
Radiative Tran33. Radiative Transition Probabilities

This chapter summarizes the theory of radia-
tive transition probabilities or intensities for
rotationally-resolved (high-resolution) molecular
spectra. A combined treatment of diatomic, linear,
symmetric-top, and asymmetric-top molecules is
based on angular momentum relations. General-
ity and symmetry relations are emphasized. The
energy-intensity model is founded in a rotating-
frame basis-set expansion of the wave functions,
Hamiltonians, and transition operators. The inten-
sities of the various rotational branches are calcu-
lated from a small number of transition-moment
matrix elements, whose relative values can be as-
sumed from the supposed nature of the transition,
or inferred by fitting experimental intensities.

33.1 Overview............................................. 515
33.1.1 Intensity versus Line-Position

Spectroscopy ............................ 515

33.2 Molecular Wave Functions
in the Rotating Frame.......................... 516
33.2.1 Symmetries

of the Exact Wave Function ........ 516
33.2.2 Rotation Matrices ...................... 517
33.2.3 Transformation

of Ordinary Objects
into the Rotating Frame ............. 517

33.3 The Energy–Intensity Model ................. 518
33.3.1 States, Levels, and Components .. 518
33.3.2 The Basis Set

and Matrix Hamiltonian ............. 518

33.3.3 Fitting Experimental Energies ..... 520
33.3.4 The Transition Moment Matrix .... 520
33.3.5 Fitting Experimental Intensities .. 520

33.4 Selection Rules .................................... 521
33.4.1 Symmetry Types ........................ 521
33.4.2 Rotational Branches and Parity ... 521
33.4.3 Nuclear Spin, Spatial Symmetry,

and Statistics ............................ 522
33.4.4 Electron Orbital

and Spin Angular Momenta ........ 523

33.5 Absorption Cross Sections
and Radiative Lifetimes ....................... 524
33.5.1 Radiation Relations ................... 524
33.5.2 Transition Moments ................... 524

33.6 Vibrational Band Strengths .................. 525
33.6.1 Franck–Condon Factors .............. 525
33.6.2 Vibrational Transitions ............... 526

33.7 Rotational Branch Strengths ................. 526
33.7.1 Branch Structure

and Transition Type ................... 526
33.7.2 Hönl–London Factors................. 527
33.7.3 Sum Rules ................................ 528
33.7.4 Hund’s Cases ............................ 528
33.7.5 Symmetric Tops ......................... 530
33.7.6 Asymmetric Tops ....................... 530

33.8 Forbidden Transitions .......................... 530
33.8.1 Spin-Changing Transitions ......... 530
33.8.2 Orbitally-Forbidden Transitions .. 531

33.9 Recent Developments........................... 531

References .................................................. 532

33.1 Overview

33.1.1 Intensity versus Line-Position
Spectroscopy

The fact that atoms and molecules absorb and emit ra-
diation with propensities that vary with wavelength is
the origin of the field called spectroscopy. The relatively
sharp intensity maxima are interpreted as corresponding
to transitions between discrete states or energy levels.
The frequencies or energies of these transitions are used

as the primary source of information about the internal
structure of the atom or molecule. Line positions can be
measured with very high precision (1 ppm or better).
Excellent calibration standards have been developed.
The quality of these experimental data has attracted ex-
tensive analytical and theoretical effort. Sophisticated
parametrized models have been developed in which the
smallest shifts from the expected line positions can be
used to identify perturbations or other subtle effects.
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516 Part C Molecules

For molecules, knowledge of the strengths of these
transitions is far less well developed. One reason is that
quantitative experimental data on rotationally-resolved
absorption cross sections and emission intensities are
much rarer and the experiments themselves are much
more difficult to calibrate. Few measurements claim
a precision better than 1% and agreement within
10% of measurements in different laboratories is typ-
ically viewed as good. This situation is undesirable

because most applications of molecular spectroscopy
are in fact measurements of intensity. In many cases
the strengths of absorptions or emissions are used
to infer gas composition, temperature, time evolution,
or other environmental conditions. In other examples
the actual absorption and emission is the primary
interest. Among the most important of these are atmo-
spheric absorption of solar radiation and the greenhouse
effect.

33.2 Molecular Wave Functions in the Rotating Frame

33.2.1 Symmetries of the Exact Wave
Function

The exact total wave function for any isolated molecule
with well-defined energy and total angular momentum
can be expressed in a basis-set expansion over configu-
rations with well-defined internal quantum numbers,

Φexact (33.1)

= Φtrans

∑

αβγδε

Cαβγδε Φα
rot Φ

β
vib Φ

γ

elec Φδ
espin Φε

nspin .

In principle, the coefficients Cαβγδε can be found only
by diagonalizing the exact Hamiltonian. In practice one
attempts to find a sufficiently good approximation, con-
taining only a few terms, with coefficients chosen by
diagonalizing an approximate or model Hamiltonian.
This is the basis of the energy–intensity model developed
in Sect. 33.3. As discussed by Longuet-Higgins [33.1]
and Bunker [33.2], there are only six true symmetries of
the exact Hamiltonian of an isolated molecule:

1. translation of the center of mass;
2. permutation of electrons;
3. permutation of identical nuclei;
4. time reversal or momentum reversal;
5. inversion of all particles through the center of mass;
6. rotation about space-fixed axes.

Of these, only the symmetries numbered 5 and 6 give
quantum numbers (parity and the total angular momen-
tum F) that are both rigorous and useful spectroscopic
labels of the states of the molecule. The other symme-
tries are convenient for simplifying the description of
the molecular wave function, for the evaluation of rela-
tions between matrix elements, and for classification of
molecular states according to approximate symmetries.

The first symmetry, translation of the center of mass,
allows the choice of a coordinate system referenced to
the center of mass, and suppression of the portion of the

wave function describing motion through space (as long
as the molecule does not dissociate).

Symmetry number 2, exchange of electrons, does
not directly provide any labels or quantum numbers,
since the Fermi–Dirac statistics of electrons require that
all wave functions must be antisymmetric. However,
it provides considerable information about the proba-
ble electronic states since it controls whether molecular
orbitals can be doubly or only singly occupied. For
most (low-Z) molecules, each state will have a nearly
well-defined value of electron spin: singlet or triplet for
example. Admixture of other spin values usually can be
treated as a perturbation. These points will be elaborated
in Sects. 33.4.4 and 33.7.4.

Permutation of identical nuclei, symmetry num-
ber 3, also gives an identical quantum number to
all the states of the molecule (±1 depending on the
character of the permutation and on whether nuclei
with integral or half-integral spin are being permuted).
It supplies little direct information about the en-
ergy separations between the states of the molecule.
On the other hand, many molecules have identical
nuclei in geometrically or dynamically equivalent posi-
tions. The existence of spatial symmetry, for nonplanar
molecules, is really the same thing as permutational
symmetry. Consequently, nuclear permutation, com-
bined with inversion (symmetry number 5), is the basis
for naming the states according to the approximate
spatial symmetry group of the molecular frame and
vibrational motion. These concepts will be explored
in Sect. 33.4.3.

Symmetry number 4, time reversal, is both subtle
and simple. In the absence of external magnetic fields the
Hamiltonian for a molecule will contain only even com-
binations of angular momentum operators, e.g., Fα Fβ ,
FαLβ , or FαSβ . Thus changing the signs of all the
angular momenta should result in an equivalent wave
function. This will require that matrix elements retain
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Radiative Transition Probabilities 33.2 Molecular Wave Functions in the Rotating Frame 517

the same absolute value when the angular quantum
numbers are reversed, leading in general to complex
conjugation [33.3].

Spatial inversion, symmetry number 5, is always
an allowed operation for any molecule, even if it ap-
pears to lack internal inversion symmetry. This operation
can be considered as a symmetry of the spherically-
symmetric laboratory in which the molecule resides.
If the molecule is linear, triatomic, rigid with a plane
of symmetry, or is nonrigid with accessible vibra-
tional or tunneling modes that correspond to plane
reflections, inversion symmetry divides the states of
the molecule into two classes, called parities. Pertur-
bations can occur only between states of the same
parity. For optical transitions, the change in parity
of the states must match the parity of the operator.
Otherwise, reflection of the molecule in a plane will
interchange inconvertible optical isomers. Such optical
isomers are energetically degenerate, so in all cases,
inversion through the center of mass remains a valid
symmetry of the rotating molecule. However, the sep-
aration of the states into two kinds does not provide
any selection rules. The two parity classes are perfectly
degenerate, thus there is always an allowed level with
the correct parity either for perturbations or for optical
transitions.

33.2.2 Rotation Matrices

The final symmetry, rotation about the center of mass,
restricts the discussion to states with well-defined
laboratory angular momentum, and to re-expression of
the exact wave function by changing variables from
laboratory coordinates to body-fixed or internal coor-
dinates, and introducing the Euler angles relating these
two coordinate systems,

Φ
F,MF
exact (lab) =

∑

KF

Φ
F,MF KF
rot (Euler angles)

×Φ(F,KF )
vesn (internal, spins) . (33.2)

Here F is the total angular momentum of the molecule,
including vibrational, mechanical-rotation, electron-
orbital, electron-spin, and nuclear-spin contributions.
MF and KF are the projections of F in the laboratory
and body-fixed frames, respectively. In the majority of
cases, the magnitude of nuclear hyperfine interactions is
sufficiently small that its influence can be ignored when
analyzing wave functions and computing energies. Thus
the quantum numbers J , MJ , and K J , or just J , M, and
K can be used.

