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5 Scenario Optimization: 
Addressing Non-normality 

 
5.1 Scenario Optimization 

5.1.1 Foundations of Scenario Optimization 

In the case of portfolio optimization, the uncertainty in the optimization process 
stems from the uncertainty of returns. One way to solve this problem (in the 
sense of addressing uncertainty, not estimation error) is to solve a very large-
scale deterministic program instead, where a large number of scenarios try to 
capture randomness. For example, we can simulate 100,000 scenarios for four 
assets from the predictive distribution of portfolio returns. After the draws have 
been made, the uncertainty is removed and we are left with solving a 
deterministic problem. This procedure is called scenario optimization. We will 
see later in this chapter that for many objectives scenario optimization can be 
solved as a linear program. Key to successful scenario optimization is the 
quality of the sampled scenarios. In particular, scenarios must be 

 
• Representative – Scenarios must offer a realistic description of the 

relevant problem and not induce estimation error. 
• Parsimonious – Scenarios should use a relatively small number of 

samples to save computing time. 
• Arbitrage-free – Scenarios should not allow the optimization 

algorithm to find highly attractive solutions that make no economic 
sense. 

 
Scenario optimization that is based on only a few unrepresentative data might 
over-adjust and lead to an overly optimistic assessment of what could be 
achieved, while scenario optimization with a very large set of scenarios and 
assets might become computationally infeasible.  

It is well-known that under normally distributed returns there is no need for 
scenario optimization, as the efficient set of solutions under arbitrary objective 
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functions would still coincide with the efficient set in a traditional mean-
variance optimization. Otherwise complicated calculations become quite simple. 
As a first step we just find the mean-variance solutions. We then calculate the 
risk measure on the efficient set of portfolio solutions in a second step. For a 
given return expectation, the portfolio with the smallest value-at-risk (VaR) or 
lower partial moment will still be the portfolio with the minimum variance. 

In order to deviate from the normality assumption, we have to ask ourselves a 
series of questions. 

 
• Are returns non-normal? 
• Are deviations from normality statistically significant? 
• Are deviations stable (i.e., can we forecast them over time)? 
• Will the non-normality vanish over time? 

 
There is no general dogmatic answer to the questions above. At the asset class 
level, this is an empirical problem. However, modelers should also be aware of 
what will be lost if we discard the normality assumption. We lose portfolio 
aggregation as well as time aggregation (risk measures often do not have closed 
forms under non-elliptical distributions). Additionally, we need a new 
equilibrium model where skewness and kurtosis are also priced. On the 
instrument level, it is clear that nonlinear derivatives (options, collateralized 
debt obligations (CDOs), etc.) require the explicit modeling of non-normalities 
that have been deliberately engineered. We discuss a relevant problem within 
the set of exercises. 

Let us now start with a visual inspection of two return series to illustrate the 
problem of non-normality. Figure 5.1 shows histogram (empirical frequency 
distribution), empirical cumulative frequency distribution (versus assumed 
normal distribution), and Q-Q plots (plots of empirical quantile versus 
hypothetical quantile of assumed distribution) for monthly returns on emerging 
market bonds (JPM.EMBI) and U. S. dollar returns versus those for the Japanese 
yen (USD.YEN).1 

 
graphsheet() 
par(mfrow=c(1,3)) 
hist(Dollar.Yen) 
Normal <- rnorm(10000, mean(Dollar.Yen), 
 sqrt(var(Dollar.Yen))) 
cdf.compare(Dollar.Yen, Normal, cex=0.7) 
ks.gof(Dollar.Yen, Normal) 
qqnorm(Dollar.Yen) 
qqline(Dollar.Yen) 

 
It is straightforward to see that returns on emerging market bonds show negative 
skewness (too many large negative returns), while currency returns are 



5.1 Scenario Optimization 143 

approximately normal. We can also use the Kolmogorov-Smirnov test 
(calculating how distant both cumulative distributions are) for a more formal 
assessment. 
 
ks.gof(Dollar.Yen, Normal) 
 
 Two-Sample Kolmogorov-Smirnov Test 
 
data:  Dollar.Yen and Normal  
 
ks = 0.0748, p-value = 0.2116  
alternative hypothesis:  
 cdf of Dollar.Yen does not equal the cdf of  
 Normal for at least one sample point.  
 
The high p-value (0.21) confirms that the empirical distribution is not 

significantly different from the normal distribution. We can also use the 
Kolmogorov-Smirnov test to check for multivariate normality. Note that 
individual marginal distributions could all be normally distributed, while the 
corresponding multivariate distribution still might not be normal. Under 
multivariate normality, we know that 1T

m m
−d Ω d  is distributed as ( )2 nχ , where 

md  reflects the distance vector at time m  (period returns minus mean return). 

All we need is to compare the cumulative distribution of 1T
m m

−d Ω d  with 

( )2 nχ . This is a straightforward test for multivariate normality. 
Even if period-by-period returns are non-normally distributed, it is most 

likely that multiperiod returns are (log) normally distributed: the Central Limit 
Theorem states that the product of independent and identical distributed 
variables (with finite variance) will approach log-normality after approximately 
30 random drawings. We can check this using the built-in bootstrap() 
function to generate 36 month returns from the series of one month returns. 
 
JPM.EMBI.36month <- bootstrap(JPM.EMBI, 
 prod(1+sample(JPM.EMBI, 36)), 10000)$replicates 
hist(JPM.EMBI.36month) 
 
Figure 5.2 agrees with our intuition. It looks very much like a log-normal 

distribution, confirming our previous considerations that non-normality will tend 
to vanish as we move away from the very short time horizon. 
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Figure 5.1 Visual Inspection of Asset Returns in S-PLUS 
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5.1.2 Implied Returns and Arbitrary Preferences 
(Utilities) and Distributions 

One problem with non-normal returns is that we lose the ability to back out 
implied returns using reversed optimization as seen in Chapter 1. What can we 
do to back out the implied returns for investors with different preferences under 
arbitrary return distributions?2 Suppose our investor maximizes expected utility 
 

 ( ) ( )1 1
1 ,

m n
s i iss i

E U U w rπ
= =

= +∑ ∑  (5.1) 

 
where we use the same notation as throughout the previous chapters. Expected 
utility is calculated as the average utility over m  simulated scenarios. Each 
scenario is drawn with probability 1

s mπ = . In our example, utility itself is 

defined as 
 

 ( )
( )

( )

11
,     01 1

ln 1 ,      1,

r
U r

r

γ

γ
γ

γ

−⎧ +
≥⎪+ = −⎨

⎪ + =⎩

 (5.2) 
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Figure 5.2 Multiperiod Returns for JPM.EMBI 
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where γ  denotes the risk aversion coefficient. Note that any series of historic 
returns can be written as  

 
 ,is i i isr c zµ σ= + +  (5.3) 

 
where we can isolate the degree of non-normality captured in the empirical 
distribution of isz  from our forward-looking assumptions on risk premiums ( )µ  
as well as volatilities ( )σ . Applying (5.3) to the definition of benchmark returns 

1
,

n
bs i isi

r w r
=

= ∑  we get  

 

 
1

.
n

bs b i i isi
r c w zµ σ

=
= + + ∑  (5.4) 

 
We know from standard valuation theory that3  

 

 ( )

( )
*

1

,s
s s m

s ss

U W

U W
π π

π
=

′
=

′∑
 (5.5) 

 
where *

sπ  denotes the risk-neutral probabilities. The risk-neutral probability will 
be high in states where marginal utility is high (wealth is low). Hence, large 
weight is given to those states where wealth levels are depressed. Under the 
assumed utility function (5.3), we get  

 

 ( )

( )
*

1

1
.

1
bs

s s m
s bss

R

R

γ

γ
π π

π

−

−
=

+
=

+∑
 (5.6) 

 
Risk-neutral probabilities equalize all expected returns, as they correct for risk 
via (5.5). Assuming our investor finds the current (benchmark) portfolio 
optimal, we hence know that he prices all assets according to  

 

 * *
1 1

.
m m

s is s bss s
r rπ π

= =
=∑ ∑  (5.7) 

 
Inserting (5.3) and (5.4) into (5.7), we arrive at the implied return for the i-th 
asset, 

 

 ( )*
1 1

.
m n

i b s i i is i iss i
w z zµ µ π σ σ

= =
= + −∑ ∑  (5.8) 
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Changing the risk aversion parameter will change the implied returns. The very 
risk-averse investor will require large compensations for assets that show 
considerable “tail risk.” 

