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4 Resampling and Portfolio 
Choice 

 
Inputs for portfolio optimization problems are notorious for being measured 
with substantial estimation error. This is particularly troubling because 
optimization routines are often characterized as error maximization algorithms, 
leveraging errors in inputs rather than mitigating their effect. Consequently, 
financial economists and statisticians have relied on resampling techniques in 
order to understand the impact of estimation error in means and covariances 
(inputs) on the distribution of portfolio weights (outputs).1 In statistics, 
resampling methods are referred to as bootstrap methods, and there are two 
basic types: the parametric bootstrap, where one fits a parametric model and 
samples from the fitted parametric model, and the nonparametric bootstrap, 
where one samples directly from the data without fitting a parametric model. 
See, for example, Efron and Tibshirani (1998) and Davison and Hinkley (1999) 
for details. In this chapter, we concentrate primarily on the parametric bootstrap 
using a fitted multivariate normal distribution, as is common in applications to 
finance. 

Throughout the first three sections to follow, a simple numerical example 
will be used to illustrate the pitfalls of using the center of the resampled weight 
distribution for portfolio construction exercises. We need to rely on numerical 
examples in combination with Monte Carlo simulation, as no closed-form 
solutions are available.  

4.1 Portfolio Resampling 

Suppose we have estimated a mean vector and a covariance matrix of returns (in 
the following, we always assume returns come in the form of excess returns) 
from annual historical data with length ,histn  
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The unconstrained efficient frontier and corresponding efficient set weights are 
shown in Figure 4.1. The maximum Sharpe ratio portfolio has weights 
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Investors holding 100% in the maximum Sharpe ratio portfolio exhibit a risk 
aversion of 2

1
0 0

ˆ ˆ 0.038µ
σλ −′= = =1 Ω µ . As the maximum Sharpe ratio portfolio 

is the most prominent in finance, we will focus on this portfolio. With the 
exception of the minimum variance portfolio (which does not require return 
estimates), everything said in this chapter also applies to all other portfolios on 
the efficient frontier. 

We know that 0Ω̂  and 0µ̂  have been estimated with error. In general, 0Ω̂  is 
an n n×  matrix, where n  denotes the number of assets (here 3n = ), whereas 

0µ̂  is an 1n ×  vector. The process of resampling will draw data for a number 

drawn  of returns for each of the n  assets from the multivariate normal 

( )0 0
ˆˆ , .N µ Ω  We can use the newly created block of data in the form of an 

drawn n×  matrix of asset returns (here 30 3)×  to construct a new mean vector 
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Figure 4.1 Markowitz Portfolios (with Short Selling Allowed) 
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and covariance matrix estimates 1Ω̂  and 1µ̂ . It is often natural to set 
,draw histn n=  but this is not necessary. Obviously, the original and the 

resampled matrices will differ due to sampling error. The degree of difference 
will depend on drawn . If we make drawn  small, our estimates will fluctuate 
greatly, while we will find much less difference for a large drawn .2 Repeating 
this procedure simn  times, we create a large number of varying input vectors: 

( 1 1
ˆ ˆˆ ˆ, , , , ).

sim simn nΩ µ Ω µ…  We now ask ourselves what choices we would make if 
we repeatedly constructed optimal portfolios iw  from these resampled inputs 
and what insights can be gained from this exercise. 

In order to ensure that decisions are indeed comparable across simulations, 
we assume that investors maximize ( ) 2 ,T TU λ= −w w µ w Ωw  where the 

first-order conditions lead to the familiar formulas 1 1λ− −=w Ω µ λ=µ Ωw  for 
optimal weights and implied returns. Note that in the current example 0.038λ =  
remains constant through all simulations. As a start, we sample 

30draw histn n= =  returns from ( )0 0
ˆˆ ,N µ Ω  and compute the sample mean 

vector (for simplicity, covariances are assumed to be measured without error) 
and the corresponding optimal portfolio with a full investment constraint (i.e., 
weights need to add up to 100%). This is then repeated simn times for 

1, 2, ,500)simn = . 
We measure the distance between the center of the weight distribution and 

the original maximum Sharpe ratio portfolio that was constructed without taking 
estimation error into account (i.e., the maximum Sharpe ratio for the portfolio 
based on 0 0

ˆˆ , )µ Ω  as the squared Euclidean distance  
 

 ( ) ( )* *T
Sharpe Sharpe− −w w w w , where 1

1
,sim

sim

n
in i=

= ∑w w   

 
where iw  is the optimal weight vector for the i-th simulation. 

It can be seen in Figure 4.2 that the distance between the center of the 
resampled distribution and the maximum Sharpe ratio portfolio converges to 
zero fairly rapidly as simn  increases. Effectively this means that the center of the 
weight distribution recovers the original maximum Sharpe ratio portfolio. 
Alternatively, we can say that * ,Sharpe noise= +w w  where the noise goes to zero 
fairly rapidly as simn  increases. In this case, the use of resampling in creating 
new portfolios adds only noise to the portfolio construction. 

Figure 4.3 visualizes the distribution of portfolio weights for 500simn = . 
Large positive or negative weights can occur in single simulation runs but will 
be averaged out. This is true for every number of draws drawn  per resampling. 



112 4 Resampling and Portfolio Choice 

It is apparent from the results that repeatedly drawing average returns and 
subsequently averaging across optimally constructed portfolio weights, yields 
the same result as averaging across returns in the first place and then using the 
averaged returns for portfolio optimization. We could have seen that without 
having to go through the simulation exercise3: 
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Note that we simulated the effect of estimation error on the distribution of 
portfolio weights. Neither the average portfolio nor its risk changed. However, 
we know that if investors are uncertain about their inputs, estimation risk will 
add to investment risk and the world will become a riskier place. Computing 
average weights based on resampling is unable to catch this effect, as it is not 
designed to do so.4 However, straightforward bootstrap resampling of quantities 
such as the Sharpe ratio and the return and risk of the tangency portfolio can 
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Figure 4.2 Resampling and Convergence (Short-Selling Allowed) 
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indeed provide measures of uncertainty of operating points (see Sections 4.6 and 
6.9.4). 

