
Relativistic At22. Relativistic Atomic Structure

Relativistic quantum mechanics is required for
the description of atoms and molecules whenever
their orbital electrons probe regions of space with
high potential energy near the atomic nuclei.
Primary effects of a relativistic description include
changes to spatial and momentum distributions;
spin–orbit interactions; quantum electrodynamic
corrections such as the Lamb shift; and vacuum
polarization. Secondary effects in many-electron
systems arise from shielding of the outer electrons
by the distributions of electrons in penetrating
orbitals; they change orbital binding energies and
dimensions and so modify the order in which
atomic shells are filled in the lower rows of the
Periodic Table.

Relativistic atomic and molecular structure
theory can be regarded as a simplification of the
fundamental description provided by quantum
electrodynamics (QED). This treats the atom
or molecule as an assembly of electrons and
atomic nuclei interacting primarily by exchanging
photons. This model is far too difficult and
general for most purposes, and simplifications
are required. The most important of these is the
representation of the nuclei as classical charge
distributions, or even as point particles. Since the
motion of the nuclei is usually slow relative to the
electrons, it is often adequate to treat the nuclear
motion nonrelativistically, or even to start from
nuclei in fixed positions, correcting subsequently
for nuclear motion.

The emphasis in this chapter is on relativistic
methods for the calculation of atomic structure
for general many-electron atoms based on
an effective Hamiltonian derived from QED in
the manner sketched in Sect. 22.2 below. An
understanding of the Dirac equation, its solutions
and their numerical approximation, is essential
material for studying many-electron systems,
just as the corresponding properties of the
Schrödinger equation underpin Chapt. 21. We
shall use atomic units throughout. Where it aids
interpretation we shall, however, insert factors
of c, me and �. In these units, the velocity of

light, c, has the numerical value
α−1 = 137.035 999 11(46), where α is the fine
structure constant.
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22.1 Mathematical Preliminaries

22.1.1 Relativistic Notation:
Minkowski Space-Time

An event in Minkowski space-time is defined by
a 4-vector x = {xµ} (µ = 0, 1, 2, 3) where x0 = ct is
the time coordinate and x1, x2, x3 are Cartesian coordi-
nates in 3-space. The bilinear form (The Einstein suffix
convention, in which repeated pairs of Greek subscripts
are assumed to be summed over all values 0, 1, 2, 3, will
be used where necessary in this chapter.)

(x, y) = xµgµν yν , (22.1)

in which

g = (
gµν

) = (
gµν

) =

⎛

⎜⎜⎜
⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞

⎟⎟⎟
⎠

(22.2)

are called metric coefficients, defines the metric of
Minkowski space.

22.1.2 Lorentz Transformations

Lorentz transformations are defined as linear map-
pings Λ such that

(Λx,Λy) = (x, y) (22.3)

so that

gµν = Λρ
µ gρσ Λσ

ν . (22.4)

This furnishes 10 equations connecting the 16 compo-
nents of Λ; at most 6 components can be regarded as
independent parameters. The (infinite) set of Λ matri-
ces forms a regular matrix group (with respect to matrix
multiplication) called the Lorentz group, L, designated
O(3,1) [22.1, 2].

22.1.3 Classification of Lorentz
Transformations

Rotations
Lorentz transformations with matrices of the form

Λ =
(

1 0�

0 R

)

, (22.5)

where R ∈ SO(3) is an orthogonal 3 × 3 matrix with de-
terminant +1, and 0 is a null three dimensional column
vector, correspond to three-dimensional space rotations.
They form a group isomorphic to SO(3).

Boosts
Lorentz transformations with matrices of the form

Λ =
(

γ(v) γ(v)v�

γ(v)v I3 + (γ(v)−1)nn�

)

, (22.6)

with v = vn a three dimensional column vector, |n| = 1,
v = |v| and γ(v) = (1−v2/c2)−1/2, are called boosts.
The matrix Λ describes an ‘active’ transformation from
an inertial frame in which a free classical particle is at
rest to another inertial frame in which its velocity is v.

Boosts form a submanifold of L though they do not
in general form a subgroup. However, the set of boosts
in a fixed direction n form a one-parameter subgroup.

Discrete Transformations
The matrices

P =
(

1 0�

0 −I3

)

, T =
(

−1 0�

0 I3

)

with PT = −I4

(22.7)

are called discrete Lorentz transformations and form
a subgroup of the Lorentz group along with the iden-
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Relativistic Atomic Structure 22.1 Mathematical Preliminaries 327

tity I4. The matrix P performs space or parity inversion;
the matrix T performs time reversal.

Infinitesimal Lorentz Transformations
The proper Lorentz transformations close to the identity
are of particular importance: they have the form

Λµ
ν = δµ

ν + εωµ
ν +· · · ,

(Λ−1)µν = δµ
ν − εωµ

ν +· · · , (22.8)

where

ωµν = −ωνµ

and ε is infinitesimal. The infinitesimal generators, com-
ponents ωµν, can be treated as quantum mechanical
observables: see Sect. 22.2.1.

The Lorentz Group
The Lorentz group L is a Lie group with a six-
dimensional group manifold which has four connected
components, namely

L
↑
+ ≡

{
Λ ∈ L |Λ0

0 ≥ 1, detΛ = +1
}

, (22.9)

L↑
− ≡

{
Λ ∈ L |Λ0

0 ≥ 1, detΛ = −1
}

= PL↑
+ ,

(22.10)

L
↓
+ ≡

{
Λ ∈ L |Λ0

0 ≤ 1, detΛ = −1
}

= TL
↑
+ ,

(22.11)

L
↓
+ ≡

{
Λ ∈ L |Λ0

0 ≤ 1, detΛ = +1
}

= PTL
↑
+ .

(22.12)

The connected component L
↑
+ containing the identity is

a Lie subgroup of L called the proper Lorentz group. All
its group elements can be obtained from boosts and ro-
tations. It is not simply connected because the subgroup
of rotations is not simply connected. The group is also
noncompact as the subset of boosts is homeomorphic
to R3.

These topological properties of L
↑
+ are essential for

understanding the properties of relativistic wave equa-
tions. In particular the multiple connectedness forces
the introduction of spinor representations, and to the
appearance of half-integer angular momenta or spin.

22.1.4 Contravariant and Covariant Vectors

Contravariant 4-vectors (such as events x) transform
according to the rule

aµ �→ aµ′ = Λµ
νaν . (22.13)

Covariant 4-vectors can be formed by writing

aµ = gµνaν , (22.14)

so that

aµaµ = aµgµνaν = (a, a) (22.15)

is invariant with respect to Lorentz transformations.
Similarly, we can construct a contravariant 4-vector from
a covariant one by writing

aµ = gµνaν . (22.16)

The transformation law for covariant vectors is there-
fore

aµ �→ a′
µ = [Λ−1]νµaν . (22.17)

The most important example of a covariant vector is
the 4-momentum operator

pµ = i
∂

∂xν
µ = 0, 1, 2, 3 . (22.18)

From this we derive the contravariant 4-momentum
operator with components pµ by writing

pµ = gµν pν

=
(

i
∂

∂x0 ,−i
∂

∂x1 ,−i
∂

∂x2 ,−i
∂

∂x3

)
, (22.19)

in agreement with nonrelativistic expressions.

22.1.5 Poincaré Transformations

More generally, a Poincaré transformation is obtained
by combining Lorentz transformations and space-time
translations:

Π(x) = Λx +a . (22.20)

The set of all Poincaré transformations, Π = (a,Λ),
with the composition law

(a1,Λ1)(a2,Λ2) = (a1 +Λ1a2,Λ1Λ2) , (22.21)

also forms a group, P .
Properties of the Lorentz and Poincaré groups will

be introduced as needed. For a concise account of
their properties see [22.3]. For more detail on relativis-
tic quantum mechanics in general see textbooks such
as [22.3, 4].
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328 Part B Atoms

22.2 Dirac’s Equation

We present Dirac’s equation for an electron in a classical
electromagnetic field defined by the 4-potential Aµ(x):

Covariant Form
{
γµ

[
pµ − eAµ(x)

]−m ec
}
ψ(x) = 0 . (22.22)

where

γµ(µ = 0, 1, 2, 3), are 4 × 4 matrices.

ψ(x) is a 4-component spinor wave function.

Here, and elsewhere in this chapter, identity matrices are
omitted when it is safe to do so.

Dirac Gamma Matrices

• Anticommutation relations:

γµγν +γνγµ = 2gµν .

• Standard representation:

γ 0 =
(

1 0

0 −1

)

γ i =
(

0 σ i

−σ i 0

)

i = 1, 2, 3 ,

where σi(i = 1, 2, 3) are Pauli matrices [22.1–4].

Noncovariant Form
In the majority of atomic structure calculations, a frame
of reference is chosen in which the nuclear center is taken
to be fixed at the origin. In this case it is convenient
to write Dirac’s equation in noncovariant form. Then
functions of

x = (x0, x) ,

where x0 = ct, can be regarded as functions of the time t
and the position 3-vector x, so that (22.22) is replaced
by

i
∂

∂t
ψ(x, t) = ĥDψ(x, t) (22.23)

where the scalar and 3-vector potentials are defined by

φ(x, t) = cA0(x) ,

A(x, t) =
[

A1(x), A2(x), A3(x)
]

, (22.24)

and

ĥD =
{

cα ·
[

p− eA(x, t)

]
+ eφ(x, t)+βm ec2

}

(22.25)

defines the Dirac Hamiltonian. The matrices α, with
Cartesian components

(
α1, α2, α3

)
, and β, have the

standard representation

β = γ 0 =
(

1 0

0 −1

)

(22.26)

αi = γ 0γ i =
(

0 σ i

σ i 0

)

i = 1, 2, 3 . (22.27)

22.2.1 Characterization of Dirac States

The solutions of Dirac’s equation span representations
of the Lorentz and Poincaré groups, whose infinitesimal
generators can be identified with physical observables.
The Lorentz group algebra has 10 independent self-
adjoint infinitesimal generators: these can be taken to
be the components pµ of the four-momentum (which
generate displacements in each of the four coordinate
directions); the three generators, Ji , of rotations about
each coordinate axis in space; and the pseudovector wµ.
The irreducible representations can be characterized by
invariants

(p, p) = m2
ec2 , (22.28)

(w,w) = −m2
ec2s2 = −3

4
m2

ec2 , (22.29)

where p is the momentum four-vector and s is a 3-vector
defined in terms of Pauli matrices by

si = 1

2
σi , i = 1, 2, 3 .

which can be interpreted as the electronic angular mo-
mentum (intrinsic spin) in its rest frame. For more detail
see [22.3] and the original papers [22.5, 6].

22.2.2 The Charge-Current 4-Vector

Dirac’s equation (22.22) is covariant with respect to
Lorentz (22.3) and Poincaré (22.20) transformations,
provided that there exists a nonsingular 4×4 matrix S(Λ)
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Relativistic Atomic Structure 22.3 QED: Relativistic Atomic and Molecular Structure 329

with the property

ψ′(x) = S(Λ)ψ
[
Λ−1(x −a)

]
. (22.30)

The matrices S(Λ) are characterized by the equation

S−1(Λ)γλS(Λ) = Λλ
µγµ . (22.31)

The most important observable expression required
in this chapter is the charge–current four-vector

jµ = ecψ(x)γµψ(x) , (22.32)

where the Dirac adjoint is defined by

ψ(x) = ψ†(x)γ 0 , (22.33)

and the dagger denotes spinor conjugation and transpo-
sition. Since

ψ ′(x) = ψ
[
Λ−1(x −a)

]
γ 0S(Λ)†γ 0

= ψ
[
Λ−1(x −a)

]
S−1(Λ) ,

jµ(x) transforms as a 4-vector

jµ′(x) = Λµ
ν jν(x)

by virtue of (22.31). The component j0(x) can be inter-
preted as a multiple of the charge density ρ(x),

j0(x) = ecρ(x) = ecψ(x)γ 0ψ(x) = ecψ†(x)ψ(x)
(22.34)

and the space-like components as the current density

ji(x) = ecψ(x)γ iψ(x) = ecψ†(x)αiψ(x) . (22.35)

The charge–current density satisfies a continuity equa-
tion, which in noncovariant form reads

∂ρ(x)

∂t
+

3∑

i=1

∂ ji(x)

∂xi
= 0 ,

or, in covariant notation,

∂µ jµ = 0 . (22.36)

This is readily proved by using the Dirac equa-
tion (22.22) and its Dirac adjoint. Equation (22.36) is
clearly invariant under Poincaré transformations, and
this yields the important property that electric charge is
conserved in Dirac theory.

22.3 QED: Relativistic Atomic and Molecular Structure

22.3.1 The QED Equations of Motion

The conventional starting point [22.7–10] for deriving
equations of motion in quantum electrodynamics (QED)
is a Lagrangian density of the form

L(x) = Lem(x)+Le(x)+Lint(x) . (22.37)

The first term is the Lagrangian density for the free
electromagnetic field, Fµν(x),

Lem(x) = −1

4
Fµν Fµν , (22.38)

the second term is the Lagrangian density for the
electron–positron field in the presence of the external
potential Aµ

ext(x),

Le(x) = ψ̄(x)
{
γµ

[
pµ − eAµ

ext(x)
]−mec

}
ψ(x) .

(22.39)

We assume that the electromagnetic fields are express-
ible in terms of the four-potentials by

Fµν = ∂µ Aν
tot −∂ν Aµ

tot ,

where

Aµ
tot(x) = Aµ

ext(x)+ Aµ(x)

is the sum of a four-potential Aµ
ext(x) describing the

fields generated by classical external charge–current
distributions, and a quantized field Aµ(x) which through

Lint(x) = − jµ(x)Aµ(x) , (22.40)

accounts for the interaction between the uncoupled elec-
trons and the radiation field. The field equations deduced
from (22.37) are

{
γµ

[
pµ− Aµ

ext(x)
]−mec

}
ψ(x) = γµ(x)ψ(x)Aµ(x)

∂µFµν(x) = jν(x) , (22.41)

and clearly exhibit the coupling between the fields.
Quantum electrodynamics requires the solution of

the system (22.41) when Aµ(x), ψ(x) and its adjoint
ψ̄(x) are quantized fields. This formulation is purely
formal: it ignores all questions of zero-point energies,
normal ordering of operators, choice of gauge associated
with the quantized photon field, or the need to include
(infinite) counterterms to render the theory finite.