5.1.3 Generation of Non-normally Distributed 
Scenarios 

Suppose we want to generate a set of returns for future scenarios. Also assume 
we want to dismiss normality and generalize our simulation methodology in two 
main aspects. First, we aim to allow marginal distributions that could take any 
arbitrary form (i.e., they could follow a blend of a normal distribution plus an 
extreme value distribution for large losses, a mixture of normals, etc.). Second, 
we want to relax the modeling of dependence beyond the concept of correlation, 
as it is well-known that empirical distributions show tail dependence that is not 
explained by correlation alone. How can we glue arbitrary return distributions 
together and still maintain their correlation structure? How can we model tail 
dependence and still keep the same marginal distributions?  

The answer to these questions is the concept of copula functions. Recall that 
a typical Monte Carlo simulation of random returns requires us to draw a 
uniform random number (0,1)su uniform∼  and then invert the cumulative 

distribution function to arrive at a simulated return observation 1
, ( )

ii s srr F u−= . 
What do we do in a multivariate context? An n -dimensional copula is a 
multivariate cumulative distribution function with uniformly distributed 
marginals. Alternatively, we can think of it as a random vector of uniformly 
distributed variables that share a specified dependence structure, 

 
 ( ) � �( )11 1, , , , .nn nC u u prob u u u u= ≤ ≤… …  (5.9) 

 
As soon as we know the realization of the uniform random numbers 
( )1, , ,nu u…  we can calculate the marginals from ( ) ( )

1

1 1
1 , ,

nr r nF u F u− −" . In 

general, we can say that if ( )1, , nF r r"  denotes a multivariate distribution 
function with continuous marginals, it will have a unique copula representation, 

 
 ( ) ( )11, , , , .

nn r rF r r C F F=" "  (5.10) 
 

We can hence separate the univariate margins and the multivariate dependence 
structure.4 This proves to be very convenient in scenario generation. In what 
follows, we will not elaborate on how best to estimate the copula function (and 
the marginals) in (5.10). We rather work on the assumption that the marginals 
and copula are given. 
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In order to appreciate how scenario-based solutions (which will be presented 
later in this chapter) differ from a simple mean-variance approach, we use the 
copula approach to glue four mixtures of normals together, maintaining a 
specified correlation structure and modeling (symmetric) tail dependence 
according to a t copula. To simulate a t copula with υ  degrees of freedom, we 
have to proceed according to the following steps. 

 
1. Find the Cholesky decomposition CholeskyC  of the correlation matrix 

C (dimension: ).n n×  
2. Draw a vector of n  standard normals u  and calculate .CholeskyC u  

Alternatively, you might want to combine both steps and draw directly 
from a multivariate normal.  

3. Draw from 2~s υχ  and multiply the result of the second step by 

/ sυ , i.e., calculate v
Cholesky s

=x C u . 

4. Each element of x  1( , , )nx x"  is inserted into the cumulative 
distribution function to arrive at uniformly distributed variables 

( )~i v iu t x . 
5. Repeat steps 2 to 4 many ( )m  times.  

 
What looks like a complicated procedure can be performed in S-PLUS using a 
single line of code: 
 
Corr <- matrix(c(1.0,0.8,0.2,0.2, 
        0.8,1.0,0.6,0.2, 
        0.2,0.6,1.0,0.2, 
        0.2,0.2,0.2,1.0), ncol=4, nrow=4) 
m <- 100000 
v <- 2 
copula <- pt(rmvnorm(m, mean=rep(0,ncol(Corr)), 
 cov=Corr)*sqrt(v)/sqrt(rchisq(m,v)),v) 
 

Figure 5.3 and Figure 5.4 can be replicated with the following code: 
 
x <- matrix(qnorm(copula), ncol=4) 
graphsheet() 
pairs(x, label=c("asset 1", "asset 2", "asset 3", 
 "asset 4")) 
xx <- rmvnorm(m, mean=rep(0,ncol(Corr)), cov=Corr) 
graphsheet() 
pairs(xx,label=c("asset 1", "asset 2", "asset 3", 
 "asset 4")) 

 



5.1 Scenario Optimization 149 

Figure 5.5 is the result of the commands 
 
graphsheet() 
plot(x[,1],x[,2], xlab="asset 1", ylab="asset 2", 
 pch=1) 
points(xx[,1],xx[,2], pch=3) 

 
Marginal distributions for each of the four assets are assumed to be drawn from 
a mixture of normals and are plotted in Figure 5.6. 

 
asset.1 <- exp(c(rnorm(500,  0.05, 0.05), 
 rnorm(9500, 0.05, 0.05)))-1 
asset.2 <- exp(c(rnorm(500, -0.3, 0.01), 
 rnorm(9500, 0.08, 0.05)))-1 
asset.3 <- exp(c(rnorm(200, +0.4, 0.01), 
 rnorm(9800, 0.1, 0.17)))-1 
asset.4 <- exp(c(rnorm(500, -0.6, 0.1), 
 rnorm(9500, 0.12, 0.25)))-1 
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Figure 5.3 t copula with 2 Degrees of Freedom and Standard Normal 
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Figure 5.4 Multivariate Standard Normal 
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Figure 5.5 Scatterplot for Normal Distribution versus t copula 
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graphsheet() 
par(mfrow=c(2,2)) 
hist(asset.1) 
hist(asset.2) 
hist(asset.3) 
hist(asset.4) 

 
Marginal distributions are glued together with the use of a t copula and stored in 
the scenario matrix S . The necessary operations are  
 
asset.1 <- matrix(quantile(asset.1, copula[,1])) 
asset.2 <- matrix(quantile(asset.2, copula[,2])) 
asset.3 <- matrix(quantile(asset.3, copula[,3])) 
asset.4 <- matrix(quantile(asset.4, copula[,4])) 
S <- cbind(asset.1, asset.2, asset.3, asset.4) 

 
We can now code a scenario-based Markowitz optimization (Code 5.1), where 
portfolio variance is calculated using all scenarios for each weight allocation 
rather than by supplying a single covariance matrix. 

 
MV.model <- function(S, mu.target) 
{ 
 m <- nrow(S) 

-0.1 0.0 0.1 0.2

0
50

0
10

00

asset.1
-0.3 -0.1 0.1 0.3

0
10

00
30

00

asset.2

-0.5 0.0 0.5 1.0

0
50

0
15

00

asset.3
-0.5 0.5 1.5

0
10

00
20

00

asset.4
 

Figure 5.6 Marginal Distributions in Four-Asset Test Case 
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 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 w <- Variable(index=i) 
 r <- Variable(index=s) 
 r[s] == Sum((S[s,i]-mu.bar[i])*w[i],i) 
 risk <- Objective(type="minimize") 
 risk ~ Sum(r[s]^2,s)/(m-1) 
 Sum(mu.bar[i]*w[i],i) >= mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 
 
MV.portfolio <- function(S, mu.target) 
{ 
 call(MV.model) 
 MV.system <- System(MV.model, S, mu.target) 
 solution <- solve(MV.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 
 
MV.frontier <- function(S, n.pf) 
{ 
 call(MV.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 mu.min <- min(apply(S,2,mean)) 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 x <- MV.portfolio(S, mu.target=mu.min) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
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 for(i in 2:n.pf){ 
  x <- MV.portfolio(S, mu.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - Variance Frontier") 
 barplot(weight) 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.1 Mean-Variance Scenario Optimization 

Typing x <- MV.frontier(S, n.pf=10) will trace out an efficient 
frontier with ten portfolios. 
 
> x$optimal.weights 
numeric matrix: 4 rows, 10 columns.  
       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,] 97.058 88.816 71.458 52.225 32.993 13.760 
[2,]  0.000  0.000  8.032 18.572 29.112 39.652 
[3,]  2.942 10.403 17.268 23.561 29.854 36.148 
[4,]  0.000  0.781  3.243  5.642  8.041 10.440 
 
       [,7]   [,8]   [,9] [,10]  
[1,]  0.000  0.000  0.000     0 
[2,] 42.869 27.675 12.481     0 
[3,] 44.131 56.363 68.596   100 
[4,] 13.000 15.962 18.923     0 
 

Figure 5.7 shows the solutions for ten return points along the efficient frontier. 
All portfolios look reasonably diversified. We can use these solutions as a 
reference point for the following scenario optimizations. 

