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6 Robust Statistical Methods 
for Portfolio Construction 

 
6.1 Outliers and Non-normal Returns 

The value of robust statistical methods in portfolio construction arises because 
asset returns and other financial quantities often contain outliers. Outliers are 
data values that are well-separated from the bulk of the data values and are not 
predicted by univariate or multivariate normal distributions. Under normal 
distribution models, such an outlier sometimes occurs with exceedingly small 
probability. For example, if we fit a normal distribution to S & P 500 daily 
returns for various periods of time prior to the stock market crash of 1987, we 
find that the probability of occurrence of an event of that magnitude is so small 
that one would have to wait much longer than the history of civilization for 
another such occurrence.1 Large outliers of this type are not limited to situations 
with extreme market movements—one can find many such examples in 
individual asset returns. For example, the five-year monthly returns for the 
microcap stock with ticker EVST shown in Figure 6.1 has an extremely large 
outlier in December 1988 with value 6.88. You can make this plot with the S-
PLUS commands given in Code 6.1, in which we first extract EVST monthly 
stock returns for a five-year span from the microcap.ts time series object, 
and then plot the EVST time series: 

 
EVST.returns.ts <- microcap.ts[,"EVST"] 
plot(EVST.returns.ts, plot.args = list(type = "b", 
 pch = "."), reference.grid = F, ylab = "RETURNS", 
 main = "EVST RETURNS")  
# Add text "OUTLIER" by left-clicking mouse at  
# desired location 
text(locator(1),"OUTLIER") 
# Add line by left-clicking at each line end-point, 
# then right click 
lines(locator()) 
# This command and the next are equivalent 
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EVST.returns <- EVST.returns.ts@data[,1]  
EVST.returns <- seriesData(EVST.returns.ts)[,1] 

Code 6.1 Time Series Plot of EVST Returns 

Note that EVST.returns.ts is an S-PLUS V4 time series object, the first 
part of which looks like: 
> EVST.returns.ts 
  Positions         EVST 
  1/31/1997  0.050847456 
  2/28/1997 -0.024193548 
  3/31/1997 -0.008264462 
        ………… 
 

At the end of Code 6.1, the data from EVST.returns.ts is extracted and 
converted to a simple S-PLUS vector object.2 You can now compute the mean 
and standard deviation of the EVST returns as follows: 

 
> mean(EVST.returns) 
[1] 0.07568058 
> stdev(EVST.returns) 
[1] 0.9197129 
 

To get the value of the outlier and its time of occurrence, use the command 
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Figure 6.1 Time Series of EVST Returns 
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> EVST.returns.ts[EVST.returns.ts@data > 3,] 
  Positions     EVST 
 12/31/1998 6.878788 
 

Now let’s compute the probability of getting a return as large or larger than 6.88 
for a normal distribution with mean .076 and standard deviation .92: 

 
> 1-pnorm(6.88,.076,.92) 
[1] 7.038814e-014 

 
Under the normal distribution model, you would have to wait an unbelievable 
amount of time to see the recurrence of such an outlier in the monthly returns of 
EVST. 

We can easily assess the non-normality of these returns using a normal Q-Q 
plot with a robustly fitted straight line, as shown in Figure 6.2.3 (See Section 6.5 
for a discussion of robust straight-line fitting in the context of estimating the 
CAPM beta.) 

 
> qqnorm(EVST.returns, ylab=”EVST.returns”) 
> qqline(EVST.returns) 
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Figure 6.2 Normal Q-Q Plot of EVST Returns with Robust Line Fit 

The normal Q-Q plot indicates that the returns are non-normal because of the 
single outlier and possibly because of the other deviations of the points from a 
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straight line. You can check this easily by making a normal Q-Q plot with the 
outlier deleted: 
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Figure 6.3 Normal QQ-Plot of EVST Returns with Outlier Removed 

 
> qqnorm(EVST.returns[EVST.returns<2], ylab = "EVST 

Returns") 
> qqline(EVST.returns[EVST.returns<2]) 

 
The result in Figure 6.3 shows that some outliers and non-normality are still 
present. How are we to judge non-normality from a Q-Q plot? The answer is to 
add 95% simulation confidence bands to plots like that of Figure 6.3, which you 
can do as follows: 

 
> EVST.robfit <- 

lmRob(EVST.returns[EVST.returns<2]~1,eff=.95) 
> plot(EVST.robfit,which.plots=2) 
 

The function lmRob is a robust regression-fitting function that can estimate a 
mean robustly when used with a formula of the form x ~ 1 as the first 
argument. The use of lmRob for robustly estimating mean returns will be 
discussed further in Section 6.3. It is used here only because the generic function 
plot invokes a special plot method for an lmRob object that computes and plots 
95% simulation envelopes, which are useful for assessing whether residuals (the 
error term in the model) contain outliers. 
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Figure 6.4, showing the standardized residuals and the 95% simulation 
envelopes, indicates that there is still some non-normality in the form of 
incipient outliers (not quite outliers). This is due to a slightly heavier right-hand 
tail of the returns density.4 
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Figure 6.4 Normal Q-Q Plot with 95% Confidence Envelope 

The single outlier in the EVST returns is highly influential in that it greatly 
increases the values of the mean and standard deviation relative to the values 
you would get if December 1988 were not an outlier. You can see the effect by 
doing the computation with the outlier deleted: 

 
> mean(EVST.returns[EVST.returns < 2]) 
[1] -0.03962633 
> stdev(EVST.returns[EVST.returns < 2]) 
[1] 0.2212708 
 

The mean drops to –.040 and the standard deviation drops to .22. The latter is a 
little over four times smaller than the standard deviation that was calculated 
using all of the returns (.92). Consider the impact on the sample mean when you 
add the December 1998 return, assuming it was not originally there. A natural 
yardstick to measure the change is the standard deviation of the sample mean 
without the outlier, .22 / 60 .028= , so the influence of adding the outlier is to 
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shift the sample mean by (.076 ( .04)) / .028 4.14− − =  standard deviations, 
which is a very large influence indeed. 

It is well-known that mean returns are estimated poorly in that the standard 
deviation of the sample mean is typically a substantial fraction of the (absolute) 
value of the mean. In this example without the outlier, the standard deviation of 
the sample mean is .028, which is 70% of the size of the sample mean absolute 
value of .04. The single outliers increase the value of the sample mean by more 
than four standard deviations of the sample mean. This example emphasizes 
(most painfully) that the problem of accurately estimating asset mean returns is 
greatly compounded by the presence of outliers! 

6.2 Robust Statistics versus Classical 
Statistics 

One reason that we need to pay attention to outliers is that, as suggested by the 
example above, virtually all classical statistical parameter estimation and 
associated model-fitting methods lack robustness toward outliers. Even a single 
outlier can have an arbitrarily large adverse influence on classical model-fitting 
methods and classical statistical inference. Outliers can adversely influence not 
only mean and volatility estimates of returns but also covariance and correlation 
estimates, factor model parameter estimates, and optimal portfolio weights and 
related quantities such as Sharpe ratios. In data-oriented terms, a robust 
statistical model-fitting method is one that is not much influenced by outliers 
and provides a good fit to the bulk of the data. 

A vivid example of the difference between a classical method and a robust 
method is shown in Figure 6.5, which displays a time series of annual earnings 
per share (EPS) from 1984 to 2001 for a company with ticker INVENSYS, 
along with two straight-line fits, one the classical least squares (LS) fit and one a 
highly robust fit (ROBUST). We describe the latter in Section 6.5 in the context 
of estimating the CAPM beta. It is quite clear that there are two outlier values of 
EPS. The LS line fit is highly influenced by these outliers and consequently does 
not provide a good fit to the bulk of the data, while the opposite is true of the 
robust fit, which is influenced very little by the outliers. 

This particular example came to one of the authors from an analyst in the 
corporate finance office of a large, well-known firm. The analyst’s task was to 
compute one-year-ahead forecasts of EPS for hundreds of firms as part of a 
portfolio stock-selection process. This example indicates clearly that use of LS 
through years 1998 and 1999 would have produced very poor predictions for 
years 1999 and 2000, respectively, and can be expected to produce a poor 
prediction for 2001. It is impossible to predict the time and direction of future 
outliers with any degree of accuracy, for if this were possible one could make a 
lot of money with an appropriate investment strategy. Thus, we cannot expect to 
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accurately predict the EPS outliers in 1997 and 1998. However, with a robust fit, 
we can compute good predictions for future data that are similar to the bulk of 
the outlier-free historical data. 

While the data-oriented description of robust statistical model-fitting methods 
above has immediate appeal, it is important to know that there are rigorous 
probability-based statistical modeling foundations for robust statistics. These are 
probabilistic forms of stability of variance and minimization of bias under 
outlier-generating heavy-tailed deviations from a nominal (often normal) 
distribution model. An important approach for model parameter estimation is 
that of minimizing the maximum bias due to outlier contamination while at the 
same time achieving high statistical efficiency at the nominal model. For further 
details, see Martin and Zamar (1993) and Yohai and Zamar (1997).  

So far, we have been talking about robustness of model parameter “point” 
estimates. It is important to note that robustness is also quite important with 
regard to methods of statistical inference such as hypothesis tests, confidence 
intervals, and model selection criteria. It turns out that outliers can seriously 
distort the level and power of a t test and the coverage probability and error rate 
of a confidence interval. A robust hypothesis test is one for which neither the 
nominal error rate nor the power of the test are much affected by the presence of 
outliers. A robust confidence interval is one for which neither the confidence 
level nor the expected confidence interval length are much affected by outliers. 
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Figure 6.5 EPS versus Time with LS and Robust Line Fits 
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The importance of robust methods in finance is immediately clear—one does 
not want an investment decision to be highly influenced by a small number of 
data points. When the historical asset price or returns data are of limited extent 
and exhibit at most a small number of outliers, it is typically impossible to 
predict with any degree of certainty whether there will be outliers in the future 
investment horizon.5 In such situations, the bulk of the data is the only 
predictable part of the data, and an investment decision based on a robust 
statistical method may be preferred to the use of a procedure that is optimal 
under normality. On the other hand, robust statistics down-weight the influence 
of outlying returns, which reduces volatility estimates while reducing mean 
return estimates that have been influenced only by positive outliers and 
increasing mean return estimates that have been influenced only by negative 
outliers. Fund managers may rightly feel uncomfortable about making an 
investment decision based on a robust estimate. Such fund managers can 
nonetheless derive value from the use of robust methods as a diagnostic tool by 
comparing the results of the classical and robust methods. When both results 
agree, there is little worry about the possibility of outliers influencing the robust 
method, but when the two methods disagree substantially, the fund manager 
should be wary and look more closely at the data before making an investment 
decision. 

6.3 Robust Estimates of Mean Returns 

Suppose you have a set of identically distributed returns 1 2( , , , )nr r r  with 
common mean 1( ).E rµ =  You can estimate µ  with a variety of robust 
estimates that are influenced very little by outliers. The simplest and most 
transparent of these are the sample median and trimmed mean, both of which are 
based on the set of ordered returns 1: 2: :n n n nr r r≤ ≤ ≤  (the order statistics). 
The sample median ˆMEDµ  is the “middle” order statistic (i.e., the unique 
middle order statistic when n is odd, and the average of the two middle order 
statistics when n is even). For example, when n = 11, 6:11ˆ ,MED rµ =  and when n 

= 10, ( )5:11 6:11
1ˆ
2MED r rµ = + . An α-trimmed mean, ,ˆ ,trim αµ  is computed by 

discarding a fraction α  of the largest and smallest order statistic values and 
computing the sample mean of the remaining data points. For example, when n 
= 10, the 10% trimmed mean is  
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You can easily compute the median and trimmed mean in S-PLUS as illustrated 
below for the EVST returns. 

 
> median(EVST.returns) 
[1] -0.03863926 
> mean(EVST.returns,trim=.1) 
[1] -0.04756718  

 
You can also compute the sample mean with the outlier deleted just as you did 
in Section 6.1: 
 
> mean(EVST.returns[EVST.returns < 2]) 
[1] -0.0396 
 

The result is almost identical to the sample median and not grossly different 
from the 10% trimmed mean. 

While the simplicity of the median and trimmed means make them attractive 
robust estimators of location, they have some deficiencies that limit their general 
use. For example, it is not easy to construct confidence intervals for the sample 
median by any means other than bootstrapping, and the trimmed mean does not 
generalize nicely to other estimation problems such as fitting factor models. For 
this reason we introduce so-called M-estimators of location, a class of 
estimators that does generalize to many other model-fitting problems, including 
(as we shall see in Section 6.4) linear regression models.6 

A location M-estimator µ̂  is a solution of the minimization problem 
 

 
1

min ,ˆ

n
t

t

r
sµ

µρ
=

−⎛ ⎞
⎜ ⎟
⎝ ⎠∑  (6.1) 

 
where ŝ  is a robust scale estimate (see Section 6.4) and ρ  is a “robustifying” 
loss function. 

We obtain an estimating equation for µ̂  by differentiating the objective 
function (6.1) with respect to ;µ  this gives the M-estimator estimating equation 
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r
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µψ
=
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⎝ ⎠∑  (6.2) 

 
where .ψ ρ′=  There is an intuitively appealing weighted least squares (WLS) 
interpretation of the M-estimator: if we set 
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 (6.3) 

 
then we can rewrite the estimating equation (6.2) as a weighted least squares 
equation7 

 

 
1

ˆ( ) 0.
n

t t
i

w r µ
=

⋅ − =∑  (6.4) 

 
When 2( ) ,t tρ =  the psi function is the identity function ( ) ,t tψ ≡  and the 
weights wt are identically one. The solution is the least squares (LS) estimate of 
µ  (i.e., the sample mean). The sample mean lacks robustness because the 
quadratic character of the least squares loss function causes outliers to have 
undue influence on the estimate. A robust estimate is obtained by using a ρ  that 
grows more slowly than a quadratic function. The two main choices are: (a) a 

( )tρ  that grows like t  for large t, and (b) a bounded ( )tρ . It is known that the 
former choice does not provide bias robustness (Martin, Yohai, and Zamar, 
1989). Thus, we use a bounded ( )tρ  that was shown by Yohai and Zamar 
(1997) to be optimally bias-robust, subject to a constraint of specified efficiency, 
when the data are normally distributed. This ( )tρ  is implemented in the S-PLUS 
function lmRob. This type of ( )tρ  (RHO) is graphed in Figure 6.6 along with 
the corresponding ( )tψ  (PSI). 
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Figure 6.6 Optimal Bias Robust Rho and Psi Functions for 90% Gaussian 
Efficiency 

The formula for the rho function ( )tρ  is 
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The formula for the psi function ( )tψ  is easily obtained by differentiation. 

The role of the tuning constant c  is to adjust the efficiency of the estimate to the 
desired level when the returns are normally distributed. Efficiency when the 
returns are Gaussian is defined to be the variance of the least squares (LS) 
estimator divided by the variance of the robust estimator. The graphs in Figure 
6.6 show the ρ  and ψ  functions for an efficiency of 90%. This corresponds to 
an 11% increase in variance (only 3.3% in terms of increase in standard 
deviation) of the robust estimate over that of the least squares estimate (the 
sample mean in the present discussion). This increase in variance at nominal 
Gaussian returns is, in effect, a small “insurance premium” paid in exchange for 
protection against bias and inflated variance in the presence of outliers. The 
higher the premium paid, the more protection we get. If we require a Gaussian 
efficiency larger than 90%, the bound on the ρ  grows, and the cutoff points 
where the ψ  function goes to zero retreat further toward infinity. In the limit, 
when we require 100% Gaussian efficiency, the loss function becomes quadratic 
and we get the LS estimator. 

The weight function associated with the optimal ψ  function for 90% 
Gaussian efficiency has the shape shown in Figure 6.7. Note that the weight 
function is zero outside a finite interval; this means that the M-estimator will put 
zero weight wt on any return tr  that has sufficiently large scaled residuals 
ˆ ˆ ˆ( ) /tr sε µ= −  (i.e., the outliers will be totally rejected). Returns whose scaled 

residuals are sufficiently small (typically the bulk of them) will get weights wt 
equal to one.  

The S-PLUS function lmRob uses a sophisticated form of a nonlinear 
optimization method proposed by Yohai, Stahel, and Zamar (1991) to solve the 
M-estimate minimization problem (6.1). lmRob was designed for robustly 
fitting a linear regression (factor) model and computing associated robust 
statistical inference quantities such as robust standard deviations, t-statistics, and 
p-values. As a special case, lmRob can compute a robust estimate of mean 
returns (in which we have only an intercept term). We compute a robust M-
estimate of the mean and its robust standard deviation, and a plot of the weights, 
using Code 6.2. 
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EVST.mean <- lmRob(EVST.returns~1, eff=.95) 
coef(EVST.mean) 
sqrt(EVST.mean$cov) 
EVST.M.weights <- timeSeries(EVST.mean$M.weights, 
 from="1/1/1997",by="months") 
plot(EVST.M.weights,plot.args=list(type = "p"), 
 reference.grid=F, xlab="TIME",ylab=WEIGHTS") 

Code 6.2 Robust Location Estimate Weights 

Use of the eff = .95 argument gives us a robust estimate that would have 
95% efficiency if the returns were normally distributed. In the weights plot of 
Figure 6.8, we see that the huge outlier in Q4 1988 gets zero weight, as do a few 
other large returns; this is not surprising in view of Figure 6.4. 

We can repeat the commands above with a higher efficiency, say eff 
=.98, to perform a less severe down-weighting of data. This changes the robust 
mean returns estimate to –.066 and the standard deviation to .028 (which is not 
much of a change). The new weights, shown in Figure 6.9, are not very different 
from those for 95% Gaussian efficiency (shown in Figure 6.8). Note that as we 
change the efficiency, we change the cut-off values of the weight function in 
Figure 6.7. Higher efficiencies result in larger cut-off values and less severe 
rejection of outliers, while lower efficiencies result in smaller cutoff values and 
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Figure 6.7 Optimal Weight Function for 90% Gaussian Efficiency 
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more severe rejection of outliers. You are encouraged to try some lower values 
of efficiency, say .90 and .85. If you do so, you will see that while you get a few 
more zero weights and some other weights smaller than one, the robust estimate 
of mean returns and its standard deviation do not change much. This relative 
insensitivity of the robust estimate of mean returns with respect to the Gaussian 
efficiency/cutoff values is an attractive feature of the method. 

There is also an S-PLUS function location.m that computes only a robust 
M-estimate of location (the mean); i.e., it does not compute a standard error like 
lmRob. It uses a somewhat different weight function (the Tukey biweight) that 
still gives weight zero to all sufficiently large residuals. With the previous data it 
gives a location estimate of –.06 instead of –.04, a difference less than one 
standard error (.28) of the sample mean without the large outlier: 

 
> location.m(EVST.returns) 
[1] -0.0597 
 

Here are our recommendations on which estimator to use: 
 

1. If experience with your data tells you that you have only a certain 
fraction of outliers, and you do not need a standard error estimate, 
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Figure 6.8 Robust M-Estimate Weights (95% Gaussian Efficiency) 
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use the trimmed mean mean(returns, trim = alpha) 
with trimming fraction alpha slightly greater than your worst 
case estimate of the fraction of outliers. 

