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Applied Statistical Methods and
the Chemical Industry

Stephen Vardeman* and Robert Kasprzyk**

INTRODUCTION

The discipline of statistics is the study of
effective methods of data collection, data
summarization, and (data based, quantitative)
inference making in a framework that explic-
itly recognizes the reality of nonnegligible
variation in real-world processes and meas-
urements.

The ultimate goal of the field is to provide
tools for extracting the maximum amount of
useful information about a noisy physical
process from a given investment of data col-
lection and analysis resources. It is clear that
such a goal is relevant to the practice of indus-
trial chemistry. The primary purposes of this
chapter are to indicate in concrete terms the
nature of some existing methods of applied
statistics that are particularly appropriate to
industrial chemistry, and to provide an entry
into the statistical literature for those readers
who find in the discussion here reasons to
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believe that statistical tools can help them be
effective in their work.

This chapter will begin with some simple
ideas of modern descriptive statistics, includ-
ing numerical and graphical data summariza-
tion tools, and the notions of fitting equations
to data and using theoretical distributions.
Next, some tools for routine industrial process
monitoring and capability assessment, concen-
trating primarily on the notion of control chart-
ing, will be presented. This will be followed
by a more extensive discussion of common sta-
tistical data collection strategies and data
analysis methods for multifactor experimental
situations met in both laboratory and produc-
tion environments. This section will touch on
ideas of partitioning observed variation in a
system response to various sources thought to
influence the response, factorial and fractional
factorial experimental designs, sequential
experimental strategy, screening experiments,
and response surface fitting and representa-
tion, Next come brief discussions of two types
of special statistical tools associated specifi-
cally with chemical applications, namely, mix-
ture techniques and nonlinear mechanistic



model building. A short exposition of chemical
industry implications of relationships between
modern business process improvement pro-
grams and the discipline of statistics follows.
The chapter concludes with a reference section
listing sources for further reading.

SIMPLE TOOLS OF DESCRIPTIVE
STATISTICS

There are a variety of data summarization or
description methods whose purpose is to
make evident the main features of a data set.
(Their use, of course, may be independent of
whether or not the data collection process
actually employed was in any sense a “good”
one.) To illustrate some of the simplest of
these methods, consider the data listed in
Table 5.1. These numbers represent aluminum
impurity contents (in ppm) of 26 bihourly
samples of recycled PET plastic recovered at
a Rutgers University recycling pilot plant.
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A simple plot of aluminum content against
time order, often called a run chart, is a
natural place to begin looking for any story car-
ried by a data set. Figure 5.1 shows such a plot
for the data of Table 5.1, and in this case reveals
only one potentially interesting feature of the
data. That is, there is perhaps a weak hint of a
downward trend in the aluminum contents that
might well have been of interest to the original
researchers. (If indeed the possible slight
decline in aluminum contents is more than
“random scatter,” knowledge of its physical ori-
gin, whether in actual composition of recycled
material or in the measurement process, pre-
sumably would have been helpful to the effec-
tive running of the recycling facility. We will
save a discussion of tools for rationally deciding
whether there is more than random scatter in a
plot like Fig. 5.1 until the next section.)

The run chart is a simple, explicitly
dynamic tool of descriptive statistics. In those
cases where one decides that there is in fact

TABLE 5.1 Twenty-Six Consecutive Aluminum Contents (ppm)?*

291,
102,

222,
87,

125,
183,

79,
60,

145,
191,

119,
119,

244,
511,

118,
120,

182,
172,

63,
70,

30,
30,

140,
90,

101
115

3Based on data in Albin.}
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Fig. 5.1. A run chart for 26 consecutive aluminum contents.
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Fig. 5.2. A histogram for 26 aluminum contents.

little information in the time order correspon-
ding to a data set, there are a variety of sim-
ple, essentially static, statistical tools that can
be used in describing the pattern of variation
in a data set. Figures 5.2-5.5 show graphical
representations of the data of Table 5.1 in,
respectively, histogram, stem and leaf plot,
dot plot, and box plot forms.

The histogram/bar chart idea of Fig. 5.2 is
likely familiar to most readers, being readily
available, for example, through the use of
commercial spreadsheet software. It shows
how data are spread out or distributed across
the range of values represented, tall bars
indicating high frequency or density of data
in the interval covered by the base of the bar.
Figure 5.2 shows the measured aluminum
contents to be somewhat asymmetrically dis-
tributed (statistical jargon is that the distri-
bution is “skewed right”), with a “central”
value perhaps somewhere in the vicinity of
120 ppm.

Histograms are commonly and effectively
used for final data presentation, but as
working data analysis tools they suffer from
several limitations. In one direction, their
appearance is fairly sensitive to the data
grouping done to make them, and it is usually
not possible to recover from a histogram the
exact data values used to produce it, should
one wish to try other groupings. In another
direction, histograms are somewhat unwieldy,

30,30
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Fig. 5.3. A stem and leaf plot for 26 aluminum
contents.

for example, not being particularly suitable
to the comparison of, say, 10 or 12 data sets
on a single page. The graphical devices of
Figs 5.3-5.5 are less common than the
histogram, but address some of these
shortcomings.

The stem and leaf diagram of Fig. 5.3 and
the dot plot of Fig. 5.4 carry shape informa-
tion about the distribution of aluminum con-
tents in a manner very similar to the
histogram of Fig. 5.2. But the stem and leaf
and dot diagrams do so without losing the
exact identities of the individual data points.
The box plot of Fig. 5.5 represents the “mid-
dle half” of the data with a box divided at
the 50th percentile (or in statistical jargon,
the median) of the data, and then uses so-
called whiskers to indicate how far the most
extreme data points are from the middle half
of the data.
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Fig. 5.6. Side-by-side box plots for three laboratory test methods.

Box plots preserve much of the shape infor-
mation available from the other displays
(e.g., portraying lack of symmetry through
differing sizes of box “halves” and/or whisker
lengths), but do so in a way that is conducive
to simultaneous representation and compari-
son of many data sets on a single graphic,
through the placement of box plots side by
side. Figure 5.6 illustrates this point with a
graphical comparison of three laboratory test
methods to a standard.

A total of 90 samples of a stock solution
known to contain 25 ppm of an impurity were
analyzed by a single lab team using three dif-
ferent test methods (30 of the samples being
allocated to each of the three methods), and the

box plots in Fig. 5.6 portray the measured
impurity levels for the different methods. The
figure shows quite effectively that Method A is
neither precise nor accurate, Method B is quite
precise but not accurate, and Method C is
somewhat less precise than B but is accurate.
This kind of knowledge can form the basis of
an informed choice of method.

Figures 5.2-5.6 give only a hint of the spec-
trum of tools of statistical graphics that are
potentially helpful in data analysis for indus-
trial chemistry. For more details and much
additional reading on the subject of modern
statistical graphics, the reader is referred to
the book by Chambers et al.? listed in the
references section.
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Complementary to graphical data sum-
maries are numerical summarizations. For the
simple case of data collected under a single
set of conditions, the most commonly used
measures deal with the location/center of the
data set and the variability/spread of the data.
The (arithmetic) mean and the median are the
most popular measures of location, and the
variance and its square root, the standard
deviation, are the most widely used measures
of internal variability in a data set.

For n data values y,, y,, ..., y, the median is

= the “middle” or * ; 1 th ordered data value
(5-1)
and the mean is
- 1<
Y= (5-2)

The reader is invited to check that upon order-
ing the n = 26 values in Table 5.1, the 13th
smallest value is 119 and the 14th smallest
value is also 119, so that the only sensible inter-
pretation of (5-1) for the aluminum content data
is that

= the 13.5th ordered data value

_ 119+ 119 _
2

On the other hand, from (5-2) the mean of the
aluminum contents is

= 119 ppm

y= % (291 42224125+ - +30+90+115)
=~ 142.7 ppm

The median and mean are clearly different
measures of location/center. The former is in
the middle of the data in the sense that about
half of the data are larger and about half are
smaller. The latter is a kind of “center of
mass,” and for asymmetrical data sets like that
of Table 5.1 is usually pulled from the median
in the direction of any “skew” present, that is,
is pulled in the direction of “extreme” values.

The variance of n data values y,, y,, ..., y, 1s
essentially a mean squared deviation of the

data points from their mean. In precise terms,
the variance is

E@,ﬁz (5-3)

n—l

and the so-called standard deviation is

SZV?:Jﬁjé@Fﬂz (54)

For the example of the aluminum contents, it
is elementary to verify that

$ = ﬁ [(291—142.7) + (222—142.7)
4 (115 — 142,77
~ 9,644 (ppm)*
so that

s=Vs =982 ppm

An appropriate interpretation of s is not com-
pletely obvious at this point, but it does turn
out to measure the spread of a data set, and to
be extremely useful in drawing quantitative
inferences from data. (In many, but not all,
circumstances met in practice, the range or
largest value in a data set minus the smallest
value is on the order of four to six times s.)
The variance and standard deviation are time-
honored and fundamental quantifications of
the variation present in a single group of
measurements and, by implication, the data-
generating process that produced them.

