its equilibrium value before the field is reversed
and hence that P(ω)� P(0), and χ(ω)� χ(0). The fre-
quency dependence of the dielectric susceptibility χ(ω)
is therefore determined by the equation of motion gov-
erning the evolution of the ensemble of electric dipole
moments.

In general χ(ω) will be a complex function with
a real component χ ′(ω) defining the component of
P(ω) that is in phase with the applied AC field
E(ω) = Re[E0 exp (ωt)] = E0 cos(ωt), and χ ′′(ω) defin-
ing the component that is 90◦ out of phase. The
conventional form is given by

χ(ω) = χ ′(ω)− i χ ′′(ω) ,
[
i = √−1

]
. (10.8)

It is easy to see that χ ′(ω) determines the net separation
of charge with the dielectric in the form of a macroscopic
capacitor, but the nature of χ ′′(ω) is not so obvious.
The answer lies in considering the rate of change of
polarisation, d[P(ω)]/dt. This has the dimensions of
a current density (current/area), is sometimes termed

the polarisation current density, and is given by,

d[P(ω)]/dt = [
χ ′(ω)− i χ ′′(ω)

]
d[E(ω)]/dt

= [
χ ′(ω)− i χ ′′(ω)

]
i ω[cos(ωt)

+ i sin(ωt)]E0 . (10.9)

Thus χ ′′(ω) determines the real component of the polar-
isation current density that is in phase with the electric
field, i. e. Jpol(ω) given by

Jpol(ω) = χ ′′(ω)ωE0 cos(ωt) = σAC(ω)E0 cos(ωt) .

(10.10)

Here χ ′′(ω)ω = σAC(ω) is the contribution to the
AC conductivity due to the polarisation response to
the electric field. If we remember Joule’s Law for the
power dissipated thermally by an electric current, i. e.
power lost = IV , then we can see that χ ′′(ω)ω(E0)2

is the power dissipated per unit volume resulting from
the generation of a net polarisation by the electric field,
i. e. the power dissipation density. The imaginary sus-
ceptibility χ ′′(ω) is often termed the power dissipation
component. It arises because the electric field has to
carry out work on the dielectric in order to produce a net
dipole moment density. Some of this energy is stored in
the charge separations and is recoverable in an equiva-
lent way to the elastic energy stored in a spring. The
rest of the energy is used to overcome the friction op-
posing the establishment of the net dipole density. This
energy is transferred to the dielectric in an unrecover-
able way, i. e. it is dissipated within the dielectric. It can
be seen that χ ′′(ω) is dependent upon the form of the
equations of motion governing the evolution of the net
dipole moment density under the action of an electric
field.

10.1.3 Relationship to Refractive Index

Equation (10.7) can be regarded as relating to the polari-
sation response purely to an oscillating electric field, but
of course all electromagnetic waves contain such a field.
In general the topic of dielectric response includes the re-
sponse of the material to the electric field component of
an electromagnetic field, i. e. the electromagnetic spec-
trum of a material is a form of dielectric response. This
form of response is generally characterised by a complex
frequency-dependent refractive index n∗( f ), with

n∗( f ) = n( f )− i κ( f ) , (10.11)

where n is the real refractive index expressing the ve-
locity of light in the material, v, as v = c/n, and κ is the
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190 Part A Fundamental Properties

absorption coefficient, which defines the reduction of in-
tensity of light of frequency f as it passes through the
medium due to absorption of the photons by the medium,
i. e. it relates to energy dissipated from the electromag-
netic wave. The absorption coefficient can be determined
from the Beer–Lambert law,

I = I0 exp (−4πκ fz/c) . (10.12)

For nonmagnetic materials an equivalence can be es-
tablished between n∗ and the relative permittivity
(see [10.10] for example). If we think of two slabs of
dielectric material placed in contact with an electro-
magnetic wave passing through them, the component of
the field D perpendicular to the boundary is unchanged
as the wave passes from one medium to another. Es-
sentially the same electrostatic flux passes through the
same perpendicular area. Equation (10.5) gives the ra-
tio of the electric fields in the two dielectric media
to the inverse of the ratio of their relative permittiv-
ities. A comparison with Snell’s law [10.10, 11] then

yields

εr = [n∗( f )]2 . (10.13)

Measurement of the dielectric response of a material
involves the determination of the polarisation and its
frequency dependence in some form or other. This can
be carried out in a large number of ways such as the
absorption spectra of electromagnetic radiation as has
been described above as well as the application of an
AC electric field across a sample of defined dimensions.
Those readers interested in the technical details of the
measurement systems are referred to the general lit-
erature, which has an enormous number of works on
these experimental techniques (see for example [10.12]
for bridge techniques and [10.13] for recent microwave
techniques). This chapter will have a different focus. It
will in essence be a discussion of the microscopic origins
of the polarisation P(ω) and the physical reasons for its
variation in frequency so that data obtained from such
measurements can be used to gain information relevant
to the nature of the material to be studied.

10.2 Frequency-Dependent Linear Responses

In this context a linear response is one in which P(ω) is
only dependent upon the first power of the electric field,
i. e. χ(ω) is independent of the electric field. The general
form of frequency dependence expected for ε(ω) = [ε0 +
χ(ω)] is shown schematically in (Fig. 10.2), where it
can be seen that two basic types of response can be
distinguished: a resonance response at high frequencies
in the quantum region, and what is termed a relaxation
response at lower frequencies.

10.2.1 Resonance Response

Although our main topic in this chapter will be the relax-
ation behaviour I will start with the resonance response
as this has been dealt with extensively [10.14] from the
spectroscopic viewpoint. Here we shall approach it from
the perspective of its identity as a dielectric response
with the intention of identifying basic features that also
occur in relaxation responses. The equation of motion
is familiar: this form of response relates to a net elec-
tric dipole moment, φ, that undergoes damped simple
harmonic oscillation at a natural oscillation frequency
Ω = 2πν in the absence of an electric field,

d2φ/dt2 +γ dφ/dt +Ω2φ = 0 . (10.14)

log f

Relaxation

ε'logε''log ε' ε''

ε'

ε'

ε''

Quantum
resonances

log f

,

Fig. 10.2 Schematic representation of the frequency depen-
dence of relaxation and resonance responses

The interpretation of (10.14) is not as obvious as it
seems. We have to remember that we are always deal-
ing with a sample of material that contains an enormous
number of molecules or molecular moieties. Two types
of situation may lead to this form of equation of motion.
In one case a fluctuation in the positions of groups of
positive and negative charges may form an oscillating
net dipole moment. Plasma oscillations, found in met-
als [10.15], are an example of this type of behaviour. In
the other case, individual molecules may possess identi-
cal dipoles oscillating independently at a frequency Ω.
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Dielectric Response 10.2 Frequency-Dependent Linear Responses 191

Equation (10.14) then describes the behaviour of a net
dipole moment produced by a fluctuation in the system
of molecules independent of an applied electric field.
Such fluctuations are deviations from the average equi-
librium state produced by random impulses that act only
for an infinitesimal time at t = 0, and (10.14) describes
the subsequent evolution of the fluctuation. In both cases
the damping (friction) term γ dφ/dt, where γ is the
damping factor, expresses the way in which the fluctua-
tion dies away in the absence of an applied electric field
and the net dipole moment density of the system returns
to zero.

The situation applying in the case of most spectro-
scopic responses relates to dipole density fluctuations
in which individual molecules contribute oscillating
dipoles, and it is this form of behaviour that will be
used to illustrate the resonance form of response. The
first thing we have to do is to ask what kinds of dipole
moments oscillate in our material at frequencies in the
range ν � 5 × 1010 Hz where most resonance responses
are found. The answer to this question lies in the elec-
tronic structure of the atoms, ions and molecules that
make up our material. The uncertainty principle states
the energy of a system cannot be specified at any precise
instant of time. This means that the electronic struc-
ture of atoms and molecules is allowed to continuously
fluctuate between quantum states as long as the aver-
age energy over a period of time remains constant. The

a) b)

c) d)

–ve

+ve +ve

Fig. 10.3a–d Schematic representation of the various
forms of dipole fluctuations: (a) atomic dipole, (b) dipoles
formed by bending and stretching motion of a tri-atomic
molecule of the form A–B–A, (c) net dipole fluctuation
produced in a system of permanent dipoles, (d) reorienting
dipole formed by transfer of an ion between two different
centres of vibration. In all cases the light arrow shows the
net dipole

averaging time is determined by the uncertainty rela-
tionship between energy and time. The molecule is thus
continuously moving back and forth between ground
state and its excited states. These quantum fluctuations
(between ground and excited states) displace the neg-
ative charge of the electron cloud with respect to the
positive charge of the nucleus, and produce oscillat-
ing dipoles, termed transition dipoles (Fig. 10.3a). Their
oscillation frequencies have specific values depending
upon the energy difference between excited and ground
quantum states of the species concerned, typically in
the range ν � 4 × 1014 Hz [10.14, 16]. These oscillat-
ing dipolar fluctuations give no net contribution to the
dipole moment of the molecule or atom. The uncertainty
principle similarly allows the nuclei of molecules, and
the molecules themselves to vibrate and fluctuate be-
tween different vibration states. In many cases these
nuclear fluctuations produce dipole moments [10.10,
16, 17] (Fig. 10.3b), which typically oscillate in the fre-
quency range 4 × 1014 Hz� ν � 5 × 1010 Hz. As with the
electronic transition dipoles, these vibration fluctuations
do not contribute to the dipole moment of the molecule
or system of molecules.

When an AC electric field, such as that provided
by an electromagnetic wave, is applied to the material,
it couples to the transition dipoles to give a force that
drives the system. As a result the population of dipoles
is altered such that there is now a net average density
of transition dipole moments. This oscillates with the
frequency of the field, i. e. the system is polarised as
defined by (10.7). Since transition dipoles do not con-
tribute to a permanent dipole moment of a molecule, the
net dipole moment density produced by the electric field
is referred to as an induced dipole moment density. The
response of the system to an electric field oscillating at
a frequency ω is essentially obtained by adding the driv-
ing force to (10.14) and determining the solution for φ

that oscillates with the same frequency, i. e. φ(t) ∝ eiωt .
The components of the frequency-dependent relative
susceptibility, χr(ω) = χ(ω)/ε0, then take the form

χ ′
r(ω) = χ0Ω

2(Ω2 −ω2)

(Ω2 −ω2)2 +ω2γ 2 , (10.15)

χ ′′
r (ω) = χ0Ω

2ωγ

(Ω2 −ω2)2 +ω2γ 2
. (10.16)

These equations exhibit the typical signature of a res-
onance response such as shown in Fig. 10.2. The
imaginary component χ ′′

r (ω) goes through a peak at
ω = Ω (the resonance frequency). The real component
χ ′

r(ω) exhibits a rise in positive value as the driving
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192 Part A Fundamental Properties

frequency ω approaches the natural frequency Ω from
below, passes through zero when ω and Ω are equal, and
rises towards zero from a negative value when ω � Ω.
In some cases the exact frequency dependence of the
relative susceptibility can be slightly different from that
given above. Typically the peak in χ ′′

r (ω) is broadened
due to the possibility that either the resonance frequen-
cies of different transitions of the same molecule can be
close together and their responses can overlap, or that lo-
cal electrical interactions between molecules cause the
transition energies of individual molecules to be slightly
shifted in energy.