2. If you don’t know much about the fraction of outliers and don’t 
need a standard error, use location.m. 

3. If you need a standard error estimate, use lmRob with the default 
Gaussian efficiency of 90%. 

 
In S-PLUS, we can easily compute robust estimates of the mean returns for a 
collection of stocks with any of the robust mean (location) estimates above by 
using the apply function on the data frame of returns. To illustrate, we 
compute robust location estimates for five large cap stocks: 

 
> rob.means <- apply(largecap.ts[, 3:8]@data,2, 
  location.m) 
> round(rob.means, 3) 
   CAT    DD    G  GENZ    GM  HON 
 0.007 0.003 0.01 0.038 0.009 0.02 

W
EI

G
H

TS

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1997 1998 1999 2000 2001

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

 
Figure 6.9 Robust M-Estimate Weights (98% Gaussian Efficiency) 
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6.4 Robust Estimates of Volatility 

It is well-known that standard deviations (volatilities) of stock returns are 
usually estimated more accurately than means. Hence, there has been a tendency 
to assume that accuracy of estimation of standard deviations is not a problem. 
As the example in Section 6.1 clearly shows, however, the presence of even a 
single outlier can cause a dramatic change in the value of the standard deviation 
(in that particular case, a little over a fourfold increase from .22 if the outlier 
were not present to .92 with the outlier present). 

There are several robust scale estimator functions in S-PLUS that provide 
robust estimates of returns volatilities and are approximately unbiased estimates 
of the standard deviation when the returns are normally distributed. These are 
the functions mad (median absolute deviation about the median), scale.a, 
and scale.tau. For the EVST returns, these functions give the following 
results: 

 
> mad(EVST.returns) 
[1] 0.1708058 
> scale.a(EVST.returns) 
[1] 0.1717936 
> scale.tau(EVST.returns) 
[1] 0.1864585 
 

These values are all similar, and any one of the estimates can be used safely. 
Since the mad is the simplest and most transparent, it can be used as a default 
(though in some applications the smoothness properties and conceptual 
transparency of scale.tau might be preferred). See the S-PLUS help files for 
more details on these robust scale estimates. 

6.4.1 Robustness Is Not Enough for Risk 
Management 

Figure 6.10 shows the time series of ZIF returns along with a histogram and two 
normal density estimates of the returns. Clearly, the ZIF returns exhibit several 
outliers.  

Code 6.3 gives the S-PLUS script to make the plot. 
 
par(mfrow = c(2, 1)) 
ZIF.returns.ts = microcap.ts[,"ZIF"] 
plot(ZIF.returns.ts, plot.args = list(type = "b",  
 pch = "."), reference.grid = F, ylab = "RETURNS", 
 main = "ZIF RETURNS") 
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returns = seriesData(ZIF.returns.ts)[,1] 
 
mu = mean(returns) 
sigma = stdev(returns) 
mu.rob = median(returns) 
sigma.rob = mad(returns) 
k = 8 
 
xlim = c(mu.rob - k * sigma.rob,  
 mu.rob + k * sigma.rob) 
hist(returns, nclass = "fd", col = 0, prob = T,  
 xlim = xlim, xlab = "RETURNS") 
x = seq(xlim[1], xlim[2], length = 100) 
lines(x, dnorm(x, mu, sigma), lty = 8, lwd = 2) 
lines(x, dnorm(x, mu.rob, sigma.rob), lwd = 2) 
leg.names = c("CLASSIC FIT", "ROBUST FIT") 
legend(-.28,9,legend=leg.names,lty=c(8,1),lwd=2) 
par(mfrow = c(1, 1)) 
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Estimates 
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mu 
mu.rob 
sigma 
sigma.rob 

Code 6.3 Classical and Robust Normal PDF Fits 

The classical and robust estimate values computed by the script above are: 
 
> mu 
[1] -0.0008619089 
> mu.rob 
[1] 0.007695105 
> sigma 
[1] 0.06311233 
> sigma.rob 
[1] 0.03714824 
 

Suppose you want to calculate a 1% value-at-risk (VaR) (i.e., the lower 1% 
point of the fitted distribution). It is obvious from Figure 6.10 that neither the 
classical nor the robust fit of the normal distribution will suffice for this purpose. 
Let’s examine the plots a bit more carefully. 

Notice that although the mean and median (MED) differ, they are both rather 
close to zero because the positive and negative outliers tend to balance. On the 
other hand, the classical standard deviation is considerably larger than the 
median absolute deviation about the median (MAD). The dashed line is a 
normal density estimate based on the mean and standard deviation. The solid 
line is a normal density estimate based on MED and MAD. Because the mean 
and MED are quite close, both densities are well-centered on zero. But because 
of the difference between the standard deviation and MAD, the normal density 
based on the latter fits the bulk of the data well but fails to adequately describe 
the tails. This is to be expected since the data require a heavy-tailed density 
description. On the other hand, the normal density (fit with the classical 
estimates) is a very poor fit to the center of the data, but because of the inflated 
standard deviation estimate does a better job of estimating the tails (though it is 
still not good enough). This behavior of the normal fit explains why some value-
at-risk (VaR) calculations are not so bad under normality at the 95% level but 
are quite inaccurate for 99% VaR. The robust MED and MAD indeed give you 
good estimates of the location and scale of the returns. But they are not a 
solution for getting better tail estimates! If you want good tail probability 
estimates, you need to fit a heavy-tailed distribution. Often for smallish sample 
sizes (such as five years of monthly data) a normal mixture with two or three 
components will do. For larger data sets (such as a year or more of daily data), 
one can do well by fitting stable distributions whose fat tails provide a good 
model for outliers (see Rachev and Mittnik, 2000). 
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6.4.2 Robust EWMA Estimates of Volatility 

It is an overlooked fact that exponentially weighted moving average (EWMA) 
estimates often badly overestimate volatility following the occurrence of an 
isolated outlier return. Fortunately, it is quite easy to obtain a robust version of 
an EWMA volatility estimate by a simple modification of the classical EWMA 
algorithm, as we describe below. Figure 6.11 illustrates the dramatic difference 
between classical and robust EWMA estimates using two years of daily returns 
for a mid-cap stock with ticker ROH. The time series of returns, shown in the 
top panel of Figure 6.11, clearly reveals several outliers indicative of unusual 
movements in the price series. The middle panel shows a classical EWMA 
volatility time series estimate using a default smoothing parameter of .93. The 
classical EWMA estimate clearly grossly overestimates the volatility following 
the occurrences of the outliers, particularly after the two negative outliers in 
early Q2 and Q3 of 2000 and the outliers near the end of Q3 of 2001. The robust 
EWMA volatility estimate, shown in the bottom panel of Figure 6.11, does not 
suffer from this defect and produces much more reasonable-looking estimates of 
the volatility following the outliers. 

The classical EWMA volatility estimate is the standard deviation series 
obtained as the square root of the variance estimates computed by the recursion 

 
 2 2 2

1 1 0ˆ ˆ      (1  )  ,        .t t tr t tσ λ σ λ+ += ⋅ + − ⋅ ≥  (6.5) 
 

Here 0t  is a starting time and 
0
2ˆtσ  is an initial variance estimate. We can easily 

construct a robust EWMA volatility estimate that in turn provides a robust 
unusual movement test (UMT) statistic with robustness of power as well as level 
of test. The robust EWMA algorithm is defined as follows: 
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 (6.6) 

 
The parameter a is a rejection threshold. We recommend a default value of a = 
2.5 for the rejection threshold; this results in using a pure prediction 

2 2
1ˆ ˆ   t tσ σ+ =  about 1.2% of the time when the returns are normal and 2ˆ tσ  is 

equal to the true volatility of the return at time t. 
In addition to having a good robust volatility estimate, one would sometimes 

like to have a good test statistic for providing an alert that a return is an outlier 
(and correspondingly that the asset price has made an unusually large 
movement). It is natural to use the following statistic, similar in form to a 
classical two-sided t-test: 
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σ
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where tr  is the asset return at time t and ˆtσ  is the classical EWMA estimate. 
This statistic is called the classical UMT statistic. However, since we know that 
the classical EWMA estimate overestimates volatility at times following an 
outlier, the denominator of the statistic will be larger than it would be without an 
outlier present. Thus we might anticipate it will result in a UMT with low power 
for detecting an unusual movement.8 This suggests that one might obtain a 
robust UMT statistic by substituting the robust EWMA estimate ˆtσ  in the 
denominator. Results for the classical and robust UMT’s for the ROH returns 
are shown in Figure 6.12. The horizontal dashed line at c = 3.5 in Figure 6.12 is 
a test rejection threshold chosen to yield a false alarm rate of approximately 
.001. The classical UMT fails to detect any outlier returns or unusual movement 
in prices, while the robust UMT clearly detects the five largest outliers in Figure 
6.11 and gives a weak indication of two others. 

We remark that if the UMT test statistic had a standard normal distribution, a 
rejection threshold of c = 3.29 would yield a false alarm rate of .001. However, 
since this statistic is rather like a t-test, one has to naturally question the 
accuracy of a standard normal approximation. To answer this question, we make 
the Q-Q plot in Figure 6.13. This plot shows that the robust UMT statistic 
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Figure 6.11 Time Series of Returns and Estimates of Volatility for ROH 
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follows the normal distribution closely, with the exception of a few outliers and 
straggling values. 

This leads us to use a normal distribution as a crude approximation for 
purposes of computing a threshold value. We fit this normal distribution to the 
data with robust location and scale estimates. The median estimate of location 
turns out to be exactly zero (and the mean is essentially equal to the median, 
with value .0002), while the robust scale estimate is 1.068 (as compared with the 
standard deviation value of 1.21, which is inflated by the outliers). The upper 
.0005 quantile of an 2(0, (1.068) )N  distribution is 3.51, giving a false alarm rate 
of .001 for the two-sided test. These values are not quite fair because they were 
computed post hoc. But in practice one could apply the same approach using 
data prior to the times at which the test statistics were computed. 
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Figure 6.12 Classical and Robust UMT Test Statistics Time Series 

 
Code 6.4 and Code 6.5 give an EWMA function and the script, respectively, 

for making the above computations and plots above. 
 
ewma <- function(x, robust = T, lambda = 0.93,  
 nstart = 20, a = 2.5) 
{  
 n <- length(x) 
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Figure 6.13 Robust EWMA and UMT for ROH 

 
 # Compute initial variance estimate var.start 
 var.start <- scale.tau(x[1:nstart])^2 
 
 # Create output vector with padded zero's and 
 # var.start 
 varvec <- c(rep(0, nstart - 1), var.start,  
  rep(0, n - nstart)) 
 
 # EWMA recursion 
 var.old <- var.start 
 ns1 <- nstart + 1 

 for(i in ns1:n) { 
  r2 <- x[i]^2   
  if(robust && r2 > a^2 * var.old)   
   r2 <- var.old 
  var.new <- lambda * var.old +  
   (1 - lambda) * r2 
  var.old <- var.new 
  varvec[i] <- var.new 
 } 
 varvec^0.5 
} 

Code 6.4 Function to Compute Classical and Robust EWMA 
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ticker <- "ROH"  
tsdata <- midcapD.ts[,ticker] 
returns <- tsdata@data[,1] 
n <- length(returns) 
lambda <-.93 
nstart <- 20 
a <- 2.5 
thresh <- 3.5 
vol.classic <- ewma(returns, robust=F, 

lambda=lambda, nstart=nstart,a=a) 
vol.classic 
vol.rob <- ewma(returns, lambda=lambda, 

nstart=nstart, a=a) 
vol.rob 
ylim <- range(vol.classic, vol.rob) 
vol.classic.ts <- timeSeries(vol.classic,  
 positions = tsdata@positions) 
vol.rob.ts <- timeSeries(vol.rob,  
 positions = tsdata@positions) 
par(mfrow = c(3,1)) 
plot(tsdata[,ticker],reference.grid = F, 
 main = paste(ticker,"RETURNS")) 
plot(vol.classic.ts,ylim = ylim, reference.grid = 

F, main = paste(ticker,"CLASSIC EWMA 
VOLATILITY")) 

plot(vol.rob.ts,reference.grid = F, ylim = ylim,  
 main = paste(ticker,"ROBUST EWMA VOLATILITY")) 
# Compute UMT 
par(mfrow = c(2, 1)) 
umt.classic <- 
 abs(returns[nstart:n])/vol.classic[nstart:n] 
umt.classic <- c(rep(0,nstart-1),umt.classic) 
umt.classic.ts = timeSeries(pos = tsdata@positions, 
 data = umt.classic) 
umt.robust <- 

abs(returns[nstart:n])/vol.rob[nstart:n] 
umt.robust <- c(rep(0,nstart-1),umt.robust) 
umt.robust.ts <- timeSeries(pos=tsdata@positions, 
 data = umt.robust) 
ylim <- 1.1*c(0,max(thresh, 
 max(umt.classic,umt.robust))) 
plot(umt.classic.ts, plot.args=list(type="b", 
 pch="."), reference.grid=F, ylim=ylim, 
 ylab="UMT", 
 main=paste(ticker,"UNUSUAL MOVEMENT TEST")) 
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abline(thresh, 0,lty=8) 
plot(umt.robust.ts, plot.args=list(type="b", 
 pch="."), reference.grid=F, ylim=ylim,  
 ylab="ROBUST UMT", main=paste(ticker, 
 "ROBUST UNUSUAL MOVEMENT TEST")) 
abline(thresh, 0,lty=8) 
par(mfrow=c(1, 1)) 
# Q-Q plot and threshold estimate 
par(pty="s") 
umt.rob.signed <- 

returns[nstart:n]/vol.rob[nstart:n] 
qqnorm(umt.rob.signed, 
 ylab="Robust UMT Values",pch=".") 
qqline(umt.rob.signed) 
mean(umt.rob.signed) 
sigma <- stdev(umt.rob.signed) 
sigma 
abs(qnorm(.0005,0,sigma)) 
sigma.rob <- scale.tau(umt.rob.signed) 
mean(umt.rob.signed) 
sigma.rob 
abs(qnorm(.0005,0,sigma.rob)) 
par(pty = "") 

Code 6.5 Compute and Plot Classical and Robust EWMA and UMT 

We remark that the detection power of the classic UMT might be improved 
by using 1ˆtσ −  in the denominator instead of ˆ .tσ  This should clearly improve the 
ability to detect isolated outliers, but it may not suffice to detect any additional 
outliers that follow in close time proximity to a first outlier. The reader could 
check this out by modifying Code 6.5 to use 1ˆtσ −  in place of ˆtσ  in the test 
statistic (Exercise 5). 

It is apparent that the robust EWMA volatility estimate has many potential 
uses in portfolio construction and risk management calculations, as would 
potential extensions to robust EWMA covariance matrix and mean return 
estimates. Clearly, in a time period subsequent to an isolated outlying return 
(positive or negative), one does not want to rebalance a portfolio based on a 
volatility estimate that grossly overestimates the true volatility and a covariance 
matrix estimate that is quite distorted by the outlying return. Generalizations of 
the robust UMT could be used to detect regime shifts from good times to bad 
times and vice versa. 
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6.5 Robust Betas 

Beta estimates for assets are often used by portfolio managers to decide whether 
an asset should be added to a portfolio to increase or decrease its beta. It is 
therefore important to have reliable beta estimates that accurately reflect the risk 
and return characteristics of the assets under scrutiny. This section examines the 
impact of outliers on beta estimates and shows that even a single outlier in an 
asset’s returns can adversely influence the conventional estimates of beta, which 
gives a completely misleading picture of the asset’s risk and return 
characteristics. 

CAPM9 betas are typically estimated by fitting the single-factor market 
model 

 
 , ,       1, 2, , ,t M t tr r t nα β ε= + + =  (6.8) 

 
where tr  is the return on an asset or portfolio at time t, ,M tr  is the market return 
at time t, and tε  is the error term in the model. In the United States, the market 
return is often taken to be the return on a value-weighted index of stocks from 
the NASDAQ, New York, and American stock exchanges. The parameter 
estimates α̂  and β̂  are obtained by fitting a straight line to the scatterplot of tr  
versus ,M tr  by some “good” method. The sanctified “good” method is that of 

(ordinary) least squares (LS), i.e., α̂  and β̂  are obtained by minimizing the sum 
of squared residuals 
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This is often (but not always) good enough for large cap stocks, as the 

Microsoft example in Figure 6.14 and Figure 6.15 shows. The first of these 
figures shows the monthly time series of Microsoft returns and market returns, 
while the second displays both the LS and the robust straight-line fits and 
corresponding beta estimates. The LS and robust betas are quite close to one 
another, both on a relative basis and with respect to the ordinary LS standard 
error value of .28. 

The robust beta is computed using the optimal bias robust regression M-
estimate method described in Section 6.3, with tr µ−  replaced by 

,t M tr rα β− − . This is the method implemented by the function lmRob. The 
time series plots of Figure 6.14 and the classic and robust beta computations for 
Figure 6.15 can be replicated using Code 6.6. 
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mkt.ret.ts <- largecap.ts[,"market"] 
ticker <- "MSFT" 
stock.ret.ts <- largecap.ts[,ticker] 
par(mfrow = c(2,1)) 
plot(stock.ret.ts,plot.args = list(type = "b", 
 pch = "."), reference.grid = F, ylab = "RETURNS",  
 main = ticker)  
plot(mkt.ret.ts,plot.args = list(type = "b", 
 pch = "."), reference.grid = F, ylab = "RETURNS", 
 main = "MARKET")  
par(mfrow = c(1,1)) 
par(pty = "s") 
mkt.ret <- mkt.ret.ts@data[,1] 
stock.ret <- stock.ret.ts@data[,1] 
plot(mkt.ret,stock.ret, xlab = "MARKET RETURNS", 
 ylab = paste(ticker,"RETURNS")) 
beta.ls <- lm(stock.ret ~ mkt.ret) 
abline(beta.ls,lty = 8) 
beta.rob <- lmRob(stock.ret ~ mkt.ret) 
abline(beta.rob) 
text.ls <- as.character(round(coef(beta.ls),2)[2]) 
text.ls <- paste("LS BETA =",text.ls) 
text.rob <- 

as.character(round(coef(beta.rob),2)[2]) 
text.rob <- paste("ROBUST BETA =",text.rob) 
legend(-.15,.37,c(text.ls,text.rob),lty = c(8,1)) 
par(pty = "") 

Code 6.6 Classic and Robust Betas 

It can happen, of course, that the returns of a stock contain one or more highly 
influential outliers that adversely influence the LS beta. This behavior is 
particularly prevalent in small cap and microcap stocks and is vividly illustrated 
in Figure 6.16 for the microcap stock EVST, whose time series of returns 
contains one very large outlier value representing a return of close to 700% 
(recall Figure 6.1). You can produce Figure 6.16 by replacing largecap.ts 
by microcap.ts and ticker = "MSFT" with ticker = "EVST" in 
Code 6.6. 
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Here the single outlier causes the LS line to fit the data quite poorly when the 
market returns are positive, whereas the robust line fit is not greatly affected by 
the outlier and fits the bulk of the data quite well. Note that in this example the 
outlier resulted in an LS beta of 3.17; a consumer of the LS beta would think 
that EVST has a high level of risk and high expected excess return relative to the 
market, even though this conclusion rests on a single data point (and one that 
was an amazingly high return at that). On the other hand, the robust beta value 
of 1.13 indicates that EVST behaves for the most part like the market, which is 
essentially the conclusion one would draw if the outlier were deleted. 