22.3.2 The Quantized Electron–Positron
Field

Furry’s bound interaction picture of QED [22.7, 11] ex-
ploits the fact that a one-electron model is often a good
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330 Part B Atoms

starting point for a more accurate calculation of atomic
or molecular properties. The electrons are described by
a field operator

ψ(x) =
∑

Em>EF

amψm(x)+
∑

En<EF

b†nψn(x) ,

(22.42)

where EF ≥ −mc2 is a “Fermi level” separating the
states describing electrons (bound and continuum) from
the positron states (lower continuum) in the chosen time-
independent model potential V(r). Equation (22.42) is
written as if the spectrum were entirely discrete, as in
finite matrix models; more generally, this must be re-
placed by integrals over the continuum states together
with a sum over the bound states. We assume that the
amplitudes ψm(x) are orthonormalized (which can be
achieved, for example, by enclosing the system in a finite
box). The operators am and a†m respectively annihilate
and create electrons, and bn and b†n perform the same
role for vacancies in the “negative energy” states, which
we interpret as antiparticles (positrons). These operators
satisfy the anticommutation rules (see Sect. 6.1.1)

[
am, a†m′

]
= δm,m′ ,

[
bn, b†n′

]
= δn,n′ , (22.43)

where [a, b] = ab+ba. All other anticommutators van-
ish. The operator representing the number of electrons
in state m is then

Nm = a†mam , (22.44)

having the eigenvalues 0 or 1; the states of a system of
noninteracting electrons and positrons can therefore be
labeled by listing the occupation numbers, 0 or 1 of the
one-electron states participating.

We define the vacuum state as the (reference)
state |0〉 in which Nm = Nn = 0 for all m, n, so that

am |0〉 = bn|0〉 = 0 . (22.45)

The operator representing the total number of particles
is given by

N =
∫

ψ†(x)ψ(x) dx =
∑

Em>EF

Nm +
∑

En<EF

(1− Nn) .

This is not quite satisfactory: N = ∑
En<EF

1 is infinite
for the vacuum state, as are the total charge and energy
of the vacuum.

These infinite “zero-point” values can be eliminated
by introducing normal ordered operators. A product of

annihilation and creation operators is in normal order if
it is rearranged so that all annihilation operators are to
the right of all creation operators. Such a product has
a null value in the vacuum state. In performing the rear-
rangement, each anticommutator is treated as if it were
zero. We denote normal ordering by placing the op-
erators between colons. Thus : a†mam : = a†mam whilst
: bnb†n : = −b†nbn . This means that if we redefine N by

N =
∫

: ψ†(x)ψ(x) : dx =
∑

Em>EF

Nm −
∑

En<EF

Nn ,

(22.46)

then 〈0|N|0〉 = 0. The same trick eliminates the infinity
from the total energy of the vacuum;

H0 =
∫

: ψ†(x)ĥDψ(x) : dx

=
∑

Em>EF

Nm Em −
∑

En<EF

Nn En , (22.47)

so that 〈0|H0|0〉 = 0.
The current density operator is given by the commu-

tator of two field variables

jµ(x) = −1

2
ec

[
ψ̄(x)γµ,ψ(x)

]
, (22.48)

where the Dirac adjoint, ψ̄(x) is defined by (22.33).
The definition (22.48) differs from (22.32) by expressing
the total current as the difference between the electron
(negatively charged) and positron (positively charged)
currents. We can write

jµ(x) =: jµ(x) : + ec Tr
[
γµSF(x, x)

]
, (22.49)

where SF(x, y) is the Feynman causal propagator, de-
fined below. Since 〈0| : jµ(x) : |0〉 = 0, the last term
in (22.49) is the vacuum polarization current due to the
asymmetry between positive and negative energy states
induced by the external field. From this, the net charge
of the system is

Q = 1

c

∫
j0(x) d3x (22.50)

= − e

⎛

⎝
∑

Em>EF

Nm −
∑

En<EF

Nn

⎞

⎠+ Qvac .

Qvac is the total charge of the vacuum, which vanishes
for free electrons, but is finite in the presence of an exter-
nal field (the phenomenon of vacuum polarization). Note
that whilst Q is conserved for all processes, the total
number of particles need not be; it is always possible to
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Relativistic Atomic Structure 22.3 QED: Relativistic Atomic and Molecular Structure 331

add virtual states incorporating electron–positron pairs
without changing Q.

22.3.3 Quantized Electromagnetic Field

The four-potential of the quantized electromagnetic field
can be expressed in terms of a spectral expansion over
the field modes in, for example, plane waves

Aµ(x) =
∫

d3k

2(2π)3k0

3∑

λ=0

[
q(λ)(k)ε(λ)

µ (k)e−ik·x

+q(λ)†(k)ε(λ)∗
µ (k)eik·x

]
. (22.51)

The vectors ε
(λ)
µ (k) describe the polarization modes;

there are four linearly independent vectors, which may
be assumed real, for each k on the positive light cone.
Two of these (λ = 1, 2) can be chosen perpendicular
to the photon momentum k (transverse polarization);
one component (λ = 3) along k (longitudinal polar-
ization); and the final component (λ = 0) is time-like
(scalar polarization). The operators q(λ)(k) and q(λ)†(k)
describe respectively photon absorption and emission.
They satisfy commutation relations

[
q(λ)(k), q(λ′)†(k′)

]
= δλ,λ′δk,k′ , λ, λ′ = 1, 2, 3

[
q(0)(k), q(0)†(k′)

]
= − δk,k′ ; (22.52)

all other commutators vanish. The photon vacuum state,
|0〉γ , is such that

q(λ)(k)|0〉γ = 0 . (22.53)

Further details may be found in the texts [22.7–10].

22.3.4 QED Perturbation Theory

The textbook perturbation theory of QED, see for ex-
ample [22.7,8,10,12] and other works, has been adapted
for applications to relativistic atomic and molecular
structure and is also the source of methods of nonrel-
ativistic many-body perturbation theory (MBPT). We
offer a brief sketch emphasizing details not found in the
standard texts.

The Perturbation Expansion
The Lagrangian approach leads to an interaction Hamil-
tonian

HI = −
∫

jµ(x)Aµ(x) dx . (22.54)

In the interaction representation, this gives an equation
of motion

i�∂t |Φ(t)〉 = HI(t)|Φ(t)〉 , (22.55)

where |Φ(t)〉 is the QED state vector, and

HI(t) = exp(iH0t/�)HI exp(−iH0t/�) ,

where H0 = Hem + He is the Hamiltonian for the uncou-
pled photon and electron–positron fields. If S(t, t′) is the
time development operator such that

|Φ(t)〉 = S(t, t′)|Φ(t′)〉 ,

then

i�∂t S(t, t′) = HI(t)S(t, t′) .

The equivalent integral equation, incorporating the inital
condition S(t, t) = 1,

S(t, t0) = 1− i

�

t∫

t0

HI(t1)S(t1, t0)d1t , (22.56)

can be solved iteratively, giving

S(t, t0) = 1+
∞∑

n=1

S(n)(t, t0) , (22.57)

where

S(n)(t, t0) = (−i/�)n

t∫

t0

dt1

t1∫

t0

dt2 · · ·
tn−1∫

t0

dtn

× HI(t1)HI(t2) · · · HI(tn) .

This can be put into a more symmetric form by us-
ing time-ordered operators. Define the T -product of two
operators by

T

[
A(t1)B(t2)

]
=

{
A(t1)B(t2) , t1 > t2

±B(t2)A(t1) , t2 > t1
(22.58)

where the positive sign refers to the product of photon
operators and the negative sign to electrons. Then

S(n)(t, t0) = (−i/�)n

n!
t∫

t0

dt1

t∫

t0

dt2 · · ·
t∫

t0

dtn

× T

[
HI(t1)HI(t2) · · · HI(tn)

]
. (22.59)

The operator S(t, t′) relates the state vector at time t
to the state vector at some earlier time t′ < t. Its ma-
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trix elements therefore give the transition amplitudes
for different processes, for example the emission or ab-
sorption of radiation by a system, or the outcome of
scattering of a projectile from a target. The techniques
for extracting cross-sections and other observable quan-
tities from the S-operator are described at length in the
texts [22.7, 8, 10, 12].

Although the use of normal ordering means that
the charge and mass of the reference state, the vac-
uum, is zero, it fails to remove other infinities due to
the occurrence of divergent integrals. The method of
extracting finite quantities from this theory involves
renormalization of the charge and mass of the elec-
tron. We shall refer especially to [22.10, Chapt. 8]
for a detailed discussion. The most difficult tech-
nical problems are posed by mass renormalization.
Formally, we modify the interaction Hamiltonian to
read

jµ(x)Aµ(x)− δM(x) ,

where δM(x) is the mass renormalization operator

δM(x) = 1

2
δm

[
ψ̄(x), ψ(x)

]

where δm is infinite.
A further problem is that electrons in a many-

electron atom or molecule move in a potential
which is quite unlike that of the bare nucleus.
It is therefore useful to introduce a local mean
field potential, say U(x), representing some sort of
average interaction with the rest of the electron
charge distribution, so that the zero-order orbitals
satisfy

[
cα · p+βc2 + Vnuc(x)+U(x)− Em

]
ψm(x) = 0 .

(22.60)

With this starting point, the interaction Hamiltonian
becomes

HI(x) = H(1)
I (x)+ H(2)

I (x) , (22.61)

where

H(1)
I (x)=−U(x), H(2)

I (x)= jµ(x)Aµ(x)− δM(x) ,

and the electron current is defined in terms of the mean
field orbitals of (22.60). The expression H(2)

I (x) is some-
times referred to as a fluctuation potential. The term
jµ(x)Aµ(x) is proportional to the electron charge, e,
which serves as an ordering parameter for perturbation
expansions.

Effective Interactions
Although the S-matrix formalism provides in principle
a complete computational scheme for many-electron
systems, it is generally too cumbersome for practical
use, and approximations are necessary. Usually, this is
a matter of selecting a subset of dominant contributions
to the perturbation series depending on the application.
We are faced with the evaluation of T -products of the
form

T [φ(t1)φ(t2) · · ·φ(tn)]

which is done using Wick’s Theorem [22.10, p. 25].
In the simplest case,

T [φ(t1)φ(t2)] = : φ(t1)φ(t2) :
+ 〈0 | T [φ(t1)φ(t2)] | 0〉 . (22.62)

The vacuum expectation value is called a contraction.
More generally, we have

T [φ(t1)φ(t2) · · ·φ(tn)]

= : φ(t1)φ(t2) · · ·φ(tn) :
+ {〈0|T [φ(t1)φ(t2)]|0〉 : φ(t3) · · ·φ(tn) :
+ permutations

}

+ {〈0|T [φ(t1)φ(t2)] |0〉〈0|T [φ(t3)φ(t4)]|0〉
× : φ(t5) · · ·φ(tn) : + permutations

} · · · .

This result has the effect that a T -product with an odd
number of factors vanishes. A rigorous statement can be
found in all standard texts; each term in the expansion
gives rise to a Feynman diagram which can be inter-
preted as the amplitude of a physical process. As an
example, consider the simple but important case

S(2) = (ie)2

2! T
[

jµ(x)Aµ(x). jν(y)Aν(y)
]

. (22.63)

One of the terms (there are others) found by using Wick’s
Theorem is

jµ(x) jν(y)〈0|T
[

Aµ(x)Aν(y)
]
|0〉 .

We see that this involves the contraction of two photon
amplitudes

−1

2
DFµν(x − y) = 〈0 | T

[
Aµ(x)Aν(y)

]
| 0〉 ,

which plays the role of a propagator (22.69): it relates
the photon amplitudes at two space-time points x, y.
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With the introduction of a spectral expansion for the
electron current (22.48), the contribution to the energy
of the system becomes

1

2

∑

pqrs

: a†pa†qasar : 〈pq|V |rs〉 , (22.64)

which can be interpreted, in the familiar language
of ordinary quantum mechanics, as the energy of
two electrons due to the electron–electron inter-
action V which is directly related to the photon
propagator.

22.3.5 Propagators

Propagators relate field variables at different space-time
points. Here we briefly define those most often needed
in atomic and molecular physics.

Electrons
Define Feynman’s causal propagator for the electron–
positron field by the contraction

SF(x2, x1) = 〈0|T[
ψ(x2)ψ̄(x1)

]|0〉 . (22.65)

This has a spectral decomposition of the form

SF(x2, x1) =
⎧
⎨

⎩

∑
Em>EF

ψm(x2)ψ̄m(x1) t1 > t2 ,

−∑
En<EF

ψn(x2)ψ̄n(x1) t1 < t2 ,

(22.66)

which ensures that positive energy solutions are prop-
agated forwards in time, and negative energy solutions
backwards in time in accordance with the antiparticle
interpretation of the negative energy states. By not-
ing that the stationary state solutions ψm(x) have time
dependence exp(−iEmt), we can write (22.66) in the
form

SF(x2, x1)= 1

2πi

∞∫

−∞

∑

n

ψn(x2)ψ̄n(x1)

En − z(1+ iδ)
e−iz(t2−t1) dz

= 1

2πi

∞∫

−∞
G(x2, x1, z)γ 0 e−iz(t2−t1) dz ,

(22.67)

where δ is a small positive number, the sum over n
includes the whole spectrum, and where the Green’s
function G(x2, x1, z), in the specific case in which the

potential of the external field aµ(x) has only a scalar
time-independent part, Vnuc(x), satisfies

[
cα · p+βc2 + (Vnucx)− z

]
G(x, y, z)

= δ(3)(x2 − x1) . (22.68)

G(x2, x1, z) is a meromorphic function of the com-
plex variable z with branch points at z = ±c2, and cuts
along the real axis

(
c2,∞)

and
(−∞,−c2

)
. The poles

lie on the segment
(− c2, c2

)
at the bound eigenvalues

of the Dirac Hamiltonian for this potential.

Photons
The photon propagator DFµν(x2 − x1) is constructed in
a similar manner:

− 1

2
DFµν(x2 − x1) = 〈

0
∣∣T

[
Aµ(x2)Aν(x1)

]∣∣ 0
〉
,

(22.69)

where µ0 is the permeability of the vacuum. This has
the integral representation

DFµν(x2 − x1) = gµν DF(x2 − x1)

= − gµν
i

(2π)4

∫
d4q D

(
q2) ,

(22.70)

where

D
(
q2) = 1

q2 + iδ
,

and δ is a small positive number. This is not unique, as
the four-potentials depend on the choice of gauge; for
details see [22.8, Sect. 77]. The various forms for the
electron–electron interaction given below express such
gauge choices.