As long as the transition energies are sufficiently
far apart to be resolved experimental data of the reso-
nance type will yield three pieces of information, which
can be related to the electronic (or vibration) structure
of the molecules. These are: (a) the natural oscillation
frequency Ω, (b) the damping constant γ , and (c) the
amplitude factor χ0. The natural frequency ν is equal
to the energy difference of the electronic states between
which the fluctuation occurs, ξ , divided by Planck’s con-
stant i. e. ν = ξ/h, and so provides information about the
different quantum states in relation to one another. The
amplitude factor χ0 is proportional to the square of the
transition dipole and therefore yields information on the
relative rearrangement of positive and negative charges
within the molecule by the transition fluctuation. Damp-
ing in these types of systems arises from the sharing of
the transition energy between many energy states of the
molecule and its vibrations. It removes energy from the
specific oscillating dipoles for which the field produces
a net dipole moment density. It may act through a delay
in returning energy to the electromagnetic wave, i. e. in-
coherent reradiation, or by transferring it to other energy
states where it cannot be reradiated. The damping there-
fore expresses the way that the energy transferred from
the electromagnetic field to the molecule is absorbed
and dissipated in the system. The damping factor γ of-
ten will have a complicated form. There is of course
one other piece of information that is implied by data
that fit (10.15, 16) and that is that the equation of mo-
tion for the natural oscillating dipole moments is given
by (10.14). In some cases, however, the damping factor
may be frequency dependent as a result of changes in the
interaction between different energy states of the system
that occur on the same time scale as the relaxation time,
1/γ . The equation of motion will now have a different
and more complicated form than that of (10.14).

The above outline of spectroscopic responses is of
necessity very sketchy as it is not the main theme of
this chapter, and is dealt with in detail in many stan-

dard textbooks (e.g. Heitler [10.14]). There are however,
a number of general features that can be used as a guide
to what happens in the linear relaxation response. In the
first place the dipoles involved are a property of natural
fluctuations of the system, in this case quantum fluctua-
tions in molecules. They are not produced by the electric
field. In the absence of an electric field the fluctuating
dipoles do not contribute to the net dipole moment of
the system, in this case individual molecules. The ac-
tion of the electric field in linear responses is solely to
alter the population of the fluctuations such that a net
dipole moment density is produced. This is achieved in
the resonance cases considered above by the production
of a net density of molecules in an excited state propor-
tional to χ0 E0. The irreversible transfer of energy from
the electric field to the system relates to the sharing of
this energy between the oscillating dipoles coupled to
the electric field, and many equi-energetic states of the
system that do not couple directly to the electric field.
The energy shared in this way is dissipated among the
many connected states. Dissipation is an essential con-
sequence of natural fluctuations in an ensemble [10.18]
and expresses the requirement that the fluctuation die
away to zero at long times. The function φ(t) must there-
fore approach zero as t tends to infinity. In the absence
of an electric field dipole density fluctuations utilise en-
ergy gained transiently from the ensemble and return
that energy via the dissipation mechanism. When how-
ever an electric field is present, the relative number of
fluctuations with dipole moments in different directions
is altered and the dissipation term irreversibly transfers
energy from the electric field to the ensemble.

10.2.2 Relaxation Response

We turn now to the relaxation response. The simplest
way to view this behaviour is as an overdamped oscilla-
tion of the net dipole moment density, i. e. one for which
γ 2 > 4Ω2. There are a number of ways of addressing
this situation and below I shall develop the description
starting from the simplest model whose behaviour is
rarely found in condensed matter.

The Debye Response
In this case we can neglect the force constant term
in (10.14), i. e. the term Ω2φ. This leads to an equation
of motion with the form

dφ/dt +γφ = 0 . (10.17)

The solution to this equation is the very familiar ex-
ponential form, φ(t) ∝ e−t/τ . Equation (10.17) can be
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Dielectric Response 10.2 Frequency-Dependent Linear Responses 193

interpreted by taking on board the lessons from the
resonance response. As before we have to view it as
describing the behaviour of a natural fluctuation in our
system that produces a net dipole moment density as
the result of a random impulse at t = 0. Now however,
there is no evidence for dipole oscillation, so we are
not looking at the quantum fluctuations of electronic
charge clouds and nuclei positions of molecules. In this
case the response originates with the permanent dipoles
that many molecules possess due to the asymmetry of
their atomic construction. We should also remember
that, though atoms do not possess a permanent dipole
moment, ion pairs in a material will act as dipoles. Such
systems contain a large number (ensemble) of perma-
nent dipoles and this ensemble will obey the laws of
thermodynamics. Therefore, with the exception of such
materials as electrets and ferroelectrics the orientation
of the permanent dipoles will be random in the ab-
sence of an electric field, i. e. the average net dipole
moment of the system will be zero. Thermodynamic
ensembles are however described by distributions that
allow for fluctuations about the defined average values,
thus for example canonical ensembles allow for fluctua-
tions in energy about a defined average energy content,
and grand canonical ensembles allow for fluctuations
in the number of effective units (e.g. net dipole mo-
ments) as well. In the case of dipole responses we are
looking at fluctuations that involve the orientations of
the permanent dipoles and hence create a net dipole
density (Fig. 10.3c,d). Such fluctuations are natural to
the ensemble, but are transient, i. e. as in Sect. 10.2.1
φ(t) → 0 as t → ∞. Equation (10.17) describes the way
in which such a local fluctuation in the dipole moment
density decays (regresses) to zero, i. e. the ensemble
relaxes. An applied electric field couples with the per-
manent dipoles to produce a torque that attempts to line
the dipole with the electric field vector where its energy
is lowest. Consequently the linear response of the sys-
tem to the application of an electric field is an increase
in the population of the permanent dipole fluctuations
with a component oriented in the field direction as com-
pared to those which have components oriented in the
reverse direction. This relative change in the popula-
tions of the natural fluctuations of the system gives a net
dipole moment density that is driven at the frequency of
the electric field as in (10.7) [10.19].

As in the resonance case the polarisation can be
obtained by adding the AC driving force oscillating at
frequency ω to (10.17) and determining the solution
for φ oscillating with the same frequency. The corre-
sponding relative susceptibility components have the

form

χ ′
r(ω) = χ0

1+ω2/γ 2
, (10.18)

χ ′′
r (ω) = χ0ω/γ

1+ω2/γ 2
. (10.19)

These functions show a peak in the imaginary suscepti-
bility component, χ ′′

r (ω), at a frequency Ω = γ , which
is sometimes called the loss peak frequency since χ ′′

r (ω)
is associated with the dissipation of energy, or equiva-
lently the loss of energy from the driving electric field.
The real component of the susceptibility, χ ′

r(ω), changes
monotonically from zero at high frequencies to a limiting
low-frequency value of χ0. This is termed the dielectric
dispersion.

Equations (10.17–10.19) define what has come to
be known as the Debye response after P. Debye who
first addressed the nature of relaxation dielectric re-
sponses [10.1]. It is characterised by two pieces of
information: the magnitude of the dispersion χ0 and
the damping factor γ , more usually defined via the
relaxation time τ = 1/γ of the dipole density fluctu-
ations. The dispersion magnitude χ0 is a measure of
the net change in dipole density fluctuations that can
be produced by a unit field (i. e. E0 = 1 V m−1), and is
proportional to the square of the individual permanent
dipole moments. As with the resonance response an ex-
act fit between the relaxation response data and (10.18),
(10.19) implies a specific form for the equation of mo-
tion of the dipole density fluctuations of the permanent
dipole ensemble, i. e. that of (10.17).

Frequency-Dependent Dielectric Response
in Condensed Matter
In practice the Debye response is rarely observed out-
side of the gas phase. Instead the experimental data can
usually be characterised through fractional power laws
in the frequency dependence of χ ′′

r (ω) [10.6, 8, 20] in
the regions away from the peak (see Fig. 10.4), i. e. for
ω � γ , and ω 	 γ , giving

χ ′
r(ω) ∝ χ ′′

r (ω) ∝ ωn−1 , ω � γ , (10.20)

χ ′
r(0)−χ ′

r(ω) ∝ χ ′′
r (ω) ∝ ωm , ω 	 γ . (10.21)

Here n, and m are fractional exponents, i. e.
0 < n, m < 1. This general form was first defined em-
pirically as the Havriliak–Negami function [10.21, 22].
A number of special cases have been identified [10.5,8].
Thus for example the Cole–Cole function is given by
n +m = 1. When m = 1, and 0 < n < 1, the Cole–
Davidson form is produced, which obeys (10.20) and
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Fig. 10.4 (a) Schematic drawing of the Debye re-
sponse. (b), (c)Examples of measured data fitted
to the response function χ(ω)/χ(0) ∝ [(1+ i ωτ)n−1

2 F1(1−n; 1−m; 2−n; (1+ i ωτ)−1)] resulting from the
response function φ(t) of (10.22). The function 2 F1(, ; ;) is
the Gaussian hypergeometric function [10.25]. Plot (b) data
from irradiated tri-glycine sulphate (TGS) ; Plot (c) data
from polyvinylacetate. After [10.26]

follows χ ′′
r (ω) ∝ ωm (m = 1) for ω 	 γ but without

χ ′′
r (ω) being proportional to χ ′

r(0)−χ ′
r(ω) as in (10.21).

The physical theory of Dissado and Hill [10.23, 24]
yields analytical expressions for χ ′

r(ω) and χ ′′
r (ω) that

contain both the Debye and Cole–Davidson functions as
exact limiting cases, and the Cole–Cole and Havriliak–
Negami functions as approximations with only minor
differences in the curvature in the region of the peak in
χ ′′

r (ω). The frequency-dependent susceptibility given by
this theory has come to be known as the Dissado–Hill
function and is defined in terms of a hypergeometric

function [10.25], which is an infinite series with simi-
larities to that of the exponential function. The reader is
referred to [10.23, 24] for details. Unlike the empirical
functions the Dissado–Hill dielectric response function
has a clearly defined equation of motion for φ(t) [10.24],

d2φ

dt2
+ [2+n + (t/τ)]

t

dφ

dt

+ [n + (t/τ)(1+m)]
t2 φ = 0 . (10.22)

This equation has an analytical solution for φ(t) in
terms of a confluent hypergeometric function [10.25],
which has the limiting behaviour φ(t) ∝ t−n at times
t < τ = 1/γ and φ(t) ∝ t−(1+m) when t > τ = 1/γ .
When m = 1 the solution is φ(t) ∝ t−n exp (−t/τ) giv-
ing the Cole–Davidson susceptibility function, and the
Debye response function φ(t) ∝ exp (−t/τ) is obtained
when n = 0 and m = 1. The general analytical function
for φ(t) was first derived in [10.27] and later re-derived
and its equation of motion discussed in [10.23, 24]
to which the reader is referred for details. The form
of (10.22) illustrates clearly the development of the
relaxation response from short-time high-frequency
damped harmonic oscillations, characterised by (10.14),
as a consequence of time-dependent damping functions
and oscillation frequencies. More specifically the damp-
ing function approaches a constant value 1/τ (equivalent
to γ ) at long times, while the oscillation frequency ap-
proaches zero. In contrast the Debye model assumes
that the dipole motions are overdamped motions with no
time-dependent transition from the damped oscillations
occurring at short times. Of course there are many ways
that time-dependent damping functions and oscillation
frequencies may be introduced, most of which involve
making similar approximations to that of Debye as re-
gards the ensemble forces that control these factors, but
only the specific forms of (10.22) give the power-law
frequency dependencies observed in the susceptibil-
ity (10.20), (10.21). These forms are produced because
the dipole density fluctuations retain some memory of
the restoring and damping forces that act on it over very
long periods of time, i. e. these forces are not random
impulses. The reader is referred to [10.24] for more
detail.