Suppose that instead of the raw β̂  estimates one computed an adjusted beta 
according to the fossilized shrinkage formula sometimes used by commercial 
financial data service providers,  

 
 ˆ.33 .67 ,β β= + ⋅  (6.10) 
 
where β̂  is either the LS or robust beta estimate.10 This gives 2.45LSβ =  and 

1.09,ROBUSTβ =  respectively. The influence of the outlier would be reduced, 
but this adjustment would not solve the problem with the LS estimate. 

It is a rather surprising fact that most commercial providers of beta estimates 
appear to be totally unaware of the impact of outliers on the betas that they 
deliver. This is documented in Martin and Simin (2003), who found that out of 
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Figure 6.14 Microsoft and Market Monthly Returns for Five Years 
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the nine commercial providers of beta estimates that they surveyed, only two 
appeared to be aware of the issue.11 

In order to more fully evaluate the value of a robust beta over an LS beta, one 
needs to know whether robust betas predict robust betas better than LS betas 
predict LS betas. Martin and Simin (2003) answer this question in the 
affirmative, giving further support to the use of robust betas in practice. Our 
recommendation is to compute both LS and robust betas and signal an alert that 
one or more outliers are probably influencing the LS estimate whenever the 
difference between the two estimates is larger than a user-supplied threshold. In 
this case, the provider should supply additional information such as a time series 
plot of returns, the time(s) of occurrence of the outlier(s), and potentially 
important related information such as corporate announcements, etc. 

6.6 Robust Correlations and Covariances 

In this section, we show that multivariate outliers in asset returns can have a 
substantial influence on correlation and covariance matrix estimates, and that 
one can use robust covariance matrix estimates to accurately measure the 
covariance and correlation structure of the bulk of the data. Figure 6.17 shows 
time series of 81 monthly returns for the following assets: U.S. alternative 
investments in DM (AI), high-quality German mortgage bonds (Pfand), U.S. 
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Figure 6.15 Least Squares and Robust Betas for Microsoft 
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private equity hedged in DM (PEHinDM), and U.S. high-yield bonds hedged in 
DM (USHYHinDM).12 

The series of returns appear to have some distinct volatility regimes over 
time, and possibly a few outliers. For example, the PEHinDM and 
USHYHinDM series have relatively low volatility during the early time periods, 
while the Pfand series seems to have a lower volatility near the end of the series. 
The PEHinDM returns have an outlier during Q3 1998, and USHYHinDM 
appears to have an outlier in each of Q3 and Q4 1998 as well as an outlier in 
early 2001. The pairwise scatterplots in Figure 6.18 reveal some clear outliers 
and deviations from the elliptical shape of a multivariate normal distribution. 

Figure 6.17 is a Trellis time series plot made with a modified version of the 
Trellis time series plotting function seriesPlot that comes with the S-PLUS 
add-on module S+FinMetrics.13 Use the commands in Code 6.7 to make the 
Trellis time series plot and the pairwise scatterplots. 

 
data.ts <- normal.vs.hectic.ts[-(1:60),2:5] 
data <- seriesData(data.ts) 
y.name <- colIds(data.ts) 
seriesPlot(data.ts,one.plot=F, 
 strip.text=y.name,col=1) 
pairs(data) 

Code 6.7 Trellis Time Series Plots and Pairwise Scatterplots 
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Figure 6.16 Least Squares and Robust Betas for EVST 
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Figure 6.17 Monthly Time Series of Asset Returns 
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Figure 6.18 Pairwise Scatterplots of the Asset Returns 
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Figure 6.19 shows visual and tabular pairwise displays of classical and robust 
correlations for these returns. The robust correlations are obtained from a robust 
covariance matrix in a manner analogous to the way a classical correlation 
matrix is obtained from a classical covariance matrix: the elements of the robust 
covariance matrix are divided by the appropriate products of robust standard 
deviation (robust scale) estimates. For two of the pairs of returns, there are 
substantial differences between the classical and robust correlations: for Pfand 
and PEHinDM the classical correlation is .14 and the robust correlation is .49, 
and for Pfand and USHYHinDM, the classical correlation is .30 and the robust 
correlation is .66. These differences are consistent with the fact that the bulk of 
the data in the corresponding scatterplots clearly have a substantial positive 
correlation, while the outliers in these plots tend to make the data look more 
circular and hence less correlated. 

Assuming you have already computed data.ts and data as in Code 6.7, 
Code 6.8 will produce Figure 6.19. 
 
cov.fm <- fit.models(list(ROBUST = covRob(data), 
 CLASSICAL = cov(data))) 
plot(cov.fm,which.plots = 3) 

Code 6.8 Robust Covariance Matrix and Correlation Display 

The function covRob, appearing in Code 6.8, allows you to use any of 
several types of robust covariance matrices, with the default being the “Fast” 
Minimum Covariance Determinant (MCD) estimate of Rousseeuw and Van 
Driessen (1999). The MCD estimate computes the covariance matrix of the 
fraction quan of the data that yield the minimum covariance determinant, with 
the default quan = .75. The MCD estimate also returns a robust estimate of 
the multivariate mean (the mean returns in this application) consisting of the 
sample mean of the fraction quan of observations that yield the minimum 
covariance determinant. The reader is encouraged to experiment with different 
values of quan for the MCD estimate, and with the other robust covariance 
matrix estimates provided through covRob (see the online Robust Library User 
Guide (Insightful Corp., 2002) and help files for further details). 

6.6.1 Uses of Robust Covariances and Correlations 

There are at least three ways robust covariances and correlations can be used in 
portfolio construction: 

 
1. As an exploratory data analysis (EDA) tool in order to discover 

whether the classical correlation and covariance estimates are 
influenced by outliers. In the case where the classical and robust 
methods agree, there is little need for concern, but when there are 
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substantial differences, one is well-advised to look more carefully at the 
data for possible explanations that will lead to better investment 
decisions. In some cases, influential outliers may be due to data errors, 
and in such cases the robust estimate will be more reliable than the 
classical estimate. In other cases, the influential outliers are valid data 
points, and the portfolio manager needs to decide whether they are 
representative of the future behavior of the returns, or are unique events 
that are unlikely to occur during the investment horizon under 
consideration and as such should be disregarded. 

2. To construct robust multivariate distances for detecting unusual 
movements in multivariate returns (e.g., detecting normal times versus 
hectic times). 

3. To obtain robust versions of Markowitz mean-variance optimal 
portfolios. By comparing the robust result with a classical mean-
variance optimal portfolio, we will be alerted to the possibility that one 
or more outliers influence a particular optimal portfolio or Sharpe ratio. 

 
The last two applications are described in the next two sections. 
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Figure 6.19 Classical and Robust Correlations for Asset Returns 
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6.7 Robust Distances for Determining Normal 
Times versus Hectic Times    

One way of defining “hectic” or “unusual” times, proposed by Scherer (2004), is 
based on the following statistical measure of the (squared) distance of a return 
vector 1 2( , , , )t t t tkr r r=r  from the vector of sample means µ̂  over the history 
of interest: 

 
 ( ) ( )2 1ˆˆ ˆ .t t td −′= − −r µ Ω r µ  (6.11) 
 
See also Chow, Jacquier, Kritzman, and Lowry (1999). Here Ω̂  is the classical 
sample covariance matrix and 1ˆ −Ω  is its inverse, and we assume a history of 
length n. In the statistical literature, this distance is called the Mahalanobis 
distance. When the returns have a multivariate normal distribution and n is not 
too small, the distances above have a distribution that is well-approximated by a 
chi-squared distribution with k degrees of freedom (dof). By definition, 
“unusual” times are those that do not happen very often and so represent a 
smallish fraction of the returns history during which the data have considerably 
different behavior than during the remaining majority of “normal” times. Thus it 
is reasonable to define unusual times as those for which the values of td  are 
larger than the square root of an upper-tail percentage point of this chi-squared 
distribution (e.g., the square root of the upper 1%, 2.5%, or 5% point). 

Scherer (2004) provides a convincing example of this approach to detecting 
unusual times when the classical sample mean and sample covariance estimates 
are used in the squared distance above. In particular, the example shows that it is 
possible to separate unusual times from normal times. In general, however, the 
use of the classical sample mean and covariance matrix may not yield a highly 
reliable method of detecting unusual times: since outliers can distort the sample 
mean and covariance estimates, the resulting squared distance may not be very 
reliable. Robust mean and covariance matrix estimates do not suffer from this 
drawback and therefore are ideal alternatives to the classical sample means and 
covariances for detecting unusual times. Thus we compute robust Mahalanobis 
distances by replacing the classical mean and covariance matrix estimates in the 
Mahalanobis distance with robust estimates. We illustrate this approach using 
the data shown in Figure 6.20. 

Figure 6.20 shows the classical and robust (Mahalanobis) distances for the 
time series of multivariate returns (i.e., the values of ).td  The horizontal dashed 
line in the figure is the upper 2.5% point of a chi-squared distribution with four 
degrees of freedom. This figure reveals that the classical distance only detects 
three unusual times (two of these are just barely detected), while the robust 
distance clearly detects thirteen unusual times in two distinct temporal clusters, a 
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cluster of seven at the end of the series and a cluster of four near the middle of 
the series. There are also two other unusual times, month 56 and month 65. 
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Figure 6.20 Robust and Classical Distances 

Given the previous computation of cov.fm in Section 6.6, you can make the 
plot in Figure 6.20 with the command 

 
plot(cov.fm,which.plots = 2,id.n = 14) 
 

Now that we know the unusual times, we can repeat the application of classical 
and robust correlations and distances to the unusual portion of the data. The 
results are shown in Figure 6.21 and Figure 6.22 for the two clusters of unusual 
times. 

The most striking bit of information revealed in Figure 6.21 is that the 
correlation between the German mortgage bond returns (Pfand) and returns on 
the other assets has switched from being positive during usual times to being 
substantially negative. This is natural during market downturns when there is a 
flight from equity investments. This behavior is also reflected in the pairwise 
scatterplots of Figure 6.23, which clearly reveal one or two outliers in the 
scatterplot of Al versus Pfand. The classical distances in Figure 6.22 completely 
miss the existence of these outliers, while the robust distances reveal two clear 
outliers and one marginal outlier. 

Code 6.9 gives the S-PLUS code for producing the analysis of Figure 6.21, 
Figure 6.22, and Figure 6.23. 
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data <- data[c(46:49,72:80),]  
cov.fm <- fit.models(list(ROBUST = covRob(data), 
 CLASSICAL = cov(data))) 
plot(cov.fm,which.plots = c(2,3),id.n = 14) 
pairs(data) 

Code 6.9 Analysis of Unusual Times Data 
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Figure 6.21 Classical and Robust Correlations for Two Clusters of Unusual 
Times 

It is worth explaining why the distance measure (classical and robust) 
introduced above is the appropriate “statistical” distance. If you imagine an 
elliptical multivariate distribution for your returns (e.g., a multivariate normal or 
multivariate t distribution), then the right statistical distance is one that is the 
same for any data point lying along the same elliptical contour. This is what the 
Mahalanobis distance provides. A useful geometrical way to see what is going 
on with this distance is to consider the following re-expression of the (squared) 
distance. We assume that the true covariance matrix and mean return vector are 
Ω  and ,µ  and without loss of generality (by a shift of origin) assume that 

.=µ 0  Then 
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Figure 6.22 Robust and Classical Distances for Two Clusters of Unusual 
Times 
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Figure 6.23 Pairwise Scatterplots for the Two Clusters of Unusual Times 
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 (6.12) 

 
You easily check that t′z  has the identity as its covariance matrix. Thus, 

using td  is equivalent to making a transformation of the data so that the 
distribution is spherical rather than elliptical and then using the ordinary 
Euclidean distance in this new coordinate system.  

The reason that a classical covariance matrix often fails to provide robust 
distances is that outliers often distort the estimated covariance matrix to such an 
extent that the transformation above does not result in a spherical scatter for the 
bulk of the data. Consequently, outliers are not reliably detected using the 
classical covariance matrix. 

We emphasize the point that unusual times, consisting of locally extreme 
movements of one or more of the returns in a collection of returns, are 
frequently occurring behaviors by providing a second example, using monthly 
returns of four hedge fund indices: EMERGING MARKETS, EUROPE, 
EVENT DRIVEN, and EQUITY. The classical and robust correlations shown in 
Figure 6.24 clearly indicate that some outlying returns are influencing the 
classical covariance and correlation estimates.  

Figure 6.25 shows that the classical distances give only a weak indication that 
there is something unusual going on at two or three time points, while the robust 
distances give a very strong indication of unusual movement at three to five time 
points in two clusters (time points 4 and 6 and time points 11, 12, 14, and 16). 

A quick look at all pairwise scatterplots in Figure 6.26 reveals several 
multivariate outliers. The time series plots in Figure 6.27 reveal that the first 
cluster with unusual movement is in the emerging market returns in Q2 and Q3 
of 1999, and the second cluster is joint unusual movements in the emerging 
market returns at the beginning of Q1 2000 and in the returns for Europe at the 
end of Q4 1999 and in the first and third months of Q1 2000. 

Code 6.10 gives S-PLUS code for producing Figure 6.24 through Figure 6.27. 
 
returns <- seriesData(hfunds.ts) 
cov.fm <- fit.models(list(ROBUST = covRob(returns), 
 CLASSICAL = cov(returns))) 
plot(cov.fm,which.plots = c(2,3),id.n = 14) 
pairs(returns) 
par(mfrow = c(4,1)) 
y.name = colIds(hfunds.ts) 
seriesPlot(hfunds.ts,one.plot=F, 
 strip.text=y.name,col = 1) 

Code 6.10 Robust Analysis for Hedge Fund Indices  
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Figure 6.24 Classical and Robust Correlations for Four Hedge Fund Index 
Returns 
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Figure 6.25 Robust and Classical Distances for Hedge Fund Index Returns 
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Figure 6.26 Pairwise Scatterplots for the Hedge Fund Index Returns 
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Figure 6.27 Time Series Plots of Hedge Fund Index Returns 
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6.8 Robust Covariances and Distances with 
Different Return Histories 

It often happens that histories of returns for a collection of portfolio assets cover 
different periods of time. This situation is quite prevalent in “funds of funds” 
contexts where a manager is trying to select and optimize a portfolio of funds 
from a pool in which some funds have existed for only a few years while others 
have existed for ten years or more. In such a case one does not, at first blush, 
have an obvious way to compute classical or robust covariance matrices using 
all the data available. When confronted with this situation, most managers will 
opt to use the longest common history of the data by truncating all the data to 
the length of the shortest history available, a practice that often wastes useful 
information in the asset returns with longer histories. For example, Figure 6.28 
shows five sets of hedge fund index returns, with the Emerging Markets (EM) 
index having the longest history (January 29, 1993 to March 31, 2003), and the 
High Yield (HY) and Health indices having common shortest histories (January 
31, 1997 to March 31, 2003). All of the returns above exhibit a clear negative 
outlier in 1998, when markets took a dive following the Russian credit default. 
In addition, Health (a Health and Biotech index) exhibited a wild positive swing 
in 1999 prior to the dot-com collapse, as well as a wild negative swing following 
the dot-com collapse in spring of 2000, and Events exhibits a large positive 
outlier in 1995. A good detection method should reveal these unusual 
movements, along with others that may not be so apparent, at any time in the 
entire history of the series (from the earliest date of the longest series to the end 
of the series). It would be wasteful to throw away the Equity, EM, and Events 
returns prior to January 31, 1997, in order to compute robust covariance 
matrices and robust distances. To detect unusual times (or simply unusual data) 
at every instance over the entire time span of the data, we need a method to 
compute a robust covariance matrix of appropriate dimension and the associated 
robust distances. 

Effective use of all the data is a classical missing data problem for which 
there exists a solution in the context of maximum likelihood estimation under 
multivariate normal returns (Stambaugh, 1997). Here we briefly explain the 
method in detail for the special case of two groups of assets, where each asset 
within a group has the same history, and indicate how the method is generalized 
to more than two groups. 

Let the first group have 1k  assets and let the second group have 2k  assets, 
where the first group has the longer history, 1,2, , ,t T=  and the second group 
has the shorter history, , 1, , ,t s s T= +  with 1.s >  Let ˆ ML

longµ  and ,
ˆ ML

long longΩ  be 
the Gaussian maximum likelihood estimators of the mean vector and covariance 
matrix of the first group with the long history (i.e., the usual sample mean vector 
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and sample covariance matrix with divisor T). Let ˆ truncated
longµ  be the sample mean 

vector of the longer group after truncating the returns to make their history have 
the same period as the shorter group, and let ˆ shortµ  be the sample mean vector 
of the shorter group. It is important to note that this is not the maximum 
likelihood estimator of the shorter group’s mean vector: the longer series is 
generally correlated with the shorter series and therefore contains information 
about the mean vector of the shorter series. Let , ,    1,2, , ,long t t T=r  be the 

1k -dimensional column vectors of returns of the first group, and let 

, ,    , 1, ,short t t s s T= +r , be the 2k -dimensional column vectors of the second 
group. Consider the multivariate linear regression model  

 
 , , ,    , 1, ,short t long t t t s s T= + ⋅ + = +r α B r ε  (6.13) 

 
of the shorter set of returns on the longer set of returns over the shorter history. 
Let α̂  and B̂  be the Gaussian maximum likelihood (least squares) estimates of 
the regression coefficients, and let ˆ

εΩ  be the sample covariance matrix of the 
residuals ˆ ,  , 1, , ,t t s s T= +ε  from the maximum likelihood fit. 
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Figure 6.28 Hedge Fund Index Returns with Different Starting Dates 
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We can now summarize the overall maximum likelihood estimation results. 
The maximum likelihood estimate (MLE) of the mean vector of the shorter 
group series is 

 
 ( )ˆˆ ˆ ˆ ˆ .ML ML truncated

short short long long= + ⋅ −µ µ B µ µ  (6.14) 

 
The overall mean vector MLE is  

 
 ( )ˆ ˆ ˆ,  .ML ML ML

long short=µ µ µ  (6.15) 

The maximum likelihood estimate of the overall covariance matrix is 
 

 , ,

, ,

ˆ ˆ
ˆ ,ˆ ˆ

ML ML
long long long shortML
ML ML
short long short short

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

Ω Ω
Ω

Ω Ω
 (6.16) 

 
where 

 
 , ,

ˆ ˆ ˆˆ ˆML ML
short short short shortε ′= + ⋅ ⋅Ω Ω B Ω B  (6.17) 

and 
 

 , ,
ˆ ˆˆ .ML ML

short long long long= ⋅Ω B Ω  (6.18) 
 

In applications where there are more than two groups and more than two sets of 
common histories with different starting dates, the method above can be applied 
recursively to compute an overall Gaussian maximum likelihood estimate of the 
mean vector and covariance matrix. Details may be found in Section 4 of 
Stambaugh (1997). 