22.3.6 Effective Interaction of Electrons

The expression (22.63) can be viewed in several ways:
it is the interaction of the current density jµ(x) at
the space-time point x with the four-potential due to
the current jµ(y); the interaction of the current den-
sity jµ(y) with the four-potential due to the current
jµ(x); or, as is commonly assumed in nonrelativistic
atomic theory, the effective interaction between two
charge density distributions, as represented by (22.64).
In terms of the corresponding Feynman diagram, it can
be thought of as the energy due to the exchange of
a virtual photon.
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The form of V depends on the choice of gauge
potential, as follows.

Feynman Gauge

〈pq|V |rs〉
=

∫ ∫
ψ†p(x)ψr(x)vF

sq(x, y)ψ†q (y)ψs(y)d3x d3 y

(22.71)

where

vF
sq(x, y) = eiωsq R

R
(1−αx ·αy) , (22.72)

with

R = x− y, R = |R|, ωsq = Es − Eq

c
.

This interaction gives both a real and an imaginary con-
tribution to the energy; only the former is usually taken
into account in structure calculations. Since the orbital
indices are dummy variables, it is usual to symmetrize
the interaction kernel by writing

v̄F(x, y) = 1

2

[
vF

sq(x, y)+vF
r p(x, y)

]
,

which places the orbitals on an equal footing.

Coulomb Gauge
Here the Feynman propagator is replaced by that for the
Coulomb gauge, giving

vT
sq(x, y) = eiωsq R

R
−

[
αx ·αy

eiωsq R

R

+ (αx ·∇)
(
αy ·∇) eiωr p R −1

ω2
r p R

]
(22.73)

in which the operator ∇ involves differentiation with
respect to R.

Symmetrization is also used with this interaction.

Breit Operator
The low frequency limit, ωr p → 0, ωsq → 0, is known
as the Breit interaction:

lim
ωr p,ωsq→0

vT
sq(x, y) = 1

R
+vB(R) , (22.74)

where

vB(R) = − 1

2R

(
αx ·αy + αx · R αy · R

R2

)
.

Gaunt Operator
This is a further approximation in which vB(R) is re-
placed by

vG(R) = −αx ·αy

R
, (22.75)

the residual part of the Breit interaction being neglected.

Comments
The choice of gauge should not influence the predic-
tions of QED for atomic and molecular structure when
the perturbation series is summed to convergence, so
that it should not matter if the unapproximated effec-
tive operators are taken in Feynman or Coulomb gauge.
However, this need not be true at each order of pertur-
bation. It has been shown that the results are equivalent,
order by order, if the orbitals have been defined in a local
potential, but not otherwise. There have also been sug-
gestions that the Feynman operator introduces spurious
terms in lower orders of perturbation that are canceled
in higher orders [22.13]. For this reason, most structure
calculations have used Coulomb gauge.

It is often argued, following Bethe and Salpeter
[22.14, Sect. 38], that the Breit interaction should only
be used in first order perturbation theory. The reason
is the approximation ω → 0; however, this approxima-
tion is quite adequate for many applications in which
the dominant interactions involve only small energy
differences.

22.4 Many-Body Theory For Atoms

The relativistic theory of atomic structure can be viewed
as a simplification of the QED approach using an effec-
tive Hamiltonian operator in which the Dirac electrons
interact through the effective electron–electron interac-
tion of Sect. 22.3.6. This approach retains the dominant
terms from the perturbation solution; those that are
omitted are small and can, with sufficient trouble, be

taken into account perturbatively [22.10,15]. In particu-
lar, radiative correction terms requiring renormalization
are explicitly omitted, and their effects incorporated
at a later stage. Once a model has been chosen, the
techniques and methods used for practical calculations
acquire a close resemblance to those of the nonrelativis-
tic theory described, for example in Chapt. 21.
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22.4.1 Effective Hamiltonians

The models which are closest to QED are those in
which the full electron–electron interaction is included,
usually in Coulomb gauge. We define a Fock space
Hamiltonian

HDCB = H0 + H1 + H2 (22.76)

where, as in (22.47),

H0 =
∑

Em>EF

Nm Em −
∑

En<EF

Nn En , (22.77)

in which the states are those determined with respect to
a mean-field central potential U(x) as in (22.60)

[
cα · p+βc2 + Vnuc(x)+U(x)− Em

]
ψm(x) = 0 ,

and

H1 = −
∑

pq

: a†paq : 〈p|U(x)|q〉

H2 = 1

2

∑

pqrs

: a†pa†qaras : 〈pq|V |sr〉 .

Here the sums run only over states p with E p > EF; this
means that states with E p < EF are treated as inert.

The models are named according to the choice of V
from Sect. 22.5.3.

Dirac–Coulomb–Breit Models
These incorporate the full Coulomb gauge opera-
tor (22.73) or the less accurate Breit operator (22.74).
The fully retarded operator is usually taken in the sym-
metrized form. The Gaunt operator (22.75) is sometimes
considered as an approximation to the Breit operator.

Dirac–Coulomb Models
The electron–electron interaction is simply taken to be
the static 1/R potential. Note that although the equations
are relativistic, the choices of electron–nucleus interac-
tion all implicitly restrict these models to a frame in
which the nuclei are fixed in space. The full electron–
electron interaction is gauge invariant; however, it is
common to start from the Dirac–Coulomb operator, in
which case the gauge invariance is lost. Since radiative
transition rates are sensitive to loss of gauge invari-
ance [22.16] the choice of potential in (22.76) can make
a big difference. Such choices may also affect the rate
of convergence in correlation calculations in which the
relativistic parts of the electron–electron interaction are
treated as a second, independent, perturbation.

22.4.2 Nonrelativistic Limit:
Breit–Pauli Hamiltonian

The nonrelativistic limit of the Dirac–Coulomb–Breit
Hamiltonian is described in Chapt. 21. The derivation is
given in many texts, for example [22.8, 10, 14], and in
principle involves the following steps:

1. Express the relativistic 4-spinor in terms of nonrela-
tivistic Pauli 2-spinors of the form (see Sect. 21.2)

φnlml ,ms (x) = const.
Pnl(r)

r
Ylml (θ, φ)χms (σ) ,

where χms is a 2-component eigenvector of the spin
operator s to lowest order in 1/c.

2. Extract effective operators to order 1/c2.

Thus the Breit–Pauli Hamiltonian is written as the
sum of terms of Sect. 21.2 which can be correlated with
specific parts of the parent relativistic operator:

1. One-body terms originate from the Dirac Hamil-
tonian: they are Hmass (21.5), the one-body part
of HDarwin (21.7) and the spin–orbit couplings Hso
(21.11) and Hsoo (21.12). The forms given in these
equations assume that the electron interacts with
a point-charge nucleus and only require the Coulomb
part of the electron–electron interaction.

2. Two-body terms, including the two-body parts of
HDarwin (21.7), the spin–spin contact term Hssc
(21.8), the orbit–orbit term Hoo (21.9) and the
spin–spin term Hss (21.13) originate from the Breit
interaction.

22.4.3 Perturbation Theory:
Nondegenerate Case

We give a brief resumé of the Rayleigh–Schrödinger
perturbation theory following Lindgren [22.17]. The ma-
terial presented here supplements the general discussion
of perturbation theory in Chapt. 5. First consider the
simplest case with a nondegenerate reference state Φ

belonging to the Hilbert space H satisfying

H0|Φ〉 = E0|Φ〉 , (22.78)

which is a first approximation to the solution of the full
problem

H|Ψ 〉 = E|Ψ 〉, H = H0 + V . (22.79)

Next, introduce a projection operator P such that

P = |Φ〉〈Φ|, P|Φ〉 = |Φ〉 ,
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and its complement Q = 1− P, projecting onto the com-
plementary subspace H \ {Φ}. With the intermediate
normalization

〈Φ|Ψ 〉 = 〈Φ|Φ〉 = 1 ,

it follows that

P|Ψ 〉 = |Φ〉〈Φ|Ψ 〉 = |Φ〉 ,

so that the perturbed wave function can be decomposed
into two parts:

|Ψ 〉 = (P + Q)|Ψ 〉 = |Φ〉+ Q|Ψ 〉 .

Thus, with intermediate normalization,

E = 〈Φ|H|Ψ 〉 = E0 +〈Φ|V |Ψ 〉 .

We now use this decomposition to write (22.79) in
the form

(E0 − H0)|Ψ 〉 = (V −∆E)|Ψ 〉 , (22.80)

where ∆E = 〈Φ|V |Ψ 〉. Thus

(E0 − H0)Q|Ψ 〉 = Q(V −∆E)|Ψ 〉 . (22.81)

Introduce the resolvent operator

R = Q

E0 − H0
, (22.82)

which is well-defined except on {Φ}. Then the perturba-
tion contribution to the wave function is

Q|Ψ 〉= R(V −∆E)|Ψ 〉= R(V |Ψ 〉−|Ψ 〉〈Φ|V |Ψ 〉) .

The Rayleigh–Schrödinger perturbation expansion can
now be written

|Ψ 〉 = |Φ〉+ ∣∣Ψ(1)
〉+ ∣∣Ψ(2)

〉+· · ·
E = E0 + E(1) + E(2) +· · ·

The contributions are ordered by the number of occur-
rences of V , the leading terms being

∣∣Ψ(1)
〉 = RV |Φ〉 ,

∣∣Ψ(2)
〉 = (

RVRV − R2VPV
)|Φ〉 ,

and so on. The corresponding contribution to the energy
can then be found from

E(n) = 〈Φ|V ∣∣Ψ(n−1)
〉
.

22.4.4 Perturbation Theory:
Open-Shell Case

Consider now the case in which there are several unper-
turbed states,

∣
∣Φ(a)

〉
, a = 1, 2, . . . , d, having the same

energy E0, which span a d-dimensional linear subspace
(the model space) M ⊂ H , so that

H0
∣∣Φ(a)

〉 = E0
∣∣Φ(a)

〉
, a = 1, 2, . . . , d .

Let P be the projector onto M, and Q onto the orthog-
onal subspace M⊥.

The perturbed states
∣∣Ψ(a)

〉
, a = 1, 2, . . . , d are re-

lated to the unperturbed states by the wave operator Ω,
∣∣Ψ(a)

〉 = Ω
∣∣Φ(a)

〉
, a = 1, 2, . . . , d .

The effective Hamiltonian, Heff, is defined so that

Heff
∣
∣Φ(a)

〉 = E(a)
∣
∣Φ(a)

〉
,

and thus

ΩHeff
∣∣Φ(a)

〉 = E(a)
∣∣Ψ(a)

〉 = HΩ
∣∣Φ(a)

〉
.

Thus on the domain M we can write an operator equation

ΩHeff P = HΩP , (22.83)

known as the Bloch equation. We now partition Heff so
that

Heff P = (H0 + Veff)P ,

enabling a reformulation of (22.83) as the commutator
equation

[Ω, H0]P = (VΩ −ΩVeff)P . (22.84)

With the intermediate normalization convention of
Sect. 22.4.3, this becomes

∣∣Ψ(a)
〉 = P

∣∣Φ(a)
〉

so that PΩP = P and

Heff P = PHΩP , Veff P = PVΩP .

Then (22.84) can be put in the final form

[Ω, H0]P = (VΩ −ΩPVΩ)P . (22.85)

The general Rayleigh–Schrödinger perturbation expan-
sion can now be generated by expanding the wave
operator order by order

Ω = 1+Ω(1) +Ω(2) +· · · ,
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and inserting into (22.85), resulting in a hierarchy of
equations

[
Ω(1), H0

]
P = (V − PV )P = QVP ,

[
Ω(2), H0

]
P = (

QVΩ(1) −Ω(1) PV
)
P ,

and so on, with H(n)
eff = PVΩ(n−1).

22.4.5 Perturbation Theory: Algorithms

The techniques of QED perturbation theory of
Sect. 22.3.4 can be utilized to give computable expres-
sions for perturbation calculations order by order. They
exploit the second quantized representation of opera-
tors of Sect. 22.4.1 along with the use of diagrams to
express the contributions to the wave operator and the
energy as sums over virtual states. The use of Wick’s

theorem to reduce products of normally-ordered opera-
tors, and the linked-diagram or linked-cluster theorem
are explained in Lindgren’s article [22.17] and Chapt. 5.
Further references and discussion of features which
can exploit vector-processing and parallel-processing
computer architectures may be found in [22.18].

The theory can also be recast so as to sum certain
classes of terms to completion. This depends on the
possibility of expressing the wave operator as a normally
ordered exponential operator

Ω = {exp S} = 1+{S}+ 1

2! {S2}+ · · · ,

where the normally ordered operator S is known as the
cluster operator. Expanding S order by order leads to the
coupled cluster expansion (see also Chapts. 5 and 27).

22.5 Spherical Symmetry

A popular starting point for most calculations in atomic
and molecular structure is the independent particle cen-
tral field approximation. This assumes that the electrons
move independently in a potential field of the form

A0(x) = 1

c
φ(r) , r = |x| ;

Ai(x) = 0 , i = 1, 2, 3 . (22.86)

Clearly φ(r) is left unchanged by any rotation about the
origin, r = 0, but transforms as the component A0(x)
of a 4-vector under other types of Lorentz and Poincaré
transformation such as boosts or translations. However,
solutions in central potentials of this form have a simple
form which is convenient for further calculation.

With this restriction on the 4-potential, Dirac’s
Hamiltonian becomes

ĥD = {
cα · p+ eφ(r)+βmec2} . (22.87)

Consider stationary solutions with energy E satisfying

ĥDψE(x) = EψE(x) .

Since ĥD is invariant with respect to rotation about
r = 0, it commutes with the generators J1, J2, J3 men-
tioned in Sect. 22.1.1, corresponding to components of
the total angular momentum j of the electron, usually
decomposed into an orbital part l and a spin part s,

j = l + s (22.88)

where

l j = iε jkl xk∂l , j = 1, 2, 3

s j = 1

2
ε jklσkl , j = 1, 2, 3 .