In order to replicate the results above, readers can use Code 4.1, which works 
for both long/short (short=T) and long-only (short=F) optimization. 
portfolio.resampling <- function(cov, fcst, n.sim, 
 n.draw, short) 
{ 
 resampled.pf <- matrix(0,ncol=ncol(cov), 
  nrow=(n.sim+2)) 
 frontier.uc <- portfolioFrontier(cov,fcst, 
  max.ret=max(fcst),n.ret=1000, 
  unconstrained=short) 
 iopt <- order(frontier.uc$returns/ 
  frontier.uc$sd)[1000] 
 lambda <- frontier.uc$returns[iopt]/ 
  frontier.uc$sd[iopt]^2 
 resampled.pf[(n.sim+1),] <- 

frontier.uc$weights[,1] 
 resampled.pf[(n.sim+2),] <- 
  frontier.uc$weights[,iopt] 
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Figure 4.3 Distribution of Resampled Weights (Short-Selling Allowed) 
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 group <- matrix(rep(1, ncol(cov)), nrow=1) 
 if(short==T) { 
  bUP <- c(rep( Inf, ncol(cov))) 
  bLO <- c(rep(-Inf, ncol(cov))) 
 } 
 if(short==F) { 
  bUP <- c(rep(1, ncol(cov))) 
  bLO <- c(rep(0, ncol(cov))) 
 } 
 cUP <- c(1) 
 cLO <- c(1) 
 for(i in 1:n.sim){ 
  x <- rmvnorm(n.draw, fcst, cov) 
  cov.r <- var(x) 
  fcst.r <- apply(x,2,mean) 
  resampled.pf[i,] <- solveQP(-lambda*cov, 
   fcst.r, group, cLO, cUP, bLO, bUP, ,  
   type=maximize, trace=F)$variables$x$current 
  cat(" run ", i, "\n") 
 } 
 list(resampled=resampled.pf) 
} 

Code 4.1 Portfolio Resampling and Weight Convergence 

The first part of the function calculates the mean-variance frontier without 
estimation error. We can also infer the maximum Sharpe ratio portfolio from 
this (assuming expected returns and covariances are derived using the risk 
premium rather than total return). 

4.2 Resampling Long-Only Portfolios 

So far, we have allowed for short-selling in portfolio construction. We have seen 
that in this case the average resampled portfolio only adds noise to Markowitz 
portfolios. In this section, we will drop the possibility of going short in 
individual assets and return to more conventional portfolio optimization using a 
long-only constraint. Apart from this, we will perform the same calculations as 
in the previous section. 

The first thing to note about Figure 4.4 is that distance (deviation from the 
estimation error-free solution) is much smaller when short-selling is not 
allowed, as the long-only constraint reduces the opportunities to leverage on 
information. We can also see that the distance measure in our simulations does 
not converge to zero. This means that repeatedly sampling with 30drawn =  does 
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not recover the Markowitz solution. Hence we get * ,Sharpe bias noise= + +w w  
where the noise goes to zero as the number of simulations increases but the bias 
does not. A look at Figure 4.5 provides the reason for this bias. 

Weights that are less than zero due to a downward bias in some simulations 
can no longer be implemented. Hence, averaging will not lead back to the 
Markowitz solution, as individual assets are now either in or out but never short. 
The higher the volatility of an asset and/or the smaller ,drawn  the more 
pronounced this effect will be. The next section will elaborate on this in more 
detail. 

4.3 Introduction of a Special Lottery Ticket 

In order to magnify the effect we just learned in the previous section and to 
show its relevance for asset allocation decisions, we will introduce a special 
lottery ticket with zero risk premium into our analysis. Lottery tickets are 
investments that offer diversification, as they are by definition uncorrelated with 
all other assets. Since our lottery ticket has zero expected excess return, it 
exposes investors to high volatility with no expected reward. Broadening the 
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Figure 4.4 Resampling and Convergence (no Short-Selling Allowed) 
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investment universe with lottery tickets should not improve the efficient frontier 
by pushing it up and to the left. Any asset allocation mechanism that 
systematically invests in lottery tickets should be treated with utmost caution. 
The following calculations are based on a lottery ticket with 60% volatility, 0% 
expected return, and zero covariance with existing assets. 
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Figure 4.5 Distribution of Resampled Weights (no Short-Selling Allowed) 

We repeat the previous calculations, where asset 4 represents the lottery 
ticket. Figure 4.6 and Figure 4.7 summarize the results. Note that the maximum 
Sharpe ratio portfolio derived from traditional mean-variance analysis does not 
allocate to the lottery ticket. Introducing a lottery ticket increases our distance 
measure in Figure 4.6 for a sufficiently large number of simulations. This should 
come as no surprise, as allocations to the lottery ticket amount to as high as 22% 
for some allocation runs, while we can never short the lottery ticket, even for 
those runs with large negative average returns. It is the long-only constraint that 
essentially transforms asset volatility into portfolio allocations. However, this 
does not necessarily mean that the higher the volatility of our lottery ticket the 
larger the allocation will become, as there are two separate effects at work. 
Higher volatility induces an upward bias into the average resampled weight, but 
at the same time higher volatility makes the lottery ticket less attractive, as it 
worsens the risk-return trade-off for any given risk aversion. While the first 
effect becomes obviously predominant for the maximum return portfolio, its 
exact trade-off depends on the risk aversion. 
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Figure 4.6 Resampling and Convergence (Lottery Ticket and Long-only 
Constraint) 

 
Figure 4.8 shows that for a reasonably high risk aversion of 0.038,λ =  

increasing the volatility of the lottery asset will reduce the average allocation 
due to the higher risk. The volatility bias is still present, but the direct risk effect 
more than compensates for the upwards bias induced by high average returns for 
some simulation runs. For a low risk aversion of 0.01,λ =  this effect also 
exists, but it starts at higher volatility levels. Up to a volatility level of 30%, the 
resampling bias dominates. From then on, the direct risk effect leads to smaller 
allocations even though the long-only constraint leads to more and more serious 
artifacts. 