6.8.1 Robustifying the Stambaugh Method 

The Stambaugh method relies heavily on a multivariate Gaussian assumption for 
the returns. As we have seen, this is not a very safe assumption when dealing 
with asset returns. Furthermore, we need a robust version of the method that is 
not much influenced by a few outliers. Fortunately, it is rather straightforward to 
create a robust version by making the following three modifications: (a) replace 
sample mean estimates by robust location estimates, (b) replace the least squares 
multivariate regression estimates α̂  and B̂  with robust regression estimates, 
and (c) replace each of the Gaussian MLE sample covariance matrix estimates 
above (including ˆ )εΩ  with a robust covariance matrix estimate. In the example 
below, we use (a) location.m for the robust location estimates, (b) lmRob to 
obtain the robust multivariate regression by computing a set of robust univariate 
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regressions, and (c) covRob, with the default fast MCD method and setting 
quan = .9. We note that the method is such that when all the component 
covariance matrix estimates below are positive definite, the overall robust 
covariance matrix 

 

 , ,

, ,

ˆ ˆ
ˆ

ˆ ˆ

ROB ROB
long long long shortROB
ROB ROB
short long short short

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

Ω Ω
Ω

Ω Ω
 (6.19) 

 
will be positive definite. 

6.8.2 Robust Distances and Degrees of Freedom at 
Different Time Points 

In order to compute a robust distance at each point in time, one needs to use the 
appropriate robust covariance matrix. Suppose that as you move through the 
history of a set of returns with different starting dates you encounter returns of 
dimensions 1 2,, , .Mk k k  Then at a time point where there exist ik  returns, you 
use the corresponding i ik k×  robust covariance matrix. Then the corresponding 
degrees of freedom for the chi-squared upper 2.5% cutoff point is .ik  

6.8.3 The Hedge Fund Indices Example 

We used the robustified Stambaugh method14 to obtain robust covariance 
matrices ˆ ,   1,2,3,ROB

i i =Ω  and associated robust distances for the hedge fund 
indices whose time series were displayed at the beginning of this section (Figure 
6.28). The results are shown in Figure 6.29. Note the increasing staircase 
behavior of the chi-squared upper 2.5% thresholds for each of the three groups 
with common starting dates owing to the increase in chi-squared degrees of 
freedom as more assets came online in 1994 and 1997. The robust distances 
detect outliers with greater power than the classical distances, thereby clearly 
revealing multivariate outliers that the classical method detects only weakly or 
not at all. 

The robust Stambaugh method code is long, and is not included with this 
book. 
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6.8.4 Comment on Using Chi-Square Percentage 
Points 

One should be aware of several points concerning use of the (square root of 
the) 2.5% upper percentage point of the chi-squared distribution as a detection 
threshold. First, the threshold is somewhat arbitrary, and one could equally well 
use an upper 5% point or upper 1% point, the former yielding a larger false 
alarm rate and the latter yielding a smaller false alarm rate than the 2.5% point. 
We advise against using anything smaller than the upper 5% point since false 
alarm rates that are too high can lead to detection of outliers and unusual times 
even when the data are perfectly stationary and normally distributed (e.g., the 
upper 25% point recommended by Chow, Jacquier, Kritzman, and Lowry (1999) 
would exhibit such behavior). As the chi-squared approximation is not very 
reliable under non-normality (see, for example, Rocke and Woodruff, 1996), one 
may prefer to make a kernel density estimate of the classical and robust 
distances and look for clustering of unusual times in terms of multimodality of 
the density estimates. 
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Figure 6.29 Classical and Robust Distances for Hedge Fund Indices 
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6.9 Robust Portfolio Optimization 

Since classical estimates of mean returns and covariances can be adversely 
influenced by the presence of one or more outliers, it should not be surprising to 
find that Markowitz mean-variance optimal portfolios based on these classical 
estimates can also be adversely influenced by such outliers. As an example of 
the extent to which outliers can influence the estimated Markowitz efficient 
frontier, consider the time series of highly volatile monthly stock returns for 
RAL, GMH, and IVX from February 28, 1991 to December 29, 1995, shown in 
Figure 6.30. 

RAL is distinguished by having a single negative outlier at the beginning of 
the series, while GHM and IVX have a relatively high volatility in the early time 
periods when compared with the rest of the series. The values of robust and 
classical sample means and standard deviations for these returns are shown in 
Table 6.1. 

It is evident that the outliers have the largest impact on RAL, where the 
sample mean and robust mean values are .003 and .009, respectively, and the 
classical and robust standard deviations are .085 and .055. The differences in 
correlations between the two estimates are shown in Figure 6.31. 
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Figure 6.30 Time Series of RAL, GMH, and IVX Returns 
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Table 6.1 Means and Standard Deviations for RAL, GHM, and IVX 

 RAL GMH IVX 
Classic Mean –.003 .019 .021 
Robust Mean   .009 .018 .020 
Classic Std. Dev.   .085 .074 .147 
Robust Std. Dev.   .055 .082 .131 

 
We see a substantial shift of +.41 for the RAL/GHM correlation and –.45 for 

the RAL/IVX correlation when substituting a robust correlation for a classical 
correlation. The S-PLUS code for the plots above is similar to Code 6.7 and Code 
6.8 provided in Section 6.6. 

We made the plots in Figure 6.30 and Figure 6.31 with Code 6.7 and Code 
6.8 using returns.three.ts in place of normal.vs.hect.ts and 
deleting the pairs command in Code 6.7. 

Now we use NUOPT to compute a robust efficient frontier with a constraint 
of no short-selling by simply replacing the classical sample mean returns and 
sample covariance estimates with robust estimates. The resulting efficient 
frontier is displayed in Figure 6.32 along with the classical efficient frontier and 
the maximum Sharpe ratios based on a monthly risk-free rate of .003. The 
display also shows the classical and robust means and standard deviations of 
each of the three stocks along with their ticker symbols. 

The (maximum) Sharpe ratios are approximately the same for both frontiers. 
However, the classical efficient frontier indicates that the investor can achieve 
about 10 to 20 basis points (monthly) more than with the robust frontiers for 
sufficiently high levels of risk. On the other hand, the robust efficient frontier 

0.457808

-0.261029 0.073289

0.051905

0.190492 -0.052932

R
A

L

G
M

H

IV
X

RAL

GMH

IVX

   ROBUST
CLASSICAL

 
Figure 6.31 Classical and Robust Correlations for RAL, GHM, and IVX 
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offers higher levels of return than the classical frontier for lower levels of risk 
and a considerably lower risk for the (global) minimum variance portfolio. The 
means and standard deviations of the individual stocks in the plot above are the 
classical sample mean and sample standard deviation. Note that the main 
difference between the values of the classical and robust means and standard 
deviations are for RAL. The optimal weights for the classical and robust 
efficient frontiers are displayed in Figure 6.33. 

It should not be surprising to see that, for small levels of risk, the classical 
portfolio gives considerably less weight to RAL than does the robust portfolio 
(recall that RAL has one large negative outlier at the beginning of the series) and 
that for the largest levels of risk both portfolios give about the same relative 
weights to GMH and IVX. We also see that the robust portfolio gives no weight 
to GMH in the minimum variance portfolio and also gives considerably less 
weight to GMH than does the classic portfolio for lower levels of risk. 

Code 6.11 creates the function rob.mv.efronts for computing and 
displaying mean-variance and robust efficient frontiers and optionally plotting 
the portfolio weights for each. The last line of Code 6.11 executes the function 
on the three-asset time series object returns.three.ts: 
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Figure 6.32 Classical and Robust Efficient Frontiers for Three-Stock Portfolio 



6.9 Robust Portfolio Optimization 241 

rob.mv.efronts <- function(returns.ts, rf=.003, 
 n.ret=50, plot.weights=F, a=1, sharpe=T, 
 display.points=T, display.names=T, 
 display.letters=F) 
{ 
 returns <- seriesData(returns.ts) 
 p <- ncol(returns) 
 # Parameter comments  
 # Use a= 1 for no short selling, and  
 # adjust a > 1 for short selling 
 # If using display.letters=T, set  
 # display.points=F and display.names=F) 
 # Compute Classical Efficient Frontier 
 meanVec1 <- apply(returns,2,mean) 
 covMat1 <- var(returns) 
 sigma1 <- diag(covMat1)^.5 
 max.ret1 <- max(meanVec1)*a 
 ef.classic <- portfolioFrontier(covMat1, 

meanVec1, 
  wmin=0, max.ret=max.ret1, n.ret=n.ret) 
 # Compute Robust Efficient Frontier 
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Figure 6.33 Weights for Classical and Robust Efficient Frontier Portfolios 
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 meanVec2 <- apply(returns,2,location.m) 
 covMat2 <- covRob(returns,estim = "mcd", 
  quan = .9)$cov 
 sigma2 <- diag(covMat2)^.5 
 max.ret2 <- max(meanVec2)*a 
 ef.robust <- portfolioFrontier(covMat2, meanVec2, 
  wmin=0, max.ret=max.ret2, n.ret=n.ret) 
 # Plot Efficient Frontiers 
 xlim <- range(ef.classic$sd,ef.robust$sd, 
  sigma1,sigma2,0) 
 ylim <- range(ef.classic$ret,ef.robust$ret, 
  meanVec1,meanVec2,0) 
 plot(ef.classic$sd,ef.classic$ret,xlim=xlim, 
  ylim=ylim, type = "n" ,xlab="SIGMA",ylab="MU") 
 lines(ef.classic$sd,ef.classic$ret,lty = 8) 
 lines(ef.robust$sd,ef.robust$ret,lwd=2) 
 # Plot Stock Mu's and Sigma's and Add Legend 
 title(main="CLASSICAL AND ROBUST EFFICIENT  
  FRONTIERS\n Three Stocks") 
 if(display.letters) { 
  for(i in 1:p) { 
   points(sigma1[i],meanVec1[i], 
    pch = letters[i]) 
   points(sigma2[i],meanVec2[i], 
    pch = LETTERS[i]) 
  } 
  if(display.names){ 
   text(sigma1 + 0.002, meanVec1, 
    names(meanVec1), adj=0) 
   text(sigma2 + 0.002,meanVec2, 
    names(meanVec2), adj=0) 
  } 
  x = xlim[1]+.15*(xlim[2]-xlim[1]) 
  y = ylim[1]+.10*(ylim[2]-ylim[1]) 
  leg.names = c("A,B,.. Robust Mu's,Sigma's", 
   "a,b,. Classical Mu's,Sigma's")  
  text(x,y,leg.names[1]) 
  text(x,y-.002,leg.names[2]) 
 } # endif display.letters 
 
 if(display.points){ 
  points(sigma1,meanVec1,pch = 2) 
  points(sigma2,meanVec2,pch = 17) 
  if(display.names){ 
   text(sigma1 + 0.002, meanVec1, 
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    names(meanVec1), adj= 0) 
   text(sigma2 + 0.002, meanVec2, 
    names(meanVec2), adj= 0)} 
   x = xlim[1]+.00*(xlim[2]-xlim[1]) 
   y = ylim[1]+.13*(ylim[2]-ylim[1]) 
   leg.names = c("   ROBUST","CLASSICAL")  
   legend(x,y,leg.names, marks = c(17,2)) 
 } #endif display.points 
 
 # Add legend 
 x = xlim[1]+.0*(xlim[2]-xlim[1]) 
 y = ylim[2]-.0*(ylim[2]-ylim[1]) 
 leg.names = c("   ROBUST","CLASSICAL")  
 legend(x,y,leg.names,lty=c(1,8)) 
 
 # Compute and Display Maximum Sharpe Ratio's,  
 # and Add Bullets 
 if(sharpe) { 
  i.maxsr.classic = order((ef.classic$ret- 
   rf)/ef.classic$sd)[n.ret] 
  i.maxsr.robust = order((ef.robust$ret- 
   rf)/ef.robust$sd)[n.ret] 
  sr.classic = ((ef.classic$ret- 
   rf)/ef.classic$sd)[i.maxsr.classic] 
  sr.robust = ((ef.robust$ret- 
   rf)/ef.robust$sd)[i.maxsr.robust] 
  points(ef.classic$sd[i.maxsr.classic], 
   ef.classic$ret[i.maxsr.classic],pch = 16) 
  points(ef.robust$sd[i.maxsr.robust], 
   ef.robust$ret[i.maxsr.robust],pch = 16) 
  x = xlim[1]+.85*(xlim[2]-xlim[1]) 
  y = ylim[1]+.1*(ylim[2]-ylim[1]) 
  text(x,y,paste("  ROBUST SR =", 
   round(sr.robust,3))) 
  y = ylim[1]+.05*(ylim[2]-ylim[1]) 
  text(x,y,paste("CLASSICAL SR =", 
   round(sr.classic,3))) 
 } #endif sharpe 
 
 # Plot Portfolio Weights for Both Efficient 
 # Frontiers 
 if(plot.weights) { 
  par(mfrow = c(1,2)) 
  barplot(ef.classic$weights, 
   legend = names(returns)) 
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  title(main = "CLASSICAL EFF. FRONTIER 
   WEIGHTS") 
  barplot(ef.robust$weights, 
   legend = names(returns)) 
  title(main = "ROBUST EFF. FRONTIER WEIGHTS") 

   par(mfrow = c(1,1)) 
  }#endif plot.weights 

} # end function definition 
 
rob.mv.efronts(returns.three.ts,plot.weights = T) 

Code 6.11 Robust Efficient Frontiers 

6.9.1 Effect of Outliers on the Sample Mean versus 
the Sample Covariance Matrix 

By making small modifications to Code 6.11 above, you can easily do a 
sensitivity analysis to see whether the influence of the outliers on the classical 
efficient frontier is primarily through distortion of the mean estimate or 
primarily through distortion of the covariance matrix estimate. To use only a 
robust covariance estimate, replace location.m with mean in the expression  
 
meanVec2 <- apply(returns,2,location.m)  

 
in the Code 6.11 function. To use only a robust mean estimate (and the classical 
covariance estimate), change the code line  
 
covMat2 <- covRob(returns)$cov 

 
to  
 
covMat2 <- var(returns). 
 

 The results of making these two changes separately are shown in Figure 6.34 
and Figure 6.35, respectively. 

These displays indicate that it is not enough to use only robust means or only 
robust covariances. Combining the information in Figure 6.33, Figure 6.34, and 
Figure 6.35, it appears that the difference between the classical and robust 
efficient frontiers is a result of outliers influencing both the sample mean and 
sample covariance estimates. 
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Figure 6.34 Robust Efficient Frontier with Robust Covariance Estimate 
Only 
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Figure 6.35 Robust Efficient Frontier with Robust Mean Only 
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6.9.2 Other Examples and Alternative Asset Plot 
Labels 

You can easily find many examples where the classical and robust efficient 
frontiers differ by a considerable amount. This is particularly true for microcap 
and small cap stocks, but you can also find examples of this type for mid-cap 
and large cap stocks. We give three examples in Figure 6.36 through Figure 6.38 
in support of this claim using options in Code 6.11 that provide for alternative 
displays of both classical and robust means and standard deviations. 

In Figure 6.36, we display the two efficient frontiers for a group of five small 
cap stocks with a solid (open) triangle symbol for the robust (classical) means 
and standard deviations of the returns of the individual stocks. Although we can 
see that there are substantial differences in the robust and classical means and 
standard deviations, we cannot see their individual changes. 

We make the plot of Figure 6.36 with the commands 
 
tickers <- c("TOPP","KWD","HAR","RARE","IBC") 
returns.ts <- smallcap.ts[,tickers]  
rob.mv.efronts(returns.ts) 
y.name <- colIds(returns.ts) 
seriesPlot(returns.ts,one.plot=F,strip.text=y.name, 
 col = 1) 
 

Figure 6.37 and Figure 6.38 are made by modifying the code above in obvious 
ways. 

We note that, in general, mid-cap and large cap stocks are less prone to 
having large outliers than small caps and microcaps, and when there are no 
influential outliers in returns, the values for classical and robust means, standard 
deviations, and covariances will be close to one another. In such situations, the 
classical and robust efficient frontiers will be very similar, as in Figure 6.38, and 
one need not worry about influential outliers. 

In the case of many stocks, the ticker symbols may overlap a lot, and you 
may prefer to use uppercase and lowercase letters in order to visualize the 
changes in individual means and standard deviations, as in Figure 6.39. You can 
get these kinds of labels in your efficient frontier plot by using the optional 
arguments display.points = F, display.names = F, and 
display.letters = T in the function rob.mv.efronts. 
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Figure 6.36 Efficient Frontiers for Small Cap Stocks with Classical and 
Robust Mu and Sigma 
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Figure 6.37 Efficient Frontiers for Mid-Cap Stocks with Ticker Symbols 
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Figure 6.38 Efficient Frontiers for Large Cap Stocks with Letters for Mu 
and Sigma 
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Figure 6.39 Typical Efficient Frontiers for Large Cap Stocks 
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6.9.3 Classical or Robust Efficient Frontier: Which to 
Use? 

It is important to keep in mind that a robust efficient frontier is based on robust 
estimates of the means and covariance matrix, which themselves represent the 
mean and covariance of the bulk of the returns. As such, a robust efficient 
frontier represents the bulk of the data. Whether this is an adequate 
representation of the future behavior of your returns is open to serious question. 
Therefore, at this point it is not clear whether you should prefer making an 
investment decision based on a robust efficient frontier rather than a classical 
efficient frontier.  

Of one thing we are sure: a robust efficient frontier is a valuable diagnostic 
tool. When the robust and classical frontiers are quite close to one another, as in 
Figure 6.39, the returns are quite likely to be free of influential outliers and 
well-approximated by a multivariate normal distribution. In this case, one can 
feel reasonably confident in using the mean-variance efficient frontier. When the 
two efficient frontiers differ by a significant amount, as in Figure 6.36 though 
Figure 6.38 above, there are likely to be influential outlying returns, and it is 
unlikely that the returns are well-approximated by a multivariate normal 
distribution. In such cases one is alerted to the need to carry out some 
exploratory data analysis (EDA) of the returns data and think carefully about 
what to do. One way to start such an EDA is by making time series plots of your 
returns to see if there are any obvious outliers, whether those outliers are 
positive or negative, and where they occur in the series of returns (e.g., early, 
middle or late in the period of interest). We illustrate what this initial step can 
reveal in the examples above. 