5.2 Mean Absolute Deviation  

The first scenario-based alternative to Markowitz optimization is the Mean 
Absolute Deviation model (MAD).5 It involves the minimization of the 
probability-weighted (where sp  denotes the probability of scenario )s  sum of 
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absolute deviations subject to the usual constraints. Risk is measured in the 
context of MAD as an absolute deviation from the mean rather than the squared 
deviation as in the case of variance. 
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While the square function 2( )⋅ penalizes larger deviations at an increasing rate, 
this is not the case with MAD. In fact, MAD implies that an additional unit of 
underperformance relative to the mean creates the same disutility no matter how 
big the loss already is. However, one advantage of MAD is that we can specify 
the costs of deviations above and below the mean differently, putting greater 
weight (costs) on underperformance rather than outperformance. If we work on 
simulated data ( 1

s mp = ) and denote the absolute deviation of the scenario 
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Figure 5.7 Mean-Variance Solutions 
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portfolio return from the average portfolio return by sad , we can transform 
(5.11) into a linear program.  
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The MAD-based portfolio selection shown here offers a range of appealing 
properties versus variance-based models: 

 
1. There is no need to calculate a covariance matrix because we use the 

scenario matrix, which can be constructed from time series of asset 
returns. However, this is only true if we rely on historical data for 
scenario generation; simulated scenarios from a parametric distribution 
have to be drawn using a covariance matrix. 

2. Solving a linear program is much easier than mean–variance 
optimization. The number of constraints (2 2m +  in the case of MAD) 
depends on the number of scenarios, not the number of assets. 

3. The upper bound on the number of assets in the optimal solution is 
related to the number of scenarios (2 2m + in the case of MAD). 

 
We leave the solution of (5.12) in NUOPT for S-PLUS as an exercise and use 
SIMPLE instead. Let us add one more layer of complexity by attaching different 

costs to upside and downside deviations, ( ),1
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The corresponding code is given in Code 5.2. 

 
MAD.model <- function(S, cost.up, cost.dn, 

mu.target) 
{ 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 cost.up <- Parameter(cost.up, changeable=T) 
 cost.dn <- Parameter(cost.dn, changeable=T) 
 w <- Variable(index=i) 
 up <- Variable(index=s) 
 dn <- Variable(index=s) 
 up[s] >= 0 
 dn[s] >= 0 
 up[s]-dn[s] == Sum((S[s,i]-mu.bar[i])*w[i],i) 
 risk <- Objective(type="minimize") 
 risk ~ Sum((cost.up*up[s]+cost.dn*dn[s]),s)/(m-1) 
 Sum(mu.bar[i]*w[i],i) >= mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 

 
MAD.portfolio <- function(S, cost.up, cost.dn, 
 mu.target) 
{ 
 call(MAD.model) 
 MAD.system <- System(MAD.model, S, cost.up,  
  cost.dn, mu.target) 
 solution <- solve(MAD.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 
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MAD.frontier <- function(S, cost.up, cost.dn, n.pf) 
{ 
 call(MAD.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 mu.min <- min(apply(S,2,mean)) 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 x <- MAD.portfolio(S, cost.up, cost.dn, 
  mu.target=mu.min) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
 for(i in 2:n.pf){ 
  x <- MAD.portfolio(S, cost.up, cost.dn, 
   mu.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - Mean Absolute Deviation Frontier") 
 barplot(weight) 

 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.2 Scenario Optimization Using Mean Absolute Deviation 

Hence, typing MAD.frontier(S,cost.up=1,cost.dn=1,n.pf=10) 
will trace out an efficient frontier with ten portfolios, as shown in Figure 5.8. 
 
> x$optimal.weights 
       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,] 94.733 88.889 62.241 32.043  0.012  0.000 
[2,]  0.005  0.000 20.447 45.543 73.145 57.860 
[3,]  5.261 11.109 15.002 17.091 18.986 30.461 
[4,]  0.000  0.002  2.311  5.323  7.857 11.679 
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       [,7]   [,8]   [,9]  [,10] 
[1,]  0.009  0.000   0.000     0 
[2,] 42.540 27.174  11.857     0 
[3,] 41.901 52.826  64.188   100 
[4,] 15.549 20.000  23.955     0 

 
Portfolios constructed with a symmetric understanding of Mean Absolute 
Deviation (up and down costs of deviations equal one) are close to mean-
variance solutions. This is not surprising, as variance is also a symmetric 
measure of investment risk. 

5.3 Semi-variance and Generalized 
Semi-variance Optimization  

5.3.1 Properties of Semi-variance 

Mean-variance-based portfolio construction has always suffered from the 
implicit assumption of normality that dictated that risk be measured as the 
variance of returns. One of the earliest alternative risk measures is 
semi-variance. While variance uses all return realizations, semi-variance 
utilizes only those returns that either fall below the average return (lower 
semi-variance, sv− ) or above the average return (upper semi-variance, sv+ ): 
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We can combine lower and upper semi-variances to arrive at variance again. To 
see this, note that if 1,sδ = it must follow that 1 0sδ− =  and vice versa. 
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In the case of symmetry (for every return deviation below the mean, there is an 
equal return deviation above the mean), we get sv sv− += and 

 
 22 .sv σ=  (5.16) 
 
Equation (5.16) often serves as a simple check for symmetry. If the variance is 
roughly twice the semi-variance, the distribution is close to symmetric. 
(Symmetry does not imply normality, as a distribution might be symmetric but 
still exhibit fat tails.) For many assets, we can regress the difference between the 
variance and twice the semi-variance against a constant to see whether 
deviations are statistically different from zero: 

 
 ( )22 .n nsv σ α ε− = +  (5.17) 

 
Alternatively, we can test whether skewness is persistent across time. Suppose 
we have observations of returns for a number of time series. We can split the 
observations into two subperiods and test for persistence in deviations from 
symmetry, 

 
 ( ) ( )2 2

11
2 2 .tt t

sv a b sv eσ σ ++
− = + − +  (5.18) 
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Figure 5.8 Mean Absolute Deviation Frontier 
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Persistence is indicated by a significant b  and a high 2.R  

5.3.2 A General Semi-variance Model 

Traditionally, semi-variance optimization has centered around lower 
semi-variance. However, there is no reason not to merge upper and lower 
semi-variances into a combined risk measure. This allows us every flexibility in 
expressing a mixture of risk-averse and risk-seeking behaviors. 

The proposed measure uses a weighted linear combination of upper and 
lower semi-variances and is hence called the weighted semi-variance model6 
(see Figure 5.9): 

 
 ( )1 .weightedsv sv svω ω− += + −  (5.19) 

 
Note that the range of ω  is restricted to lie between zero and one. We can plot 
the new penalty function (5.19) for various weights. 
 
deviation.from.mean.return <- seq(-60, 60, 1) 
l.sv <- ifelse(deviation.from.mean.return <= 0, 
 deviation.from.mean.return^2, 0) 
u.sv <- ifelse(deviation.from.mean.return > 0, 
 deviation.from.mean.return^2, 0) 
V <- deviation.from.mean.return^2 
DB <- 2*ifelse(deviation.from.mean.return <= 0, 
 0.75*deviation.from.mean.return^2, 
 0.25*deviation.from.mean.return^2) 
UB <- 2*ifelse(deviation.from.mean.return <= 0, 
 0.25*deviation.from.mean.return^2, 
 0.75*deviation.from.mean.return^2) 
graphsheet() 
par(mfrow=c(2,2)) 
plot(deviation.from.mean.return, l.sv, type="l", 
 ylab="penalty") 
title("Lower semi-variance") 

 
plot(deviation.from.mean.return, DB, type="l", 
 ylab="penalty") 
title("75% weight on lower semi-variance") 
plot(deviation.from.mean.return, V, type="l", 
 ylab="penalty") 
title("Variance") 
plot(deviation.from.mean.return, UB, type="l", 
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 ylab="penalty") 
title("25% weight on lower semi-variance") 
 

The weighted semi-variance portfolio optimization model becomes 
 

minimize 
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Figure 5.9 Weighted Semi-variance Measure 



162 5 Scenario Optimization: Addressing Non-normality 

where ,pf sr  denotes the portfolio return in scenario .s  Code 5.3 illustrates how 
the model given in (5.20) can be translated into NUOPT for S-PLUS. 
 