When data are collected under several dif-
ferent sets of conditions, and those conditions
can be expressed in quantitative terms, effec-
tive data summarization often takes the form
of fitting an approximate equation to the data.
As the basis of a simple example of this, con-
sider the data in Table 5.2. The variable x,
hydrocarbon liquid hourly space velocity,
specifies the conditions under which informa-
tion on the response variable y, a measure of
isobutylene conversion, was obtained in a
study involving the direct hydration of olefins.

For purposes of economy of expression, and
perhaps some cautious interpolation between
values of x not included in the original data



TABLE 5.2 Seven Liquid Hourly
Space Velocity/Mole % Conversion
Data Pairs®

Liquid Hourly Mole % Isobutylene
Space Velocity, x Conversion, y

1 23.0,24.5

2 28.0

4 30.9, 32.0,33.6
6 20.0

Based on a graph in Odioso et al.’

set, one might well like to fit a simple equa-
tion involving some parameters b, say,

y = fix|b)

to the data of Table 5.2. The simplest possible
form for the function f{x|b) that accords with
the “up then back down again” nature of the
conversion values y in Table 5.2 is the quad-
ratic form

(5-5)

fx|b) = by + byx + by (5-6)
and a convenient method of fitting such an
equation (that is linear in the parameters b) is
the method of least squares. That is, to fit a
parabola through a plot of the seven (x, y)
pairs specified in Table 5.2, it is convenient to
choose b, b,, and b, to minimize the sum of
squared differences between the observed
conversion values y and the corresponding
fitted values y on the parabola. In symbols,
the least squares fitting of the approximate
relationship specified by (5-5) and (5-6) to the
data of Table 5.2 proceeds by minimization of

27: i = (bo t bix; + bzx:z)]z
=

over choices of the coefficients . As it turns
out, use of standard statistical “regression
analysis” software shows that the fitting
process for this example produces the approx-
imate relationship

y=13.64 + 11.41x — 1.72x?

and Fig. 5.7 shows the fitted (summarizing)
parabola sketched on the same set of axes
used to plot the seven data points of Table 5.2.
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The least squares fitting of approximate
functional relationships to data with even mul-
tidimensional explanatory variable x typically
goes under the (unfortunately obscure) name
of multiple regression analysis, and is given an
introductory treatment in most engineering
statistics textbooks, including, for example,
the ones by Devore,* Vardeman and Jobe,’ and
Vardeman® listed in the references. A lucid
and rather complete treatment of the subject
can also be found in the book by Neter et al.”

A final notion that we wish to treat in this
section on descriptive statistics is that of rep-
resenting a distribution of responses and/or the
mechanism that produced them (under a single
set of physical conditions) by a theoretical
distribution. That is, there are a number of
convenient theoretical distributional shapes,
and it is often possible to achieve great econ-
omy of expression and thought by seeing in a
graphical representation such as Figs 5.2-5.5
the possibility of henceforth describing the
phenomenon portrayed via some one of those
theoretical distributions. Here we will concen-
trate on only the most commonly used theoret-
ical distribution, the so-called Gaussian or
normal distribution.

Figure 5.8 is a graph of the function of x

_ 1 - P«)Z) ]
g(x) W%D( Py (5-7

where g(x) specifies the archetypical “bell-
shaped curve” centered at the number u, with
spread controlled by the number o (and is in
fact usually called the Gaussian probability
density with mean u and standard deviation o).

Figure 5.8 can be thought of as a kind of
idealized histogram. Just as fractional areas
enclosed by particular bars of a histogram
correspond to fractions of a data set with val-
ues in the intervals represented by those bars,
areas under the curve specified in (5-7) above
particular intervals might be thought of as
corresponding to fractions of potential data
points having values in those intervals, (It is
possible to show that the total area under
the curve represented in Fig. 5.8, namely,
=*.,8(x)dx, is 1.) Simple tabular methods pre-
sented in every elementary statistics book
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Fig. 5.8. The Gaussian probability density with mean u and standard deviation o.

TABLE 5.3 Twenty-Six Logarithms of Aluminum Contents

5.67, 540, 4.83, 437, 498, 478,
462, 447, 521, 4.09,

5.50, 4.77,
5.25, 478, 6.24, 479,

520, 4.14, 3.40, 494, 4.62
5.15, 425, 3.40, 4.50, 4.74

avoid the need to regularly use numerical
integration in evaluating such areas. These
methods can, for example, be used to show
that roughly 68 percent of a Gaussian distri-
bution lies between u — ¢ and u + o, roughly
95 percent lies between p — 20 and u + 20,
and roughly 99.7 percent lies between u — 30
and w + 30. Part of the convenience provided
when one can treat a data-generating process
as approximately Gaussian is that, given only
a theoretical mean p and theoretical standard
deviation o, predictions of fractions of future

data values likely to fall in intervals of inter-
est are thus easy to obtain.

At this point let us return to the aluminum
content data of Table 5.1. The skewed shape
that is evident in all of Figs 5.2-5.5 makes a
Gaussian distribution inappropriate as a theo-
retical model for (raw) aluminum content of
such PET samples. But as is often the case with
right skewed data, considering the logarithms
of the original measurement creates a scale
where a normal distribution is more plausible
as a representation of the phenomenon under
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Fig. 5.9. A stem and leaf plot for the logarithms of
26 aluminum contents.

study. Thus, Table 5.3 contains the natural logs
of the values in Table 5.1, and the correspon-
ding stem and leaf plot in Fig. 5.9 shows the
transformed data to be much more symmetri-
cally distributed than the original data. The
possibility opened up by this kind of transfor-
mation idea is one of using statistical methods
based on the normal distribution to reach con-
clusions about Iny and then simply exponenti-
ating to derive conclusions about the original
response y itself. The applicability of statistical
methods developed for normal distributions is
thereby significantly broadened.

In addition to providing convenient concep-
tual summarizations of the nature of response
distributions, theoretical distributions such as
the normal distribution form the mathemati-
cal underpinnings of methods of formal
quantitative statistical inference. It is outside
our purposes in this chapter to provide a
complete introduction to such methods, but
thorough and readable accounts are available
in engineering statistics books such as those
of Devore* and Vardeman and Jobe.® Here,
we will simply say that, working with a
Gaussian description of a response, it is
possible to quantify in various ways how
much information is carried by data sets of
various sizes. For instance, if a normal distri-
bution describes a response variable y, then in
a certain well-defined sense, based on n = 26
observations producing a mean y and a stan-
dard deviation s, the interval with end points

¥ — 2.060s

5 1
7 + 2.060s /1+26

1+

:‘

and (5-8)
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has a 95 percent chance of predicting the
value of an additional observation. For
instance, applying formula (5-8) to the log
values in Table 5.3, the conclusion is that the
interval from 3.45 to 6.10 In(ppm) has a 95
percent chance of bracketing an additional log
aluminum content produced (under the physi-
cal conditions of the original study) at the
recycling plant. Exponentiating, the corre-
sponding statement about raw aluminum
content is that the interval from 31 to
446 ppm has a 95 percent chance of bracket-
ing an additional aluminum content. Methods
of statistical inference like that represented in
(5-8) are called prediction interval methods.
The book by Hahn and Meeker® provides a
thorough discussion of such methods, based
not only on the Gaussian distribution but on
other theoretical distributional shapes as well.

TOOLS OF ROUTINE INDUSTRIAL
PROCESS MONITORING AND
CAPABILITY ASSESSMENT

Probably the two most basic generic industrial
problems commonly approached using statis-
tical methods are those of (1) monitoring
and maintaining the stability/consistency of
a process and (2) assessing the capability of
a stable process. This section provides a brief
introduction to the use of tools of “control”
charting in these enterprises.

Working at Bell Labs during the 1920s and
1930s, Walter Shewhart developed the notion
of routinely plotting data from an industrial
process in a form that allows one to separate
observed variability in a response into two
kinds of variation. The first is that variation
which appears to be inherent, unavoidable,
short-term, baseline, and characteristic of the
process (at least as currently configured).
This variation Shewhart called random or
common cause variation. The second kind of
variability is that variation which appears to
be avoidable, long-term, and/or due to sources
outside of those seen as legitimately impact-
ing process behavior. This variation he called
assignable or special cause variation.

Shewhart reasoned that by plotting sum-
mary statistics from periodically collected
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data sets against time order of collection, one
would be able to see interpretable trends or
other evidence of assignable variation on the
plots, and could intervene to eliminate the
physical causes of that variation. The intention
was to thereby make process output stable or
consistent to within the inherent limits of
process precision. As a means of differentiat-
ing plotted values that should signal the need
for intervention from those that carry no spe-
cial message of process distress, he suggested
drawing so-called control limits on the plots.
(The word “control” is something of a mis-
nomer, at least as compared to common mod-
ern engineering usage of the word in referring
to the active, moment-by-moment steering or
regulation of processes. The nonstandard and
more passive terminology “monitoring limits”
would actually be far more descriptive of the
purpose of Shewhart’s limits.) These limits
were to separate plausible values of the plotted
statistic from implausible values when in fact
the process was operating optimally, subject
only to causes of variation that were part of
standard conditions.