The Response Function
A different approach may be taken to deriving the
frequency-dependent susceptibility of linear responses.
Returning to (10.14), (10.17), and (10.20) it can be seen
that the solutions for φ(t) in the absence of a driv-
ing field give the time evolution of the dipole density
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fluctuation caused by a dipole generating impulse at
t = 0, i. e. the natural motions of the system. The
resulting expression for φ(t) is called the response func-
tion [10.19], and the complex susceptibility is obtained
through (10.23).

χr(ω) = χ ′
r(ω)− i χ ′′

r (ω)

= Lt
ε→∞

⎡
⎣

∞∫

0

φ(t)e−iωt−εt dt

⎤
⎦ . (10.23)

Here ε is an infinitesimal quantity that is taken to zero
after the integral has been carried out. This equation
is valid for all linear dielectric responses. The require-
ment that φ(t) → 0 as t → ∞ for natural fluctuations
ensures that χ ′

r(ω) and χ ′′
r (ω) remain finite. The equa-

tions of motion, (10.14), (10.17), and (10.22) have
solutions for φ(t) that can be transformed in this way to
yield analytical expressions for the frequency-dependent
susceptibility. An important consequence of (10.23) is
that the frequency dependencies of χ ′

r(ω) and χ ′′
r (ω)

contain the same information since they are Laplace
transforms of the same time-dependent function. This
also means that a frequency-dependent conductivity
σ(ω) ≡ [ωχ ′′

r (ω)] contains no more information than
the equivalent dielectric dispersion χ ′

r(ω). In fact the
linear susceptibility components χ ′

r(ω) and χ ′′
r (ω) are

related to one another through the Kramers–Kronig
relationships [10.5, 6]

χ ′
r(ω) = 2

π

∞∫

0

xχ ′′
r (x)

x2 −ω2
dx , (10.24)
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Fig. 10.5 The fit between the response function φ(t)/φ(0) ∝
(t/τ)−n e−t/τ

1 F1(1−m; 2−n; t/τ) from (10.22) (where
1 F1(; ;) is the confluent hypergeometric function [10.25]),
and experimental data for amorphous gallium arsenide.
After [10.24]

χ ′′
r (ω) = −2ω

π

∞∫

0

χ ′
r(x)

x2 −ω2
dx . (10.25)

The imaginary contribution from the pole at x = ω is
excluded from these integrals. Although formally val-
ues of χ ′

r(ω) and χ ′′
r (ω) are required over the frequency

range from zero to infinity, the reciprocal relationships
are adequately reproduced as long as the major part of
the dispersion from any specific relaxation process is
used.

Equation (10.23) means that linear dielectric re-
sponses are characterised through the time dependence
of φ(t). This led Williams and Watts [10.28] to approach
the description of the frequency dependence commonly
observed by proposing that the exponential behaviour of

1
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Fig. 10.6a,b Two examples of the fit between the
susceptibility functions resulting from the response func-
tion φ(t) of (10.22) (continuous line) and (10.26)
(broken line) and experimental master curves: (a) Ne-
matic form of N–(2–hydroxy–4–methoxybenzylidene)–
pn–butylaniline (OHMBBA), and (b) Polyallylbenzene.
The shift of the representative point required to construct
the master curve is marked on the plot. After [10.24]
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φ(t) resulting from the Debye model, (10.17), should be
generalised to the form

φ(t) ∝ (t/τ)−n exp
[
−(t/τ)1−n

]
. (10.26)

This expression is sometimes called the expanded ex-
ponential function or the Kohlrausch–Williams–Watt
function, as it was later found that it was first pro-
posed in [10.29] for mechanical responses. It is not
known to possess a simple equation of motion such
as (10.14), (10.17), and (10.22) but its relaxation func-
tion Φ(t), defined by Φ(t) = ∫ ∞

t φ(t)dt [10.19] obeys
a relaxation equation of the form of (10.17) with
a time-dependent damping factor γ (t) ∝ t−n . The cor-
responding frequency-dependent susceptibility has the
same power-law form as (10.20) for ω � γ = 1/τ , but

exhibits a slowly varying decrease of slope as the fre-
quency γ is approached from below that, with suitable
choices for the value n, can approximate a power law for
χ ′′

r (ω) such as is defined in (10.21). The relationship be-
tween experimental data for φ(t) and that derived in the
Dissado–Hill cluster model, i. e. the solution to (10.22),
is shown in Fig. 10.5. It can be seen that the data and
the function for φ(t) approaches zero as t tends to in-
finity, with the time power law t−(1+m), but accurate
experimental data for times several decades beyond
τ is required if this behaviour is to be distinguished
from that of (10.26). A better means of distinguish-
ing the two results can often be had by recourse to
their appropriate frequency-dependent susceptibilities,
see Fig. 10.6.

10.3 Information Contained in the Relaxation Response

As described in Sect. 10.2.2 relaxation responses con-
tain three pieces of information. The strength of the
coupling of dipole density fluctuations to the electric
field characterised by χ0, a characteristic relaxation fre-
quency γ = 1/τ , where τ is the characteristic relaxation
time, and the relaxation dynamics characterised by the
frequency dependence of χ ′

r(ω) and χ ′′
r (ω). This latter

feature is open to different interpretations, as will be
discussed later.

10.3.1 The Dielectric Increment
for a Linear Response χ0

The dielectric increment is proportional to the square
of the permanent dipole moments that give rise to the
dipole density fluctuation. It is a feature of the dielectric
response that does not usually receive the most attention,
mainly because a quantitative relationship to the molecu-
lar physics of the relaxation process is often difficult to
achieve. Nevertheless it has been used to determine the
dipole moments of polar molecules using measurement
in the gas phase or if necessary dilute solutions in a non-
polar solvent. In these cases the permanent molecular
dipoles, µ, can be assumed to be independent of one an-
other and to be able to adopt all orientations with equal
probability in the absence of an electric field, i. e. all
dipole moment orientations are at the same energy. This
section starts by outlining the derivation of χ0 for this
situation even though this is not the topic area of this
book and chapter. The aim is to demonstrate the proce-
dure and bring out the assumptions involved so that the

more complicated nature of dipole density fluctuations
in condensed-state materials can be better appreciated.

Independent Free Dipoles
In an electric field a dipole that is at an angle θ to the field
direction is at the energy −µE cos θ. Those molecules
aligned with the electric field are therefore at the lowest
energy. The thermal motions of the molecules will how-
ever tend to randomise the dipole orientations and the
probability of finding a dipole with an orientation an-
gle θ becomes exp (µE cos θ/kBT ). The average value
of µ cos θ is given by

M = 〈µ cos θ〉

=

π∫
0

µ cos θ exp (µE cos θ/kBT ) sin θ dθ

π∫
0

exp (µE cos θ/kBT ) sin θ dθ

(10.27)

and the contribution to the static polarisation is given
by N〈µ cos θ〉, where N is the number of permanent
dipoles per unit volume. The term independent of the
electric field is zero because all orientations are equally
probable in the absence of the field. Equation (10.27)
results in a nonlinear function in the electric field E for
M, which is called the Langevin function, L(µE/kBT ),
with,

L(µE/kBT ) = coth(µE/kBT )− (kBT/µE ) .

(10.28)
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This function saturates at unity for very high values of
µE/kBT , reflecting the total alignment of all the perma-
nent dipoles in the electric field. At low fields defined
by µE/kBT 	 1, L(µE/kBT ) is a linear function of E
and gives the linear dielectric increment as

χ0 = µ2/3kBT . (10.29)

Dipoles in Condensed Matter
In condensed-phase systems, particularly solids, the
approximations that lead to the Langevin function
and (10.29) no longer apply, and hence these expres-
sions no longer hold. In the first place the dipoles are
constrained by the local structure and in general will not
be able to assume all orientations with equal probability
in the absence of an electric field. In the second place we
cannot assume that the dipoles are independent of one
another. This dependence may arise in more than one
way. For example there may be electrostatic interactions
between the dipoles, such as would be responsible for the
formation of ferroelectric and anti-ferroelectric states.
However when the dipoles concerned are of a low con-
centration such as those that originate with impurities,
lattice defects, interstitial ions etc., these dipole–dipole
interactions may be weak. The dipoles concerned may
also be arranged in such a way that even though they can
adopt one or more alternative orientations their dipole–
dipole interactions essentially cancel, such as might be
expected in dipole glasses [10.30]. The common way
to deal with this situation is to assume that a dipole
representative of the average dipole in the ensemble
experiences the average electric field of all the other
dipoles. This is called the mean-field approach [10.31].
Since the mean field will be a function of the average
dipole moment due to the applied electric field it is usu-
ally possible to construct an equation that can be solved
to yield M and hence χ0. Another way in which the
dipoles can interact arises because permanent dipoles are
part of the lattice structure of the material. Those perma-
nent dipoles that lead to a polarisation in the presence of
an electric field must have two or more local orientations
available to them, i. e. they must be able to adopt a dif-
ferent orientation that in the presence of an electric field
has a lower energy. Any such change will inevitably alter
the local atomic and molecular interactions around the
dipole that has moved. This effect will travel through the
structure and influence other permanent dipoles through
changes in atomic and molecular positions in its envi-
ronment [10.32]. The strength of such interactions will
vary depending of the type of dipole and the way that it
is connected to the structure. For example reorientable

dipoles formed by small interstitial (or substitution) ions
may not interact very strongly with the surrounding lat-
tice, whereas polar groups attached to a polymer chain
will in many cases interact very strongly when they adopt
a different orientation. Similarly the reorientation of po-
lar molecules in liquids may be expected to distort their
surrounding solvent cage and create a disturbance that
will be transmitted to other polar molecules. The special
feature of this form of interaction is that it is transmit-
ted along specific directions depending upon the lattice
structure and hence is nonisotropic.

Order–Disorder Ferroelectrics
These are materials in which the permanent dipoles pos-
sess two or a limited number of possible orientations. At
high temperatures the dipoles are randomly distributed
between the alternative orientations in the absence of an
electric field. As the temperature is lowered the electro-
static field of the dipoles acts on any one dipole to make
one of the orientations more preferable than the oth-
ers. This causes the permanent dipole system to adopt
a specific orientation at the Curie temperature Tc. The
mean-field approach results in an expression for χ0 that
diverges at Tc, i. e.