WSV.model <- function(S, mu.target, 

downside.weight) 
{ 
 if(downside.weight < 0 | downside.weight > 1) 
  stop("downside weight must range between 
   0 and 1") 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(as.numeric(mu.target), 
  changeable=T) 
 dw <- Parameter(downside.weight, changeable=T) 
 w <- Variable(index=i) 
 up <- Variable(index=s) 
 dn <- Variable(index=s) 
 up[s] >= 0 
 dn[s] >= 0 
 up[s]-dn[s] == Sum((S[s,i]-mu.bar[i])*w[i],i) 
 risk <- Objective(type="minimize") 
 risk ~ Sum(dw*dn[s]^2+(1-dw)*up[s]^2,s)/(m-1) 
 Sum(mu.bar[i]*w[i],i) == mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 
 
WSV.portfolio <- function(S, mu.target,  
 downside.weight) 
{ 
 call(WSV.model) 
 WSV.system <- System(WSV.model, S, mu.target, 
  downside.weight) 
 solution <- solve(WSV.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 
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 risk <- solution$objective 
 return(weight,risk) 
} 
 
WSV.frontier <- function(S, n.pf, downside.weight) 
{ 
 call(WSV.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 mu.min <- min(apply(S, 2, mean)) 
 x <- WSV.portfolio(S, mu.target=mu.min, 
  downside.weight) 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
 
 for(i in 2:n.pf) 
 { 
  x <- WSV.portfolio(S, mu.target=mu.range[i], 
   downside.weight) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight)    
 } 

 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - Weighted Semi-variance Frontier") 
 barplot(weight) 
 title("Frontier Portfolios") 
 litle("optimal.weights"=weight) 
} 

Code 5.3 Weighted Semi-variance Model 

As usual, we run an example optimization with a simulated data set: 
 
> x <- WSV.frontier(S, n.pf=10, 

downside.weight=0.8) 
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> x$optimal.weights 
       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,]    100 88.825 77.449 66.080 50.272 34.251 
[2,]      0  0.000  0.000  0.019  5.985 12.241 
[3,]      0 10.483 19.010 27.736 35.148 42.527 
[4,]      0  0.693  3.542  6.166  8.595 10.981 
 
       [,7]   [,8]   [,9] [,10]  
[1,] 18.080  1.977  0.000     0 
[2,] 18.696 25.061 12.531     0 
[3,] 49.850 57.192 68.953   100 
[4,] 13.374 15.771 18.516     0 
 

Weighted semi-variance solutions invest more cautiously in asset 2 due to the 
obvious non-normality in its returns. Although the flexibility of the weighted 
semi-variance model is appealing, little guidance can be given on how to weight 
upper and lower semi-variances. For most practical applications, investors will 
hence stick with the lower semi-variance model. Figure 5.10 illustrates the 
weighted semi-variance frontier. 

5.4 Probability-Based Risk/Return Measures  

5.4.1 Shortfall Probability, Lower Partial Moment, 
and Value-at-Risk 

Regulatory pressures (bankruptcy/default occurs if wealth falls below a liability 
threshold) as well as investment intuition (probability statements seem to be 
easier to understand than volatility numbers) often guide investors towards 
shortfall probability as their preferred measure of risk.7 We start with the general 
observation that uncertain investment returns can be decomposed into a 
threshold return (γ ) plus an upside measure, expressed as [ ]max ,0r γ−  which 
is either positive or zero, minus a downside risk measure, denoted by 

[ ]max ,0rγ −  which is also either positive or zero. In combination, we get 
 
 [ ] [ ]max ,0 max ,0 .r r rγ γ γ= + − − −  (5.21) 

 
Measures that focus on the downside of a return distribution are called lower 
partial moments, while measures that focus on the upside are called upper 
partial moments. If return distributions become non-normal, risk measures that 
capture non-normality become attractive. We have already discussed the special 
case of ,γ µ=  in which we distinguished between upper and lower 
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semi-variances. Lower partial moments characterize the moments of a return 
distribution below the specified threshold return. In general, we define the lower 
partial moment of degree k  in its discrete form (working on realized return 
scenarios rather than on a continuous distribution) as 
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Again we use the same notation as in the previous chapter, where sδ  denotes an 
integer variable that assumes either one or zero. Effectively, sδ  will decide 
which observations enter the calculation on a go/no-go basis and hence can be 
modeled using integer variables. Apart from the threshold level, we also control 
the choice of the moment parameter k . For 0,k =  we get the shortfall 
probability, for 1k = we get the average shortfall, and for 2,3, 4, ,k = "  we find 
shortfall variance, skewness, kurtosis, etc. In this section, we will focus on 

0,k =  
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Figure 5.10 Weighted Semi-variance Frontier 
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because shortfall probability is closely related to value-at-risk. Note that as 
value-at-risk denotes the maximum loss (to be calculated) likely to occur in 
normal circumstances (i.e., 95% of all times, with a significance level of 

5%α = ), 
 

 ( )1 ,VaR F α−=   
 

while the shortfall probability denotes the probability (to be calculated) that the 
loss will fall below a prespecified loss of amountγ : 

 
 ( )0 .lpm prob rγ γ= ≤   

 
While we fix probability in value-at-risk calculations, we fix our loss threshold 
in the calculation of shortfall probability. Hence both measures coincide if we 
set VaRγ = : 

 
( )1 0 .VaR F lpmγ

−=

 
 

In short, the value-at-risk at a significance level of α  denotes a loss with 
shortfall probability α .8 After this short digression on value-at-risk, shortfall 
probability, and lower partial moments, we proceed with the implementation of 
shortfall probability in NUOPT for S-PLUS. We focus on the calculation of 
shortfall probability with the use of scenarios, in which case the minimization of 
shortfall probabilities requires the use of integer variables. 

5.4.2 Portfolio Construction and Shortfall 
Probability  

We focus on an investor who aims to minimize shortfall risk (relative to a return 
threshold) subject to a specified return target. Equations (5.23) and (5.24) 
provide the appropriate switches, 

 

 ,1
,

n
i i s si

w r e Eγ δ
=

− ≥ −∑  (5.23) 

 ( ),1
1 ,

n
i i s si

w r Eγ δ
=

− ≤ −∑  (5.24) 

 
where e  denotes a very small number and E  represents a very large number. 
Each time the portfolio return is higher than the threshold return, 0sδ =  will 
simultaneously satisfy (5.23) and (5.24). Note that 1sδ =  will only satisfy 
(5.23). The portfolio construction problem becomes  
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 (5.25) 

 
The system (5.25) can also be brought into S-PLUS code (Code 5.4): 
 
SF.model <- function(S, mu.target, mu.threshold) 
{ 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 names(mu.bar) <- NULL 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 mu.threshold <- Parameter(mu.threshold, 
  changeable=T) 
 w <- Variable(index=i) 
 dummy <- IntegerVariable(index=s, type=binary) 
 Sum(S[s,i]*w[i],i)-mu.threshold <=  
  (1-dummy[s])*10 
 Sum(S[s,i]*w[i],i)-mu.threshold >= 
   -1*dummy[s]*10+0.000001 
 risk <- Objective(type="minimize") 
 risk ~ 1/m*Sum(dummy[s],s) 
 Sum(mu.bar[i]*w[i],i) >= mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 
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SF.portfolio <- function(S, mu.target, 
mu.threshold) 

{ 
 SF.system <- System(SF.model, S, mu.target, 
  mu.threshold) 
 nuopt.options(maxitn=1000) 
 solution <- solve(SF.system, risk, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 
 
SF.frontier <- function(S, mu.threshold, n.pf) 
{ 
 call(SF.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.min <- min(apply(S, 2, mean)) 
 x <- SF.portfolio(S, mu.target=mu.min,  

  mu.threshold) 
 mu.min <- t(x$weight) %*% apply(S, 2, mean)/100 
 weight <- x$weight 
 Risk[1,1] <- c(x$risk[2]) 

  
  
 Return[1,1] <- mu.min 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 for(i in 2:n.pf){ 
  x <- SF.portfolio(S, mu.range[i], 

mu.threshold) 
  Risk[i,1] <- x$risk[2] 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight)    
 } 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - Shortfall Frontier") 
 barplot(weight) 
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 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.4 Shortfall Efficient Model 

> x <- SF.frontier(S, mu.threshold, n.pf=50) 
> x$optimal.weights 
       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,]  0.000  0.000  0.000  0.000  0.063  0.000 
[2,] 77.436 68.604 58.863 49.981 40.926 27.247 
[3,] 16.393 24.086 25.763 32.667 39.386 50.680 
[4,]  6.172  7.310 15.375 17.352 19.625 22.073 
 
       [,7]   [,8]   [,9] [,10]  
[1,]  1.467  1.710  0.000     0 
[2,] 21.324 11.716  4.907     0 
[3,] 54.751 61.965 64.596   100 
[4,] 22.458 24.609 30.497     0 

 
The inspection of the left part of Figure 5.11 is disappointing. However, as VaR 
is a nonconvex function with respect to portfolio weights (and hence possesses 
many local minima), it is not surprising that standard optimization techniques 
will not always find the optimal solution. After all, heuristics are needed if 
objective functions are nonconvex. This difficulty in finding optimal portfolios 
when using VaR as a risk measure in scenario optimization is one of the major 
obstacles to its use. It is not only inconvenient but also directly related to its 
theoretical deficiencies (i.e., its lack of subadditivity; see Section 5.6). 