By far the most famous implementations of
Shewhart’s basic logic come where the plotted
statistic is either the mean, the range, or, less
frequently, the standard deviation. Such charts
are commonly known by the names x-bar
charts, R charts, and s charts, respectively.
As a basis of discussion of Shewhart charts,
consider the data given in Table 5.4. These

TABLE 5.4 Measured Melt Indices for
Ten Groups of Four Specimens?®

Shift Melt Index y R s
1 218,224,220,231 22325 13 5.74
2 228,236,247,234 23625 19 7.93
3 280, 228,228,221 23925 59 2737
4 210, 249,241,246 23650 39 17.97
5 243, 240,230,230 23575 13 6.75
6 225, 250, 258, 244 24425 33 14.06
7 240, 238, 240,243 240.25 5 2.06
8 244,248, 265, 234 247.75 31 12.92
9 238,233,252,243 24150 19 8.10

10 228, 238,220,230  229.00 18 7.39

*Based on data from page 207 of Wadsworth, Stephens,
and Godfrey.’

values represent melt index measurements of
specimens of extrusion grade polyethylene,
taken four per shift in a plastics plant.

Figure 5.10 shows plots of the individual
melt indices, means, ranges, and standard devi-
ations from Table 5.4 against shift number. The
last three of these are the beginnings of so-
called Shewhart x, R, and s control charts.

What remain to be added to the plots in
Fig. 5.10 are appropriate control limits. In
order to indicate the kind of thinking that
stands behind control limits for Shewhart
charts, let us concentrate on the issue of limits
for the plot of means. The fact is that mathe-
matical theory suggests how the behavior of
means y ought to be related to the distribution
of individual melt indices y, provided the data-
generating process is stable, that is, subject
only to random causes. If individual responses
y can be described as normal with some mean
w and standard deviation o, mathematical the-
ory suggests that averages of n such values
will behave as if a different normal distribu-
tion were generating them, one with a mean
By that is numerically equal to u and with
a standard deviation ¢ that is numerically
equal to o/Vn. Figure 5.11 illustrates this the-
oretical relationship between the behavior of
individuals and the behavior of means.

The relevance of Fig. 5.11 to the problem of
setting control chart limits on means is that if
one is furnished with a description of the typ-
ical pattern of variation in y, sensible expecta-
tions for variation in y follow from simple
normal distribution calculations. So Shewhart
reasoned that since about 99.7 percent (most)
of a Gaussian distribution is within three stan-
dard deviations of the center of the distribu-
tion, means found to be farther than three
theoretical standard deviations (of y) from the
theoretical mean (of y) could be safely attrib-
uted to other than chance causes. Hence,
furnished with standard values for u and o
(describing individual observations), sensible
control limits for y become

Upper Control Limit (UCL) fory = u;+30;

o

=p+3
AV
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Returning to the context of our example
represented by the data of Table 5.4,
Wadsworth et al.” state that the target value

for melt index in the original application was
in fact 235. So if standard process behavior
is “on target” behavior, the value w = 235
seems appropriate for use in (5-9). No paral-
lel value for o was provided by the authors.
Common practice in such situations is to use
the data in hand (the data of Table 5.4) to pro-
duce a plausible value for o to use in (5-9).
There are many possible ways to produce
such a value, but to understand the general
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logic behind the standard ones, it is important
to understand what o is supposed to measure.
The variable o is intended as a theoretical
measure of baseline, short-term, common
cause variation. As such, the safest way to try
to approximate it is to somehow use only
measures of variation within the groups of
four values in Table 5.4 not influenced by
variation between groups. (Measures of varia-
tion derived from considering all the data
simultaneously, e.g., would reflect variation
between shifts as well as the shorter-term
variation within shifts.) In fact, the most com-
monly used ways of obtaining from the data in
hand a value of ¢ for use in (5-9) are based on
the averages of the (within-group) ranges or
standard deviations. For example, the 10 val-
ues of R given in Table 5.4 have a mean

R= T16(13+19+59+ c +19+18) = 24.9

and some standard mathematical theory sug-
gests that because the basic group size here is
n = 4, an appropriate multiple of R for use in
estimating o 1s

R _
2.059 2.1
(The divisor above is a tabled factor com-

monly called d,, which increases with n.)

(5-10)

Finally, substituting 235 for u and 12.1 for
o in (5-9) produces numerical control limits
for y:

(12.1)
LCL=1235-3-""=2169
Va
and
(12.1)
UCL =235 +3-—=2=253.1
V4

Comparison of the y values in Table 5.4 to
these limits reveals no “out of control” means,
that is, no evidence in the means of assignable
process variation. Figures 5.12 and 5.13 show
control charts for all of y, R, and s, where
control limits for the last two quantities have
been derived using standard calculations not
shown here.

The R and s charts in Figs 5.12 and 5.13 are
related representations (only one is typically
made in practice) of the shift-to-shift behavior
of melt index consistency. It is seen that on
both charts, the shift #3 point plots above the
upper control limit. The strong suggestion thus
is that melt index consistency was detectably
worse on that shift than on the others, so that
from this point of view the process was in fact
not stable over the time period represented in
Table 5.4. In practice, physical investigation
and hopefully correction of the origin of the

25 UCL=253.1
&
S 245 —
=
o 25 — Mean=235
= N\,
E
©° 225 —
7))
215 LCL=2169
T T T T T T T T T T
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Fig. 5.12. Control charts for ¥ and R based on melt indices.
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Fig. 5.13. Control charts for ¥ and s based on melt indices.

instability typically would follow, as well as
some reconsideration of our earlier assessment
of 12.1 as a plausible figure to represent the
inherent short-term variability of melt index.
(If shift #3 could be treated as a special case,
explainable as an unfortunate but correctable
situation that was not expected to reoccur,
there might be reason to revise R downward by
deletion of shift #3 from the calculation, and
thereby to reduce one’s view of the size of
baseline process variability. Notice that, in
general, such a downward revision of R might
well also have the effect of causing one to need
to rethink his or her assessment of the con-
stancy of the melt index mean.)

There is a variation on the basic “x and R
chart” idea that we wish to illustrate here
next, because of its frequent use in chemical
industry applications. That is the making of a
so-called x and MR chart pair. The motivation
for this modification of the ideas outlined
thus far in this section is that in many chemi-
cal process monitoring contexts the natural
“group size” isn = 1. A mean of n = 1 obser-
vation(s) is simply that observation itself,
and the limits of (5-9) make perfectly good
sense for the case of n = 1. That is, the ana-
log of an x chart for n = 1 cases is clear, at
least if one has an externally provided value
for a. But what, if anything, to do for an

n =1 counterpart of the R chart and how to
develop an analog of (5-10) in cases where o
is not a priori known are perhaps not so obvi-
ous. Table 5.5 contains data representing
moisture contents in 0.01 percent of bihourly
samples of a polymer, and the question at
hand is what besides simply the bihourly y
values might be plotted in the style of a
Shewhart control chart for such data.

The final column of Table 5.5 gives 19 so-
called moving ranges of pairs of successive
moisture contents. It is often argued that
although these MR values are actually affected
not only by variation within a 2-hr production
period but by some variation between these
periods as well, they come as close to repre-
senting purely short-term variation as any meas-
ure available from » = 1 data. Accordingly, as a
kind of n =1 analog of an R chart, moving
ranges are often charted in addition to individ-
ual values y. Further, the average moving range
is used to estimate ¢ in cases where information
on the inherent variability of individuals is a pri-
ori lacking, according to the formula

MR

estimated o = 1128

where MR is the mean of the moving ranges
(and plays the role of R in (5-10)), and 1.128
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is the n = 2 version of the factor d, alluded to
immediately below (5-10).
In the case of the data of Table 5.5,

W=1—19(16+4+5+---+ 16 + 18) ~ 8.2

so that a (possibly somewhat inflated due to
between period variation) data-based estimate

TABLE 5.5 Moisture Contents for

20 Polymer Samples?

Sample Moisture, y Moving Range, MR
1 36 —
2 20 16
3 16 4
4 21 5
5 32 11
6 34 2
7 32 2
8 34 2
9 23 11

10 25 2

11 12 13

12 31 19

13 25 6

14 31 6

15 34 3

16 38 4

17 26 12

18 29 3

19 45 16

20 27 18

aBased on data from page 190 of Burr.!

of within-period variability o for use, for
example in limits (5-9), is
8.2
1128~ "2

Figure 5.14 shows both an x (individuals)
chart and an MR (moving range) chart based
on these calculations. As no standard value of
moisture content was provided in Burr’s
text,'? the value y = 28.55 was used as a sub-
stitute for u in (5-9). The MR chart limits are
based on standard n = 2 (because ranges
of “groups” of two observations are being
plotted) R chart control limit formulas.
Figure 5.14 shows no evidence of assignable
variation in the moisture contents.