At this point, it is interesting to see what happens in a world that is affected 
by the same uncertainty about the correct inputs but that differs in institutional 
constraints. In short: does the introduction of a lottery ticket also have biased 
allocations if we are allowed to engage in short-selling? Note that allowing 
short-selling will not decrease the amount of estimation risk in the world. If 
anything, the opportunity to go short will increase the estimation error, as the 
optimizer can now establish long and short positions between similar highly 
correlated assets that look almost risk-free but yield large returns. Obviously, 
those almost arbitrage situations are most likely to be created by estimation 
error. 
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Figure 4.7 Distribution of Free Sampled Weights (Lottery Ticket and Long-
Only Constraint) 

VOLATILITY OF LOTTERY TICKET

20 40 60 80 100

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12 LAMBDA =  0.038

LAMBDA =  0.01

 
Figure 4.8 Risk Aversion and Volatility Bias 

We see in the simulation results of Figure 4.9 that with short-selling allowed, the 
weights for the lottery ticket allocation scatter symmetrically around an average 
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weight of 0%. Large positive allocations are counterbalanced on average by 
large negative allocations. Resampling without short-selling constraints helps us 
appreciate the dispersion in outcomes, while at the same time the average 
resampled weight is the same as the Markowitz weight. 

Another way to look at portfolio resampling is to back out the implied returns 
of the average resampled portfolio. For 30drawn =  and 500,simn =  we arrive at 

average resampled weights ( )0.21 0.32 0.44 0.03 T=w . In this case, one 

can check that the implied returns 0
ˆ

implied λ=µ Ω w  differ substantially from our 

original forecasts ( )6.45 4.67 0.92 4.15 .T
implied =µ  The risk premium for 

the lottery ticket in the latter case is more than 4%, compared with 0% for the 
portfolio with short-selling allowed. However, this is not plausible, as estimation 
error should not affect expected returns. By definition there is no uncertainty 
about expected returns. Estimation error without additional information should 
instead be reflected in the inflation of risk estimates, which now contain 
investment risk as well as estimation risk.5 
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Figure 4.9 Distribution of Free Sampled Weights (Lottery Ticket without 
Long-only Constraint) 

In order to appreciate the impact that the number of draws per resampling drawn  
has on the allocation of our lottery ticket for a long-only portfolio, we repeat a 
large number of resamplings 100,000simn =  with antithetic variance reduction 
for various levels of drawn . The results of these simulations are plotted in Figure 
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4.10. As the number of resamplings increases, and consequently the variance of 
estimated parameters decreases, the allocation into our lottery ticket decreases. 
At first sight this seems to be a confirmation of the concept of resampling. After 
all, a large number of draws per resampling means confidence in our inputs, in 
which case we would expect to recover the Markowitz solution. However, it is 
important to understand that no such effect exists if we allow short-selling. The 
average allocation into the lottery ticket would be independent of the number of 
draws even though the estimation error is the same. It is the long-only constraint 
that transforms asset volatility into asset allocation, implicitly raising the 
expected return for highly volatile assets. 

4.4 Distribution of Portfolio Weights 

The resampling procedure that results in a sequence of new covariance matrix 
and mean vector estimates allows us to generate a resampled set of optimal 
portfolio weights, thereby giving us an estimate of the distribution of portfolio 
weights. This in turn allows us to test whether two portfolios are statistically 
different using an appropriate distance in n-dimensional vector space. It may be 
tempting to use the simple Euclidean distance measure for the distance of a 

+

+

+

+
+ +

+
+

# DRAWS PER RESAMPLE

A
LL

O
C

A
TI

O
N

 IN
TO

 L
O

TT
E

R
Y

 T
IC

K
E

T

0 200 400 600 800 1000

0.
01

0
0.

02
0

0.
03

0
0.

04
0

 
Figure 4.10 Allocation into Lottery Ticket versus drawn  
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vector iw  of portfolio weights from the vector pw  of portfolio weights of 
another portfolio given by 

 
 ( ) ( )T

p i p i− −w w w w . (4.3) 
 

However, this is not the appropriate distance for correlated returns, and instead, 
under appropriate conditions, the proper statistical distance is given by 

 
 ( ) ( )1 ,T

p i p i
−− −ww w Ω w w  (4.4) 

 
where wΩ  is the variance-covariance matrix of portfolio weights iw  and pw  is 
the mean value of iw . When the iw  are normally distributed, this test statistic 
is distributed as a χ2 with degrees of freedom equal to the number of assets. In 
the statistical literature this distance is known as the Mahalanobis distance, and 
an intuitive explanation of the distance is provided in Section 6.6.6 

Suppose for simplicity that we have two assets with 10% mean and 20% 
volatility each. Suppose further that the correlation between the two assets is 
zero and the risk aversion coefficient is 5λ = . The optimal solution without 
estimation error is given below: 

 

 ( )

( )

2

2

1
* 0.21 1 1
* 1
2 0.2

0 0.1 0.5
0.2 .

0.1 0.50
w
w

λ∗ − −
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

w Ω µ  (4.5) 

 
A resampled version of (4.5) is now easily obtained with a few lines of S-PLUS 
code (see Code 4.2), assuming that the returns are normally distributed. 
 