The Trellis time series plots of the stocks in the small cap portfolio above, 
provided in Figure 6.40, reveal that three of the series, TOPP, RARE, and IBC, 
have one or more dominant positive returns outliers and that there are no 
dominant negative outliers in any of the series of returns. In the efficient 
frontiers display of Figure 6.36, you see that the robust means and standard 
deviations of the returns for TOPP, RARE, and IBC are substantially smaller 
than those of classical means and standard deviations, as might be anticipated. 
Correspondingly, the robust efficient frontier is lower and slightly to the left of 
the classical frontier. An investor who uses the robust efficient frontier is taking 
a conservative view with regard to the potential occurrence of future positive 
outliers in one or more of the series TOPP, RARE, and IBC (i.e., he is not 
betting on such occurrences in the future). Such an investor is, in a sense, 
implementing a Bayesian approach based on his own subjective prior 
distributions about the probability of future positive outliers. 

The situation for the time series plots of the mid-cap stocks in Figure 6.41 is 
different. APCC has a number of substantially negative values but no clearly 
dominant outliers, while LXK has three or four dominant negative outliers. 
Furthermore, in each case there are no equivalent offsetting positive values. For 
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TXT, the positive and negative extreme values appear to be roughly offsetting, 
and SNV has a single positive outlier near the beginning of the series. This 
information is depicted in the efficient frontiers of Figure 6.36: the robust means 
of the APCC and LXK returns are larger than their sample means; the robust 
standard deviation of LXK is smaller than its classical sample standard 
deviation, while the robust and classical standard deviations of APCC have 
almost the same values; the robust mean and standard deviation of SNV are 
smaller than the classical sample mean and standard deviation; and there is a 
small difference between the robust and classical means and standard deviations 
for TXT. Given the different behaviors of these means and standard deviations, 
one might not expect the robust efficient frontier to dominate the classical 
frontier at all levels of risk. That this is the case reflects the fact that the larger 
values of the robust means along with the large values of the robust standard 
deviations result in considerable “leverage” effects in determining the location 
of the robust efficient frontier relative to the classical efficient frontier. 

A word of caution is in order: in this situation, would a wise investor trust the 
higher returns achievable with the robust efficient frontier? Since the negative 
returns for APCC and LXK are near the end of the series, an investor may well 
be wary of assuming that such returns will not occur again in the near future and 
therefore reject the optimism of the robust efficient frontier. 

Figure 6.42 shows the Trellis time series plots of returns for the stocks of the 
large cap portfolio whose efficient frontiers are shown in Figure 6.38. The 
tickers UTX, PG, PHA, SO, and CAT correspond to the letters “A,” “B,” “C,” 
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Figure 6.40 Small Cap Portfolio Time Series 
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“D,” “E” (and “a,” “b,” “c,” “d,” “e”). The time series plots reveal that UTX has 
one or two possible negative outliers, PG has one large negative outlier, PHA 
has one positive outlier and one negative outlier, and CAT has one large positive 
outlier. The corresponding differences in locations of the robust means and 
standard deviations (the points labeled “A,” “B,” “C,” and “E,” respectively) 
and the classical means and standard deviations (the points labeled “a,” “b,” “c,” 
and “e,” respectively) are what one would expect. In this case the overall 
configuration of the outliers in the returns and the resulting robust versus 
classical means and standard deviations is rather complex, and one cannot easily 
guess the relative positioning of the robust and classical efficient frontiers. 

While the analysis above may provide some guidance in choosing between a 
robust and classical efficient frontier when making an investment decision, 
better tools are needed to determine the relative performance of investments 
made with these two approaches. One such tool is a bootstrapped efficient 
frontier that can help determine whether the difference between a robust and 
classical efficient frontier is “real” or whether it is just a result of statistical 
variability. 
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Figure 6.41 Mid-Cap Portfolio Time Series 
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6.9.4 Bootstrapped Efficient Frontiers and Sharpe 
Ratios  

Classical and robust efficient frontiers are complicated functionals of the 
underlying distribution of the returns, and the exact distributions of efficient 
frontiers (even the mean-variance efficient frontier) are generally intractable. In 
Chapter 4, we discussed parametric portfolio resampling in which multivariate 
normal samples are generated based on the sample mean and covariance of the 
returns. In Section 4.5.4, we noted the lack of statistical foundation of the 
variant proposed by Jorion (1992) and Michaud (1998), and in Section 4.6 we 
applied nonparametric bootstrap methods to estimate confidence intervals for 
the Sharpe ratio.15 In this section we continue to use the nonparametric bootstrap 
to calculate and visualize the variability of both robust and classical mean-
variance efficient frontiers and their maximum Sharpe ratios. 

A primary advantage of using the nonparametric bootstrap to assess the 
average behavior and variability of these two types of efficient frontiers is that 
the results tell us all that the data have to say about the unknown distribution of 
the multivariate returns. In this kind of bootstrap sampling, some samples will 
have fewer outliers (sometimes zero outliers) than in the original sample and 
some will have more outliers than in the original sample. In this way, the 
efficient frontier variability is reflecting the various possible future efficient 
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Figure 6.42 Large Cap Portfolio Time Series 
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frontier curves based on samples coming from a nonparametric estimate of the 
unknown returns distribution. 

The dashed lines in Figure 6.43 show 30 bootstrapped classical mean-
variance efficient frontiers for the small cap portfolios of Figure 6.36 and Figure 
6.40, and the dashed lines in Figure 6.44 show 30 bootstrapped robust efficient 
frontiers for the same portfolio. The solid line in each figure is the efficient 
frontier based on the original set of returns. The same bootstrap replicates are 
used for each figure (i.e., for each mean-variance efficient frontier there is a 
corresponding robust efficient frontier computed with the same bootstrap 
sample). Each solid dot is the “bullet point” representing the (global) minimum 
variance portfolio for the corresponding bootstrap sample and associated 
efficient frontier. It may be noted immediately that both the original efficient 
frontiers are biased in that they are not centrally located in the scatter of 
bootstrap efficient frontiers. Since the horizontal and vertical ranges of both axes 
are the same in the two figures, you can deduce that the mean return of the 
robust minimum variance portfolio appears to be less than that of the mean-
variance minimum variance portfolio, while the risk of the former is at least as 
small as the risk of the latter. 

Figure 6.45 shows boxplots of the differences for each bootstrap sample 
between the mean returns and risks of the robust and mean-variance minimum 
variance portfolios along with the differences between the Sharpe ratios. The 
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Figure 6.43 Bootstrapped Mean-Variance Efficient Frontiers for Small 
Cap Portfolio 
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notches in the boxplots correspond to approximate 95% confidence intervals for 
the median differences. None of these confidence intervals contains zero, 
indicating that the performance of the robust optimal portfolio is significantly 
lower than that of the mean-variance portfolio at a level of 5%. The median 
difference between the mean-variance and robust Sharpe ratios is only about –
.06, which is not likely to be of much financial consequence. 

The choice B = 30 for the number of bootstrap replicates may well be too 
small to draw firm conclusions. To get an idea of how things will change with 
an increasing number of replicates, we ran the bootstrap program with B = 100 
replicates (without plotting efficient frontiers); the resulting boxplots are shown 
in Figure 6.46. For this particular example, the results are not substantially 
different from those of the bootstrap with B = 30. 

The S-PLUS and NUOPT code for the above computations is provided below 
in the form of the two functions boot.efronts (Code 6.12) and 
efront.nuopt.forboot (Code 6.13) and a short script (Code 6.14) for 
calling boot.efronts using the small cap returns. When running Code 6.12 
and Code 6.13, one must allow sufficient time for the bootstrap computations to 
finish. 
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Figure 6.44 Bootstrapped Robust Efficient Frontiers for Small Cap 
Portfolio 
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Figure 6.45 Bootstrap Portfolio Performance Differences for B = 30 
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Figure 6.46 Bootstrap Portfolio Performance Differences for B = 100 
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boot.efronts <- function(returns.ts, B=30, rf=.03, 
 npoints=20, k.mu=4, k.sigma=1.5, mv=T, tan=F, 
 plotit=F, estim = "mcd", quan=.9) 
{ 
 # B is the number of bootstrap samples 
 # k.mu controls vertical axis plotting range 
 # k.sigma controls horizontal axis plotting range 
 # Adjust k.mu, k.sigma to minimize plot  
 # "Line out of bounds" Warnings 
 # mv = T to display bullet at minimum var. 
  portfolio 
 # tan = T to display bullet at tangency portfolio 
 # plotit = T to plot efficient frontiers 
 # estim = "mcd" to use MCD est. (avoid auto. 
 # default choice) 
 # quan is the fraction of data used by the MCD 
 # Compute Bootstrap Samples Indices 
 returns <- seriesData(returns.ts) 
 n <- nrow(returns) 
 m <- ncol(returns) 
 B <- 30 
 boot.index <- samp.boot.mc(n,B) 
 # Compute Classic Efficient Frontier 
 covmat <- var(returns) 
 mu <- apply(returns,2,mean) 
 max.ret <- max(mu) 
 ef <- portfolioFrontier(covmat, mu, wmin=0, 
  max.ret=max.ret,n.ret=npoints) 
 sd = ef$sd 
 ret = ef$returns 
 # Compute Robust Efficient Frontier 
 cov.rob <- covRob(returns,estim = estim,  
  quan = quan) 
 covmat.rob <- cov.rob$cov 
 #mu.rob <- cov.rob$center 
 mu.rob <- apply(returns,2,location.m) 
 max.ret <- max(mu.rob) 
 ef.rob <- portfolioFrontier(covmat.rob, mu.rob, 
  wmin=0, max.ret=max.ret, n.ret=npoints) 
 sd.rob <- ef.rob$sd 
 ret.rob <- ef.rob$returns 
 # Set Axis Limits 
 xlim <- k.sigma*c(0,max(sd,sd.rob)) 
 ylim <- k.mu*c(0,max(ret,ret.rob)) 
 xlim <- c(0,.2) 
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 ylim <- c(-.02, .06) 
 # Plot Original Classic Efficient Frontier 
 if(plotit) { 
  plot(sd, ret, xlim = xlim, ylim = ylim, 
   type = "l", xlab ="RISK (STD. DEV.)", 
   ylab ="EXPECTED RETURN") 
  lines(sd,ret,lwd = 2) 
  title(main="BOOTSTRAP MEAN-VARIANCE EFFICIENT 
   FRONTIERS \n Small cap Portfolios") 
 } #endif plotit 
 
 # Compute and Plot Classic Bootstrapped Frontiers 
 names <- c("SD.MV","MU.MV","SD.TAN","MU.TAN", 
  "SHARPE") 
 out <- matrix(rep(0,5*B),ncol = 5) 
 dimnames(out) <- list(NULL,names) 
 
 for(i in 1:B) { 
  ef.classic = efront.nuopt.forboot( 
   returns[boot.index[,i],],plotit, 
   robust = F, estim = estim, quan = quan, 
   rf = rf, mv = mv, tan = tan) 
  out[i,] = ef.classic 
 } # endfor i in 1:B 
 round(out,3) 
 # Plot Original Robust Efficient Frontier 
 if(plotit) { 
  plot(sd.rob, ret.rob, xlim = xlim, ylim = 

ylim, 
   xlab = "RISK (STD. DEV.)", 
   ylab = "EXPECTED RETURN",type = "l") 
  lines(sd.rob,ret.rob,lwd = 2) 
  title(main="BOOTSTRAP ROBUST EFFICIENT 

FRONTIERS 
   \n Small cap Portfolios") 
 } # endif plotit 
 
 # Compute and Plot Robust Bootstrapped Frontiers 
 names <- c("SD.MV","MU.MV","SD.TAN","MU.TAN", 
  "SHARPE") 
 out.rob <- matrix(rep(0,5*B),ncol = 5) 
 dimnames(out.rob) <- list(NULL,names) 
 for(i in 1:B){ 
  ef.rob = efront.nuopt.forboot( 
   returns[boot.index[,i],],plotit, 
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   robust = T, estim = estim, quan = quan, 
   rf = rf, mv = mv, tan = tan) 
  out.rob[i,] = ef.rob 

 } 
 round(out.rob,3) 
 par(mfrow = c(2,2)) 
 boxplot(out.rob[,2]-out[,2],notch = T,  

  ylab = c("ROBUST MINUS CLASSICAL")) 
 title(main = "MEAN RETURN DIFFERENCE \n Minimum 
  Variance Portfolios") 
 boxplot(out.rob[,1]-out[,1],notch = T, 
  ylab = c("ROBUST MINUS CLASSICAL")) 
 title(main = "RISK DIFFERENCE \n Minimum  
  Variance Portfolios") 
 boxplot(out.rob[,5]-out[,5],notch = T, 
  ylab = c("ROBUST MINUS CLASSICAL"), 
  ylim = range(out.rob[,5]-out[,5])) 
 title(main = "DIFFERENCE OF SHARPE RATIOS") 
 par(mfrow = c(1,1)) 
} 

Code 6.12 Bootstrapped Efficient Frontiers and Sharpe Ratios 

efront.nuopt.forboot <- function(returns, plotit =  
 T, robust, estim, quan, rf = 0.005, mv = T, tan =  
 F, npoints = 50) 
{ 
 if(robust) { 
  covmat <- covRob(returns,estim = estim, 
   quan = quan)$cov 
  mu <- apply(returns,2,location.m) 
 } 
 else { 
  covmat <- var(returns) 
   mu <- apply(returns,2,mean) 
 } 
 #sd <- apply(returns, 2, stdev) 
 ef <- portfolioFrontier(covmat, mu,wmin = 0,  
  max.ret = max(mu), n.ret = npoints) 
 sdopt <- ef$sd 

 
 muopt <- ef$returns 
 # Compute minimum variance portfolio 
 port.mv <- c(sdopt[1], muopt[1]) 
 names(port.mv) <- c("SD.MV", "MU.MV") 
 # Compute tangency portfolio 
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 sharpe <- (muopt - rf)/sdopt 
 iopt <- order(sharpe)[npoints] 
 sharpe.max <- sharpe[iopt] 

 
 names(sharpe.max) <- "SHARPE" 
 port.tan <- c(sdopt[iopt], muopt[iopt]) 
 names(port.tan) <- c("SD.TAN", "MU.TAN") 
 # Plot results 
 if(plotit) { 
  lines(sdopt, muopt, lty = 8) 
  #points(max(sdopt), max(muopt), pch = ".") 
  if(mv == T) 
   points(port.mv[1], port.mv[2], pch = 16) 
  if(tan == T) 
   points(port.tan[1], port.tan[2], pch = 18) 
 } 
 c(port.mv, port.tan,sharpe.max) 
} 

Code 6.13 NUOPT Efficient Frontiers for Bootstrap Function 

tickers <- c("TOPP","KWD","HAR","RARE","IBC") 
returns.ts <- smallcap.ts[,tickers] 
boot.efronts(returns.ts,plotit = T) 

Code 6.14 Bootstrap Efficient Frontiers Example 

The reader is encouraged to experiment with Codes 6.12–6.14 on a variety of 
portfolios using the returns data set included with this book. 

6.9.5 Efficient Frontiers Based on the Classical and 
Robust Stambaugh Methods 

In Section 6.7, we discussed the Stambaugh normal distribution maximum 
likelihood method of estimating a mean vector and covariance matrix for asset 
returns having unequal histories and showed how to make the method robust. 
With these two types of mean vector and covariance matrix estimates in hand, 
we can proceed as usual to compute both a classical and a robust efficient 
frontier. Figure 6.47 and Figure 6.48 show the results of doing this using the 
returns pictured in Figure 6.28. Note the dominant role of Health along with 
Events in determining the limits of the classical efficient frontier as compared 
with the dominant role of Equity along with Events in determining the robust 
efficient frontier. Note also that the reduction in risk when moving from 
classical sample standard deviations to robust standard deviations is roughly the 
same for all indices except Health, which exhibits a much more substantial 
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reduction in risk. Health also exhibits a substantial reduction in mean return 
when moving from the sample mean estimate to a robust location estimate. The 
distribution of portfolio weights along the two efficient frontiers is quite 
different, with the classical portfolio weights relying more heavily on Health at 
higher levels of risk and return. By way of contrast, the robust portfolio relies 
more heavily on Equity at higher levels of return (and risk) and gives Health a 
zero weight for all possible portfolios. 

A glance at the time series of returns for the indices in Figure 6.28 reveals 
that Health was giving exceptional gains during 1999 (probably by riding the 
dot-com bubble) and exhibited exceptional losses during the dot-com crash in 
2000, followed by relatively lower volatility and unexceptional returns during 
2001, 2002, and early 2003. Therefore, it would not be surprising to find many 
investors preferring the robust efficient frontier for making their investment 
decision. One can say the robust approach is an automatic method for down-
weighting the anomalous returns in the data, thereby calculating an efficient 
frontier that represents the “normal” behavior of the data. Lacking special 
information, the “normally” behaving data are the only part of the data that is 
predictable. 
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Figure 6.47 Efficient Frontiers for Index Returns with Unequal Histories 
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6.10 Conditional Value-at-Risk Frontiers: 
Classical and Robust 

A definition of coherent risk measure introduced by Artzner et al. (1997, 
1999) was discussed in Section 5.6.2, where it was pointed out that value-at-risk 
(VaR) is not a coherent risk measure.16 It is also the case that standard deviation 
is not a coherent risk measure, which makes the classical Markowitz mean-
variance method suspect. On the other hand, it was pointed out in Sections 5.6.2 
and 5.6.3 that conditional value-at-risk (CVaR) is a coherent risk measure that 
leads to a computationally attractive portfolio optimization approach. The 
question, therefore, is how one might make the CVaR method of portfolio 
optimization robust. We note that a CVaR optimal portfolio (CVaR portfolio for 
short) does not involve an estimate of the covariance matrix; it only involves 
estimation of the mean returns. Thus, at first glance one can make a CVaR 
robust by simply replacing the sample mean estimates of the iµ  by one of the 
robust location estimates in Section 6.2. However, outliers can also influence the 
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individual scenario returns ,1

n
i i si

w r
=∑  in ,1

max 0,
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e VaR w r
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⎡ ⎤= −⎢ ⎥⎣ ⎦∑  and 

hence can influence the value of the objective function 

1

1 m
si

CVaR VaR e
mα =

= −
⋅ ∑  (see Section 5.6.3). In order to control the 

influence of outliers on this objective function, one needs to down-weight the 
values of the ,i sr  appearing above. 

With regard to down-weighting the , ,i sr  there are two questions. First, should 
one down-weight these values at all? After all, the whole point of using CVaR is 
to use tail risk to find optimal portfolio weights, and in general one expects that 
one or more large negative returns in a given asset will tend to reduce the weight 
in that asset in the optimal CVaR portfolio. Down-weighting such large negative 
returns might be counterproductive. Second, how should one down-weight the 
values? 