Statistical research in the last decade has cast
serious doubt on the wisdom of adding the MR
chart to the x chart in n = 1 situations. The
price paid for the addition in terms of “false
alarm rate” is not really repaid with an impor-
tant increase in the ability to detect process
change. For a more complete discussion of this
issue see Section 4.4 of Vardeman and Jobe.'*

The use of Shewart control charts is
admirably documented in a number of statis-
tical quality control books including those
by Vardeman and Jobe,!* Wadsworth et al.,’
Duncan,'! Burr,'® Grant and Leavenworth,'?
and Ott et al.'* Our purpose here is not to
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Fig. 5.14. Control charts for y and MR based on moisture contents of 20 polymer samples.



provide all details necessary for their use, but
only to give the reader an introduction to the
overall function that they serve. It should be
said, however, that in recent years other statis-
tical process monitoring tools such as the so-
called CUmulative SUM (CUSUM) schemes
and Exponentially Weighted Moving Average
(EWMA) schemes have been developed as
competing methodologies, and can in some
circumstances be practically more effective
than the original Shewhart charts. Indeed,
many computerized controllers for real-time
chemical process monitoring and adjustment
now employ some form of CUSUM or
EWMA logic. For more on these topics,
including their integration with model-based
process controllers, the reader is referred to
Sections 4.1 and 4.2 of Vardeman and Jobe!#
and Vander Wiel et al.!>

Shewhart’s basic conceptualization of com-
mon and special cause variation not only leads
to control charts as quantitative, rational tools
to guide one in knowing when (and when not!)
to intervene in an industrial process to correct
potential ills, but it also provides a framework
for considering the question of what is the
best/most consistent performance one can
hope for from a particular version of a process.
That is, it provides a framework for discussing
process capability assessment.

If & is some (standard deviation type) esti-
mate of the baseline variation inherent in an
industrial process (obtained, e.g., from a cal-
culation such as (5-10) or from data taken
from the process after eliminating all physical
sources of assignable variation), it essentially
specifies what is possible in terms of consis-
tency of process output. There are, however,
several common ways of using such an esti-
mate to produce related measures of process
capability.

For one thing, remembering again the fact
that an interval from p—30 to p+ 30
(i.e., of length 60) will bracket about
99.7 percent of a normal distribution, the
figure 60 is sometimes stated as “the process
capability.” This usage would say that in the
context of the polyethylene melt index exam-
ple of Table 5.4 the & = 12.1 figure from
(5-10) implies a melt index process capability
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of approximately 6 - (12.1) = 72.6. If prop-
erly monitored, the process appears capable of
producing almost all individual melt indices
in a 73-point range.

Where there are stated specifications for
individual measurements y, ¢ is sometimes
turned into a kind of index comparing it to the
difference in upper and lower engineering
specifications. For example, one such process
capability index 1s

_ USL—-LSL
G = 60

where USL — LSL is the difference in specifi-
cations. Fairly obviously, the larger the value of
Cp, the more comfortably (properly targeted)
process output values will fit in an interval
from LSL to USL.

Another process capability measure that is
frequently used in the industrial chemistry
sector is

USL —
C, = minimum {cpu =
_ m—LSL
o = 3o }

where  is an overall process average for an
in-control/stable/predictable process, and o is
as before. This measure is clearly similar to
C » but it takes into account the placement of
the process mean in a way that is ignored by
Cp. A large value of C, indicates that not only
is the process short-term variation small
enough for the process output values to poten-
tially fit comfortably between LSL and USL,
but that the process is currently so targeted
that the potential is being realized.

STATISTICAL METHODS AND
INDUSTRIAL EXPERIMENTATION

One of the most important areas of opportu-
nity for the new application of statistical
methods in the chemical industry in the
twenty-first century is that of increasing the
effectiveness of industrial experimentation.
That is, it is one thing to bring an existing
industrial process to stability (a state of
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“statistical” control), but it is quite another to
determine how to make fundamental changes
in that process that will improve its basic
behavior. This second activity almost always
involves some form of experimentation,
whether it be in the laboratory or in a plant.
As we indicated in the introduction, efficient
methods and strategies of such data collection
(and corresponding analysis) are a central
concern of applied statistics. In this section,
we hope to give the reader some insight into
the kinds of statistical tools that are available
for use in chemical industry experimentation.

We will here take as our meaning of the
term “experimentation” the observation of a
(typically noisy) physical process under more
than one condition, with the broad goal of
understanding and then using knowledge of
how the process reacts to the changes in con-
ditions. In most industrial contexts, the “con-
ditions” under which the process is observed
can be specified in terms of the settings or so-
called levels chosen for several potentially
important process or environmental variables,
the so-called factors in the experiment. In
some cases, the hope is to identify those
(often largely unregulated) factors and combi-
nations of factors that seem to most influence
an observed response variable, as a means of
targeting them for attention intended to keep
them constant or otherwise to eliminate their
influence, and thereby to improve the consis-
tency of the response. In other situations the
hope is to discover patterns in how one or
more critical responses depend on the levels
of (often tightly controlled) factors, in order
to provide a road map for the advantageous
guiding of process behavior (e.g., to an
increased mean reaction yield) through
enlightened changing of those levels.

This section is organized into two subsec-
tions. In the first, we will illustrate the notion
of variance component estimation through an
example of a nested or hierarchical data col-
lection scheme. In the second, we will discuss
some general considerations in the planning
of experiments to detail the pattern of influence
of factors on responses, consider so-called
factorial and fractional factorial experimental
designs, illustrate response surface fitting and

interpretation tools and the data requirements
they imply, and, in the process, discuss the
integration of a number of statistical tools in
a sequential learning strategy.

Identifying Major Contributors
to Process Variation

A statistical methodology that is particularly
relevant where experimentation is meant to
identify important unregulated sources of vari-
ation in a response is that of variance compo-
nent estimation, based on so-called ANalysis
Of VArnance (ANOVA) calculations and ran-
dom effects models. As an example of what is
possible, consider the data of Table 5.6 Shown
here are copper content measurements for some
bronze castings. Two copper content determina-
tions were made on each of two physical speci-
mens cut from each of 11 different castings.

The data of Table 5.6 were by design
collected to have a “tree type” or so-called
hierarchical/nested structure. Figure 5.15 shows
a diagram of a generic hierarchical structure for
balanced cases like the present one, where there
are equal numbers of branches leaving all nodes
at a given level (there are equal numbers of
determinations for each specimen and equal
numbers of specimens for each casting).

An important goal in most hierarchical
studies is determining the size of the contri-
butions to response variation provided by the
different factors, that is, the different levels of
the tree structure. (In the present context, the
issue is how variation between castings com-
pares to variation between specimens within a
casting, and how they both compare to varia-
tion between determinations for a given spec-
imen. If the overall variability observed were
considered excessive, such analysis could
then help guide efforts at variation reduction
by identifying the largest contributors to
observed variability.) The structure portrayed
in Fig. 5.15 turns out to enable an appealing
statistical analysis, providing help in that
quantification.

If one lets

Vi = the copper content from the kth
determination of the jth specimen
from casting i



Vi = %E Yy = the mean copper content
k determination from the
jth specimen from casting i

Vi = %E},j = the mean copper content
J determination from the
ith casting
and

V.= ﬁ Y y;. = the overall mean copper
i determination

it is possible to essentially break down the
variance of all 44 copper contents (treated as
a single group) into interpretable pieces, iden-
tifiable as variation between y,s (casting
means), variation between y,s (specimen
means) within castings, and variation between
Yas (individual measurements) within a
specimen. That is, it is an algebraic identity
that for 44 numbers y., with the same struc-
ture as those in Table 5.6

(@4 = 15 = Sy 5.
Ly
= E@z -y )+ EGU — i)
ik ijk

+§@W—mf (5-11)
Iyj

The sums indicated in (5-11) are over all data
points; so, for example, the first summand on
the right is obtained for the copper content
data by summing each (y.. — y..)* a total of
2 -2 = 4 times, one for each determination on
a given casting. With the obvious meaning for
the ys and the substitution of the total number
of data values for 44, the identity in (5-11)
applies to any balanced hierarchical data struc-
ture. It is a so-called ANOVA identity, provid-
ing an intuitively appealing partitioning of the
overall observed variability in the data, an
analyzing of the (observed) variation.

Some tedious arithmetic “by hand,” or use
of nearly any commercially available statisti-
cal package that includes an ANOVA pro-
gram, shows that for the copper content data
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TABLE 5.6 Forty-four Copper Content

Measurements from 11 Bronze

Casting  Specimen  Determination

O OO 00O ~I 1~~~ AN L bbbl bl WWWL DR — = ——

=]

10
10
10
10

11
11
11
11

PO — R = N mm DD mm N = N = RO = N = B = B = N m R = N = N = N = R — R — N = B = N = M) o N —

Castings®

Copper
Content, y, (%)

85.54
85.56
85.51
85.54

85.54
85.60
85.25
85.25

85.72
85.77
84.94
84.95

85.48
85.50
84.98
85.02

85.54
85.57
85.84
85.84

85.72
85.86
85.81
8591

85.72
85.76
85.81
85.84

86.12
86.12
86.12
86.20

85.47
85.49
85.75
85.77

84.98
85.10
85.90
85.90

85.12
85.17
85.18
85.24

3Based on data taken from Wernimont.!%
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Fig. 5.15. A balanced hierarchical data structure.

of Table 5.6 the numerical version of (5-11) is
approximately

5.1385=3.2031 + 1.9003 + 0.0351  (5-12)

Although we will not provide any details here,
the reader is alerted to the fact that it is com-
mon practice to present the elements of an
identity such as (5-12) in a tabular form called
an “ANOVA table.” The use for the elements
of (5-12) that we wish to illustrate here is their
role in estimating casting, specimen, and
determination “variance components.”