χ0 ∝ µ2/|(T − Tc)| . (10.30)

This expression is so common to us that it is easy
to overlook the physical meaning that it contains,
which is much better expressed in the renormalisa-
tion group approach [10.33]. Essentially the interactions
between the dipoles cause their orientation and dy-
namics to become correlated to some extent. As Tc is
approached from above, the dipole fluctuations in the
system are correlated over increasingly long distances
and involve increasingly larger groups of individual
dipole moments µ. The dielectric increment increases
in proportion to a power of the correlation length
ξ ∝ |(T − Tc)−δ| and a more exact form for χ0 is

χ0 ∝ µ2/|(T − Tc)|α . (10.31)

At temperatures below Tc the material will possess do-
mains in which all the dipoles are aligned together.
Dipole fluctuations in this state have the opposite ori-
entation to that of the polarity of the domain dipole that
is they are changes in net dipole moment density, see
Sect. 10.1.1. These dipole fluctuations also produce an
electrostatic field that causes them to be correlated. As
the temperature reduces their correlation length reduces
and hence so does χ0. These materials show that the re-
sponding dipole in condensed-phase materials will not
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always be that of individual molecular or ionic com-
ponents of the system, they may in fact be groups of
individual dipoles that respond as a single unit. In fact
the susceptibility increment may be written in terms of
an effective dipole moment that is also a power of the
correlation length, i. e. µeff ∝ (ξ)α/2δ.

Kirkwood Correlation Factor
The particular feature of the ferroelectric order–disorder
transition is that the correlation between dipoles in the
dipole fluctuations is temperature dependent. In general
this will not be the case; instead we can expect the cor-
relation to be dependent upon the lattice structure of the
material, and hence independent of temperature except
for discrete step changes when the material undergoes
a phase transition. One way of allowing for these corre-
lations is to introduce a factor g, termed the Kirkwood
factor [10.10,34], into the expression for χ0 such that it
becomes

χ0 ∝ Ngµ2 . (10.32)

Here a value of g = 1 defines a system in which the
dipoles are uncorrelated, i. e. they are independent of
one another. Values of g > 1 indicate positive correlation
i. e. the dipoles align in the same direction as in the
ferroelectric case where g diverges as discussed. Values
of g < 1 indicate dipoles that are anticorrelated i. e. pairs
of dipoles tend to align in opposite directions. Both kinds
of behaviour are known to occur.

General Features
of the Temperature Dependence
of the Dielectric Increment
Section 10.3.1 gives examples of behaviour in which
an electric field imposes order, in terms of the polarity
of the net dipole density fluctuations, upon an ensemble
where the temperature acts as a disordering factor. In the
case of independent free dipoles it is the applied field
that attempts to align dipoles and for order–disorder fer-
roelectrics it is the electrostatic field of the other dipoles.
It might therefore be expected that the temperature is al-
ways a factor that attempts to oppose the field and that the
dielectric increment will decrease at high temperatures,
but this is not always the case. For example, in situa-
tions where the dipole can adopt one of two orientations
one of which is favoured by the local lattice structure,
the equilibrium population will be heavily weighted to-
wards the favoured orientation. The equilibrium value
of M in such a region can be expressed as,

M = µ tanh[(∆χ/kBT )] , (10.33)

where 2∆χ is the energy difference between the al-
ternative orientations produced by the local structure.
Here µ is the reorientable component of the dipole
moment, see Fig. 10.7. An applied electric field that
will favour the one orientation over the other will
change the energy difference between alternative orien-
tations from 2∆χ to 2(∆χ −µE ). Differentiation with
respect to E then gives the susceptibility increment
as χ0 ∝ (µ2/kBT ) cosh−2(∆χ/kBT ), with the approx-
imately activated form

χ0 ∝ (µ2/kBT ) exp (−2∆χ/kBT ) (10.34)

holding when ∆χ/kBT � 1. Although (10.33) implies
that regions exist where dipoles are aligned by the struc-
ture this does not necessarily mean that the material has
a net dipole in the absence of an electric field. Such
regions may be local and with dipole vectors randomly
arranged by the structure. This behaviour has been found
in ferroelectric ceramics [10.35, 36] in both the ferro-
electric and paraelectric phases outside the transition
region where T approaches Tc. Expression (10.34) indi-
cates that in the appropriate temperature range the effect
of the thermal fluctuations is effectively to increase the
density of dipoles that can respond to the electric field,
and that this overcomes any randomising behaviour.
In contrast, at high temperatures (∆χ/kBT 	 1) the
distribution of dipoles between the alternative orienta-

a)

b)

Permanent
dipole at site

Re-orientable
dipole µ

Potential energy

Dipole displacement coordinate

2∆�

∆γ

Fig. 10.7a,b Dipole reorientation between two potential
wells: (a) shows the reorientable component of the dipole,
(b) shows the potential-energy surface
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tions becomes almost random and χ0 approaches the
free-dipole result (10.29).

In many experimental situations the value of the
dielectric increment is essentially independent of tem-
perature. It is difficult to see how this can occur in
an ensemble where the dipole density fluctuations are
produced by fluctuations in thermal energy about the
average value, which couple to the electric field via
changes in the heat content as in (10.27). However it
may be possible to conceive of this behaviour as due
to fluctuations in the configuration entropy of the mo-
lecular system, of which the dipole is a part, that take
place without any change in the heat content. The ef-
fect of the field would be to change the configuration
entropy S rather than the heat content H . As a result
the susceptibility would be independent of temperature.
This picture implies that we must think of the dipoles in
this case not as local elements embedded within the ma-
terial matrix moving in a fixed local potential, but as an
integral part of the matrix whose dynamics is described
by fluctuations in the Gibbs free energy G = H − TS
of the whole ensemble. In this case correlations be-
tween dipoles would be expected to occur mainly via
the indirect route through their interaction with their
local environment, rather than their direct electrostatic
interactions.

Equation (10.31) describes the behaviour of a system
undergoing an order–disorder transition among the per-
manent dipole orientations. A similar behaviour will be
found for the relaxation response of a first-order ferro-
electric or dipole alignment transition [10.37]. In general
phase transitions will not give rise to a divergence in χ0,
which occurs because the phase transition in these cases
is defined through the dipole, i. e. the dipole orientation
is the order parameter. In other types of phase transition
the dipoles are not the primary cause and what can be
expected is an abrupt change of χ0 as the dipoles find
themselves embedded into a different lattice structure
with different local potentials and orientation positions,
different ensemble energies, and different correlations
with one another and the material matrix.

The Information Content
of the Dielectric Increment
As is clear from the above discussion it is not easy to
make definite quantitative statements about the dipole
system based on the dielectric increment. The basic rea-
son for this situation is that the measurements are made
on a macroscopic sample that contains an ensemble of
an enormous number of dipoles, up to ≈ 1028 m−3. The
description of such systems can be carried through if the

elements, here electric dipoles, are independent and their
orientation is defined by a static local potential; as dis-
cussed above this will not be the case in general. More
typically the dipoles will be correlated with the matrix
in which they are embedded and/or one another. This
means that the dipoles that are involved in the dipole
density fluctuations are not site dipoles but groups of
molecules/ions including dipoles, i. e. the responding
features have a size intermediate between that of the
molecule/unit cell and that of the sample. Determina-
tion of the temperature dependence will give some clues
as to how to regard the dipole system through the defini-
tion of an effective dipole. The way the effective dipole
changes with temperature will allow some interpreta-
tion of the kind of system that is present. Variation with
other control parameters will produce more information,
and systematic variation of the structure, for example
replacement of side groups in polymers by longer or
different side groups, or substitution of impurity ions by
similar ions of different oxidation state or ionic radius,
will help to identify the local dipole moment contribut-
ing the dielectric increment. However, even if the form
of the site dipole is known, the quantitative evaluation of
a factor such as the Kirkwood factor g (10.32) is not triv-
ial. In condensed matter, as can be seen from Fig. 10.7,
only a component of the site dipole is likely to be in-
volved in reorientation. Unless the local structure is very
well known it will not be possible to determine the actual
value of the reorientable component in order to obtain
a quantitative estimate of g. What can be achieved is
a fingerprint of the dipole fluctuations in the material
that can be used to characterise it. However at best this
will be a partial picture of the dipole fluctuations in the
material and information gained from the relaxation time
and the relaxation dynamics should be used to enhance
it further. In this way a holistic view of the dipole fluctu-
ation can be attempted. It is important to realise that the
picture obtained from these three features must be com-
plementary. It is not acceptable to regard them as three
independent features, as in fact they just yield different
facets of the same process.

10.3.2 The Characteristic Relaxation Time
(Frequency)

Equation (10.14), (10.17), (10.22), and (10.23) define
a characteristic relaxation rate γ or relaxation time
τ = 1/γ for the dipole density fluctuations. In the case
of the Debye response, whose susceptibility functions
are given by (10.18) and (10.19), γ is the frequency at
which the imaginary (dielectric loss) component χ ′′

r (ω)
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exhibits a peak. It has therefore become customary to
determine the dependence of the relaxation time (rate)
upon the control parameters (e.g. temperature, pressure,
etc.) that are varied via that of the loss peak frequency.
As long as the frequency dependence of χ ′′

r (ω) (i. e. the
loss peak shape) remains unchanged this procedure is
valid because essentially the dielectric response inves-
tigated can be treated as a single composite process,
even though it has a wider frequency dependence than
that predicted for the independent free dipoles. Both
the theoretical equation of motion (10.22) and response
function (10.26) do in fact describe the response as a sin-
gle composite process with a characteristic relaxation
rate (time). However the frequency of the peak in χ ′′

r (ω)
(loss peak frequency) predicted from (10.22) is not γ

but γ multiplied by a numerical factor depending upon
the power-law exponents, n and m. In many cases the
loss peak is very broad (n → 1, m → 0) and it is dif-
ficult to locate the peak precisely and to be sure that
the point located is at the same position with respect
to the functional dependence of χ ′′

r (ω) upon ω. Under
these circumstances a better procedure is to construct
a master curve, which is done by plotting χ ′′

r (ω) as
a function of ω in log–log coordinates. Translation of
the data along the log(ω) and log[χ ′′

r (ω)] axes will bring
the data into coincidence if the susceptibility frequency
dependence is unchanged. The translation required to
achieve coincidence gives the dependence of the sus-
ceptibility increment [log(χ ′′)-axis] and characteristic
relaxation frequency [log(ω)-axis] on the controlled
variable. For example it gives the ratios γ (T1)/γ (T2)
[or χ0(T1)/χ0(T2)] for the temperature change T1 to T2.
This technique also has the advantage of illustrating
clearly whether or not the frequency dependence is
independent of the variation in temperature (or other
parameter), i. e. whether or not the different sets of data
can be brought into coincidence. It can also be used
to determine any relationship between χ0 and γ . This
is done by selecting a reference point (e.g. the point
χ0 = A, ω = B) and marking the position on the mas-
ter curve of this point from each data set after it has
been translated to achieve coincidence. A trace is formed
giving the dependence of log[(χ0)−1] as a function
of log(γ−1).

The relaxation rate is the dielectric response fea-
ture that shows most dependence upon the variation in
the control parameters and so is the feature that is most
often studied. In the following sections I will outline
some of the most common types of behaviour and dis-
cuss their implications for the physics of the relaxation
process.

Site Dipole Reorientation
The simplest form of relaxation rate is that described by
Debye for independent molecular dipoles suspended in
a viscous continuum. As described in Sect. 10.3.1 these
dipoles are regarded as free to adopt any orientation in
the absence of an electric field. Relaxation of a dipole
density fluctuation involves the rotation of the molecular
dipoles in the fluctuation to a state in which the net dipole
density is zero. In such a situation the rotation of each
individual dipole occurs at the same speed determined by
the viscosity, η, of the medium, and the relaxation time
(τ = 1/γ ) of the dipole density fluctuation is governed
by that speed. For a molecular dipole whose effective
length is a the relaxation time has the form [10.10],

τ ∝ ηa3/kBT . (10.35)

The more viscous the medium, or the bigger the molecu-
lar dipole, the slower it rotates and the slower will be the
relaxation of a fluctuation, giving a net dipole moment
to the ensemble.