22.5.1 Eigenstates of Angular Momentum

We can construct simultaneous eigenstates of the op-
erators j2 and j3 by using the product representation
D(l) ×D(1/2) of the rotation group SO(3), which is
reducible to the Clebsch–Gordan sum of two irreps

D(l+1/2) ⊕D(l−1/2) . (22.89)

We construct a basis for each irrep from products of ba-
sis vectors for D(1/2) and D(l) respectively. D(1/2) is
a 2-dimensional representation spanned by the simulta-
neous eigenstates φσ of s2 and s3

s2 φσ = 3

4
φσ , s3 φσ = σφσ , σ = ±1

2
,

for which we can use 2-rowed vectors

φ1/2 =
(

1

0

)

, φ−1/2 =
(

0

1

)

.

The representation D(l) is (2l +1)-dimensional; its basis
vectors can be taken to be the spherical harmonics

{
Ym

l (θ, ϕ) | m = −l,−l +1, . . . , l
}
,
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so that

l2 Ym
l (θ, ϕ) = l(l +1)�2Ym

l (θ, ϕ) ,

l3 Ym
l (θ, ϕ) = m� Ym

l (θ, ϕ) .

We shall assume that spherical harmonics satisfy the
standard relations

l±Ym
l (θ, ϕ)=[l(l+1)−m(m ±1)]1/2

�Ym±1
l (θ, ϕ) ,

where l± = l1 ± l2, so that

Ym
l (θ, ϕ) =

(
2l +1

4π

)1/2

Cm
l (θ, ϕ) ,

Cm
l (θ, ϕ) = (−1)m

(
(l −m)!
(l +m)!

)1/2

Pm
l (θ)eimϕ ,

if m ≥ 0 ,

C−m
l (θ, ϕ) = (−1)mCm

l (θ, ϕ)∗ . (22.90)

Basis functions for the representations D j with
j = l ± 1

2 have the form (The order of coupling is sig-
nificant, and great confusion results from a mixing
of conventions. Here we couple in the order l, s, j.
The same spin-angle functions are obtained if we
use the order s, l, j but there is a phase difference
(−1)l− j+1/2 = (−1)(1−a)/2. You have been warned!)

χ j,m,a(θ, ϕ)

=
∑

σ

〈
l, m −σ,

1

2
, σ

∣∣∣ l,
1

2
, j, m

〉
Ym−σ

l (θ, ϕ)φσ

(22.91)

where 〈l, m −σ, 1
2 , σ | l, 1

2 , j, m〉 is a Clebsch–Gordan
coefficient with

l = j − 1

2
a, a = ±1,

m = − j,− j +1, . . . , j −1, j .

Inserting explicit expressions for the Clebsch–Gordan
coefficients gives

χ j,m,−1(θ, ϕ) =
⎛

⎜
⎝

−
(

j+1−m
2 j+2

)1/2
Ym−1/2

j+1/2 (θ, ϕ)
(

j+1+m
2 j+2

)1/2
Ym+1/2

j+1/2 (θ, ϕ)

⎞

⎟
⎠ ,

χ j,m,1(θ, ϕ) =
⎛

⎜
⎝

(
j+m
2 j

)1/2
Ym−1/2

j−1/2 (θ, ϕ)
(

j−m
2 j

)1/2
Ym+1/2

j−1/2 (θ, ϕ)

⎞

⎟
⎠ .

(22.92)

The vectors (22.92) satisfy

j2χ j,m,a = j( j +1)χ j,m,a, s2χ j,m,a = 3

4
χ j,m,a ,

l2χ j,m,a = l(l +1)χ j,m,a, l = j − 1

2
a, a = ±1 .

(22.93)

The parity of the angular part is given by (−1)l , with the
two possibilities distinguished by means of the operator

K ′ = −( j2 − l2 − s2 +1) = −(2s · l +1) (22.94)

so that

K ′χ j,m,a =k′χ j,m,a, k′ =−
(

j + 1

2

)
a, a=±1 .

The basis vectors are orthonormal on the unit sphere
with respect to the inner product

(χ j ′,m′,a′ |χ jma)

=
∫ ∫

χ
†
j ′,m′,a′(θ, ϕ)χ j,m,a(θ, ϕ) sin θ dθ dϕ

= δ j ′, jδm′,mδa′,a . (22.95)

22.5.2 Eigenstates of Dirac Hamiltonian
in Spherical Coordinates

Eigenstates of Dirac’s Hamiltonian (22.87) in spheri-
cal coordinates with a spherically symmetric potential
V(r) = eφ(r),

ĥDψE(r) = EψE(r) , (22.96)

are also simultaneous eigenstates of j2, of j3 and of the
operator

K =
(

K ′ 0

0 −K ′

)

, (22.97)

where K ′ is defined in (22.94) above. Denote the cor-
responding eigenvalues by j, m and κ, where

κ = ±
(

j + 1

2

)
. (22.98)

Then the simultaneous eigenstates take the form

ψEκm(r) = 1

r

(
PEκ(r)χκ,m(θ, ϕ)

iQEκ(r)χ−κ,m(θ, ϕ)

)

, (22.99)

where κ = −( j +1/2)a is the eigenvalue of K ′, and the
notation χκ,m replaces the notation χ j,m,a used previ-
ously in (22.91). The factor i in the lower component
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ensures that, at least for bound states, the radial am-
plitudes PEκ(r), QEκ(r) can be chosen to be real. This
decomposition into radial and angular factors exploits
the identity

σ · p
[

F(r)

r
χκ,m(θ, ϕ)

]

= i�
1

r

(
dF

dr
+ κF

r

)
χ−κ,m(θ, ϕ) (22.100)

and gives a reduced eigenvalue equation
⎛

⎝
mc2 − E + V −c

(
d
dr − κ

r

)

c
(

d
dr + κ

r

)
−mc2 − E + V

⎞

⎠
(

PEκ(r)

QEκ(r)

)

= 0 .

(22.101)

Angular Density Distributions
It is a remarkable fact that the angular density distribu-
tion

Aκ,m(θ, ϕ) = χκ,m(θ, ϕ)†χκ,m(θ, ϕ) , (22.102)

where m = − j,− j +1, . . . , j −1, j, is independent of
the sign of κ; the equivalence of

A j+1/2,m(θ, ϕ) = 1

4π

( j −m)!
( j +m)!

×
[
( j −m +1)2

∣∣∣Pm−1/2
j+1/2 (µ)

∣∣∣
2 +

∣∣∣Pm+1/2
j+1/2 (µ)

∣∣∣
2]

,

and

A−( j+1/2),m(θ, ϕ) = 1

4π

( j −m)!
( j +m)!

×
[
( j +m)2

∣∣∣Pm−1/2
j−1/2 (µ)

∣∣∣
2 +

∣∣∣Pm+1/2
j−1/2 (µ)

∣∣∣
2]

,

where µ = cos θ, was demonstrated by Hartree [22.19].
Angular densities for the lowest |κ| values are given

in Table 22.1. The corresponding nonrelativistic angular
densities

Al,m(θ, ϕ)nr =
∣∣∣Ym

l (θ, ϕ)

∣∣∣
2

= 2l +1

4π

(l −m)!
(l +m)!

∣∣∣P|m|
l (µ)

∣∣∣
2 ;

are listed in Table 22.2.

Radial Density Distributions
The probability density distribution ρEκm(r) associated
with the stationary state (22.99) is given by

ρE,κ,m(r) = 1

r2

[
|PE,κ(r)|2 Aκ,m(θ, ϕ)

+|QE,κ(r)|2 A−κ,m(θ, ϕ)

]
. (22.103)

Table 22.1 Relativistic angular density functions

|κ| |m| 4π A|κ|,m(θ,ϕ)

1 1
2 1

2 3
2

3
2 sin2 θ

1
2

1
2 (1+3 cos2 θ)

3 5
2

15
8 sin4 θ

3
2

3
8 sin2 θ(1+15 cos2 θ)

1
2

3
4 (3 cos2 θ −1)2 +3 sin2 θ cos2 θ

Table 22.2 Nonrelativistic angular density functions

l |m| 4π Al,m(θ,ϕ)nr

0 0 1

1 1 3
2 sin2 θ

0 3 cos2 θ

2 2 15
8 sin4 θ

1 15
2 sin2 θ cos2 θ

0 5
4 (3 cos2 θ −1)2

Since Aκ,m does not depend on the sign of κ, the angular
part can be factored so that

ρE,κ,m(r) = DE,κ(r)

r2 A|κ|,m(θ, ϕ) ,

where

DE,κ(r) =
[
|PE,κ(r)|2 +|QE,κ(r)|2

]
(22.104)

defines the radial density distribution.

Subshells in j–j Coupling
The notion of a subshell depends on the observation that
the set {ψE,κ,m, m = − j, . . . , j} have a common radial
density distribution. The simplest atomic model is one
in which the electrons move independently in a mean
field central potential. Since

j∑

m=− j

ρE,κ,m(r) = 2 j +1

4π

DE,κ(r)

r2 , (22.105)

a state of 2 j +1 independent electrons, with one in
each member of the set {ψE,κ,m, m = − j, . . . , j}, has
a spherically symmetric probability density. If E be-
longs to the point spectrum of the Hamiltonian, then
(22.105) gives a distribution localized in r, and we re-
fer to the states {E, κ, m}, m = − j, . . . , j as belonging
to the subshell {E, κ}.

The notations in use for Dirac central field states
are set out in Table 22.3. Here l is associated with the
orbital angular quantum number of the upper pair of
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Table 22.3 Spectroscopic labels and angular quantum num-
bers

Label: s p p d d f f

κ = −(
j + 1

2

)
a −1 +1 −2 +2 −3 +3 −4

j = l + 1
2 a 1

2
1
2

3
2

3
2

5
2

5
2

7
2

a 1 −1 1 −1 1 −1 1

l = j − 1
2 a 0 1 1 2 2 3 3

l̄ = j + 1
2 a 1 0 2 1 3 2 4

components and l̄ with the lower pair. Note the useful
equivalence

κ(κ +1) = l(l +1) .

Defining κ̄ := −κ we have also κ̄(κ̄ +1) = l̄(l̄ +1).

22.5.3 Radial Amplitudes

Textbooks on quantum electrodynamics usually contain
extensive discussions of the formalism associated with
the Dirac equation but rarely go beyond the treatment of
the hydrogen atom Chapt. 10. Greiner’s textbook [22.4]
is an honorable exception, with many worked exam-
ples. A more exhaustive list of problems in which exact
solutions are known is contained in [22.20]; it is par-
ticularly rich in detail about equations of motion and
Green’s functions in external electromagnetic fields of
various configurations; coherent states of relativistic par-
ticles; charged particles in quantized plane wave fields. It
also incorporates discussion of extensions of the Dirac
equations due to Pauli which include explicit interac-
tion terms arising from anomalous magnetic or electric
moments.

Atoms and molecules with more than one electron
are not soluble analytically so that numerical models
are needed to make predictions. The solutions are sen-
sitive to boundary conditions on which we focus in this
section. For large r, solutions of (22.101) can be found
proportional to exp(±λr), where

λ = +
√

c2 − E2/c2 . (22.106)

Thus λ is real when −c2 ≤ E ≤ c2, and pure imaginary
otherwise.

Singular Point at r = 0
Singularities of the nuclear potential near r = 0 have
a major influence on the nature of solutions of the Dirac
equation. Suppose that the potential has the form

V(r) = − Z(r)

r
, (22.107)

so that Z(r) is the effective charge seen by an electron
at radius r from the nuclear center. The dependence of
Z(r) on r may reflect the finite size of the nuclear charge
distribution, so far treated as a point, or the screening due
to the environment. Assume that Z(r) can be expanded
in a power series of the form

Z(r) = Z0 + Z1r + Z2r2 +· · · (22.108)

in a neighborhood of r = 0. This property characterizes
a number of well-used models

1. Point nucleus: Z0 �= 0; Zn = 0, n > 0.

2. Uniform nuclear charge distribution:

V(r) =

⎧
⎪⎨

⎪⎩

−3Z

2a

(
1− r2

3a2

)
, 0 ≤ r ≤ a ,

− Z

r
, r > a .

(22.109)

This gives the expansion Z0 = −3Z/2a, Z1 = 0,
Z2 = +Z/2a3, Zn = 0 for n > 2 when r ≤ a.

3. Fermi distribution: The nuclear charge density has
the form

ρnuc(r) = ρ0

1+ exp[(r −a)/d] ,

where ρ0 is chosen so that the total charge on the
nucleus is Z.

Other nuclear models, reflecting the density distribu-
tions deduced from nuclear scattering experiments, can
be found in the literature.

Series Solutions Near r = 0
Any solution for the radial amplitudes of Dirac’s equa-
tion in a central potential

u(r) =
(

P(r)

Q(r)

)

, (22.110)

with radial density

D(r) = P2(r)+ Q2(r) ,

can be expanded in a power series near the singular point
at r = 0 in the form

u(r) = rγ
(
u0 +u1r +u2r2 +· · · ) , (22.111)

where

uk =
(

pk

qk

)

, k = 1, 2, . . .

and γ, pk, qk are constants which depend on the nuclear
potential model.
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Point Nuclear Models
For a Coulomb singularity, Z0 �= 0, the leading coeffi-
cients satisfy

−Z0 p0 + c(κ −γ)q0 = 0 ,

c(κ +γ)p0 − Z0q0 = 0 , (22.112)

so that

γ = ±
√

κ2 − Z2
0

c2
,

q0

p0
= Z0

c(κ −γ)
= c(κ +γ)

Z0
. (22.113)

Finite Nuclear Models
Finite nuclear models, for which Z0 = 0, have no sin-
gularity in the potential at r = 0. The indicial equation
(22.113) reduces to γ = ±|κ|, so that for κ < 0,

P(r) = p0rl+1 + O
(
rl+3) , (22.114)

Q(r) = q1rl+2 + O
(
rl+4) , (22.115)

with

q1/p0 = (
E −mc2 + Z1

)/[c(2l +3)] ,

q0 = p1 = 0 ,

and for κ ≥ 1,

P(r) = p1rl+1 + O
(
rl+3) , (22.116)

Q(r) = q0rl + O
(
rl+2) , (22.117)

with

p1/q0 = −(
E −mc2 + Z1

)/[c(2l +1)] ,

p0 = q1 = 0 .

In both cases the solutions consist of either purely even
powers or purely odd powers of r, contrasting strongly
with the point nucleus case, where both even and odd
powers are present in the series expansion.