That is, if one models an observed copper
determination as the sum of a random cast-
ing-dependent effect whose distribution is
described by a variance o), a random
specimen-dependent effect whose distribution
is described by a variance o7, and a random
determination-dependent effect whose distri-
bution is described by a variance o7, the
elements of (5-12) lead to estimates of
the variance components o2, a2, and o in the
model. Note that in such a random effects
model of the data-generating process, copper
measurements from the same casting share
the same casting effect, and copper measure-
ments from the same specimen share the both
same casting and the same specimen effects.
The individual o values are conceptually the
variances that would be seen in copper con-
tents if only the corresponding sources of
variation were present. The sum of the o? val-
ues is conceptually the variance that would be
seen in copper contents if single determina-
tions were made on a number of different
castings.

A
0,2=.0016

Fig. 5.16. Three estimated variance components
for copper contents.

Standard statistical methodology for esti-
mation of the variance components (which
we will not detail here but can, e.g., be
found in Section 5.5 of Vardeman and
Jobe!* or Chapter 11 of Hicks and Turner!”)
produces

0.0351

"%‘:11-2-(2—1)

~0.0016 (%) 2

as an estimate of o7,

1.9003

AZ:l —_— - =1 0/\2
2 2<11.(2‘1) 0.0016) 0.0856 (%)

as an estimate of o7, and

52— 1 (32031 _ 19003
T 22\(1—-1) 11-2-1)

~ 0.0369 (%)*

as an estimate of 2. Figure 5.16 is a pie chart
representation of these three estimated variance



components as fractions of their sum (the vari-
ance predicted if single determinations were
made on single specimens from each casting),
and graphically identifies inhomogeneity
between specimens cut from a single casting as
the biggest contributor to observed variation.

On the standard deviation scale the esti-
mates translate to ¢ =~ 0.04%, @ =~ 0.29%,
=~ 0.19%. So, for example, the data of
Table 5.6 indicate that even if castings and
specimens were all exactly alike, it would still
be reasonable to expect measured copper con-
tents to vary according to a standard deviation
of about 0.04 percent, presumably due to
unavoidable measurement error.

Variance component estimation methodol-
ogy is not limited to balanced hierarchical
experiments, but they do provide an important
and straightforward context in which to intro-
duce the technology. More detailed informa-
tion on the case discussed here and extensions
to other kinds of data structures can be found
in books by Vardeman,® Neter et al.,” Mason,
Gunst, and Hess,'® and Hicks and Turner.!”

Discovering and Exploiting Patterns
of Factor Influence on Responses

Having discussed statistical methodology par-
ticularly appropriate to studies whose primary
purpose is simply to identify factors with the
largest influence on a response, we will now
consider methods aimed more directly at
detailed experimental quantification of the
pattern of factor influence on one or more
responses. As an example, we will use a
“sanitized” account of some statistical aspects
of a highly successful and economically impor-
tant process improvement project. (Data pre-
sented here are not the original data, but
resemble them in structure. Naturally, details of
the project not central to our expository pur-
poses and those of a proprietary nature will be
suppressed.) A more complete version of this
case study appears as Chapter 11 of Vardeman.®

The process monitoring, capability assess-
ment, and variance source identification ideas
discussed thus far are almost logical prerequi-
sites for industrial experimentation to detail
the nature of dependence of response vari-

APPLIED STATISTICAL METHODS 195

ables on factors of interest. When an industrial
process has been made to operate in a stable
manner, its intrinsic variability reduced to the
extent practically possible, and that baseline
performance quantified and understood, the
prospects of success are greatly enhanced for
subsequent efforts to understand the effects of
potential fundamental process changes.

Preliminary work by various groups left a
project team with a batch production process
behaving in a stable but unsatisfactory fashion.
Obvious sources of variation (both in the
process itself and “upstream”) had been identi-
fied and, to the degree practically possible,
eliminated. The result was a process with
an average output purity of 88 percent and an
associated purity standard deviation of around 5
percent, and an average yield of 43 percent and
an associated yield standard deviation of
around 5 percent as well. The project team was
charged with finding ways to increase the
purity and yield means to, respectively,
95 percent and 59 percent while it is hoped, also
further reducing the standard deviations. To
accomplish this, the team recognized the need
for an improved understanding of how various
process variables under their control influenced
purity (which we will call y,) and yield (which
we will call y,). Experimentation to provide this
was authorized, and, in particular, attention was
focused on four factors consisting of three reac-
tant concentrations and the process run time.
We will call the Reactant A mole ratio x,, the
Reactant B mole ratio x,, the Reactant C mole
ratio x;, and the run time (in hours) x,.

The choice of experimental factors (what to
vary in data collection) is a nontrivial matter of
fundamental importance that is best handled
by people with firsthand process knowledge.
There are a number of popular techniques and
tools (such as so-called cause and effect dia-
grams, discussed for instance in Section 2.1
of Vardeman and Jobe'#) for helping groups
brainstorm and reach a consensus on such
matters. Further, in cases where a priori
knowledge of a process is scarce, relatively
small preliminary screening experiments can
help reduce a large list of potential factors
to a smaller list apparently worthy of more
detailed study. (The fractional factorial
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plans that will be illustrated shortly often are
recommended for this purpose.)

Once a particular set of experimental factors
has been identified, questions about exactly
how they should be varied must be answered.
To begin with, there is the choice of levels for
the factors, the matter of how much the exper-
imental factors should be varied. Particular
experimental circumstances usually dictate
how this is addressed. Widely spaced (substan-
tially different) levels will in general lead to
bigger changes in responses, and therefore
clearer indications of how the responses
depend upon the experimental factors, than
will closely spaced (marginally different) lev-
els. But they may do so at the expense of poten-
tially creating unacceptable or even disastrous
process conditions or output. Thus, what may
be an acceptable strategy in a laboratory study
might be completely unacceptable in a produc-
tion environment and vice versa.

Given a set or range of levels for each of the
individual experimental factors, there is still
the question of exactly what combinations of
levels actually will be used to produce exper-
imental data. For example, in the process
improvement study, standard process operat-
ing conditions were x, =1.5, x,=1.15,
x; =175, and x, = 3.5, and the project team
decided on the ranges

10<sx <25 10=sx,<18 1.0=x;<25,

and (5-13)

as defining the initial limits of experimenta-
tion. But the question remained as to exactly
what sets of mole ratios and corresponding
run times were appropriate for data collection.

A natural (but largely discredited) strategy
of data collection is the one-variable-at-a-time
experimental strategy of picking some base of
experimental operations (such as standard
operating conditions) and varying the level of
only one of the factors away from that base at
a time. The problem with such a strategy is
that sometimes two or more factors act on
responses jointly, doing things in concert that
neither will do alone. For example, in the

process improvement study, it might well have
been that an increase in either x,; or x, alone
would have affected yield very little, whereas
a simultaneous increase in both would
have caused an important increase. Modern
strategies of industrial experimentation are
conceived with such possibilities in mind, and
attempt to spread out observations in a way
that gives one some ability to identify the
nature of the response structure no matter how
simple or complicated it turns out to be.

There are several issues to consider when
planning the combinations of levels to
include in an experiment. We have already
said that it is important to “vary several fac-
tors simultaneously.” It also is important to
provide for some replication of at least a
combination or two in the experiment, as a
means of getting a handle on the size of the
experimental error or baseline variation
that one is facing. The replication both ver-
ifies the reproducibility of values obtained
in the study and identifies the limits of that
reproducibility. Also, one must balance the
urge to “cover the waterfront” with a wide
variety of combinations of factor levels
against resource constraints and a very real
law of diminishing practical returns as one
goes beyond what is really needed in the
way of data to characterize response behav-
ior. In addition, the fact that real-world
learning is almost always of a sequential
rather than a “one shot” nature suggests that
it is in general wise to spend only part of an
experimental budget on early study phases,
leaving resources adequate to follow up
directions suggested by what is learned in
those stages.

It is obvious that a minimum of two different
levels of an experimental factor must appear in
a set of experimental combinations if any infor-
mation is to be gained on the effects of that fac-
tor. So one logical place to begin thinking about
a candidate design for an industrial experiment
is with the set of all possible combinations of
two levels of each of the experimental factors.
If there are p experimental factors, statistical
jargon for such an arrangement is to call it a
(complete) 2 X 2 X 2 X -+ X 2 or 2 factorial
plan. For example, in the process improvement



situation, an experiment consisting of the
running of all 16 possible combinations of

x, =10 or x,=25
X, = 1.0 or X, = 1.8
x; =10 or x;=25

and
X, = 20 or x,=35.0

would be called a complete 2 X 2 X 2 X 2 or
24 factorial experiment. Notice that in geo-
metric terms, the (x,, x,, x,, x,) points making
up this 2* structure amount to the 16 “corners”
in four-dimensional space of the initial exper-
imental region defined in (5-13).

A complete factorial experimental plan is
Jjust that, in some sense “complete.” It provides
enough information to allow one to assess (for
the particular levels used) not only individual
but also joint or interaction effects of the fac-
tors on the response or responses. But when in
fact (unbeknownst to the investigator) a sys-
tem under study is a relatively simple one,
principally driven by only a few individual or
low-order joint effects of the factors, fewer
data actually are needed to characterize those
effects adequately. So what is often done in
modern practice is initially to run only a care-
fully chosen part of a full 27 factorial, a so-
called fractional factorial plan, and to decide
based on the initial data whether data from the
rest of the full factorial appear to be needed in
order adequately to characterize and under-
stand response behavior. We will not discuss
here the details of how so-called 2779 frac-
tional factorials are intelligently chosen, but
there is accessible reading material on the
subject in books by Box, Hunter, and
Hunter,'” and by Vardeman and Jobe.’