Of course the conditions for this behaviour to be
exactly applicable cannot be met except in a gaseous
medium. Condensed-phase materials are not continua.
Even liquids possess a local structure and molecular
dipoles will either be part of that structure if they are
contributed by the medium, or will be surrounded by
a solvent shell if they are dissolved in the medium. In
solids the molecular (or ionic) dipole is of necessity part
of the structural matrix, and even though this must be
irregular enough to permit rotational displacement to at
least one other orientation the matrix can be expected
to maintain some structural correlation to distances well
away from the site of a reorientable dipole. These are
the conditions that must be included in any description
of the relaxation frequency (time).

The first point of departure from the picture of a free
dipole in a continuum is that the dipole will possess
only a limited number of orientations that it can adopt.
Consequently there will be a potential barrier between
these alternative equilibrium orientations. The rate of
transition between alternative orientations and hence the
relaxation frequency will be determined by the rate at
which a dipole or, to be more specific, the atoms or
ions that form the local dipole can pass over the poten-
tial barrier to switch orientation, as shown for example
in Fig. 10.7. In this case the relaxation frequency will
possess an activated (Arrhenius) form where the acti-
vation energy ∆γ is the mean potential barrier height
between the alternative orientations, i. e.

γ = 1/τ = A exp (−∆γ /kBT ) . (10.36)
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The expression to be used for the pre-exponential factor
A depends on the way in which the atoms/ions compris-
ing the local dipole pass through the transition region at
the top of the barrier [10.38,39]. In the schematic draw-
ing of Fig. 10.7 the dipole is described as having an atom
(ion) at its head that performs quantum oscillations in
one of two potential wells. As long as it can be assumed
that there is a thermal equilibrium between all the vi-
bration states and that the dipole head passes into the
alternative well in a single transit of the barrier region,
then A = ν, where ν is the frequency of the quantum vi-
brations at the bottom of the wells. This result continues
to hold even if thermal equilibrium is established only
for the states at the bottom of the well as long as the ef-
fective friction acting on the dipole head in the barrier
region is weak. The type of potential surface with these
properties is one that remains essentially rigid during
the actual transit of the barrier region, which takes place
in a time typically of ≈ 10−14 s. The activated factor
in (10.36) expresses the thermal probability of finding
a dipole in a quantum state at the top of the barrier.
The other extreme situation occurs when the friction
ςd in the barrier region is high, for which A ∝ (1/ςd).
This occurs when the transit of the barrier region is
slow enough to allow interactions with neighbouring vi-
brating atoms to overdamp the motion. In this case the
potential surface distorts during the transit of the bar-
rier. Such situations can be expected when the barrier is
broad and ill-defined, and correspond to local structures
that are flexible, such as may be expected in viscoelas-
tic materials. A general expression A = λr(ν/νb) has
been developed by Grote and Hynes [10.39] where λr
is a function that describes the change from low to high
friction and νb is the quantum frequency in the barrier
region.

An interesting consequence of this type of potential
surface is that, regardless of the magnitude of the bar-
rier energy ∆γ , a temperature should exist below which
reorientation over the barrier would take so long that
any dipole fluctuation would essentially remain unre-
laxed, i. e. the dipole system becomes frozen. However
when the moving atom in the permanent dipole is a hy-
drogen atom this is not the case; relaxation can occur
by the tunnelling of the hydrogen atom through the
barrier [10.40]. This has been demonstrated by exper-
iments on deuterated oxidised polyethylene molecules
at millikelvin temperatures [10.41, 42]. In this case the
relaxation frequency is determined by the tunnelling
probability of the deuterium/hydrogen atom through the
barrier, which is dependent upon the atomic mass, the
barrier width and height, but not the temperature, i. e. the

relaxation frequency becomes temperature independent
at temperatures below ≈ 100 mK.

Relaxation on a Free Energy Surface
The situation described in the previous section is one in
which the dipole moves on a potential surface provided
by the surrounding structural matrix. The only dynamic
effect of the matrix is via elastic and inelastic interac-
tion between the quantum vibrations of the dipole and
the matrix. In many cases however, the atoms (ions)
comprising the dipole will cause the displacement of the
centres of motion of the surrounding atoms during its
transit between alternative orientations. In this case the
expression for the relaxation frequency has to refer to
the group of atoms affected as a unit, and an appropri-
ate form is that derived by Eyring [10.43] for chemical
reactions

γ = (kBT/h) exp (−G#/kBT ) . (10.37)

Here G# is the change in Gibbs free energy on passing
from the ground state to the transition state in the pro-
cess of reorientation. The barrier is now a free energy
rather than a potential barrier and reflects the need for
the involvement of displacements in a number of atoms,
ions or molecules in order to achieve the dipole reori-
entation. If we refer again to Fig. 10.7 the difference is
that the normal coordinate of the quantum vibrations
in the barrier region is a mixture of several different
normal coordinates of the surrounding matrix as well
as that of the dipole in the well. In general G# will
be composed of an activation entropy contribution S#

as well as an activation enthalpy contribution H# with
G# = H# −TS#, and both will be properties of the group
of atoms/molecules involved and their structural rela-
tionship. The expression for γ therefore takes a form
similar to that of (10.36):

γ =
[
(kBT/h) exp (S#/k)

]
exp

(
− H#/kBT

)

= Aeff exp
(

− H#/kBT
)

. (10.38)

The activation entropy S# will reflect the configura-
tion rearrangement required for the dipole to reorient.
Thus for example, when reorientation requires the sur-
rounding matrix to adopt a more irregular (disordered)
arrangement so as to remove a steric hindrance to re-
orientation the transition region entropy will be greater
than that of the dipole in the bottom of the well and
S# will be positive. Alternatively the transition region
may require specific local arrangements in order that the
dipole can avoid such hindrances. In this case the en-
tropy of the transition state will be less than that of the
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dipole in the bottom of the well and S# will be negative.
A nonzero value of S# will therefore lead to a relaxation
frequency with an effective pre-exponential factor, Aeff ,
that is either greater or less than kBT/h.

An interesting variation on this behaviour has been
suggested by Hill and Dissado [10.44] who showed
that several experimental relaxation frequencies could
be described via what they termed an activated tun-
nelling expression. Here they allowed the possibility
that the transfer between alternative orientations could
take place by thermal activation to an energy state for
which the tunnelling of hydrogen atoms through the
barrier was feasible. An expression for the relaxation
frequency was obtained by determining the optimum
transfer rate, with all processes considered from that of
an unactivated quantum tunnelling to activation over the
top of the barrier. If the energy difference between the
alternative orientations is zero the resulting relaxation
frequency had the form

γ ∝ exp (BT ) (10.39)

over a considerable temperature range, where B is
a temperature-independent factor dependent upon the
tunnelling distance, the barrier height and shape, and
the mass of the tunnelling particle. If the barrier in this
work is taken to be a free-energy barrier rather than
a potential barrier, the analysis can be seen to be equiva-
lent to a situation whereby the dipole relaxes by finding
a route between the alternative orientations that allows
for lower values of H# at the expense of ordering the
surrounding molecules/atoms, i. e. a negative S#. Routes
with higher values of H# require values of S# that are
less negative. In this case the optimum relaxation fre-
quency will take a form such as (10.39) and only at very
high temperatures will γ become purely activated with
S# ≈ 0. The picture of dielectric relaxation provided by
this interpretation is consistent with the defect diffusion
mechanism [10.45], in which defects diffusing in the
structural matrix, such as a kink in a polymer chain or
a dislocation in a crystal, lower or remove barriers when
they reach a dipole, allowing it to take an alternative
orientation of equal energy. When the defect moves on,
the dipole is locked into the new position until another
defect arrives.

The Glass Transition
A glass is essentially a material that has become macro-
scopically rigid without attaining its thermodynamically
favoured crystalline state. The manner in which this oc-
curs for a liquid or viscoelastic (rubbery) material that
has been rapidly cooled has been the subject of in-

tense investigation over a large number of years (see
Angell [10.46]). A simple, some would say oversimple,
view of the situation is to regard it as a concatenation
of two effects. In the first place supercooling the liquid
phase will at some temperature result in a situation where
the liquid no longer possesses a heat content in excess of
the crystal state at that temperature [10.47]. The liquid
will be unstable with respect to a disordered solid pos-
sessing only local crystalline order. In the second place
the lowering of the temperature during the supercooling
will cause the lattice to contract thereby introducing and
increasing barriers to local molecular/atomic motions.
At some temperature the thermal fluctuations [described
by the Boltzman factor in (10.36), (10.37)] that are re-
sponsible for raising the site energy to that of the barrier
become so rare that the time required for rearrangement
becomes enormously long. At this temperature, termed
Tg, the structure is essentially locked into a macroscop-
ically rigid state, termed a glass. The glass transition
cannot be regarded as a thermodynamic transition of
state (unlike a melting/crystallisation temperature for
example) and there are different ways of defining and
determining Tg (see [10.46]).

During the approach to the glass state the rate of
reorientation of permanent dipoles will become slower
and eventually reach zero as shown in Fig. 10.8. It is
common to denote the response due to a set of dipoles
that are frozen during glass formation as the α-response.
A second response can be seen in the figure: termed the
β-response. This is provided by dipoles that are able
to reorient without requiring any substantial rearrange-
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Fig. 10.8 The Arrhenius plot of the glass-forming
polyvinylchloride system showing the slowing down of
the α-response (T > Tg) as Tg is approached and the ac-
tivated β-response. After [10.8]
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ment of the surrounding structural matrix. It should not
be expected however that this response is due just to
a dipole reorientation with respect to the molecule it
is attached to. In many cases the β-response involves
the displacement of the molecule or part thereof as
a whole [10.48]. In polymers this is a local inter-chain
motion and either the free-energy expression (10.38) or
the potential-energy expression (10.36) will apply, de-
pending on whether the surrounding chains remain rigid
during the relaxation or rearrange locally. These dipoles
are active in the glass state and can be expected to have
a relaxation rate of the form of (10.36), i. e. reorientation
over a potential barrier. In the case of the α-response it is
clear that the relaxations must involve displacements in
a number of molecules/atoms other than just those com-
prising the permanent dipole, and hence it is instructive
to discuss the behaviour in terms of the rate expres-
sion (10.37). What can be seen is that, as the temperature
at which the system becomes rigid is approached, the
gradient in the Arrhenius plot gets steeper, and H#

therefore becomes larger. The non-thermally-activated
pre-exponential factor, Aeff , in (10.36) is greater than
kBT/h and hence S# > 0. As the temperature approaches
Tg there is an increase in Aeff , by many decades in fre-
quency, which must be due to an increase in S#. These
changes in H# and S# indicate that, as Tg is approached,
dipole-orientation relaxation not only requires an in-
creased amount of energy in order to enter the transition
(barrier) region but also a larger amount of configura-
tion disordering in the surrounding structure that makes
up the molecular/atom group involved in relaxation. Al-
though it is possible that such a situation may come about
because reducing the temperature produces a local in-
crease in density that increases steric hindrances for the
same group of atoms and molecules, it is more likely
that the number of molecules that are displaced in order
to allow the dipole to pass through the transition region
has increased. These considerations are consistent with
a structure that is becoming either tangled or interlocked
as the temperature decreases. Detailed expressions based
on these concepts but involving macroscopic parameters
have been attempted (see for example [10.46, 49–52]).