We defer the second question for a moment and address the first. As we 
pointed out earlier, the use of robust portfolio computations is not a be-all and 
end-all. The most important value of a robust portfolio is its diagnostic value: 
when the robust and classical efficient frontiers agree, there is no need to worry, 
and when they differ the portfolio manager needs to make a decision on which 
to use based on all the other information available. In the end, the manager may 
be inclined to take one of the following positions: 

 
The robust view, in which the manager does not trust that any past 
outlier returns will repeat themselves with any degree of predictability 
and therefore uses a robust portfolio solution since it reflects the 
behavior of the bulk of the data, excluding outliers;  

The pessimistic view, in which the manager does not trust that past 
positive outliers are to be expected over the investment horizon, but 
that past negative returns outliers indicate possible future negative 
returns outliers, and therefore down-weights only positive returns 
outliers;  

The optimistic view, in which the manager does not believe that past 
negative returns outliers will repeat themselves over the investment 
horizon, but that past positive returns outliers indicate possible future 
positive returns outliers, and therefore down-weights only negative 
returns outliers. 

The optimistic or pessimistic views might be taken, for example, when the 
corresponding outlier or outliers occur only during the early part of the history 
used to optimize the portfolio or when the manager has other information about 
some or all of the portfolio assets under consideration. 
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With these three managerial views in mind, one might first think to use 
robust distances based on a robust covariance matrix estimate as in Section 6.6 
to create weights for each scenario vector 1, 2, ,( , , , ),   1,2, , .s s s n sr r r r s m= =  
There are at least two reasons why this is not a highly appealing approach. First, 
it is not clear how to modify the robust distance approach in a simple manner to 
accommodate the three distinct manager views. Second, since CVaR portfolio 
optimization does not require computation of a covariance matrix (which can be 
computationally burdensome when dealing with a large portfolio), it is attractive 
to avoid this approach. Consequently, we propose a much simpler approach 
based on down-weighting outliers in each set of asset returns, one at a time, 
according to which of the views above the manager takes. While this simpler 
approach has the deficiency that it is not able to detect and down-weight 
potentially influential multivariate returns outliers that are not univariate 
outliers, it has the virtue of simplicity and appears to help in many situations 
occurring in practice. 

We use a special form of the outlier-down-weighting approach, often called 
trimming, which is done as follows: for each set of returns , ,   1, 2, , ,i sr s m=  
compute a robust location estimate ˆiµ , a robust scale estimate ˆiσ , and the 
resulting residuals , , ˆi s i s ires r µ= − . For a manager with a robust view, compute 
the symmetrically trimmed returns 
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For a manager with a pessimistic view, compute the positive-trimmed returns 
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and for a manager with an optimistic view, compute the negative-trimmed 
returns 
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We use a default value a = 3, which results in about 2.6 symmetric trimmed 
residuals out of 1000 for normally distributed returns and about 1.3 out of 1000 
for the two other cases. 

Code 6.15 gives the S-PLUS code for the function trimmed.returns that 
computes the above trimmed returns: 

 
trimmed.returns <- function(x, view = "robust",  
 a = 3) 
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{ 
 p <- ncol(x) 
 n <- nrow(x) 
 ind <- matrix(0,nrow = n, ncol = p) 
 for(j in 1:p) {  
  mu <- location.m(x[,j]) 
  scale <- scale.tau(x[,j]) 
  resid <- x[,j]- mu 
  if(view == "pessimistic") { 
   x[resid > a*scale,j] <- mu 
   ind[resid > a*scale,j] <- 1 
  } 
  else if(view == "optimistic") { 
   x[resid < -a*scale,j] <- mu 
   ind[resid < -a*scale,j] <- 1 
  } 
  else if(view == "robust") { 
   x[abs(resid) > a*scale,j] <- mu 
   ind[abs(resid) > a*scale,j] <- 1 
  } 
  else  
   stop("view must be \"pessimistic\", 
    \"optimistic\", or \"robust\"") 
  ind <- data.frame(ind) 
  names(ind) <- names(x) 
 } 
 
 list(returns.trimmed = x,ind = ind) 
} 

Code 6.15 Trimmed Returns 

Once the matrix of returns has been trimmed using the function above, you 
compute a CVaR efficient frontier in a manner similar to that used in Section 
5.6.3. We note that in Section 5.6.3 the function CVaR.frontier computes a 
frontier for long-only portfolios and for target returns ranging from the 
minimum return sample mean return to the maximum return sample mean. 
Consequently, the resulting frontier typically contains inefficient positions. In 
order to compute a CVaR efficient frontier, we first need to find the global 
minimum CVaR portfolio. This is easily done as follows. Remove the line of 
code that specifies a return constraint from the function CVaR.model in 
Section 5.6.3: 

 
Sum(mu.bar[i]*w[i],i) == mu.target. 
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Name the resulting function CVaR.globalmin.model. Now you need to 
modify the function CVaR.portfolio by replacing the code line 
 
call(CVaR.model) 
 

in that function with  
 
call(CVaR.globalmin.model) 

 
Name the new function CVaR.globalmin.portfolio. You should also 
add the lines 

 
S <- as.matrix(S) 
dimnames(S) <- NULL 
 

at the beginning of these two functions, the first to allow a data frame as an 
argument to the function and the second to remove the column names, which the 
current version of NUOPT does not accept. Since the function 
CVaR.globalmin.portfolio differs in a few other places from 
CVaR.portfolio, Code 6.16 gives the code for the revised version of  
CVaR.globalmin.portfolio: 
 
CVaR.globalmin.portfolio <- function(S, alpha) 
{ 
 S <- as.matrix(S) 
 dimnames(S) <- NULL 
 call(CVaR.globalmin.model) 
 CVaR.system <- 

System(CVaR.globalmin.model,S,alpha) 
 solution <- solve(CVaR.system, trace=T) 
 weight <- solution$variable$w$current 
 w <- as.matrix(weight) 
 mu <- as.matrix(apply(S,2,mean)) 
 mu.min <- as.numeric(t(w)%*%mu) 
 risk <- solution$objective 
 
 return(mu.min,risk) 
} 

Code 6.16 Global Minimum CVaR Portfolio 

The argument alpha above, and in what follows, specifies the tail probability 
for CVaR. 
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Code 6.17 provides CVaR.eff.frontier, a slightly modified version of 
the function CVaR.frontier in Section 5.6.3, that computes and optionally 
plots a CVaR efficient frontier:  

 
CVaR.eff.frontier <- function(S,alpha,n.pf,plot=T) 
{ 
 call(CVaR.globalmin.portfolio) 
 call(CVaR.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 x <- CVaR.globalmin.portfolio(S,alpha) 
 mu.min <- x$mu.min 
 mu.max <- max(apply(S,2,mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 x <- CVaR.portfolio(S, alpha, mu.target=mu.min) 
 weight <- x$weight 
 Risk[1] <- x$risk 
 Return[1] <- mu.min 

 
 for(i in 2:n.pf) { 
  x <- CVaR.portfolio(S,alpha, 
   mu.target=mu.range[i]) 
  Risk[i] <- x$risk 
  Return[i] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 
 # Convert CVaR to a positive quantity 
 Risk = - Risk   
 if(plot) {  
  par(mfrow=c(1,2)) 
   plot(Risk, Return, type="b",xlab = "RISK",  
   ylab = "RETURN") 
  title("MEAN vs. CVaR EFFICIENT FRONTIER") 
  barplot(weight,legend = names(S)) 
  title("FRONTIER PORTFOLIOS") 
 } 
 list(Risk = Risk, Return = Return, Weights = 

weight) 
} 

Code 6.17 CVaR Efficient Frontier 
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Note that in order to use the function CVaR.eff.frontier, as in the 
examples below, you need to have already created the functions CVaR.model 
(Code 5.9) and CVaR.portfolio (Code 5.10). 

Figure 6.49 shows the time series of five years of monthly returns for four 
stocks, with tickers BKE, GG, GYMB, and KRON, for which we will compute a 
CVaR efficient frontier. 

The plots shown in Figure 6.49 were made by extracting the stocks from the 
smallcap.ts time series object and using the seriesPlot (see Code 6.7) 
function as follows: 

 
tickers <- c("BKE","GG","GYMB","KRON") 
returns.ts <- smallcap.ts[,tickers] 
seriesPlot(returns.ts,strip.text =  
 colIds(returns.ts), 
 trellis.args = list(as.table = T,type = "l"), 
 one.plot = F) 
 
Note the positive and negative returns outliers and that depending upon the 

investor’s knowledge he may wish to take any one of the three views we have 
proposed. For example, the investor may know that the large outlier in the GG 
returns was associated with a singular event that is not expected to recur in the 
next year or two and may feel that the two positive outlier returns in GYMB 
present an overly optimistic view of future performance. Consequently, he will 
want a CVaR optimal portfolio constructed with a pessimistic view. On the 
other hand, the investor may feel that most of the negative outliers are 
sufficiently far in the past, or, as in the case of KRON, are left in the dust by a 
strong positive trend, leading him to construct a CVaR portfolio based on a 
positive view. Finally, the investor may feel that the positive and negative 
outliers tend to have cancelling effects and have no good reason to believe they 
will occur in the next year. Consequently, he will compute a CVaR portfolio 
based on a robust view that reflects the behavior of the bulk of the returns.  

Assuming we have created the returns.ts object as above, we can 
compute the standard CVaR efficient frontier and barplot of weights in Figure 
6.50 with the commands (the computation takes noticeably longer than a mean-
variance optimal frontier): 

 
returns = returns.ts@data 
CVaR.eff.frontier(returns, alpha = .05, n.pf = 10) 
 

You can now use trimmed.returns to compute the CVaR efficient frontier 
based on one of the three possible manager views. For the robust view, use:  

 
returns.tr <- 

trimmed.returns(returns)$returns.trimmed 
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CVaR.eff.frontier(returns.tr,alpha = .05,n.pf = 10) 
 

The results are the CVaR efficient frontier and portfolio weights in Figure 6.51, 
where upon careful inspection you notice the change in efficient frontier 
location and the change in weights relative to those in Figure 6.50. 

Of course, what we really want to have is overlaid efficient frontiers and 
displayed values of the mean return and CVaR for each stock as in Section 6.8, 
where standard deviations were used as the risk measure. We can easily do this 
by modifying Code 6.11. The only additional function specific to the CVaR 
context that we need is a little function to compute the CVaR of each set of 
returns, rather than the standard deviation, so that we can display each stock in 
the mean return versus CVaR coordinates. This simple function is given in Code 
6.18. 

 
CVaR.simple <- function(x, alpha = .05) { 
 k = floor(length(x)*alpha)  
 #convert CVaR to a positive quantity 
 -mean(sort(x)[1:k]) 
} 

Code 6.18 CVaR Computation Function 

Now we show a few examples before providing the code needed to produce 
them. Figure 6.52 provides an overlaid version of the CVaR efficient frontiers of 
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Figure 6.49 Time Series of Returns for Four Stocks 
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Figure 6.50 and Figure 6.51 along with the individual stocks’ sample means and 
sample CVaRs. 

In Figure 6.52 one sees that the robust CVaR efficient frontier yields larger 
returns than the standard CVaR efficient frontier, with the difference increasing 
with increasing CVaR risk. Figure 6.53 and Figure 6.54 show the results for 
pessimistic and optimistic views, respectively. 

Figure 6.53 shows that the manager with a pessimistic view gets lower 
returns than the standard CVaR manager at all levels of CVaR below that of 
KRON, with the largest difference at the global minimum CVaR values. Finally, 
Figure 6.54 shows that the manager with an optimistic view gets mean returns 
that are uniformly higher than the classic CVaR returns at all levels of CVaR. 
Note also that the gain of the optimistic CVaR portfolio in Figure 6.53 relative 
to the robust view CVaR portfolio in Figure 6.54 is most substantial for the 
smaller values of CVaR. This is quite understandable based on the differences in 
trimming for these two views and the fact that both negative and positive outlier 
returns are evident in Figure 6.49. 
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Figure 6.50 CVaR Efficient Frontier and Weights for Stock Returns of 
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Figure 6.51 CVaR Efficient Frontier and Weights with Robust View 
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Figure 6.52 CVaR and Robust View CVaR Efficient Frontiers 
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Code 6.19 gives the code for making the plots above (just change view = 
"robust" to view = "pessimistic" and view = "optimistic" 
to get Figure 6.53 and Figure 6.54, respectively): 

 
tickers <- c("BKE","GG","GYMB","KRON") 
returns.ts <- smallcap.ts[,tickers] 
returns <- returns.ts@data 
p <- ncol(returns) 
# Parameters 
alpha <- .05 
view <- "robust" 
display.letters <- F 
display.points <- T 
display.names <- T 
n.pf <- 10 
plot.weights <- F 
series.plots <- F 
# Time Series Plots 
if(series.plots) 
 seriesPlot(returns.ts, 
  strip.text = colIds(returns.ts), 
  trellis.args = list(as.table = T,type = "l"), 
  one.plot = F) 
# Compute Standard CVaR Efficient Frontier 
ef.cvar <- CVaR.eff.frontier(returns, alpha, n.pf, 
 plot = F) 
ef.cvar$Weights 
# Compute Robust CVaR Efficient Frontier 
ret.trimmed <-  
 trimmed.returns(returns,view)$returns.trimmed 
ef.cvar.robust <- CVaR.eff.frontier(ret.trimmed, 
 alpha, n.pf, plot = F) 
ef.cvar.robust$Weights 
 
# Plot Efficient Frontiers 
if(display.letters || display.points) { 
 mu1 <- apply(returns,2,mean) 
 mu2 <- apply(ret.trimmed,2,mean) 
 cvar1 <- apply(returns,2,CVaR.simple,alpha=alpha) 
 cvar2 <- apply(ret.trimmed,2,CVaR.simple, 
  alpha=alpha) 
 xlim <- range(ef.cvar$Risk,ef.cvar.robust$Risk, 
  cvar1,cvar2,0) 
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Figure 6.53 CVaR and Pessimistic View CVaR Efficient Frontiers 
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 ylim <- 

range(ef.cvar$Return,ef.cvar.robust$Return, 
  mu1,mu2,0) 
}  
else { 
 xlim <- range(ef.cvar$Risk,ef.cvar.robust$Risk,0) 
 ylim <- range(ef.cvar$Return, 
  ef.cvar.robust$Return,0) 
} 
plot(ef.cvar$Risk,ef.cvar$Return,xlim=xlim, 
 ylim=ylim, type = "n",xlab="CVaR",ylab="RETURN") 
lines(ef.cvar$Risk,ef.cvar$Return,lty = 8,lwd = 2) 
lines(ef.cvar.robust$Risk,ef.cvar.robust$Return, 
 lwd=2) 
if(view == "robust") { 
 title(main="CVaR AND ROBUST CVaR FRONTIERS") 
} 
else if(view == "pessimistic") { 
 title(main="CVaR AND PESSIMISTIC CVaR FRONTIERS") 
} 
else if(view == "optimistic") { 
 title(main="CVaR AND OPTIMISTIC CVaR FRONTIERS") 
} 
 
# Add Frontiers Legend 
x <- xlim[1]+.0*(xlim[2]-xlim[1]) 
y <- ylim[2]-.0*(ylim[2]-ylim[1]) 
if(view == "robust") { 
 leg.names <- c("ROBUST CVaR","         CVaR") 
} 
else if(view == "pessimistic") { 
 leg.names <- c("PESS. CVaR","         CVaR") 
} 
else if(view == "optimistic") { 
 leg.names <- c("OPT. CVaR","         CVaR") 
}  
legend(x,y,leg.names,lty=c(1,8), lwd = 2) 
 
# Plot Stock Mu's and CVaR's and Add Legend 
if(display.letters){ 
 for(i in 1:p) { 
  points(cvar1[i],mu1[i],pch = letters[i]) 
   points(cvar2[i],mu2[i],pch = LETTERS[i]) 
 } 
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 if(display.names) { 
  text(cvar1 + 0.002, mu1, names(mu1), adj= 0) 
  text(cvar2 + 0.002, mu2, names(mu2), adj= 0) 
 } 
 x <- xlim[1]+.15*(xlim[2]-xlim[1]) 
 y <- ylim[1]+.10*(ylim[2]-ylim[1]) 
 leg.names <- c("A,B,. Robust Mu's,CVaR's", 
  "a,b,. Classic Mu's,CVaR's")  
 text(x,y,leg.names[1]) 
 text(x,y-.002,leg.names[2]) 
}  
if(display.points) { 
 points(cvar1,mu1,pch = 2) 
 points(cvar2,mu2,pch = 17) 
 if(display.names) { 
  text(cvar1 + 0.002, mu1, names(mu1), adj= 0) 
  text(cvar2 + 0.002, mu2, names(mu2), adj= 0) 
 } 
 x <- xlim[1]+.00*(xlim[2]-xlim[1]) 
 y <- ylim[1]+.13*(ylim[2]-ylim[1]) 
 leg.names <- c("  ROBUST","CLASSICAL") 
 legend(x,y,leg.names, marks = c(17,2)) 
} 
# Plot Portfolio Weights for Both Efficient  
# Frontiers 
if(plot.weights) { 
 par(mfrow = c(1,2)) 
 barplot(ef.cvar$Weights,legend = names(returns)) 
 title(main = "CVaR FRONTIER WEIGHTS") 
 barplot(ef.cvar.robust$Weights, 
  legend = names(returns)) 
 if(view == "robust") { 
  title(main="ROBUST CVaR FRONTIER WEIGHTS") 
 } 
 else if(view == "pessimistic") { 
  title(main="PESSIMISTIC CVaR FRONTIER  
   WEIGHTS") 
 } 
 else if(view == "optimistic") { 
  title(main="OPTIMISTIC CVaR FRONTIER WEIGHTS") 
 } 
 par(mfrow = c(1,1)) 
} 

Code 6.19 CVaR Efficient Frontier Plots 
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6.10.1 Manager Views and What-If Predictive 
Diagnostics 

We want to stress the predictive and diagnostic nature of the optimal CVaR 
efficient frontiers above. First of all, any kind of efficient frontier calculation is 
an “in-sample” predictive model in the sense that when one selects a particular 
portfolio to use based on such an efficient frontier, one is predicting that the 
efficient frontier is a reasonable predictor of future mean return-risk trade-off. 
Second, it may often be the case that an asset manager is at first unwilling to 
take any one of the views proposed above (robust, pessimistic, optimistic) or 
even a “standard” view that there should be no outlier treatment. In such cases, 
the manager may derive considerable diagnostic benefit from a “what-if” 
analysis based on computing CVaR efficient frontiers for each of the views. If 
the results are all in reasonable agreement, there is little cause to worry about 
influential outliers. But if there are substantial differences between two or more 
of the views, such analysis can act as a catalyst for the asset manager to 
investigate any unusual positive or negative returns that may be influencing the 
results. This may lead the manager to adopt a particular view based on a deeper 
knowledge of what has caused the events and his belief about whether they are 
likely to occur during the investment horizon. 

We also remark that the simple return trimming method used here for CVaR 
portfolio optimization could also be used as a preprocessor for Markowitz mean-
variance optimization. The additional computational burden of the robust 
covariance matrix calculation (in the case of a large number of assets) could 
then be avoided by instead using the classical mean and covariance matrix 
estimates based on univariate trimmed returns. 