The Nonrelativistic Limit
For a solution linked to a nonrelativistic state with orbital
angular momentum l, one expects the nonrelativistic
limit

P(r) = O
(
rl+1), c → ∞ .

The limiting behavior reveals some significant features.

Finite nuclear models.
The behavior is entirely regular:

P(r) = O
(
rl+1), Q(r) = O

(
c−1) → 0 .

Point nuclear models.
Since

γ = |κ|− Z2

2c2|κ| + · · · ,

(22.113) shows that the leading coefficient p0 vanishes
in the limit so that,

P(r) ≈ p1rl+1
[
1+ O

(
r2)

]
, when κ ≥ 1, l = κ .

(22.118)

All higher powers of odd relative order vanish in the limit
for both components. The behavior in the case κ < 0 is
entirely regular.

22.5.4 Square Integrable Solutions

Square integrable solutions require
∫

DE,κ(r)dr to be
finite; since the solutions are smooth, except possibly
near the singular endpoints r → 0 and r → ∞, we focus
on the behavior at the endpoints:

r → ∞
For real values of λ the condition

∞∫

R

DE,κ(r)dr < ∞ , 0 < R < ∞ ,

requires that PEκ(r), QEκ(r) are proportional to
exp(−λr) with λ > 0.

This means that bound states can only exist when
E lies in the interval −c2 ≤ E ≤ c2. Outside this interval
solutions are necessarily of scattering type and so

∞∫

R

DE,κ(r)dr

diverges when |E| > c2.

r → 0
This limit requires

R′∫

0

DE,κ(r)dr < ∞, R′ > 0 .
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Since DE,κ(r) ∼ r±2γ as r → 0, this condition holds
when ±γ > − 1

2 . Only the solution with γ > 0 satis-
fies the condition when |γ | > 1

2 , or Z < α−1
√

κ2 −1/4,
and the solution with γ < 0 must be disregarded. This
corresponds to the limit point case of a second-order dif-
ferential operator [22.21]. In the special case |κ| = 1 or
j = 1

2 this limits Z to be smaller than c
√

3/2 ≈ 118.6.
For Z > c

√
3/2, both solutions are square integrable

near the origin (the limit circle case) and the differential
operator is no longer essentially self-adjoint.

The Coulomb potential must have a finite expecta-
tion for any physically acceptable solution, so that we
also require

R′∫

0

DE,κ(r)
dr

r
< ∞, R′ > 0 .

This is always satisfied by the solution with γ > 0 for
all |Z| < α−1|κ|, but not by the solution with γ < 0. Im-
posing this condition restores essential self-adjointness
(on a restricted domain) for 118 < Z ≤ 137.

22.5.5 Hydrogenic Solutions

The wave functions for hydrogenic solutions of Dirac’s
equation are presented in Sect. 22.8.2. Here we note
some properties of hydrogenic solutions that reveal
dynamical effects of relativity in the absence of screen-
ing by orbital electrons. In this case Z0 = Z, Zn = 0,
n > 0. When −c2 < E < c2 we have bound states. The
parameter λ, (22.106), can conveniently be written

λ = Z/N , (22.119)

so that rearranging (22.106) gives

E = +c2

√

1− Z2

N2c2 , (22.120)

essentially equivalent to Sommerfeld’s fine structure for-
mula. In the formal nonrelativistic limit, c → ∞, we
have

E = c2 − Z2

2N2
+ O(1/c2)

so that N is closely related to the principal quantum
number, n, appearing in the Rydberg formula. As in
Sect. 22.8.2, we write ρ = 2λr.

Define the inner quantum number

nr = −a = −γ + NE

c2
, nr = 0, 1, 2, . . . .

Substitute for E from (22.120) to get

N =
[
(nr +γ)2 +α2 Z2

]1/2

=
[
n2 −2nr(|κ|−γ)

]1/2
, (22.121)

where n = nr +|κ| is the principal quantum number,
the exact equivalent of the principal quantum num-
ber of the nonrelativistic state to which the Dirac
solution reduces in the limit c → ∞. With this nota-
tion, the radial amplitudes for bound hydrogenic states
are

PEκ(r)

= NEκ(c+ E/c)1/2ργ e−ρ/2[−nr M(−nr +1,

2γ +1; ρ)+ (N −κ)M(−nr, 2γ +1; ρ)
]
,

(22.122)

QEκ(r)

= NEκ(c− E/c)1/2ργ e−ρ/2[−nr M(−nr +1,

2γ +1; ρ)− (N −κ)M(−nr, 2γ +1; ρ)
]
,

(22.123)

where

NEκ =
(

αZ

2N2(N −κ)
· Γ (2γ +nr +1)

nr! [Γ(2γ +1)]2

)1/2

is the normalization constant. For definitions of
the confluent hypergeometric functions M(a, b; c; z)
see [22.22, Sect. 13.1].

Table 22.4 lists expectation values of simple pow-
ers of the radial variable ρ = 2Zr/N from [22.23]

Table 22.4 Radial moments 〈ρs〉
s Nonrelativistic Relativistic a

2 2n2[5n2 +1 2
[
N2(5N2 −2κ2)R2(N )

−3l(l +1)] +N2(1−γ 2)−3κN2 R(N )
]

1 3n2 − l(l +1) −κ + (3N2 −κ2)R(N )

0 1 1

−1
1

2n2

nγ + (|κ|−γ)|κ|
2γN3

−2
1

2n3(2l +1)

κ2 R(N )

2γ 2 N3(2γ − sgnκ)

−3
1

4n3l(l+1)(2l+1)

N2 +2γ 2κ2 −3N2κR(N )

4N5γ(γ 2 −1)(4γ 2 −1)

a R(N ) = √
1− Z2/N2c2
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and [22.24]. Simple algebra, using the inequalities
γ < |κ| and N < n, yields the inequality

〈ρs〉nκ < 〈ρs〉nl, s > 0 ;
the inequality is reversed for s < 0. In the same way, it is
easy to deduce that relativistic hydrogenic eigenvalues
lie below the nonrelativistic eigenvalues

εnκ < εnl .

Thus, in the absence of screening, Dirac orbitals both
contract and are stabilized with respect to their nonrela-
tivistic counterparts. The relativistic and nonrelativistic
expectation values approach each other as the relativistic
coupling constant, Z/c = αZ → 0. This formal nonrela-
tivistic limit is approached as α → 0 or c → ∞, in which
the speed of light is regarded as infinite.

22.5.6 The Free Electron Problem
in Spherical Coordinates

The radial equation (22.101) for the free electron
(V(r) = 0) gives a pair of first order ordinary differential
equations

(mc2 − E)PEκ(r) = c

(
d

dr
− κ

r

)
QEκ(r) ,

c

(
d

dr
+ κ

r

)
PEκ(r) = (

mc2 + E
)
QEκ(r) , (22.124)

from which we deduce that

d2 PEκ(r)

dr2
+

(
p2 − κ(κ +1)

r2

)
PEκ(r) = 0 ,

d2 QEκ(r)

dr2
+

(
p2 − κ̄(κ̄ +1)

r2

)
QEκ(r) = 0 ,

(22.125)

where p2 = m2c2 − E2/c2 = p. p and the angular quan-
tum numbers κ and κ̄ are associated respectively with the
upper and lower components. These are defining equa-
tions of Riccati–Bessel functions [22.22, Sect. 10.1.1]
of orders l and l̄ respectively, where

κ(κ +1) = l(l +1), κ̄(κ̄ +1) = l̄(l̄ +1) .

Thus the solutions of (22.125) are functions of the
variable x = pr of the form

PEκ(r) = Ax fl(x), QEκ(r) = Bx fl̄(x) ,

where the ratio of A and B is determined by (22.124)
and where fl(x) is a spherical Bessel function of the

first, second or third kind [22.22, Sect. 10.1.1]. Thus

PEκ(r) = N

(
E +mc2

πE

)1/2

x fl(x) ,

QEκ(r) = N sgn(κ)

(
E −mc2

πE

)1/2

x fl̄(x) .

(22.126)

Equations (22.124) require that Riccati–Bessel solu-
tions of the same type be chosen for both components.
The possibilities are:

Standing Waves
The two solutions of the same type are fl(x) =
jl(x), fl(x) = yl(x). The jl(x) are bounded everywhere,
including the singular points x = 0, x → ∞ and have
zeros of order l at x = 0. The yl(x) are bounded at infinity
but have poles of order l +1 at x = 0.

Progressive Waves
The spherical Hankel functions (functions of the third
kind) are linear combinations

h(1)
l (x) = jl(x)+ iyl(x), h(2)

l (x) = jl(x)− iyl(x) .

Recalling that p is real if and only if |E| > mc2, we see
that h(1)

l (x), h(2)
l (x) are bounded as x → ∞ and have

poles of order l +1 at x = 0. Notice that when |E| < mc2,
which does not occur for a free particle, p becomes pure
imaginary and no solution exists which is finite at both
singular points.

The normalization constant N can be determined by
using the well-known result

∞∫

0

jl(pr) jl(p′r)r2 dr = π

2p2
δ(p− p′) .

The choice N = 1 ensures that
∞∫

0

[
P†Eκ(r)PE′κ(r)+Q†Eκ(r)QE′κ(r)

]
dr =δ(p−p′) .

Noting that

δ(E − E′) =
∣∣∣∣

dp

dE

∣∣∣∣ δ(p− p′) ,

and dp/dE = c2 p/E gives
∞∫

0

[
P†Eκ(r)PE′κ(r)+Q†Eκ(r)QE′κ(r)

]
dr =δ(E−E′) .

when N = (|E|/c2 p
)1/2

.
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22.6 Numerical Approximation of Central Field Dirac Equations

The main drive for understanding methods of numerical
approximation of solutions of Dirac’s equation comes
from their application to many-electron systems. Ap-
proximate wave functions for atomic or molecular states
are usually constructed from products of one-electron
orbitals, and their determination exploits knowledge
gained from the treatment of one-electron problems.
Whilst the numerical methods described here are strictly
one-electron in character, extension to many-electron
problems is relatively straightforward.

22.6.1 Finite Differences

The numerical approximation of eigensolutions of the
first order system of differential equations (22.101)

E

(
PEκ(r)

QEκ(r)

)

=
⎛

⎝
mc2 + V(r)− c

(
d
dr − κ

r

)

c
(

d
dr + κ

r

)
−mc2 + V(r)

⎞

⎠
(

PEκ(r)

QEκ(r)

)

(22.127)

can be achieved by more or less standard finite differ-
ence methods given in texts such as [22.25]. For states
in either continuum, E > mc2 or E < −mc2, the calcu-
lation is completely specified as an initial value problem
for a prescribed value of E starting from power series
solutions in the neighborhood of r = 0. Solutions of this
sort exist for all values of (complex) E except at the
bound eigensolutions in the gap −mc2 < E < mc2. For
bound states, the calculation becomes that of a two-point
boundary value problem in which the eigenvalue E has
to be determined iteratively along with the numerical
solution. We concentrate on the latter, which is more
involved.

It is convenient to write

εnκ = Enκ −mc2 , (22.128)

so that ε approaches the nonrelativistic eigenvalue in the
limit c → ∞. For the one-electron problem, (22.101)
can be written in the general form

J
du

ds
+ 1

c

dr

ds

[
rε+ W(s)

]
u(s) = χ(s)

dr

ds
, (22.129)

where u(s) and χ(s) are two-component vectors, such
that

u(s) =
(

P(s)

Q(s)

)

, J =
(

0 1

−1 0

)

,

W(s) =
(

−rV(r) −cκ

−cκ 2rc2 −rV(r)

)

,

and r(s) is a smooth differentiable function of a new
independent variable s. This facilitates the use of a uni-
form grid for s mapping onto a suitable nonuniform grid
for r. Common choices are

rn = r0 esn , sn = nh, n = 0, 1, 2, . . . , N ,

for suitable values of the parameters r0 and h, and

A rn + log

(
1+ rn

r0

)
= sn, n = 0, 1, 2, . . . , N ,

where A is a constant, chosen so that the spacing
in rn increases exponentially for small values of n and
approaches a constant for large values of n. The expo-
nentially increasing spacing is appropriate for tightly
bound solutions, but a nearly linear spacing is advisable
to ensure numerical stability in the tails of extended and
continuum solutions.

The most convenient numerical algorithm involves
double shooting from s0 = 0 and sN = Nh towards an
intermediate join point s = Jh, adjusting ε until the
trial solutions have the right number of nodes and have
left- and right-limits at s = Jh which agree to a pre-set
tolerance (commonly about 1 part in 108).

The deferred correction method [22.26, 27] allows
the precision of the numerical approximation to be
improved as the iteration converges. Consider the sim-
plest implicit linear difference scheme for the first order
system

dy

ds
= F [y(s), s] ,

based on the trapezoidal rule of quadrature, is

z j+1 − z j = 1

2
h(Fj+1 + Fj) , (22.130)

which has a local truncation error O(h2). The preci-
sion can be improved, at the expense of increasing the
computational cost per iterative cycle, by adding higher
order difference terms to the right-hand side in (22.130).
Use of the trial solution from the previous cycle leaves
the stability properties of (22.130) are unaltered, but the
converged solution has much higher accuracy.

To apply this to the Dirac system, write f(s) = dr/ds
and

A±
j = J ± h

2c
f(s j)W(s j) .
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Also consider a slightly generalized problem in which
V(r) is replaced by a discretized potential U(ν)

j that
may change from one iteration to the next as in a self-
consistent field calculation. The first iteration is

A+(0)
j+1 U(1)

j+1 − A−(0)
j U(1)

j

+ ε(0) h

2c

[
r j+1 f(s j+1)U

(1)
j+1 +r j f(s j)U

(1)
j

]

= 1

2
h

[
f(s j+1)χ(s j+1)

(0) + f(s j)χ(s j)
(0)

]
,

(22.131)

where superscript 0 refers to initial estimates and su-
perscript 1 to the result of the first iteration. On the
(ν+1)-th iteration, we solve

A+(ν)
j+1 U(ν+1)

j+1 − A−(ν)
j U(ν+1)

j

+ ε(ν) h

2c

[
r j+1 f(s j+1)U

(ν+1)
j+1 +r j f(s j)U

(ν+1)
j

]

= 1

2
h

[
f(s j+1)χ(s j+1)

(ν) + f(s j)χ(s j)
(ν)

]

+ 1

12
δ3U(ν)

j+1/2 +· · · , (22.132)

where δ3 U(ν)
j+1/2 is the central-difference correction of

order 3 [22.22, Sect. 25.1.2]. Higher order difference
corrections (at least to order 5) are included in modern
codes to improve the accuracy and numerical stability
of weakly bound solutions. This deferred correction al-
gorithm can be shown to converge asymptotically to the
required solution of the differential system with a lo-
cal truncation error of order O

(
h2p+2

)
when difference

corrections of order 2p+1 are employed [22.28].