The glass formation discussed above has a struc-
tural basis and dipole–dipole interactions will play at
most a minimal role. In some situations however, the
glass is a disordered array of dipole orientations [10.30].
This sort of state is most likely to occur at very low
temperatures in materials that possess dipoles occupy-
ing the sites of a regular lattice. At high temperatures
the dipole orientations will be disordered but, as the
temperature is reduced to low values, each individual

dipole would be expected to adopt their lowest-energy
orientation, resulting in a state of ordered dipole ori-
entation. A dipole glass will result instead when the
dipole–dipole interactions produce forces that gener-
ate barriers to the local reorientation and frustrate the
ordering process at temperatures low enough that the
barriers generated cannot be overcome in any conceiv-
able time.

Ferroelectric Transition
The dielectric response of ferroelectrics at tempera-
tures in the vicinity of their Curie (critical) temperature
also exhibit relaxation frequencies that approach zero,
just as their dielectric increment approaches infin-
ity (Fig. 10.9a,b) as discussed in Sect. 10.3.1. In this
case both the dielectric increment and the relaxation
frequency are functions of a hidden variable that charac-
terises the system, the correlation length ξ of the dipole
fluctuations. Just as the dielectric increment increases
with a power of the correlation length, the relaxation fre-
quency will decrease. Put simply the more dipoles are
correlated in the fluctuation the longer the time that is re-
quired for its relaxation. Scaling theory [10.33] describes
the system by a hierarchy of self-similar correlations.
The strongest correlations are between the dipole and
its nearest neighbours. This gives a local geometrical
arrangement of correlations. The next-strongest correla-
tions are between the same geometrical arrangement of
groups of nearest neighbours, and the next strongest is
between the same geometry of groups of groups. Even-
tually the whole system up to the correlation length is
constructed in this way. Because the geometrical ar-
rangement is preserved at each stage the properties for
each stage have to be proportional to a power of the size.
This gives

γ ∝ |(T − Tc)|β ∝ ξ−β/δ (10.40)

and using (10.31) the relationship

χ0 ∝ (γ )−α/β (10.41)

follows. But the theory can go further and predict the
frequency dependence of χ ′′

r (ω) and χ ′
r(ω) for ω > γ .

This follows because we can think of the response of
the system to a field of frequency ω as being due to the
correlation scale that can relax at the frequency ω, i. e.
ξω ∝ ω−δ/β . The dielectric increment appropriate to this
length scale can be obtained from (10.31) as (ξω)α/δ and
hence,

χ ′′
r (ω) ∝ χ ′

r(ω) ∝ (ξω)α/δ ∝ ω−α/β = ωn−1 (10.42)
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with n = 1−α/β. These relationships describe what
is called dynamic scaling. A detailed description of
the derivation of the frequency dependence in (10.42)
is given in [10.33] and the relationship of the
power-law frequency dependence to self-similar re-
laxations is shown explicitly using scaled electrical
circuits in [10.53]. Because of the small range of
temperatures around Tc over which the power-law re-
lationships (10.40, 10.41) are expected to hold it is
difficult to determine the exponents α and β with any
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Fig. 10.9a–c An Arrhenius plot of the inverse of the sus-
ceptibility increment A(χ)(≡ χo) and loss peak frequency
ωp(≡ γ ) is shown for (a) a ceramic and (b) AgNa(NO2)2.
The frequency-dependent susceptibility of AgNa(NO2)2 is
shown in (c) together with the locus of the representative
point as Tc = 37.8 ◦C is approached from above and be-
low. Note the power-law relationship between the dielectric
increment and the relaxation frequency, and the paral-
lelism between this locus and the frequency dependence
at ω > γ , demonstrating an identical power-law behaviour.
After [10.35]

accuracy, however the dynamic scaling law can be eas-
ily demonstrated by using the master-curve technique
and determining the locus of the representative point
(see the beginning of Sect. 10.3.2). An example is shown
in Fig. 10.9c where it can be seen that the representative-
point locus of χ0 as a function of γ is a power law with
the same exponent as that of the frequency dependence
of χ ′′

r (ω) and χ ′
r(ω) for ω > γ .

The Information Content
of the Relaxation Frequency (Time)
The typical starting point in investigating the relaxation
frequency (time) is to make an Arrhenius plot, i. e. log(γ )
is plotted as a function of 1/T . A straight line is taken to
indicate an activated process of the form of (10.36),
with the gradient yielding the activation energy ∆γ .
However in most cases data is only available from a re-
stricted temperature range and so the variation of kBT/h
with temperature will be small. In this case the free
energy expression (10.38) would give an equally good
straight line. Since there are many situations in which the
pre-exponential factor in (10.36) will be less than a quan-
tum vibration frequency 1012 Hz ≤ ν ≤ 3 × 1013 Hz, it is
difficult to discriminate between the potential-barrier sit-
uation and the free-energy barrier in which S# < 0. Only
when A � 3 × 1013 Hz will identification with relaxation
via a free-energy barrier be certain. As can be seen from
the foregoing it is difficult to obtain any definite infor-
mation from the pre-exponential factor in an activated
relaxation, except for the latter case where an evaluation
of S# is possible. Where S# can be determined it gives
us a qualitative picture of a relaxing dipole centre which
has to be structurally distorted in order for the dipole to
adopt a different orientation. The corresponding value
of H# gives the amount of energy that has to be supplied
to the group in order for the reorientation to occur even
allowing for the distortion. What cannot be determined
from this information is the size of the group that is in-
volved, though the behaviour and magnitude of χ0 may
give an idea as to the dipole magnitude and density. To
give an idea of the difficulty of a molecular interpreta-
tion let us take the case of cyclo-hexanol [10.54]. This
molecule forms a plastic crystal, i. e. the molecular cen-
tres are located on a crystal lattice but their orientations
are disordered. The dipole moment is associated with
the only strong polar feature, the alcohol (−OH) group,
which can take one of two orientations with respect to the
molecule. It would therefore be expected that the meas-
ured activation energy of ≈ 0.5 eV would be the potential
barrier to the transfer of the alcohol group between the
two positions, with its contributions from the neigh-
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bouring molecular cage as well as the molecular energy
change. However, the molecular structure of the cyclo-
hexanol can itself exist in two conformations, the chair
and the boat, and can rearrange its orientation in a lat-
tice by passing through the alternative conformation as
an intermediate. The free-energy barrier to this intercon-
version is also ≈ 0.5 eV. So we cannot decide from the
relaxation frequency whether the relaxation involves just
−OH group transfer or transfer via a boat-to-chair transi-
tion or a mixture of both. In this case the pre-exponential
frequency Aeff ≈ 6 × 1016 Hz, so relaxation has to have
a positive S# and involve a number of atoms rather than
a dipole reorienting on a rigid potential surface.

In the case of near-crystalline materials where the
dipole is associated with defect centres we would expect
the potential-barrier approach to be the best, but even
here the fact that local reorientation is possible implies
some sort of interaction between the surroundings and
the moving dipole head. Calculations based on a rigid
cage should (see for example [10.55]) however be pos-
sible, and comparison with experiment can be expected
to determine how well this represents the situation and
to what extent the transit of the barrier is affected by the
barrier friction. Information provided by the dielectric
increment should be of help here. The calculation ought
to be able to yield an estimate of the reorientable compo-
nent of the dipole, and if as seems likely the alternative
orientations are at different energies, the temperature
dependence of χ0 should follow (10.34).

Although it is conceptually simple to think of dipoles
relaxing upon a potential surface that remains unchanged
during the relaxation, this is likely to be only an approx-
imation to reality. The fact that alternative orientations
exist indicates that in most cases the surrounding struc-
ture must be modified to some extent to accommodate
the change; at the very least we can expect the dipole
to polarise its surroundings differently according to its
orientation. The expressions in Sect. 10.3.2 for the re-
laxation frequency of dipoles relaxing on a free-energy
surface and dipoles in ferroelectrics reflect this fact in
different ways. The ferroelectric behaviour described
in Sect. 10.3.2 shows that when the dipoles become ex-
tensively correlated the relaxation frequency reduces as
an inverse power of the correlation length and the di-
electric increment increases as a power of the relaxation
length. The self-similar scaling relates this behaviour
to the frequency dependence of the susceptibility. The
behaviour of the α-response of a glass-forming sys-
tem involves dipole–structure interaction in a different
way. The relaxation frequency approaches zero as T
approaches Tg from above. Whatever the details of

the process this behaviour has to indicate an increased
difficulty for the dipole to reorient, which here is associ-
ated with structural ordering, densification, and atomic
packing, rather than long-range correlations as in fer-
roelectrics. This response is also one for which the
dielectric increment is often insensitive to temperature.
If we put the two dielectric response features together
we come to a picture in which the electric field effec-
tively modifies the configuration entropy of the system
in generating a net dipole density fluctuation. The net
dipole density produced is essentially the same at differ-
ent temperatures, so the change in configuration density
generated by the electric field does not vary, but the re-
laxation time increases as the activation enthalpy H#

and entropy S# increases. Put together with the fact
that in structural glass formation small local regions
are attempting to adopt a crystalline structure, this data
indicates that there are local values of ground-state con-
figuration entropy that reduce as Tg is approached, with
a transition state involving a disordering of the local
regions to free the dipole enough to let it adopt an al-
ternative orientation in an equally ordered but different
configuration. The dipole density fluctuations that cou-
ple to the electric field seem to involve reorganisations
of the structure that can occur without a change in the
value of the heat content H , i. e. they are essentially
configuration entropy fluctuations rather than thermal
fluctuations. In contrast to the ferroelectric situation the
slowing down of the relaxation is not caused by longer-
range correlations but by the increasingly larger numbers
of molecular adjustments required to achieve a dipole
reorientation.

The message of this section is that in most cases
a detailed molecular description of the dipole motions
is generally not accessible just from an analysis of the
dielectric response. The reason is that, in general, dipole
reorientations involve adjustments in the surrounding
molecules/atoms that are not easy to define in molecular
terms. However by putting together the behaviour of the
dielectric increment and relaxation frequency it should
be possible to obtain some general idea as to the extent
of the connection of the reorientation to the molecular
environment and the way in which it takes place.