5.4.3 Probability of Outperformance 

Many portfolio managers and plan sponsors are given performance objectives. 
Hence their interest is to outperform their given investment targets. The problem 
of maximizing the probability of outperformance can be written as  
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 (5.26) 

 
We leave the implementation of (5.26) to the reader. Do you think this 
investment objective makes sense? 

5.5 Minimum Regret 

Suppose we are again given the scenario matrix S , either from historical returns 
or from a scenario simulation exercise. As in basic decision theory, we could 
choose minimax criteria, as illustrated in Figure 5.12 (i.e., we might want to 
minimize the maximum portfolio loss—minimizing regret).9 This could be the 
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Figure 5.11 Shortfall Efficient Portfolios 
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optimal strategy for investors who have to make sure under all means 
(scenarios) that they never experience a particular size of loss. Focusing on 
extreme events will have its merits if returns either substantially deviate from 
normality or if investors are extremely risk-averse. Minimizing the maximum 
loss can be written as a linear program: 
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 (5.27) 

 

The first constraint , min1
0

n
i i si

w r r
=

− ≥∑  ensures that there is no scenario for 

which the portfolio return is worse than the minimum return. As minr  is a 
variable as well as the objective in the system (5.27), it will take on the value of 
the minimum maximum loss. An alternative (equivalent) formulation to (5.27) is 
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Figure 5.12 MinMax Efficient Frontier 
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to maximize return subject to the restriction that there is no scenario for which 
the portfolio return falls below a threshold return min .r  
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We choose the program of (5.27) for implementation in NUOPT for S-PLUS 
(shown in Code 5.5). 
 
MinMax.model <- function(S, mu.target) 
{ 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 w <- Variable(index=i) 
 mu.Min <- Variable() 
 Sum(S[s,i]*w[i],i)-mu.Min >= 0 
 MinMax <- Objective(type="maximize") 
 MinMax ~ mu.Min 
 Sum(mu.bar[i]*w[i],i) == mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 
 
MinMax.portfolio <- function(S, mu.target) 
{ 
 call(MinMax.model) 
 MinMax.system <- System(MinMax.model, S, 

mu.target) 
 solution <- solve(MinMax.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
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  digit=5)*100, ncol=1) 
 risk <- solution$objective 
 return(weight,risk) 
} 
 
MinMax.frontier <- function(S, n.pf) 
{ 
 call(MinMax.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 m <- nrow(S) 
 mu.min <- min(apply(S,2,mean)) 
 x <- MinMax.portfolio(S, mu.target=mu.min) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
 mu.max <- max(apply(S, 2, mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 for(i in 2:n.pf){ 
  x <- MinMax.portfolio(S, 

mu.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
 } 
 graphsheet 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - MinMax Frontier") 
 barplot(weight) 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.5 Regret Minimization 

> x <- MinMax.frontier(S, n.pf=50) 
> x$optimal.weights 
     [,1]   [,2]   [,3]   [,4]   [,5]   [,6]  
[1,]  100 88.889 77.778 66.667 55.556 44.444 
[2,]    0  0.000  0.000  0.000  0.000  0.000 
[3,]    0 11.111 22.222 33.333 44.444 55.556 
[4,]    0  0.000  0.000  0.000  0.000  0.000 
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       [,7]   [,8]   [,9]  [,10]  
[1,] 33.333 22.222 11.111     0 
[2,]  0.000  0.000  0.000     0 
[3,] 66.667 77.778 88.889   100 
[4,]  0.000  0.000  0.000     0 
 
Minimizing maximum regret leads to concentrated portfolios. The highly 

non-normal assets 2 and 4 never enter the optimal solution. 

5.6 Conditional Value-at-Risk 

5.6.1 CVaR, Tail Conditional Loss, and VaR 

Suppose we sampled discrete realizations of portfolio returns from a continuous 
distribution to arrive at m  realizations { } 1, ,s s mr = …  of random returns. To make 

matters transparent, just think of this as a sequence of returns 
{ } 1006, 10, 3, 4,5, ,1 m=− − " .10 We now define the order statistics (simply by 
ordering the returns starting with the smallest return from the left) 

1: 2: :m m m mr r r≤ ≤ ≤…  that result in the sorted returns 
{ } 10010, 5, 3, 3, 3, 3, 3, ,16 m=− − − − − − − " . If we need to estimate the %α -quantile 
(value-at-risk), we simply look for 

 
 : .m mVaR rα α=  (5.29) 

 
If we set 5%α = , 100,m =  we arrive at 5:100 3VaR r= = −  (5th out of 100 
returns) in the example above.  

The estimator for the expected loss in %α of all cases, also called 
conditional value-at-risk ( CVaR ) or expected shortfall ( ES ), is calculated 
from  

 

 :1

1 .
m

s ms
ES r

m
α

α α =
= ∑  (5.30) 

 
For the example above we get 
 

  ( )
51 1

5% :1005 51
10 5 3 3 3 4.8.ss

ES r
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= = − − − − − = −∑   
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A measure similar to (5.30) is the “tail conditional loss” (TCL ) defined as 
( )E r r VaRα≤ , which looks the same at first sight. 
 

 :1
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1,  
 where 
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s s s m ms

sm
ss

r r r
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 (5.31) 

 
This, however, is only true for continuous distributions, as the discrete example 
above shows. 

 
 ( )10 5 3 3 3 3 3 / 7 4.3.TCLα = − − − − − − − = −   

 
Tail conditional loss and expected shortfall differ. In general, we will find that 
expected shortfall is at least as large as tail conditional loss.  

 
 ( ) ,ES TCL TCL VaRα α α αφ= + −  (5.32) 

 
where  

 ( ) 1 0
prob r VaR

φ
α

≤
= − ≥ . 

 
The reason for this is that for discrete distributions ( ) .prob r VaR α≤ ≥  In our 

example, we find that ( ) 7
100 7%prob r VaR≤ = = , which is larger than 5%. 

Substituting the appropriate values into (5.32), we get  
 

 ( )7%4.8 4.3 1 4.3 3 .
5%

⎛ ⎞− = − + − − −⎜ ⎟
⎝ ⎠

 

 
We now show various ways to calculate the numbers above in S-PLUS. Suppose 
we simulate a mixture (of two normals) to generate a data set for the sample 
calculations below. 

 
returns <- c(rnorm(50, -0.4, 0.3),  
 rnorm(950, 0.07, 0.2)) 
graphsheet() 
par(mfrow=c(1,2)) 
hist(returns) 
qqnorm(returns) 
qqline(returns) 
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The data are plotted in Figure 5.13. It is apparent that the distribution differs 
significantly from the normal distribution in its left tail (the Q-Q plot deviates 
substantially from a straight line). S-PLUS functions that generate the required 
risk measures are given below (in Code 5.6) and can also be used to generate the 
distribution of our estimated risk measure via repeated resampling 
(bootstrapping). Bootstrapped results are shown in Figure 5.14. 
 