Explanation is postponed of how the body-fixed
frame is to be selected, but for any choice, the wave func-
tion for rotation of the entire molecule can be expressed
using a rotation matrix [33.4, 5]

Φ
F,MF KF
rot (Euler angles)

=
(

(2F +1)

8π2

)1/2

D∗F
MF KF

(φ, θ, χ) . (33.3)

For diatomics, Zare [33.5] suggests multiplying by
(2π)1/2 and setting χ = 0. The internal wave function for
the vibrational, electronic, electron-spin, and nuclear-
spin degrees of freedom [thus the label (vesn)] can be
thought of as the partial summation

Φ(F,KF )
vesn (internal, spins)

=
∑

βγδε

C(FKF )βγδεΦ
β

vibΦ
γ

elecΦ
δ
espinΦ

ε
nspin , (33.4)

expressed in the internal or rotated coordinate system.
Note that the FKF designation is only a parametric label.
The rotational wave function has been absorbed into the
rotation matrix.

33.2.3 Transformation of Ordinary Objects
into the Rotating Frame

The assumption of rotational symmetry allows re-
expression of matrix elements between total wave
functions as a sum of matrix elements between
internal wave functions. For example, the tensor op-
erator T (L) belonging to the L representation of the
rotation group, can be written in the rotating frame
as [33.5–8]

T (L)
p (lab) =

∑

q

D∗L
pq (φθχ)T (L)

q (body) , (33.5)

and can be used to evaluate matrix elements that might
represent radiative transitions:

〈
ψF′,M′′

F+p
∣∣T (L)

p (lab)
∣∣ΦF′′,M′′

F
〉

=
(

(2F′′ +1)

(2F′ +1)

)1/2 〈
F′′M′′

F, L p
∣∣F′M′′

F + p
〉

×
∑

qK ′′
F

〈
F′′K ′′

F, Lq
∣∣F′K ′′

F +q
〉

×
〈
ψ

(F′,K ′′
F+q)

vesn
∣∣T (L)

q (body)
∣∣Φ(F′′,K ′′

F )
vesn

〉
, (33.6)

where
〈
F′′M′′

F, L p
∣∣F′M′′

F + p
〉

and
〈
F′′K ′′

F, Lq
∣∣F′K ′′

F+q
〉

are Clebsch–Gordan coefficients that vanish if
|F′ − F′′| > L , |M′′

F + p| > F′, or |K ′′
F +q| > F′.
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518 Part C Molecules

This transformation forms the basis for the derivation
of rotational branch strengths (Sect. 33.7.2) and for the

description of electron motions that are weakly coupled
to the molecular frame (Sect. 33.7.4).

33.3 The Energy–Intensity Model

33.3.1 States, Levels, and Components

The previous section introduced the concept of repre-
senting the wave function of a molecule as a product of
five simpler wave functions:

ψ ≈ ψelecψvibψrotψespinψnspin . (33.7)

This construction yields a similar separation of the
Hamiltonian,

H ≈ Helec + Hvib + Hrot–fs + Hhf , (33.8)

and representations of the energies as sums of contribu-
tions,

E ≈ Te + Gv + Fc(J ) , (33.9)

and absorption or emission transition strengths as prod-
ucts,

I ≈ Ielec Ivib Irot–fs Ihf . (33.10)

Whatever theoretical arguments might favor such
a separation, the real impetus is the empirical observa-
tion that most molecular absorption and emission spectra
exhibit recognizable patterns arising from the dissimi-
lar magnitudes of the energies associated with these five
degrees of freedom. Separation of the wave function
and the Hamiltonian into these four or five contributions
facilitates the assignment of molecular spectra, in addi-
tion to suggesting models with parameters that can be
adjusted to quantitatively represent the observed spectra.

Most states of molecules are dominated by a single
set of electronic and vibrational quantum numbers.
Electronic states are often well separated. With each
electronic state is associated a potential energy sur-
face, the energy at the minimum being labeled Te.
Motion of nuclei within this potential generates various
levels corresponding to different vibrational quantum
numbers, following regular patterns or progressions in
energy, summarized by a small number of parameters
called vibrational frequencies. The quantity Gv rep-
resents the energy of the the vibrational level above
the potential minimum. For each vibrational level,
a progression of rotational levels is expected. For lin-
ear molecules in electronic states without electronic

angular momentum (i. e., 1Σ states) the rotational
energies are also reproduced by a few rotational
constants.

For more complicated molecules and electronic
states, i. e., most cases, there are multiple energetically
distinct levels with the same value of J (in addition
to the 2J +1 orientational degeneracy of each level).
These multiple levels all share the same nominal quan-
tum numbers (additional analysis may subdivide them
into parity or permutational symmetry types). These sub-
levels are called “components” with energies expressed
by the notation Fc(J ). The quantity Nc, the number
of components expected, reflects the assignment of the
nature of the vibronic state. For linear molecules there
is a limited number of components corresponding to the
various orientations of electron spin and orbital angular
momentum. For example, a 2Π electronic state will have
four components for each value of J (except for J = 1/2,
where there are only two components). For nonlinear
molecules the number of components increases with J ,
proportional to 2J +1, corresponding to various pos-
sible projections of the total angular momentum onto
the tumbling molecular frame.

The conclusion of this analysis is that a basis set
be chosen, over which a model rotational and fine-
structure Hamiltonian can be expressed. The wave
functions then become vectors of numbers. A priori,
only the form of the matrix elements and their depen-
dence on J and body–frame projection (K or Ω) are
known. Little is known in advance about how strong
the interactions are in any given molecule. Thus one
tends to write the Hamiltonian with parameters that
are to be determined by fitting the observed energy
levels.

Similarly, the choice of the basis sets for the upper
and lower states specifies the overall form of the matrix
of transition moments between the basis functions. The
transition can be chosen to be of a simple standard form,
for example, parallel or perpendicular, with only one
unknown parameter representing the overall strength of
the transition. Alternatively, the transition matrix ele-
ments can be considered to be independently adjustable,
within the symmetry restrictions that are required (time
reversal) or assumed (spatial symmetry).
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Radiative Transition Probabilities 33.3 The Energy–Intensity Model 519

33.3.2 The Basis Set and Matrix
Hamiltonian

For linear molecules it is convenient to choose a basis
set labeled by the projections of orbital and spin an-
gular momenta in the body–frame coordinate system,
represented symbolically by

|ΛΣ; JMΩ〉 =
(

(2J +1)

8π2

)1/2

D∗J
MΩ |ΛΣ〉 ,

(33.11)

where Ω = Λ+Σ. This is called the Hund’s case (a)
basis set, which is an accurate representation in a single
term if the body–frame angular momenta are nearly con-
served. This is true if the spin-orbit interaction is larger
than the separation between rotational levels. Under all
circumstances, this basis set facilitates construction of
the matrix Hamiltonian and representation of sources of
transition probability [33.9].

One parametrization for the spin–rotation Hamilto-
nian is provided by Brown et al. [33.10–12]:

Hspin–rot

= Te + Gv + Bv N2 − Dv N4

+ 1

2

[
Av + ADv N2, Lz Sz

]
+

+ (
γv +γDv N2)N · S

+ 1

3

[
λv +λDv N2, 3S2

z − S2]
+

+ηvLz Sz
[
S2

z − 1

5

(
3S2 −1

)]

− 1

4

[
ov +oDv N2,Λ2+S2− +Λ2−S2+

]
+

+ 1

4

[
pv + pDv N2,Λ2+S−N− +Λ2−S+N+

]
+

+ 1

4

[
qv +qDv N2,Λ2+N2− +Λ2−N2+

]
+ , (33.12)

where [x, y]+ is the anticommutator (xy + yx), and
N = J − S. Zare et al. [33.13] provide an alternative
parametrization, with different interpretations of the
spectroscopic constants (B, D, A, γ, λ, etc.) because
they multiply different symbolic operators. One signif-
icant difference is that Zare et al. use the “mechanical
angular momentum” R = J − L− Sas the expansion op-
erator, rather than N, which might be called the “spinless
angular momentum.” These differences mean that care
must be taken in attempting to construct simulated spec-
tra from published constants. In spite of much discussion
in the literature, there is little theoretical foundation for

preferring one parametrization over another, as long
as the observed levels are accurately fit. In a number
of cases naive assumptions about the origin of certain
types of interactions have been overturned. For example,
the spin–spin interaction, represented by the constant λ,
is often dominated by level shifts due to off-diagonal
spin-orbit perturbations [33.14].

For polyatomic molecules, a suitable basis set for
expansion can be chosen to have a similar form [33.8,
15, 16]

|lΛΣ; JMK〉 =
(

(2J +1)

8π2

)1/2

D∗J
MK |lΛΣ〉 ,

(33.13)

where Λ and Σ represent the projections of the
electron- orbital (L) and spin (S) angular momenta, and
l represents the projection of the vibrational angular mo-
mentum (p for degenerate vibrational modes). This is the
symmetric top basis set. Generalizing the work of Wat-
son [33.17, 18], the parametrized Hamiltonian might be
written in a form such as

Hrot =
∑

hαβγδε
ζηθl

{(
J2)α(

Jz
)2β(

J2γ
+ + J2γ

−
)

× (J · p)δ(J · L)ε(J · S)ζ

× (p · L)η(p · S)θ(L · S)l
}

,

(33.14)

where the {} indicates that an appropriately symmetric
combination be constructed with anticommutators.