# inputs 
Cov <- diag(rep(0.2^2,2)) 
mu.bar <- c(rep(0.1,2)) 
n.sim <- 1000 
n.draw <- 60 
lambda <- 0.2 
# simple resampling function 
resampling <- function(Cov, mu.bar, n.sim, n.draw, 
 lambda) 
{ 
 resampled.weights <- matrix(0, n.sim, ncol(Cov)) 
 
 
 for(i in 1:n.sim) { 
  resampled.returns <- rmvnorm(n.draw, mu.bar, 
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   Cov) 
  VarCov <- var(resampled.returns) 
  Mean <- apply(resampled.returns,2,mean) 
  w <- lambda*solve(VarCov)%*%Mean 
  resampled.weights[i,] <- t(w) 
 } 
 list("resampled.weights"=resampled.weights) 
} 
# plot results 
x <- resampling(Cov, mu.bar, n.sim, n.draw, 
 lambda)$resampled.weights 
plot(x[,1],x[,2],xlab="weight asset 1", 
 ylab="weight asset 2") 

Code 4.2 Portfolio Resampling and Weight Distribution 

Note that for illustrative purposes we have calculated optimal portfolios 
without full investment constraints in the code above. Because these portfolios 
do not require holdings to add up to one, one might be tempted to conclude that 
these are not portfolios. But one could think of cash as a third (filling) asset, as 
cash would leave the marginal risks of the portfolio, as well as the total risk of 
the risky portion of the portfolio, unchanged. While the optimal solution weight 
is 50% for both assets, Figure 4.11 shows that the estimated weights are 
scattered around this solution. Comparing the vector difference with an 
appropriate percentage point (e.g., the upper 95% point) of a chi-squared 
distribution with two degrees of freedom yields a measure of how statistically 
different a portfolio is from the optimum. 

From the definition of optimal weights, one sees that for our simple example 
the covariance matrix of the resampled weights is given by 
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 (4.6) 

 
Since 60drawn =  in our example, this gives 1/ 60 .13=  as the standard errors 
of the weights. This is consistent with the display in Figure 4.11. 
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Figure 4.11 Estimation Error and Portfolio Weights 

We remark that, for fully invested portfolios, the n-dimensional vector of 
weights will lie on an 1n −  dimensional hyperplane that intersects the 
coordinate axes at the value one. (In this simple two-dimensional case, the 
weights lie along a line through the points (0,1) and (1,0).) In such cases, we can 
simply look at the distribution of 1n −  of the weights in the 1n −  dimensional 
subspace. In our simple example above, this would amount to looking at just one 
weight, which is not very interesting. 

Now, to be ever so slightly realistic, let’s consider the estimated bivariate 
distribution of the weights based on observed data that are assumed to be 
normally distributed according to an estimated mean and covariance for the 
weights, ˆ *w  and .wΩ  For simplicity, we will use the true optimal weights 

* (.5,.5) ,′=w  leaving it to the reader to repeat the experiment with ˆ *,w  and 

compute the estimate wΩ  directly from the resampled weights (rather than 
using the previous formula). The resulting bivariate density is 
 

 

( )
( )

'* *
1 1 1 1

* *
2 2 2 2

1 2 1
2

1 1
2

ˆ
1,  .

ˆ2 det w

w
w w w w
w w w wp w w e

π

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

−−
− −
− −=

Ω

Ω
 

 



124 4 Resampling and Portfolio Choice 

Code 4.3 generates the perspective plot of Figure 4.12 and the contour plot of 
Figure 4.13. For the case depicted in these figures, the estimated inverse 
covariance matrix of the weights was 
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0.005 27.76w
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Figure 4.12 Bivariate Normal Weight Distribution for Resampled Portfolio 
Weights 

Cov.w <- var(x) 
w1 <- seq(-0.2, 1.5,length=100) 
w2 <- seq(-0.2, 1.5,length=100) 
 
f1 <- function(w1,w2) 
{ 
 S <- solve(Cov.w) 
 d <- (w1-0.5)^2*S[1,1]+(w2-0.5)^2*S[2,2]+ 
  2*(w1-0.5)*(w2-0.5)*S[1,2] 
 1/(2*pi*sqrt(det(Cov.w)))*exp(-1/2*d) 
} 
 
z <- outer(w1,w2,f1) 
graphsheet() 
persp(w1, w2, z, xlab="weight asset 1",  
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 ylab="weight asset 2", zlab="density")  
graphsheet() 
contour(w1, w2, z, nlevels=10,  
 xlab="weight asset 1", ylab="weight asset 2") 
points(x[,1], x[,2]) 

Code 4.3 Portfolio Resampling and Weight Distribution 
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Figure 4.13 Weight Distribution and Lines of Constant Density 

Michaud (1998) uses a different distance measure that is widely applied in asset 
management. His measure recognizes that two portfolios with the same risk and 
return might actually exhibit different allocations. The distance between two 
portfolios is defined as  

 
 ( ) ( )0

ˆT
p i p i− −w w Ω w w , (4.7) 

 
which is equivalent to the squared tracking error. The procedure runs as follows: 

 
Step 1. Define a portfolio against which to test the difference. Calculate (4.4) 

for all resampled portfolios. 
Step 2. Sort the portfolios by tracking error in descending order (highest on 

top).  
Step 3. Define TEα as the critical tracking error for the %α  level (i.e., if 1000 

portfolios are resampled and the critical level is 5%, then look at the 
tracking error of a portfolio that is 50th from the top). Hence, all portfolios 
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for which ( ) ( ) 2
0

ˆ TET
p i p i α− − ≥w w Ω w w  are labeled statistically 

different. 
Step 4. Calculate the minimum and maximum allocations for each asset within 

the acceptance region. 
 