VaR <- function(returns, alpha){ 
 sort(returns)[trunc(length(returns)*alpha)] 
} 
 
CVaR <- function(returns, alpha){ 
 mean(sort(returns)[1:trunc(length(returns)*alpha)

]) 
} 
 
TCL <- function(VaR, returns){ 
 mean(returns[returns<=VaR(returns, alpha)]) 
} 
 
bs.VaR <- bootstrap(returns, VaR(returns, alpha)) 
bs.CVaR <- bootstrap(returns, CVaR(returns, alpha)) 
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Figure 5.13 Sample Data 
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graphsheet() 
par(mfrow=c(1,2)) 
plot(bs.VaR, xlab="VaR", main="") 
plot(bs.CVaR, xlab="CVaR", main="") 

Code 5.6 Bootstrap Distributions of Various Risk Measures 

This way, the bootstrap function can be used to investigate which risk concept 
(VaR, CVaR, or volatility) needs more data to be estimated with the same 
precision. Note that we can address the resampled risk measures (see Figure 
5.15) directly using  

 
bs.VaR <- bootstrap(returns, 
 VaR(returns, alpha))$replicates 
 

for example. We can then use the boxplot() command to visualize the 
estimation error in all three risk measures. For this purpose, we remove the 
means of the estimates of our risk measures to plot them on the same level in 
Code 5.7. 
 
bs.VaR <- bootstrap(returns,  
 VaR(returns, alpha))$replicates 
 
bs.CVaR <- bootstrap(returns,  
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Figure 5.14 Resampled VaR and CVaR Calculations 
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 CVaR(returns, alpha))$replicates 
 
bs.Vol <- bootstrap(returns, 
 Vol(returns))$replicates 
 
demean <- function(x){x-mean(x)} 

 
boxplot(demean(bs.VaR), demean(bs.CVaR), 
 demean(bs.Vol), 
 names=c("VaR", "CVaR", "Volatility")) 

Code 5.7 Estimation Error in Various Risk Measures 

We see that the estimation error for CVaR is larger than for volatility (where 
precision is highest) or VaR. This makes intuitive sense, as CVaR looks deeper 
into the tail and is hence outlier-dependent, while large outliers do not affect 
VaR (which is economically a central weakness). Volatility, on the other hand, 
uses all the data in a sample and arrives at a very precise estimate (that might be 
completely useless in the case of serious non-normality). 

Rather than using sampled data, we could also employ the numerical 
integration techniques offered by S-PLUS to calculate the required risk measures. 
Suppose we are given the distribution behind Figure 5.13 in continuous form, 

( ) ( ) ( )1 1 2 2, , 1 , ,pf x p f xµ σ µ σ+ − , where ( ) ( )( )2

2
1
2 2

, , exp xf x µ
σ π σ

µ σ −= − . 

The value-at-risk for the 2.5% level is –45.89%. To check this, just calculate 
 

 ( ) ( ) ( )
45.89% 45.89%

1 1 2 2, , 1 , , 2.5%.p f x p xµ σ µ σ
− −

−∞ −∞

+ − =∫ ∫  (5.33) 

 
integrand.1 <- function(x){ 
 (0.05*dnorm(x,-0.4,0.3) + 0.95*dnorm(x,0.07,0.2)) 
} 
integrate(integrand.1,  - Inf, -0.4589)$integral 
[1] 0.02499479 
 

We can also calculate the expected shortfall, or conditional value-at-risk (see 
Code 5.8), 

 

( ) ( ) ( )

( ) ( ) ( )

45.89% 45.89%

45.89% 45.89%

, , 1 , ,1 1 2 2
65.366%

, , 1 , ,1 1 2 2

p xf x dx p xf x dx

p f x dx p f x dx

µ σ µ σ

µ σ µ σ

− −

−∞ −∞
− −

−∞ −∞

+ −
= −

+ −

∫ ∫
∫ ∫

.(5.34) 
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integrand.2 <- function(x){ 
 (0.05*dnorm(x,-0.4,0.3) + 

0.95*dnorm(x,0.07,0.2))*x 
} 
integrate(integrand.2,-Inf, 
 -0.458915)$integral/integrate(integrand.1,-Inf, 
 -0.458915)$integral 
[1] -0.6536664 

Code 5.8 Risk Estimates via Numerical Integration 

Numerical integration allows us to calculate arbitrary risk figures as soon as a 
continuous distribution has been fit to the data. 

5.6.2 What Do We Require from a Risk Measure? 

For portfolio managers, risk managers, and plan sponsors, there is the vital 
question: what properties are needed for a statistic of portfolio returns to qualify 
as a risk measure? The answer to this question has been given through a 
complete set of axioms. They define what has been called a coherent risk 
measure.11 A coherent risk measure is a function (that translates returns into a 
risk figure) that is  
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Figure 5.15 Boxplot for Resampled Risk Measures 
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2. Positive homogeneous. If we multiply holdings (positions, exposures) 
by a linear factor, risk also rises by this factor.  

3. Invariant to translations. Adding a constant to our losses does not 
change risk.  

4. Subadditive. The risk of a portfolio is at most the combined risks of 
the single positions. 

 
The last axiom catches diversification. Adding two portfolios together must not 
create higher risks than both on a stand-alone basis. These axioms define the 
nature of the concept with a minimum set of precise formulations 
(requirements). A risk measure that violates one of the axioms above will lead to 
paradoxical results. Note that return statistics that do not fit into the axiomatic 
framework cannot be called risk measures (by the very definition).  

Let’s see how VaR, CVaR, volatility, and shortfall probability do in a simple 
setting. A plan sponsor budgets risks given to individual managers. His 
scenarios of two very diversifying managers (i.e., negative returns can only 
occur in different states) are given in Table 5.1.12 

Table 5.1 Data for Manager Combination: Active Returns 

Scenario Manager 1 Manager 2 Manager 1+2 Probability 
1 –20%     2%    –9%   3% 

2   –3%     2% –0.5%   2% 

3     2% –20%    –9%   3% 

4     2%   –3% –0.5%   2% 

5     2%     2%      2% 90% 
 
We can now calculate the risk measures mentioned above. The outcome is 

summarized in Table 5.2. While volatility and CVaR are decreasing as we move 
from a stand-alone approach to a combination of managers, this is not the case 
for shortfall probability and VaR. Hence, both statistics are not suitable risk 
measures. 

Table 5.2 Risk Measures in Multiple-Manager Example 

Risk Measure Manager 1 Manager 2 Manager 1+2 
Volatility     3.80%     3.80%   2.63% 

VaR        –3%        –3%      –9% 

Shortfall 
Probability          5%          5%      10% 

CVaR –13.20% –13.20% –5.60% 
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The reason for these paradoxical results lies in the concept of value-at-risk. It 
ignores the large –20% losses that are waiting undetected in the tail of the 
distribution. However, when we average across portfolios, these returns will be 
diversified into the portfolio risk measure and will increase risk, as they have 
been ignored before. No investor would find a risk measure that attaches equal 
weight to small losses and complete bankruptcy satisfying. Value-at-risk fails in 
detecting tail risks. 

Value-at-risk and shortfall probability are not coherent risk measures (i.e., 
they should not be called risk measures at all). Value-at-risk will only be 
subadditive in special circumstances (i.e., for so-called elliptical distributions, 
such as the normal distribution, Student’s t distribution, and the Cauchy 
distribution). In fact, value-at-risk and volatility share the same properties when 
the underlying distribution is elliptical.13 However, the distributions of many 
assets involved in portfolio construction do not belong to this class. They either 
naturally deviate from asset class characteristics (hedge fund, credit risk, etc.) or 
are deliberately created to do so using heavily skewed distributions. 
Interestingly, value-at-risk, which once was regarded as the Holy Grail in risk 
management, fails when return distributions are not elliptical. Casually stated, 
value-at-risk cannot deal with non-normality. Table 5.3 gives a concise 
summary of our discussion. 

Table 5.3 VaR versus CVaR 

Criterion VaR CVaR 
Subadditivity? No Yes 

Tail risk measure? No Yes 

Handle 
nonnormality? 

Constrained to cases for non-
normal elliptical distributions 

Yes 

Data requirements? Needs more data than the 
volatility measure to be 
measured with the same 
precision 

Needs more data than 
VaR to be measured 
with the same 
precision 
 

 
It is difficult to understand why value-at-risk is still so popular. We do warn 

against its use in portfolio optimization, as the problems above are likely to 
increase further when a portfolio optimizer leverages axiomatic shortcomings of 
VaR. 