For both linear and nonlinear molecules, it is conve-
nient to use the Wang transformation [33.19] to combine
basis functions with opposite sense of rotation: for di-
atomics

1√
2

[||Λ|,Σ;J, M,Ω〉± |−|Λ|,−Σ; J, M,−Ω〉] ;
(33.15)

and for polyatomics

1√
2
[|l,Λ,Σ; J, M, K〉
± |− l,−Λ,−Σ; J, M,−K〉] . (33.16)

For diatomic molecules, these combinations can be as-
signed the parity ±(−1)J+S+s, where s = 1 for Σ−
states, and 0 otherwise [33.13, 20]. For symmetric top
molecules, each term is to be accompanied by the ap-
propriate hidden nuclear-spin basis function [33.8, 21].

For asymmetric top molecules, the Wang transfor-
mation divides the basis functions into four symmetry
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520 Part C Molecules

classes E± and O± according to the combining sign
and whether K is even or odd. The eigenstates are of-
ten labeled by two projection quantum numbers called
K−1 and K1. Assuming that A ≥ B ≥ C, the asymmetry
parameter

κ = (2B − A −C)

(A −C)
(33.17)

ranges from −1 for a prolate symmetric top (B = C)

to 1 for an oblate symmetric top (B = A). A, B,
and C are the rotational constants, or reciprocals of
the moments of inertia, about the three principal top
axes. Each asymmetric top level can be correlated
with specific symmetric top levels (i. e., K -values)
in the two limits. The prolate limiting K -value is
called K−1 and the oblate limit is called K1 (i. e.,
κ = ±1). Note that the symmetric-top principal axes
rotate by 90◦ during this correlation. The eigenstates
are given additional symmetry names (ee,eo,oe,oo)
according to whether K−1 and K1 are even or
odd. Papousek and Aliev [33.18] discuss the rela-
tions between the (E±, O±) and (ee,eo,oe,oo) labeling
schemes.

33.3.3 Fitting Experimental Energies

Having chosen a basis set and model Hamiltonian for
both the upper and lower levels, the observed transition
energies can be used to infer the numerical values of
the constants that best fit the spectrum. The following
quotation provides a good description of the process:

The calculational procedure logically divides into
three steps: (1) The matrix elements of the up-
per and lower state Hamiltonians are calculated
for each J value using initial values of the ad-
justable molecular constants; (2) both Hamiltonians
are numerically diagonalized and the resulting sets
of eigenvalues are used to construct a set of calcu-
lated line positions; and (3) from a least-squares fit
of the calculated to the observed line positions, an
improved set of molecular constants is generated.
This nonlinear least-squares procedure is repeated
until a satisfactory set of molecular constants is
obtained.

This quotation is taken from the article by Zare
et al. [33.13] in which they describe the basis for
the LINFIT computer program, one of the first to ac-
complish direct extraction of constants from diatomic
spectral line positions based on numerically diagonal-
ized Hamiltonians.

33.3.4 The Transition Moment Matrix

Diagonalization of the model Hamiltonians for the upper
and lower states yields vector wave functions that can
be used for calculating matrix elements, especially those
needed to evaluate radiative transition probabilities. The
wave functions for diatomic molecules have the form

ψ′
J ′ M′c′ =

∑

Λ′Σ′
bJ ′c′
Λ′Σ′ |Λ′Σ′; J ′M′Ω′〉′ ,

Φ′′
J ′′ M′′c′′ =

∑

Λ′′Σ′′
aJ ′′c′′
Λ′′Σ′′ |Λ′′Σ′′; J ′′M′′Ω′′〉′′ .

(33.18)

Section 33.2.3 expresses matrix elements of labora-
tory-frame operators in terms of matrix elements in the
rotating body-fixed frame. Terms of the form

µK ′ K ′′ = 〈
ψ(J ′ K ′)∣∣T (L)

q (body)
∣∣Φ(J ′′ K ′′)〉θ(−q)

(33.19)

need to be evaluated. These terms are multiplied by zero
if K ′ �= K ′′ +q. In the diatomic basis set these become

µΛ′Σ′Λ′′Σ′′ = ′ 〈Λ′Σ′∣∣T (L)
q (body)

∣∣Λ′′Σ′′〉′′θ(−q) ,

(33.20)

where θ(−q) is a phase factor described in Sect. 33.7.2.
Only a few of these matrix elements are independent and
nonzero. For electric dipole transitions (L = 1), time-
reversal and inversion-symmetry can be used to establish
the relation

µ−Ω′−Ω′′ = η(−1)Ω
′−Ω′′

µΩ′Ω′′ . (33.21)

The sign of η = ±1 is determined by the overall char-
acter of the electronic transition, and is related to the
classification of levels into e- and f -parity types and to
the determination of which components are involved in
the rotational branches (P, Q, and R). These concepts
are elaborated in Sect. 33.4.

33.3.5 Fitting Experimental Intensities

For allowed transitions in linear molecules and symmet-
ric tops, only one independent parameter is normally
expected in the transition moment matrix. Thus no
additional information is available from fitting the
experimental rotational branch strengths (assuming
the energy–intensity model is adequate). In diatomic
molecules, the intensities of different vibrational bands
can be used to infer the internuclear-distance depen-
dence of the electronic transition moment (for example,
see Luque and Crosley [33.22]).
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Radiative Transition Probabilities 33.4 Selection Rules 521

For forbidden transitions and allowed transitions in
asymmetric tops, more than one independent parameter
is expected. The intensity of a single given rotational
line can be expressed in the form

I line =
∣∣∣∣∣
∑

K ′ K ′′
µK ′ K ′′ Z K ′K ′′(line)

∣∣∣∣∣

2

, (33.22)

where Z K ′ K ′′(line) can be calculated in advance from
the energies (wave functions) and quantum numbers
alone, using the formulas in Sect. 33.7.2. Nonlinear
least-squares fitting can be used to derive the best inten-
sity parameters [33.23–26], analysis of which can help
characterize the nature of the transition, and identify the
sources of transition probability.

33.4 Selection Rules

33.4.1 Symmetry Types

Selection rules are guidelines for identifying which
transitions are expected to be strong and which are
expected to be weak. These rules are based on clas-
sifying rovibronic levels into labeled symmetry types.
Some symmetry distinctions are effectively exact: such
as total angular momentum F, or laboratory-inversion
parity. Others are approximate, derived from esti-
mates that certain matrix elements are expected to
be much larger than others. The most important of
these are based on electron spin (for light molecules)
and geometrical point-group symmetry (for relatively
rigid polyatomics). In actual fact, no transition is
completely forbidden. The multipole nature of elec-
tromagnetic radiation (electric-dipole, magnetic-dipole,
electric-quadrupole, etc.) implies that any change in
angular momentum or parity is possible in principle.
Practical interest emphasizes identification of the ori-
gin of the strongest source of transition probability, and
estimation of the strengths of the weak transitions rel-
ative to the stronger ones. The result is a collection
of propensity rules using selection rules as tools of
estimation.

Basis functions for expansion of the wave func-
tions for the upper and lower states were chosen in
Sect. 33.3.2. The first step in the symmetry classification
of rovibronic levels consists of identifying various linear
combinations of basis functions that block-diagonalize
the exact or approximate Hamiltonians. Symmetry-type
names are then assigned to these linear combinations
based on the value of F or J and knowledge of the
symmetry properties of the underlying vibrational and
electronic states. Thus each eigenfunction or rovibronic
level consists of an expansion over only one of the kinds
of linear combination, and the level can be assigned
a specific symmetry type.

Similarly, the basis-set expansion leads to a ma-
trix representation of the possible transitions. Spin- and
spatial-symmetry arguments establish relationships be-

tween these transition matrix elements, and provide
estimates of which are much smaller than the others.
Each combination of upper- and lower-state symme-
try types results in a specific pattern of rotational
branches. The most important patterns are ∆J even
(Q-branches) or odd (P- and R-branches), and inten-
sity alternation for consecutive values of J (nuclear spin
statistics).

33.4.2 Rotational Branches and Parity

The symmetry of time or momentum reversal implies
that changing the signs of all the angular momenta
should result in an equivalent wave function. For ex-
ample, the phase convention

Φ(F,−KF )
vesn (internal, spins)

= (−1)−F+KF Φ∗(F,KF )
vesn (internal,−spins) (33.23)

can be chosen to establish that the relative phases of
matrix elements of the Hamiltonian can be taken as

〈
D∗F

MF−K ′
F
Φ

(F,−K ′
F)

vesn

∣∣∣H
∣∣∣D∗F

MF−K ′′
F
Φ

(F,−K ′′
F)

vesn

〉

=
〈
D∗F

MF K ′
F
Φ

(F,K ′
F)

vesn

∣∣∣H
∣∣∣D∗F

MF K ′′
F
Φ

(F,K ′′
F)

vesn

〉∗
. (33.24)

The formula for matrix elements of optical transition
operators can also be reanalyzed,

〈
ψF′,M′′

F+p
∣∣T (L)

p (lab)
∣∣ΦF′′,M′′

F
〉

(33.25)

=
[

(2F′′ +1)

(2F′ +1)

]1/2 〈
F′′M′′

F, L p|F′M′′
F + p

〉

×
1

2

∑

qK ′′

〈
F′′K ′′

F, Lq
∣∣F′K ′′

F +q
〉

×

{〈
ψ

(F′,K ′′
F+q)

vesn

∣∣∣T (L)
q (body)

∣∣∣Φ(F′′,K ′′
F)

vesn

〉

+ (−1)F′+L−F′′

×
〈
ψ

(F′,−K ′′
F−q)

vesn

∣∣∣T (L)
−q (body)

∣∣∣Φ(F′′,−K ′′
F)

vesn

〉}
,
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to establish that all contributions are purely real or purely
imaginary [33.27]. Since such transition matrix elements
will be used as absolute squares, they can be treated as
if they were purely real.