22.6.2 Expansion Methods

Methods of solving the Dirac equation which represent
the one-electron wave function as a linear combination
of sets of square integrable functions (basis sets) have
become popular in the last 10 years. Simple and rigorous
criteria for choosing effective basis sets for this purpose
are now available, and classes of functions that satisfy
these criteria are known. Consequently, cheap and accu-
rate calculations of the electronic structure of atoms and
molecules are now a practical possibility.

Finite difference algorithms generate eigensolutions
one at a time. Basis set methods replace the differen-
tial operator ĥD of (22.87) with a finite symmetric (in
some cases complex Hermitian) matrix of dimension
2N . The spectrum of this operator, which is of course
a pure point spectrum, consists of three pieces: N eigen-
solutions with E < −mc2 (ε < −2mc2) representing the

eigenstates of the lower continuum; Nb < N eigenso-
lutions in the gap −mc2 < E < mc2 (−2mc2 < ε < 0)
corresponding to bound states; and N − Nb eigensolu-
tions with E > mc2 (ε > 0) representing the eigenstates
of the upper continuum. For properly chosen basis sets,
the approximation properties of bound state eigensolu-
tions are similar to those of the equivalent nonrelativistic
eigensolutions. Solutions at continuum energies have
the correct behavior near r = 0, but their amplitudes de-
crease exponentially like bound state solutions at large
values of r. The criteria on which this description rests
are as follows:

A. The eigenstates of ĥD are 4-component central
field spinors whose components are coupled. The
basis functions should therefore also consist of
4-component spinors of the form

Φκm(r) = 1

r

[
f L
κ (r)χκ,m(θ, ϕ)

i f S
κ (r)χ−κ,m(θ, ϕ)

]

. (22.133)

B. The spinor basis functions should, as far as practic-
able, satisfy the boundary conditions near r = 0 of
Sect. 22.5.3. They should also be square integrable
at infinity.

C. Acceptable spinor basis functions should satisfy the
relation

i�
f S
κ (r)

r
χ−κ,m(θ, ϕ) → σ · p

f L
κ (r)

r
χκ,m(θ, ϕ)

(22.134)

in the nonrelativistic limit, c → ∞.
D. Acceptable spinor basis functions must have finite

expectation values of component operators of ĥD,
namely α · p, β and V(r).

Finite Basis Set Formalism
Assume that each solution of the target problem is
approximated as a linear combination

ψκm(r) = 1

r

( ∑
j cL

κ j f L
κ j(r)χκ,m(θ, ϕ)

i
∑

j cS
κ j f S

κ j(r)χ−κ,m(θ, ϕ)

)

,

(22.135)

where cL
κ j , cS

κ j j = 1 · · · N, are arbitrary constants, so
that each j-term on the right-hand side has the form
(22.133). This enables us to construct a Rayleigh quo-
tient

W[ψ] = 〈ψ|ĥD|ψ〉
〈ψ|ψ〉 , (22.136)
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where both 〈ψ|ĥD|ψ〉 and 〈ψ|ψ〉 are quadratic expres-
sions in the expansion coefficients cL

j , cS
j . By requiring

that W[ψ] shall be stationary with respect to arbitrary
variations in the expansion coefficients, we arrive at the
matrix eigenvalue equation

fκ

(
cL
κ

cS
κ

)

= ε

(
SLL
κ 0

0 SSS
κ

) (
cL
κ

cS
κ

)

, (22.137)

where the matrix Hamiltonian is denoted by

fκ =
(

VLL
κ cΠL S

κ

cΠSL
κ VSS

κ −2mc2SSS
κ

)

,

cL
κ , cS

κ are N-vectors, and VLL
κ , VSS

κ , SLL
κ , SSS

κ , ΠL S
κ

and ΠSL
κ are all N × N matrices. Using superscripts T

to denote either of the letters L, S, the elements of the
matrices are defined by

STT
κij =

∞∫

0

f T∗
iκ (r) f T

jκ(r)dr , (22.138)

V TT
κij =

∞∫

0

f T∗
iκ (r)V(r) f T

jκ(r)dr , (22.139)

and

ΠL S
κij =

∞∫

0

f L∗
iκ (r)

(
− d

dr
+ κ

r

)
f S

jκ(r)dr ,

(22.140)

ΠSL
κij =

∞∫

0

f S∗
iκ (r)

(
d

dr
+ κ

r

)
f L

jκ(r)dr . (22.141)

If f L
iκ(r) and f S

iκ(r) vanish at both r = 0 and r → ∞,
then a simple integration by parts shows that ΠL S

κ and
ΠSL

κ are Hermitian conjugate matrices.

Physically Acceptable Basis Sets
The four criteria described above are exploited in the
following way:

A. The structure of (22.133) ensures (i) that the upper
and lower components have properly matched angu-
lar behavior. It also emphasizes that the radial parts
are part of a spinor structure which should be kept
intact when making approximations.

B. The nuclear singularity drives the dynamics of the
electronic motion. It is therefore important that

approximate trial solutions should have the cor-
rect analytic character as defined in Sects. 22.5.3
and 22.5.4. An expansion of f L

iκ(r) and f S
iκ(r) at

r = 0 must reproduce this analytic behavior exactly
if the approximation is to be physically reliable.
The boundary conditions are part of the definition
of a quantum mechanical operator; changing them
gives a different operator with a different eigen-
value spectrum, so that trial functions which do
not satisfy the boundary conditions of the physical
problem cannot reproduce the physical solution. The
behavior as r → ∞ is less crucial. Provided a bound
wavefunction is well approximated over the region
containing most of the electron density, the results
are insensitive to many choices.

C. The correct reduction of the Dirac equation to
Schrödinger’s equation in the nonrelativistic limit
(for example see [22.4, p. 97]) depends upon the
operator identity

p2 = (σ · p)(σ · p) .

In the basis set formalism, the matrix equivalent of
this equation is

Tlij = 1

2

N∑

k=1

ΠL S
κikΠSL

κk j , (22.142)

where

Tlij =
∞∫

0

f L∗
iκ (r)

1

2

(
− d2

dr2 + l(l +1)

r2

)
f L

jκ(r)dr

is the ij-element of the nonrelativistic radial kinetic
energy matrix. This is not true in general unless cri-
terion C holds [22.29,30]. The criterion can only be
satisfied by matched pairs of functions f L

iκ(r), f S
iκ(r),

ruling out all choices of basis set in which large
and small components are not matched in pairs. An-
other way of viewing this result is to observe that for
a general basis set, the sum over intermediate states
in (22.142) is necessarily incomplete. The Hermi-
tian conjugacy property, ΠL S

κij = ΠSL
κ ji ensures that

the omitted terms give real and non-negative con-
tributions. Thus all other choices of basis set cause
(22.142) to underestimate the nonrelativistic kinetic
energy [22.29] and to give spuriously large relativis-
tic energy corrections.
We emphasize that (22.134) need only be true in the
limit c → ∞; however, basis sets used for finite val-
ues of c should be smooth functions of c−1 as c → ∞
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so that the equality

i�
f S
κ (r)

r
χ−κ,m(θ, ϕ) = σ · p

f L
κ (r)

r
χκ,m(θ, ϕ)

(22.143)

holds in the limit.
D. This ensures that the basis functions are in the do-

main of the Dirac operator; the meaning of this
statement can be made precise in a functional ana-
lytic discussion such as in [22.3]. Some implications
for the finite basis set approach are given in the au-
thor’s paper [22.15, pp. 235–253], which discusses
the convergence of expectation values of operators
for approximate Dirac wavefunctions obtained by
this method. Here the main importance is that a
(possibly singular) multiplicative operator V(r) (say,
−Z/r) has N × N matrices VLL

κ , VSS
κ with finite el-

ements. This must be true both for exact solutions
and for approximations if the wave functions are to
represent physical states. In particular, both matrices
must have a lowest eigenvalue V (N)

min say. Consider
now the quantity (ψ|ĥD(λ)|ψ), where

ĥD(λ) = (
cα · p+βmec2)+λV(r) .

With λ = 0 we have a free Dirac particle with
a two-branched continuous spectrum E > mc2 and
E < −mc2. A negative definite V(r) has always
(ψ|V(r)|ψ) > Vmin; clearly,

V (N)
min ≥ Vmin > −2mc2 , (22.144)

for all values of N . So if we increase λ from
0 to 1, the eigenvalues of trial solutions corre-
sponding to eigenvalues in the upper continuum
at λ = 0 will be smoothly decreasing functions
of λ bounded below by Vmin for all values of N .
It follows that the upper set of eigenvalues has
a fixed lower bound in the gap

(−mc2, mc2
)

for
each finite matrix approximation. If the basis set
satisfies suitable completeness criteria in an ap-
propriate Hilbert space as N → ∞ (see [22.15,
pp. 235–253], [22.31] for more details) we see that,
if (22.144) holds for all values of N , the infinite
sequence {E(N )

N+i , N = N0, N0 +1, . . . } of eigenval-
ues approximating the ith bound state has a finite
lower bound, and therefore, by the completeness of
the real numbers, it must have a limit point Ei in the
bound state gap

(−mc2, mc2
)
. Thus Rayleigh–Ritz

approximations for Dirac’s Hamiltonian converge in
the same fashion as the corresponding nonrelativistic
Rayleigh–Ritz approximations [22.30, 31].

22.6.3 Catalogue of Basis Sets
for Atomic Calculations

A. L-Spinors:
L-spinors [22.31] are related to Dirac hydrogenic
functions in much the same way as Sturmian func-
tions [22.32, 33] are related to Schrödinger hydrogenic
functions (Sect. 22.3). They are solutions of the differ-
ential equation system

⎛

⎜
⎜⎜
⎝

1

2
− αnrκ Zµ2

cx
− d

dx
+ κ

x
d

dx
+ κ

x
−1

2
− Z

αnrκµ
2cx

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎝

f L
nrκ

(x)

µ

µ f S
nrκ

(x)

⎞

⎟
⎠=0 ,

(22.145)

where x = 2λr is a scaled radial coordinate, with
fixed λ which can be related to an energy parameter
E R

0 = c2
√

1−λ2/c2, and µ2, a root of the equation
µ4 −2cµ2/λ+1 = 0, is given by

µ2 = c

λ

(
1+ E R

0 /c2
)

. (22.146)

This choice ensures that f L
nrκ

(x) tends smoothly to
the corresponding Coulomb Sturmian in the nonrela-
tivistic limit c → ∞ [22.31]. L2 boundary conditions
are satisfied if αnrκ = Nnrκλ/Z; when αnrκ = 1, then
f L
nrκ

(x), f S
nrκ

(x) respectively coincide with the Dirac–
Coulomb eigenfunctions Pnκ(r) and Qnκ(r) having
principal quantum number n = nr +|κ|. The explicit
form for L-spinors, in terms of Laguerre polynomials
(see Sect. 9.3.2), L(2γ)

nr (x), is

f (L)
κ,nr

(x) = Nnr,κ xγ e−x/2
[

− (1− δnr,0)L(2γ)

nr−1(x)

+ (Nnr,κ −κ)

(nr +2γ)
L(2γ)

nr (x)

]
, (22.147)

f (S)
κ,nr

(x) = Nnr,κ xγ e−x/2
[

− (1− δnr,0)L(2γ)

nr−1(x)

− (Nnr,κ −κ)

(nr +2γ)
L(2γ)

nr (x)

]
, (22.148)

where

Nnrκ =
(

nr! (2γ +nr)

2Nnrκ(Nnrκ −κ) Γ(2γ +nr)

)1/2

(22.149)

is chosen so that the diagonal elements gκ
nr,nr

of the
Gram (or overlap) matrix are unity for both large and
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small components. Both Gram matrices are tri-diagonal
with non-zero off-diagonal elements

g(κ)
nr,(nr+1) = g(κ)

(nr+1),nr

= ηT

2

(
(nr +1)(2γ +nr +1)(Nnrκ −κ)

Nnrκ N(nr+1),κ(N(nr+1),κ −κ)

)1/2

,

(22.150)

where T = L, S, ηL = −1 and ηS = +1. This conven-
tion facilitates the construction of the blocks of the
matrix Hamiltonian (22.137), which are banded when
the operators are the powers rn , n > −1. The properties
of Laguerre polynomials ensure that the matrix of the
Coulomb potential is diagonal. For a full discussion of
L-spinors, their orthogonality and completeness proper-
ties, and applications to hydrogenic atoms see [22.31].

L-spinors are most useful for hydrogenic prob-
lems, either for isolated atoms or for atoms in strong
electromagnetic fields (see Chapt. 13). The equivalent
nonrelativistic Coulomb Sturmians have for a long time
been used to study the Zeeman effect on high Rydberg
levels, especially in the region where chaotic behavior
is expected [22.34] (see Chapt. 15).

B. S-Spinors:
S-spinors have the functional form of the most nearly
nodeless L-spinors characterized by the minimal value
of nr, and can be viewed as the relativistic analogues
of Slater functions (STOs). When κ is negative, take
nr = 0, so that

f (L)
κ,0 (x) = − f (S)

κ,0 (x)

= Nκ,0 xγ exp(−x/2)
N0,κ −κ

2γ
L(2γ)

0 (x) .

When κ is positive, we must take nr = 1, and then

f (L)
κ,1 (x) = N1,κ xγ e−x/2

×

[
−L(2γ)

0 (x)+ N1,κ −κ

1+2γ
L(2γ)

1 (x)

]
,

f (S)
κ,1 (x) = N1,κ xγ e−x/2

×

[
−L(2γ)

0 (x)− N1,κ −κ

1+2γ
L(2γ)

1 (x)

]
.