For a three-asset example, the uncertainty about the optimal weights can be 
visualized, but it becomes “quite hard” for higher dimensions.  

It should be noted that similarity is defined with regard to the optimal weight 
vector rather than in terms of risk and return. Two portfolios could be very 
similar in terms of risk and return but very different in allocation. This is well-
known, as risk/return points below the frontier are not necessarily unique. Even 
so, this test procedure is intuitive. It should be noted that the dispersion in 
weights is large, so it will be difficult to reject the hypothesis that both portfolios 
are statistically equivalent even if they are not. The power of the suggested test 
is expected to be low. 

4.5 Theoretical Deficiencies of Portfolio 
Construction via Resampling 

4.5.1 Aggregation Problems 

Constructing “optimal” portfolios using portfolio resampling requires that we 
average portfolios in some way (e.g., we average portfolios that carry either the 
same rank or the same risk-return trade-off).7 In the case of no long-only 
constraints, the concept of resampled efficiency will coincide with Markowitz 
efficiency in the large sample limit (i.e., resampled efficiency in finite sample 
sizes equals Markowitz efficiency plus noise). Note that even though all inputs 
are measured with error, resampled efficiency will not pick this up. Asset risk 
remains unchanged even though the world becomes much riskier in the presence 
of estimation error. 

In the case of long-only constraints, the situation changes considerably. As 
assets can never be short, we will see that for some resamplings the maximum 
return portfolio will be 100% cash. This leads to a sampling of cash into the 
maximum return portfolio. Another consequence is that we cannot engineer 
portfolios that exhibit low λ ’s (without long-only constraints, we could have 
always shorted assets with a negative risk premium), which makes the similarity 
of rank- and lambda-based approaches questionable. Note also that the inclusion 
of cash in the maximum return portfolio contrasts both with intuition and 
portfolio theory. In the case of estimation error, investors will still hold a 
combination of cash and a market portfolio with the same composition as in the 
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case of no estimation error, with more weight being put on cash, as cash carries 
no investment risk and is free of estimation error.  

Finally, we note that the average is a poor indicator for the center of a 
distribution that is asymmetric due to heavy truncation at both ends (between 
0% and 100%). 

4.5.2 Overdiversification 

A portfolio construction methodology that allocates to every single asset in the 
universe across all portfolios along the efficient frontier creates 
overdiversification. The combination of the long-only constraint and portfolio 
resampling will allocate even to dominated assets as long as a lucky draw makes 
them attractive, while the worst that can happen in all other allocations is a zero 
weight. Hence, the increase in risk per unit of expected return is not due to 
estimation error but rather due to overdiversification. 

4.5.3 Optionality Problem 

Suppose two assets possess the same expected return but one of them has a 
significantly higher volatility. One could think of this as an international fixed 
income allocation on a hedged and unhedged basis. Most practitioners (and the 
mean-variance optimizer) would exclude the higher-volatility asset from the 
solution unless it has some desirable correlations. How would resampled 
efficiency deal with these assets? Repeatedly drawing from the original 
distribution will result in draws for the volatile asset with highly negative returns 
as well as highly positive returns. Quadratic programming will heavily invest in 
this asset in the latter case and short the asset in the former case. However, as 
shorting is not allowed for portfolios with long-only constraints, this will result 
in positive allocation for draws with high positive average return and zero 
allocations for draws with high negative average return. This is different from an 
unconstrained optimization, where large long positions would be offset on 
average by large negative positions. Consequently, an increase in volatility will 
yield an increase in the average allocation, and a worsening Sharpe ratio would 
be accompanied by an increase in weight. This is not a plausible result. It arises 
directly from the averaging rule in combination with a long-only constraint that 
results in assets being either in or out but never negative. This behavior is a kind 
of optionality in which the holder is hurt in terms of bias in the weights 
whenever a long-only constraint forces otherwise negative coefficients to be 
positive and less than one in value. 
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4.5.4 Statistical Foundation Issues 

Estimation Error Heritage. All resamplings are derived from the same 
initial estimates 0 0

ˆ ˆ,Ω µ  of the covariance matrix and mean returns. However, 
the true distribution is unknown. Hence, all resampled portfolios will suffer 
from the deviation of the estimates 0 0

ˆ ˆ,Ω µ  from their true values ,true trueΩ µ , in 
the same way. Averaging will not help very much in this case, as the averaged 
weights are the result of an input vector, which itself is very uncertain. Hence, it 
is fair to say that all resampled portfolios inherit the same fundamental 
estimation error. The utility of normal distribution parametric resampling relies 
on the assumption that 0 0

ˆ ˆ,Ω µ , is reasonably close to ,true trueΩ µ . If this is not 

the case, the estimation error in 0 0
ˆ ˆ,Ω µ  is passed on to 1 1

ˆˆ , ,µ Ω 2 2
ˆˆ , ,µ Ω ..., which 

one might call “estimation error heritage” (see Figure 4.14).8 
 

 
Figure 4.14 Resampling and Estimation Error Inheritance 

Parametric Bootstrap Limitations. We know that asset returns are not 
normally distributed and in some cases are quite non-normal. That makes use of 
a normal distribution parametric bootstrap highly suspect. One might well turn 
to a multivariate non-normal distribution such as a multivariate t distribution. 
This requires careful estimation of the degrees of freedom and robust estimation 
of the mean vector and covariance matrix. Another approach is to use a 
nonparametric bootstrap that makes no assumptions about the distribution of the 
returns, as discussed in Sections 4.6 and 6.9.4. 
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Resampling Bayes. Sometimes it is argued that 0
ˆ ,Ω 0µ̂  does not need to be 

estimated from historical data but can also be the result of Bayesian calculations. 
However this is entirely against the spirit of Bayesian statistics. Once we 
calculate the predictive distribution, we have already put in all our subjectivity, 
and the Bayesian has to accept the result. Resampling from predictive 
distributions in order to construct better portfolios is pointless. 