Parity classification of molecular states according to
inversion through the center of mass is important for es-
tablishing which transitions are electric-dipole allowed
and which states can perturb each other. As discussed by
Larsson [33.4], such classification is not without subtlety
and opportunity for confusion. Inversion of the labora-
tory spatial coordinates (isp, also called E∗ [33.2]) is
equivalent to a reflection σ of the molecule-fixed elec-
tronic and nuclear coordinates in an arbitrary plane
followed by rotation of the molecular frame by 180◦
about an axis through the origin and perpendicular to
the reflection plane (if F is half-integral special care
must be taken about the sense of rotation). It follows
that

ispΦ
F,MF
exact (lab)

= E∗ΦF,MF
exact (lab)

= η(−1)F−γΦ
F,MF
exact (lab)

=
[

(2F +1)

8π2

]1/2

×
∑

KF

(−1)F−KF D∗F
MF−KF

σxzΦ
(F,KF )
vesn (33.26)

and

σxzΦ
(F,KF )
vesn = η(−1)KF−γ Φ(F,−KF )

vesn , (33.27)

where γ = 0 or 1/2 for integral or half-integral F, re-
spectively, and η is the parity label for the state, having
values of ±1. In linear molecules, levels with η = +1
are called e-levels while those with η = −1 are called
f -levels [33.28, 29].

Inversion symmetry can be combined with time
reversal to establish that all matrix elements of the
Hamiltonian can be taken to be real [33.27]. The wave
function can also be expressed in the form of the Wang
transformation [33.19], uniting the ±KF components,

Φ
F,MF
exact (lab)

=
(

(2F +1)

8π2

)1/2 ∑

KF≥0

[
D∗F

MF KF
Φ(F,KF )

vesn

+ η(−1)−KF+γ D∗F
MF−KF

σxzΦ
(F,KF )
vesn

]

×
[
2(1+ δKF0)

]−1/2
. (33.28)

If the molecule is rigid and has a plane of sym-
metry, or is nonrigid with accessible vibrational or
tunneling modes that correspond to plane reflections, in-

version symmetry divides the states of the molecule into
two classes, according to the sign of η. Perturbations
can occur only for ∆F = 0 and η′η′′ = +1. For opti-
cal transitions, the change in parity of the states must
match the parity of the operator. Odd operators (e.g.,
electric-dipole) require η′η′′(−1)∆F = −1. Even op-
erators (e.g., magnetic-dipole and electric-quadrupole)
require η′η′′(−1)∆F = +1.

33.4.3 Nuclear Spin, Spatial Symmetry,
and Statistics

For most molecules, the coupling of nuclear spin with the
electron-spin, electron-orbital, and frame-rotational an-
gular momenta is sufficiently weak that treatment of the
energetics of hyperfine interactions can be postponed.
The first-order effect of nuclear spin is that rovibronic
wave functions for molecules containing identical nuclei
must be combined with appropriate nuclear spin wave
functions in order to obtain the necessary Fermi–Dirac or
Bose–Einstein nuclear permutation symmetry. For many
molecules, there exist combinations of nuclear permuta-
tions that correspond to combinations of frame rotations,
laboratory inversions, and feasible vibrational motions
(the rotational wave function makes a contribution be-
cause renumbering the nuclei requires a reanalysis of the
Euler angles). For rigid molecules, these permutations
(possibly including inversion) can be used to generate
the point symmetry group of the molecule. For flux-
ional molecules, with multiple energetically equivalent
nuclear configurations, a rather large “molecular sym-
metry group” can result, one that may not correspond to
any ordinary point group [33.1, 2].

In the discussion immediately following, consider
the case of N occurrences of one kind of nucleus, the
others being unique (e.g., PD3). The treatment can easily
be extended to the case of multiple kinds of identical
nuclei (e.g., C2H6). The exact wave function can be
rearranged into a sum over products of the form

Φexact =
∑

a,b

Φ(a)
rvesΦ

(b)
nspin , (33.29)

where Φ
(a)
rves is a rovibronic wave function belonging to

the Γ (a) representation of the symmetric group SN of
permutations over N objects, and Φ

(b)
nspin is a nuclear spin

wave function, belonging to the Γ (b) representation of
SN . In order to obtain the correct permutation symme-
tries for the overall wave function, the only terms that can
appear in this sum are those for which the direct product
Γ (a)⊗Γ (b) contains the symmetric or antisymmetric
representation, for bosons or fermions, respectively.
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Assumption of negligible hyperfine interactions al-
lows evaluation of matrix elements of the form

〈
Φ(c)

rvesΦ
(d)
nspin

∣∣H
∣∣Φ(a)

rvesΦ
(b)
nspin

〉

= 〈
Φ(c)

rves

∣∣H
∣∣Φ(a)

rves

〉〈
Φ(d)

nspin

∣∣Φ(b)
nspin

〉
, (33.30)

which vanishes unless Γ (a) = Γ (c) and Γ (b) = Γ (d).
Thus the nearly-exact wave function can be written as
a sum over products where the rovibronic and nuclear-
spin factors correspond to basis functions from single
known representations:

Φexact ≈
∑

a,b

Φ(a)
rvesΦ

(b)
nspin , (33.31)

with Γ (a) = Γrves and Γ (b) = Γnspin. This divides the
states of the molecule into a number of noninteract-
ing symmetry classes, labeled by the representations of
the symmetric group. In the absence of hyperfine in-
teractions, optical transitions are possible only within
a certain symmetry class.

Thus the existence of spatial or dynamical symmetry
implies that each rovibronic wave function transforms
according to a particular representation of a sub-
group of the permutation-inversion group (called CNPI
by Bunker [33.2]). Each representation includes only
specific values of nuclear spin, corresponding to the
permutational properties of the nuclear spin wave func-
tions. The most important effect of this analysis is to
assign statistical weights or relative intensities to the
different symmetry types. For example, the symmetry
group for NH3 is D3h (including umbrella inversion),
with representations A′

1, A′
2, A′′

1, A′′
2, E′, and E′′. The

A′
1 and A′′

1 representations must be combined with
the (nonexistent) antisymmetric spin function, yield-
ing a statistical weight of 0. Similarly, A′

2 and A′′
2

combine with the symmetric I = 3/2 spin function,
with a statistical weight of 4 (i. e., 2I +1). E′ and
E′′ combine with the nonsymmetric I = 1/2 spin func-
tions, with a statistical weight of 2. This material is
discussed from various viewpoints in numerous arti-
cles and text books, of which only a few can be cited
here [33.1, 2, 8, 18, 21, 30–36]. See Chapt. 32 for addi-
tional details and examples.

Although this analysis appears rather complicated,
the selection rules that result are actually the same,
at least in simple cases, as the ones that are deriv-
able from simpler ideas. For example, for a 1Σ+

g lower
state, even J levels are permutation symmetric and
have parity +1, while odd J levels are permutation
antisymmetric and have parity −1. For a 1Σ+

u upper
state, even J levels are permutation antisymmetric and

have parity +1, while odd J levels are permutation
symmetric and have parity −1. Both the parity se-
lection rule and permutation-symmetry selection rule
independently require that ∆J = ±1 for electric-dipole
transitions. Similarly, that the permanent dipole mo-
ment of a symmetric-top molecule must lie along the
body-fixed axis replicates the ∆K = 0 selection rule
for pure-rotation transitions provided by permutational
symmetry arguments. This means that when simulating
absorption and emission spectra, the nuclear-spin wave
function can usually be ignored. The intensity alterna-
tion imposed by spin-statistics can be represented by
multiplying each wave function by the appropriate fac-
tor, for example, 0 or [(2I +1)/(2i +1)N ]1/2, where I is
the total nuclear spin, and i is the spin of one of the N
equivalent nuclei.

Group theory remains vital for understanding the rel-
ative strengths of vibrational transitions in polyatomics
(see Cotton [33.37], for example, and Sect. 33.6.2) and
becomes very interesting as interaction between vibra-
tion and rotation increases. For the purposes of this
discussion, the most important issue is identification of
which transition-moment matrix elements µK ′ K ′′ vanish
and which are related by symmetry.