These can be simplified by inserting the ex-
plicit expressions L(2γ)

0 (x) = 1, L(2γ)

1 (x) = 2γ +1− x.
We define a set of S-spinors with exponents
{λm, m = 1, 2, . . . , N} by rewriting the above in the
form

f (T )
m (r) = AT gm(γ, r)+ BT gm(γ +1, r) ,

(22.151)

where T = L, S, gm(θ, r) = rθ e−λmr ,

AL = AS = 1, BL = BS = 0 for κ < 0 ,

AL = (κ +1− N1,κ)(2γ +1)

2(N1,κ −κ)

AS = (κ −1− N1,κ)(2γ +1)

2(N1,κ −κ)

BL = BS = 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for κ > 0 ,

(22.152)

and

γ =
√

κ2 − Z2/c2, N1,κ =
√

κ2 +2γ +1 .

The choice of the set of positive real exponents {λm, m =
1, 2, . . . , N}, must be such as to assure Rayleigh–Ritz
convergence [22.15, pp. 235–253)] and to maximize the
rate at which it is attained. In particular, if one particular
exponent is chosen to have the value λm = Z/Nnr,κ ,
then the corresponding S-spinor is a true hydrogenic
solution. In this case the trial solution is exact. Clearly,
S-spinors inherit desirable properties of L-spinors and,
in particular, satisfy criteria A–D.

All elements of the matrix Hamiltonian of the Dirac
hydrogenic problem can be expressed in terms of Euler’s
integral for the gamma function [22.22, Sect. 6.1.1]:

Γ(z) = kz

∞∫

0

tz−1e−kt dt , (Rz > 0 , Rk > 0)

and are therefore readily written down and evaluated.
The effectiveness of this method depends upon the
choice of exponent set: see D below. We refer to cal-
culations using this scheme for many-electron systems
in Sect. 22.7.

C. G-Spinors:
The G-spinors are the relativistic analogues of nonrela-
tivistic spherical Gaussians (SGTO), popular in quantum
chemistry for studying the electronic structure of atoms
and molecules. They satisfy the relativistic boundary
conditions for a finite size nuclear charge density distri-
bution at r = 0, and are therefore the most convenient
for relativistic molecular electronic structure calcula-
tions. They are defined so that (22.143) holds for finite c
as well as in the nonrelativistic limit, which is equivalent
to

f (S)
m (r) = const.

(
d

dr
+ κ

r

)
f (L)
m (r) . (22.153)
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Thus, if

f (L)
m (r) = N (L)

l,m rl+1e−λmr2
, (22.154)

f (S)
m (r) = N (S)

l,m

[
(κ + l +1)rl −2λmrl+2

]
e−λmr2

.

(22.155)

Note that the leading term in (22.155) vanishes when
κ < 0, so that the radial amplitude r−1 f (S)

m (r) is
never singular, even in the s-state case when κ = −1,
l = 0.

D. Exponent Sets for S- and G-Spinors:
Quantum chemists are familiar with the use of non-
relativistic STO and GTO basis sets, and there are
extensive collections of optimized exponents which
permit economical calculations for atomic and mo-
lecular calculations [22.35–37]. These sets are a good
starting point for relativistic calculations also. By
and large, the compilations ignore mathematical com-
pleteness, which although desirable is unattainable in
practice. However, basis sets can almost always be con-
structed to give adequate numerical precision for most
purposes.

An effective alternative to optimization, especially
for atoms, is to use geometrical sequences {λm} of the
form

λm = αNβm−1
N , m = 1, 2, . . . , N , (22.156)

which depend upon just two parameters αN , βN . A con-
venient way to do this is to find a pair αN0 , βN0 for small
N0, say N0 = 9, in a cheap and simple nonrelativistic
calculation and then to increase N systematically using
relations such as

αN

αN0

=
(

βN −1

βN0 −1

)a

, or
ln βN

ln βN0

=
(

N0

N

)b

,

where a, b are positive constants. Experience shows
that no linear dependence problems (caused by ill-
conditioning of the ST matrices) are encountered when
βN > 1.2 for S-spinors, with N up to about 30, or
βN > 1.5 for G-spinors with N up to about 50.

E. Other Types of Analytic Basis Sets;
Variational Collapse:

The earliest work with atoms [22.38,39] used STO func-
tions of the form {rγ exp(−λmr), m = 1, . . . N} for both
large and small components, whilst Kagawa [22.40,41]
used integer powers instead of the noninteger γ . Drake
and Goldman [22.42] used functions of the form

{rγ+i exp(−λr), i = 0, . . . N −1}. For hydrogenic prob-
lems, these worked well for negative κ states, but gave
a single spurious eigenvalue for positive κ, which could
be simply deleted from the basis set. Various test calcula-
tions are included in the review article [22.43, Sect. IV].
Other attempts to use GTOs in the early 1980’s led to
problems interpreted as a failure of the Rayleigh–Ritz
method because of the presence of “negative energy
states” with a spectrum unbounded below: so-called
“variational collapse”. It is clear that all these approaches
fail to observe three, and sometimes all, of the four
criteria for acceptable basis sets. They are incapable
of satisfying the physical boundary conditions, and it
is therefore hardly surprising that they give unphysical
spectra.

Several procedures have been advocated to over-
come the problem, of which the two most popular
are “kinetic balance” and projection operators. Kinetic
balance, suggested by Lee and McLean [22.44], ad-
vocates augmenting a GTO basis, common to both
large and small components, with additional functions
to “balance the set kinetically”. This appears to “fix
up” the problem for the upper spectrum, but intro-
duces spurious states, mainly in the lower part of the
spectrum, as well as increasing the size of the small
component basis set. There is no rigorous nonrelativis-
tic limit, and no mathematical proof of convergence
such as that guaranteed by criteria A–D. A model with
spurious negative energy states cannot furnish a consis-
tent physical interpretation of negative energy solutions
as positron states, expected of a proper relativistic
theory.

If “variational collapse” is attributed to the absence
of a lower bound to the Dirac spectrum as a whole, the
idea of introducing a projection operator to eliminate
collapse seems attractive. This is easy to do for free
electrons, where the operators

Λ± = ĥD ± E

2|E| ,

select positive/negative energy solutions. Unfortunately,
this cannot be done in the presence of a potential except
by an approximation which complicates calculations
and reduces the efficiency of algorithms. The “negative
energy sea” also depends upon the choice of poten-
tial; perturbing the potential (as long as it does not
change the domain of the Hamiltonian) induces a uni-
tary transformation taking one set of eigenstates into
another which inevitably mixes the old positive and
negative energy states. For example a relativistic cal-
culation on a hydrogenic atom in which the nuclear
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charge is perturbed gives incorrect answers if the neg-
ative energy contribution to the perturbation series is
omitted [22.45].

In any event, the finite matrix eigensolutions include
both positive energy and negative energy states. It is
therefore a simple matter to exclude the negative energy
states if their contribution is expected to be negligible;
this is the no virtual-pair approximation. The negative
energy solutions are inert spectators for most atomic
processes, just as are those positive energy solutions
which lie deep in the atomic core. It is easy to go beyond
the no virtual-pair approximation if the physical problem
demands it.

Finite Element Methods:
Johnson et al. [22.46, 47], following earlier work
on relativistic ion–ion collisions by Bottcher and
Strayer [22.48], popularized the use of a basis
of B-splines in relativistic atomic calculations. See
Sect. 8.1.1. The method has mainly been of use in rela-
tivistic many-body calculations on the spectra of heavy
ions. See Sect. 21.6 for spline-Galerkin representations
in nonrelativistic atomic structure, such as [22.49].
Parpia and Fischer explored the spline-Galerkin ap-
proach for the Dirac equation [22.50], but this method
has not been extended so far to relativistic many-electron
atoms.

22.7 Many-Body Calculations

22.7.1 Atomic States

The construction of atomic many-electron wave-
functions from products of central field Dirac orbitals
is employed to simplify the algorithms for calculating
electronic structures and properties. This can be either
in the context of expansions in Slater determinants of
the traditional type, or by use of Racah algebra. A com-
plete description of the methods of the latter sort used
in popular computer codes is found in [22.27, Sect. 2].

22.7.2 Slater Determinants

An antisymmetric state of N independent electrons in
configuration space can be constructed in the form

{α1, α2, . . . , αN } (22.157)

= 〈x1, x2, . . . , xn|a†α1
a†α2

· · · a†αN
|0〉

= 1

N !

∣∣∣∣∣∣∣∣

ψα1(x1) ψα2(x1) · · · ψαN (x1)

ψα1(x2) ψα2(x2) · · · ψαN (x2)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
ψα1(xN ) ψα2(xN ) · · · ψαN (xN )

∣∣∣∣∣∣∣∣

This Slater determinant is an antisymmetric eigenfunc-
tion of H0 corresponding to the energy

∑
Eαn and of

the angular momentum projection J3 = ∑
j3,αn cor-

responding to the eigenvalue M3 = ∑
m3,αn . Defining

the parity of a Dirac electron orbital as that of its up-
per component, (−1)lαn , we see that this has parity
Π(−1)lαn .

22.7.3 Configurational States

Configurational state functions (CSF) having specified
total angular momentum J and parity Π can be con-

structed by vector addition of the individual angular
momenta: J = ∑

jαn . We write such states as

φ(γJM) =
∑

{mαn }
〈γJM|mα1 , mα2 . . . , mαN 〉

× {α1, α2, . . . , αN } , (22.158)

where 〈γJM|mα1 , mα2 . . . , mαN 〉 is a generalized
Clebsch–Gordon coefficient, and γ defines the angular
momentum coupling scheme.

A list of orbital quantum numbers, {α1, α2, . . . , αN }
defines an electron configuration. If the configuration
belongs to a single subshell, then the states share a com-
mon set of labels {n, κ} where n is the principal quantum
number. In j − j coupling, the α-subshell states of Nα

equivalent electrons can therefore be identified (we can
suppress the projection Mα and the parity Πα) by the la-
beling αNα , γα, Jα, where γα distinguishes degenerate
states of the same Jα. For j − j coupling, such labels
are needed only for j ≥ 5

2 ; the seniority scheme, [22.27,
Sects. 2.3, 2.4)], provides a complete classification for
j < 9

2 . A list of states of configurations j N , classified
in terms of the seniority number v and of total angular
momentum J , appears in Table 22.5.

22.7.4 CSF Expansion

Atomic state functions (ASF) are linear superpositions
of CSF’s, of the form

Ψ(γΠJ ) =
N∑

α=1

cαφ(γα J ) , (22.159)

where cα are a set of (normally) real coefficients. These
coefficients are usually chosen so that Ψ(γΠJ ) is an
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Table 22.5 j N configurational states in the seniority
scheme. The multiplicity of each unresolved degenerate
state is indicated by a superscript

j N v J
1
2 0, 2 0 0

1 0 1
2

3
2 0, 4 0 0

1, 3 1 3
2

2 0 0

2 2 2
5
2 0, 6 0 0

1, 5 1 5
2

2, 4 0 0

2 2, 4

3 1 5
2

3 3
2 , 9

2
7
2 0, 8 0 0

1, 7 1

2, 6 0 0

2 2, 4, 6

3, 5 1 7
2

3 3
2 , 5

2 , 9
2 , 11

2 , 15
2

4 0 0

2 2, 4, 6

4 2, 4, 5, 8
9
2 0, 10 0 0

1, 9 1 9
2

2, 8 0 0

2 2, 4, 6, 8

3, 7 1 9
2

3 3
2 , 5

2 , 7
2 , 9

2 , 11
2 , 13

2 , 15
2 , 17

2 , 21
2

4, 6 0 0

2 2, 4, 6, 8

4 0, 2, 3, 42, 5, 62, 7, 8, 9, 10, 12

5 1 9
2

3 3
2 , 5

2 , 7
2 , 9

2 , 11
2 , 13

2 , 15
2 , 17

2 , 21
2

7
2 5 3

2 , 5
2 , 7

2 , 9
2 , 11

2 , 13
2 , 15

2 , 17
2 , 19

2 , 25
2

eigenstate of the many-electron Hamiltonian matrix in
a finite subspace of CSF’s.

22.7.5 Matrix Element Construction

A full presentation of the reduction of matrix elem-
ents between CSF’s to computable form is beyond
the scope of this chapter. There are two approaches:
one is based on expanding all CSF’s and ASF’s in
Slater determinants, whilst the other exploits the prop-
erties of central field orbital spinors. The principles

underlying the first are straightforward and may be
found in atomic physics texts and review articles such
as [22.26, 27].

The use of second quantization and diagrammatic
methods of the quantum theory of angular momentum
provides a powerful means of reducing matrix elem-
ents between atomic CSF’s to a linear combination
of radial integrals in a systematic way. The method,
which is fully explained in [22.27], leads to a complete
classification of matrix element expressions for all the
one- and two-electron operators treated in this chapter.
A full implementation within the j − j coupling senior-
ity scheme is available in various versions of the GRASP
code [22.51–53].

22.7.6 Dirac–Hartree–Fock
and Other Theories

The notation above echoes that of the nonrelativistic
theory of Chapt. 21, and it is possible to proceed along
similar lines.

Dirac–Hartree–Fock Theory
Dirac–Hartree–Fock theory works exactly as described
in Sect. 21.4; relativistic counterparts of Koopmans’ the-
orem, fixed-core approximations, Brillouin’s theorem
are easy to obtain. The properties of Dirac–Hartree–
Fock functions closely resemble those of Hartree–Fock
functions, though allowance must be made for the fact
that, for example, n p orbitals

(
with κ = −2, j = 3

2

)

and n p̄ orbitals
(
with κ = +1, j = 1

2

)
have different

spatial distributions as a consequence of the dynami-
cal and indirect effects of relativity. For further insight
see [22.23, 26].

Most such calculations are currently made with up-
dated versions of the codes of Desclaux [22.54] or
Grant [22.51–53] which rely on finite difference meth-
ods resting on the techniques of Sect. 22.6.1. Further
details may be found in the code descriptions.

Finite Matrix Methods for Atoms and Molecules
In view of the rapid pace of development of finite matrix
methods, especially for the treatment of relativistic mo-
lecular electronic structure in the Born–Oppenheimer
(fixed nucleus) approximation, it seems appropriate
to give a brief outline of the extension of the one-
electron equations of Sect. 22.4.2 to the many-electron
case.