4.5.5 Lack of Decision-Theoretic Foundation 

Resampled efficiency has no decision-theoretic foundation and as such it is 
questionable whether its use is fiduciary. What resampling actually achieves is 
some sort of return shrinkage in the presence of long-only constraints. Backing 
out implied returns from average resampled portfolios already revealed to us 
that low returns of relatively high-risk assets tend to be adjusted upward and 
vice versa. The advantage of this form of shrinkage over classical shrinkage 
methods is that portfolios constructed from it add up to 100%. This is not the 
case for the statistical shrinkage model, which in addition may still lead to 
concentrated corner portfolios. However, while we have perfect control over the 
latter, this cannot be said about the implied returns from resampling. 

4.6 Bootstrap Estimation of Error in Risk-
Return Ratios 

4.6.1 The Problem 

Reported risk-return ratios relate average returns to alternative measures of risk 
and hence involve the ratio of a random numerator and denominator (due to 
sampling error). As such, point estimates of these ratios are easy to calculate, but 
confidence intervals are much more difficult to obtain. However, we need 
confidence intervals for any kind of statistical inference (and hence for decision 
making). While asymptotic normal distributions have been obtained for the 
Sharpe ratio under idealized conditions,9 the idealized conditions do not always 
hold, and furthermore asymptotic distributions may be poor approximations in 
finite sample sizes. There is little guidance on the small-sample behavior of risk-
adjusted performance measures or on the number of data points needed to justify 
the use of asymptotic results. Moreover, these analytical solutions are either 
extremely difficult to work out or simply do not exist for modifications of the 
popular Sharpe ratio that focus more on downside risk. As an example, we look 
at the well-known Sortino ratio which relates average return to the standard 
deviation of downside returns. What we need is a general method that provides 
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us with standard errors and confidence intervals for arbitrary risk-return ratios, 
sample sizes, and distributions. 

4.6.2 Bootstrapping Theory as an Alternative 

Suppose we observe a series of excess returns 1 2, , , mr r r .10 Ex-post-risk-return 
ratios ς̂  are calculated as the ratio of the average return per unit of risk. For 
illustrative purposes, we focus on the Sharpe and Sortino ratios given below. 
Both ratios differ with respect to the risk measure used. The sample calculations 
for these two ratios are 
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 (4.8) 

 
where ( )0iI r <  denotes the indicator function. The Sharpe ratio11 employs the 
symmetric standard deviation of returns risk measure in the denominator, 
equally penalizing downside and upside deviations from the sample mean 
return. The denominator asymmetric risk measure in the Sortino ratio12 includes 
only negative returns in its calculation of squared returns. High ratios are 
preferable, everything else being equal, as they indicate a better return per unit 
of risk taken. 

We include the Sortino ratio for three reasons. First, it better captures the risk 
if returns are non-normally distributed, as is the case for hedge fund returns for 
example, and is particularly relevant when the distribution has a negative skew. 
Second, it is well-known that the Sortino ratio suffers more from estimation 
error, as it uses roughly half as many data points in the denominator risk 
measure relative to the Sharpe ratio. Third, no large sample approximations 
exist. If the small sample distribution of ς̂  is far from normal, classical methods 
are biased and unreliable. 

In any case, the analytic formulas for the large sample distributions of the 
ratios above are extremely hard to come by. In order to overcome this problem 
we rely on nonparametric bootstrapping techniques. Nonparametric bootstrap 
resampling treats the empirical distribution function of the current sample as the 
nonparametric approximation of the true distribution—in the absence of further 
information, it is the best we have. It then repeatedly draws from the empirical 
distribution and recalculates the statistic of interest many times to arrive at the 
bootstrap sampling distribution. The bootstrap sampling distribution can then be 
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used to construct standard errors, confidence intervals, and hypothesis tests; see, 
for example, Efron and Tibshirani (1998) and Davison and Hinkley (1999). 

As an example, suppose that we are given 160 monthly returns on the HFR 
fund-of-funds index ranging from January 1990 to April 2003. We use the JPM 
one month cash rate from DataStream to calculate a risk-free rate. The 
nonparametric bootstrapping procedure is as follows. 

 
1. Randomly draw 160 (original sample size) returns with replacement 

from the original sample. 
2. Calculate a new risk-return ratio *ˆbς  based on the resampled returns. 
3. Repeat this procedure for 1,...,b B=  times, arriving at 

* * * *
1 1ˆ ˆ ˆ ˆ, , , ,b Bς ς ς ς  resampled ratios. 

 
The bootstrap sampling distribution of *ˆbς  can now be used to judge whether 

the sampling distribution of ς̂  for small samples is normal and hence whether 
traditional sampling theory approximations might not be so bad after all. Setting 

10,000B =  and using Code 4.4 along with the S-PLUS functions qqplot and 
histogram, we get the results in Figure 4.15 and Figure 4.16 . In Figure 4.15, 
we see that for the Sharpe ratio all resampled realizations plot very close to a 
straight line, and so we conclude that the Sharpe ratio is quite normally 
distributed. The same cannot be said about the Sortino ratio, for which the 
normal Q-Q plot has substantial deviations from linearity at both ends, being 
heavy-tailed to the right and short-tailed to the left. As we suspected, the 
histograms in Figure 4.16 show that the Sortino ratio has a much larger 
dispersion in resampled outcomes than the Sharpe ratio and hence a much larger 
estimation error. While a small-sample normal approximation looks reasonable 
for the traditional Sharpe ratio, such an approximation is likely to be largely 
misleading for the Sortino ratio. 