In the process improvement study, what was
actually done in the first stage of data collec-
tion was to gather information from one-half
of a full 2* factorial (a 24~! fractional facto-
rial) augmented by four observations at the
“center” of the experimental region (thereby
providing both some coverage of the interior
of the region, in addition to a view of some of
its corners, and important replication as well).
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TABLE 5.7 Data from an Initial Phase
of a Process Improvement Study

Purity, Yield,
X Yy oon 5 % %
1.00 1.0 1.00 2.0 62.1 35.1
2.50 1.0 1.00 5.0 922 45.9
1.00 1.8 1.00 5.0 7.0 4.0
2.50 1.8 1.00 2.0 84.0 46.0
1.00 1.0 2.50 5.0 61.1 414
2.50 1.0 2.50 2.0 91.6 512
1.00 1.8 2.50 2.0 9.0 10.0
2.50 1.8 2.50 5.0 83.7 52.8
1.75 1.4 1.75 3.5 87.7 54.7
1.75 1.4 1.75 35 89.8 52.8
1.75 1.4 1.75 3.5 86.5 533
1.75 1.4 1.75 3.5 873 52.0

The data in Table 5.7 are representative of
what the group obtained.

The order in which the data are listed is
simply a convenient systematic one, not to be
confused with the order in which experimental
runs were actually made. The table order is far
too regular for it to constitute a wise choice
itself. For example, the fact that all x; = 1.0
combinations precede the x; = 2.5 ones might
have the unfortunate effect of allowing the
impact of unnoticed environmental changes
over the study period to end up being confused
with the impact of x, changes. The order in
which the 12 experimental runs were actually
made was chosen in a “completely random-
ized” fashion. For a readable short discussion of
the role of randomization in industrial experi-
mentation, the reader is referred to Box.2°

For purposes of this discussion, attention is
focused on the yield response variable, y,.
Notice first that the four y, values from the
center point of the experimental region have
y=1532 and s = 1.13 (which incidentally
already appear to be an improvement over
typical process behavior). As a partial indica-
tion of the logic that can be used to investigate
whether the dependence of yield on the exper-
imental factors is simple enough to be
described adequately by the data of Table 5.7,
one can compute some estimated “main
effects” from the first eight data points. That
is, considering first the impact of the variable
x, (alone) on yield, the quantity
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Vhighs, ~ Piowr, = §(45.9+46.0+51.2+52.8)

—1(35.1+4.0+41.4+10.0)
=26.35

is perhaps a sensible measure of how a change
in x, from 1.00 to 2.50 is reflected in yield.
Similar measures for the other variables turn
out to be

- 15.20

yhighx2 _ylowx2 =
yhighx3 _ylowx3 =6.10

and

yhighn - ylowx4 =045

These measures provide some crude insight
into the directions and magnitudes of influ-
ence of the experimental variables on y,.
(Clearly, by these measures x, = 2.50 seems
preferable to x, = 1.00, and the run time
variable x, seems to have little impact on
yield.) But they also provide strong evidence
that the nature of the dependence of yield on
the experimental factors is too complicated to
be described by the action of the factors indi-
vidually. For example, if it were the case that
the separate actions of the experimental fac-
tors were adequate to describe system behav-
ior, then standard statistical theory and the
data indicate that the mean response for the
x, =100, x,=1.0, x;,=1.00, and x,=2.0
set of conditions would be around

j\} =;comers - %(_2635 - %(_ 1520)

— 3(6.10) — 3(0.45) = 27.45

(where Ve 15 standing for the mean of the
first eight yields in Table 5.7). But the
observed yield of 35.1 is clearly incompatible
with such a mean and the standard deviation
value (of s = 1.13) derived from the repeated
center point. Also, other simple evidence that
(at least linear and) separate action of the four
factors is not enough to describe yield ade-
quately is given by the large difference
between Y omers = 35.8 and the observed mean
from the center point y = 53.2. (As it turns

TABLE 5.8 Data from a Second Phase of
a Process Improvement Study

Purity, Yield,
X1 X5 X3 X4 n(%) Yo(%)
1.00 1.0 1.00 5.0 64.0 353
2.50 1.0 1.00 20 91.9 472
1.00 1.8 1.00 2.0 6.5 3.9
2.50 1.8 1.00 5.0 86.4 459
1.00 1.0 2.50 2.0 63.9 395
2.50 1.0 2.50 5.0 93.1 51.6
1.00 1.8 2.50 5.0 6.8 9.2
2.50 1.8 2.50 2.0 84.6 543

out, calculations that we will not show here
indicate the possibility that individual action
of the factors plus joint action of the
Reactant A and Reactant B mole ratios is
sufficient to describe yield. But in any case,
the point is that the data of Table 5.7 provide
evidence that the pattern of dependence of
yield on the experimental variables is not
simple, and thus that completion of the 24 fac-
torial is in order.)

After a complete analysis of the first
round of experimental data, the project team
“ran the second half fraction” of the 2* fac-
torial, and data similar to those in Table 5.8
were obtained. (Again, no significance
should be attached to the order in which the
observations in Table 5.8 are listed. It is not
the order in which the experimental runs
were made.)

The data from the second phase of experi-
mentation served to complete the project
team’s 24 factorial picture of yield and con-
firm the tentative understanding drawn first
from the initial half fraction. It is seen that the
combinations listed in Table 5.8 are in the
same order as the first eight in Table 5.7 as
regards levels of experimental variables x|, x,,
and x,, and that the corresponding responses
are very similar. (This, by the way, has the
happy practical implication that run time
seems to have little effect on final purity or
yield, opening the possibility of reducing or at
least not increasing the standard run time.)
Thorough data analysis of a type not shown
here left the project team with a clear (and
quantified version of the) understanding that



Reactant A and B mole ratios have important
individual and joint effects on the responses,
and that, acting independently of the other
two reactants, Reactant C also has an impor-
tant effect on the responses. However, it did
not yet provide a solution to the team’s basic
problem, which was to reach a 59 percent
mean yield goal.

The data of Tables 5.7 and 5.8 do hold out
hope that conditions producing the desired
purity and yield can be found. That is, though
none of the 16 corners of the experimental
region nor the center point appeared to meet
the team’s yield goal, the data do show that
there is substantial curvature in the yield
response. (The joint effect of x, and x,
amounts to a kind of curvature, and the
non-linearity of response indicated by a
large difference between y ...~ 35.8 and
¥ =53.2 at the center of the experimental
region also is a kind of curvature.) If one
could “map” the nature of the curvature,
there is at least the possibility of finding
favorable future operating conditions in the
interior of the initial experimental region
defined in (5-13).

It ought to be at least plausible to the
reader that 2* factorial data (even supple-
mented with center points) are not really suf-
ficient to interpolate the nature of a curved
response over the experimental region. More
data are needed, and a standard way of aug-
menting a 2? design with center points to one
sufficient to do the job is through the addi-
tion of so-called star points to produce a cen-
tral composite design. Star points are points
outside the original experimental region
whose levels of all but one of the p experi-
mental factors match those of the center
point. Figure 5.17 shows graphical represen-
tations of central composite designs inp = 2
and p = 3 factors.

The project team conducted a third phase of
experimentation by adding eight star points to
their study and obtained data similar to those
in Table 5.9.

The data in Tables 5.7-5.9 taken together turn
out to provide enough information to enable
one to rather thoroughly quantify the “curved”
nature of the dependence of y, on x,, x,, x;, and
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x,. A convenient and often successful method
of accomplishing this quantification is through
the least squares fitting of a general quadratic
response surface. That is, central composite
data are sufficient to allow one to fit an equa-
tion to a response that involves a constant term,
linear terms in all the experimental variables,
quadratic terms in all of the experimental vari-
ables, and cross-product terms in all pairs of the
experimental variables. Appropriate use of a
multiple regression program with the project

Fig. 5.17. p=2 and p= 3 central composite
designs.

TABLE 5.9 Data from a Third Phase of
a Process Improvement Study

Purity, Yield,
X Xy X3 X4 y|(%) yZ(%)
0.6895 1.4 1.75 35 20.8 13.0
28105 14 1.75 35 95.9 54.3
1.75 0.8344 1.75 35 99.9 62.4
1.75 1.9656 1.75 35 65.9 41.2
1.75 1.4 0.6895 35 64.4 327
1.75 1.4 2.8105 3.5 64.8 40.3
1.75 1.4 1.75 1.379 88.1 52.7
1.75 1.4 1.75 5.621 88.9 50.5
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data represented here produces the fitted
equation

Vo= 154+ 37.9x, — 66.2x, + 48.8x,
+0.97x, — 16.1x} — 0.03x3
— 13.6x2 — 0.046x + 26.5x,x,
+ 0.344x,x; — 0.217xx,4
+ 1.3 1xx; — 0.365x,x, + 0.061x3x,4

This may not seem to the reader to be a par-
ticularly helpful data summary, but standard
multiple regression tools can be used to
deduce that an essentially equivalent, far less
cluttered, and more clearly interpretable
representation of the relationship is:

y,~13.8 + 37.8x, — 65.3x, + 51.6x;

—16.2x3 — 13.6x3 + 26.5x,x, (5-14)

Equation (5-14) provides an admirable fit to
the data in Tables 5.7-5.9, is in perfect agree-
ment with all that has been said thus far about
the pattern of dependence of yield on the exper-
imental factors, and allows one to do some
intelligent interpolation in the initial experi-
mental region. Use of an equation like (5-14)
ultimately allowed the project team to deter-
mine that an increase of x, only would, with
minimal change in the existing process, allow

X,

them to meet their yield goal. (In fact, the sin-
gle change in x, proved to be adequate to allow
them to meet all of their yield and purity goals!)