33.4.4 Electron Orbital and Spin Angular
Momenta

For all molecules, the strongest transitions tend to
be those that conserve electron spin. The zero-order
transition-moment matrix is diagonal both in total spin
and in spin-projection onto the body–frame axis. In the
|ΛΣ〉 basis set for linear molecules this is expressed by

µΛ′Σ′Λ′′Σ′′ = µΛ′Λ′′δΣ′Σ′′ . (33.32)

The transition-moment tensor operator T (L)
q (body) can

connect basis functions that differ in Λ by at most L .
Allowed electric-dipole transitions thus satisfy

µΛ′Λ′′ = 0, for |Λ′ −Λ′′| > 1 . (33.33)

In the usual case that the upper and lower states each
consist of only a single value of |Λ|, there is only one
independent, nonzero, matrix element µ|Λ′|,|Λ′′| with

µ−|Λ′|,−|Λ′′| = η(−1)|Λ′|−|Λ′′|µ|Λ′|,|Λ′′| . (33.34)

See Sect. 33.8 for a discussion of spin-forbidden and
orbitally-forbidden transitions. Similar arguments and
phase relationships can be developed for polyatomic
molecules with nonzero electron spin or degenerate
vibrational or electronic states.
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33.5 Absorption Cross Sections and Radiative Lifetimes

33.5.1 Radiation Relations

Among the most important radiation relations is the con-
nection between the absorption cross section and the rate
of spontaneous emission. Einstein [33.38] introduced his
A and B coefficients to describe the rates of absorption
and emission of radiation of a collection of two-level
atoms or molecules in equilibrium with a radiation field
at the same temperature. The discussion here follows
that of Condon and Shortley [33.39], Penner [33.40],
Thorne [33.41], and Steinfeld [33.42] (with corrections).
Also see Chapts. 10, 17, and 68 of this Handbook. The
number of absorption events per unit volume per unit
time is written as

Nl Bluρ(ν) . (33.35)

While the rate of emission is

Nu Bulρ(ν)+ Nu Aul . (33.36)

In thermal equilibrium, the radiative energy density is
given by the Planck blackbody law

ρ(ν) =
(

8πhν3

c3

) (
ehν/kT −1

)−1
, (33.37)

and the ground and excited state densities satisfy a Boltz-
mann relationship,

Nu

Nl
=

(
gu

gl

)
e−hν/kT , (33.38)

where gu and gl are the degeneracies of the upper and
lower states. The requirement that the rates of absorption
and emission must be equal leads to the relations

Aul =
(

8πhν3

c3

)
Bul =

(
8πhν3

c3

)(
gl

gu

)
Blu .

(33.39)

Numerical values of the B coefficients can be derived
from the optical absorption cross section, and thus

Aul =
(

8πν2

c2

)(
gl

gu

)∫
σabs(ν) dν

=
(

8πν2

c2

)∫
σse(ν) dν . (33.40)

Finally, the expression for the absorption oscillator
strength is

fabs = (4πε0)

(
mc3

8π2ν2e2

)(
gu

gl

)
Aul

= (4πε0)
( mc

πe2

) ∫
σabs(ν) dν . (33.41)

The emission oscillator strength is simply related to
that for absorption: fem = −(gl/gu) fabs. The oscilla-
tor strength offers considerable advantages as a means
of reporting and comparing the strengths of radiative
transitions. It is dimensionless, obeys the simple sum
rule (for electric-dipole transitions)

∑

u

ful = number of electrons , (33.42)

and is directly derivable from an experimental absorp-
tion cross section even before the assignment of the
upper level has been determined (i. e., before its degen-
eracy is known).

33.5.2 Transition Moments

In many cases, the intention is to construct model
quantum mechanical wave functions for the two states
involved in the transition under study. In addition, ab
initio electronic wave functions and matrix elements
may be available (see Chapt. 31). Quantum mechan-
ics suggests the following expression for the Einstein
A coefficient (see Sect. 11.5.1):

Aul =
(

64π4ν3

3hc3

)(
1

4πε0

)(
1

gu

)

×
∑

u′,l′′,p

∣∣〈ψ′
u′

∣∣erp
∣∣ψ′′

l′′
〉∣∣2

. (33.43)

The summation is over all three optical polarization di-
rections p (i. e., r p runs over x, y, and z in the lab frame),
all degenerate components l′′ of the lower state (i. e., gl
of them), and all degenerate components u′ of the up-
per state (i. e., gu of them). This triple sum is also called
the line strength Sul . Division by the upper-level degen-
eracy corrects for the fact that the transitions should be
averaged rather than summed over the initial levels.

In practice, choosing the appropriate degeneracy to
divide by is a question of some ambiguity. For atoms,
it is sufficient to understand how the individual ma-
trix elements and the line strength were calculated. For
example, Bethe and Salpeter [33.43] use a degener-
acy of (2L +1) for Schrödinger wave functions for the
hydrogen atom, and (2J +1) for Dirac wave functions.

For molecules with internal angular momentum, i. e.,
everything other than 1Σ states of linear molecules, the
situation is much more complicated. For electric-dipole
allowed transitions in light molecules, ab initio transi-
tion moments are calculated in a body-fixed coordinate
system, ignoring spin, and not summed over anything.
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For diatomic molecules, following the work of Whit-
ing et al. [33.44, 45], the transition probability from
a single upper-state component (J ′c′) to a single lower-
state component (J ′′c′′) is written as

AJ ′c′ J ′′c′′ =
(

64π4ν3

3hc3

)(
1

4πε0

)

×

(
1

2J ′ +1

)
qv′v′′ |Re|2Sc′c′′

J ′ J ′′ . (33.44)

In this formula qv′v′′ |Re|2 represents the rotationless
contribution to the transition moment, symbolically rep-
resented as a product of a vibrational overlap (qv′v′′ , i. e.,
a Franck–Condon factor) and an electronic-only compo-
nent |Re|2 (Sect. 33.6.1). All of the rotational complexity
is absorbed into the rotational-branch strength factor
Sc′c′′

J ′ J ′′ (Sects. 33.7.2 and 33.7.3). The issue to be ad-
dressed here is how to divide numerical factors between
|Re|2 and Sc′c′′

J ′ J ′′ . One approach is to construct an estimate
for the rotationless transition probability

Av′v′′ =
(

1

N ′
c

) ∑

c′ J ′′c′′
AJ ′c′ J ′′c′′ , (33.45)

where N ′
c is the number of internal spin-orbit compo-

nents of the upper state. Whiting et al. suggest that Sc′c′′
J ′ J ′′

be normalized such that for spin-allowed transitions∑

c′ J ′′c′′
Sc′c′′

J ′ J ′′ = (
2− δ0,Λ′δ0,Λ′′

)(
2S +1

)(
2J ′ +1

)
.

(33.46)

The first factor is 1 for Σ–Σ transitions, and 2 for all oth-
ers. The final factor is replaced by

(
2J ′′ +1

)
if the sum

is over J ′ instead of J ′′. For spin-forbidden transitions
the following is a plausible extension of this sum rule,∑

c′ J ′′c′′
Sc′c′′

J ′ J ′′ = max
(
N ′

c, N ′′
c

)(
2J ′ +1

)
. (33.47)

Section 33.7.3 provides a corresponding sum rule for
polyatomic molecules. This normalization yields

Av′v′′ =
(

64π4ν3

3hc3

)(
1

4πε0

)

×

(
max

(
N ′

c, N ′′
c

)

N ′
c

)
qv′v′′ |Re|2 (33.48)

and for spin-allowed transitions, the simple spin-free
expressions for the electronic transition moments:

|Re|2 = |〈Λ|ez|Λ〉|2 (33.49)

for parallel transitions and

|Re|2 =
∣∣∣∣〈Λ+1|e 1√

2
(x + iy)|Λ〉

∣∣∣∣
2

(33.50)

for perpendicular transitions.

33.6 Vibrational Band Strengths

33.6.1 Franck–Condon Factors

The Born–Oppenheimer separation of electron and nu-
clear motion suggests that during an optical transition
between different electronic states the nuclei should
change neither their position nor momentum. This con-
cept was developed from semiclassical arguments by
Franck [33.46] and justified quantum mechanically
by Condon [33.47]. Following Herzberg [33.48] and
Steinfeld [33.42] the vibronic transition moment can be
written as

µv′v′′ = 〈
ψ′

eψ
′
v′
∣∣µ

∣∣ψ′′
e ψ′′

v′′
〉
,

=
∫

dR ψ∗′
v′ (R)ψ′′

v′′(R)

×
∫

dr ψ∗
e

′
(r, R)ψ′′

e (r, R)µ(r, R) ,

=
∫

dR ψ∗′
v′ (R)ψ′′

v′′(R)µ(R) . (33.51)

If the R-dependence of µ(R) is sufficiently weak, it
can be factored out to obtain

µv′v′′ = Re

∫
dR ψ∗′

v′ (R)ψ′′
v′′(R) , (33.52)

where Re is called the electronic transition moment. The
transition probability is proportional to the square of the
above, which is usually written as

I ≈ qv′v′′ R2
e , (33.53)

where

qv′v′′ =
∣∣∣∣
∫

dR ψ∗′
v′ (R)ψ′′

v′′(R)

∣∣∣∣
2

, (33.54)

the square of the overlap between initial and final vi-
brational wave functions, is called the Franck–Condon
factor.

The Franck–Condon factors satisfy the sum rule
∑

v′
qv′v′′ =

∑

v′′
qv′v′′ = 1 (33.55)
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provided the summations include the continuum vibra-
tional wave functions above the dissociation limits. The
Franck–Condon approach also can be used to calculate
intensities and cross sections for bound–free [33.49] and
free–free [33.50] emission and absorption.