5.6.3 The Use of CVaR in Portfolio Construction  

Not only does CVaR offer a much sounder theoretical basis for risk management 
decisions but it is also computationally more efficient. While portfolio 
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optimization using VaR becomes a complicated integer-programming problem, 
CVaR optimization only requires well-established and widely available linear 
programming tools. First, we define an auxiliary variable, 

 

 ,1
max 0,

n
s i i si

e VaR w r
=

⎡ ⎤= −⎢ ⎥⎣ ⎦∑ . (5.35) 

 
Suppose 20VaR = −  (percent), while the portfolio return for scenario s  turns 

out to be ,1
25

n
i i si

w r
=

= −∑ . Equation (5.35) would then find an excess of 

( ) ( )[ ] [ ]max 0, 20 25 max 0,5 5se = − − − = = . Conditional value-at-risk equals 
value-at-risk plus the average of all losses in excess of value-at-risk. Hence we 
can write 

 

 ( )1
1

/
m

sm s
CVaR VaR e α

=
= − ∑ . (5.36) 

 

Note that 1
1

m
sm s

e
=∑ reflects the average excess loss across all m  scenarios. In 

order to scale this loss up to the average excess loss, if an excess loss occurs, we 
have to divide it by the probability of an excess loss ( ).α  As VaR  is a negative 

number, ( )1
1

/
m

sm s
VaR e α

=
− ∑  will be even more negative. A risk-averse 

investor will hence want to maximize CVaR  (–5 is larger than –20). The 
complete portfolio optimization problem can now be written down as  
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w
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−
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∑  (5.37) 

 
A closer look at (5.37) will reveal some of the mechanics. Note that excesses are 

forced to be positive. Any excess ( ,1
, 0s i i s si

e VaR w r e
=

≥ − ≥∑ ) will hence 

have a negative impact on the objective function. Excesses can be kept small by 

choosing the appropriate set of weights in order to prevent ,1 i i si
VaR w r

=
− ∑  

from becoming a large positive number.  
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If portfolio returns in all scenarios were positive, how could we prevent se  
from becoming negative? The optimizer can now increase VaR  and therefore 
positively impact the objective function. However, moving VaR  up too much 
will result in increasing excesses that will counterbalance this effect. The CVaR 
model is given in Code 5.9. 
 
CVaR.model <- function(S, alpha, mu.target) 
{ 
 m <- nrow(S) 
 n <- ncol(S) 
 mu.bar <- apply(S, 2, mean) 
 asset <- Set() 
 period <- Set() 
 mu.VaR <- Set(1) 
 i <- Element(set=asset) 
 s <- Element(set=period) 
 mu.VaR <- Element(set=mu.VaR) 
 S <- Parameter(S, index=dprod(s,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 w <- Variable(index=i) 
 e <- Variable(index=s) 
 mu.VaR <- Variable(index=mu.VaR) 
 e[s] >= mu.VaR[1]-Sum(S[s,i]*w[i],i) 
 e[s] >= 0 
 CVAR <- Objective(type="maximize") 
 CVAR ~ mu.VaR[1]-(1/m)*(1/alpha)*Sum(e[s],s) 
 Sum(mu.bar[i]*w[i],i) == mu.target 
 Sum(w[i],i) == 1 
 w[i] >= 0 
} 

Code 5.9 CVaR Optimization 

Suppose we run the model on 100m =  scenarios with 0.05α =  and 0.04µ = . 
What are the values for VaR and CVaR? 
 
 mu.target <- 0.04 
 alpha <- 0.05 
 S.mvnorm <- matrix(rmvnorm(100, mean=c(0.02, 

0.04, 0.05, 0.08), cov=diag(rep(0.2,4))), 
ncol=4) 

 CVaR.system <- System(CVaR.model, S.mvnorm, 
alpha, mu.target) 

 solution <- solve(CVaR.system, trace=T) 
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The value for CVaR can be obtained from solution$objective, which 
returns a value of –0.7469582. We compare this to VaR, which can be 
retrieved from solution$variables$mu.VaR$current and amounts to 
-0.478263. Finally, we plot the cumulative distribution for portfolio returns 
as well as for a normal distribution in Figure 5.16 and the CVaR frontier and 
optimal portfolios in Figure 5.17. 
 
normal <- rnorm(100000, mean(returns), 
 sqrt(var(returns))) 
cdf.compare(returns, normal) 
 
CVaR.portfolio <- function(S, alpha, mu.target) 
{ 
 call(CVaR.model)  
 CVaR.system <- System(CVaR.model, S, alpha, 
  mu.target) 
 solution <- solve(CVaR.system, trace=T) 
 weight <- 

matrix(round(solution$variable$w$current, 
digit=5)*100, ncol=1) 

 risk <- -solution$objective 
 return(weight,risk) 
} 
 
CVaR.frontier <- function(S, alpha, n.pf) 
{ 
 call(CVaR.portfolio) 
 Risk <- matrix(0, ncol=1, nrow=n.pf) 
 Return <- matrix(0, ncol=1, nrow=n.pf) 
 mu.min <- min(apply(S,2,mean)) 
 mu.max <- max(apply(S,2,mean)) 
 mu.range <- seq(mu.min, mu.max,  
  (mu.max-mu.min)/(n.pf-1)) 
 x <- CVaR.portfolio(S, alpha, mu.target=mu.min) 
 weight <- x$weight 
 Risk[1,1] <- x$risk 
 Return[1,1] <- mu.min 
 for(i in 2:n.pf){ 
  x <- CVaR.portfolio(S, alpha, 
   mu.target=mu.range[i]) 
  Risk[i,1] <- x$risk 
  Return[i,1] <- mu.range[i] 
  weight <- cbind(weight,x$weight) 
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 } 
 graphsheet() 
 par(mfrow=c(1,2)) 
 plot(Risk, Return, type="b") 
 title("Mean - CVaR Frontier") 
 barplot(weight) 
 title("Frontier Portfolios") 
 list("optimal.weights" = weight) 
} 

Code 5.10 CVaR Frontier 

> x <- CVaR.frontier(S, alpha, n.pf=20) 
> x$optimal.weights 
 
       [,7]   [,8]   [,9]  [,10]  [,11]  [,12]  
[1,] 67.944 62.631 57.295 52.035 46.684 41.375 
[2,]  0.000  0.000  0.000  0.000  0.000  0.000 
[3,] 26.918 31.703 36.253 41.548 45.949 50.761 
[4,]  5.138  5.666  6.452  6.416  7.368  7.864 
 
      [,13]  [,14]  [,15]  [,16]  [,17]  [,18]  
[1,] 36.067 30.777 25.496 20.204 14.912  9.646 

Figure 5.16 Cumulative Distribution of Portfolio Returns 
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[2,]  0.000  0.000  0.000  0.000  0.000  0.000 
[3,] 55.592 60.589 65.685 70.666 75.647 80.882 
[4,]  8.341  8.634  8.819  9.130  9.441  9.471 
 
      [,19] [,20]  
[1,]  4.338     0 
[2,]  0.000     0 
[3,] 85.705   100 
[4,]  9.957     0 
     

Conditional value-at-risk looks deeply into the tail of a distribution. In contrast 
with mean-variance-based solutions, we note that the highly non-normal assets 2 
and 4 enter and are given much less weight. 

5.6.4 VaR Approximation Using CVaR 

It is well-known that VaR for discrete distributions is a nonsmooth, nonconvex, 
and multiextremum function with respect to iw . VaR and the related shortfall 
risk are therefore difficult to optimize, as we have already seen in Section 5.4.2. 
This section will present a heuristic that attempts to minimize VaR by solving a 
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Figure 5.17 CVaR Frontier and Optimal Portfolios 
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sequence of CVaR problems.14 As CVaR presents an upper bound on VaR 
(CVaR will always be greater than VaR, as it adds the average of the excess 
losses to VaR), one approach to minimizing VaR is to minimize the upper bound 
in a sequence of CVaR problems, gradually discarding scenarios that exhibit 
losses larger than VaR. 

Step 0. Let us assume we have generated 1000m =  scenarios for 4n =  
assets. We start with a standard CVaR minimization for a prespecified α  and 
return target µ  as described in (5.37) using all m  scenarios. The resulting 
CVaR (call it α -CVaR) represents the first upper bound on VaR for the 
prespecified α (call this α -VaR). Now we split the set of total scenarios into 
active scenarios (those used for further CVaR minimizations) and inactive 
scenarios (those discarded). From all scenarios that show losses larger than α -
VaR, we discard a fractionξ . For example, if 50 portfolio returns fall below 
VaR, we discard the largest 25 losses for further use.  

Step 1. Start a new CVaR optimization on the remaining set of active 
scenarios (if we discard 25 out of 1000 scenarios we are left with 975 scenarios). 
However, we have to modify our CVaR optimization in two important respects. 
First we need to take into account that we discarded a number of scenarios. As 
we are interested in the α -VaR, we need to ensure that the 1α -CVaR 
optimization in Step 2 focuses on the same quantile. The new 1α  for the 1α -
CVaR optimization needs to satisfy 

 

 ( ) 0,
1   

1 1 1 .
istep i

discarded scenarios in step
i mα α =

−
⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

∑   

 
An example has been calculated in Table 5.4. As the number of discarded 
scenarios rises, we need to go further into the tail to maintain the quantile with 
respect to the original set of scenarios. 
 