Graphical representations similar to those in
Figs 5.18 and 5.19 for (5-14) with x, = 1.75
(the standard operating value for x;) were
instrumental in helping the team understand
the message carried by their data and how
yield could be improved. Figure 5.18 is a so-
called contour plot (essentially a topographic
map) of the fitted equation, and Fig. 5.19 is a
more three-dimensional-looking representa-
tion of the same surface. Both types of display
are commonly used tools of modern statistical
experiment design and analysis. The contour
plot idea is particularly helpful where several
responses are involved, and by overlaying sev-
eral such plots one can simultaneously picture
the various implications of a contemplated
choice of process conditions.

SPECIAL STATISTICAL TOOLS FOR
CHEMICAL APPLICATIONS

The statistical methods discussed thus far are
of a quite general nature, routinely finding
application beyond the bounds of the chemi-
cal industry. In this section, we will briefly
highlight two statistical methodologies whose
most important applications are to chemical

20t
Standard // /
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Fig. 5.18. A contour plot of fitted yield when x; = 1.75. (From Statistics for Engineering Problem Solving
(1st Ed.) by S. B. Vardeman © 1994. Reprinted with permission of Brooks/Cole, a Division of Thomson
Learning; www.thomsonlearning.com. FAX 800-730-2215.)
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Fig. 5.19. A perspective graph of fitted yield when x, = 1.75. (From Statistics for Engineering Problem
Solving by S. B. Vardeman © 1994. Reprinted with permission of Brooks/Cole, a Division of Thomson
Learning; www.thomsonlearning.com. Fax 800-730-2215.)

problems. That is, we will touch on some of
the ideas of mixture experiments and the role
of statistics in mechanistic modeling.

Mixture Experiments

In many situations in industrial chemistry, some
important measured property of a product is a
function of the proportions in which a set of p
ingredients or components are represented in a
mixture leading to the product. For example,
case studies in the literature have covered sub-
jects ranging from octanes of gasoline blends,
discussed by Snee;?! to strengths of different
formulations of ABS pipe compound, treated in
Koons and Wilt;22 to aftertaste intensities of dif-
ferent blends of artificial sweeteners used in an
athletic sport drink, discussed by Cornell;? to
moduli of elasticity of different rocket propel-
lant formulations, considered by Kurotori.?* For
experimenting in such contexts, special statisti-
cal techniques are needed. These tools have
been discussed at length by Cornell,?%¢ and
our purpose here is not to attempt a complete
exposition, but only to whet the reader’s
appetite for further reading in this area.

The goal of mixture experimentation is to
quantify how proportions x,, x,, x,, ..., X, of
ingredients 1 through p affect a response y.
Usually, the hope is to fit some kind of
approximate equation involving some param-
eters b, say

Y zf(xlaxb-"sxplé)

to a set of n data points (x, x,, ..., X, ), for
the purpose of using the fitted equation to
guide optimization of y, that is, to find the
“best” blend. The logic of data collection and
equation fitting is complicated in the mixture
scenario by the fact that
x1+x2+-~-+xp=1 (5-15)
The linear constraint (5-15) means that
(p way) factorial experimentation is impossi-
ble, and that special measures must be
employed in order to use standard regression
analysis software to do least squares equation
fitting. We will briefly describe in turn some
approaches to experimental design, equation
fitting, and presentation of results for the
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Fig. 5.20. The set of points with x, + x, + x; = 1 and a simplex coordinate system. (From Statistics for
Engineering Problem Solving by S. B. Vardeman © 1994. Reprinted with permission of Brooks/Cole, a
Division of Thomson Learning; www.thomsonlearning.com. Fax 800-730-2215.)

mixture problem under its fundamental con-
straint (5-15).

In the case of p = 3 (a three-component
mixture problem), the set of all possible com-
binations of values for x,, x,, and x, satisfying
(5-15) can be conveniently represented as an
equilateral triangular region. Figure 5.20
shows such a region and the so-called simplex
coordinate system on the region. The corners
on the plot stand for cases where the
“mixture” involved is actually a single pure
component. Points on the line segments
bounding the figure represent two-component
mixtures, and interior points represent gen-
uine three-component mixtures. For example,
the center of the simplex corresponds to a set
of conditions where each component makes
up exactly one-third of the mixture.

One standard mixture (experimental) design
strategy is to collect data at the extremes (cor-
ners) of the experimental region along with

TABLE 5.10  (x,,x,,X;)
Points in a Particular p = 3
Simplex Lattice Design

Xy X2 X3
1 0 0
0 1 0
0 0 1
3 3 0
3 3 0
3 0 :
3 0 3
0 ; :
0 : ;
1 1 1
3 3 3

collecting data on a regular grid in the experi-
mental region. Figure 5.21 shows a p=3
example of such a so-called simplex lattice
design, and Table 5.10 lists the (x,x,,x;)
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Xy = 1.0

xl = 1.0

x, =10

Fig. 5.22. A p=3 simplex centroid design.

points involved. (As in the cases of the data in
Tables 5.7-5.9, the order used in the listing
in Table 5.10 is not one that would be used
in sequencing data collection runs. Instead, a
randomly chosen order often is employed.)

Another standard mixture experiment
strategy is the so-called simplex centroid
design, where data are collected at the extremes
of the experimental region and for every equal-
parts two-component mixture, every equal-
parts three-component mixture, and so on.
Figure 5.22 identifies the blends included in a
p = 3 simplex centroid design.

Often, the space of practically feasible mix-
tures is smaller than the entire set of x,,
X, ..., %, satisfying (5-15). For example, in
many contexts, “pure” mixtures do not produce
viable product. Concrete made using only

water and no sand or cement obviously is a
useless building product. One common type of
constraint on the proportions x,, x,, ..., X, that
produces quite simple experimental regions is
that of lower bounds on one or more of the
individual proportions. Cornell,? for example,
discusses a situation where the effectiveness in
grease stain removal of a p = 3 bleach mixture
was studied. Past experience with the product
indicated that the proportions by weight of
bromine, x,, of powder, x,, and of HCI, x,,
needed to satisfy the constraints:

x, = 0.30,x,=0.25, and x,=0.02 (5-16)
for effective action of the product (.., the mix-
ture needed to be at least 30% bromine, at least
25% powder, and at least 2% HCI by weight.)
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x =1.0

Fig. 5.24. An irregularly shaped experimental region in a p= 3 mixture study.

The effect of adding the lower bound con-
straints (5-16) to the basic mixture constraint
(5-15) can be pictured as in Fig. 5.23. There,
a triangular subregion of the basic p = 3 sim-
plex depicts the feasible (x,,x,,x;) points. The
choice of experimental mixtures for such an
experimental region can be made by direct

analogy to or rescaling of designs such as the
simplex lattice and simplex centroid designs
illustrated above to cover the entire simplex.
(It is common to refer to the rescaling process
as the use of pseudo-components.)
Constraint systems more complicated than
simple lower bounds produce irregularly



shaped experimental regions and less obvious
methods of choosing (x,, x,, ..., xp) points to
cover the experimental region. Whenp = 3, it
is possible to sketch the region of feasible
points on a simplex plot and use it to help
guide the choice of mixture experiment strat-
egy. Figure 5.24 illustrates the kind of region
that can arise with other than exclusively
lower bound constraints.