10.3.3 The Relaxation Peak Shape

The explanation of the frequency dependence of the
susceptibility is currently the most contentious of the
features of the dielectric response. Many workers are
content with just defining the shape by one or other
of the empirical functions mentioned in Sect. 10.2.2, or
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through the power-law exponents of (10.20, 10.21). This
gives a fingerprint of the dipole dynamics but no more.
In particular it does not provide a description of the
equation of motion of the dipole density fluctuation.
Others determine what is termed a distribution of re-
laxation times for the loss peak in χ ′′

r (ω). Essentially
this approach is predicated on the assumption that the
broadening of the loss peak compared to that of the De-
bye response (10.19) is the result of dipoles of the same
type and dipole moment that each relax according to the
Debye equation of motion (10.17) but possess differ-
ent relaxation times with a distribution denoted by g(τ),
which is defined via (10.43)

χ ′′
r (ω) =

∞∫

0

g(τ)
χ0ωτ

1+ω2τ2
dτ . (10.43)

This construction is still no more than a fingerprint un-
less a physical reason for the distribution g(τ) can be
found. Usually this is ascribed to a distribution of lo-
cal activation energies associated with dipoles that each
exist in their own potential surface independent of one
another. The system usually quoted as an example is
that of the β-response in the rigid glassy phase, which
typically has a very broad loss peak. In this case it is
assumed that each dipole that can reorient to contribute
to the β-response is essentially trapped in a local po-
tential surface that is held rigid in the glass state. Of
course the potential surface is not truly rigid, molecu-
lar/atomic vibrations must take place, but it is assumed
that their effect on the potential averages out during the
relaxation and their only effect is to raise the energy
state of the reorienting dipole head to the state at the top
of the barrier. One problem associated with this expla-
nation of the origin of g(τ) is that, if the function g(τ)
is independent of temperature the values of exponents
n and m (10.20), (10.21) will be temperature depen-
dent. This does not seem to be the case in general, with
these exponents usually either constant or changing at
the most slowly or discretely at a transition of state (see
for example [10.8, 56]), but there is no real agreement
on this point. Of course a temperature-dependent dis-
tribution function g(τ) may be assumed, but then the
question arises as to why it is temperature dependent in
a system that is presumed to be macroscopically rigid.
Another facet of the problem associated with non-Debye
loss peaks that does not seem to have received any con-
sideration is the possibility that the magnitude of the
reorientable dipole moment associated with each site
of a given activation energy is also distributed. It is
clear that this is highly likely even if the dipole mo-

ment that changes direction is the same everywhere, as
illustrated in Fig. 10.7. Also, as described in Sects. 10.2
and 10.3, the local dipole may be correlated with other
dipoles or its surroundings, and in this case we can
expect the Debye rate equation not to hold. The fer-
roelectric result (Sect. 10.3.2) already shows that this is
the case when the dipoles motions are correlated giv-
ing the system a scale relationship in its dynamics, and
even correlation between the dipole and its surroundings,
for which there is considerable evidence (Sects. 10.2
and 10.3) can be expected to alter the form of the equa-
tion of motion from (10.17), by for example anharmonic
coupling between the various modes. Even if we assume
that all the criteria for the application of (10.43) are met,
the g(τ) that are required to fit the experimental form
of response defined by (10.20), (10.21) [and its corre-
sponding theoretical response function, (10.22)] have
unique features that require a physical justification, i. e.
there is a cusp or sharp peak at the value of τ corre-
sponding to the characteristic frequency (τc = 1/γ ), and
power-law wings to either side whose power exponents
are 1−n[g(τ) ∝ τ1−n] for τ < τc, and −m[g(τ) ∝ τ−m]
for τ > τc. In the Debye case the distribution becomes
a delta function at the characteristic relaxation time. Es-
sentially the distribution of relaxation times approach is
convenient but it is not as easy to justify as would seem
at first sight.

The Williams and Watt response function [10.28]
started life as a heuristic suggestion but has received
some later theoretical support [10.57–62]. The dynamic
scaling behaviour appropriate to ferroelectrics gives
a clue as to the way in which a frequency-dependent sus-
ceptibility of the form of (10.20) can come about, which
results from both the equation of motion (10.22) and
the response function (10.26). Essentially there has to
be a self-similarity (or scaling) between the relaxation
frequency of subcomponents of the system and their
contribution to the dielectric increment (as illustrated
in the circuit model of [10.8]). The theory proposed
by Palmer et al. [10.60] refers this scaling to the re-
moval of a hierarchy of constraints, thus for example
we may imagine that close neighbours move quickest
and remove the constraints imposed on larger groups of
molecules and so on. This picture would be appropriate
to a system such as a glass-forming material. The as-
sumption however is that the motions are overdamped
at all levels of the hierarchy, and hence no bridge is
provided to the oscillatory motions known to occur
at times close to quantum vibrations. A rather differ-
ent stochastic approach has been taken by Weron and
Jurlewicz [10.61, 62] who assumed that the system re-
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laxation followed a path in which the fastest dipoles out
of a distribution relaxed first and then the fastest out
of the residual distribution and so on. The key feature
is that the relaxing dipole is the extreme fastest from
the distribution existing at the time. It was argued that
the extreme-value statistical distribution function then
led automatically to the response function of (10.26).
The choice of appropriate extreme-value distribution
was made on the grounds that the relaxation time was
a positive definite variable. However this is not a suf-
ficient criterion [10.63]. In order for (10.26) to apply
the continuous distribution density of relaxation times
(i. e. the distribution the system would have if it were
of infinite size) has to be stable to scale changes (see
for example [10.64]) and thus has to approach the ex-
treme of long times as an inverse power law, otherwise
a different extreme value statistic or none at all applies.
The required form of distribution from which an ex-
treme selection has to be made is one that applies to
the size distribution of scaling systems [10.65] such as
percolation clusters [10.66] for example. So even with
this stochastic approach we are led back to a system for
which the dynamics scale in some way.

The Dissado–Hill function [10.23,24] for which the
response function obeys (10.22) also has scaling fea-
tures as its basis, however unlike the other approaches
it starts with the vibration dynamics of the system. It is
assumed that a dipole that can reorient couples local vi-
bration modes to itself. These are no longer extended
normal modes but modes centred on the dipole that
reduce in frequency according to the molecular mass
involved. Their frequencies lie in the region between
optical modes and the relaxation frequency and have
a scaling relationship one to another. In the theory of
Nigmatullin and Le Mehaute [10.67, 68], the modes are
impulses that are involved in the dipole relaxation pro-
cess whose time of action is scaled, i. e. the longer the
time of action the more correlated they are to the dipole
motion. In general these modes are local versions of
coupled optical and acoustic modes and it is not surpris-
ing that they extend to such low frequencies as those
involved in relaxation, as acoustic modes essentially ex-
tend to zero frequency. Their coupling with the dipole
leads to the high-frequency power law of (10.20), where
n expresses the extent to which the dipole reorientation
couples to the surroundings, i. e. n = 0 corresponds to
no coupling and the dipole moves independently of its
surroundings, and n = 1 corresponds to full coupling in
which the dipole motion is just part of the local mode.
In a sense the short-time development of the response
function of (10.22) is that of the changes in the con-

figuration entropy as various amounts of different local
modes are progressively coupled into the dipole mo-
tion [10.23]. In this case there is no necessity for n to be
temperature dependent. At the characteristic relaxation
frequency, the characteristic dipole group relaxes and
transfers energy to the heat bath. The low-frequency be-
haviour of (10.21) is the result of a distribution in the
ensemble of locally coupled dipole motions. This oc-
curs because the motions of local dipole centres may be
weakly coupled to one another. As a result the relaxation
of the centres proceeds in a scaled or self-similar man-
ner. First the dipole in a local centre relaxes with respect
to its own environment, this leaves each dipole cen-
tre unrelaxed with respect to one another. Next groups
of dipole centres, with some arrangement depending
upon the specific structure involved, relax as a group.
Then groups of groups relax and so on. Each level of
inter-group complexity essentially has a time scale as-
sociated with its relaxation that cannot be reached until
the preceding level has been completed. This is rather
similar to the constraint relaxation concept of Palmer
et al. [10.60]. The power-law exponent m expresses the
way that this hierarchy of relaxing groups is scaled, by
defining the power-law tail of the distribution of inter-
group relaxation times in the ensemble [10.69]. A value
of m = 1 corresponds to a sequence of inter-group relax-
ations with a relaxation time that is proportional to the
number of groups involved in the sequence [10.69]. This
implies that the sequential events are uncorrelated, i. e.
the long-time relaxation is a white-noise (random) pro-
cess [10.23]. When combined together with n = 0 the
Debye response is recovered. On the other hand a value
of m approaching zero corresponds to relaxation times
that are a very high power of the number of groups in-
volved [10.69] and indicates a very strong connection
between groups at all levels of the hierarchy. This will
spread the response to very low frequencies, as observed.
Essentially m is a measure of the extent to which energy
is transferred to the heat bath (dissipated) at each level
of the hierarchy compared to being stored in the inter-
group interactions of the next level. Again scaling is at
the basis of the theory, but now with two different ways
in which it can be involved. This theory is not generally
accepted. The controversial parts of the theory are firstly
the coupling of the dipole motions with vibration modes,
which modifies the oscillator behaviour towards an over-
damped form, and secondly the hierarchy of relaxations
whereby energy is transferred to the heat bath. How-
ever it should be noted that the susceptibility function
that results has a general form that agrees well with ex-
periment. In addition the concepts are reasonable given
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the complexity that is likely to occur in the internal mo-
tions once an ideal crystalline regularity is ruled out by
the possibility of dipole reorientation. Thus for exam-
ple this concept would apply to the dipoles involved in
the β-response of the glass state as well as correlated
motions of dipoles over long distances, since even in
a macroscopically rigid material local vibrations take
place. In fact the limited regions of local order in a glass
phase can be expected to favour such local modes and
increase the coupling of the dipole motions with them,
as observed.

The Information Content
of the Loss Peak Shape
It is clear from the foregoing discussion that for all the-
oretical models of the loss peak shape the characteristic
or loss peak frequency is but the culmination of a pro-
cess in which subsections of the dipole and environment
(with or without dipoles) are mixed into the motion of
the dipole centre. In these models the dipole is not an
independent entity, but rather an entity that is connected
to some extent over a region that may be small or large.
This implies that the dipole is not a particle that re-
laxes on a rigid potential surface independently of its
environment. Only the distribution of relaxation times
approach preserves the latter concept. If the theoretical
models are correct they reflect the fact that we are look-
ing at entities that are not truly of molecular scale but
are of a mesoscopic nature. The correlations noted to
occur in χ0 and the need to use free energy rather than
potential surfaces in describing the relaxation frequency

support this view. The local entities involved are how-
ever not rigid features like permanent dipoles, and for
this reason we should expect there to be weak connec-
tions between them that can be expected to relate to the
way in which the relaxation of the whole system takes
place. That is, not all entities relax at the characteristic
time. As one entity relaxes its neighbours have to come
into equilibrium with its new orientation and the system
approaches equilibrium more slowly [i. e. as the time
power law t−(1+m)] than the exponential behaviour of
the Debye response function or the expanded exponen-
tial function. The information contained in the loss peak
shape indicates the way in which a dipole density fluctu-
ation evolves from its state when initially created to an
ensemble of mesoscopic dipole centres. The broadening
of the peak from that of a Debye peak indicates the in-
volvement of faster and slower processes as part of the
overall mechanism, whatever their detailed origin, and
in particular processes that have a scale relationship to
one another. This must apply even to a distribution of re-
laxation times because of the unique form required for
that distribution. Equation (10.22) implies an equivalent
description that refers the overall relaxation process to
a conversion of the vibration oscillation at short times to
an overdamped motion as the dipole density fluctuation
dissipates its energy irreversibly. In this sense evaluation
of the shape parameters n and m give a means of describ-
ing this conversion process. At the very least they give
a sense of the scaling involved in spreading the relaxation
process around the characteristic relaxation frequency or
equivalently the characteristic relaxation time.