In some cases the variation of µ(R) is significant.
Calculation of the effect on the intensities can usu-
ally be handled by the r-centroid method in which the
expression

r̄v′v′′ =
〈
ψ′

v′
∣∣R

∣∣ψ′′
v′′

〉

〈ψ′
v′ |ψ′′

v′′ 〉 (33.56)

is used to calculate an effective internuclear dis-
tance for the transition. The transition strength is then
proportional to qv′v′ |µ(r̄v′v′′)|2. An advantage of this
formulation is that the vibrational overlaps can be calcu-
lated from energy information only, before the transition
moment function is known and before the transition
strengths are investigated experimentally. The quanti-
tative accuracy of the r-centroid method for transition
moments that are not linear in the internuclear distance,
has been addressed by a considerable literature, which
has been summarized by McCallum [33.51].

A second complication arises from the fact that the
vibrational wave functions themselves depend paramet-
rically on the rotational angular momentum. Calculation
of rotationally-dependent Franck–Condon factors is de-
scribed by Dwivedi et al. [33.52] who also discuss the
r-centroid method.

33.6.2 Vibrational Transitions

Vibrational transitions derive their strength from the
variation of the “permanent” dipole moment of the

molecule as a function of geometry or internuclear coor-
dinates. As described by several authors [33.31, 32, 34,
53] one can expand the dipole moment as a power series
in the internal-Cartesian or normal-mode coordinates

Mxyz(Q) = M0
xyz +

∑

i

(
∂Mxyz

∂Qi

)
Qi +· · ·

(33.57)

and calculate intensities from a formula like

I ≈ ∣∣〈ψv′
1
ψv′

2
· · · ∣∣M(Q)

∣∣ψv′′
1
ψv′′

2
· · · 〉∣∣2

. (33.58)

For homonuclear diatomic molecules, the dipole mo-
ment vanishes identically, so there is no rovibrational
spectrum. The dipole moment for heteronuclear di-
atomics is often close to linear in the internuclear
distance. The harmonic oscillator model suggests that
transitions with ∆v = ±1 are the strongest, with inten-
sities approximated by

Iv+1,v ≈
∣∣∣∣

dM

dR

∣∣∣∣
2

(v+1) . (33.59)

Overtone bands, i. e., with |∆v| > 1, are observed,
as dramatically illustrated by the ∆v = 4, 5 emissions
from the OH radical observed from the Earth’s night
sky [33.54].

For polyatomic molecules, overtone and combina-
tion bands are often quite strong. The presence or
absence of which is used to establish the symmetries
of the vibrational modes. In general, it is difficult
to construct quantitative vibrational intensity formu-
las with only a few parameters that can be inferred
experimentally.

33.7 Rotational Branch Strengths

33.7.1 Branch Structure and Transition Type

The overall rotational structure of a molecular transi-
tion is determined by the relative values and phases
of the body–frame transition-moment matrix elements,
the relative values and phases of coefficients in the ex-
pansion of the upper-state and lower-state component
wave functions over the angular-momentum-projection
basis functions, the energy separations between the
components, and the relative values and phases of the
vector-coupling coefficients. In simple cases, each lower
component might be connected to only a single up-
per component [Hund’s case (b) or symmetric tops],

or ∆J = ±1 (P- and R-branches) may dominate over
∆J = 0 (Q-branches).

For diatomic molecules, symmetry arguments are
used to divide the components into the two parity classes
e and f . For electric dipole transitions, the selection rules
from Sect. 33.4.2 imply that

(
N ′

e N ′′
e + N ′

f N ′′
f

)
P- and R-branches

(
N ′

e N ′′
f + N ′

f N ′′
e

)
Q-branches (33.60)

are expected, where Ne and N f indicate the number of
components of each parity class (Ne and N f differ by
no more than one). Rotational branches are labeled with
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the notation ∆R∆Jc′c′′ , using symbols P for −1, Q for 0,
and R for +1. ∆R indicates the “apparent” change in
mechanical rotational angular momentum (i. e., energy)
[see Hund’s case (b) in Sect. 33.7.4] and ∆J indicates
the “actual” change (i. e., quantum mechanical). The
labels c′c′′ indicate the components involved. Thus a
PQ21 branch is expected to be “red shaded” (∆R = −1)
with ∆J = 0 involving the second component of the
upper state and the first (lowest) component of the lower
state. The notation PQ21(J ) [or sometimes PQ21(R =
N ) for Σ lower states] identifies an individual rotational
line and specifies the rotational quantum number of the
lower state involved in the transition. If the upper- and
lower-state component numbers are the same, one of
them may be dropped. Thus P22 is sometimes written
as P2.

For symmetric top molecules, the rotational
branches are labeled ∆JK (e.g., P1). For asymmetric
tops, the branches are labeled by ∆J∆K−1,∆K1 , where
K−1 and K1 are the prolate- and oblate-limit angular
momenta projections (described in Sect. 33.3.2).

The transition dipole moment commonly lies paral-
lel or perpendicular to the body–frame axis. In the former
case, µK ′ K ′′ vanishes for K ′ �= K ′′, and in the latter for
K ′ = K ′′. Thus parallel bands correspond to ∆K = 0
transitions, while perpendicular bands have ∆K = ±1.
As enforced by the vector-coupling coefficients or Hönl–
London factors described below, for low values of K
(e.g., diatomics), ∆K = 0 implies strong ∆J = ±1 (P
and R) branches and weak ∆J = 0 (Q) branches. On
the other hand, ∆K = ±1 leads to Q-branches that
are approximately twice as strong as either the P- or
R-branches.

33.7.2 Hönl–London Factors

The matrix model Hamiltonians for the upper and lower
states have been diagonalized, yielding the wave func-
tions

ψ J ′ M′
c′ =

∑

K ′
bK ′

J ′c′

((
2J ′ +1

)

8π2

)1/2

× D∗J ′
M′ K ′(lab)χK ′(body) (33.61)

and

Φ J ′′ M′′
c′′ =

∑

K ′′
aK ′′

J ′′c′′

((
2J ′′ +1

)

8π2

)1/2

× D∗J ′′
M′′ K ′′(lab)ξK ′′(body) . (33.62)

In these expressions, the designations K ′ and K ′′ are
slightly symbolic. They represent the body–frame pro-
jection of the total angular momentum and also a running
index over basis functions. For complicated cases,
more than one basis function can have a given value
of K .

Following Sect. 33.2.3, the rotational branch
strength is then written as

Sc′c′′
J ′ J ′′

=
∑

pM′ M′′

∣∣〈ψ J ′ M′
c′

∣∣T (L)
p (lab)

∣∣Φ J ′′ M′′
c′′

〉∣∣2

= (2J ′′ +1)

∣∣∣∣
∑

q′ K ′ K ′′
b∗K ′

J ′c′aK ′′
J ′′c′′

〈
χK ′

∣∣T (L)
q (body)

∣∣ξK ′′
〉

×
〈
J ′′K ′′, Lq

∣∣J ′K ′〉
∣∣∣∣
2

(33.63)

or

Sc′c′′
J ′ J ′′ =

∣∣∣∣∣
∑

K ′ K ′′
b∗K ′

J ′c′aK ′′
J ′′c′′µK ′ K ′′ζ

(
J ′,K ′, J ′′,K ′′)

∣∣∣∣∣

2

,

(33.64)

where

µK ′ K ′′ = 〈
χK ′

∣∣T (L)
q (body)

∣∣ξK ′′
〉
θ
(
K ′′ − K ′) (33.65)

is the body–frame transition-moment matrix introduced
in Sect. 33.3.4, with relative values that are hypothesized
based on interpretation of the nature of the transition,
calculated from ab initio wave functions, or inferred
by fitting the observed rotational branch strengths. The
Clebsch–Gordan expression

ζ
(
J ′, K ′, J ′′, K ′′)

= (
2J ′′ +1

)1/2〈
J ′′K ′′, L K ′ − K ′′∣∣J ′K ′〉

× θ
(
K ′′ − K ′)θ

(
J ′ − J ′′) (33.66)

represents the transformation of the radiation field from
the laboratory-frame to the body–frame, also related
to the “direction cosines” used by many authors. The
additional phase factors

θ(k) = sgn(k) =
⎧
⎨

⎩
+1 k ≥ 0

−1 k < 0
(33.67)

have been included here to make the signs and symme-
try relations of µK ′ K ′′ and ζ

(
J ′, K ′, J ′′, K ′′) agree with

those already in use [33.9, 44, 55, 56]. They are related
to the choice of the leading signs when T+ and T− are
expressed as ±(Tx + iTy) and ±(Tx − iTy). Their inclu-
sion has no effect for spin-allowed transitions with only
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one source of transition probability, e.g., purely parallel
or perpendicular.

In the usual case of electric-dipole (or magnetic-
dipole) radiation (i. e., L = 1), ζ2 is the well-known
Hönl–London factor [33.57]. ζ

(
J ′, K ′, J ′′, K ′′) is

a real, signed quantity: negative for ∆J∆K > 0; or
∆J = ∆K = 0 and K < 0; otherwise positive [33.9].

Setting L = 2 provides intensity formulas for
electric-quadrupole [33.58], Raman [33.59], and two-
photon [33.60,61] transitions. Additional Rayleigh-like
terms can appear for K ′ = K ′′ �= 0. Halpern et al. [33.61]
also give formulas for three-photon transitions in
diatomics, expressed in terms of Clebsch–Gordan co-
efficients with L = 3 and L = 1 (for |∆Ω| ≤ 1).