When more than three components are
involved in a mixture study, such plots are, of
course, no longer possible, and other more
analytic methods of identifying candidate
experimental mixtures have been developed.
For example, McLean and Anderson?’
presented an algorithm for locating the
vertices of an experimental region defined by
the basic constraint (5-15) and any combina-
tion of upper and or lower bound constraints

OSainisbisl

on the proportions x,. Cornell?>?¢ discusses a
variety of algorithms for choosing good mix-
ture experiment designs under constraints, and
many of the existing algorithms for the prob-
lem have been implemented in the MIXSOFT
software package developed by Piepel.?8

Empirical polynomial descriptions of
(approximately) how a response y depends
upon proportions x,, x,, ..., x, are popular
mixture analysis tools. The process of fitting
polynomials to mixture experiment data in
principle uses the same least squares notion
illustrated in the fitting of a parabola to the
data of Table 5.2. However, the mechanics of
using standard multiple regression analysis
software in the mixture context is complicated
somewhat by the basic constraint (5-15). For
example, in view of (5-15) the basic (p + 1
parameter) linear relationship

y=by+bx +bx,+ -+ bpxp (5-17)

is in some sense “overparameterized” in the
mixture context, in that it is equivalent to the
(p parameter) relationship

y=bx +bx,+ .+ bpxp (5-18)
if one identifies the coefficients in (5-18) with
the sums of the corresponding coefficients in
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(5-17) and the coefficient b,. As a result, it is
the “no intercept” relationship (5-18) that is
typically fit to mixture data when a linear
relationship is used. In a similar way, when a
second-order or (multivariable) quadratic rela-
tionship between the individual proportions
and the response variable is used, it has no
intercept term and no pure quadratic terms.
For example, in the p = 3 component mixture
case, the general quadratic relationship typi-
cally fit to mixture data is

y=bux, +byx, +bx, +bxx,

+ box xy + boxyx, (5-19)
(Any apparently more general relationship
involving an intercept term and pure quad-
ratic terms can by use of (5-15) be shown
to be equivalent to (5-19) in the mixture
context.) Relationships of the type of (5-19)
are often called Scheffé models, after the first
author to treat them in the statistical lit-
erature. Other more complicated equation
forms are also useful in some applications,
but we will not present them in this chapter.
The interested reader is again referred
to Cornell>>?® for more information on
forms that have been found to be tractable
and effective.

We should point out that the ability to fit
equations of the form (5-18) or like (5-19), or
of an even more complicated form, is predi-
cated on having data from enough different
mixtures to allow unambiguous identification
of the parameters b. This requires proper data
collection strategy. Much of the existing sta-
tistical research on the topic of mixture exper-
iment design has to do with the question of
wise allocation of experimental resources
under the assumption that a particular type of
equation is to be fit.

One’s understanding of fitted polynomial
(and other) relationships often is enhanced
through the use of contour plots made on coor-
dinate systems such as that in Fig. 5.25. (This is
even true for p = 3 component mixture scenar-
ios, but the use of the idea is most transparent
in the three-component case.) A plot like
Fig. 5.25 can be a powerful tool to aid one in
understanding the nature of a fitted equation
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Fig. 5.25. A contour plot made on the p = 3 simplex. (From Statistics for Engineering Problem Solving
by S. B. Vardeman © 1994. Reprinted with permission of Brooks/Cole, a Division of Thomson Learning:

www.thomsonlearning.com. Fax 800-730-2215.)

and finding regions of optimum fitted
response.

The mixture experiment counterpart to con-
ventional screening/fractional factorial exper-
imentation also is possible. So-called axial
designs have been developed for the purpose
of providing screening-type mixture data for
use in rough evaluation of the relative effects
of a large number of mixture components on
a response variable. The same kind of sequen-
tial experimental strategy illustrated in the
process improvement example is applicable in
mixture contexts as well as contexts free of a
constraint such as (5-15).

Mechanistic Model Building

The kinds of equations most easily fit to
multi-factor data using standard (least

squares) regression analysis techniques are
polynomial equations such as (5-6), (5-14),
(5-18), and (5-19). These are particularly con-
venient because they are linear in their param-
eters, b. But they are probably best thought of
as empirical “mathematical French curve”
descriptions of the relation of a response, y, to
the explanatory variables, x. Polynomial equa-
tions function as extremely useful summaries
of observed patterns in one’s data, but they do
not typically provide direct insight into chem-
ical mechanisms that produce those patterns,
and the fitted parameters, b, do not often have
direct physical meanings. Their use is partic-
ularly appropriate where there is little a priori
knowledge of mechanisms involved in a
process that might aid in its description,
and/or no such knowledge is really essential
to achieving one’s goals.



Sometimes, however, it is desirable (on the
basis of possible reaction kinetics or for other
reasons) to posit theoretical descriptions of
process outputs in terms of explanatory vari-
ables. That is, physicochemical principles
often lead (through differential or integral
equation descriptions of a system) to equation
forms for a response that, like

_ KKKPPy

YT T K,P, + KPs)
y = Cyexp(—K1)

and

_ Kix
y_1+K2x

are nonlinear in the parameters. Although such
equations or models may be less tractable than
empirical polynomial equations, the parame-
ters involved more often than not do have
direct physical interpretations. Further, when
such a model can be verified as being an
adequate description of a process (thereby
confirming scientific understanding) and
the parameters involved are estimated from
process data, such mechanistic models can
provide much safer extrapolations beyond an
experimental region than the cruder empirical
polynomial models.

The process of research in chemical sys-
tems is one of developing and testing different
models for process behavior. Whether empir-
ical or mechanistic models are involved, the
discipline of statistics provides data-based
tools for discrimination between competing
possible models, parameter estimation, and
model verification for use in this enterprise.
In the case where empirical models are used,
techniques associated with “linear” regres-
sion (linear least squares) are used, whereas in
mechanistic modeling contexts “nonlinear”
regression (nonlinear least squares) tech-
niques most often are needed. In either case,
the statistical tools are applied most fruitfully
in iterative strategies.

Reilly and Blau?® and Chapter 16 of Box
et al.!? provide introductions to the general phi-
losophy of using statistical methods in mecha-
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nistic modeling contexts, as well as a number
of useful references for further reading.

Fairly sophisticated and specialized sta-
tistical software is needed in the practical
application of nonlinear regression methods
to mechanistic modeling for industrial chem-
istry applications. The techniques imple-
mented in such software are discussed in
Seber and Wild,? Bates and Watts,>® Bard,>!
and Riley and Blau.?’

MODERN BUSINESS PROCESS
IMPROVEMENT AND THE
DISCIPLINE OF STATISTICS

The modern global business environment is
fiercely competitive in all sectors, including
the chemical sector. It is by now widely
recognized that corporate survival in this envi-
ronment depends upon constant improvement
in all business processes, from billing to
production. Companies have adopted a variety
of programs and focuses aimed at facilitating
that improvement. A decade ago, efforts
organized around a Total Quality Management
banner (with liberal references to emphases of
consultants like W. E. Deming, J. M. Juran,
and A. Feigenbaum) were popular. More
recently, programs keyed to ISO 900033 certi-
fication criteria and Malcolm Baldridge
Award?* criteria have become prominent. And
currently probably the most visible programs
are the so-called Six Sigma programs.

In one sense there is nothing new under the
sun, and all successful business process
improvement programs (including those in
the chemical sector) must in the end reduce to
organized problem-solving disciplines. So it
is not surprising that programs quite different
in name are often very alike in fundamental
content. And as they must necessarily make
use of empirical information (data), they must
have significant statistical components. To
make this connection to statistics slightly
more explicit, we proceed to provide a few
additional details on the Six Sigma move-
ment. (Further material on the subject is easy
to find using an Internet search engine, as
there are many consultants eager to sell their
advice and Six Sigma training. The American
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Society for Quality at www.asq.org offers
many entries into the subject. And a search at
amazon.com for “Six Sigma” books already
produced 6666 hits in May 2004. Fashions
change quickly enough that it seems pointless
to provide more detailed recommendations
for follow up on the subject.)

The phrase “Six Sigma” originated at
Motorola in the late 1980s. Programs there
and at General Electric in the mid-1990s are
widely touted as important contributors to
company profits and growth in stock values.
The name is now commonly used in at least
three different ways. “Six Sigma” refers to

e a goal for business process performance

e a discipline for improvement to achieve
that performance

e a corporate program of organization, train-
ing, and recognition conceived to support
the process improvement discipline

As a goal for business process improvement,
“Six Sigma” is equivalent to “C_, = 2.” What
is perhaps confusing to the uninitiated is that
this goal has connections (through normal
distribution tail area calculations) to small
(“parts per million”) fractions defective
relative to two-sided specifications on y.
Six Sigma proponents often move between
the “small process variation” and “parts per
million” understandings with little warning.
Six Sigma process improvement disciplines
are typically organized around the acronym
“MAIC.” The first step in a MAIC cycle is a
Measure step, wherein one finds appropriate
process responses to observe, identifies
and validates measurement systems and col-
lects baseline process performance (process
monitoring) data. The second step is an Analyze
step. This involves summarizing the initial

process data and drawing appropriate infer-
ences about current process performance. The
third step in a MAIC cycle is an Improve step,
where process knowledge, experimentation,
and more data analysis are employed to find a
way to make things work better. Finally, the
four-step cycle culminates in a Control (process
monitoring) effort. The object here is to see that
the newly improved performance is maintained
after a project team moves on to other problems.

Six Sigma corporate organization, training,
and recognition programs borrow from the
jargon and culture of the martial arts. People
expert in the process improvement paradigm
are designated “black belts,” “master black
belts,” and so on. These people lead project
teams and help train new initiates (“green
belts”) in the basics of the program and its
tools (including statistical tools). The empha-
sis throughout is on completing projects with
verifiable large dollar impact.

Having made the point that improvement
in all business activities is of necessity data-
driven, it is hopefully obvious that the
emphases and methods of the subject of sta-
tistics are useful beyond the lab and even
production. Of course, for broad implemen-
tation, it is the most elementary of statistical
methods that are relevant.

CONCLUSION

We have tried in this chapter to give readers
the flavor of modern applied statistical meth-
ods and to illustrate their usefulness in the
chemical industry. Details of their implemen-
tation have of necessity been reserved for fur-
ther more specialized reading, for which the
interested reader is encouraged to consult the
references given in this chapter.
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