10.4 Charge Transport

All dielectrics possess a constant (DC) conductiv-
ity (σDC), although usually it is very weak. Since
χ ′′(ω) = σ(ω)/ω as demonstrated in Sect. 10.1 (10.10),
it would be expected that a dielectric response at low
frequencies ( f � 10−2 Hz) would take a form in which
χ ′′(ω) = σDC/ω and χ ′ is independent of frequency. In
many cases however the conduction process is blocked
at the electrodes or internal interfaces. In this case
the DC conduction charges the interface, which be-
haves as a capacitor, and the whole system behaves
as a single dipole. As long as the interface does not
possess relaxation dynamics of its own, the response
that would be observed is that given by the Debye re-
sponse of (10.18, 10.19), with τ = 1/γ = RCi, where R
is the resistance of the body of the material and Ci is the

capacitance of the interface. The measured dielectric in-
crement χ0 = dCi/A, where A is the electrode area and
d is the sample thickness, and can be very large de-
pending upon the ratio of the sample thickness to that
of the interface. The situation where the interface has
a frequency-dependent capacitance has been thoroughly
discussed by Jonscher [10.6] who has shown thatχ ′

r(ω)
is modified from χ ′

r(ω) ∝ ω−2(ω > γ ) to χ ′
r(ω) ∝ ω−q ,

while χ ′′
r (ω) ∝ (1/ω)(ω > γ ) as in (10.19). The value of

q lies in the range 1 < q < 2 with its value depend-
ing upon the frequency dependence of the interface
capacitance.

The bulk DC conductance arises from charged par-
ticles whose movements are not bound to a charge
of the opposite polarity as in dipoles but are free to
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move independently of their countercharge, resulting in
a net charge displacement in the same way that a li-
quid flows. However the transport of charged particles
within the body of the sample can give rise to a very
different form of response when their movement lies
along defined paths such that the longer the displace-
ment of the charge the lower the number of paths or
equivalently the more difficult the transport becomes.
This behaviour was called low-frequency dispersion by
Jonscher [10.6, 20] and quasi-DC conduction (q-DC)
in the theoretical model of Dissado and Hill [10.70]
who wished to distinguish it from low-frequency dipole
responses. At frequencies below some characteristic
value ωc this form of response takes the form,

σ(ω) ∝ ω1−p

[
i. e. χ ′′

r (ω) ∝ χ ′
r(ω) ∝ ω−p

]
, ω < ωc (10.44)

and at frequencies above ωc,

σ(ω) ∝ ωn

[
i. e. χ ′′

r (ω) ∝ χ ′
r(ω) ∝ ωn−1

]
, ω > ωc . (10.45)

The power-law exponents p in (10.44) and n in (10.45)
have positive fractional values near to unity. It is obvi-
ously difficult to identify a value of p close to unity
from measurements of χ ′′

r (ω) [or equivalently σ(ω)]
and in many cases it is assumed that the measured
behaviour shows a static (DC) conductivity. It is then
common to subtract its supposed value from the meas-
ured data for σ(ω) to obtain an expression for the dipole
relaxation response supposedly responsible for the be-
haviour at ω > ωc. The values obtained in this way for
χ ′′

r (ω) at frequencies ω < ωc will not be zero as σ(ω)
is not in fact constant, instead they will reduce as the
frequency is reduced. This procedure yields a spuri-
ous loss peak in χ ′′

r (ω) if the response is actually due
to the q-DC mechanism, for which the high-frequency
behaviour is an essential component of the whole
q-DC mechanism and can never be resolved as a sep-
arate peak in χ ′′

r (ω). The way to be certain that the
response is really of the q-DC form is to measure the
frequency response for χ ′

r(ω) and show that it takes the
same frequency dependence. A convenient check is to
determine the ratio of χ ′′

r (ω) to χ ′
r(ω) (i. e. tan δ) which

will have a constant value [10.6, 20] given by

χ ′′
r (ω)/χ ′

r(ω) = tan δ = cot[(1− p)π/2] . (10.46)

Here tan δ is called the loss tangent and δ is the phase an-
gle between the real and imaginary components of the

susceptibility. This relationship holds for pairs of val-
ues of χ ′

r(ω) and χ ′′
r (ω) at the same frequency even if

the measurements are noisy and so make it difficult to
determine accurately the value of p from the frequency
dependence. Another situation where it is difficult to
detect the q-DC behaviour occurs in heterogeneous ma-
terials when one component has a low DC conductivity.
This will add to the AC component, (10.44) and obscure
the q-DC behaviour. In this case the DC conductivity can
be eliminated from the data, if it is available over a large
enough frequency range, by applying the Kramers–
Kronig transform of (10.25) to obtain the function χ ′′

r (ω)
without the DC component (σDC/ω). The validity of
the procedure can be checked by applying the inverse
transform (10.24) to the measured data for χ ′′

r (ω). This
should yield the measured χ ′

r(ω) since the DC conduc-
tivity does not contribute to the real component of the
susceptibility.

The q-DC behaviour, (Fig. 10.10a), is most of-
ten found in materials that are heterogeneous on
a mesoscopic scale such as ceramics [10.71],
rocks [10.72], porous structures [10.73], and biologi-
cal systems [10.74]. In these materials charged particles
are transported via structured paths over some finite
range. The transported charge and its countercharge give
rise to an effective dipole with a large dipole moment.
However the q-DC behaviour rarely appears as an iso-
lated response. Because of the heterogeneous nature of
the materials it is usually found to be electrically in
series with other dielectric response elements such as
interface capacitances, and electrically in parallel with
a capacitive circuit element. The origin of the q-DC be-
haviour lies in a hidden scale relationship, with the
dipole contribution to the susceptibility increment and
its relaxation time both being a power of the length over
which the transport takes place. The circuit models of
Dissado and Hill et al. [10.8, 75] show how this be-
haviour can be produced when the system is represented
by a geometrically self-similar arrangement of transport
paths and blocking capacitive regions. Such geometri-
cal regularity is not essential however [10.76]; a random
arrangement of conductors (transport paths) in a dielec-
tric (i. e. residual set of capacitances) will also result
in the q-DC behaviour. It is clear that this construc-
tion yields percolation clusters below the size necessary
to span the material, and these sub-percolation clusters
will of necessity possess scaling relationships depen-
dent on their size and the number of paths within them,
and between clusters of different sizes. Such percolation
systems also show q-DC behaviour when below their
critical limit [10.77]. The theory proposed in [10.70]
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p = 0.985
n = 0.8
ωc = 9 × 102 Hz
Cc = 6.5 × 10–7 Hz

Fig. 10.10 (a) A schematic representation of the frequency
dependence of σ(ω) for the q-DC process, (b) the equiva-
lent q-DC susceptibility function χ(ω)/χc ∝ (1+ iωτ)n−1

2 F1[1−n; 1+ p; 2−n; (1+ iωτ)−1] derived from the re-
sponse function of (10.47) fitted to data from the leaf of
Nicotania (Solanaceae), the inset gives the fitting param-
eters, with ωc ≡ 1/τ , and Cc ≡ χc. This data was chosen
as it exhibits an isolated q-DC process. As before 2 F1(, ; ;)
is the Gaussian hypergeometric function; see [10.25]. Af-
ter [10.79]

described the q-DC mechanism in similar terms to that
used in percolation theory. At high frequencies they as-
sumed that the charged particles had a short range of
motion restricted to local clusters in which they were
bound to their countercharges. The power-law exponent
n reflected the extent of binding of the motions of the
charges in the cluster and the local motions in the same
way as for the dipole motions. Its value close to one
indicates that the binding is strong and that the polar-
isation of the local clusters increases only to a small
extent as the frequency is lowered, i. e. the net dis-
placement of positive and negative charge is local and
small. At the characteristic frequency the charged par-
ticles become free of their locality and are able to move

over much longer distances. The range allowed by the
AC frequency increases as the frequency reduces, but
the number of effective routes decreases as the dis-
tance becomes longer and hence the current becomes
smaller. This leads to the weak dependence of the con-
ductivity upon the AC frequency defined in (10.44). In
the zero-frequency limit σ(ω) = 0, which means that
there are no paths across a system of infinite length,
i. e. the system is formally below the percolation limit.
Of course in reality the sample is of finite size and
some routes may cross the sample, leading to a termi-
nation of the q-DC behaviour at low frequencies, either
by a blocking capacitance at the electrodes or a weak
DC current [10.78]. The theory leads to an analytical
expression for the q-DC susceptibility in terms of a con-
fluent hypergeometric function [10.25] (see [10.70] for
the detailed expression), which is obtained from a re-
sponse function that obeys an equation of motion similar
to that of the permanent dipoles

d2φ

dt2 + (2+n + t/τ)

t

dφ

dt
+ [n + (t/τ)(1− p)]

t2 φ = 0 .

(10.47)

At times t < τ = 1/ωc the behaviour of the dipole
density fluctuation is the same as that appropriate for
permanent dipoles (10.22) with the same limiting solu-
tion, i. e. φ(t) ∝ t−n at t < τ . At long times t > τ = 1/ωc,
however, it takes a different form in which the dipo-
lar fluctuation relaxation has only a weak dependence
on t, i. e. φ(t) ∝ t p−1 at t > τ . An example of the q-
DC behaviour in frequency is given in Fig. 10.10b. The
reader is referred to [10.74, 79, 80] for other exam-
ples.

In the limit of p = 1[σ(ω) = constant; ω < ωc], the
last term of (10.47) is zero in the limit t > τ at which
time the decay of φ is governed by the first two terms.
The solution for φ(t) now takes the form

φ(t) ∝ t−n , t < τ ,

φ(t) ∝ exp (−t/τ) , t > τ . (10.48)

In this case we can see that the dipole density fluctua-
tions are produced within the local clusters and that they
relax by freeing the charges to move independently at
t = τ . At this time there is a density of completely free
charged particles with charge and countercharge can-
celling throughout the system giving a net dipole of zero
as in a true DC-conduction process.
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10.5 A Few Final Comments

The basic difficulty associated with the interpretation
of dielectric responses is that they are of necessity
macroscopic measurements made on samples that con-
tain enormous numbers of atoms and molecules. In
condensed-phase materials it is not possible to con-
sider these systems as made up of local entities each
moving independently of one another. All entities that
contribute a permanent dipole are part of the condensed-
phase structure, and even though they have a degree of
freedom associated with the possibility of dipole reori-
entation, they will have motions that are correlated or
connected to some extent to the molecules/atoms in their
environment. This means that dipole reorientation is not
that of a bare entity; instead it involves to some extent
a local region. These regions will behave differently in
different kinds of material and their definition and the
way of describing their behaviour has not yet been es-
tablished with any sort of rigour. Since we are dealing

with a macroscopic measurement, there will of neces-
sity be an ensemble of the local entities. This will result
in a distribution of entities, but since these are part of the
structure there will be some sort of connection between
them unless the structure itself is disconnected dynami-
cally. This means that fluctuations will take place among
our entities, and perhaps even dissociation and amalga-
mation. These effects will also have an influence on the
relaxation dynamics. In the foregoing I have tried to give
some simple pictures as to what is happening and to do
so in a holistic way by correlating information from dif-
ferent facets of the measurement. What is abundantly
clear is that the dynamics of such systems are very com-
plicated in detail, but I hope that I have done enough to
convince you that there are some basic features of the re-
laxation process that are common to all systems of this
type, even though a full understanding of their nature
does not yet exist.
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