6.10.2 Choice of Alpha 

Section 5.6.1 shows that estimates of CVaR are much more variable than 
estimates of VaR, which are in turn much more variable than estimates of 
standard error. This is natural in that CVaR is based on the mean value of the 
smallest %α  of the returns. Consequently, one can expect that CVaR efficient 
frontiers will be more variable than Markowitz mean-variance frontiers. (This 
could be checked with bootstrap experiments.) One way to mitigate this problem 
is to increase the value of ,α  say, to .1 or .2. Note that when .5,α =  CVaR is 
the mean of the returns below the median, which differs from lower semi-
variance only by using the median in place of the overall mean. This choice may 
be interesting to asset managers in view of its very simple interpretation as the 
average losses below the median loss. Of course, the resulting portfolio weights 
do not pay as much relative attention to the downside returns when using larger 
values of alpha as when using smaller values of alpha. Examples of CVaR 
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frontiers for .05,  .2,  and .5α =  are provided in Figure 6.55, which is produced 
with Code 6.20. 
 
tickers <- c("BKE","GG","GYMB","KRON") 
returns <- smallcap.ts[,tickers]@data 
cvar05 <- CVaR.eff.frontier(returns, alpha = .05,  
 n.pf = 10, plot = F) 
cvar2 <- CVaR.eff.frontier(returns, alpha = .2,  
 n.pf = 10, plot = F) 
cvar5 <- CVaR.eff.frontier(returns, alpha = .5,  
 n.pf = 10, plot = F) 
xlim <- range(cvar05$Risk,cvar2$Risk,cvar5$Risk) 
ylim <- 

range(cvar05$Return,cvar2$Return,cvar5$Return) 
plot(cvar05$Risk,cvar05$Return, type = "l", 
 xlim = xlim, ylim = ylim, 
 xlab = "CVaR", ylab = "MEAN RETURNS") 
title(main = "CVaR EFFICIENT FRONTIERS FOR VARIOUS 
 ALPHAS") 
lines(cvar05$Risk,cvar05$Return, lty = 1, lwd =2) 
lines(cvar2$Risk,cvar2$Return, lty = 4, lwd = 2) 
lines(cvar5$Risk,cvar5$Return, lty = 8, lwd = 2) 
leg.names = c("ALPHA = .05","ALPHA = .1", 
 "ALPHA = .5") 
legend(.26,.029,legend = leg.names, lty = c(1,4,8), 
 lwd = 2) 

Code 6.20 CVaR Efficient Frontiers for Different Values of Alpha 

From Figure 6.55 it is clear that the efficient frontiers are not obtained from one 
another simply by a uniform scaling with respect to CVaR values. It will be 
useful to compare the portfolio weight profile for each of the frontiers (Exercise 
11).  

6.11 Influence Functions for Portfolios 

Influence functions are powerful statistical tools for characterizing three key 
aspects of an estimator, namely: (a) the influence of individual data values on 
the estimator, particularly the influence of outliers; (b) the maximum bias of the 
estimator caused by small fractions of outliers; and (c) the asymptotic variance 
of the estimators.17 While influence functions have been widely applied in 
statistics (see, for example, Hampel et al., 1986), there has been almost no use of 
them in finance and in portfolio construction in particular. This section 
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introduces the basic definitions and uses of influence functions and provides 
some initial applications to portfolio construction for the purpose of sensitivity 
analysis. 

6.11.1 Introduction to Influence Functions 

Influence functions have both finite sample and asymptotic versions. The 
intuitive motivation for the asymptotic influence function (influence function 
for short) comes from a finite sample form, one version of which is as follows. 
Let ˆ ˆ ( )n n xθ θ=  be an estimator of a parameter θ  based on a sample of data 

1 2( , , , )nx x x=x  of size n, and let x be an additional data point. To fix ideas 

you can think of n̂θ  as a sample mean of returns or a sample standard deviation 
estimate of volatility for a particular stock. Then an empirical influence function 
(EIF) of n̂θ  at x  is the function of x given by 

 
 ( )ˆ ˆ ˆEIF( ; , ) ( 1) ( , ) ( ) ,n n nx n xθ θ θ= + ⋅ −x x x  (6.23) 

 
where the factor 1n +  is used to normalize the result across sample sizes.18 For 
a few simple estimators (such as the sample mean and sample median), it is 
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Figure 6.55 CVaR Efficient Frontiers for Three Values of Alpha 
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possible to compute an analytical expression for the EIF, but for most robust 
estimators this is not possible. However, one can numerically compute the EIF 
for a “typical” sample of returns x  and plot the results as a function of the value 
of the additional data point x. Thinking of a normally distributed sample of 
returns, one can choose x  to be normal random numbers whose mean and 
standard deviation are those of typical returns. A better approach that eliminates 
the variability of the random sample and gives a good rendition for small as well 
as large sample sizes is to let the sample x  be the quantiles of a normal 
distribution. 

Figure 6.56 displays the EIFs of the sample mean, the sample median, a 10% 
trimmed mean, and the optimal location M-estimate obtained from lmRob, as 
described in Section 6.3, using twenty quantiles of a standard normal 
distribution for the prototype data sample x.  The main messages from these 
EIFs are:  

 
(a) The unbounded character of the EIF for the sample mean reflects the 

fact that a single outlier can cause an arbitrarily large influence on the 
sample mean. 

(b) All the other estimates have bounded EIFs, reflecting the fact that a 
single outlier can only influence the estimate by a limited amount. 

(c) The median has a nearly discontinuous EIF, which reflects the fact that 
the median has a certain “roughness” character. 

(d) Very large outliers have zero EIF values for the optimal M-estimate, 
reflecting the fact that this estimate “rejects” sufficiently large outliers.  

 
Note that the trimmed mean, which at first glance appears to discard large 
outliers, does not in fact accomplish this goal in the same effective way as the 
optimal M-estimate. The computations and plots of Figure 6.56 are produced by 
Code 6.21. 
 
n <- 20 
probs <- (1:n - .5)/n 
xn <- qnorm(probs) 
x <- seq(-5,5,.1) 
k <- length(x) 
eif <- rep(0,k) 
par(mfrow = c(2,2)) 
par(pty = "s") 
for(i in 1:k) { 
 eif[i] <- (n+1)*(mean(c(x[i],xn))-mean(xn)) 
} 
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plot(x,eif,type = "l",ylab = "EIF", 
 main = "SAMPLE MEAN") 
for(i in 1:k) { 
 eif[i] <- (n+1)*(median(c(x[i],xn))-median(xn)) 
} 
plot(x,eif,type = "l",ylab = "EIF", 
 main = "SAMPLE MEDIAN") 
for(i in 1:k) { 
 eif[i] <- (n+1)*(mean(c(x[i],xn),trim=.1)- 
  mean(xn,trim=.1)) 
} 
plot(x,eif,type = "l",ylab = "EIF", 
 main = "10% TRIMMED MEAN") 
for(i in 1:k) { 
 eif[i]=(n+1)*(coef(lmRob(c(x[i],xn)~1))- 
  coef(lmRob(y~1))) 
} 
plot(x,eif,type = "l",ylab = "EIF", 
 main = "OPTIMAL M-ESTIMATE") 

Code 6.21 EIFs for Mean Returns Estimates 
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Figure 6.56 EIFs for Sample Mean, Median, Trimmed Mean, and Huber 
M-Estimate 
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You can easily compute EIFs for the sample standard deviation volatility 
estimate by replacing the estimator function (e.g., mean in one of the “for” 
loops in Code 6.21 with the function stdev. You can do likewise for a robust 
scale estimate of volatility, for example, by replacing the function mean with 
the function scale.tau. The results, shown in Figure 6.57, show that (a) a 
single outlier has rapidly unbounded influence on the conventional standard 
deviation volatility estimate, and (b) outliers have only a bounded influence on 
the tau-scale estimate. With respect to the sample standard deviation EIF, note 
that when the additional data point is close to zero, which is the value of the 
sample mean for the prototype x , the additional data point is an inlier that 
results in a negative value of the EIF because such an inlier decreases the value 
of the standard deviation. Note that the tau-scale volatility estimate EIF has a 
shape similar to that of the standard deviation in the central region from –2 to 2, 
except that small values of the added data point do not have so much negative 
influence except right at zero.  

As the sample size tends towards infinity, the empirical influence function 
will (under regularity conditions) converge to the influence function defined as 
follows. It is assumed that the data are generated by a parametric distribution 

,Fθ  where θ  is the true parameter value. Let ( )Fθ  be the asymptotic value of 
the parameter estimate ˆ ˆ ( )n nθ θ= x  when the data have an arbitrary distribution 
function ,F  and note that typically ( )Fθ θ≠  for an arbitrary .F  It is also 
assumed that the parameter estimate is consistent (i.e., n̂θ  converges to oθ  in 
probability), and that ( )Fθθ θ= .19 We represent the asymptotic version of the 
prototype sample x  for an arbitrary distribution F  and additional data point x 
by the mixture distribution  

 
 (1 ) ,xF Fγ γ γ δ= − ⋅ + ⋅  (6.24) 

 
where γ  is the mixture probability and xδ  is a point mass probability 
distribution located at x. The influence function IF( ) IF( ; ( ), )x x F Fθ=  is  
defined as  
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Equivalently, IF( )x  is the derivative of ( )Fγθ  evaluated at 0γ = 20: 
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A very important property of the influence function is that it provides an 
approximate expression for the large sample bias 

 
  ( ; ) ( ) ( ) ( )BIAS x F F Fγ θ γγ θ θ θ θ− = −   
 
due to a small fraction γ  of data located at x, 

 
 ( ; ) IF( )BIAS x xγ γ≈ ⋅ , (6.27) 

 
where the influence function IF( )x  is evaluated at Fθ . There is evidence that 
for good robust estimators this local linear approximation of the bias is 
reasonably good for fractions γ  as large as 5% to 10%, which covers many 
situations of importance in finance.21 

An easy computation shows that the influence function of the sample mean 
estimate x  is 
 ( ; ) ,IF x x x µ= −  (6.28) 

 
where θ µ=  is the true mean value (Exercise 13). A slightly more involved 
computation shows that the influence function of an M-estimate µ̂  of location 
(see Equation 6.2) is 
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Figure 6.57 EIFs of Standard Deviation and Robust Tau-Scale Volatility 
Estimates 
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 , ( )s
xx

sµ
µψ ψ −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (6.30) 

 
and µ  and s  are the true location and scale parameters of the returns (Exercise 
14). This influence function is the same as , ( )s xµψ  except for the scale factor in 
the denominator. So, for the optimal bias-robust location M-estimate ψ  
function shown in the right-hand plot of Figure 6.6, the corresponding 
approximating EIF (shown in the lower-right-hand plot of Figure 6.56) differs 
from Figure 6.6 only by a scale factor and a small finite-sample approximation 
error. 

6.11.2 Influence Functions for Sample Mean and 
Covariance Estimates of Returns 

The definition of influence function extends in the obvious way to the case of 
multivariate data sets of returns and multidimensional parameter estimates. The 
functional representation of the sample mean estimate 1 2( , , , )kx x x ′x =  is 

( ) ( )F dF= ∫ x xµ . A straightforward calculation leads to (Exercise 15) 

 
 IF( ; ) .= −x x x µ  (6.31) 

 
For the sample covariance matrix estimate 

 

 
1

1ˆ ( )( ) ,
n

i i
in
=

′= − −∑Ω x x x x  (6.32) 

 
one finds that the influence function is (Exercise 16) 

 
 ˆIF( ; ) ( )( ) .′= − − −Ω Ωx x xµ µ  (6.33) 

 
For the case of a single asset where k = 1, the covariance matrix estimate 
becomes a sample variance, 2σ=Ω , and we get the influence function of the 
sample variance: 

 
 2 2 2ˆIF( ; ) ( ) .x xσ µ σ= − −  (6.34) 

 
This shows that the influence of an outlier on the sample variance is 
quadratically unbounded, while that of an “inlier” at x µ=  is 2.σ−  It is easy to 



6.11 Influence Functions for Portfolios 283 

see from its definition that the influence function of the sample standard 
deviation 2ˆ ˆσ σ=  is 

 

 ( )2 21ˆIF( ; ) ( ) ,
2

x xσ µ σ
σ

= − −   

 
which for a standard normal distribution is 2.5 ( 1)x⋅ − . In the left-hand plot of 
Figure 6.57, you see that the EIF for the sample standard deviation is a good 
approximation to ˆIF( ; )x σ  for the standard normal distribution. 

6.11.3 Influence Functions for Mean-Variance 
Optimal Tangency Portfolios 

The Markowitz mean-variance efficient frontier for unconstrained portfolios is 
completely determined by the mean vector and covariance matrix of the returns. 
In order to estimate quantities on the efficient frontier, such as the mean return 
and risk of the global minimum variance and tangency portfolios and the 
maximum Sharpe ratio, one substitutes estimates of the mean vector and 
covariance matrix for their true values in the corresponding formulas. For the 
case of the tangency portfolio with return vector µ  and an excess return vector 

,e fr= − ⋅1µ µ  the weights vector, mean return, and variance estimates, 
respectively, are 
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The functional representation of the quantities above, needed for computing 
their influence functions, is obtained by replacing the mean and covariance 
matrix estimates by their functional representations ( ) ( )e fdF rγγ = − ⋅∫ 1µ x x  

and ( ) ( ( ))( ( )) ( )dFγγ γ γ ′= − −∫Ω x x xµ µ . This results in corresponding 

tangency portfolio functional representations for ( )T γw , ( ),Tµ γ  and 2 ( ),Tσ γ  
from which one can compute influence functions. The influence function for the 
tangency portfolio weights is 
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as can be verified by careful calculation (Exercise 17). Since the influence 
function ( )IFΩ x  for the covariance matrix is quadratically unbounded in x  
(i.e., the value increases quadratically with size x),  the same is true of the 
influence function for the weights given above. Since ( ) ( ) ( ),T e Tµ γ γ γ′= ⋅ wµ  
one gets (Exercise 18) 

 
 .( )IF IF ( ) ( ) TT Te wµ = ′ ′⋅ + − ⋅µ wx x xµ  (6.39) 

One can also show that (Martin and Zhang, 2004) 
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Notice that when the additional data value x  is located at the mean return 
vector ,µ  (i.e., ),µx =  the influence function for the weight vector is 
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One can also show that ( )IF 0

Tµ =x  and 1
2IF ( ) .T Tσ σ= −x  These results are 

intuitively appealing in that when a data value x  is located at the mean returns 
vector ,µ  it is reasonable that it have no perturbing influence on the portfolio 
weights or mean return, and the negative influence on the portfolio risk is 
consistent with that of the influence of an inlier on a simple standard deviation. 
Some other interesting results on portfolio influence functions may be found in 
Martin and Zhang (2004). 

We test the use of the influence formulas above on a very simple case where 
we know the tangency portfolio solution immediately and can interpret the 
influence function results most easily. Suppose we have 60 monthly 
observations of returns on two stocks with equal mean returns, equal volatilities, 
and a diagonal covariance matrix constructed as follows:  
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> stock.names <- c("STOCK.1", "STOCK.2") 
> mutest <- c(0.01, 0.01) 
> names(mu.test) <- stock.names 
> Vtest <- diag(c(0.003, 0.003)) 
> dimnames(Vtest) <- list(stock.names, stock.names) 
> mutest 
[1] 0.01 0.01 
> Vtest 
        STOCK.1 STOCK.2 
STOCK.1   0.003   0.000 
STOCK.2   0.000   0.003 

 
Our influence function code (Code 6.22) incorporates a function port.tan for 
computing the tangency portfolio: 
 
port.tan <- function(V, mu, rf) 
{ 
 p <- length(mu) 
 one <- rep(1, p) 
 mue <- mu - rf 
 a <- solve(V, mue) 
 Vinv <- solve(V) 
 d <- as.numeric(inprod(one, a)) 
 wts <- a/d 
 n <- as.numeric(qform(mue, Vinv)) 
 muep <- n/d 
 sigma <- n^0.5/abs(d) 
 sr <- sign(d) * n^0.5 
 list(Weights = wts, Mu.e = muep, Sigma = sigma, 
  "Sharpe Ratio" = sr) 
} 

Code 6.22 Unconstrained Tangency Portfolio 

Code 6.23 gives three simple functions for computing an inner product and 
quadratic form in port.tan, as well as an outer product function needed for 
our influence function calculations: 

 
inprod <- function(x, y) { 
 as.numeric(t(matrix(x)) %*% matrix(y)) 
} 
 
qform <- function(x, A) { 
 x = matrix(x) 
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 as.numeric(t(x) %*% A %*% x) 
} 
 
outprod = function(x, y) { 
 matrix(x) %*% t(matrix(y)) 
} 
 

Code 6.23 Inner Product, Outer Product, and Quadratic Form Functions 

Now we compute the influence function value for a data point (.065, .065)= −x  
on the tangency portfolio weights, mean return, risk (standard deviation), and 
Sharpe ratio, assuming a risk-free rate of .004 and using 1/ 61γ =  in the bias 
approximation ( ; ) IF( ) :BIAS x xγ γ≈ ⋅  

 
rf <- .004 
Gamma <- 1/61 
x <- c(.0648,-.0448) 

 
if.tan(x, Vtest, mutest, rf, print.results = T,  
 Gamma, IF.relative = T) 
 
* TANGENCY PORTFOLIO WEIGHTS AND PERFORMANCE * 
 
     WT1     WT2  MUE   SIGMA SHARPE  
     0.5     0.5 0.006 0.0387 0.1549 
 
* INFLUENCE FUNCTION OF TANGENCY PORTFOLIO * 
 
[1] "GAMMA = 0.016" 
 
        X1     X2  WT1   WT2 MUE  SIGMA SHARPE  
[1,] 1.001 -1.001 0.15 -0.15   0 -0.008  0.008 
 

The tangency portfolio weights (WT1, WT2), excess mean return (MUE), risk 
(SIGMA), and Sharpe ratio (SHARPE) provided as the first output above are 
exactly as one expects. In the last line of output the X1 and X2 are standardized 
versions of (.065, .065)= −x  (i.e., they represent one standard deviations of the 
added data from the mean returns). Because we used the optional argument 
IF.relative = T, the influence function values WT1, WT2, MUE, 
SIGMA, SHARPE are all relative to the true tangency portfolio values. For 
example, the WT1 value of .15 represents an increase in the weight of 15%, 
etc. 