33.7.3 Sum Rules

The orthonormality relations for component eigenvec-
tors

∑

c′
b∗K ′

J ′c′bK
J ′c′ = δK ′,K , (33.68)

∑

c′′
a∗K ′′

J ′′c′′aK
J ′′c′′ = δK ′′,K (33.69)

can be used to construct the sum rule
∑

c′c′′
Sc′c′′

J ′ J ′′ =
∑

K ′ K ′′

∣∣µK ′ K ′′ζ
(
J ′, K ′, J ′′, K ′′)∣∣2

.

(33.70)

Finally, the orthonormality relations of the Clebsch–
Gordan coefficients result in

∑

J ′c′c′′
Sc′c′′

J ′ J ′′ = (
2J ′′ +1

) ∑

K ′ K ′′

∣∣µK ′ K ′′
∣∣2

,

(33.71)
∑

J ′′c′c′′
Sc′c′′

J ′ J ′′ = (
2J ′ +1

) ∑

K ′ K ′′

∣∣µK ′ K ′′
∣∣2

.

(33.72)

As discussed in Sect. 33.5.2, it is convenient to have the
µK ′ K ′′ matrix elements consist of numbers that repre-
sent the nature of the transition but not its strength, the
latter being expressed by the “vibrational” (qv′v′′ ) and
“electronic” (Re) contributions. Following Sect. 33.5.2,
for diatomic molecules, the “orientational” part µK ′ K ′′
is taken to have a fixed sum rule

∑

K ′K ′′
|µK ′ K ′′ |2 = max

(
N ′

c, N ′′
c

)
, (33.73)

where N ′
c is the number of components (K ′ values, or

basis functions) for the upper state, and N ′′
c is the num-

ber of components in the lower state. For polyatomic
molecules, the sum rule can be written as

(2J +1)2(µ2
a +µ2

b +µ2
c

)
max

(
N ′

c, N ′′
c

)
, (33.74)

where

µ2
a +µ2

b +µ2
c = |µ+|2 +|µ−|2 +|µ0|2 = 1 (33.75)

and N ′
c and N ′′

c are the numbers of spin-electronic-
vibrational components in the upper and lower states,
respectively. Also see Whiting et al. [33.44, 45] and
Brown et al. [33.7].

33.7.4 Hund’s Cases

In diatomic molecules, several limiting cases are useful
as short-hand or first-approximation concepts for classi-
fication of energy levels and rotational branch strengths.
These are called the Hund’s cases [33.62–64]. They are
distinguished by the extent to which the electron orbital
and spin angular momenta are rigidly attached to the
tumbling molecular frame, i. e., whether Λ, Σ, and S
are good quantum numbers. Hund’s cases are discussed
in many journal articles and in every textbook dealing
with the rotational structure of diatomic spectra. An ap-
pealing recent description is provided by Nikitin and
Zare [33.65].

In most works, the emphasis has been on finding
a favorable zero-order approximation for perturbation
expansion of energy levels. The advance of precision
measurement of transition energies and the availabil-
ity of sophisticated parametrical matrix models and fast
computers on which to realize them, has reduced the
importance of Hund’s cases for actual computations. In
particular, the need to derive and implement numerous
explicit energy and intensity formulas leads to unfor-
tunate transcription errors. Nevertheless, they remain
of value for qualitative and pedagogical understand-
ing, especially for estimates of the relative intensities
of rotational branches.

Hund’s case (a) describes the situation in which
Λ and Σ are separately well-defined. This is a common
case in which the separation between electronic states,
i. e., different values of |Λ|, is larger than the spin-orbit
interaction, which in turn, is larger than the separation
between rotational levels. At low J , there are (2S +1)

pairs of nearly-degenerate energy levels separated from
each other by the spin orbit constant: E ≈ AΛΣ +
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BJ(J +1). The wave functions are of the form

ψ JM
Ω± = 1√

2

(
(2J +1)

8π2

)1/2

×
[

D∗J
MΛ+Σ |Λ,Σ〉± D∗J

M−Λ−Σ |−Λ,−Σ〉
]

= 1√
2

[|Λ,Σ; J, M,Ω〉
± |−Λ,−Σ; J, M,−Ω〉] , (33.76)

with only two nonzero expansion coefficients aK
Jc. If

both the upper and lower states are well described by
Hund’s case (a), then each lower component is optically
connected only to the upper components with the same
value of |Σ|. Then

SΩ′Ω′′
J ′ J ′′ = (

2J ′′ +1
)∣∣〈J ′′Ω′′, 1Ω′ −Ω

∣∣J ′Ω′〉∣∣2
,

(33.77)

with Ω′′ = Λ′′ +Σ and Ω′ = Λ′ +Σ.
Hund’s case (b) indicates that Λ is well-defined,

but spin-orbit coupling is weak. The components cor-
respond to well-defined values of N = J − S, ranging
from |J − S| to (J + S), with energies approximated by
E ≈ BN(N +1), and wave functions of the form

ψ JM
N± =

∑

Σ

(−1)S+Σ〈J −Ω, SΣ|N −Λ〉

×
1√
2
[|Λ,Σ; J, M,Ω〉

± |−Λ,−Σ; J, M,−Ω〉] . (33.78)

This equation is derivable from Mizushima’s equation
(2-3-26) [33.14] and Zare’s equations (2.8), (2.26), and
(3.105) [33.5], using the lab-to-body transformation

|SMS〉(lab) =
∑

Σ

D∗S
MSΣ(φθχ)|SΣ〉(body) . (33.79)

It disagrees with Judd’s problem 9.1 [33.66] by a phase
factor (−1)J+2S+Σ−N but agrees with Mizushima’s
expansion of a 3Π state [33.14, p. 287] if the Clebsch–
Gordan coefficients are taken from Condon and Shortley
[33.39, p. 76].

If both the upper and lower states are well de-
scribed by Hund’s case (b), these wave functions can
be substituted into the general rotational-branch strength
equations above. Following Edmonds [33.67, (6.2.8) and
(6.2.13), and Table 5] yields the square of a product of
Clebsch–Gordan and Racah coefficients

SN ′ N ′′
J ′ J ′′ = (

2J ′′ +1
)(

2J ′ +1
)(

2N ′′ +1
)

×
∣∣〈N ′′Λ′′, 1Λ′ −Λ′′∣∣N ′Λ′〉

× W
(
N ′, J ′′, N ′′, J ′; S, 1

)∣∣2
. (33.80)

The Clebsch–Gordan coefficient enforces the case
(b) selection rule ∆N = 0,±1, while the Racah
coefficient provides the ∆J = ∆N propensity rule,
which becomes more precise as N increases. A sim-
ilar propensity rule, ∆F = ∆J , is common for
transitions between hyperfine components (see also Fe-
menias [33.68]).

Hund’s case (c) corresponds to the situation in which
spin-orbit coupling is so strong that each level described
by the projection Ω actually consists of multiple val-
ues of |Λ| (e.g., mixing of Σ and Π states) or multiple
values of S (e.g., mixing of singlet and triplet spins).
This limiting case is formally similar to Hund’s case
(a), but no assumptions can be made about the rela-
tive magnitudes of transition-moment matrix elements
µΩ′Ω′′ . Any of which can be nonzero for |∆Ω| ≤ 1, for
example

S
Ω′+Ω′′±
J ′ J ′′ = 1

4

∣∣µΩ′Ω′′ζ
(
J ′,Ω′, J ′′,Ω′′)

±µΩ′−Ω′′ζ
(
J ′,Ω′, J ′′,−Ω′′)

+µ−Ω′Ω′′ζ
(
J ′,−Ω′, J ′′,Ω′′)

±µ−Ω′−Ω′′ζ
(
J ′,−Ω′, J ′′,−Ω′′)∣∣2

.

(33.81)

The symmetry (sign) relations between µΩ′Ω′′ζ
(
J ′,Ω′,

J ′′,Ω′′) and µ−Ω′−Ω′′ζ
(
J ′,−Ω′, J ′′,−Ω′′) determine

whether this transition occurs only for ∆J = ±1
(P- and R-branches) or only for ∆J = 0 (Q-
branches).

The interest and complexity of Hund’s case (c)
were exemplified by a seminal work by Kopp and
Hougen [33.69], who considered Ω′ = 1/2, Ω′′ = 1/2
transitions, under the assumption that both states could
consist of arbitrary mixtures of 2Σ1/2 and 2Π1/2
character. Each of the six rotational branches shows
constructive or destructive interference of parallel
(∆Ω = 0) and perpendicular (∆Ω = ±1) contributions.
Hund’s case (c) also describes spin-orbit mixing col-
lisions [33.70] or dissociation to specific spin-orbit
limits [33.71–73].

Hund’s case (d) arises in the investigation of
Rydberg series [33.74], in which the separation be-
tween Σ and Π from the same orbital configuration
approach each other as the principal quantum num-
ber (n) increases. Spin-orbit coupling between these
projections also diminishes. The eigenfunction compo-
nents correspond to well-defined values of R = J − L,
ranging from |J − L| to (J + L), with energies approx-
imated by E ≈ BR(R +1), and wave functions of the
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form

ψ JM
RL =

∑

Λ

(−1)L+Λ〈J −Λ, LΛ|R0〉|LΛ; JMΛ〉 .