 
B <- 10000 
sharpe.ratio <- function(x){ 
 mean(x,na.rm=T)/stdev(x,na.rm=T) 
} 
sortino.ratio <- function(x){  
 mean(x,na.rm=T)/sqrt(mean(pmin(x,0)^2,na.rm=T)) 
} 
simple.bs <- bootstrap(x,sortino.ratio,B) 

Code 4.4 Simple Bootstrap 

We now use the 2.5% and 97.5% percentiles of the bootstrap distribution to 
obtain a symmetric 95% confidence interval ( )* *

2.5% 97.5%ˆ ˆ,CI ς ς . The Sortino 
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ratio confidence interval is (.11, .92), and the Sharpe ratio confidence interval is 
CI(.08, .41). 
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Figure 4.15 Q-Q Plots for Bootstrapped Sampling Distribution 
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Figure 4.16 Bootstrapped Sampling Distribution 
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4.6.3 Increasing the Confidence Interval Coverage 
Probability Accuracy with the Double 
Bootstrap 

So far we have relied on the 95% interval from a simple bootstrap procedure. 
However, the bootstrap is an approximate method, and it suffers to a greater or 
lesser extent from finite sample bias. Consequently, our 95% interval covers the 
true ratio with a probability that is at least somewhat different than .95. One way 
to increase the accuracy of the coverage probability of our confidence interval 
for the ratios is to use the double bootstrap, which can be thought of as 
“bootstrapping the bootstrap.” It is known that under reasonable conditions the 
double bootstrap reduces the bias in the coverage probability.13 The double 
bootstrap (Code 4.5) involves the following calculation.14  

 
1. Perform the simple bootstrap as described above. Save all 1,...,b B=  

resampled data sets as well as the resampled ratios *ˆbς . This is called 
first stage-resampling.  

2. For each of the B  resampled data sets, start a second round of 
1, ,z Z=  resamples, leading to a total of B Z⋅  resamples denoted 

as **ˆbzς . For each *ˆbς , there exists a new set of Z  resampled 

ratios ** **
1ˆ ˆ, ,b bZς ς . These are the second-stage resamples. 

3. For each *ˆ ,bς  calculate the percentage of second-stage resamples 
** **
1ˆ ˆ, ,b bZς ς  that fall below the original sample estimate of the 

risk-return ratio ς̂ , namely, calculate ( )**1
1

ˆ ˆ
Z

b bzZ z
u I ς ς

=
= <∑ . We 

choose 1000B =  and 200Z = . 
 
double.bs <- function(data, statistic, B, Z) 
{ 
 call(statistic) 
 outer.sample <- matrix( 
  sample(data, size=length(data)*B, replace=T), 
  nrow=B, ncol=length(data)) 
 outer.bs <- apply(outer.sample, 1, statistic) 
 inner.bs <- matrix(0, nrow=B, ncol=Z) 
 prob <- matrix(0, ncol=1, nrow=B) 
 estimate <- statistic(data) 
 for(i in 1:B) { 
  inner.bs[i,] <- bootstrap(outer.sample[i,], 
   statistic, Z, trace=F)$replicates 
  cat("run #", i) 
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 } 
 for(i in 1:B) { 
  prob[i] <- sum(inner.bs[i,]<estimate)/Z 
 } 
 prob 
} 

Code 4.5 Double-Bootstrapping Code 

Under ideal conditions, bu  follows a uniform distribution. Figure 4.17 shows 
that this assumption is clearly violated for the double-bootstrapped Sortino ratios 

** **
1ˆ ˆ, ,b bZς ς .15 Finally, we calculate the 2.5% and 97.5% percentiles of bu  and 

use these values to adjust the first-stage resample confidence band to 
( )2.5% 97.5%

* *ˆ ˆ,u uCI ς ς . Our resulting double-bootstrap confidence interval 

( )7.9% 96.%
* *ˆ ˆ0.18, 0.96CI ς ς= =  is moved to the right, with a higher lower bound 

of 0.18 instead of 0.11 (representing the 8% quantile rather than the 2.5% 
quantile), and a higher upper bound of .96 instead of .92. 

Renewed interest in the significance of risk-return ratios has been focused on 
closed-form solutions for the well-known Sharpe ratio, and there is increasing 
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interest in downside risk measures such as that in the Sortino ratio. This section 
provided a nonparametric methodology to evaluate the properties of the Sharpe 
and Sortino ratios’ sampling distributions, as well as a method to compute 
confidence intervals without having to rely on asymptotic approximations. We 
have seen that while the distribution of the Sharpe ratio is well-approximated by 
a normal distribution, the Sortino ratio has a quite non-normal distribution, and 
the double-bootstrap methodology leads to a significantly refined confidence 
interval. 
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Exercises 

1. This exercise points out an important linear regression model formulation of 
the Markowitz portfolio optimization without a long-only constraint, a 
context in which one can obtain standard errors of portfolio weights without 
resampling. Suppose we have n  time series of excess returns (total return 
minus cash rate) with m  observations each. We can combine these excess 
returns in a matrix X (each column contains one return series). Regressing 
these excess returns against a constant 1 1 1mx mxn nx mx= +1 X w u  yields 

( ) 1T T−
=w X X X 1 . These weights correspond to a portfolio that can be 

interpreted as the closest to a portfolio with zero risk (a vector of ones 
shows no volatility) and unit return. This would be an arbitrage opportunity. 
Rescaling the optimal weight vector (so that all weights sum to one) will 
yield ( ) ( )* 1 1

0 0 0 0
T

Sharpe
− −=w Ω µ I Ω µ , the maximum Sharpe ratio 

portfolio. This framework can also be used to test restrictions on individual 
regression coefficients (estimated portfolio weights), as well as restrictions 
on groups of assets, and test whether they are significantly different from 
zero.16 
(a) Generate a hypothetical data set and use the linear regression command 

lm() in S-PLUS to calculate optimal portfolios.  
(b) Test for the significance of individual weights using alternative 

correlations and sample length. 
(c) Repeat (a), but add the constraints to the regression. Implement 

individual constraints, group constraints, and the full investment 
constraint. 