Code 6.24 gives the S-PLUS code for the calculation above. 
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if.tan = function(x, V, mu, rf, print.results = T, 
 Gamma = 1, IF.relative = F) 
{ 
 # Compute tangency portfolio for IF.relative 
 # calculations 
 tanport <- port.tan(V, mu, rf) 
 wts.tan <- tanport$Weights 
 mu.tan <- tanport$Mu 
 sigma.tan <- tanport$Sigma 
 sr.tan <- tanport$"Sharpe Ratio" 
 opt.tan <- c(wts.tan, mu.tan, sigma.tan, sr.tan) 

 
 p <- length(mu) 
 # Optionally print tangency portfolio 
 if(print.results) { 
  names(opt.tan) = c(paste("WT", 1:p, sep = ""), 
   "MUE","SIGMA", "SHARPE") 
   cat("\n* TANGENCY PORTFOLIO WEIGHTS AND  
   PERFORMANCE *\n\n") 
  print(round(opt.tan, 4)); cat("\n") 
 } 
 # Compute excess returns, vector of 1's,  
 # Vinverse*mu.e, Vinverse 
 mu.e <- mu - rf 
 one <- rep(1, p) 
 xcent <- x - mu 
 a <- solve(V, mu.e) 
 Vinv <- solve(V) 
 # Compute influence functions 
 IF.cov <- outprod(xcent, xcent) - V 
 A <- Vinv %*% matrix(xcent) –  
  Vinv %*% IF.cov %*% a 
 B <- 1/inprod(one, a) 
 IF.wts <- B * A - (B^2) * a * inprod(one, A) 
 IF.mu <- inprod(mu.e, IF.wts) + 
  inprod(xcent,wts.tan) #IF mu.e 
 IF.sigma <- (2*t(wts.tan) %*% V %*% IF.wts +  
  qform(wts.tan,IF.cov))/(2*sigma.tan) 
 IF.sr <- (sr.tan^2 - 1 +  
  (inprod(a,xcent)-1)^2)/(2*sr.tan) 
 IF <- Gamma * c(t(IF.wts), IF.mu, IF.sigma, 

IF.sr) 
 if(IF.relative) { 
  IF <- IF/opt.tan 
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  digits <- 3 
  x <- xcent/as.vector(diag(V)^0.5) 
 } 
 else { 
  digits <- 4 
 } 
 IF <- t(as.matrix(c(x, IF))) 
 dimnames(IF)[[2]] <- c(paste("X", 1:p, sep = ""), 
  paste("WT", 1:p, sep = ""), "MUE", "SIGMA",  
  "SHARPE") 

 
 if(print.results) { 
  cat("\n* INFLUENCE FUNCTION OF TANGENCY  
   PORTFOLIO *\n\n") 
  cat(paste("GAMMA =", round(Gamma,3))) 
  cat("\n\n") 
 } 
 round(IF, digits) 
} 

Code 6.24 Influence Function of Tangency Portfolio 

Now we can use the function if.tan in a function if.comp2, given in Code 
6.25 to compute contour plots of the tangency portfolio influence function for 
weights, mean return, and risk for a range of values of 1 2( , )x x=x . The 
resulting influence function contours shown in Figure 6.58 for the tangency 
portfolio weight 1w  show that when X1 = X2 there is no influence bias on the 
weights, while X1 > X2 results in positive bias and X2 > X1 results in negative 
bias. 

Figure 6.59 and Figure 6.60 show corresponding results for the tangency 
portfolio mean return and standard deviation. 

Figure 6.59 shows that when X1+X2 > 0, the influence bias in mean return is 
positive, and when X1 + X2 < 0, this bias is negative. Figure 6.60 shows that the 
standard deviation of the tangency portfolio increases with increasing values of 
|X1+X2|. 

The results in Figure 6.58, Figure 6.59, and Figure 6.60 may seem intuitively 
reasonable based on the very simple structure of the assumed mean vector and 
covariance matrix. In any event, by careful examination of the expressions for 
the influence functions for the weight vectors, mean return, and standard 
deviation, one can easily check that the results are qualitatively correct (Exercise 
19). 

Here is a short bit of code that uses the function if.comp2 in Code 6.25 to 
carry out the computation above and produce the plot of Figure 6.58: 
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rf <- .004 
Gamma <- 1/61 
if.comp2(Vtest, mutest, rf, plotchoice = "if.wts",  
 k=3, nsteps=9, Gamma,IF.relative = T) 

 
To get the plots of Figure 6.59 and Figure 6.60, use the optional arguments 
plotchoice = "if.mu" and plotchoice = "if.sigma", 
respectively. 
 
if.comp2 <- function(V, mu, rf, plotchoice = 

"if.wts", k=5, nsteps=3, Gamma = 1, 
IF.relative = T) 

{ 
 sigma <- diag(V)^0.5 
 rng1 <- c(mu[1]-k*sigma[1], mu[1]+k*sigma[1]) 
 rng2 <- c(mu[2]-k*sigma[2], mu[2]+k*sigma[2]) 
 x1 <- rep(seq(rng1[1], rng1[2], length = nsteps), 
  times = nsteps) 
 x2 <- rep(seq(rng2[1], rng2[2], length = nsteps), 
  times = rep(nsteps, times = nsteps)) 
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Figure 6.58 Influence Function Contours for Tangency Portfolio Weights 
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 x <- cbind(x1, x2) 
 IF <- data.frame(matrix(rep(0, 7 * nsteps^2),  
  ncol = 7)) 
 
 for(i in 1:(nsteps^2)) { 
  IF[i,  ] <- if.tan(x[i,  ], V, mu, rf, 
   print.results = F, Gamma, IF.relative) 
 } 
 
 names(IF) <- dimnames(if.tan(x[1, ],V,mu,rf, 
  print.results = F))[[2]] 
 
 if(plotchoice == "if.wts") { 
  contourplot(WT1 ~ X1*X2, data = IF,  
   main = "WT1 IF") 
 } 
 else if(plotchoice == "if.mu") { 
  contourplot(MUE ~ X1*X2, data = IF,  
   main = "MU IF") 
 } 
 else if(plotchoice == "if.sigma") [ 
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Figure 6.59 Influence Function Contours for Tangency Portfolio Mean 
Return 
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  contourplot(SIGMA ~ X1*X2, data = IF,  
   main = "SIGMA IF") 
 } 
} 

Code 6.25 IF Plots for Tangency Portfolio 

We recommend that the reader experiment with the tangency portfolio influence 
functions above using a more realistic set of mean returns and covariance matrix 
that may arise in practice. For example, you might use the following monthly 
mean returns, covariance matrix, and volatilities (Exercise 20)22: 

 
> mu3 
  SP500 GOV.BOND SMALL.CAP 
 0.0101   0.0043    0.0137 
 
> V3 
            SP500 GOV.BOND SMALL.CAP 
    SP500 0.00325  0.00023   0.00420 
 GOV.BOND 0.00023  0.00050   0.00019 
SMALL.CAP 0.00420  0.00019   0.00764 
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Figure 6.60 Influence Function Contours for Tangency Portfolio Risk 
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> round(sqrt(diag(V3)),4) 
[1] 0.0570 0.0224 0.0874 
 

You can get the correlation matrix from the covariance matrix with the function 
cov.to.corr in Code 6.26. 

 
cov.to.corr <- function(v) { 
 dimnames <- dimnames(v) 
 sigma <- diag(v)^0.5 
 s.inv <- diag(1/sigma) 
 rho <- s.inv %*% v %*% s.inv 
 dimnames(rho) <- dimnames 
 rho 
} 

Code 6.26 Convert Covariance Matrix to Correlation Matrix 

> round(cov.to.corr(V3),4) 
           SP500 GOV.BOND SMALL.CAP 
    SP500 1.0000   0.1804    0.8429 
 GOV.BOND 0.1804   1.0000    0.0972 
SMALL.CAP 0.8429   0.0972    1.0000 
 

You can compute the tangency influence function for all three of these assets 
with if.tan, but when using if.comp you need to work with two at a time. 
Note that if you use SP500 and SMALL.CAP, you have a high correlation, but if 
you use GOV.BOND and SMALL.CAP, you have a small correlation. Do not be 
surprised if you find that the influence of additional outlier data is greater in the 
case of high correlation between assets. 

6.11.4 Influence of Outliers on the Sharpe Ratio 

It turns out that the influence function for the Sharpe ratio of the tangency 
portfolio has the simple form (see Martin and Zhang, 2004) 

 

 ( )2 21IF ( ) 1 ( 1) ,
2SR SR y

SR
= + − −x  (6.42) 

 
where 

 
 1( )ey −= −µ Ω µx  (6.43) 
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Thus, somewhat surprisingly, the value of IF ( )SR x  is bounded above by 

( )2 1 / 2SR SR+  (i.e., an outlier can cause at most a bounded positive bias in the 

maximum Sharpe ratio). But since y can be made arbitrarily large by making the 
size of x  arbitrarily large, an outlier can cause an arbitrarily large negative bias 
of the Sharpe ratio. This represents a fundamental kind of asymmetry in the 
potential influence of outliers on the maximum Sharpe ratio. The reader is 
encouraged to explore the influence of outliers on the maximum Sharpe ratio by 
appropriately modifying the function if.comp2, first in such a way as to 
explore the influence of outliers in one coordinate direction at a time (i.e., in one 
set of returns at a time). 

6.11.5 Empirical Influence Functions for 
Unconstrained and Constrained Portfolios 

It is a straightforward matter to compute influence functions for weights, mean 
return, and risk of other unconstrained portfolios (such as the global minimum 
variance portfolio). Since the method is an infinitesimal one, providing a valid 
approximation for small fractions of influential data, it could in principle be 
applied to a portfolio optimized under constraints, provided none of the 
constraints are binding and the influence of an outlier does not cause some of the 
constraints to become binding. The obvious first approach to computing 
influence functions for constrained portfolios (e.g., long-only portfolios, sector 
constraints, etc.) is to compute empirical influence functions (EIFs) along the 
lines of the calculations leading to Figure 6.56. While this will be 
computationally burdensome since one has to solve a QP or LP problem for 
each outlier data position, it can no doubt be done. A first step would be to 
compute the empirical influence function for the tangency portfolio quantities in 
the unconstrained case as a check on its accuracy. Our earlier results with EIFs 
for simple location estimates were quite encouraging, but since the tangency 
portfolio estimates are much more complicated, this initial check will be useful. 
A deeper study of the QP optimization structure might lead to some efficient 
methods of computing influence functions or EIFs for optimal portfolios under 
constraints. This is a topic for further research. 
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Exercises 

1. Use the plot function in a for loop to plot time series of returns for each 
microcap stock in microcap.ts so that you can get an overall visual 
grasp of the behavior of each stock in this microcap group with respect to 
outliers and time-varying volatility. Use the plot function with arguments 
as in Code 6.1, except use a generic first argument returns, setting 
returns equal to one of the stock’s returns series for each cycle of the 
for loop. Use the graphics command par(mfrow(n1,n2)) to automate 
plotting a number of time series of returns per page for each of the market 
cap groups. Use the S-PLUS Windows toolbar menu choice “Options > 
Graph Options” and select “Every Graph” from the Auto Pages drop-down 
list in the “Traditional Graphics” region of the dialog, as this will result in 
each new page of plots appearing as a separate page of the Graph Sheet. 
Make similar plots for each of the groups smallcap.ts, midcap.ts, 
and largecap.ts. 
 

2. Make Q-Q plots of returns for a few time series from each of the four 
market cap groups, both with and without 95% simulation envelopes. 
Automate making Q-Q plots for all stock returns in the four market cap 
groups in a manner similar to the way you plotted all the time series in 
Problem 1. 

 
3. Compute classical and robust means and standard deviations of returns for 

all the stocks in the microcap group, and plot the means versus standard 
deviations for these estimates. Use one plotting symbol for the classical 
estimates and another plotting symbol for the robust estimates. Add the 
ticker symbols as text labels. (Warning: with a lot of stocks there may be 
confusing overlap of these text labels.) 

 
4. Use the classical and robust EWMA volatility estimate and UMT functions 

(Code 6.4 and Code 6.5) on a few stocks from each of the four market cap 
categories. What do you conclude about the prevalence of outliers and 
overestimation of volatility following isolated outliers? What do you 
conclude about the potential usefulness of a robust UMT? 

 
5. Modify the UMT Code 6.4 to use 1ˆtσ −  in place of ˆtσ  in the test statistic 

and evaluate the improvement in detecting initial outlier returns (unusual 
price movements). Do you think the modified method is adequate for 
detecting a returns outlier that occurs shortly after another returns outlier? 
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6. Convert Code 6.6 into an S-PLUS function that makes an array of plots (like 
that of Figure 6.17) of the input returns series, overlays the LS and robust 
regression lines, and places the legend and annotations automatically. Then 
run the function on a few of the stock returns in each of the time series data 
sets microcap.ts, smallcap.ts, midcap.ts, largecap.ts. 
You might want to do this with a for loop as in Problem 1, in which case 
you can do it for all twenty stock returns in each of the market-cap groups. 
(Alternatively, the Trellis graphics functions in S-Plus, if you are familiar 
with them, provide a clean way to do this.) For which stock returns do the 
least squares and robust betas differ significantly because of the presence of 
outliers? 

 
7. Alphas are of considerable interest to investors because they represent 

excess returns obtainable from investing in a given stock over and above 
what is predicted by the Capital Asset Pricing Model (CAPM). Modify the 
code in Exercise 6 so that you obtain the least squares and robust alphas and 
their standard errors. For what firms do the least squares and robust alphas 
differ significantly? What do you conclude about the usefulness of robust 
alphas? 

 
8. Explore small subsets of four to six multivariate stock returns in one of the 

time series data sets microcap.ts, smallcap.ts, midcap.ts, 
largecap.ts, and midcapD.ts by making pairwise scatterplots and 
classical versus robust correlations to find a subset that exhibits one or more 
substantial differences between the classic and robust correlations. Explain 
why the substantial difference or differences between classical and robust 
correlations are reasonable given the nature of the data. For such a subset, 
compute and display classical and robust Mahalanobis distances, and 
comment on any interesting aspects of the multidimensional outliers found. 

 
9. Use the multivariate returns data set of Exercise 8 for this exercise. 

Compute and display classical and robust mean-variance efficient frontiers, 
and discuss how you would use the results to guide a portfolio selection 
investment decision. 

 
10. Use the multivariate returns data of Exercises 8 and 9 or other similarly 

interesting multivariate returns data for this problem. Compute and display 
bootstrapped classical and robust efficient frontiers and boxplots of paired 
differences in classical and robust Sharpe ratios. What is the effect of 
changing the number of bootstrap samples?  How many bootstrap samples 
appear to be adequate to you? 

 
11. Compute and display the portfolio weights for the three efficient frontiers in 

Figure 6.55. What do you find?  Do the results make sense? 
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12. Use the multivariate returns data of Exercises 8 and 9 or other similarly 

interesting multivariate returns data for this problem. For alpha equal to .05, 
compute robust, optimistic, and pessimistic CVaR optimal portfolios and 
display the results of each along with the classical CVaR optimal portfolio 
(also using an alpha value of .05). Discuss how you would use the results to 
guide a portfolio selection investment decision. Do likewise for alpha 
values of .1, .2, and .5. 

 
13. Derive the expression for the influence function of the sample mean of a 

single-asset return. 
 
14. Derive the expression for the influence function of a location M-estimate. 
 
15. As a slight extension to Exercise 13, derive the expression for the influence 

function of a sample mean of multivariate returns. 
 
16. Derive the expression for the influence function of the sample covariance 

matrix. 
 
17. Verify the expression for .IF ( )

Tw x  
 
18. Verify the expression for ( )IF

T
µ x . 

 
19. Verify that the results in Figure 6.58, Figure 6.59, and Figure 6.60 are 

qualitatively correct.  
 
20. Compute and display tangency portfolio influence functions assuming that 

the mean returns vector is mu3 and the covariance matrix is V3. Explain 
why the results are reasonable. 
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Endnotes

                                                           
1 This is true even when adjusting for time-varying volatility with a GARCH model. See, 
for example, calculations by Menn (2003). 
2 If you wanted to get a data frame object with a single variable rather than a vector 
object (the default simple data object in S-PLUS), you would drop the subscript part 
“[,1]” in the following two commands. Some functions in S-PLUS will work on S-PLUS 
V4 time series objects directly (e.g., mean and var will do so, though with slightly 
different output formats, but stdev will not). Many functions that do not work on S-
PLUS V4 time series objects will work on the data frame component of a time series 
object that you would obtain as described above. Unfortunately, some functions, such as 
stdev, will not even work on a data frame but will work on a vector object, which is 
why we elected to extract the data from returns.ts as a vector in this example.  
3 The functions qqnorm and qqline are other examples of functions that do not work 
on data frames. 
4 See the online manual for the Robust Library in S-PLUS 6 for further details on the Q-Q 
plot simulation envelopes. See also Atkinson (1985). 
5 We remark that when there is a lot of data (e.g., a few hundred observations), one may 
be able to fit a heavy-tailed distribution to asset returns with a reasonably high degree of 
accuracy (see, for example, Rachev and Mittnik, 2000). Then although one cannot predict 
just when a future outlier will occur, one can be certain that a certain number will occur 
on average over a certain time interval, and this is can be very useful in the context of 
risk management. 
6 M-estimators are generalizations of maximum likelihood estimators introduced by 
Huber (1964) for estimates of location and by Huber (1973) for regression. See also 
Huber (2004) and Hampel et al. (1986) 
7 It should be noted that the weights in this case are data-dependent, which means that 
this weighted least squares equation is nonlinear.  
8 This is similar to the fact that the classical t-test lacks robustness of power toward 
heavy-tailed deviations from normality. 
9 Capital Asset Pricing Model. 
10 This general form of shrinkage estimator was justified using a Bayesian argument by 
Vasicek (1973) and by Blume (1971) using an argument of regression toward the mean. 
11 See the “Current Commercial Practice” section of Martin and Simin (2003) for further 
details. 
12 The horizontal dashed lines are located at 2.5±  times the scaled median absolute 
deviation about the median (MADM) robust scale estimate, which is an approximately 
unbiased estimate of the standard deviation when the returns are normally distributed. 
13 The modified function seriesPlot, and a modified function 
panel.superpose.ts that is called by seriesPlot, are provided in the code 
archive for this book (see the Preface).  
14 The script multi.start.function.ssc, written by Heiko Bailer and included in 
the code archive for this book (see the Preface), implements the classical and robust 
versions of the Stambaugh method. 
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15 We note that there is nothing wrong with using a parametric bootstrap so long as the 
parametric model is adequate. The problem with the Jorion and Michaud approach is the 
evaluation of the performance of their resampled portfolios using the original sample 
mean and covariance rather than the resampled means and covariances.  
16 See also Bradley and Taqqu (2003). 
17 For a thorough introduction to influence functions in the context of robust statistics, see 
Hampel et al. (1986), which discusses all the key properties of influence functions. Here 
we focus primarily on the influence of outliers and the approximate bias caused by 
outliers.  
18 This is one of several possible definitions of a finite sample influence function. See, for 
example, Mallows (1975). 
19 The latter condition is called Fisher consistency in the statistical literature. See, for 
example, Huber (2004) or Hampel et al. (1986). 
20 This is a directional or Gateaux derivative of the functional ( )Fθ at oF  in the 

“direction” Fγ . 
21 See, for example, Hampel et al. (1986) and the maximum bias curves in Martin, Yohai, 
and Zamar (1989). 
22 These are the values used in Rockafellar and Uryasev (2000) but have been slightly 
rounded. 