Table 5.4 Evolution of αi for α=0.05 and ξ=0.5 

Step i # Discarded Scenarios αi 
0   0 5.00% 

1 25 2.56% 

2 13 1.30% 

3   6 0.65% 

4   3 0.33% 

5   2 0.16% 
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Second, we need to ensure that the allocation resulting from Step 1 does not 
create losses for the active scenarios that are larger than those for the inactive 
scenarios. This is important if we want to gradually reduce the number of active 
scenarios in a meaningful way. We therefore have to add m  constraints and one 
new free variable ( )γ  to problem (5.37): 

 

 
,1

,1

,   

,   

i i si

i i si

w r s active scenario
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γ
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=

=
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∑
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The constraints above will always be satisfied, as the optimizer could always 
default to the optimal allocation from the previous optimization (which we used 
to split scenarios into active and inactive scenarios). As before, we calculate α -
VaR for the optimal solution in Step 1 and use it to split up scenarios further 
(reducing the number of scenarios stepwise) for use in the next step. It is 
obvious that 1α -CVaR needs to be smaller than α -CVaR, as we discarded the 
largest losses but adjusted the quantile for the inactive scenarios. Note that the 
VaR calculation is not affected, as all losses below VaR are equally counted, no 
matter how large they are. A refined CVaR code that takes account of this is 
shown in Code 5.11. 
 
CVAR.model <- function(S.in, S.out, alpha, mu.bar, 
 mu.target, VaR.cutoff) 
{ 
 m.in <- nrow(S.in) 
 m.out <- nrow(S.out) 
 m <- m.in+m.out 
 n <- ncol(S.in) 
 asset <- Set() 
 period.in <- Set() 
 period.out <- Set() 
 mu.VaR <- Set(1) 
 i <- Element(set=asset) 
 s <- Element(set=period.in) 
 ss <- Element(set=period.out) 
 mu.VaR <- Element(set=mu.VaR) 
 S.in <- Parameter(S.in, index=dprod(s,i)) 
 S.out <- Parameter(S.out, index=dprod(ss,i)) 
 mu.bar <- Parameter(as.array(mu.bar), index=i) 
 mu.target <- Parameter(mu.target, changeable=T) 
 w <- Variable(index=i) 
 e <- Variable(index=s) 
 mu.VaR <- Variable(index=mu.VaR) 
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 g <- Variable(VaR.cutoff) 
 e[s] >= mu.VaR[1]-Sum(S.in[s,i]*w[i],i) 
 e[s] >= 0 
 CVAR <- Objective(type="maximize") 
 CVAR ~ mu.VaR[1]-(1/m)*(1/alpha)*Sum(e[s],s) 
 Sum(mu.bar[i]*w[i],i) == mu.target 
 Sum(w[i],i) == 1 
 Sum(w[i]*S.in[s,i],i) >= g 
 Sum(w[i]*S.out[ss,i],i) <= g 
 w[i] >= 0 
} 

Code 5.11 VaR Approximation Using CVaR 

Step 2. Repeat Step 1 as long as there are scenarios left to be discarded. The 
more scenarios we discard, the closer iα -CVaR and iα -VaR will become as 
more and more scenarios with large losses are removed (reducing CVaR), while 
this removal does not affect VaR as long as iα  is properly set. Implementing the 
algorithm above leads to the result shown in Figure 5.18 for our sample data set. 

5.7 CDO Valuation using Scenario 
Optimization 

Suppose we know the loss distribution of an underlying pool of assets valued 
today at 100 (i.e., we know ( )f l ). Note that l�  can assume positive values 
(losses) as well as negative values (profits). This asset pool is financed via three 
different tranches. The first tranche is called equity (or sometimes a junior note). 
Liabilities for holders of this tranche are limited to 

1
lα , which denotes the 1α  

percentile of the loss distribution. Payoff to equity can be expressed as  
 

 ( )1 1
max ,0equityCF l l l lα α= − + −� � . (5.38) 

 
If the losses exceed 

1
lα , the equity is wiped out and losses will start to eat into 

the second tranche (also called the mezzanine). The second tranche promises to 
pay an amount 

1 2
l lα α− . Losses larger than 

2
lα  lead to a complete loss of the 

second tranche and eat into the last tranche, 
 

 ( ) ( )2 1 1 2
max ,0 max ,0 .mezzanineCF l l l l l lα α α α= − − − + −� �  (5.39) 
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The last tranche is called a senior note. Losses will only eat into the senior note 
after the first two tranches have been wiped out, 

 
 ( ) ( )1 2 1 2

100 max ,0 .seniorCF l l l l lα α α α= − − − − −�  (5.40) 

 
We can see that investors in senior notes write a limited-liability option to 
holders of mezzanine debt ( )2

max ,0l lα−� , while mezzanine debt investors 

write a limited-liability option ( )1
max ,0l lα−�  to equity investors. If we add all 

positions, we arrive at  
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Figure 5.18 VaR Approximation Using CvaR for a Sample Data Set 
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which is exactly the payoff to the asset pool. Assuming that the loss distribution 
is log-normal, we can use standard Monte Carlo simulation techniques to 
evaluate the attached options. However, how can we value options under 
arbitrary distributions? One simple way is to use  
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where optimal

sW  denotes the wealth in scenario s  attached to the optimal 

solution of  ( )
1
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m

s ssw
U Wπ

=∑  and ( )1 1s f sW wr w r= + + − . Cash flows 

from a particular CDO tranche are valued with  
 

 *
1 1

i

i

tranchem s
tranche ss f

cash flowvalue
r

π
=

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠
∑  (5.43) 

 
assuming a particular form for ( )sU W .  

We finish this section with an example. Suppose 0.03,fr =  
1

2,lα =  and 

2
10.lα =  The returns of the underlying assets in a hypothetical CDO are 

assumed to be drawn from a normal distribution with mean 6% and volatility 
9%. Applying standard risk-neutral valuation theory, we arrive at the following 
values for the three tranches: 

 

 
6.58
6.42
87.00.

junior

mezzanine

senior

value
value

value

=

=
=

  

 
These prices are required to subsequently calculate the returns for the respective 
tranches, as shown in Figure 5.19 and Figure 5.20. 
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Figure 5.19 Return Distribution for Junior Tranche 
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Exercises 

1. Write a program that uses the methodology in Section 5.1.2. 
 
2. Solve (5.12), first in Excel and then with solveQP(). How do we need to 

rewrite (5.12) in the case of different upper and lower costs of mean 
deviations? 

 
3. Download data on a high yield corporate bond index. 

(a) Calculate the value of tranches within a standard CDO that is financed 
via equity (taking the first 5% losses), mezzanine debt (taking the next 
10% of losses), and senior debt. Assume a risk-free rate of 3% and use 
Monte Carlo simulation.  

(b) Use the option prices of (a) to generate scenarios that are consistent 
with CDO pricing. 

(c) Add at least two more asset classes to the junior note and construct a 
CVaR efficient frontier. 

(d) How does the CVaR frontier differ from a mean-variance frontier? 
 
4. Can you approximate semi-variance optimization using the MAD model 

and a piecewise linearization? Hint: See Hamza and Janssen (1995). 
 
5. Extend the failed model (5.25) for shortfall probability to lower partial 

moments of degrees 1, 2,3, 4.k =  What do you observe? 
 
6. Include fixed and proportional transaction costs in the weighted 

semi-variance model.  
 
7. Assume a mixture of (two) normal distributions and write a program that 

calculates lower and upper partial moments for arbitrary threshold returns 
and moments using numerical integration. Check your results using Monte 
Carlo simulation. 

 
8. Write a program that does the calculations in Section 5.6.4. Experiment 

with the number of scenarios discarded in each step. What do you observe? 
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Endnotes

                                                           
1 The time series stretches from January 1994 to December 2002 for Emerging Markets 
(JPM.EMBI) and from February 1986 to December 2002 for the dollar/yen exchange rate 
(DOLLAR.YEN). 
2 See Grinold (1999).  
3 See Zimmermann (1998, p.67, equation 4.2).  
4 See Sklar (1996).  
5 This model was introduced into the literature by Konno and Yamazaki (1991) and 
investigated further in Feinstein and Thapa (1993). 
6 See Hamza and Janssen (1995).  
7 Satchell and Sortino (2001) provide an excellent review on downside-based risk 
measures. 
8 This relationship is only true for continuous distributions, as we show in Section 5.6.1. 
9 See Young (1998).  
10 This section draws heavily on Acerbi and Tasche (2001). 
11 See Artzner et al. (1997).  
12 A similar example can be found in Acerbi et al. (2001). 
13 See Embrechts, McNeil, and Straumann (2002).  
14 The heuristic is described in Larsen, Mausser and Uryasev (2002)  