(33.82)

Carroll [33.74] used intensity formulas provided by
Kovacs [33.58] to analyze, by spectral simulation, the
4p–15p

(1
Σ+

u and 1Πu
)

Rydberg states of N2 ex-
cited from the ground X1Σ+

g . Three strong Q-form
branches survive, correspondingto R′ = J ′′, two aris-
ing from Π ← Σ and one from Σ ← Σ case (a)
branches. The remaining O-form (R′ = J ′′ −2) and S-
form (R′ = J ′′ +2) branches fade rapidly as n increases.
With the phase conventions used here, this situation
corresponds to body–frame transition matrix elements
satisfying

µ00 = µ−10 = −µ10 . (33.83)

In the opposite case, corresponding to a parity change of
the parent-ion core [33.73], two of the Q-form branches
are extinguished, while one Q-form, one O-form, and
one S-form branch remain. The transition matrix elem-
ents would satisfy

µ00 = 0 , µ−10 = µ10 . (33.84)

Hund’s case (d) polyatomics are also known [33.8].
Hund’s case (e) would correspond to a situation

in which L and S are strongly coupled to each other,
but neither is strongly coupled to the internuclear
axis. No examples are known for bound states of
molecules.

33.7.5 Symmetric Tops

For transitions between nondegenerate vibronic states,
the transition moment must lie along the principal top
axis, leading to the selection rule ∆K = 0. Otherwise,
Hougen’s convenient quantum number [33.33] G = Λ+
l − K , provides the selection rule ∆G = 0,±n (for an

n-fold major symmetry axis) (Sects. Section 33.3.2, Sec-
tion 33.4.3, and Chapt. 32). Transitions with ∆G = ±n
are much weaker than those with ∆G = 0 and are not
calculable from a simple formula. Branch intensities
can be calculated with the Hönl–London formulas of
Sect. 33.7.2.

33.7.6 Asymmetric Tops

In general, no assumptions can be made about
the orientation of the transition moment. The vec-
tor representations (µx, µy, µz), (µa, µb, µc), and
(µ0, µ+1, µ−1) can have any combination of indepen-
dent nonzero values. It is common that one of the
(µa, µb, µc) values is significantly larger than the others,
especially for planar molecules with a two-fold symme-
try axis. In this case one obtains a type A, B, or C band,
if µa, µb, µc dominates, respectively [33.31, 75]. The
tradition of analytic calculation of line strengths from
explicit representations of wave functions and transition
moments leads to formulas of considerable complexity,
with somewhat restrictive assumptions [33.35,36,76]. In
the more general notation of Sect. 33.7.2, the rotational
line strength can be written as

Sτ ′τ ′′
J ′ J ′′ =

∣∣∣∣
∑

K ′ K ′′
b∗K ′

J ′τ ′aK ′′
J ′′τ ′′

(
µ0δK ′ K ′′ +µ+δK ′ K ′′+1

+µ−δK ′ K ′′−1
)
ζ
(
J ′, K ′, J ′′, K ′′)

∣∣∣∣
2

,

(33.85)

where

µ0 = µc, |µ+| = |µ−| ,

|µ+|2 +|µ−|2 = µ2
a +µ2

b . (33.86)

Papousek and Aliev [33.18] and Zare [33.5] follow the
present formulation, but with somewhat less generality
with respect to wave function expansion coefficients or
transition moment components.

33.8 Forbidden Transitions

33.8.1 Spin-Changing Transitions

The formalism presented above permits simulation of
any allowed transition or forbidden transitions medi-
ated by spin-orbit or spin-spin perturbations, or any
perturbation that is diagonal in Ω. For spin-allowed
transitions, the transition moment matrix is taken to be

diagonal in and independent of the spin projection, so
that

µΛ′Σ′Λ′′Σ′′ = µΛ′Λ′′δΣ′Σ′′ . (33.87)

For forbidden transitions, or complicated Hund’s case
(c) mixings, the transition moment matrix elements
can be considered as independent variable parameters,
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limited only by the symmetry constraint

µ−Ω′−Ω′′ = η(−1)Ω
′−Ω′′

µΩ′Ω′′ , (33.88)

and the fact that terms with |∆Ω| > 1 will be
multiplied by zero. Alternatively, a specific set of can-
didate perturbers can be selected, and the Λ- and
Σ-dependence of their contributions to the transition-
moment matrix evaluated explicitly. For example,
first-order spin-orbit mixing would lead to terms of the
form

µS′S′′
Λ′Σ′Λ′′Σ′′

=
∑

Λ

[
µS′S′

Λ′Σ′ΛΣ′

〈
S′ΛΣ′∣∣HSO

∣∣S′′Λ′′Σ′′〉

∆E′′

+
(〈

S′Λ′Σ′∣∣HSO
∣∣S′′ΛΣ′′〉

∆E′

)
µS′′S′′

ΛΣ′′Λ′′Σ′′

]
.

(33.89)

However, care must be taken in reducing these matrix el-
ements using the Wigner–Eckart theorem, for example,
following Lefebvre-Brion and Field [33.55], in order to
satisfy the ∆Ω = 0 requirement for matrix elements of
the rotationless Hamiltonian.

33.8.2 Orbitally-Forbidden Transitions

Even if the upper and lower states share the same
value of electron spin, the transition may still be for-
bidden. The change in orbital angular momentum may
be too large, |∆Λ| > 1, or a change in reflection parity,
Σ− → Σ+, may cause the zero-order transition ma-
trix elements to vanish. Spin-orbit mixing with other
2S+1Λ states, as described above, is usually the largest
source of transition probability. In addition, terms in
the Hamiltonian of the form J · L lead to contributions
to the transition strength that increase with J , and that
may mix-in higher values of Ω than were present in

the zero-order ΛΣ basis set for the upper and lower
states. This situation can be represented by general-
izing the formula from Sect. 33.7.2, following Huestis
et al. [33.23],

Sc′c′′
J ′ J ′′ =

∣∣∣∣
∑

K ′ K ′′
b∗K ′

J ′c′aK ′′
J ′′c′′

×
1∑

i=−1

µ
(i)
K ′ K ′′ζ(i)(J ′, K ′, J ′′, K ′′)

∣∣∣∣
2

,

(33.90)

where µ
(0)

K ′ K ′′ is the rotationless contribution (µK ′ K ′′
from Sect. 33.7.2) and µ

(±1)

K ′ K ′′ are the new rotation-
assisted terms. The new reflection-symmetry rule
is

µ
(i)
−K ′−K ′′ = η(−1)K ′−K ′′+iµ

(−i)
K ′ K ′′ . (33.91)

The revised square-root Hönl–London factors are

ζ(0)
(
J ′, K ′, J ′′, K ′′) = ζ

(
J ′, K ′, J ′′, K ′′) (33.92)

(from Sect. 33.7.2) and

ζ(±1)
(
J ′, K ′, J ′′, K ′′)

= 1

2

{[
J ′(J ′ +1

)− K ′(K ′ ∓1
)]1/2

× ζ
(
J ′, K ′ ∓1, J ′′, K ′′)

+ [
J ′′(J ′′ +1

)− K ′′(K ′′ ±1
)]1/2

× ζ
(
J ′, K ′, J ′′, K ′′ ±1

)}
. (33.93)

As in Sect. 33.7.2 the symbols K ′ and K ′′ represent Λ′Σ′
and Λ′′Σ′′ when used as labels, and Ω′ and Ω′′ when
used as numbers (a distinction that is relevant only when
S ≥ |Λ| and Λ �= 0). This formulation is more symmetric
than that proposed by Huestis et al. [33.23], in that it
explicitly allows for either the upper or lower state to be
mixed by rotation (of significance only for low J and
∆Λ > 1).

33.9 Recent Developments

Added by Mark M. Cassar. Astronomical sky spectra
are important for an understanding of processes both in
Earth’s and other terrestrial environments. These spec-
tra are the background spectra obtained through the slit
of a spectrometer while excluding the object of primary
interest to the astronomer – the star, galaxy, etc. The
sky spectrum is subsequently subtracted from the object
spectrum so that the final product contains no emis-

sions from extraneous sources – nightglow, zodiacal
light, and the light of other stellar objects. This opera-
tion then leaves the astronomer with purer astronomical
spectra, which can then be compared to theoretical
transition probability calculations to identify emission
sources. This procedure has recently been used to iden-
tify the atomic oxygen green line in the Venus night
airglow [33.77], which relied on an understanding of
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molecular oxygen emissions. In addition, interpretation
of the intensities of molecular oxygen emissions also
furthers the understanding of the elementary processes
occurring in the Earth’s atmosphere [33.78].

Two recent studies have focused on the radiative
properties of the CaN and 39K85Rb molecules. In the
former study, the radiative transition probabilities and
lifetimes for the A4Π− X4Σ− and B4Σ− − X4Σ−
band systems were calculated [33.79]. These results
will in turn facilitate future spectroscopic studies of
CaN showing the essential interplay between theory
and experiment, which is required for a deeper un-

derstanding of these processes. (Radiative properties
are sensitive to electronic coupling schemes and to
configuration interaction, and thus present an impor-
tant testing ground for theoretical models [33.80, 81].)
The second study provides quantitative estimates for
the radiative cooling of heteronuclear translationally
ultracold molecules [33.82, 83]. By calculating the ra-
diative transition probabilities for 39K85Rb, which lead
to the radiative lifetime through the total Einstein A
coefficient, it has been shown that under appropriate
laboratory conditions such a cooling process is not
relevant [33.84].
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