The method of approximation generalizes the one-
body approximation scheme of Sect. 22.6.2 to the many-
body problem based on the effective Hamiltonian of
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Sect. 22.4.1. This leads to an energy functional of the
form

E = E0 + E1 (22.160)

where E0 is the expected value of H0 (22.76) and E1 the
expected value of H1 for the finite basis many-body trial
function. This leads to matrix Dirac–Fock equations of
the form

FX = ESX . (22.161)

In general, the Fock matrix F is a sum of several matrices

F = f + g +b , (22.162)

where, for each symmetry κ and nuclear center, A, of
the molecule, f can be partitioned into blocks

fAκ =
(

VLL
Aκ cΠL S

Aκ

cΠSL
Aκ VSS

Aκ −2mc2SSS
Aκ

)

. (22.163)

The matrix

g =
(

JLL − KLL −K L S

−K SL JSS − KSS

)

(22.164)

is the matrix of the Coulomb repulsion part of the
electron–electron interaction and

b =
(

BLL BL S

BSL BSS

)

. (22.165)

is the matrix of the Breit interaction.
In the atomic (one nuclear center) case, follow-

ing [22.55], these matrices can also be blocked by
symmetry κ. Using superscripts T to label the L or
S components, and the notation T̄ to denote the com-
plementary label: T̄ = S when T = L or T̄ = L when
T = S, then the direct Coulomb part JTT

κ has matrix
elements

JTT
κpq =

∑

κ′rs

(2 j ′+1)
(

DTT
κ′rs J0,TTTT

κpq,κ′rs+DT̄ T̄
κ′rs J0,TT T̄ T̄

κpq,κ′rs

)
,

(22.166)

whilst the exchange part K TT′
κ has the form

K TT ′
κpq =

∑

κ′rs

∑

ν

(2 j ′ +1)bν( jj ′)DTT ′
κ′rs Kν,TT ′TT ′

κpq,κ′rs ,

(22.167)

where TT ′ denotes any combination of component la-
bels. Here DTT ′

κ is a density matrix with elements

DTT ′
κpq = cT∗

κp cT ′
κq , (22.168)

where cT
κp are the expansion coefficients. The Breit

interaction matrices have the similar form

BTT
κpq =

∑

κ′rs

∑

ν

(2 j ′ +1)eν( jj ′)DT̄ T̄
κ′rs Kν,TT T̄ T̄

κpq,κ′rs ,

(22.169)

and

BT T̄
κpq =

∑

κ′rs

∑

ν

(2 j ′ +1)DT̄ T
κ′rs

×
[
dν(κκ

′)Kν,T T̄ T̄ T
κpq,κ′rs + gν(κκ

′)Mν,T T̄ T̄ T
κpq,κ′rs

]
.

(22.170)

The matrix elements are constructed from standard ra-
dial integrals

Jν,TTT ′T ′
κpq,κ′rs =

∞∫

0

∞∫

0

f T
κp(r1) f T

κq(r1)Uν(r1, r2)

× f T ′
κ′r(r2) f T ′

κ′s(r2)dr2 dr1 (22.171)

where

Uν(r1, r2) =
⎧
⎨

⎩
rν

1/rν+1
2 for r1 < r2 ,

rν
2/rν+1

1 for r1 > r2 .

Similarly

Kν,TT ′TT ′
κpq,κ′rs = Jν,TTT ′T ′

κp,κ′r,κq,κ′s (22.172)

and

Mν,T T̄ T̄ T
κpq,κ′rs =

∞∫

0

∞∫

r1

f T
κp(r1) f T̄

κ′r(r1)Uν(r1, r2)

× f T̄
κq(r2) f T

κ′s(r2)dr2 dr1 . (22.173)

Further details about the coefficients bν( jj ′), eν( jj ′),
dν(κκ

′) and gν(κκ
′) may be found in [22.55].

This formalism has been implemented for closed
shell atoms with both S-spinors and G-spinors [22.55].
Computational aspects of calculating the radial integrals
using S-spinors are discussed in [22.56, 57], and can be
adapted with relatively small modifications to G-spinor
basis sets. As yet, there have been relatively few ap-
plications by comparison with codes based on finite
difference methods, but the potential can be gauged from
papers such as [22.55, 58–61], which deal with Dirac–
Fock and Dirac–Fock–Breit calculations, many-body
perturbation theory and coupled-cluster schemes.

G-spinor basis sets provide the most promising
technique for application to the electronic struc-
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ture of molecules; computer codes are under active
development.

Electron Correlation in Atomic Calculations
Here we use the term correlation to denote methods
which go beyond the single determinant approximation
of Dirac–Hartree–Fock theory. These include config-
uration interaction schemes, in which each ASF is
represented as a linear combination of CSF’s built
from previously determined orbital spinors and mul-
ticonfiguration Dirac–Fock calculations in which the
orbitals are optimized simultaneously. Calculations rep-
resentative of state of the art techniques will be found
in [22.62, 63].

Many-body perturbation theory calculations and
coupled-cluster calculations are not well suited to cal-
culations with finite difference codes, because of the
expense of calculating more than a limited orbital basis
and all the matrix elements required. Calculations based
on finite matrix methods enable this sort of calculation
to be done more economically. Some justification for the
use of finite matrix methods in relativistic many-body
theory is given in [22.15, pp. 235–253].

The relativistic version of quantum defect the-
ory [22.64, 65] also gives insight into the competing
roles of relativistic dynamics and screening in atoms.
Compared with nonrelativistic quantum defect theory, it
has been under-used.

22.7.7 Radiative Corrections

The term “radiative corrections” is usually interpreted
to mean QED contributions to energies, expectation
values or rates of atomic or molecular processes that
arise from interaction between the electron–positron
and photon fields, apart from those directly attributable
to the nonrelativistic Coulomb interaction. This in-
cludes the relativistic and retardation effects embodied
in the effective interaction between electrons as well
as contributions from processes that are not so in-
cluded. We consider two such processes, the electron
self-energy and the vacuum polarization, which involve
interactions of the same formal order as those giving
rise to the covariant electron–electron interaction dis-
cussed above, but which are formally infinite. These are
the lowest order processes requiring renormalization.
See [22.7, 8, 10, 15] for more details.

Electron Self-Energy
For a one-electron system, the renormalized expres-
sion for the self-energy of an electron in the state a

in Feynman gauge is

∆Ea = lim
Λ→∞ R

[
− iαπ.mc2

∫
ψ̄a(x2)γ

µSF(x2, x1)

×γνψa(x1)gµν DΛ
F (x2 − x1)d3x2 d3x1

× d(t2 − t1)− δm(Λ)〈ψa|β|ψa〉
]

,

(22.174)

where

δm(Λ) = α

π
mc2

[
3

4
ln(Λ2)+ 3

8

]
.

This represents the contribution from virtual processes
involving the exchange of a single photon. The photon
propagator has been modified to give the photon and ef-
fective mass Λ, so that the denominator of D

(
q2

)
(22.69)

becomes q2 −Λ2 + iδ. The two parts of this formula di-
verge as Λ → ∞, though the limit of their difference
is finite. This makes calculation difficult and expensive.
There are several approaches:

1. For atomic number Z � 20, an expansion in powers
of the electron–nucleus coupling parameter αZ =
Z/c is satisfactory.

2. At larger atomic numbers an expansion in αZ
evidently fails to converge, and nonperturbative
methods must be sought. This too is computationally
difficult and expensive. The results for hydrogenic
ions have been tabulated [22.66] for atomic numbers
in the range 1 ≤ Z ≤ 100. (See [22.10, Chapt. 2] for
an up-to-date summary biased towards applications
to the spectroscopy of highly-ionized atoms.)

3. Processes involving more than one virtual photon
are hard to calculate, and have mostly been ignored.
See [22.10] for references.

Vacuum Polarization
The contribution of vacuum polarization is next in or-
der of importance in the list of radiative corrections in
atoms. As shown by (22.49), the nuclear potential gen-
erates a current in the vacuum that is responsible for
a short-range screening of the nuclear charge. This can
be represented as a local perturbing potential which is
easy to take into account [22.67–69].

22.7.8 Radiative Processes

The operator jµ(x)Aµ(x) which occurs in the in-
teraction Hamiltonian (22.61) describes processes in
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which the number of photons present can increase or
decrease by one. The Fock space operator may be
written

Hint =
∑

a,b

∑

ρ

[
a†aabq†ρ M(ρ)†

ab (t)+a†aabqρ M(ρ)
ab (t)

]
,

(22.175)

where the first set of terms in the sum represents
emission of a photon in the mode labeled ρ and the sec-
ond to absorption of a photon by the same initial state.
The operators aa and a†a are anticommuting annihila-
tion and creation operators of electrons, whilst qρ and
q†ρ are commuting annihilation and creation operators of

photons. If ω denotes photon frequency, then

M(ρ)†
ab (t) = M(ρ)

ab ei(Ea−Eb+ω)t ,

M(ρ)
ab (t) = M(ρ)

ab ei(Ea−Eb−ω)t ,

where

M(ρ)
ab =

( ω

πc

)1/2
∫

ψ†a (x)
[
Φ(ρ)(x)+ cα · A(ρ)(x)

]

×ψb(x)d3x

is the transition amplitude. For a discussion of this ex-
pression including the effect of gauge transformations on
the computed amplitudes, the elimination of angular co-
ordinates for atomic central field orbitals and connection
with the nonrelativistic limit, see [22.10, 16, 27].

22.8 Recent Developments

22.8.1 Technical Advances

Relativistic atomic structure continues to develop
to meet modern demands for high quality cal-
culations on many-electron atoms. The computing
power now available makes it possible to carry out
multi-configurational Dirac–Hartree–Fock (MCDHF)
or configuration interaction (CI) calculations on a scale
unimaginable when this chapter was first drafted.
Some of the software currently available is surveyed
below.

On the theoretical side, there have been new tech-
nical applications of tensor operator theory. Whilst the
approach initiated by Fano [22.27, 70] continues to
be the basis on which many relativistic and nonrel-
ativistic calculations are based, recent work aims to
simplify the calculation, not only by exploiting sec-
ond quantization techniques and the coupling of tensor
operators, but by better utilization of quasispin meth-
ods [22.71–74]. A new jj-coupling package along
these lines [22.75] has been constructed for eval-
uation of fractional parentage coefficients, reduced
fractional parentage coefficients (in which the depen-
dence on particle number is extracted as a quasispin
3 j-symbol), matrix elements of unit tensors T k and
double tensor operators Wkqk j , from which to construct
many-particle matrix elements of physical operators.
Fritzsche et al. [22.76–80] have recently published
utilities which exploit the capabilities of the Maple
computer algebra system to evaluate Racah algebra
expressions.

22.8.2 Software for Relativistic Atomic
Structure and Properties

Many software packages for relativistic atomic physics
calculations can now be downloaded from the internet.
The earliest codes, which generate many-electron wave-
functions and bound energy levels, taking account of the
full relativistic electron–electron interaction and QED
corrections, of Desclaux [22.54] and Grant et al. [22.51],
though now much modified, are still in use, as is the code
of Chernysheva and Yakhontov [22.81]. These codes can
use various (MC)DHF and CI procedures, albeit with
not more than a few hundred CSF. A more recent ver-
sion of Grant et al.’s code appeared in 1989 [22.52]
and GRASP92 embodied major changes to the user in-
terface and to file-handling to permit calculations with
very large CSF sets [22.53]. Most earlier calculations
were of the AL or EAL type, in which a large num-
ber of states are treated together using a common orbital
set. These are cheap and work well for highly ionized,
few-electron systems but the results only have modest
accuracy. More accurate treatment of electron correla-
tion requires MCDHF calculations on single levels (OL
calculations) or small groups of fine structure levels
(EOL calculations). The CSF sets are chosen through
some active space (AS) procedure as in nonrelativis-
tic MCHF [22.82]; complete active spaces (CAS) are
often too large for practical use, so that the AS must
be restricted in some way, for example by using only
SD (single and double) replacements from the refer-
ence CSF set. With such large CSF basis sets it is not
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practical or desirable to diagonalize the complete Hamil-
tonian matrix, and Davidson’s version [22.83, 84] of
the Lanczos algorithm, as implemented by Stathopoulos
and Fischer [22.85], is used in GRASP92 to construct
the small number of eigenvalues and eigenvectors of
physical importance.

This approach generally gives highly accurate wave-
functions and energy levels for a small number of
atomic states. Each state is determined in a sep-
arate SCF calculation, and therefore has its own
set of orbitals. The GRASP software for calculat-
ing radiative transition probabilities was based on the
assumption that initial and final states of a transi-
tion are described by the same orbital set. Most if
this machinery can still be used by way of a pro-
cedure to express sets of non-orthogonal orbitals as
a biorthonormal system [22.86]. An adaptation for
GRASP92 was used, for example, to calculate ra-
diative transition probabilities for lines of the C III
spectrum [22.87] and the oscillator strengths of the
n d 2 D3/2 − (n +1)p 2 P0

1/2,3/2 lines in Lu (n = 5) and
Lw (n = 6) which are very sensitive to correla-
tion effects [22.88]. These two calculations involved
CSF sets of order 300,000. Desclaux’s code, which
uses an expansion of the many-electron wavefunc-
tion in determinantal wavefunctions rather than the
Fano approach using jj-coupled CSFs, has simi-

larly been modernized [22.89]; its capabilities are ra-
ther similar to those of GRASP. There is no published
description.

GRASP92 has been enhanced recently with new util-
ities to calculate hyperfine interactions [22.90–92] and
isotope shifts [22.93]. Fritzsche et al. have developed
a new suite of programs, RATIP (an acronym for Rel-
ativistic Atomic Transition and Ionization Properties),
which uses MCDHF wavefunctions from GRASP92 to
study a range of atomic properties [22.94,95]. Like De-
sclaux’s package, this expresses jj-coupled symmetry
functions in terms of Slater determinants [22.96] and
also provides the relevant utilities for coefficients of
fractional parentage and the calculation of angular co-
efficients. The package supports CI calculations of ASF
and energy levels taking account of the Breit interac-
tion and QED estimates. A new utility [22.97] permits
calculation of relaxed orbital radiative transition prob-
abilities and lifetimes within the RATIP framework.
The code generates continuum orbitals, which enable
calculation of Auger energies, relative intensities and
angular distributions, and should also enable calculation
of photoionization cross-sections and angular distribu-
tions. The papers cited contain information on how
to obtain the programs, many of which are also ob-
tainable from the Computer Physics Communications
International Program Library [22.98].
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