 
2. Try to replicate Figures 4.4 to 4.9. 
 
3. Make an equal-weighted portfolio of six to ten stocks of your choice from 

the CRSP returns data sets provided with this book, and apply the bootstrap 
and double bootstrap analysis of Section 4.6 to the Sharpe ratio and Sortino 
ratio for these data. 

 
4. Repeat Exercise 3 for a new ratio obtained by modifying the Sortino ratio as 

follows: replace the denominator with the average of the losses below zero. 
How does the behavior of this ratio compare with that of the Sortino ratio? 

 
5. Take the data from Michaud (1998, p.17, 19, given below in Table 4.1) and 

generate a graph similar to the graph in Figure 4.18. 
 



  Exercises 137 

6. Redo the calculation in Section 4.6 with simulated data. What do you 
observe? 

 
7. Select eight mid-cap stocks from midcap.ts, and compute the following 

resampled efficient frontiers: (a) resampling with the basic Michaud 
efficient frontier resampling described in Exercise 5; (b) resampling with a 
proper parametric bootstrap (i.e., evaluate each resampled portfolio mean 
and standard deviation by using the sample mean and covariance that 
generated the portfolio weights for that resampling, not the original sample 
mean and covariance as proposed by Jorion (1992) and Michaud (1998)); 
(c) the nonparametric bootstrap as described in Section 6.9.4, with 
simplified versions of the code provided in that section. What do you 
conclude about your results in (a) versus (b)? What about (b) versus (c)? 

 

Table 4.1 Data from Michaud (1998) for Exercise 5 

 

30.25 15.85 10.26 9.68 19.17 16.79 2.87 2.83
15.85 49.42 27.11 20.79 22.82 13.30 3.11 2.85
10.26 27.11 38.69 15.33 17.94 9.098 3.38 2.72

9.68 20.79 15.33 49.56 16.92 6.66 1.98
0

. .

. .

. . 
 

Canada
France
Germany
Japan

U K
U S
U S bonds
Euro bonds

=Ω
1.76

,
19.17 22.82 17.94 16.92 36.12 14.47 3.02 2.72
16.79 13.30 9.098 6.66 14.47 18.49 3.11 2.82

2.87 3.11 3.38 1.98 3.02 3.11 4.04 2.88
2.83 2.85 2.72 1.76 2.72 2.82 2.88 2.43

0
. .
. .

Canada
France
Germany
Japan

U K
U S
U

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

µ

0.39

0.88

0.53

0.88

0.79

0.71
. . 0.25

 0.27

S bonds
Euro bonds

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 



138 4 Resampling and Portfolio Choice 

risk.sim

re
tu

rn
.s

im

2 3 4 5 6

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

EFFICIENT FRONTIER

 
Figure 4.18 Efficient Frontier and Resampled Portfolio 
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Endnotes 

                                                           
1 Robert Michaud patented the use of the average resampled portfolio. Readers are 
referred to U. S. patent # 6003018 or to Michaud (1998). However, the basic idea of 
portfolio resampling was introduced into the finance literature by Jorion (1992). 
2 See Efron and Tibshirani (1998) for a further discussion on this question. 
3 The assumption of a known fixed risk aversion coefficient is not always realistic, and if 

instead we use the weight vector 
1

1
ˆ
ˆ
i

i
i

−

−=
′
Ω µw

1 Ω µ
 with estimated risk aversion for the 

maximum Sharpe ratio for the i-th resample, we do not get this result. 
4 The central motivation of bootstrap resampling as introduced by statisticians is to 
estimate the distribution, or aspects of the distribution of an estimate such as the mean, 
standard deviation, or confidence intervals, of complicated statistics for which the 
standard sampling distribution theory does not apply. 
5 See Chapter 7 on Bayesian methods. 
6 The idea of this test statistic is that it is obviously not enough to look at weight 
differences only. Small weight differences for highly correlated assets might be of higher 
significance than large weight differences for negatively correlated assets. 
7 The Michaud approach referenced in Endnote 1 uses the rank-based approach. 
8 In spite of this apparent limitation, bootstrap resampling methods are able to do a quite 
decent job of estimating the distribution (or a summary such as standard error) of a 
statistic for which one does not have a decent sampling-distribution approximation; see, 
for example, Efron and Tibshirani (1998). 
9 See Lo (2002) and Memmel (2003).  
10 We assume here that returns are independently drawn from a single distribution. This is 
unlikely to be true for hedge fund data, as they exhibit serial correlation. One way to deal 
with this would be to fit an autoregressive model to the data and use this parametric 
specification of the return-generating process for resampling.  
11 See Sharpe (1994) for a review.  
12 See Sortino and Price (1994). 
13 See Section 3.9 and related material in Davison and Hinkley (1999) for details. 
14 See Nankervis (2002). 
15 Formal tests such as the Kolmogorov-Smirnov test as well as the 2χ  adjustment test, 
provide p-values close to 0%. Hence the null hypothesis that Figure 4.17 comes from a 
uniform distribution can be safely rejected. 
16  The regression framework puts a central problem of portfolio construction into a 
different, well-known perspective. Highly correlated asset returns mean highly correlated 
regressors with the obvious consequences arising from multicollinearity: high standard 
deviations on portfolio weights (regression coefficients) and identification problems 
(difficulty of distinguishing between two similar assets). Simply downtesting and 
excluding insignificant assets will result in an outcome that is highly dependent on the 
order of exclusion, with no guidance where to start. This is a familiar problem for both 
the asset allocator and the econometrician. 
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